

Professional
ASP.NET 3.5 Security, Membership, and
Role Management
with C# and VB

 Enhance Your Knowledge
Advance Your Career

Professional ASP.NET 3.5 Security, Membership, and
Role Management
978-0-470-37930-1
As the first book to address ASP.NET 3.5, AJAX, and IIS 7.0 security from
the developer’s point of view, this book begins with a look at the new
features of IIS 7.0 and then goes on to focus on IIS 7.0 and ASP.NET 3.5
integration. You’ll walk through a detailed explanation of the request
life cycle for an ASP.NET application running on IIS 7.0 under the classic
mode, from the moment it enters IIS 7.0 until ASP.NET generates a corre-
sponding response.

Professional ASP.NET 3.5 MVC
978-0-470-38461-9
The ASP.NET 3.5 MVC Framework enables Microsoft developers to
create dynamic data-driven web sites. Packed with real-world examples,
this authoritative guide is written by the Microsoft team behind the
technology and uses a real-world sample application using MVC in order
to explain the tools and technologies that compliment MVC, such as
SubSonic, LINQ, jQuery, and REST.

Professional ASP.NET 3.5 AJAX
978-0-470-39217-1
The ASP.NET AJAX toolkit is an excellent way to immediately start using
AJAX features in applications in that it offers both excitement and enter-
prise appeal to developers. Professional ASP.NET 3.5 AJAX explains how
you can use these features to build amazing Web sites. Coverage of the
client library, the ScriptManager server control, ASP.NET AJAX applica-
tion services and networking, databases and Web services, testing and
debugging, and deploying applications demonstrates how the client and
server need to interact in order to produce a better Web application.

Professional ASP.NET 3.5
978-0-470-18757-9
Professional ASP.NET 3.5 helps the experienced programmer put the latest ASP.NET technologies into action. Greatly expanded
from the original best-selling Professional ASP.NET 2.0, Professional ASP.NET 3.5 covers all the key technologies retained from
2.0 in new depth alongside the hundreds of pages of coverage of the important new 3.5 features. Written by 3 of the most well-
known and influential ASP.NET developers, Professional ASP.NET 3.5 is the book you’ll learn the language from and turn to day
after day as you write Web applications. And as always, Professional ASP.NET 3.5 features language examples in the book and
in the code download in both C# and VB.

Beginning ASP.NET 3.5
978-0-470-18759-3
Imar Spaanjaar’s book for programmers new to ASP.NET 3.5 has been widely praised as a well-organized tome of information
written by a Web developer for Web developers. Throughout the book the author works through the steps of creating an actual,
fully-functional ASP.NET 3.5 Web site. Each chapter builds on skills learned in the previous sections of the book, allowing the
reader to gain confidence working with ASP.NET 3.5 as they progress through the book.

Get more out of
WROX.com

Programmer to Programmer™

Interact
Take an active role online by participating in
our P2P forums

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and
code to keep you up to date and out of
trouble!

Chapters on Demand
Purchase individual book chapters in pdf
format

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
 We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

spine=1.872"

Professional ASP.NET 3.5 Security, Membership,
and Role Management with C# and VB

Introduction . xxiii
Chapter 1: Introducing IIS 7.0 . 1
Chapter 2: IIS 7.0 and ASP.NET Integrated Mode . 29
Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model 79
Chapter 4: A Matter of Trust . 147
Chapter 5: Configuration System Security. 223
Chapter 6: Forms Authentication. 287
Chapter 7: Integrating ASP.NET Security with Classic ASP 373
Chapter 8: Session State. 417
Chapter 9: Security for Pages and Compilation. 449
Chapter 10: The Provider Model. 469
Chapter 11: Membership. 519
Chapter 12: SqlMembershipProvider. 561
Chapter 13: ActiveDirectoryMembership Provider. 639
Chapter 14: Role Manager. 691
Chapter 15: SqlRoleProvider . 735
Chapter 16: AuthorizationStoreRoleProvider. 763
Chapter 17: Membership and Role Management in ASP.NET AJAX 3.5. 791
Chapter 18: Best Practices for Securing ASP.NET Web Applications. 823
Index . 879

79301ffirs.indd 1 10/7/08 12:39:21 PM

79301ffirs.indd 2 10/7/08 12:39:22 PM

Professional

ASP.NET 3.5 Security, Membership,
and Role Management with C# and VB

79301ffirs.indd 3 10/7/08 12:39:22 PM

79301ffirs.indd 4 10/7/08 12:39:22 PM

Professional

ASP.NET 3.5 Security, Membership,
and Role Management with C# and VB

Bilal Haidar
Stefan Schackow

79301ffirs.indd 5 10/7/08 12:39:22 PM

Professional ASP.NET 3.5 Security, Membership,
and Role Management with C# and VB
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

Portions based on the previous work Professional ASP.NET 2.0 Security, Membership, and Role Management, by Stefan Schackow,
copyright © 2006 Stefan Schackow, published by Wiley Publishing, Inc.

Published simultaneously in Canada

ISBN: 978-0-470-37930-1

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data

Haidar, Bilal.
 Professional ASP.NET 3.5 security, membership, and role management with C# and VB / Bilal Haidar,
 Stefan Schackow.
 p. cm.
 Includes index.
 ISBN 978-0-470-37930-1 (paper/website)

 1. Active server pages. 2. Microsoft .NET. 3. Computer security. 4. Web site development.
 I. Schackow, Stefan, 1970- II. Title.
 QA76.9.A25H344 2008
 005.8—dc22
 2008036129

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, elec-
tronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976
United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of
the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc.,
10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/
permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to
the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation
warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The
advice and strategies contained herein may not be suitable for every situation. This work is sold with the understanding that the
publisher is not engaged in rendering legal, accounting, or other professional services. If professional assistance is required, the
services of a competent professional person should be sought. Neither the publisher nor the author shall be liable for damages
arising herefrom. The fact that an organization or Web site is referred to in this work as a citation and/or a potential source of
further information does not mean that the author or the publisher endorses the information the organization or Web site may
provide or recommendations it may make. Further, readers should be aware that Internet Web sites listed in this work may have
changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the United
States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may
not be used without written permission. All other trademarks are the property of their respective owners. Wiley Publishing, Inc.,
is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in elec-
tronic books.

79301ffirs.indd 6 10/7/08 12:39:22 PM

www.wiley.com

About the Author
Bilal Haidar has a BE in Computer Engineering and a BS in Computer Science with a minor in Math-
ematics from the Lebanese American University (LAU). He has authored several online articles for
www.aspalliance.com, www.code-magazine.com, and www.aspnetpro.com, and is one of the top post-
ers at the ASP.NET forums. Bilal has been a Microsoft MVP in ASP.NET since 2004, as well as a Microsoft
Certified Trainer, and currently works as a senior developer for Consolidated Contractors Company (CCC),
a multinational company whose headquarters are based in Athens, Greece (www.ccc.gr). Bilal runs his
own blog, where he shares his technical experience and can be reached at http://www.bhaidar.net.

About the Previous Author
Stefan Schackow is a Program Manager on the Web Platform and Tools Team at Microsoft. During
the Visual Studio 2005 cycle, he worked on the new application services stack in Visual Studio 2005
and owned the Membership, Role Manager, Profile, Personalization and Site Navigation features in
ASP.NET 2.0. He also worked on features for Microsoft’s ASP.NET hosting solution. Currently, Stefan
is working and speaking on Silverlight for Microsoft. He is a frequent speaker at Microsoft developer
conferences. Prior to joining the ASP.NET team, Stefan worked as an application development consul-
tant in Microsoft Consulting Services (MCS) with enterprise customers.

79301ffirs.indd 7 10/7/08 12:39:22 PM

79301ffirs.indd 8 10/7/08 12:39:22 PM

Credits
Acquisitions Director
Jim Minatel

Development Editors
John Sleeva
Gus Miklos

Technical Editor
Alexei Gorkov

Production Editor
Kathleen Wisor

Copy Editor
Christopher M. Jones

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator, Cover
Lynsey Stanford

Compositor
James D. Kramer, Happenstance Type-O-Rama

Proofreader
Publication Services, Inc.

Indexer
Jack Lewis

79301ffirs.indd 9 10/7/08 12:39:22 PM

79301ffirs.indd 10 10/7/08 12:39:22 PM

Acknowledgments

The idea of working on this book started when Jim Minatel, Acquisitions Director at Wrox, emailed me
about updating the previous version of this book. Despite the fact that I have been publishing articles
for magazines and online websites for the past few years, I felt the experience of working on such a
book would be really interesting and unique. Only the days later proved me right and made me proud
that I accepted Jim’s offer.

I spent many hours researching new features and upgrades, writing down everything I learned so
that I could share it with you. Many people supported me and provided me with valuable information,
including Scott Guthrie, Billy Hoffman, Mike Volodarsky, Steve Scofield, and Anil Ruia. (I apologize if I
forgot anyone!)

I want to thank the Wiley publishing family, including Jim Minatel, John Sleeva, Gus Miklos, Carol
Kessel, Katie Wisor, and Ashley Zurcher, as well as technical editor Alexei Gorkov.

I cannot forget the support and flexibility that my company, CCC, represented by my managers and col-
leagues, showed me during all the stages of writing this book. Your support and understanding gave
me enough strength to carry on and finish this book.

Finally, a special thanks to my parents and brother and sister, who followed up with me from the begin-
ning of this work and were even more excited about this book than I myself was.

79301ffirs.indd 11 10/7/08 12:39:22 PM

79301ffirs.indd 12 10/7/08 12:39:22 PM

Contents

Introduction	 xxiii

Introducing IIS 7.0	Chapter 1: 1

Overview of IIS 7.0	 2
Modular Architecture	 2
Deployment and Configuration Management	 4
Improved Administration	 6
ASP.NET Integration	 9
Security Improvements	 11
Troubleshooting Improvements	 12

Application Pools	 17
Integrated Mode	 18
Classic Mode	 18

IIS 7.0 Components	 19
Protocol Listeners	 19
World Wide Web Publishing Service	 19
Windows Process Activation Service	 20

IIS 7.0 Modules	 22
Unmanaged Modules	 22
Managed Modules	 25

Summary	 26

IIS 7.0 and ASP.NET Integrated Mode	 2Chapter 2: 9

Advantages of IIS 7.0 and ASP.NET Integrated Mode	 30
IIS 7.0 Integrated Mode Architecture	 31

system.webServer Configuration Section Group	 34
Migrating ASP.NET Applications to Integrated Mode	 42
Extending IIS 7.0 with Managed Handlers and Modules	 49

Summary	 77

HTTP Request Processing in IIS 7.0 Integrated Model	 7Chapter 3: 9

Built-in IUSR Account and IIS_IUSRS Group	 80

79301ftoc.indd 13 10/6/08 12:09:54 PM

xiv

Contents

Integrated Mode Per-Request Security	 81
Where Is the Security Identity for a Request?	 87
Establishing the Operating System Thread Identity	 92

The Unified Processing Pipeline	 98
Thread Identity and Asynchronous Pipeline Events	 100
AuthenticateRequest	 110
DefaultAuthentication and Thread.CurrentPrincipal	 117
PostAuthenticateRequest	 120
AuthorizeRequest	 122
PostAuthorizeRequest Through PreRequestHandlerExecute	 135
Blocking Requests at the IIS Level	 135
Identity during Asynchronous Page Execution	 137
EndRequest	 143

Summary	 144

A Matter of Trust	 14Chapter 4: 7

What Is an ASP.NET Trust Level?	 148
Configuring Trust Levels	 150
Anatomy of a Trust Level	 155
A Second Look at a Trust Level in Action	 162
Creating a Custom Trust Level	 167
Additional Trust Level Customizations	 171
LINQ in Medium/Partial Trust ASP.NET Applications	 179
The Default Security Permissions Defined by ASP.NET	 181
Advanced Topics on Partial Trust	 195

Summary	 221

Configuration System Security	 22Chapter 5: 3

Using the <location /> Element	 223
The Path Attribute	 225
The allowOverride Attribute	 226

Using the lockAttributes	 227
Locking Attributes	 227
Locking Elements	 229
Locking Provider Definitions	 231

Managing IIS 7.0 Configuration versus ASP.NET Configuration	 233
Extending IIS 7.0 with Managed Modules and Handlers	 236
Managing the Native versus Managed Configuration Systems	 236
IIS 7.0 Feature Delegation	 238

79301ftoc.indd 14 10/6/08 12:09:54 PM

xv

Contents

Reading and Writing Configuration	 244
Permissions Required for Reading Local Configuration	 247
Permissions Required for Writing Local Configuration	 249
Permissions Required for Remote Editing	 251

Using Configuration in Partial Trust	 253
The requirePermission Attribute	 255
Demanding Permissions from a Configuration Class	 257
FileIOPermission and the Design-Time API	 258

Protected Configuration	 259
What Can’t You Protect?	 260
Selecting a Protected Configuration Provider 	 261
Defining Protected Configuration Providers	 264
DpapiProtectedConfigurationProvider	 265
RsaProtectedConfigurationProvider	 267
aspnet_regiis Options	 273
Using Protected Configuration Providers in Partial Trust	 274
Redirecting Configuration with a Custom Provider	 278

Summary	 285

Forms Authentication	 28Chapter 6: 7

A Quick Recap of Forms Authentication	 288
Understanding Persistent Tickets	 288

How Forms Authentication Enforces Expiration	 291
Securing the Ticket on the Wire	 295

How Secure Are Signed Tickets?	 295
Encryption Options in ASP.NET 2.0 and 3.5	 299

Setting Cookie-Specific Security Options	 303
requireSSL	 303
HttpOnly Cookies	 306
slidingExpiration	 308

Using Cookieless Forms Authentication	 308
Cookieless Options	 310
Replay Attacks with Cookieless Tickets	 315
The Cookieless Ticket and Other URLs in Pages	 317
Payload Size with Cookieless Tickets	 319
Unexpected Redirect Behavior	 322

Configuring Forms Authentication Inside IIS 7.0	 323
Sharing Tickets between 1.1 and 2.0/3.5	 324
Using Forms Authentication Across Different Content Types	 326
Leveraging the UserData Property	 329

79301ftoc.indd 15 10/6/08 12:09:54 PM

xvi

Contents

Passing Tickets Across Applications	 332
Cookie Domain	 332
Cross-Application Sharing of Ticket	 333

Enforcing Single Logons and Logouts	 358
Enforcing a Single Logon	 359
Enforcing a Logout	 368

Summary	 372

Integrating ASP.NET Security with Classic ASP	 37Chapter 7: 3

IIS 5 ISAPI Extension Behavior	 374
IIS 7.0 Wildcard Mappings	 375

Configuring a Wildcard Mapping	 376
The Resource Type Setting	 382

DefaultHttpHandler	 383
Using the DefaultHttpHandler	 384
Serving Classic ASP in IIS 7.0 Integration Mode	 387
Authenticating Classic ASP with ASP.NET	 389

Will Cookieless Forms Authentication Work?	 391
Passing Data to ASP from ASP.NET	 392
Passing Username to ASP	 394

Authenticating Classic ASP with IIS 7.0 Integrated Mode	 394
Authorizing Classic ASP with ASP.NET	 396

Passing User Roles to Classic ASP	 397
Safely Passing Sensitive Data to Classic ASP	 398
Full Code Listing of the Hash Helper	 407

Authorizing Classic ASP with IIS 7.0 Integrated Mode	 410
Passing Data from ASP.NET to Classic ASP in IIS 7.0 Integrated Mode	 411

Summary	 414

Session State	 41Chapter 8: 7

Does Session State Equal Logon Session?	 417
Session Data Partitioning	 420
Cookie-Based Sessions	 421

Sharing Cookies Across Applications	 422
Protecting Session Cookies	 423
Session ID Reuse	 424

Cookieless Sessions	 424
Configuring Session State Inside IIS 7.0	 426
Session State for Applications Running in IIS 7.0 Integrated Mode	 427
Session ID Reuse and Expired Sessions	 435
Session ID Denial-of-Service Attacks	 437

79301ftoc.indd 16 10/6/08 12:09:54 PM

xvii

Contents

Trust Levels and Session State	 439
Serialization and Deserialization Requirements	 441

Database Security for SQL Session State	 445
Security Options for the OOP State Server	 447
Summary	 447

Security for Pages and Compilation	 44Chapter 9: 9

Request Validation and Viewstate Protection	 449
Request Validation	 450
Securing viewstate	 451

Page Compilation	 454
Fraudulent Postbacks	 458
Site Navigation Security	 462
Summary	 468

The Provider Model	 46Chapter 10: 9

Why Have Providers?	 469
Patterns Found in the Provider Model	 472

The Strategy Pattern	 472
Factory Method	 474
The Singleton Pattern	 481
Façade	 482

Core Provider Classes	 484
System.Configuration.Provider Classes	 484
System.Web.Configuration Classes	 489
System.Configuration Classes	 490

Building a Provider-Based Feature	 495
Summary	 518

Membership	 51Chapter 11: 9

The Membership Class	 520
The MembershipUser Class	 523

Extending MembershipUser	 526
MembershipUser State After Updates	 529
Why Are Only Certain Properties Updatable?	 534
DateTime Assumptions	 536

The MembershipProvider Base Class	 537
Basic Configuration	 541
User Creation and User Updates	 541
Retrieving Data for a Single User	 544

79301ftoc.indd 17 10/6/08 12:09:55 PM

xviii

Contents

Retrieving and Searching for Multiple Users	 545
Validating User Credentials	 545
Supporting Self-Service Password Reset or Retrieval	 547
Tracking Online Users 	 549
General Error-Handling Approaches	 550

The “Primary Key” for Membership	 552
Supported Environments	 554
Using Custom Hash Algorithms	 557
Summary	 560

SqlMembershipProvider	 56Chapter 12: 1

Understanding the Common Database Schema	 562
Storing Application Name	 562
The Common Users Table	 563
Versioning Provider Schemas	 566
Querying Common Tables with Views	 568
Linking Custom Features to User Records	 569
Why Are There Calls to the LOWER Function?	 572

The Membership Database Schema	 573
SQL Server-Specific Provider Configuration Options	 576

Working with SQL Server Express	 577
Sharing Issues with SSE	 582
Changing the SSE Connection String	 583

Database Security	 584
Database Schemas and the DBO User	 586
Changing Password Formats	 588
Custom Password Generation	 590
Implementing Custom Encryption	 594
Enforcing Custom Password Strength Rules	 598

Hooking the ValidatePassword Event	 600
Implementing Password History	 602

Account Lockouts	 618
Implementing Automatic Unlocking	 621
Supporting Dynamic Applications	 626
Managing an Application’s Users Through IIS 7.0	 632
Summary	 637

ActiveDirectoryMembershipProvider	 63Chapter 13: 9

Supported Directory Architectures	 640

79301ftoc.indd 18 10/6/08 12:09:55 PM

xix

Contents

Provider Configuration	 642
Directory Connection Settings	 642
Directory Schema Mappings	 645
Provider Settings for Search	 648
MembershipProvider Settings	 649

Unique Aspects of Provider Functionality	 651
ActiveDirectoryMembershipUser	 654

IsApproved and IsLockedOut	 655
Using the ProviderUserKey Property	 655

Working with Active Directory	 657
UPNs and SAM Account Names	 659
Container Nesting	 660
Securing Containers	 662
Configuring Self-Service Password Reset	 667

Using ADLDS	 675
Installing ADLDS with an Application Partition	 677
Using the Application Partition	 682

Using the Provider in Partial Trust	 685
Summary	 690

Role Manager	 69Chapter 14: 1

The Roles Class	 692
The RolePrincipal Class	 695
The RoleManagerModule	 707

PostAuthenticateRequest	 707
EndRequest	 711
Role Cache Cookie Settings and Behavior	 712
Working with Multiple Providers during GetRoles	 714

RoleProvider	 722
Basic Configuration	 724
Authorization Methods	 724
Managing Roles and Role Associations	 725

WindowsTokenRoleProvider	 726
Summary	 733

SqlRoleProvider	 73Chapter 15: 5

SqlRoleProvider Database Schema	 735
SQL Server-Specific Provider Configuration Options	 737
Transaction Behavior	 738

79301ftoc.indd 19 10/6/08 12:09:55 PM

xx

Contents

Provider Security	 739
Trust-Level Requirements and Configuration	 739
Database Security	 745

Working with Windows Authentication	 746
Running with a Limited Set of Roles	 748
Authorizing with Roles in the Data Layer	 755
Supporting Dynamic Applications	 757
Managing an Application’s Roles Through IIS 7.0	 758
Summary	 760

AuthorizationStoreRoleProvider	 76Chapter 16: 3

Provider Design	 763
Supported Functionality	 766
Using a File-Based Policy Store	 768
Using a Directory-Based Policy Store	 771
Using a Microsoft SQL Server Database-Based Policy Store	 780
Working in Partial Trust	 783
Using Membership and Role Manager Together	 786
Summary	 789

Membership and Role Management in ASP.NET AJAX 3.5	 79Chapter 17: 1

ASP.NET Membership and Role Services Overview	 792
ASP.NET Membership	 792
ASP.NET Role Management	 794

ASP.NET AJAX Application Services	 796
Enabling ASP.NET Applications with ASP.NET AJAX 3.5	 796
Enabling ASP.NET Application Services	 801
AuthenticationServiceManager and RoleServiceManager Classes	 803
Authentication Service	 804
Role Service	 816

Summary	 822

Best Practices for Securing ASP.NET Web Applications	 82Chapter 18: 3

Web Application Security Threats Overview	 824
Developers Beware	 827

Know Your Users	 827
Run Applications with Minimum Privileges	 829
Validate User Input	 829
Secure Cookies	 838

79301ftoc.indd 20 10/6/08 12:09:55 PM

xxi

Contents

Secure Database Access	 841
SQL Injection Attacks	 849
Cross-Site Scripting	 853
Cross-Site Request Forgery	 857
Handle Exceptions Properly	 861
Guard Against Denial-of-Service Threats	 866
Secure Data Transmission	 872

AJAX-Enabled Application Threats	 872
Information Leakage	 872
JSON Hijacking	 874
Amplified Cross-Site Scripting	 876

Summary	 878

Index	 879

79301ftoc.indd 21 10/6/08 12:09:55 PM

79301ftoc.indd 22 10/6/08 12:09:55 PM

Introduction

This book covers security topics on a wide range of areas in ASP.NET 2.0 and ASP.NET 3.5. It starts with
an introduction to Internet Information Services 7.0 (IIS 7.0) and then explains in detail the new IIS 7.0 Inte-
grated mode of execution. Next is detailed coverage of how security is applied when an ASP.NET appli-
cation starts up and when a request is processed in the newly introduced integrated request-processing
pipeline. The book then branches out to cover security information for features such as trust levels, forms
authentication, session state, page security, and configuration system security. You will also see how you
can benefit from the IIS 7.0 Integrated mode to make use of ASP.NET features to handle non-managed or
native requests such as classic ASP due to the fact that ASP.NET and IIS 7.0 join efforts to form an inte-
grated request-processing pipeline to handle requests. Over the course of these topics, you will gain a
solid understanding of many of the less publicized security features in ASP.NET 2.0 and ASP.NET 3.5.

The book switches gears in Chapter 10 to address two security services in ASP.NET 2.0 and ASP.NET 3.5:
Membership and Role Manager. You start out learning about the provider model that underlies both
of these features. Then you get a detailed look at the internals of both features, as well as the SQL- and
Active Directory-based providers included with them. After reading through these topics, you will have
a thorough background on how you can work with those providers and how you can extend them in
your applications. The discussion about the ASP.NET features continues, with Chapter 17 dedicated to
the ASP.NET AJAX 3.5 security integration with ASP.NET 3.5, showing how to authenticate/authorize
users with JavaScript code written on the client-side.

Finally, the book closes with a chapter on the best practices ASP.NET developers should follow to pro-
tect their ASP.NET applications from malicious attacks.

Who This Book Is For
This book is intended for developers who already have a solid understanding of ASP.NET 1.1 and
ASP.NET 2.0 security concepts in the area of forms authentication, page security, and website autho-
rization. Where the book addresses functionality such as Membership and Role Manager, it assumes
that you have already used these features and have a good understanding of the general functionality
provided by both of them. It is also assumed that you have already worked with ASP.NET AJAX 3.5.
This book does not rehash widely available public information on various features or API reference
documentation.

Instead, you will find that the book has been written to “peel back the covers” of various ASP.NET
security features so that you can gain a much deeper understanding of the security options available to
you. The book focuses on explaining the new IIS 7.0 and its Integrated mode of execution, showing the
importance of this new mode and how ASP.NET applications benefit from it. The book also addresses
lesser known security functionality such as ASP.NET trust levels so that you can take advantage of
these approaches in your own applications.

If you are looking for an overview on IIS 7.0 and its unified/integrated request-processing pipeline, you
will find Chapters 1 and 2 useful. If you are seeking a deep dive on general ASP.NET 2.0 and ASP.NET 3.5

79301flast.indd 23 10/6/08 12:06:26 PM

Introduction

xxiv

security, you will find Chapters 2-9 useful. If your initial focus is on the Membership and Role Manager
features, Chapters 10-15 will be immediately useful to you. Chapter 17 focuses on explaining the authen-
tication/​authorization features in ASP.NET AJAX 3.5 to show you how to benefit from some of ASP.NET
security features from the client-side JavaScript code, thereby developing more responsive but more
secure applications without reinventing the wheel. Finally, Chapter 18 covers a number of threats and
attacks that ASP.NET applications might face and provides solutions and on how to handle such threats.

After you have read through these topics, you will have a thorough understanding of why ASP.NET
security works the way it does, and you will have insights into just how far you can “stretch” ASP.NET 2.0
and ASP.NET 3.5 to match your application’s security requirements.

What This Book Covers
The subject of ASP.NET security can refer to a lot of different concepts: security features, best coding
practices, lockdown procedures, and so on. This book addresses ASP.NET security features from the
developer’s point of view. It gives you detailed information on every major area of ASP.NET security
you will encounter while developing web applications. And it shows you how you can extend or mod-
ify these features.

Chapter 1, “Introducing IIS 7.0,” starts by refreshing the ideas on application pools and worker ❑❑

processes before diving into explaining the major components that constitute IIS 7.0. The new
modular architecture in IIS 7.0 is explained and a list of both native and managed modules is
provided. At the end of the chapter you will learn about the two modes of processing inside
IIS 7.0: Integrated and Classic.

Chapter 2, “IIS 7.0 and ASP.NET Integrated Mode,” starts by introducing the advantages of ❑❑

using the IIS 7.0 and ASP.NET integrated mode. The discussion expands into exploring the
internals and architecture of the new integrated mode of execution. In addition, the chapter
highlights the migration problems that a developer or administrator faces when upgrading an
application to run inside IIS 7.0 under the integrated mode. The chapter ends with a section on
extending the IIS 7.0 infrastructure by developing managed HttpHandlers and HttpModules
and installing these features from inside the application’s web.config configuration file with-
out the need to have access to the IIS 7.0 Manager tool.

Chapter 3, “HTTP Request Processing in IIS 7.0 Integrate Model,” starts by introducing the ❑❑

new built-in IUSR account and IIS_IUSRS group inside IIS 7.0. It then gives you a detailed
walkthrough of the security processing that both IIS 7.0 and ASP.NET perform in the inte-
grated/unified request-processing pipeline. The unified processing pipeline and all its events
and stages are introduced with a detailed focus on some of the important stages. You will
also see how the default authentication and authorization modules work, as well as the new
techniques at the IIS 7.0 level to block access to content based on new IIS 7.0 configuration set-
tings. A section is dedicated to the new native UrlAuthorizationModule that ships as part
of the native modules in IIS 7.0. This chapter also describes subtleties in how request identity
works with ASP.NET 2.0’s and ASP.NET 3.5’s asynchronous pipeline events and asynchro-
nous page model.

Chapter 4, “A Matter of Trust,” describes what an ASP.NET trust level is, and how ASP.NET ❑❑

trust levels work to provide more secure environments for running web applications. The chap-
ter goes into detail on how you can customize trust levels and how to write privileged code that
works in partial trust applications.

79301flast.indd 24 10/6/08 12:06:27 PM

Introduction

xxv

Chapter 5, “Configuration System Security,” covers the security features in the 2.0 and 3.5 ❑❑

Frameworks’ configuration systems. It discusses the configuration options for locking down
configuration sections as well as protecting configuration sections from prying eyes. The chapter
discusses managing the IIS 7.0 configuration system versus the ASP.NET configuration system,
and introduces IIS 7.0 feature delegation, which enables administrators to specify which IIS 7.0
configuration sections ASP.NET applications can change and modify. It also discusses how
ASP.NET trust levels and configuration system security work together.

Chapter 6, “Forms Authentication,” explains ASP.NET 2.0 and ASP.NET 3.5 features for forms ❑❑

authentication. You will learn about the integrated cookieless support and the support forms
authentication has for passing authentication tickets across web applications. The chapter also
presents an extensive example of implementing a lightweight single sign on solution using
forms authentication, as well as how to enforce a single login using a combination of forms
authentication and Membership.

Chapter 7, “Integrating ASP.NET Security with Classic ASP,” demonstrates using IIS 7.0 wild-❑❑

card mappings and ASP.NET 2.0’s and ASP.NET 3.5’s support for wildcard mappings to share
authentication and authorization information with Classic ASP applications when an ASP.NET
application is operating in the IIS 7.0 Classic mode. The chapter shows how easy it is to inte-
grate ASP.NET security with Classic ASP or any other non-managed content through the Inte-
grated mode of processing introduced with IIS 7.0. The chapter ends with a detailed discussion
on authenticating and authorizing classic ASP Content through ASP.NET Membership and Role
Manager in an application operating under the IIS 7.0 Integrated mode.

Chapter 8, “Session State,” covers security features and guidance for session state. Session state ❑❑

security features in ASP.NET 2.0 and ASP.NET 3.5 are covered, as well as security options for
out-of-process state and the effect ASP.NET trust levels have on the session state feature. In
addition is a detailed discussion on how to enable session state for non-managed content
when ASP.NET applications are operating under the IIS 7.0 Integrated mode.

Chapter 9, “Security for Pages and Compilation,” describes some lesser known page security ❑❑

features from ASP.NET 1.1. It also describes ASP.NET 2.0 and ASP.NET 3.5 options for securing
viewstate and postback events. Chapter 9 also covers how the dynamic compilation model in
ASP.NET 3.5, originally introduced with ASP.NET 2.0, can be used with code access security.

Chapter 10, “The Provider Model,” gives you an architectural overview of the provider model ❑❑

in both ASP.NET 2.0 and ASP.NET 3.5. The chapter covers the various Framework classes that
are “the provider model,” along with sample code showing you how to write your own custom
provider-based features.

Chapter 11, “Membership,” talks about the Membership feature in ASP.NET 2.0 and ASP.NET 3.5. ❑❑

The chapter goes into detail about the core classes of the Membership feature as well as how
you can extend the feature with custom hash algorithms.

Chapter 12, “SqlMembershipProvider,” delves into both the ❑❑ SqlMembershipProvider as well as
general database design assumptions that are baked into all of ASP.NET 2.0’s and ASP.NET 3.5’s
SQL-based features. You will learn how you can extend the provider to support automatically
unlocking user accounts. The sample code also covers custom password encryption, storing
password histories, and extending the provider to work in portal environments.

Chapter 13, “ActiveDirectoryMembershipProvider,” covers the other membership provider ❑❑

that ships in ASP.NET 2.0 and ASP.NET 3.5 — ActiveDirectoryMembershipProvider. You
will learn about how this provider maps its functionality onto Active Directory, and you will
see how to set up both Active Directory and Active Directory Lightweight Directory Service
(introduced with Windows Server 2008) servers to work with the provider.

79301flast.indd 25 10/6/08 12:06:27 PM

Introduction

xxvi

Chapter 14, “Role Manager,” describes the Role Manager feature that provides built-in authori-❑❑

zation support for ASP.NET 2.0 and ASP.NET 3.5. You will learn about the core classes in Role
Manager. The chapter also details how the RoleManagerModule is able to automatically set
up a principal for downstream authorization and how the module and Role Manager’s caching
work hand in hand. Chapter 14 also covers the WindowsTokenRoleProvider, one of the pro-
viders that ships with Role Manager.

Chapter 15, “SqlRoleProvider,” discusses the ❑❑ SqlRoleProvider and its underlying SQL
schema. You will learn about using the provider in conjunction with Windows authentication,
extending the provider to support custom authorization logic, and how you can use its database
schema for data layer authorization logic. Although not specific to just SqlRoleProvider, the
chapter covers how to get the provider working in a partial trust non-ASP.NET environment.

Chapter 16, “AuthorizationStoreRoleProvider,” covers the ❑❑ AuthorizationStoreRoleProvider,
a provider that maps Role Manager functionality to the Authorization Manager feature that first
shipped in Windows Server 2003 and is now part of Windows Server 2008. You will learn how
to set up and use both file-based and directory-based policy stores with the provider. The chap-
ter covers special Authorization Manager functionality that is supported by the provider, as
well as how to use both the ActiveDirectoryMembershipProvider and Authorization​
StoreRoleProvider to provide Active Directory-based authentication and authorization in
your web applications.

Chapter 17, “Membership and Role Management in ASP.NET AJAX 3.5,” discusses how ❑❑

ASP.NET AJAX 3.5 integrates with ASP.NET 3.5 Membership and Role management features
through newly introduced web services that act as an interface to the ASP.NET application
services. The chapter starts by recapping the Membership and Role Management features in
ASP.NET 2.0 and ASP.NET 3.5. The discussion then moves to the steps required to enable exist-
ing ASP.NET applications with ASP.NET AJAX 3.5 and then how to enable client-side authenti-
cation and role services in the application. Chapter 17 ends by dissecting the authentication and
role services in ASP.NET AJAX by detailing all the server-side and client-side classes that make
the ASP.NET AJAX 3.5 integration with the ASP.NET application services possible.

Chapter 18, “Best Practices for Securing ASP.NET Web Applications,” covers the best practices ❑❑

that can be followed to secure ASP.NET applications. The discussion takes the form of a list of
best practices that you can follow and apply in your web application. Each recommended best
practice is explained in detail, with a sample code included when possible. The chapter ends by
introducing you to the vulnerabilities exposed by introducing AJAX techniques into your appli-
cations, and the possible best practices in securing such applications.

What You Need to Use This Book
This book was written using the .NET 3.5 Framework together with .NET 3.5 Framework SP1 on both
Windows Server 2008 and Windows Vista. The sample code in the book has been verified to work with
.NET 3.5 Framework and .NET 3.5 Framework SP1 on Windows Vista. To run all of the samples in the
book, you will need the following:

Windows Server 2008 or Windows Vista❑❑

Internet Information Services 7.0 (IIS 7.0)❑❑

79301flast.indd 26 10/6/08 12:06:27 PM

Introduction

xxvii

Visual Studio 2008 RTM❑❑

Either SQL Server 2000 or SQL Server 2005❑❑

A Windows Server 2008 domain running at Windows Server 2008 functional level❑❑

Most of the samples should also work when using Windows Server 2008, as Windows Server 2008 and
Windows Vista both share the same IIS 7.0. Note that the information in most of the book refers to secu-
rity credential configuration using IIS 7.0 application pools.

Note that all of the book’s chapters require you to have IIS 7.0 installed.

Chapters 12 and 15 use the SQL-based providers. You should have either SQL Server 2000 or SQL Server
2005 setup to use these samples. Scattered throughout the book are other samples that rely on the Mem-
bership feature. These samples also require either SQL Server 2000 or SQL Server 2005.

To run the samples in Chapter 13, you will need either a Windows Server 2008 domain controller or
a machine running Active Directory Lightweight Directory Service (ADLDS) or Application Mode
(ADAM). Chapter 13 addresses using the ActiveDirectoryMembershipProvider in both Active
Directory and ADLDS environments.

The sample code in Chapter 16 uses the Authorization Manager functionality in Windows Server 2008
(both setting up policies and consuming them). As a result, to run most of the samples, you will need
a Windows Server 2008 domain controller that has been set up to work with Authorization Manager.
For file-based policy stores, you do not need your own domain controller if you just want to try out file-
based policy stores with the AuthorizationStoreRoleProvider. In addition, Windows Server 2008
enriches the Authorization Manager with the ability to store the authorization information in a Micro-
soft SQL Server. Therefore, either SQL Server 2000 or SQL Server 2005 is required to show how this new
feature works on Windows Server 2008.

Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

Boxes like this one hold important, not-to-be forgotten information that is directly rel-
evant to the surrounding text.

Notes, tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

We ❑❑ highlight new terms and important words when we introduce them.

We show keyboard strokes like this: Ctrl+A.❑❑

79301flast.indd 27 10/6/08 12:06:27 PM

Introduction

xxviii

We show file names, URLs, and code within the text like so: ❑❑ persistence.properties.

We present code in two different ways:❑❑

We use a monofont type with no highlighting for most code examples.

We use gray highlighting to emphasize code that’s particularly important
in the present context.

Source Code
As you work through the examples in this book, you may choose either to type in all the code manu-
ally or to use the source code files that accompany the book. All of the source code used in this book is
available for download at http://www.wrox.com. Once at the site, simply locate the book’s title (either
by using the Search box or by using one of the title lists) and click the Download Code link on the
book’s detail page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
978-0-470-37930-1.

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/download.
aspx to see the code available for this book and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration and at the same time you will be helping us provide even higher quality
information.

To find the errata page for this book, go to http://www.wrox.com and locate the title using the Search
box or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you can
view all errata that has been submitted for this book and posted by Wrox editors. A complete book list
including links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport​
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

79301flast.indd 28 10/6/08 12:06:27 PM

Introduction

xxix

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics of
interest of your choosing when new posts are made to the forums. Wrox authors, editors, other industry
experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:

	 1.	 Go to p2p.wrox.com and click the Register link.

	 2.	 Read the terms of use and click Agree.

	 3.	 Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

	 4.	 You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

79301flast.indd 29 10/6/08 12:06:27 PM

79301flast.indd 30 10/6/08 12:06:27 PM

1
Introducing IIS 7.0

Microsoft Internet Information Services (IIS) version 7.0 was introduced with the Windows Vista
operating system as the main Windows web server. The same web server is going to be utilized by
Windows Server 2008 with the same features, which means developing with Windows Vista IIS 7.0
will cost nothing when it is time to deploy on Windows Server 2008 IIS 7.0.

IIS 7.0 is a revolution in terms of web application processing and handling. It has been re-architected
to provide a more robust, extensible, componentized web server that gives developers a better
opportunity to integrate more into its features.

This chapter starts with an overview of new IIS 7.0 features. Application pools and worker pro-
cesses are reviewed before diving into more advanced topics. The discussion goes deeper to cover
the major components inside IIS 7.0. IIS 7.0 introduces the concept of modules as a new architec-
tural design. Both native and managed modules are covered, with a brief description of each. The
chapter ends by giving an overview on the request processing in IIS 7.0 and the new application
pool modes: Integrated and Classic.

By the end of this chapter, you will have a good knowledge of the following:

IIS 7.0 features overview❑❑

Application pool and worker processes❑❑

IIS 7.0 components❑❑

Managed and native modules inside IIS 7.0❑❑

IIS 7.0 request processing pipeline❑❑

Integrated and Classic mode application pools❑❑

79301c01.indd 1 10/6/08 12:07:11 PM

2

Chapter 1: Introducing IIS 7.0

Overview of IIS 7.0
IIS 7.0 is the new web server that ships with Windows Vista and Windows Server 2008. Similar to
the previous versions of IIS, this new version will continue to handle and process web requests that
arrive at the Windows machine. The most mature version of IIS before the current one is IIS 6.0 which
ships with Windows Server 2003. IIS 6.0 is very robust in terms of security, speed, process manage-
ment, and reliability. IIS 7.0 builds its core engine on its predecessor and improves several areas. In
addition, many new features have been added, making it extensible and manageable, thus leveraging
IIS 7.0 to be a web server platform powerful enough to handle the challenges of present and future web
applications.

The new IIS 7.0 features and characteristics are briefly summarized and presented in the next few sec-
tions to give a high-level overview of what has been done to improve the web server.

Modular Architecture
As mentioned above, IIS 7.0 bases its core engine on the best features of IIS 6.0 and adds to them the
extensibility and accessibility for developers through its modular core engine. IIS 7.0 is based on a plug-
in architecture that allows developers to have a hand in the processing of web requests. IIS 7.0 provides
extensibility through its runtime pipeline, configuration management, and operational features to have
a customizable web server for varying needs and requirements.

Making IIS 7.0 modular gives you the chance to customize it according to personal preferences and
needs. Contrary to how the IIS 6.0 was configured, IIS 7.0 has most of its modules available but not
installed. An administrator or developer can choose what modules or features to install and activate
and what modules to deactivate. This provides both administrators and developers with a robust and
reliable capability to configure the web server as needed. Figure 1-1 shows the new IIS 7.0 Manager list-
ing the 40 available managed and native modules or features that ship with a full installation.

Figure 1-1

79301c01.indd 2 10/6/08 12:07:11 PM

3

Chapter 1: Introducing IIS 7.0

All modules are not installed by default, unless specified. Any module can be uninstalled and removed
from the runtime pipeline processing, giving a flexible and dynamic experience in terms of choosing
what to configure from built-in modules or even adding new modules and features. From the security
point of view, an administrator or developer can choose what modules to include in the processing,
hence affecting the overall performance of loading the configured modules to handle requests. This
modular architecture helps reduce surface attacks by having the freedom to choose the modules to
include and provides better performance by having the administrator or developer install only the
required set of modules or features. IIS 7.0 managed and unmanaged modules are covered in detail
later in this chapter.

Web server features or modules are configured through XML configuration files. The configuration
files (discussed in a later section) are built into a hierarchy where at every level modules or features are
configurable.

A Microsoft TechNet resource is available online that lists all the modules and features contained in
IIS 7.0 and shows which modules are installed by default and which can be added later:
http://technet2.microsoft.com/WindowsServer2008/en/library/
0d35e92b-ddb7-4423-b1e5-df550e25713b1033.mspx

Developing Modules and Features
The modular architecture introduced above discusses the ability to customize the modules installed
on the web server whether by adding new ones or uninstalling existing ones. Adding new modules is
easier with the new extensibility API for developing modules to integrate into IIS.

All of the native modules installed or shipped with IIS are developed on top of this extensibility API
and this API is public, which means any developer can take that API and either redevelop an existing
module or develop a new module as required.

The new extensibility API is built with C++ and it fully represents the new web server object model.
The set of classes allows the developer to develop modules that can participate in request processing
on IIS. This model is a replacement of the ISAPI extensibility model and is much easier to develop with
since the new model includes a type-safe and well-encapsulated object model. Every needed web server
object has a corresponding specialized object interface in the new API. For example, the IHttpRequest
interface allows custom modules developed on top of the new extensibility API to access all the infor-
mation related to the request under processing. The IHttpResponse interface allows custom modules
to interact with the response generated for a request processed by IIS 7.0.

The new extensibility API even excels in terms of memory allocation and state management over ISAPI.
In the days of ISAPI extensions, the developer had to take care of allocating and unallocating memory
as required. The new extensibility API and most of the new IIS 7.0 APIs allocate server-managed mem-
ory for the data processed, which is different from the days of ISAPI extensions where developers had
to take care of all the mess.

Finally, the new extensibility API allows modules to access features that were impossible to access before,
such as request buffering and other IIS request processing tasks.

What about ASP.NET developers who are not ready to learn C++ to develop new modules for IIS? IIS 7.0
allows ASP.NET developers to utilize their existing ASP.NET module or create new ones using both the
.NET 2.0 and 3.5 Frameworks and plug them automatically into the IIS request pipeline. In a later sec-
tion, the ASP.NET integration process is explained in more depth.

79301c01.indd 3 10/6/08 12:07:11 PM

4

Chapter 1: Introducing IIS 7.0

Deployment and Configuration Management
IIS 7.0 uses a new configuration system that is conceptually much different from the IIS 6.0 centralized
metabase configuration system. The new configuration system borrows many ideas from the current
.NET 2.0 and 3.5 Frameworks configuration system, which is based on section groups and sections.

IIS 7.0 configuration system is based on XML configuration files mainly the ApplicationHost.config
and Administration.config configuration files. Both of these files get deployed on the machine
when IIS 7.0 is installed The configuration file of concern for most of the tasks related to IIS 7.0 is the
ApplicationHost.config configuration file that contains all the new web server meta-data.

This configuration file contains global- and application-specific configuration sections. It resembles the
.NET Frameworks configuration files: machine.config and the root web.config configuration files. The
web server configuration file can be reached by browsing to the %WINDIR%/System32/inetsrv/config
folder. Figure 1-2 shows the two main sections of the ApplicationHost.config configuration file.

ApplicationHost.config

applicationPools
listenerAdapters

Log
Sites

webLimits

Asp
Caching

Cgi
defaultDocument

directoryBrowsing
globalModules

Handlers
httpCompression

httpErrors
httpLogging
httpProtocol
httpRedirect
httpTracing
isaoiFilters
Modules

odbcLogging
Security

serverRuntime
serverSideInclude

staticContent
Tracing

urlCompression
validation

System.applicationHost

System.webServer

Figure 1-2

The two main section groups are the <system.applicationHost> and the <system.webServer>
section groups. The <system.applicationHost> section group contains all the global settings for the
web server, including the sites, applicationPools, listenerAdapaters, and so forth. This section is locked
down and cannot be extended by any application hosted insideIIS.

79301c01.indd 4 10/6/08 12:07:13 PM

5

Chapter 1: Introducing IIS 7.0

 <sites>
 <site name=”Default Web Site” id=”1” serverAutoStart=”true”>
 <application path=”/”>
 <virtualDirectory path=”/” physicalPath=”%SystemDrive%\inetpub\
wwwroot” />
 </application>
 <application path=”/MyApp”>
 <virtualDirectory path=”/” physicalPath=”%SystemDrive%\inetpub\
wwwroot\MyApp” />
 </application>
 <bindings>
 <binding protocol=”http” bindingInformation=”*:80:” />
 </bindings>
 </site>

The <sites> section defines all the configuration information on all sites hosted by the web server.
At the root node there is the Default Web Site that points to the site located at %SystemDrive%\
inetpub\wwwroot. To add a new website to IIS 7.0, simply add a new application node specifying
the virtual path attributes together with a virtualDirectory sub-node setting the path and
physicalPath attributes. With the above configuration, a new website has been added to IIS and
can be accessed by http://localhost/MyApp.

The other section group, <system.webServer>, holds all the configurable sections for an application.
For instance, this section contains configuration information about all the modules installed on the
web server, a configuration section for directory browsing, and all the rest of the sections shown in
Figure 1-2.

Note that with the new configuration system introduced by IIS 7.0, an administrator can configure the
<system.applicationHost> and then select which section groups and sections from the <system​
.webServer> can be changed and edited by the application’s web.config configuration file. This
eliminates the need for a site owner to contact the administrator to change any settings in IIS, which
was always happening before the release of IIS 7.0. This makes deployment with IIS 7.0 much easier. A
developer can configure the <system.webServer> configuration section group during the develop-
ment stage and then once the application is deployed, all the settings that were applied locally on IIS 7.0
would have the same effect on the hosting server given the fact that the administrator on the hosting
server has already unlocked most of the configurable sections within the <system.webServer>. For
instance, a developer can override the default web server settings for the default document for an
application and set it to a customized page name.

 <system.webServer>
 <defaultDocument>
 <files>
 <clear />
 <add value=”MyPage.aspx” />
 </files>
 </defaultDocument>
 </system.webServer>

The <system.webServer> configuration section group is the only section group in the Application​
Host.config configuration file that can be extended and configured in the web.config configuration
file of an application. The default documents configured on the web server are cleared out and a new
customized default document for the current application is set to point to MyPage.aspx.

79301c01.indd 5 10/6/08 12:07:13 PM

6

Chapter 1: Introducing IIS 7.0

In regard to security, administrators are allowed to select which sections of the <system.webServer>
to allow for editing and which are locked. For instance, an administrator can unlock many sections that
do not pose any threat to the security of the web server as a whole and leave open all the sections that
site owners usually require to change per application.

When a request reaches IIS for a resource, the different configuration files are joined together in a hier-
archy to form single, unified configuration settings that apply to the current request. Figure 1-3 shows
the process of how the different configuration files are grouped together to form a final web.config
configuration file.

ApplicationHost.config web.config
(%SystemDrive%/inetpub/

wwwroot)

web.config
(%SystemDrive%/inetpub/

wwwroot/MyApp)

Machine.config web.config (root)

web.config
(sub applications)

Figure 1-3

The machine.config file is merged with the web.config configuration file located in the root folder
of the .NET 2.0 Framework, which is a shared folder used by both ASP.NET 2.0 and ASP.NET 3.5. The
ApplicationHost.config configuration file is added to the result of the above grouping, and then the
combined configuration settings are grouped with the web.config configuration file in the root web-
site of the web server. The final result is added to the grouped configuration settings of the web.config
configuration file of the executing application with its sub-applications’ web.config configuration files.

An IIS resource is available online that gives a detailed overview of the ApplicationHost.config con-
figuration file: http://learn.iis.net/page.aspx/124/introduction-to-applicationhostconfig/

Improved Administration
The IIS 7.0 Manager has been developed from scratch to replace the previous version. The difference is
evident through the new UI experience and quick availability for any section to check and configure.

The IIS 7.0 Manager provides the UI interface experience for administrators and developers to configure
the ApplicationHost.config configuration file without touching any physical resources. For instance,
Figure 1-4 lists the available application pools in the ApplicationHost.config configuration file.

The Manager is just a UI representation to whatever is stored in the ApplicationHost.config con-
figuration file. Using the manager to configure IIS 7.0 helps to prevent imposing possible wrong XML
tag placement.

79301c01.indd 6 10/6/08 12:07:13 PM

7

Chapter 1: Introducing IIS 7.0

Figure 1-4

 <applicationPools>
 <add name=”DefaultAppPool” />
 <add name=”Classic .NET AppPool” managedPipelineMode=”Classic” />
 <applicationPoolDefaults>
 <processModel identityType=”NetworkService” />
 </applicationPoolDefaults>
 </applicationPools>

Application pools can be removed and edited, and new ones can be added. The result is stored in the
ApplicationPool configuration section group inside the ApplicationHost.config configuration file.

The IIS 7.0 Manager inherits the idea of extensibility from IIS 7.0 and provides an extensible API that
can be used to extend its UI features, hence extending the UI experience with much more features as
required. In addition, the Manager allows management delegation that helps in administrating remote
websites. For example, administrators in hosting companies can configure IIS 7.0 with the major and
most secure configurations and allow the sites’ owners to configure their sites remotely through their
version of IIS 7.0 Manager. This does away with the need for special control panels for site owners to
log into and configure their websites.

Moreover, the IIS 7.0 team thought of providing developers with a managed API to allow them to con-
figure the IIS 7.0 configuration settings programmatically. The new API is called the Microsoft.Web
.Adminisration API. Before this API can be used in Visual Studio, a reference has to be added to the
Microsoft.Web.Administration.dll found at %SystemDrive%:\Windows\System32\inetsrv.
The main class in this new API is the ServerManager .NET class. This class contains properties for
the sites, applications, virtual directories, application pools, and worker processes.

79301c01.indd 7 10/6/08 12:07:13 PM

8

Chapter 1: Introducing IIS 7.0

C#
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Microsoft.Web.Administration;

namespace Microsoft.Web.Administration
{
 public class Program
 {
 static void Main(string[] args)
 {
 // Get a reference to the factory object
 // ServerManager
 var manager = new ServerManager();

 // Define a new website
 manager.Sites.Add(
 “ProgrammaticSite”,
 @”D:\ProgrammaticSite\”,
 8080);

 // Commit changes to the ApplicationHost.config
 manager.CommitChanges();
 }
 }
}

VB.NET
Imports System
Imports System.Collections.Generic
Imports System.Linq
Imports System.Text
Imports Microsoft.Web.Administration

Namespace Microsoft.Web.Administration
 Public Class Program
 Shared Sub Main(ByVal args() As String)
 ‘ Get a reference to the factory object
 ‘ ServerManager
 Dim manager = New ServerManager()

 ‘ Define a new website
 manager.Sites.Add(“ProgrammaticSite”, “D:\ProgrammaticSite\”,_
 8080)

 ‘ Commit changes to the ApplicationHost.config
 manager.CommitChanges()
 End Sub
 End Class
End Namespace

79301c01.indd 8 10/6/08 12:07:13 PM

9

Chapter 1: Introducing IIS 7.0

The preceding code creates a new instance of the ServerManager factory object. Then it adds a new site
by accessing the Sites property and specifying the site name, physical path, and the port, and finally,
a call to the CommitChanges method to reflect the changes in the ApplicationHost.config configu-
ration file. The result of executing the preceding code can be checked in the <sites> configuration
section:

 <site name=”ProgrammaticSite” id=”20”>
 <application path=”/”>
 <virtualDirectory path=”/” physicalPath=”D:\ProgrammaticSite\” />
 </application>
 <bindings>
 <binding protocol=”http” bindingInformation=”*:8080:” />
 </bindings>
 </site>

A new site entry is created within the <sites> configuration section group. The new site specifies the
application’s physical path, virtualDirectory’s physicalPath, and the protocol binding.

Moreover, IIS 7.0 provides an additional tool called appcmd.exe that allows administrators and devel-
opers to configure the web server from the command prompt to create and configure sites, applica-
tions, virtual directories, start and stop application pools, recycle application pools, and much more.
The utility is very rich in options and even presents a deeper configuration interface than that of IIS
7.0 Manager.

The book titled Professional IIS 7 and ASP.NET Integrated Programming (Wrox) explains in detail the IIS 7.0
Manager and the new Administration API. In addition, it includes informative chapters on the new IIS
7.0 configuration system and many more topics. An IIS resource is available online that gives a detailed
overview of the Microsoft.Web.Administration API: http://learn.iis.net/page.aspx/165/
how-to-use-microsoftwebadministration/

ASP.NET Integration
ASP.NET, since its release, has been used for several years to provide high level and powerful web
applications developed purely within the context of the .NET Framework. A revolutionary stage has
been introduced with the release of ASP.NET 2.0 that introduced new concepts and services to web
development in ASP.NET. ASP.NET 3.5 continues to use the ASP.NET 2.0 at its core and adds to it addi-
tional new features and improvements to help developers build better and robust Web solutions.

So far, ASP.NET has been used only as a framework for developing dynamic web applications. IIS 7.0
leverages ASP.NET 2.0 and ASP.NET 3.5 to extensibility frameworks to extend the new web server.

IIS 6.0 handles requests for ASP.NET pages through ISAPI filters and extensions. Request handling
is delegated to the ASP.NET ISAPI extension, the ASP.NET pipeline is triggered to handle the new
request, and a response is generated and finally handed back to the IIS to deliver it to the requesting
client. APS.NET has no control over what is being sent to its engine, since it is solely controlled by the
IIS core engine. Only requests defined by the ASP.NET engine can be passed and processed, but what
about other content? For instance, what if an ASP.NET application wants to secure access to some old
Classic ASP pages using the same FormsAuthenticationModule used to protect ASP.NET resources?
Before IIS 7.0, that was hard to do, if not impossible. If you are in a hurry to learn how to control and
process non-ASP.NET content and resources through the ASP.NET pipeline, you can jump directly to

79301c01.indd 9 10/6/08 12:07:13 PM

10

Chapter 1: Introducing IIS 7.0

Chapter 7 for a detailed discussion on how to integrate ASP.NET security with Classic ASP
pages. Note that whatever applies to Classic ASP applies also to any other non-ASP.NET resource
including .php, .jpg, .htm, and so on.

In IIS 7.0, ASP.NET 2.0 and 3.5 can run in two different modes: Classic and Integrated. The Classic mode
resembles the same model as that of IIS 6.0 and ASP.NET. ASP.NET 1.1 applications running inside IIS
7.0 can only be run using the Classic mode. When an ASP.NET 2.0 or 3.5 application is running in the
Integrated mode, however, the ASP.NET engine gets unified with the IIS 7.0 engine, hence they share
the same request pipeline. IIS’s native C++ modules and ASP.NET HttpModules work together on pro-
cessing a request. A request is processed by the configured native modules and any module registered
with ASP.NET. One of the clear and shining results of this unified integration is that ASP.NET can
now have a say when processing any content resource (and not only ASP.NET resources), a feature not
present before the days of IIS 7.0. Figure 1-5 shows the unified request pipeline in processing a request
in IIS 7.0.

Authentication

Execute Handler

Send Response

HT
TP

 R
eq

ue
st

Anonymous

Basic

Windows

Forms

Page

Webservice

Trace

Compression

Logging

Figure 1-5

When it is time for IIS to authenticate a request, it executes all the configured native and managed
authentication modules at the same time. The same applies for any stage inside IIS 7.0. This signifies
again the power of having both ASP.NET modules and native modules execute side by side in han-
dling a request.

More on ASP.NET integration with IIS 7.0 is covered in detail in Chapter 2.

79301c01.indd 10 10/6/08 12:07:14 PM

11

Chapter 1: Introducing IIS 7.0

Security Improvements
IIS 7.0 security is based on the robustness of IIS 6.0’s security. By default, when IIS 6.0 is installed, it is
installed in a locked-down mode, meaning that only handling of static files and the World Wide Web
Publishing Service (WWW Service) are installed and enabled. The rest of services that operate on top
of IIS 6.0 (including ASP, ASP.NET, and so forth) are disabled and can be added and enabled at any
time by the administrator.

IIS 7.0 takes the locked-down strategy of IIS 6.0 one step further and follows the same locked-down pat-
tern by installing fewer services at installation time. Having fewer features installed and enabled mini-
mizes the risk of attack on the web server and minimizes the work done by the administrator to keep
updating with patches and service packs on the different services installed, whether enabled or not. By
making use of the modular architecture, an administrator can easily, at any time, install a new module
or feature required by applications hosted by the web server.

Enabling the unified request pipeline in IIS 7 by configuring applications with the Integrated mode,
the web server gains a more secure environment through the use of ASP.NET security modules. These
modules include the FormsAuthenticationModule and the Membership and Role management ser-
vices introduced early in ASP.NET 2.0 that still constitute a major feature in ASP.NET 3.5. Not only can
ASP.NET benefit from these modules, but IIS 7.0 also gets better protection by utilizing these modules
to protect the resources hosted in its environment.

In addition, IIS 7.0 introduces URL Authorization, which is inspired (more or less) by the architecture of
the ASP.NET URL Authorization. The new authorization system allows administrators to add declara-
tive access control rules for the hosted applications to protect their resources. This new feature inte-
grates well with the ASP.NET Membership and Role management services. A more detailed discussion
on URL Authorization is given in Chapter 3 of this book.

Moreover, the IIS 7.0 team replaced the old URL Scan security tool with a new RequestFilteringModule
that gives administrators finer control on what to allow and disallow in a request targeting the web server.
The RequestFilteringModule, as shown in the following code, can be configured through the <sys-
tem.webServer> configuration section group either in the ApplicationHost.config configuration
file or through the application’s web.config configuration file.

<configuration>
 <system.webServer>
 <security>
 <requestFiltering>
 <fileExtensions allowUnlisted=”false” >
 <add fileExtension=”.aspx” allowed=”true”/>
 </fileExtensions>
 </requestFiltering>
 </security>
 </system.webServer>
</configuration>

For instance, to configure IIS 7.0 to process ASP.NET web pages only, the RequestFilteringModule
is configured to allow only ASP.NET web pages and prevent all other file extensions from being served
and processed.

79301c01.indd 11 10/6/08 12:07:14 PM

12

Chapter 1: Introducing IIS 7.0

For further details, an IIS resource is available online that gives a wider overview of the new Request​
FilteringModule: http://learn.iis.net/page.aspx/143/how-to-use-request-filtering/

Another security feature in which IIS 7.0 excels is the IIS Manager. As mentioned above, when appli-
cations are hosted locally, the site owner can configure IIS 7.0 settings by either direct access to the
ApplicationHost.config configuration file, or through the appcmd.exe command-line utility, or
programmatically by utilizing the Microsoft.Web.Adminsitration API. When configuring remote
applications, IIS Manager provides remote connections to site owners through their local instance of
the manager through firewall-friendly HTTPs connections. Based on the restrictions set by the remote
administrator, a site owner connects to the remote web server through the local instance of the man-
ager. The user gets authenticated on the remote server either by Windows authentication, if the user
has a Windows account on the remote server, or by custom authentication of the ASP.NET Membership
services. Once authenticated, the site owner can now configure the web server’s settings under the limi-
tations set by the remote administrator.

Not only does IIS Manager allow remote connections; it also allows administrators to configure the IIS
Manager UI to select the features to show for remote connections. This is yet another security protec-
tion on the hosting web server.

Finally, IIS 7.0 introduces a new IIS anonymous account, the IIS_USR. This built-in account has no
expiration date, nor does it need any password synchronization among different machines. Also, a new
group is IIS_IUSRS that replaces the old IIS_WPG group. This group injects itself into the identity of the
Worker process automatically at runtime. This makes the process of specifying another custom account
for the Worker process identity easier without having to worry about adding this custom account to the
IIS_IUSRS group. Since the IIS_IUSR and IIS_IUSRS are built-in, any Windows access control lists
(ACLs) that an administrator or developer assigns on one machine can be copied to another machine,
for instance, from the development machine to the testing and deployment machine, without any fur-
ther worries, making the deployment process easier and more flexible.

Troubleshooting Improvements
IIS modular architecture not only introduces flexibility and robustness in configuring the web server,
but it also adds more complexities when it comes to debugging or tracing requests when a problem
occurs while a resource is being executed by the web server. Therefore, several new troubleshooting
improvements have been added to allow administrators and developers to better detect what is going
wrong with their applications.

A new, improved tracing system is added to the IIS infrastructure that is capable of capturing all related
information for a request being processed by the web server. This way, an administrator can refer back
at any time to check the status of requests being served by IIS. The trace information generated by the
web server can be monitored and listened to by a new feature, the Failed Request Tracing feature. This
new feature is basically configured to listen only to failure requests and logs them to the hard-disk. Before
using this feature, it must be enabled in the IIS Manager tool. Figure 1-6 shows how to open up the Failure
Request Tracing form to enable/disable the feature and to specify the path where to log the trace data.

By default, the Failure Request Tracing feature passes all successful requests and logs only the failed
ones, as mentioned above. In addition, an administrator can define Failure Request Tracing Rules to
specify what trace information to listen to in the web server tracing system. To define these rules, the
Failing Request Tracing Rules feature can be configured inside the IIS Manager tool reached by select-
ing Server Name ➪ ​Web Sites ➪ ​Default Web Site ➪ ​Failed Request Tracing Rules under the IIS section.

79301c01.indd 12 10/6/08 12:07:14 PM

13

Chapter 1: Introducing IIS 7.0

Figure 1-6

In addition, IIS provides new error information pages when errors are detected in the resources being
processed. These error pages are similar in concept to the error pages generated by ASP.NET when an
exception or error occurs in the application while a request is being made to any of its resources. The IIS
error information pages give details about the problem that occurred, what module caused the problem,
if any, where to find more tracing information about the specific failure of the request, and even more
information that helps the administrator or developer to locate the problem quickly. The detailed error
pages are configured for local access only by default and can be localized for any culture of preference.

To better benefit from the unified integration model between IIS and ASP.NET, the new web server’s
tracing system exposes its functionality to the modules created by the managed code in ASP.NET. The
new tracing system is extensible enough to allow the managed modules registered in IIS to make use of
the tracing information and to emit tracing data to the IIS tracing system. ASP.NET 2.0 and ASP.NET 3.5
contain the System.Diagnostics.TraceSource class that makes the developer’s life easier in handling
tracing events, data, and information (shown in the following code). The tracing system present in IIS 7.0
integrates with the tracing system in ASP.NET 2.0 and 3.5, thus allowing tracing information generated
by ASP.NET to flow to the IIS 7.0 tracing system.

C#
using System;
using System.Diagnostics;
using System.Web;

public class CustomTracing : IHttpModule
{
 // Private member to hold a reference to the
 // TraceSource class
 private TraceSource tsTracing;

79301c01.indd 13 10/6/08 12:07:14 PM

14

Chapter 1: Introducing IIS 7.0

 /// <summary>
 /// Initialize event in the HttpModule
 /// </summary>
 /// <param name=”application”></param>
 public void Init(HttpApplication application)
 {
 // Attach to the EndRequest event
 application.EndRequest += new EventHandler(application_EndRequest);

 // Define the trace source
 tsTracing = new TraceSource(“tsTracing”);
 }

 /// <summary>
 /// Handles the end request event
 /// </summary>
 /// <param name=”sender”></param>
 /// <param name=”e”></param>
 void application_EndRequest(object sender, EventArgs e)
 {
 // Write a message to the configured trace listeners mentioning the start of
 // a logical operation or event, which is in this case beginning of the
 // EndRequest method.
 this.tsTracing.TraceEvent(
 TraceEventType.Start,
 0,
 “[CustomTracing MODULE] START EndRequest”);

 // Get a reference to the HttpContext
 var app = (HttpApplication)sender;
 var context = app.Context;

 // Write some text to the response stream
 context.Response.Write(
 “Testing Tracing from ASP.NET and integrating into IIS 7.0”);

 this.tsTracing.TraceEvent(
 TraceEventType.Verbose,
 0,
 “A debugging trace message to the trace listener!”);
 this.tsTracing.TraceEvent(
 TraceEventType.Critical,
 0,
 “A fatal error or crash message to the trace listener!”);
 this.tsTracing.TraceEvent(
 TraceEventType.Error,
 0,
 “A recoverable error message to the trace listener!”);
 this.tsTracing.TraceEvent(
 TraceEventType.Information,
 0,
 “An informational message to the trace listener!”);

 // Write a message to the configured trace listeners mentioning the end of a
 // logical operation or event, which is in this case end of the EndRequest
 // method

79301c01.indd 14 10/6/08 12:07:14 PM

15

Chapter 1: Introducing IIS 7.0

 this.tsTracing.TraceEvent(
 TraceEventType.Stop,
 0,
 “[CustomTracing MODULE] STOP EndRequest”);
 }

 #region IHttpModule Members

 public void Dispose()
 {
 throw new NotImplementedException();
 }
 #endregion
}

VB.NET
Imports System
Imports System.Diagnostics
Imports System.Web

Namespace CustomTracingModule
 Public Class CustomTracing
 Implements IHttpModule
 ‘ Private member to hold a reference to the
 ‘ TraceSource class
 Private tsTracing As TraceSource

 ‘’’ <summary>
 ‘’’ Initialize event in the HttpModule
 ‘’’ </summary>
 ‘’’ <param name=”application”></param>
 Public Sub Init(ByVal application As HttpApplication) Implements_
 IHttpModule.Init
 ‘ Attach to the EndRequest event
 AddHandler application.EndRequest, AddressOf application_EndRequest

 ‘ Define the trace source
 tsTracing = New TraceSource(“tsTracing”)
 End Sub

 ‘’’ <summary>
 ‘’’ Handles the end request event
 ‘’’ </summary>
 ‘’’ <param name=”sender”></param>
 ‘’’ <param name=”e”></param>
 Private Sub application_EndRequest(ByVal sender As Object,_
 ByVal e As EventArgs)
 ‘ Write a message to the configured trace listeners
 ‘ mentioning the start of a logical operation
 ‘ or event, which is in this case beginning of the EndRequest method.
 Me.tsTracing.TraceEvent(TraceEventType.Start,_
 0,_
 “[CustomTracing MODULE] START EndRequest”)

79301c01.indd 15 10/6/08 12:07:14 PM

16

Chapter 1: Introducing IIS 7.0

 ‘ Get a reference to the HttpContext
 Dim app = CType(sender, HttpApplication)
 Dim context = app.Context

 ‘ Write some text to the response stream
context.Response.Write(“Testing Tracing from ASP.NET and integrating into IIS 7.0”)

 Me.tsTracing.TraceEvent(TraceEventType.Verbose,_
 0,_
 “A debugging trace message to the trace listener!”)
 Me.tsTracing.TraceEvent(TraceEventType.Critical,_
 0,_
 “A fatal error or crash message to the trace listener!”)
 Me.tsTracing.TraceEvent(TraceEventType.Error,_
 0,_
 “A recoverable error message to the trace listener!”)
 Me.tsTracing.TraceEvent(TraceEventType.Information,_
 0,_
 “An informational message to the trace listener!”)

 ‘ Write a message to the configured trace listeners
 ‘ mentioning the end of a logical operation
 ‘ or event, which is in this case end of the EndRequest method
 Me.tsTracing.TraceEvent(TraceEventType.Stop,_
 0,
 “[CustomTracing MODULE] STOP EndRequest”)
 End Sub

#Region “IHttpModule Members”

 Public Sub Dispose() Implements IHttpModule.Dispose
 Throw New NotImplementedException()
 End Sub
#End Region
 End Class
End Namespace

The preceding code defines a local instance of the TraceSource class to hold all the tracing information
by the managed ASP.NET module. The name of the TraceSource is important, as it will be referenced
later as a source for the IIS trace listener. The HttpModule subscribes to the EndRequest event of the
module and writes some dummy text into the response stream. Several trace messages have been written
to the ASP.NET tracing system using the TraceSource object. Several methods are available in the afore-
mentioned object, one of which is the TraceEvent method that takes as one of the inputs a value from
the TraceEventType enumeration that defines the purpose of the trace message and another input, the
trace message to be sent to the trace listener. There are several values in the TraceEventType enumera-
tion that defines the different contexts in which a trace message might be present.

.NET 3.5 Framework ships with the System.Web.IisTraceListner class, which is used to route tracing
information from ASP.NET tracing system to the IIS tracing infrastructure. To define the trace listener
and attach it as a listener to the TraceSource, the <system.diagnostics> configuration section in the
web.config configuration file is used.

79301c01.indd 16 10/6/08 12:07:14 PM

17

Chapter 1: Introducing IIS 7.0

<system.diagnostics>
 <sharedListeners>
 <add name=”IisTraceListener” type=”System.Web.IisTraceListener, System.Web,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a” />
 </sharedListeners>
 <switches>
 <add name=”DefaultSwitch” value=”All” />
 </switches>
 <sources>
 <source name=”tsTracing” switchName=”DefaultSwitch”>
 <listeners>
 <add name=”IisTraceListener” type=”System.Web.IisTraceListener, System.
Web, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a” />
 </listeners>
 </source>
 </sources>
 </system.diagnostics>

The preceding configuration section defines the new IIS trace listener with a switch to capture all tracing
information. In addition, the tracing source, which is in this case the TraceSource instance defined pre-
viously in the custom tracing managed module, is added and configured with the IISTraceListener.
The preceding configuration section makes sure all the tracing information from ASP.NET is routed cor-
rectly to the IIS tracing system. The Failed Request Tracing feature can then be used, either through the
default behavior to capture only failure trace information for failing requests or by adding custom rules
to capture specific tracing information descending from the ASP.NET tracing system.

Finally, native developers can now troubleshoot the state of the IIS web server through the new Run-
time Status and Control (RSCA) API known as “reeska.” This new API allows native developers, mainly
C++ developers, to examine the real-time status of the server by checking the active states of the sites
and application pools, the running worker processes, and even to check current requests that are being
processed. Developers can check the normal flow of page execution on the server and identify bottle-
necks, while the different modules take their part in the request processing in the IIS pipeline. In addi-
tion, RSCA provides a means to control the state of the web server by stopping and starting the service,
recycling application pools, starting and stopping sites, etc. These features are similar to the appcmd.exe
command-line tool mentioned previously in this chapter.

An IIS resource is available online that gives an overview on developing managed tracing modules and
routing the ASP.NET trace information to the IIS 7.0 tracing system: http://learn.iis.net/page
.aspx/171/how-to-add-tracing-to-iis-7-managed-modules/

Application Pools
IIS 6.0 introduced the concept of application pools when operating in the worker process isolation-mode
compared to working in the IIS 5 mode. An application pool by definition is a unit of separation, at the
web server level, that is used to logically group applications into different boundaries, hence provid-
ing an isolation of execution from one application to another. If an application in one of the application
pools on the web server crashes, not all the applications on the web server will be crashed too. This is
because if each application is assigned to a separate application pool, then only this specific application

79301c01.indd 17 10/6/08 12:07:14 PM

18

Chapter 1: Introducing IIS 7.0

pool will recycle and all applications assigned to the same application pool will also crash. Other appli-
cations assigned to other application pools continue to function properly as if nothing happened on
the web server. Therefore, application pools provide isolation of execution under the boundaries of the
server resources allocated to every application pool, which are allocated differently from one applica-
tion pool to another.

In the previous release of IIS, the web server was configured to either run in the worker process isola-
tion mode or in the IIS 5.0 mode. However, in IIS 7.0, an application pool is created and its managed
pipeline mode property is either set to Integrated mode or Classic mode. This means that the managed pipe-
line mode is not configured on the web server as a whole. On the contrary, several application pools can
be created on IIS 7.0 with different managed pipeline modes, and applications can be assigned to any of
those application pools, hence it is possible to run applications on the same web server with different
modes of execution. Figure 1-7 shows the basic settings window for any application created inside IIS 7.0.

Figure 1-7

By opening the IIS manager tool, on the Actions tab on the right of the manager, there is a link to view
application pools. All of the application pools created on the web server are listed. Right-clicking any of
the application pools and selecting basic settings yields the screen shown in Figure 1-7. There is nothing
special about it, but the managed pipeline mode combo box that allows you to choose either the Inte-
grated or Classic mode.

Integrated Mode
When an ASP.NET 2.0 or 3.5 application is assigned to an application pool running in the Integrated mode,
the application will benefit from the IIS and ASP.NET unified request processing pipeline. This means the
request is processed by both the native and managed installed modules and ASP.NET will have the ability
to process all types of content within that specific application. This mode is recommended when there is a
need to execute an application in the Integrated mode, and it is the preferred mode to configure the appli-
cation pools. Several additional and advanced settings can be set by right-clicking on the specific applica-
tion pool and selecting Advanced Settings.

Classic Mode
The Classic mode resembles an IIS 6.0 application pool when the web server is running in a worker
process isolation-mode. In IIS 7.0, applications are still given the opportunity to function as if they are
being served by IIS 6.0. When an application is assigned to an application pool configured to run in the
Classic mode, IIS 7.0 handles the execution of the application in the same way as IIS 6.0. For instance, if

79301c01.indd 18 10/6/08 12:07:15 PM

19

Chapter 1: Introducing IIS 7.0

an ASP.NET application is assigned to function under an application pool configured with Classic mode,
the default and only available option for ASP.NET 1.1 application, when a request reaches IIS for that
application, only the native modules will be executed on the request, then IIS 7.0 hands the request to the
aspnet_isapi.dll extension to be processed by the ASP.NET runtime. Hence, IIS is able to process the
request with all the installed native modules and ASP.NET will have another round in executing its man-
aged modules; the same old-fashioned way of executing applications under IIS 6.0 when configured to
run in the worker process isolation mode. If any ASP.NET application for some reason cannot run inside
the application pool Integrated mode, it is recommended to keep it configured with the Classic mode
under IIS 7.0. It will be executed and processed as if it is hosted in an IIS 6.0 environment.

IIS 7.0 Components
IIS 7.0 is made up of several components that form the web server internal core engine. These compo-
nents include protocol listeners, services such as the w3svc service and the WAS service, protocol adapt-
ers, and many more core components. This section will present an overview of some of the protocols
and services that handle request processing inside IIS 7.0.

Protocol Listeners
Protocol listeners are services in which each service is configured to listen and process a specific
protocol request coming from the network on which the machine hosting the web server resides. For
instance, one of the listeners installed on a Windows machine keeps on waiting and listening for any
web request arriving on the machine. There are additional listeners also present to listen to other, dif-
ferent protocols. When a request is received by a listener, it forwards it to IIS 7.0 to be processed. Once a
request is processed by IIS 7.0, the response generated is sent back to the protocol listener that originally
sent the request. Finally, the response is handed back to the requestor.

An example of a protocol listener is the HTTP listener called Hyper Text Protocol Stack. This is the main
protocol listener for all HTTP requests arriving on a Windows machine. When an HTTP request is first
received by Windows Vista or Windows Server 2008, the initial handling is actually performed by the
kernel-mode HTTP driver: http.sys.

World Wide Web Publishing Service
In IIS 6.0 the WWW service was responsible for several tasks at once. These tasks included HTTP
administration and configuration, process management, and performance monitoring. In IIS 7.0, this
has changed and the WWW Service now acts as a listener adapter for http.sys. A listener adapter is
responsible for configuring the http.sys protocol listener with the IIS 7.0 configuration information
stored in the ApplicationHost.config configuration file. It then waits for changes in the configura-
tion information to reflect them into the http.sys, and finally notifies the Windows Process Activa-
tion Service (WAS) when a new HTTP request enters the local queue.

WWW Service functionality has been split into other services. It has preserved its role as a listener
adapter, however, the rest of its responsibilities have been passed into another service called the Win-
dows Process Activation Service.

79301c01.indd 19 10/6/08 12:07:15 PM

20

Chapter 1: Introducing IIS 7.0

Windows Process Activation Service
In IIS 7.0, the WAS is the second half of the WWW service that was present in the IIS 6.0 days. The WAS
is a new service that has three main parts. Figure 1-8 shows the architecture and main components of
the WAS.

Process
Manager

Listener Adapter Interface

Configuration
Manager

Windows Process Activation Service

Figure 1-8

The configuration manager is responsible for reading the configuration information from the
ApplicationHost.config configuration file. This manager reads global configuration information
and protocol configuration information for both HTTP and non-HTTP protocols in order to be able
to configure all protocol listeners installed on the web sever machine. It also reads application pool
configuration information to know what application pools are present when processing requests on
the server. It reads site configuration information, including the different applications included in each
site together with the bindings defined on each application, and finally, reads the application pool each
application belongs to. Such information helps the WAS when processing a request to know which
site and application the request belongs to so that it gets handled by the right application pool.

In addition, the configuration manager gets a notification when the ApplicationHost.config con-
figuration file changes so that it updates its data with the new ones and reflects this on the available
protocol listeners.

The process manager is responsible for managing the application pools and worker processes for both
HTTP and non-HTTP requests. It manages the state of the application pool by stopping, starting, and
recycling it. In addition, when WAS receives a new request from one of the configured protocol listen-
ers, it determines to which application the request belongs. It then checks with the configuration man-
ager for the application pool of the application that the current request belongs to. Once the application
pool is determined, it checks to see if there is any worker process currently active. If it finds one, it sends
the request to the application pool to be processed by the worker process. If there is no worker process
active inside the application pool, WAS instantiates a new one to process the current and upcoming
requests.

The last component of the WAS is the unmanaged listener adapter interface. This layer inside the WAS
defines how the external listeners communicate the requests they receive into the WAS in order to pro-
cess them by the web server.

79301c01.indd 20 10/6/08 12:07:15 PM

21

Chapter 1: Introducing IIS 7.0

On startup of IIS 7.0, WAS gets initiated and performs several tasks. Figure 1-9 shows the flow of inter-
action when WAS first configures the protocol listener adapters.

Process
Manager

HTTP.sys NetTcpActivator

Listener Adapter Interface

Configuration
Manager

WWW Service

ApplicationHost.config

NetTcpActivator

Windows Process Activation Service

1

2

2

33

Figure 1-9

When WAS is instantiated, it first reads the configuration data from the ApplicationHost.config con-
figuration file. Once the configuration information is read, it interacts with the configured protocol listener
adapters to pass to them the needed configuration information. Protocol listener adapters function as the
glue between the WAS and the protocol listeners. For instance, the WAS passes the configuration informa-
tion into the WWW Service, the http.sys protocol listener adapter, which in turn configures http.sys
to start listening for HTTP requests.

Once a new request comes in, the specific protocol listener communicates the request to the WAS through
the listener adapter interface, so that the request gets processed. Once a response is ready for the request,
WAS passes the response back to the protocol listener responsible for delivering the response back to the
client. Again, WAS uses the listener adapter interface for the incoming and outgoing communication with
the protocol listeners.

As shown in Figure 1-9, NetTcpActivator is the protocol listener and adapter for handling WCF
requests. This indicates that WAS can process HTTP and non-HTTP requests; that means WAS can
function properly without the need for the WWW Service by serving only non-HTTP requests. A good
MSDN resource on the WCF listener adapters and hosting WCF applications inside IIS 7.0 is available
online at http://msdn2.microsoft.com/en-us/library/ms730158.aspx

79301c01.indd 21 10/6/08 12:07:15 PM

22

Chapter 1: Introducing IIS 7.0

IIS 7.0 Modules
The modular architecture of IIS 7.0 has been discussed thoroughly at the beginning of this chapter. It is
the new architecture that characterizes the web server core engine. Modules or features can be thought
of as classes or objects embedding certain functionality that get executed whenever a new request is
being processed by the IIS pipeline. Every installed module gets its turn in processing every request
entering the IIS 7.0 pipeline.

This modular architecture has several goals, but above all it protects the web server from security
attacks. When a small number of modules are installed on the web server, this means there is a lower
probability for a security attack on the server, hence lowering the surface attack to hackers. In addi-
tion, when a small number of modules are installed, this means less security patches and updates are
required for the administrator to maintain. Moreover, being able to customize the web server to this
extent gives the administrator the chance of deciding on the role of the web server by installing and
uninstalling modules in the way best suited for the role intended for the web server.

IIS 7.0 ships with a set of unmanaged or native modules that are all installed in case of a full installation
of the web server. In addition, IIS 7.0 allows you to extend its functionality with managed modules.
Each of these modules is discussed in detail.

Unmanaged Modules
The native modules are grouped by functionality. There are HTTP-related modules that perform tasks
specific to HTTP; another set of modules perform tasks related to security; and anther set of modules
perform tasks related to content (static files, directory browsing, and so on). There are a set of modules
responsible for compression, modules concerned with caching, modules responsible for logging and
diagnostics, and modules that help in integrating managed modules. All of these modules are fired and
executed during the request-processing pipeline. The available native modules at the time of this writ-
ing together with a description are listed in the following table.

Module Name Description

HTTP Modules

CustomErrorModule Sends default and configured HTTP error
messages when an error status code is set
on a response.

HttpRedirectionModule Supports configurable redirection for HTTP
requests.

OptionsVerbModule Provides information about allowed verbs
in response to OPTIONS verb requests.

ProtocolSupportModule Performs protocol-related actions, such as
setting response headers and redirecting
headers based on configuration.

RequestForwarderModule Forwards requests to external HTTP servers
and captures responses.

79301c01.indd 22 10/6/08 12:07:15 PM

23

Chapter 1: Introducing IIS 7.0

Module Name Description

TraceVerbModule Returns request headers in response to
TRACE verb requests

Security Modules

AnonymousAuthModule Performs Anonymous authentication when
no other authentication method succeeds.

BasicAuthModule Performs Basic authentication.

CertificateMappingAuthenticationModule Performs Certificate Mapping authentica-
tion using Active Directory.

DigestAuthModule Performs Digest authentication.

IISCertificateMappingAuthenticationModule Performs Certificate Mapping authentica-
tion using IIS certificate configuration.

RequestFilteringModule Performs URLScan tasks, such as configur-
ing allowed verbs and file extensions, set-
ting limits, and scanning for bad character
sequences.

UrlAuthorizationModule Performs URL authorization.

WindowsAuthModule Performs NTLM integrated authentication.

Content Modules

CgiModule Executes CGI processes to build response
output.

DavFSModule Sets the handler for Distributed Authoring
and Versioning (DAV) requests to the DAV
handler.

DefaultDocumentModule Attempts to return the default document
for requests made to the parent directory.

DirectoryListingModule Lists the contents of a directory.

IsapiModule Hosts ISAPI extension DLLs.

IsapiFilterModule Supports ISAPI filter DLLs.

ServerSideIncludeModule Processes server-side includes code.

StaticFileModule Serves static files.

FastCgiModule Supports FastCGI, which provides a high-
performance alternative to CGI.

Continued

79301c01.indd 23 10/6/08 12:07:16 PM

24

Chapter 1: Introducing IIS 7.0

Module Name Description

Compression Modules

DynamicCompressionModule Compresses responses, and applies Gzip
compression transfer coding to responses.

StaticCompressionModule Performs precompression of static content.

Caching Modules

FileCacheModule Provides user-mode caching for files and
file handles.

HTTPCacheModule Provides kernel-mode and user-mode cach-
ing in http.sys.

SiteCacheModule Provides user-mode caching of site
information.

TokenCacheModule Provides user-mode caching of user name
and token pairs for modules that produce
Windows user principals.

UriCacheModule Provides user mode caching of URL
information.

Logging and Diagnostics Modules

CustomLoggingModule Loads custom logging modules.

FailedRequestsTracingModule Supports the Failed Request Tracing feature.

HttpLoggingModule Passes information and processing status to
http.sys for logging.

RequestMonitorModule Tracks requests currently executing in
worker processes, and reports information
with Runtime Status and Control Applica-
tion (RSCA) Programming Interface.

TracingModule Reports events to Microsoft Event Tracing
for Windows (ETW).

Managed Support Modules

ManagedEngine Provides integration of managed code mod-
ules in the IIS request-processing pipeline.

ConfigurationValidationModule Validates configuration issues, such as
when an application is running in Inte-
grated mode but has handlers or modules
declared in the system.web section.

79301c01.indd 24 10/6/08 12:07:16 PM

25

Chapter 1: Introducing IIS 7.0

The preceding modules are all installed with a full installation of IIS 7.0. However, if IIS 7.0 is installed
with the default configuration and modules, a subset of those modules are installed. The modules
installed by default are listed as follows.

HTTP modules❑❑

CustomErrorModule❑❑

ProtoclSupportModule❑❑

Security modules❑❑

RequestFilteringModule❑❑

AnonymousAuthenticationModule❑❑

Content modules❑❑

DefaultDocumentModule❑❑

DirectoryListingModule❑❑

StaticFileModule❑❑

Content modules❑❑

StaticCompressionModule❑❑

Logging and diagnostics modules❑❑

HTTPLoggingModule❑❑

RequestMonitorModule❑❑

Caching modules❑❑

HttpCacheModule❑❑

Managed Modules
IIS 7.0 infrastructure allows the installation of .NET managed modules to participate in the request-
processing pipeline. Allowing managed modules to function properly depends mostly on the Managed​
EngineModule mentioned above. Managed modules are ASP.NET 2.0 and 3.5 HttpModules that a .NET
developer has always been used to writing, however with IIS 7.0, these modules will get the chance to
work upon requests during the request-processing pipeline managed by the web server itself.

The existing managed modules that can be configured with IIS 7.0 are listed in the following table.

Module Name Description

AnonymousIdentification Manages anonymous identifiers, which are used by features
that support anonymous identification such as ASP.NET pro-
file engine.

DefaultAuthentication Ensures that an authentication object is present in the context.

FileAuthorization Verifies that a user has permission to access the requested file.

Continued

79301c01.indd 25 10/6/08 12:07:16 PM

26

Chapter 1: Introducing IIS 7.0

Module Name Description

FormsAuthentication Supports authentication by using Forms authentication.

OutputCache Supports output caching

Profile Manages user profiles by using ASP.NET profile, which stores
and retrieves user settings in a data source such as a database.

RoleManager Manages a RolePrincipal instance for the current user.

Session Supports maintaining session state, which enables storage
of data specific to a single client within an application on the
server.

UrlAuthorization Determines whether the current user is permitted access to the
requested URL, based on the user name or the list of roles that
a user is member of.

UrlMappingsModule Supports mapping a real URL to a more user-friendly URL.

WindowsAuthentication Sets the identity of the user for an ASP.NET application when
Windows authentication is enabled.

This managed modules’ information has been gathered from the official ASP.NET 2.0/3.5 documentation on MSDN.

Summary
In this chapter you were introduced to the new web server engine by Microsoft, IIS 7.0. IIS 7.0 ships with
a new architecture that is more modular and allows administrators and developers to configure it the
way they want.

The main point to keep in mind about the new web server is its modular architecture. IIS 7.0 is installed
with minimal modules or features. Additional modules can be installed whenever they are needed. In
addition, IIS 7.0 allows developing both native and managed modules using C++ and .NET, respectively.

A lot of improvements have been introduced to IIS 7.0, including security, administration and configu-
ration, and troubleshooting improvements. New APIs are now ready for use by native and managed
developers to extend the functionality of the web server.

IIS 7.0 now integrates well with ASP.NET infrastructure for request processing; hence, applications now
can run either in the Integrated mode or in the Classic mode application pool.

Integrated mode:❑❑ When running under the Integrated mode, the ASP.NET 2.0 or 3.5 applica-
tion can take benefit from the integration between IIS 7.0 and ASP.NET so that a single unified
pipeline is present where both IIS native modules and configured ASP.NET modules have a say
while processing a specific request.

Classic mode:❑❑ With the Classic mode, an application will have the same environment as it had
once under IIS 6.0, where the IIS 7.0 request-processing pipeline happens separately from the
ASP.NET request-processing pipeline.

79301c01.indd 26 10/6/08 12:07:16 PM

27

Chapter 1: Introducing IIS 7.0

In addition, IIS 7.0 components have been enhanced and a new major component that has been added
is the Windows Process Activation Service (WAS). This service is the brain of the web server that inter-
acts with the web server configuration system and configures protocol listener adapters that in turn
configure their corresponding protocol listeners. This new service handles both HTTP and non-HTTP
requests, and this gives IIS a broader field to handle so many requests from different sources. Also, this
service is responsible for the process management including application pool states, stopping, starting,
recycling them, and creating new worker process instances.

The next chapter continues this discussion with a look at the new IIS 7.0 and ASP.NET Integrated
mode. The discussion includes a thorough examination of the Integrated mode architecture as well as
developing new modules and handlers in ASP.NET and integrating them with IIS 7.0 infrastructure. In
addition, a study on handling migration errors is given to help in migrating an existing ASP.NET appli-
cation to run under the IIS 7.0 and ASP.NET Integrated mode.

79301c01.indd 27 10/6/08 12:07:16 PM

79301c01.indd 28 10/6/08 12:07:16 PM

2
IIS 7.0 and ASP.NET

Integrated Mode

Internet Information Services (IIS) version 7.0 introduces two modes of processing: Classic and
Integrated mode. The Classic mode resembles the same mode of execution as that of IIS 6.0. What
is new is the Integrated mode, which unifi es the request-processing pipeline between the IIS
infrastructure and the ASP.NET runtime.

One of the striking advantages of this new mode of execution is that ASP.NET runtime is now
capable of processing all types of content fi les including ASP.NET, HTML, ASP, PHP, and many
other web resources. This is by far an improvement that makes all ASP.NET services including
forms authentication, membership, role management, and many others available to different
kinds of content fi le types in an application.

This chapter starts by introducing the advantages of using the IIS 7.0 and ASP.NET Integrated
mode. The discussion expands into exploring the internals and architecture of the new Integrated
mode of execution. In addition, the chapter highlights the migration problems that a developer
or administrator faces when upgrading an application to run inside IIS 7.0 under the Integrated
mode. The chapter ends with a section on extending the IIS 7.0 infrastructure by developing man-
aged HttpHandlers and HttpModules and installing these features from inside the application’s
web.config confi guration fi le without the need to have access to the IIS 7.0 Manager tool.

When you fi nish reading this chapter, you will be armed with a good knowledge in:

Advantages of using IIS 7.0 and ASP.NET Integrated mode.❑❑

IIS 7.0 and ASP.NET Integrated mode architecture.❑❑

Handling migration errors for applications to run under IIS 7.0 Integrated mode.❑❑

Extending IIS 7.0 with managed ❑❑ HttpModules and HttpHandlers.

79301c02.indd 29 10/6/08 12:07:58 PM

30

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

Advantages of IIS 7.0 and
ASP.NET Integrated Mode

IIS 7.0 introduces a new era of web development with a solid integration with ASP.NET 3.5. Web
development witnessed a huge change and improvement with the release of ASP.NET 1.x, and with
ASP.NET 2.0. In ASP.NET 3.5 many services were added. There is more control over the ASP.NET
request-processing pipeline, new APIs were developed to make development tasks easier, in addi-
tion to many other improvements. IIS 7.0 goes far beyond and leverages ASP.NET 3.5 from being just
a technology or framework to develop dynamic web applications to a framework to extend its core
engine.

IIS 7.0 gives the developer the choice to either continue working with the Classic mode, i.e., the IIS 6.0
mode, or enhance the development and move to the Integrated mode. Integrated mode means the inte-
gration between IIS 7.0 and ASP.NET working together, joining their efforts for a better web develop-
ment experience. The benefits of such an Integrated mode can be summarized as follows:

ASP.NET 3.5 services can now be used for all content types:❑❑ In previous releases of IIS, ASP.NET
did not have a say when it comes to content file types that are not registered with ASP.NET run-
time. For example, when processing an ASP classic page, ASP.NET runtime could not perform
any processing on that specific file type. This is due to the fact that IIS used to map several file
types, including .aspx, .ascx, etc., to the ASP.NET ISAPI extension, while other file types,
including .ASP, and so on, were mapped to another ISAPI extension different from that of the
ASP.NET. However, with the new Integrated mode offered by IIS 7.0, ASP.NET can operate on
any file type regardless of its extension and this is because when an ASP.NET application is exe-
cuting under the new IIS 7.0 Integrated mode, it gets the chance to process any request, that IIS
7.0 accepts, regardless of its type. As an example, ASP.NET FormsAuthenticationModule can
now be used to authenticate non-ASP.NET pages similar to the way used to authenticate ASP.
NET resources. In addition, all the ASP.NET 3.5 services, including Membership, Role, and Pro-
file management services, can be used not only with ASP.NET resources, but also with any
other resource.

Extend IIS 7.0 with ASP.NET: ❑❑ Previously, to extend IIS, developers had to develop native mod-
ules using both the ISAPI API and C++. Such a task was not easy at all and this forced develop-
ers who are developing in .NET, the managed code, to learn other languages like C++ to be able
to develop and extend the web server core engine. In the Integrated mode, ASP.NET developers
can extend the web server core engine by developing ASP.NET HttpModules. Once a module
is developed, it can be registered inside IIS 7.0 modules so that it can operate during the IIS
request-processing pipeline. Later in the chapter, a section is dedicated to developing a new
ASP.NET module and registering it with IIS 7.0.

Unified processing pipeline: ❑❑ IIS 7.0 integrates its own request-processing pipeline with
ASP.NET. For instance, you can disable all native authentication modules and enable the
FormsAuthenticationModule through IIS. When the authentication event fires, IIS 7.0 runs
all configured authentication modules registered in an application. When it detects that forms
authentication is enabled, it hands off the request to the ASP.NET module to process the request.
What happens, in fact, is that the IIS 7.0 engine uses the native ManagedEngineModule to instan-
tiate a new AppDomain instance. Inside the new AppDomain, the Common Language Runtime
(CLR) is first instantiated, and after that the needed module is loaded, hence giving it the chance
to operate on the request instead of a native module inside IIS. It can be seen how the native and
managed modules can be used interchangeably as though they are both of the same type of mod-
ules, which they are not, but the Integrated mode gives that impression.

79301c02.indd 30 10/6/08 12:07:58 PM

31

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

This was a brief summary on the advantages of the new Integrated mode. In the coming sections, the
IIS 7.0 Integrated mode architecture and an example of developing an ASP.NET module and integrating
it with IIS is shown in detail.

IIS 7.0 Integrated Mode Architecture
The initial processing of an HTTP request on IIS 7.0 running in the Classic mode, resembling the same
IIS 6.0 functionality, occurs within both IIS and a supporting protocol driver. As a result, depending
on the configuration for IIS, a request may never make it far enough to be processed by ASP.NET. Fig-
ure 2-1 shows the salient portions of IIS 7.0 running in the Classic mode and Windows Server 2008 or
Windows Vista/2003 that participate in request processing.

Static content Aspnet_isapi.dll

Aspenet_filter.dll

ISAPI filters

Http.sysRequest for
default.aspx

Asp.dll

Worker process
W3wp.exe

Figure 2-1

A request must first pass the restrictions enforced by the kernel mode HTTP driver: http.sys. The
request is handed off to a worker process, where it then flows through a combination of the internal
request processing provided by IIS and several ISAPI filters and extensions. Ultimately, the request is
routed to the appropriate content handler, which for ASP.NET pages is the ASP.NET runtime’s ISAPI
extension.

The ASP.NET ISAPI extension contains the ASP.NET runtime request-processing pipeline. It can be easily
concluded how the request first passes through the IIS request-processing pipeline for authentication,
authorization, and all other modules. When it is time to determine the handler for the request based on
the request’s file extension, in case of an ASP.NET page, IIS passes the request to the ASP.NET ISAPI
extension. Once the extension is activated, the ASP.NET request-processing pipeline is fired. Figure 2-2
shows a basic sketch of what goes on inside the ASP.NET request-processing pipeline.

79301c02.indd 31 10/6/08 12:07:58 PM

32

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

Begin Request

Authentication
Forms

Windows

EndRequest

Handler
ASPX

ASMX

ASP.NET ISAPI Extension

Figure 2-2

Once the request enters the ASP.NET request-processing pipeline, the different registered events start to
execute. The first event is the BeginRequest event. Following is a set of events each linked to execute
a specific feature until the authentication stage is reached. Based on which authentication type the
application is configured with, the corresponding module executes: FormsAuthenticationModule
or WindowsAuthenticationModule. Later on, the stage is reached where a handler should be selected
to handle the execution of the current request according to the file extension of the request resource.
Finally, the EndRequest event is fired and the response of executing the request is handed off to the
IIS request-processing pipeline so that a response is generated for the client that issued the request.

In IIS 7.0, the story is different. The unified request-processing pipeline that was explained earlier takes
control over the execution inside IIS 7.0 when running in the Integrated mode. Unified pipeline means
that both the IIS 7.0 and ASP.NET request-processing pipeline unite and execute as though they were the
same pipeline of execution. This means that ASP.NET is given the privilege to have access to any IIS 7.0
intrinsic object and being able to have a hand at every stage of execution. For instance, an ASP.NET
authentication module can be used to substitute any authentication native module used by IIS 7.0.

With the Integrated mode enabled, ASP.NET modules become first-class citizens. They can operate
on the request before any IIS module operates on it, which means ASP.NET can, for example, change
the request headers before any other native module gets access to it. In addition, ASP.NET modules can
operate on requests even after IIS modules finish processing the request and even sometimes, ASP.NET
modules can replace existing IIS modules. Figure 2-3 shows the unified request-processing pipeline
inside IIS 7.0 when operating in the Integrated mode.

79301c02.indd 32 10/6/08 12:07:58 PM

33

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

Anonymous

Basic

Windows

Forms

Page

Authentication

Execute Handler Webservice

Trace

Compression

Logging

Send Response

HT
TP

 R
eq

ue
st

Figure 2-3

When a request reaches IIS 7.0 to be processed, the different stages inside the request-processing pipe-
line start to execute. For instance, once the AuthenticateRequest event fires, IIS 7.0 checks to see what
authentication modules are configured inside the <system.webServer /> configuration section group
and accordingly it executes the right module(s) in the order specified in the <modules> configuration
section. At this stage, an ASP.NET module that attaches to the authentication event and provides the
logic to authenticate users can be added in the application’s web.config configuration file, thus remov-
ing all other native modules registered by IIS for the authentication stage. There is one exception in that,
at minimum, the native AnonymousAuthenticationModule should be enabled when no other native
authentication module is enabled.

This unified Integrated mode allows ASP.NET modules to execute as though they were part of the
IIS 7.0 infrastructure. The question that arises now is how an application interacts with the IIS engine to
decide what module to run; is it the native one or the managed one? Going back to Chapter 1 when
the ApplicationHost.config configuration file was introduced, it was clear that IIS infrastructure
and every ASP.NET application can share the same <system.webServer /> configuration sec-
tion group. The ApplicationHost.config configuration file fills the aforementioned section with
global configurations and leaves it to each specific application to decide whether to use the defaults

79301c02.indd 33 10/6/08 12:07:59 PM

34

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

set globally by the web server or to update the section with specific information targeting the specific
application. An important discussion to have at this stage is how IIS installs and registers the native
and managed modules and who decides on which module to use.

system.webServer Configuration Section Group
The <system.webServer /> configuration section group located inside the ApplicationHost.config
configuration file contains dedicated sections to list the native and managed modules installed on the
web server. The native modules usually require not only installation but also registration, while the
managed modules need only to be registered. The first section inside the <system.webServer />
that is discussed is the <globalModules /> configuration section.

The globalModules Configuration Section
The <globalModules /> configuration section installs all the native modules listed. In the Application​
Host.config configuration file the <globalModules /> configuration section usually contains the fol-
lowing native modules.

 <globalModules>
 <add name=”UriCacheModule”
 image=”%windir%\System32\inetsrv\cachuri.dll” />
 <add name=”FileCacheModule”
 image=”%windir%\System32\inetsrv\cachfile.dll” />
 <add name=”TokenCacheModule”
 image=”%windir%\System32\inetsrv\cachtokn.dll” />
 <add name=”HttpCacheModule”
 image=”%windir%\System32\inetsrv\cachhttp.dll” />
 <add name=”StaticCompressionModule”
 image=”%windir%\System32\inetsrv\compstat.dll” />
 <add name=”DefaultDocumentModule”
 image=”%windir%\System32\inetsrv\defdoc.dll” />
 <add name=”DirectoryListingModule”
 image=”%windir%\System32\inetsrv\dirlist.dll” />
 <add name=”ProtocolSupportModule”
 image=”%windir%\System32\inetsrv\protsup.dll” />
 <add name=”StaticFileModule”
 image=”%windir%\System32\inetsrv\static.dll” />
 <add name=”AnonymousAuthenticationModule”
 image=”%windir%\System32\inetsrv\authanon.dll” />
 <add name=”RequestFilteringModule”
 image=”%windir%\System32\inetsrv\modrqflt.dll” />
 <add name=”CustomErrorModule”
 image=”%windir%\System32\inetsrv\custerr.dll” />
 <add name=”HttpLoggingModule”
 image=”%windir%\System32\inetsrv\loghttp.dll” />
 <add name=”RequestMonitorModule”
 image=”%windir%\System32\inetsrv\iisreqs.dll” />
 <add name=”IsapiModule”
 image=”%windir%\System32\inetsrv\isapi.dll” />
 <add name=”IsapiFilterModule”
 image=”%windir%\System32\inetsrv\filter.dll” />

79301c02.indd 34 10/6/08 12:07:59 PM

35

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

 <add name=”ConfigurationValidationModule”
 image=”%windir%\System32\inetsrv\validcfg.dll” />
 <add name=”ManagedEngine”
 image=”%windir%\Microsoft.NET\Framework\v2.0.50727\webengine.dll”
 preCondition=”integratedMode,runtimeVersionv2.0,bitness32” />
 <add name=”BasicAuthenticationModule”
 image=”%windir%\System32\inetsrv\authbas.dll” />
 </globalModules>

Depending on which native modules have been installed on the web server, they will be shown in the
<globalModules /> configuration section. Before being able to use any native module it should be
installed and this is exactly what the <globalModules /> configuration section does. It installs every
module listed inside so that it can be used later by any IIS feature. Every module is listed by specifying
the (friendly) name of the module name and the image where the module is located. All the above native
modules are C++ modules and each module is located within its own assembly.

Now that the modules are installed, they need to be registered so that they attach to the request-
processing pipeline. The <modules /> configuration section is the one that registers both native and
managed modules.

The modules Configuration Section
The <modules /> configuration section is the place where both native and managed modules get
registered by the web server so that they can participate in the processing of requests inside the uni-
fied request-processing pipeline. Native modules registered in this section should have already been
installed as mentioned in the previous section.

 <location path=”” overrideMode=”Allow”>
 <system.webServer>
 <modules>
 <add name=”HttpCacheModule” />
 <add name=”StaticCompressionModule” />
 <add name=”DefaultDocumentModule” />
 <add name=”DirectoryListingModule” />
 <add name=”ProtocolSupportModule” />
 <add name=”StaticFileModule” />
 <add name=”AnonymousAuthenticationModule” />
 <add name=”RequestFilteringModule” />
 <add name=”CustomErrorModule” />
 <add name=”IsapiModule” />
 <add name=”BasicAuthenticationModule” />
 <add name=”HttpLoggingModule” />
 <add name=”RequestMonitorModule” />
 <add name=”IsapiFilterModule” />
 <add name=”ConfigurationValidationModule” />
 <add name=”OutputCache”
 type=”System.Web.Caching.OutputCacheModule”
 preCondition=”managedHandler” />
 <add name=”Session”
 type=”System.Web.SessionState.SessionStateModule”
 preCondition=”managedHandler” />

79301c02.indd 35 10/6/08 12:07:59 PM

36

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

 <add name=”WindowsAuthentication”
 type=”System.Web.Security.WindowsAuthenticationModule”
 preCondition=”managedHandler” />
 <add name=”FormsAuthentication”
 type=”System.Web.Security.FormsAuthenticationModule”
 preCondition=”managedHandler” />
 <add name=”DefaultAuthentication”
 type=”System.Web.Security.DefaultAuthenticationModule”
 preCondition=”managedHandler” />
 <add name=”RoleManager”
 type=”System.Web.Security.RoleManagerModule”
 preCondition=”managedHandler” />
 <add name=”UrlAuthorization”
 type=”System.Web.Security.UrlAuthorizationModule”
 preCondition=”managedHandler” />
 <add name=”FileAuthorization”
 type=”System.Web.Security.FileAuthorizationModule”
 preCondition=”managedHandler” />
 <add name=”AnonymousIdentification”
 type=”System.Web.Security.AnonymousIdentificationModule”
 preCondition=”managedHandler” />
 <add name=”Profile”
 type=”System.Web.Profile.ProfileModule”
 preCondition=”managedHandler” />
 <add name=”UrlMappingsModule”
 type=”System.Web.UrlMappingsModule”
 preCondition=”managedHandler” />
 </modules>
 </system.webServer>
 </location>

Every module, whether it is a native or managed one, is added to the <modules> configuration section
by the add element.

name❑❑ : The name attribute specifies a friendly and human readable name of the registered mod-
ule. If the module registered is a native one, the name should match the same name used when
the module was installed in the <globalModules /> configuration section. In case of a man-
aged module, any friendly and expressive name can be used.

type❑❑ : This attribute contains the value of the fully qualified namespace of the managed module
registered. It applies only to managed modules.

precondition❑❑ : This attribute specifies whether the module should be loaded for all requests
or only managed requests, that is, request for ASP.NET resources. If you want to enable a
module to run for every request, whether it is an ASP.NET or not, simply clear this attribute
in the ApplicationHost.config configuration file. In most cases, when hosting a website on
a remote server you will not get the chance to play around with this file. A better solution is to
configure the module through the web.config configuration file as will be shown soon.

The modules defined at this level are defined globally at the web server’s level, which means all the
lower-level sites, applications, and virtual directories inherit all these modules. This means all the
registered modules will process any request that is part of your site, application, or virtual directory.

79301c02.indd 36 10/6/08 12:07:59 PM

37

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

To prevent this from happening, you can add a web.config configuration file into the application and
remove any module that you do not want to take part in the processing of requests that belong to the
application.

<configuration>
 <system.webServer>
 <modules>
 <remove name=”BasicAuthenticationModule”/>
 </modules>
 </system.webServer>
</configuration>

The preceding configuration can be placed inside the application’s web.config configuration file. What
the above configuration settings do is remove the installed and registered BasicAuthentication​Mod-
ule. Now, regardless whether the BasicAuthenticationModule is enabled or not for the application,
requests belonging to the application will not be processed by the native BasicAuthentication​Module.

<configuration>
 <system.webServer>
 <modules>
 <remove name=”BasicAuthenticationModule”/>
 <add name=”MyBasicAuthenticationModule”/>
 </modules>
 </system.webServer>
</configuration>

If, on the other hand, you want to replace an existing module with a custom module, you can simply
remove the module in question and then add your own module by specifying its name. It goes without
saying that the new module should be listed in the <globalModules /> configuration section of the
ApplicationHost.config configuration file. In other words, the module must be installed inside IIS
7.0 before being able to use it in your applications.

It is important to know the order in which the above registered modules get executed by the IIS runtime.
As previously mentioned, the <modules> configuration section registers both the native and managed
modules. Every module registers itself to a specific event in the request-processing pipeline. When an
event fires in the pipeline, IIS 7.0 looks at the registered modules and decides on which modules should
be run (remember again, modules can be both native and managed modules). Once the selection is made,
IIS then looks to see the order they are registered with in the <modules /> configuration section. The
order decides which module would run before another module. So it is very possible that a managed
module might be placed before a native module, both registered for the same event. Therefore, the man-
aged module will be executed first by ASP.NET runtime and then followed by the native module that
will be executed within the context of IIS runtime.

It is important to remember that native and managed modules are executed according to their order
of appearance in the <modules /> configuration section. In addition, the order can be set program-
matically. However, this is available only for native modules, as you will see later on with the native
AnonymousAuthenticationModule.

79301c02.indd 37 10/6/08 12:07:59 PM

38

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

The security Configuration Section Group
The <security /> configuration section group is the place where you specify security options for
your application. It contains two major sections, as described next.

The authentication Configuration Section
In the <globalModules /> configuration section, several authentication modules were installed and
then later on were registered in the <modules> configuration section. Which of these modules does
IIS 7.0 use for authentication? The answer lies in the <authentication> configuration section that
enables/disables modules as required. Looking at the <authentication> configuration section in the
ApplicationHost.config configuration file yields the configuration section shown here.

 <authentication>

 <anonymousAuthentication enabled=”true” userName=”IUSR” />

 <basicAuthentication enabled=”false” />

 <clientCertificateMappingAuthentication />

 <digestAuthentication />

 <iisClientCertificateMappingAuthentication>
 </iisClientCertificateMappingAuthentication>

 <windowsAuthentication>
 </windowsAuthentication>

 </authentication>

The installed and registered modules in the <globalModules /> and <modules /> configuration sec-
tions are shown in the <authentication /> configuration section above with configuration attributes.

For instance, the BasicAuthenticationModule shown above with an attribute of enabled=”false”
was already installed and registered in the <globalModules /> and <modules /> configuration sec-
tions. The other modules without any configurable attributes were neither installed nor registered, hence
the fact that only registered and installed native modules show up in the authentication section with
configurable attributes. In other words, the IIS 7.0 <modules /> configuration section determines
whether or not a module (authentication or any other module) will even run. The <authentication />
configuration section configures the behavior of each authentication type. However, the settings in the
<authentication /> configuration section will not take effect unless the associated module has
already been configured to run in the first place.

The AnonymousAuthenticationModule shown previously has a set of important attributes that are
worth discussing, especially from the security context. This module is usually installed as part of the
default installation of IIS 7.0. For a list of the modules installed with a default installation of IIS, refer
back to Chapter 1.

79301c02.indd 38 10/6/08 12:07:59 PM

39

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

This module is enabled by default and hence it applies to all requests that belong to all sites config-
ured under the IIS 7.0 web server. The <anonymousAuthentication /> element defines userName
and password attributes that are used together to specify the identity or Windows account that
IIS uses when an anonymous user accesses an application when no other authentication module is
enabled. By default, IIS 7.0 sets the userName attribute to the built-in account IUSR that replaces the
old IUSR_MachineName account in IIS 6.0 and has minimum and limited privileges. The new IUSR
built-in user account and the IIS_IUSRS built-in group are discussed in detail in Chapter 3.

Moreover, you can configure IIS 7.0 to use the application pool or worker process identity as the ​
username and password for the AnonymousAuthenticationModule. This can be configured by
setting an empty string for the value of userName attribute. An empty string can be represented by
double quotes as follows:

<anonymousAuthentication enabled=”true” userName=””/>

In case you want to disable any of the registered native modules, you can do so from inside the applica-
tion’s web.config configuration file using the enabled attribute as shown here.

<system.webServer>
 <security>
 <authentication>
 <anonymousAuthentication enabled=”true”/>
 <basicAuthentication enabled=”false”/>
 <clientCertificateMappingAuthentication enabled=”false”/>
 <digestAuthentication enabled=”false”/>
 <iisClientCertificateMappingAuthentication enabled=”false”/>
 <windowsAuthentication enabled=”false”/>
 </authentication>
 </security>
</system.webServer>

By specifying enabled=”false” you simply disabled the module from having any role in processing a
request that belongs to the current application.

Another important trick to mention here is: What if you want to enable, for example, Forms
AuthenticationModule to handle all content file types and not only ASP.NET resource files? In
other words, what if you want to remove the preCondition attribute set for each managed module in
the <modules /> configuration section in the ApplicationHost.config configuration file? This can
be easily done by removing the module element then adding it again without specifying a value for the
preCondition attribute.

<system.webServer>
 <modules>
 <!-- Allow the FormsAuthentication module to run for all requests -->
 <remove name=”FormsAuthentication”/>
 <add name=”FormsAuthentication” type=”System.Web.Security.
FormsAuthenticationModule”/>
 </modules>
</system.webServer>

79301c02.indd 39 10/6/08 12:07:59 PM

40

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

As the preceding listing shows, the FormsAuthenticationModule element has been removed and
another element has been added, setting the name attribute to FormsAuthentication. It is very
important to use the same friendly name used by IIS in the ApplicationHost.config configuration
file and set the type attribute to the full namespace of the FormsAuthenticationModule defined in
the .NET Framework base class library.

To enable all managed modules to run for all request types, you set the value of the runAllManaged​
ModulesForAllRequests attribute to true.

<system.webServer>
 <modules runAllManagedModulesForAllRequests=”true”></modules>
</system.webServer>

The attribute is added to the <modules /> configuration section in the <system.webServer /> con-
figuration section group inside the application’s web.config configuration file.

Note, though, that when IIS 7.0 finds out that a managed module has to be run and executed, a switch
happens from a native mode to the managed mode for the managed module to be run within the ASP​
.NET runtime in the CLR. In general, it is recommended not to automatically run all managed modules
for all requests. This incurs an overhead and low performance in throughput because of the switch of
context. What you can do is selectively choose the managed modules that make sense for non-ASP.NET
content and enable only those modules for all requests, managed and native.

To decide on what authentication type to use in an application, the same old way of specifying the
authentication in an ASP.NET application still works. To configure what authentication type the applica-
tion should use, add an <authentication /> configuration section inside the <system.web /> con-
figuration section group of the application’s web.config configuration file.

<system.web>
 <authentication mode=”Forms” />
</system.web>

The preceding listing configures an application to use forms authentication. However, if you want an
application to be configured with Windows authentication, change the mode attribute value from Forms
to a value of Windows and make sure the managed WindowsAuthenticationModule is registered cor-
rectly with IIS 7.0.

Authorization Configuration Section
When installing IIS 7.0, you get the chance to install a new native UrlAuthorizationModule that has
been introduced to the IIS 7.0 runtime. Once this native module is installed, it shows up in both the
<globalModules /> and <modules> configuration sections of the <system.webServer /> configura-
tion section group.

 <globalModules>
 <add name=”ManagedEngine”
 image=”%windir%\Microsoft.NET\Framework\v2.0.50727\webengine.dll”
 preCondition=”integratedMode,runtimeVersionv2.0,bitness32” />
 <add name=”BasicAuthenticationModule”
 image=”%windir%\System32\inetsrv\authbas.dll” />

79301c02.indd 40 10/6/08 12:07:59 PM

41

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

 <add name=”UrlAuthorizationModule”
 image=”%windir%\System32\inetsrv\urlauthz.dll” />
 </globalModules>

Once the native UrlAuthorization feature is installed, IIS 7.0 configures the ApplicationHost.config
configuration file and adds an entry inside the <globalModules /> configuration section.

 <modules>
 <add name=”UrlMappingsModule”
 type=”System.Web.UrlMappingsModule”
 preCondition=”managedHandler” />
 <add name=”UrlAuthorizationModule” />
 </modules>

In addition, the module gets registered by having a new entry in the <modules /> configuration sec-
tion. If you would like to disable this module for your application, you can easily do so by removing
it from the <modules /> configuration section of the <system.webServer /> configuration section
group inside the application’s web.config configuration file.

<system.webServer>
 <modules>
 <remove name=”UrlAuthorizationModule”/>
 </modules>
</system.webServer>

The native UrlAuthorizationModule uses authorization rules that determine whether the user access-
ing the application is authorized to access specific parts of the application or specific page URLs. These
authorization rules are configured by adding some declarative rules into the <authorization /> con-
figuration section inside the <security /> section group of the application’s web.config configura-
tion file.

<system.webServer>
 <security>
 <authorization>
 <add accessType=”Deny” users=”?”/>
 <add accessType=”Allow” users=”bhaidar”/>
 </authorization>
 </security>
</system.webServer>

This can be achieved by adding sub-elements inside the <authorization /> configuration section
specifying the accessType, whether to allow or deny, the users to whom you want to grant access
and finally, the verbs attribute.

Moreover, when ASP.NET is installed on IIS 7.0, it registers with the ApplicationHost.config con-
figuration file a managed UrlAuthorizationModule that is configured to run for ASP.NET resources
processed by the application.

 <modules>
 <add name=”AnonymousIdentification”
 type=”System.Web.Security.AnonymousIdentificationModule”

79301c02.indd 41 10/6/08 12:07:59 PM

42

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

 preCondition=”managedHandler” />
 <add name=”Profile”
 type=”System.Web.Profile.ProfileModule”
 preCondition=”managedHandler” />
 <add name=”UrlAuthorization”
 type=”System.Web.Security. UrlAuthorizationModule”
 preCondition=”managedHandler” />
 <add name=”UrlAuthorizationModule” />
 </modules>

Once again notice the preCondition attribute set to managedHandler, which means that this module
will be invoked only for managed resources. To activate this module for all types of requests, simply
use the web.config configuration file in your application to remove the module and add it again with-
out specifying a value for the preCondition attribute.

<system.webServer>
 <modules>
 <remove name=”UrlAuthorization”/>
 <add name=”UrlAuthorization” type=”System.Web.Security.
UrlAuthorizationModule”/>
 </modules>
</system.webServer>

The code in the listing above removes the managed UrlAuthorizationModule element and then adds
it again so that it functions against all requests processed by the IIS runtime.

The managed UrlAuthorizationModule uses authorization rules that determine whether the user
accessing the application is authorized to access specific parts of the application or not. These authoriza-
tion rules are defined in the <authorization> configuration section inside the <system.web /> con-
figuration section group of the application’s web.config configuration file. There is nothing different
here from what has always been used to configure ASP.NET authorization before the days of IIS 7.0.

<system.web>
 <authorization>
 <deny users=”?”/>
 </authorization>
</system.web>

The preceding configuration settings prevent anonymous users from accessing the website.

Migrating ASP.NET Applications to Integrated Mode
When a new ASP.NET application is created using Visual Studio 2008 under IIS 7.0, it is by default config-
ured to run under the Integrated mode application pool. However, having ASP.NET running for several
years, there is a huge number of applications that need to be migrated in order to function properly under
IIS 7.0 Integrated mode. If, however, you decide to keep your applications the same without introducing any
changes to them, then simply add the application to IIS and assign it to the Classic mode application pool.
With this configuration, you are sure the application will run properly the same as it did under IIS 6.0.

79301c02.indd 42 10/6/08 12:07:59 PM

43

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

When you consider migrating old applications into the Integrated mode, you should be looking at three
important sections within the web.config configuration file: <httpModules />, <httpHandlers />,
and the <identity /> configuration sections.

httpModules Configuration Section
When an ASP.NET application wants to register an HttpModule it usually adds an entry inside the
<httpModules /> configuration section inside the <system.web> configuration section group of the
application’s web.config configuration file. Now to make the application run properly under IIS 7.0
Integrated mode, simply copy all the registered modules inside the <httpModules /> configuration
section into the <modules> configuration section inside the <system.webServer /> configuration
section group. Not all modules registered within the <httpModules /> configuration section will
take effect when the application is running in the Integrated mode. Only those registered within the
<modules /> configuration section of the <system.webServer /> configuration section group will
run and execute. If any new module is to be registered in an application, it is best to place it inside the
<modules /> configuration section of the <system.webServer /> configuration section group.

C#
public class BasicHttpModule : IHttpModule
{
 public BasicHttpModule()
 {
 }

 public void Dispose()
 {
 // Leave it blank since we will not add any code
 }

 /// <summary>
 /// This method is used to register for events in the
 /// request-processing pipeline stages
 /// </summary>
 /// <param name=”context”></param>
 public void Init(HttpApplication context)
 {
 // Register for the BeginRequest event
 context.BeginRequest += new EventHandler(BeginRequest);
 }

 static void BeginRequest(object sender, EventArgs e)
 {
 HttpContext context=
 HttpContext.Current;
 context.Write(“<h3 align=’center’>
 Welcome message from the Basic Http Module !</h3>”);
 }

}

79301c02.indd 43 10/6/08 12:07:59 PM

44

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

VB.NET
Imports System
Imports System.Web

‘’’ <summary>
‘’’ Summary description for BasicHttpModule
‘’’ </summary>
Public Class BasicHttpModule
 Implements IHttpModule
 Public Sub New()
 ‘
 ‘ TODO: Add constructor logic here
 ‘
 End Sub

#Region “IHttpModule Members”

 Public Sub Dispose() Implements IHttpModule.Dispose
 ‘ Leave it blank since we will not add any code
 End Sub

 ‘’’ <summary>
 ‘’’ This method is used to register for events in the
 ‘’’ request-processing pipeline stages
 ‘’’ </summary>
 ‘’’ <param name=”context”></param>
 Public Sub Init(ByVal context As HttpApplication) Implements IHttpModule.Init
 ‘ Register for the BeginRequest event
 AddHandler context.BeginRequest, AddressOf BeginRequest
 End Sub

 Private Shared Sub BeginRequest(ByVal sender As Object, ByVal e As EventArgs)
 HttpContext context=
 HttpContext.Current;
 context.Write(“<h3 align=’center’>
 Welcome message from the Basic Http Module !</h3>”);
 End Sub

#End Region
End Class

The preceding listing shows a simple HttpModule that registers the BeginRequest event of the unified
request-processing pipeline to display a message on the user’s screen.

To register this module in the application’s web.config configuration file, simply add the following:

<system.webServer>
 <modules>
 <!-- Register the BasicHttpModule -->
 <add name=”BasicHttpModule” type=”BasicHttpModule” />
 </modules>
</system.webServer>

79301c02.indd 44 10/6/08 12:08:00 PM

45

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

When registering an HttpModule located in the App_Code system folder of an ASP.NET application,
simply add the module by specifying a friendly name for the module and by setting the module name
as a value for the type attribute.

When any ASP.NET page is requested by the application, the following message is attached as the first
thing to display on the page:

Welcome message from the Basic Http Module!

The module gets executed during the BeginRequest event during the unified request-processing
pipeline.

Moreover, if you move the registered module into the <modules /> configuration section and keep the
<httpModules /> section inside the application’s web.config configuration file, you should turn off
validation done by IIS, to ensure that the web.config configuration is valid, so that IIS does not gener-
ated migration error messages. Turning off validation simply suppresses the error messages generated.
This also applies for the <httpHandlers /> configuration section and enabling impersonation as you
will see in the next two sections.

httpHandlers Configuration Section
When an ASP.NET application wants to register an HttpHandler to process a specific content file type,
usually a custom one, it adds an entry into the <httpHandlers /> configuration section inside the
<system.web /> configuration section group in the application’s web.config configuration file. Now
to make the application run properly under IIS 7.0 Integrated mode, simply copy all the registered han-
dlers from inside the <httpHandlers /> configuration section into the <handlers /> configuration
section inside the <system.webServer /> configuration section group. The <handlers /> configura-
tion section is originally defined inside the ApplicationHost.config configuration file. It lists all the
mappings between content file extensions and their corresponding handlers.

 <location path=”” overrideMode=”Allow”>
 <system.webServer>
 <handlers accessPolicy=”Script, Read”>
 <add name=”TraceHandler-Integrated”
 path=”trace.axd”
 verb=”GET,HEAD,POST,DEBUG”
 type=”System.Web.Handlers.TraceHandler”
 preCondition=”integratedMode” />
 <add name=”WebAdminHandler-Integrated”
 path=”WebAdmin.axd”
 verb=”GET,DEBUG”
 type=”System.Web.Handlers.WebAdminHandler”
 preCondition=”integratedMode” />
 <add name=”PageHandlerFactory-Integrated”
 path=”*.aspx”
 verb=”GET,HEAD,POST,DEBUG”
 type=”System.Web.UI.PageHandlerFactory”
 preCondition=”integratedMode” />
 <add name=”SimpleHandlerFactory-Integrated”
 path=”*.ashx”
 verb=”GET,HEAD,POST,DEBUG”

79301c02.indd 45 10/6/08 12:08:00 PM

46

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

 type=”System.Web.UI.SimpleHandlerFactory”
 preCondition=”integratedMode” />
 <add name=”WebServiceHandlerFactory-Integrated”
 path=”*.asmx”
 verb=”GET,HEAD,POST,DEBUG”
 type=”System.Web.Services.Protocols.WebServiceHandlerFactory,
 System.Web.Services, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a”
 preCondition=”integratedMode” />
 <add name=”PageHandlerFactory-ISAPI-2.0”
 path=”*.aspx”
 verb=”GET,HEAD,POST,DEBUG”
 modules=”IsapiModule” scriptProcessor=”%windir%\Microsoft.NET\
 Framework\v2.0.50727\aspnet_isapi.dll”
 preCondition=”classicMode,runtimeVersionv2.0,bitness32”
 responseBufferLimit=”0” />
 <add name=”StaticFile” path=”*”
 verb=”*”
 modules=”StaticFileModule,DefaultDocumentModule,
 DirectoryListingModule” resourceType=”Either”
 requireAccess=”Read” />
 </handlers>
 </system.webServer>
 </location>

The preceding listing shows a subset of the handlers defined in the ApplicationHost.config configu-
ration file. For instance, the PageHandlerFactory-Integrated handler maps all .aspx pages into the
System.Web.UI.PageHandlerFactory class. This handler is used when an application is running in
the Integrated mode. There is also a counterpart handler that runs when the application is configured
in the Classic mode application pool; the handler name is PageHandlerFactory-ISAPI-2.0.

Adding a custom HttpHandler for new content file types was not an easy task in IIS 6.0, and sometimes
it was impossible when the IIS 6.0 server was running remotely in a hosting company. Making use of the
IIS 7.0 Integrated mode processing, it is now considered a piece of cake to add a new handler for any con-
tent file type you want by simply adding a new entry into the <handlers /> configuration section of the
<system.webServer /> configuration section group located in the application’s web.config configura-
tion file.

<system.webServer>
 <handlers>
 <add name=”BasicHttpHandler”
 preCondition=”integratedMode”
 path=”*.info”
 type=”BasicHttpHandler”
 verb=”GET, POST” “ />
 </handlers>
</system.webServer>

The preceding configuration settings add a registration entry into the <handlers /> configuration
section. The handler entry should specify at a minimum the name of the HttpHandler; in this case, it is
BasicHttpHandler. Also specified is the path attribute for which the handler will be triggered; in this

79301c02.indd 46 10/6/08 12:08:00 PM

47

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

case, all requests to content files with an extension of .info. And finally, the verb attribute is specified;
in this case, the handler will accept requests with GET and POST verbs.

C#
using System;
using System.Web;
using System.Web.Security;
using System.Web.UI;

public class BasicHttpHandler : IHttpHandler
{
 public BasicHttpHandler()
 {
 }

 #region IHttpHandler Members

 public bool IsReusable
 {
 get { return true;}
 }

 public void ProcessRequest(HttpContext context)
 {
 HttpResponse objResponse = context.Response;
objResponse.Write(“<html><body><h1>Thank you for visiting our info page!!”);
 objResponse.Write(“</body></html>”);
 }

 #endregion
}

VB.NET
Imports System
Imports System.Data
Imports System.Configuration
Imports System.Linq
Imports System.Web
Imports System.Web.Security
Imports System.Web.UI
Imports System.Web.UI.HtmlControls
Imports System.Web.UI.WebControls
Imports System.Web.UI.WebControls.WebParts
Imports System.Xml.Linq

‘’’ <summary>
‘’’ Summary description for BasicHttpHandler
‘’’ </summary>
Public Class BasicHttpHandler
 Implements IHttpHandler

79301c02.indd 47 10/6/08 12:08:00 PM

48

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

 Public Sub New()
 ‘
 ‘ TODO: Add constructor logic here
 ‘
 End Sub

#Region “IHttpHandler Members”

 Public ReadOnly Property IsReusable() As Boolean Implements _
 IHttpHandler.IsReusable
 Get
 Return True
 End Get
 End Property

 Public Sub ProcessRequest(ByVal context As HttpContext) Implements _
 IHttpHandler.ProcessRequest()
 Dim objResponse As HttpResponse = context.Response
objResponse.Write(“<html><body><h1>Thank you for visiting our info page!!”)
 objResponse.Write(“</body></html>”)
 End Sub

#End Region
End Class

The preceding BasicHttpHandler code defines the HTML markup to show when a request for a page
with an extension of .info is request by the client.

Identity Configuration Section
If the application you are migrating to work under IIS 7.0 is configured with client impersonation in the
<identity /> configuration section, it is recommended to disable impersonation, since the application
might not behave correctly. This is especially true in that client impersonation is not available in early
ASP.NET request processing stages. Alternatively, you can assign the application configured with client
impersonation to an application pool with Classic mode.

Figure 2-4 shows the error page when you try to run an application that enables client impersonation
that is configured with an application pool set to run in the Integrated mode.

When you create a new application to run under IIS 7.0, you will notice the following inside the
<system.webServer /> configuration section group:

<system.webServer>
 <validation validateIntegratedModeConfiguration=”false”/>
</system.webServer>

The validation configuration section determines whether the IIS 7.0 runtime shall display error mes-
sages to help in upgrading the application to fit the IIS 7.0 Integrated mode. As mentioned above, if
you keep the <httpModules /> and <httpHandlers /> configuration sections’ entries outside the
<system.webServer /> configuration section group, they will not take effect in the unified request
processing. In addition, keeping the aforementioned configuration sections inside the <system.web />
configuration section group does not show any error message by IIS 7.0 notifying you that there are

79301c02.indd 48 10/6/08 12:08:00 PM

49

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

errors with running the application in the Integrated mode due to the presence of undesirable sections
in the application’s web.config configuration file. This is because the validateIntegratedMode​
Configuration attribute of the <validation /> configuration section is set to a value of false.
Changing this attribute to true will cause IIS 7.0 to show detailed error messages about the migration
problems of the running application and what is recommended to fix the upgrading problems. The
screen shown in Figure 2-4 would not have been displayed unless the aforementioned attribute was set
to true. In other words, you can keep the <httpModules />, <httpHandlers />, and <identity />
configuration sections in their place, while setting the validateIntegratedModeConfiguration attri-
bute to false, or simply remove the three sections from inside the <system.web /> configuration sec-
tion group and leave the validation attribute either true or false.

Figure 2-4

This section covered the migration configuration errors that you may receive when you migrate an
application to run under IIS 7.0 Integrated mode. For a more detailed discussion on the different errors
you may face when migrating your application, see: http://mvolo.com/blogs/serverside/
archive/2007/12/08/IIS-7.0-Breaking-Changes-ASP.NET-2.0-applications-
Integrated-mode.aspx

Extending IIS 7.0 with Managed Handlers and Modules
Throughout this book, it has been mentioned several times that the new IIS 7.0 architecture is extensible.
It allows developers to extend its core functionality by developing modules or features in two flavors:

Native code modules❑❑

Managed code modules❑❑

79301c02.indd 49 10/6/08 12:08:00 PM

50

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

Developing native modules requires working with the C++ API. On the other hand, managed modules
take advantage of the .NET framework and allow developers to use their existing ASP.NET HttpModules
or develop new ones to integrate with the IIS 7.0 infrastructure and benefit from the IIS 7.0 and ASP.NET
Integrated mode of execution.

Managed Handlers
A managed handler is an ASP.NET object that is responsible for the processing handling of an ASP.NET
resource that has a specific file extension. In other words, a managed handler is linked to a particular
file extension that is configured inside the <httpHandlers /> configuration section of the application’s
web.config configuration file. HttpHandlers do not require operating on physically available content
files. The resources might be virtual ones that do not exist physically in the application.

C#
public class SampleHttpHandler : IHttpHandler
{
 public SampleHttpHandler()
 {
 }

 public bool IsReusable
 {
 get { throw new NotImplementedException(); }
 }

 public void ProcessRequest(HttpContext context)
 {
 throw new NotImplementedException();
 }
}

VB.NET
Imports System
Imports System.Data
Imports System.Configuration
Imports System.Linq
Imports System.Web
Imports System.Web.Security
Imports System.Web.UI
Imports System.Web.UI.HtmlControls
Imports System.Web.UI.WebControls
Imports System.Web.UI.WebControls.WebParts
Imports System.Xml.Linq

‘’’ <summary>
‘’’ Summary description for SampleHttpHandler
‘’’ </summary>
Public Class SampleHttpHandler
 Implements IHttpHandler
 Public Sub New()

79301c02.indd 50 10/6/08 12:08:00 PM

51

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

 ‘
 ‘ TODO: Add constructor logic here
 ‘
 End Sub

#Region “IHttpHandler Members”

 Public ReadOnly Property IsReusable() As Boolean Implements _
 IHttpHandler.IsReusable
 Get
 Throw New NotImplementedException()
 End Get
 End Property

 Public Sub ProcessRequest(ByVal context As HttpContext) Implements _
 IHttpHandler.ProcessRequest
 Throw New NotImplementedException()
 End Sub

#End Region
End Class

The code in the preceding listing shows the skeleton of an HttpHandler. You create a new handler by
implementing the IHttpHandler interface. This interface has two main methods to implement:

ProcessRequest: ❑❑ This method is the brain of an HttpHandler. It is the method that gets executed
when the handler is activated. It is responsible for handling the specific request execution and
generation of the correct markup text that will be sent back to the requestor as a response. The
nature of the markup text generated depends on the type of the request. For example, if the
request is for an ASP.NET page, then the ProcessRequest method generates HTML markup
text to be sent back to the requestor. If on the other hand the handler is configured to process
and handle .xml content file extensions, then the response shall be XML markup text. This
method accepts as an input parameter an instance of type HttpContext. This parameter con-
tains the context in which the request is being processed and handled. Usually when a new
request comes in, ASP.NET runtime creates a new HttpContext object. This object can store
request-specific information and is disposed when the request is sent back to the requestor.

IsReusable: ❑❑ This is a read-only property that returns a value of type Boolean and specifies
whether the current handler can be used to process different requests for the configured resource.
If the handler has some state that is expensive to initialize, and that is invariant from request to
request, it should return a value of true so that ASP.NET has the opportunity to cache it. Oth-
erwise, if the handler has nothing in common for different requests, then it is recommended to
return a value of false.

Developing a Managed Handler
In this section, a custom managed handler is to be developed to handle displaying employees’ profile
pages in an application that manages employees’ information in a department, company, you name
it! The name of the handler is EmployeeHandler and will process requests for resources that have a
.info extension.

79301c02.indd 51 10/6/08 12:08:00 PM

52

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

Displaying employees’ profile information can be easily done by developing an ASP.NET UserControl
that serves as a template to show information about an employee. However, using a page to hold this
template is a waste of resources and more processing is done with no extra benefit. For instance, when
an employee’s profile page is requested, the ASP.NET runtime handles the request and fires all the events
during the page’s life cycle. None of the events are of interest in this specific case and hence more pro-
cessing is done with no extra benefit. In that case, to get rid of all the extra non-useful steps, an
HttpHandler is recommended.

The EmployeeHandler handles requests targeting specific employee as follows:

http://localhost/Employees/1234.info

What the handler does is extract the employee number from the URL, access the Employees data table
inside the database, and if the employee is present in the database, an employee profile page is dis-
played with all the details from the database.

The Employees data table used in this example is a simple data table used to collect information about
an employee. Figure 2-5 shows the Employees data table structure.

Figure 2-5

The Employees data table contains the EmployeeID, FirstName, LastName, and Email data columns.
This is just an example of simple collected information. In a production environment, this would be
much more serious and according to the context of the application.

For the sake of this example, a new LINQ DataContext class is added to the application to represent
the Employees data table in an object-like fashion, which makes querying the database an easy task.
Figure 2-6 shows the new .dbml LINQ object in the solution.

79301c02.indd 52 10/6/08 12:08:00 PM

53

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

Figure 2-6

C#
[Table(Name=”dbo.Employees”)]
public partial class Employee : INotifyPropertyChanging, INotifyPropertyChanged
{
 private int _EmployeeID;

 private string _FirstName;

 private string _LastName;

 private string _Email;

 public Employee()
 {
 }

 [Column(Storage=”_EmployeeID”, DbType=”Int NOT NULL”, IsPrimaryKey=true)]
 public int EmployeeID
 {
 get
 {
 return this._EmployeeID;
 }
 set
 {
 if ((this._EmployeeID != value))
 {

79301c02.indd 53 10/6/08 12:08:01 PM

54

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

 this._EmployeeID = value;
 }
 }
 }

 [Column(Storage=”_FirstName”, DbType=”NVarChar(50) NOT NULL”, CanBeNull=false)]
 public string FirstName
 {
 get
 {
 return this._FirstName;
 }
 set
 {
 if ((this._FirstName != value))
 {
 this._FirstName = value;
 }
 }
 }
 -
 [Column(Storage=”_LastName”, DbType=”NVarChar(50) NOT NULL”, CanBeNull=false)]
 public string LastName
 {
 get
 {
 return this._LastName;
 }
 set
 {
 if ((this._LastName != value))
 {
 this._LastName = value;
 }
 }
 }

 [Column(Storage=”_Email”, DbType=”NVarChar(100)”)]
 public string Email
 {
 get
 {
 return this._Email;
 }
 set
 {
 if ((this._Email != value))
 {
 this._Email = value;
 }
 }
 }
}

79301c02.indd 54 10/6/08 12:08:01 PM

55

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

VB.NET
<Table(Name:=”dbo.Employees”)> _
Partial Public Class Employee Implements INotifyPropertyChanging,
 INotifyPropertyChanged

 Private Shared emptyChangingEventArgs As _
 PropertyChangingEventArgs = New PropertyChangingEventArgs(String.Empty)

 Private _EmployeeID As Integer

 Private _FirstName As String

 Private _LastName As String

 Private _Email As String

 Public Sub New()
 MyBase.New
 OnCreated
 End Sub

 <Column(Storage:=”_EmployeeID”, DbType:=”Int NOT NULL”, IsPrimaryKey:=true)> _
 Public Property EmployeeID() As Integer
 Get
 Return Me._EmployeeID
 End Get
 Set
 If ((Me._EmployeeID = value) _
 = false) Then
 Me.OnEmployeeIDChanging(value)
 Me.SendPropertyChanging
 Me._EmployeeID = value
 Me.SendPropertyChanged(“EmployeeID”)
 Me.OnEmployeeIDChanged
 End If
 End Set
 End Property

 <Column(Storage:=”_FirstName”, _
 DbType:=”NVarChar(50) NOT NULL”, _
 CanBeNull:=false)> _
 Public Property FirstName() As String
 Get
 Return Me._FirstName
 End Get
 Set
 If (String.Equals(Me._FirstName, value) = false) Then
 Me.OnFirstNameChanging(value)
 Me.SendPropertyChanging
 Me._FirstName = value
 Me.SendPropertyChanged(“FirstName”)
 Me.OnFirstNameChanged
 End If
 End Set

79301c02.indd 55 10/6/08 12:08:01 PM

56

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

 End Property

 <Column(Storage:=”_LastName”, _
 DbType:=”NVarChar(50) NOT NULL”, _
 CanBeNull:=false)> _
 Public Property LastName() As String
 Get
 Return Me._LastName
 End Get
 Set
 If (String.Equals(Me._LastName, value) = false) Then
 Me.OnLastNameChanging(value)
 Me.SendPropertyChanging
 Me._LastName = value
 Me.SendPropertyChanged(“LastName”)
 Me.OnLastNameChanged
 End If
 End Set
 End Property

 <Column(Storage:=”_Email”, DbType:=”NVarChar(100)”)> _
 Public Property Email() As String
 Get
 Return Me._Email
 End Get
 Set
 If (String.Equals(Me._Email, value) = false) Then
 Me.OnEmailChanging(value)
 Me.SendPropertyChanging
 Me._Email = value
 Me.SendPropertyChanged(“Email”)
 Me.OnEmailChanged
 End If
 End Set
 End Property

End Class

This code shows the Employee object automatically generated by the LINQ DataContext object once the
Employees data table is added to it. Additional generated events and properties are removed because
they are not of concern when it is all about using the object to hold single employee information. This
object will be used in the application to represent a single employee.

The EmployeeHandler developed for this example is shown in the following code.

C#
public class EmployeeHandler : IHttpHandler
{
 public EmployeeHandler()
 {
 }

 #region IHttpHandler Members

79301c02.indd 56 10/6/08 12:08:01 PM

57

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

 public bool IsReusable
 {
 get { return false; }
 }

 public void ProcessRequest(HttpContext context)
 {
 // Determine the employee’s ID
 string empID = Path.GetFileNameWithoutExtension(
 context.Request.PhysicalPath);

 // Try to parse the employee’s ID
 int id = -1;
 if (!int.TryParse(empID, out id))
 {
context.Response.Write(“Employee ID is invalid or doesn’t exist in the database!!”);
 return;
 }

 // Get the employee from the database
 var employee = EmployeeManager.GetEmployeeByID(id);

 // Make sure there is an employee in
 // the database with the requested number
 if (employee == null)
 {
 // Write out an error message
context.Response.Write(“Employee ID is invalid or doesn’t exist in the database!!”);
 return;
 }

 // Add the employee information to the Items
 // collection of the context
 context.Items[“Employee”] = employee;

 // Display the employee info
 DisplayEmployee(context, employee);
 }

 #endregion

 #region Utils
 private void DisplayEmployee(HttpContext context, Employee employee)
 {
 // Create a new page instance
 Page page = new Page();

 // Load the employee profile usercontrol dynamically
 UserControl employeeCtrl =
 (UserControl)page.LoadControl(“~/Controls/EmployeeProfile.ascx”);

 // Add the control to the page instance
 page.Controls.Add(employeeCtrl);

 // Execute the page containing the usercontrol

79301c02.indd 57 10/6/08 12:08:01 PM

58

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

 StringWriter writer = new StringWriter();

 // Add the HTML header to the page
 writer.WriteLine(
 string.Format(“<html><head><title>Employee {0} Profile</title></head>”,
 employee.EmployeeID));
 writer.WriteLine(“<body>”);

 HttpContext.Current.Server.Execute(page, writer, false);

 // Add the HTML footer
 writer.WriteLine(“</body>”);
 writer.WriteLine(“</html>”);

 // Write the response out to the screen
 context.Response.Write(writer.ToString());
 } #endregion
}

VB.NET
Imports System
Imports System.Data
Imports System.Configuration
Imports System.IO
Imports System.Web
Imports System.Web.Security
Imports System.Web.UI
Imports System.Web.UI.HtmlControls
Imports System.Web.UI.WebControls
Imports System.Web.UI.WebControls.WebParts

‘’’ <summary>
‘’’ Summary description for EmployeeHandler
‘’’ </summary>
Public Class EmployeeHandler
 Implements IHttpHandler
 Public Sub New()
 ‘
 ‘ TODO: Add constructor logic here
 ‘
 End Sub

#Region “IHttpHandler Members”

 Public ReadOnly Property IsReusable() As Boolean Implements _
 IHttpHandler.IsReusable
 Get
 Return False
 End Get
 End Property

 ‘’’ <summary>
 ‘’’ This method handles the processing of .info requests

79301c02.indd 58 10/6/08 12:08:01 PM

59

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

 ‘’’ Gets the specific employee from the database based on the
 ‘’’ employee id specified before the .info extension and
 ‘’’ fills in an employee record inside the context’s
 ‘’’ items collection
 ‘’’ </summary>
 ‘’’ <param name=”context”></param>
 Public Sub ProcessRequest(ByVal context As HttpContext) _
 Implements IHttpHandler.ProcessRequest
 ‘ Determine the employee’s ID
 Dim empID As String = _
 Path.GetFileNameWithoutExtension(context.Request.PhysicalPath)

 ‘ Try to parse the employee’s ID
 Dim id As Integer = -1
 If (Not Integer.TryParse(empID, id)) Then
 context.Response.Write(“Employee ID is invalid” & _
 “or doesn’t exist in the database!!”)
 Return
 End If

 ‘ Get the employee from the database
 Dim employee = EmployeeManager.GetEmployeeByID(id)

 ‘ Make sure there is an employee in
 ‘ the database with the requested number
 If employee Is Nothing Then
 ‘ Write out an error message
 context.Response.Write(“Employee ID is invalid” & _
 “or doesn’t exist in the database!!”)
 Return
 End If

 ‘ Add the employee information to the Items
 ‘ collection of the context
 context.Items(“Employee”) = employee

 ‘ Display the employee info
 DisplayEmployee(context, employee)
 End Sub

#End Region

#Region “Utils”
 Private Sub DisplayEmployee(ByVal context As HttpContext, _
 ByVal employee As Employee)
 ‘ Create a new page instance
 Dim page As Page = New Page()

 ‘ Load the employee profile usercontrol dynamically
 Dim employeeCtrl As UserControl = _
 CType(page.LoadControl(“~/Controls/EmployeeProfile.ascx”), UserControl)

 ‘ Add the control to the page instance
 page.Controls.Add(employeeCtrl)

79301c02.indd 59 10/6/08 12:08:01 PM

60

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

 ‘ Execute the page containing the usercontrol
 Dim writer As StringWriter = New StringWriter()

 ‘ Add the HTML header to the page
 writer.WriteLine(
 String.Format(“<html><head><title>Employee {0} Profile</title></head>”, _
 employee.EmployeeID))
 writer.WriteLine(“<body>”)

 HttpContext.Current.Server.Execute(page, writer, False)

 ‘ Add the HTML footer
 writer.WriteLine(“</body>”)
 writer.WriteLine(“</html>”)

 ‘ Write the response out to the screen
 context.Response.Write(writer.ToString())
 End Sub
#End Region
End Class

This code shows the implementation of the EmployeeHandler. Each of the methods used inside the
handler is explained in detail in the next few sections.

IsReusable

This method is inherited from the IHttpHandler interface and has been explained in detail above.

C#
 public bool IsReusable
 {
 get { return false; }
 }

VB.NET
 Public ReadOnly Property IsReusable() As Boolean Implements _
 IHttpHandler.IsReusable
 Get
 Return False
 End Get
 End Property

In the preceding code, it returns a value of false, which means the handler instance will not process
several requests of the same extension. Every request will generate a new instance of the handler.

ProcessRequest

The ProcessRequest method is the bulk of the EmployeeHandler and every developed handler. This
method is responsible for processing a request. For instance, when the ProcessRequest method of the
.aspx handler executes, it processes the page by starting the page life cycle events. Every event will add

79301c02.indd 60 10/6/08 12:08:01 PM

61

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

some bits into the response and the end response is ready to be sent back to the requestor. The same is
followed in the ProcessRequest method of the EmployeeHandler.

C#
 // Determine the employee’s ID
 string empID = Path.GetFileNameWithoutExtension(
 context.Request.PhysicalPath);

 // try to parse the employee id
 int id = -1;
 if (!int.TryParse(empID, out id))
 {
context.Response.Write(“Employee ID is invalid or doesn’t exist in the database!!”);
 return;
 }

VB.NET
 ‘ Determine the employee’s ID
 Dim empID As String = Path.GetFileNameWithoutExtension(
 context.Request.PhysicalPath)

 ‘ try to parse the employee id
 Dim id As Integer = -1
 If (Not Integer.TryParse(empID, id)) Then
context.Response.Write(“Employee ID is invalid or doesn’t exist in the database!!”)
 Return
 End If

The method starts by extracting the page requested without an extension. The usual URL requested to
display an employee’s profile is as follows:

http://localhost/Employees/1234.info

What the preceding code will do is extract the EmployeeID, which is in this case “1234”. Once the
EmployeeID is extracted, it is validated to make sure the client did not request a non-integer EmployeeID.

C#
 // Get the employee from the database
 var employee = EmployeeManager.GetEmployeeByID(id);

 // Make sure there is an employee in
 // the database with the requested number
 if (employee == null)
 {
 // Write out an error message
context.Response.Write(“Employee ID is invalid or doesn’t exist in the database!!”);
 return;
 }

79301c02.indd 61 10/6/08 12:08:01 PM

62

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

VB.NET
 ‘ Get the employee from the database
 Dim employee = EmployeeManager.GetEmployeeByID(id)

 ‘ Make sure there is an employee in
 ‘ the database with the requested number
 If employee Is Nothing Then
 ‘ Write out an error message
context.Response.Write(“Employee ID is invalid or doesn’t exist in the database!!”)
 Return
 End If

After the EmployeeID is extracted and validated, a call to the EmployeeManager.GetEmployeeByID is
issued.

C#
 public static Employee GetEmployeeByID(int empID)
 {
 // Get a new instance of the DataContext
 EmployeeDataContext context = new EmployeeDataContext();

 // Query the database to get the employee
 var query = (from e in context.Employees
 where e.EmployeeID == empID
 select e).Single();

 return query;
 }

VB.NET
 Public Shared Function GetEmployeeByID(ByVal empID As Integer) As Employee
 ‘ Get a new instance of the DataContext
 Dim context As EmployeeDataContext = New EmployeeDataContext()

 ‘ Query the database to get the employee
 Dim query = (From e In context.Employees Where _
 e.EmployeeID = empID Select e).SingleOrDefault()

 Return query
 End Function

The GetEmployeeByID method instantiates a new LINQ DataContext; in this case it is the Employee​
DataContext that was added before. Then a LINQ query is defined to select the employee record that
has an EmployeeID matching that present in the requested URL. Finally, the employee record repre-
sented as Employee object is returned out of the method.

Once the GetEmployeeByID method is called inside the ProcessRequest method, the returned
Employee object is validated to make sure there is an employee with the requested EmployeeID in the
database. If there is one, then the employee’s record is added to the Items collection of the HttpContext
object. As previously explained, the HttpContext object is created at the beginning of the request

79301c02.indd 62 10/6/08 12:08:01 PM

63

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

processing and it stays valid until the response is returned back to the requestor. In this sense, the code
is making use of the Items collection to store the employee’s record so that it is retrieved later on to dis-
play the details of the employee. Once the employee record is stored in the context of the request, the
employee’s profile is displayed on the screen by calling the DisplayEmployee method.

DisplayEmployee

This method is responsible for generating the HTML markup text and sending it back to the client that
initiated the request. Before diving into the details of the implementation of this method, however, let’s
review the EmployeeProfile user control.

C#
<%@ Control Language=”C#” AutoEventWireup=”true”
 CodeFile=”EmployeeProfile.ascx.cs” Inherits=”Controls_EmployeeProfile” %>
<h1 align=”center”>Employee Profile</h1>
<asp:Label ID=”Label1” runat=”server” Font-Bold=”True” Text=”Employee ID”>
</asp:Label>

<asp:Label ID=”lblEmployeeID” runat=”server”></asp:Label>
<p></p>
<asp:Label ID=”Label3” runat=”server” Font-Bold=”True” Text=”First Name”>
</asp:Label>

<asp:Label ID=”lblFirstName” runat=”server”></asp:Label>
<p></p>
<asp:Label ID=”Label4” runat=”server” Text=”Last Name” Font-Bold=”True”>
</asp:Label>

<asp:Label ID=”lblLastName” runat=”server”></asp:Label>
<p></p>
<asp:Label ID=”Label5” runat=”server” Font-Bold=”True” Text=”Email”></asp:Label>

<asp:Label ID=”lblEmail” runat=”server”></asp:Label>

VB.NET
<%@ Control Language=”VB” AutoEventWireup=”false”
 CodeFile=”EmployeeProfile.ascx.vb” Inherits=”Controls_EmployeeProfile” %>
<h1 align=”center”>Employee Profile</h1>
<asp:Label ID=”Label1” runat=”server” Font-Bold=”True” Text=”Employee ID”>
</asp:Label>

<asp:Label ID=”lblEmployeeID” runat=”server”></asp:Label>
<p></p>
<asp:Label ID=”Label3” runat=”server” Font-Bold=”True” Text=”First Name”>
</asp:Label>

<asp:Label ID=”lblFirstName” runat=”server”></asp:Label>
<p></p>
<asp:Label ID=”Label4” runat=”server” Text=”Last Name” Font-Bold=”True”>
</asp:Label>

<asp:Label ID=”lblLastName” runat=”server”></asp:Label>

79301c02.indd 63 10/6/08 12:08:01 PM

64

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

<p></p>
<asp:Label ID=”Label5” runat=”server” Font-Bold=”True” Text=”Email”></asp:Label>

<asp:Label ID=”lblEmail” runat=”server”></asp:Label>

The HTML part of the user control is very simple. It displays a few labels that display the details of the
employee such as the EmployeeID, FirstName, LastName, and Email properties.

C#
public partial class Controls_EmployeeProfile : System.Web.UI.UserControl
{
 protected void Page_Load(object sender, EventArgs e)
 {
 // Get the Employee info from the HttpContext
 Employee emp =
 (Employee)HttpContext.Current.Items[“Employee”];

 // Bind the values on the screen
 if (emp == null) return;

 this.lblEmployeeID.Text = emp.EmployeeID.ToString();
 this.lblFirstName.Text = emp.FirstName;
 this.lblLastName.Text = emp.LastName;
 this.lblEmail.Text = emp.Email;
 }
}

VB.NET
Partial Public Class Controls_EmployeeProfile
 Inherits System.Web.UI.UserControl

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load
 ‘ Get the Employee info from the HttpContext
 Dim emp As Employee = CType(HttpContext.Current.Items(“Employee”), _
 Employee)

 ‘ Bind the values on the screen
 If emp Is Nothing Then
 Return
 End If

 Me.lblEmployeeID.Text = emp.EmployeeID.ToString()
 Me.lblFirstName.Text = emp.FirstName
 Me.lblLastName.Text = emp.LastName
 Me.lblEmail.Text = emp.Email
 End Sub
End Class

The code underlying usercontrol extracts the employee’s record from the same HttpContext object
instance that had its Items collection filled during the ProcessRequest method, casts the data into a

79301c02.indd 64 10/6/08 12:08:01 PM

65

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

strongly typed Employee object, and finally binds each label on the usercontrol to the data retrieved
from the request’s context.

C#
 private void DisplayEmployee(HttpContext context, Employee employee)
 {
 // Create a new page instance
 Page page = new Page();

 // Load the employee profile usercontrol dynamically UserControl
 employeeCtrl =
 (UserControl)page.LoadControl(“~/Controls/EmployeeProfile.ascx”);

 // Add the control to the page instance
 page.Controls.Add(employeeCtrl);

 // Execute the page containing the usercontrol
 StringWriter writer = new StringWriter();

 // Add the HTML header to the page
 writer.WriteLine(
 string.Format(“<html><head><title>Employee {0} Profile</title></head>”,
 employee.EmployeeID));
 writer.WriteLine(“<body>”);

 HttpContext.Current.Server.Execute(page, writer, false);

 // Add the HTML footer
 writer.WriteLine(“</body>”);
 writer.WriteLine(“</html>”);

 // Write the response out to the screen
 context.Response.Write(writer.ToString());
 } #endregion
}

VB.NET
 Private Sub DisplayEmployee(ByVal context As HttpContext, _
 ByVal employee As Employee)
 ‘ Create a new page instance
 Dim page As Page = New Page()

 ‘ Load the employee profile usercontrol dynamically
 Dim employeeCtrl As UserControl = _
 CType(page.LoadControl(“~/Controls/EmployeeProfile.ascx”), UserControl)

 ‘ Add the control to the page instance
 page.Controls.Add(employeeCtrl)

 ‘ Execute the page containing the usercontrol
 Dim writer As StringWriter = New StringWriter()

79301c02.indd 65 10/6/08 12:08:01 PM

66

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

 ‘ Add the HTML header to the page
 writer.WriteLine(
 String.Format(“<html><head><title>Employee {0} Profile</title></head>”, _
 employee.EmployeeID))
 writer.WriteLine(“<body>”)

 HttpContext.Current.Server.Execute(page, writer, False)

 ‘ Add the HTML footer
 writer.WriteLine(“</body>”)
 writer.WriteLine(“</html>”)

 ‘ Write the response out to the screen
 context.Response.Write(writer.ToString())
 End Sub

Going back to the DisplayEmployee method, it starts by creating a new instance of the Page class.
This page object will be used as a place holder to load the EmployeeProfile usercontrol inside it.
After that, the EmployeeProfile usercontrol is dynamically loaded and then added as the first and only
control inside the page object. Once the usercontrol is initialized and added to the page, a new instance
of the StringWriter is created to hold the HTML markup text generated by executing the page object.
The page is executed by issuing a call to the HttpContext.Current.Server.Execute method. Finally,
the generated HTML markup text is added to the context’s response to be sent back to the requestor.

Figure 2-7 shows the employee’s profile when employee data is requested.

Figure 2-7

If you notice the URL, the requested page is 5262.info, which does not exist physically inside the appli-
cation. However, the EmployeeHandler intercepts the request and processes it as though it were a real
page. The result shows the employee’s profile displayed on the screen without having the request go
through all the page life cycle events that add nothing to the task of showing an employee’s profile from
the database.

79301c02.indd 66 10/6/08 12:08:02 PM

67

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

Installing a Managed Handler
Now that the handler is developed, there are two ways of installing it. One way is for the administrator
or developer to use the IIS 7.0 Manager tool and add a handler mapping similar to the way it was done in
the days of IIS 6.0. However, the power of developing managed handlers and deploying them in IIS 7.0
eliminates the need to access the IIS 7.0 Manager tool! This is done by simply adding the following to the
application’s web.config configuration file.

<system.webServer>
 <handlers>
 <!-- Add the EmployeeHandler here -->
 <add name=”EmployeeHandler” type=”EmployeeHandler” verb=”*”
path=”*.info” />
 </handlers>
</system.webServer>

The new managed handler is configured by adding an entry into the handler section of the <system​
.webServer> section group located in the application’s web.config configuration file.

However, if the handler is to be used among several applications, then it should be installed at the IIS
7.0 web server level. The details of installing it on the web server level is out of the scope of this chap-
ter because it is more related to IIS 7.0 administration and configuration, but you can find good walk-
throughs on this topic in the book Professional IIS 7.0 and ASP.NET Integrated Programming (Wrox). The
book is a complete reference on all the details about the IIS 7.0 and ASP.NET Integrated model.

Managed Modules
A managed module is an ASP.NET object that inherits from the IHttpModule interface. A module is
used to handle the pre-processing and post-processing of a request. This means a module can register
itself to process a request before it is being handed off to the managed handler for execution, and then
once the request is processed by the handler, the module can again register itself to handle the request
after it has been processed by the handler. The one thing to notice here is that a module does not pro-
cess the request; it just registers itself to operate on the request before and after it has been operated on
by the managed handler.

C#
public class SampleHttpModule : IHttpModule
{
 public SampleHttpModule()
 {
 }

 #region IHttpModule Members

 public void Dispose()
 {
 throw new NotImplementedException();
 }

 public void Init(HttpApplication context)

79301c02.indd 67 10/6/08 12:08:02 PM

68

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

 {
 context.AuthenticateRequest +=
 new EventHandler(context_AuthenticateRequest);
 }

 void context_AuthenticateRequest(object sender, EventArgs e)
 {
 throw new NotImplementedException();
 }

 #endregion
}

VB.NET
Public Class SampleHttpModule
 Implements IHttpModule
 Public Sub New()
 End Sub

#Region “IHttpModule Members”

 Public Sub Dispose() Implements IHttpModule.Dispose
 Throw New NotImplementedException()
 End Sub

 Public Sub Init(ByVal context As HttpApplication) Implements IHttpModule.Init
 AddHandler context.AuthenticateRequest, AddressOf context _
 AuthenticateRequest
 End Sub

 Private Sub context_AuthenticateRequest(ByVal sender As Object, _
 ByVal e As EventArgs)
 Throw New NotImplementedException()
 End Sub

#End Region
End Class

This code shows the skeleton of an HttpModule. You create a new module by implementing the ​
IHttpModule interface. This interface has one main method, Init, to implement.

When the ASP.NET runtime is processing a request, several events are fired throughout the request-
processing pipeline. Every event handles a specific task within the life cycle of the request processing.
For example, there is an event to handle the authentication of the request. Based on what the application
specifies for the authentication type, a specific .NET module will subscribe to the authentication event
and execute its codes to authenticate the request. Because of the extensible nature of the .NET runtime,
developers are allowed to build their own modules that attach to the list of events fired by the pipeline.
To register any of those events, you need to create a new module and utilize the Init method to sub-
scribe to the specific event.

When an ASP.NET request is to be processed by the ASP.NET runtime, it is usually handled inside an
instance of the HttpApplication object. When the runtime starts processing an ASP.NET request, it
checks to see if there is a live instance of the HttpApplication object inside a pool that it maintains for all

79301c02.indd 68 10/6/08 12:08:02 PM

69

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

HttpApplication instances that the request belongs to. If there is no instance, a new HttpApplication
instance is created, used by the runtime to process the request, and finally added to the pool. On the other
hand, if an instance was found, it is used by the runtime to process the request.

During the processing of the request, the HttpApplication instance fires a set of events such as
BeginRequest, AuthenticateRequest, and so forth. Each of these events plays a role in the request-
processing pipeline. This explains why the Init method accepts as input a parameter of type Http​
Application. The custom module can use this parameter to subscribe to the events that are exposed
by the HttpApplication object. As is the case in the previous code listing, the Init method subscribes
to the AuthenticateRequest event to execute some custom code. More on the HttpApplication
events and request-processing pipeline is discussed in later sections.

What has been said above is an old story about HttpModules. In the IIS 7.0 infrastructure, the managed
HttpModule does not fire only for managed resources. On the contrary, when an application is running
inside an application pool configured with the Integrated mode, all the HttpApplication events fire
while processing any request, whether the request is a managed request or a native request. This has
been mentioned several times and once again shows how powerful the new integration architecture is
between IIS 7.0 and ASP.NET.

Developing a Managed Module
In this section, a custom managed module is to be developed to handle displaying formatted code,
whether it is VB or C# code. Usually IIS 7.0 is configured to disable accessing a code file through a
browser for security and safety reasons. However, there are times when you want to present the code
files online for an article that you have posted on your blog or for some other reason. The name of the
module is CodeFormatterModule and it will process requests that include the Code/CodeFileName
segment in the URL.

The CodeFormatterModule handles requests targeting specific code file names as follows:

http://localhost/Code/Default.aspx.cs/

Notice the / at the end of the URL. Without it the RequestFilteringModule will show a 404.7 Not
Found Error since accessing code files by a browser is disabled for security concerns.

What the module does is extract the code file name from the URL for all requests that include the Code/
segment, and then the code file is read as a normal text file and sent back as a response to the requestor
embedded in a pre tag. The formatting can be done in a better way with colorful code lines. However,
for the sake of this sample, the pre tag is more than enough to clarify the idea of developing a managed
module and running it under IIS 7.0.

The CodeFormatterModule developed for this example is shown in the following code listing.

C#
public class CodeFormatterModule : IHttpModule
{
 public CodeFormatterModule()
 {
 }
 #region IHttpModule Members

79301c02.indd 69 10/6/08 12:08:02 PM

70

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

 public void Dispose()
 {
 }

 public void Init(HttpApplication context)
 {
 context.BeginRequest +=
 new EventHandler(context_BeginRequest);
 }

 void context_BeginRequest(object sender, EventArgs e)
 {
 // Get an instance of the HttpApplication
 HttpApplication application = (HttpApplication)sender;

 // Get an instance of the HttpContext
 HttpContext context = application.Context;

 // Find if the current request ends with
 // Code/ClassName so that to show the class’s code
 // formatted on the screen.
 // The url to access the formatter should be something
 // as: http://localhost/Code/Default.aspx.cs/
 // The “/” at the end is very important because without
 // it the RequestFiltering module installed on IIS will prevent the
 // the access to a .cs or .vb file.
 Regex regEx = new Regex(@”Code/(.*)”, RegexOptions.IgnoreCase);
 Match match = regEx.Match(context.Request.Path);

 // there is a match, this means
 // the request is for code formatting
 if (match.Success)
 {
 // Code file holds the code file name
 string codeFile = “”;

 // Split the path based on the /
 string[] tokens = context.Request.Path.Split(new char[] {‘/’});
 if (tokens.Length <= 0)
 return;

 // Grab the code file name which should be
 // the item before the last one
 codeFile = tokens[tokens.Length-2];

 // Get the physical path to the code file
 string pathtoCodeFile =
 context.Request.PhysicalPath.Replace(@”Code\”, “”);

 // Remove the \ from the end of the file name
 pathtoCodeFile =
 pathtoCodeFile.Substring(0, pathtoCodeFile.Length - 1);

79301c02.indd 70 10/6/08 12:08:02 PM

71

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

 // If the file exists, read it and display it
 if (!File.Exists(pathtoCodeFile))
 {
 // inform the user that the file doesn’t exist
 context.Response.Write(“File doesn’t exist!”);

 // End the request
 context.Response.End();
 }

 // read the contents of the file
 string fileContent = File.ReadAllText(pathtoCodeFile);

 // Set the response to
 context.Response.ContentType = “text/html”;

 // Write the formatted code
 context.Response.Write(“<pre>”);
 context.Response.Write(fileContent);
 context.Response.Write(“</pre>”);

 // End the request
 context.Response.End();
 }
 }

 #endregion
}

VB.NET
Imports System
Imports System.Data
Imports System.Configuration
Imports System.Linq
Imports System.IO
Imports System.Text
Imports System.Text.RegularExpressions
Imports System.Web
Imports System.Web.Security
Imports System.Web.UI
Imports System.Web.UI.HtmlControls
Imports System.Web.UI.WebControls
Imports System.Web.UI.WebControls.WebParts
Imports System.Xml.Linq

‘’’ <summary>
‘’’ Summary description for CodeFormatterModule
‘’’ </summary>
Public Class CodeFormatterModule
 Implements IHttpModule
 Public Sub New()
 ‘

79301c02.indd 71 10/6/08 12:08:02 PM

72

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

 ‘ TODO: Add constructor logic here
 ‘
 End Sub

#Region “IHttpModule Members”

 Public Sub Dispose() Implements IHttpModule.Dispose
 End Sub

 ‘ Subscribe to the BeginRequest to process
 ‘ a request to the code formatter so that
 ‘ if the request was to show formatted code,
 ‘ the rest of the HttpApplication events get
 ‘ ignored, hence improving performance.
 Public Sub Init(ByVal context As HttpApplication) Implements IHttpModule.Init
 AddHandler context.BeginRequest, AddressOf context_BeginRequest
 End Sub

 Private Sub context_EndRequest(ByVal sender As Object, ByVal e As EventArgs)

 End Sub

 Private Sub context_BeginRequest(ByVal sender As Object, ByVal e As EventArgs)
 ‘ Get an instance of the HttpApplication
 Dim application As HttpApplication = CType(sender, HttpApplication)

 ‘ Get an instance of the HttpContext
 Dim context As HttpContext = application.Context

 ‘ Find if the current request ends with
 ‘ Code/ClassName so that to show the class’s code
 ‘ formatted on the screen.
 ‘ The url to access the formatter should be something
 ‘ as: http://localhost/Code/Default.aspx.cs/
 ‘ The “/” at the end is very important because without
 ‘ it the RequestFiltering module installed on IIS will prevent the
 ‘ the access to a .cs or .vb file.
 Dim regEx As Regex = New Regex(“Code/(.*)”, RegexOptions.IgnoreCase)
 Dim match As Match = regEx.Match(context.Request.Path)

 ‘ There is a match, which means
 ‘ the request is for code formatting
 If match.Success Then
 ‘ Code file holds the code file name
 Dim codeFile As String = “”

 ‘ Split the path based on the /
 Dim tokens As String() = context.Request.Path.Split(New Char() {“/”c})
 If tokens.Length <= 0 Then
 Return
 End If

 ‘ Grab the code file name which should be
 ‘ the item before the last one

79301c02.indd 72 10/6/08 12:08:02 PM

73

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

 codeFile = tokens(tokens.Length - 2)

 ‘ Get the physical path to the code file
 Dim pathtoCodeFile As String = _
 context.Request.PhysicalPath.Replace(“Code\”, “”)

 ‘ Remove the \ from the end of the file name
 pathtoCodeFile = pathtoCodeFile.Substring(0, pathtoCodeFile.Length - 1)

 ‘ If the file exists, read it and display it
 If (Not File.Exists(pathtoCodeFile)) Then
 ‘ Inform the user that the file doesn’t exist
 context.Response.Write(“File doesn’t exist!”)

 ‘ End the request
 context.Response.End()
 End If

 ‘ Read the contents of the file
 Dim fileContent As String = File.ReadAllText(pathtoCodeFile)

 ‘ Set the response to
 context.Response.ContentType = “text/html”

 ‘ Write the formatted code
 context.Response.Write(“<pre>”)
 context.Response.Write(fileContent)
 context.Response.Write(“</pre>”)

 ‘ End the request
 context.Response.End()
 End If
 End Sub

#End Region
End Class

This code shows the implementation of the CodeFormatterModule. Each of the methods used inside
the module is explained in detail in the next few sections.

Init

The Init method is the core of the HttpModule. It is the best place inside the HttpModule to subscribe
to the HttpApplication’s events. The module above subscribes to the BeginRequest event.

C#
 public void Init(HttpApplication context)
 {
 context.BeginRequest +=
 new EventHandler(context_BeginRequest);
 }

79301c02.indd 73 10/6/08 12:08:02 PM

74

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

VB.NET
 Public Sub Init(ByVal context As HttpApplication) Implements IHttpModule.Init
 AddHandler context.BeginRequest, AddressOf context_BeginRequest
 End Sub

Subscribing to an event is done the usual way in the .NET framework. The context_BeginRequest
method is the method to be called when the HttpApplication’s BeginRequest event fires.

Context_BeginRequest

The context_BeginRequest method does the bulk of the processing by extracting the code file name
and displaying the code inside it as formatted code.

C#
 // Get an instance of the HttpApplication
 HttpApplication application = (HttpApplication)sender;

 // Get an instance of the HttpContext
 HttpContext context = application.Context;

VB.NET
 ‘ Get an instance of the HttpApplication
 Dim application As HttpApplication = CType(sender, HttpApplication)

 ‘ Get an instance of the HttpContext
 Dim context As HttpContext = application.Context

The method starts by getting a reference to the HttpApplication and the HttpContext objects.

C#
Regex regEx = new Regex(@”Code/(.*)”, RegexOptions.IgnoreCase);
 Match match = regEx.Match(context.Request.Path);

 // There is a match, which means
 // the request is for code formatting
 if (match.Success)
 {

VB.NET
 Dim regEx As Regex = New Regex(“Code/(.*)”, RegexOptions.IgnoreCase)
 Dim match As Match = regEx.Match(context.Request.Path)

 ‘ There is a match, which means
 ‘ the request is for code formatting
 If match.Success Then

Then the URL of the current request is matched against a pattern that contains the Code/ segment. If
the URL has such a token, this means that the requestor is trying to access a code file.

79301c02.indd 74 10/6/08 12:08:02 PM

75

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

C#
 // Code file holds the code file name
 string codeFile = “”;

 // Split the path based on the /
 string[] tokens = context.Request.Path.Split(new char[] {‘/’});
 if (tokens.Length <= 0)
 return;

 // Grab the code file name which should be
 // the item before the last one
 codeFile = tokens[tokens.Length-2];

 // Get the physical path to the code file
 string pathtoCodeFile =
 context.Request.PhysicalPath.Replace(@”Code\”, “”);

 // Remove the \ from the end of the file name
 pathtoCodeFile =
 pathtoCodeFile.Substring(0, pathtoCodeFile.Length - 1);

VB.NET
 ‘ Code file holds the code file name
 Dim codeFile As String = “”

 ‘ Split the path based on the /
 Dim tokens As String() = context.Request.Path.Split(New Char() {“/”c})
 If tokens.Length <= 0 Then
 Return
 End If

 ‘ Grab the code file name which should be
 ‘ the item before the last one
 codeFile = tokens(tokens.Length - 2)

 ‘ Get the physical path to the code file
 Dim pathtoCodeFile As String = _
 context.Request.PhysicalPath.Replace(“Code\”, “”)

 ‘ Remove the \ from the end of the file name
 pathtoCodeFile = pathtoCodeFile.Substring(0, pathtoCodeFile.Length - 1)

The code file name is extracted from the URL, and the Code/ segment is removed from the URL, since
this is a virtual token and does not exist in the application. It is only used to distinguish requests for
normal resources and requests for code files. After that, the physical path of the code file is retrieved.

C#
 // If the file exists, read it and display it
 if (!File.Exists(pathtoCodeFile))
 {
 // Inform the user that the file doesn’t exist

79301c02.indd 75 10/6/08 12:08:02 PM

76

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

 context.Response.Write(“File doesn’t exist!”);

 // End the request
 context.Response.End();
 }

 // Read the contents of the file
 string fileContent = File.ReadAllText(pathtoCodeFile);

 // Set the response to
 context.Response.ContentType = “text/html”;

 // Write the formatted code
 context.Response.Write(“<pre>”);
 context.Response.Write(fileContent);
 context.Response.Write(“</pre>”);

 // End the request
 context.Response.End();

VB.NET
 ‘ If the file exists, read it and display it
 If (Not File.Exists(pathtoCodeFile)) Then
 ‘ Inform the user that the file doesn’t exist
 context.Response.Write(“File doesn’t exist!”)

 ‘ End the request
 context.Response.End()
 End If

 ‘ Read the contents of the file
 Dim fileContent As String = File.ReadAllText(pathtoCodeFile)

 ‘ Set the response to
 context.Response.ContentType = “text/html”

 ‘ Wite the formatted code
 context.Response.Write(“<pre>”)
 context.Response.Write(fileContent)
 context.Response.Write(“</pre>”)

 ‘ End the request
 context.Response.End()

If the file exists, the content of the file is read into a string, the response’s content type is set to text/html,
and then a pre tag is inserted into the response stream, followed by the content of the code file, and
finally a closing pre tag.

Figure 2-8 shows the result of accessing a code file in an application.

79301c02.indd 76 10/6/08 12:08:02 PM

77

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

Figure 2-8

Figure 2-8 shows the content of the Default.aspx.cs code file displayed as normal text.

Installing a Managed Module
Now that the module is developed, there are two ways of installing it. One of the ways is to go to the
IIS 7.0 Manager tool and install the module as a managed one that can be applied to any application
hosted on the web server. The other way is to just add an entry to the <modules> section of the <system​
.webServer> configuration section group inside the application’s web.config configuration file.

 <system.webServer>
 <modules>
 <!-- Add the CodeFormatterModule -->
 <add name=”CodeFormatterModule” type=”CodeFormatterModule”/>
 </modules>
 </system.webServer>

As mentioned previously, if the module is to be executed for any application hosted on the IIS 7.0 web
server, it is recommended to install it at the web server level. The details of installing it at the web server
level are out of the scope of this chapter. (See the reference to the book mentioned earlier for details
about IIS 7.0 and ASP.NET Integrated mode.)

Summary
In this chapter you were introduced to the new IIS 7.0 Integrated mode of execution. The new mode
unifies the request-processing pipeline between IIS 7.0 infrastructure and ASP.NET runtime, thus lever-
aging ASP.NET from a framework to develop web applications to a framework to extend IIS 7.0 runtime.

79301c02.indd 77 10/6/08 12:08:02 PM

78

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

While upgrading an ASP.NET application from previous versions of IIS to host it under IIS 7.0 Integrated
mode, it is essential to consider several sections within the application’s web.config configuration file to
get rid of the inconsistencies and abide by the new rules. Some of the new rules are as follows:

httpModules❑❑ section: It is recommended to remove this section from the <system.web />
configuration section group file of the application’s web.config configuration file and place its
entries inside the <modules /> configuration section of the <system.webServer /> configu-
ration section group. Only modules defined inside the <modules> section will take effect and
execute. Every managed module defined can be configured to run for either all resources or
just ASP.NET resources.

httpHandlers❑❑ section: The httpHandlers section should also be removed from the <system​
.web /> configuration section group of the application’s web.config configuration file, with its
entries placed inside the <modules /> configuration section inside the <system.webServer />
configuration section group. What is important about configuring a handler is that there is no
need to use the IIS 7.0 Manager tool to map a content file extension to a specific handler in an
application; only a single configuration entry is required and that’s it!

identity❑❑ section: Impersonation is not allowed during the early stages of a request processing
and that is why an application should either turn off impersonation or upgrade the application
and make it run under the Classic mode. Impersonation could be kept on and at the same time
set the value of the validateIntegratedModeConfiguration attribute on the validation sec-
tion to false that is located inside the <modules /> configuration section inside the <system​
.webServer /> configuration section group.

The main point to keep in mind about the new Integrated mode is the extensibility IIS 7.0 offers for
ASP.NET developers. IIS 7.0 HTTP request processing integrates itself with ASP.NET to form a unified
request-processing pipeline. Both IIS 7.0 and ASP.NET respond to the same events at the same time and
IIS decides on the native and managed modules to run and execute.

The unified request-processing pipeline gives ASP.NET services and modules the ability to handle and
process any resource and not just ASP.NET resources. You can now enable FormsAuthentication mod-
ule to protect images, .php, .html, .asp resources, etc. in an application without having to do any work-
around to make this happen. Moreover, you can now develop ASP.NET HttpModules and HttpHandlers,
configure them through the application’s web.config configuration file, and let them take part of the
request processing without having to do any configuration settings using the IIS 7.0 Manager tool.

The next chapter continues this discussion to explore the security context of a request when it is pro-
cessed inside the unified IIS 7.0 Integrated mode. The discussion is focused on the authentication and
authorization events that get fired through the life cycle of the unified request-processing pipeline. In
addition, the new IUSR built-in user and IIS_IUSRS built-in group will be explained in detail, showing
their advantages and portability when deploying applications.

79301c02.indd 78 10/6/08 12:08:03 PM

3
HTTP Request Processing in

IIS 7.0 Integrated Model

The previous chapter discussed the architecture of the new IIS 7.0 integrated mode in detail. This
chapter starts by introducing the advantages, the new IUSR built-in account and IIS_IUSRS built-in
group, replacing the old IUSR_MACHINENAME user account and IIS_WPG group. The chapter contin-
ues to describe security-related processing that occurs each time the unifi ed request-processing pipe-
line processes a request. A combination of the application’s confi guration in IIS and the ASP.NET
confi guration for the application determines the security context that is initialized for each request.

Once a request enters IIS 7.0, the fi rst defense gate takes control to validate the request before
starting the unifi ed request-processing pipeline. Once accepted, the unifi ed pipeline starts pro-
cessing and handling the request. The added value of the new IIS 7.0 integrated mode is that IIS
and ASP.NET both subscribe to the same events fi red during the processing of the request.

After a request is running through the unifi ed pipeline, the authentication and authorization
options that have been confi gured for the application take affect. If a request passes authentica-
tion and authorization checks, there is still one last hurdle to clear; the HttpHandler that is
assigned to process the request, in case the request is an ASP.NET resource.

In this chapter, you will learn about:

The new ❑❑ IUSR built-in account and IIS_IUSRS built-in group.

How the security identity of a request is constructed during the unifi ed processing.❑❑

Security issues around the ASP.NET asynchronous programming model.❑❑

Authentication steps that occur in the HTTP pipeline.❑❑

Authorization processing in the HTTP pipeline.❑❑

How the new IIS native fi ltering module controls access to fi les.❑❑

79301c03.indd 79 10/6/08 12:10:21 PM

80

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

Built- in IUSR Account and IIS_IUSRS Group
Before going on to start analyzing the security context of requests while they take the journey through
the IIS 7.0 and ASP.NET unified request-processing pipeline, it is important to give an overview on the
new IUSR account and IIS_USRS group.

IIS 7.0 introduces a new built-in account IUSR and a built-in group IIS_IUSRS. The IUSR account
replaces the old IUSR_MachineName account that was used previously by the IIS 6.0 web server. The new
account is a built-in account, which means its password never expires and hence this improves deploy-
ment by not having to worry about password differences between the local IIS_IUSR MachineName
account and the remote user account.

Another benefit of the new IUSR account is when you set access control lists (ACLs) for the IUSR account
folders inside your application, there is no need to worry about copying these ACLs from your local
machine to the remote web server machine. The reason lies behind the fact that the operating system
creates unique security identifiers (SIDs) for every account created in Windows, and ACLs are applied
on the SID of the account and not anything else. This means when you apply ACLs locally on the IUSR
for a folder in your application, those ACLs will be copied with the folder when moved from the local
server to the remote web server and the same ACLs will take effect, since all Windows machines that
have IIS 7.0, whether the client IIS 7.0 or server IIS 7.0, share the same SID for the IUSR account.

An important feature to mention about the new IUSR account is that it acts anonymously on the net-
work. This means when you try to access resources located somewhere on the network from inside your
application, you need to impersonate some other account that the network recognizes as a machine user
account that can authenticate against it. One could use the NT AUTHORITY\NETWORK SERVICE account
that acts as a machine account and can be authenticated. This limitation on the IUSR account has been
done as a security precaution so as not to elevate the privileges of the IUSR account.

On the other hand, the IIS_IUSRS group replaces the old IIS_WPG group. This group has been granted
the necessary permissions on all necessary files and resources so that when an account is attached to
this group, it can act as a normal application pool worker process identity without the need for any
additional action.

Whatever applies on the IUSR account regarding setting of the ACL applies also to the IIS_IUSRS
group. If you apply ACLs to this group on your files and folders and then move your application from
your local web server to the remote one, the same ACLs are also copied. This is due to the fact that Win-
dows operating system applies ACLs based on the SID of the group or user account.

Moreover, when IIS 7.0 starts a new worker process, it usually passes a token that is going to be used as
the identity of the worker process.

 <applicationPools>
 <applicationPoolDefaults>
 <processModel identityType=”NetworkService” />
 </applicationPoolDefaults>
 </applicationPools>

In IIS 7.0, the default identity that the application pool uses is the NT AUTHORITY\NETWORK SERVICE
and this has been configured in the <applicationPools /> section group inside the ApplicationHost
.config configuration file.

79301c03.indd 80 10/6/08 12:10:21 PM

81

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

The good news is that if you configure the application pool to run with a custom user account, no mat-
ter what the account is, IIS 7.0 infrastructure automatically adds at run time the worker process token
or identity, no matter what the account is, to the IIS_IUSRS group and hence there is no need to worry
about giving the worker process identity account the necessary privileges to function properly.

Integrated Mode Per-Request Security
It has been previously mentioned how the request-processing pipeline gets unified when an ASP.NET
application is running in the IIS 7.0 integrated mode. It is clear how the duplication of effort has been
eliminated since both ASP.NET and IIS 7.0 now share the same request-processing pipeline.

The unified pipeline indicates that at every stage in the pipeline, IIS and ASP.NET modules subscribe
to the same event and hence they run side by side. IIS runtime will check the configured modules and
executes them according to their order of listing inside the <modules /> configuration section with
some exceptions. The native modules have the capability to change the order programmatically, which
is the case with the native AnonymousAuthenticationModule. This module always runs at the end of
the authentication event fired by the pipeline no matter what other authentication modules are enabled.
As you will see later, this proves why the managed WindowsAuthenticationModule does not fire its
Authenticate event since AnonymousAuthenticationModule, when enabled, fires after the managed
WindowsAuthenticationModule.

The configured modules for a specific pipeline event could include both native and managed modules.
For instance, the FormsAuthenticationModule has been integrated into the authentication modules
in IIS. This allows you now to enable this module for your application from inside the IIS Manager tool.
When the managed FormsAuthenticationModule is enabled, no other native authentication module
can be enabled at the same time except that of the AnonymousAuthenticationModule. Therefore,
while an application is running in the integrated mode, IIS can execute only a single authentication
module at once with the exception of the AnonymousAuthenticationModule that gets executed after
all configured authentication modules have been executed.

This is quite different from what has been happening in the pre-releases of IIS 7.0. In IIS 6.0, for exam-
ple, the request has to pass first through the IIS request-processing pipeline. After it has been handed
off to the ASP.NET ISAPI extension, another processing pipeline starts, this time in the boundaries of
the .NET Framework.

From an ASP.NET perspective, the security choices in IIS boil down to the following:

Does the ASP.NET application require a ❑❑ WindowsPrincipal for each user that authenticates
with the website?

Will ASP.NET handle authentication using forms-based authentication, or some other custom ❑❑

authentication strategy?

Will the ASP.NET site run from a remote file share, that is, a share defined with a Universal ❑❑

Naming Convention (UNC) name? This question is related to the previous two considerations
because using a UNC share is primarily a deployment decision, but one that does have ramifica-
tions for security.

79301c03.indd 81 10/6/08 12:10:21 PM

82

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

From a technical perspective, when IIS 7.0 starts a new worker process to initiate the execution of the
request, it passes a token to the worker process. Usually, it is the NT AUTHORITY\NETWORK SERVICE
token that is configured in the ApplicationHost.config configuration file as mentioned previously.
Once the worker process is initiated, if the application is an ASP.NET application, a list of Application
Domains called the application domain pool is checked to see if the application targeted has an active
application domain to load. If there is no active application domain for the current application, a new
application domain is created and then the CLR is loaded inside the new application domain. After that
the unified request-processing pipeline starts execution, the different events start firing, and the differ-
ent modules start executing according to the events they have already been registered for. Both IIS 7.0
and ASP.NET subscribe to the same events and hence IIS 7.0 and ASP.NET processing for the same
event happens at the same time.

In IIS 7.0, the following directory security options are available:

Authenticated access using Windows Security (either NTLM- or Kerberos-based), Basic Authen-❑❑

tication, Digest Authentication

Authenticated access using certificate mapping❑❑

Anonymous access❑❑

The first two security configurations result in a security token that represents a specific user from either
the local machine’s security database or a domain. The token returned varies from request to request,
depending on which user is currently making a request to IIS. The last option also results in a security
token representing a specific user; however, on every request made to IIS, the same security token is
returned because IIS uses a fixed identity to represent an anonymous user, which is the IUSR account by
default. However, it can be any other user account or even the account configured on the worker process.

When a new request enters the unified request-processing pipeline and the stage where authentication
should take place is reached, a check is done on both the authentication type the application is config-
ured to run with (Forms, Windows, and None) and the authentication modules enabled on IIS.

In determining the authenticated identity of a request, IIS takes the following considerations:

If a username/password is configured at the application or virtual directory level, it is used ❑❑

as the identity of the current request, which is the impersonation token. To configure a fixed
account on an application or virtual directory, do the following:

	 1.	 Open the IIS 7.0 Manager tool.

	 2.	 Select the specific application or virtual directory.

	 3.	 Click on Advanced Settings.

	 4.	 Edit the Physical Path Credentials field.

Figure 3-1 shows the window used to configure a fixed user for the anonymous identity on an ❑❑

application or virtual directory.

The figure shows the window that is used to configure a specific user account on the application ❑❑

or virtual directory. On the other hand, you can select not to impersonate the access to the appli-
cation or virtual directory to any user account, instead using the impersonation token generated
later on by the IIS runtime.

79301c03.indd 82 10/6/08 12:10:21 PM

83

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

Figure 3-1

If the application or virtual directory is not configured with fixed user credentials, IIS checks ❑❑

the type of authentication enabled on the application, whether it is Windows, Basic, Digest, or
anonymous authentication. If the AnonymousAuthenticationModule is enabled, it will auto-
matically rule over all the other enabled native authentication modules and no negotiation hap-
pens between IIS and the user. The issue is different when authorization rules are set on the
application. At this time, IIS postpones the execution of the AnonymousAuthenticationModule
to the end of the authentication stage of the unified request-processing pipeline. However, if the
AnonymousAuthenticationModule is disabled and any other native authentication module is
enabled, IIS would request a username/password to authenticate the request. If the request is
authenticated successfully, an impersonation token is generated and stored by IIS to be accessed
later by the managed WindowsAuthenticationModule, in the case that the ASP.NET applica-
tion is running in the IIS 7.0 classic mode. However, if the application is running in IIS 7.0 inte-
grated mode and a user has been authenticated, the native authentication module sets the value
of the native User principal, and then the integrated request processing pipeline proxies that
native User principal to managed code automatically. In other words, if a native authentication
module sets the value of the native User principal, it gets brought over to ASP.NET as the
HttpContext.Current.User. In addition, IIS sets the value of the server variable LOGON_USER
to the username that was used in the authentication process. This is done for both modes of
processing in IIS 7.0: Classic and Integrated.

However, if IIS finds out that all the native authentication modules are disabled, not mentioning ❑❑

the AnonymousAuthenticationModule, the impersonation token generated is that of the default
identity assigned for the native AnonymousAuthenticationModule or any custom identity, and
there will be no value set for the managed HttpContext.Current.User property when the

79301c03.indd 83 10/6/08 12:10:21 PM

84

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

application is running in the IIS 7.0 Integrated mode. This implies that the managed Windows​
AuthenticationModule will not fire its Authenticate event. You will see why in much more
detail when you reach the section on the managed WindowsAuthenticationModule later in the
chapter.

On the other hand, if an impersonation token is generated by IIS runtime and the ASP.NET appli-❑❑

cation is configured to run under IIS 7.0 classic mode, the managed WindowsAuthentication​
Module grabs the impersonation token from IIS and generates the WindowsPrincipal object and
sets the value of the User property on the HttpContext class, all based on the received imperson-
ation token. Finally it triggers its Authenticate event. In the case of an application running in
IIS 7.0 Integrated mode, the managed WindowsAuthenticationModule ignores the imperson-
ation token set by IIS 7.0 and simply extracts a WindowsPrincipal instance from the Http​
Context.Current.User and creates a new instance of the WindowsIdentity class based on the
Identity property located at the WindowsPrincipal class extracted from the HttpContext​
.Current.User property. The module then decides if there is a valid WindowsIdentity
instance (i.e. the request is not anonymous and authentication took place inside a native mod-
ule), and triggers its Authenticate event; otherwise, the Authenticate event will not get a
chance to be fired. As mentioned above, when IIS 7.0 detects that the ASP.NET application is run-
ning in IIS 7.0 Integrated mode, the integrated request-processing pipeline automatically maps the
authenticated user represented by a native User principal, if any, to the HttpContext.Current​
.User property to be accessible by the managed WindowsAuthenticationModule. Thus, you
can conclude that you can simply remove the managed WindowsAuthenticationModule and
the HttpContext.Current.User will always be set in case authentication took place inside
IIS 7.0’s native authentication modules.

At this stage, if the ❑❑ AnonymousAuthenticationModule is enabled, it executes. After its
execution, the impersonation token is generated based on the identity set on the Anonymous​
AuthenticationModule. In addition, if the application is running inside IIS 7.0 Integrated
mode, the HttpContext.Current.User’s value is set to a dummy instance of the Windows​
Principal class with its Identity.Name property set to an empty string.

At the end of the authentication stage, IIS gets the value of the impersonation token generated ❑❑

by either a native authentication module, in case the AnonymousAuthenticationModule is
disabled, or by the AnonymousAuthenticationModule in case it is enabled. The value of the
impersonation token is stored by IIS so that it can be accessed later. Moreover, if the application
is running under the IIS 7.0 Integrated mode, at the end of the authentication stage, the Http​
Context.Current.User’s value would also have been set to a complete WindowsPrincipal
instance if the native AnonymousAuthenticationModule was disabled, and it gets set to a
dummy instance of the WindowsPrincipal class with its Identity.Name property set to an
empty string if the native AnonymousAuthenticationModule was enabled and got executed.

If there is no authenticated user, this is the case when the native AnonymousAuthentication-❑❑

Module is enabled with or without the managed FormsAuthenticationModule. ASP.NET auto-
matically handles the authentication of the request with the managed FormsAuthentication​
Module if enabled. Regardless of the user account configured for the AnonymousAuthentication​
Module, IIS will use the identity of the worker process as the impersonation token, which is by
default the NT AUTHORITY\NETWORK SERVICE. If the request is successfully authenticated, IIS
stores the username used in the authentication process into the server variable LOGON_USER.

Usually, the enabled configured native module executes within the boundaries of the web server core
engine, and any enabled managed authentication module is handed off to ASP.NET runtime to process.
Just because an impersonation token might be generated by IIS 7.0 or the HttpContext.Current.User’s

79301c03.indd 84 10/6/08 12:10:22 PM

85

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

value might be set by the integrated-request processing pipeline and is available to ASP.NET does not
mean that the same security credentials will be used by ASP.NET. Instead, the security context for each
request is dependent on the following settings and information:

The identity of the operating system thread❑❑

The request authenticated identity from IIS❑❑

The value of the impersonate attribute in the ❑❑ <identity /> configuration element

The value of the username and password attributes in the ❑❑ <identity /> configuration element

Whether the mode attribute of the ❑❑ <authentication /> configuration element has been set to
Windows

Before diving into how these settings interact with each other, an understanding of the AnonymousAu-
thenticationModule is required, as well as a review of where security information can be stored.

Native AnonymousAuthentication Module❑❑

This module is configured with the new built-in IUSR account. This can be configured in both the
ApplicationHost.config configuration file and the <system.webServer /> configuration section
group of the application’s web.config configuration file.

 <anonymousAuthentication enabled=”true” userName=”IUSR” />

You are given the choice to set the anonymous user account to the same identity used by the worker
process inside an application pool that is the NT AUTHORITY\NETWORK SERVICE account. To change
the default user, right-click the Anonymous Authentication method listed in the Authentication section.
Figure 3-2 shows the window that you can use to edit the identity assigned to the module.

Figure 3-2

79301c03.indd 85 10/6/08 12:10:22 PM

86

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

You can assign the Application Pool Identity as the identity of the anonymous user. In addition, you can
click the Set… button and a small window pops up allowing you to specify a Windows account of your
choice to use as the anonymous user identity.

When the Application Pool Identity account is selected, you will notice the following change in the
application’s web.config configuration file:

<anonymousAuthentication enabled=”true” userName=”” />

However, if you have chosen to set the anonymous user identity to another Windows account of choice,
the following would appear in the application’s web.config configuration file:

<anonymousAuthentication enabled=”true” userName=”test” password=”test” />

As you can see, both the userName and password attributes have been set to the custom user account
that you have specified.

It is important to mention that the native AnonymousAuthenticationModule runs during the authen-
tication stage of the unified request-processing pipeline, and it is the last module to run in this stage.
This is the programmatic reordering that was mentioned before when it comes to running different
modules, managed and native, at the same stage of the pipeline. It is true that IIS runs the modules
according to the order of appearance in the <modules /> section with the exception of programmatic
ordering that only native modules have the right to make use of. In addition, if the AnonymousAuthen-
ticationModule is enabled, regardless of the other native authentication modules, the request will be
considered anonymous and none of the native authentication modules would run.

Remember that the AnonymousAuthenticationModule is executed by the IIS core engine at the end
of the authentication stage after all other authentication modules, native or managed, have executed.

Here are some scenarios on how the native AnonymousAuthenticationModule works:

When the native ❑❑ AnonymousAuthenticationModule is enabled, it rules over all other native
authentication modules. For this scenario, assume the managed FormsAuthenticationModule
is disabled, the ASP.NET application is configured with Windows authentication, and all other
native authentication modules are disabled. Hence, an impersonation token is generated based
on the user identity assigned for the AnonymousAuthenticationModule, which is by default
the IUSR account. In addition, if IIS 7.0 detects that the application is running under the Inte-
grated mode, the HttpContext.Current.User property is set to a dummy instance of the
WindowsPrincipal class.

If the native ❑❑ AnonymousAuthenticationModule is enabled and any other native authentica-
tion is also enabled, such as the Basic or Windows authentication modules, nothing changed to
what has been mentioned above. IIS 7.0 knows that the native AnonymousAuthentication-
Module is enabled and does not request any username/password from the user.

In this last case, if the native ❑❑ AnonymousAuthenticationModule is enabled and the managed
FormsAuthenticationModule is also enabled, the FormsAuthenticationModule will check
if there is a valid user on the HttpContext.Current.User property. If not, it creates a new
GenericPrincipal instance and assigns it to the HttpContext.Current.User property, along

79301c03.indd 86 10/6/08 12:10:22 PM

87

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

with other tasks you will learn more about in Chapter 6, “Forms Authentication.” The native
AnonymousAuthenticationModule would still generate the impersonation token based on the
default identity assigned for the module itself or any other custom identity.

Where Is the Security Identity for a Request?
In reality, no single location in ASP.NET defines the identity for a request. This is a case where the dif-
ferences between the older Win32-oriented programming model and the managed world sort of collide.

Before the .NET Framework was implemented, the question of security identity always rested with
the currently executing operating system thread. An operating system thread always has a security
token associated with it representing either a local (potentially a built-in identity) or a domain account.
Win32 programmers have always had the ability to create new security tokens and use these to change
the security context of an operating system thread. This behavior includes reverting the identity of a
thread and explicitly impersonating a security identity.

With the introduction of the .NET Framework, a managed representation of a thread is available from
the System.Threading.Thread class. The Thread class has a CurrentPrincipal property that repre-
sents the security identity of the managed thread. It is entirely possible for the security identity of the
operating system thread (obtainable by calling System.Security.Principal.WindowsIdentity​
.GetCurrent()) to differ in type and in value from the managed IPrincipal reference available
from an instance of Thread.CurrentPrincipal.

As if that was not complicated enough, ASP.NET introduced the concept of an HttpContext associ-
ated with each request flowing through ASP.NET. The HttpContext instance for a request has a User
property that also contains a reference to an IPrincipal implementation. This additional reference to
a security identity opened up the possibility of having a third set of security credentials available to a
developer that differed from the information associated with the operating system thread and the man-
aged thread.

To demonstrate, the following example is a simple application that displays three different identities.
The sample code stores the operating system’s security identity and the managed thread identity as
they exist during the Application_BeginRequest event, and when a page is running. The value for
the User property on the HttpContext is also stored.

The initial identity information is collected in a managed SecurityIdentitiesModule developed for
the sake of this demonstration:

C#
 void context_BeginRequest(object sender, EventArgs e)
 {
 HttpContext current = HttpContext.Current;

 current.Items[“OperatingSystem_ThreadIdentity_BeginRequest”] =
 WindowsIdentity.GetCurrent().Name;

79301c03.indd 87 10/6/08 12:10:22 PM

88

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

 if (String.IsNullOrEmpty(Thread.CurrentPrincipal.Identity.Name))
 {
 current.Items[“ManagedThread_ThreadIdentity_BeginRequest”] =
 “[null or empty]”;
 current.Items[“ManagedThread_IsGenericPrincipal”] =
 (Thread.CurrentPrincipal is GenericPrincipal);
 }
 else
 current.Items[“ManagedThread_ThreadIdentity_BeginRequest”] =
 Thread.CurrentPrincipal.Identity.Name;

 if (current.User == null)
 current.Items[“HttpContext_User_BeginRequest”] = “[null]”;
 else
 current.Items[“HttpContext_User_BeginRequest”] =
 current.User.Identity.Name;
 }

VB.NET
 Private Sub context_BeginRequest(ByVal sender As Object, ByVal e As EventArgs)
 Dim current As HttpContext = HttpContext.Current
 current.Items(“OperatingSystem_ThreadIdentity_BeginRequest”) _
 = WindowsIdentity.GetCurrent().Name()

 If String.IsNullOrEmpty(Thread.CurrentPrincipal.Identity.Name) Then
 current.Items(“ManagedThread_ThreadIdentity_BeginRequest”) _
 = “[null or empty]”

 current.Items(“ManagedThread_IsGenericPrincipal”) = _
 (TypeOf Thread.CurrentPrincipal Is GenericPrincipal)
 Else
 current.Items(“ManagedThread_ThreadIdentity_BeginRequest”) = _
 Thread.CurrentPrincipal.Identity.Name()
 End If

 If current.User Is Nothing Then
 current.Items(“HttpContext_User_BeginRequest”) = “[null]”
 Else
 current.Items(“HttpContext_User_BeginRequest”) = _
 current.User.Identity.Name()
 End If
 End Sub

This code contains checks for null or empty strings because Application_BeginRequest occurs as
the first event in the integrated unified request-processing pipeline. As a result, neither IIS nor ASP.
NET has configured any security context for the current request. From the ASP.NET point of view, it has
not attempted to associate an IPrincipal with the current HttpContext. Additionally, ASP.NET has
not synchronized user information on the HttpContext to the current managed thread. The managed
thread principal is instead associated with an instance of a System.Security.Principal.Generic​
Principal with a username set to the empty string. The value of the User property on the HttpContext
though is not even initialized, and returns a null value instead.

79301c03.indd 88 10/6/08 12:10:22 PM

89

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

The values for this information are displayed in a page load event using the following code:

C#
using System;
using System.Security.Principal;
using System.Threading;

public partial class _Default : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 Response.Write(“The OS thread identity during BeginRequest is: “ +
 Context.Items[“OperatingSystem_ThreadIdentity_BeginRequest”] + “
”);

 Response.Write(“The managed thread identity during BeginRequest is: “ +
 Context.Items[“ManagedThread_ThreadIdentity_BeginRequest”] + “
”);

 Response.Write(“The managed thread identity during BeginRequest is “ +
 “a GenericPrincipal: “ +
 Context.Items[“ManagedThread_IsGenericPrincipal”] + “
”);

 Response.Write(“The user on the HttpContext during BeginRequest is: “ +
 Context.Items[“HttpContext_User_BeginRequest”] + “
”);

 Response.Write(“<hr />”);

 Response.Write(“The OS thread identity when the page executes is: “ +
 WindowsIdentity.GetCurrent().Name + “
”);

 if (String.IsNullOrEmpty(Thread.CurrentPrincipal.Identity.Name))
 Response.Write(“The managed thread identity when” +
 “the page executes is: “ + “[null or empty]” + “
”);
else
 Response.Write(“The managed thread identity when the “ +
 “page executes is: “ +
 Thread.CurrentPrincipal.Identity.Name + “
”);
 Response.Write(“The managed thread identity is of type: “ +
 Thread.CurrentPrincipal.ToString() + “
”);

 if (String.IsNullOrEmpty(User.Identity.Name))
 Response.Write(“The user on the HttpContext when “ +
 “the page executes is: “ + “[null or empty]” + “
”);
else
 Response.Write(“The user on the HttpContext when the “ +
 “page executes is:“ + User.Identity.Name + “
”);

 Response.Write(“The user on the HttpContext is of type: “ +
 User.ToString() + “
”);

 Response.Write(“The user on the HttpContext and the “ +
 “thread principal point at the same object: “ +

79301c03.indd 89 10/6/08 12:10:22 PM

90

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

 (Thread.CurrentPrincipal == User) + “
”);

 Response.Write(“The impersonation token set by IIS is: “ +
 Request.LogonUserIdentity.Name + “
”);
 }
}

VB.NET
Imports System
Imports System.Security.Principal
Imports System.Threading

Partial Public Class _Default
 Inherits System.Web.UI.Page
 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles Me.Load
 Response.Write(“The OS thread identity during BeginRequest is: “ & _
 Context.Items(“OperatingSystem_ThreadIdentity_BeginRequest”) & _
 “
”)

 Response.Write(“The managed thread identity during BeginRequest is: “ & _
 Context.Items(“ManagedThread_ThreadIdentity_BeginRequest”) & _
 “
”)

 Response.Write(“The managed thread identity during BeginRequest is “ & _
 “a GenericPrincipal: “ & _
 Context.Items(“ManagedThread_IsGenericPrincipal”) & _
 “
”)

 Response.Write(“The user on the HttpContext during BeginRequest is: “ & _
 Context.Items(“HttpContext_User_BeginRequest”) & _
 “
”)
 Response.Write(“<hr />”)

 Response.Write(“The OS thread identity when the page executes is: “ & _
 WindowsIdentity.GetCurrent().Name & _
 “
”)

 If String.IsNullOrEmpty(Thread.CurrentPrincipal.Identity.Name) Then
 Response.Write(“The managed thread identity when the “ & _
 “page executes is:” & “[null or empty]” & _
 “
”)
 Else
 Response.Write(“The managed thread identity when “ & _
 “the page executes is:” & _
 Thread.CurrentPrincipal.Identity.Name & “
”)
 End If
 Response.Write(“The managed thread identity is of type: “ & _
 Thread.CurrentPrincipal.ToString() & “
”)

 If String.IsNullOrEmpty(User.Identity.Name) Then
 Response.Write(“The user on the HttpContext when “ & _

79301c03.indd 90 10/6/08 12:10:22 PM

91

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

 “the page executes is:” & “[null or empty]” & “
”)
 Else
 Response.Write(“The user on the HttpContext when the “ & _
 “page executes is: “ & User.Identity.Name & “
”)
End If

Response.Write(“The user on the HttpContext is of type: “ & _
 CType(User,Object).ToString() & “
”)

Response.Write(“The user on the HttpContext and the “ & _
 “thread principalpoint at the same object: “ & _
 (Thread.CurrentPrincipal Is User) & “
”)

Response.Write(“The impersonation token set by IIS is: “ & _
 Request.LogonUserIdentity.Name & “
”)
End Sub
End Class

The information is displayed running on an ASP.NET 3.5 application with the following characteristics:

The site is running locally on the web server (that is, not on a UNC share).❑❑

IIS has Anonymous Authentication and Windows Authentication modules enabled.❑❑

ASP.NET is using the default mode of ❑❑ Windows for authentication.

The ❑❑ <identity /> element’s impersonate attribute is set to false.

The page output is shown here:

The OS thread identity during BeginRequest is: NT AUTHORITY\NETWORK SERVICE
The managed thread identity during BeginRequest is: [null or empty]
The managed thread identity during BeginRequest is a GenericPrincipal: True
The user on the HttpContext during BeginRequest is: [null]
--
The OS thread identity when the page executes is: NT AUTHORITY\NETWORK SERVICE
The managed thread identity when the page executes is: [null or empty]
The managed thread identity is of type: System.Security.Principal.WindowsPrincipal
The user on the HttpContext when the page executes is: [null or empty]
The user on the HttpContext is of type: System.Security.Principal.WindowsPrincipal
The user on the HttpContext and the thread principal point at the same object: True

The operating system thread identity makes sense because this is the identity of the underlying IIS 7.0
worker process. The ASP.NET runtime is not impersonating any identity, so the security context of the
thread is not reset by ASP.NET. As mentioned earlier, during BeginRequest neither the HttpContext
nor the Thread object have had any security information explicitly set by ASP.NET.

The security information during page execution is a bit more interesting. The operating system
thread identity has not changed. However, the IPrincipal associated with the current thread, and
the IPrincipal associated with HttpContext is a reference to a WindowsPrincipal. Furthermore,
the managed thread and HttpContext are referencing the same object instance. Clearly something
occurred after Application_BeginRequest that caused a WindowsPrincipal to come into the picture.
“Going back to the conditions under which the above code is running, it explains clearly what have been
mentioned before that in the case of an application running under the IIS 7.0 Integrated mode, the native

79301c03.indd 91 10/6/08 12:10:22 PM

92

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

AnonymousAuthenticationModule is enabled, WindowsAuthenticationModule is enabled, and the
ASP.NET application is configured to run with Windows authentication, the HttpContext.Current
.User’s value will be set to a dummy instance of a WindowsPrincipal class having its Identity.Name
property set to an empty string.”

At this point, the important thing to keep in mind is that before the AuthenticateRequest event in
the integrated request-processing pipeline occurs, neither the thread principal nor the User property of
HttpContext should be relied on for identifying the security identity for the current request. The oper-
ating system identity, though, has been established. However, this identity can be affected by a number
of factors, as you will see in the next section.

Establishing the Operating System Thread Identity
Both ASP.NET and IIS have a say in the identity of the underlying operating system thread that is used
for request processing. By default, the identity is set to that of the IIS 7.0 worker process: NT AUTHORITY\
NETWORK SERVICE. However, developers and administrators have the option to change the default
identity of the application pool by several ways, two of which follow:

The default identity of the application pool is set in the ❑❑ ApplicationHost.config configura-
tion file of the web server.

 <applicationPools>
 <applicationPoolDefaults>
 <processModel identityType=”NetworkService” />
 </applicationPoolDefaults>
 </applicationPools>

A developer or administrator can open the ❑❑ ApplicationHost.config configuration file, find
the <applicationPoolDefaults /> configuration section located inside the <application​
Pools /> configuration section group and then change the identityType attribute of the
<processModel /> element.

Another way of changing the default identity associated with the application pool is by visiting ❑❑

the IIS 7.0 Manager tool, clicking on the View Application Pools on the Actions menu on the
right, selecting the application pool you want to change its identity, and finally clicking on the
Advanced Settings. Figure 3-3 shows the Advanced Settings window used to configure
advanced options for an application pool.

In earlier versions of ASP.NET, determining the actual impersonation token set by the IIS core engine
was difficult because the technique involved some rather esoteric code. However, it is easy to get a ref-
erence to it in ASP.NET 2.0 and 3.5. The following line of code gets a reference to the identity deter-
mined by IIS for the current request by its core engine:

WindowsIdentity wi = Request.LogonUserIdentity;

With this information, it is much simpler to see the IIS impersonation without the sometimes confus-
ing effects of other authentication and configuration settings. For example, with the sample application
used in the previous section (anonymous access allowed in IIS, Windows authentication enabled in
ASP.NET, no impersonation), some of the security information for a page request is:

The OS thread identity during BeginRequest is: NT AUTHORITY\NETWORK SERVICE
The OS thread identity when the page executes is: NT AUTHORITY\NETWORK SERVICE
The impersonation token set by IIS is: NT AUTHORITY\IUSR

79301c03.indd 92 10/6/08 12:10:22 PM

93

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

Figure 3-3

As you can see, the authenticated identity determined by IIS for the current request is the default identity
of the anonymous authentication module. Recall that this application is running with the Anonymous​
AuthenticationModule enabled, the default identity of the aforementioned module was not changed
and left with its default value. In addition, the application was not configured with a username or pass-
word hence the identity of the anonymous authentication module was used as the authenticated iden-
tity of the current request. Also notice that, even though the native WindowsAuthenticationModule
was enabled, the AnonymousAuthenticationModule takes control over any other enabled native
authentication module.

The following table shows the various IIS security options and the resulting request authenticated iden-
tity set by IIS that can be accessed by ASP.NET:

IIS Authentication Type Impersonation Token Generated

Windows, Basic, Digest, or
Certificate Mapping

Token corresponding to the authenticated (or mapped) browser user.

Anonymous The default identity configured in IIS for anonymous authentication
module. If not changed, it is by default IUSR built-in.

Running on a UNC share
with explicit credentials

The configured UNC identity. This identity is used regardless of the
IIS authentication type.

During the early stages of the request, enabling impersonation in an application running in the inte-
grated mode has no real effect up until the request is authenticated by both IIS and ASP.NET. The setting
of the impersonate attribute on the <identity /> element will affect the operating system thread

79301c03.indd 93 10/6/08 12:10:23 PM

94

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

identity. Once the authentication stage is over and the page starts execution, ASP.NET will initialize the
identity of the operating system thread based on a combination of the settings in the <identity />
attribute and the request authenticated identity set by IIS core engine.

When an ASP.NET application is configured to impersonate the authenticated user for the current
request, the impersonation usually has an effect through all the stages of the request-processing pipeline,
starting from the BeginRequest stage. However, with the IIS 7.0 Integrated mode, ASP.NET modules can
now execute at early stages of the integrated request-processing pipeline. Therefore, impersonation is not
available for ASP.NET applications running in the Integrated mode, only after the Authenticate​
Request stage. If your ASP.NET application makes use of impersonation in early stages of the request-
processing pipeline, the IIS team at Microsoft recommends moving the application into the IIS 7.0 Classic
mode. On the other hand, if you are not concerned with enabling impersonation for your application in
the early stages of the request-processing pipeline, then the application operates according to the rules
set by the IIS 7.0 Integrated mode. If the impersonate attribute of the <identity /> element is set to
true, then ASP.NET will change the operating system thread’s identity using the request authenticated
identity set by IIS. However, if ASP.NET does not explicitly set the thread token, the operating system
thread will run with the credentials configured for the worker process in IIS.

Continuing with previous sample, if the following configuration change is made to the application,
ASP.NET explicitly impersonates using the IIS impersonation token:

<identity impersonate=”true” />

The security information for the request changes to reflect the identity value of the impersonation token
set by IIS. (At this point the sample application is not requiring IIS to authenticate the browser user):

The OS thread identity during BeginRequest is: NT AUTHORITY\NETWORK SERVICE
The OS thread identity when the page executes is: NT AUTHORITY\IUSR
The impersonation token set by IIS is: NT AUTHORITY\IUSR

An mentioned above, ASP.NET impersonation does not have a real effect on the identity of the operating
system in the early stages of the integrated request processing pipeline; this is clear from the operating
system thread identity inside the BeginRequest event. However, once the authentication stage is over,
the impersonation effect is clear. ASP.NET sets the identity of the operating system thread to the imper-
sonation token set by IIS core engine.

Changing the settings in IIS to instead allow only native BasicAuthenticationModule causes IIS to
set the impersonation token to the identity of the authenticated user. Again, if you look back at the sec-
tion that talks about how IIS 7.0 determines the identity of the request, you will notice that the exact
same thing is happening. Because ASP.NET impersonates this identity, the thread identity will reflect
the impersonation token:

The OS thread identity during BeginRequest is: NT AUTHORITY\NETWORK SERVICE
The OS thread identity when the page executes is: bhaidar-PC\test
The impersonation token set by IIS is: bhaidar-PC\test

If the configuration for <identity /> includes an explicit value for the username and password attri-
butes then ASP.NET ignores the impersonation token set by IIS native modules, and ASP.NET instead

79301c03.indd 94 10/6/08 12:10:23 PM

95

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

explicitly sets the operating system’s thread token based on the credentials in the <identity /> ele-
ment. For example, if the sample application is switched back to allow Anonymous access in IIS and
the configuration is changed to use the following:

<identity impersonate=”true” userName=”test” password=”test”/>

Then the security information reflects the application impersonation identity:

The OS thread identity during BeginRequest is: NT AUTHORITY\NETWORK SERVICE
The OS thread identity when the page executes is: bhaidar-PC\test
The impersonation token set by IIS is: bhaidar-PC\bhaidar

Notice that since Basic Authentication module is still the only native module configured in IIS, the
user gets authenticated with basic authentication and IIS generates the impersonation token based on the
username and password supplied by the user for the basic authentication. But since, ASP.NET applica-
tion impersonates to a Windows account, it is clear that the operating system thread’s identity is set to
the same username configured for the <identity /> configuration section, inside the application’s
web.config configuration file, when the impersonation is enabled.

Prior to IIS 7.0, configuring application impersonation required that you manually edit the <identity />
section in the application’s web.config configuration file. However, with IIS 7.0 you have a visual inter-
face that allows you to edit the application impersonation, which is now known as ASP.NET imperson-
ation, from inside the IIS 7.0 Manager tool. To use IIS 7.0 Manager to configure ASP.NET impersonation,
locate the ASP.NET application in the list of hosted sites inside IIS 7.0. Figure 3-4 shows the IIS 7.0 Man-
ager tool with an ASP.NET application selected.

Figure 3-4

79301c03.indd 95 10/6/08 12:10:23 PM

96

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

Double-click the selected Authentication icon and you will get a list of all authentication modules reg-
istered and installed by IIS 7.0. Figure 3-5 shows the available authentication modules for the ASP.NET
application under study:

Figure 3-5

In Figure 3-5 the ASP.NET Impersonation icon is selected. This icon has been added to allow developers
and administrators to configure the <identity /> configuration section through the IIS 7.0 Manager tool
and is located explicitly within the authentication applet in IIS 7.0 Manager. Keep the ASP.NET Imperson-
ation icon selected and click the Edit link from the Actions pane on the right-hand side. Figure 3-6 shows
the dialog box that pops up when you click this link.

Figure 3-6

This small dialog box is all you need to use to configure the ASP.NET impersonation, whether you want
to configure client impersonation or application impersonation. As you can see, there are two main
radio buttons: Specific user and Authenticated user.

79301c03.indd 96 10/6/08 12:10:23 PM

97

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

The Specific user option resembles what you already know as application impersonation. It is here that
you can explicitly specify a username and password to impersonate the authentication identity of the
request. Simply click on the Set button. Another dialog box appears that lets you enter a username,
password, and confirmation password.

On the other hand, the Authenticated user option simply impersonates the authentication identity of
the request to the impersonation token set by IIS 7.0. This option resembles client impersonation.

Throughout the previous samples, the sample application was running locally on the web server. If
instead the sample application is placed on a UNC share configured with explicit UNC credentials,
the only security identities used for the operating system thread are either the UNC credentials or the
application impersonation credentials. This is due in part because IIS always set the impersonation
token to the explicit UNC identity, regardless of whether or not the application in IIS is configured to
require some type of authentication with the browser.

When running the sample application on a UNC share without impersonation enabled, the security
information looks like:

The OS thread identity during BeginRequest is: bhaidar-PC\uncidentity
The OS thread identity when the page executes is: bhaidar-PC\uncidentity
The impersonation token set by IIS is: bhaidar-PC\uncidentity

This highlights an important piece of ASP.NET security behavior. ASP.NET always ignores the true/
false state of the impersonate attribute when running on a UNC share. Instead, ASP.NET will imper-
sonate the UNC identity. Running on a UNC share with client impersonation enabled (<identity
impersonate=”true” />), the security information is exactly the same because of this behavior:

The OS thread identity during BeginRequest is: bhaidar-PC\uncidentity
The OS thread identity when the page executes is: bhaidar-PC\uncidentity
The impersonation token set by IIS is: bhaidar-PC\uncidentity

However, if application impersonation is configured for an application (that is, the username and
password attributes of the <identity /> element are set), then ASP.NET will ignore the imperson-
ation token set by IIS and will instead set the operating system thread identity to the values specified
in the <identity /> element. Notice in the following output that the UNC identity is only available
from the impersonation token set by IIS:

The OS thread identity during BeginRequest is: bhaidar-PC\test
The OS thread identity when the page executes is: bhaidar-PC\test
The impersonation token set by IIS is: bhaidar-PC\uncidentity

To summarize all this information, the following table lists the combinations of the imperson-
ation token from IIS and operating system thread identities based on various configuration settings
when running on IIS 7.0 integrated mode. Remember that client impersonation means <identity
impersonate=”true”/>, whereas application impersonation means an explicit username and pass-
word were configured in the <identity /> element. In the following table, when running on a UNC
share is yes, this means that the application in IIS has an explicit set of UNC credentials configured for
accessing the share. As noted earlier, “officially” ASP.NET 3.5 is not supported running on a UNC share
that uses pass-through authentication.

79301c03.indd 97 10/6/08 12:10:23 PM

98

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

On UNC
Share

IIS
Authentication

ASP.NET
Impersonation

OS Thread
Identity

IIS Impersonation
Token

No Anonymous
allowed

None NETWORK
SERVICE

IUSR

No Anonymous
allowed

Client IUSR IUSR

No Anonymous
allowed

Application The application
impersonation
credentials

IUSR

No Authenticated
access required

None NETWORK
SERVICE

The credentials of the
browser user

No Authenticated
access required

Client The credentials of
the browser user

The credentials of the
browser user

No Authenticated
access required

Application The application
impersonation
credentials

The credentials of the
browser user

Yes Anonymous
allowed

None The configured
UNC identity

The configured UNC
identity

Yes Anonymous
allowed

Client The configured
UNC identity

The configured UNC
identity

Yes Anonymous
allowed

Application The application
impersonation
credentials

The configured UNC
identity

Yes Authenticated
access required

None The configured
UNC identity

The configured UNC
identity

Yes Authenticated
access required

Client The configured
UNC identity

The configured UNC
identity

Yes Authenticated
access required

Application The application
impersonation
credentials

The configured UNC
identity

The Unified Processing Pipeline
In the new unified integrated mode of execution, both native and managed modules get the chance to
subscribe to the same events during the request-processing pipeline. The different stages of execution
are exposed to all the managed modules and hence, the new integrated mode can make heavy use of
the modules developed by ASP.NET.

79301c03.indd 98 10/6/08 12:10:23 PM

99

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

A request in IIS 7.0 integrated mode passes through the same set of events as that of the ASP.NET pipe-
line events. As you know, the new integrated mode leverages ASP.NET to a framework to extend IIS 7.0
and hence, the ASP.NET pipeline will play a very important role from now on. Requests would pass
through the same old ASP.NET pipeline events, both native and managed modules would subscribe to
these events and hence, the expanded use of ASP.NET powers.

And now for a brief interlude to review the processing pipeline in ASP.NET 3.5: A basic understanding
of the pipeline is useful for knowing when authentication and authorization occur within the lifecycle
of the integrated request-processing pipeline.

Developers who have worked with the ASP.NET pipeline are usually familiar with the synchronous
events that can be hooked. ASP.NET 3.5 expands on the original pipeline provided by ASP.NET 2.0 by
adding three new events, which will be discussed shortly.

The current ASP.NET 3.5 synchronous pipeline events are listed in the order that they occur as follows:

	 1.	 BeginRequest

	 2.	 AuthenticateRequest

	 3.	 PostAuthenticateRequest

	 4.	 AuthorizeRequest

	 5.	 PostAuthorizeRequest

	 6.	 ResolveRequestCache

	 7.	 PostResolveRequestCache

	 8.	 MapRequestHandler

	 9.	 PostMapRequestHandler

	10.	 AcquireRequestState

	11.	 PostAcquireRequestState

	12.	 PreRequestHandlerExecute

At this stage, the selected handler executes the current request. The most familiar handler is the
Page handler.

	13.	 PostRequestHandlerExecute

	14.	 ReleaseRequestState

	15.	 PostReleaseRequestState

	16.	 UpdateRequestCache

	 17.	 PostUpdateRequestCache

	18.	 LogRequest

	19.	 PostLogRequest

	20.	 EndRequest

79301c03.indd 99 10/6/08 12:10:23 PM

100

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

ASP.NET 3.5 adds three new stages to the unified integrated request-processing pipeline. These events
are only used when the integrated mode is configured:

	 1.	 MapRequestHandler : At this stage a handler is selected based on the content file type exten-
sion that is requested. Either a native module such as the StaticFileModule handler or a
managed module such as PageHandlerFactory can be selected

	 2.	 LogRequest: Fires just after the PostUpdateRequestCache event. Even if an error occurs in
the request processing, this even still fires. Both native and managed modules can subscribe to
this event.

	 3.	 PostLogRequest: This event fires just after LogRequest event fires.

The discussion will drill down to explain what happens during AuthenticateRequest,
PostAuthenticateRequest, and AuthorizeRequest in more detail shortly. Suffice it to say that
prior to the completion of AuthenticateRequest and PostAuthenticateRequest, only the operat-
ing system thread identity should be used. Other identities have not been completely initialized until
these two events complete.

For most developers, the operating system thread identity that is established prior to BeginRequest
remains stable for the duration of the entire pipeline. Similarly, after authentication has occurred during
AuthenticateRequest and PostAuthenticateRequest, the values of HttpContext.Current.User
as well as Thread.CurrentPrincipal remain constant for the remainder of the pipeline.

ASP.NET continues to support the ASP.NET 2.0’s asynchronous processing in the pipeline as well.
After all, the core runtime of ASP.NET 3.5 is no different from ASP.NET 2.0, with some additional inte-
grated features such as ASP.NET AJAX. For example, each of the synchronous events in the previous
list also has a corresponding asynchronous event that developers can hook. Asynchronous pipeline
processing makes it possible for developers to author long-running tasks without tying up ASP.NET
worker threads. Instead, in ASP.NET 3.5 developers can start long running tasks in a way that quickly
returns control to the current ASP.NET 3.5 worker thread. Then at a later point the ASP.NET runtime
will be notified of the completion of the asynchronous work, and a worker thread is scheduled to con-
tinue running the pipeline again.

Thread Identity and Asynchronous Pipeline Events
Because of the support for asynchronous processing in ASP.NET 3.5, developers need to be cognizant of
the security values available at different phases of asynchronous processing. In general, asynchronous
pipeline events are handled in the following manner:

	 1.	 The developer subscribes to an asynchronous pipeline event in global.asax or with an
HttpModule. Subscribing involves supplying a Begin and an End event handler for the asyn-
chronous pipeline event.

	 2.	 ASP.NET runs the Begin event handler. The developer’s code within the Begin event handler
kicks off an asynchronous task and returns the IAsyncResult handle to ASP.NET.

	 3.	 The asynchronous work actually occurs on a framework thread pool thread. This is a critical
distinction, because when the actual work occurs, ASP.NET is not involved. No security infor-
mation from the ASP.NET world will be auto-magically initialized. As a result, it is the respon-
sibility of the developer to ensure that any required security identity information is explicitly
passed to the asynchronous task. Furthermore, if the asynchronous task expects to be running

79301c03.indd 100 10/6/08 12:10:23 PM

101

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

under a specific identity, the task is responsible for impersonating prior to performing any work
as well as reverting impersonation when the work is completed.

	 4.	 Once the asynchronous work is done, the thread pool thread will call back to ASP.NET to notify
it that the work has completed.

	 5.	 As part of the callback processing, ASP.NET will call the developer’s End event handler. Nor-
mally in the End event handler, the developer uses the IAsyncResult handle from step 2 to
call EndInvoke and process the results.

	 6.	 ASP.NET starts up processing the page request again using a different ASP.NET worker thread.
Before ASP.NET resumes running the request, it reinitializes the ASP.NET worker thread to
ensure that the correct security context and security identities are being used.

To make this a bit clearer, let’s walk through a variation of the identity sample used earlier. The asyn-
chronous sample hooks the asynchronous version of PostAuthenticateRequest with an HttpModule.
The reason behind subscribing to the PostAuthenticateRequest event is due to the breaking changes
introduced by IIS 7.0 regarding impersonation. If you had to subscribe to the BeginRequest event, you
would not have been able to see the effect of impersonation on the asynchronous pipeline events.

The module is registered as follows:

 <modules>
 <add name=”AsyncEventModule” type=”AsyncEventsModule” />
 </modules>

The module’s Init method is where the asynchronous event registration actually occurs. Notice that
both a Begin and an End event handler are registered.

C#
using System;
using System.Collections;
using System.Data;
using System.Configuration;
using System.Security.Principal;
using System.Threading;
using System.Web;
using System.Web.Security;

public class AsyncEventsModule : IHttpModule
{
 public AsyncEventsModule()
 {
 }

 #region IHttpModule Members

public void Dispose()
{
 throw new Exception(“The method or operation is not implemented.”);
}

public void Init(HttpApplication context)
{

79301c03.indd 101 10/6/08 12:10:24 PM

102

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

 context.AddOnPostAuthenticateRequestAsync(
 new BeginEventHandler(this.PostAuthenticateRequest_BeginEventHandler),
 new EndEventHandler(this. PostAuthenticateRequest_EndEventHandler)
);
}

 #endregion

 //Implementations of being and end event handlers shown later
}

VB.NET
Imports System
Imports System.Collections
Imports System.Data
Imports System.Configuration
Imports System.Security.Principal
Imports System.Threading
Imports System.Web
Imports System.Web.Security
Imports System.Web.UI
Imports System.Web.UI.WebControls
Imports System.Web.UI.WebControls.WebParts
Imports System.Web.UI.HtmlControls

Public Class AsyncEventsModule
 Implements IHttpModule
 Public Sub New()
 End Sub

#Region “IHttpModule Members”

 Public Sub Dispose() Implements IHttpModule.Dispose
 End Sub

 Public Sub Init(ByVal context As HttpApplication) Implements IHttpModule.Init
 context.AddOnPostAuthenticateRequestAsync(_
 New BeginEventHandler(_
 AddressOf Me.PostAuthenticateRequest_BeginEventHandler), _
 New EndEventHandler(_
 AddressOf Me.PostAuthenticateRequest_EndEventHandler))
 End Sub

#End Region

 ‘Implementations of being and end event handlers shown later

End Class

Within the same ASP.NET application, there is a class called Sleep that will sleep for one second when
one of its methods is called. The Sleep class simulates a class that would perform some type of lengthy
work that is best executed in the background. The constructor for the Sleep class accepts a reference to
an IDictionary. This will be used to initialize the Sleep class with a reference to the HttpContext’s
Items collection. Using the Items collection, an instance of the Sleep class can log the operating system
thread identity, both during asynchronous execution and after completion of asynchronous processing.

79301c03.indd 102 10/6/08 12:10:24 PM

103

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

C#
using System.Collections;
using System.Security.Principal;
using System.Threading;
…
public class Sleep
{
 private IDictionary state;

 public Sleep(IDictionary appState)
 {
 state = appState;
 }

 public void DoWork()
 {
 state[“AsyncWorkerClass_OperatingSystemThreadIdentity”] =
 WindowsIdentity.GetCurrent().Name;
 Thread.Sleep(1000);
 }

 public void StoreAsyncEndID()
 {
 state[“AsyncWorkerClass_EndEvent_OperatingSystemThreadIdentity”] =
 WindowsIdentity.GetCurrent().Name;
 }
}

VB.NET
Imports System
Imports System.Collections
Imports System.Security.Principal
Imports System.Threading
…
Public Class Sleep
 Private state As IDictionary
 Private aspnetThreadToken As IntPtr

 Public Sub New(ByVal appState As IDictionary, ByVal token As IntPtr)
 state = appState
 End Sub
 Public Sub DoWork()
state(“AsyncWorkerClass_OperatingSystemThreadIdentity”) = _
 WindowsIdentity.GetCurrent().Name
 Thread.Sleep(1000)
 End Sub

 Public Sub StoreAsyncEndID()
state(“AsyncWorkerClass_EndEvent_OperatingSystemThreadIdentity”) _
 = WindowsIdentity.GetCurrent().Name
 End Sub
End Class

79301c03.indd 103 10/6/08 12:10:24 PM

104

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

The Begin event handler for PostAuthenticateRequest will use a delegate to trigger an asyn-
chronous call to the DoWork method. The module defines a delegate that is used to wrap the DoWork
method on the Sleep class as follows:

C#
public delegate void AsyncSleepDelegate();

VB.NET
Public Delegate Sub AsyncSleepDelegate()

For simplicity, the Begin and End pipeline event handlers are also implemented as part of the same
HttpModule. The Begin event handler (which follows), first obtains a reference to the HttpContext asso-
ciated with the current request by casting the sender parameter to an instance of HttpApplication. Using
the context, the module stores the operating system thread identity. Then the module creates an instance
of the class that will perform the actual asynchronous work. After wrapping the DoWork method with an
AsyncSleepDelegate, the module calls BeginInvoke. The code passes the AsyncCallback reference
supplied by ASP.NET as one of the parameters to BeginInvoke. This is necessary because it is the ASP.NET
runtime that is called back by the .NET Framework thread pool thread carrying out the asynchronous
work. Without hooking up the callback, there would be no way for the flow of execution to return back to
ASP.NET after an asynchronous piece of work was completed. The second parameter passed to BeginIn-
voke is a reference to the very AsyncSleepDelegate being called. As a result, the delegate reference will
be available when asynchronous processing is completed and EndInvoke is called on the delegate.

The return value from any call made to a BeginInvoke method is a reference to an IAsyncResult.
The BeginInvoke method is auto-generated by the .NET Framework to support asynchronous method
calls without developers needing to explicitly author asynchronous class definitions. Returning an
IAsyncResult allows ASP.NET to pass the reference back to the developer’s End event later on when
asynchronous processing is complete.

C#
private IAsyncResult PostAuthenticateRequest_BeginEventHandler(
 object sender, EventArgs e, AsyncCallback cb, object extraData)
{
 HttpApplication a = (HttpApplication)sender;
 a.Context.Items[“PostAuthenticateRequestAsync_OperatingSystemThreadID”] =
 WindowsIdentity.GetCurrent().Name;

 Sleep s = new Sleep(a.Context.Items);
 AsyncSleepDelegate asd = new AsyncSleepDelegate(s.DoWork);
 IAsyncResult ar = asd.BeginInvoke(cb, asd);

 return ar;
}

VB.NET
 Private Function PostAuthenticateRequest_BeginEventHandler(_
 ByVal sender As Object, _
 ByVal e As EventArgs, _
 ByVal cb As AsyncCallback, _

79301c03.indd 104 10/6/08 12:10:24 PM

105

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

 ByVal extraData As Object) As IAsyncResult

 Dim a As HttpApplication = CType(sender, HttpApplication)
a.Context.Items(“PostAuthenticateRequestAsync_OperatingSystemThreadID”) _
 = WindowsIdentity.GetCurrent().Name

 ‘the Sleep class is now constructed with:
 Dim s As New Sleep(a.Context.Items, WindowsIdentity.GetCurrent().Token)

 Dim asd As New AsyncSleepDelegate(AddressOf s.DoWork)
 Dim ar As IAsyncResult = asd.BeginInvoke(cb, asd)

 Return ar
 End Function

When asynchronous work has completed, the .NET Framework calls back to ASP.NET using the call-
back reference that was supplied earlier to the BeginInvoke call. As part of the callback processing,
ASP.NET calls the End event (which follows) that was registered, passing it the IAsyncResult that was
returned from the BeginInvoke call. This allows the End event to cast the AsyncState property avail-
able from IAsyncResult back to a reference to the AsyncSleepDelegate. The End event can now call
EndInvoke against the AsyncSleepDelegate to gather the results of the asynchronous processing. In
the sample application, there is no return value, but in practice any asynchronous processing would
probably return a reference to a query or some other set of results.

Because the End event now has a reference to the AsyncSleepDelegate, it can use the Target property
of the delegate to get back to the original instance of Sleep that was used. The End event then logs the
current operating system thread identity as it exists during the End event using the StoreAsyncEndID
method on the Sleep instance. At this point, having the Sleep instance log the thread identity is accept-
able because this method call is synchronous and thus executes on the same thread running the End
event handler.

C#
 private void PostAuthenticateRequest_EndEventHandler(IAsyncResult ar)
 {
 AsyncSleepDelegate asd = (AsyncSleepDelegate)ar.AsyncState;
 asd.EndInvoke(ar);

 Sleep s = (Sleep)asd.Target;
 s.StoreAsyncEndID();

 }

VB.NET
 Private Sub PostAuthenticateRequest_EndEventHandler(ByVal ar As IAsyncResult)
 Dim asd As AsyncSleepDelegate = CType(ar.AsyncState, AsyncSleepDelegate)
 asd.EndInvoke(ar)

 Dim s As Sleep = CType(asd.Target, Sleep)
 s.StoreAsyncEndID()

 End Sub

79301c03.indd 105 10/6/08 12:10:24 PM

106

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

You can run the sample with a variety of different settings for <identity /> in the web.config con-
figuration file, as well as the directory security settings in IIS. Using the sample code earlier, the follow-
ing extra lines of code show the asynchronous identity information.

C#
Response.Write(“The OS thread identity during “ +
 “PostAuthenticateRequest_BeginEventHandler is: “ +
 Context.Items[“PostAuthenticateRequestAsync_OperatingSystemThreadID”] +
 “
”);

Response.Write(“The OS thread identity during “ +
 “the actual async work is: “ +
 Context.Items[“AsyncWorkerClass_OperatingSystemThreadIdentity”] +
 “
”);

Response.Write(“The OS thread identity during “ +
 “PostAuthenticateRequest_EndEventHandler is: “ +
 Context.Items[“AsyncWorkerClass_EndEvent_OperatingSystemThreadIdentity”] +
 “
”);

VB.NET
Response.Write(“The OS thread identity during “ & _
 “PostAuthenticateRequest_BeginEventHandler is: “ & _
 Context.Items(“PostAuthenticateAsync_OperatingSystemThreadID”) & _
 “
”)

Response.Write(“The OS thread identity during “ & _
 “the actual async work is: “ & _
 Context.Items(“AsyncWorkerClass_OperatingSystemThreadIdentity”) & _
 “
”)

Response.Write(“The OS thread identity during “ & _
 “PostAuthenticateRequest_EndEventHandler is: “ & _
 Context.Items(“AsyncWorkerClass_EndEvent_OperatingSystemThreadIdentity”) & _
 “
”)

The following results show the identity information with Anonymous access allowed in IIS and the
<identity /> configured for application impersonation:

The OS thread identity during BeginRequest is: NT AUTHORITY\NETWORK SERVICE
The OS thread identity during PostAuthenticateRequest_BeginEventHandler is:
bhaidar-PC\test
The OS thread identity during the actual async work is: NT AUTHORITY\NETWORK
SERVICE
The OS thread identity during PostAuthenticateRequest_EndEventHandler is: NT
AUTHORITY\NETWORK SERVICE

The OS thread identity when the page executes is: bhaidar-PC\test
The impersonation token from IIS is: NT AUTHORITY\IUSR

As you can see, the Begin event handler uses the default application pool identity NT AUTHORITY\
NETWORK SERVICE instead of the application impersonation account. As previously mentioned above,

79301c03.indd 106 10/6/08 12:10:24 PM

107

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

when an ASP.NET application is running inside the IIS 7.0 Integrated mode, the application imperson-
ation has no effect before the AuthenticateRequest stage, where the request would have been authen-
ticated by both IIS 7.0 and ASP.NET. However, remember from above that the code subscribed to the
PostAuthenticateRequest. At this stage the ASP.NET application impersonation has an effect on the
operating system thread, which is clear from the output above where the operating system thread in the
PostAuthenticateRequest represents that of the ASP.NET application impersonation.

However, during the asynchronous work in the Sleep instance, a thread from the .NET Framework
thread pool was used. Because the application is running in an IIS 7.0 worker process, the default identity
for any operating system threads is the identity of the worker process. In this case, the worker process is
using the default identity of NT AUTHORITY\NETWORK SERVICE. You can clearly see that the application
impersonation has no effect at all here and is regardless of the fact that the request is operating in the
PostAuthenticateRequest stage (where application impersonation takes effect).

The End event handler also executes on a thread pool thread. As a result, the operating system thread
identity is also NT AUTHORITY\NETWORK SERVICE. Do not be mixed up with the fact that the Begin
and End events were registered during the PostAuthenticateRequest stage. The asynchronous work
is done on a separate thread that the .NET Framework has chosen from the thread pool, and hence the
application authentication has no effect on those threads located in the thread pool.

Because the work that occurs in the End event handler is usually limited to just retrieving the results
from the asynchronous call, the identity of the thread at this point should not be an issue. Note that just
from an architectural perspective, you should not be performing any “heavy” processing at this point.
The general assumption is that the End event handler is used for any last pieces of work after asynchro-
nous processing is completed.

This highlights the fact that if a developer depends on the thread identity during asynchronous work
(for example, a call is made to SQL Server using integrated security), the developer is responsible for
impersonating and reverting identities during the asynchronous call, regardless of whether the asyn-
chronous work is performed before or after PostAuthenticateRequest event and whether application
impersonation is enabled or not. Because you own the work of safely manipulating the thread identity
at this point, you may need to carefully wrap all work in a try/finally block to ensure that the thread
pool’s thread identity is always reset to its original state. Although some tricks can be used to marshal
an appropriate security token over to an asynchronous worker class, performing work that requires
specific credentials will always be a bit complicated.

For example, the sample intentionally used application impersonation to show that the application
impersonation identity is not available during asynchronous processing. If an application required this
identity to perform a piece of asynchronous work, you would need to first get a copy of the operating
system thread token in the Begin event (there is a Token property on WindowsIdentity), and then
pass the token to the asynchronous worker class. If the Sleep class is modified to accept a token in its
constructor, it can impersonate the necessary identity in the DoWork method when asynchronous work
is performed:

C#
//the Sleep class is now constructed with:
Sleep s = new Sleep(a.Context.Items,WindowsIdentity.GetCurrent().Token);

public class Sleep
{
 private IDictionary state;

79301c03.indd 107 10/6/08 12:10:24 PM

108

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

 private IntPtr aspnetThreadToken;

 public Sleep(IDictionary appState, IntPtr token)
 {
 state = appState;
 aspnetThreadToken = token;
 }

 public void DoWork()
 {

 WindowsIdentity wi = new WindowsIdentity(aspnetThreadToken);
 WindowsImpersonationContext wic = null;
 try
 {
 wic = wi.Impersonate();

 state[“AsyncWorkerClass_OperatingSystemThreadIdentity”] =
 WindowsIdentity.GetCurrent().Name;
 Thread.Sleep(1000);
 }
 finally
 {
 if (wic != null)
 wic.Undo();
 }
 }

 //StoreAsyncEndID snipped for brevity

}

VB.NET
‘the Sleep class is now constructed with:
Dim s As New Sleep(a.Context.Items, WindowsIdentity.GetCurrent().Token)

Public Class Sleep
 Private state As IDictionary
 Private aspnetThreadToken As IntPtr

 Public Sub New(ByVal appState As IDictionary, ByVal token As IntPtr)
 state = appState
 aspnetThreadToken = token
 End Sub

 Public Sub DoWork()
 Dim wi As WindowsIdentity = Nothing
 If aspnetThreadToken <> IntPtr.Zero Then
 wi = New WindowsIdentity(aspnetThreadToken)
 End If

 Dim wic As WindowsImpersonationContext = Nothing
 Try

79301c03.indd 108 10/6/08 12:10:24 PM

109

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

 If aspnetThreadToken <> IntPtr.Zero Then
 wic = wi.Impersonate()
 End If

state(“AsyncWorkerClass_OperatingSystemThreadIdentity”) _
 = WindowsIdentity.GetCurrent().Name

 Thread.Sleep(1000)
 Finally
 If wic IsNot Nothing Then
 wic.Undo()
 End If
 End Try
 End Sub

 ‘StoreAsyncEndID snipped for brevity

End Class

The result of impersonating the identity during the asynchronous work shows that now the application
impersonation identity is available:

The OS thread identity during BeginRequest_BeginEventHandler is: NT AUTHORITY\IUSR
The OS thread identity during the actual async work is: bhaidar-PC\testThe OS
thread identity during BeginRequest_EndEventHandler is: NT AUTHORITY\NETWORK
SERVICE

Once again it is important to mention that the AsyncEventsModule has been updated to register for the
AddOnPostAuthenticateRequestAsync since only at this event can you see the effect of impersonat-
ing an ASP.NET application. Before the AuthenticateReqesut event occurs, the impersonation will
have no effect on the operating system thread. Moreover, if you plan to see the effect of the ASP.NET
application impersonation during the processing and execution of asynchronous work, you should also
impersonate to retrieve the operating system thread identity, which in this case is also an impersonated
identity due to application impersonation and the location where the asynchronous work is registered
(the PostAuthenticateRequest stage).

Overall, the moral of the story here is that when planning for asynchronous pipeline events, the ques-
tion of the identity needed to carry out the background work needs to be considered early on. If using
the worker process identity is not an option, for simplicity using a fixed set of identity information that
can be loaded from configuration or encapsulated in a worker class may be a better choice than try-
ing to “hop” the ASP.NET thread’s security identity over the wall to the asynchronous worker class.
Although the modifications shown earlier were pretty simple, the actual identity that is used will vary
depending on IIS and ASP.NET security settings. Trying to debug why a background task is failing
will be much more difficult if the task depends on an identity that can be easily changed with a few
misconfigurations.

Although it is not shown here, if the security information required by your asynchronous task is instead
just the IPrincipal from either HttpContext.Current.User or Thread.CurrentPrincipal, you
can pass the IPrincipal reference to your asynchronous worker class. In the case of HttpContext​
.Current.User, it is even easier because you can just pass an HttpContext reference to your worker
class (the sample passed the Items collection from the current HttpContext). You may need the
IPrincipal, for example, if you pass user information to your middle tier for authorization or
auditing purposes.

79301c03.indd 109 10/6/08 12:10:24 PM

110

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

Also, note that in some cases the value of Thread.CurrentPrincipal may appear to be retained
across the main ASP.NET request, and your asynchronous task. However, this behavior should not be
relied on, because it is entirely dependent on which managed thread is selected from the framework’s
thread pool to execute asynchronous tasks.

One last piece of information about managing security for asynchronous tasks is in order. The sample
you looked at used a separate class to carry out the asynchronous work. However, a number of .NET
Framework classes provide methods that return an IAsyncResult reference. For example, both the
System.IO.FileStream and the System.Data.SqlClient.SqlCommand classes support asynchro-
nous reads. As another example, the System.Net.HttpWebRequest class also supports making asyn-
chronous requests to HTTP endpoints. In cases like these, you need to look at the class signatures and
determine if they have any built-in support for passing a security identity along to their asynchronous
processing. In the case of System.Net.HttpWebRequest, there is a Credentials property that you can
explicitly set. When the HttpWebRequest class asynchronously makes a request, it will use the security
information that you set in the Credentials property. A similar ability to automatically pass along the
correct credentials exists when using the SqlCommand and SqlConnection classes.

AuthenticateRequest
The AuthenticateRequest event is the point in the unified HTTP pipeline where both IIS and ASP.NET
participate in authenticating the request. It is at this stage the IIS 7.0 core engine detects the configured
authentication modules and executes them.

The process that IIS follows to authenticate a request has been discussed in details above. Therefore the
focus here will be on the managed authentication side of the authentication process done by ASP.NET. It
is this one that gives developers the opportunity to write code to examine the current security informa-
tion for a request and based upon it, create an IPrincipal implementation and attach it to the current
ASP.NET request. The end result of AuthenticateRequest is that both the managed thread’s identity
(available from Thread.CurrentPrincipal) and the User property of the current HttpContext will
be initialized to an IPrincipal that can be used by downstream code.

Be default, ASP.NET ships with a number of HttpModules that hook the AuthenticateRequest event.
You can see this list (and modify it) in the root web.config configuration file that is available in the
following location:

%windir%\Microsoft.NET\Framework\v2.0.50727\CONFIG

The web.config configuration file in the framework’s CONFIG directory is a concept that was intro-
duced with ASP.NET 2.0. The development teams at Microsoft decided to separate web-specific configu-
ration out of the machine.config configuration file to speed up load times for non-web applications.
As a result, non-ASP.NET applications do not have to chug through configuration sections for features
unsupported outside of a web environment.

Looking at the <httpModules /> configuration element in the root web.config configuration file, the
following entries are for modules that hook AuthenticateRequest:

<add name=”WindowsAuthentication”
 type=”System.Web.Security.WindowsAuthenticationModule” />
<add name=”FormsAuthentication”

79301c03.indd 110 10/6/08 12:10:24 PM

111

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

 type=”System.Web.Security.FormsAuthenticationModule” />
<add name=”PassportAuthentication”
 type=”System.Web.Security.PassportAuthenticationModule” />

Of the three default modules, we will only take a closer look at the WindowsAuthenticationModule
and FormsAuthenticationModule. The PassportAuthentication is not supported anymore on
Windows Vista and Windows Server 2008.

WindowsAuthenticationModule
When the ASP.NET application is running under IIS 7.0 classic mode, the managed Windows
AuthenticationModule is the only authentication module that depends on impersonation token set
by IIS. Its purpose is to construct a WindowsPrincipal based on the authenticated identity set by IIS
when a web.config configuration file contains the setting <authentication mode=”Windows”/>.
The resultant WindowsPrincipal is set as the value of the User property for the current HttpContext.
If a different authentication mode has been configured, the WindowsAuthenticationModule imme-
diately returns whenever it is called during the AuthenticateRequest event. Note that the module
does not look at or use the security identity of the underlying operating system thread when creating a
WindowsPrincipal. As a result, the settings in the <identity /> element have no effect on the output
from the WindowsAuthenticationModule.

On the other hand, when the ASP.NET application is running under IIS 7.0 integrated mode, the managed
WindowsAuthenticationModule behaves differently. It simply disregards the impersonation token set
by IIS 7.0 and focuses on the HttpContext.Current.User property. In case a native authentication mod-
ule was executed and successful, this means there is a valid and authenticated user. As mentioned above,
there is an integrated request processing pipeline mechanism that sets the HttpContext​.Current.User
property to the value of the native User principal. The managed WindowsAuthenticationModule simply
casts the value in the HttpContext.Current.User property into a valid WindowsPrincipal instance.
However, if the native AnonymousAuthenticationModule is enabled, the HttpContext.Current.User
property will be null and not set by the integrated request processing pipeline, since the native Anonymous​
AuthenticationModule runs after all the authentication modules configured in IIS 7.0. Therefore, if the
native AnonymousAuthenticationModule is enabled and the application is running under the IIS 7.0
integrated mode, the managed WindowsAuthenticationModule has no use and can be easily removed
without causing any problem to the application.

The name of the module WindowsAuthenticationModule is a little misleading because in reality this
module does not actually authenticate a user. Authentication usually implies some kind of challenge
(username and password), a response and a resultant representation of the success or failure of the
challenge/response. However, this module is not involved in any challenge/response sequence.

Instead, all this occurs up front in IIS. If IIS is configured to require some type of authenticated access
to an application (Windows using NTLM or Kerberos, Basic, Digest, or Certificate Mapping), then it
is IIS that challenges the browser for credentials according to the enabled authentication types. If the
response succeeds (and in some cases the response involves multiple network round trips to complete
all of the security negotiations), then it is IIS that creates the data that represents a successfully authen-
ticated user by doing all of the following:

Generating the impersonation token that represents the authenticated user and making this ❑❑

identity available to ASP.NET.

79301c03.indd 111 10/6/08 12:10:24 PM

112

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

Setting the values of the ❑❑ LOGON_USER and AUTH_TYPE server variables to reflect the authenti-
cated user and the authentication type that was used.

If the ASP.NET application is running under the IIS 7.0 integrated mode and a native authenti-❑❑

cation module like Basic or Windows authentication is enabled, the integrated request process-
ing pipeline uses a mechanism to set the HttpContext.Current.User property to the value of
the native User principal.

In IIS 7.0 classic mode, WindowsAuthenticationModule just consumes the results of the security
negotiations with IIS and makes the results of these negotiations available as a WindowsPrincipal.
When the LOGON_USER and AUTH_TYPE server variables are empty (that is, no authentication challenge
took place at the IIS 7.0 native authentication modules (the managed WindowsAuthenticationModule
initializes the HttpContext.Current.User property to an anonymous identity that is the value of
WindowsIdentity.GetAnonymous().

This anonymous identity has the following characteristics:

The value of ❑❑ Name is the empty string.

The value of ❑❑ AuthenticationType is the empty string.

IsAnonymous❑❑ is set to true.

IsAuthenticated❑❑ is set to false.

In other words, the managed WindowsAuthenticationModule inspects the LOGON_USER and AUTH_TYPE
server variables for the current request. If those variables are empty, no authentication challenge took
place at the IIS 7.0 level. Consequently, it constructs a WindowsPrincipal containing an anonymous
WindowsIdentity, which determines that no browser user was authenticated for the current request
and simply ignores the impersonation token set by IIS. If the server variables were not empty, the man-
aged WindowsAuthenticationModule constructs a new WindowsPrincipal instance and assigns it to
the HttpContext.Current.User property based on the server variables mentioned at the beginning of
this paragraph. In addition, the Identity property on the User property is initialized to a new instance
of the WindowsIdentity class.

On the other hand, when an application is running in the IIS 7.0 integrated mode, the managed Windows​
AuthenticationModule has a minimal job to do. It simply does some internal initialization based on
the HttpContext.Current.User property’s value that was originally passed a WindowsPrincipal
instance by an integrated request processing pipeline mechanism based on the native User principal.

It was mentioned above that when the native AnonymousAuthenticationModule is enabled and the
application is configured for Windows authentication and running under the integrated mode, the man-
aged WindowsAuthenticationModule will not fire its Authenticate event and will perform only inter-
nal tasks. The reason behind this is that when the native AnonymousAuthenticationModule is enabled,
regardless of the native authentication module configured, no authentication process takes place and
hence regardless what native authentication modules have been configured, the HttpContext​.Current​
.User property is empty. Internally the managed WindowsAuthenticationModule checks if the Iden-
tity property on the HttpContext.Current.User is null in C# or Nothing in VB.NET the Authenti-
cate event never fires.

79301c03.indd 112 10/6/08 12:10:25 PM

113

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

To illustrate how the HttpContext.Current.User property is determined when the native Anony-
mousAuthenticationModule is enabled, let’s go back and check the output log that was generated by
the previous sample code shown above:

The managed thread identity when the page executes is: [null or empty]
The managed thread identity is of type: System.Security.Principal.WindowsPrincipal
The user on the HttpContext when the page executes is: [null or empty]
The user on the HttpContext is of type: System.Security.Principal.WindowsPrincipal
The user on the HttpContext and the thread principal point at the same object: True

Now you know why the IPrincipal attached to both the context and the thread is a WindowsPrincipal
with a username of empty string. The native AnonymousAuthenticationModule is enabled, meaning
that no authentication challenge takes place and hence the integrated request processing pipeline does
not set any value to the HttpContext.Curent.User property. The application is configured by default
with Windows authentication and since the native AnonymousAuthenticationModule runs as the last
authentication module at the AuthenticateRequest stage, it finds out that the User property is still invalid,
and it informs the integrated request processing pipeline to instantiate the HttpContext.Current.User
property to an anonymous WindowsPrincipal instance that has an anonymous Identity property of
type WindowsIdentity.

On the other hand, if an authenticated browser user is detected (i.e., LOGON_USER and AUTH_TYPE are not
empty strings) and the application runs under the IIS 7.0 classic mode, WindowsAuthenticationModule
looks at the impersonation token set by IIS and creates a WindowsIdentity with the token.

Regardless of whether the application is running in either the integrated or classic mode, after the mod-
ule creates a WindowsIdentity (either an authenticated identity in both classic and integrated mode or
an anonymous identity in the classic mode), it raises the Authenticate event. If the event is fired, a
developer can choose to hook the Authenticate event from WindowsAuthenticationModule. The
WindowsIdentity that the module created is passed as part of the event argument of type Windows​
AuthenticationEventArgs. A developer can choose to create a custom principal in their event han-
dler by setting the User property on the WindowsAuthenticationEventArgs event argument. The
thing that is a little weird about this event is that a developer can actually do some pretty strange
things with it. For example:

A developer could technically ignore the ❑❑ WindowsIdentity supplied by the module and create
a custom IIdentity wrapped in a custom IPrincipal implementation and then set this cus-
tom IPrincipal on the WindowsAuthenticationEventArgs User property.

Alternatively, a developer could obtain a completely different ❑❑ WindowsIdentity (in essence
ignoring the request authenticated identity set by IIS) and then wrap it in a WindowsPrincipal
and set it on the event argument’s User property.

In general, though, there is not a compelling usage of the Authenticate event for most applications. The
Authenticate event was originally placed on this module (and others) to make it easier for developers
to figure out how to attach custom IPrincipal implementations to an HttpContext without needing
to create an HttpModule or hook events in global.asax. Architecturally, though, it makes more sense
to just let WindowsAuthenticationModule carry out its work, and not hook the Authenticate event.
If a web application needs to implement a custom authentication mechanism, it should use a custom
HttpModule that itself hooks the AuthenticateRequest pipeline event. Both ASP.NET 2.0 and

79301c03.indd 113 10/6/08 12:10:25 PM

114

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

ASP.NET 3.5 make this approach even easier because you can author the module with a class file
inside of the App_Code directory and just reference the type (without all of the other assembly identifi-
cation information) inside of the <httpModules /> configuration section of the web.config configu-
ration file when the application is running under IIS 7.0 Classic mode, or inside of the <modules />
configuration section of the web.config configuration file when the application is running under
IIS 7.0 Integrated mode.

Once the Authenticate event returns, WindowsAuthenticationModule looks at the User property on
the WindowsAuthenticationEventArgs that was passed to the event. If an IPrincipal was set, the
module sets the value of HttpContext.Current.User to the IPrincipal reference. If the User prop-
erty on the event argument is null, though (the normal case), the module wraps the WindowsIdentity
it determined earlier (either an anonymous WindowsIdentity, or a WindowsIdentity correspond-
ing to the IIS impersonation token) in a WindowsPrincipal, and sets this principal on HttpContext​
.Current.User.

Using the sample application shown earlier in the chapter, look at a few variations of IIS security set-
tings and UNC locations while using Windows authentication. Earlier, you saw the results of running
with AnonymousAuthenticationModule enabled in IIS for a local web application. If instead, some
type of authenticated access is required in IIS (Windows, Digest, Basic, or Certificate Mapping), the
output changes to reflect the authenticated browser user.

The OS thread identity when the page executes is: bhaidar-PC\test
The managed thread identity when the page executes is: bhaidar-PC\bhaidar
The managed thread identity is of type: System.Security.Principal.WindowsPrincipal
The user on the HttpContext when the page executes is: bhaidar-PC\bhaidar
The user on the HttpContext is of type: System.Security.Principal.WindowsPrincipal

Regardless of whether impersonation is in effect (in this case, I enabled application impersonation),
the value of Thread.CurrentPrincipal and HttpContext.Current.User will always reflect the
authenticated browser user (and hence the request authenticated identity set by IIS) when some type
of browser authentication is required.

If the application is running on a UNC share using explicit UNC credentials, continues to function prop-
erly with an exception, which is that when authentication is enabled for an application, it will ignore the
impersonation token generated by IIS that is based on the UNC share credentials and simply uses the cre-
dentials of the authenticated user. Remember that in earlier UNC examples you saw that the imperson-
ation token from IIS always reflected the explicit UNC credentials. Because WindowsAuthentication​
Module creates a WindowsPrincipal that is either an anonymous identity, or an identity matching the
impersonation token from IIS, this means that even in the UNC case there will only ever be one of two
possible WindowsPrincipal objects attached to the thread and the context: an anonymous Windows​
Identity, or an identity matching the authenticated credentials negotiated by the IIS when authenti-
cation was performed.

The following output is for the same application using application impersonation and running on a UNC
share with anonymous access allowed:

The OS thread identity when the page executes is: bhaidar-PC\test
The managed thread identity when the page executes is: [null or empty]
The managed thread identity is of type: System.Security.Principal.WindowsPrincipal
The user on the HttpContext when the page executes is: [null or empty]
The user on the HttpContext is of type: System.Security.Principal.WindowsPrincipal

79301c03.indd 114 10/6/08 12:10:25 PM

115

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

When authenticated access to the application is required, the UNC identity will not have any effect on the
thread and the context identities. Instead, the application impersonation identity will take control. The
account bhaidar-PC\test was used as the application impersonation account throughout this chapter.

The OS thread identity when the page executes is: bhaidar-PC\test
The managed thread identity when the page executes is: bhaidar-PC\bhaidar
The managed thread identity is of type: System.Security.Principal.WindowsPrincipal
The user on the HttpContext when the page executes is: bhaidar-PC\bhaidar
The user on the HttpContext is of type: System.Security.Principal.WindowsPrincipal

The following table summarizes the type of WindowsIdentity that is set on the HttpContext for vari-
ous settings:

Running on a
UNC Share?

Authenticated Access
Required in IIS? WindowsIdentity Set on the HttpContext

No No A WindowsIdentity corresponding to an anonymous
user. WindowsIdentity.GetAnonymous()

No Yes A WindowsIdentity corresponding to the authenticated
browser user

Yes No The value of WindowsIdentity.GetAnonymous()

Yes Yes A WindowsIdentity corresponding to the authenticated
browser user

FormsAuthenticationModule
To start with, FormsAuthenticationModule is now registered on IIS 7.0 once the ASP.NET feature is
enabled on the web server. Hence, this module can now be enabled for an application from the IIS 7.0
Manager tool and of course from inside the <system.webServer /> configuration section group of the
application’s web.config configuration file. In addition, taking advantage of the IIS 7.0 and ASP.NET
integrated mode of execution, FormsAuthenticationModule can be used to authenticate requests for
non-ASP.NET resources. This is because when it is time to authenticate a request, IIS 7.0 and ASP.NET
would be executing the enabled native and managed authentication modules at the same authentica-
tion stage in the unified request-processing pipeline.

FormsAuthenticationModule inspects the cookies and the URL of the incoming request, looking for a
forms authentication ticket (an encrypted representation of a FormsAuthenticationTicket instance).
If the authentication mode is set to forms <authentication mode=”Forms” />, the module will use
a valid ticket to create a GenericPrincipal containing a FormsIdentity, and set the principal on
HttpContext.Current.User. If a different authentication mode has been configured, then the mod-
ule immediately exits during the AuthenticateRequest event.

Before the module attempts to extract a forms authentication ticket, it raises an Authenticate event.
This event is similar in behavior to the Authenticate event raised by WindowsAuthenticationModule.
Developers can choose to hook the Authenticate event on the FormsAuthenticationModule and sup-
ply a custom IPrincipal implementation by setting the User property on the FormsAuthentication​
EventArgs parameter that is passed to the event. After the event fires, if an IPrincipal was set on the
event argument, FormsAuthenticationModule sets the value of HttpContext.Current.User to the
same value, and then exits.

79301c03.indd 115 10/6/08 12:10:25 PM

116

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

In forms authentication, the Authenticate event is a bit more useful, because conceptually “forms”
authentication implies some type of logon form that gathers credentials from a user. Hooking the
Authenticate event can be useful if developers programmatically create a FormsAuthentication​
Ticket, but then need to manage how the ticket is issued and processed on each subsequent request.
As with the WindowsAuthenticationModule, the Authenticate event can be used as just a conve-
nient way to author a completely custom authentication scheme without needing to author and then
register an HttpModule.

If you do not hook the event, the normal processing of FormsAuthenticationModule occurs. In
Chapter 6, on forms authentication, you learn more about the options available for handling forms
authentication tickets. Briefly though, the sequence of steps the module goes through to arrive at a
FormsIdentity are:

	 1.	 The module first gets the encrypted ticket that may have been sent as part of the request. The
ticket could be in a cookie, in a custom HTTP header, in a query-string variable, or in a posted
form variable.

	 2.	 After the module has the ticket, it attempts to decrypt it. If decryption succeeds, the module
now has a reference to an instance of FormAuthenticationTicket. Some other validations
occur, including confirming that the ticket has not expired, and that if SSL is required for
cookie-based tickets that the current request is running under SSL.

	 3.	 If decryption or any of the subsequent validations fail, then the ticket is invalid and the Forms​
AuthenticationModule explicitly clears the ticket by either issuing an outdated cookie or
clearing the cookieless representation from the HTTP_ASPFILTERSESSIONID header. At this
point the module exits, which means no IPrincipal is created or attached to the context.

	 4.	 If a valid ticket was found but the ticket was in a query-string variable or was part of a posted
form variable, the module will transfer the ticket into either a cookie or the cookieless represen-
tation of a forms authentication ticket. A side effect of this is that the module will trigger a redi-
rect if transferring the ticket to a cookieless representation.

	 5.	 The module then creates an instance of a GenericPrincipal. Because forms authentication
has no concept of roles and requires no custom properties or methods on the principal, it uses a
GenericPrincipal. The custom representation for forms authentication is the FormsIdentity
class. By this point, the module has a reference to a FormsAuthenticationTicket instance as
a side effect of the earlier decryption step. It constructs a FormsIdentity, passing in the Forms​
AuthenticationTicket reference to the constructor. The FormsIdentity instance is then
used to construct a GenericPrincipal.

	 6.	 GenericPrincipal is set as the value of the User property on the current HttpContext.

	 7.	 The module may update the expiration date for the ticket if sliding expirations have been
enabled for forms authentication. As with step 4, when working with cookieless tickets, auto-
matically updating the expiration date will trigger a redirect.

	 8.	 FormsAuthenticationModule sets the public SkipAuthorization property on the cur-
rent HttpContext. Note that even though the module sets this property, it does not actually
use it. Instead downstream managed authorization modules can inspect this property when
authorizing a request. The module will set the property to true if either the configured forms
authentication login page is being requested (it would not make any sense to deny access to

79301c03.indd 116 10/6/08 12:10:25 PM

117

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

the application’s login page), or if the current request is for the ASP.NET assembly resource
handler (AssemblyResourceLoader-Integrated), which is configured in the <handlers />
configuration section of the ApplicationHost.config configuration file. The reason for the
extra check for webresource.axd is that it is possible to remove the handler definition from
configuration, in which case ASP.NET no longer considers webresource.axd to be a special
request that should skip authorization.

Unlike WindowsAuthenticationModule, FormsAuthenticationModule sets up security information
that is divorced from any information about the operating system thread identity. In some ways, forms
authentication is a much easier authentication model to use because developers do not have to wrestle
with the intricacies of IIS native authentication modules, UNC shares and ASP.NET’s impersonation
settings.

Tweaking some of the earlier samples to require forms authentication, the following output shows the
results of running an application with the native AnonymousAuthenticationModule enabled in IIS
and application impersonation enabled in ASP.NET.

The OS thread identity when the page executes is: bhaidar-PC\test
The managed thread identity when the page executes is: testuser
The managed thread identity is of type: System.Security.Principal.GenericPrincipal
The user on the HttpContext when the page executes is: testuser
The user on the HttpContext is of type: System.Security.Principal.GenericPrincipal
The request authenticated identity set by IIS is: NT AUTHORITY\NETWORK SERVICE

As you can see, HttpContext and the current thread reflect the GenericPrincipal that is created by
FormsAuthenticationModule. The fact that application impersonation is being used is ignored, as is
the value of the impersonation token set by IIS. Also notice here that, since there is no native authen-
tication module enabled on IIS 7.0 other than the AnonymousAuthenticationModule and the man-
aged FormsAuthenticationModule, the impersonation token generated by IIS defaults to the identity
currently configured for the worker process, in this case it is the NT AUTHORITY\NETWORK SERVICE
identity.

When developing with forms authentication, you probably should still be aware of the operating system
thread identity because it is this identity that will be used when using some type of integrated security
with back-end resources such as SQL Server. However, from a downstream authorization perspective,
using forms authentication means that only the GenericPrincipal (and the contained FormsIdentity)
are relevant when making authorization decisions.

DefaultAuthentication and Thread.CurrentPrincipal
Most of the sample output has included information about the identity of Thread.CurrentPrincipal
and the identity on HttpContext.Current.User. However, in the previous discussions on Windows​
AuthenticationModule and FormsAuthenticationModule, you saw that these modules only set the
value of the User property for the current context.

How then did the same IPrincipal reference make it onto the CurrentPrincipal property of the
current thread? The answer lies within the ASP.NET runtime. Since ASP.NET 1.0, there has been a
“hidden” pipeline event called DefaultAuthentication. This event is not publicly exposed, so as

79301c03.indd 117 10/6/08 12:10:25 PM

118

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

a module author you cannot directly hook the event. However, there is an ASP.NET authentication
module that runs during the DefaultAuthentication event called DefaultAuthentication mod-
ule. As a developer, you never explicitly configure this module. Instead when the ASP.NET runtime is
initializing an application and is hooking up all of the HttpModules it also automatically registers the
DefaultAuthenticationModule. As a result, this module is always running in every ASP.NET appli-
cation. There is no way to “turn off” or unregister the DefaultAuthenticationModule.

This module provides a number of services for an ASP.NET application:

	 1.	 It exposes a public Authenticate event (like the other authentication modules) that a devel-
oper can hook. When running an application in the IIS integrated mode, this event is not fired.
It is required to register for the AuthenticateRequest event instead. Subscribing to the
Authenticate event would throw a PlatformNotSupportedException.

	 2.	 It provides a default behavior for failed authentication attempts.

	 3.	 The module ensures that if the User property has not been set yet, a GenericPrincipal is cre-
ated and set on the current context’s User property.

	 4.	 The module explicitly sets the CurrentPrincipal property of the current thread to the same
value as the current context’s User property.

Initially, DefaultAuthenticationModule looks at the value of Response.StatusCode, and if the status
code is set to a value greater than 200, then the module routes the current request directly to the End​
Request pipeline event. Normally, unless a piece of code explicitly changes the value of Response​
.StatusCode, it defaults to 200 when the Response object is initially created. As a side effect of Default​
AuthenticationModule checking the StatusCode, if DefaultAuthenticationModule detects that
Response.StatusCode was set to 401 (indicating an Access Denied error has occurred), the module
writes out a custom 401 error message to Response prior to handing off the request to the EndRequest
event.

Note that neither WindowsAuthenticationModule nor FormsAuthenticationModule sets the
StatusCode property. So, the behavior in DefaultAuthenticationModule around status codes is
only useful for developers who write custom authentication mechanisms that explicitly set the
StatusCode for failed authentication attempts.

To see this behavior, look at a simple application with an HttpModule that hooks the Authenticate​
Request event. The module just sets the StatusCode property on the response to 401. The application
has only the native AnonymousAuthenticationModule enabled in IIS (this prevents an IIS credentials
prompt from occurring in the sample). In ASP.NET, the application has its authentication mode set to
None, because the normal scenario for depending on the 401 behavior of DefaultAuthentication​
Module makes sense only when you write a custom authentication mechanism:

<!-- registering the HttpModule in web.config -->
<modules>
<add name=”Fake401” type=”ModuleThatForces401”/>
</modules>

<!-- Authentication mode in web.config is set to None --->
<authentication mode=”None”/>

79301c03.indd 118 10/6/08 12:10:25 PM

119

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

C#
public class ModuleThatForces401 : IHttpModule
{
 //Default implementation details left out…

 private void FakeA401(Object source, EventArgs e)
 {
 HttpContext.Current.Response.StatusCode = 401;
 }

 public void Init(HttpApplication context)
 {
 context.AuthenticateRequest += new EventHandler(this.FakeA401);
 }
}

VB.NET
Public Class ModuleThatForces401
 Implements IHttpModule
 ‘ Default implementation details left out…

 Private Sub FakeA401(ByVal source As Object, ByVal e As EventArgs)
 HttpContext.Current.Response.StatusCode = 401
 End Sub

#Region “IHttpModule Members”

 Public Sub Dispose() Implements IHttpModule.Dispose
 Throw New Exception(“The method or operation is not implemented.”)
 End Sub

 Public Sub Init(ByVal context As HttpApplication) Implements IHttpModule.Init
 AddHandler context.AuthenticateRequest, AddressOf FakeA401
 End Sub

#End Region
End Class

Running a website with this module results in a custom error page containing an “Access is denied”
error message generated by DefaultAuthenticationModule.

The DefaultAuthenticationModule does not fire the Authenticate event when an application is
running in the new IIS integrated mode. Therefore, if you want to provide custom authentication, you
should develop an HttpModule and hook into the AuthenticateRequest event. Custom authentica-
tion code running in this event should create an IPrincipal and set it on the current context’s User
property if the custom authentication succeeds. Optionally, you can set StatusCode to 401 (or some
other error code depending on the type of failure). After the managed authentication module finishes
executing, DefaultAuthenticationModule runs and looks at the StatusCode of the current authen-
ticated request and will output custom error information if a 401 is in the StatusCode. Also, any
StatusCode greater than 200 will cause the module to short-circuit the request and reroute it to the
EndRequest pipeline event.

79301c03.indd 119 10/6/08 12:10:25 PM

120

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

If StatusCode is still set to 200 or lower and any custom authentication in the AuthenticateRequest
event succeeds, the DefaultAuthenticationModule checks the current context’s User property. If
the User property is still null (remember that the property defaults to null back when BeginRequest
occurs), the module constructs a GenericPrincipal containing a GenericIdentity with the follow-
ing characteristics:

The username is set to the empty string.❑❑

The authentication type is set to the empty string.❑❑

A zero-length string array is assigned as the set of roles associated with the principal.❑❑

The ❑❑ IsAuthenticated property in the identity returns false.

The reason the module creates the GenericPrincipal is that most downstream authorization code
expects some kind of IPrincipal to exist on the current HttpContext. If the module did not place
at least a default IPrincipal implementation on the User property, developers would probably be
plagued with null reference exceptions when various pieces of authorization code attempted to per-
form IsInRole checks.

After ensuring that default principal exists, the module sets Thread.CurrentPrincipal to the
same value as HttpContext.Current.User. It is this behavior that automatically ensures the thread
principal and the context’s principal are properly synchronized. The fact that ASP.NET has an Http​
Context with a property for holding an IPrincipal creates the potential for an identity mismatch
with the .NET Framework’s convention of storing an IPrincipal on the current thread. Having the
DefaultAuthenticationModule synchronize the two values ensures that developers can use either
the ASP.NET coding convention (HttpContext.Current.User) or the .NET Framework’s coding
convention (Thread.CurrentPrinicpal) for referencing the current IPrincipal, and both coding
styles will reference the same identity and result in the same security decisions. Another nice side effect
of this synchronization is that developers using the declarative syntax for making access checks
([PrincipalPermission(SecurityAction.Demand, Role=“Administrators”]) will also get
the same behavior because PrincipalPermission internally performs an access check against
Thread.CurrentPrincipal (not HttpContext.Current.User).

However, when an application is running in integrated mode, things are much different. Given the
native AnonymousAuthenticationModule is enabled, native WindowsAuthenticationModule is
enabled, ASP.NET application is configured with Windows authentication, this means Anonymous​
AuthenticationModule takes control all over the authentication. It has been mentioned above that
the native AnonymousAuthenticationModule when it finds that there is no native User principal set
yet, it creates a new Windows anonymous principal and through an integrated request processing
pipeline mechanism, the value is passed to the HttpContext.Current.User property. Therefore,
when the DefaultAuthenticationModule runs, it will find out that the HttpContext.Current​
.User property already assigned a value (either an authenticated or anonymous WindowsPrincipal
instance) and hence it does nothing and exits.

PostAuthenticateRequest
This event has already been added in ASP.NET 2.0, along with most of the other Post* events in the
pipeline. The two ASP.NET modules that hook this event are the managed AnonymousIdentifica-
tionModule and RoleManagerModule. Of the two, only RoleManagerModule is actually involved in
security-related work. The AnonymousIdentificationModule hooks PostAuthenticateRequest
because it is early enough in the pipeline for it to issue an anonymous identifier for use with the Profile

79301c03.indd 120 10/6/08 12:10:26 PM

121

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

feature, but it is late enough in the pipeline that it can determine if the current user is authenticated,
and thus an anonymous identifier would not be needed in that case.

Because RoleManagerModule, and the Role Manager feature, is covered in much more detail later
in the book, I will simply say at this point that the purpose of the RoleManagerModule is to create
a RolePrincipal class and set it as the value for both HttpContext.Current.User and Thread​
.CurrentPrincipal. The RolePrincipal class fulfills IsInRole access checks with user-to-role
mappings stored using the Role Manager feature.

It is important for developers to understand that because the PostAuthenticateRequest event
occurs after the DefaultAuthenticationModule has run, any changes made to either HttpContext​
.Current.User or Thread.CurrentPrincipal will not be automatically synchronized. For example,
this is why RoleManagerModule has to set both the context and the thread’s principals. If the module
did not perform this extra work, developers would be left with two different principals and two differ-
ent sets of results from calling IPrincipal.IsInRole.

A simple application that hooks PostAuthenticateRequest illustrates this subtle problem. The
application uses forms authentication, which initially results in same GenericPrincipal on both
the context’s User property and the current principal of the thread. However, the sample application
changes the principal on HttpContext.Current.User to a completely different value during the
PostAuthenticateRequest event.

C#
//Hook PostAuthenticateRequest inside of global.asax
 void Application_PostAuthenticateRequest(Object sender, EventArgs e)
 {
 IPrincipal p = HttpContext.Current.User;

 //Only reset the principal after having logged in with
 //forms authentication.
 if (p.Identity.IsAuthenticated)
 {
 GenericIdentity gi =
 new GenericIdentity(“CompletelyDifferentUser”, “”);
 string[] roles = new string[0];

 HttpContext.Current.User =
 new GenericPrincipal(gi, roles);

 //Ooops - forgot to sync up with Thread.CurrentPrincipal!!
 }
 }

VB.NET
 Private Sub Application_PostAuthenticateRequest(ByVal sender As Object, _
 ByVal e As EventArgs)

 Dim p As IPrincipal = HttpContext.Current.User

 ‘Only reset the principal after having logged in with
 ‘forms authentication.

79301c03.indd 121 10/6/08 12:10:26 PM

122

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

 If p.Identity.IsAuthenticated Then
 Dim gi As New GenericIdentity(“CompletelyDifferentUser”, “”)
 Dim roles(-1) As String

 HttpContext.Current.User = New GenericPrincipal(gi, roles)

 ‘Ooops - forgot to sync up with Thread.CurrentPrincipal!!
 End If

 End Sub

The resulting output shows the mismatch between the thread principal and the context’s principal. The
testuser account is the identity that was logged in with forms authentication.

The managed thread identity when the page executes is: testuser
The managed thread identity is of type: System.Security.Principal.GenericPrincipal
The user on the HttpContext when the page executes is: CompletelyDifferentUser
The user on the HttpContext is of type: System.Security.Principal.GenericPrincipal
The user on the HttpContext and the thread principal point at the same object:
False

Now in practice you would not create a new identity during PostAuthenticateRequest. However,
you may have a custom mechanism for populating roles, much like the Role Manager feature, whereby
the roles for a user are established after an IIdentity implementation has been created for a user.
Hooking PostAuthenticateRequest is a logical choice because by this point you are guaranteed to
have some type of IIdentity implementation available off of the context. But as shown previously,
if you reset the principal during PostAuthenticateRequest, it is your responsibility to also set the
value on Thread.CurrentPrincipal to prevent mismatches later on in the pipeline.

AuthorizeRequest
Now you will turn your attention to the portion of the pipeline that authorizes users to content and
pages. As the name of the pipeline event implies, decisions on whether the current user is allowed to
continue are made during this pipeline event.

ASP.NET ships with two HttpModules configured in the <httpModules /> or <modules /> section
that enforce authorization:

FileAuthorizationModule❑❑

UrlAuthorizationModule❑❑

If you have configured the application to run in the unified integrated mode, the <modules /> sec-
tion entries will take effect, else if the application is operating in the classic mode, then the old usual
<httpModules /> section takes effect.

In addition, IIS adds a new native URLAuthorizationModule that you can enable to run for all content
file types. Configuring this module is similar to the way you configure URLAuthorizationModule in
ASP.NET. The module will be discussed shortly.

Developers can hook this event and provide their own custom authorization implementations as well,
whether it is through native or managed code. By the time the AuthorizeRequest event occurs, the

79301c03.indd 122 10/6/08 12:10:26 PM

123

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

IPrincipal references for the current context and the current thread have been set and should be stable
for the remainder of the request. Although it is technically possible to change either of these identities
during this event (or any other event later in the pipeline), this is not a practice you want to adopt!

FileAuthorizationModule
FileAuthorizationModule authorizes access to content by checking the ACLs on the underlying
requested file and confirming that the current user has either read or read/write access (more on what
defines the “current user” in a bit). For HEAD, GET, and POST requests, the module checks for read access.
For all other verbs, the module checks for both read and write access.

Because ACL checks only make sense when working with a WindowsIdentity, FileAuthorization​
Module is really only useful if both of the following are true:

The ASP.NET application uses Windows authentication.❑❑

The ASP.NET application is not running on a UNC share.❑❑

If an ASP.NET application is running on a UNC share, FileAuthorizationModule does not attempt
any file ACL checks. Instead it just immediately exits. The module has this behavior because UNC based
ASP.NET applications run with the explicit UNC credentials. If these credentials did not have access to
all of the files on the UNC share, the application would fail in IIS anyway. As a result, performing a file
ACL check is redundant (the app made it far enough to start running in ASP.NET; therefore, the UNC
identity has access to the share). Although configuring FileAuthorizationModule in web.config
configuration file for these types of applications is innocuous, developers should probably remove File​
AuthorizationModule from their configuration files because it serves no purpose in the UNC case.

Because FileAuthorizationModule performs file ACL checks, it requires that a WindowsIdentity be
available on HttpContext.Current.User. If some other type of IIdentity implementation is on the
User property, the module automatically grants access and immediately exits. This means file ACLs are
not checked when the authentication mode is set to Forms or None.

Assuming that you are using Windows authentication in ASP.NET, the question arises on how to use
file ACL checks when the AnonymousAuthenticationModule is enabled in IIS. If your site has a mix-
ture of public and private content, you can set more restrictive ACLs on the private content. If an unau-
thenticated browser user attempts to access the private content, then FileAuthorizationModule will
force the browser to authenticate itself (more on this later). If an authenticated user is allowed access to
the file, then he or she will be able to access the private content.

The user token that the FileAuthorizationModule uses for making the access check is the request
authenticated identity set by IIS. From earlier topics, you know that in non-UNC scenarios, the request
authenticated identity is either IUSR or the token associated with an authenticated browser user. This
means that if you want to grant access to anonymous users, what you really need to do is set the NTFS
ACLs on the filesystem to allow read (or read/write access depending the HTTP verbs being used) access
to the IUSR account. If you happened to change the default anonymous user account in the IIS 7.0 Man-
ager tool or through the <anonymousAuthentication /> section in the web.config configuration file,
you would grant access to whatever anonymous user account is currently configured for the application
in IIS.

You can see this behavior pretty easily by explicitly denying access for IUSR when you set up the ACLs
for a file. In IIS, set the application to only allow Anonymous access, i.e., enabling the native Anonymous​

79301c03.indd 123 10/6/08 12:10:26 PM

124

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

AuthenticationModule; this prevents IIS from attempting to negotiate an authenticated identity with
the browser. Now when you try to browse to the file, FileAuthorizationModule will return a 401 sta-
tus code and write out some custom error information stating that access is denied. If you then grant
access on the file to IUSR again, you will be able to successfully browse to the file.

Because it is the request authenticated identity set by IIS that is used for file ACL checks by the module,
other security identities are ignored by FileAuthorizationModule. For example, if you are using
application impersonation, the operating system thread identity will be running as the application
impersonation identity. Although technically nothing prevents you from using application imperson-
ation with file authorization, application impersonation does not affect the request authenticated iden-
tity set by IIS. Because FileAuthorizationModule does not use the operating system thread identity
for its access checks, it ignores the effects of application impersonation and instead the access checks
will always be made against the anonymous or authenticated user account from IIS.

The concept to always remember when using FileAuthorizationModule is that only the anonymous
user account from IIS or the authenticated browser user will be used for the access checks. This also
means that an application needs to run with client impersonation (that is, <identity impersonate​
=”true” /> for file authorization checks to really make any sense.

When FileAuthorizationModule determines that the identity represented by the IIS request authen-
ticated identity does not have read (or read/write access depending on the HTTP verb used), it sets
Response.StatusCode to 401, writes custom error information indicating that access is denied, and
reroutes the request to the EndRequest event in the pipeline.

If the application is configured in IIS to allow authenticated access as part of the security options,
when the 401 result is detected by IIS, it will attempt to negotiate an authenticated connection with the
browser after the 401 occurs. If this negotiation succeeds, the next request to ASP.NET will be made as
an authenticated browser identity. Of course, if the authenticated browser identity also lacks the appro-
priate file access, the subsequent 401 error results in the custom error information from the ASP.NET
module, and no additional authentication negotiation with the browser occurs.

Managed UrlAuthorizationModule
Because an authorization strategy tightly tied to Windows security identities is not always useful
for Internet-facing applications, a more generic authorization mechanism is implemented in Url
AuthorizationModule. Based on the URL authorization rules defined in configuration, the module
uses the IPrincipal on the User property of the current context to compare against the users and
roles that are defined in the authorization rules. Because URL authorization works only against the
User property and the configuration-based authorization rules, it can be used with any type of authen-
tication that sets an IPrincipal on the current context’s User property. For example, if you use Win-
dows authentication with UrlAuthorizationModule, the module uses the WindowsIdentity in the
context’s User property in a generic fashion. The module does not “know” the extra security semantics
available from Windows authenticated users. Instead, the module performs its access checks based
solely off of the value of the Name property on the associated IIdentity and the results of calling
IPrincipal.IsInRole.

As with file authorization, URL authorization also does not depend on the operating system thread
identity. However, URL authorization can be used in conjunction with file authorization. Remember
from previous topics though that the security identity represented by the IIS impersonation token
will not necessarily match the IPrincipal in the User property on the current context. In the case of

79301c03.indd 124 10/6/08 12:10:26 PM

125

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

unauthenticated browser users and Windows authentication, the User property will contain a dummy
principal (username set to empty string) while the request authenticated identity represents the anony-
mous access account configured in IIS. Because of this, be careful when mixing file and URL authoriza-
tion, and keep in mind the different identities that each authorization module depends on.

Before attempting any type of authorization, UrlAuthorizationModule first checks to see if the value
of HttpContext.Current.SkipAuthorization is set to true. Authentication modules have the option
of setting this property to true as a hint to UrlAuthorizationModule. As mentioned earlier, one exam-
ple of this is FormsAuthenticationModule, which indicates that authorization should be skipped when
a user requests the forms authentication login page. If SkipAuthorization is set to true,
UrlAuthorizationModule immediately exits, and no further work is performed.

The module delegates the actual work of authorizing the current User to the AuthorizationSection
configuration class. This class is the root of the portion of the configuration hierarchy that defines the
<authorization /> configuration element and all of the nested authorization rules. Because
<authorization /> definitions can be made at the level of the machine, website, application or an
individual subdirectory, the AuthorizationSection class merges the rules from the hierarchy of appli-
cable configuration files to determine the set of rules that apply for the given page. Note that because of
the merge behavior, the authorization rules defined in configuration files at the most granular configu-
ration level take precedence. For example, this means authorization rules defined in a subdirectory are
evaluated before authorization rules defined at the application level.

The default authorization rules that ship with ASP.NET are defined in the root web.config configura-
tion file located at:

%windir%\Microsoft.NET\Framework\v2.0.50727\CONFIG\web.config

The default rules just grant access to everyone:

 <authorization>
 <allow users=”*” />
 </authorization>

However, rules can either allow or deny access and can do so based on a combination of username,
roles, and HTTP verbs. For example:

 <allow verbs=”GET” users=”John Doe”, role=”Browser Users” />
 <deny verbs=”POST” />

After the merged set of rules have been determined, each authorization rule (defined with <allow />
or <deny /> elements) is iterated over sequentially. The result from the first authorization rule that
matches either the name (User.Identity.Name) or one of the roles (User.IsInRole) is used as the
authorization decision. The sequential nature of the authorization processing has two implications:

	 1.	 It is up to you to order the authorization rules in configuration so that they are evaluated in the
correct order. For example, having a rule that allows access to a user based on a role precede a
rule that denies access to the same user based on name results in the user always being granted
access. ASP.NET does not perform any automatic rule reordering.

	 2.	 A URL authorization check is a linear walk of all authorization rules. From a performance per-
spective, for a specific resource or directory you should place the most commonly applicable

79301c03.indd 125 10/6/08 12:10:26 PM

126

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

rules at the top of the <authorization /> section. For example, if you need to deny access on
a resource for most users, but you allow access to only a small subset of these users, it makes
sense to put the <deny /> element first because that is the most common case.

Using a simple application with a few pages, subdirectories, and authorization rules, we can get a better
idea of the merge behavior and rule ordering behavior for URL authorization. The directory structure
for the sample application is shown in Figure 3-7.

Figure 3-7

There is an .aspx page located in the application root, as well as in each of the two subdirectories.
The application uses forms authentication, with three fixed users defined in the configuration:

<authentication mode=”Forms” >
 <forms>
 <credentials passwordFormat=”Clear”>
 <user name=”Admin” password=”password”/>
 <user name=”DirectoryAUser” password=”password”/>
 <user name=”DirectoryBUser” password=”password”/>
 </credentials>
 </forms>
</authentication>

The web.config configuration file located in the root of the application initially defines authorization
rules as:

<authorization>
 <allow users=”Admin”/>
 <deny users=”*” />
</authorization>

79301c03.indd 126 10/6/08 12:10:26 PM

127

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

When attempting to browse to any page in the application, you must log in as the Admin user to suc-
cessfully reach the page. However, you can add a web.config configuration file into Directory A with
the following authorization rule:

<authorization>
 <allow users=”DirectoryAUser” />
</authorization>

Now both the Admin user and the DirectoryAUser can access the web page located in Directory A.
The reason for this is that, as mentioned earlier, AuthorizationSection merges authorization rules
from the bottom up. The result of defining rules in a web.config configuration file located in a subdi-
rectory as well as in the application’s web.config configuration file is the following evaluation order:

	 1.	 First, rules from Directory A are evaluated.

	 2.	 If no match is found based on the combination of verbs, users and roles, then the rules from the
application’s web.config configuration file are evaluated.

	 3.	 If no match was found using the application’s web.config configuration file, then the root
web.config configuration file located in the framework CONFIG directory is evaluated.
Remember that the default authorization configuration grants access to all users.

With this evaluation order, DirectoryAUser matches the rule defined in the web.config configura-
tion file located in Directory A. However, for the Admin user, no rules matched, so instead the rules in
the application’s web.config configuration file are consulted.

Now add a third web.config configuration file, this time dropping it into Directory B. This configura-
tion file defines the following authorization rule:

<authorization>
 <allow users=”DirectoryBUser” />
</authorization>

Because the evaluation order for accessing pages in Directory B will first reference the web.config
configuration file from Directory B, the DirectoryBUser has access to files in the directory. If you log
in though with DirectoryAUser, you will find that you can still access the files in Directory B. The
reason is that when there is a rule evaluation miss from the web.config configuration file in Directory
B, ASP.NET moves up the configuration hierarchy to next available web.config configuration file—in
this case, the one located in Directory A. Because that web.config configuration file grants access to
DirectoryAUser, that user can also access all resources in Directory B. The same effect of hierarchal
configuration evaluation allows the Admin user access to the all resources in Directory B because the
application’s web.config configuration file grants access to Admin.

You can also get the same effect, and still centralize authorization rules in a single configuration file, by
using <location /> configuration elements. Using <location /> tags, the authorization rules for the
subdirectories are instead defined in the application’s main web.config configuration file:

<system.web>
 <authorization>
 <allow users=”Admin”/>
 <deny users=”*” />
 </authorization>
</system.web>

79301c03.indd 127 10/6/08 12:10:26 PM

128

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

<location path=”Directory_A”>
 <system.web>
 <authorization>
 <allow users=”DirectoryAUser” />
 </authorization>
 </system.web>
</location>

<location path=”Directory_A/Directory_B”>
 <system.web>
 <authorization>
 <allow users=”DirectoryBUser” />
 </authorization>
 </system.web>
</location>

You will have the exact the same login behavior as described earlier when using separate web.config
configuration files. The configuration system treats each <location /> tag as a logically separate
“configuration” file. The end result is that even though the authorization rules are defined in the same
physical web.config configuration file, the <location /> tags preserve the hierarchal nature of the
configuration definitions.

Developers sometimes want to control configuration in a central configuration file for an entire web
server but are unsure of the value to use for the path attribute when referencing individual web appli-
cations. For example, if you want to centrally define configuration for an application called “Test”
located in the Default Web Site in IIS, you can use the following <location /> definition:

 <location path=”Default Web Site/Test” />

So far, the sample application has demonstrated the hierarchal merge behavior of different configura-
tion files and different <location /> elements. If the authorization rule for the Admin user is reversed
with the deny rule:

<authorization>
 <deny users=”*” />
 <allow users=”Admin”/>
</authorization>

the Admin user can no longer access any of the pages. The behavior for DirectoryBUser and DirectoryA​
User remains the same because the other <location /> elements grant these users access. But when the
last set of authorization rules are evaluated, the blanket <deny /> is evaluated first. As a result, any autho-
rization evaluation that reaches this <authorization /> element always results in access being denied.

Note that even though the previous samples relied on authorizing based on the user’s name; the same
logic applies when authorizing based on verb or based on a set of one or more roles.

Of course, what cannot be shown here (but you will see the behavior if you download and try out the
sample) is the behavior when UrlAuthorizationModule denies access to a user. When the module
denies access, it sets Response.StatusCode to 401, writes out some custom error text in the response,
and then short circuits the request by rerouting it to the EndRequest event (basically, the same behavior
as the FileAuthorizationModule). However, for those of you that have used URL authorization before,

79301c03.indd 128 10/6/08 12:10:26 PM

129

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

you know that typically you do not see an access denied error page. Instead, in the case of forms authen-
tication, the browser user is redirected to the login page configured for forms authentication. If an appli-
cation is using Windows authentication and configured to run in the Classic mode, the 401 is a signal to
IIS to attempt to negotiate credentials with the browser based on the application’s security settings in IIS.
If, however, the application is configured to run in the new Intgrated mode and Windows authentication
is enabled, the user will get the chance to see the error text on the screen. Again this is because the appli-
cation is running in the unified processing pipeline. When the AuthorizeReqesut event fires IIS run-
time checks the configured authorization modules. If a native authorization module is enabled, IIS core
engine starts executing it and if there is a managed authorization module enabled, ASP.NET will take
care of processing the authorization process, let it be file or URL authorization

How Character Sets Affect URL Authorization
The character set used to populate the IPrincipal on the context’s User property plays an important
role when authorizing access with UrlAuthorizationModule. When performing an access check based
on the users attribute defined for an authorization rule, UrlAuthorizationModule performs a case-
insensitive string comparison with the value from HttpContext.Current.User.Name. Furthermore,
the comparison is made using the casing rules for the invariant culture and ordering rules based on
ordinal sort ordering.

Because of this, there may be subtle mismatches in character comparisons due to a different character
set being used for the value of a username. For example, the Membership feature in ASP.NET 3.5 stores
usernames in a SQL Server database by default. If a website selects a different collation order than the
default Latin collation, the character comparison rules that are applied at user creation time will not be
the same as the comparison rules UrlAuthorizationModule applies when comparing usernames.

Overall though, there are two simple approaches to avoid any problems caused by using different char-
acter sets for user creation and user authorization:

Do not authorize based on usernames. Instead, only authorize based on roles because the likeli-❑❑

hood of any organization creating two role names that differ only in characters with culture-
specific semantics is extremely low.

Use a character set/collation order in your back-end user store that is a close match with the ❑❑

invariant culture. For SQL Server, the default Latin collation is a pretty close approximation
of the invariant culture. If you are authorizing against WindowsIdentity instances, then you
won’t encounter a problem because usernames in Active Directory are just plain Unicode
strings without culture-specific character handling.

Native UrlAuthorizationModule
IIS 7.0 introduces a new native URLAuthorizationModule that allows administrators or developers to
configure URL authorization for an entire application or for a single page within the application. It is a
much advanced and improved module over the previous authorization modules that used to ship with
previous releases of IIS. Before the days of IIS 7.0, authorization was based on ACLs and Windows
accounts only. This means that when you want to set authorization rules for Windows users or groups
on resources in an application, you would configure ACLs for specific files or folders located in an
application. Depending on ACLs only, limits the authorization to files and folder only, without being
able to use this feature for real URLs. In addition, in previous releases of IIS, only Windows accounts or
groups can be used for file or folder authorization.

79301c03.indd 129 10/6/08 12:10:27 PM

130

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

The new native URLAuthorizationModule introduced by IIS 7.0 has many features:

It can be used to enable authorization for all content types served by IIS. This means, you can ❑❑

enable the new module to authorize access for an entire application regardless of the content file
types included inside it.

It enables authorization rules for both Windows and non-Windows user accounts. Non-Win-❑❑

dows user accounts can be users configured with the application’s ASP.NET Membership and
Role management services.

It can be used to enable authorization for an entire application or for a specific page URL within ❑❑

an application.

It has the ability to function properly when the managed ❑❑ FormsAuthenticationModule is
enabled. The native URLAuthorizationModule can detect and parse FormsAuthenticion​
Tickets, hence being able to retrieve the authenticated username of the current request and
execute the authorization rules to authorize the currently authenticated user.

IIS 7.0 supports the new native module by shipping a new authorization rules UI interface. Selecting an
application in the Features View of IIS, you will notice a new icon called Authorization Rules. Figure 3-8
shows the new UI displayed when the Authorization Rules icon is double-clicked.

Figure 3-8

On the Actions menu you see two links to configure the authorization rules for an application. The
Add Allow Rule… is used to add a new Allow authorization rule to allow a user or group to access the
application. On the other hand, the Add Deny Rule… is used to provide a Deny rule to prevent a user or
group from accessing the application.

Both links have a similar UI window. The only difference is that one will add an Allow rule and the
other will add a Deny rule.

Figure 3-9 shows the UI window that ships with IIS 7.0 to configure URL authorization rules.

79301c03.indd 130 10/6/08 12:10:27 PM

131

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

Figure 3-9

You can add URL authorization rules based on the following criteria:

To allow all users to access the application❑❑

To allow only anonymous users to access the application❑❑

To allow specific role(s) or group(s) to access the application. You can specify multiple roles ❑❑

or users separated by a comma (,) and can be mixed between Windows groups and ASP.NET
roles.

To allow specific users to access the application. You can specify multiple users separated by a ❑❑

comma (,) and can be mixed between Windows users and ASP.NET Membership users.

You can also apply the rule you add to a specific verb by setting the value of the last textbox on the UI
window.

If you look back at Figure 3-9, you will notice two handy links to add ASP.NET users and roles. If you
have already enabled membership and role management services in an application, you will be able to
view the list of all users and roles that are stored in the database of the application. Figure 3-10 shows a
listing of users that are configured in the application.

These steps show you how to configure URL authorization for an entire application. What if you want
to configure URL authorization for a single page? This task has been made easy with the new native
authorization module. Click the application name on the tree of applications in the IIS 7.0 Manager tool,
and then click the Content View tab. A list of all the resources inside the application is listed. Right-click
the specific resource and choose Switch to Features View. You will see a new node with the resource
name selected underneath the application on the tree of applications. Clicking this new node enables

79301c03.indd 131 10/6/08 12:10:27 PM

132

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

you to configure different features per resource in IIS 7.0. You can now follow the same steps taken
above to add authorization rules for the specific resource in the application.

Figure 3-10

Figure 3-11 shows the Features view for a specific selected resource.

Figure 3-11

79301c03.indd 132 10/6/08 12:10:27 PM

133

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

The new native URLAuthorization module can also be configured using the web.config configura-
tion file of an application. The <authorization /> section located inside the <security /> section
group in the <system.webServer /> section group is used to configure URL authorization for an
application or a single page inside the web.config configuration file.

Figure 3-12 shows the hierarchy of a sample application that is used to demonstrate configuring native
URL authorization through configuration settings.

Figure 3-12

The application assumes the following settings:

AnonymousAuthenticationModule❑❑ is enabled on IIS.

BasicAuthenticationModule❑❑ is enabled on IIS.

In addition, two new Windows accounts have been created: bhaidar and test. These accounts will
be used with the basic authentication. The plan is to allow bhaidar to access the entire application and
deny access to the test account. In addition, the DirectoryA_Default.aspx page should allow access
to the test user account only.

To add the configuration settings, you can either use the IIS Manager tool or add the configuration set-
tings yourself into the web.config configuration file. We will select the second option for demonstra-
tion purposes.

First of all make sure the native URLAuthorizationModule is installed. Go to the application’s web​
.config configuration file and locate the <system.webServer /> section group. You will need to add

79301c03.indd 133 10/6/08 12:10:27 PM

134

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

a sub-section group called the <security /> section group. To enable URL authorization, you will
need to add the rules inside the <authorization /> section.

<system.webServer>
 <security>
 <authorization>
 <remove users=”*” roles=”” verbs=”” />
 <add accessType=”Allow” users=”bhaidar” />
 <add accessType=”Deny” users=”test” />
 </authorization>
 </security>
</system.webServer>

First of all, the default URL authorization rule added by IIS 7.0 is removed. To remove the default rule
completely, make sure to empty the roles and verbs attributes, and set * as the value for the users
attribute. Removing the authorization rule allows all users to access the application.

A new authorization rule is added to allow access to the Windows user account bhaidar. The access​
Type attribute is an enumeration that can take as a value either Allow or Deny. Another authorization
rule is added that denies the user test.

Inside the Directory_A, add a new web.config configuration file to configure the authorization rules
for the only .aspx page included inside it.

 <location path=”DirectoryA_Default.aspx”>
 <system.webServer>
 <security>
 <authorization>
 <remove users=”bhaidar” roles=”” verbs=”” />
 <remove users=”test” roles=”” verbs=”” />
 <add accessType=”Allow” users=”test” />
 </authorization>
 </security>
 </system.webServer>
 </location>

A new location element is created to configure the authorization settings for a single .aspx page.
Going back to the requirements, only the test user account should be allowed access to this .aspx
page. Therefore, two new authorization rules are added to remove the propagating effect of the autho-
rization rule that was set at the application level and that grants access to the bhaidar user account. In
addition, you should also remove the propagation effect of the authorization rule that denies access to
the test account set on the application level. Finally, add a new authorization rule that allows access to
the test user account on the .aspx page.

A major difference between the managed URL authorization and the native URL authorization can be
summarized in the following:

Managed URL authorization is configured by default to serve only managed resources, ❑❑

whereas the native URL authorization is enabled to serve all content types. This can be solved
by removing the managed URLAuthorizationModule entry and adding it once again by skip-
ping out the preCondition attribute or setting its value to an empty string (double quotes).

79301c03.indd 134 10/6/08 12:10:27 PM

135

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

Managed URL authorization starts calculating the authorization rules following the ❑❑ Bottom-
up strategy that has been previously explained. On the other hand, the native URL authoriza-
tion calculates the authorization rules following the top-down strategy meaning that authorization
rules at the parent will be evaluated first. In addition, the native URLAuthorizationModule
evaluates Deny rules before evaluating the Allow rules.

IIS will execute the enabled modules according to their order of appearance when they were regis-
tered in the <module /> configuration section with the exception of programmatic ordering that only
native modules can do. The same rule applies on the managed and native URLAuthorizationModules.
Depending on the order of appearance, those modules would execute. The important thing to remem-
ber here is that no matter who runs and executes first, any of the aforementioned modules, if the autho-
rization process fails, the SkipAuthorization property on the HttpContext class will be set to true.
For instance, if the native module runs first and the authorization process fails, when it is time for the
managed module to run, it will check the SkipAuthorization property. If the value is true, then the
managed module will not run, else it will run and authorize the request.

PostAuthorizeRequest Through
PreRequestHandlerExecute

After the AuthorizeRequest event, developers can hook the PostAuthorizeRequest event if there is
custom authorization work that needs to be performed. ASP.NET does not ship with any HttpModules
that hook this event. After PostAuthorizeRequest, there are no other pipeline events intended for
authentication- or authorization-related processing. Although many of the subsequent pipeline events
may use the identity of the current user, the pipeline events up through PreRequestHandlerExecute
are intended for setting up and initializing other information, such as session state data or cached
information used by output and fragment caching.

Technically, you could manipulate the operating system thread identity, the current thread principal, or
the current context’s User property during any subsequent pipeline event. However, there is an implicit
assumption that after PostAuthenticateRequest the security information for the request is stable,
and that after PostAuthorizeRequest no additional authorization is necessary. Because the pipeline
events after PostAuthorizeRequest are involved in retrieving data tied to a user identity (state and
cached data), it is important that any custom authentication or authorization mechanism honors these
assumptions.

Blocking Requests at the IIS Level
IIS 7.0 replaces the old URLScan security add-on with a new native module, RequestFiltering mod-
ule. The new module is configurable through the configuration settings just like any other native mod-
ule configured in the ApplicationHost.config configuration file. The module includes all the core
features of the URLScan add-on and adds a new feature called Hidden Segments.

If you open the ApplicationHost.config configuration file, you will notice the <requestFiltering />
configuration section group:

 <security>
 <requestFiltering>
 <fileExtensions allowUnlisted=”true”>

79301c03.indd 135 10/6/08 12:10:28 PM

136

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

 <add fileExtension=”.asax” allowed=”false” />
 <add fileExtension=”.ascx” allowed=”false” />
 <add fileExtension=”.master” allowed=”false” />

 <add fileExtension=”.cs” allowed=”false” />
 <add fileExtension=”.vsdisco” allowed=”false” />
 </fileExtensions>
 <verbs allowUnlisted=”true” />
 <hiddenSegments>
 <add segment=”web.config” />
 <add segment=”bin” />
 <add segment=”App_code” />
 <add segment=”App_GlobalResources” />
 <add segment=”App_LocalResources” />
 <add segment=”App_WebReferences” />
 <add segment=”App_Data” />
 <add segment=”App_Browsers” />
 </hiddenSegments>
 </requestFiltering>
 </security>

The <fileExtensions /> configuration section lists all the file extensions that are not allowed to be
accessed directly by users. For instance, you may notice an entry for the .ascx extension, which repre-
sents the extension for ASP.NET UserControls.

In addition, the allowUnlisted attribute is a Boolean value, which takes either false or true. By
default, it has the value of true. This means the <fileExtensions /> configuration section allows
requests to all the file types except those listed inside it.

The RequestFiltering module runs before any request-processing pipeline happens inside the IIS
engine. That is why ASP.NET now delegates preventing access to sensitive file type extensions to this
native module. This is done by listing all the file type extensions for which ASP.NET has configured
HttpHandlers to prevent access.

As with other configuration sections, you can configure the file extensions from inside the application’s
web.config configuration file. For instance, to prevent access to content file types with an extension of
.asp, you add the following to the configuration file:

<system.webServer>
 <security>
 <requestFiltering>
 <fileExtensions allowUnlisted=”true”>
 <add allowed=”false” fileExtension=”.asp”/>
 </fileExtensions>
 </requestFiltering>
 </security>
</system.webServer>

When a resource with an extension of .asp is requested through the browser, an error page prepared
by the IIS engine is displayed to the user, as shown in Figure 3-13.

79301c03.indd 136 10/6/08 12:10:28 PM

137

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

Figure 3-13

You have full control over the allowed and prevented extensions in an application. But remember that
the <requestFilering /> configuration section group is locked down by default and to be able to edit
its sections in the application’s web.config configuration file, the module’s overrideModeDefault
attribute should be set to Allow in the ApplicationHost.config configuration file.

 <section name=”requestFiltering” overrideModeDefault=”Allow” />

Another important configuration section inside the <requestFiltering /> configuration section
group is the <hiddenSegments /> section. You can use this section to reject URLs that contain
certain segments. For instance, if you try to access a URL such as http://localhost/Request​
FilteringSample/bin/, you will get an error page prepared by IIS that mentions the existence of
a hiddenSegment that denies access to URLs containing the bin segment. In addition, all ASP.NET
system folders are added to this section and considered to be sensitive segments that no URL should
have direct access to. You can also add any segment you want to the default list found in the
Application​Host.config configuration file. IIS makes sure to reject any direct access to
the hidden segments specified.

The RequestFiltering module has several important security features that are worth looking at. You
can read more on this new native module by checking the online resource at http://learn.iis.net/
page.aspx/143/how-to-use-request-filtering/.

Identity during Asynchronous Page Execution
Earlier in the chapter, I discussed issues with flowing security identities through asynchronous pipe-
line event handlers. The Page handler in ASP.NET 3.5 also supports the concept of asynchronous execu-
tion, and as a result, developers using this functionality should be aware of the security identities for
this case.

79301c03.indd 137 10/6/08 12:10:28 PM

138

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

Things can be a little confusing with asynchronous pages because the Page class supports two different
patterns for carrying out asynchronous tasks. Both approaches, along with the flow of security informa-
tion, are discussed in the next two sections.

Asynchronous PreRender Processing
A developer can request asynchronous support in a page by including the Async attribute in the page
directive:

C#
 <%@ Page Language=”C#” Async=”true” %>

VB.NET
 <%@ Page Language=”VB” Async=”true” %>

To leverage this asynchronous page model, you need to register begin and end event handlers for your
asynchronous task. This approach is exactly the same model as discussed earlier for asynchronous
pipeline events. You typically hook up the async begin and end event handlers inside of a page or con-
trol event where a long-running task would normally occur. For example, instead of making a call to a
high-latency Web Service from inside of a button click event handler, you would instead register your
asynchronous event handlers in the click event handler. Furthermore, you can hook up multiple begin
and end event handlers, and ASP.NET will call each pair of asynchronous event handlers in sequence.

ASP.NET calls into your async begin event handler after the PreRender phase of the page life cycle.
The idea is that high-latency work can be safely deferred until the PreRender phase because the results
of any processing are not needed until the subsequent Render phase of a Page. Inside of your async
begin event handler, you collect whatever data you need to pass to your asynchronous task (page vari-
ables, context data, and so on), and then you invoke the asynchronous task. As with asynchronous pipe-
line events, the asynchronous task that is called during asynchronous page processing runs on a .NET
thread-pool thread. This means it is your responsibility to gather any necessary security information
and “throw it over the wall” to the asynchronous task.

After some indeterminate amount of time has passed, the asynchronous task completes and the ASP.NET
runtime is signaled via a callback. Just as you saw with asynchronous pipeline events, the async end
event for pages executes on a thread-pool thread. The operating system thread identity at this point
will not reflect the security settings you have set in IIS and ASP.NET. Note though that if you imple-
ment your async begin and end event handlers as part of the page’s code-behind class, you can always
get back to the HttpContext associated with the page (that is, this.Context is available). This at least
gives you access to the IPrincipal associated with the request from inside of both the async begin
and end event handlers.

After the end event handler runs, ASP.NET reschedules the page for execution, at which point ASP.NET
reinitializes the operating system thread identity, managed thread identity, and the HttpContext
(including its associated IPrincipal) for the current managed thread.

To demonstrate the security identity handling during asynchronous page execution, you can create an
application with a single asynchronous page that registers for asynchronous PreRender handling. The
page has a single button on it, and the application registers the async begin and end event handlers in
its click event.

79301c03.indd 138 10/6/08 12:10:28 PM

139

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

C#
protected void Button1_Click(object sender, EventArgs e)
{
 //Hook up the async begin and end events
 BeginEventHandler bh = new BeginEventHandler(this.BeginAsyncPageProcessing);
 EndEventHandler eh = new EndEventHandler(this.EndAsyncPageProcessing);

 AddOnPreRenderCompleteAsync(bh, eh);
}

VB.NET
 Protected Sub Button1_Click(ByVal sender As Object, ByVal e As EventArgs)
 ‘Hook up the async begin and end events
 Dim bh As New BeginEventHandler(AddressOf Me.BeginAsyncPageProcessing)
 Dim eh As New EndEventHandler(AddressOf Me.EndAsyncPageProcessing)

 AddOnPreRenderCompleteAsync(bh, eh)
 End Sub

Notice that the event handler delegates are of the exact same type used with asynchronous pipeline
events. The async begin handler is responsible for triggering the asynchronous work and returns the
IAsyncResult reference to ASP.NET.

C#
// Defined as part of the page class
public delegate void AsyncSleepDelegate();

private IAsyncResult BeginAsyncPageProcessing(
 object sender, EventArgs e, AsyncCallback cb, object extraData)
{
 //Output the security information
 //.. code snipped out for brevity …

 //Do the actual asynchronous work
 Sleep s = new Sleep(this.Context.Items);
 AsyncSleepDelegate asd = new AsyncSleepDelegate(s.DoWork);
 return asd.BeginInvoke(cb, asd);
}

VB.NET
 ‘ Defined as part of the page class
 Public Delegate Sub AsyncSleepDelegate()

 Private Function BeginAsyncPageProcessing(ByVal sender As Object, _
 ByVal e As EventArgs, _
 ByVal cb As AsyncCallback, _
 ByVal extraData As Object) _
 As IAsyncResult

 ‘Output the security information

79301c03.indd 139 10/6/08 12:10:28 PM

140

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

 ‘.. code snipped out for brevity …

 ‘Do the actual asynchronous work
 Dim s As New Sleep(Me.Context.Items)
 Dim asd As New AsyncSleepDelegate(AddressOf s.DoWork)
 Return asd.BeginInvoke(cb, asd)
 End Function

The async end event handler in the sample application just outputs more security identity information.
In a real application, you would gather the results of the asynchronous work and probably set the val-
ues of various controls on the page or perhaps data-bind the results to one of the data controls.

C#
private void EndAsyncPageProcessing(IAsyncResult ar)
{
 //Normally you would harvest the results of async processing here
 AsyncSleepDelegate asd = (AsyncSleepDelegate)ar.AsyncState;
 asd.EndInvoke(ar);

 //Output security information
 //.. code snipped out for brevity …
}

VB.NET
 Private Sub EndAsyncPageProcessing(ByVal ar As IAsyncResult)
 ‘Normally you would harvest the results of async processing here
 Dim asd As AsyncSleepDelegate = CType(ar.AsyncState, AsyncSleepDelegate)
 asd.EndInvoke(ar)

 ‘Output the security information
 ‘.. code snipped out for brevity …

 End Sub

As with the asynchronous pipeline event sample, the asynchronous page uses a simple class that sleeps
for one second to simulate a long-running task. A reference to the current HttpContext is passed in the
constructor so that the class can log the operating system thread identity.

C#
public class Sleep
{
 private IDictionary state;

 public Sleep(IDictionary appState)
 {
 state = appState;
 }

 public void DoWork()
 {
 state[“AsyncWorkerClass_OperatingSystemThreadIdentity”] =

79301c03.indd 140 10/6/08 12:10:28 PM

141

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

 WindowsIdentity.GetCurrent().Name;
 Thread.Sleep(1000);
 }
}

VB.NET
Public Class Sleep
 Private state As IDictionary

 Public Sub New(ByVal appState As IDictionary)
 state = appState
 End Sub

 Public Sub DoWork()
 state(“AsyncWorkerClass_OperatingSystemThreadIdentity”) = _
 WindowsIdentity.GetCurrent().Name()
 Thread.Sleep(1000)
 End Sub

End Class

I ran the sample application with the following IIS and ASP.NET configuration settings:

	 1.	 The application ran locally on the web server.

	 2.	 Authenticated access was required in IIS.

	 3.	 An explicit application impersonation identity was used for ASP.NET.

The results of running the application with this configuration are shown here:

The OS thread identity during the beginning of page async processing is:
bhaidar-PC\test
The OS thread identity in the async worker class is: NT AUTHORITY\NETWORK SERVICE
The OS thread identity during the end of page async processing is: NT AUTHORITY\
NETWORK SERVICE
The OS thread identity in Render is: bhaidar-PC\test

You can see that the background worker and the end event run with the default credentials of the
process, despite the fact that the ASP.NET application is configured with application impersonation.
Once the page starts running again in the Render event, though, ASP.NET has reinitialized all of the
security information, and the application impersonation identity is once again used for the operating
system thread identity. The exact same approaches for flowing credentials discussed earlier in the sec-
tion “Thread Identity and Asynchronous Pipeline Events” also apply to the asynchronous PreRender
processing.

Asynchronous Page Using PageAsyncTask
An alternative approach to attributing a page as being is the concept of asynchronous page tasks. This
second approach has many similarities to the previous discussion. As a developer, you still need to del-
egate your high-latency work as a piece of asynchronous processing. Additionally, you hook into the
PageAsyncTask-based processing with a pair of begin and end event handlers.

79301c03.indd 141 10/6/08 12:10:28 PM

142

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

However, there are some important differences in the PageAsyncTask approach. You can create one or
more asynchronous units of work, wrap each piece of work with individual PageAsyncTask instances,
and then hand all of the work off as a single “package” to the page. With the PreRender-based approach,
handling multiple asynchronous tasks is a little more awkward because you either have to coalesce all
of the work yourself inside of a custom class, or you have to carefully hook up a chain of begin and end
event handlers.

Also, when you are wrapping your asynchronous work, you can pass a timeout handler to the
PageAsyncTask that will execute if your asynchronous work takes too long. The actual timeout that
is honored for each piece of asynchronous work defaults to 45 seconds, though this can be changed
by setting the AsyncTimeout property on the page, or by setting an application-wide default in the
<pages /> configuration section. There is also an option to allow all or some of the asynchronous work
to execute in parallel. For example, if a web page required three lengthy web service calls to fetch data,
you could indicate to ASP.NET that all three asynchronous tasks should be kicked off in parallel on
separate worker threads.

Once you have wrapped your asynchronous task with one or more instances of PageAsyncTask, you
register the instances with the Page using the RegisterAsyncTask method. At this point, you have
one of two options: you can do nothing else, in which case ASP.NET will call your asynchronous work
immediately after the PreRender event. You can also take control of exactly when you want the page
to stop normal processing by explicitly calling the ExecuteRegisteredAsyncTasks method. Person-
ally, I think it is more intuitive to explicitly trigger asynchronous processing in a click event handler, as
opposed to waiting for the default PreRender processing.

Up to this point, the differences between PageAsycTask-based processing and the default PreRender
processing have all been in the area of programmability and flexibility. The interesting security behav-
ior around PageAsyncTask-based processing is that ASP.NET will actually reinitialize the operating
system thread identity, managed thread identity, and HttpContext for the end event handler. Note that
you are still responsible for flowing security information to your asynchronous work, but now ASP.NET
at least ensures a balanced set of security information in both the begin and end event handlers.

To highlight this behavior, modify the PreRender example to instead use a PageAsyncTask. The only
difference is that the button click handler has been modified:

C#
protected void Button1_Click(object sender, EventArgs e)
{
 //Hook up the async begin and end events
 //using the PageAsyncTask pattern
 BeginEventHandler bh =
 new BeginEventHandler(this.BeginAsyncPageProcessing);
 EndEventHandler eh =
 new EndEventHandler(this.EndAsyncPageProcessing);

 Object someState = new Object();
 PageAsyncTask pt = new PageAsyncTask(bh, eh, null, someState);

 this.RegisterAsyncTask(pt);

 //Explicitly trigger the async page task at this point

79301c03.indd 142 10/6/08 12:10:28 PM

143

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

 //rather than waiting for PreRender to occur
 this.ExecuteRegisteredAsyncTasks();
}

VB.NET
 Protected Sub Button1_Click(ByVal sender As Object, ByVal e As EventArgs)
 ‘Hook up the async begin and end events
 ‘using the PageAsyncTask pattern
 Dim bh As New BeginEventHandler(AddressOf Me.BeginAsyncPageProcessing)
 Dim eh As New EndEventHandler(AddressOf Me.EndAsyncPageProcessing)

 Dim someState As New Object()
 Dim pt As New PageAsyncTask(bh, eh, Nothing, someState)

 Me.RegisterAsyncTask(pt)

 ‘Explicitly trigger the async page task at this point
 ‘rather than waiting for PreRender to occur
 Me.ExecuteRegisteredAsyncTasks()
 End Sub

Notice that the begin and end event handlers use the same definitions. However, instead of calling
AddOnPreRenderCompleteAsync, the page wraps the event handlers in an instance of PageAsyncTask
(in this case, no timeout event handler is registered) and registers the asynchronous task with the page.
Last, the button click event handler explicitly triggers the execution of the asynchronous work.

Everything else in the sample application remains the same. Running with the same IIS and ASP.NET
configuration as before (local application, application impersonation enabled, authenticated access
required in IIS), the output looks like this:

The OS thread identity during the beginning of page async processing is:
bhaidar-PC\test
The OS thread identity in the async worker class is: NT AUTHORITY\NETWORK SERVICE
The OS thread identity during the end of page async processing is: bhaidar-PC\test
The OS thread identity in Render is: bhaidar-PC\test

As you can see, the third line of output with the operating system thread identity shows that ASP.NET
has restored the application impersonation identity on the thread. Although it is not shown in the out-
put, the IPrincipal available from both Thread.CurrentPrincipal and the context’s User property
correctly reflect the authenticated user in both the begin and end event handlers. Remember, though,
that you cannot rely on the value of Thread.CurrentPrincipal in the asynchronous work itself for
the reasons discussed earlier in the asynchronous pipeline section.

EndRequest
The EndRequest event is the last event in the unified request-processing pipeline. Once a request
starts running in the pipeline, situations can occur that result in termination of the request. As a result,
EndRequest is the only pipeline event that is guaranteed to occur after BeginRequest. Terminating a
request usually results in bypassing all remaining pipeline events and going directly to EndRequest,
with the exception introduced in ASP.NET 3.5, which is the LogRequest event that will also get fired
even if an error occurred in the processing of the current request.

79301c03.indd 143 10/6/08 12:10:28 PM

144

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

If you remember the discussion of the AuthenticateRequest and AuthorizeRequest events,
DefaultAuthenticationModule, FileAuthorizationModule, and UrlAuthorizationModule all
have the capability to forward a request directly to the EndRequest event.

Because EndRequest is guaranteed to always run, it is a convenient place in the pipeline to perform
cleanup tasks or final processing that absolutely must run at the completion of a request. Aside from
security-related processing, EndRequest is also used by other ASP.NET code such as the Session​
StateModule to ensure that session teardown and persistence always occur.

For security purposes, the event is used by FormsAuthenticationModule to carry out custom actions
when an unauthenticated user attempts to access a protected resource. The FormsAuthentication​
Module relies on the value of Response.StatusCode to determine whether any special end request
processing is necessary. Because forms authentication is the most common authentication mode used
for Internet-facing ASP.NET sites, we will concentrate on what the FormsAuthenticationModule
does during this event.

During AuthenticateRequest, the FormsAuthenticationModule is only concerned with verifying
the forms authentication ticket and attaching a FormsIdentity to the current HttpContext. However,
you know that the forms authentication feature supports the ability to automatically redirect unauthen-
ticated users to a login page. FormsAuthenticationModule supports this functionality by checking
the Response.StatusCode property for each request during EndRequest. If it sees that StatusCode
is set to 401 (and, of course, if the authentication mode is set to forms), then the module fetches the cur-
rently configured redirect URL for logins and appends to it a query-string variable called ReturnUrl.
This query-string variable is assigned the value of the currently requested path plus any query string
variables associated with the current request. Then FormsAuthenticationModule issues a redirect to
the browser telling it to navigate to the redirect URL.

Although FormsAuthenticationModule itself never sets a 401 status code, you saw earlier that both
FileAuthorizationModule and UrlAuthorizationModule will set a 401 status code if either module
determines that the user for the current request does not have access to the requested resource.

As an extremely simple example, if you author a page on a site that is configured with forms authentica-
tion and put the following code in the Load event:

Response.StatusCode = 401;

After the page completes, the browser is redirected to the forms authentication login page because of
the 401. In a production application though you would use a custom HTTP module or hook one of the
Authenticate events and set the StatusCode there instead.

Summary
On each ASP.NET request, there are four different security identities to be aware of:

The operating system thread identity.❑❑

The request authenticated identity set by IIS.❑❑

The ❑❑ IPrincipal available on Thread.CurrentPrincipal.

The ❑❑ IPrincipal available from HttpContext.Current.User

79301c03.indd 144 10/6/08 12:10:29 PM

145

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

If you are using Windows authentication in your ASP.NET application, then the impersonation token from
IIS is used to create a WindowsIdentity for both the current thread and the current context. If the cur-
rent request is an anonymous user, then the WindowsIdentity is just the value of WindowsIdentity​
.GetAnonymous. For authenticated users, the WindowsIdentity represents the authenticated user cre-
dentials from the IIS impersonation token. For applications running on a UNC share, the Windows​
Identity that is created represents either the anonymous user account configured in IIS or the cre-
dentials that were used to authenticate the user.

If you are using forms authentication, though, the impersonation token set by IIS has no bearing
on the security information set on the thread and the context. Instead, for authenticated users, the
Form​sAuthenticationModule will create a GenericPrincipal containing a FormsIdentity and
set this value on the current context’s User property.

If no authentication module sets an IPrincipal on the current context’s user property, the hidden
DefaultAuthenticationModule will create a GenericPrincipal with a username set to the empty
string and set this value on the current context’s User property. This module is also responsible for syn-
chronizing the value of the User property with Thread.CurrentPrincipal.

The operating system thread identity starts out as the identity of the IIS6 worker process. However, if
the ASP.NET application is running locally and is using client impersonation, then ASP.NET uses the
IIS impersonation token to switch the operating system thread identity. If the application is running
on a UNC share though, then the operating system thread identity is that of the explicit UNC creden-
tials configured in IIS. If application impersonation is used (regardless of running on a UNC share),
ASP.NET switches the operating system thread identity to match the credentials of the application
impersonation account.

After all of the security identity information is established, developers still need to be careful when
dealing with asynchronous pipeline events and asynchronous page handling. The main thing to
remember is that you need to pass any required security information over to the asynchronous tasks.
Neither ASP.NET nor the .NET Framework will automatically propagate security identities to asynchro-
nous tasks, though there are some .NET Framework classes that make it pretty easy to accomplish this.

Furthermore, a new native module has been introduced in IIS 7.0 named RequestFiltering module
that allows administrators and developers, at the IIS level, to block access to requests based on the file
type extensions. The extensions can be existing ones like .asp, .aspx, .xml, and so forth, or new cus-
tomized file extensions. It can be configured through the application’s web.config configuration file.
In addition, this module gives a variety of handy features to manage the security of a request including
a special section to define hidden segments, in such a way that if any of the listed hidden segments is
found in the URL of a request, the request is automatically rejected by IIS runtime.

79301c03.indd 145 10/6/08 12:10:29 PM

79301c03.indd 146 10/6/08 12:10:29 PM

4
A Matter of Trust

The topics discussed so far have centered on various pieces of security information: encryption
key material, security identities, authentication and authorization, and so on. They dealt with secu-
rity decisions that were tied to some concept of identity. The security identity may have been that
of the browser user, or it may have been the identity of the running process.

A different aspect of ASP.NET security uses the .NET Framework code access security (CAS) func-
tionality to secure the code that runs in an ASP.NET site. Although the concept of code having its
own set of rights has been around since the fi rst version of the .NET Framework, more often than not
the actual use of CAS by developers has been limited. In large part, this has been due to the complex-
ities of understanding just what CAS is as well as how to effectively use CAS with your code.

ASP.NET 1.1 substantially reduced the learning curve with CAS by introducing the concept of
ASP.NET trust levels. In essence, an ASP.NET trust level defi nes the set of rights that you are will-
ing to grant to an application’s code. This chapter thoroughly reviews the concept of ASP.NET
trust levels, as well as new features in ASP.NET 3.5 around enforcement of trust levels that have
not changed since ASP.NET 2.0

You will learn about the following areas of ASP.NET trust levels:

Confi guring and working with ASP.NET trust levels.❑❑

What an ASP.NET trust level looks like.❑❑

How a trust level defi nition actually works.❑❑

Creating your own custom trust levels.❑❑

Details on frequently asked questions for trust level customizations.❑❑

A review of all the permissions defi ned in ASP.NET trust policy fi les.❑❑

Advanced topics on writing code for partial trust environments.❑❑

79301c04.indd 147 10/6/08 12:11:29 PM

148

Chapter 4: A Matter of Trust

What Is an ASP.NET Trust Level?
ASP.NET 1.1, ASP.NET 2.0, and ASP.NET 3.5 have the concept of trust levels. In a nutshell, a trust level
is a declarative representation of security rules that defines the set of .NET Framework classes your
ASP.NET code can call as well as a set of .NET Framework features that your ASP.NET code can use.
The declarative representation of this information is called a trust policy file. Because a trust level is
a declarative representation, you can view the definitions of trust levels by looking at the trust policy
files on disk, and you can edit these files to suit your needs. When you configure an ASP.NET site with a
specific trust level, the application is said to be running in XYZ trust (where XYZ is specific trust level).
Much of the code that runs in an ASP.NET application and certainly all of the code you write in code-
behind files is restricted by the rules defined for the current trust level. Note that ASP.NET trust levels
apply to only ASP.NET applications. Console applications, NT services, Winforms, and other applica-
tions still rely on a developer understanding the .NET Framework CAS features. Currently, no other
execution environments provide a developer-friendly CAS abstraction like ASP.NET trust levels do.

The specific trust levels that ship with ASP.NET 1.1, ASP.NET 2.0, and ASP.NET 3.5 (no new trust levels
were added in ASP.NET 3.5) are listed here from the most permissive to the most restrictive trust level:

Full trust❑❑

High trust❑❑

Medium trust❑❑

Low trust❑❑

Minimal trust❑❑

When trust levels were introduced in ASP.NET 1.1, the decision was made to default all ASP.NET
applications to Full trust. Because many ASP.NET sites were already written with the 1.0 version of
the framework, it was considered too much of a breaking change to default ASP.NET applications to a
more restrictive trust level. In ASP.NET 3.5 this is also the case, with all ASP.NET 3.5 applications also
defaulting to Full trust.

As the name implies, Full trust code can use any class in the .NET Framework and perform any privi-
leged operation available to managed code. However, I admit that this is a pretty theoretical descrip-
tion of Full trust. A much simpler way to think of Full trust is that your code can call any arbitrary
Win32 API. For most IT developer shops this may not be a particularly big deal, especially because
you could already call any Win32 API back in ASP days. However, the .NET Framework was supposed
to bring a security sandbox to managed code developers, and arguably being able to call interesting
Win32 APIs that do things like reformat disk drives does not seem like much of a security sandbox.
The .NET Framework did introduce a very robust code access security framework that allowed develop-
ers to prevent managed code from doing things like reformatting hard drives; there was just the “minor”
problem that you needed to get a PhD in what is definitely one of the more esoteric (though incredibly
powerful) areas of the framework. As a result, ASP.NET 1.0 development left CAS usage up to the indi-
vidual developer, with the result being that future versions of ASP.NET allow Full trust by default.

Running an ASP.NET application in anything other than Full trust means that the application is running
in partial trust, which simply means any piece of managed code (not just ASP.NET code) that has one or

79301c04.indd 148 10/6/08 12:11:29 PM

149

Chapter 4: A Matter of Trust

more CAS restrictions being enforced on it. In the case of ASP.NET, because all trust levels below Full
trust enforce varying degrees of CAS restrictions, running applications in less than Full trust means
these applications are partially trusted by the .NET Framework. As you will see throughout this chapter,
partial trust applications are blocked from certain features of the .NET Framework.

Moving an application from Full trust to High trust is actually a pretty big security move, because run-
ning High trust restricts an ASP.NET application to only the set of rights defined in the High trust policy
file. The specifics of what is allowed for each trust level will be reviewed in detail in the next few sec-
tions, but for now an easy way to think of High trust is that it prevents your ASP.NET code from calling
unmanaged Win32 APIs. If you are unable to apply any of the other information covered in this chapter,
at least try to switch your Internet-facing ASP.NET applications from running in Full trust to running in
High trust. Turning off access to unmanaged Win32 APIs reduces the potential for mischief and unex-
pected consequences in your applications.

The next restrictive trust level is Medium trust. Think of Medium trust as the trust level that a shared
hosting company would want to use. The ASP.NET team attempted to model the set of permissions in
Medium trust to match the set of restrictions that an Internet hosting company would probably want
enforced for each of their customers. In addition to the previous restriction on calling Win32 APIs, the
Medium trust level restricts file I/O access for an ASP.NET application to only the files and folders that
are located within the application’s directory structure. In a shared hosting environment with many
customers, each of whom does not trust any of the other customers, the restrictions in Medium trust
prevent a malicious user from attempting to surf around the host machine’s local hard drive.

Low trust is appropriate for a read-only web server and for web servers running specialized no-code or
low-code applications. The default set of permissions in Low trust allow only read access to the appli-
cation’s directory structure. In addition, Low trust does not allow ASP.NET code to reach out across
the network. For example, in Low trust an ASP.NET application cannot call a SQL Server or use the
System.Net.HttpWebRequest class to make HTTP calls to other web servers. Overall, Low trust is
appropriate for web servers with applications that can effectively run in a standalone mode without
relying on any other external servers. It is also the recommended trust level for developers that imple-
ment no-code or low-code execution environments. For example, SharePoint is an example of an applica-
tion environment that requires no .aspx pages or very few .aspx pages on the web server’s file system.
Developers usually work within the SharePoint environment (which is effectively its own sandbox) and
typically do not need to place many .aspx files directly onto the file system. SharePoint developers also
work within the coding guidelines and restrictions enforced by the SharePoint runtime, which in turn
sits on top of the ASP.NET runtime.

SharePoint v3 (the current version) actually uses a modified variation of ASP.NET’s Minimal trust
level known as WSS_Minimal. The WSS_Minimal is an ASP.NET custom trust level.

The last ASP.NET trust level is Minimal trust. As its name implies, this trust level allows only the most
minimal capabilities for an ASP.NET application. Other than running innocuous code (for example, a
web-based calculator or basic .aspx pages), ASP.NET code running in Minimal trust cannot call into
classes or attempt operations that could cause any type of security risk. This trust level is suitable for
highly secure applications where 99 percent of any complex logic lives within compiled binaries that
are deployed in the Global Assembly Cache (GAC). Because deploying a binary in the GAC requires
administrative privileges, locking an ASP.NET web server down to Minimal trust effectively requires
administrator intervention to deploy any code of consequence onto a web server.

79301c04.indd 149 10/6/08 12:11:29 PM

150

Chapter 4: A Matter of Trust

To summarize at a high level, the following table shows the ASP.NET trust levels and the general con-
cept behind each trust level:

Trust Level Used For

Full Any and all code is allowed to run. Mainly intended for backwards compatibility
with ASP.NET 1.0 and 1.1 applications that were not aware of how to use CAS or
how to work with ASP.NET trust levels.

High Among other restrictions, ASP.NET code cannot call into unmanaged Win32 APIs.
A good first step for securing Internet-facing ASP.NET applications.

Medium Intended as the default trust level for shared hosting environments where multiple
untrusted customers use the same machine. Also recommended for any Internet-
facing production applications.

Low A set of permissions suitable for applications such as SharePoint that provide their
own sandboxed execution environment. Also useful for read-only applications that
don’t require network access to other backend servers.

Minimal Locked down web servers that allow only the barebones minimum in your ASP.NET
code. You will be able to add two numbers together and write out the results to a web
page, but not much else.

Configuring Trust Levels
Now that you have a general idea of the target audience for each trust level, you need to know how to
configure a trust level for your ASP.NET applications. The default of Full trust is defined in the root
web.config file located in the CONFIG subdirectory of the framework installation directory:

%windir%\Microsoft.NET\Framework\v2.0.50727\CONFIG\web.config

At the top of the root web.config file is a location tag with a trust level definition that looks as follows:

 <location allowOverride=”true” >
 <system.web>
 <!-- security policies snipped for brevity -->

 <trust level=”Full” originUrl=”” />

 </system.web>
 </location>

Changing the <trust /> configuration element in the root web.config file affects all ASP.NET applica-
tions running on the machine. The <trust /> element is conveniently located inside of a <location />
element to make it even easier for you to set the trust level for an entire machine, and then prevent anyone
from changing the trust level on other web.config files. For example, if you make the following change
to the location tag:

 <location allowOverride=”false”>

79301c04.indd 150 10/6/08 12:11:29 PM

151

Chapter 4: A Matter of Trust

then the individual applications that attempt to redefine the <trust /> configuration element in
their web.config files will end up with an exception. Because all configuration files located in the
CONFIG directory are ACL’d to only allow the local Adminstrators group and SYSTEM write access, a
malicious developer cannot use an ASP.NET application to make changes to machine.config or the
root web.config file. Chapter 5 goes into more detail about how the configuration system in ASP.NET
3.5 can be used to prevent websites and web applications from changing machine wide settings.

Although making changes to the root web.config file gives a machine administrator a great deal of
leverage over the trust level setting for all applications on the machine, it is also likely that on some
machines you will not be able to enforce a single trust level for all applications.

The <trust /> configuration element can also be defined in the web.config file for individual appli-
cations. This gives you the flexibility to pick and choose the appropriate trust level for different appli-
cations. However, allowing individual applications to change the trust level in their web.config files
may not be something you want to allow for security reasons. As an alternative, you can define multiple
<location /> tags in the root web.config using the syntax shown earlier, but with the addition of a
path attribute that indicates which application the settings apply to. For example, the following configu-
ration element defines the Medium trust level, but the setting applies only to a specific application, as
opposed to all applications on the web server:

 <location path=”Default Web Site/sampleapp” allowOverride=”false” >
 <system.web>

 <trust level=”Medium” originUrl=”” />

 </system.web>
 </location>

Working with Different Trust Levels
To give you a better idea of how trust levels affect an application, let’s use a sample application that
attempts the following operations:

Create an ADO (not ADO.NET) recordset using the primary interop assembly (PIA) that ships ❑❑

for ADO.

Open ❑❑ Notepad.exe for read access. This file is located in the Windows directory.

Connect to the Pubs database running on a local SQL Server.❑❑

Open the application’s local ❑❑ web.config file for reading.

Add two numbers together and output the results using a label control.❑❑

The first operation is interesting because it uses the ADODB primary interop assembly (PIA) that
provides a managed type wrapper around the older COM ADO objects. Calling into a PIA (or any
managed code wrapper for a COM object) involves calling unmanaged code. As a result, running the
following code will only work in Full trust.

79301c04.indd 151 10/6/08 12:11:29 PM

152

Chapter 4: A Matter of Trust

C#
…
 using ADODB;
…
 private void CreateRecordset()
 {
 RecordsetClass rc = new RecordsetClass();
 int fieldCount = rc.Fields.Count;
 }

 protected void btnFull_Click(object sender, EventArgs e)
 {
 try
 {
 //Need to call a separate method so that the exception
 //occurs there, and can then be trapped from the click event.
 this.CreateRecordset();

 lblResults.Text =
 “Successfully created an ADO recordset using the ADO PIA.”;
 }
 catch (Exception ex)
 {
 lblResults.Text = ex.Message + “
” +
 Server.HtmlEncode(ex.StackTrace);
 }
 }

VB.NET
…
 Imports ADODB
…
 Private Sub CreateRecordset()
 Dim rc As New RecordsetClass()
 Dim fieldCount As Integer = rc.Fields.Count
 End Sub

 Protected Sub btnFull_Click(_
 ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnFull.Click
 Try
 ‘Need to call a separate method so that the exception
 ‘occurs there, and can then be trapped from the click event.
 Me.CreateRecordset()

 lblResults.Text = “Successfully created an ADO recordset using the ADO PIA.”
 Catch ex As Exception
 lblResults.Text = ex.Message & “
” & _
 Server.HtmlEncode(ex.StackTrace)
 End Try
 End Sub

79301c04.indd 152 10/6/08 12:11:29 PM

153

Chapter 4: A Matter of Trust

This sample code also requires that the website reference the ADO PIA from web.config, as follows:

<compilation debug=”false”>
 <assemblies>
 <add assembly=”ADODB, Version=7.0.3300.0,
 Culture=neutral, PublicKeyToken=B03F5F7F11D50A3A”/>
 </assemblies>
</compilation>

If you attempt to create an ADO object in less then Full trust, you receive an error message saying,
“assembly does not allow partially trusted callers.” This is .NET Framework shorthand for saying that
the application is running in something other than Full trust, and thus does not have rights to make
calls into the ADO PIA.

You should keep this scenario in mind if you migrate an ASP application to ASP.NET and then attempt
to run the migrated ASP.NET application in anything other than Full trust. Older ASP applications usu-
ally depend on all sorts of COM objects, with ADO just being one of the most prevalent COM objects.
Because calling COM objects from managed code always requires a managed-to-unmanaged code tran-
sition, migrated ASP applications can be a bit problematic to get running in partial trust. Although I
discuss strategies that allow partially trusted applications to call into unmanaged code, migrated ASP
applications are typically so dependent on COM objects that it can be expensive for developers to go
through a converted application and implement workarounds just so the COM interop wrappers can
be used in partial trust.

The second piece of code attempts to open Notepad.exe for read access. Because Notepad.exe is
located in the Windows directory, it clearly lies outside of the file and directory structure of the ASP.NET
application.

C#
string filePath = “c:\\windows\\notepad.exe”;
FileStream fs = File.OpenRead(filePath);
fs.Close();

VB.NET
Dim filePath As String = “c:\windows\notepad.exe”
Dim fs As FileStream = File.OpenRead(filePath)
fs.Close()

This code will successfully run in Full and High trust, but at any other trust level it will result in a
SecurityException, indicating that the request for a FileIOPermission failed. If you have applica-
tions that read and write data files located outside the directory structure of an ASP.NET application,
High trust is realistically as low as you can go in terms of tightening trust levels without using the
sandboxing approach described later in the chapter. You would need to move this type of code to a sepa-
rate assembly and assert the necessary permissions in order to be able to read and write files outside the
application’s directory structure in Medium or lower trust levels.

79301c04.indd 153 10/6/08 12:11:29 PM

154

Chapter 4: A Matter of Trust

The next piece of code uses System.Data.SqlClient to connect to a local database.

C#
string connString =
 @”server=.\SQL2005;database=pubs;Integrated Security=True;”;
sqlConn =
 new SqlConnection(connString);
sqlConn.Open();

VB.NET
Dim connString As String = _
 “server=.\SQL2005;database=pubs;Integrated Security=True;”
sqlConn = New SqlConnection(connString)
sqlConn.Open()

At Medium trust or above, the code runs without a problem. However, Low and Minimal trust do not
grant the necessary permissions to application code. As a result, Low or Minimal trust will result in a
SecurityException, indicating that the request for a SqlClientPermission failed. The ability to
connect to SQL Server is allowed in Medium trust because it is the trust level recommended for shared
hosting machines. Because customers at Internet hosters usually want some type of database access,
SqlClientPermission made sense to add to the Medium trust policy file.

Opening files located within an application’s directory structure in read-only mode is allowed at Low
trust or above.

C#
string filePath = Server.MapPath(“~”) + “\\web.config”;
FileStream fs = File.OpenRead(filePath);
fs.Close();

VB.NET
Dim filePath As String = Server.MapPath(“~”) & “\web.config”
Dim fs As FileStream = File.OpenRead(filePath)
fs.Close()

However, if you lower the trust level to Minimal trust, this code fails with a SecurityException
indicating that the request for a FileIOPermission failed. Although these types of exceptions seem
a bit unclear, it is intentional that the exception information and messages do not expose additional
information. It can be a bit of a pain as a developer to track down what is happening, but the tradeoff
is that additional information, such as specific file paths, or requested access modes, is not accidentally
exposed in an error message that my be rendered in the browser.

I will not show the last piece of sample code, because it is not terribly interesting to add two numbers
together and output the results on a page. The point of the last sample code, though, is to prove that in
Minimal trust you still have the ability to write some code in your ASP.NET pages. Basically, Minimal
trust allows you to write code that depends only on the object instances available on the page and .NET
Framework classes that operate entirely against data located in the application’s memory. However, any

79301c04.indd 154 10/6/08 12:11:29 PM

155

Chapter 4: A Matter of Trust

attempt to use .NET Framework classes that read and write files, communicate with databases and direc-
tory stores, reach out across the network, and so on results in some type of SecurityException.

Anatomy of a Trust Level
You have seen the general idea of how a trust level works. In the following sections, you get a better idea
of how a trust level is defined, as well as the meaning of various security restrictions. The intent of the
next few sections is to give you the information you need to be able to interpret the trust level policy files
that ship with ASP.NET 3.5. Note, though, that the discussion intentionally tries to avoid diving too deep
into the esoteric nature of how .NET Framework CAS works. Thankfully, the information you need to
effectively use trust levels is much smaller than the knowledge required to become a CAS guru!

Finding the Trust Policy File
Medium trust is the default level recommended for hosters supporting untrusted customers. If you con-
figure your server or application to run in Medium trust, ASP.NET must first determine just where the
rules for Medium trust are located. Earlier you saw the configuration example for selecting a trust level,
but some other configuration information was removed. The configuration that follows is what actually
ships with the .Net Framework:

 <location allowOverride=”true”>
 <system.web>
 <securityPolicy>
 <trustLevel name=”Full” policyFile=”internal” />
 <trustLevel name=”High” policyFile=”web_hightrust.config” />
 <trustLevel name=”Medium” policyFile=”web_mediumtrust.config” />
 <trustLevel name=”Low” policyFile=”web_lowtrust.config” />
 <trustLevel name=”Minimal” policyFile=”web_minimaltrust.config” />

 <!-- the following is not in the default web.config
 <trustLevel name=”CustomLevel” policyFile=”mycustomlevel.config” />
 -->

 </securityPolicy>
 <trust level=”Full” originUrl=”” />
 </system.web>
 </location>

The <securityPolicy /> element contains the information ASP.NET needs to map a trust level name
to a specific policy file location on disk. Furthermore, you have the option to define additional trust level
names (in essence, additional trust levels) by adding your own <trustLevel /> configuration elements
within the <securityPolicy /> section. Any trust level defined in this section can be used as a value
for the “level” attribute in the <trust /> element.

All locations defined in the preceding policyFile attributes are assumed to be relative to the follow-
ing location:

%windir%\Microsoft.NET\Framework\v2.0.50727\CONFIG

If you create a custom trust level, the associated policy file must be placed in the CONFIG directory for
ASP.NET to be able to use it. When you look in the CONFIG directory, you will actually see two copies of

79301c04.indd 155 10/6/08 12:11:30 PM

156

Chapter 4: A Matter of Trust

every policy file. For example, the medium trust policy file is defined in web_mediumtrust.config; a
backup copy of the original medium trust policy file is defined in web_mediumtrust.config.default.
Because you can edit the .config files to customize an individual trust policy, and because most of us
will probably also do something wrong the first few times, the .default files are a handy way to get
back to the original policy definitions. Needless to say, don’t edit the .default files, or at the very least,
make a copy of them in a safe place!

String Replacements in Policy Files
After ASP.NET locates the appropriate policy file, it loads it into memory and performs some basic
string replacements inside of it. If you open the medium trust policy file (web_mediumtrust.config)
in a text editor, you will see the following string replacement tokens:

$AppDir$❑❑

$AppDirUrl$❑❑

$CodeGen$❑❑

$OriginHost$❑❑

These replacement tokens exist primarily because the dynamic nature of ASP.NET applications makes it
difficult to statically define all of the security information required to effectively use CAS.

As you can probably infer from the first two string replacement tokens, because ASP.NET applications
can be located anywhere on disk, ASP.NET needs a way to define permissions such that physical file
paths can be flexibly defined. Both $AppDir$ and $AppDirUrl$ are representations of the physical file
path for the application root. For example, if you create an application called MyApplication located
within your wwwroot directory, and you are running off of the C drive, the string replacement tokens
will have values of:

$AppDir$ = c:\inetpub\wwwroot\MyApplication❑❑

$AppDirUrl$ = file:///c:/inetpub/wwwroot/MyApplication❑❑

Because different permission classes require different path representations, ASP.NET supports these
two representations.

The next replacement token, $CodeGen$, is used to represent the physical location on disk where all
compiled code used by ASP.NET is located. As a side note, the term codegen is also shorthand in the
ASP.NET world for any kind of auto-generated code artifacts that ASP.NET emits while running your
application. Using the MyApplication example again, ASP.NET will create a directory structure that
looks something like the following:

%windir%\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\MyApplication \
e63333b8

This entire path, including the random hash value at the end (and there may actually be a few levels
of these strange looking hash values) is used to create the value for $CodeGen$. The actual $CodeGen$
value is a file:/// URL-style representation of this physical path (just like the $AppDirUrl$ used
previously).

79301c04.indd 156 10/6/08 12:11:30 PM

157

Chapter 4: A Matter of Trust

This location is important from a .NET Framework perspective because most of the executable assem-
blies for an ASP.NET application (both the assemblies you drop into the /bin directory and the ones
ASP.NET auto-generates for pages, controls, and so on) are located somewhere within the directory tree
represented by $CodeGen$. This set of code represents user code—the code that you, as a developer,
have written. When running with any trust level other than Full trust, it is primarily user code that is
restricted based on the security settings in the policy file. $CodeGen$ is the way ASP.NET can tell the
.NET Framework where this user code exists.

The last string replacement token, $OriginHost$, does not deal with file locations, but instead is used
to allow developers to define either a specific URL or a URL pattern to be used with classes such as
System.Net.HttpWebRequest. Some of the System.Net classes support CAS restrictions that allow
you to define the set of URL endpoints that can be connected to using these classes. You can supply the
value for $OriginHost$ by putting a value in the originUrl attribute of the <trust /> element, as
shown here:

<trust level=”Medium” originUrl=”http://www.internalwebserviceendpoint.contoso
.com/” />

Defining Sets of Permissions
A central concept to .NET Framework CAS is the idea of a permission set. Because code access secu-
rity is all about applying a set of restrictions to one or more pieces of code, a permission set is a conve-
nient way of grouping multiple restrictions into one logical definition—for example, a permission set.
Because effective CAS usage typically requires varying levels of software restrictions within a single
application, the .NET Framework supports the idea of naming individual permission sets so that devel-
opers can keep track of the intended use of the permission sets.

Inside of the Medium trust policy file, ASP.NET defines the following named permission sets.

FullTrust❑❑

Nothing❑❑

ASP.Net❑❑

As the first named permission set implies, it defines a CAS policy that allows any kind of code or
behavior in the .NET Framework. The definition for FullTrust in the policy file looks like:

<PermissionSet
class=”NamedPermissionSet”
 version=”1”
 Unrestricted=”true”
 Name=”FullTrust”
 Description=”Allows full access to all resources”
 />

<PermissionSet /> elements can contain child elements defining specific permissions. However, the
FullTrust permission set clearly has no child elements. The reason this permission set allows managed
code to pretty much do anything is because of the attribute definition: Unrestricted=”true”. This
syntax indicates that any code that is granted the FullTrust permission set has unrestricted access to all
functionality (including calling Win32 APIs and native code) in the .NET Framework.

79301c04.indd 157 10/6/08 12:11:30 PM

158

Chapter 4: A Matter of Trust

The next permission set, called Nothing, defines absolutely zero permissions, which, given the name, is
what you would expect. The definition for Nothing in the policy file looks like this:

<PermissionSet
class=”NamedPermissionSet”
 version=”1”
 Name=”Nothing”
 Description=”Denies all resources, including the right to execute”
 />

Because the Nothing named permission set has no child elements, and no other attribute values of note,
the permission set effectively defines an empty set of permissions.

The last permission set is the most interesting one, because it is the ASP.NET named permission set
that differs across the various policy files. The FullTrust and Nothing permission set definitions are the
same in all of the policy files. However, it is the varying definitions of the ASP.NET permission set that
gives each trust level its unique behavior. The partial definition for the ASP.NET named permission set
is shown here:

<PermissionSet
class=”NamedPermissionSet”
 version=”1”
 Name=”ASP.Net”>

 <!-- multiple child permissions that will be discussed shortly -->

</PermissionSet>

Because the ASP.NET permission set would be pretty useless without a set of defined permissions, it is
the only named permission set with child elements defining a number of specific security rights for code.

Defining Individual Permissions
An individual permission in a policy file is defined with an <IPermission /> element. The in-memory
representation of many interesting .NET Framework CAS permissions are classes that derive from a
class called CodeAccessPermission. Because the CodeAccessPermission class happens to imple-
ment the IPermission interface, the declarative representation of a CodeAccessPermission is an
<IPermission /> element.

For example, the Medium trust policy file allows user code to make use of the System.Data.SqlClient
classes. The definition of this permission looks like this:

<IPermission
class=”SqlClientPermission”
 version=”1”
 Unrestricted=”true”
/>

Because the System.Data.SqlClient classes do not support more granular permission definitions, the
System.Data.SqlClient.SqlClientPermission is used to allow all access to the main functionality
in the namespace, or deny access to this functionality. The previous definition sets the Unrestricted
attribute to true, which indicates that user code in the ASP.NET application can use any functionality in
System.Data.SqlClient that may demand this permission.

79301c04.indd 158 10/6/08 12:11:30 PM

159

Chapter 4: A Matter of Trust

Some permissions, though, have more complex representations. Usually, the permissions you will find
in the ASP.NET policy files will support multiple attributes on an <IPermission /> element, with the
attributes corresponding to specific aspects of a customizable permission. For example, remember the ear-
lier section describing string replacement tokens in policy files. The System.Security.Permissions
.FileIOPermission is defined in the Medium trust policy file as follows:

<IPermission
class=”FileIOPermission”
 version=”1”
 Read=”$AppDir$”
 Write=”$AppDir$”
 Append=”$AppDir$”
 PathDiscovery=”$AppDir$”
 />

This permission supports a more extensive set of attributes for customizing security behavior. In this
definition, the policy file is stating that user code in an ASP.NET application has rights to read and write
files located within the application’s directory structure. Furthermore, user code in an ASP.NET applica-
tion has rights to modify files (the Append attribute) and retrieve path information within the applica-
tion’s directory structure. When ASP.NET first parses the policy file, it replaces $AppDir$ with the
correct rooted path for the application. That way when the <IPermission /> is deserialized by the
.NET Framework into an actual instance of a FileIOPermission, the correct path information is used
to initialize the permission class.

Later in this chapter in the section titled “The Default Security Permissions Defined by ASP.NET,” you
walk through the individual permissions that are used throughout the various policy files so that you
get a better idea of the default CAS permissions.

How Permission Sets Are Matched to Code
At this point, you have a general understanding of permission sets and the individual permissions that
make up a permission set. The next part of a policy file defines the rules that the .NET Framework uses
to determine which permission sets apply to specific pieces of code. Clearly, CAS wouldn’t be very use-
ful if, for example, all of the assemblies in the GAC were accidentally assigned the named permission set
Nothing. So, there must be some way that the framework can associate the correct code with the correct
set of permissions.

The first piece of the puzzle involves the concept of code evidence, information about a piece of running
code that meets the following criteria:

The .NET Framework can discover, either by inferring it or by having the evidence explicitly ❑❑

associated with the code. Evidence includes things such as where an assembly is located and the
digital signature (if any) of the assembly.

The .NET Framework can interpret evidence and use it when making decisions about assigning ❑❑

a set of CAS restrictions to a piece of code. This type of logic is called a membership condition and
is represented declaratively with the <IMembershipCondition /> element.

The unit of work that the .NET Framework initially uses as the basis for identifying code is the current
stack frame. Essentially, each method that you write has a stack frame when the code actually runs
(ignore compiler optimizations and such). At runtime, when a security demand occurs and the frame-
work needs to determine the correct set of permissions to check against, the framework looks at

79301c04.indd 159 10/6/08 12:11:30 PM

160

Chapter 4: A Matter of Trust

the current stack frame. Based on the stack frame, the framework can backtrack and determine which
assembly actually contains the code for that stack frame. And then backtracking farther, the framework
can look at that assembly and start inferring various pieces of evidence about that assembly.

Looking through the policy file, you will see a number of <CodeGroup /> elements that make use of
evidence. The <CodeGroup /> elements are declarative representations of evidence-based comparisons
used to associate security restrictions to code. I won’t delve into the inner workings of specific code
group classes, because that is a topic suitable to an entire book devoted only to code access security.
Generally speaking, though, a code group is associated with two concepts:

A code group is always associated with a named permission set. Thus, the code group defini-❑❑

tions in the ASP.NET policy files are each associated with one of the following named permis-
sion sets discussed earlier: ASP.Net, FullTrust, or Nothing.

A code group defines a set of one or more conditions that must be met for the framework to con-❑❑

sider a piece of code as being restricted to the named permission set associated with the code
group. This is why <IMembershipCondition /> elements are nested within <CodeGroup />
elements. The definitions of membership conditions rely on the evidence that the framework
determines about an assembly.

The ASP.NET policy files define several <CodeGroup /> elements, with some code groups nested inside
of others. If you scan down the elements, though, a few specific definitions stand out. The very first
definition is shown here:

<CodeGroup
class=”FirstMatchCodeGroup”
 version=”1”
 PermissionSetName=”Nothing”>
 <IMembershipCondition
 class=”AllMembershipCondition”
 version=”1”
 />

This definition effectively states the following: if no other code group definitions in the policy file hap-
pen to match the currently running code, then associate the code with the named permission set called
“Nothing.” In other words, if some piece of unrecognized code attempts to run, it will fail because the
“Nothing” permission set is empty.

Continuing down the policy file, the next two code group definitions are very important.

<CodeGroup
class=”UnionCodeGroup”
 version=”1”
 PermissionSetName=”ASP.Net”>
 <IMembershipCondition
 class=”UrlMembershipCondition”
 version=”1”
 Url=”$AppDirUrl$/*”
 />
</CodeGroup>
<CodeGroup
class=”UnionCodeGroup”

79301c04.indd 160 10/6/08 12:11:30 PM

161

Chapter 4: A Matter of Trust

 version=”1”
 PermissionSetName=”ASP.Net”>
 <IMembershipCondition
 class=”UrlMembershipCondition”
 version=”1”
 Url=”$CodeGen$/*”
 />
</CodeGroup>

These two definitions are where the proverbial rubber hits the road when it comes to the ASP.NET trust
feature. The $AppDirUrl$ token in the first membership condition indicates that any code loaded from
the file directory structure of the current ASP.NET application should be restricted to the permissions
defined in the ASP.NET named permission set. Also notice that the “Url” attribute ends with a /*, which
ensures that any code loaded at or below the root of the ASP.NET application will be restricted by the
ASP.NET permission set.

Similarly, the second code group definition restricts any code loaded from the code generation directory
for the ASP.NET application to the permissions defined in the ASP.NET named permission set. As with
the first code group, the membership condition also ends in a /* to ensure that all assemblies loaded
from anywhere within the temporary directory structure used for the application’s codegen will be
restricted to the ASP.NET permission set.

It is this pair of <CodeGroup /> definitions that associates the ASP.NET named permission set to all
the code that you author in your ASP.NET applications. The pair of definitions also restricts any of the
code you drop into the /bin directory because of course that lies within the directory structure of an
ASP.NET application. These two definitions are also why trust-level customizations (discussed a little
later in this chapter) can be easily made to the ASP.NET named permission set without you needing to
worry about any of the other esoteric details necessary to define and enforce CAS.

The remaining <CodeGroup /> elements in the policy files define a number of default rules, with the
most important one being the following definition:

<CodeGroup
class=”UnionCodeGroup”
 version=”1”
 PermissionSetName=”FullTrust”>
 <IMembershipCondition
 class=”GacMembershipCondition”
 version=”1”
 />
</CodeGroup>

This definition states that any code that is deployed in the GAC is assigned the FullTrust named per-
mission set. This permission set allows managed code to make use of all the features available in the
.NET Framework. Because you can author code and deploy assemblies in the GAC, you have the ability
to create an ASP.NET application with two different levels of security restrictions. User code that lives
within the directory structure of the ASP.NET application will be subjected to the ASP.NET permission
set, but any code that you deploy in the GAC will have the freedom to do whatever it needs to. This con-
cept of full trust GAC assemblies will come up again in the section “Advanced Topics on Partial Trust”
where there is a discussion of strategies for sandboxing privileged code.

79301c04.indd 161 10/6/08 12:11:30 PM

162

Chapter 4: A Matter of Trust

Other Places that Define Code Access Security
Although the previous topics focused on how ASP.NET defines the permission set associations using
a trust policy file, the .NET Framework defines a more extensive hierarchy of code access security set-
tings. Using the .NET Framework 2.0 Configuration MMC, you can create security policies for any of
the following:

Enterprise❑❑

Machine❑❑

User❑❑

This means that you can create declarative representations of permissions, permission sets, and code
groups beyond those defined in the ASP.NET trust policy file.

If your organization defines security policies at any of these levels, it is possible that the permissions
defined in the ASP.NET trust policy file may not exactly match the behavior exhibited by your applica-
tion. This occurs because each successive level of security policy (with the lowest level being the ASP.NET
trust policy) acts sort of like a filter. Only security rights allowed across all of the levels will ultimately be
granted to your code.

With that said, though, in practice many organizations are either unaware of the security configuration
levels, or have considered them too complicated to deal with. That is why ASP.NET trust policies with
their relatively easy-to-understand representations are ideally suited for quickly and easily enforcing
CAS restrictions on all of your web applications.

By default, the .NET Framework defines only restrictive CAS policies for the Machine level. The frame-
work defines a number of different code groups that divvy up code based on where the code was loaded
from. These code group definitions depend on the concept of security zones that you are probably famil-
iar with from Internet Explorer. You might wonder why ASP.NET needs to define its own concept of CAS
with trust levels when zone-based CAS restrictions are already defined and used by the Framework.

ASP.NET cannot really depend on the default Machine level CAS definitions because, for all practical
purposes, ASP.NET code always runs locally. The ASP.NET pages exist on the local hard drive of the
web server, as does the Temporary ASP.NET Files directory. Even in when running from a UNC share,
most of the actual compiled code in an application is either auto-generated by ASP.NET or shadow cop-
ied into the local Temporary ASP.NET Files directory.

As a result, if ASP.NET didn’t use trust levels, all ASP.NET code that you write would fall into the code
group called My_Computer_Zone. The membership condition for this code group is the My Computer
zone, which includes all code installed locally. Because the code group grants full trust to any assem-
blies that are installed locally, this means in the absence of ASP.NET trust levels, all ASP.NET code
runs at full trust. This is precisely the outcome in ASP.NET 1.0, which predated the introduction of
ASP.NET trust levels.

A Second Look at a Trust Level in Action
Earlier you saw an example of using various pieces of code in different trust levels and the failures that
occurred. Now that you have a more complete picture of what exists inside of a trust policy file, reviewing
how trust levels and CAS all hang together is helpful. Figure 4-1 outlines a number of important steps.

79301c04.indd 162 10/6/08 12:11:30 PM

163

Chapter 4: A Matter of Trust

Page code that uses System.Data.SqlClient

System.Data.SqlClient classes demand
SqlClientPermission

ADO.NET continues and runs
the requested method

(0) Application domain CAS
policy established when the
application domain started

SecurityException
is thrown !

(4b) If check fails

(3) Framework checks
appdomain CAS policy

(4a) I
f ch

eck
 su

cce
eds

User code stack frame

(1) Calls into

(2
) P

er
m

is
si

on

de
m

an
d

Figure 4-1

Step 0: Application Domain Policy
As part of ASP.NET’s application domain initialization process, ASP.NET reads configuration to determine
the appropriate trust policy that should be loaded from the CONFIG directory. When the file is loaded, and
the string replacement tokens are processed, ASP.NET calls System.AppDomain.SetAppDomainPolicy
to indicate that permissions defined in the trust level’s policy file are the CAS rules for the application
domain. If your organization also defines CAS rules for the Enterprise, Machine, or User levels, then the
application domain policy is intersected with all of the other predefined CAS rules.

Step 1: User Code Calls into a Protected Framework Class
One of the pieces of code from the sample application shown in the beginning of the chapter attempted
to call into ADO.NET:

C#
string connString =
 @”server=.\SQL2005;database=pubs;Integrated Security=True;”;
sqlConn =
 new SqlConnection(connString);
sqlConn.Open();

79301c04.indd 163 10/6/08 12:11:31 PM

164

Chapter 4: A Matter of Trust

VB.NET
Dim connString As String = _
 “server=.\SQL2005;database=pubs;Integrated Security=True;”
sqlConn = New SqlConnection(connString)
sqlConn.Open()

Attempting to open a connection or run a command using the System.Data.SqlClient’s classes
results in a demand being made in ADO.NET for the SqlClientPermission. ADO.NET makes the
demand by having the framework construct an instance of the SqlClientPermission class and then
calling the Demand method on it.

Step 2: The Demand Flows up the Stack
The technical details of precisely how the Framework checks for a demanded permission are not some-
thing you need to delve into. Conceptually, though, demanding a permission causes the Framework to
look up the call stack at all of the code that was running up to the point that the permission demand
occurred. Underneath the hood, the Framework has a whole set of performance optimizations so that
in reality the code that enforces permission demands doesn’t have to riffle through every last byte in
what could potentially be a very lengthy call stack.

Ultimately, though, the Framework recognizes the user code from the sample page, and it decides to
check the set of permissions associated with the page.

Step 3: Checking the Current CAS Policy
This is where the effects of the ASP.NET trust policy come into play. Because ASP.NET earlier initialized
a set of permissions (code groups and membership conditions for the application domain) the Framework
now has a set of rules that it can reference. If the user code sits on an ASP.NET page, the Framework uses
the UrlMembershipCondition definitions defined earlier in the trust policy file to determine the per-
missions associated with the page code. The page code at this point has actually been compiled into a
page assembly (either automatically or from an earlier precompilation), and this assembly is sitting
somewhere in the Temporary ASP.NET Files directory structure for the current application. Because the
permissions for files located in the codegen directory are the ones from the ASP.NET named permission
set, the Framework looks for the existence of SqlClientPermission in that permission set.

Step 4: The Results of the Check
If the ASP.NET application is running at Medium trust or above, the Framework will find the
SqlClientPermission in the permission set associated with user code. In this case, the Framework
determines that the user code passes the security check, and as a result the original ADO.NET call is
allowed to proceed. What isn’t shown in Figure 4-1 is the extended call stack that sits on top of the code
sitting in the .aspx page. When the Framework determines that the user code has the necessary per-
missions, it continues up the call stack, checking every assembly that is participating on the current
thread. In the case of ASP.NET, though, all code prior to the button click event handler calling ADO.
NET is code that exists in System.Web.dll or some other .NET Framework assembly. Because all
these assemblies exists in the GAC, and GAC’d assemblies have full trust, all of the other code on the
class stack is considered to implicitly have all possible permissions.

On the other hand, if the ASP.NET application is running in Low or Minimal trust, the .NET Framework
will not find a SqlClientPermission for the page’s code, and the permission demand fails with a stack
that looks roughly like:

79301c04.indd 164 10/6/08 12:11:31 PM

165

Chapter 4: A Matter of Trust

Request for the permission of type ‘System.Data.SqlClient.SqlClientPermission,
System.Data, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089’
failed.
at System.Security.CodeAccessSecurityEngine.Check(Object demand, StackCrawlMark&
stackMark, Boolean isPermSet) at System.Security.PermissionSet.Demand() at

The downside of CAS is that when a security exception occurs, it usually results in semi-intelligible
results like those shown previously.

However, when you encounter a security exception (and it is usually an instance of System.Security.
SecurityException that is thrown), with a little probing you can usually pick apart the call stack to
get some idea of what happened. For the previous example, you can see that the bottom of the call stack is
the button click handler; that immediately tells you the user code triggered the call that eventually failed.
Moving up the call stack a bit, System.Data.SqlClient.SqlConnection.PermissionDemand() gives
you an idea of which System.Data.SqlClient class your code is calling.

Moving up the stack a bit more, you see various calls into System.Security.CodeAccessSecurity​
Engine. This class is part of the internal guts of the CAS enforcement capability in the .NET Framework.
Finally, at the top of the stack trace is the information pertaining to the specific permission request that
failed, which in this case is SqlClientPermission. In this example, the SqlClientPermission is
a very simple permission class that represents a binary condition: either code has rights to call into
System.Data.SqlClient, or it doesn’t. As a result, you don’t need additional information to investi-
gate the problem.

So, troubleshooting this problem boils down to figuring out why the code in the button click event
doesn’t have rights to call into various ADO.NET classes. With an understanding of ASP.NET trust
levels in mind, the first thing you would do is determine the current trust level. In this case, I set the
application to run in Minimal trust. In the policy file for Minimal trust, SqlClientPermission has
not been granted to ASP.NET code.

Troubleshooting More Complex Permissions
Although troubleshooting SqlClientPermission is pretty simple, other more complex permission
types are not so easy. For example, the System.Security.Permissions.FileIOPermission class
supports much more granular permission definitions. As you saw earlier in some snippets from the
ASP.NET trust policy files, you can selectively grant access to read files, create files, modify existing
files, and so on. Using the sample application from the beginning of the chapter again, you can attempt
to read a file running in Minimal trust:

C#
string filePath = Server.MapPath(“~”) + “\\web.config”;
FileStream fs = File.OpenRead(filePath);
fs.Close();

VB.NET
Dim filePath As String = Server.MapPath(“~”) & “\web.config”
Dim fs As FileStream = File.OpenRead(filePath)
fs.Close()

79301c04.indd 165 10/6/08 12:11:31 PM

166

Chapter 4: A Matter of Trust

This code results in the following stack trace:

Request for the permission of type ‘System.Security.Permissions.FileIOPermission,
mscorlib, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089’
failed.

at System.Security.CodeAccessSecurityEngine.Check(Object demand, StackCrawlMark&
stackMark, Boolean isPermSet) at
System.Security.CodeAccessPermission.Demand() at
System.Web.HttpRequest.MapPath(VirtualPath virtualPath, VirtualPath baseVirtualDir,
Boolean allowCrossAppMapping) at
System.Web.HttpServerUtility.MapPath(String path) at _Default.btnLow_Click(Object
sender, EventArgs e)

Unfortunately, from this stack trace, you can glean only that some piece of user code (the click event
handler at the bottom of the trace) triggered a call to System.Web.HttpRequest.MapPath and that this
call eventually resulted in a SecurityException because the check for FileIOPermission failed. The
information about the FileIOPermission failure, though, says absolutely nothing about why it failed.
At this point, about the only thing you can do is sleuth around the rest of the stack trace and attempt to
infer what kind of FileIOPermission check failed. Was it read access, write access, or what?

In this case, the call to MapPath gives you a clue because ASP.NET has a MapPath method on the
HttpServerUtility class. Because the purpose of MapPath is to return the physical file path represen-
tation for a given virtual path, you have a clue that suggests something went wrong when attempting to
discover the physical file path.

Because the application is running at Minimal trust, you know that there are no FileIOPermission
definitions inside of the Minimal trust policy file. With the information about MapPath, you can make
a reasonable guess that if you wanted the code in the click event handler to succeed, you would at least
need to create a declarative <IPermission /> for a FileIOPermission that granted PathDiscovery
to the application’s physical directory structure.

One of the other samples attempts to open a file outside of the directory structure of the application
while running in Medium trust. Doing so still fails with a SecurityException complaining about the
lack of a FileIOPermission. However, this time the stack trace includes the following snippet:

Snip…
at System.Security.CodeAccessPermission.Demand()
at System.IO.FileStream.Init(String path, FileMode mode, FileAccess access, Int32
rights, Boolean useRights, FileShare share, Int32 bufferSize, FileOptions options,
SECURITY_ATTRIBUTES secAttrs, String msgPath, Boolean bFromProxy)
at System.IO.FileStream..ctor(String path, FileMode mode, FileAccess access,
FileShare share)
Snip…

Now the stack trace looks a bit more interesting. The snippet shows that one type of file I/O operation
was attempted and during initialization of the FileStream, a demand occurred. Because the failure
involved FileIOPermission, you have enough information in the stack trace to realize that you need
to look at the code that opened the file stream. Depending on the location of the requested file, as well
as the type of access requested, you can look in the trust policy file (Medium trust in this case) and see
which file permissions are granted by default. In this case, because only file I/O permissions within the

79301c04.indd 166 10/6/08 12:11:31 PM

167

Chapter 4: A Matter of Trust

scope of the application’s directory structure are granted, and the code is attempting to open a file in
the %windir% directory, you need to grant extra permissions.

Adding the following permission element allows the application to open notepad.exe even though the
application is running in Medium trust:

<IPermission
class=”FileIOPermission”
 version=”1”
 Read=”c:\\windows\\notepad.exe”
 PathDiscovery=”c:\\windows\\notepad.exe”
 />

Troubleshooting permission failures and the need to edit policy files to fix the failures leads us to the
next topic.

Creating a Custom Trust Level
At some point, you may need to edit the permissions in a trust policy file and create a custom trust
level. Creating a custom trust level involves the following tasks:

	 1.	 Creating a policy file containing your updated permission definitions

	 2.	 Determining the declarative representation of the new permissions

	 3.	 Applying the new trust level to your application

Creating a Policy File
Although you can edit the existing policy files located in the CONFIG directory, unless you are making
minor edits for an existing trust level, you should create a separate policy file that represents the new
custom set of permissions you are defining. Start with the policy file that has the closest set of permis-
sions to those you want to define. This discussion starts with the Medium trust policy file. I made a
copy of the Medium trust policy file and called it web_mediumtrust_custom.config.

After you have a separate copy of the policy file, you need to edit some configuration settings so that a
trust level is associated with the policy file. Hooking up the policy file up so that it is available for use
requires editing the root web.config file located in the framework’s CONFIG subdirectory. Remember
earlier that you looked at the <securityPolicy /> configuration element. Creating the following
entry inside of the <securityPolicy /> element makes the custom policy file available for use as a
custom trust level:

<securityPolicy>

 <!-- default trust levels -->
 <trustLevel name=”Medium_Custom”
 policyFile=”web_mediumtrust_custom.config” />

 </securityPolicy>

Now ASP.NET applications that need the set of permissions defined inside of web_mediumtrust_custom​
.config can simply reference the Medium_Custom trust level.

79301c04.indd 167 10/6/08 12:11:31 PM

168

Chapter 4: A Matter of Trust

Determining Declarative Permission Representations
So far you have been looking at preexisting permission definitions. However, these declarative repre-
sentations must have come from somewhere and must follow some type of expected schema; otherwise,
it would be a free-for-all when class implementers tried to determine the correct <IPermission />
definitions for a permission.

Two pieces of information are necessary for enabling new permissions in a policy file:

The class information for the security permission class❑❑

The declarative XML representation of the permission❑❑

Determining the class information for a new permission is pretty simple. Usually you know what piece
of code you are attempting to enable in a partial trust application, so you know the calls that are being
made and that are failing.

The first example of creating a new custom permission attempts to enable OleDb for use in Medium
trust. You can determine the permission that is necessary to enable usage of the classes in System​
.Data.OleDb by first attempting to run a page that uses OleDb in Medium trust and looking at the fail-
ure information. The following code initially does not work in Medium trust because the policy file for
Medium trust only grants the SqlClientPermission:

C#
 OleDbConnection oc =
 new OleDbConnection(“Provider=SQLOLEDB;” +
 @”Data Source=.\SQL2005;Initial Catalog=pubs;” +
 “Integrated Security=True;Connect Timeout=30”);
 oc.Open();

 OleDbCommand ocmd = new OleDbCommand(“select * from authors”, oc);
 OleDbDataReader or = ocmd.ExecuteReader();

VB.NET
 Dim oc As New OleDbConnection(“Provider=SQLOLEDB;” & _
 ControlChars.CrLf & _
 “Data Source=.\SQL2005;Initial Catalog=Pubs;” _
 & ControlChars.CrLf & “Integrated Security=SSPI;”)
 oc.Open()
 Dim ocmd As New OleDbCommand(“select * from authors”, oc)
 Dim orr As OleDbDataReader = ocmd.ExecuteReader()

Running the code results in the following exception information:

[SecurityException: Request for the permission of type ‘System.Data.OleDb.
OleDbPermission, System.Data, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a
5c561934e089’ failed.]

How convenient! The first piece of information is right there in the exception information. Using
<IPermission /> elements in a trust policy file requires that you first register the type of the per-
mission class that you are defining. This is necessary because the IPermission interface is a generic
representation of a code-access permission, but you are attempting to define very specific permissions,

79301c04.indd 168 10/6/08 12:11:31 PM

169

Chapter 4: A Matter of Trust

sometimes with additional attributes or nested permissions that are unique to the specific class of per-
mission you are working with.

You can register the OleDbPermission type in your custom policy file by copying the information out
of the exception dump, and into a <SecurityClass /> element, as shown here:

<SecurityClasses>
 <!-- pre-defined security classes snipped for brevity -->

 <SecurityClass
 Name=”OleDbPermission”
 Description=”System.Data.OleDb.OleDbPermission, System.Data,
 Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089”/>

 </SecurityClasses>

The Name attribute can actually be set to any string value because it is used by individual <IPermis-
sion /> elements to reference the correct permission type. However, you would normally use the class
name without other type or namespace information as the value for the Name attribute. The Descrip-
tion attribute is set to a type string that the .NET Framework uses to resolve the correct permission
type at runtime. In the previous example, the Descrption attribute has been set to the strong type defi-
nition that is conveniently available from the exception text.

Now that the permission class information has been entered into the policy file, the next step is to
determine the declarative representation of an OleDbPermission. The easiest way to do this in the
absence of any documentation for a XML representation as follows:

C#
using System.Data.OleDb;
using System.Security;
using System.Security.Permissions;
…
 protected void Page_Load(object sender, EventArgs e)
 {
 OleDbPermission odp =
 new OleDbPermission(PermissionState.Unrestricted);

 SecurityElement se = odp.ToXml();

 Response.Write(Server.HtmlEncode(se.ToString()));
 }

VB.NET
Imports System.Data.OleDb
Imports System.Configuration
Imports System.Collections
Imports System.Security
Imports System.Security.Permissions
…
 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load

79301c04.indd 169 10/6/08 12:11:31 PM

170

Chapter 4: A Matter of Trust

 Dim odp As New OleDbPermission(PermissionState.Unrestricted)

 Dim se As SecurityElement = odp.ToXml()

 Response.Write(Server.HtmlEncode(se.ToString()))
 End Sub

The sample code constructs an instance of the permission class, passing it a value from the System​
.Security.Permissions.PermissionState enumeration. The sample code essentially creates a
permission that grants unrestricted permission to the full functionality of the System.Data.OleDb
namespace. The XML representation of the permission is created by calling ToXML() on the permis-
sion, which results in an instance of a System.Security.SecurityElement. A SecurityElement is
the programmatic representation of the XML for a permission. You can get the string representation of
the XML by calling ToString() on the SecurityElement. The end result of running this code is the
declarative representation of an OleDbPermission instance:

<IPermission
 class=”System.Data.OleDb.OleDbPermission, System.Data, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089”
 version=”1”
 Unrestricted=”true”
/>

This representation is almost exactly what you need to drop into your custom policy file, with one
minor change. Because you already defined a <SecurityClass /> earlier for the OleDbPermission
type, the lengthy type definition isn’t required. Instead, you want to enter the following XML into your
custom policy file:

<IPermission
 class=”OleDbPermission”
 version=”1”
 Unrestricted=”true”
/>

The class attribute will be interpreted as a reference to a permission class that is keyed by the name
OleDbPermission. Because you created a <SecurityClass /> earlier named OleDbPermission,
at runtime the Framework will correctly infer that the <IPermission /> definition here is for an
instance of the type defined by the OleDbPermission security class.

You can place the <IPermission /> declaration anywhere within the list of <IPermission /> ele-
ments that are nested underneath the <PermissionSet /> element for the ASP.NET named permis-
sion set. The following XML shows where to place the OleDbPermission declaration:

<PermissionSet
 class=”NamedPermissionSet”
 version=”1”
 Name=”ASP.Net”>

<!-- other default IPermission definitions -->
<IPermission
 class=”OleDbPermission”
 version=”1”
 Unrestricted=”true”

79301c04.indd 170 10/6/08 12:11:31 PM

171

Chapter 4: A Matter of Trust

/>

</PermissionSet>

At this point, the edits to the policy file are complete, and the only task left is to associate the sample
application with the custom trust level defined by this policy file.

Applying the New Trust Level
Earlier, you defined a new trust level called Medium_Custom for the modified policy file. The sample
ASP.NET application can use this trust level by redefining the trust level in its web.config:

<trust level=”Medium_Custom” />

With the creation of the custom trust policy file and the use of the custom trust level, when you run
the sample code shown earlier, the application is able to open an OleDb connection and make a query
against the pubs database.

Additional Trust Level Customizations
You have seen how to enable unrestricted OleDb permissions for an ASP.NET application. However,
permission classes sometimes allow for more extensive customizations. In this section, you will take a
look at a few of the more common (or more confusing!) permissions classes you may encounter

Customizing OleDbPermission
The OleDbPermission class allows more than just a simple binary decision on class usage. For exam-
ple, hosters frequently want to enable Access (aka Jet) databases for their customers, but at the same
time they don’t want to throw the doors wide open to any kind of OleDb drivers being used.

For example, let’s say you wanted to allow use of only the System.Data.OleDb classes with the follow-
ing restrictions:

Only Access could be used through OleDb. Any other data provider, including OleDb-based ❑❑

SQL Server access, is disallowed.

To prevent any type of extended information from being passed on the connection string, you ❑❑

allow only customers to set the database location, username, and password.

You can model this set of restrictions in code using the OleDbPermission class, as shown here:

C#
OleDbPermission odp =
new OleDbPermission(PermissionState.None);

odp.Add(“Provider=Microsoft.Jet.OLEDB.4.0”,
 “data source=;user id=;password=;”,
 KeyRestrictionBehavior.AllowOnly);

SecurityElement se = odp.ToXml();
Response.Write(Server.HtmlEncode(se.ToString()));

79301c04.indd 171 10/6/08 12:11:31 PM

172

Chapter 4: A Matter of Trust

VB.NET
Dim odp As New OleDbPermission(PermissionState.Unrestricted)

odp.Add(“Provider=Microsoft.Jet.OLEDB.4.0”, _
 “data source=;user id=;password=;”, _
 KeyRestrictionBehavior.AllowOnly)

Dim se As SecurityElement = odp.ToXml()
Response.Write(Server.HtmlEncode(se.ToString()))

Unlike the first example of using OleDbPermission, this code uses the Add method to selectively add
the set of allowed connection strings that can be used with System.Data.OleDb. The Add method in
the previous code says that connection strings that reference the Jet provider are allowed. Allowable
connection strings can be further modified with the data source, user id, and password attributes.
Attempts to create an OleDbConnection with a connection string that does not follow these constraints
will result in a SecurityException.

Writing out the XML representation of the permission, and modifying the class attribute as mentioned
earlier results in the following declarative syntax that can be placed in a custom policy file:

<IPermission class=”OleDbPermission” version=”1” >

<add ConnectionString=”Provider=Microsoft.Jet.OLEDB.4.0”
 KeyRestrictions=”data source=;user id=;password=;”
 KeyRestrictionBehavior=”AllowOnly”
/>
</IPermission>

Notice how you now have a <IPermission /> element that itself contains nested security information.
Permission classes are free to define whatever XML representation they require and this additional
information can be nested within <IPermission />. This allows permission classes to manage col-
lections of security information, rather than being restricted to a single static definition of one security
rule. In the case of OleDbPermission, this enables you to define as many connection string constraints
as you need, although this example defines only the single constraint.

If you run the sample code shown earlier that connects to SQL Server, a security exception is thrown.
However, if instead you attempt to connect to an MDB database, as the following example shows,
everything works:

C#
//Using a Sql connection string at this point will result in a SecurityException
 OleDbConnection oc = new OleDbConnection(
 “Provider=Microsoft.Jet.OLEDB.4.0;” +
 @”data source=C:\inetpub\wwwroot\379301_code\379301 +
 @ch04_code\cs\TrustLevels\\ASPNetdb_Template.mdb;”);
 oc.Open();

 OleDbCommand ocmd = new OleDbCommand(“select * from aspnet_Applications”, oc);
 OleDbDataReader or = ocmd.ExecuteReader();

79301c04.indd 172 10/6/08 12:11:31 PM

173

Chapter 4: A Matter of Trust

VB.NET
 Dim oc As New OleDbConnection(_
 “Provider=Microsoft.Jet.OLEDB.4.0;” & _
 “data source=C:\inetpub\wwwroot\379301_code\379301 ch04_code\” & _
 “cs\TrustLevels\\ASPNetdb_Template.mdb;”)
 oc.Open()

 Dim ocmd As New OleDbCommand(“select * from aspnet_Applications”, oc)
 Dim orr As OleDbDataReader = ocmd.ExecuteReader()

If a hoster provisioned only a specific database name (or names), you could even go one step further
and define the <IPermission /> in the custom policy file to restrict access to a predefined name:

<IPermission class=”OleDbPermission” version=”1” >

<add ConnectionString=”Provider=Microsoft.Jet.OLEDB.4.0;datasource=$AppDir$\
ASPNetdb_Template.mdb”
 KeyRestrictions=”user id=;password=;”
 KeyRestrictionBehavior=”AllowOnly”
 />

</IPermission>

Notice how the ConnectionString attribute in the <add /> element now also includes the data source
definition. Furthermore, KeyRestrictions no longer allows you to specify a custom value for data
source. Because ASP.NET performs a string search-and-replace for all tokens in a trust policy file, you
can use the replacement token $AppDir$ inside of the ConnectionString attribute. The previous defi-
nition has the net effect of restricting an ASP.NET application to using only an Access database called
ASPNetdb_Template.mdb located in the root of the application’s physical directory structure. Attempt-
ing to use any other Access MDB will result in a SecurityException.

Customizing OdbcPermission
Another data access technology that many folks use in ASP.NET is ODBC. Even though it probably
seems a bit old-fashioned to still be using ODBC (as I like to half-joke: every few years Microsoft needs
to release an entirely new data access technology due to our predilection for reorgs), it is still widely
used due to the prevalence of ODBC drivers that have been around for years. In many cases, database
back ends that are no longer actively supported are accessible only through proprietary APIs or custom
ODBC drivers. Another reason ODBC can be found on ASP.NET servers is that customers using the
open-source MySQL database used to need the MySQL ODBC driver, although recently a .NET driver
for MySQL was released.

If you want to enable ODBC for your ASP.NET applications, you can follow the same process shown
earlier for OleDb. A <SecurityClass /> element needs to be added to the custom policy file that reg-
isters the OdbcPermission class:

<SecurityClass Name=”OdbcPermission”
 Description=”System.Data.Odbc.OdbcPermission, System.Data, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089”/>

79301c04.indd 173 10/6/08 12:11:31 PM

174

Chapter 4: A Matter of Trust

Next, you need to determine what the declarative representation of an OdbcPermission looks like.
Modifying the OleDb sample code used earlier, the following snippet outputs the XML representation
of a permission that allows only the use of the Access provider via the System.Data.Odbc classes:

C#
OdbcPermission odp =
 new OdbcPermission(PermissionState.None);

odp.Add(“Driver={Microsoft Access Driver (*.mdb)};”,
 “Dbq=;uid=;pwd=;”,
 KeyRestrictionBehavior.AllowOnly);

SecurityElement se = odp.ToXml();
Response.Write(Server.HtmlEncode(se.ToString()));

VB.NET
Dim odp As New OdbcPermission(PermissionState.None)

odp.Add(“Driver={Microsoft Access Driver (*.mdb)};”, _
 “Dbq=;uid=;pwd=;”, KeyRestrictionBehavior.AllowOnly)

Dim se As SecurityElement = odp.ToXml()

Response.Write(Server.HtmlEncode(se.ToString()))

The OdbcPermission class actually has a programming model that is very similar to the OleDb
Permission class. You can add multiple connection string related permissions into a single instance
of OdbcPermission. Running the previous code, and then tweaking the output to use the shorter refer-
ence in the class attribute, results in the following <IPermission /> declaration:

<IPermission class=”OdbcPermission” version=”1” >
 <add ConnectionString=”Driver={Microsoft Access Driver (*.mdb)};”
 KeyRestrictions=”Dbq=;uid=;pwd=;”
 KeyRestrictionBehavior=”AllowOnly”/>
</IPermission>

Although the syntax of the connection string text is a bit different to reflect the ODBC syntax, you can
see that the permission declaration mirrors what was shown earlier for OleDb.

With this permission added to the custom trust policy file, the code that uses Access will run without
triggering any security exceptions.

C#
//The following won’t work when only Access connection strings are allowed in the
//trust policy file.
//OdbcConnection oc =
// new OdbcConnection(“Driver={SQL Server};” +
// “Server=foo;Database=pubs;Uid=sa;Pwd=blank;”);

79301c04.indd 174 10/6/08 12:11:31 PM

175

Chapter 4: A Matter of Trust

 OdbcConnection oc = new OdbcConnection(
 “Driver={Microsoft Access Driver (*.mdb)};” +
 @”Dbq=C:\inetpub\wwwroot\379301_code\379301 ch04_code\cs\” +
 @TrustLevels\\ASPNetdb_Template.mdb;”);
 oc.Open();

 OdbcCommand ocmd = new OdbcCommand(“select * from aspnet_Applications”, oc);
 OdbcDataReader or = ocmd.ExecuteReader();

VB.NET
 ‘The following won’t work when only Access
 ‘conn strings are allowed for ODBC
 ‘OdbcConnection oc =
 ‘ new OdbcConnection(“Driver={SQL Server};Server=foo;
 Database=pubs;Uid=sa;Pwd=blank;”);
 Dim oc As New OdbcConnection(_
 “Driver={Microsoft Access Driver (*.mdb)};” & _
 “Dbq=C:\inetpub\wwwroot\379301_code\379301 ch04_code\cs” & _
 “\TrustLevels\\ASPNetdb_Template.mdb;”)
 oc.Open()

 Dim ocmd As New OdbcCommand(“select * from aspnet_Applications”, oc)
 Dim orr As OdbcDataReader = ocmd.ExecuteReader()

However, attempting to create an OdbcConnection with a SQL Server-style connection string results in
a SecurityException because it is disallowed by the permission definition in the trust policy file.

Allowing ODBC and OLEDB in ASP.NET
Now that you have seen how to enable ODBC and OleDb inside of partial trust ASP.
NET applications, you should be aware that running either of these technologies
reduces the security for your web applications. Many drivers written for ODBC and
OleDb predate ASP.NET and for that matter predated widespread use of the Internet
in some cases. The designs for these drivers didn’t take into account scenarios such as
shared hosters selling server space to customers on the Internet.

For example, the Jet provider for Access can be used to open Excel files and other
Office data formats in addition to regular MDB files. Because many Office files, includ-
ing Access databases, support scripting languages like VBScript, it is entirely possible
for someone to use an Access database as a tunnel of sorts to the unmanaged code
world. If you lockdown an ASP.NET application to partial trust but still grant selective
access with the OleDbPermission, developers can write code to open an arbitrary
Access database. After that happens, a developer can issue commands against the
database that in turn trigger calls into VBScript or to operating system commands and
of course when that happens, you are basically running the equivalent of an ASP page
with the capability to call arbitrary COM objects.

Continued

79301c04.indd 175 10/6/08 12:11:32 PM

176

Chapter 4: A Matter of Trust

Because the .NET Framework CAS system does not extend into the code that runs inside
of an Access database, after the OleDbPermission demand occurs, the Framework is no
longer in the picture. In the case of Access, the Jet engine supports Registry settings that
enable a sandboxed mode of operation. The sandbox prevents arbitrary code from being
executed as the side effect from running a query. There may be additional avenues,
though, for running scripts in Access databases. (I admit to having little experience in
Access, which is probably a good thing!) Overall, the general advice is to thoroughly
research the vagaries of whatever ODBC or OleDb drivers you are supporting and as
much as possible, implement the mitigations suggested by the various vendors.

Using the WebPermision
One of the permissions defined in the Medium and High trust files is for the System.Net.Web
Permission. This is probably one of the most confusing permissions for developers to use due to the
interaction between the <trust /> element and the settings for this permission. The default declara-
tion looks like this:

<IPermission
 class=”WebPermission”
 version=”1”>
 <ConnectAccess>
 <URI uri=”$OriginHost$”/>
 </ConnectAccess>
</IPermission>

As with some of the other permissions you have looked at, the WebPermission supports multiple sets
of nested information. Although a WebPermission can be used to define both outbound and inbound
connection permissions, normally, you use WebPermission to define one or more network endpoints
that your code can connect to. The default declaration shown previously defines a single connection
permission that allows partially trusted code the right to make a connection to the network address
defined by the <URI /> element.

However, the definition for this element has the string replacement token: $OriginHost$. This defini-
tion is used conjunction with the <trust /> element, which includes an attribute called originHost
and its value is used as the replacement value for $OriginHost$. For example, if you define the follow-
ing <trust /> element:

<trust level=”Medium_Custom” originUrl=”http://www.microsoft.com/”/>

. . . when ASP.NET processes the trust policy file, it will result in a permission that grants connect
access to http://www.microsoft.com/. Although the attribute is called originUrl, the reality is that
the value you put in this attribute does not have to be your web server’s domain name or host name.
You can set a value that corresponds to your web farm’s domain name if, for example, you make web
service calls to other machines in your environment. However, you can just as easily use a value that
points at any arbitrary network endpoint as was just shown. One subtle and extremely frustrating
behavior to note here is that you need to have a trailing / at the end of the network address defined in the
originUrl attribute. Also, when you write code that actually uses System.Net classes to connect to this
endpoint, you also need to remember to use a trailing / character.

79301c04.indd 176 10/6/08 12:11:32 PM

177

Chapter 4: A Matter of Trust

With the <trust /> level setting shown previously, the following code allows you to make an HTTP
request to the Microsoft home page and process the response:

C#
HttpWebRequest wr = (HttpWebRequest)WebRequest.Create(“http://www.microsoft.com/”);
HttpWebResponse resp = (HttpWebResponse)wr.GetResponse();

Response.Write(resp.Headers.ToString());

VB.NET
Dim wr As HttpWebRequest = CType(_
WebRequest.Create(“http://www.microsoft.com/”), _
HttpWebRequest)
Dim resp As HttpWebResponse = CType(wr.GetResponse(), HttpWebResponse)

Response.Write(resp.Headers.ToString())

Because the WebPermission class also supports regular expression based definitions of network end-
points, you can define originUrl using a regular expression. The reason regular expression-based URLs
are useful is that the WebPermission class is very precise in terms of what it allows. Defining a permis-
sion that allows access to only www.microsoft.com means that your code can access only that specific
URL. If you happened to be curious about new games coming out, and created an HttpWebRequest for
www.microsoft.com/games/default.aspx, then a SecurityException occurs.

You can rectify this by instead defining originUrl to allow requests to any arbitrary page located
underneath www.microsoft.com.

<trust level=”Medium_Custom” originUrl=”http://www\.microsoft\.com/.*”/>

Notice the trailing .* at the end of the originUrl attribute. Now the System.Net.WebPermis-
sion class will interpret the URL as a regular expression; the trailing .* allows any characters to occur
after the trailing slash. With that change, the following code will work without throwing any security
exceptions:

C#
HttpWebRequest wr =
 (HttpWebRequest)WebRequest.Create(“http://www.microsoft.com/games/default.aspx”);

VB.NET
Dim wr As HttpWebRequest = CType(_
WebRequest.Create(“http://www.microsoft.com/games/default.aspx”), _
HttpWebRequest)

Although the examples shown all exercise the HttpWebRequest class directly, the most likely use you
will find for a custom WebPermission is in partial trust ASP.NET applications that call into web ser-
vices. Without defining one or more WebPermissions, your web service calls will fail with less than
enlightening security errors.

79301c04.indd 177 10/6/08 12:11:32 PM

178

Chapter 4: A Matter of Trust

Because your web application may need to connect to multiple web service endpoints, potentially
located under different DNS namespaces, you need to define a <IPermission /> element in your cus-
tom policy file with multiple nested <URI /> entries. As an example, the following code gives you the
correct XML representation for a set of two different endpoints:

C#
WebPermission wp = new WebPermission();

Regex r = new Regex(@”http://www\.microsoft\.com/.*”);
wp.AddPermission(NetworkAccess.Connect,r);

r = new Regex(@”http://www\.google\.com/.*”);
wp.AddPermission(NetworkAccess.Connect, r);

SecurityElement se = wp.ToXml();
Response.Write(Server.HtmlEncode(se.ToString()));

VB.NET
Dim wp As New WebPermission()

Dim r As New Regex(“http://www\.microsoft\.com/.*”)
wp.AddPermission(NetworkAccess.Connect, r)

r = New Regex(“http://www\.google\.com/.*”)
wp.AddPermission(NetworkAccess.Connect, r)

Dim se As SecurityElement = wp.ToXml()
Response.Write(Server.HtmlEncode(se.ToString()))

The resulting XML, adjusted again for the class attribute, looks like this:

<IPermission class=”WebPermission” version=”1”>
 <ConnectAccess>
 <URI uri=”http://www\.microsoft\.com/.*”/>
 <URI uri=”http://www\.google\.com/.*”/>
 </ConnectAccess>
</IPermission>

The $OriginHost$ replacement token is no longer being used. Realistically, after you understand how to
define a WebPermission in your policy file, the originUrl attribute isn’t really needed anymore. Instead,
you can just build up multiple <URI /> elements as needed inside of your policy file. With the previous
changes, you can now write code that connects to any page located underneath www.microsoft.com or
www.google.com.

C#
HttpWebRequest wr =
(HttpWebRequest)WebRequest.Create(“http://www.microsoft.com/games/default.aspx”);
HttpWebResponse resp = (HttpWebResponse)wr.GetResponse();

…

79301c04.indd 178 10/6/08 12:11:32 PM

179

Chapter 4: A Matter of Trust

resp.Close();

wr = (HttpWebRequest)WebRequest.Create(“http://www.google.com/microsoft”);
resp = (HttpWebResponse)wr.GetResponse();

VB.NET
 Dim wr As HttpWebRequest = CType(_
 WebRequest.Create(“http://www.microsoft.com/games/default.aspx”), _
 HttpWebRequest)
 Dim resp As HttpWebResponse = CType(wr.GetResponse(), HttpWebResponse)
 …
 resp.Close()
 wr = CType(_
 WebRequest.Create(“http://www.google.com/microsoft”), _
 HttpWebRequest)
 resp = CType(wr.GetResponse(), HttpWebResponse)

Although I won’t cover it here, the companion classes to HttpWebRequest/HttpWebResponse are the
various System.Net.Socket* classes. As with the Http classes, the socket classes have their own per-
mission: SocketPermission. Just like WebPermission, SocketPermission allows the definition of
network endpoints for both socket connect and socket receive operations.

LINQ in Medium/Partial Trust ASP.NET Applications
Language Integrated Query (LINQ), introduced in the .NET Framework 3.5, is a standard way of access-
ing data, whether the data is stored in databases, XML files, objects, or other data sources. The purpose
behind LINQ is to provide a standard set of query operators that the developer can make use of to query
against different data sources by utilizing the same queries with some or minor changes between a data
source and another.

By default, LINQ features, prior to the .NET Framework 3.5 final release mainly in .NET Framework 3.5
Beta 2, cannot run in an ASP.NET application that is configured with medium or partial trust. As you
have learned above, the set of permissions granted to an ASP.NET web application running in the medium
or partial trust is determined by a Code Access Security (CAS) policy file located on the web server. When
the .NET Framework 3.5 Beta 2 is installed on the machine, the existing or new ASP.NET web applications
or websites continue to use the same CAS policy files that were defined with the .NET Framework 2.0.
However, this has been resolved with the final release of the .NET Framework 3.5 in such a way that when
you install the .NET Framework 3.5 on the machine, the CAS policy files get updated and modified to
reflect the permission changes required to make LINQ function properly in ASP.NET applications run-
ning under the medium or partial trust levels. The following paragraphs describe a step-by-step process
to show you the permissions required by LINQ to function properly in web applications running in the
medium or partial trust, and how to configure them manually. Remember, the following configurations
are already done for you when you install the .NET Framework 3.5 final release on your machine.

LINQ features require the application running inside it to be granted the RestrictedMemberAccess
permission, which is not granted by default for ASP.NET 2.0 running in medium or partial trust. The
RestrictedMemberAccess permission indicates whether the restricted invocation of non-public types
and members is allowed or not for partially trusted code. The restricted invocation means that for a par-
tially trusted code to access non-public types and members, the set of permissions granted to it must
contain all the permissions granted to the assembly that has the non-public types and members.

79301c04.indd 179 10/6/08 12:11:32 PM

180

Chapter 4: A Matter of Trust

Before getting into how to enable an ASP.NET application running in the medium or partial trust level
to function properly with LINQ, let’s look at a sample code that makes use of a LINQ to SQL query:

C#
 PubsDataContext context = new PubsDataContext();
 var query = from emp in context.employees
 select emp;
 foreach (employee empl in query)
 {
 Response.Write(“Employee Name: “ + empl.fname + “
”);
 }

VB.NET
 Dim context As New PubsDataContext()
 Dim query = From emp In context.employees _
 Select emp

 For Each empl As employee In query
 Response.Write(“Employee Name: “ & empl.fname & “
”)
 Next empl

The preceding code assumes that there is a PubsDataContext created in the application that points to
the famous Pubs database on Microsoft SQL Server 2000 or 2005. Without going into much detail on the
DataContext class, consider it as the gateway to access the data tables that were loaded from the data-
base and converted into .NET objects. The same above shows a simple query that retrieves all the employ-
ees’ records from the Employees data table. Once the data is retrieved, a foreach-loop goes through
every item returned and displays onscreen the first name of every employee in the result set of the query.

When you run the preceding code in an ASP.NET application configured with a Medium trust level in
such a way the machine running the application is still using the unmodified .NET Framework 2.0 CAS
policy files, you will receive the following exception:

[SecurityException: Request for the permission of type ‘System.Security.
Permissions.ReflectionPermission, mscorlib, Version=2.0.0.0, Culture=neutral, Publi
cKeyToken=b77a5c561934e089’ failed.]

As you can see, a request for the permission of type ReflectionPermission is done to allow the
code to browse the members on the employee class above. Hence, the need for granting access for the
ReflectionPermission for the LINQ features to work properly in an ASP.NET web application run-
ning under the medium or partial trust level.

To allow ASP.NET web applications running under the .NET Framework 3.5 to use the new LINQ fea-
tures, you need to modify the CAS policy file that corresponds to the trust level that is configured for
the applications, which is a task that has been already done for you when the .NET Framework 3.5 final
release was installed on your machine.

Assuming that you have installed .NET Framework 3.5 Beta 2 and your application is configured with the
medium trust level, the changes should target the web_mediumtrust.config configuration file. To start,
open the aforementioned configuration file, which located in the following directory on your machine:

%windir%\Microsoft.NET\Framework\v2.0.50727\CONFIG

79301c04.indd 180 10/6/08 12:11:32 PM

181

Chapter 4: A Matter of Trust

Make sure to back up the CAS policy file you want to modify. This is recommended so that no harm
is generated on your existing ASP.NET web applications in the event something wrong went on while
modifying the policy file.

Locate the <SecurityClasses> configuration section inside the web_mediumtrust.config file and check if
an entry is found for the ReflectionPermission class. If not, make sure to add the following entry:

<SecurityClass Name=”ReflectionPermission” Description=”System.Security.
Permissions.ReflectionPermission, mscorlib,Version=2.0.0.0, Culture=neutral, Public
KeyToken=b77a5c561934e089”/>

The ReflectionPersmission class controls access to non-public types and members through the
System.Reflection classes with the help of the appropriate ReflectionPermissionFlag enumera-
tion. Once the preceding entry is added, you also need to add the following <IPermission> entry to
the <NamedPermissionSets>, as follows:

<IPermission
 class=”ReflectionPermission”
 version=”1”
 Flags=”RestrictedMemberAccess”/>
</PermissionSet>

For the LINQ features to function properly, the ReflectionPermission should be granted on the CAS
policy file with the ReflectionPermissionFlag set to RestrictedMemberAccess. That is everything
you need to do to make the LINQ features function properly in an application configured to run with
the medium trust level.

If you are using another trust level that already contains an entry for the ReflectionPersmission, make
sure that ReflectionPermissionFlag contains a value of RestrictedMemberAccess, as follows:

<IPermission
 class=”ReflectionPermission”
 version=”1”
 Flags=”ReflectionEmit, RestrictedMemberAccess”/>

Save the file and make sure to restart the IIS 7.0 web server. Now running the sample code above should
work smoothly without any exceptions.

Remember that the preceding changes and demonstration is required only on a machine that has .NET
Framework 3.5 Beta 2 installed and not the final release of the framework; as you know by now, .NET
Framework 3.5 final release modifies the CAS policy files on your behalf. However, the demonstration
was to show you in depth what LINQ features require to function properly in applications running
under .NET Framework 3.5 and configured with medium or partial trust levels.

The Default Security Permissions Defined by ASP.NET
ASP.NET ships with default trust policy files for High, Medium, Low, and Minimal trust. You have
already read about several different permissions that are configured in these files. This section covers
all the permissions that appear in the files in the ASP.NET named permission set, along with informa-
tion on the different rights that are granted depending on the trust level.

79301c04.indd 181 10/6/08 12:11:32 PM

182

Chapter 4: A Matter of Trust

AspNetHostingPermission
To support the trust level model, ASP.NET created a new permission class: System.Web.AspNet​
HostingPermission. The permission class is used as the runtime representation of the application’s
configured trust level. Although you could programmatically determine the trust level of an applica-
tion by looking at the level attribute of the <trust /> element, that programming approach isn’t
consistent with how you would normally use CAS permissions. Because AspNetHostingPermission
inherits CodeAccessPermission, code can instead demand an AspNetHostingPermission just like
any other permissions class. The Framework will perform its stack walk, ensuring that all code in the
current call stack has the demanded trust level. ASP.NET uses this capability extensively within its
runtime to protect access to pieces of functionality that are not intended for use at lower trust levels.

The permission class has a public property Level that indicates the trust level represented
by the permission instance. In the various trust policy files, there is always a definition of
AspNetHostingPermission.

<IPermission
class=”AspNetHostingPermission”
 version=”1”
 Level=”High”
/>

The usual convention is to set the Level attribute in the <IPermission /> element to the effective
trust level represented by the policy file.

There is nothing to prevent you from setting the Level attribute to a value that is inconsistent with the
overall intent of the trust policy file. For example, you could declare an AspNetHostingPermission
with a Level of High inside of the minimal trust policy file. However, you should normally not do this,
because the value of the Level property is used by ASP.NET to protect access to certain pieces of func-
tionality. Artificially increasing the trust level can result in ASP.NET successfully checking for a specific
trust level and then failing with SecurityException when the runtime attempts a privileged opera-
tion that isn’t allowed based on the other permissions defined in the trust policy file.

The problem also exists with the reverse condition; you could define a lower trust level than what the
permissions in the trust policy file would normally imply. For example, you could copy the policy
file for High trust, and then change the AspNetHostingPermission definition’s Level attribute to
Medium. Even though ASP.NET internally won’t run into unexpected exceptions, you now have the
problem that ASP.NET “thinks” it is running at Medium trust, but the permissions granted to the appli-
cation are actually more appropriate for a High trust application.

All this brings us to a very important point about the AspNetHostingPermission. The intent of the
Level property is to be a broad indicator of the level of trust that you are willing to associate with the
application. Although the <IPermission /> definitions in the rest of the policy file are a concrete rep-
resentation of the trust level, the Level property is used as a surrogate for making other trust-related
decisions in code. Whenever possible you should set the Level attribute appropriately based on the
level of trust you are willing to grant to the application. Internally ASP.NET needs to make a number of
security decisions based on an application’s trust level. Rather than creating concrete permissions for
each and every security decision (this would result in dozens of new permission classes at a bare mini-
mum), ASP.NET instead looks at the AspNetHostingPermission for an application and makes secu-
rity judgments based on it. This is the main reason why you should ensure that the “Level” attribute is
set appropriately for your application.

79301c04.indd 182 10/6/08 12:11:32 PM

183

Chapter 4: A Matter of Trust

Trust Level Intent
So, what specifically are the implications behind each trust level? Full trust is easy to understand because
it dispenses with the need for a trust policy file and a definition of AspNetHostingPermission. The fol-
lowing table lists the conceptual intent behind the other trust levels.

Trust Level Intent

Full The ASP.NET application can call anything it wants.

High The ASP.NET application should be allowed to call most classes within the .NET
Framework without any restrictions. Although the High trust policy file does not
contain an exhaustive list of all possible Framework permissions (the file would be
huge if you attempted this), High trust implies that aside from calling into unman-
aged code (this is disallowed), it is acceptable to use most of the remainder of the
Framework’s functionality. Although sandboxing privileged operations in GAC’d
classes is preferred, adding new permissions directly to the High trust policy file
instead would not be considered “breaking the contract” of High trust.

Medium The ASP.NET application is intended to be constrained in terms of the classes and
Framework functionality it is allowed to use. A Medium trust application isn’t
expected to be able to directly call dangerous or privileged pieces of code. However,
a Medium trust application is expected to be able to read and write information; it
is just that the reading and writing may be constrained, or require special permis-
sions before it is allowed. If problems arise because of a lack of permissions, you
try to avoid adding the requisite permission classes to the Medium trust policy file.
Instead, if privileged operations require special permissions, the code should be
placed in a separate assembly and installed in the GAC. Furthermore, if at all possi-
ble, this type of assembly should demand some kind of permission that you would
expect the Medium trust application to possess. For example you could demand the
AspNetHostingPermission at the Medium level to ensure that even less trusted
ASP.NET applications cannot call into your GAC’d assembly.

Low The ASP.NET application is running in an environment where user code should not
be trusted with any kind of potentially dangerous operations. Low trust applications
are frequently considered to be read-only applications; this would cover things like a
reporting application. Because this is such a “low” level of trust, you should question
any application running in this trust level that is allowed to reach out and modify
data. For example, in the physical world someone that you had a low level of trust
for is probably not an individual you would trust to make changes to your bank
account balance. As with Medium trust, you should use GAC’d assemblies to solve
permission problems, although you should look at the operations allowed in your
assemblies to see if they are really appropriate for a Low trust application. Note that
Low trust is also appropriate for web applications like SharePoint that provide their
own hosted environment and thus their own security model on top of ASP.NET.
Applications like SharePoint lock down the rights of pages that are just dropped on
the web server’s file system. Developers instead make use of privileged functionality
through the SharePoint APIs or by following SharePoint’s security model.

Continued

79301c04.indd 183 10/6/08 12:11:32 PM

184

Chapter 4: A Matter of Trust

Trust Level Intent

Minimal A Minimal trust application means that you don’t trust the code in the application to
do much of anything. If permission problems arise, you should not work around the
issue with GAC’d assemblies. Instead, you should question why a minimally trusted
application needs to carry out a protected operation. Realistically, this means that a
Minimal trust application is almost akin to serving out static HTML files, with the
additional capability to use the ASP.NET page model for richer page development.

ASP.NET Functionality Restricted by Trust Level
ASP.NET makes a number of decisions internally based on the trust level defined by the AspNetHosting​
Permission. Because High and Full trust applications imply the ability to use most Framework func-
tionality, the allowed ASP.NET functionality at these levels isn’t something you need to worry about.

However, the Medium trust level is the lowest level at which the following pieces of ASP.NET function-
ality are allowed. Below Medium trust, the following features and APIs are not allowed:

Accessing asynchronous pages (the ❑❑ Async page attribute)

Accessing transacted pages (the ❑❑ Transaction page attribute)

Using the ❑❑ Culture page attribute

Setting ❑❑ debug=true for a page or the entire application

Sending mail with ❑❑ System.Web.Mail.SmtpMail

Calling ❑❑ Request.LogonUserIdentity

Calling ❑❑ Response.AppendToLog

Explicitly calling ❑❑ HttpRuntime.ProcessRequest

Retrieving the ❑❑ MachineName property from HttpServerUtility

Setting the ❑❑ ScriptTimeout property on HttpServerUtility

Using the ❑❑ System.Web.Compilation.BuildManager class

Displaying a source error and source file for a failing pages❑❑

At Low trust, there are a still a few pieces of ASP.NET functionality available that are not allowed when
running at Minimal trust:

Retrieving ❑❑ Request.Params.

Retrieving ❑❑ Request.ServerVariables.

Retrieving ❑❑ HttpRuntime.IsOnUNCShare.

Calling into the provider-based features: Membership, Role Manager, Profile, Web Parts Person-❑❑

alization, and Site Navigation. Note, though, that most of the providers for these features will
not work in Low trust because their underlying permissions are not in the Low trust policy file.

79301c04.indd 184 10/6/08 12:11:32 PM

185

Chapter 4: A Matter of Trust

Implications of AspNetHostingPermission Outside of ASP.NET
As you may have inferred from the name of the permission, it is primarily intended for use with ASP.NET-
specific code. Most of the time, this means Framework code that has the AspNetHostingPermission
attribute or that internally demands this permission to be called from inside of ASP.NET. In fully trusted
code-execution environments outside of ASP.NET you may not realize this is happening. For example, the
following code runs without a problem in a console application.

C#
Console.WriteLine(HttpUtility.HtmlEncode(“
”));

VB.NET
Console.WriteLine(HttpUtility.HtmlEncode(“
”))

Notice that this code is using the System.Web.HttpUtility class. Running the console application from
the local hard drive works, even though the HttpUtility class has the following declarative LinkDemand:

C#
[AspNetHostingPermission(SecurityAction.LinkDemand,
 Level=AspNetHostingPermissionLevel.Minimal]

VB.NET
<AspNetHostingPermission(SecurityAction.LinkDemand, _
 Level:=AspNetHostingPermissionLevel.Minimal)>

This works by default because applications running from the local hard drive are considered by the
.NET Framework to be running in the My Computer security zone. Any code running from this zone is
fully trusted. As a result, when it evaluates the LinkDemand, the Framework the application is running
in full trust, and thus ignores any permission checks.

However, if you move the compiled executable to a universal naming convention (UNC) share and then
run it, you end up with a SecurityException and the following stack dump information:

System.Security.SecurityException: Request for the permission of type ‘System.Web.
AspNetHostingPermission, System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b
77a5c561934e089’ failed.
….
The assembly or AppDomain that failed was:
UsingAspNetCodeOutsideofAspNet, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=null
The Zone of the assembly that failed was: Internet
The Url of the assembly that failed was: file://remoteserver/c$/
UsingAspNetCodeOutsideofAspNet.exe

Now the Framework considers the application to be running in partial trust. Because the executable
was moved to a UNC share, the Framework applied the security restrictions from the Internet zone.
When LinkDemand occurred for AspNetHostingPermission, the Framework looked for that permis-
sion in the named permission set that the Framework associates with the Internet zone. Of course, it
couldn’t find it because the AspNetHostingPermission is typically found only inside of the ASP.NET
trust policy files.

79301c04.indd 185 10/6/08 12:11:33 PM

186

Chapter 4: A Matter of Trust

I won’t cover how to fix this security problem in this chapter, because most of the ASP.NET classes are
not intended for use outside of a web application anyway. However, in Chapter 15, “SqlRoleProvider,” I
walk through an example of using a provider-based feature from inside of a partial trust non-ASP.NET
application. Both Membership and Role Manager are examples of ASP.NET classes that were explicitly
tweaked to make them useable outside of a web application. However, the classes for these features
make extensive use of AspNetHostingPermission, so it is necessary to understand how to grant the
AspNetHostingPermission to partial trust non-ASP.NET applications that use these two features.

Using AspNetHostingPermission in Your Code
Because AspNetHostingPermission models the conceptual trust that you grant to an application, you
can make use of this permission as a surrogate for creating a permission class from scratch. In fact, one
of the reasons ASP.NET uses AspNetHostingPermission to protect certain features is to reduce the
class explosion that would occur if every protected feature had its own permission class. So, rather than
creating TransactedPagePermission, AsyncPagePermission, SetCultureAttributePermission,
and so on, ASP.NET groups functionality according to the trust level that is appropriate for the feature.

You can follow a similar approach with standalone assemblies that you author. This applies to custom
control assemblies as well as to assemblies that contain middle-tier code or other logic. For example,
you can create a standalone assembly that uses the permission with the following code:

C#
 public class SampleBusinessObject
 {
 public SampleBusinessObject() { }

 public string DoSomeWork()
 {
 AspNetHostingPermission perm =
 new AspNetHostingPermission(AspNetHostingPermissionLevel.Medium);

 perm.Demand();

 //At this point it is safe to perform privileged work
 return “Successfully passed the permission check.”;
 }
 }

VB.NET
Public Class SampleBusinessObject
 Public Sub New()
 End Sub

 Public Function DoSomeWork() As String
 Dim perm As New AspNetHostingPermission(_
 AspNetHostingPermissionLevel.Medium)

 perm.Demand()

 ‘At this point it is safe to perform privileged work

79301c04.indd 186 10/6/08 12:11:33 PM

187

Chapter 4: A Matter of Trust

 Return “Successfully passed the permission check.”
 End Function
End Class

Drop the compiled assembly into the /bin folder of an ASP.NET application. Because the assembly
demands Medium trust, the following simple page code in an ASP.NET application works at Medium
trust or above.

C#
 SampleBusinessObject obj = new SampleBusinessObject();
 Response.Write(obj.DoSomeWork());

VB.NET
 Dim obj As New SampleBusinessObject()
 Response.Write(obj.DoSomeWork())

However, if you configure the ASP.NET application to run at Low or Minimal trust, the previous code
will fail with a SecurityException stating that the request for the AspNetHostingPermission failed.
Unfortunately, though, the exception information will not be specific enough to indicate additional any
extra information; in this case, it would be helpful to know the level that was requested but failed.

In cases like this where you probably control or have access to the code in the standalone assemblies,
you can determine which security permissions are required by using the permcalc tool located in the
.NET Framework’s SDK directory. (This directory is available underneath the Visual Studio install
directory if you chose to install the SDK as part the Visual Studio setup process.) I ran permcalc
against the sample assembly with the following command line:

“C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\Bin\permcalc”
SampleBusinessTier.dll

The tool outputs an XML file containing all declarative and code-based permission demands. Although
declarative permission requirements are the easiest to infer (remember there is also an AspNetHosting​
Permission attribute that you can use to adorn a class or a method), the tool does a pretty good job
of inspecting the actual code and pulling out the code-based permission demands. In the case of the
sample assembly, it returned the following snippet of permission information:

<Method Sig=”instance string DoSomeWork()”>
- <Demand>
- <PermissionSet version=”1” class=”System.Security.PermissionSet”>
 <IPermission
 Level=”Medium”
 version=”1”
 class=”System.Web.AspNetHostingPermission, System,
 Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089”
 />
 </PermissionSet>
 </Demand>

The <Demand /> element in the permcalc output shows that the tool determined that the DoSomeWork
method is demanding AspNetHostingPermission with the Level at Medium.

79301c04.indd 187 10/6/08 12:11:33 PM

188

Chapter 4: A Matter of Trust

DnsPermission
As the name implies, the System.Net.DnsPermission class defines the ability of your code to perform
forward and reverse address lookups with the System.Net.Dns class. The permission is a binary per-
mission in that it either grants code the right call into the Dns class or it denies the ability to use the Dns
class. An interesting side note is that if you do not add DnsPermission to a trust policy file, but you
have added WebPermission, you can still make use of the HttpWebRequest and related classes. Inter-
nally, System.Net assumes that if you have the necessary WebPermission, it can perform any required
DNS lookups internally on your behalf.

The rights for DnsPermission at the various trust levels are shown in the following table:

Trust Level Granted Permission

Full Unrestricted

High Unrestricted

Medium Unrestricted

Low No rights to use the Dns class

Minimal No rights to use the Dns class

EnvironmentPermission
The System.Security.Permissions.EnvironmentPermission class defines the ability of user code
to access environment variables via the System.Environment class. If you drop to a command line and
run the SET command, all sorts of interesting information is available from the environment variables.
Because this could be used as a backdoor for gathering information about the web server, the ASP.NET
trust policy files restrict access to only a few environment variables in the lower trust levels.

The EnvironmentPermission supports defining access levels on a more granular basis, even down
to the level of protecting individual environment variables. As a result, you can control the ability to
read and write individual environment variables. Each security attribute (All, Read, and Write) in the
declarative representation of an EnironmentPermission can contain a semicolon delimited list of
environment variables.

The rights for EnvironmentPermission at the various trust levels are shown in the following table:

Trust Level Granted Permission

Full Unrestricted

High Unrestricted

Medium Can only read the following environment variables: TEMP, TMP, USERNAME, OS,
COMPUTERNAME. No ability to set environment variables.

Low No rights to read or write any environment variables

Minimal No rights to read or write any environment variables

79301c04.indd 188 10/6/08 12:11:33 PM

189

Chapter 4: A Matter of Trust

FileIOPermission
I have already covered most of the functionality for the System.Security.Permissions.File​
IOPermission class in other sections. This permission also supports defining different permissions
for different directory and file paths. The thing that is a little odd about this permission class is that it
takes a somewhat nonoptimal approach to declaring multiple permissions. Unlike WebPermission or
SocketPermission, FileIOPermission does not output nested elements within a <IPermission />
element. Instead, it has a fixed set of attributes, but each path-related attribute can contain a semicolon-
delimited list of multiple paths. For example, the declarative syntax of a FileIOPermission with dif-
ferent permissions for two different directory paths is shown here:

<IPermission
 class=”FileIOPermission”
 version=”1”
 Read=”d:\temp;d:\somedummylocation”
 Write=”d:\somedummylocation”
 Append=”d:\temp;d:\somedummylocation”
/>

This permission defines only allowable file I/O operations at the Framework level. This means the
permission class is only able to define the ability of user code to perform logical operations (read, write,
and so on based on a set of defined file paths. However, the FileIOPermission does not protect access
to files and directories based on NT file system (NTFS) file ACLs. As a result, it is completely possible
that from a CAS perspective the Framework will allow your code to issue a file I/O operation, but from
an NTFS perspective, your code may not have the necessary security permissions. When performing
any type of file I/O, you also need to ensure that the identity of the operating system thread has been
granted the necessary rights on the file system.

The following table lists the default permissions for the different trust levels.

Trust Level Granted Permission

Full Unrestricted.

High Unrestricted: Remember, this means the ability to read and write files anywhere in
the file system.

Medium Read, write, append, and path discovery are all allowed for directories and paths
located within the directory structure of the web application. Operations outside of
the application’s directory structure are not allowed.

Low Only read and path discovery are all allowed for directories and paths located within
the directory structure of the web application. Write operations are not allowed
within the application’s directory structure. Also, operations outside of the applica-
tion’s directory structure are not allowed.

Minimal No file I/O rights.

IsolatedStorageFilePermission
The System.Security.Permissions.IsolatedStorageFilePermission class controls the allowable
file operations when using the System.IO.IsolatedStorage.IsolatedStorageFile class. I honestly

79301c04.indd 189 10/6/08 12:11:33 PM

190

Chapter 4: A Matter of Trust

have never encountered any customers using isolated file storage in an ASP.NET application. Although
you could technically use isolated storage as a way to store information locally on the web server for each
website user, there are probably not any web applications that work this way: A database would be better
choice, especially in web farm environments. However, because IsolatedStoragePermission is also
defined by the Framework in the machine CAS policy, the permission is included in the ASP.NET trust
policy files to ensure that ASP.NET has the final say on what is allowed when using isolated storage.

The following table lists the default permissions for the different trust levels.

Trust Level Granted Permission

Full Unrestricted.

High Unrestricted.

Medium Isolated storage is allowed, but the only storage mode that can be used isolates
data by user identity. The disk quota for each user is effectively set to infinite.

Low Isolated storage is allowed, but the only storage mode that can be used isolates
data by user identity. The disk quota for each user is set to 1MB.

Minimal Not allowed.

PrintingPermission
Before you double over laughing at why this permission exists in an ASP.NET trust policy file, I’ll state
that the reason is the same as mentioned earlier for the IsolatedStorageFilePermission. The default
machine CAS policy grants System.Drawing.Printing.PrintingPermission to code running in the
various predefined security zones. So, ASP.NET also defines the PrintingPermission in its trust files
to ensure that it has a final say in the level of access granted to user code that works with printers.

The following table lists the default permissions for the different trust levels.

Trust Level Granted Permission

Full Unrestricted.

High User code can issue commands to print to the default printer attached to the web server.

Medium User code can issue commands to print to the default printer attached to the web server.

Low Not allowed.

Minimal Not allowed.

ReflectionPermission
The System.Security.Permissions.ReflectionPermission class defines the types of reflec-
tion operations you can perform with classes in the System.Reflection namespaces. This is a very
important permission for ensuring the safety of partial trust applications because reflecting against code

79301c04.indd 190 10/6/08 12:11:33 PM

191

Chapter 4: A Matter of Trust

introduces the potential for calling private/internal methods, and inspecting private/internal variables.
As a result, in the default ASP.NET policy files only High trust code has rights to use some of the reflec-
tion APIs. In practice, you should not grant reflection permission to partially trusted user code due to
the potential for malicious code to deconstruct the code that is running on your server.

The following table lists the default permissions for the different trust levels.

Trust Level Granted Permission

Full Unrestricted.

High User code can use only classes in the System.Reflection.Emit namespace. These
classes can be used to generate code programmatically as well as a compiled repre-
sentation of the generated code. This functionality can be useful for an application
that dynamically generates assemblies to disk and then references these classes
from page code.

Medium Not allowed.

Low Not allowed.

Minimal Not allowed.

RegistryPermission
The System.Security.Permissions.RegistryPermission defines permissions for creating, read-
ing, and writing Registry keys and values. Much as with FileIOPermission, you can use this permis-
sion class to define a set of permission rules that vary depending on the Registry path. The various
security attributes on the <IPermission /> element contain a semicolon delimited list of Registry
keys to protect. This permission is enforced whenever you use the Microsoft.Win32.RegistryKey
class to manipulate the registry. Because there usually isn’t a need to directly read and write Registry
data in web applications, ASP.NET by default only defines a RegistryPermission for High trust. If
you need access to Registry information at lower trust levels, you should put Registry access code into
a separate GAC’d assembly that has the necessary permissions. Normally, though, the restrictions on
Registry access are not too onerous because in web applications you use configuration files as opposed
to Registry keys for storing application configuration data.

The following table lists the default permissions for the different trust levels.

Trust Level Granted Permission

Full Unrestricted

High Unrestricted

Medium Not allowed

Low Not allowed

Minimal Not allowed

79301c04.indd 191 10/6/08 12:11:33 PM

192

Chapter 4: A Matter of Trust

SecurityPermission
TheSystem.Security.Permissions.SecurityPermission class is a proverbial jack-of-all-trades
permissions class. Instead of defining a narrow set of permissions used by a specific set of classes in
the framework, a SecurityPermission class can define around fifteen permissions that apply to dif-
ferent privileged operations in the framework. For example, these permissions define the ability to
call unmanaged code and the ability for code to execute. The list of possible permissions that can be
granted with a SecurityPermission can be found in the SecurityPermissionFlag enumeration.

In partial trust applications, ASP.NET allows a subset of the available permissions by defining progres-
sively more restrictive security permissions for the lower trust levels. The specific permissions that
ASP.NET may grant are listed here:

Assertion: ❑❑ This permission allows code to assert that it has the right to call into other code that
may demand certain permissions. The advanced topics sections of this chapter cover how to
write GAC’d assemblies that use this permission. In partially trusted applications, assertion is
usually not granted because code doesn’t have sufficient rights to assert other arbitrary permis-
sion defined in the Framework.

ControlPrincipal: ❑❑ Allows code to change the IPrincipal reference available from Thread​
.CurrentPrincipal. ASP.NET also demands this right if you attempt to set the User prop-
erty on an HttpContext. Keep this permission in mind if you write custom authentication or
custom authorization modules. If your modules need to set the thread principal when running
in Low trust or below, you need to deploy your modules in the GAC and assert a Security​
Permission with the ControlPrincipal right.

ControlThread: ❑❑ Grants code the right to perform privileged operations on an instance of System​
.Threading.Thread. For example, with this permission code is allowed to call Thread.Abort,
Thread.Suspend, and Thread.Resume.

Execution: ❑❑ Allows .NET Framework code to run. If ASP.NET did not define this permission in
the various trust policy files, none of your code would ever be allowed to run. Removing this
permission from any of the ASP.NET trust policy files effectively disables the ability to run
.aspx pages.

RemotingConfiguration: ❑❑ Allows an application to configure and start up a remoting infrastruc-
ture. Many ASP.NET applications don’t need to expose or call into remotable objects. However, if
you want to run a partial trust ASP.NET application that consumes objects using .NET Remoting,
make sure this permission is defined in the trust policy file. Note that RemotingConfiguration
isn’t needed if your application calls Web Services.

The following table lists the security permissions granted at the different trust levels.

Trust Level Granted Permission

Full Unrestricted

High Assertion, Execution, ControlThread, ControlPrincipal, RemotingConfiguration

Medium Assertion, Execution, ControlThread, ControlPrincipal, RemotingConfiguration

Low Execution

Minimal Execution

79301c04.indd 192 10/6/08 12:11:33 PM

193

Chapter 4: A Matter of Trust

As you can see from this list, at Low and Minimal trust user code has only the ability execute. Because
ASP.NET restricts the SecurityPermission at Low and Minimal trust, you need to deploy all sensi-
tive business or security logic in GAC’d assemblies.

Due to the sensitive nature of the Assertion and ControlPrincipal rights, you should look into remov-
ing these if you create a custom trust level. The Assertion right is really intended for trusted code that
can successfully assert some kind of underlying permission. However, partially trusted code by its
very nature lacks many permissions, and thus it is unlikely that user code in a code-behind page could
successfully assert a permission (if the code already had the necessary permission, it wouldn’t need to
assert anything in the first place).

The ControlPrincipal right is a security-sensitive right appropriate only for code that manipulates
identity information for a request. Although it is a little bit more difficult to write a standalone HTTP
authentication/authorization module and deploy it in the GAC, it is much more secure to do so and
then remove the ControlPrincipal right in a trust policy file. Doing so ensures that some random piece
of application code can’t arbitrarily change the security information for a request, something especially
trivial to accomplish when using forms authentication.

SmtpPermission
In ASP.NET 1.0 and 1.1, the closest thing to a managed mail class was found in System.Web.Mail​
.SmtpMail. Internally, SmtpMail is just a wrapper around CDONTS, which itself is unmanaged code.
Because it would be excessive to grant unmanaged code permission to a partially trusted ASP.NET
application, ASP.NET instead protects access to this mail class by using the AspNetHostingPermission
as surrogate permission. At Medium trust or above, you can use SmtpMail, whereas at lower trust lev-
els you cannot send mail.

Starting with the v2.0 of the Framework, though, the System.Web.Mail.SmtpMail class has been dep-
recated and is replaced by the classes in the System.Net.Mail namespace. These classes protect access
to mail operations using the System.Net.Mail.SmtpPermission class. To maintain parity with the
mail behavior of earlier ASP.NET release, the trust policy files are defined to allow all mail operations at
Medium trust and above as shown in the following table.

Trust Level Granted Permission

Full Unrestricted

High Unrestricted

Medium Unrestricted

Low Not allowed

Minimal Not allowed

SocketPermission
System.Net.SocketPermission is the companion permission class to the System.Net.WebPermission
class discussed earlier. It supports defining connect and receive access in a granular fashion segmented
by different network endpoints. Because of the potential for mischief when using the socket classes,
ASP.NET grants access to only High trust applications. If you have web applications that need to make
outbound socket connections (receiving socket connections is unlikely in a web application), you can

79301c04.indd 193 10/6/08 12:11:33 PM

194

Chapter 4: A Matter of Trust

use the same approach described earlier for the WebPermission class to determine the exact XML syn-
tax necessary to restrict socket connections to specific endpoints.

The following table lists the security permissions granted at the different trust levels.

Trust Level Granted Permission

Full Unrestricted

High Unrestricted

Medium Not allowed

Low Not allowed

Minimal Not allowed

SqlClientPermission
The System.Data.SqlClient.SqlClientPermission class is used to allow or disallow use of the
classes in the System.Data.SqlClient namespace. There is no support for granular permissions along
the lines of the SocketPermission or WebPermission classes. Because Medium trust is the recom-
mended default trust level for shared hosters, the permission is available at Medium trust and above.

The following table lists the security permissions granted at the different trust levels.

Trust Level Granted Permission

Full Unrestricted

High Unrestricted

Medium Unrestricted

Low Not allowed

Minimal Not allowed

WebPermission
System.Net.WebPermission is used to define a granular set of connection rules for making HTTP
requests to various network endpoints. Because it is a potentially complex permission with multiple
nested permission elements, you can use the techniques described in the section “Using the WebPer-
mission” to determine the correct XML.

The following table lists the security permissions granted at the different trust levels.

Trust Level Granted Permission

Full Unrestricted.

High Unrestricted.

79301c04.indd 194 10/6/08 12:11:33 PM

195

Chapter 4: A Matter of Trust

Trust Level Granted Permission

Medium Only connect access is granted to a single network endpoint. This endpoint is
defined by the originUrl attribute in the <trust /> configuration element.

Low Not allowed.

Minimal Not allowed.

Advanced Topics on Partial Trust
There are a few advanced issues on partial trusts that you may encounter while developing your
application:

Exception behavior when dealing with Link demands❑❑

Requirements for using the “allow partially trusted callers attribute” (APTCA) when writing ❑❑

trusted types for use by ASP.NET

Sandboxing access to security sensitive code with GAC’d assemblies❑❑

The ❑❑ processRequestInApplicationTrust attribute in the <trust /> element

LinkDemand Exception Behavior
All the sample code used so far to highlight exception behavior has involved full permission demands
made by different classes in the Framework. However, this type of permission demand can be expen-
sive because the Framework has to crawl up the current call stack each and every time a full permission
demand occurs. Even if the exact same code is executing on subsequent page requests, the Framework
still has to perform a fair amount of work to reevaluate the results of a demand.

To mitigate the performance hit of full demands, the Framework also includes the concept of a link
demand, also referred to as a LinkDemand. The idea behind a LinkDemand is that the Framework needs
to make a permission check only the first time code from one assembly attempts to call a piece of pro-
tected code in another assembly. After that check is made, the Framework does not perform any addi-
tional security evaluations on subsequent calls.

The issue you may run into when developing partial trust applications is that LinkDemands are evalu-
ated before your code even starts running. The reason for this is that a LinkDemand occurs when the
Framework is attempting to link the code that you wrote with the compiled code that exists in another
assembly. Establishing this link occurs before the first line of code in your method executes. As a result,
even though you may have try/catch blocks set up to explicitly catch SecurityExceptions, you still
end up with an unhandled exception. To highlight this behavior, let’s use one of the sample pieces of
code from the beginning of the chapter to make a call into the ADO PIA.

C#
try
{
 //An unhandled exception due to LinkDemands will occur before this code runs
 RecordsetClass rc = new RecordsetClass();

79301c04.indd 195 10/6/08 12:11:34 PM

196

Chapter 4: A Matter of Trust

 int fieldCount = rc.Fields.Count;

 Response.Write(“Successfully created an ADO recordset using the ADO PIA.”);
}
catch (Exception ex)
{
 Response.Write(ex.Message + “
” +
 Server.HtmlEncode(ex.StackTrace));
}

VB.NET
 Try
 ‘The next two lines of code result ‘
 ‘in an unhandled exception from the
 LinkDemand()
 Dim rc As New RecordsetClass()
 Dim fieldCount As Integer = rc.Fields.Count

 Response.Write(_
 “Successfully created an ADO “ & _
 “recordset using the ADO PIA.”)
 Catch ex As Exception
 Response.Write(ex.Message & “
” & _
 Server.HtmlEncode(ex.StackTrace))
 End Try

Even though this code is catching almost every exception, when you attempt to run this code in a partial
trust ASP.NET application (I used Medium trust for the test), the page fails with an unhandled exception.
Some of the abbreviated exception information is shown here:

[SecurityException: That assembly does not allow partially trusted callers.]

System.Security.CodeAccessSecurityEngine.ThrowSecurityException(Assembly
asm, PermissionSet granted, PermissionSet refused, RuntimeMethodHandle rmh,
SecurityAction action, Object demand, IPermission permThatFailed) at LinkDemand.
CreateRecordset() at LinkDemand.Button1_Click(Object sender, EventArgs e) in c:\
inetpub\wwwroot\379301_code\379301 ch04_code\cs\WorkingWithTrustLevels\LinkDemand.
aspx.cs:line 36

The call stack shows the code appears to have transitioned from the button click handler immediately
into the internals of the .NET Framework security system. The reason is that the ADO primary interop
assembly (PIA) is installed in the GAC, and thus the Framework requires that any calling code itself be
fully trusted. The security check immediately failed when it detected that the calling code was partially
trusted. In fact, one of the most common symptoms of a failed LinkDemand is the exception text stating
that some assembly doesn’t allow partially trusted callers.

The way around the unhandled exception problem is to place code that may encounter LinkDemand
failures inside of a separate method or function. Then have your main code path call the helper method,
wrapping the call in an exception handler. For example, you can change the sample code to use a pri-
vate method for calling ADO:

79301c04.indd 196 10/6/08 12:11:34 PM

197

Chapter 4: A Matter of Trust

C#
private void CreateRecordset()
{
 //This code will never run due to a LinkDemand failure
 RecordsetClass rc = new RecordsetClass();
 int fieldCount = rc.Fields.Count;
}

protected void Button1_Click(object sender, EventArgs e)
{
 try
 {
 //The LinkDemand failure from the private method will bubble up as a
 //catch-able exception
 this.CreateRecordset();

 Response.Write(“Successfully created an ADO recordset using the ADO PIA.”);
 }
 catch (Exception ex)
 {
 Response.Write(ex.Message + “
” +
 Server.HtmlEncode(ex.StackTrace));
 }
}

VB.NET
 Private Sub CreateRecordset()
 Dim rc As New RecordsetClass()
 Dim fieldCount As Integer = rc.Fields.Count
 End Sub

 Protected Sub Button1_Click(_
 ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 Try
 ‘ The LinkDemand failure from the private method will bubble up as a
 ‘ catch-able exception

 Me.CreateRecordset()

 Response.Write(_
 “Successfully created an ADO “ & _
 “recordset using the ADO PIA.”)
 Catch ex As Exception
 Response.Write(ex.Message & “
” & _
 Server.HtmlEncode(ex.StackTrace))
 End Try
 End Sub

Now the LinkDemand failure occurs when the Framework attempts to link the code in CreateRecordset
to the code inside of the ADO PIA. The resulting SecurityException is successfully caught inside of
the button click handler, and you can react appropriately to the error.

79301c04.indd 197 10/6/08 12:11:34 PM

198

Chapter 4: A Matter of Trust

Although this example demonstrates the problem with a LinkDemand requiring a full trust caller, any
LinkDemand-induced failure will exhibit this behavior. As a developer, you should be aware of this and
code defensively when you know you are using classes that implement LinkDemands.

LinkDemand Handling When Using Reflection
Because LinkDemands are intended to protect an assembly when another assembly links to it, there
is a potential problem when using reflection to call into a protected assembly. With reflection, the
immediate caller into a protected assembly is the .NET Framework code for the System.Reflection
namespace. Because Framework code all lives in the GAC, any LinkDemand would appear to immedi-
ately pass the security checks. However, if this were really the case, any partial trust application with
the appropriate ReflectionPermission could subvert the intent of a LinkDemand.

To prevent this kind of “end run” around security, the Framework first checks the security of the true
caller rather than the code running System.Reflection. Additionally, the Framework converts the
LinkDemand into a full demand. If the previous example used a GAC’d assembly to call the ADO PIA
via reflection on behalf of the ASP.NET page, the following would occur:

	 1.	 The reflection code sees the LinkDemand for full trust.

	 2.	 The Framework enforces the LinkDemand against the assembly in the GAC because it is the
GAC’d assembly that is really making the method call.

	 3.	 The Framework converts the LinkDemand into a full demand because reflection is being used.

	 4.	 The Framework walks up the call stack, inspecting each assembly involved in the current call
stack to see if it is fully trusted.

	 5.	 When the stack crawl reaches the partial trust page code the security check fails and a Securi-
tyException is thrown.

Keep this behavior in mind if you write a GAC’d wrapper assembly that calls a protected assembly
on behalf of a partial trust ASP.NET application. The section on sandboxing titled “Sandboxing with
Strongly Named Assemblies” will cover how a GAC’d assembly can ensure that it always has the nec-
essary rights to call protected code, regardless of whether the call is made directly or via reflection.

Working with the AllowPartiallyTrustedCallers Attribute
You would be in a real quandary if there was no way to call protected code from a partial trust ASP.NET
application. If you think about it, though, ASP.NET code is calling into what would technically be con-
sidered “protected code” all the time. Whenever you write a line of code that uses the Request or
Response objects, you are accessing classes that live inside of SystemWeb.dll, which itself is installed
in the GAC. However, in all the previous examples where sample code was writing information out
using Response, there weren’t any unexpected security exceptions.

The reason for this behavior is the AllowPartiallyTrustedCallersAttribute class located in the
System.Security namespace. If an assembly author includes this attribute as part of the assembly’s
metadata, when the .NET Framework sees a call being made from partially trusted code to the assembly,
it does not trigger a LinkDemand for full trust. The System.Web.dll assembly uses AllowPartially​
TrustedCallersAttribute to allow partial trust code to call into its classes. You can see this if you

79301c04.indd 198 10/6/08 12:11:34 PM

199

Chapter 4: A Matter of Trust

run the ildasm utility (available in the SDK subdirectory inside of the Visual Studio install directory
if you chose to install the SDK) against the System.Web.dll file located in the framework’s installa-
tion directory. You will see a line of metadata like the following if you look at the assembly’s manifest
inside of ildasm.

[mscorlib]System.Security.AllowPartiallyTrustedCallersAttribute::.ctor()

If you are using assemblies that you don’t directly control or own, and you are wondering whether the
assemblies can even be used in a partially trusted web application, you should ildasm them and look
for the AllowPartiallyTrustedCallersAttribute. If the assemblies lack the attribute, then without
additional work on your part (sandboxing the assemblies which is discussed later), you will not be able
to install the code in the GAC and consume it directly from a partially trusted ASP.NET application.

A few technical details about using AllowPartiallyTrustedCallersAttribute are listed here:

Although you can add this attribute to any assembly, it makes sense to use it only with an ❑❑

assembly that is strongly named.

Strongly named assemblies require a signing key and an extra step in the assembly’s build ❑❑

process to create the digital signature for the assembly’s code. You can set this all up in Visual
Studio 2008 so that the work is done automatically for you.

In ASP.NET 3.5 you can deploy strongly named assemblies either in the GAC or in the ❑❑ /bin
directory of your application. Deploying a strongly named assembly in the /bin directory has
some extra implications in partial trust ASP.NET applications.

In the interest of brevity, folks frequently refer to the AllowPartiallyTrustedCallersAttribute
as APTCA, or “app-ka” when talking about it. Trust me; it’s a lot faster to talk about APTCA rather
than the full name of the attribute!

To demonstrate using the attribute, create a really basic standalone assembly that is strongly named.
The assembly exposes a dummy worker method just so there is something that you can call.

C#
 public class SampleClass
 {
 public string DoSomething()
 {
 return “I did something”;
 }
 }

VB.NET
 Public Class SampleClass
 Public Function DoSomething() As String
 Return “I did something”
 End Function
 End Class

79301c04.indd 199 10/6/08 12:11:34 PM

200

Chapter 4: A Matter of Trust

Initially, the assembly will be strongly named, but won’t have APTCA in its metadata. If you are won-
dering how to get Visual Studio to strongly name the assembly, just use the following steps:

	 1.	 Right-click the Project node in the Solution Explorer.

	 2.	 Select the Signing tab in the Property page that is displayed.

	 3.	 Check the Sign the assembly check box on the Signing property page.

	 4.	 If you are just creating a key file for a sample application like I am, choose New from the
Choose a strong name key file drop-down list. In a secure development environment, though,
you should delay sign the assembly and manage the private key information separately.

	 5.	 Type the key file name in the dialog box that pops up, and optionally choose to protect the file
with a username and password.

The end result is that when you build the standalone assembly, Visual Studio signs it for you. You can
confirm this by running ildasm against the assembly. You will see the public key token, albeit with a
different value, when you look at the assembly’s manifest:

.publickey = (00 24 00 00 04 80 00 00 94 00 00 00 06 02 00 00
 …
)

Now you have a strongly named assembly and can start working with it from a partial trust ASP.NET
application. First, install the assembly into the GAC using the gacutil tool: This tool is also available
from the SDK directory. Run the following command to install the assembly into the GAC:

“C:\..path..to..VS\SDK\v2.0\Bin\gacutil” -i SampleAPTCAAssembly.dll

Next, you can try instantiating and calling the assembly from ASP.NET. Because I keep the standalone
assembly in a separate project, I can’t use the project reference feature in Visual Studio. In a case like this,
you can manually hook up a reference to any assembly located in the GAC by doing the following:

	 1.	 Navigate to %windir%\assembly to view the GAC.

	 2.	 Find your registered assembly in the list, and note the version number, culture, and public key
token information.

	 3.	 Using that information, manually register the GAC’d assembly using the <assemblies />
element in web.config.

For the sample application, I added the following GAC reference into web.config:

<compilation debug=”true”>
 <assemblies>
 <add assembly=”SampleAPTCAAssembly, Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=ffd374f46df42d28”/>
 </assemblies>
</compilation>

With this reference in the configuration, the sample application can reference the namespace from the
assembly and use the sample class.

79301c04.indd 200 10/6/08 12:11:34 PM

201

Chapter 4: A Matter of Trust

C#
using SampleAPTCAAssembly;
…

protected void Page_Load(object sender, EventArgs e)
{
 SampleClass sc = new SampleClass();
 Response.Write(sc.DoSomething());
}

VB.NET
Imports SampleAPTCAAssembly_vb.SampleAPTCAAssembly_vb
…
 Protected Sub Page_Load(_
 ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Dim sc As New SampleClass()
 Response.Write(sc.DoSomething())
 End Sub

Because the sample web application is set to run at Medium trust, running the sample page results in
the following now familiar SecurityException:

System.Security.SecurityException: That assembly does not allow partially trusted
callers.

However, armed with the information that the standalone assembly requires APTCA to be success-
fully called, this problem can quickly be rectified. Going back to the standalone assembly project,
the APTCA attribute is added to the assembly by placing the attribute definition inside of the project’s
AssemblyInfo.cs file. This file can be found by expanding the Properties node for the project inside
of Solution Explorer.

C#
using System.Security;
…
//Allow partially trusted callers
[assembly: AllowPartiallyTrustedCallers()]

VB.NET
Imports System.Security
…
‘Allow partially trusted callers
<Assembly: AllowPartiallyTrustedCallers()>

Recompiling the application and reinstalling the new assembly into the GAC gives you an assembly
that will now allow a partial trust web application to call into it. Running the sample’s ASP.NET page
in Medium trust succeeds, and the text from the standalone assembly is written out without triggering
any exceptions.

79301c04.indd 201 10/6/08 12:11:34 PM

202

Chapter 4: A Matter of Trust

Sometimes changing GAC’d assemblies doesn’t seem to always take immediate effect. If you are sure
that you have updated a GAC’d assembly with APTCA, and it still isn’t working, try closing down
Visual Studio and running iisreset.

Strong Named Assemblies, APTCA, and the Bin Directory
One variation on the issue with APTCA and partial trust callers deals with the issue of deploying
strongly named assemblies in /bin and then attempting to use them. You might think that you could
create a strong named assembly for versioning purposes but then deploy it into the /bin directory of a
web application for convenience. However, if you attempt to do this, the .NET Framework still enforces
a LinkDemand when a partially trusted caller attempts to use a strong named assembly.

You can see this if you take the standalone assembly used earlier and recompile it without APTCA.
Drop it into the /bin directory of the web application (make sure to remove the old assembly from the
GAC) and remove the GAC reference from web.config. Now when you run the sample web page it
once again fails with a SecurityException.

This behavior may take you by surprise if you have ASP.NET applications that formerly ran in full trust
and that you are now attempting to tweak to get running in High trust or lower. If you have strongly
named assemblies sitting in /bin (which admittedly in ASP.NET 1.1 you might have avoided because
there were problems with loading strong named assemblies from bin), and if those assemblies never
had APTCA applied to them, then your ASP.NET application will suddenly start throwing the familiar
SecurityException complaining about partially trusted callers.

This boils down to a simple rule: If you are creating strongly named assemblies, you should make the
decision up front on whether the assemblies are intended to support partial trust environments like
ASP.NET. If so, you should review the code to ensure that partially trusted applications are not allowed
to call dangerous code (for example, a strong named assembly shouldn’t be just a proxy for directly call-
ing random Win32 APIs), and then add the APTCA attribute to the assembly. For some developers who
have large numbers of middle tier assemblies, quite a few assemblies may require this type of security
review and the application of APTCA prior to being useable in a partial trust application.

Another area where APTCA is enforced is for any type that ASP.NET dynamically loads on your behalf.
Because you can create custom configuration section handlers, custom HttpModules, custom provid-
ers, and so on, ASP.NET is responsible for dynamically loading the assemblies that contain these cus-
tom extensions.

Consider the following scenario:

	 1.	 An ASP.NET application runs in Medium trust.

	 2.	 You write a custom Membership provider in a strongly named standalone assembly.

	 3.	 The assembly isn’t attributed with APTCA.

	 4.	 For ease of deployment, you place the assembly in /bin.

What happens? From a .NET Framework perspective, it triggers a LinkDemand for full trust when
ASP.NET attempts to load the custom provider. Because it is ASP.NET that is loading the provider, the
initial LinkDemand check succeeds. The provider loader code is buried somewhere in System.Web.dll,
which itself sits in the GAC. So, from a .NET Framework perspective, everything is just fine with the

79301c04.indd 202 10/6/08 12:11:34 PM

203

Chapter 4: A Matter of Trust

immediate caller. Because ASP.NET dynamically loads providers with the System.Activator type,
though, the Framework will continue to demand Full trust from all other code sitting in the calls stack.
Because it is probably user code in a page that is making use of Membership in this scenario, the full
stack walk to check for Full trust will end up failing.

To give an example of this, you can use the standalone assembly from the earlier APTCA discussion,
and add a simple Membership provider to it.

C#
public class DummyMembershipProvider : SqlMembershipProvider {}

VB.NET
 Public Class DummyMembershipProvider Inherits SqlMembershipProvider
 End Class

The assembly is again deployed into the /bin directory of the ASP.NET application. Because this is a
Membership provider, the Membership feature must be configured to use the custom provider. A full
strong type definition isn’t necessary, because the containing assembly is in /bin:

<membership>
 <providers>
 <add name=”DummyProvider”
 type=”SampleAPTCAAssembly.DummyMembershipProvider, SampleAPTCAAssembly” />
 </providers>
</membership>

A sample page that forces the Membership feature to initialize, and thus load all configured providers,
is shown here:

C#
protected void Page_Load(object sender, EventArgs e)
{
 Response.Write(Membership.ApplicationName);
}

VB.NET
 Protected Sub Page_Load(_
 ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Response.Write(Membership.ApplicationName)
 End Sub

Running this page at Medium trust results in a page failure:

Description: An error occurred during the processing of a configuration file
required to service this request. Please review the specific error details below
and modify your configuration file appropriately.

Parser Error Message: That assembly does not allow partially trusted callers.

79301c04.indd 203 10/6/08 12:11:34 PM

204

Chapter 4: A Matter of Trust

Depending on which piece of ASP.NET code is actually responsible for loading custom types, you
will get different error messages. In this case, because loading custom Membership providers is con-
sidered part of the configuration for Membership, the error information is returned as an instance
of System.Configuration.ConfigurationErrorsException. Again, this kind of failure can be
solved by attributing the assembly with APTCA. After the assembly is updated with APTCA and
redeployed to the /bin directory, the Medium trust application is able to load the custom provider.

Now say that you instead make use of the GAC for a custom provider. The scenario looks like:

	 1.	 An ASP.NET application runs in Medium trust.

	 2.	 You write a custom Membership provider in a strongly named standalone assembly.

	 3.	 The assembly is not attributed with APTCA.

	 4.	 You deploy the provider in the GAC.

In this case, ASP.NET adds an extra layer of enforcement. Before even attempting to spin up the pro-
vider with System.Activator, ASP.NET first checks to see of the provider’s assembly is attributed with
APTCA. If ASP.NET cannot find the APTCA attribute, it immediately fails with a ConfigurationErrors​
Exception (though in this case the text of the error will be a bit different because it is ASP.NET’s APTCA
check that is failing as opposed to the Framework’s APTCA enforcement). Although the provider case
would still fail even if ASP.NET did not make this check (the page code in a partial trust web application
would still be on the stack), there are other cases where ASP.NET dynamically loads code (for example,
custom handlers and modules), and thus no user code exists on the stack. This is the main reason why
ASP.NET adds its own additional APTCA check for dynamically loaded types that exist in GAC’d assem-
blies. All of this should serve to reinforce the fundamental tenet of strongly named assemblies: determine
whether the strongly named assembly is intended for use in any type of partial trust scenario, and if so
perform a security review and attribute with APTCA. Do not assume that you can “fake out” ASP.NET
or the .NET Framework by using some level of indirection to get a reference to a strongly named type.
Reflection will not help, because the Framework converts LinkDemands into full demands. In the case
of ASP.NET, code that loads types from the GAC based on information in configuration explicitly looks
for APTCA on an assembly before loading it on behalf of a partially trusted ASP.NET application.

Sandboxing with Strongly Named Assemblies
With an understanding of APTCA, the GAC, and partial trust callers under your belt, you can put the
pieces together for wrapping code in a sandbox of sorts such that partially trusted callers can use more
privileged code. The idea behind the sandbox is that a partial trust web application doesn’t require
access to every possible API in the .NET Framework.

For example, if you are developing a Medium trust web application that communicates with a database,
chances are that the web application doesn’t really need to use every class in System.Data.SqlClient.
Furthermore, it is likely that the web application does not require the ability to issue any arbitrary query.
Instead, your web application probably has a very specific set of requirements—a specific set of tables
and stored procedures that it should interact with. As a result, you could encapsulate this restricted
functionality inside of an assembly (or assemblies) that exposes methods performing only the required
query operations. With such an approach you have effectively created a sandbox within which your
partial trust application can issue a limited set of SQL queries.

79301c04.indd 204 10/6/08 12:11:34 PM

205

Chapter 4: A Matter of Trust

Creating a sandbox assembly for use by a partial trust application requires the following:

	 1.	 A clear understanding of the specific functionality that needs to be publicly available to the par-
tial trust application

	 2.	 Knowledge of the security expectations that the sandbox assembly can realistically demand
from the partial trust code

	 3.	 Knowledge of the security requirements of lower-level code that the sandboxed assembly itself
relies on

Of the these three items, you can pretty easily scope out the requirements for point 1 because you
would normally do this anyway in the course of designing and developing your web application.
However, point 2 is something that you may not have given consideration to before.

If you work on a development team where everyone knows who writes specific pieces of code, then
you may not need to give too much though to the security expectations the sandbox assembly demands.
You could instead author a sandbox assembly, install it on one or more web servers, and be done with it.
However, if you write a sandboxed assembly for use by anonymous or unknown customers, then you
should definitely enforce point 2.

If you think about it, System.Web.dll could be considered a really, really big sandbox assembly. On behalf
of millions of developers not personally known by the ASP.NET development team, the ASP.NET runtime
is allowing partial trust web applications to do all sorts of interesting things. AspNetHosting​Permission,
which was covered earlier, is the programmatic representation of a security requirement that ASP.NET
demands from all partial trust applications. In the absence of a “personal trust” relationship, ASP.NET
instead uses the custom permission to establish an understanding of the level of trust granted to a web
application. As you saw, based upon that level of trust, ASP.NET will turn on and off various features.

If you are planning on authoring a strongly named assembly, regardless of whether it goes in the GAC,
you need to consider what types of permissions you expect (.demand) from calling code. Of course,
another reason for doing this is that some code that calls into your assembly may be malicious code that
is attempting to use your sandboxed assembly to subvert other security restrictions on the web server.

In Figure 4-2, the general pattern of a sandboxed assembly requesting some type of permission from its
caller is shown.

For example, say that your strongly named assembly internally makes a request for a bank account bal-
ance lookup from some mainframe. The assembly exposes a public method for making this request that
hides all of the internals necessary for setting up a call to a mainframe, parsing the response, authenti-
cating the web server to the mainframe, and so on. In normal circumstances, your assembly is deployed
on a web server, probably in the GAC, and the following call flow occurs:

	 1.	 The partially trusted web application calls a public method on your assembly, requesting the
bank account balance lookup.

	 2.	 Rather than just blindly trusting the caller, your assembly requires that the web application has
a custom permission defined by your company. It makes this check by constructing an instance
of the custom permission and then programmatically demanding it.

	 3.	 Assuming that the web application has the required permission, your assembly makes the nec-
essary calls into other privileged code to retrieve the bank account balance.

79301c04.indd 205 10/6/08 12:11:34 PM

206

Chapter 4: A Matter of Trust

Because of step 2, your sandboxed assembly is safer for use in partial trust applications and by any ran-
dom and anonymous set of developers. Because your assembly requires a custom permission, the logical
place to assign the permission to an ASP.NET application is in a custom trust policy file. Remember from
earlier all of the permission classes that were registered with <SecurityClass /> elements in a trust
policy file? You could author your own permission that derives from System.Security.CodeAccess​
Permission and then configure it in the trust policy file and grant it in with <IPermission /> element.

Partially trusted caller

Your strongly named assembly

Some lower level privileged operation

(1) Calls a public
m

ethod

(2
) S

ho
ul

d
re

qu
es

t
so

m
et

hi
ng

 in
 re

tu
rn

(3) Calls a privileged operation only if (2)
succeeded

Figure 4-2

Now a malicious user who obtains your sandboxed assembly and attempts to call it would need to
overcome the following hurdles:

They would need to obtain the assembly with the definition of the custom permission you are ❑❑

demanding.

The custom permission would need to be installed in the GAC, but this requires machine ❑❑

administrator privileges.

The trust policy file for the web application would need to be changed. Again, though, creating ❑❑

or editing trust policy files requires machine administrator privileges.

79301c04.indd 206 10/6/08 12:11:35 PM

207

Chapter 4: A Matter of Trust

Because the likelihood of compromising someone with machine administrator privileges is pretty low
(if someone with machine admin privileges on your Internet-facing web farms has malicious intent, it’s
all over!), any attempt by a partial trust web application to use your sandboxed assembly immediately
fails when your assembly demands a custom permission.

Always demand some kind of permission in your sandbox assemblies when you don’t know who is writ-
ing the partially trusted code that calls into your assembly.

The last point mentioned earlier (step 3) noted that you also have to have an understanding of the
security requirements of the code that your sandboxed assembly will call. This is necessary because it
is likely that some of the classes you call also have their own demands. For example, if you were wrap-
ping calls to System.Data.SqlClient, you know that the various classes in that namespace will
demand SqlClientPermission. Even though your assembly is strongly named, and may be in the
GAC, it doesn’t change the fact that the demand for SqliClientPermission will flow right up the
call stack, and when the demand hits a partially trusted web application, the demand will fail.

So, the third thing a sandboxed assembly may need to do is assert one or more permissions. When call-
ing System.Data.SqlClient, your sandboxed assembly needs to assert SqliClientPermission.
Doing so has the effect of stopping the stack walk for SqlClientPermission when your assembly is
reached. Figure 4-3 shows this.

Partially trusted caller

Your strongly named assembly
Asserts SqlClientPermission

System.Data.SqlClient

(1) Calls a public
m

ethod

(2
) D

em
an

d
pe

rm
is

si
on

in

 re
tu

rn

(3) Calls SqlConnection

(5) The Assert satisfies the dem
and

(4
) S

ql
Co

nn
ec

tio
n

de
m

an
ds

Sq

lC
lie

nt
Pe

rm
is

si
on

Figure 4-3

79301c04.indd 207 10/6/08 12:11:35 PM

208

Chapter 4: A Matter of Trust

Walking through the steps that occur:

	 1.	 The partial trust web application calls into the sandboxed assembly.

	 2.	 The sandboxed assembly demands permission from the partial trust web application rather
than just immediately executing code on its behalf.

	 3.	 Assuming that the permission demand succeeds, the sandboxed assembly makes a call into
ADO.NET.

	 4.	 ADO.NET demands SqlClientPermission, which starts a stack walk to check that all assem-
blies in the current call stack have this permission.

	 5.	 When the stack walk “sees” that the sandboxed assembly asserted SqlClientPermission, the
stack walk stops.

	 6.	 Control returns back to ADO.NET, and the appropriate method is allowed to execute.

The need to demand some type of permission from the calling code is, hopefully, a little clearer now.
Because sandbox assemblies may very well assert one or more permissions, it makes good sense to
require some type of permission in return from the calling code. Think of this as the equivalent of giving
your car keys to your teenager on the weekend (you are effectively asserting that you trust he or she will
not do anything wrong with the car, but in return you expect your teenager to drive responsibly).

There is one thing to keep in mind with the concept of asserting permissions. Even though any code
can new() up a permission class and call the Assert method, this doesn’t necessarily mean that
Assert will succeed. The reason a sandboxed assembly in the GAC can successfully call Assert
for any permission class lies in the way the .NET Framework evaluates the Assert. When a piece of
code calls Assert, the Framework looks at the assembly that contains the code making the assertion.
Based on the evidence for that assembly (where is the assembly physically located, what is its digital
signature, and so on), the Framework matches the assembly to the appropriate portion of the security
policy currently in effect for that application domain. The Framework then looks for the asserted per-
mission in the security policy; if the permission is found, the assertion succeeds. If the assertion fails,
a SecurityException occurs.

When assemblies are deployed in the GAC, code always has full trust, which means that GAC’d code
can call any other code and use any of the functionality in the Framework. As a result, GAC’d code that
calls Assert always succeeds. I won’t go into it here, but it is possible to structure the membership con-
ditions for the .NET Framework’s security to allow code in other locations to also be assigned full trust.
For most folks, though, installation in the GAC is the most straightforward way of obtaining full trust
and, thus, being able to assert permissions.

Sandboxed Access to ADODB
Earlier in the section “Working with Different Trust Levels” a few samples attempted to use the old ADO
data access technology from a partial trust web application. In this scenario, you can move the ADO data
access code into its own sandbox assembly and then enable the assembly for use in partial trust.

79301c04.indd 208 10/6/08 12:11:35 PM

209

Chapter 4: A Matter of Trust

The sandbox assembly contains code that attempts to create a new recordset:

C#
public int CreateRecordset()
{
 AspNetHostingPermission asp =
 new AspNetHostingPermission(AspNetHostingPermissionLevel.Medium);
 asp.Demand();

 RecordsetClass rc = new RecordsetClass();
 int fieldCount = rc.Fields.Count;
 return fieldCount;
}

VB.NET
 Public Function CreateRecordset() As Integer
 Dim asp As New AspNetHostingPermission(_
 AspNetHostingPermissionLevel.Medium)
 asp.Demand()

 Dim rc As New RecordsetClass()
 Dim fieldCount As Integer = rc.Fields.Count
 Return fieldCount
 End Function

The assembly is attributed with APTCA to allow partially trusted callers. The class also demands
Medium trust from its callers. Because this method is working with ADO, which is effectively the precur-
sor to ADO.NET, and ASP.NET grants SqlClientPermission at Medium trust, the CreateRecordset
method works with ADO on behalf of any partially trusted caller running at Medium trust or higher.

After installing the assembly into the GAC, the web application is updated so that it has a reference to
the GAC’d assembly.

<add assembly=”SampleAPTCAAssembly, Version=1.0.0.0, Culture=neutral, PublicKeyToke
n=ffd374f46df42d28”/>

The web page that uses the GAC’d assembly is shown here:

C#
using SampleAPTCAAssembly;
…
protected void Page_Load(object sender, EventArgs e)
{
 ADODBWrapper wrapper = new ADODBWrapper();
 Response.Write(wrapper.CreateRecordset().ToString());
}

79301c04.indd 209 10/6/08 12:11:35 PM

210

Chapter 4: A Matter of Trust

VB.NET
Imports SampleAPTCAAssembly_vb.SampleAPTCAAssembly_vb
…
Protected Sub Page_Load(_
 ByVal sender as Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Dim wrapper As New ADODBWrapper()
 Response.Write(wrapper.CreateRecordset().ToString())
 End Sub

At this point the page still won’t work, because the COM interop layer for ADO is demanding File-
IOPermission. However, because calling into a PIA means that you are calling into unmanaged code,
the sandbox assembly also needs SecurityPermission to grant unmanaged code assert permission. It
isn’t uncommon for sandbox assemblies to need to assert permissions to prevent demands in the under-
lying code from flowing up the call stack. To rectify the problem when calling the ADO PIA, the assem-
bly asserts file IO permission and unmanaged code permission as shown here:

C#
//If we get this far, we trust the caller and are willing to assert
//permissions on its behalf.
PermissionSet ps = new PermissionSet(null);
try
{

 FileIOPermission fp = new FileIOPermission(PermissionState.Unrestricted);
 SecurityPermission sp =
 new SecurityPermission(SecurityPermissionFlag.UnmanagedCode);

 ps.AddPermission(fp);
 ps.AddPermission(sp);

 ps.Assert();

 RecordsetClass rc = new RecordsetClass();
 int fieldCount = rc.Fields.Count;
 return fieldCount;
}
finally
{
 CodeAccessPermission.RevertAssert();
}

VB.NET
 ‘If we get this far, we trust the caller and are willing to assert
 ‘permissions on its behalf.
 Dim ps As New PermissionSet(PermissionState.Unrestricted)
 Try

 Dim fp As New FileIOPermission(_
 PermissionState.Unrestricted)
 Dim sp As New SecurityPermission(_
 SecurityPermissionFlag.UnmanagedCode)

79301c04.indd 210 10/6/08 12:11:35 PM

211

Chapter 4: A Matter of Trust

 ps.AddPermission(fp)
 ps.AddPermission(sp)

 ps.Assert()

 Dim rc As New RecordsetClass()
 Dim fieldCount As Integer = rc.Fields.Count
 Return fieldCount
 Finally
 CodeAccessPermission.RevertAssert()
 End Try

In this example, two permissions were asserted: FileIOPermission and a SecurityPermission.
However, you cannot create individual permission classes and then call Assert on each instance.
When you call Assert, the Framework temporarily changes the security information associated with
the current stack frame. At that point, you cannot Assert a second permission unless you tear down
the first Assert. To get around this, use the class System.Security.PermissionSet to add one or
more permissions to a permission set. You can then call Assert on the PermissionSet, and all the
individual permissions that were added to the set are associated with the current stack frame. In the
sample code, the PermissionSet allows the code to assert the file IO permission and the unmanaged
code permission.

When you need to assert permissions, you should try to assert only the specific permissions your
code needs. The sample asserts unrestricted FileIOPermission, which technically states that the
wrapper code may attempt any file IO operation anywhere on the file system. In this case, I don’t know
specifically what file path (or paths) the COM interop layer is looking at, so I used PermissionState​
.Unrestricted. However, if the wrapper assembly is calling another piece of code that works with
only a specific file or directory, it would be a better to assert FileIOPermission for only the required
file or directory.

All the example code is wrapped in a try/finally exception block. I did this to demonstrate how to call
the static method CodeAccessPermission.RevertAssert. This isn’t strictly necessary when your
code exits a method shortly after asserting permissions and doing some work (which is the case in the
sample). However, if you have methods that need to briefly assert one or more permissions to call some
other code, but your method then continues with other work, you should call RevertAssert to remove
the extra security rights from the current stack frame. This call ensures that the remainder of the code
in your method doesn’t inadvertently run with an elevated set of CAS permissions.

At this point, if you run the sample ASP.NET page, everything finally works. To summarize, the follow-
ing work is necessary to enable calling ADO from a Medium trust application:

	 1.	 Create a strongly named wrapper assembly.

	 2.	 Assign the APTCA attribute to the assembly to allow partial trust code like the web application
to call into it.

	 3.	 Install the assembly in the GAC, thus allowing the assembly to assert any permission that it
needs because GAC code is always fully trusted.

	 4.	 In the assembly, assert FileIOPermission and a SecurityPermission for unmanaged code
to prevent the underlying COM interop demands from flowing up the call stack.

79301c04.indd 211 10/6/08 12:11:35 PM

212

Chapter 4: A Matter of Trust

Sandboxed Access to System.Data.SqlClient
Access to some type of relational database is a common requirement for web applications, so this section
describes what is involved in running queries against SQL Server for an application running in Low trust.
Remember that the default trust policy file for Low trust doesn’t include the SqlClientPermission.

Here, I reuse the assembly from the ADODB example because it already gets installed in the GAC and
has the APTCA attribute applied to it. Because the new class in this assembly needs to prevent the
demand for SqlClientPermission from making it to the user code running in the page, the new class
needs to assert SqlClientPermission. As a basic protection though, the wrapper class requires at
least Low trust from its callers. The code to do all this is:

C#
 public class PubsDatabaseHelper
 {
 public DataSet RetrieveAuthorsTable()
 {
 //This class is only intended for use at Low trust or above
 (new AspNetHostingPermission(AspNetHostingPermissionLevel.Low)).Demand();

 try
 {
 //Prevent SqlClientPermission demand from flowing up the call stack.
 SqlClientPermission scp =
 new SqlClientPermission(PermissionState.Unrestricted);
 scp.Assert();

 string connectionString =
 @”server=.\SQL2005;integrated security=true;database=pubs”;

 using (SqlConnection conn =
 new SqlConnection(connectionString))
 {
 SqlCommand cmd
 = new SqlCommand(“select * from authors”, conn);
 SqlDataAdapter da = new SqlDataAdapter(cmd);

 DataSet ds = new DataSet(“authors”);
 da.Fill(ds);

 return ds;
 }
 }
 finally
 {
 CodeAccessPermission.RevertAssert();
 }
 }
 }

79301c04.indd 212 10/6/08 12:11:35 PM

213

Chapter 4: A Matter of Trust

VB.NET
 Public Class PubsDatabaseHelper
 Public Function RetrieveAuthorsTable() As DataSet
 ‘This class is only intended for use at Low trust or above
CType(New AspNetHostingPermission(AspNetHostingPermissionLevel.Low),
AspNetHostingPermission).Demand()

 Try
 ‘Prevent SqlClientPermission demand from flowing up the call stack.
 Dim scp As New SqlClientPermission(PermissionState.Unrestricted)
 scp.Assert()

Dim connectionString As String = “server=.\SQL2005;integrated
security=true;database=pubs”

 Using conn As New SqlConnection(connectionString)
 Dim cmd As New SqlCommand(“select * from authors”, conn)
 Dim da As New SqlDataAdapter(cmd)

 Dim ds As New DataSet(“authors”)
 da.Fill(ds)

 Return ds
 End Using
 Finally
 CodeAccessPermission.RevertAssert()
 End Try
 End Function
 End Class

In the sample ASP.NET application, the trust level is reduced to Low. The page that uses the PubsData-
baseHelper has a GridView control on it, and some code in the page load event to programmatically
data-bind the dataset returned from the PubsDatabaseHelper.

C#
using SampleAPTCAAssembly;
…
 protected void Page_Load(object sender, EventArgs e)
 {
 PubsDatabaseHelper ph = new PubsDatabaseHelper();

 grdView.DataSource = ph.RetrieveAuthorsTable();
 grdView.DataBind();
 }

VB.NET
Imports SampleAPTCAAssembly_vb.SampleAPTCAAssembly_vb
…
 Public Sub Page_Load(_

79301c04.indd 213 10/6/08 12:11:36 PM

214

Chapter 4: A Matter of Trust

 ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Dim ph As New PubsDatabaseHelper()

 grdView.DataSource = ph.RetrieveAuthorsTable()
 grdView.DataBind()
 End Sub
End Class

When you run the sample page, it successfully calls the GAC’d sandbox assembly and populates the
GridView control with the returned DataSet.

This basic example of sandboxing ADO.NET access shows how the same techniques can be used for
any arbitrary middle tier. Sandboxed assemblies are yet another reason why an architecturally sound
middle tier is so important to web applications. Even if you are running all of your ASP.NET applica-
tions today in full trust, if you have a well-designed middle tier you’ve already taken the most impor-
tant step toward enabling your web application for partial trust. The extra steps of security review,
adding the APTCA attribute, and selectively asserting permissions are comparatively easy when there
is already a clean separation of presentation layer and business layer code.

ProcessRequestInApplicationTrust
The last advanced topic that I want to cover is a security feature that was introduced in ASP.NET 2.0 and
still exists in ASP.NET 3.5. There is a new attribute on the <trust /> element called processRequest​
InApplicationTrust. By default, this attribute is set to true in the default trust level configuration:

 <location allowOverride=”true”>
 <system.web>
 <!-- security policy definition snipped for brevity -->

 <trust level=”Medium” processRequestInApplicationTrust=”true”
 originUrl=”” />
 </system.web>
 </location>

If you look at the root web.config file, you will not see the new attribute because the trust level configu-
ration class internally defaults the attribute’s value to true. Because this attribute deals with trust-related
security in ASP.NET, the attribute was added to the <trust /> element. So, along with the ability to
globally define the trust level for all applications on the machine, you can also globally control the value
of the new attribute. However, unlike trust levels where there are valid reasons why you would want
different trust levels for different applications, the setting for processRequestInApplicationTrust
should be left alone at its default value of true.

The attribute was introduced primarily to handle backwards compatibility issues when moving from
ASP.NET 1.1 to 2.0. Because ASP.NET 2.0 tightens its enforcement of trust levels, some earlier applica-
tions and controls may fail with security exceptions when they run on ASP.NET 2.0 or ASP.NET 3.5. As
a result, set the new attribute to false only when you encounter this kind of problem and even then
after the applications or controls are tweaked to work in ASP.NET 2.0 and ASP.NET 3.5, you should
revert to the default value of true for the attribute.

79301c04.indd 214 10/6/08 12:11:36 PM

215

Chapter 4: A Matter of Trust

The Interaction between Trust and ASP.NET Internal Code
To get a better understanding of what the processRequestInApplicationTrust attribute really
addresses, you need to understand a potential security issue for partial trust web applications. In sev-
eral scenarios in ASP.NET, only trusted code is running on the stack. Probably the easiest example to
explain is the no-compile page that was introduced in ASP.NET 2.0.

A no-compile page has no user code in a code-behind file. Instead, the only code is the declarative
markup in an .aspx. For example, the following page definition is an example of a no-compile page.

C#
<%@ Page Language=”C#” CompilationMode=”Never” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN” “http://www.w3.org/TR/xhtml11/
DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <div>
 <asp:SqlDataSource ID=”SqlDataSource1” runat=”server”
 ConnectionString=”<%$ ConnectionStrings: pubsConnectionString %>”
 ProviderName=”<%$ ConnectionStrings: pubsConnectionString.ProviderName %>”
 SelectCommand=”SELECT [au_id], [au_lname], [au_fname], [phone] FROM [authors]”>
 </asp:SqlDataSource>

 </div>
 <asp:GridView ID=”GridView1” runat=”server”
 AutoGenerateColumns=”False” DataKeyNames=”au_id”
 DataSourceID=”SqlDataSource1”>
 <Columns>
 <asp:BoundField DataField=”au_id” HeaderText=”au_id”
 ReadOnly=”True” SortExpression=”au_id” />
 <asp:BoundField DataField=”au_lname” HeaderText=”au_lname”
 SortExpression=”au_lname” />
 <asp:BoundField DataField=”au_fname” HeaderText=”au_fname”
 SortExpression=”au_fname” />
 <asp:BoundField DataField=”phone” HeaderText=”phone”
 SortExpression=”phone” />
 </Columns>
 </asp:GridView>
 </form>
</body>
</html>

79301c04.indd 215 10/6/08 12:11:36 PM

216

Chapter 4: A Matter of Trust

VB.NET
<%@ Page Language=”VB” CompilationMode=”Never” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN” “http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <div>
 <asp:SqlDataSource ID=”SqlDataSource1” runat=”server” ConnectionString=”<%$
ConnectionStrings:pubsConnectionString %>” SelectCommand=”SELECT [au_id], [au_
lname], [au_fname], [phone] FROM [authors]”>
 </asp:SqlDataSource>

 </div>
 <asp:GridView ID=”GridView1” runat=”server” AutoGenerateColumns=”False”
DataKeyNames=”au_id”
 DataSourceID=”SqlDataSource1”>
 <Columns>
 <asp:BoundField DataField=”au_id” HeaderText=”au_id”
ReadOnly=”True” SortExpression=”au_id” />
 <asp:BoundField DataField=”au_lname” HeaderText=”au_lname”
SortExpression=”au_lname” />
 <asp:BoundField DataField=”au_fname” HeaderText=”au_fname”
SortExpression=”au_fname” />
 <asp:BoundField DataField=”phone” HeaderText=”phone”
SortExpression=”phone” />
 </Columns>
 </asp:GridView>
 </form>
</body>
</html>

The page contains only a declarative representation of a GridView control bound to a SqlDataSource
control. Furthermore, the page directive explicitly disallows compilation by specifying Compilation​
Mode=’Never’. If you run this page and then look in the Temporary ASP.NET Files directory, you will
see that there is no auto-generated page assembly. When the page runs, ASP.NET effectively acts like a
parsing engine, using the control declarations to decide which ASP.NET control classes to instantiate
and then calling various methods on the instantiated controls.

There is a potential security issue here because the call stack at the time the GridView is data-bound
contains only ASP.NET code, and because all the ASP.NET code exists in the GAC, technically all of the
code is running in full trust. The rough call stack at the time DataBind is called is listed as follows.
Notice that every class involved in the call is fully trusted:

SqlDataSource: ❑❑ Located in System.Web.dll.

GridView: ❑❑ Located in System.Web.dll.

Page: ❑❑ Located in System.Web.dll.

79301c04.indd 216 10/6/08 12:11:36 PM

217

Chapter 4: A Matter of Trust

HttpRuntime: ❑❑ Located in System.Web.dll.

HostingEnvironment: ❑❑ Located in System.Web.dll.

ISAPIRuntime: ❑❑ Located in System.Web.dll.

Unmanaged code: ❑❑ Located in aspnet_isapi.dll.

Clearly, if the only security check for no-compile pages was the demand for SqlClientPermission
that comes from SqlDataSource calling into ADO.NET, a no-compile page would always succeed in
calling into SQL Server. However, if you run the sample page in a Low trust application (because Low
trust doesn’t have SqlClientPermission), you get a security-related exception.

You can’t take advantage of no-compile pages to call privileged code, because ASP.NET restricts the
page by forcing it to execute with the restrictions of the application’s current trust level. This is where
the phrase “process request in application trust” comes from. Internally, when ASP.NET runs a no-
compile page, it temporarily restricts the executing thread to the application’s trust level by calling
PermitOnly on the NamedPermissionSet that was declared for the ASP.NET permission set in the
trust policy file. So, not only does the trust policy file result in an application domain security policy,
it also results in a reference to a NamedPermissionSet that ASP.NET can use. Calling PermitOnly
tells the Framework that all subsequent method calls made on that thread should have CAS demands
evaluated against only the permissions defined by the named permission set. As a result, on no-compile
pages ASP.NET is effectively telling the Framework that ASP.NET’s GAC’d code should be treated as if
it were regular user code that you wrote in a code-behind file.

This behavior is all well and good for no-compile pages, and in fact there is no way for you to turn this
behavior off for no-compile pages. Because no-compile pages are present since ASP.NET 2.0, there can’t
be any backward-compatibility issues around trust level enforcement. However, in ASP.NET 1.1 you can
write your own custom web controls, and if you choose you can sign them and deploy them in the GAC.
Even though an ASP.NET 1.1 page auto-generates an assembly that is restricted by the application’s trust
level, a GAC’d web control still has the freedom to run in full trust. That means in ASP.NET 1.1 it is pos-
sible to author a web control that asserts permissions and then calls into other protected assemblies
despite the web control being placed on a page in a partially trusted web application. The reason for
this loophole is that there are places when a Page is running where only ASP.NET code is on the stack,
even for pages with code-behind and auto-generated page assemblies. The various internal lifecycle
events (Init, Load, and so on) execute as part of the Page class, which is a GAC’d class. If the Page class
constructs or initializes a control that in turn exists in the GAC, you have the problem where only fully
trusted code sitting on the stack.

ASP.NET 2.0, and consequently ASP.NET 3.5, tightens enforcement of trust levels by calling PermitOnly
on the trust level’s PermissionSet just prior to starting the page lifecycle. The net result is that all activi-
ties that occur as a consequence of running a page, including management of each individual control’s
lifecycle, are constrained to only those CAS permissions explicitly granted in the trust policy file. This
enforcement occurs because the processRequestInApplicationTrust attribute on the <trust />
configuration element is set to true by default. Hopefully, you now have a better understanding of why
this setting should normally not be changed.

However, if processRequestInApplicationTrust is set to false, then for compiled pages ASP.NET 2.0
and ASP.NET 3.5 will not call PermitOnly, and the loophole whereby GAC’d controls can avoid the appli-
cation trust level still exists. Figure 4-4 shows two different call paths involving a GAC’d web control: one
call path is the normal one; the other call path shows what occurs if “processRequestInApplication​
Trust” is set to false.

79301c04.indd 217 10/6/08 12:11:36 PM

218

Chapter 4: A Matter of Trust

NamedPermissionSet.PermitOnly occurs
if processPrequestInApplicationTrust = true

Internal Page class logic processes
controls in the declarative markup

System.Data.SqlClient classes demand
SqlClientPermission

Webcontrol that uses
System.Data.SqlClient

ADO.NET continues and runs
the requested method

ASP.NET pipeline code that
runs before the Page handler

(0) Application domain CAS
policy established when the
application domain started

SecurityException
is thrown !

(4b) If check fails

(4a) I
f ch

eck
 su

cce
eds(1) Calls into (2) Permission demand

(2
) P

er
m

is
si

on

de
m

an
d

(0) Assembles located in GAC
run at full trust.

(5d) Check GAC
CAS policy

(5b) Check GAC

CAS policy

(3) Check GAC CAS policy

(4b) Framework checks

appdomain CAS policy

(5
a)

 If
 P

er
m

itO
nl

y
is

 b
yp

as
se

d

(4a)
Permission demand

“sees” the PermitOnly

(5e) GAC’d code always has Full trust

Figure 4-4

	 0.	 When the application domain is initialized, the permissions in the trust policy file are applied as
the application domain CAS policy.

	 1.	 A request for a page that contains a GAC’d web control occurs. When the web control’s Render
method is called, it internally calls into System.Data.SqlClient classes.

	 2.	 This triggers a demand for SqlClientPermission.

	 3.	 The Framework first checks to see that the GAC’d web control has the necessary permission.
Because the control is in the GAC, and thus running in full trust, the check succeeds.

	4a.	 If processRequestInApplicationTrust is true, then when the permission demand flows
up the call stack, it encounters the security restriction put in place by the Page class’s call to
PermitOnly.

	4b.	 The Framework now checks the set of permissions that were defined in the trust policy file,
looking for SqlClientPermission.

	4c.	 If the application is running in Medium or higher trust, the check succeeds, and the ADO.NET
call eventually continues.

79301c04.indd 218 10/6/08 12:11:36 PM

219

Chapter 4: A Matter of Trust

	4d.	 If the application is running in Low or Minimal trust, the check fails, and a SecurityExcep-
tion is thrown.

	5a.	 If processRequestInApplicationTrust is false, the permission demand continues to flow
up the call stack.

	5b.	 The demand passes through various internal Page methods involved in instantiating the web
control. Because the Page class is in the GAC, it runs at full trust and the demand succeeds.

	5c.	 The demand eventually makes it to the top of the managed call stack. All code at this level is
GAC’d ASP.NET code that was initially responsible for receiving the call from the ISAPI exten-
sion and starting up the HTTP pipeline. So again, the demand succeeds.

	5d.	 Because only fully trusted code is in the current call stack, the demand succeeds, and the ADO.
NET call eventually continues.

To demonstrate how this actually works in code, you can create a simple web control that retrieves data
from the pubs database in SQL Server and renders it on the page.

C#
 public class MyCustomControl : WebControl
 {
 protected override void Render(System.Web.UI.HtmlTextWriter writer)
 {
string connectionString = @”server=.\SQL2005;database=pubs;integrated security=true”;
 SqlConnection conn = new SqlConnection(connectionString);

 SqlCommand cmd = new SqlCommand(“select * from authors”, conn);
 DataSet ds = new DataSet(“foo”);

 SqlDataAdapter da = new SqlDataAdapter(cmd);

 da.Fill(ds);
 }
 }

VB.NET
 Public Class MyCustomControl
 Inherits WebControl
 Protected Overrides Sub Render(_
 ByVal writer As System.Web.UI.HtmlTextWriter)
 Dim connectionString As String = “server=.\SQL2005;database=pubs;” & _
 “integrated security=true”
 Dim conn As New SqlConnection(connectionString)
 Dim cmd As New SqlCommand(“select * from authors”, conn)
 Dim ds As New DataSet(“foo”)
 Dim da As New SqlDataAdapter(cmd)
 da.Fill(ds)
 End Sub
 End Class

79301c04.indd 219 10/6/08 12:11:36 PM

220

Chapter 4: A Matter of Trust

The assembly is attributed with APTCA, signed with a signing key, and then installed in the GAC. In
the web application, a reference is established to the GAC’d assembly.

<add assembly=”GacdWebControl, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=8d9c3421c2f25fff” />

Notice that this GAC’d class does not assert SqlClientPermission. A page is created that uses the
web control in the declarative markup of the page.

C#
<%@ Register
 TagPrefix=”GCW” Namespace=”GacdWebControl” Assembly=”GacdWebControl” %>

.. other HTML snipped …

 <form id=”form1” runat=”server”>
 <div>
 <GCW:MyCustomControl runat=”server” ID=”customControl” />
 </div>
 </form>

VB.NET
<%@ Register Assembly=”GacdWebControl_vb, Version=1.0.0.0, Culture=neutral, PublicK
eyToken=b2748bd5f288dfd2”
 Namespace=”GacdWebControl_vb.GacdWebControl_vb” TagPrefix=”cc1” %>
.. other HTML snipped …
 <form id=”form1” runat=”server”>
 <div>
 <GCW:MyCustomControl runat=”server” ID=”customControl” />
 </div>
 </form>

If you first run the page in Low trust, you receive a SecurityException due to the failed SqlClient​
Permission demand. The call stack that follows shows only trusted code on the stack because the code
in the GAC’d web control is called as part of the Render processing for a Page.

[SecurityException: Request failed.]
..snip..
System.Data.Common.DbConnectionOptions.DemandPermission()
…
System.Data.Common.DbDataAdapter.Fill(DataSet dataSet)
GacdWebControl.MyCustomControl.Render(HtmlTextWriter writer)
…
System.Web.UI.Control.RenderControl(HtmlTextWriter writer)
System.Web.UI.Page.ProcessRequestMain(Boolean includeStagesBeforeAsyncPoint,
Boolean includeStagesAfterAsyncPoint)
…
System.Web.UI.Page.ProcessRequest(HttpContext context)
…

79301c04.indd 220 10/6/08 12:11:36 PM

221

Chapter 4: A Matter of Trust

Because PermitOnly occurs inside of the initial call to Page.ProcessRequest, when the SqlCli-
entPermission demand reaches that point in the call stack, it fails and the GAC’d web control is not
allowed to issue a command against SQL Server.

Now change the <trust /> level element, either in the root web.config or by overriding it in the
application’s web.config, to the following:

<trust level=”Low” processRequestInApplicationTrust=”false”/>

When you rerun the page, there is no longer a PermitOnly call restricting the permissions on the Page.
Instead the SqlClientPermission demand flows up a call stack that consists of nothing but trusted
code, and so the permission demand succeeds and the page successfully renders the dataset XML gen-
erated by the GAC’d web control.

The best advice for the processRequestInApplicationTrust attribute on <trust /> is to leave it
at its default setting of true, and if at all possible also set the allowOverride attribute on the enclos-
ing <location /> tag to false. This prevents enterprising developers from attempting an end run
around the application trust level by way of a GAC’d control. However, if you do encounter applica-
tions being moved from ASP.NET 1.1 that run into problems with the new trust level enforcement in
the Page class, you can temporarily set processRequestInApplicationTrust to false, but only
for the specific application that requires the workaround. You should never disable the Page’s trust
level enforcement for all applications on a machine, even though it is a little bit of a hassle, use appli-
cation-specific <location /> elements or the application’s web.config instead to tweak the behavior
for the offending applications. After you track down the problematic code and fix it (usually there are
a few asserts necessary and a quick security review to make sure the asserts are appropriate), you can
remove the <trust /> level workaround for the application and revert to the intended ASP.NET 2.0 or
ASP.NET 3.5 behavior.

Summary
In this chapter, you took a comprehensive look at the concept of code access security (CAS) in ASP.NET.
Although the .NET Framework has a rich set of classes and configuration information for enforcing
code access security, ASP.NET simplifies CAS by introducing the concept of a trust level. A trust level
is represented as a piece of XML in a trust policy file that defines the set of .NET Framework permis-
sions granted to an ASP.NET application. You can choose permissions for your application by using the
<trust /> configuration element and setting it to one of the following trust levels:

Full: ❑❑ The web application can call any code in the Framework as well as Win32 APIs.

High: ❑❑ The web application cannot call into Win32 APIs. Also, a default set of restricted permis-
sions is defined by ASP.NET that gives your web application access to a reasonably large set of
the Framework.

Medium: ❑❑ The recommended trust level for hosting machines. Also recommended for any
Internet-facing web server.

79301c04.indd 221 10/6/08 12:11:37 PM

222

Chapter 4: A Matter of Trust

Low: ❑❑ This trust level has a very limited set of CAS permissions. It is appropriate for applications
that perform only local read-only operations. It is also used for applications that provide their
own sandboxed execution model on top of ASP.NET such as SharePoint.

Minimal: ❑❑ The lowest trust level available. It allows you to write only code that deals with in-
memory data. Your web application can’t touch the file system or the network.

Make your web applications more secure by at least moving from Full to High trust. Although doing
so will likely require a few tweaks in your web applications and your business tiers, changing your
applications so that they are only partially trusted is a major step in restricting the capabilities of mali-
cious code. You can choose to customize the default trust levels by editing the policy files that ship with
ASP.NET 3.5, or creating new custom trust levels and registering them inside a <securityPolicy />
element.

If you are writing an application in which you want to strictly limit the kind of code that can be called
from the presentation layer, use a trust level (such as Low or Minimal) that grants very few permissions
to application code. You can instead deploy your business logic inside of sandboxed assemblies that are
deployed in the GAC and that expose only public APIs for a limited functionality set. Internally, your
sandboxed assemblies need to assert various CAS permissions when calling other protected assemblies.
Ideally, sandboxed assemblies should also demand some kind of permission from partially trusted
applications prior to calling privileged code on behalf of the web application.

79301c04.indd 222 10/6/08 12:11:37 PM

5
Configuration

System Security

Many .NET Framework features depend on initialization information stored in various confi gu-
ration fi les. ASP.NET especially is heavily dependent on confi guration sections for defi ning the
behavior of many aspects of the ASP.NET runtime. As a result the confi guration information
frequently contains sensitive information (usernames, passwords, connections strings, and so
on). Confi guration information can also directly affect the security settings enforced by certain
features. As a result, confi guration security is an important aspect of ensuring that a web applica-
tion works as expected.

This chapter covers the following aspects of securing confi guration information:

Using the ❑❑ <location /> element.

Implementing granular inheritance control using the new “lock” attributes.❑❑

Setting access rights to read and modify confi guration.❑❑

Managing IIS 7.0 confi guration versus ASP.NET confi guration.❑❑

IIS 7.0 Feature Delegation.❑❑

Implementing partial trust restrictions when using confi guration.❑❑

Using the new protected confi guration feature.❑❑

Using the <location /> Element
The <location /> element has existed since ASP.NET 1.0 as a convenient way to defi ne con-
fi guration inheritance without the need to create and deploy multiple separate confi guration
fi les. Because web applications always have some type of hierarchy, and thus the concept of

79301c05.indd 223 10/6/08 12:12:50 PM

224

Chapter 5: Configuration System Security

configuration inheritance, you commonly need to define configuration settings at different levels of the
ASP.NET inheritance hierarchy. The following list shows the ASP.NET 3.5 inheritance chain:

	 1.	 Settings defined in machine.config: In ASP.NET 2.0 many of the default ASP.NET settings
have been moved out of machine.config to minimize startup time of non-web applications.

	 2.	 Settings defined in the root web.config: This new configuration file exists in %windir%\
Microsoft.NET\Framework\v2.0.50727\CONFIG. Most of the ASP.NET-specific default
settings are now defined in the root web.config file.

	 3.	 Settings defined in the web.config file located in the root folder of a website: For the default
web site, this would be a folder resembling c:\inetpub\wwwroot.

	 4.	 Settings defined in the root directory of the application: This is the web.config file that you
normally work with in your applications. If the application is the website (meaning the applica-
tion exists at “/”), the website configuration file and the application’s configuration file are one
and the same.

	 5.	 Settings defined in a configuration file located in a subdirectory of a web application: Settings
that can be changed on a per-directory basis can be placed in a web.config file in a directory.
For example, you can define <authorization /> elements in web.config files that apply
only to a specific virtual directory.

Usually, you set some global defaults once in the machine.config and root web.config files, and
spend most of your time editing the application’s web.config file.

The contents of the <location /> element are the same configuration sections that you would nor-
mally set up inside of the various configuration files. Using the URL authorization section as an exam-
ple, you could place the following into the web.config located at the root of a website (for example, at
c:\inetpub\wwwroot\yourwebsite\web.config) as follows:

<location path=”Virtual Path A”>
 <system.web>
 <authorization>
 <allow roles=”Secured, Administrators” />
 <deny users=”*” />
 </authorization>
 </system.web>
</location>

The <location /> element is interpreted as the beginning of a new virtual configuration file, meaning
the element (or elements) nested immediately beneath the <location /> element must be top-level ele-
ments allowed in a normal configuration file. Thus, in the example just shown, the <system.web> dec-
laration is needed. You cannot place the <authorization /> element inside a <location /> element
because it wouldn’t be allowed as a top-level element in a web.config file.

The thing that becomes awkward with configuration inheritance is that you can quickly end up with a
proliferation of .config files. For example, the URL authorization section (<authorization />) often
requires many configuration files because the <authorization /> section can be applied down to the
level of a specific web page. Developers who need to lock individual folders can drop a web.config file
into each separate folder containing the folder-specific authorization rules. You saw an example of this
back in Chapter 3 when URL authorization was covered.

79301c05.indd 224 10/6/08 12:12:51 PM

225

Chapter 5: Configuration System Security

You can determine how far down the inheritance chain a configuration section can be defined by look-
ing at the section definitions. Most section definitions can be found within <section /> elements up
in machine.config. (Configuration section definitions are typically global to a machine so it makes
sense to define them up in machine.config.) In a section definition like the following one:

<section name=”healthMonitoring”
 type=”…”
 allowDefinition=”MachineToApplication” />

…the allowDefinition attribute indicates that the health-monitoring configuration section can be
defined all the way down to the web.config file for an application. So, you are not going to run into a
problem with needing health-monitoring definitions for each your application’s subfolders.

As a counterpoint, the URL authorization configuration section definition is:

<section name=”authorization” type=”…” />

The lack of the allowDefinition attribute for this configuration section is an indication that the
authorization configuration can be redefined to any level of folder nesting. As a result, this configura-
tion section is a good candidate for centralizing in an application’s web.config to prevent the number
of folder-specific web.config files from growing out of control.

Just looking at the section definition in machine.config is not always going to tell you whether the
configuration makes sense at nested configuration levels. For example, the browser capabilities section
can also be redefined at any level of the configuration hierarchy. Most likely, though, you would not
redefine this section beneath the level of the application’s web.config.

The Path Attribute
The <location /> element is a way to control the number of .config files deployed for an applica-
tion. The path attribute within the <location /> element tells the configuration system where in the
configuration inheritance chain the information contained within the <location /> element should be
applied. You can place a <location /> element inside of any configuration file within the inheritance
chain, from machine.config all the way down to a configuration file in a subfolder of a web applica-
tion, and then use the path attribute to indicate where the enclosed configuration information applies.

Probably the most confusing aspect, though, of the <location /> element is the potential values for
the path attribute. You can place the following values inside of the path attribute:

A specific page (that is, ❑❑ default.aspx)

A specific folder (that is, ❑❑ “subfolder”)

A combined path (that is, ❑❑ “subfolder/default.aspx” or “subfolderA/subfolderB”*.
The name of a website as defined in IIS (that is, “Default Web Site”)

The combination of a website name and nested path information (that is, ❑❑ “Default Web
Site/subfolderA”)

With the path attribute, you can centralize configuration settings into a single physical configuration
while still having the flexibility to define configuration settings for different applications, folders, pages,
and so on.

79301c05.indd 225 10/6/08 12:12:51 PM

226

Chapter 5: Configuration System Security

Your decision about how to centralize configuration settings should be based on the relationship between
the desired configuration information and the location of the configuration file. The root web.config
file is an appropriate location for defining configuration information applicable to all web applications on
a server. For example, this is the reason that the trust level configuration exists within a <location />
element in the root web.config file.

The web.config file that can be placed at the root of an IIS website is probably used as an application
configuration file by most developers. When you have no applications running at /, the website’s con-
figuration file is an appropriate location for defining configuration information applicable to all applica-
tions running beneath the website’s root.

Each application’s web.config file can be used for centralizing configuration information applicable to
the application’s subfolders. Although you can spread out configuration information into configuration
files in subfolders (as was shown in the URL authorization discussion in Chapter 3), it can be confusing to
debug application problems. Unless someone who knows the application intimately realizes that configu-
ration files are located in subfolders, you may end up scratching your head wondering why an application
is behaving in a specific manner. Centralizing configuration information using <location /> tags in
the application’s web.config file makes it easier for you to know exactly which configuration settings
are in effect in different parts of the application.

The allowOverride Attribute
An additional level of security is available with the <location /> element through the allowOverride
attribute. Commonly, a web server administrator defines some ASP.NET settings in machine.config.
However, this wouldn’t be very useful if in each web application the developer simply redefined the
configuration sections. The solution is to set the allowOverride attribute to false. After this is done,
any attempt to redefine the configuration information contained within the <location /> element
results in a configuration exception.

If you globally define the trust level in machine.config as follows:

 <location allowOverride=”false”>
 <system.web>
 <trust level=”Medium” />
 </system.web>
 </location>

…attempting to redefine this in your application’s web.config file results in an error page telling you
that the parser encountered an error because the section has been locked down in a higher-level con-
figuration file (in this case, machine.config). The amount of leverage the <location /> element plus
the allowOverride attribute gives you is the reason security-sensitive configuration sections should be
defined in either machine.config or the new root web.config file. Both of these files are also ACL’d on
the file system to allow only write access by machine administrators so individual application develop-
ers can’t subvert the settings. Setting allowOverride to false guarantees the person who can change
a locked configuration section is a member of the machine’s Administrator group.

79301c05.indd 226 10/6/08 12:12:51 PM

227

Chapter 5: Configuration System Security

Using the lockAttributes
Around the time that Beta 1 of ASP.NET 2.0 was worked on, the development team came up with the idea
of allowing the session state feature to lock portions of its configuration. The idea was to allow devel-
opers using session state to configure application-specific behavior such as the session timeout, while
allowing machine administrators to define more global settings such as the session state mode and con-
nection string. As part of this work, the team realized that the existing 1.0/1.1 <location />-based
lockdown approach was too restrictive.

For instance, if an administrator wanted to enforce just the connection string used by all applications
with SQL Server session state, an administrator would also have to drag in enforced settings for session
timeout, cookieless support, and so on. On some web servers, this constraint might be reasonable, but
in corporate hosting environments the likelihood is rather high that different internal corporate cus-
tomers want different application-specific behavior.

Rather than taking the early work for session state and limiting it to that feature, the concept of locking
down individual configuration attributes as well as nested configuration elements was expanded and made
available to any arbitrary configuration section. The following list describes the set of common attributes:

lockAttributes:❑❑ You can specify specific attributes on a configuration element that cannot be
redefined lower down in the configuration hierarchy.

lockElements:❑❑ You can specify nested elements for a given configuration element that should
not be redefined in child configuration files. This attribute is applicable only to complex con-
figuration sections that contain nested elements.

lockAllAttributesExcept: ❑❑ This is the companion attribute to lockAttributes. Depending on
how many attributes you are locking down, it may be faster to lock all attributes except for a
select few, rather than listing specific locked attributes with lockAttributes.

lockAllElementsExcept: ❑❑ The companion attribute to lockElements. For complex configuration
sections, it may be easier to define the nested elements that can be redefined, rather than list the
locked elements with lockElements.

Locking Attributes
You can define the configuration for a feature in a higher-level configuration file and then selectively
choose which attributes are allowed to be redefined in child configuration files. The lockAttributes
and lockAllAttributesExcept attributes can be placed inside of any configuration element to limit
the attributes that can be redefined in child configuration files.

Take the Membership feature as an example of how you can lock individual attributes of a configura-
tion element. The <membership /> element has three attributes: defaultProvider, userIsOnline​
TimeWindow, and hashAlgorithmType. Of the three attributes, perhaps as an administrator you would
like to ensure that any providers configured to use hashing should always use a stronger hashing vari-
ant, specifically SHA256.

79301c05.indd 227 10/6/08 12:12:51 PM

228

Chapter 5: Configuration System Security

To test the effect of locking the hashAlgorithmType attribute, you can write a sample application that
defines the <membership /> element in its web.config:

<membership
 hashAlgorithmType=”SHA1”
 userIsOnlineTimeWindow=”15” >

The membership feature comes preconfigured in machine.config with just an empty <membership />
element. However, for testing the attribute-based configuration lockdown, machine.config can be
modified to look as follows:

<membership hashAlgorithmType=”SHA256”> …

You can see the hash algorithm that has been configured for the Membership feature by just outputting
the setting on a web page in the sample application:

Response.Write(Membership.HashAlgorithmType);

The first time you run the sample application the redefined configuration in the application takes effect,
and thus the output on the web page is “SHA1.” Now lock the settings in machine.config to prevent
redefinition of the hashAlgorithmType attribute:

<membership hashAlgorithmType=”SHA256” lockAttributes=”hashAlgorithmType”>

Now when you attempt to run the sample application you get a configuration error stating that the
hashAlgorithmType attribute has been locked in a higher-level configuration file. If you remove the
hashAlgorithmType attribute from the application’s web.config file, the application runs success-
fully and the new hash algorithm is SHA256. Just for the heck of it, you can extend the attribute lock in
machine.config to include the userIsOnlineTimeWindow and defaultProvider attributes as well:

<membership hashAlgorithmType=”SHA256”
 lockAttributes=”hashAlgorithmType;userIsOnlineTimeWindow;defaultProvider”>

Use a comma or a semicolon to delimit the individual attributes defined in lockAttributes and
lockAllAttributesExcept.

This basic example with the <membership /> element shows that lockAttributes gets pretty ver-
bose. Locking something like the <sessionState /> element with its 14 different attributes results in
a lengthy definition for lockAttributes. Taking the <membership /> section again as an example,
allowing the userIsOnlineTimeWindow attribute to be changed in child configuration files, you could
use the following more succinct machine.config definition:

<membership hashAlgorithmType=”SHA256”
 lockAllAttributesExcept=”userIsOnlineTimeWindow” >

This construct allows you to redefine just a subset of the <membership /> element in the application’s
web.config file:

<membership userIsOnlineTimeWindow=”15” >

As with the lockAttributes element, you can specify multiple attributes within lockAllAttributes​
Except. The comma and semicolon characters are also used as delimiters.

79301c05.indd 228 10/6/08 12:12:51 PM

229

Chapter 5: Configuration System Security

A shorthand for locking all attributes on a configuration element is to use an asterisk for the value of
lockAttributes. The following example shows how to prevent the redefinition of any attribute on the
<membership /> element:

<membership … lockAttributes=”*” />

Finding Out Which Elements Are Available for Lockdown
To find out which elements are available for lockdown for a specific configuration ele-
ment, you can create a bogus lockAttributes value. For example, with the following
configuration definition (this is in machine.config, but the technique works in any
configuration file):

 <membership hashAlgorithmType=”SHA256”
 lockAllAttributesExcept=”this doesn’t exist” >

The error returned from ASP.NET is:

The attribute ‘this doesn’t exist’ is not valid in the locked
list for this section. The following attributes can be locked:
‘defaultProvider’, ‘userIsOnlineTimeWindow’, ‘hashAlgorithmType’.
Multiple attributes may be listed separated by commas.

Self-documenting errors are a good thing in this case!

Although locking specific attribute configuration is a powerful feature of the configuration system,
bear in mind that just because a lockdown is technically possible it may not always make much sense
in practice. For example, the previous examples showing how to lock down the hash algorithm for the
<membership /> feature wouldn’t be useful if all membership providers used by an application were
configured with reversible encryption instead. In this case, the configuration system happily enforces
the attribute lockdown, but the end result would have no effect at runtime. This means attribute lock-
downs (and element lockdowns discussed in the next section) still require you to look at the final run-
time effect to determine whether the locked down configuration really makes sense.

Locking Elements
Because many configuration sections have nested elements, the configuration system provides the abil-
ity to lock elements within a configuration section. The lockElements and lockAllElementsExcept
attributes control this behavior for any configuration section.

For example, the <membership /> section enables you to define providers using the <providers />
element and <add />, <remove />, and <clear /> elements nested with the <providers /> element.
You could allow application developers to change attributes on the <membership /> element but disal-
low them from changing any of the providers with the following configuration in machine.config:

<membership lockElements=”providers”>

Attempting to make any changes to the <providers /> element for <membership /> in a child
web.config file results in an error because the providers element has been locked in higher-level
configuration file.

79301c05.indd 229 10/6/08 12:12:51 PM

230

Chapter 5: Configuration System Security

To allow an individual application to add new providers but disallow individual applications from remov-
ing or clearing providers defined in parent configuration files, your configuration in machine.config
could look like the following:

<membership>
 <providers lockAllElementsExcept=”add”>
 <!-- provider definitions here -->
 </providers>
</membership>

In this example, the lockAllElementsExcept attribute is used as a shortcut for allowing only child
web.config files to use the <add /> element within the membership provider definition.

A shorthand for locking all elements nested within a configuration element is to use an asterisk for the
value of lockElements. The following example shows how to prevent the redefinition of any providers
for the membership feature:

<membership>
 <providers lockElements=”*”>
 <!-- provider definitions here -->
 </providers>
</membership>

The utility of element-based lockdown in Add-Remove-Clear (ARC) collections such as the membership
provider collection is somewhat open to question. Locking <membership /> by preventing changes to
the <providers /> element is for all practical purposes locking the configuration of the entire Mem-
bership feature. Because providers are central to the feature, using a <location />-based lock would
achieve about the same result. About the only benefit you gain from using lockElements with a fea-
ture like <membership /> is that you could still allow individual applications to customize the online
time window setting. A machine.config definition that allowed this would look as follows:

<membership lockElements=”providers”
 lockAttributes=”defaultProvider,hashAlgorithmType”>

However, some provider-based features like the health-monitoring benefit from the use of the element-
based lock. For example, as an administrator you could prevent removal or clearing of health-monitoring
providers with the following configuration definition:

<healthMonitoring>
 <providers lockElements=”remove,clear”>
 <add name=”admin configured provider goes here” … />
 </provider>
</healthMonitoring>

With this definition, you can add providers to individual web applications. However, you cannot remove
any providers defined in machine.config. This approach allows a box administrator to ensure that
specific providers are always configured and in use on the machine for centralized web event collec-
tion, regardless of whatever other providers may be added by individual applications.

79301c05.indd 230 10/6/08 12:12:51 PM

231

Chapter 5: Configuration System Security

The following list describes the combinations of element-based locks that make sense for any Add-
Remove-Clear collection (provider definitions, the Profile properties definition, and so on):

Lock all ARC elements to prevent child modifications by locking the parent collection element. ❑❑

This means putting a lockElements=’*’ definition in the parent element as was shown earlier
(for example the <providers /> element, the <properties /> element for a feature like Pro-
file, and so on).

Allow individual applications to add elements to an ARC collection, but disallow ❑❑

changing any inherited collection elements. This means using a lock definition such as
“lockAllElementsExcept=’add’ in the parent collection element.

Allow individual applications to remove elements from an ARC collection, but disallow addi-❑❑

tions. This can be accomplished with a definition such as lockElements=’add’ in the par-
ent collection element. This approach can be useful if you configure multiple providers on a
machine, but leave it up to the individual applications to choose the specific ones to use. Indi-
vidual applications can then remove the providers they don’t want to use.

Although you can technically do other things, such as disallow <remove /> but not <clear />, or
vice versa, these types of locks are ineffective. The <clear /> and <remove /> elements are basically
interchangeable. You can simulate a <clear /> with a series of <remove /> elements, so preventing
a child configuration file from using <clear /> but not <remove /> is pointless. Similarly, prevent-
ing the use of <remove /> but not <clear /> is questionable because <clear /> is just a fast way of
removing all previously defined items in a configuration collection.

Locking Provider Definitions
Because a good chunk of this book is about Membership and Role Manager, you may be wondering
how the attribute lock feature works with provider-based features. You may be thinking that with the
attribute-based lock feature, you can customize portions of your provider definitions and restrict the
redefinition of many of the provider attributes.

To see which attributes in a provider <add /> element are lockable by default you can use the trick
mentioned earlier. Take the sample application and create the following membership provider <add />
element:

 <add lockAttributes=”foo”
 name=”AspNetSqlMembershipProvider”
 type=”…”
 connectionStringName=”LocalSqlServer”
 enablePasswordRetrieval=”false”
 enablePasswordReset=”false”
 requiresQuestionAndAnswer=”false”
 applicationName=”ConfigurationSample”
 requiresUniqueEmail=”true”
 passwordFormat=”Hashed”
 description=”some description here” />

79301c05.indd 231 10/6/08 12:12:51 PM

232

Chapter 5: Configuration System Security

The following error statement returns:

The following attributes can be locked: ‘name’, ‘type’, ‘connectionStringName’,
‘enablePasswordRetrieval’, ‘enablePasswordReset’, ‘requiresQuestionAndAnswer’,
‘applicationName’, ‘requiresUniqueEmail’, ‘passwordFormat’, ‘description’.

All provider definitions use the same underlying strongly typed configuration class (this is covered
extensively in Chapter 10 on the Provider Model). The strongly typed provider configuration class
defines only “name” and “type” as common provider attributes. Clearly, though, each provider-based
feature has a rich set of feature-specific provider attributes, and the error message shown previously lists
much more than the “name” and “type” attributes as available for lock.

This behavior occurs because the strongly typed configuration class for the <add /> element includes
a collection used to contain feature-specific provider attributes. When you place a lockAttributes or
lockAllAttributesExcept attribute on a provider <add /> element, the configuration system consid-
ers the feature-specific provider attributes lockable along with the “name” and “type” attributes. (These
two attributes are required on a provider <add /> definition, so they are always lockable).

This still leaves the question as to how you actually lock a specific provider definition. Provider con-
figuration always uses Add-Remove-Clear (ARC) collections, meaning that the provider definitions are
built up through a series of <add /> elements, with optional <remove /> and <clear /> elements
in child configuration sections. However, there is no such thing as a <modify /> element. Without a
modification element, what use are the locking attributes?

If you define a provider with an <add /> element and then subsequently use <remove > and then add
the provider in another configuration file, the configuration system remembers the original set of locked
attributes from the first <add /> definition. It enforces the attribute lock when the provider is redefined.
To see an example of this, you can define a membership provider in machine.config as follows:

<membership>
 <providers>
 <add lockAttributes=”passwordFormat”
 name=”AspNetSqlMembershipProvider”
 …/>
 </providers>
</membership>

Then in the web.config for an application, you can redefine the provider as follows:

<membership>
 <providers>
 <remove name=”AspNetSqlMembershipProvider” />
 <add name=”AspNetSqlMembershipProvider”
 passwordFormat=”Encrypted”
 …/>
 </providers>
</membership>

If you attempt to run any pages in the sample application at this point, you end up with an error saying
that the passwordFormat attribute was already defined and locked in a parent configuration file. Unfor-
tunately, you can easily “fake out” the configuration system by using a <clear /> element instead. If
you substitute a <clear /> element for the <remove /> element, the web application will run without

79301c05.indd 232 10/6/08 12:12:51 PM

233

Chapter 5: Configuration System Security

a problem. Basically in ASP.NET 3.5 the configuration system lacks the “smarts” to retain attribute lock
information when a <clear /> element is used.

Hopefully, in a future release of ASP.NET, this problem will be resolved. For ASP.NET 3.5, though, this
means that you can only lockdown provider definitions with the following approaches:

Use a ❑❑ <location /> tag to lock the entire provider-based feature. For example, configure the
<membership /> section in a parent configuration file and disallow any type of redefinition in
child configuration files.

Use the ❑❑ lockElements and lockAllElementsExcept attributes to control whether child con-
figuration files are allowed to use the <add />, <remove />, and <clear /> elements. You
might allow for child configuration files to add new provider definitions or you might allow
child configuration files to remove previously defined providers.

Use the ❑❑ lockElements=’providers’ attribute to prevent any kind of changes to the
<providers /> element, while still allowing child configuration files the leeway to change
attributes on the feature’s configuration element (for example, allow edits to the attribute con-
tained in <membership /> or <roles />).

Managing IIS 7.0 Configuration versus
ASP.NET Configuration

Chapter 1 provided an overview of the new IIS 7.0 configuration system. There was a big step moving
away from the old IIS 6.0 metabase configuration system into the new .NET-like configuration system.
The structure and concept of the IIS 7.0 configuration system is based on the .NET Framework configu-
ration system. They both make use of XML configuration files, proving the tight integration when it
comes to mixing both configuration systems in a single file (for instance, the application’s web.config
file, as you will see later in this section).

The IIS 7.0 configuration system constitutes a hierarchy of XML configuration files that are distributed
among the .NET Framework and IIS 7.0. This hierarchy includes

The ❑❑ machine.config file that contains all the global settings and configurations for the
.NET Framework.

The root ❑❑ web.config configuration file that contains the .NET configurations in the web.config
configuration file that was introduced since ASP.NET 2.0 as a way to delegate some of the con-
figuration settings from the machine.config configuration file.

The site’s ❑❑ web.config configuration file that contains specific configuration for a specific site.

The application’s ❑❑ web.config configuration file that holds specific configuration for a specific
application in the site.

Finally, the site directory’s ❑❑ web.config configuration file that contains the most specific con-
figuration settings for a directory within an application.

In addition to the .NET Framework configuration files, there is the famous applicationHost.config
file, which represents the overall configuration settings specific to IIS 7.0.

79301c05.indd 233 10/6/08 12:12:52 PM

234

Chapter 5: Configuration System Security

Figure 5-1 shows a graphical representation of the different configuration files that constitute the new IIS 7.0
configuration system. The components of the IIS 7.0 configuration system include the .NET Framework con-
figuration files in addition to the IIS 7.0-specific configuration file.

79301/ Ch05 fig 01 F0501.ai 7/30/08 mp

web.config
(sub applications)

web.config
(%SystemDrive%/netpub/

wwwroot)

web.config
(%SystemDrive%/netpub/

wwwroot/MyApp)

machine.config web.config
(root)

ApplicationHost.config

Figure 5-1

As you already know by now, the applicationHost.config file is composed of two main section groups:
<system.applicationHost /> and <system.webServer />. The <system.applicationHost />
configuration section group holds global configuration settings used by the Windows Process Activation
Service that apply to all Web sites hosted inside of IIS 7.0. Among the different global configuration sec-
tions are the <applicationPools /> configuration section group, which holds information about the
different application pools created inside the IIS 7.0 engine, and the <sites /> configuration section
group, which holds information for every site and its inner applications installed on the IIS 7.0 web
server. Such configuration settings are not allowed to be edited or modified on the site or application
level; only web server administrators are allowed to modify these settings to apply to all sites and
applications running on the machine.

The other important configuration section group in the applicationHost.config file is the <system​
.webServer /> section group. This section contains all the configuration settings for the IIS 7.0 Web
server engine, including <modules />, <handlers />, <asp />, and <security />. The major dif-
ference between this configuration section group and the <applicationHost /> configuration section
group is that IIS 7.0 allows application developers to play around with this section and modify entries
inside it that best suits the application they are developing, taking into consideration the ability of the
web server administrator to lock down certain sections inside the <system.webServer /> that he or
she finds important for the functionality of the web server and that application developers should keep
intact.

Now that the preceding two major sections of the applicationHost.config configuration file have
been introduced, you have a better understanding that the aforementioned IIS 7.0 configuration file
contains global settings that only web server administrators have access to, and global/specific settings
that can be defined globally on the IIS 7.0 web server level and can also be overridden by application
developers.

As mentioned previously, the new IIS 7.0 configuration system is a mixture of the .NET Framework con-
figuration files and the IIS 7.0 applicationHost.config configuration file. Now the question arises: how
does IIS 7.0 handle the distributed hierarchy of configuration files when an application is running and

79301c05.indd 234 10/6/08 12:12:52 PM

235

Chapter 5: Configuration System Security

executing inside IIS? What happens is that the IIS 7.0 configuration system has access to all the .NET
Framework configuration files. At runtime the .NET Framework combines the different configuration
sections from the different configuration files starting with the machine.config configuration file, add-
ing to it any changes or editions made in the root web.config file, adding to it any changes or editions in
the site web.config configuration file, and finally arriving at the application web.config file. In the case
a subdirectory is accessed in an application, and then the web.config configuration file of that specific
directory is also added to the combination of configuration sections. The .NET Framework piles up all the
configuration settings into a single configuration file. At this time, the IIS 7.0 reads the .NET Framework
joined configuration settings and more specifically the <system.webServer /> configuration section
group. It ignores the rest of the ASP.NET configuration settings and reads the IIS 7.0-specific configura-
tion section. This way, IIS 7.0 would have access to the ASP.NET configuration settings, just as ASP.NET
itself has access to them, with one major difference: ASP.NET will be reading the ASP.NET-specific
settings and ignoring the <system.webServer /> configuration section, and IIS 7.0 would ignore all
ASP.NET related configuration sections and process the <system.webServer /> configuration section.
Referring to the idea of delegation, IIS 7.0 should access and read the <system.webServer /> configura-
tion section defined inside the ASP.NET piled-up configuration settings because, as you have read above,
ASP.NET developers are given the privilege to configure IIS 7.0-specific settings from inside the different
.NET Framework configuration files and, hence, if some IIS 7.0-specific settings were changed for a spe-
cific web application, the IIS 7.0 configuration system has to know about the changes so that it configures
the application at the IIS 7.0 level with the changes or modifications required.

From an architectural point of view, the IIS 7.0 configuration system inherits the structure of the .NET
Framework configuration system. This led the IIS team at Microsoft to decide on grouping both con-
figuration settings in the same configuration file. This improves portability and deployment, of course,
since the developer has to move only the application’s web.config configuration file with the applica-
tion when it is time to deploy it on a server. The IIS 7.0 installed on the production server will read all
the specific IIS 7.0 configuration settings and customize the application’s specific configurations inside
it. The only concern with such a design is the overlap between configuration settings in the sense that
IIS 7.0 might be accessing and reading ASP.NET configuration sections and ASP.NET would be access-
ing the <system.webServer /> configuration sections, and hence problems and exceptions might
occur. For this reason, the IIS 7.0 configuration system was designed to ignore the ASP.NET-specific
configuration sections. In fact, the 2.0 .NET Framework’s machine.config configuration file, which is
shared between ASP.NET 2.0 and ASP.NET 3.5, now has a new section called system.webServer that
maps the <system.webServer /> configuration section to a handler that simply ignores that section
as follows:

<section name=”system.webServer” type=”System.Configuration.IgnoreSection, System​
.Configuration, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”
/>

As you can see, the <system.webServer /> configuration section is mapped to the System
.Configuration.IgnoreSection class, which simply ignores the IIS 7.0-specific configuration sec-
tion when ASP.NET is reading the application’s compiled web.config configuration file. However, if
you are running an application in ASP.NET 1.1 that is hosted inside an IIS 7.0 web server, you need to
add the above section manually (since ASP.NET 1.1 existed a long time before IIS 7.0 came into the pic-
ture) so that no errors are generated when the application is running and executing.

79301c05.indd 235 10/6/08 12:12:52 PM

236

Chapter 5: Configuration System Security

Extending IIS 7.0 with
Managed Modules and Handlers

Now that you understand the IIS 7.0 configuration system and its general architectural design, it is
important to discuss some the changes that were made on some configuration sections, especially the
<httpHandlers /> and <httpModules /> configuration sections that were originally located in
the <system.web /> configuration section group of the .NET Framework configuration files. As you
already know, IIS 7.0 introduced the Integrated mode of execution (explained in Chapter 2). With the
new Integrated mode, ASP.NET developers can now build their custom handlers and modules in .NET
and make them participate in the processing of HTTP requests that go into the unified HTTP request
pipeline. At every stage in the unified HTTP request pipeline, the IIS 7.0 core engine checks to see if
there are any native and managed modules to initialize using an internal native module that takes care
of querying the managed modules to see whether there are managed modules registered to run in the
Integrated mode.

Because IIS 7.0 has no clue about any configuration sections defined inside the ASP.NET specific config-
uration sections, it has no way of knowing which managed modules and handlers are registered inside
the ASP.NET <system.web /> configuration section group that need to run and execute when the web
application is executing in the IIS 7.0 Integrated mode.

The only way for the IIS 7.0 configuration system to know which managed modules and handlers the
application developer has attached to the running application is to query the <system.webServer />
configuration section that the application developer used to register the managed modules and han-
dlers to run in the Web application that is configured in the Integrated mode. In other words, the
<system.webServer /> configuration section is the only interface ASP.NET developers have inside
the application’s web.config configuration file to interact with the IIS 7.0 configuration system. Of
course, administrators and developers can use the IIS 7.0 Manager tool to do all the configuration set-
tings for the application, but this privilege is not always available for developers hosting their applica-
tion in remote servers, so <system.webServer /> configuration section is their only way out.

Therefore, the <httpModules /> and <httpHandlers /> configuration sections located inside the
<system.web /> configuration section group have no effect when the application is running in the
IIS 7.0 Integrated mode—thus, the need was to move the aforementioned configuration sections inside
the <system.webServer /> configuration section so that IIS 7.0 can understand which managed mod-
ules and handlers can be used to extend its functionality. Currently, the <system.webServer /> con-
figuration section includes the <modules /> and <handlers /> configuration section groups that you
can use to configure your managed modules and handlers that are to be run inside the unified HTTP
request pipeline.

Managing the Native versus
Managed Configuration Systems

Reading about the IIS 7.0 configuration system might bring fears and worries to you on how to manage
both configuration systems and what to count on. In this context there is no magical solution that you
can follow when it comes to managing both configuration systems. At the same time, having flexibility

79301c05.indd 236 10/6/08 12:12:52 PM

237

Chapter 5: Configuration System Security

and richness with both configuration systems should be a source of power for you as a developer, giv-
ing you more control in configuring both the IIS 7.0 and ASP.NET specific features.

For instance, IIS 7.0 contains the CustomErrorModule, a native module running in the IIS 7.0 Web
server core engine that maps to the <httpErrors /> configuration section that allows you to define
custom HTML/ASPX pages to handle specific errors that might occur during the processing of HTTP
requests inside IIS 7.0. The <httpErrors /> configuration section, for example, looks something simi-
lar to the following:

<httpErrors>
 <error statusCode=”401”
 prefixLanguageFilePath=”%SystemDrive%\inetpub\custerr”
 path=”401.htm” />
 <error statusCode=”403”
 prefixLanguageFilePath=”%SystemDrive%\inetpub\custerr”
 path=”403.htm” />
</httpErrors>

The preceding configuration section configures a possible error through its statusCode attribute and
maps its handler to an .htm static page. In your application, you can map to a custom .aspx page that
is part of the theme and layout of the application you are developing.

Another flexibility is given to you through the native UrlAuthorizationModule that ships as part of the
IIS 7.0 and is configured inside the <system.webServer /> configuration section. Now developers have
the option of either using the ASP.NET UrlAuthorizationModule or the IIS 7.0 UrlAuthorization​
Module by simply editing the application’s web.config configuration file for either the ASP.NET or
IIS 7.0-specific configuration sections. By default, the native module works automatically with both native
and managed requests; however, the managed module has to be removed from the <modules /> sec-
tion inside the application’s web.config configuration file and then added again with the precondition
attribute set to an empty string, a trick you have learned about before. Nevertheless, the richness of
the authorization feature and its ease of configuration inside either the <system.web /> or
<system.webServer /> give you a powerful way of authorizing your users.

In addition to the previous features introduced with IIS 7.0 is the output caching module. The caching
module is defined in the applicationHost.config as follows:

<add name=”HttpCacheModule” image=”%windir%\System32\inetsrv\cachhttp.dll” />

And it is configured through the following configuration section:

<caching enabled=”true” enableKernelCache=”true”></caching>

This native module caches an application’s output in the kernel mode cache, thereby reducing the appli-
cation’s response time. Once again you are given the option of configuring output caching either with
the native IIS 7.0 module or through the managed output caching module in ASP.NET, the
OutputCacheModule represented by the <OutputCache /> configuration section.

You have witnessed above the new native and configurable modules that are introduced by IIS 7.0. All
of the above modules are easily configured through the flexible IIS 7.0 configuration system. However,
you can clearly see the overlapping in functionalities between the features that have already existed in
ASP.NET and the ones introduced with IIS 7.0.

79301c05.indd 237 10/6/08 12:12:52 PM

238

Chapter 5: Configuration System Security

A general recommendation for the above overlapping configurable native and managed modules is to
continue using ASP.NET custom errors for ASP.NET content because the custom errors feature in ASP.
NET is tied directly into ASP.NET’s logic for dealing with unhandled exceptions. Regarding authoriza-
tion, once again the recommendation is to use the native UrlAuthorizationModule with any new
project you start developing for the main reason that this native module works fine with both native and
managed requests without any modifications. However, for current applications that are already config-
ured with the managed UrlAuthorizationModule, keep using the managed module when the appli-
cation gets upgraded to run under IIS 7.0. Finally, regarding the output caching feature that is present in
both ASP.NET and IIS 7.0, originally output caching in IIS 7 is intended for classic ASP applications as
opposed to ASP.NET content. As a result, for anything but the most trivial ASP.NET caching scenarios,
you are better off sticking with ASP.NET’s output caching.

IIS 7.0 Feature Delegation
IIS 7.0 provides a new feature that gives administrators a visual tool to decide which configuration sec-
tions in the ApplicationHost.config file can be configured on the application level. By default most
of the configuration sections in the ApplicationHost.config file are locked down, meaning that
applications hosted on the IIS web server cannot re-configure those locked-down configuration sections
in the application’s web.config file. The main two configuration section groups in the Application​
Host.config configuration file are the <system.applicationHost> and the <system.webServer>
configuration section groups:

 <configSections>
 <sectionGroup name=”system.applicationHost”>
 <section name=”applicationPools”
 allowDefinition=”AppHostOnly”
 overrideModeDefault=”Deny” />
 <section name=”sites”
 allowDefinition=”AppHostOnly”
 overrideModeDefault=”Deny” />
 </sectionGroup>

 <sectionGroup name=”system.webServer”>
 <section name=”defaultDocument”
 overrideModeDefault=”Allow” />
 <section name=”directoryBrowse”
 overrideModeDefault=”Allow” />
 <section name=”globalModules”
 allowDefinition=”AppHostOnly”
 overrideModeDefault=”Deny” />
 <section name=”handlers”
 overrideModeDefault=”Deny” />
 <section name=”httpRedirect”
 overrideModeDefault=”Allow” />
 <section name=”modules”
 allowDefinition=”MachineToApplication”
 overrideModeDefault=”Deny” />
 <sectionGroup name=”security”>
 <section name=”access”
 overrideModeDefault=”Deny” />

79301c05.indd 238 10/6/08 12:12:52 PM

239

Chapter 5: Configuration System Security

 <section name=”applicationDependencies”
 overrideModeDefault=”Deny” />
 <sectionGroup name=”authentication”>
 <section name=”anonymousAuthentication”
 overrideModeDefault=”Allow” />
 <section name=”basicAuthentication”
 overrideModeDefault=”Deny” />
 <section name=”windowsAuthentication”
 overrideModeDefault=”Deny” />
 </sectionGroup>
 <section name=”authorization”
 overrideModeDefault=”Deny” />
 <section name=”requestFiltering”
 overrideModeDefault=”Allow” />
 </sectionGroup>
 <section name=”serverRuntime”
 overrideModeDefault=”Deny” />
 <section name=”staticContent”
 overrideModeDefault=”Deny” />
 </sectionGroup>
 </configSections>

The <system.applicationHost> configuration section group is a global section that is usually con-
figured by administrators and cannot be edited by specific applications or virtual directories. However,
the <system.webServer> configuration section group is the section that developers can override
through the application’s web.config configuration file.

Figure 5-2 shows the Feature Delegation applet when opened in IIS 7.0 Manager.

Figure 5-2

79301c05.indd 239 10/6/08 12:12:53 PM

240

Chapter 5: Configuration System Security

You can see that some of the managed and native modules are listed with either Read Only or Read/Write.
Read-Only delegation for a feature means that applications can only read the configuration settings set
for that specific feature in the ApplicationHost.config configuration file and cannot change any set-
tings. For example, the Error Pages module has a Read-Only delegation that means no application can
change or configure the error pages’ global settings. On the other hand, when a feature has a Read/Write
delegation, it means that an application’s web.config file can read and change the default or global con-
figuration settings. An example is the Authentication – Anonymous feature configured with Read/Write
delegation. Having a Read/Write delegation allows an application’s web.config file to configure the
AnonymousAuthenticationModule. For instance, you can now disable the AnonymousAuthentication
native module by adding the following configuration section in the application’s web.config file:

 <system.webServer>
 <security>
 <authentication>
 <anonymousAuthentication enabled=”false” />
 </authentication>
 </security>
 </system.webServer>

If you try to configure a locked-down module inside the application’s web.config file, you receive the
following exception:

This configuration section cannot be used at this path. This happens when
the section is locked at a parent level. Locking is either by default
(overrideModeDefault=”Deny”), or set explicitly by a location tag with
overrideMode=”Deny” or the legacy allowOverride=”false”.

The exception message is clear enough to inform you that you are trying to configure a locked-down
configuration section at the ApplicationHost.config file.

When you set the delegation for a feature to Read Only, a new <location /> section is added at the
end of the ApplicationHost.config configuration file. This section has a Path attribute that is used
to specify the path to a specific application or if left as empty string meaning that the <location />
section applies to the entire applications hosted on the web server. The other attribute this section has
is the overrideMode attribute that is set to Deny. Setting this attribute to Deny means that the con-
figuration sections listed inside the <location /> configuration section are locked down and applica-
tions hosted on the web server can neither configure the listed configuration sections nor change any
of them. If, on the other hand, the value of the overrideMode is Allow, the subconfiguration sections
listed are allowed to be changed and modified by the hosted application’s web.config files.

It is recommended to unlock configuration sections by using a <location /> configuration section
whether you are unlocking manually or by using the Feature Delegation in IIS 7.0. For instance, consider
that the <defaultDocument /> configuration section is locked down in the ApplicationHost.config
file as follows:

 <section name=”defaultDocument” overrideModeDefault=”Deny” />

To unlock the above native module configuration section so that an application’s web.config file can
change the default documents assigned to an application, you could either use the Feature Delegation to

79301c05.indd 240 10/6/08 12:12:53 PM

241

Chapter 5: Configuration System Security

unlock it or do it manually. Unlocking sections manually or through Feature Delegation results in the
same <location /> section being added to the ApplicationHost.config file, as follows:

 <location path=”” overrideMode=”Allow”>
 <system.webServer>
 <defaultDocument enabled=”true”>
 <files>
 <add value=”Default.htm” />
 <add value=”Default.asp” />
 <add value=”index.htm” />
 <add value=”index.html” />
 <add value=”iisstart.htm” />
 <add value=”default.aspx” />
 </files>
 </defaultDocument>
 </system.webServer>
 </location>

The new <location /> section applies to all the applications hosted on the IIS web server since the
Path attribute has the value of an empty string. The Allow value of the overrideMode attribute means
that any subconfiguration section is automatically unlocked so that applications can re-configure it
using the <system.webServer> configuration section group in the web.config file. You can notice the
presence of the <system.webServer> configuration section group in the <location /> section above.
To unlock any configuration section, you should place it inside the <system.webServer> configuration
section group since an application’s web.config file uses the <system.webServer> configuration sec-
tion group to configure IIS features. Hence, placing the features’ sections you want to unlock inside this
configuration section group means that those features are unlocked and can be re-configured inside the
same configuration section of the application’s web.config file.

The <system.webServer> configuration section has been newly added into the IIS 7.0 application​
Host.config file. Having this configuration section as part of the applicationHost.config configu-
ration file gives the web server administrator a way to define IIS features globally. In addition, devel-
opers can add this section into the application’s web.config file to customize the IIS features per the
current web application.

Once you have unlocked the <defaultDocument> configuration section using the Feature Delegation,
you will configure the default documents for a hosted application. Figure 5-3 shows the Default Docu-
ment applet in IIS 7.0 that can be used to edit the default documents in an application.

Any changes you make here are reflected into the application’s web.config file. For example, only the
default.aspx page has been added to the list of default documents; therefore, you would expect the
<system.webServer> configuration section group to look like the following:

 <system.webServer>
 <defaultDocument>
 <files>
 <clear />
 <add value=”default.aspx” />
 </files>
 </defaultDocument>
 </system.webServer>

79301c05.indd 241 10/6/08 12:12:53 PM

242

Chapter 5: Configuration System Security

Figure 5-3

As you can see in the preceding configuration settings, all the preset default documents have been cleared
out and only one web page has been added: the default.aspx. Without having an administrator add a
new <location /> configuration section to allow modifying of the above <defaultDocument> native
module, you would not have been able to change or configure this section. This applies to all the sections
located inside the <system.webServer> configuration section group located in the ApplicationHost.
config configuration file.

Using IIS 7.0 Feature Delegation provides administrators with an easy way to control which configura-
tion sections are allowed to be re-configured and overridden by an application’s web.config files and
which sections are not allowed. It is through this feature that IIS 7.0 protects the configuration sections
inside the ApplicationHost.config from being edited or changed by applications as a way to protect
the global settings set by administrators on web servers.

Moreover, this feature gives developers an easier way of configuring the web server from their applica-
tion’s web.config file without the need to contact the web server administrator or connect to the web
server. However, this depends on how much configuration sections are unlocked by administrators tak-
ing into consideration security attacks and other safety measures.

In addition to using the <location /> configuration section to lock and unlock features, you can lock
specific elements and attributes the same way as you have read about at the beginning of this chapter.
For instance, if you want to enable the native WindowsAuthenticationModule at the Application​
Host.config file level and prevent the application from editing the value of the enabled attribute,
you would add something such as:

<location path=”” overrideMode=”Allow”>
 <system.webServer>
 <security>

79301c05.indd 242 10/6/08 12:12:53 PM

243

Chapter 5: Configuration System Security

 <authentication>
 <windowsAuthentication
 enabled=”true”
 lockAttributes=”enabled”>
 <providers>
 <add value=”Negotiate” />
 <add value=”NTLM” />
 </providers>
 </windowsAuthentication>
 </authentication>
 </security>
 </system.webServer>
</location>

As you can see, the configuration settings use the same lockAttributes attribute to lock down spe-
cific attributes. To lock all the attributes of a feature, simply set the value of the lockAttributes to the
list of attributes, separated by a comma (,).

You can also lock elements for any feature. For instance, suppose you want to enable the native
WindowsAuthenticationModule to all hosted applications on the web server but lock the Providers
element from being edited by specific applications. The following configuration settings make sure
that the Providers element will not be touched by any hosted application:

<location path=”” overrideMode=”Allow”>
 <system.webServer>
 <security>
 <authentication>
 <windowsAuthentication enabled=”true” lockElements=”providers”>
 <providers>
 <add value=”Negotiate” />
 <add value=”NTLM” />
 </providers>
 </windowsAuthentication>
 </authentication>
 </security>
 </system.webServer>
</location>

In addition to being able to lock down specific elements, you can also lock down multiple elements
by simply setting the value of the lockElements to a comma-separated list of all the elements to be
locked down.

If you want to lock down all elements or attributes except a single element or attribute, you can make
use of the lockAllElementsExcept or lockAllAttributesExcept to list the only unlocked element
or attribute for a feature while locking down the rest of elements or attributes that belong to a feature.

As you can see, the same locking sections and attributes that were used and explained above for ASP.NET
apply to the configuration sections of IIS 7.0. In fact, the IIS team imported the concepts and ideas from the
ASP.NET configuration system and applied them on the IIS 7.0 configuration system, which is why you
see so many similarities between the ASP.NET and IIS 7.0 configuration systems. The locking by elements
and attributes will not be explained further since the same concepts that apply to ASP.NET and that were
explained above apply to IIS 7.0 configuration system locking features.

79301c05.indd 243 10/6/08 12:12:53 PM

244

Chapter 5: Configuration System Security

Reading and Writing Configuration
Before diving into specifics on ACL requirements for reading and writing configuration, a quick primer
on using the strongly typed configuration API is useful. Even though a detailed discussion of the new
strongly typed configuration API is out of the scope of this book, it is helpful for you to understand the
basic coding approaches for manipulating configuration before you see the various security require-
ments that are enforced when using these APIs.

You may never end up using the strongly typed configuration API. For example, if you use the Member-
ship feature, almost all of the configuration information about the feature itself (the <membership />
configuration element) and the individual providers (the various <add /> elements) are available from
the Membership and various MembershipProvider-derived classes. Other features like Forms Authen-
tication follow a similar approach.

However, some features, such as session state, don’t mirror every configuration setting via a property
from a well-known feature class. Also for administrative-style applications, it makes sense to deal with
configuration information using the configuration APIs as opposed to using different feature classes
that are potentially scattered through different namespaces.

Reading configuration for a web application can be accomplished in two different ways. If you want to
use the configuration APIs available to all Framework applications, you use the ConfigurationManager
class, as shown here:

C#
…
using System.Web.Configuration;
using System.Configuration;
…
protected void Page_Load(object sender, EventArgs e)
{
 SessionStateSection sts =
 (SessionStateSection)
 ConfigurationManager.GetSection(“system.web/sessionState”);
 Response.Write(“The session state mode is: “ + sts.Mode.ToString() + “
”);
}

VB.NET
…
Imports System.Configuration
Imports System.Web.Configuration
…

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs) Handles _
 Me.Load

 Dim sts As SessionStateSection = _
 CType(ConfigurationManager.GetSection(“system.web/sessionState”), _
 SessionStateSection)
 Response.Write(“The session state mode is: “ & _
 sts.Mode.ToString() & “
”)

 End Sub

79301c05.indd 244 10/6/08 12:12:53 PM

245

Chapter 5: Configuration System Security

The ConfigurationManager class has a static GetSection method that you can use to obtain a ref-
erence to a strongly typed configuration class representing a configuration section. You tell the
ConfigurationManager which section you want by specifying an XPath-like syntax to the configura-
tion section you want. Because in this case the sample is showing how to access the configuration infor-
mation for the session state configuration information, and this configuration section is nested within
the <system.web> configuration section, the path that you pass is system.web/sessionState. The
path information is case-sensitive because configuration files are XML files.

After ConfigurationManager finds the section, you cast the returned object to the correct type. ASP.NET
includes several strongly typed configuration section classes within the System.Web.Configuration
namespace. In the sample code you cast to an instance of SessionStateSection, which is the strongly
typed configuration class used for the Session State feature. With the reference to SessionStateSection
in hand, you can access any properties exposed by the class; the sample uses the Mode property to write
the session state mode for the current application.

The ConfigurationManager class is scoped only to the current application, though, so it is not flex-
ible enough for applications that need to edit arbitrary configuration files for different web applica-
tions. As a result, there is a companion configuration class called WebConfigurationManager, which
includes additional overloads for its methods to allow loading of arbitrary web application configura-
tion files.

C#
…
using System.Web.Configuration;
using System.Configuration;
…
protected void Page_Load(object sender, EventArgs e)
{
 MembershipSection ms =
 (MembershipSection)
 WebConfigurationManager.GetSection(“system.web/membership”, “~/web.config”);

 Response.Write(“The default provider as set in config is: “ +
 ms.DefaultProvider + “
”);
}

VB.NET
…
Imports System.Configuration
Imports System.Web.Configuration
…

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs) _
 Handles Me.Load()

 Dim ms As MembershipSection = _
 CType(WebConfigurationManager.GetSection(“system.web/membership”, _
 “~/web.config”), MembershipSection)
 Response.Write(“The default provider as set in config is: “ _
 & ms.DefaultProvider & “
”)

79301c05.indd 245 10/6/08 12:12:53 PM

246

Chapter 5: Configuration System Security

In this sample, the GetSection method includes a second parameter specifying the virtual path to the
current application’s web.config file. You can change the value of this parameter to point at other web
application configuration files, or at configuration files located in subdirectories within a web application.
Various overloads let you use physical file paths as well as virtual file paths when referencing configu-
ration files.

Writing to configuration requires that you actually open the entire configuration file, as opposed to just
getting a reference to an individual configuration section. This returns a reference to an instance of the
System.Configuration.Configuration class. (It’s not a typo; the class that represents a configura-
tion file is really called Configuration within the System.Configuration namespace.) As with read
operations, you can use the ConfigurationManager or the WebConfigurationManager to accomplish
this. However, the available methods on the ConfigurationManager are not intuitive from the per-
spective of a web application developer because the various overloads refer to variations of configura-
tion files for client executables. As a result, you will probably find the WebConfiguration​Manager
makes more sense when you edit web.config for your web applications.

After you programmatically open a configuration file, you get a reference to the specific configuration
section you want to edit from the Configuration instance. You can set various properties on the strongly
typed configuration section as well as manipulate any writable collections exposed on the configuration
class. After all the edits are made, you call the Save method on the Configuration instance to commit
the changes to disk. The following code demonstrates using the WebConfigurationManager to load
and update a <membership /> configuration section.

C#
…
using System.Web.Configuration;
…
protected void Page_Load(object sender, EventArgs e)
{
 Configuration config = WebConfigurationManager.OpenWebConfiguration(“~”);

 MembershipSection ms =
 (MembershipSection)config.GetSection(“system.web/membership”);

 ms.DefaultProvider = “someOtherProvider”;

 config.Save();
}

VB.NET
…
Imports System.Web.Configuration

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs) _
 Handles Me.Load
 Dim config As Configuration = WebConfigurationManager.OpenWebConfiguration(“~”)

 Dim ms As MembershipSection = _
 CType(config.GetSection(“system.web/membership”), _
 MembershipSection)

79301c05.indd 246 10/6/08 12:12:53 PM

247

Chapter 5: Configuration System Security

 ms.DefaultProvider = “someOtherProvider”

 config.Save()
 End Sub

Several overloads to the OpenWebConfiguration method allow you to specify the exact configuration
file you want to open for editing. As shown in the sample, the “~” shorthand can be used for loading
the current application’s web.config file.

The configuration system does not enforce any kind of concurrency or locking if multiple threads
attempt to update the same configuration file. For this reason, you should ensure that any code that
edits configuration files serializes access to the configuration file, or is written to handle the exception
that is returned from the configuration system if it detects that changes occurred to the underlying con-
figuration file. If you write console applications for editing configuration files, you probably won’t run
into this issue. However, an administrative website that allows editing of any web.config file located
on a web server should be written with concurrency in mind.

Permissions Required for Reading Local Configuration
The most common scenario is reading configuration information for a web application located on the
same server as the code that performing the read operation. For example, each time a web application
starts up, ASP.NET is reading configuration information down the entire inheritance chain of configu-
ration files. Furthermore, as you use various features, such as Membership, Role Manager, Session
State, and so on, your code triggers additional reads to occur from the various configuration files.

As mentioned in Chapter 2, when an application domain first starts up, the identity that is used is either
the process identity or the application impersonation identity. So under normal conditions, the Read ACL
on web directories that is granted to IIS_USRS allows the default process identity to read configuration
information.

Looking up the configuration inheritance chain, the default ACLs on the various configuration files are:

The web application’s directory grants Read access to IIS_USRS, so IIS_USRS has Read access to ❑❑

the application’s web.config file.

The root ❑❑ web.config file located at %windir%\Microsoft.NET\Framework\v2.0.XYZ\​
CONFIG\​web.config grants Read access to IIS_USRS.

The ❑❑ machine.config located in the same CONFIG subdirectory also grants Read access to
IIS_USRS.

This set of ACLs allows the configuration system to merge configuration sections up the inheritance
chain. If you remove these Read ACLs from any one of these configuration files, ASP.NET would be
unable to Read configuration during application startup and your web application will fail to start.

Either the process identity or the application impersonation identity is also used when reading configu-
ration information during normal runtime processing, specifically when using the GetSection method
on WebConfigurationManager or ConfigurationManager. For example, if you use Windows authen-
tication in a web application and enable client impersonation, even if the impersonated account does
not have access to read the application’s web.config file, the web application still runs and configura-
tion information is still successfully read.

79301c05.indd 247 10/6/08 12:12:53 PM

248

Chapter 5: Configuration System Security

If you think about it, this behavior makes sense. It would be a pretty onerous security requirement if
every possible Windows user of an application with client impersonation turned on was required to
have Read access up the configuration inheritance chain. Although the default ACLs on the CONFIG
subdirectory do grant Read access to the local Users group (and hence any authenticated user on the
machine has Read access), it is not uncommon to remove this ACL on hardened servers.

The GetSection call succeeds because GetSection is considered to be a “runtime” configuration API.
When you call GetSection the configuration system accesses cached configuration information that
was previously loaded while running as either the process identity or the application impersonation
identity. From a runtime perspective, loading configuration information is a service that the configura-
tion system provides to running code.

This behavior becomes clearer when you compare the difference between the runtime configuration API
and the design-time configuration API. Earlier you saw that an alternative approach for getting a config-
uration section was to use a method such as WebConfigurationManager.OpenWebConfiguration or
ConfigurationManager.OpenExeConfiguration. These Open* methods are considered “design-time”
configuration APIs. As a result, they have different security semantics when accessing configuration
information.

When you call an Open* method the configuration system attempts to open one or more physical config-
uration files on disk. For example, if you attempt to open a web application’s configuration, a file open
attempt will occur up the entire inheritance chain of configuration files. These file open operations are
like any other call to the File.Open method. The security token on the operating system thread must
have Read access to one or more configuration files.

If you have a web application using Windows authentication with client impersonation enabled, and
you write the following line of code:

Configuration config = WebConfigurationManager.OpenWebConfiguration(“~”);

… the open attempt will fail unless the impersonated client identity has Read access to the applica-
tion’s web.config as well as the root web.config and machine.config files located in the Frame-
work’s CONFIG subdirectory. You can see this behavior if you add an explicit Deny ACE to the
application’s web.config that disallows Read access to the application’s web.config. The call to Open​
WebConfiguration will fail with an Access Denied error. You will have the same failure if you add a
Deny ACE on the root web.config or on machine.config. However, if you change your code to call
WebConfigurationManager.GetSection, your code will run without a problem.

The following list summarizes the security requirements for the runtime and design-time configuration APIs:

GetSection❑❑ : Regardless of whether this is called from WebConfigurationManager or
ConfigurationManager, the process identity or the application impersonation identity (if
application impersonation is being used) requires Read access to the application’s web.config
file, the root web.config file and the machine.config file. If you are attempting to read con-
figuration at a path below the level of the root of a web application, Read access is also required
on the lower-level configuration files. This level of access will normally exist because without it
the web application would fail to start up.

GetWebApplicationSection❑❑ : This is just another variation of GetSection available on
WebConfigurationManager. It has the same security requirements as GetSection.

79301c05.indd 248 10/6/08 12:12:53 PM

249

Chapter 5: Configuration System Security

OpenWebConfiguration❑❑ : This method is available only on WebConfigurationManager. The
operating system thread identity at the time the call is made requires Read access to the appli-
cation’s web.config file, the root web.config file and the machine.config file. If you are
attempting to read configuration at a path below the level of the root of a web application, the
operating system thread identity also requires Read access to the lower-level configuration files.

Other ❑❑ Open* methods: Both WebConfigurationManager and ConfigurationManager have a
variety of methods starting with Open that provide different overloads for opening configura-
tion files at different levels of the inheritance chain (that is, open just machine.config) as well
as different ways for referencing virtual directories in a web application. No matter which Open*
method you use, the operating system thread identity requires Read access to all configuration
files that contribute to the configuration for the desired application or virtual path. When only
machine.config is being opened, Read access is required only on machine.config because
the lower-level configuration files will not be opened (for example, root web.config and appli-
cation-specific configuration files have no effect on determining machine-level configuration
information).

Permissions Required for Writing Local Configuration
Writing configuration is not something that a web application would normally attempt. Hence, the
default ACLs up the configuration hierarchy don’t grant any Write access to commonly used ASP.NET
accounts. Looking up the configuration inheritance chain, the Write ACLs on the various configuration
files are as follows:

Only the local Administrators group and SYSTEM have write access to files (including ❑❑

web.config files) located beneath inetpub\wwwroot.

The root ❑❑ web.config file located at %windir%\Microsoft.NET\Framework\v2.0.XYZ\
CONFIG\web.config grants Write access only to the local Administrators group as well as
SYSTEM.

The ❑❑ machine.config located in the same CONFIG subdirectory also grants Write access only to
the local Administrators group as well as SYSTEM.

This set of ACLs shows that the default privileges pretty much expect only interactive editing of con-
figuration files by a machine administrator using Notepad.

Write access alone, however, is not sufficient for editing configuration files using the configuration API.
Updating configuration information results in the following file operations:

	 1.	 A temporary file is created in the appropriate directory where the updated configuration file
will be written. For example, if you are updating a configuration section in a web application’s
configuration file, the configuration system will create a temporary file with a random file name
in the web application’s root directory.

	 2.	 The original configuration file is deleted.

	 3.	 The temporary file is renamed to either web.config or machine.config, depending on which
type of configuration file is being edited.

From this list it is pretty obvious that editing and updating configuration files requires very powerful
privileges.

79301c05.indd 249 10/6/08 12:12:54 PM

250

Chapter 5: Configuration System Security

Because of the creation and deletion of configuration files, the operating system thread identity that is
updating configuration effectively requires Full Control to the directory containing the configuration
file that will ultimately be rewritten (technically, you can get away with just Write and Modify access
on the directory, but realistically there isn’t much difference between Full Control and Write+Modify).
Although you could go out of your way and attempt to grant Full Control on a directory but restrict
the rights on all files except the configuration file located within a directory, such a security lockdown
doesn’t buy you much. Full Control on a directory gives an account wide latitude to make changes in it,
and arguably the ability to change the configuration file means an account also has broad privileges to
change the behavior of an application.

An important side note here is that because local administrators do have Full Control to directories, a
website with Windows authentication and client impersonation enabled could “accidentally” write to
any of these configuration files. If a user account that was a member of the local Administrators group
happened to surf to a web application that included malicious code that attempted to rewrite configura-
tion, the malicious code would succeed. This type of subtle attack vector is another reason users with
elevated privileges in a domain should never perform routine day-to-day work logged in with “super”
privileges; its far too easy for someone to slip a piece of interesting code into an unsuspecting web
application that maliciously makes use of such elevated privileges.

Unlike the Read-oriented methods in configuration that are split between a set of runtime and design-
time APIs, Write operations are considered design-time APIs. There is no equivalent to GetSection for
writing configuration. In fact, if you obtain a configuration section via GetSection, although you can
call the property setters on the strongly typed configuration section that is returned, no methods are
available to commit the changes to the underlying configuration file.

Instead, you commit changes to disk with a call to the Save or SaveAs method available on System​
.Configuration.Configuration. The Configuration instance can be obtained via a call to one of
the Open* methods available on ConfigurationManager or WebConfigurationManager. Remember
that the operating system thread identity requires Read access to successfully load a configuration file
(or files) from disk; loading these files is always the first step whenever you want to edit configuration.
After a call to WebConfigurationManager.OpenWebConfiguration, you have a Configuration
object that is a reference to an in-memory representation of the loaded configuration file.

Subsequently calling Configuration.Save or Configuration.SaveAs results in the file creation and
deletion operations listed earlier. The following code snippet loads a web application’s configuration,
modifies the configuration information in memory, and then writes the results to disk:

C#
Configuration config =
 WebConfigurationManager.OpenWebConfiguration(“~”);

MembershipSection ms =
 (MembershipSection)config.GetSection(“system.web/membership”);

ms.DefaultProvider = “someOtherProvider”;

config.Save();

79301c05.indd 250 10/6/08 12:12:54 PM

251

Chapter 5: Configuration System Security

VB.NET
 Dim config As Configuration = WebConfigurationManager.OpenWebConfiguration(“~”)

 Dim ms As MembershipSection = _
 CType(config.GetSection(“system.web/membership”), _
 MembershipSection)

 ms.DefaultProvider = “someOtherProvider”

 config.Save()

In the sample code, the configuration information being edited is the web.config file for a web
application; thus, Full Control is required only on the root of the web application’s directory. The
configuration information represented by the Configuration instance is loaded by reading all the
configuration files up the configuration inheritance chain. In an application using Windows authen-
tication and client impersonation, the resulting operating system thread identity needs Read access
on each of these configuration files. However, because the web application’s configuration was loaded
(as opposed to the root web.config or the machine.config), Full Control is needed only on the web
application’s root directory when the call to Save is made.

The requirements for Full Control raise the question of exactly when it makes sense to use the design-
time APIs. The safest approach would be to never deploy code to a production web server that calls
Configuration.Save. The design-time aspect of configuration makes a lot of sense to use in a devel-
opment environment or in an automated build process. However, after you have programmatically gen-
erated the desired configuration file, you would copy it to a production server.

If the need to edit the configuration files used in production arises, it still makes sense to have the code
that performs the configuration updates run on some type of staging or test server. After you verify
that the updated configuration works, the updated configuration file can be staged and copied to pro-
duction. I think having code that writes to configuration sitting on a production server, along with a
set of file permissions granting Full Control, is simply a hacker attack waiting to happen.

There is no escaping the fact that you need Full Control to save configuration changes to disk. The idea
of having Full Control ACLs for anything other than local administrators placed on the directories of
various application folders is pretty scary. Although there will surely be many elegant and powerful
configuration-editing UIs created for ASP.NET 3.5 (IIS 7.0 allows editing web server configuration set-
tings remotely using IIS 7.0 Manager), such tools should be tightly controlled. Setting up a website or a
Web Service that allows for remote editing of configuration files on a production server is just a security
incident waiting to happen.

Permissions Required for Remote Editing
The configuration system for ASP.NET includes the ability to have code on one machine remotely bind
to ASP.NET configuration data on a remote server and read or write that configuration information. For
security reasons, this capability is not enabled by default. A DCOM object can be enabled on your web
server to allow remote machines to connect to the web server and carry out configuration operations.

79301c05.indd 251 10/6/08 12:12:54 PM

252

Chapter 5: Configuration System Security

To enable remote reading and writing of a web server’s configuration information, you use the
aspnet_regiis tool:

%windir%\Microsoft.NET\Framework\v2.0.5727\aspnet_regiis –config+

The config+ switch causes the Framework to register a DCOM endpoint with the following PROGID:

System.Web.Configuration.RemoteWebConfigurationHostServer_32

If you use the DCOMCNFG tool (which is now an MMC console showing both COM+ and standard
DCOM information) after running aspnet_regiis –config+, you can open the DCOM configura-
tion node to see the newly registered DCOM endpoint, as shown in Figure 5-4.

Figure 5-4

You can subsequently disable remote editing of configuration by using aspnet_regiis -config-.

You run the aspnet_regiis tool on the web servers that you want to manage. However, it isn’t nec-
essary to run the tool on the machine that will be running the configuration code. Within the web
configuration code, whenever you attempt to open configuration information on a remote server,
the configuration code attempts to create an instance of the DCOM object on the remote server. This
requires that DCOM calls are able to flow across the network between the machine running the con-
figuration editing code, and the remote server.

Due the sensitive nature of allowing code to remotely manipulate a server’s configuration information,
the DCOM object on the remote web server has its launch permissions restricted to only members of
the remote server’s local Administrators group. Remember that this is the same security requirement
needed by default for editing local configuration information. This means that even if you call one of
the Open* methods with the intent of only reading configuration information from a remote server,

79301c05.indd 252 10/6/08 12:12:54 PM

253

Chapter 5: Configuration System Security

the operating system thread identity making the calls still needs to be a member of the remote server’s
Administrators group. The more stringent security requirement is necessary because you don’t want
random machines on your network trolling through your servers attempting to remotely read configu-
ration information.

The utility of allowing remote editing of configuration is suspect due to the security risks involved.
With the additional requirement of configuring DCOM to work through firewalls if you are attempting
to manage web servers in a DMZ, remote configuration editing in ASP.NET is most useful for web serv-
ers running inside of a corporate network. Even then you should use additional security such as IPSEC
restrictions to prevent random machines on your network from attempting to launch the DCOM server
on your web machines.

For additional security, you should change the access permissions on the DCOM object. Although the
launch permissions are locked to the local Administrators group, after the DCOM server is launched
the default DCOM access permissions control which identities can invoke methods on the DCOM
server. Creating a custom set of access permissions for the configuration DCOM object ensures that
only selected users or groups can invoke methods on the DCOM server after it is already started.

Using Configuration in Partial Trust
The configuration examples you have seen so far all depended implicitly on one additional security set-
ting in order to work: the trust level for the sample application. The sample applications have all been
running in Full trust when calling into the configuration system. If you attempt to use the strongly
typed configuration API, you can only do so by default when running in either Full or High trust. At
lower trust levels, the strongly typed configuration API will fail.

For example, say you attempt to read the Membership configuration with code like the following:

C#
MembershipSection ms =
 (MembershipSection)ConfigurationManager.GetSection(“system.web/membership”);

VB.NET
Dim ms As MembershipSection = _
 CType(config.GetSection(“system.web/membership”), _
 MembershipSection)

If your application is running in Medium trust or below, you get an exception with the following
information:

Request for the permission of type ‘System.Security.Permissions.FileIOPermission,
mscorlib, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089’
failed. (machine.config)
Stack Trace:
…
 at System.Web.UI.Page.ProcessRequestMain(Boolean includeStagesBeforeAsyncPoint,
Boolean includeStagesAfterAsyncPoint)

79301c05.indd 253 10/6/08 12:12:54 PM

254

Chapter 5: Configuration System Security

Chapter 4 explained that when you encounter permission-related exceptions, the exception information
and stack trace can sometimes give you a clue as to what happened. In this case, it looks like the configu-
ration system made a check for a permission, specifically the System.Configuration.Configuration​
Permission. The configuration system always demands the ConfigurationPermission whenever an
attempt is made to retrieve a configuration object with a call to GetSection.

If you look in the policy file for High trust, you can see that the ConfigurationPermission is explic-
itly granted:

<SecurityClasses>
 <!--other classes snipped for brevity -->
 <SecurityClass
 Name=”ConfigurationPermission”
 Description=”System.Configuration.ConfigurationPermission,
 System.Configuration, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a”/>
</SecurityClasses>

<NamedPermissionSets>
 <PermissionSet class=”NamedPermissionSet”
 version=”1” Name=”ASP.Net”>
 <!-- other permissions snipped for brevity -->

 <IPermission
 class=”ConfigurationPermission” version=”1”
 Unrestricted=”true” />
 </PermissionSet>

</NamedPermissionSets>

The High trust policy file defines the necessary security class for ConfigurationPermission and
then grants unrestricted permission on ConfigurationPermission to any ASP.NET application run-
ning in High trust. When running at Full trust (the default for all ASP.NET applications), the demand
for ConfigurationPermission always succeeds. If you look in the trust policy files for Medium,
Low, and Minimal trust, you will see that these policy files do not define a <Security​Class />
for ConfigurationPermission and thus do not grant this permission in the ASP.NET
NamedPermissionSet.

With this behavior, you might be wondering how any of the ASP.NET 3.5 features that depend on configu-
ration even work in lower trust levels. For example, the Membership feature clearly depends heavily on
a variety of configuration information. You can definitely use the Membership feature in Medium trust
without any SecurityExceptions being thrown, so what is going on to make this work? ASP.NET 3.5
features that retrieve their configuration sections use an internal helper class that asserts unrestricted
ConfigurationPermission. Because the core of ASP.NET 3.5 lives in the GAC’d System.Web.dll
assembly, the assertion is allowed. At runtime when various ASP.NET features retrieve their configu-
ration information, the ConfigurationPermission demand from the configuration system succeeds
when the demand encounters the assertion during the stack crawl.

The combination of the configuration system’s demand and the assertion within ASP.NET is why in
many places in this book I note that strongly typed configuration information is not something that can
be depended on when running in partial trust (Medium trust or lower to be specific). This is also why
most of the ASP.NET features mirror their configuration information through some portion of their API.

79301c05.indd 254 10/6/08 12:12:54 PM

255

Chapter 5: Configuration System Security

For example almost all of the configuration attributes found on the <membership /> configuration ele-
ment and its provider <add /> elements can be found on Read-Only properties, either Read-Only prop-
erties on the static Membership class or exposed as Read-Only properties from MembershipProvider.

The design approach of echoing back configuration properties on a feature class is one you should keep
in mind when designing configuration-driven features. If you design a feature intending that aspects of
its configuration be available to developers, then you can do the following:

	 1.	 Author the feature to live in the GAC. Follow the design guidelines in Chapter 4 for writing a
sandboxed GAC-resident assembly.

	 2.	 Within your feature code, assert the ConfigurationPermission when your feature reads its
configuration information.

	 3.	 Create one or more Read-Only properties on your feature classes that echo back the appropriate
portions of your configuration information.

Of course, there is one flaw with this approach: You may not be allowed to deploy your feature into the
GAC. Especially if you write code for use by customers running on shared hosting servers, it is likely
that your customers will be unable to deploy your feature’s assembly into the GAC. There is a work-
around for this scenario, though.

The requirePermission Attribute
The <section /> configuration element introduced in 2.0 Framework a new attribute, require
Permission. By default, this attribute is set to true, which triggers the configuration system to
demand the ConfigurationPermission. However, if you set it to false, the configuration system
bypasses the permission demand. For example if you tweak the definition of the <membership />
configuration section to look like the following:

<section name=”membership”
 type=”System.Web.Configuration.MembershipSection, System.Web, …”
 allowDefinition=”MachineToApplication”
 requirePermission=”false” />

… the sample shown earlier using GetSection will work when running Medium trust or below. How-
ever, even though you can add the requirePermission attribute, it is not a recommended approach
for the built-in ASP.NET features.

The ConfigurationPermission is intended to close the following loophole. Because the configuration
system is fully trusted (it lives in the various GAC’d assemblies), and the configuration system is usu-
ally invoked initially without any user code on the stack, the configuration system ends up loading con-
figuration data that is potentially sensitive. The theory is that the configuration data should be treated
in such a way that only fully trusted code is allowed Read and Write access to it. If the configuration
system allowed partially trusted code (that is, partial trust ASP.NET pages) to read and write configura-
tion data, then the configuration system theoretically opens itself to a luring attack. Partially trusted
code would be able to gain access to some configuration data that it normally would not be able to read.

Of course, one quirk with this theory is that even in Medium and Low trust you can write code in
your pages that opens up the application’s web.config as a raw text file, at which point you can parse
through it and find the configuration information. However, configuration information is hierarchical, so

79301c05.indd 255 10/6/08 12:12:54 PM

256

Chapter 5: Configuration System Security

it is likely that some of your application’s configuration information lives in the parent configuration files.
Using simple file I/O, you will not be able to discover the settings stored in either the root web.config
or in machine.config when running in Medium trust or below.

The use of the ConfigurationPermission is a code access security (CAS)-based approach to ensuring
that partial trust code cannot use the configuration system to gain access to these parent configuration
files when a simple file I/O based approach would fail. The ConfiguartionPermission is granted to
High trust because High trust applications also have the necessary FileIOPermission to read the root
web.config and machine.config files. So, the default High trust policy file ensures that the configura-
tion system and the permissions for performing raw file I/O are in sync. Of course, as with all security
policies defined using trust policy files, you can create a trust policy file that breaks this; you could, for
example, grant ConfigurationPermission in the Medium trust policy file, although this is not some-
thing you should do.

So, when should you use the requirePermission attribute to override the default demand for
ConfigurationPermission? If you author a configuration-driven feature that will not live in the GAC,
it makes sense to include the requirePermission attribute in the <section /> definition for your
custom configuration section. A feature that does not live in the GAC is basically a partially trusted fea-
ture itself; conceptually, it would not be considered any more sensitive than the partially trusted code
that calls it. Hence, it is reasonable to allow partially trusted code access to the strongly typed configu-
ration class for such a feature. Of course, if partially trusted code attempts to write changes for the fea-
ture back to the underlying configuration files, it still needs the appropriate FileIOPermission and
the appropriate NTFS permissions. With these additional security requirements required for updating
configuration, setting the requirePermission attribute in your custom configuration sections for non-
GAC’d features doesn’t open any security holes.

The behavior of the requirePermission attribute suggests that you should ensure that all GAC’d fea-
tures have <section /> definitions in machine.config or web.config because after a <section />
is defined in a configuration file, child configuration files cannot override the definition. Even if a child
configuration file like an application web.config attempts to add the requirePermission=’false’
attribute, the configuration system disallows this redefinition of the configuration section.

When setting up the configuration section for a feature, you should do one of the following:

For GAC, based features, define ❑❑ <section /> in machine.config or the root web.config file.

For non-GAC’d features running in shared hosting environments, define the ❑❑ <section /> in the
application’s web.config file, and set requirePermission to false. This also means that you
will only be able to include the feature’s configuration section in the application’s web.config
file. If you place the feature’s configuration in a higher level configuration file you get an excep-
tion because the <section /> has not been defined yet.

For non-GAC’d features running in some type of trusted environment (such as an internal ❑❑

corporate web server), you can define the <section /> wherever it makes sense for manage-
ability. You may define your <section /> in machine.config or root web.config to allow
multiple web applications to take advantage of the feature. This is one case where it is reason-
able for a non-GAC’d feature to have its <section /> definition in a parent configuration file
while still setting requirePermission to false.

There are two configurations sections defined in machine.config that set requirePermission to
false: <connectionStrings /> and <appSettings />. Because these configuration sections are
typically used directly by application code, locking them down for partial trust applications does not

79301c05.indd 256 10/6/08 12:12:54 PM

257

Chapter 5: Configuration System Security

make sense. As a result, these two configuration sections are the exception to the rule that GAC’d con-
figuration sections disallow strongly typed configuration access to partial trust applications.

Demanding Permissions from a Configuration Class
There is little-known capability in the configuration system that you can use for supporting partial
trust applications. You can use a custom configuration class as a kind of gatekeeper to a feature and
prevent the feature from being used in a partial trust application. If you remember back to the Chapter
4 on trust levels, and the discussion on the “processRequestInApplicationTrust” attribute, there is
a subtle issue with features and code being called when only trusted code is on the stack.

Custom configuration classes are part of this issue because when configuration is being loaded, it is not
guaranteed that there will be any user code on the stack. More important, the feature that carries out
work and that consumes the configuration information may itself always be called with trusted code on
the stack. Scenarios like GAC’d classes that are HttpModules have this problem. An HttpModule only
has the ASP.NET pipeline code sitting above it, so any demands a custom HttpModule located in the
GAC makes always succeed.

A feature can indirectly work around this problem by taking advantage of the fact that the configura-
tion system calls PermitOnly on the named permission set for the current trust level. This behavior is
the same approach that the page handler takes when it calls PermitOnly prior to running a page. The
configuration system makes this call just before attempting to deserialize a configuration section. As
a result, a custom configuration class that overrides ConfigurationSection.PostDeserialize can
demand an appropriate permission in an override of this method.

C#
using System;
using System.Data.SqlClient;
using System.Security.Permissions;
using System.Configuration;

public class SkeletalConfigClass: ConfigurationSection
{
 public SkeletalConfigClass() {}

 protected override void PostDeserialize()
 {
 SqlClientPermission scp =
 new SqlClientPermission(PermissionState.Unrestricted);
 scp.Demand();
 }

 //the rest of the configuration class…
}

VB.NET
Imports System
Imports System.Configuration
Imports System.Security.Permissions
Imports System.Data.SqlClient

79301c05.indd 257 10/6/08 12:12:55 PM

258

Chapter 5: Configuration System Security

Public Class SkeletalConfigClass
 Inherits ConfigurationSection

 Public Sub New()
 End Sub

 Protected Overrides Sub PostDeserialize()
 Dim scp As New SqlClientPermission(PermissionState.Unrestricted)
 scp.Demand()
 End Sub

 ‘the rest of the configuration class…
End Class

The previous configuration class demands the SqlClientPermission. Because the configuration sys-
tem restricts the set of allowed permissions to whatever is defined for the application’s current trust
level prior to the deserialization process, the sample configuration class is usable only if the current
trust level grants the SqlClientPermission. If a feature living in the GAC attempts to read its config-
uration information and the current trust level doesn’t grant this permission, the feature initialization
fails because any attempt to read its configuration always fails with a SecurityException.

Given this capability, when would you actually use it? Should you always demand something from
your custom configuration class? If you know your GAC’d code is going to be called in scenarios where
only trusted code exists on the stack, you should make use of the PostDeserialize method. It is the
only point when you will have a chance to enforce a CAS restriction. Identifying these scenarios can
be difficult, though. If your feature includes a GAC’d HttpModule, this is one obvious case. A custom
handler that is deployed in the GAC would be another example where using PostDeserialize as a
surrogate trust enforcement mechanism makes sense.

However, it may impossible to make an intelligent demand in PostDeserialize if you depend on the
code that consumes your feature to supply dynamic information. For example, if your feature reads and
writes to the file system, you may not know which path to demand permission against until after some
consumer code sets some properties on your feature. As a result, the PostDeserialize method is appro-
priate only for demanding permissions that always need to be statically configured in a trust policy file.

FileIOPermission and the Design-Time API
Unlike the runtime portion of the configuration API (for example, GetSection), the design-time API
always results in physical file I/O operations occurring up the chain of parent configuration files. Because
in Medium trust an ASP.NET application only has rights to read and write files within the application’s
directory structure, partial trust code doesn’t have rights to open files outside the application. For this
reason, the design-time API is basically useless when running in Medium trust or below. Although you
could theoretically tweak the lower trust levels’ policy files to get the design-time API working, it is bet-
ter to consider the design-time API suitable only for Full trust or High trust applications.

If you attempt to use one of the design-time APIs such as WebConfigurationManager.OpenWeb
Configuration in partial trust, you will run into an exception like the following:

SecurityException: Request for the permission of type ‘System.Security.Permissions.
FileIOPermission, …’ failed.]
…snip…
System.Security.CodeAccessPermission.Demand()

79301c05.indd 258 10/6/08 12:12:55 PM

259

Chapter 5: Configuration System Security

System.IO.FileStream.Init(String path, FileMode mode, FileAccess access, Int32
rights, Boolean useRights, FileShare share, Int32 bufferSize, FileOptions options,
SECURITY_ATTRIBUTES secAttrs, String msgPath, Boolean bFromProxy)
System.IO.FileStream..ctor(String path, FileMode mode, FileAccess access, FileShare
share)
…snip…
System.Configuration.UpdateConfigHost.OpenStreamForRead(String streamName)
System.Configuration.BaseConfigurationRecord.InitConfigFromFile()

This stack trace shows that the open attempt eventually results in the use of the FileStream object.
Attempting to open a FileStream on top of a file always results in a demand for a FileIOPermission.
So, long before the configuration system ever gets around to demanding ConfigurationPermission, the
file I/O that occurs during a call to OpenWebConfiguration in a partial trust application will fail. This
behavior is another reason the design-time APIs are useful only in High and Full trust web applications.

Protected Configuration
Since ASP.NET 1.0, a common request has been for a way to safely store sensitive configuration infor-
mation and shield it from prying eyes. The most common information that developers want to protect
is connection strings because these frequently contain username-password pairs. But sorts of interest-
ing information beyond connection strings is contained within ASP.NET configuration files. If you use
the <identity /> section, you again have credentials stored in configuration. If you use classes in the
System.Net namespace, you may have configuration elements listing out SMTP servers or other net-
work endpoints and so on.

Since the 2.0 Framework, there has been a feature to deal with this problem called protected configura-
tion. Protected configuration is a way to take selected pieces of any configuration file and store the con-
figuration information instead in a secure and encrypted format. The great thing about the protected
configuration feature is that it can be used with just about any configuration section—both ASP.NET
and non-ASP.NET configuration sections. As with other features in ASP.NET, protected configuration is
provider-based, so you can buy or write alternative protected configuration providers instead of using
the built-in providers.

Out of the box, the .NET Framework ships with two protected configuration providers:

System.Configuration.DPAPIProtectedConfigurationProvider❑❑

System.Configuration.RsaProtectedConfigurationProvider❑❑

As the class names suggest, the first provider uses the data protection API (DPAPI) functionality in
Windows to encrypt and decrypt configuration sections. The second provider uses the public-key RSA
algorithm for performing the same functionality.

The basic idea behind protected configuration is that you use the aspnet_regiis command-line tool,
or the configuration API (the SectionInformation.ProtectSection and SectionInformation​
.UnprotectSection methods, to be precise) to encrypt selected pieces of your configuration informa-
tion prior to putting an application into production. Then at runtime the configuration system decrypts
the protected configuration information just prior to handing the configuration information back to the
requesting code. The important thing is that protecting a configuration section is transparent to the fea-
tures that rely on the configuration section. No feature code has to change just because an underlying
configuration section has been encrypted.

79301c05.indd 259 10/6/08 12:12:55 PM

260

Chapter 5: Configuration System Security

When you use protected configuration you start with configuration section that might look like the
following:

<machineKey
 validationKey=”123456789012345678901234567890123456789012345678”
 decryptionKey=”123456789012345678901234567890123456789012345678” />

This is a perfect example of the type of section you probably would like to protect. You would rather
not have any random person with Read access to your web.config walking away with the signing and
validation keys for your application.

You can encrypt this configuration section from the command line using the aspnet_regiis tool:

aspnet_regiis -pe system.web/machineKey -app / ConfigurationSample
 -prov DataProtectionConfigurationProvider

After you use the protected configuration feature, the <machineKey /> section looks something like
the following:

<machineKey configProtectionProvider=”DataProtectionConfigurationProvider”>
 <EncryptedData>
 <CipherData>
 <CipherValue>encrypted data here</CipherValue>
 </CipherData>
 </EncryptedData>
</machineKey>

Of course, instead of the text “encrypted data here,” the actual result has about five lines of text contain-
ing the base-64 encoded representation of the encrypted blob for the <machineKey /> section. When
you run the application, everything still works normally, though, because internally the configuration
system transparently decrypts the section using the extra information added to the <machineKey />
element.

Depending on whether you use the RSA- or the DPAPI-based provider, different information will show
up within the <machineKey /> element. In the previous example, the configuration, system added
the configProtectionProvider attribute to the <machineKey/> element. This is a pointer to one of
the protected configuration providers defined in machine.config. At runtime, the configuration sys-
tem instantiates the specified provider and asks it to decrypt the contents of the <EncryptedData />
element. This means that custom protected configuration providers can place additional information
within the <EncryptedData /> element containing any extra information required by the provider to
successfully decrypt the section. In the case of the DPAPI provider, no additional information behind
the encrypted blob is necessary.

What Can’t You Protect?
Protected configuration sounds like the final answer to the age-old problem of encrypting connection
strings. However, due to the interaction between app-domain startup and configuration, you cannot
blindly encrypt every single configuration section in your configuration files. In some cases, you have a
“chicken-and-egg” effect where ASP.NET or the Framework needs to read configuration information to
bootstrap itself, but it has to do this prior to having read the configuration information that defines the
protected configuration providers.

79301c05.indd 260 10/6/08 12:12:55 PM

261

Chapter 5: Configuration System Security

The following list names some configuration sections (this is not an exhaustive list) that you may have
in your various configuration files that can’t be encrypted with protected configuration:

processModel:❑❑ ASP.NET needs to be able to read this just as it is starting up. Furthermore,
for IIS 5 and IIS 5.1 it controls the identity of the worker process, so you would be in a Catch-
22 situation if you needed the correct worker process identity in order to read protected
configuration.

startup and runtime: ❑❑ These configuration sections are used by the Framework to determine
things such as which version of the Framework to load as well as information on assembly
redirection.

cryptographySettings:❑❑ This configuration section defines the actual cryptography classes
used by the framework. Because protected configuration depends on some of these classes, you
can’t encrypt the configuration section that contains information about the algorithms used by
the protected configuration feature.

configProtectedData:❑❑ This is the configuration section that contains the definition of the
protected configuration providers on the machine. This would also be a Catch-22 if the section
were encrypted because the configuration system needs to be able to read this section to get
the appropriate provider for decrypting other configuration sections.

Selecting a Protected Configuration Provider
Now that you know you have at least two different options for encrypting configuration information,
you need to make a decision about which one to use. Additionally, you need to determine how you
want to use each provider. The criteria for selecting and then configuring a provider revolve around
two questions:

Do you need to share configuration files across machines?❑❑

Do you need to isolate encrypted configuration data between applications?❑❑

The first question is relevant for those of you that need to deploy an application across multiple machines
in a web farm. Obviously in a load-balanced web farm, you want an application that is deployed on mul-
tiple machines to use the same set of configuration data. You can use either the DPAPI provider or the
RSA provider for this scenario.

Both providers require some degree of setup to work properly in a web farm. Of the two providers, the
RSA provider is definitely the more natural fit. With the DPAPI provider, you would need to do the fol-
lowing to deploy a web.config file across multiple machines:

	 1.	 Deploy the unencrypted configuration file to each web server.

	 2.	 On each web server, run aspnet_regiis to encrypt the desired configuration sections.

The reason for this is that the DPAPI provider relies on machine-specific information, and this informa-
tion it not portable across machines. Although you can make the DPAPI provider work in a web farm,
you will probably get tired of constantly re-encrypting configuration sections each time you push a
new configuration file to a web farm.

79301c05.indd 261 10/6/08 12:12:55 PM

262

Chapter 5: Configuration System Security

The RSA provider depends on key containers that contain the actual key material for encrypting and
decrypting configuration sections. For a web farm, you would perform a one-time setup to synchro-
nize a key container across all the machines in a web farm. After you create a common key container
across all machines in the farm, you can encrypt a configuration file once on one of the machines, per-
haps even using a utility machine that is not part of the web farm itself but that still has the common
key container. When you push the encrypted configuration file to all machines in the web farm, each
web server is able to decrypt the protected configuration information because each machine has
access to a common set of keys.

The second question around isolation of encryption information deals with how the encryption keys
are protected from other web applications. Both the DPAPI and the RSA providers can use keys that
are accessible machine-wide, or use keys that are accessible to only a specific user identity. RSA has the
additional functionality of using machine-wide keys that only grant access to specific user accounts.

Currently, the recommendation is that if you want to isolate key material by user account, you should
separate your web applications into different application pools in IIS 7.0, and you should use the RSA
provider. This allows you to specify a different user account for each worker process. Then when you
configure the RSA-protected configuration providers, you take some extra steps to ensure that encryp-
tion succeeds only while running as a specific user account. At runtime, this means that even if one
application can somehow gain access to another application’s configuration data, the application will
not be able to decrypt it because the required key material is associated with a different identity.

Both the DPAPI and RSA have per-user modes of operation that can store encryption material directly
associated with a specific user account. However, both of these technologies have the limitation that
the Windows user profile for the process identity needs to be loaded into memory before it can access
the necessary keys. Loading of the Windows user profile does not happen on IIS 6 and 7.0 (it will occur,
though, for other reasons in IIS 5/5.1). As a result, the per-user modes for the DPAPI and RSA providers
really aren’t useful for web applications.

There is another aspect to isolating encryption data for the DPAPI provider because the provider sup-
ports specifying an optional entropy value to use during encryption and decryption. The entropy value
is essentially like a second piece of key material. Two different applications using different entropy
values with DPAPI will be unable to read each other’s data. However, using entropy is probably more
suitable when you want the convenience of using the machine-wide store in DPAPI, but you still want
some isolation between applications.

The following table summarizes the provider options that you should consider before setting up pro-
tected configuration for use in ASP.NET:

Need to Support Multiple
Machines Only Deploy on a Single Machine

Sharing key
material is
acceptable

RSA provider.

Use the default machine-
wide key container, and
grant Read access to all
accounts.

Either the RSA or the DPAPI provider will work.

Use the machine-wide options for either provider.

Can optionally use key entropy with DPAPI provider.

Can optionally use RSA key containers with different
ACLs.

79301c05.indd 262 10/6/08 12:12:55 PM

263

Chapter 5: Configuration System Security

Need to Support Multiple
Machines Only Deploy on a Single Machine

Key material
should be
isolated

RSA provider.

Use machine-wide RSA
key containers, but ACL
different key containers to
different user identities.

RSA provider.

Use machine-wide RSA key containers, but ACL dif-
ferent key containers to different identities.

DPAPI per-user key containers require a loaded user
profile and thus should not be used.

RSA per-user key containers also require a loaded user
profile and thus should not be used.

Caveat When Using Stores That Depend on User Identity
If you choose to use either provider with their per-user mode of operation or if you
use machine-wide RSA key containers that are ACL’d to specific users, you need to be
aware of an issue with using protected configuration. The sequence in which ASP.NET
reads and then deserializes configuration sections is not fixed. Although ASP.NET
internally obtains configuration sections in a certain sequence during app-domain
startup, this sequence may very well change in the future.

One very important configuration section that is read early on during app-domain
startup is the <identity /> section. You can use <identity /> to configure applica-
tion impersonation for ASP.NET. However, if you use RSA key containers, for example,
that depend on specific user identities, you can end up in a situation where ASP.NET
starts initially running as a specific process identity (NETWORK SERVICE by default
on IIS 6 and 7.0), and then after reading the <identity /> section it switches to run-
ning as the defined application impersonation identity.

This can lead to a situation where you have granted permission on an RSA key container
to an IIS 6 or 7.0 worker process account, and suddenly other configuration sections are
no longer decrypting properly because they are being decrypted after ASP.NET switches
over to the application impersonation account. As a result, you should always configure
and ACL key stores on the basis of a known process identity.

For IIS 6 or 7.0 this means setting up protected configuration based on the identity
that will be used for an individual worker process. If your applications need to run as
different identities, instead of using application impersonation on IIS 7.0, you should
separate the applications into different application pools (aka worker processes). This
guarantees that at runtime ASP.NET will always be running with a stable identity, and
thus regardless of the order in which ASP.NET reads configuration sections during
app-domain startup, protected configuration sections will always be capable of being
decrypted using the same identity.

For older versions like IIS 5 and IIS 5.1, you can choose a different process identity
using the <processModel /> element. However, application impersonation is really
the only way to isolate applications by identity on these older versions of IIS. Although
you could play around with different configuration sections to determine which ones
are being read with the identity defined in <processModel /> and which ones are

Continued

79301c05.indd 263 10/6/08 12:12:55 PM

264

Chapter 5: Configuration System Security

read using the application impersonation identity in <identity />, you could very
well end up with a future service pack subtly changing the order in which configura-
tion sections are deserialized.

As a result, the recommendation for IIS 5/5.1 is to upgrade to IIS 6 or IIS 7.0 if you
want to use a feature like RSA key containers with user-specific ACLs. Granted that
this may sound a bit arbitrary, but using key storage that depends on specific identi-
ties with protected configuration gets somewhat complicated as you will see in a bit.
Attempting to keep track of the order of configuration section deserialization adds to
this complexity and if depended on would result in a rather brittle approach to secur-
ing configuration sections. Separating applications with IIS 6 or 7.0 worker processes is
simply a much cleaner and more maintainable approach over the long term.

Defining Protected Configuration Providers
The default protected configuration providers are defined in machine.config:

<configProtectedData defaultProvider=”RsaProtectedConfigurationProvider”>
 <providers>
 <add name=”RsaProtectedConfigurationProvider”
 type=”System.Configuration.RsaProtectedConfigurationProvider, … “
 description=”Uses RsaCryptoServiceProvider to encrypt and decrypt”
 keyContainerName=”NetFrameworkConfigurationKey”
 cspProviderName=””
 useMachineContainer=”true”
 useOAEP=”false” />

 <add name=”DataProtectionConfigurationProvider”
 type=”System.Configuration.DpapiProtectedConfigurationProvider,…”
 description=”Uses CryptProtectData and CryptUnProtectData… “
 useMachineProtection=”true”
 keyEntropy=”” />
 </providers>
</configProtectedData>

If you author or purchase a custom provider, you would configure it in the <configProtectedData />
section and assign it a name so that tools like aspnet_regiis can make use of it. Other than the
“name” and “type” attributes, all of the information you see on the provider <add /> elements is
unique to each specific provider. Custom providers can support their own set of configuration proper-
ties that you can then define when you configure them with the <add /> element.

As with most other provider-based features, you can define as many protected configuration providers as
you want. Then when using a tool like aspnet_regiis, writing code with the ProtectSetion method,
or creating web.config files, you can reference one of the protected configuration providers from
<configProtectedData /> by name. For example, the -prov command-line switch you saw earlier on
aspnet_regiis refers to a named provider within <configProtectedData/>. In these scenarios, if you
do not explicitly select a provider, then the value of defaultProvider on the <configProtectedData />
element is used. This means that by default the RSA provider is used for protected configuration.

79301c05.indd 264 10/6/08 12:12:55 PM

265

Chapter 5: Configuration System Security

DpapiProtectedConfigurationProvider
This protected configuration provider uses the data protection API (DPAPI) that is part of Windows.
This functionality will probably be familiar to those of you who used the aspnet_setreg tool back in
ASP.NET 1.1 or who wrote a managed DPAPI wrapper for use in applications. The nice thing about the
DPAPI provider is that it is very easy to use. Configuring the provider is quite simple because you need
to consider only two provider-specific options:

keyEntropy❑❑ : This is a string value containing some random information that will be used dur-
ing the encryption process. If you use a different keyEntropy value for each application, appli-
cations that share the same set of DPAPI encryption keys still cannot read each other’s protected
configuration data.

useMachineProtection❑❑ : Because DPAPI has the concept of a machine store and a per-user
store, this configuration attribute indicates which one to use. If you set this attribute to true
(the default), all applications can decrypt each other’s protected configuration data. If you set
this attribute to false, then only applications running under the same credentials will be able
to decrypt each other’s protected configuration data.

The DPAPI provider should really be used only for single-machine applications. Although you can go
through a manual step whereby you always re-encrypt your configuration files after they have been
deployed to a machine, this is inconvenient. Furthermore, it opens up the possibility of someone forget-
ting to encrypt a configuration file (and remember that you may need to encrypt multiple configuration
files up the configuration inheritance hierarchy).

keyEntropy
The keyEntropy option is only useful for giving a modicum of protection against two different appli-
cations reading each other’s configuration data when useMachineProtection is set to true. With the
machine-wide DPAPI key store, technically anyone who can get code onto the machine will be able
to decrypt your protected configuration data. Specifying an entropy value gives you a lightweight
approach to protecting the encrypted data. You can use keyEntropy with the per-user mode of opera-
tion for DPAPI as an additional layer of protection, although the per-user mode for the DPAPI provider
is not suitable for use with web applications.

If each web application uses a different keyEntropy parameter in its configuration, only code with knowl-
edge of that value will be able to read the configuration data. Of course, the management problem with
using keyEntropy is that you need a separate provider definition for each different keyEntropy value. If
you have a fair number of applications to protect on a server, and you want to isolate the encrypted data
between each application, you can easily end up with dozens of provider definitions just so that you can
use a different keyEntropy value for each application.

There is also the related issue that you need to ACL the appropriate configuration files so that ran-
dom users cannot open them and read the configuration. Placing the different provider definitions in
machine.config or the root web.config prevents applications running at Medium trust or lower
from being able to use the strongly typed configuration classes to read the raw provider definitions
(note that the actual provider class DpapiProtectedConfigurationProvider doesn’t expose the
keyEntropy value as a property).

79301c05.indd 265 10/6/08 12:12:55 PM

266

Chapter 5: Configuration System Security

However High and Full trust applications have the ability to open any file on the file system (ACLs
permitting). For these types of applications, you need to run each application in a separate application
pool with each application pool being assigned a different user identity. With this approach, you can
then place each application’s provider definition within the application’s web.config file, and the ACLs
prevent one worker process from reading the configuration file from another application. If you were
to leave the application-specific provider definition in machine.config or web.config, Full and High
trust applications would be able to open these files and read the keyEntropy attribute.

Using keyEntropy is pretty basic: You just define another instance of the DPAPI provider and put any
value you want as a value for this attribute:

 <configProtectedData>
 <providers>
 <add name=”AppSpecificDPAPIProvider”
 type=”System.Configuration.DpapiProtectedConfigurationProvider…”
 useMachineProtection=”true”
 keyEntropy=”AD50GC20FKQ43%dj!@4F” />
 </providers>
 </configProtectedData>

You should set the keyEntropy value to something that cannot be easily guessed. In this case, I just
used a random string of characters. Any long string of random values will work; there are no restric-
tions on the length of the keyEntropy configuration attribute. If another application attempts to decrypt
a protected configuration section and uses a different entropy value, it receives an error message stating
that the data in the configuration section is invalid.

useMachineProtection
The default DPAPI configuration uses the machine-wide DPAPI key store; if you configure the DPAPI
provider and fail to set the useMachineProtection attribute, internally the provider will also default
to using the machine-wide store. If you are running in a trusted environment and it doesn’t really mat-
ter if applications can read each other’s configuration data, this setting is reasonable.

However, if you are on a machine that hosts applications from development groups that don’t trust
each other, or if you have a business requirement that different applications should not be able to read
each other’s configuration data, setting useMachineProtection to false is an option. If you set this
attribute to false, the identity of the application needs to be switched to a different user account (see
the earlier section on using per-user key stores). Of course, after you change your application to run as
a different identity, you already have the option of using file ACLs as a protection mechanism for pre-
venting other applications from reading your configuration data. In a sense, using the per-user mode of
the DPAPI provider is an additional layer of protection above and beyond what you gain just by chang-
ing applications to run as different user identities.

As mentioned earlier, though, there is a pretty severe limitation if you set useMachineProtection to
false. Due to the way DPAPI works, it needs access to the user profile for the process identity to access
the key material. On IIS 7 the user profile for a worker process account (specifically machine or domain
accounts other than LOCAL SERVICE or NETWORK SERVICE) is never loaded by IIS. If you follow the
steps outlined in this section everything will work until you reboot the machine and the side effects
of the runas command window are lost. If you really, really want to get per-user DPAPI working, you
need a hack such as launching runas from a scheduled task or having an NT service that forcibly loads
the profile for a user identity. Realistically, though, I would never depend on such workarounds for a

79301c05.indd 266 10/6/08 12:12:55 PM

267

Chapter 5: Configuration System Security

production application, and hence the machine store for the DPAPI protected configuration provider is
the only really viable option for web applications. Non-ASP.NET applications do not have the limitation
with the Windows user profile, though, so you may be interested in using DPAPI user stores for secur-
ing configuration information used by a fat client application.

To set up the provider for per-user DPAPI, just change the useMachineProtection attribute to false:

 <configProtectedData>
 <providers>
 <add name=”AppSpecificDPAPIProvider”
 type=”System.Configuration.DpapiProtectedConfigurationProvider…”
 useMachineProtection=”false”
 </providers>
 </configProtectedData>

If you use DPAPI with per-user keys you must run interactive tools like aspnet_regiis with the pro-
cess credentials that will be used at runtime. The simplest way to do this is with the runas command
to spawn a separate command window. Of course, this also implies that you should choose a local or
domain user account for your process identity because you aren’t going to know the password for the
built-in NETWORK SERVICE account.

After you spawn a command window running as the proper credentials, you can use the aspnet_
regiis command to encrypt the desired configuration section. Because encrypting a configuration
file requires writing a temporary file, replacing the original configuration file, and then cleaning up
afterward, the identity you are running as will temporarily need Read, Write, and Modify access to the
application’s directory. After the encryption operation is done, you can remove the Write and Modify
privileges from the directory.

After the configuration file has been encrypted, try moving the web application into an IIS 7 application
pool running with the same credentials that were used to run aspnet_regiis in the spawned com-
mand window. Now when you run your web application, the encrypted sections will be transparently
decrypted using the DPAPI key associated with the worker process identity. If you assign your appli-
cation to a different application pool, for example the default application pool running as NETWORK
SERVICE, you will see the effect of the per-user DPAPI key. Running as NETWORK SERVICE instead
returns an error message that the key is not valid for the specified state, meaning that you are attempt-
ing to decrypt the data with an invalid key.

However, if you reboot your machine after the previous steps, your web application will stop working,
even with everything set up properly, due to the dependence DPAPI has on the Windows user profile.
As a result I would not recommend trying to get the per-user mode working for IIS 7. Also be aware
that if you are running IIS 5 on a production machine, you can get the per-user mode of DPAPI to work
because ASP.NET loads the user profile of the account specified in the <processModel /> element.
However, if you move the application to an IIS 7 machine, it will fail because of the lack of a loaded
Windows user profile for IIS 7.

RsaProtectedConfigurationProvider
As the name suggests this protected configuration provider uses the RSA public-key encryption algo-
rithm for encrypting configuration sections. To be precise, the provider encrypts configuration sections
using 3DES, but it then encrypts the symmetric 3DES key using the asymmetric RSA algorithm.

79301c05.indd 267 10/6/08 12:12:56 PM

268

Chapter 5: Configuration System Security

Of the two providers included in the Framework, this is definitely the preferred provider for a variety
of reasons:

It works well in multi-machine environments.❑❑

It supports per-user key container ACLing without any awkward dependence on user profiles.❑❑

As a result of its use of RSA, you can use other Windows cryptographic service providers for ❑❑

the RSA algorithm.

Because the provider internally uses the RSA classes in the framework, it is able to support export-
ing and importing key material. This means there is a viable approach for synchronizing key material
across multiple machines in a web farm.

The concept of securing key containers to specific users does not depend on a Windows user profile;
instead, it relies on having ACLs set up that grant access to specific user accounts that need to open
and read key containers. As a result, using machine-wide containers with specific user ACLs is the
preferred approach for isolating the encrypted configuration information for multiple applications.

Because the provider uses RSA, and internally the Framework RSA classes rely on the Windows cryp-
tographic API (CAPI), you get the added benefit of being able to use RSA key containers other than
the default software-based Microsoft implementation. Although this last point is probably relevant for
a small percentage of developers, if you happen to work in a bank or in the defense industry you are
probably familiar with hardware cryptographic service providers (CSPs) for CAPI. If your organiza-
tion uses Active Directory as a certificate store, you also may be using hardware-based CSPs. With the
RsaProtectedConfigurationProvider, you have the option of configuring the protected configura-
tion provider to use a custom CSP instead of the default software-based CSP.

The configuration options of the RSA provider are a bit more extensive than those of the DAPI provider.
Aside from the standard name, type, and description attributes, you can configure the following:

useMachineContainer❑❑ : As with the DPAPI provider you can use per-user key containers
instead of machine-wide key containers. Like DPAPI, per-user key containers require a loaded
Windows profile. Unlike DPAPI, machine-wide RSA key containers can be ACL’d to specific
users.

keyContainerName❑❑ : The RSA provider always accesses keys from a software abstraction called
a key container. From a manageability and security perspective, it makes it easier to separate
different applications through the use of different key containers that are locked down to spe-
cific users.

useOAEP❑❑ : This option tells the providers to use Optional Asymmetric Encryption and Padding
(OAEP) when encrypting and decrypting. Windows 2000 does not support this, so the default
for this setting in configuration and inside of the provider is false. If you are running on Win-
dows Server 2003, Server 2008, XP, or Vista, you can use this option because these operating
systems support OAEP with RSA.

cspProviderName❑❑ : Assuming that you have registered a custom CSP for use with CAPI,
you can tell the RSA configuration provider to use it by specifying the CSP’s name with this
parameter.

79301c05.indd 268 10/6/08 12:12:56 PM

269

Chapter 5: Configuration System Security

Of the various parameters listed here, I will only drill into the useMachineContainer and key
ContainerName attributes because these settings are the ones you will most commonly worry about.
For IIS 7 on Windows Server 2008 or Windows Vista, you can optionally set useOAEP to true. For the
cspProviderName attribute, if you already have a custom CSP configured on your web servers, you
will already know the string name for using it with your applications. Beyond that, there is not any-
thing else special that you need to do from the perspective of protected configuration.

keyContainerName
Regardless of whether you use a machine key container or a user-specific key container, the RSA-
protected configuration provider needs to be pointed at the appropriate container. Unlike the DPAPI
provider, the RSA provider does not have some central pool where keys are held. Instead, key material
is always segmented into specific containers. The following default RSA provider configuration uses a
default container name of NetFrameworkConfigurationKey:

<add name=”RsaProtectedConfigurationProvider”
 type=”System.Configuration.RsaProtectedConfigurationProvider,…”
 keyContainerName=”NetFrameworkConfigurationKey”
 cspProviderName=””
 useMachineContainer=”true”
 useOAEP=”false” />

Encrypting a configuration section with aspnet_regiis using the RSA provider looks like the following:

aspnet_regiis -pe system.web/machineKey -app /ConfigurationSample

In this case, the -prov option was not used, meaning the default provider for protected configuration
will be used, which is the RSA-based provider. Contrasted with the output from the DPAPI provider,
the output from the RSA provider is substantially more verbose:

<machineKey configProtectionProvider=” RsaProtectedConfigurationProvider “>
 <EncryptedData Type=”http://www.w3.org/2001/04/xmlenc#Element”
 xmlns=”http://www.w3.org/2001/04/xmlenc#”>
 <EncryptionMethod Algorithm=”http://www.w3.org/2001/04/xmlenc#tripledes-cbc” />
 <KeyInfo xmlns=”http://www.w3.org/2000/09/xmldsig#”>
 <EncryptedKey xmlns=”http://www.w3.org/2001/04/xmlenc#”>
 <EncryptionMethod Algorithm=”http://www.w3.org/2001/04/xmlenc#rsa-1_5” />
 <KeyInfo xmlns=”http://www.w3.org/2000/09/xmldsig#”>
 <KeyName>Rsa Key</KeyName>
 </KeyInfo>
 <CipherData>
 <CipherValue>encrypted 3DES key goes here</CipherValue>
 </CipherData>
 </EncryptedKey>
 </KeyInfo>
 <CipherData>
 <CipherValue>encrypted machine key section here</CipherValue>
 </CipherData>
 </EncryptedData>
</machineKey>

79301c05.indd 269 10/6/08 12:12:56 PM

270

Chapter 5: Configuration System Security

The format for the RSA and DPAPI providers is based on the W3C XML Encryption Recommendation.
However, the RSA provider output really needs the expressiveness of this format due to all of the infor-
mation it needs to output.

There are actually two separate <CipherValue /> elements. The first <CipherValue /> element con-
tains an encrypted version of a 3DES key. The idea behind the RSA provider is that for each configura-
tion section that is encrypted, the provider creates a new random symmetric key for 3DES. However,
you don’t want to communicate that signing key in the clear. So, the symmetric key is encrypted using
an asymmetric RSA public-private key pair.

The end result of the asymmetric RSA encryption is placed within the first occurrence of the
<CipherValue /> element. The only way that someone can actually decrypt the 3DES encryption
key is to have the same public-private key pair in the appropriate RSA container on their system. The
<EncryptionMethod /> element that ends in rsa-1_5 tells the configuration system (or more pre-
cisely the XML Encryption support in the Framework) to use the RSA algorithm to decrypt the 3DES
encryption key. Internally, the protected configuration provider will hand the Framework an instance
of a System.Security.Cryptography.RSACryptoServiceProvider that has already been initial-
ized with the appropriate RSA key container based on the configuration provider’s settings.

The second <CipherValue /> element contains the actual results of encrypting the configuration
section using 3DES. At runtime, the protected configuration provider will use the results of the RSA
decryption for the 3DES key to in turn decrypt the second <CipherValue /> section into the cleartext
version of a configuration section.

Although a bit counterintuitive, if you rush out and use aspnet_regiis to encrypt a configuration sec-
tion with the RSA provider, when you then run your ASP.NET application, it will fail with an error stating
that the RSA key container cannot be opened. This is because although the Framework ensures that an
RSA container called NetFrameworkConfigurationKey is created on the machine, by default the process
account for your web application does not have rights to retrieve key material from the key container.

You have to first grant read access on the key container using aspnet_regiis. For ASP.NET, you
need to grant read access on the container to only the appropriate process account. Although aspnet_
regiis supports granting Full access to a key container, you don’t want the identity of a web applica-
tion to have rights to write to or delete containers. As a result, for the default provider configuration, the
process account for your web application needs only Read access. The following aspnet_regiis com-
mand grants Read access to the default RSA key container used by protected configuration:

aspnet_regiis -pa “NetFrameworkConfigurationKey” “NT AUTHORITY\NETWORK SERVICE”

After you do this, your web applications will be able to decrypt configuration sections using the default
machine-wide container.

Now that you understand the basics of using the default key container, the next question is when would
you use alternate key containers? The combination of using machine-wide containers (for example, the
useMachineContainer attribute is set to true) with key containers is compelling. You can log on to a
web server as local machine administrator and create a machine-wide RSA key pair in a new container
using the aspnet_regiis tool. You can then selectively grant Read access on the container to certain
accounts.

79301c05.indd 270 10/6/08 12:12:56 PM

271

Chapter 5: Configuration System Security

This means you can segment your applications into different worker processes running with different
user accounts, and grant each user account Read access to a specific key container. Unlike DPAPI, just
because an RSA key container is available machine-wide, it does not mean that any arbitrary account can
access it. The required step of granting Read access makes this approach secure and effective. It is rea-
sonably simple to set up, and it allows you to isolate configuration data between applications. As you will
see in the next section on useMachineContainer, RSA key containers that are usable machine-wide are
really the only viable mechanism for providing configuration isolation to ASP.NET applications.

Creating a RSA key container can be accomplished with the following command line:

aspnet_regiis -pc “Application_A_Container”

This command creates a new RSA key container called Application_A_Container that is accessible
machine-wide assuming the appropriate access control lists (ACLs) are granted. As an aside, the -pc
option supports an additional -size option that allows you to specify how large you want the RSA key
to be. By default, the tool will create 1024-bit keys, but the RSA standard supports keys as large as 16,384
bits if necessary.

You grant access to the newly created container using the -pa switch, as shown a little bit earlier. For
this to make sense, though, you must separate your applications into separate worker processes run-
ning as something other than NETWORK SERVICE. Obviously, granting key container access to NET-
WORK SERVICE is pointless if your intent is to isolate access by worker process identity. Assuming
that you use a different identity for each of your worker processes, you can use the -pa switch to grant
access in such a way that each new key container is accessible by only a specific worker process account.

This approach does have a similar manageability issue to using keyEntropy with the DPAPI pro-
vider. Using a different key container per process identity means that you have to create a different
RSA provider definition for each separate key container. However, you do not have to worry about
where you place the different RSA provider definitions. Even if applications are able to physically
read protected configuration definitions for other applications, the key container ACLs will prevent
applications running with different identities from successfully decrypting other application’s con-
figuration sections.

useMachineContainer
As with the DPAPI provider, the RSA provider allows you to use a per-user mode of operation. The
previous discussions on the RSA provider have been using key containers that are visible machine-
wide. For an additional level of security, you might think that you could create key containers that are
only “visible” to specific user accounts. This approach is dependent on Windows user profiles as you
will see in a bit.

The first step is to define a protected configuration provider to use a user-specific key container. Some-
thing like the following:

<add name=”AppSpecificRSAProvider”
 type=”System.Configuration.RsaProtectedConfigurationProvider,…”
 keyContainerName=”UserSpecificContainer”
 useMachineContainer=”false” />

79301c05.indd 271 10/6/08 12:12:56 PM

272

Chapter 5: Configuration System Security

After you have a provider defined, the general sequence of steps enables you to use user-specific
containers:

	 1.	 Open a command window running as the user account that will “own” the key container. You
can log in interactively as the account or use the runas command.

	 2.	 Use the aspnet_regiis -pc command to create a key container.

	 3.	 Use aspnet_regiis -pe to encrypt the desired configuration sections. You need to perform
the encryption while running as the specific user account; otherwise, the configuration system is
not going to be using the correct user-specific key container. Make sure to use the -prov option
so that the tool knows to use the appropriate provider definition.

	 4.	 Log off or close the spawned command window.

	 5.	 Change the identity of your web application’s application pool to the same identity that was
used to create the key container and encrypt the configuration sections.

When you run your web application, it will be able to decrypt the encrypted configuration sections
using the key pair located in the user-specific key container.

Unfortunately, this entire process suffers from the same dependency on Windows user profiles as
DPAPI. If you reboot the machine, causing the user profile that was loaded in step 1 to go away, your
web application can no longer decrypt the configuration section. As with DPAPI the per-user key con-
tainers are not really usable in ASP.NET applications; you need to stick with machine-wide containers
and selectively ACL the RSA key containers to get configuration isolation across applications.

Synchronizing Key Containers across Machines
The biggest advantage of the RSA provider over the DPAPI provider is that RSA provides a viable
approach for synchronizing the contents of a key container across a web farm. Unlike DPAPI, RSA key
pairs are exportable. The most important thing you need to do to ensure that you can synchronize keys
is create your key containers so that they are exportable. The following command uses the -exp option
to create a machine-wide key container with exportable keys. If you forget the -exp option the resultant
key container will not be exportable. Note that for this discussion, only machine-wide key containers
are used because per-user key containers aren’t really suitable for ASP.NET.

aspnet_regiis -pc ExportableContainer -size 2048 -exp

The next step is to export the key material so that it can be physically transported. The aspnet_regiis
command line for export is shown here:

aspnet_regiis -pri -px ExportableContainer c:\exportedkey.xml

The -px option tells the tools that the key information in the container should be exported to the file
name shown on the command line. The bold -pri option is important because it also tells the tool to
ensure that the private half of the RSA key pair is exported as well. If you forget to export the private
key, when you import the result on another server it will be useless because you need the private half
of the key pair to be able to decrypt the 3DES encryption key from the XML in the protected configura-
tion section.

79301c05.indd 272 10/6/08 12:12:56 PM

273

Chapter 5: Configuration System Security

With the export file in hand, you can go to each machine that needs to share the key material and import
the key container with the following command:

aspnet_regiis -pi ExportableContainer c:\exportedkey.xml

The -pi command tells the tool to import the contents of the XML file into the specified RSA key
container. After you import the file on any given machine, you should immediately delete it and wipe
the directory that contained it. It would be a major security breach if the XML export file is left lying
around for someone to copy and walk away with. The same holds true for the machine where the origi-
nal export occurred; you should also ensure that the original export file is not lying around on disk
waiting for someone to snoop.

As a last step, because this approach creates a new key container upon import, you need to use
aspnet_regiis with the -pa switch on each web server to grant Read access on the key container to
the appropriate worker process accounts.

At this point you have a key container called ExportableContainer on one or more machines. In a
really secure web environment, you can perform the encryption of your configuration sections using a
system that is not directly connected to the internet. After you create a config file with all of the appropri-
ate encrypted configuration sections, you copy the result to all of the machines in your web farm. The
previous steps of importing containers and ACLing the containers are one-time setup tasks. After they
have been accomplished, you only need to copy encrypted configuration files to all of your web servers.

This is a much cleaner approach than using DPAPI, where you would need to perform in-place encryp-
tion on each of your production web servers. In-place encryption is not only error-prone, but it also
means the web server administrator always gets to see the before image of the configuration data.
With the RSA provider, you can go so far as having a security group responsible for encrypting your
production configuration files; the security group members could be the only ones that know sensi-
tive information such as connection string passwords. Then when the security group is done with the
encryption process they could hand the results back to your development team for deployment onto
a production farm. In this way, only a small set of individuals actually knows the sensitive pieces of
cleartext configuration information.

aspnet_regiis Options
Several different command-line options have been thrown around for aspnet_regiis. The following
table briefly summarizes the main options that have been used for the various samples. Each of these
options usually has additional suboptions for things like per-user RSA containers, more specific virtual
path information, and so on. However, the table shows only the most common options that you are
likely to need:

Command-Line Option Description

-pc Container_Name
-exp -size 4096

Creates a new RSA key container that is available to any account, assum-
ing Read access is granted.

If you plan to export the key container, you need to include the -exp option.

The -size option lets you specify the size of the RSA key that will be
created in the container.

Continued

79301c05.indd 273 10/6/08 12:12:56 PM

274

Chapter 5: Configuration System Security

Command-Line Option Description

-pa Container_Name
“DOMAIN\user”

Grants Read access on an RSA key container to the specified user
account.

-pri -px Container_
Name file name

Exports an RSA key container to the specified file. The export file
includes the private RSA key information as well.

-pi Container_Name
file name

Imports an RSA key container.

-pe config_section_
path -app /app_path
-prov provider_name

Encrypts the configuration section identified by the configuration section
path. This path looks something like system.web/membership.

The application path specified by -app denotes a virtual path within the
default web site, unless you specify a site with the -site option.

The encryption uses the provider specified by -prov. This provider must
have been defined in the <configProtectedData /> section. If you
want to use the default protected configuration provider, then -prov is
not necessary.

-pd config_section_
path -app /app_path

Decrypts the configuration section identified by the configuration section
path. This path looks something like system.web/membership.

The application path specified by -app denotes a virtual path within the
default web site, unless you specify a site with the -site option.

The aspnet_regiis tool really has only two modes of operation when working with protected con-
figuration providers:

The tool has rich support for the RSA-based provider that ships in the framework. ❑❑ aspnet_regiis
includes many configuration switches to carry out various operations that are specific to the
RSA-based provider.

The tool can invoke any arbitrary provider, but it cannot support any special behavior that may ❑❑

be required by the provider. You can see that the command line (the -pe and -pd options) does
not include any special switches beyond the basics that are required to identify a specific con-
figuration section to protect.

This means that if you use a different protected configuration provider, and if you need to support spe-
cial operations related to that provider (for example, the key container setup required when using RSA),
you will need to write your own code to carry out these types of provider-specific tasks.

Using Protected Configuration Providers in Partial Trust
You have seen how protected configuration works transparently with the features that depend on the
underlying configuration data. However, because protected configuration relies on providers, and these
providers are public, there is not anything preventing you from just creating an instance of either the

79301c05.indd 274 10/6/08 12:12:56 PM

275

Chapter 5: Configuration System Security

RSA or the DPAPI provider and calling the methods on these providers directly. The Decrypt method
on a ProtectedConfigurationProvider accepts a System.Xml.XmlNode as an input parameter and
returns the decrypted version as another XmlNode instance.

Combining the simplicity of this method with the fact that most ASP.NET trust levels allow some Read
access to the file system means that malicious developers could potentially attempt the following steps:

	 1.	 Open the application’s web.config file as a text file or through a class like System.Xml​
.XmlTextReader.

	 2.	 Get a reference to the appropriate DPAPI or RSA provider based on the provider name in the
configProtectionProvider attribute that is on the configuration element being protected.

	 3.	 Pass the contents of the <EncryptedData /> element for a protected configuration section to
the Decrypt method of the protected configuration provider obtained in the previous step.

In some scenarios, you do not want any piece of code to be able to accomplish this. Even in High trust
where your code has access to read the machine.config and root web.config files, you probably do
not want this loophole to exist.

If a feature is written to mirror configuration properties in a public API, then that is where developers
should access the values. In some cases, if you author a feature so that certain pieces of configuration
information are read, but are never exposed from a feature API, then you do not want random code that
outflanks your feature and decrypts sensitive data directly from configuration.

To prevent this, the DPAPI and the RSA providers include the following class-level demand on their
class signatures:

[PermissionSet(SecurityAction.Demand, Name=”FullTrust”)]

This declarative demand requires that all callers up the call stack must be running in Full trust. The
FullTrust value for the Name property is actually a reference to one of the built-in .NET Framework
permission sets that you can see if you use a tool like the .NET Framework Configuration MMC. As a
result, all code in the call stack needs to be running in the GAC or the entire ASP.NET application needs
to be running in the ASP.NET Full trust level. For a partial trust application, any attempt to directly call
the providers will fail with a SecurityException.

You can see how this works by writing some sample code to load an application’s web.config file,
extract an encrypted section out of it, and then pass it to the correct provider.

C#
using System.Configuration;
using System.Xml;
…
protected void Page_Load(object sender, EventArgs e)
{
 XmlDocument xd = new XmlDocument();
 xd.Load(Server.MapPath(“~/web.config”));

79301c05.indd 275 10/6/08 12:12:56 PM

276

Chapter 5: Configuration System Security

 XmlNamespaceManager ns = new XmlNamespaceManager(xd.NameTable);
 ns.AddNamespace(“u”, “http://schemas.microsoft.com/.NetConfiguration/v2.0”);
 XmlNode ec =
 xd.SelectSingleNode(“//u:configuration/u:system.web/u:machineKey”,ns);

 RsaProtectedConfigurationProvider rp =
 (RsaProtectedConfigurationProvider)
 ProtectedConfiguration.Providers[“AppSpecificRSAProvider”];
 XmlNode dc = rp.Decrypt(ec);
}

VB.NET
Imports System.Configuration
Imports System.Xml
…

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs) _
 Handles Me.Load
 Dim xd As New XmlDocument()
 xd.Load(Server.MapPath(“~/web.config”))

 Dim ns As New XmlNamespaceManager(xd.NameTable)
 ns.AddNamespace(“u”, “http://schemas.microsoft.com/.NetConfiguration/v2.0”)
 Dim ec As XmlNode = _
 xd.SelectSingleNode(“//u:configuration/u:system.web/u:machineKey”, _
 ns)

 Dim rp As RsaProtectedConfigurationProvider = _
 CType(ProtectedConfiguration.Providers(“AppSpecificRSAProvider”), _
 RsaProtectedConfigurationProvider)
 Dim dc As XmlNode = rp.Decrypt(ec)
 End Sub

The sample code uses an XPath query to extract an XmlNode reference to the encrypted <machineKey />
section. It then uses the ProtectedConfiguration class to get a reference to the correct provider for
decryption. If you run this code in a Full trust ASP.NET application it will work. However, if you drop
the trust level to High or lower, a SecurityException occurs when the call to Decrypt occurs.

Even though the protected configuration providers demand Full trust, you can still protect your own cus-
tom configuration sections in partial trust applications when using either the DPAPI or the RSA providers.
At runtime when a call is made to GetSection from ConfigurationManager or WebConfiguration​
Manager, internally the configuration system asserts Full trust on your behalf prior to decrypting the
contents of your custom configuration section. This behavior makes sense because the assumption is that
if a piece of code can successfully call GetSection (for example, if ConfigurationPermission has been
granted to the partial trust application, or requirePermission has been set to false, or your code is
running in the GAC and asserts ConfigurationPermission), there is no reason why access to con-
figuration via a strongly typed configuration class should fail even if the underlying data requires
decryption.

79301c05.indd 276 10/6/08 12:12:56 PM

277

Chapter 5: Configuration System Security

If you have a sample application running in High trust (High trust is necessary for this sample because
the “runtime” configuration APIs fail by default when called below High trust), you can attempt to
open the protected <machineKey /> section with the following code:

C#
MachineKeySection mk =
 (MachineKeySection)WebConfigurationManager.GetSection(“system.web/machineKey”);

VB.NET
Dim mk As MachineKeySection = _
 CType(config.GetSection(“system.web/machineKey”), _
 MachineKeySection)

The preceding code will work in both High and Full trust. In High trust, the code succeeds because it
makes it over the hurdle of the two following security checks:

The application is running in High trust, so the configuration system demand for ❑❑ Configuration​
Permission succeeds.

The configuration system internally asserts Full trust when deserializing the configuration sec-❑❑

tion, so the declarative security demand from the protected configuration provider passes as well.

However, if you use the design-time configuration API as follows in High trust, the same logical opera-
tion fails:

C#
//This will fail in High trust or below with a protected config section
Configuration config = WebConfigurationManager.OpenWebConfiguration(“~”);
MachineKeySection mk =
 (MachineKeySection)config.GetSection(“system.web/machineKey”);

VB.NET
‘These two pieces of code fail in partial trust when using protected config
‘because Open is a “design time” API
Dim config As Configuration = WebConfigurationManager.OpenWebConfiguration(“~”)
Dim mk As MachineKeySection = _
 CType(config.GetSection(“system.web/machineKey”), _
 MachineKeySection)

In this scenario, three security checks occur, and the last one fails:

The configuration system opens the file using file I/O, which generates a ❑❑ FileIOPermission
demand. The demand passes because High trust has rights to read all configuration files in the
inheritance chain.

The NTFS ACLs on ❑❑ machine.config, root web.config, and the application’s web.config
also allow Read access.

79301c05.indd 277 10/6/08 12:12:56 PM

278

Chapter 5: Configuration System Security

The protected configuration provider demands Full trust. The demand fails because the sample ❑❑

code is running in the Page_Load method of a partial trust ASP.NET application. Internally, the
configuration does not assert Full trust on your behalf when calling the Open* methods.

The interaction of trust levels with protected configuration can be a bit mind-numbing to decipher.
Excluding intervention on your part with configuration files or sandboxed GAC assemblies, the follow-
ing list summarizes the behavior of the RSA and DPAPI protected configuration providers:

Protected configuration providers ❑❑ work in partial trust applications that load configuration using
the GetSection method. This method is the normal way a custom feature that you author
would load configuration.

Protected configuration providers ❑❑ fail in partial trust when using the design-time configuration
APIs (that is, the various Open* methods). Normally, you will not call these methods from any-
thing other than administrative applications or command-line configuration tools.

Redirecting Configuration with a Custom Provider
So far, all of the discussion on protected configuration has revolved around the idea of encrypting and
decrypting configuration sections. Given the feature’s heritage with the old aspnet_setreg.exe tool,
this is understandable. Traditionally, when customers asked for a way to secure sensitive pieces of con-
figuration data, they were looking for a way to encrypt the information. However, there is no reason
that the concept of “protection” can’t be interpreted differently.

A common problem some of you probably have with your web applications is with promoting an
application through various environments. Aside from development environments you may have test
servers, staging servers, live production servers, and potentially warm backup servers. Encrypting your
configuration data does make it safer, but it also increases your management overhead in attempting
to synchronize configuration data properly in each of these environments. This overhead is even more
onerous if you work in a security-sensitive environment where only a limited number of personnel are
allowed to encrypt the final configuration information prior to pushing it into production.

Protected configuration is probably manageable with manual intervention for a few servers and is toler-
able with the help of automated scripts in environments that deal with dozens if not hundreds of servers.
However, you can kill two birds with one stone if you think about “protected” actually being a problem of
getting important configuration data physically off your web servers. If you store selected configuration
sections in a central location (such as a central file share or a central configuration database), you have a
more manageable solution and, depending on how you implement this, a more secure solution as well.

You can write a custom protected configuration provider that determines information about the current
server and the currently running application. Because a protected configuration provider controls the
format of the data that is written into a protected configuration section, you can store any additional infor-
mation you need in this format. For example, you could have a custom XML format that includes hints to
your provider so that it knows if a configuration section for machine.config, the root web.config, or
an application web.config is requested. Even though the DPAPI and RSA providers use the W3C XML
Encryption Recommendation, this is not a strict requirement for the format of encrypted data that is used
by a custom provider.

79301c05.indd 278 10/6/08 12:12:57 PM

279

Chapter 5: Configuration System Security

A custom provider can then reach out to a central repository of configuration information and return
the appropriate information. Depending on how stringent your security needs are you can layer extra
protection in the form of transport layer security (such as an SSL connection to a SQL Server machine
as well as IPSEC connection rules) and encrypt the configuration data prior to storing it in a central
location. When you have a select group of individuals who manage the configuration data for live pro-
duction servers, it is probably much easier to have such a group manage updates to a single database
as opposed to encrypting a file and then having to worry about getting the synchronization of said file
correct across multiple machines.

Implementing a custom protected configuration provider requires you to derive from the System​
.Configuration.ProtectedConfigurationProvider class. As you can see, the class signature is
very basic:

C#
 public abstract class ProtectedConfigurationProvider : ProviderBase
 {
 public abstract XmlNode Encrypt(XmlNode node);
 public abstract XmlNode Decrypt(XmlNode encryptedNode);
 }

VB.NET
Public MustInherit Class ProtectedConfigurationProvider
 Inherits ProviderBase
 Public MustOverride Function Decrypt(ByVal encryptedNode As XmlNode) As XmlNode
 Public MustOverride Function Encrypt(ByVal node As XmlNode) As XmlNode
End Class

For a sample provider that demonstrates redirecting configuration to a database, you implement only
the Decrypt method because this is the method used at runtime to return configuration data to the
caller. If you store more complex data inside your protected configuration format, implementing the
Encrypt method will make life easier when storing configuration sections in a custom data store.

First look at what a “protected” configuration section in a web.config file will look like using the cus-
tom provider:

<membership configProtectionProvider=”CustomDatabaseProvider”>
 <EncryptedData>
 <sectionInfo name=”membership” />
 </EncryptedData>
</membership>

As with previous snippets of protected configuration, the <membership /> section references a pro-
tected configuration provider. Instead of the actual definition of the <membership /> section though,
the <EncryptedData /> element is common to all protected configuration sections. However, what is
enclosed within this element is determined by each provider. In this case, to keep the sample provider
very simple, the protected data consists of only a single element: a <sectionInfo /> element.

79301c05.indd 279 10/6/08 12:12:57 PM

280

Chapter 5: Configuration System Security

Unlike protected configuration providers that blindly encrypt and decrypt data, this provider needs to
know the actual configuration section that is being requested. The RSA and DPAPI providers actually
have no idea what they are operating against. Both providers work against a fixed schema and consider
the encrypted blob data to be opaque from a functionality standpoint. The custom provider, however,
needs to know what section is really being requested because its purpose is to store configuration data
in a database for any arbitrary configuration section. The name attribute within the <sectionInfo />
element gives the custom provider the necessary information. Although this is just a basic example of
what you can place with <EncryptedData />, you can encapsulate any kind of complex data your pro-
vider may need within the XML.

The custom provider will store configuration sections in a database, keying off of a combination of the
application’s virtual path and the configuration section. The database schema that follows shows the
table structure for storing this:

create table ConfigurationData (
ApplicationName nvarchar(256) NOT NULL,
SectionName nvarchar(150) NOT NULL,
SectionData ntext
)
go

alter table ConfigurationData
 add constraint PKConfigurationData
 PRIMARY KEY (ApplicationName,SectionName)
go

Retrieving this information will similarly be very basic with just a single stored procedure pulling back
the SectionData column that contains the raw text of the requested configuration section:

create procedure RetrieveConfigurationSection
 @pApplicationName nvarchar(256),
 @pSectionName nvarchar(256)
as

select SectionData
from ConfigurationData
where ApplicationName = @pApplicationName
and SectionName = @pSectionName
go

Because the custom protected configuration provider needs to connect to a database, a connection
string must be included within the definition of the provider. Writing and configuring custom provid-
ers is the subject of Chapter 10; the important point for this sample is that ASP.NET allows you to add
arbitrary information to the configuration element for providers.

<configProtectedData>
 <providers>
 <add name=”CustomDatabaseProvider”
 type=”CustomProviders.DatabaseProtectedConfigProvider,CustomProviders”
 connectionStringName=”ConfigurationDatabase”
 />
 </providers>
</configProtectedData>

79301c05.indd 280 10/6/08 12:12:57 PM

281

Chapter 5: Configuration System Security

The provider configuration looks similar to the configurations for the RSA and DPAPI providers. In this
case, however, the custom provider requires a connectionStringName element so that it knows which
database and database server to connect to. The value of this attribute is simply a reference to a named
connection string in the <connectionStrings /> section, as shown here:

<connectionStrings>
 <add name=”ConfigurationDatabase”
 connectionString=”server=.;Integrated _
 Security=true;database=CustomProtectedConfiguration”/>
</connectionStrings>

When creating your own custom providers, you have the freedom to place any provider-specific infor-
mation you deem necessary in the <add /> element.

Now that you have seen the data structure and configuration related information, take a look at the
code for the custom provider. Because a protected configuration provider ultimately derives from
System.Configuration.Provider.ProviderBase, the custom provider can override portions of
ProviderBase as well as ProtectedConfigurationProvider. Chapter 10 goes into more detail on
ProviderBase; for now, though, the custom provider will override ProviderBase.Initialize so
that the provider can retrieve the connection string from configuration:

C#
using System;
using System.Data;
using System.Data.SqlClient;
using System.Configuration;
using System.Configuration.Provider;
using System.Web;
using System.Web.Hosting;
using System.Web.Configuration;
using System.Xml;

namespace CustomProviders
{
 public class DatabaseProtectedConfigProvider : ProtectedConfigurationProvider
 {
 private string connectionString;

 public DatabaseProtectedConfigProvider() { }

 public override void Initialize(string name,
 System.Collections.Specialized.NameValueCollection config)
 {
 string connectionStringName = config[“connectionStringName”];
 if (String.IsNullOrEmpty(connectionStringName))
 throw new ProviderException(“You must specify “ +
 “connectionStringName in the provider configuration”);

 connectionString =
 WebConfigurationManager.ConnectionStrings[connectionStringName] _
 .ConnectionString;
 if (String.IsNullOrEmpty(connectionString))
 throw new ProviderException(“The connection string “ +

79301c05.indd 281 10/6/08 12:12:57 PM

282

Chapter 5: Configuration System Security

 “could not be found in <connectionString />.”);
 config.Remove(“connectionStringName”);

 base.Initialize(name, config);
 }

 //Remainder of provider implementation
 }
}

VB.NET
Imports System
Imports System.Data
Imports System.Data.SqlClient
Imports System.Configuration
Imports System.Configuration.Provider
Imports System.Web
Imports System.Web.Hosting
Imports System.Web.Configuration
Imports System.Xml

Namespace CustomProviders
 Public Class DatabaseProtectedConfigProvider
 Inherits ProtectedConfigurationProvider
 Private connectionString As String

 Public Sub New()
 End Sub

 Public Overrides Sub Initialize(_
 ByVal name As String, _
 ByVal config As System.Collections.Specialized.NameValueCollection)
 Dim connectionStringName As String = config(“connectionStringName”)
 If String.IsNullOrEmpty(connectionStringName) Then
 Throw New ProviderException(_
 “You must specify connectionStringName in the provider configuration”)
 End If

 connectionString = _
 WebConfigurationManager.ConnectionStrings(connectionStringName).ConnectionString
 If String.IsNullOrEmpty(connectionString) Then
 Throw New ProviderException(_
 “The connection string could not be found in <connectionString />.”)
 End If
 config.Remove(“connectionStringName”)

 MyBase.Initialize(name, config)
 End Sub

 ‘Remainder of provider implementation

 End Class
End Namespace

79301c05.indd 282 10/6/08 12:12:57 PM

283

Chapter 5: Configuration System Security

The processing inside of the Initialize method performs a few sanity checks to ensure that the
connectionStringName attribute was specified in the provider’s <add /> element, and that further-
more the name actually points at a valid connection string. After the connection string is obtained
from the ConnectionStrings collection, it is cached internally in a private variable.

Of course, the interesting part of the provider is its implementation of the Decrypt method:

C#
public override XmlNode Decrypt(XmlNode encryptedNode)
{
 //Application name
 string applicationName = HostingEnvironment.ApplicationVirtualPath;
 XmlNode xn = encryptedNode.SelectSingleNode(“/EncryptedData/sectionInfo”);
 //Configuration section to retrieve from the database
 string sectionName = xn.Attributes[“name”].Value;

 using (SqlConnection conn = new SqlConnection(connectionString))
 {
 SqlCommand cmd =
 new SqlCommand(“RetrieveConfigurationSection”, conn);
 cmd.CommandType = CommandType.StoredProcedure;
 SqlParameter p1 = new SqlParameter(“@pApplicationName”, applicationName);
 SqlParameter p2 = new SqlParameter(“@pSectionName”, sectionName);

 cmd.Parameters.AddRange(new SqlParameter[] { p1, p2 });

 conn.Open();
 string rawConfigText = (string)cmd.ExecuteScalar();
 conn.Close();

 //Convert string from the database into an XmlNode
 XmlDocument xd = new XmlDocument();
 xd.LoadXml(rawConfigText);

 return xd.DocumentElement;
 }
}

VB.NET
 Public Overrides Function Decrypt(_
 ByVal encryptedNode As XmlNode) As XmlNode()
 Dim applicationName As String = _
 HostingEnvironment.ApplicationVirtualPath
 Dim xn As XmlNode = _
 encryptedNode.SelectSingleNode(“/EncryptedData/sectionInfo”)
 Dim sectionName As String = xn.Attributes(“name”).Value

 Using conn As New SqlConnection(connectionString)
 Dim cmd As New SqlCommand(“RetrieveConfigurationSection”, conn)
 cmd.CommandType = CommandType.StoredProcedure
 Dim p1 As New SqlParameter(“@pApplicationName”, applicationName)
 Dim p2 As New SqlParameter(“@pSectionName”, sectionName)

79301c05.indd 283 10/6/08 12:12:57 PM

284

Chapter 5: Configuration System Security

 cmd.Parameters.AddRange(New SqlParameter() {p1, p2})

 conn.Open()
 Dim rawConfigText As String = CStr(cmd.ExecuteScalar())
 conn.Close()

 ‘Convert string from the database into an XmlNode
 Dim xd As New XmlDocument()
 xd.LoadXml(rawConfigText)

 Return xd.DocumentElement
 End Using
 End Function

The Decrypt method’s purpose is take information about the current application and information
available from the <sectionInfo /> element and use it to retrieve the correct configuration data from
the database.

The provider determines the correct application name by using the System.Web.Hosting.Hosting​
Environment class to determine the current application’s virtual path. The name of the configuration
section to retrieve is determined by parsing the <EncryptedData /> section to get to the name attri-
bute of the custom <sectionInfo /> element. With these pieces of data the provider connects to the
database using the connection string supplied by the provider’s configuration section.

The configuration data stored in the database is just the raw XML fragment for a given configuration
section. For this example, which stores a <membership /> section in the database, the database table
just contains the text of the section’s definition taken from machine.config stored in an ntext field
in SQL Server. Because protected configuration providers work in terms of XmlNode instances, and not
raw strings, the provider converts the raw text in the database back into an XmlDocument, which can
then be subsequently returned as an XmlNode instance. Because the data in the database is well-formed
XML, the provider can just return the DocumentElement for the XmlDocument.

The provider’s implementation of the Encrypt method is just stubbed out. For your own custom pro-
viders, you could implement the inverse of the logic shown in the Decrypt method that would scoop
the configuration section out of the config file and stored in the database.

C#
public override XmlNode Encrypt(XmlNode node)
{
 throw new NotImplementedException(“This method is not implemented.”);
}

VB.NET
 Public Overrides Function Encrypt(ByVal node As XmlNode) As XmlNode
 Throw New NotImplementedException(“This method is not implemented.”)
 End Function

What is really powerful about custom protected configuration providers is that you can go back to some
of the sample configuration code used earlier in the chapter and run it, with the one change being that
you use the “protected” configuration section for <membership />.

79301c05.indd 284 10/6/08 12:12:57 PM

285

Chapter 5: Configuration System Security

C#
MembershipSection ms =
 (MembershipSection)ConfigurationManager.GetSection(“system.web/membership”);

VB.NET
Dim ms As MembershipSection = _
 CType(config.GetSection(“system.web/membership”), _
 MembershipSection)

This code works unchanged after you swap in the new <membership /> section using the custom pro-
tected configuration provider. This is exactly what you would want from protected configuration. Noth-
ing in the application code needs to change despite the fact that now the configuration section is stored
remotely in a database as opposed to locally on the file system.

Clearly, the sample provider is pretty basic in terms of what it supports. However, with a modicum of
work you could extend this provider to support features like the following:

Machine-specific configuration❑❑

Environment-specific configuration, separating data by terms like TEST, DEV, PROD, and so on❑❑

Encrypting the actual data inside of the database so that database administrators can’t see what ❑❑

is stored in the tables

Nothing requires you to store configuration data in a traditional data store like a database or on the file
system. You could author a custom provider that uses a Web Service call or socket call to a configura-
tion system as opposed to looking up data in a database.

One caveat to keep in mind with custom protected configuration providers is that after the data is physi-
cally stored outside of a configuration file, ASP.NET is no longer able to automatically trigger an app-domain
restart whenever the configuration data changes. With the built-in RSA and DPAPI providers, this is not an
issue because the encrypted text is still stored in web.config and machine.config files. ASP.NET listens
for change notifications and triggers an app-domain restart in the event any of these files change.

However, ASP.NET does not have a facility to trigger changes based on protected configuration data
stored in other locations. For this reason, if you do write a custom provider along the lines of the sample
provider, you need to incorporate operational procedures that force app-domains to recycle whenever
you update configuration data stored in locations other than the standard file-based configuration files.

Summary
Configuration security in ASP.NET 2.0 included quite a number of improvements that ASP.NET 3.5
builds on top of them. While the original <location />-based locking approach is still supported (and
is definitely still useful), ASP.NET 3.5’s configuration system now gives you the ability to enforce more
granular control over individual sections. The lockAttributes attribute restricts the ability of child
configuration files to override selected attributes defined on the parent. The lockElements attribute
prevents entire configuration elements from being redefined in child configuration files. Both of these
attributes support an alternate syntax to make it easier to configure fine-grained security when many
attributes or many nested configuration elements need to be controlled.

79301c05.indd 285 10/6/08 12:12:57 PM

286

Chapter 5: Configuration System Security

In addition, IIS 7.0 ships with the Feature Delegation feature that allows administrators to decide
which configuration sections of the <system.webServer> configuration section group located in the
ApplicationHost.config configuration file can be edited by developers through the application’s
web.config file. It is the IIS 7.0 way of protecting configuration settings in the ApplicationHost​
.config file.

Because configuration data exists within physical files, NTFS permissions come into play when read-
ing or writing configuration data. Under normal conditions, configuration data only needs to be read;
although it has to be read up the entire inheritance chain from the most derived web.config file all the
way up to the root web.config and web.config files. Because ASP.NET reads runtime configuration
data using the process account or application impersonation identity, reading configuration usually suc-
ceeds assuming the file ACLs have been set up properly. Physically writing configuration data is some-
thing that should be reserved only for administrative-style applications or command-line tools due to
the need for Full Control on these files. ASP.NET also supports remote editing of configuration files,
although for security reasons this functionality is turned off by default.

Because ASP.NET supports running in partial trust, the configuration system makes use of the Frame-
work’s CAS support to limit what can be done in partial trust. Access to strongly typed configuration
sections is allowed only in High and Full trust. If you need to access the configuration classes directly
in Medium trust or lower, you will need to use the requirePermission attribute. For the built-in con-
figuration sections, you should avoid doing so because most ASP.NET features expose public APIs that
already give access to most of the configuration data you need.

Customers have long asked for the ability to secure configuration data so that prying eyes cannot see
sensitive information such as database connection strings. The protected configuration feature that was
introduced in .NET Framework 2.0 allows you to encrypt configuration sections using either DPAPI
or RSA. Because the protected configuration feature is based on the provider model, you also have the
option to write or purchase custom protected configuration providers. This gives you the freedom to
implement different encryption strategies or, as seen with the sample provider, different storage loca-
tions for your configuration data.

79301c05.indd 286 10/6/08 12:12:57 PM

6
Forms Authentication

Forms authentication is the most widely used authentication mechanism for Internet-facing
ASP.NET sites. The appeal of forms authentication is that sites with only a few pages and simple
authentication requirements can make use of forms authentication, and complex sites can still rely
on forms authentication for the basic handling of authenticating users. ASP.NET 3.5 continues to
use the same forms authentication that was improved in ASP.NET 2.0, with some enhancements
that allow the integration of forms authentication on IIS 7.0 so that not only ASP.NET resources
can be authenticated, but also other types of content. Moreover, the ASP.NET 3.5 runtime resem-
bles that of ASP.NET 2.0, with additional features.

This chapter covers the following topics on ASP.NET 3.5 forms authentication:

Reviewing how forms authentication works in the HTTP pipeline (most of this was cov-❑❑

ered in Chapter 3).

Making changes to the behavior of persistent forms authentication tickets.❑❑

Securing the forms authentication payload.❑❑

Securing forms authentication cookies with ❑❑ HttpOnly and requireSSL.

Using cookieless support in forms authentication.❑❑

Using forms authentication across ASP.NET 1.1 and ASP.NET 3.5.❑❑

Using forms authentication across different content types.❑❑

Leveraging the ❑❑ UserData property of FormsAuthenticationTicket.

Passing forms authentication tickets between applications.❑❑

Enforcing a single login and preventing replayed tickets after logout.❑❑

79301c06.indd 287 10/6/08 12:13:16 PM

288

Chapter 6: Forms Authentication

A Quick Recap of Forms Authentication
In Chapter 3, the sections on AuthenticateRequest, AuthorizeRequest and EndRequest described
how forms authentication works throughout the HTTP pipeline. In summary, forms authentication per-
forms the following tasks:

	 1.	 During AuthenticateRequest, the FormsAuthenticationModule checks the validity of the
forms authentication ticket (carried in a cookie or in a cookieless format on the URL) if one exists.
If a valid ticket is found, this results in a GenericPrincipal referencing a FormsIdentity as
the value for HttpContext.Current.User. The actual information in the ticket is available as
an instance of a FormsAuthenticationTicket off of the FormsIdentity.

	 2.	 During AuthorizeRequest, other modules and logic such as the UrlAuthorizationModule
attempt to authorize access to the currently requested URL. If an authenticated user was not
created earlier by the FormAuthenticationModule, any URL that requires some type of authen-
ticated user will fail authorization. However, even if forms authentication created a user, autho-
rization rules that require roles can still fail unless you have written custom logic to associate a
FormsIdentity with a set of roles or used a feature like Role Manager that performs this asso-
ciation automatically.

	 3.	 If authorization fails during AuthorizeRequest, the current request is short-circuited and
immediately forwarded to the EndRequest phase of the pipeline. The FormsAuthentication​
Module runs during EndRequest and if it detects that Response.StatusCode is set to 401, the
module automatically redirects the current request to the login page that is configured for
forms authentication (login.aspx by default).

This basic summary of forms authentication demonstrates that the forms authentication ticket is the
piece of persistent authentication information around which the forms authentication feature revolves.
The next few sections delve into more details about how the forms authentication ticket is protected,
persisted, and passed around applications. For all practical purposes, developers use the terms “forms
authentication ticket” and “forms authentication cookie” interchangeably.

Understanding Persistent Tickets
Since ASP.NET 1.0, the forms authentication feature has supported persistent and nonpersistent tickets.
In ASP.NET 1.0 and 1.1 the forms authentication ticket was always stored in a cookie (again excluding
the Mobile Internet Toolkit which most developers probably have not used). So, the decision between
using a persistent versus nonpersistent ticket is a choice between using persistent or session-based cook-
ies. The lifetime of a session-based cookie is the duration of the interactive browser session; when you
shut down the browser, any session-based cookies held in memory are gone. The forms authentication
feature included the option for persistent cookies to enable lower-security applications (message boards,
personal websites with minimal security requirements, and so on) to store a representation of the
authenticated user without constantly requiring users to log in again.

Clearly, for some sites where users infrequently access the application (and hence are always forget-
ting their credentials), persistent cookies are a great usability enhancement. The one “small” problem
is that on ASP.NET 1.0 and ASP.NET 1.1 sites, persistent cookies are given a 50-year lifetime. Now, I
am all for making certain types of websites easier to use (like everybody else I have an idiotic number

79301c06.indd 288 10/6/08 12:13:16 PM

289

Chapter 6: Forms Authentication

of username-password combinations to deal with), but I think 50 years is pushing it a bit! You can see
this for older ASP.NET sites that issue cookies if you take a look at the expiration date for their forms
authentication tickets. For example, the following code issues a persistent ticket:

C#
FormsAuthentication.RedirectFromLoginPage(“testuser”, true);

VB.NET
FormsAuthentication.RedirectFromLoginPage(“testuser”, True)

The resulting expiration date on the cookie when I was writing this was “4/5/2058 11:18:25 AM.” The net
result is that a digitally encrypted and digitally signed forms authentication ticket is left lying around a
user’s computer until by happenstance the cookie is deleted. On one hand, if you regularly delete cook-
ies, then 50-year lifetimes are probably not a big deal. On the other hand, as a website developer you
definitely can bet that some percentage of your user population is accruing cookies ad infinitum. From
a security perspective the 50-year lifetime is really, really bad. Although the default security for forms
authentication cookies encrypts and signs the cookies, it is likely that sometime in the next 50 years com-
puting power will have reached a point that the present-day forms authentication ticket can be cracked in
a reasonably short time. It’s unlikely that anybody will ever have their original computer from 50 years
ago (where would you put that old UNIVAC today?). But some website users will still be on the same
machine 5 to 7 years later, and if they regularly visit the same site, the forms authentication ticket
issued years earlier will still be lying around waiting to be hijacked and cracked.

As a result of this type of security concern with excessively long-lived forms authentication tickets, in
ASP.NET 3.5, as in ASP.NET 2.0, persistent cookies set their expiration based upon the value of the cookie
timeout set in configuration. Taking the same code shown earlier and running it on ASP.NET 3.5 with
the default cookie timeout of 30 minutes results in a persistent cookie that expires 30 minutes later (you
can see this if you view the files in your browser cache and look for the cookie file). This change may take
a number of developers by surprise, and their first inkling of the new behavior may be complaints from
website users suddenly being forced to login.

However, even though the ASP.NET 2.0 and ASP.NET 3.5 behavior changes the cookie expiration for new
cookies issued using forms authentication, the new behavior has no effect on preexisting cookies. If you
upgrade an ASP.NET 1.1 application to ASP.NET 3.5, any users with 50-year cookies floating around will
continue to retain these cookies. Even if you use sliding expiration for your forms authentication tickets,
because ASP.NET has not been around for 25 years, none of the preexisting persistent cookies will be
reissued due to time passing for sliding expirations (forms authentication attempts to reissue a cookie
when 50 percent or more of the configured cookie timeout has elapsed).

This raises the question of whether developers should take explicit steps to reissue their persistent
cookies with more reasonable timeouts. I believe that a little more security is better than 50-year cookie
lifetimes, and recommend that developers using persistent forms authentication cookies add some logic
to their applications after upgrade. First, developers should determine a reasonable persistent cookie
timeout. This may be a few weeks or months, although I wouldn’t recommend going beyond one year.
Even for sites that do not care too much about security, it does not seem unreasonable to ask people to
reauthenticate themselves once a year.

79301c06.indd 289 10/6/08 12:13:16 PM

290

Chapter 6: Forms Authentication

ASP.NET 2.0 and ASP.NET 3.5 have only one cookie timeout setting (the timeout attribute in the
<forms /> configuration element). If your site needs to issue a mixture of persistent and session-based
cookies, both types of cookies will use the timeout set in configuration; however, expiration enforcement
happens through different mechanisms. In these situations it makes sense to ask why a website (or per-
haps a set of websites) mixes the comparatively insecure persistent cookie option with session-based
forms authentication tickets. Cookie-based websites should use one type of cookie persistence for all
website users, and stick with a single persistence model.

After you have determined a new value for timeout, the next step is to add some code to your site that
automatically swaps out the old persistent cookie for a new one with an updated expiration. Post​
AuthenticateRequest is a convenient point to perform this work. The following code for global​
.asax shows how this can be accomplished.

C#
void Application_PostAuthenticateRequest(Object sender, EventArgs e)
{
 if (User.Identity is FormsIdentity)
 {
 if (((FormsIdentity)User.Identity).Ticket.Expiration >
 (DateTime.Now.Add(new TimeSpan(0,40320,0))))
 {
 FormsAuthentication.RedirectFromLoginPage(User.Identity.Name, true);
 }
 }
}

VB.NET
Private Sub Application_PostAuthenticateRequest(_
ByVal sender As Object, _
ByVal e As EventArgs)
 If TypeOf User.Identity Is FormsIdentity Then
 If (CType(User.Identity, FormsIdentity)).Ticket.Expiration > _
 (DateTime.Now.Add(New TimeSpan(0,40320,0))) Then
 FormsAuthentication.RedirectFromLoginPage(User.Identity.Name, True)
 End If
 End If
End Sub

The code first checks to see whether an authenticated FormsIdentity exists on the current context. If one
exists, the Identity that is available from the User property on the context is cast to a Forms​Identity
so that you can get access to the FormsAuthenticationTicket available off of the Ticket property.
The FormsAuthenticationTicket conveniently exposes its expiration with the Expiration property.
In the sample code, if the ticket expires more than 40320 minutes (roughly one month) from now, the
credentials are reissued as a persistent ticket.

Running this code on ASP.NET 3.5 results in a forms authentication cookie being reissued with the
updated behavior for computing cookie expiration based on the timeout attribute in configuration. One
thing to note is that the forms authentication API does not expose the value of the timeout attribute in
a convenient manner. Although you could technically use the strongly typed configuration classes in
ASP.NET 3.5 to get the correct value, you cannot really depend on that approach if you plan to run in
partial trust (more on issues with strongly typed configuration classes and partial trust in Chapter 5).

79301c06.indd 290 10/6/08 12:13:17 PM

291

Chapter 6: Forms Authentication

As a result, the somewhat simplistic workaround is to duplicate the expiration value either by hard-
coding it as in the sample code or, for better maintenance, by storing it as a value in a place like the
<appSettings /> section in configuration.

How Forms Authentication Enforces Expiration
The timeout attribute on the <forms /> configuration element controls the expiration of the forms
authentication ticket. However, in the case of session based cookies the Expires property of the cookie
created by forms authentication is never set. Furthermore, with the cookieless support in ASP.NET 2.0
and ASP.NET 3.5, there may not even be a cookie created for the forms authentication ticket.

Forms authentication computes the expiration time for a forms authentication ticket by adding the
value of the timeout attribute to DateTime.Now. This value is passed as one of the parameters to the
FormsAuthenticationTicket constructor. After a FormsAuthenticationTicket is created, it is con-
verted to a hex-string representation using some custom internal serialization logic. This means the expi-
ration date is packaged within the custom serialized representation of the ticket, regardless of whether
the ticket is subsequently issued as a cookie or is instead placed on the URL for the cookieless case.

Each time a forms authentication ticket arrives back at the web server, FormsAuthenticationModule
opens either the cookie or the cookieless value on the URL, and converts the enclosed hex-string to
an instance of FormsAuthenticationTicket. With a fully inflated ticket, the module checks the
Expiration property to determine whether the ticket is still valid. This means that when a ticket is
carried inside a cookie, FormsAuthenticationModule ignores any implied statement about expira-
tion. Technically, if a cookie is sent to the web server, the browser agent that sent the cookie must con-
sider the cookie still to be valid, meaning that the cookie has not expired yet.

However, from a security perspective, it is trivial for a malicious user to generate a cookie and send it to
the web server. As a result, forms authentication never depends on the expiration mechanism supported
by HTTP cookies. It always consults the expiration date contained within the serialized ticket when deter-
mining whether the ticket is valid. If a cookie arrives at the web server, but the expiration date contained
within the serialized ticket indicates that the ticket has expired, FormsAuthenticationModule recog-
nizes this and doesn’t create a FormsIdentity based on the ticket. Furthermore, it removes the expired
cookie from the Request.Cookies collection to prevent any downstream logic from making incorrect
decisions based on the presence of the expired ticket.

This approach also has the side benefit of forms authentication performing date comparisons based on
the web server’s time. Although clock-skew probably exists between the current time on the web server
and the current time on a client’s machine, as long as the cookie gets sent to the web server, the expira-
tion date comparison is made using the server’s time.

One question that arises from time to time is whether the expiration date of the ticket is maintained in
Universal Coordinate Time (UTC). Unfortunately, when forms authentication was first implemented, it
used the local date-time representation for the expiration date. Back in ASP.NET 2.0, the team consid-
ered changing this behavior through a configuration setting, but ultimately decided against it due to
the following problems:

Changing to a UTC-based expiration would break authentication in mixed ASP.NET 1.1 and ❑❑

ASP.NET 2.0 and ASP.NET 3.5 environments. The ASP.NET 1.1 servers would think the expira-
tion date was in local time, when in reality the time was offset by many hours from the local
time (assuming that your web server wasn’t sitting in the GMT time zone, of course!).

79301c06.indd 291 10/6/08 12:13:17 PM

292

Chapter 6: Forms Authentication

Although a configuration switch for ASP.NET 2.0 and ASP.NET 3.5 was a possibility, this ❑❑

would introduce a fair amount of confusion around when to turn it on or off. If the UTC time
handling was turned on, and then later an ASP.NET 1.1 application was introduced into your
web farm, ASP.NET 2.0 and ASP.NET 3.5 would have to be switched back to the original
behavior.

In two scenarios, local times potentially introduce problems for computing expiration times.

In the United States, twice during the year, clocks are reset forward or backward by one hour. ❑❑

When a forms authentication ticket that was issued before the clock reset is sent back to the web
server, the forms authentication feature incorrectly interprets the local time in that ticket. This
means that one of two things happens: an extra hour is added to the ticket’s expiration, or one
hour is subtracted from the ticket’s expiration. However, because this occurs at 1 AM local time
(for the United States time adjustments), there probably is not a lot of traffic on your website
that will encounter this oddity.

If a website user browses across servers located in different physical time zones, and if the serv-❑❑

ers in each time zone are not set to use the same time zone internally, servers will incorrectly
interpret the expiration date. For example, if a website load balances some of its users across
servers on the West Coast and the East Coast of the United States, there is a three-hour time
difference between the two coasts. If a forms authentication ticket is initially issued on the
West coast at 10 AM local time, when the ticket is sent to a server on the East Coast, that server
is going to compare the 10AM issuance against the fact that it is now 1 PM. This kind of discrep-
ancy can lead to a user being forced to log in again.

Because of these potential discrepancies, developers should be aware of the limitations of the local date
time value stored in the forms authentication ticket. In the case of the clocks being reset twice a year,
the current behavior is likely limited only to a few night owls.

However, if your websites use geographic load balancing, keep in mind the forms authentication
behavior. You could ensure that when a user has accessed a server in one geographic region, the user is
routed back to the same geographic region on all subsequent requests. Alternatively, you could have a
standard time zone that all servers use regardless of the time zone for the physical region that the serv-
ers are deployed in. On the other hand, if all of your geographically dispersed servers lie in the same
time zone (maybe you have servers in New York City and others in Miami), you will not run into the
forms authentication expiration issue.

Working with the DateTime Issue with Clock Resets
You do not need to read this section unless you are really, really curious about what happens when the
server clock is reset! After struggling with this problem during the ASP.NET 2.0 design cycle, I figured I
would share the code snippets and results.

The following code is for a simple console application that simulates the problem with date time com-
parisons when the clock resets.

C#
static void Main(string[] args)
{
 DateTime dtNow = DateTime.Now;

79301c06.indd 292 10/6/08 12:13:17 PM

293

Chapter 6: Forms Authentication

 Console.WriteLine(“Use a 30 minute timeout just like forms authentication.”);

 Console.WriteLine(“The date value for now is: “ +
 dtNow.ToShortTimeString());
 Console.WriteLine(“Has the time expired: “ +
 (dtNow.Add(new TimeSpan(0, 30, 0)) < DateTime.Now));

 string breakHere = “Manually reset the clock “;

 DateTime dtNow2 = DateTime.Now;
 Console.WriteLine(“The date value for now after the clock reset is: “ +
 dtNow2.ToShortTimeString());
 Console.WriteLine(“Has the time expired: “ +
 (dtNow.Add(new TimeSpan(0, 30, 0)) < DateTime.Now));

 Console.ReadLine();

}

VB.NET
Shared Sub Main(ByVal args() As String)
 Dim dtNow As DateTime = DateTime.Now
 Console.WriteLine(“Use a 30 minute timeout just like forms authentication.”)
 Console.WriteLine(“The date value for now is: “ & dtNow.ToShortTimeString())
 Console.WriteLine(“Has the time expired: “ & _
 (dtNow.Add(New TimeSpan(0, 30, 0)) < DateTime.Now))

 Dim breakHere As String = “Manually reset the clock “
 Dim dtNow2 As DateTime = DateTime.Now
 Console.WriteLine(“The date value for now after the clock reset is: “ & _
 dtNow2.ToShortTimeString())
 Console.WriteLine(“Has the time expired: “ & _
 (dtNow.Add(New TimeSpan(0, 30, 0)) < DateTime.Now))
 Console.ReadLine()
End Sub

Running this inside of the debugger with a breakpoint in the dummy string assignment in the middle
allows you to set the clock forward or backward prior to the next date comparison. The comparison
against DateTime.Now is the same as the comparison that FormsAuthenticationTicket makes when
you check the Expired property. Running the sample code and setting the clock back one hour during
the breakpoint results in the following output:

Use a 30 minute timeout just like forms authentication.
The date value for now is: 10:27 AM
Has the time expired: False
The date value for now after the clock reset is: 9:27 AM
Has the time expired: False

The net result is that after the clock was set back one hour (just as is done during the last Sunday of
October in most of the United States), an expiration time based on a 30-minute timeout will be valid
until 10:57 AM. However, with the clock reset back to 9:27 AM, the lifetime of a ticket with this expira-
tion is accidentally extended to 90 minutes.

79301c06.indd 293 10/6/08 12:13:17 PM

294

Chapter 6: Forms Authentication

Running the same code, but this time setting the clock forward one hour results in the following
output:

Use a 30 minute timeout just like forms authentication.
The date value for now is: 10:33 AM
Has the time expired: False
The date value for now after the clock reset is: 11:33 AM
Has the time expired: True

Now the original expiration of 11:03 AM (10:33 AM issuance plus a 30-minute lifetime) is considered
expired after the clock was set forward one hour (just as is done during the first Sunday in April). This
occurs because after the clock is reset, the original expiration time of 11:03 AM (which is considered
a local time) is compared against the newly updated local time of 11:33 AM and is considered to have
immediately expired.

The underlying technical reason for this similar behavior with forms authentication tickets is twofold:

The serialization of the forms authentication ticket’s ❑❑ DateTime expiration uses a local time
conversion (DateTime.ToFileTime and DateTime.FromFileTime). As a result, whenever a
forms authentication ticket is deserialized on a web server, the .NET Framework hands back a
DateTime instance that contains a local time value.

The ❑❑ Expired property on FormsAuthenticationTicket is always compared against Date​
Time.Now. For the ticket to be UTC capable, you really need the ticket to be compared against
DateTime.UtcNow.

There is not an easy workaround to this whole issue. Aside from physical deployment steps, you can
take to prevent part of the problem, the only ironclad way to ensure handling for all of these scenarios
is for you to take over much of the management and verification of the forms authentication ticket,
including the following:

Manually construct the ticket and store the UTC expiration date inside of the ❑❑ UserData prop-
erty of the FormsAuthenticationTicket.

Manually issue the ticket.❑❑

Hook a pipeline event prior to ❑❑ AuthenticateRequest (for example, BeginRequest), or hook
the Authenticate event on the FormsAuthenticationModule directly. Then manually crack
open and verify the ticket based on the UTC date previously stored in the UserData property
of the FormsAuthenticationTicket. If you detect a discrepancy between the UTC-based com-
parison and the value of FormsAuthenticationTicket.Expired, you could force a redirect to
reissue an updated cookie that contains an adjusted local time for the Expiration property.

Whether this effort is worth it depends on the specific kind of application you are trying to secure. I
suspect that for all but the most sensitive sites (for example, financial sites), the extra effort to deal with
time mismatches that occur twice a year will probably not warrant the investment in time and effort.

79301c06.indd 294 10/6/08 12:13:17 PM

295

Chapter 6: Forms Authentication

Securing the Ticket on the Wire
By default, the forms authentication ticket is digitally encrypted and signed using a keyed hash. This
security has been available since ASP.NET 1.0, and ASP.NET 3.5 uses the same security for the ticket.
However, there have been some new questions over hash security and support for new encryption
options in ASP.NET 2.0 and ASP.NET 3.5.

How Secure Are Signed Tickets?
Since ASP.NET 1.0, forms authentication tickets have been digitally signed using a keyed hash that
uses the SHA1 algorithm. When SHA1 was originally chosen years ago, it was considered a very
secure hashing algorithm with no likelihood of being cryptographically weakened. In 2005, there
were reports that SHA1 had been “broken”; in the cryptographic community, someone reported a
theoretical collision-based attack on SHA1 hashes.

In summary, some researchers proposed a way to reduce the chance of inducing a hash collision in
SHA1 to only 269 attempts. Normally, you would expect to take around 280 attempts to create a collision
in SHA1 (SHA1 hashes are 160 bits in length, so you can figure that on average you only need to flip
half as many possible bits to eventually find a piece of text that results in a matching SHA1 hash.)

So, this new attack against SHA1 theoretically reduces the number of attempts by a pretty hefty
1208335523804270469054464 iterations (after notepad, I think calc.exe is the most frequently entered
command from the Run option in Windows). Suffice it say that that the current estimate of 269 attempts
to find a SHA1 collision would still entail enormous computing resources. Depending on who you believe,
it takes a few million years with commodity hardware or a few years with specialized cracking com-
puters backed by the resources of the NSA. Regardless, it all boils down to the fact that “breaking”
SHA1 is still incredibly difficult and time-consuming and realistically isn’t feasible with 2005-class
hardware.

However, in the cryptography community, weaknesses with hashing or encryption algorithms are like
snowballs rolling down a steep hill. Weaknesses start out small, but as time passes and attacks are bet-
ter understood, the combination of increased mathematical focus on these algorithms combined with
ever-increasing computing power eventually leads to present-day algorithms being susceptible to viable
attacks.

Given the news about the SHA1 attack, there has been concern in the cryptography community
around the long-term viability of SHA1 as a hashing algorithm. Some companies will probably start
moving to SHA256 as a preemptive measure. There had been discussion on the ASP.NET team about
whether one of the stronger SHA variants should have been added to <machineKey /> (remember that
<machineKey /> defines the encryption and signing options for forms authentication, among other
things). However, the team decided to stick with SHA1 because, technically speaking, forms authentica-
tion really uses HMACSHA1 (frequently referred to as a “keyed hash”), not just plain SHA1. In the case
of <machineKey />, and thus forms authentication tickets, sticking with HMACSHA1 is a reasonable
choice for the current ASP.NET 2.0 and ASP.NET 3.5 products.

79301c06.indd 295 10/6/08 12:13:17 PM

296

Chapter 6: Forms Authentication

The transient nature of nonpersistent forms authentication tickets means that in future framework
releases, support for stronger SHA variants like SHA256 and SHA512 can be easily added. Such a
change would impact applications that persistently store forms authentication tickets. Any applica-
tion that truly needs security, though, should not be using persistent forms authentication tickets. The
most likely future impact for developers would be around edge cases dependent on the total length of
the characters in a forms authentication cookie. The stronger SHA variants contain more bits, and thus
require more hex characters when converted to a string representation. This is normally more of a con-
cern for cookieless tickets where ticket lengths are constrained. I cover issues with cookieless forms
authentication tickets, including effective length restrictions, later in this chapter.

Another reason for sticking with SHA1 as the hashing algorithm for forms authentication is that, as men-
tioned earlier, ASP.NET really uses HMACSHA1 (specifically the System.Security.Cryptography​
.HMACSHA1 class). This means that the value of the validationKey attribute in <machineKey /> is
used as part of the input to generate a SHA1 hash. As a result, for any attacker to force a hashing col-
lision, not only does an attacker have to force a collision with the SHA1 result, an attacker also has to
guess the key that was used with HMACSHA1. Just brute forcing SHA1 is not sufficient, because an
attacker needs to know the validationKey that was provided as input to the HMACSHA1 algorithm.

You can set the validationKey attribute of <machineKey /> to a maximum length of 128 characters,
which represents a 64-byte key value. The minimum allowable length for validationKey is 40 char-
acters, which represents a 20-byte value. That means if you take advantage of the maximum allowable
length, you have a 512 bit random value being used as the key, and an attacker has to somehow guess
this value to create a viable hashing collision. I admit that I am definitely not a crypto-guru, so I can’t
state how much stronger keying with HMACSHA1 is versus the plain SHA1 algorithm. However, with
the added requirement of dealing with an unknown 512-bit key, the number of iterations necessary to
force a collision with HMACSHA1 far exceeds either 269 or 280 iterations.

One final note: developers may use a little-known method in the forms authentication API: Forms​
Authentication.HashPasswordForStoringInConfigFile. In ASP.NET 1.1, this was a convenient
way to obtain a hex-string representation of a hashed password using MD5 or SHA1. Although origi-
nally intended for making it easier to securely populate the <credentials /> section contained within
<forms /> (since superseded by the more powerful and secure Membership feature in ASP.NET 2.0
and ASP.NET 3.5), customers have found this method handy as an easy-to-use interface to the hash algo-
rithms. The problem today, though, is that with MD5’s strength in question, and now SHA1 potentially
declining in strength, developers should really think about moving to SHA256 or SHA512 instead. How-
ever, the HashPasswordForStoringInConfigFile was not updated in ASP.NET 2.0 and ASP.NET 3.5 to
support any of the other hash algorithms in the framework.

Instead, you will need to write code to accomplish what this method used to do (and I strongly encour-
age moving to other hashing algorithms over time even though it will take a little more work). To make
the transition a bit easier, the following console sample below shows how to perform the equivalent
functionality but with the extra option of specifying the desired hashing algorithm.

C#
using System;
using System.Security.Cryptography;
using System.Collections.Generic;
using System.Text;

namespace HashPassword

79301c06.indd 296 10/6/08 12:13:17 PM

297

Chapter 6: Forms Authentication

{
 class Program
 {
 static void Main(string[] args)
 {
 if ((args.Length < 2) || (args.Length > 2))
 {
 Console.WriteLine(“Usage: hashpassword password hashalgorithm”);
 return;
 }

 string password = args[0];
 HashAlgorithm hashAlg = HashAlgorithm.Create(args[1]);

 //Make sure the hash algorithm actually exists
 if (hashAlg == null)
 {
 Console.WriteLine(“Invalid hash algorithm.”);
 return;
 }

 string result = HashThePassword(password, hashAlg);
 Console.WriteLine(“The hashed password is: “ + result);
 }

 private static string HashThePassword(string password,
 HashAlgorithm hashFunction)
 {
 if (password == null)
 throw new ArgumentNullException(“The password cannot be null.”);

 byte[] bpassword = Encoding.UTF8.GetBytes(password);
 byte[] hashedPassword = hashFunction.ComputeHash(bpassword);

 //Transform the byte array back into hex characters
 StringBuilder s = new StringBuilder(hashedPassword.Length * 2);
 foreach (byte b in hashedPassword)
 s.Append(b.ToString(“X2”));

 return s.ToString();
 }
 }
}

VB.NET
Imports Microsoft.VisualBasic
Imports System
Imports System.Collections.Generic
Imports System.Linq
Imports System.Text
Imports System.Web
Imports System.Security.Cryptography
Imports System.Security.Authentication

79301c06.indd 297 10/6/08 12:13:17 PM

298

Chapter 6: Forms Authentication

Namespace HashPassword
 Friend Class Program
 Shared Sub Main(ByVal args() As String)
 If (args.Length < 2) OrElse (args.Length > 2) Then
 Console.WriteLine(“Usage: hashpassword password hashalgorithm”)
 Return
 End If

 Dim password As String = args(0)
 Dim hashAlg As HashAlgorithm = HashAlgorithm.Create(args(1))

 ‘Make sure the hash algorithm actually exists
 If hashAlg Is Nothing Then
 Console.WriteLine(“Invalid hash algorithm.”)
 Return
 End If

 Dim result As String = HashThePassword(password, hashAlg)
 Console.WriteLine(“The hashed password is: “ & result)
 End Sub

 Private Shared Function HashThePassword(_
 ByVal password As String, _
 ByVal hashFunction As HashAlgorithm) As String
 If password Is Nothing Then
 Throw New ArgumentNullException(“The password cannot be null.”)
 End If

 Dim bpassword() As Byte = Encoding.UTF8.GetBytes(password)
 Dim hashedPassword() As Byte = hashFunction.ComputeHash(bpassword)

 ‘Transform the byte array back into hex characters
 Dim s As New StringBuilder(hashedPassword.Length * 2)
 For Each b As Byte In hashedPassword
 s.Append(b.ToString(“X2”))
 Next b
 Return s.ToString()
 End Function
 End Class
End Namespace

The main entry point performs a few validations, the important one being the confirmation of the hash
algorithm. You can indicate the hash algorithm using any of the string representations defined in the
documentation for the HashAlgorithm.Create method. As you would expect, you can use strings
such as SHA1, SHA256, and SHA512. After the hash algorithm has been validated and created using the
HashAlgorithm.Create method, the actual work is performed by the private HashThePassword
method.

The password is converted to a byte representation because the hash algorithms operate off of byte
arrays rather than strings. Calling ComputeHash on the hash object results in the new hashed value.
Because you are probably hashing these values with the intent of storing them somewhere and retriev-
ing the values later, the hashed value is converted back into a string where two hex characters are used
to represent each byte value.

79301c06.indd 298 10/6/08 12:13:17 PM

299

Chapter 6: Forms Authentication

I have included a few sample results from running this utility:

C:\inetpub\wwwroot\379301_code\379301 ch06_code\cs\HashPassword\bin\Debug>Has
hPassword pass!word MD5
The hashed password is: 0033A636A8B61F9EE199AE8FA8185F2C

C:\inetpub\wwwroot\379301_code\379301 ch06_code\cs\HashPassword\bin\Debug>Has
hPassword pass!word SHA1
The hashed password is: 24151F57F8F9C408380A00CC4427EADD4DDEBFC6

C:\inetpub\wwwroot\379301_code\379301 ch06_code\cs\HashPassword\bin\Debug>Has
hPassword pass!word SHA256
The hashed password is: DE98DD461F166808461A3CA721C41200A7982B7EB12F32C57C62572C
6F2E5509

C:\inetpub\wwwroot\379301_code\379301 ch06_code\cs\HashPassword\bin\Debug>Has
hPassword pass!word SHA512
The hashed password is: E84C057E3B6271ACC5EF6A8A81C55F2AB8506B7F464929417387BDC6
03E49BC0278DFAF063066A98EE074B15A956624B840DADBA65EDCF896521167C5DDE61CE

As you would expect, the strong SHA variants result in substantially longer hash values. The simplicity
of the sample code shows how easy it is to start using stronger hash algorithms in your code. Because the
utility generates hashed values, you can validate user-entered passwords later with similar code; just con-
vert a user-entered password into either the hex string representation or byte representation of the hash
value, and compare it against the hash value that was previously generated with the sample code. Also
note that the sample code uses unkeyed hash algorithms. As a result, you will get the same hash values for
a given piece of input text regardless of the machine you use the utility on. This is because unkeyed hash
algorithms apply the hash algorithm against the values you provide and do not inject any additional key
material, as is done with an algorithm like HMACSHA1.

Encryption Options in ASP.NET 2.0 and 3.5
In ASP.NET 1.0 and 1.1, you could encrypt the forms authentication ticket with either DES or 3DES.
Normally, most developers use 3DES because DES has already been cracked. 3DES, however, is con-
sidered to be an old encryption algorithm as of 2005. In 2001, the National Institute of Standards and
Technology (NIST) published the details for a new common encryption standard called the Advanced
Encryption Standard (AES). AES is the replacement for 3DES, and over time most application develop-
ers and companies will shift away from 3DES and start using AES.

ASP.NET 2.0 and ASP.NET 3.5 have support for AES so that developers can easily take advantage of the
new encryption standard. AES has the benefit of supporting much longer keys than 3DES does. 3DES
uses a 168-bit key (essentially three 56-bit keys), whereas AES supports key lengths of 128, 192, and 256
bits. To support the new encryption algorithm, ASP.NET 2.0 and ASP.NET 3.5 have a new configuration
attribute in the <machineKey /> section:

<machineKey … decryption=[Auto|DES|3DES|AES] />

By default, the decryption attribute of <machineKey /> is set to Auto. In this case, ASP.NET 2.0 and
ASP.NET 3.5 will look at the value in the decryptionKey attribute of <machineKey /> to determine
the appropriate encryption algorithm. If a 16-character value is used for decryptionKey, ASP.NET 2.0

79301c06.indd 299 10/6/08 12:13:17 PM

300

Chapter 6: Forms Authentication

and ASP.NET 3.5 choose DES as the encryption algorithm (16 hex characters equate to an 8-byte value,
which is the number of bytes needed for a DES key). If a longer string of characters is set in decryption​
Key, ASP.NET 2.0 and ASP.NET 3.5 choose AES.

In the .NET Framework, if you look for a class called “AES” or “Advanced Encryption Standard” you
will not find one. Instead, there is a class in the System.Security.Cryptography namespace called
RijndaelManaged. Because the AES encryption standard uses the Rijndael encryption algorithm,
ASP.NET used the RijndealManaged class when you choose AES.

If an application’s decryptionKey attribute is at the default setting of Autogenerate, IsolateApps,
ASP.NET will automatically use the randomly generated 24-byte (192-bit) value that was created for the
current process or application identity. This also results in ASP.NET automatically selecting AES as the
encryption option.

You can see from this the symmetry in byte sizes for keys between 3DES and AES. In 3DES, the three
56-bit keys need to be packaged into three 64-bit values (8 bits in each value are unused as key mate-
rial by 3DES), which works out to a 192-bit value. The same auto-generated key can be used with AES
because AES supports 192-bit key lengths as well.

If you choose to explicitly specify a value for decryptionKey (and I would highly recommend this
because explicit keys are consistent values that you can depend on), you should ensure that the text
value you enter in the <machineKey /> section is one of those shown in the following table.

Desired AES Key
Length in Bits

Number of Hex Characters
Required for decryptionKey

128 32

192 48

256 64

If you are working on anything other than a hobby or personal website, always do the following with
<machineKey />:

	 1.	 Explicitly set the decryptionKey and validationKey attributes. Avoid using the auto-
generated options.

	 2.	 Explicitly set the new decryption attribute to the desired encryption algorithm. Choose either
3DES for backward compatibility (more on this later) or AES.

	 3.	 Explicitly set the validation attribute. Choose SHA1, 3DES, or AES (remember that this setting
is overloaded for viewstate encryption handling, hence the oddity of 3DES or AES specified for
a validation algorithm). MD5 is not recommended because it isn’t as strong as SHA1. And of
course, just to add to the confusion, choosing SHA1 here really means that forms authentication
uses the keyed version: HMACSHA1.

Depending on the auto-generated keys is fraught with peril. For a personal site or a hobbyist site that
lives on a single machine, the auto-generated keys are convenient and easy to use. However, any web-
site that needs to run on more than two machines has to use explicit keys because auto-generated keys,
by definition, vary from machine to machine.

79301c06.indd 300 10/6/08 12:13:18 PM

301

Chapter 6: Forms Authentication

There is another subtle reason why you should avoid auto-generated keys. Each time you run aspnet_​
regiis with the ga option for different user accounts, the next time ASP.NET starts up in a worker pro-
cess that uses these new credentials, a new set of auto-generated keys is generated! This means if you
persistently store any encrypted information (maybe persisted forms authentication tickets, for example)
that depends on stable values for the key material, you are only one command-line invocation of aspnet_​
regiis away from accidentally changing the key material. Also, when you upgrade an ASP.NET 1.1 site
to ASP.NET 3.5, the auto-generated keys have all been regenerated with new values. I cover the implica-
tions of this in the section about upgrade implications from ASP.NET 1.1 to 3.5.

Generating Keys Programmatically
Encouraging developers to use explicit keys is not very useful if there is not a way to generate the neces-
sary keys in the first place. Following is a simple console application that outputs the hex representation of
a cryptographically strong random key given the number of desired hex characters. If you create similar
code on your machine, make sure that the project includes System.Security in the project references.

C#
using System;
using System.Security.Cryptography;
using System.Collections.Generic;
using System.Text;

namespace GenKeys
{
 class Program
 {
 static void Main(string[] args)
 {
 if ((args.Length == 0) || (args.Length > 1))
 {
 Console.WriteLine(“Usage: genkeys numcharacters”);
 return;
 }

 int numHexCharacters;
 if (!Int32.TryParse(args[0], out numHexCharacters))
 {
 Console.WriteLine(“Usage: genkeys numcharacters”);
 return;
 }

 if ((numHexCharacters % 2) != 0)
 {
 Console.WriteLine(“The number of characters must be a multiple of 2.”);
 return;
 }
 //Two hex characters are needed to represent one byte
 byte[] keyValue = new byte[numHexCharacters / 2];

 //Use the crypto support in the framework to generate the random value
 RNGCryptoServiceProvider r = new RNGCryptoServiceProvider();
 r.GetNonZeroBytes(keyValue);

79301c06.indd 301 10/6/08 12:13:18 PM

302

Chapter 6: Forms Authentication

 //Transform the random byte values back into hex characters
 StringBuilder s = new StringBuilder(numHexCharacters);
 foreach (byte b in keyValue)
 s.Append(b.ToString(“X2”));
 Console.WriteLine(“Key value: “ + s.ToString());
 }
 }
}

VB.NET
Imports Microsoft.VisualBasic
Imports System
Imports System.Collections.Generic
Imports System.Linq
Imports System.Text
Imports System.Web
Imports System.Security.Authentication
Imports System.Security.Cryptography

Namespace GenKeys
 Friend Class Program
 Shared Sub Main(ByVal args() As String)
 If (args.Length = 0) OrElse (args.Length > 1) Then
 Console.WriteLine(“Usage: genkeys numcharacters”)
 Return
 End If

 Dim numHexCharacters As Integer
 If (Not Int32.TryParse(args(0), numHexCharacters)) Then
 Console.WriteLine(“Usage: genkeys numcharacters”)
 Return
 End If

 If (numHexCharacters Mod 2) <> 0 Then
 Console.WriteLine(“The number of characters must be a multiple of 2.”)
 Return
 End If
 ‘Two hex characters are needed to represent one byte
 Dim keyValue(numHexCharacters \ 2 - 1) As Byte

 ‘Use the crypto support in the framework to generate the random value
 Dim r As New RNGCryptoServiceProvider()
 r.GetNonZeroBytes(keyValue)

 ‘Transform the random byte values back into hex characters
 Dim s As New StringBuilder(numHexCharacters)
 For Each b As Byte In keyValue
 s.Append(b.ToString(“X2”))
 Next b
 Console.WriteLine(“Key value: “ & s.ToString())
 End Sub
 End Class
End Namespace

79301c06.indd 302 10/6/08 12:13:18 PM

303

Chapter 6: Forms Authentication

After some basic validations, the program determines the number of bytes needed based on the
requested number of hexadecimal characters: because it takes two hex characters to represent a single
byte value, you simply divide the command line parameter by two. To create the actual random value,
call the RNGCryptoServiceProvider class in the System.Security.Cryptography namespace. In
this example, I requested that the result not include any byte values of zero.

Converting the byte array back into a hex string is also pretty trivial. The code simply iterates through
the byte array of random values, converting each byte into its string equivalent. The “X2” string format
indicates that each byte value should be converted to hexadecimal format, and that an extra “0” charac-
ter should be included where necessary to ensure that each byte is represented by exactly two charac-
ters. If you do not do this, byte values from zero to fifteen require only a single hex character.

The following example of using the tool is generating a 64-character (256-bit) value suitable for use with
the AES encryption option.

C:\inetpub\wwwroot\379301_code\379301 ch06_code\cs\\GenKeys\bin\Debug>genkeys
64
Key value: C5D08A900770821F2AC4CFA3727B28F68C8A8A1BC7A857BE6E588210051C0968

Setting Cookie-Specific Security Options
Most developers probably use forms authentication in cookie mode. In fact, unless you happened to use
the Microsoft Mobile Internet Toolkit (MMIT) in ASP.NET 1.1, ASP.NET could not automatically issue
and manage tickets in a cookieless format.

In ASP.NET 1.1 the requireSSL attribute on the <forms /> element enabled developers to require
SSL when handling forms authentication tickets carried in a cookie. The slidingExpiration attribute
on <forms /> allowed you to enforce whether forms authentication tickets would be automatically
renewed as long as a website user stayed active on the site. In addition to these options, ASP.NET 2.0
and ASP.NET 3.5 include a security feature for the forms authentication ticket by always setting the
HttpOnly property on the cookie to true.

requireSSL
The HttpCookie class has a property called Secure. When this property is set to true, it includes the
string secure in the Set-Cookie command that is sent back to the browser. Browsers that recognize
and honor this cookie setting send the cookie back to the web server only if the connection is secured
with SSL. For any high-security site, the requireSSL attrbitue should always be set to true to maxi-
mize the likelihood that the cookie is only communicated over a secure connection.

However, depending on client-side behavior is always problematic. The browser may not support
secure cookies (unlikely but still possible with older browsers). Additionally, not every user on a web-
site is a person sitting in a chair using a browser. You may have users that are really programs making
HTTP calls to your site, in which case it is highly likely that such programs do not bother looking at or
honoring any of the extended cookie settings like the secure attribute. In these cases, it becomes pos-
sible for the forms authentication cookie to be sent back to the web server over an insecure connection.

79301c06.indd 303 10/6/08 12:13:18 PM

304

Chapter 6: Forms Authentication

The forms authentication feature protects against this by explicitly checking the state of the connection
before it starts processing a forms authentication cookie. If the FormsAuthenticationModule receives
a valid cookie (meaning, the cookie decrypts successfully, the signature is valid, and the cookie has not
expired yet), the module ignores it and clears the cookie from the Request collection if the requireSSL
attribute in the <forms /> configuration section was set to true and ASP.NET detects that the connection
is not secure. From a user perspective, the cookie will not be used to create a FormsIdentity, and as a
result no authenticated identity is set on the context’s User property. As a result, the user will be redi-
rected to the login page. Programmatically, the check is easy to do and looks similar to the following:

C#
if (FormsAuthentication.RequireSSL && (!Request.IsSecureConnection))

VB.NET
If FormsAuthentication.RequireSSL AndAlso ((Not Request.IsSecureConnection)) Then

Both the requireSSL setting and the secured state of the current HTTP connection are available from
public APIs.

As a quick example, you can configure an application to use forms authentication but not require an
SSL connection, as shown here:

<authentication mode=”Forms”>
 <forms requireSSL=”false” />
</authentication>

Run the application and login so that a valid forms authentication ticket is issued. Then change the con-
figuration for <forms /> to require SSL:

<forms requireSSL=”true” />

Now when you refresh the page in your browser, you are redirected to the login page. If you attempt to
log in again, the FormsAuthentication class will throw an HttpException when the code attempts
to issue a ticket. For example, with code like the following:

C#
FormsAuthentication.RedirectFromLoginPage(“testuser”, false);

VB.NET
FormsAuthentication.RedirectFromLoginPage(“testuser”, False)

You encounter the HttpException if you attempt this when the connection is insecure. Although you
would probably think this is unlikely to occur (if you set requireSSL to true in configuration, you
probably have SSL on your site), it is possible to run into this behavior when testing or developing an

79301c06.indd 304 10/6/08 12:13:18 PM

305

Chapter 6: Forms Authentication

application in an environment that does not have SSL. Because returning unhandled exceptions to the
browser is a bad thing, you should defensively code for this scenario with something like the following:

C#
protected void Button1_Click(object sender, EventArgs e)
{
 if (FormsAuthentication.RequireSSL && (!Request.IsSecureConnection))
 {
 lblErrorText.Text = “You can only login over an SSL connection.”;
 txtPassword.Text = String.Empty;
 txtUsername.Text = String.Empty;
 return;
 }
 else
 {
 //Authenticate the credentials here and then …
 FormsAuthentication.RedirectFromLoginPage(txtUsername.Text, false);
 }
}

VB.NET
 Protected Sub Button1_Click(_
 ByVal sender As Object, _
 ByVal e As EventArgs) Handles Button1.Click
 If FormsAuthentication.RequireSSL AndAlso _
 ((Not Request.IsSecureConnection)) Then
 lblErrorText.Text = “You can only login over an SSL connection.”
 txtPassword.Text = String.Empty
 txtUsername.Text = String.Empty
 Return
 Else
 ‘Authenticate the credentials here
 FormsAuthentication.RedirectFromLoginPage(txtUsername.Text, False)
 End If

The check for the security setting and the current connection security duplicate the similar check that
is made internally in a number of places in forms authentication. However, by explicitly checking for
this, you avoid the problem of the forms authentication feature throwing any unexpected exceptions.
It also gives you the chance to tell the browsers users to use an HTTPS connection to log in. This type
of check should be used when calling any forms authentication APIs that may issue cookies such as
RedirectFromLoginPage, and SetAuthCookie.

The requireSSL attribute applies mainly to forms authentication tickets issued in cookies. If an
application uses cookieless tickets, or if it has the potential to issue a mixture of cookie-based and cookie
less tickets, it is possible to send cookieless tickets over a non-SSL connection. Although ASP.NET
still disallows you from issuing cookieless tickets over insecure connections, ASP.NET accepts and
processes cookieless tickets received over non-SSL connections. Keep this behavior in mind if you set
requireSSL to true and still support cookieless tickets.

79301c06.indd 305 10/6/08 12:13:18 PM

306

Chapter 6: Forms Authentication

HttpOnly Cookies
HttpOnly cookies are a Microsoft-specific security extension for reducing the likelihood of obtaining
cookies through client script. In ASP.NET, the System.Web.HttpCookie class adds the HttpOnly prop-
erty. If you create a cookie and set this property to true, ASP.NET includes the HttpOnly string in the
Set-Cookie header returned to the browser. This is a Microsoft-specific extension to the cookie header. I
am only aware of it being supported on IE6 SP1 or higher, although there are discussions on the Inter-
net about building in support for it on other browsers, and most recently Firefox 2.0.0.5 has added the
HttpOnly checking. Most other browsers just ignore the HttpOnly option in the cookie header, so set-
ting HttpOnly for a cookie is usually innocuous. In some cases, however, browsers will drop a cookie
with the HttpOnly option (for example, Internet Explorer 5). ASP.NET’s cookie writing logic will not
emit the HttpOnly option for these cases.

Technically, the way HttpOnly cookies work is that if a piece of client-side script attempts to retrieve the
cookie, Internet Explorer honors the HttpOnly setting and will not return a cookie object. ASP.NET 3.5
enforces HttpOnly cookies all the time for forms authentication, as was the case in ASP.NET 2.0. This
means that all forms authentication tickets contained in cookies issued by the FormsAuthentication
API (for example, RedirectFromLoginPage and SetAuthCookie) will always have the HttpOnly set-
ting appended to them.

There was a fair amount of discussion about this internally because the change has the potential to be a
pain for some customers. However, given the fact that many developers are not aware of the HttpOnly
option (its original introduction was buried somewhere in IE6 SP1) having a configuration option to
change this behavior did not seem like a great idea. If few people know about a certain capability, adding
a configuration option to turn the capability on doesn’t really do anything to get the word out about it.

Of course, ASP.NET 2.0 and ASP.NET 3.5 could still have added support for HttpOnly cookies by
defaulting to turning the behavior on and then exposing a configuration setting to turn it back off again.
The counterpoint to this option is that doing so gives developers a really easy way to open themselves
up to cross-site scripting attacks that harvest and hijack client-side cookies. The reality is that if devel-
opers need a way to grab the forms authentication cookie client-side, the forms authentication APIs can
still be pretty easily used to manually create the necessary cookie, but without the HttpOnly option
turned on.

Lest folks think that the pain around the decision to enforce HttpOnly for forms authentication tickets
is limited to the developer community at large, the ASP.NET team has actually pushed back a number
of times when internal groups asked for HttpOnly to be turned off. Repeatedly, the ASP.NET team has
seen that architectures that depend on retrieving the forms authentication ticket client-side are flawed
from a security perspective. If you really need the forms authentication ticket to be available from a cli-
ent application, using the browser’s cookie cache as a surrogate storage mechanism is a bad idea. In fact,
scenarios that require passing a forms authentication ticket around on the client-side frequently also
depend on the need for persistent tickets (if the ticket were session-based, there would be no guarantee
that the cookie would still be around for some other client application). So, now you start going down
the road of persistent cookies that are retrievable with a few lines of basic JavaScript, which is not a big
deal for low-security sites, but definitely something to avoid in any site that cares about security.

79301c06.indd 306 10/6/08 12:13:18 PM

307

Chapter 6: Forms Authentication

To see how the behavior affects forms authentication in ASP.NET 3.5, you can write client-side
JavaScript like the sample shown here.

<html>
 <head><title>You were logged in!</title></head>
<body>
<script language=javascript>
function ShowAllCookies()
{
 var c = document.cookie;
 alert(c);
}
</script>

 <form id=”form1” >
 <input type=button onclick=”ShowAllCookies();” value=”Click to see cookies.” />
 </form>
</body>
</html>

If you run this code on an ASP.NET 1.1 site that requires forms authentication, you get a dialog box that
conveniently displays your credentials such as the one shown in Figure 6-1:

Figure 6-1

If you run, same client-side script in an ASP.NET 3.5 application after logging in, you will not get any-
thing back. Figure 6-2 shows the results on ASP.NET 3.5, which resembles that of ASP.NET 2.0.

Figure 6-2

As mentioned earlier, if you really need client-side access to the forms authentication cookie, you need
to manually issue the cookie and to manage reissuance of the authentication cookie in case you want to
support sliding expirations. (With sliding expirations, FormsAuthenticationModule may reissue the
cookie on your behalf.)

79301c06.indd 307 10/6/08 12:13:18 PM

308

Chapter 6: Forms Authentication

Although HttpOnly cookies make it much harder to obtain cookies through a client-side attack, it is
still possible to trick a web server into sending back a page (including cookies) in a way that bypasses
the protections within Internet Explorer. There are a number of discussions on the Internet about using
the TRACE/TRACK command to carry out what is called a cross-site tracing attack. In essence, these com-
mands tell a web server to send a dump of a web request back to the browser, and with sufficient client-
side code, you can parse this information and extract the forms authentication cookie. Luckily, this
loophole can be closed by explicitly disabling the TRACE/TRACK command on your web servers and/or
firewalls.

slidingExpiration
You may not think of the sliding expiration feature as much of a security feature, but this setting does
have a large effect on the length of time that a forms authentication cookie is considered valid. By default,
in ASP.NET 2.0 and ASP.NET 3.5 sliding expiration is enabled (the slidingExpiration attribute is set
to true in <forms />). As long a website user sends a valid forms authentication cookie back to the web
server before the ticket expires (30-minute expiration by default), the FormsAuthenticationModule
periodically refreshes the expiration date of the cookie. The FormsAuthentication.RenewTicket​
IfOld method is used to create an updated ticket if more than 50 percent of the ticket’s lifetime has
elapsed.

The security issue is that with sliding expirations a website user could potentially remain logged on to a
site forever. Even with the 30 minute default, as long as something or someone sends a valid ticket back
to the server every 29 minutes and 59 seconds, the ticket will continue to be valid. On private comput-
ers or computers that are not in public areas, this really is not an issue. However, for computers in public
areas like kiosks or public libraries, if a user logs into a site and does not logout, the potential exists for
anyone to come along and reuse the original login session.

You can’t control the behavior of your customers. (Even with a logout button on a website, only a small
percentage of users actually use it.) You do, however, have the option to disable sliding expirations.
When slidingExpiration is set to false, regardless of how active a user is on the website, when the
expiration interval passes, the forms authentication ticket is considered invalid and the website user is
forced to log in again. Of course, this leads to the problem of determining an appropriate value for the
timeout attribute. Setting this to an excessively low interval annoys users, whereas setting it to a long
interval leaves a larger window of opportunity for someone’s forms authentication ticket to be reused.

Using Cookieless Forms Authentication
ASP.NET 2.0 and ASP.NET 3.5 automatically support issuing and managing forms authentication tick-
ets in a cookieless manner. The process starts by ASP.NET inspecting the request URL, looking for any
cookieless tickets. In ASP.NET 2.0 and 3.5, cookieless tickets are supported for session state (this was
also available in 1.1), forms authentication (previously available as part of the mobile support in ASP.
NET), and anonymous identification (introduced since ASP.NET 2.0). A sample URL with a cookieless
session state ticket is shown here:

http://localhost/inproc/(S(tuucni55xfzj2xqx1mnqdg55))/Default.aspx

79301c06.indd 308 10/6/08 12:13:18 PM

309

Chapter 6: Forms Authentication

ASP.NET reserves the path segment immediately after the application’s virtual root as the location on
the URL where cookieless tickets are stored. In this example, the application was called inproc, so the
next path segment is where ASP.NET stored the cookieless tickets. All cookieless tickets are stored within
an outer pair of parentheses. Within these, there can be a number of cookieless tickets, each starting with
a single letter indicating the feature that consumes the ticket, followed by a pair of parentheses that
contain the cookieless ticket. Currently, the following three identifiers are used:

S:❑❑ Cookieless ticket for session state

A: ❑❑ Cookieless ticket for anonymous identification

F:❑❑ Cookieless ticket for forms authentication

At some stage during the request life cycle, ASP.NET removes the cookieless tickets from the URL and
inserts a new custom HTTP header to the current HTTP request called ASPFILTERSESSIONID that con-
tains all the cookieless tickets that were already found in the current HTTP request. ASP.NET 2.0 and
ASP.NET 3.5 base themselves on the above mechanism to support cookieless representations of forms
authentication tickets, as well as anonymous identifiers (this second piece of information is only used
with the Profile feature). You can enable cookieless forms authentication simply by setting the new
cookieless attribute to in the <forms /> configuration section:

– AG<forms … cookieless=”UseUri” />

The following table lists the options for the cookieless attribute.

Cookieless Attribute Value Descrption

UseUri Always issues the forms authentication ticket so that it shows up as
part of the URL. Cookies are never issued.

UseCookies Always issues the forms authentication ticket in a cookie.

AutoDetect Detects whether the browser supports cookies through various heu-
ristics. If the browser does not appear to support cookies, issues the
ticket on the URL instead.

UseDeviceProfile Finds a device profile for the current browser agent, and based
upon the information in the profile, uses cookies if the profile indi-
cates they are supported. This is the default setting in ASP.NET 2.0
and ASP.NET 3.5. Information for the device profiles is stored in
the Browsers subdirectory of the framework’s CONFIG directory.
ASP.NET ships with a set of browser information, including cookie
support, for widely used browsers. You can edit the files in this
directory, or add additional setting files, and then make the changes
take effect with the aspnet_regbrowsers.exe tool.

The default setting for the cookieless attribute is UseDeviceProfile. This means that your site will
issue a mixture of cookie-based and URL-based forms authentication tickets, depending on the type of
browser agent accessing your website. If you do not want to deal with some of the edge cases that occur
when using cookieless tickets, you should set the cookieless attribute to UseCookies.

79301c06.indd 309 10/6/08 12:13:18 PM

310

Chapter 6: Forms Authentication

The nice thing about cookieless support in ASP.NET 2.0 and ASP.NET 3.5 is that other than changing
a single configuration attribute, forms authentication continues to work. As a very basic example, issu-
ing a cookieless forms authentication ticket on a login page with the familiar FormsAuthentication​
.RedirectFromLoginPage method results in a URL that looks something like the following (the URL
is wrapped because the cookieless representation bloats the URL size):

http://localhost/cookieless/(F(DJflxUBV0oD-JNW_FmuLwsvIEzBTYRk19QYcPG7gT9-
5lkplFeRFwI-KxSdBIjDpzvSYGi5VQ8GY1PA2h9m6l4LwPa60gQ91nYGly9Bo79c1))/Default.aspx

The bold portion of the URL is, of course, the forms authentication ticket. As mentioned above, ASP.NET
takes care of removing the cookieless tickets from the URL and stores them into a custom HTTP header
so that the ASP.NET engine can later on make use of the these tickets. Internally, cookieless features such
as forms authentication rely on internal helper classes to move data from the custom HTTP header into
feature specific classes, such as FormsAuthenticationTicket. If you dump the HTTP headers for the
page in the previous URL, you will see the end result of the work performed by the ASP.NET runtime:

HTTP_ASPFILTERSESSIONID=F(DJflxUBV0oD-JNW_FmuLwsvIEzBTYRk19QYcPG7gT9-5lkplFeRFwI-Kx
SdBIjDpzvSYGi5VQ8GY1PA2h9m6l4LwPa60gQ91nYGly9Bo79c1)

Unfortunately, in ASP.NET 2.0 and ASP.NET 3.5, the general-purpose class used internally for parsing the
cookieless headers is not available as a public API. So, unlike the HttpCookie class, which gives develop-
ers the flexibility to create their own custom cookie-based mechanisms, cookieless data in ASP.NET 2.0
and ASP.NET 3.5 is supported only for the few features like forms authentication that have baked the
support into their APIs.

Cookieless Options
You have seen the various cookie options that you can set on the cookieless attributes. Of the four
options, UseCookies and UseUri are self-explanatory. However, I want to drill in a bit more on the
other two options: AutoDetect and UseDeviceProfile.

AutoDetect
The AutoDetect option comes into play when forms authentication needs to determine whether a
forms authentication ticket should be placed on the URL. ASP.NET 2.0 and ASP.NET 3.5 will go through
several checks to see whether the browser supports cookies. Although going through this evaluation
means that the initial ticket issuance takes a little longer, it does mean that for each and every new user
on your website, you have a very high likelihood of being able to issue the forms authentication ticket in
a way that can be received by the user’s browser. If new browsers are introduced, and the device profile
information is not available yet on your server (an extremely common case in the mobile world where
there seems to be a new device/browser/etc. every day), the AutoDetect option is very handy.

When a browser first accesses a site, it is requesting one of three possible types of pages:

Pages that allow anonymous users and, thus, do not require authentication.❑❑

The forms authentication login page for the site.❑❑

A secured page that requires some type of authenticated user. In this case, authorization will ❑❑

eventually fail and force a redirect back to the login page.

79301c06.indd 310 10/6/08 12:13:19 PM

311

Chapter 6: Forms Authentication

Phase 1 of Auto-Detection
In the first case, forms authentication lies dormant and the auto-detect setting has no effect. After
a browser accesses the types of pages indicated by the second and third bullet points, the Forms​
AuthenticationModule starts the process to detect whether or not the browser supports cookies.
Depending on whether the browser is accessing the login page or a secured page, the internal path
leading to auto-detection is a bit different. However, from a functionality perspective, the browser
experiences the same behavior.

The detection process goes through the following steps in sequence:

	 1.	 A check is made using the browser capabilities object available from Request.Browser. The
information returned by this object is based on an extensive set of browser profiles stored on
disk in the Browsers directory. If the browser capabilities definitively indicate that cookies are
not supported, there is no additional detection needed. Short-circuiting the auto-detection pro-
cess at this point saves time and unnecessary redirects. For classes of devices that simply do not
support cookies, there isn’t any point in probing further in an attempt to send cookies.

	 2.	 If the browser capabilities for the current request indicate that cookies are supported, then a
check is made to see if auto-detection occurred previously. If a previous browse path through
the site already occurred, and if the results of that browsing indicated that cookies weren’t
supported, the URL will already contain extra information indicating that this check occurred.
Normally though, a user browses to the login page or a secured page for the first time, and thus
auto-detection will not already have occurred.

	 3.	 A check is made to see if cookies have been sent with the request. For example, your site
may have already issued some other kind of cookies previously when the user was browsing
around. In this case, the mere presence of cookies sent back to the server is an indication that
cookies are supported.

	 4.	 If all of the previous checks fail, ASP.NET adds some information to the current response. It
adds a cookie to Response.Cookies called “AspxAutoDetectCookieSupport.” It also appends a
query-string name-value pair to the current request path; the query-string variable is also called
“AspxAutoDetectCookieSupport.” Because it is the only way to get this query-string variable
onto the path in a way that the browser can replay it, a redirect to the currently requested page
is then issued.

The net result of this initial detection process is that for the nominal case of a browser first accessing
the login page, or a secured page, a redirect to the login page always occurs. In the case that the user
was attempting to directly access a secured page, the extra query-string and cookie information is just
piggybacked onto the redirect that normally occurs anyway. On the other hand, if the user navigated to
the login page directly, then ASP.NET forces a redirect back to the login page in order to set the query-
string variable. In the browser’s address bar, the result looks something like the following:

http://bhaidar-pc/cookieless/login.aspx?AspxAutoDetectCookieSupport=1

At this point if the browser supports cookies, there is also a session cookie held in the browser’s cookie
cache called “AspxAutoDetectCookieSupport.” So, there is potentially both a query-string variable and
a cookie value client-side in the browser waiting to be sent back to the web server. Of course, on brows-
ers that don’t support cookies, only they query-string variable will exist.

79301c06.indd 311 10/6/08 12:13:19 PM

312

Chapter 6: Forms Authentication

Phase 2 of Auto-Detection
After the user types in credentials and submits that login page back to the server, the auto-detect steps
listed earlier are evaluated again because the FormsAuthenticationModule always triggers these
steps for the login page. However, because the auto-detection process already started, one of two deci-
sions is made:

If the browsers supports cookies, the auto-detect cookie will exist and the forms authentication ❑❑

feature will determine that cookies are supported.

If the auto-detect cookie was not sent back by the browser, a check is made for the auto-detect ❑❑

query-string variable. Because this query-string variable now exists, ASP.NET will add a cook-
ieless value to the URL that indicates the browser does not support cookies. A value of “X(1)” is
inserted into the URL and will exist in all subsequent requests that the browser makes to the site
for the duration of the browser session.

Phase 3 of Auto Detection
The code in the login page needs to process the credentials that were posted back to it at this point. If
the credentials are invalid, then the browser remains on the login page, and Phase 2 will repeat itself
when the user attempts another login. If the credentials are valid, though, then usually either Forms​
Authentication.RedirectFromLoginPage or FormsAuthentication.SetAuthCookie is called to
create the forms authentication ticket and package it up to send back to the client.

In the case that the browser supports cookies, the ticket is simply packaged into a cookie and added to
the Response.Cookies collection. However, if the auto-detect process determined that cookies are not
supported then both of these methods will package the hex string representation of the forms authentica-
tion ticket into the URL. The general form of the cookieless ticket in the URL is F(ticket value here).

The sample address bar below shows the results of a successful login on a site that uses auto-detection.
Note how both the “X” and the “F” identifiers exist in the URL: one indicating the cookies are not sup-
ported and the other containing the cookieless ticket. To make it bit easier to see everything, the X and F
identifiers are bolded.

http://bhaidar-pc/cookieless/(X(1)F(eKZT5gWUi7Le_4tXEei9Lgu2l1crhX23Kq-zdV6P8D8ActC
VtgVWOsLMlvGiwEynmTbYLCzVWnj0n5MJtidRjf9kij0gkv-DL-1MxzqnlRU1))/Default.aspx

Subsequent Authenticated Access
After logging in, there really aren’t additional phases to the initial auto-detection process. Auto-
detection has occurred, and the results of the process are now indelibly stamped into the URL and
maintained on each and every request. ASP.NET automatically takes care of hoisting the embedded
URL values into the custom header using ASP.NET runtime, and various downstream components like
forms authentication contain the necessary logic to check for cookieless artifacts (such as the X identi-
fier and the F ticket in the URL).

How to Simulate This in Internet Explorer
It can be a bit of a pain to actually get auto-detection to slip into cookieless mode using a browser
like Internet Explorer. By default, IE of course supports cookies, so setting “AutoDetect” in config will
only show you the parts of the first two phases of auto-detection before defaulting to using cookies.

79301c06.indd 312 10/6/08 12:13:19 PM

313

Chapter 6: Forms Authentication

However, with a bit of rooting around inside of IE, you can force it to reject or prompt for cookies—at
which point you have a way to simulate a cookieless browser.

First, go to Tools ➪ Internet Options and click the Privacy tab. Clicking the Advanced button pops up
another dialog box, as shown in Figure 6-3. In my case, I set the options for cookies to Prompt, though if
you don’t want the hassle of always rejecting cookies you can just set the options to Block.

Figure 6-3

Now you can navigate to your website to test it in cookieless mode. However, you must request your
pages using the machine name of your web server. Looking at the last few URL samples, notice how the
URL starts with a machine name (http://bhaidar-PC) as opposed to the usual http://localhost.
If you use http://localhost, the cookie options you set on the Privacy tab are ignored.

 UseDeviceProfile
Device profiles are another mechanism for determining browser cookie support. Although an exhaus-
tive description of devices profiles is outside the scope of this book (the current browser profiles include
reams of information that mobile developers care about but that aren’t terribly relevant to security or
forms authentication), it is still important to understand where the profiles are located and, in general,
how profile information affects detection of cookie support.

UseDeviceProfile is the default setting of the cookieless attribute in forms authentication. This
means that whenever the forms authentication feature needs to determine whether a browser supports
cookies, it looks only at the values of Request.Browser.Cookies and Request.Browser.Supports​
RedirectWithCookie. If both those values return true, then forms authentication issues tickets in a
cookie; otherwise, it uses the F() identifier in the URL.

The information in the Browser property, which is an instance of System.Web.HttpBrowser​
Capabilities, comes from browser information files located at:

%windir%\Microsoft.NET\Framework\v2.0.50727\CONFIG\Browsers

79301c06.indd 313 10/6/08 12:13:19 PM

314

Chapter 6: Forms Authentication

ASP.NET 3.5 Uses the .NET Framework 2.0 Installation Folder
You should have noticed the Windows path that points to the Browsers folder inside
the .NET Framework 2.0 installation folder. In fact, ASP.NET 3.5, in its core, depends
on ASP.NET 2.0 and adds only a few new features.

This is also shown when you configure a web application in IIS 7.0 and notice that its
application pool points to the .NET 2.0 Framework and not .NET 3.5 Framework; hence,
ASP.NET 3.5 uses the same engine as ASP.NET 2.0 and adds some new features.

Note that the actual version number for the framework may be slightly different at release. This direc-
tory contains two dozen different files, all ending in .browser. ASP.NET internally parses the informa-
tion in the .browser files, and based on the regular expression-based matching rules defined in these
files, determines which .browser file applies based on the user agent string for a specific request.

For example, when running Internet Explorer on my machine, the user agent string that IE sends down
to the web server looks like this:

Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0; SLCC1; .NET CLR 2.0.50727; Media
Center PC 5.0; .NET CLR 3.0.04506; .NET CLR 3.5.21022) HTTP_UA_CPU:x86

If you look in the Browsers subdirectory, and open up the file ie.browser, you will see that the
browser capabilities files define a regular expression matching rule like the following:

<userAgent match=”^Mozilla[^(]*\([C|c]ompatible;\s*MSIE (?’version’(?’major’\d+)
(?’minor’\.\d+)(?’letters’\w*))(?’extra’[^)]*)” />

Just from glancing at the regular expression syntax you can see how a match occurs, anchored around
the Mozilla and MSIE identifiers in the user agent string. When ASP.NET evaluates this regular expres-
sion at runtime, and finds a match, it consults the other information in the ie.browser file and uses
it for the information returned in Request.Browser. For example, if you were to query Request​
.Browser.TagWriter, you would get back the string System.Web.UI.HtmlTextWriter. I use the
TagWriter property as an example because without the browser capabilities files, there is no way
ASP.NET could possibly come up with a .NET Framework class name just from the information sent
in the HTTP request headers.

If you open up ie.browser in Notepad, and scroll down a bit to the <capabilities> section, you see
a number of individual <capability> elements. The one of interest to forms authentication is:

<capability name=”cookies” value=”true” />

Because this capability is set to true, in the default out-of-box ASP.NET configuration, forms authenti-
cation will always assume that IE browsers support cookies. You can verify this behavior by doing the
following:

	 1.	 Change the value in the capability to false and save the .browser file.

	 2.	 Recompile the browser capabilities assembly. You can do this by running the command
aspnet_regbrowsers -I from the framework install directory. This has the effect of repars-
ing all of the .browser files and then encapsulating their settings inside of a GAC’d assembly.
Note that if you fail to do this the changes made in step 1 will not have any effect.

79301c06.indd 314 10/6/08 12:13:19 PM

315

Chapter 6: Forms Authentication

	 3.	 Within Internet Explorer, make sure you carried out the steps described earlier in the “How To
Simulate This” section.

	 4.	 Set the cookieless attribute in web.config to UseDeviceProfile.

Now if you request an authenticated page in the browser, forms authentication will use the device
profile information, and thus automatically assume that the browser doesn’t support cookies. No auto-
detection mechanism is necessary. When you log in, forms authentication will place the forms authen-
tication ticket in the URL inside of the F() characters. Unlike the auto-detect case, though, there will
be no X(1) in the URL, because the device profile deterministically indicates that the browser does not
support cookies.

Although editing the IE device profile is a bit contrived, device profiles provide a fixed way for deter-
mining cookie support in a browser. The downside of UseDeviceProfile is that it can’t accommodate
new browser types that have totally new user agent strings (for example, if I created a new browser that
sent back a user agent string My New Browser, this isn’t going to match any of the predefined regular
expressions defined in the various browser capabilities files). In this case, ASP.NET will simply fall back
to the settings in the Default.browser file, which may or may not contain correct information.

As a side note, Default.browser indicates that cookies are supported, so any user agent that is
not recognized by the myriad .browser files shipping in ASP.NET 2.0, which are also shared with
ASP.NET 3.5, will automatically be considered to support cookies.

Another limitation of UseDeviceProfile is that device profiles don’t honor the intent of the browser
user. A website user may intentionally disable cookies in any of the major desktop browsers. However,
with UseDeviceProfile the user can never log in to your site because ASP.NET will always assume
that cookies are supported. Each time the user attempts to log in, ASP.NET will send the forms authen-
tication cookie back, and of course the browser will promptly reject it. Then when the browser redirects
to a secured page, the lack of the cookie will simply dump the browser right back to the login page.

Although you definitely have the option of telling website customers up front that cookies are required
to log in, you also have the option of switching to AutoDetect instead. If you have a sizable percentage
of customers that do not want to use cookies (or perhaps you have regulations that mandate support for
cookieless clients), then the AutoDetect option may be a better choice than UseDeviceProfile. How-
ever, make sure to read the topic about security implications of cookieless tickets below so that you
understand the ramifications of placing the authentication ticket in the URL.

Replay Attacks with Cookieless Tickets
Although both cookie-based and cookieless forms authentication tickets are susceptible to replay attacks,
the ease with which a cookieless ticket can be disseminated makes it especially vulnerable. As an exam-
ple of how easy it is to reuse a cookieless ticket, try the following sequence of steps on an ASP.NET site
that is configured to run in cookieless mode.

	 1.	 Log in with valid credentials and confirm that the cookieless ticket shows up in the address bar
of the browser.

	 2.	 Copy and paste the contents of the address bar into some other location like notepad.

	 3.	 Shut down the browser.

79301c06.indd 315 10/6/08 12:13:19 PM

316

Chapter 6: Forms Authentication

At this point, you have your very own forms authentication ticket sitting around and available for
replay for as long as the expiration date inside of the authentication ticket remains valid. If you paste
the URL back into a new instance of your browser, you will successfully navigate to the page indicated
in the URL. If you know the names of other pages in the site, you can edit the pasted URL; the impor-
tant and interesting piece of the URL is the forms authentication ticket embedded within it.

Probably the most likely potential for security mischief with cookieless tickets in this case is not a mali-
cious user or hacker. Rather, website users that don’t understand the ramifications of having the forms
authentication ticket in the URL are the most likely candidates for accidentally inflicting a replay attack
on themselves. Imagine the following scenario:

	 1.	 A website customer visits an e-commerce site that issues cookieless authentication tickets. The
customer adds some items to a shopping cart and then logs in to start the checkout process.

	 2.	 At some part into the checkout process, the customer has a question—maybe about price. So,
the customer copies the URL into an email message. Or for a nontechnical user, just selects
File ➪ Send ➪ Link by Email. Now the customer has a URL with a valid forms authentication
ticket sitting in an email message.

	 3.	 When the recipient receives the message, the recipient clicks the URL in the email (or the URL
may be packaged as a clickable URL attachment), and surprise! The recipient just “logged in” to
the e-commerce site as the original user.

Given the default of sliding expirations in ASP.NET 2.0 and ASP.NET 3.5 forms authentication, after a
cookieless ticket makes it outside of the boundaries of the browser session where the ticket was origi-
nally issued, it can be reused as long someone uses the ticket before the expiration period is exhausted.

This scenario gives rise to a very specific piece of security guidance when using cookieless forms
authentication:

Never use sliding expirations when there is any chance of issuing cookieless tickets!

I understand many of the arguments that can be made against this advice—chiefly that authentication
tickets with absolute timeouts lead to a poor customer experience. However, I guarantee that if website
customers accidentally email their forms authentication ticket, their ire over exposing their personal
account will vastly exceed the pain of customers having to periodically log back in again. And don’t
forget that after someone accidentally leaks his or her forms authentication ticket in an email, every
server and network route along the delivery path has the potential of sniffing and stealing a perfectly
valid cookieless ticket.

Although the scenario I described earlier involves a customer sending a link to a secured page in a site,
the reality is that after the forms authentication ticket is embedded on the URL, it remains there for the
duration of the browser session. This means that if a customer logs in to start a checkout process but then
clicks back to a publicly available page (maybe the customer clicks back out to an items detail page in a
web catalog), the forms authentication ticket is still in the URL. I will grant you that sending an email
link from deep inside a checkout process is probably unlikely. However, accidentally emailing the forms
authentication credentials from a catalog page in an e-commerce site strikes me as a very likely
occurrence.

79301c06.indd 316 10/6/08 12:13:19 PM

317

Chapter 6: Forms Authentication

This leads to a few additional pieces of advice about cookieless tickets:

	 1.	 Do not use cookieless tickets for any type of high-security site. For example, do not use cookie-
less tickets for an online banking or investment site. The risk of someone accidentally compro-
mising themselves far outweighs the convenience factor.

	 2.	 If you set the requireSSL attribute on your site to true, ask yourself why you are allowing
cookieless tickets. The requireSSL attribute doesn’t protect cookieless tickets; it works only for
cookie-based tickets. Although it is reasonable to set requireSSL to true on sites that support
mixed clients (the theory being that at least the browsers that do support cookies will have a
more secure experience), be aware that for cookieless users the forms authentication ticket can
be issued and received over non-SSL connections.

	 3.	 Try to set the timeout attribute on sites that support cookieless clients to as small a value as pos-
sible. I would not recommend setting a timeout greater than 60 minutes, although it is understand-
able if you can’t get much shorter than 45 minutes given the usage trends on e-commerce sites.

	 4.	 If you think your cookieless customer base will accept it, you should reauthenticate the cus-
tomers prior to carrying out any sensitive transaction. This would mean requiring cookieless
customers to reenter their username and password when they attempted to finalize a purchase
or when they attempt to retrieve or update credit card information.

The Cookieless Ticket and Other URLs in Pages
Throughout the discussion, it has been stated that ASP.NET automatically handles maintaining the
cookieless ticket in the URL. Although this is true for server-side code, the placement of the cookieless
ticket in the URL also depends on browser behavior with relative URLs. If you look carefully at the sam-
ple URLs shown earlier, you can see that the URL consists of a few pieces. For a page like default.aspx,
the browser considers the current path to the application to be:

http://bhaidar-pc/cookieless/(X(1)F(eKZT5gWUi7Le_4tXEei9Lgu2l1crhX23Kq-zdV6P8D8ActC
VtgVWOsLMlvGiwEynmTbYLCzVWnj0n5MJtidRjf9kij0gkv-DL-1MxzqnlRU1))

This means that the browser sees the cookieless information as part of the directory structure for the
site. If you embed relative URLs into your page such as:

Click me. I’m a regular A tag.

Then whenever you click these types of links, the browser will prepend it with the current path infor-
mation from the current page. So, this <a /> tag is interpreted by the browser as:

http://bhaidar-pc/cookieless/(X(1)F(eKZT5gWUi7Le_4tXEei9Lgu2l1crhX23Kq-zdV6P8D8ActC
VtgVWOsLMlvGiwEynmTbYLCzVWnj0n5MJtidRjf9kij0gkv-DL-1MxzqnlRU1))/SomeOtherPage.aspx

On the other hand, if you embed absolute hrefs in your pages, you will lose the forms authentication
ticket when someone clicks on the link. For example, if you accidentally created the <a/> tag as:

Click me. I’m a regular A tag.

79301c06.indd 317 10/6/08 12:13:19 PM

318

Chapter 6: Forms Authentication

The address that your browser will navigate to is:

http://bhaidar-pc/SomeOtherPage.aspx

With this style of URL, you can see that the forms authentication ticket is lost. Now, for a simple applica-
tion, you may not need to use absolute URLs. However, if you have a more complex navigation struc-
ture, perhaps with a common menu or navigation bar on your pages, you may very well have a set of
fixed URLs that users can click. Unfortunately, cookieless forms authentication and absolute URLs do
not mix, so you will need to write extra code to account for this behavior. Although a bit kludgy, an
easy way to maintain a common set of URL endpoints like this is with a redirection page.

Instead of the browser “knowing” the correct endpoint URL it should navigate to, you can convert these
types of links into GET requests against a common redirection page. For example, you can use the
LinkButton control to postback to ASP.NET:

<asp:LinkButton ID=”linkRedirectMe” runat=”server”
 OnClick=”linkRedirectMe_Click”>
 SomeOtherPage
</asp:LinkButton>

In the code-behind, the click event looks like:

Response.Redirect(“/cookieless/SomeOtherPage.aspx”);

Now when you click the link the browser, the page posts back to ASP.NET, and a server-side redirect
is issued that retains in the all cookieless ticket information in the URL. The reason server-side redi-
rects work is that Response.Redirect includes extra logic that ensures all of the information in the
custom HTTP_ASPFILTERSESSIONID HTTP header is added back into the URL that is sent back to the
browser. When the redirect reaches the browser, it has the full URL including the cookieless tickets.

One last area where URL format matters is in any postback event references in the page. In fact, the
LinkButton example depended on the correct behavior when posting the page back to itself. Because
just about every ASP.NET control depends on postbacks, it would be pretty painful if postbacks did
not correctly retain all cookieless tickets. ASP.NET is able to retain the cookieless tickets by explicitly
embedding them in the “action” tag of the page’s <form /> element. Taking the previous LinkButton
example, if you view the source of the page in the browser, the form element looks like:

<form method=”post” action=”/cookieless/(X(1)F(eKZT5gWUi7Le_4tXEei9Lgu2l1crhX23Kq-z
dV6P8D8ActCVtgVWOsLMlvGiwEynmTbYLCzVWnj0n5MJtidRjf9kij0gkv-DL-1MxzqnlRU1))/default.
aspx” id=”form1”>

Because much of the postback infrastructure depends on calling the JavaScript submit() method of
a form, and the action attribute on the form includes the cookieless information, any attempt to pro-
grammatically submit a form (whether this is ASP.NET code or JavaScript code that you write) will
include the cookieless information.

Overall, ASP.NET will, for the most part, correctly retain the cookieless tickets in a transparent manner.
Only if you embed absolute URLs in your pages, or if you use absolute URLs in your code-behind,
will you lose the cookieless tickets. You should try to use relative URLs in page markup, and applica-
tion-relative URLs in code-behind and for attributes of ASP.NET server controls. Although there are
cases in server-side code where you can write code with URLs that are absolute virtual paths (that is,

79301c06.indd 318 10/6/08 12:13:19 PM

319

Chapter 6: Forms Authentication

/myapproot/somepage.aspx), depending on whether you use this style of URL with Response​
.Redirect versus in a control property, you will get different behavior. Coding with application-
relative URLs (that is, ~/somepage.aspx) gives you consistent behavior with cookieless tickets
regardless of where you use the application-relative URL. The following table shows various pieces
of code and whether or not cookieless tickets are preserved.

Code That Uses URLs
Are Tickets
Retained?

Response.Redirect(“~/SomeOtherPage.aspx”); Yes

Response.Redirect(“SomeOtherPage.aspx”); Yes

Response.Redirect(“/cookieless/SomeOtherPage.aspx”); Yes

Response.Redirect(“http://bhaidar-PC/ cookieless/SomeOtherPage.
aspx”);

No

<asp:HyperLink ID=”HyperLink1”​
runat=”server”​
NavigateUrl=”~/SomeOtherPage.aspx”>

Yes

<asp:HyperLink ID=”HyperLink2”​
runat=”server”​
NavigateUrl=”/ cookieless/SomeOtherPage.aspx”>

No

 Yes

 No

Payload Size with Cookieless Tickets
When you support cookieless tickets with forms authentication, you need to be careful of the size of
the forms authentication ticket in the URL. Although forms authentication in cookie mode technically
also has issues with the size of the ticket, you have roughly 4K of data that you can work with in
cookie mode.

However, in cookieless mode, two factors work against you and limit the overall amount of data that
you can place in a FormsAuthenticationTicket:

There are other cookieless features in ASP.NET that also may place cookieless identifiers on the ❑❑

URL. Both session state and anonymous identification can take up space in the URL.

On IIS 7, you cannot have more than 260 characters in any individual path segment (assuming ❑❑

you do not edit the <requestFiltering> configuration section in either the Application​
Host.config file or in the application’s web.config file).

If you think about it, the 260-character constraint is actually pretty limiting and basically means that
little more than username and expiration date can be effectively shipped around in a cookieless ticket.
The previous sections on cookieless tickets regularly resulted in 100 or more characters being used on
the URL for the ticket.

79301c06.indd 319 10/6/08 12:13:19 PM

320

Chapter 6: Forms Authentication

You can turn on anonymous identification and session state in web.config, and force them to run in
cookieless mode with the following configuration settings, respectively (they use the same values for
the cookieless attribute as forms authentication):

<anonymousIdentification enabled=”true” cookieless=”UseUri”/>
<sessionState cookieless=”UseUri” />

Without even logging in to a sample application with these settings, the URL includes the following
cookieless tickets (assume auto-detection is used for forms authentication for the absolute worst-case
scenario).

(
 X(1)
A(ABa15sfNyAEkAAAAOTVkYmQ4MjYtZjM0Zi00NmYxLWE4MTMtYjNkOGMzMDA2N2ZiDvoszMRsIAPx3LnxE
4OL-yxa0Bg1)
S(vufwu245awzb32v21oyir245)
)

Adding this all up, and ignoring the line breaks because those exist just for formatting in the book,
there are:

2 characters for the beginning and closing parentheses❑❑

4 characters for the auto-detection marker “X”❑❑

95 characters for the anonymous identification ticket “A”❑❑

27 characters for the session state identifier “S”❑❑

Without forms authentication even being involved, ASP.NET has already consumed 128 characters on
the URL, which leaves a paltry 132 characters for forms authentication.

The most obvious piece of information that drives variability in the size of the forms authentication
ticket is the username. You may not realize it, but the value of the path configuration attribute could
also contribute to the variable size of the ticket. By default, the path is set to /, so this only adds one
additional character to the ticket prior to its encryption. In cookieless mode though, because the ticket
is embedded in the URL, there isn’t really a concept of path information. As a result, in cookieless mode
the path is always set to / by forms authentication, and hence there is always the same overhead in
cookieless tickets for the path value.

Other information such as a ticket version number and the issue and expiration date information are
fixed size and don’t vary from one website to another. Logging in to a sample application with a com-
paratively short username (testuser) adds the following forms authentication ticket to the URL:

F(hZ-dwIinilHGQZ76f7fHcvJqG3iJngm1M-wnx3w6DSmV8FZcQSF6p6GpBXSK85G4YHXRUOlfdzmtV7cUv
doDGZu3mGiwmOMYBtcdB8RPVao1)

This adds another whopping 111 characters to the URL. Now with all cookieless features enabled
there are 239 characters consumed for the various cookieless representations. Playing around a bit
with different usernames on the sample application, the longest username that worked was testuser​
123456789012 (that is, a 20-character username). This results in an F ticket that is 132 characters long—
resulting in a path segment that is 260 characters long. That is right on the 260 character path segment

79301c06.indd 320 10/6/08 12:13:19 PM

321

Chapter 6: Forms Authentication

limit enforced by the <requestFiltering> configuration section in the ApplicationHost​.config
configuration file and the limitations set by the http.sys file that was introduced in Chapter 1.

After the username increases to 21 characters, a 400 Bad Request error is returned.

HTTP Error 404.14 – URL_TOO_LONG

Going back to the path configuration attribute, you can explicitly set it to match the application’s root:

<forms cookieless=”AutoDetect” path=”/cookieless” />

Logging, with just testuser for the username results in a 111-character length for the forms authen-
tication cookieless ticket (the same as before). And as before, the upper limit on the username is 20
characters. If you are curious what happened to the path information from configuration, the value of
FormsAuthenticationTicket.CookiePath is hard-coded to /, regardless of the value in configura-
tion. At one point earlier in the ASP.NET 2.0 development cycle, the full path value from configuration
was included in cookieless tickets. Because this consumed far too much space on the URL (you could
come up with a long enough path that even a zero-length username was too much to fit in the URL), the
decision was made to always use the hard-coded / value. Keep this quirk in mind if for any reason you
were depending on the FormsAuthenticationTicket.CookiePath property anywhere in your code;
it should not be relied upon if your application ever issues cookieless forms authentication tickets.

Of course, the size constraints on the URL are a bit more relaxed if you do not use other cookieless fea-
tures. Turning off anonymous identification (because that is gobbling up 95 characters), a 40-character
username results in around a 230-character URL. Because 40-character usernames are pretty unlikely,
you have breathing room on the URL after anonymous identification is disabled.

If you use cookieless forms authentication tickets, keep the following points in mind:

With all cookieless features turned on, you are limited to a maximum length of around 20 char-❑❑

acters for usernames with forms authentication.

With anonymous identification turned off, you will probably not run into any real-world con-❑❑

straints on username length, unless of course you allow email addresses for usernames. Because
email addresses can be upwards of 256 characters long, you will need to limit username length
for such applications.

One final point on how cookieless tickets are embedded in the URL: Even though ASP.NET 2.0 and
ASP.NET 3.5 embed them all into a single path segment, future releases may choose to split out the
cookieless tickets for various features into separate path segments. If this approach is ever taken, it
would free up quite a bit more space for forms authentication, enough space that even UserData could
store limited amounts of information. For this reason, I would recommend that developers avoid writ-
ing code that explicitly parses the URL format used by ASP.NET 2.0 and ASP.NET 3.5 or that depends
on the specific layout of cookieless tickets. Continue to manipulate URLs with the built-in ASP.NET
APIs and the application-relative path syntax. Writing code that has an explicit dependency on the
ASP.NET 2.0 and ASP.NET 3.5 cookieless format may lead to the need to rework such code in future
releases.

79301c06.indd 321 10/6/08 12:13:20 PM

322

Chapter 6: Forms Authentication

Unexpected Redirect Behavior
Cookieless forms authentication introduces another subtle gotcha due to the reliance on redirects. The
initial set of redirects that occur during autodetection does’t complicate matters because this logic
runs as part of the normal redirection to a login page. In existing ASP.NET 1.1 applications, developers
already have to deal with the possibility of a website user posting data back to a secured page, only to
get redirected to the login page instead—along with the subsequent loss of any posted data.

However, a bit of an edge case arises when using cookieless tickets, regardless of the selected cookieless
mode. If you allow sliding expirations with cookieless tickets (and for security reasons this is not advised),
then it is possible that at some point FormsAuthenticationModule may detect that more than 50% of
a ticket’s lifetime has elapsed. The module always calls FormsAuthentication.RenewTicketIfOld
on each request, for both cookied and cookieless modes. In the case of cookieless modes, though, if the
module detects that a new forms authentication ticket was issued with an updated expiration time due
to the renewal call, the module needs to ensure that the new ticket value is embedded on the URL.

The module accomplishes this by repackaging the new FormsAuthenticationTicket into the custom
HTTP_ASPFILTERSESSIONID header and then calling Response.Redirect , specifically the overload
of Response.Redirect that accepts only the redirect path. This means the current request is immedi-
ately short-circuited to the EndRequest phase of the pipeline, and the redirect with the updated URL is
sent back to the browser.

From the user’s perspective, this means that anytime the user is working in the website (and this can
be on a secured page or a publicly accessible page), enough of the ticket expiration may have elapsed to
trigger a redirect. If by happenstance this redirect occurs when posting back user-entered data, the user
is going to be one unhappy camper. Imagine entering a form full of registration data, hitting submit,
and the net result is that you end up back on the same page with all of the fields showing as empty!

You can simulate this behavior with a simple page that has a few text boxes for entering data. Add a
button that posts the page back to the server. Set the timeout attribute in the <forms /> configura-
tion element to 2 minutes. Log in to the site, and navigate to the page with the text boxes. Type in some
data, and then wait around 1.5 minutes, long enough for the ticket to need renewal. Now when you post
back, you can see that all of the data you entered has been lost. This behavior is another reason why
sliding expirations should be avoided when using cookieless tickets.

About the only workaround (and an admittedly crude one at that) is for developers to identify pages
in their site where user-entered information is not posted back in a form variable. For example, maybe
viewing a catalog page in a website relies on query-string variables and a GET request, which allows
the query-string variables to be preserved across redirects. You can write some code that runs in the
pipeline (after FormsAuthenticationModule runs) and pro-actively checks the expiration date of the
ticket. Rather than waiting for the ASP.NET default of 50% or more of the ticket lifetime to elapse, you
could be more aggressive and force a ticket to be reissued at shorter intervals. This at least gives you
some control over when the ticket is reissued, and it increases the likelihood that the ticket is reissued
at well-defined points in the website where you can be assured that user-entered data is not lost.

Of course, there are myriad side effects with this workaround:

Redirection behavior is still hard to test. You have to laboriously test each page in the site where ❑❑

you may inject a proactive renewal of the forms authentication ticket.

79301c06.indd 322 10/6/08 12:13:20 PM

323

Chapter 6: Forms Authentication

The extra, and potentially unnecessary, redirects make the website seem slower.❑❑

The workaround still doesn’t solve the problem of a user entering a checkout process, getting ❑❑

up from the computer, and coming back a little later after more than 50 percent of the lifetime
for his or her current ticket has elapsed. This specific scenario is one where dumping the user
back to the page they were just on, with empty fields, is likely to cause the user to bail out of the
checkout process.

Unfortunately, there isn’t an elegant solution to the unintended redirect problem with cookieless tick-
ets. The best advice is to turn off sliding expirations, and set the forms authentication ticket lifetime to a
“reasonable” value (say somewhere around 30 to 60 minutes).

Configuring Forms Authentication Inside IIS 7.0
The <forms /> configuration section is usually edited inside the application’s web.config. If you want
to change the default predefined values, you configure a <forms /> section by specifying the name,
path, login page, cookieless mode, authentication cookie time-out, sliding expiration, whether forms
authentication requires SSL, and whether the authentication cookie is enabled for cross-application
redirects. Although the application’s web.config configuration file provides a very good IntelliSense
to manipulate the different configuration sections, IIS 7.0, among the many new integration features with
ASP.NET, provides a graphical user interface to edit the application’s <forms /> authentication con-
figuration section and some other configuration sections, too (SessionState is an example). To edit the
<forms> authentication section, right-click on the FormsAuthenticationModule inside the Authenti-
cation applet window. Figure 6-4 shows the IIS 7.0 Windows Form used to edit the <forms /> section
for an application.

As you can see, the entire <forms /> authentication configuration section is now editable through the
IIS 7.0 Manager tool.

Figure 6-4

79301c06.indd 323 10/6/08 12:13:20 PM

324

Chapter 6: Forms Authentication

Sharing Tickets between 1.1 and 2.0/3.5
It is likely that most organizations will need to run ASP.NET 1.1, 2.0, and 3.5 applications side by side for
a few years. In many cases, if corporate developers integrate custom internal ASP.NET sites with web-
based applications from third-party vendors, they may need to wait for the next upgrade from their ven-
dors before moving a web application over to ASP.NET 2.0 or ASP.NET 3.5. It is worth mentioning that
ASP.NET 3.5 uses the same runtime as that of ASP.NET 2.0. Upgrading an application from ASP.NET 2.0
to ASP.NET 3.5 requires no major changes at all, contrary to the case of upgrading an ASP.NET 1.1 to
either ASP.NET 2.0 or ASP.NET 3.5. An application configured with .NET Framework 3.5 inside Visual
Studio 2008 functions the same as an application running with .NET Framework 2.0 in Visual Studio
2008. However, the difference is in the added features that are part of ASP.NET 3.5 only (AJAX, LINQ,
and so on).

The bottom line here is that ASP.NET 3.5 and ASP.NET 2.0 applications share the same application
pool on IIS 7.0 since the runtime is the same and, hence, whatever applies on ASP.NET 2.0 applies also
on ASP.NET 3.5.

You can accomplish both of the following scenarios when running in mixed environments:

You can issue forms authentication tickets from ASP.NET 2.0 and ASP.NET 3.5 applications and ❑❑

the tickets will work properly when they are sent to an ASP.NET 1.1 application.

You can issue forms authentication tickets from ASP.NET 1.1 applications and the tickets will ❑❑

work properly when they are sent to ASP.NET 2.0 and ASP.NET 3.5 applications.

To interoperate tickets between the two versions, you must ensure the following:

	 1.	 ASP.NET 2.0 and ASP.NET 3.5 must be configured to use 3DES for encryption. Remember that
by default ASP.NET 2.0 and ASP.NET 3.5 use AES for their encryption algorithm.

	 2.	 Both ASP.NET 1.1 and ASP.NET 2.0 or ASP.NET 3.5 must share common decryption and vali-
dation keys.

The first point was discussed earlier in the section on ticket security. However, the second point may
not be immediately obvious for some types of applications. By default, both the validationKey and
decryptionKey attributes are set to AutoGenerate,IsolateApps. This holds true for ASP.NET 1.1,
ASP.NET 2.0 and ASP.NET 3.5. If a developer changes the settings to instead be AutoGenerate, that
temporarily solves the problem of sharing the auto-generated key material across multiple ASP.NET
applications on the same machine.

However, when ASP.NET 2.0 is installed on a machine running ASP.NET 1.1 (that is, aspnet_regiis -I
is run), the auto-generated key material is regenerated for ASP.NET 2.0. This means on a single web server
that has both ASP.NET 1.1 and ASP.NET 2.0 running, setting any of the key attributes in <machineKey />
to AutoGenerate is not sufficient. If you need to share forms authentication tickets between ASP.NET 1.1
and ASP.NET 2.0 or ASP.NET 3.5, you must use explicitly generated keys, and you must set the key val-
ues in the encryptionKey and decryptionKey attributes of <machineKey />. The section earlier on
generating keys programmatically has sample code that makes it easy to generate the necessary values.

79301c06.indd 324 10/6/08 12:13:20 PM

325

Chapter 6: Forms Authentication

To demonstrate these concepts, use two simple applications. Both applications are initially configured
as follows:

<authentication mode=”Forms” />

<authorization>
 <deny users=”?”/>
</authorization>

Each application has a login page that simply issues a session-based forms authentication cookie after click-
ing a button on the page (interoperating 1.1 and 2.0 or 3.5 only works with cookies because there was no
URL-based forms authentication in the base ASP.NET 1.1 product). With this basic web.config, forms
authentication tickets will not work between the two applications because the defaults in <machineKey />
are being used. If you try logging in against the 1.1 application and then change the address in the URL to
reference a secure page in the 2.0 or 3.5 application, the ASP.NET 2.0 or ASP.NET 3.5 application returns
you to the login page for the ASP.NET 2.0 or ASP.NET 3.5 page.

The reason for this is twofold: The keys are different between the two applications, and ASP.NET 2.0 or
ASP.NET 3.5 is using AES by default. To rectify this, place a <machineKey /> section into both appli-
cations with explicit decryption and validation keys. In the case of ASP.NET 2.0 or ASP.Net 3.5, the
<machineKey /> section must also specify the correct encryption algorithm:

<machineKey
 decryptionKey=”A225194E99BCCB0F6B92BC9D82F12C2907BD07CF069BC8B4”
 validationKey=”6FA5B7DB89076816248243B8FD7336CCA360DAF8”
 decryption=”3DES”
/>

decryptionKey is 48 characters long, which is the recommended length when using 3DES (48 charac-
ters = 24 bytes = three 8 byte keys of which only 56-bits are used for each of the three keys used in 3DES),
validationKey is 40-characters long, which is the minimum length supported by this attribute.

With the updated <machineKey /> sections, you can now log in to the ASP.NET 1.1 application, and
then change the URL to reference a 2.0 or 3.5 page without being forced to log in again. The reverse
scenario also works properly: you can log in to the 2.0 or 3.5 application and then reference a 1.1 page
without being forced to log in again.

The only slight difference between tickets issued by ASP.NET 1.1 and ASP.NET 2.0 or ASP.NET 3.5 is the
version property. If the forms authentication ticket is generated by ASP.NET 1.1, the Forms​​Authentication​​
Ticket.Version is set to 1. If the forms authentication ticket is generated by ASP.NET 2.0 or ASP.NET 3.5,
then the property returns 2. Because neither ASP.NET 1.1 nor 2.0 or 3.5 do anything internally with the
Version property (aside from packing and unpacking the value), the different values are innocuous. If
for some reason you have business logic that depends on the value of the Version property, be aware that
in a mixed ASP.NET environment there is no guarantee of a stable value.

79301c06.indd 325 10/6/08 12:13:20 PM

326

Chapter 6: Forms Authentication

Using Forms Authentication Across
Different Content Types

It has been mentioned several times throughout the book that one of the major advantages of running
applications in the new IIS 7.0 integrated mode is the ability of ASP.NET runtime to process requests
for non-ASP.NET resources. Added to this, the managed FormsAuthenticationModule is now inte-
grated into IIS 7.0, which means that in addition to having the native authentication modules listed and
registered inside IIS, you now have the managed FormsAuthenticationModule listed so that admin-
istrators or developers can enable/disable it the same way they enable/disable any other native authen-
tication module.

Figure 6-5 shows the list of authentication modules listed inside the IIS 7.0 Manager tool.

Figure 6-5

There are some limitations on using the managed module. If the managed FormsAuthentication​
Module is enabled, you cannot enable any other native authentication module. There is a workaround
to this limitation to enable both the native WindowsAuthenticationModule and the managed Forms​
AuthenticationModule, which you can read more about at http://mvolo.com/blogs/serverside/​
archive/2008/02/11/IIS-7.0-Two_2D00_Level-Authentication-with-Forms-Authentication-​
and-Windows-Authentication.aspx. But as a rule. and without any workarounds, you cannot enable
the manage FormsAuthenticationModule while enabling any other native authentication module.

The second limitation comes from the fact that IIS 7.0 cannot process any request if no native authentica-
tion module is enabled. The end result will be Access Denied! That is why when you want to enable
ASP.NET FormsAuthenticationModule to authenticate requests to IIS 7.0, you should also enable the
native AnonymousAuthenticationModule. This is an exception to the previously listed limitation, but
this is a requirement by IIS 7.0.

79301c06.indd 326 10/6/08 12:13:20 PM

327

Chapter 6: Forms Authentication

IIS 7.0 can now make use of the powers of ASP.NET features when authenticating requests other than
ASP.NET resources. For instance, if you have an ASP.NET application that contains .html, .asp, etc. file
content types, you can easily protect them as if they were normal ASP.NET resources. The story starts
with the new IIS 7.0 integrated mode where ASP.NET runtime can have access to all requests processed
by IIS. Now enabling the managed FormsAuthenticationModule gives a chance for ASP.NET to han-
dle the authentication and protection for all the content file types placed inside an application.

To enable an application to use the managed FormsAuthenticationModule for non-ASP.NET
resources, perform the following steps:

	 1.	 Configure the application to run under the DefaultAppPool. In other words, make sure the
application is running in the integrated mode.

	 2.	 Configure the FormsAuthenticationModule to execute for all content types, not only ASP.NET
resources. This is a trick that has been mentioned before. All you need to do is add the follow-
ing into the application’s web.config file:

<system.webServer>
 <validation validateIntegratedModeConfiguration=”false” />
 <modules>
 <remove name=”FormsAuthentication” />
 <add
 name=”FormsAuthentication”
 type=”System.Web.Security.FormsAuthenticationModule” />
 </modules>
 <security>
 <authentication>
 <anonymousAuthentication enabled=”true” />
 </authentication>
 </security>
</system.webServer>

If you do not want to add the above configuration elements manually, removing the Forms​
AuthenticationModule entry and re-adding it with the precondition attribute removed, you
can make use of the rich IIS 7.0 Manager tool to configure a managed module to function prop-
erly on both managed and non-managed resources. Locate the Modules applet icon on the home
page of the Web application you are configuring, and then double-click the Modules icon. A
list of all the native and managed modules enabled for the application appears. Right-click the
FormsAuthentication entry and choose Edit.

Notice the checkbox displayed at the bottom of the dialog box that says “Invoke only for
requests to ASP.NET applications or managed handlers.” This checkbox is selected by default,
which means the FormsAuthenticationModule is enabled only for managed and ASP.NET
resources, nothing else. To enable this module to function properly on non-managed and non-
ASP.NET resources, simply unselect the checkbox and notice the changes that were reflected
back on the application’s web.config configuration file:

<system.webServer>
 <validation validateIntegratedModeConfiguration=”false” />
 <modules>
 <remove name=”FormsAuthentication” />
 <add
 name=”FormsAuthentication”

79301c06.indd 327 10/6/08 12:13:20 PM

328

Chapter 6: Forms Authentication

 type=”System.Web.Security.FormsAuthenticationModule”
 preCondition=””
 />
 </modules>
 <security>
 <authentication>
 <anonymousAuthentication enabled=”true” />
 </authentication>
 </security>
</system.webServer>

Instead of removing the precondition attribute, the preceding configuration keeps the attribute
as it is but replaces its value with an empty string, signaling that the managed module is now
enabled for all content types, not only for managed resources.

	 3.	 In addition to enabling FormsAuthenticationModule to protect non-ASP.NET content, you
also need to configure the UrlAuthorizationModule to execute and authorize non-ASP.NET
content. What you need to do is add the following into the application’s web.config file.

<system.webServer>
 <validation validateIntegratedModeConfiguration=”false” />
 <modules>
 <remove name=”UrlAuthorization” />
 <add
 name=”UrlAuthorization”
 type=”System.Web.Security.UrlAuthorizationModule”/>
 </modules>
</system.webServer>

Again you can make use of the same alternative trick that was mentioned above to configure the
managed UrlAuthorizationModule to function properly with managed and non-managed
resources.

When configuring the managed UrlAuthorizationModule to handle both native and man-
aged resources, you might consider utilizing the native UrlAuthorizationModule introduced
as part of the IIS 7.0 core engine. One of the major advantages of the native authorization mod-
ule is its capability to handle all content types, whether managed or non-managed, and above
all, its ability to understand the FormsAuthenticationTicket (hence its tight and seamless
integration with the managed authentication module, FormsAuthenticationModule).

The existence of this new native UrlAuthorizationModule gives you the opportunity either to
keep on using the existing managed UrlAuthorizationModule for managed resources and
enabling it for non-managed ones with some configuration settings, or to directly make use of
the new native module that gives you a seamless integration with the managed Forms​
AuthenticationModule and protects your managed and non-managed resources with zero
effort from your side.

For a more in-depth explanation on the new native UrlAuthorizationModule, visit Chapter 3
and read the full explanation about the new native module introduced by IIS 7.0.

	 4.	 Finally, configure the application for forms authentication, and configure any needed attributes
on the authentication configuration section in the application’s web.config file.

79301c06.indd 328 10/6/08 12:13:20 PM

329

Chapter 6: Forms Authentication

To the test the above configuration, I have included the aspnetForAllContent web application, which
contains a mix of ASP.NET resources and non-ASP.NET resources. The application has been configured
with forms authentication, and a “deny all anonymous users” authorization rule has been added under
the <authorization> configuration section to protect all the content included. Now if you try to access
a protected .asp, .htm, or any other non-ASP.NET content types, you will notice that you are always redi-
rected into the ASP.NET login page to provide your credentials before accessing any of the resources
included in an application, whether the resources are ASP.NET or belong to any other type.

Leveraging the UserData Property
I will start out by saying up front that you can only leverage the UserData property for applications
that run in cookie mode. Although the constructor for creating a FormsAuthenticationTicket with
user data is public, there is no publicly available API for setting an instance of a FormsAuthentication​
Ticket onto a URL. As a result, the only way that the UserData can be used is if authentication tickets
are sent in cookies.

The nice aspect of the UserData property is that after you get custom data into the forms authentica-
tion ticket, the information is always there and available on all subsequent page requests. The prob-
lem in ASP.NET 1.1, ASP.NET 2.0 and ASP.NET 3.5 is that there is no single method that you can call
wherein you supply both custom data for the UserData property and the username of the authenti-
cated user. This oversight in ASP.NET 2.0 and ASP.NET 3.5 is somewhat unfortunate because I run across
internal and external customers over and over again that need to store a few extra pieces of identification
or personalization information after a user logs in. Storing this information in the forms authentication
ticket is logical, and it can eliminate the need to cobble together custom caching mechanisms just to solve
basic performance problems such as displaying a friendly first name and last name of a customer on
every single web page.

So, how do you store extra information in a forms authentication ticket and then issue the ticket in a way
that all of the other settings (mainly the issue date and expiration date) are set to the correct values? More
importantly, how do you do this without the need to hard-code assumptions into your code around cookie
timeouts? In the FormsAuthentication class in ASP.NET 2.0, which is the same in ASP.NET 3.5, there is
one glaring omission: you cannot retrieve the timeout attribute that is set in the <forms /> element in
configuration. Although you can technically retrieve this information with the strongly typed configura-
tion classes in ASP.NET 2.0 and ASP.NET 3.5 (there is a FormsAuthenticationConfiguration class
that provides strongly typed access to the values set in configuration), as was discussed in Chapter 5,
you cannot use the strongly typed configuration classes when running in partial trust.

The following solution uses a simple workaround to ensure that all of the forms authentication settings
are still used when manually issuing a forms authentication ticket, and it does it in a way that will still
work in partial trust applications.

C#
protected void Button1_Click(object sender, EventArgs e)
{
 HttpCookie cookie =
 FormsAuthentication.GetAuthCookie(txtUsername.Text, false);

79301c06.indd 329 10/6/08 12:13:20 PM

330

Chapter 6: Forms Authentication

 FormsAuthenticationTicket ft =
 FormsAuthentication.Decrypt(cookie.Value);

 //Cutom user data
 string userData = “John Doe”;

 FormsAuthenticationTicket newFt =
 new FormsAuthenticationTicket(
 ft.Version, //version
 ft.Name, //username
 ft.IssueDate, //Issue date
 ft.Expiration, //Expiration date
 ft.IsPersistent,
 userData,
 ft.CookiePath);

 //re-encrypt the new forms auth ticket that includes the user data
 string encryptedValue = FormsAuthentication.Encrypt(newFt);

 //reset the encrypted value of the cookie
 cookie.Value = encryptedValue;

 //set the authentication cookie and redirect
 Response.Cookies.Add(cookie);
 Response.Redirect(
 FormsAuthentication.GetRedirectUrl(txtUsername.Text, false),false);
}

VB.NET
 Protected Sub Button1_Click(_
 ByVal sender As Object, _
 ByVal e As EventArgs) Handles Button1.Click
 Dim cookie As HttpCookie = _
 FormsAuthentication.GetAuthCookie(txtUsername.Text, False)

 Dim ft As FormsAuthenticationTicket = _
 FormsAuthentication.Decrypt(cookie.Value)

 ‘Cutom user data
 Dim userData As String = “John Doe”

 Dim newFt As New FormsAuthenticationTicket(ft.Version, _
 ft.Name, ft.IssueDate, ft.Expiration, ft.IsPersistent, _
 userData, ft.CookiePath)

 ‘re-encrypt the new forms auth ticket that includes the user data
 Dim encryptedValue As String = FormsAuthentication.Encrypt(newFt)

 ‘reset the encrypted value of the cookie
 cookie.Value = encryptedValue

79301c06.indd 330 10/6/08 12:13:21 PM

331

Chapter 6: Forms Authentication

 ‘set the authentication cookie and redirect
 Response.Cookies.Add(cookie)
 Response.Redirect(_
 FormsAuthentication.GetRedirectUrl(txtUsername.Text, False), _
 False)
 End Sub

Because you need to ultimately issue a forms authentication cookie, the first step is to call Forms​
Authentication.GetAuthCookie, passing it the values that you would normally pass directly to
FormsAuthentiction.RedirectFromLoginPage. This results in a cookie that has the correct settings
for items such as cookie domain and cookie path. It also results in an encrypted cookie payload contain-
ing a forms authentication ticket. You can easily extract the FormsAuthenticationTicket by passing
the cookie’s Value to the Decrypt method.

At this point, you have a fully inflated FormsAuthenticationTicket with the correct values of Issue​
Date and ExpirationDate already computed for you. You can create a new FormsAuthentication​
Ticket instance based on the values of the FormsAuthenticationTicket that was just extracted
from the cookie. The only difference is that for the userData parameter in the constructor, you supply
the custom data that you want to be carried along in the ticket. In the case of the sample, I just stored a
first name and last name as an example. Because the user data needs to fit within the limits of a single
forms authentication ticket, there are some constraints on just how much information can be stuffed
into this parameter.

Internally, when you call FormsAuthentication.Encrypt, a 4K buffer is allocated to hold some of
the interim results of encrypting the data. The net result is that that you cannot exceed roughly 2000
characters in the userData parameter if you need to call the Encrypt method. However, because the
ultimate result needs to be stored in a cookie, you really only have 4096 bytes available for storing the
entire ticket in the cookie. By the time the encryption bloat and hex string conversions occur, the realis-
tic upper boundary on userData is around 900–950 characters. This still leaves a pretty hefty amount
of space for placing information into the forms authentication ticket. And it is certainly enough space
for common uses such as storing first name and last name, or storing a few IDs that are needed else-
where in the application.

In the sample code shown previously, the new FormsAuthentication instance is encrypted with
a call to FormsAuthentication.Encrypt, and the result is placed in the Value property of the
cookie that we started with. At this point, you now have a valid forms authentication cookie, with an
encrypted representation of a FormsAuthenticationTicket that includes custom data. Notice that
nowhere does the sample code need to rely on hard-coded values for determining date-time informa-
tion. Also, the sample does not call in to any configuration APIs to look up any of the configuration val-
ues for the forms authentication feature.

The last step in the sample is to add the forms authentication cookie into the response and then issue
the necessary redirect. The Response.Redirect call shown in the sample roughly mirrors what
occurs inside of that last portion of FormsAuthentication.RedirectFromLoginPage. Note that the
Redirect overload that is used issues a “soft” redirect. The second parameter to the method is passed
a false value, which means the remainder of the page will continue to run. Only when the page is done
executing, and the remainder of the HTTP pipeline completes, will ASP.NET send back the redirect to
the browser.

79301c06.indd 331 10/6/08 12:13:21 PM

332

Chapter 6: Forms Authentication

The call to GetRedirectUrl causes the forms authentication feature to find the appropriate value for the
redirect URL based on information in the query-string (the familiar RedirectURL query-string variable
you see in the address bar when you are redirected to a login page), or in the form post variables. Call-
ing GetRedirectUrl eliminates the need for you to write any parsing code for determining the correct
redirect target.

You can run the sample application by attempting to access a simple home page that displays the
UserData property on the ticket.

C#
 //Display some user data
 FormsAuthenticationTicket ft =
 ((FormsIdentity)User.Identity).Ticket;

 Response.Write(“Hello “ + ft.UserData);

VB.NET
 ‘Display some user data
 Dim ft As FormsAuthenticationTicket = (_
 CType(User.Identity, FormsIdentity)).Ticket

 Response.Write(“Hello “ & ft.UserData)

As you can see, after you jump through the hoops necessary to set the UserData in the ticket, it is very
handy and easy to get access to it elsewhere in an application. Hopefully in future releases, ASP.NET
will make it a bit easier to issue tickets with custom data as well as extending this functionality over to
the cookieless case.

Passing Tickets Across Applications
Another title for this section could be “how to roll a poor man’s single sign-on (SSO) solution.” In
ASP.NET 2.0 and ASP.NET 3.5, forms authentication includes the ability to pass forms authentication
tickets across applications. Although prior to 2.0 you could create a custom solution that passed the
forms authentication ticket around as a string, you had to write extra code to handle hopping the
ticket across applications.

ASP.NET 2.0 and ASP.NET 3.5 support setting the domain value of the forms authentication cookie
from inside of configuration. ASP.NET 2.0 and ASP.NET 3.5 also add explicit support built into the APIs
and the FormsAuthenticationModule for handling tickets that are passed using either query-strings
or form posts. As long as you follow the basic conventions expected by forms authentication, the work
of converting information sent in these alternative locations into a viable forms authentication ticket is
automatically done by ASP.NET.

Cookie Domain
The ASP.NET 2.0 and ASP.NET 3.5 forms authentication configuration section includes a domain attri-
bute. By default, this attribute is set to the empty string, which means that cookies issued by forms

79301c06.indd 332 10/6/08 12:13:21 PM

333

Chapter 6: Forms Authentication

authentication APIs will use the default value of the Domain property for a System.Web.HttpCookie.
As a result, the Domain property of the cookie will be set to the full DNS address for the issuing web-
site. For example, if a page is located at http://bhaidar-PC/login.aspx, the resulting cookie has a
domain of bhaidar-PC. On the other hand, if the full DNS address for the server is used in the URL
(http://bhaidar-PC.somedomain.com/login.aspx). Then the resulting cookie has its domain set
to bhaidar-PC.somedomain.com.

In ASP.NET 1.1, this was the only behavior supported by forms authentication, which made it problem-
atic when attempting to share cookies across websites that only shared a portion of the domain name.
For instance, you might need to authenticate users to bhaidar-PC.somedomain.com as well as
someotherapp.somedomain.com, but the set of users is the same for both applications.

With ASP.NET 2.0 and ASP.NET 3.5 this is easy to accomplish. Add the domain attribute to the
<forms /> element and set its value to the portion of the domain name that is shared across all of
your applications.

<forms … path=”/” domain=”somedomain.com” />

With this setting, each time a cookie is issued by forms authentication, the cookie’s domain value will be
set to somedomain.com. As a result, the browser will automatically send the cookie anytime you request a
URL where the network address ends with somedomain.com. Another nice side effect of this support for
the domain attribute in ASP.NET 2.0 and ASP.Net 3.5 is that renewed forms authentication cookies (remem-
ber that with sliding expirations enabled, cookies can be renewed as they age) will also pick up the same
value for the domain. In ASP.NET 1.1, if you enabled sliding expirations but you manually issued the forms
authentication cookie with a different domain than the default, it was possible that the cookie would be
automatically renewed by the FormsAuthenticationModule. When that happened in ASP.NET 1.1, it reis-
sued the cookie and never set the domain attribute on the new cookie.

Cross-Application Sharing of Ticket
The ability to customize the domain of the forms authentication cookie is useful when all of your appli-
cations live under a common DNS namespace. What happens, though, if your applications are located in
completely different domains? Companies that support multiple web properties, potentially with dif-
ferent branding, have to deal with this. The URLs of public websites are frequently chosen so as to be
easy for customers to remember and, thus, are not necessarily chosen for purposes of DNS naming
consistency. ASP.NET 2.0 and ASP.NET 3.5 have the ability to share forms authentication tickets across
arbitrary sites by passing the forms authentication ticket around in the query-string or in a form post
variable. This capability allows developers to intelligently flow authentication credentials across dis-
parate ASP.NET sites without forcing a website user to repeatedly log in.

Prior to ASP.NET 2.0, your only options were to manually create some type of workaround for this
or to purchase a third-party vendor’s single sign on (SSO) product. A number of developers, though,
really don’t need all the complexities and costs of full-blown SSO products. If the problem that you
need to solve is primarily centered on sharing forms authentication tickets across multiple ASP.NET
websites with different DNS namespaces, the support for passing forms authentication tickets across
ASP.NET 2.0 and ASP.NET 3.5 applications will be a good fit.

79301c06.indd 333 10/6/08 12:13:21 PM

334

Chapter 6: Forms Authentication

That leads to the question of when wouldn’t you use the cross-application capabilities in ASP.NET 2.0 and
ASP.NET 3.5? There are still valid reasons for using true SSO products, some of which are listed below:

	 1.	 You need to share authenticated users across heterogeneous platforms. For example you need
to support logging users in across UNIX-based websites and ASP.NET sites. Clearly forms
authentication won’t help here because there is no native support for the forms authentication
stack on web platforms other than ASP.NET.

	 2	 You need to share authenticated users across different untrusted organizations. This is a sce-
nario where loose “federations” of different organizations need some way for website custom-
ers to seamlessly interact with different websites, but need to do so in a way that does not force
the customer to constantly log in. For example, maybe a company wants the ability for a website
customer to seamlessly navigate over to a parcel-tracking site to retrieve shipment information,
and then over to a payment site to see the status of purchases and payments. Because each site
is run by a different company, it is very hard to solve this problem today. There are a number of
companies, including Microsoft, working on SSO solutions that can interoperate in a way allow-
ing for a seamless authentication experience for this type of problem.

	 3.	 You may need to map the credentials of a logged-in user to credentials for other back-end data
stores. For example, after logging in to a website the user may also have credentials in a main-
frame system or a back-end resource planning system. Some SSO products support the ability to
map authentication credentials so that a website user logs in once and then is seamlessly reau-
thenticated against these types of systems.

As you can see from this partial list, most of the SSO scenarios involve more complexity in the form
of other companies or other systems that are external to the website. Many extranet and internet sites
don’t need to solve these problems, or can live with comparatively simple solutions for reaching into
back-end data stores. For these types of sites, the cross-application support in forms authentication is a
lower-cost and easier solution to the single sign on problem.

How Cross-Application Redirects Work
By default, the “SSO-lite” functionality in ASP.NET 2.0 and ASP.NET 3.5 is not enabled. To turn it on,
you need to set the enableCrossAppRedirects attribute to true:

<forms … enableCrossAppRedirects=”true” />

Doing so turns on a few pieces of logic within forms authentication. First, the FormsAuthentication​
.RedirectFromLoginPage method has extra logic to automatically place a forms authentication ticket
into a query-string variable when it detects that it will be redirecting outside of the current application.
Second, the FormsAuthenticationModule will look on the query-string and in the form post variables
for a forms authentication ticket if it could not find a valid ticket in the other standard locations (that is,
in a cookie or embedded in the URL, for the cookieless case).

Because cookie-based tickets automatically flow across applications that share at least a portion of a DNS
namespace, you really only need to set enableCrossAppRedirects to true for the following cases:

You need to send a forms authentication ticket between applications that do not share any ❑❑

portion of a DNS namespace. In this case, the “domain” attribute isn’t sufficient to solve the
problem.

79301c06.indd 334 10/6/08 12:13:21 PM

335

Chapter 6: Forms Authentication

You need to send a cookieless ticket between different applications, regardless of whether or not ❑❑

the applications share the same DNS namespace. Cookieless tickets, by their very nature, are
limited to only URLs in the current application.

Cookieless Cross-Application Behavior
Examine the cookieless case first. You can create two sample applications and in configuration set up
forms authentication and the authorization rules as follows:

<authentication mode=”Forms”>
 <forms cookieless=”UseUri” />
</authentication>

<authorization>
 <deny users=”?”/>
</authorization>
<machineKey
 decryptionKey=”A225194E99BCCB0F6B92BC9D82F12C2907BD07CF069BC8B4”
 validationKey=”6FA5B7DB89076816248243B8FD7336CCA360DAF8”
/>

With this configuration, both applications are forced to use cookieless tickets. Additionally, both appli-
cations share common key information which ensures that a ticket from one application is consumable
by the other application.

To focus on the cross-application redirect issue, we will keep the rest of the application very simple.
Both applications will have a default.aspx page, and a login page. Both login pages (for now) will
simply issue a forms authentication ticket for a fixed username and then pass the user back to the
original requesting URL:

C#
FormsAuthentication.RedirectFromLoginPage(“testuser”, false);

VB.NET
FormsAuthentication.RedirectFromLoginPage(“testuser”, False)

After you end up on default.aspx, there is a button you can click to redirect yourself over to the other
application:

C#
Response.Redirect(“/cookielessAppB/default.aspx”);

VB.NET
Response.Redirect(“/cookielessAppB/default.aspx”)

79301c06.indd 335 10/6/08 12:13:21 PM

336

Chapter 6: Forms Authentication

The preceding code is in the sample application called cookielessAppA, so default.aspx redirects
over to the other sample application: cookielessAppB. If you were to run both sample applications,
and try to seamlessly ping-pong between the two applications, you would find yourself constantly log-
ging in. The culprit of course is that Response.Redirect that punts you to the other application; when
that redirect is issued, the cookieless credentials embedded in the current URL are lost.

Unfortunately, you can’t just call one API or use some new parameter on the Redirect method to
solve this problem when running in cookieless mode. Although FormsAuthentication.Redirect​
From​LoginPage has logic to store a ticket on the query-string, the scenario above is one where you
click on a link inside of one application, and it takes you over to a second application. For this case, you
need a wrapper around Response.Redirect that includes the logic to pass the forms authentication
ticket along with the redirection.

I created a simple query-string wrapper:

C#
public static class RedirectWrapper
{
 public static string FormatRedirectUrl(string redirectUrl)
 {
 HttpContext c = HttpContext.Current;
 if (c == null)
throw new InvalidOperationException(“You must have an active context to
perform a redirect”);

 //Don’t append the forms auth ticket for unauthenticated users or
 //for users authenticated with a different mechanism
 if (!c.User.Identity.IsAuthenticated ||
 !(c.User.Identity.AuthenticationType == “Forms”))
 return redirectUrl;

 //Determine if we need to append to an existing query-string or not
 string qsSpacer;
 if (redirectUrl.IndexOf(“?”) > 0)
 qsSpacer = “&”;
 else
 qsSpacer = “?”;

 //Build the new redirect URL
 string newRedirectUrl;
 FormsIdentity fi = (FormsIdentity)c.User.Identity;
 newRedirectUrl = redirectUrl + qsSpacer +
 FormsAuthentication.FormsCookieName + “=” +
 FormsAuthentication.Encrypt(fi.Ticket);

 return newRedirectUrl;
 }
}

79301c06.indd 336 10/6/08 12:13:21 PM

337

Chapter 6: Forms Authentication

VB.NET
Public NotInheritable Class RedirectWrapper
 Private Sub New()
 End Sub
 Public Shared Function FormatRedirectUrl(ByVal redirectUrl As String) As String
 Dim c As HttpContext = HttpContext.Current
 If c Is Nothing Then
Throw New InvalidOperationException(“You must have an active context to
perform a redirect”)
 End If

 ‘Don’t append the forms auth ticket for unauthenticated users or
 ‘for users authenticated with a different mechanism
 If (Not c.User.Identity.IsAuthenticated) OrElse _
 Not(c.User.Identity.AuthenticationType = “Forms”) Then
 Return redirectUrl
 End If

 ‘Determine if we need to append to an existing query string or not
 Dim qsSpacer As String
 If redirectUrl.IndexOf(“?”) > 0 Then
 qsSpacer = “&”
 Else
 qsSpacer = “?”
 End If

 ‘Build the new redirect URL
 Dim newRedirectUrl As String
 Dim fi As FormsIdentity = CType(c.User.Identity, FormsIdentity)
 newRedirectUrl = redirectUrl & _
 qsSpacer & _
 FormsAuthentication.FormsCookieName & _
 “=” & _
 FormsAuthentication.Encrypt(fi.Ticket)

 Return newRedirectUrl
 End Function
End Class

Given a query-string, the static method FormatRedirectUrl makes a few validation checks and then
appends a query-string variable with the forms authentication ticket to the URL. If the current request
doesn’t have an authenticated user, or if it’s not using forms authentication, calling the method is a no-op.
Assuming that there is a forms-authenticated user, the method determines whether or not it needs to add
a query-string to the current URL, or if instead it just needs to append a query-string variable (there may
already be one or more query-strings on the URL, hence the need to check for this condition).

Last, the method reencrypts the current user’s forms authentication ticket back into a string, and it
places it on the query-string. Notice how the value of FormsAuthentication.FormsCookieName is
used as the name of the query-string variable. Even though the code isn’t really sending a cookie, the
FormsCookieName is the identifier used for a forms authentication ticket regardless of whether the
ticket is in the query-string, in a form post variable or contained in a cookie.

79301c06.indd 337 10/6/08 12:13:21 PM

338

Chapter 6: Forms Authentication

To use the new helper method, we can rework the previous redirect logic to look like this:

C#
Response.Redirect(
 RedirectWrapper.FormatRedirectUrl(“/cookielessAppB/default.aspx”));

VB.NET
Response.Redirect(
 RedirectWrapper.FormatRedirectUrl(“/cookielessAppB/default.aspx”))

You can update both sample applications to include the new helper class in their App_Code directories.
Also, update the forms authentication configuration to enable cross-application redirects. This is neces-
sary for the forms authentication module to recognize the incoming ticket on the query-string properly.

<forms cookieless=”UseUri” enableCrossAppRedirects=”true” />

Now when you use both applications, you can seamlessly ping-pong between both applications with-
out being challenged to log in again. Each hop from application A to application B results in a redirect
underneath the hood that includes the ticket on the query-string:

http://localhost/cookielessAppB/default.aspx?.ASPXAUTH=F2CB90DA66DE1044FEEE4FE676
AB6C1226EF04F5FDE104002CEA29448E2CC0CD3AF7BA33E4022C5E786BAD23F98163F708AB21A52893
9502ADBCAB5031C918F47AD1A317AC183883

The FormsAuthenticationModule detects this and properly converts the query-string variable back
into a cookieless ticket embedded on a URL. Due to the reliance on redirect behavior, you can’t post any
data from one application to the other. Instead, you have to pass information between applications with
query-string variables. Even if you attempt to use a form post as a mechanism for transferring from one
application to another, you can’t avoid at least one redirect. When the FormsAuthenticationModule
in the second application issues a forms authentication ticket based on the ticket that was carried in the
query-string, the module issues a redirect to embed the new ticket onto the URL. The only way to avoid
a redirect in this case is if you run in cookie mode, which we shall see shortly.

As an aside, there is one slight quirk in how this all works. Remember earlier in the discussion on
cookieless tickets where it was mentioned that the requireSSL attribute in the <forms /> element is
ignored when using cookieless tickets? If you enable cross application redirects, the requireSSL attri-
bute still affects the FormsAuthenticationModule. Under the following conditions, the Forms​
AuthenticationModule will ignore any query-string or forms variable containing a ticket:

The ❑❑ requireSSL attribute is set to true.

The module could not find a ticket either in a cookie or embedded in a URL, and hence reverted ❑❑

to looking in the query-string and forms variable collection.

The current connection is not secured with SSL.❑❑

If you think you have cross-application redirects setup properly, and you are still being challenged
with a login prompt, double-check and make sure that you have not set requireSSL to true and then
attempted to send the ticket to another application over a non-SSL connection.

79301c06.indd 338 10/6/08 12:13:21 PM

339

Chapter 6: Forms Authentication

Cookied Cross-Application Behavior
You can use a similar application to the cookieless sample to also show cross-application redirects in
the cookied case. Again using two sample applications, both applications need to share a common
configuration:

<forms cookieless=”UseCookies” enableCrossAppRedirects=”true”
 path=”/cookiedAppA”/>

<machineKey
 decryptionKey=”A225194E99BCCB0F6B92BC9D82F12C2907BD07CF069BC8B4”
 validationKey=”6FA5B7DB89076816248243B8FD7336CCA360DAF8”
/>

To simulate isolation of the forms authentication cookies, each application explicitly sets the path attri-
bute as shown above. Because this sample uses cookies, the path attribute prevents the browser from
sending the forms authentication cookie for one application over to the second application. Remember
that setting the path attribute only takes effect when using cookied modes (for example, setting the path
attribute would have no effect on the previous cookieless example). For starters, we will use the same
redirection helper as we did earlier, and pages in both applications will issue a Response.Redirect to
get to the second application.

When you run the sample applications, you get almost the same result as the cookieless applications.
You can bounce around between applications without the need to log in again. However, one notice-
able difference is the lack of a second redirect each time you transition from one application to another.
When the FormsAuthenticationModule converts the query-string variable into a forms authentica-
tion ticket encapsulated inside of a cookie, it does not need to issue a redirect. Instead, it just sets a
new cookie in the response, and the remainder of the request is allowed to execute. As a result, when
you transition from application A to application B, the URL in the browser address bar still retains the
query-string variable used during the redirect:

http://localhost/cookiedAppB/default.aspx?.ASPXAUTH=23CB12E603239A53830866D67D38DE6
E8AAAA3647A05220FB278A5B6A3A0C0927FC498D3E6ED46AEBD7EF770AC3359CABE08EDC63385D8C058
B58D0C63782A27F948A8A8BFF5DFE9CE2C78463C68E1C0EB390B6C89CB594D21564EF94B2866CA112AF
E132F904FF87FF728B6DD3A48E6

Although it looks a bit strange, this is actually innocuous. After you start navigating around in the sec-
ond application, the query-string variable will go away:

	 1.	 When the current page posts back to itself, the query-string variable will flow down to the
application.

	 2.	 The FormsAuthenticationModule first looks for valid tickets in cookies and embedded in the
URL. Because it finds a valid ticket in a cookie, it never makes it far enough to look at the query-
string variable.

	 3.	 The current page runs.

	 4.	 Eventually you click on a link or trigger a redirect to some other page in the application. When
this occurs the query-string is not sent along with the request, and as a result other pages in the
application won’t have the ticket sitting in the address bar.

79301c06.indd 339 10/6/08 12:13:21 PM

340

Chapter 6: Forms Authentication

Because the point at which step 4 occurs is probably not deterministic (a website user may be able to
enter into the application from any number of different pages), the query-string variable can end up in
the address bar for any of your entry pages.

As with cookieless cross application redirection, if you happen to set requireSSL to true in your appli-
cations, the hop from one application to another will cause the FormsAuthenticationModule to check
the secured state of the connection. If the module detects that the cross-application redirect occurred on
a non-SSL connection, it will throw an HttpException, just as it would for the cookieless scenario.

Unlike the cookieless case, though, you do have another option for hopping credentials from one appli-
cation over to another. You can choose to post the forms authentication ticket from one application to
another because you don’t need to worry about the extra redirect the FormsAuthentication​Mod-
ule performs when embedding the ticket into the URL. To show this, create another page in the first
application:

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server” >
 <div>
 <asp:TextBox ID=”txtSomeInfo” runat=”server”></asp:TextBox>

 <asp:Button ID=”Button1” runat=”server”
 PostBackUrl=”/cookiedAppB/ReceivePostFromAnotherApplication.aspx”
 Text=”Button” />
 </div>
 <input id=”Hidden1” type=”hidden” runat=”server” />
 </form>
</body>
</html>

This page markup takes advantage of a feature that was originally introduced in ASP.NET 2.0 called
cross-page postings. Although this sample application is not showing the primary purpose of cross-page
posting (which is posting between two different pages within the same application), it turns out that
you can use cross-page posting just as well to make it easier to post form data across applications. The
markup above has set the PostBackUrl property on a standard Button control to a URL located in
the second sample application. By doing so, ASP.NET injects some extra information into the page that
causes the page to post back to the second application.

In addition to using cross-page posting, the code-behind for the page sets some values for the hidden
control that is on the page:

C#
 protected void Page_Load(object sender, EventArgs e)
 {
 this.Hidden1.ID = FormsAuthentication.FormsCookieName;
 this.Hidden1.Value =

79301c06.indd 340 10/6/08 12:13:22 PM

341

Chapter 6: Forms Authentication

 FormsAuthentication.Encrypt(((FormsIdentity)User.Identity).Ticket);

 }

VB.NET
 Protected Sub Page_Load(_
 ByVal sender As Object, _
 ByVal e As EventArgs) Handles Me.Load()
 Me.Hidden1.ID = FormsAuthentication.FormsCookieName
 Me.Hidden1.Value = _
 FormsAuthentication.Encrypt((CType(User.Identity, FormsIdentity)).Ticket)
 End Sub

The hidden control has its ID set to the same value as the forms authentication cookie. This is necessary
because when the request flows to the second application, one of the places the FormsAuthentication​
​​​Module will look for a forms authentication ticket is in Request.Form[“name of the forms
authentication cookie”]. The value of the hidden control is set to the encrypted value of the
FormsAuthenticationTicket for the current user. This is the same operation we saw earlier for the
redirection scenarios, with the difference being that in this sample the forms authentication ticket is
being packaged and stored inside of a hidden form variable rather than a query-string variable.

When you request this page from the first application in the browser, viewing the source shows how
everything has been lined up for a successful cross-page post. An abbreviated version of the <form />
element is shown here:

<form method=”post” action=”PostToAnotherApplication.aspx” id=”form1”>

<input type=”hidden” name=”__VIEWSTATE” id=”__VIEWSTATE” value=”/
wEPDwUKMTUyMjMyNTkyOWRk/xqxNcEwAvNgbY4ERISdsKcovBo=” />

<input name=”txtSomeInfo” type=”text” id=”txtSomeInfo” />

<input id=”Button1” type=”submit” name=”Button1” value=”Button”
 onclick=”javascript:WebForm_DoPostBackWithOptions(new WebForm_PostBackO
ptions(‘Button1’,’’,false,’’, ‘/cookiedAppB/ReceivePostFromAnotherApplication.
aspx’,false,false))” />

<input name=”.ASPXAUTH” type=”hidden” id=”.ASPXAUTH”
value=”8CA4D2EB5407E67A6E9950337562ABDEDDBA305644DB3E4B51490F715B4D313A275CE9FB6912
7BE6780462B6570DF8347F282E8FA25E28B1958B13FD710EDF956BD315E40F64B4D44FE3534BA857BA2
F99225E63EA4E65FD40357D995DA1E3F8E4C4D7BAA6E8A4CFC828D357EECEDC27” />

</form>

The forms authentication ticket is packaged up in the hidden form variable. You can also see that the
form’s action is set to PostToAnotherApplication.aspx, which at first glance doesn’t look like a page
in another application. The form will actually post to another application because the button on the form
has a click handler that calls WebForm_DoPostBackWithOptions. This method is one of the many
ASP.NET client-side JavaScript methods returned from webresource.axd (webresource.axd is the
replacement for the JavaScript files that you used to deploy underneath the aspnet_client subdirec-
tory back in ASP.NET 1.1 and 1.0).

79301c06.indd 341 10/6/08 12:13:22 PM

342

Chapter 6: Forms Authentication

When you press the button on this page, two things occurs:

	 1.	 The WebForm_DoPostBackWithOptions client-side method sets the action attribute on the
client-side form to the value /cookiedAppB/ReceivePostFromAnotherApplication.aspx.

	 2.	 The client-side method returns, at which point because the button is of type “submit,” the
client-side form is submitted by the browser, using the “action” that was just set.

As a result of this, you have a form-submit from a page in Application A flowing over to application
B. When the request hits application B, it starts running through the HTTP pipeline. The Forms​
AuthenticationModule sees the request, and attempts to find a forms authentication ticket. Eventu-
ally, the module looks in Request.Form[“.ASPXAUTH”] for a forms authentication ticket. Because there
is a hidden field on the form called .ASPXAUTH, the module is able to find the string value stored there.
The module then converts the string value into a forms authentication ticket and sets a cookie on the
response that contains this ticket.

At this point the request continues to run, which in the case of the sample application results in a call
on the page to:

C#
Response.Write(“The posted value was: “ + Request.Form[“txtSomeInfo”]);

VB.NET
Response.Write(“The posted value was: “ & Request.Form(“txtSomeInfo”))

If you run the sample application, you will see that the preceding line of code will successfully play
back to you whatever value you typed into the text box back in application A. The other nice thing
about this approach is that not only are posted variables retained across the two applications, when you
end up on the page in the second application there isn’t the somewhat odd (maybe unsettling?) behav-
ior of the authentication ticket showing up in the address bar of the browser. Additionally, if you view
the source of the second page in the browser, there isn’t any authentication ticket there either. For both
of these reasons, when running sites with cookie-based forms authentication, POST-based transfers of
control between applications are preferred to the approach that relies on calling Response.Redirect.

One last comment on the cross-page posting case: remember that you always need to explicitly set the
keys in the <machineKey /> element for all participating applications. Without this, the forms authen-
tication ticket in the hidden field will not be decryptable in the second application.

Cookie-based “SSO-Lite”
Now that you have seen the various permutations of passing forms authentication tickets between
applications, let’s tie the concepts together with some sample applications that use a central login form.
This approach is conceptually similar to how Passport works with all tickets being issued from central
login application. Note that this design only works with cookie-based forms authentication because it
relies on issuing forms authentication cookies that can authenticate the browser back to the original
application. Websites that use cookieless forms authentication need more explicit code inside of each
application due to the need to manually create some approach for hopping authentication tickets from
one application to another.

79301c06.indd 342 10/6/08 12:13:22 PM

343

Chapter 6: Forms Authentication

The general design of our “hand-rolled” single sign-on solution is shown in Figure 6-6.

Step 1: Attempt to access
secured pages in Application A

Step 4: Central login app sends
back login form.

Step 5: Browser
user posts back
credentials

Step 9: App B
redirects to local
login page

Step 10: Local login
page redirects to
central login app.

Step 11: Central login
app detects user
already logged in.
Issues ticket on query
string and redirects
back to app B.

Step 6: Central login
page redirects to self.

Step 8: User access
another application.

Step 7: Central login page
redirects back to app A with
credentials on the query string

Step 2: App A redirects to local
login page

Step 3: Local login page
redirects to central login app

Local Login.aspxApplication A

Browser User

Central Login.aspx

Local Login.aspx

Application B

Central login
management

Figure 6-6

79301c06.indd 343 10/6/08 12:13:22 PM

344

Chapter 6: Forms Authentication

The desired behavior of the solution is described in the following list:

	 1.	 A user attempts to access a secured application, in this case Application A. At this point, the
user has not logged in anywhere and thus has no forms authentication tickets available.

	 2.	 When the request reaches application A, it detects that the application allows authenticated
users only. As a result, it redirects the browser to a login page that is local to the application.

	 3.	 The local login page does not actually send back a login form to the user at this point. Instead,
the local login form places some information onto the query-string and then redirects to a cen-
tral login application.

	 4.	 The central login application detects that the user has never logged in against it, and so it redi-
rects the user to a login page in the central login application. This is the only point at which the
browser user ever sees a login UI.

	 5.	 At this point the browser user enters credentials into a form and submits the form back to the
central login application.

	 6.	 Assuming that the credentials are valid, the login page in the central login application redi-
rects back to itself. This is because the login page handles both interactive logins and nonin-
teractive logins.

	 7.	 When the login page redirects to itself, it detects that the user already has a valid forms authen-
tication ticket for the central login application. So instead, the login page clones the forms
authentication ticket and sends this new ticket by way of a redirect back to application A. In
Application A, the FormsAuthenticationModule will see the ticket on the query-string, con-
vert it into a cookie, and then start running the original page that the user was attempting to
access back in step 1.

	 8.	 Some time later, the user attempts to access a secured page in application B.

	 9.	 Because there is no forms authentication ticket for application B, it redirects to the local login
page. As with application A though, the local login page just exists to place information on the
query-string and redirect to the central login application.

	10.	 When the redirect reaches the login page in the central login application, the forms authentica-
tion ticket issued back in step 6 will flow along with the request. As a result, the login page
detects that the user already logged in.

	11.	 Rather than sending back a login form, the login page creates another clone of the forms authen-
tication ticket and places it on a query-string. It then redirects back to application B.

	12.	 The FormsAuthenticationModule in application B converts the forms authentication ticket on
the query-string into a forms authentication cookie. The original page that the user requested
back in step 8 then runs.

You can see that the primary underpinning of the SSO-lite solution in forms authentication is the ability
to pass forms authentication tickets across disparate applications. A website user logs in against a cen-
tral application, which results in a forms authentication cookie being sent to the user’s browser. That
forms authentication ticket becomes the master authentication ticket for all subsequent attempts to
access other sites.

Whenever a participating website redirects back into the central login application, the master forms
authentication cookie is sent by the user’s browser to the login page in the central application. The cen-
tral login page can then crack open this ticket and extract most of the values in it, and create a new

79301c06.indd 344 10/6/08 12:13:22 PM

345

Chapter 6: Forms Authentication

forms authentication ticket. The new ticket is what is packaged on the query-string and sent back to
the original application by way of a redirect.

The benefit of generating application-specific forms authentication tickets off of the central application’s
forms authentication ticket is that all participating applications receive a forms authentication ticket
with a common set of issue and expiration dates. It is the central login application that defines for how
long the master ticket is valid (if sliding expirations are even allowed). The cloned tickets for all of the
participating applications simply reflect these settings as established in the central login application.

Now that you have reviewed the conceptual design, it’s time to drill into the actual implementation.
There are two important pieces of information that all participating applications need to send over to
the central application:

The URL of the page that was originally requested in the application❑❑

The desired cookie path that should be used when creating a forms authentication ticket in the ❑❑

participating application

The first piece of information is pretty intuitive. Because you want your SSO-lite solution to roughly
mirror the standard forms authentication behavior, we need the website user to eventually end up on
the page that was originally requested. However, the second piece of information is very important to
get right because the solution will be issuing forms authentication tickets in one place (the central login
application), but the ticket needs to be converted into a valid cookie in a completely different place (the
FormsAuthenticationModule of the participating application).

It turns out that the login in forms authentication for handling cross-application redirects is dependent on
the CookiePath property of FormsAuthenticationTicket. When a FormsAuthenticationModule
receives a ticket on the query-string, it does not look at the path attribute set in the <forms /> element
for the application. Instead, when the module cracks open the ticket that was sent on the query-string,
it uses the CookiePath that it finds there as the value for the Path property on the resulting forms
authentication HttpCookie.

In our SSO-lite solution, the two necessary pieces of information are passed from participating applica-
tions to the central login application with two query-string variables:

CustomCookiePath❑❑ : Each participating application sets this value to FormsAuthentication​
.CookiePath. That has the effect of ensuring the forms authentication ticket issued inside of
each application actually uses the path as set in each application’s configuration.

CustomReturnUrl❑❑ : Each participating application sets this value to the original URL that the
website user was attempting to access. The central login application eventually issues a redirect
back to this URL.

For those of you that poke around a bit in the internal workings of forms authentication, you may be
wondering why the solution needs a custom definition of a return URL. Whenever forms authentication
performs its automatic redirect-to-login-page logic, there is a query-string variable called ReturnUrl. You
cannot overload this query-string variable for the purposes of cross-application redirects because forms
authentication only places a server-relative virtual path into this variable. Forms authentication does not
have the ability in ASP.NET 2.0 and ASP.NET 3.5 to add the DNS or server name into the ReturnUrl
variable (that is, forms authentication never prepends http://some.server.address.here/ to this
variable).

79301c06.indd 345 10/6/08 12:13:22 PM

346

Chapter 6: Forms Authentication

An SSO-lite solution would not be very useful, though, if the only return URLs sent to the central login
application were to other applications deployed on the same IIS server. In fact, if that were the only
problem you were trying to solve, chances are all you would need to do is set the domain attribute in
configuration. As a result, the SSO-lite solution uses the CustomReturnUrl variable to hold the fully
qualified address of the original page the website user was attempting to access. This ensures that the
central login application can exist in a completely different DNS namespace from any of the participat-
ing applications.

Sample Participating Application
The web.config for a participating application is defined as shown here:

<configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0”>
 <appSettings>
 <add key=”centralLoginUrl”
 value=”http://bhaidar-PC/CentralLogin/Login.aspx”/>
 </appSettings>
 <system.web>

 <machineKey
 decryptionKey=”A225194E99BCCB0F6B92BC9D82F12C2907BD07CF069BC8B4”
 validationKey=”6FA5B7DB89076816248243B8FD7336CCA360DAF8”
 />

 <authentication mode=”Forms”>
 <forms loginUrl=”Login.aspx”
 cookieless=”UseCookies” enableCrossAppRedirects=”true”
 path=”/AppAUsingCentralLogin” slidingExpiration=”False”
 />
 </authentication>

 <authorization>
 <deny users=”?”/>
 </authorization>

 </system.web>
</configuration>

The bolded portions of the configuration require some explanation. First, the <appSettings /> vari-
able defines the full URL needed to reach the login page in the central login application. You would
need to set this in the configuration of every participating application so that applications know where
to send the authentication redirect. The enableCrossAppRedirects setting is necessary so that the
FormsAuthenticationModule inside the application will look in the query-string or form post vari-
ables for a ticket. With this setting turned on, the participating application can successfully convert
tickets send from the central application back into an application-specific forms authentication ticket.

Last, note that slidingExpiration is set to false. Because the central login application issues the
master forms authentication ticket, it is the timeout and slidingExpiration settings of the central
login application that take precedence. You don’t want participating applications to be renewing forms
authentication tickets; rather, you want the central login application to do this for you.

79301c06.indd 346 10/6/08 12:13:22 PM

347

Chapter 6: Forms Authentication

Because the configuration above denies access to all anonymous users, any attempt to access a page in the
application results in a redirect to the local login page. The local version of Login.aspx is shown here:

C#
 protected void Page_Load(object sender, EventArgs e)
 {
 Redirector.PerformCentralLogin(this);
 }

VB.NET
 Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs) _
 Handles Me.Load
 Redirector.PerformCentralLogin(Me)
 End Sub

It is intentionally kept simple because you don’t want to duplicate the redirection login in every single
application. In this case, there is a static helper class called Redirector that has a single helper method
called PerformCentralLogin.

C#
public static class Redirector
{
 //snip….
 private static string centralLoginUrl;

 static Redirector()
 {
 centralLoginUrl = ConfigurationSettings.AppSettings[“centralLoginUrl”];

 //snip…
 }

 public static void PerformCentralLogin(Page p)
 {
 string redirectUrl =
 FormsAuthentication.GetRedirectUrl(string.Empty, false);

 //snip…
 string baseServer = p.Request.Url.DnsSafeHost;

 string customRedirectUrl = “http://” + baseServer + redirectUrl;

 p.Response.Redirect(
 centralLoginUrl + “?CustomReturnUrl=” +
 p.Server.UrlEncode(customRedirectUrl) +
 “&CustomCookiePath=” +
 p.Server.UrlEncode(FormsAuthentication.FormsCookiePath));
 }
}

79301c06.indd 347 10/6/08 12:13:22 PM

348

Chapter 6: Forms Authentication

VB.NET
Public NotInheritable Class Redirector
 //snip…
 Private Shared centralLoginUrl As String

 Shared Sub New()
 centralLoginUrl = ConfigurationSettings.AppSettings(“centralLoginUrl”)

 //snip…
 End Sub

 Public Shared Sub PerformCentralLogin(ByVal p As Page)
 Dim redirectUrl As String = _
 FormsAuthentication.GetRedirectUrl(String.Empty, False)
 //snip…
 Dim baseServer As String = p.Request.Url.DnsSafeHost

 Dim customRedirectUrl As String = “http://” & baseServer & redirectUrl

 p.Response.Redirect(centralLoginUrl & _
 “?CustomReturnUrl=” & _
 p.Server.UrlEncode(customRedirectUrl) & _
 “&CustomCookiePath=” & _
 p.Server.UrlEncode(FormsAuthentication.FormsCookiePath))
 End Sub
End Class

For simplicity, I placed the static class definition into the App_Code directory of each participating
application. In a production application, you would take this one step further and at least compile the
code into a bin-deployable assembly, if not the GAC.

When the Redirector class is first used, the static constructor runs. For now, the code snippet shows
only part of the work in the static constructor where it fetches the central login URL once for future use.
The single parameter to the PerformCentralLogin method is a reference to the current page. This
ensures the helper method has access to any request-specific objects necessary to build up the redirect
information. The PerformCentralLogin method fetches the redirect URL using FormsAuthentication​
.GetRedirectUrl. At this point, calling GetRedirectUrl works because it returns the virtual path to
the originally requested page. However, as noted earlier, the path lacks the server information neces-
sary to allow redirects to work against any arbitrary set of servers and DNS namespaces.

Ignoring some other functionality for a second, the method fetches the server portion of the current URL.
With both the server’s address, and the virtual path in hand, the method constructs the fully qualified
redirect path. The method can now redirect to the central login application’s login page, including the
fully qualified return URL in the CustomReturnUrl query-string variable and the correct cookie path
information for the forms authentication ticket in the CustomCookiePath query-string variable.

So, the net result of the original call in the Load event of Login.aspx is that the participating applica-
tion silently constructs and issues a redirect into the central login application. No user interface for
login is ever returned by a participating application.

Let’s return the code that was snipped out earlier. The following includes bolded code that shows some
additional logic:

79301c06.indd 348 10/6/08 12:13:22 PM

349

Chapter 6: Forms Authentication

C#
public static class Redirector
{
 private static Dictionary<string, string> pages;
 private static string centralLoginUrl;

 static Redirector()
 {
 centralLoginUrl = ConfigurationSettings.AppSettings[“centralLoginUrl”];

 //Register page mappings to force correct casing for the cookie
 //that will eventually be issued.
 pages =
 new Dictionary<string, string>(StringComparer.InvariantCultureIgnoreCase);

 pages.Add(“/AppAUsingCentralLogin/Default.aspx”,
 “/AppAUsingCentralLogin/Default.aspx”);

 pages.Add(“/AppAUsingCentralLogin/AnotherPage.aspx”,
 “/AppAUsingCentralLogin/AnotherPage.aspx”);

 }

 public static void PerformCentralLogin(Page p)
 {
 string redirectUrl =
 FormsAuthentication.GetRedirectUrl(string.Empty, false);

 //Fix the casing of the redirect URL to prevent problems with new cookies
 //being issued for a request with incorrect casing on the URL.
 redirectUrl = pages[redirectUrl];
 string baseServer = p.Request.Url.DnsSafeHost;

 string customRedirectUrl = “http://” + baseServer + redirectUrl;

 p.Response.Redirect(
 centralLoginUrl + “?CustomReturnUrl=” +
 p.Server.UrlEncode(customRedirectUrl) +
 “&CustomCookiePath=” +
 p.Server.UrlEncode(FormsAuthentication.FormsCookiePath));
 }
}

VB.NET
Public NotInheritable Class Redirector
 Private Shared pages As Dictionary(Of String, String)
 Private Shared centralLoginUrl As String

 Shared Sub New()
 centralLoginUrl = ConfigurationSettings.AppSettings(“centralLoginUrl”)

 ‘Register page mappings to force correct casing for the cookie
 ‘that will eventually be issued.

79301c06.indd 349 10/6/08 12:13:23 PM

350

Chapter 6: Forms Authentication

 pages = _
 New Dictionary(Of String, String)(StringComparer.InvariantCultureIgnoreCase)

 pages.Add(“/AppAUsingCentralLogin_vb/Default.aspx”, _
 “/AppAUsingCentralLogin_vb/Default.aspx”)

 pages.Add(“/AppAUsingCentralLogin_vb/AnotherPage.aspx”, _
 “/AppAUsingCentralLogin_vb/AnotherPage.aspx”)

 End Sub

 Public Shared Sub PerformCentralLogin(ByVal p As Page)
 Dim redirectUrl As String =
 FormsAuthentication.GetRedirectUrl(String.Empty, False)
 ‘Fixup the casing of the redirect URL to prevent problems
 ‘with new cookies being issued for a request with
 ‘incorrect casing on the URL.
 redirectUrl = pages(redirectUrl)
 Dim baseServer As String = p.Request.Url.DnsSafeHost

 Dim customRedirectUrl As String = “http://” & baseServer & redirectUrl

 p.Response.Redirect(centralLoginUrl & _
 “?CustomReturnUrl=” & _
 p.Server.UrlEncode(customRedirectUrl) & _
 “&CustomCookiePath=” & _
 p.Server.UrlEncode(FormsAuthentication.FormsCookiePath))
 End Sub

End Class

The bolded code in the preceding code deals with a quirk in cookie handling. If you depend on setting
the Path property of an HttpCookie, the path information is case-sensitive. For many developers, using
forms authentication this isn’t an issue because forms authentication defaults to a path of /. However,
when putting together this sample, there were some frustrating moments before realizing that some of
the test URLs I was using had incorrect casing compared to the path of the forms authentication cookie.

If you plan to create your own SSO-lite solution, and if you intend to segment forms authentication tick-
ets between applications through the use of a cookie’s path property, you need to be very careful about
how URLs are handled in your code. In the case of the sample SSO-lite solution, the bolded code is a
simple workaround for ensuring proper casing. The helper class holds a dictionary containing every
URL in the application. The trick here is that the dictionary uses a case-insensitive string comparer,
and it uses the invariant culture. This means whenever a lookup is made into the dictionary, the key
comparison ignores case, and treats culture-sensitive characters in a neutral manner.

When the PerformCentralLogin method runs, it always takes the redirect URL as returned from forms
authentication and converts it into the correct casing. The theory here is that if this method is called, it is
very likely that it is being called due to an end user (like myself) accidentally typing in the wrong casing
for a URL in the IE address bar. By performing a lookup into the static dictionary, the method can convert
any arbitrary casing on the redirect URL into a URL with correct casing. Because the SSO-lite solution
does partition forms authentication tickets with paths other than / (from the configuration a few pages

79301c06.indd 350 10/6/08 12:13:23 PM

351

Chapter 6: Forms Authentication

back, the current application we are looking at uses a cookie path of /AppAUsingCentralLogin), it is
important to perform this conversion prior to sending the redirect URL to the central login application.

 Central Login Application
The configuration for the central login application pretty much mirrors that of the participating
applications.

<configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0”>
 <system.web>

 <machineKey
 decryptionKey=”A225194E99BCCB0F6B92BC9D82F12C2907BD07CF069BC8B4”
 validationKey=”6FA5B7DB89076816248243B8FD7336CCA360DAF8”
 />

 <authentication mode=”Forms”>
 <forms cookieless=”UseCookies” enableCrossAppRedirects=”true”
 path=”/CentralLogin” slidingExpiration=”true”
 timeout=”30”/>
 </authentication>

 <authorization>
 <deny users=”?”/>
 </authorization>

 </system.web>
</configuration>

Unlike the participating applications, the central login application does not register any URL in the
<appSettings /> section. In fact, the SSO-lite solution shown here has zero knowledge of any of the
other participating applications.

The bolded attributes in the <forms /> element are of interest because these settings not only define
behavior for the master forms authentication ticket issued by the central login application, the set-
tings also influence the ticket behavior for the participating application. Of course, enableCrossApp​
Redirects is set to true because without that, there is no way to hop tickets between applications.
The path attribute ensures that the forms authentication ticket for the central login application stays
in the central login application. This is why I refer to the forms authentication ticket from the central
login application as the “master” forms authentication ticket. After it is issued, the cookie never flows
to any other application.

The slidingExpiration and timeout attributes define the expiration behavior for the master forms
authentication ticket. Because the master ticket is also cloned and used as the source for tickets sent to
other participating applications, this means these attributes also define the expiration behavior for all
other applications. In the case above, the central login application is using the standard timeout of 30
minutes, and it is allowing sliding expirations. Remember, though, that slidingExpiration is always
set to false in all of the participating applications. This point will be expanded on below when I cover
the login page.

79301c06.indd 351 10/6/08 12:13:23 PM

352

Chapter 6: Forms Authentication

The login page in the central login application normally would have the user interface for collecting
credentials and validating them. However, because this is just a sample that focuses on the mechanics
of passing tickets around, the actual “login” on the page is pretty basic and uses a fixed credential:

C#
 protected void Button1_Click(object sender, EventArgs e)
 {
 FormsAuthentication.SetAuthCookie(“testuser”, false);

 string redirectUrl = Request.QueryString[“CustomReturnUrl”];
 string cookiePath = Request.QueryString[“CustomCookiePath”];

 Response.Redirect(“Login.aspx?CustomReturnUrl=” + redirectUrl +
 “&CustomCookiePath=” + cookiePath, true);
 }

VB.NET
 Protected Sub Button1_Click(_
 ByVal sender As Object, _
 ByVal e As EventArgs) Handles Button1.Click
 FormsAuthentication.SetAuthCookie(“testuser”, False)

 Dim redirectUrl As String = Request.QueryString(“CustomReturnUrl”)
 Dim cookiePath As String = Request.QueryString(“CustomCookiePath”)

 Response.Redirect(“Login.aspx?CustomReturnUrl=” & redirectUrl &
 “&CustomCookiePath=” & cookiePath, True)
 End Sub

Rather than calling FormsAuthentication.RedirectFromLoginPage, the button click handler for
login calls SetAuthCookie. Calling SetAuthCookie ensures that the master forms authentication
cookie is set in the Response, but it also allows the login page to do other work and then programmati-
cally issue a redirect.

Because the CustomReturnUrl and CustomCookiePath attributes are still needed, the click event han-
dler simply moves the values from the inbound Request query-string to the query-string variables on
the redirect. The important thing to note about the click event handler is that it will only be called when
an interactive login is required. The very first time website users enter any participating site, they will
end up with the interactive login and their response will flow to the click event handler. However, as
the following code shows, the login page also supports noninteractive login:

C#
 protected void Page_Load(object sender, EventArgs e)
 {
 //If the user is already authenticated, then punt them back
 //to the original application, but place a new forms authentication
 //ticket on the query string.
 if (User.Identity.IsAuthenticated == true)
 {
 //This information comes from the forms authentication cookie for the

79301c06.indd 352 10/6/08 12:13:23 PM

353

Chapter 6: Forms Authentication

 //central login site.
 FormsIdentity fi = (FormsIdentity)User.Identity;
 FormsAuthenticationTicket originalTicket = fi.Ticket;

 //For sliding expirations, ensure the ticket is periodically refreshed.
 DateTime expirationDate;
 if (FormsAuthentication.SlidingExpiration == true)
 {
 TimeSpan timeout =
 originalTicket.Expiration.Subtract(originalTicket.IssueDate);
 expirationDate =
 originalTicket.IssueDate.Add(new TimeSpan(timeout.Ticks / 2));
 expirationDate.AddMinutes(1);
 }
 else
 expirationDate = originalTicket.Expiration;

 FormsAuthenticationTicket ft =
 new FormsAuthenticationTicket
 (originalTicket.Version,
 originalTicket.Name,
 originalTicket.IssueDate,
 expirationDate,
 originalTicket.IsPersistent,
 originalTicket.UserData,
 Request.QueryString[“CustomCookiePath”]
);

 string redirectUrl = Request.QueryString[“CustomReturnUrl”];

 Response.Redirect(
 redirectUrl + “?” +
 FormsAuthentication.FormsCookieName + “=” +
 FormsAuthentication.Encrypt(ft));
 }
 }

VB.NET
 Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs) _
 Handles Me.Load
 ‘If the user is already authenticated, then punt them back
 ‘to the original application, but place a new forms authentication
 ‘ticket on the query string.
 If User.Identity.IsAuthenticated = True Then
 ‘This information comes from the forms authentication cookie for the
 ‘central login site.
 Dim fi As FormsIdentity = CType(User.Identity, FormsIdentity)
 Dim originalTicket As FormsAuthenticationTicket = fi.Ticket

 ‘For sliding expirations, ensure the ticket is periodically refreshed.
 Dim expirationDate As DateTime
 If FormsAuthentication.SlidingExpiration = True Then
 Dim timeout As TimeSpan = _
 originalTicket.Expiration.Subtract(originalTicket.IssueDate)

79301c06.indd 353 10/6/08 12:13:23 PM

354

Chapter 6: Forms Authentication

 expirationDate = _
 originalTicket.IssueDate.Add(New TimeSpan(timeout.Ticks / 2))
 expirationDate.AddMinutes(1)
 Else
 expirationDate = originalTicket.Expiration
 End If

 Dim ft As New FormsAuthenticationTicket(_
 originalTicket.Version, originalTicket.Name, _
 originalTicket.IssueDate, expirationDate, originalTicket.IsPersistent, _
 originalTicket.UserData, Request.QueryString(“CustomCookiePath”))

 Dim redirectUrl As String = Request.QueryString(“CustomReturnUrl”)

 Response.Redirect(redirectUrl & “?” & FormsAuthentication.FormsCookieName
 & “=” & FormsAuthentication.Encrypt(ft))
 End If
 End Sub

Actually, what happens when a website used first needs to login against the central login application
is that the Load event handler runs. However, because this event handler falls through for unauthen-
ticated users, the very first time a user needs to log in he or she instead ends up with the login page
being rendered and can perform an interactive login.

The noninteractive login occurs on most subsequent requests. For example, the button click handler for
the login page redirects back to the same page. When the redirect comes back to the login page, there is
now a master forms authentication ticket sent along with the request (from the SetAuthCookie call in
the button click handler). As a result, when the Load event runs again, it sees that the user is authenti-
cated, and so no interactive UI is even rendered.

The Load event first gets a reference to the master forms authentication ticket because it needs most
of the information in that ticket to create a forms authentication ticket for the participating site. The
Load event creates a new forms authentication ticket and carries over almost all of the settings from
the master forms authentication ticket. For example, this means a participating site gets the exact same
issue date and expiration date as the master forms authentication ticket. If you build a similar solution,
you could choose to actually store DateTime.Now for the IssueDate of the new ticket. The main point,
though, is that the expiration date for tickets sent to participating sites is based on the expiration date
for the login against the central login application.

If you use absolute ticket expiration in the central login application, the behavior when tickets timeout
in participating applications is pretty clear. When a forms authentication ticket times out in a partici-
pating application, the request is redirected through the local login page, which ends up requesting the
central login page. However, because all tickets use the same timeout values, the master forms authen-
tication ticket has also timed out. As a result, the redirect to the central login application falls through
the Load event (the user is no longer considered authenticated), and instead the interactive login is
shown. When the interactive login completes, a new master forms authentication ticket is issued, and
the second execution of the login page results in a redirect with a new ticket and a new expiration date
back to the participating application.

On the other hand, if you use sliding expirations in the central login application, the reauthentication
should be transparent to the website user. The ticket for the participating application is issued with a

79301c06.indd 354 10/6/08 12:13:23 PM

355

Chapter 6: Forms Authentication

modified expiration date. Instead of using the same expiration date as the master forms authentication
ticket, the time to live for the ticket is set to half the TTL for the master forms authentication ticket,
plus one extra minute. Because you know that forms authentication automatically reissues tickets
when 50 percent or more of the remaining time to live has passed for a ticket, the idea is to create a
ticket for the participating applications that will timeout in a similar manner. The extra one minute is
added to account for clock-skew between the central login application and participating applications.

What happens now is that in the participating applications with absolute expirations, the forms authen-
tication ticket eventually times out at (IssueDate + 50 percent of the central login application’s timeout
+ 1 minute). This results in a redirect back to the central login page. However, because (Expiration​
Date - 50 percent of the central login application’s timeout - 1 minute) of time remains on the mas-
ter forms authentication ticket, the master ticket is still considered valid. On the other hand, though,
because the master forms authentication ticket has less than 50 pertcent of its remaining lifetime left,
the FormsAuthenticationModule in the central login application will automatically renew the mas-
ter forms authentication ticket, which results in a new IssueDate and a new ExpirationDate.

Because the renewal occurs in the HTTP pipeline before the login page ever runs, by the time the Load
event executes, a new master forms authentication ticket is available. As a result, the ticket that is cre-
ated for the participating application contains a new IssueDate and an ExpirationDate roughly
equal to (DateTime.Now + 50 percent of the central login application’s timeout + 1 minute). When this
ticket is sent back to the participating application, it results in a valid forms authentication ticket, and
the website user is returned to the originally requested page. Although a few redirects occurred under-
neath the hood, there was no interactive login required to renew the cookie.

Another property in the new forms authentication ticket that differs is the CookiePath. Rather than
cloning over the cookie path from the forms authentication ticket, the value from the CustomCookiePath
query-string variable is used instead. This is how the central login application ensures that the ticket sent
back to the participating application has the correct path information. The FormsAuthentication​​
Module in the participating application will use the CookiePath value from this ticket when it con-
structs and issues the forms authentication cookie.

The CustomReturnUrl query-string variable is used to build the redirect URL. Because this value
includes the full qualified path back to a page in the participating application, the redirect issued
by the central login page can cross servers and domains. You can see the chain that leads up to this
point as well:

	 1.	 Participating application creates the fully qualified return URL.

	 2.	 Central login application replays fully qualified return URL when it redirects to itself.

	 3.	 Central login application uses replayed fully qualified return URL when it redirects back to the
participating application.

The actual redirect includes the query-string variable and value with the forms authentication ticket. It
uses the exact same code as you saw earlier when cross-application redirects were first introduced.

The Final Leg of the SSO Login
At this point, a redirect has been issued back to the participating application, to the specific page that
the website user was originally trying to access. The user is able to navigate around the participating
application because now there is a valid forms authentication cookie. If the cookie eventually times out,
the behavior described earlier around ExpirationDate takes effect, and a new ticket is issued.

79301c06.indd 355 10/6/08 12:13:23 PM

356

Chapter 6: Forms Authentication

If the website user surfs over to another participating application, there is of course no forms authenti-
cation cookie for this third application. However, the exact same logic applies. In the third application:

	 1.	 A redirect to the local login page occurs.

	 2.	 The local login page redirects to the central login application.

	 3.	 Because the master forms authentication ticket exists, the central login application transparently
creates a new ticket and sends it back to the participating application.

	 4.	 The participating application converts the ticket in the query-string into a valid forms authenti-
cation cookie, and the originally requested page runs.

Examples of Using the SSO-Lite Solution
Using a sample participating application called AppAUsingCentralLogin, the initial attempt to fetch
default.aspx results in a redirect to the interactive login page in the central login application. The
URL at this point looks like (bolded areas inserted for clarity):

http://bhaidar-pc/CentralLogin/Login.aspx?CustomReturnUrl=http%3a%2f%2flocalhost%2f
AppAUsingCentralLogin%2fDefault.aspx&CustomCookiePath=%2fAppAUsingCentralLogin

You can see that the URL is pointed at the central login page. The CustomReturnUrl query-string variable
contains the URL-encoded representation of a test server as well as the full path to default.aspx. The
CustomCookiePath query-string variable contains the path information that was set in the <forms />
configuration element of the participating application /AppAUsingCentralLogin.

After successfully logging in, you are redirected back to the originally requested URL. The URL in the
address bar at this point looks like:

http://localhost/AppAUsingCentralLogin/Default.aspx?.ASPXAUTH=090AC8BAD650B5186DD7B
A78D7A5A88F310F2C69CCD6C640C2541AC1CF2559F6D8283EC9339A957B8005CEB6C8306715471654A8
53E33BD57859C0BFED309DBDC08C582A0FDBBB3C7E0B5993A23E8BBD2BD8ACBC6ABC04607A423067273
F4A83112C5F52679FA71AB36D5F8144BB20586832623F6BB17EC1

Because the SSO-lite solution relies on cross-application redirects, the very first page accessed after the
redirect from the central login application includes the forms authentication ticket sitting in the query-
string. If you navigate around into the site though, this query-string variable goes away:

http://localhost/AppAUsingCentralLogin/AnotherPage.aspx

If you now navigate over to a second participating application:

http://bhaidar-PC/AppBUsingCentralLogin/Default.aspx

There is a slight pause while the redirects occur, but you end up on default.aspx, with the address
bar showing the following:

http://localhost/AppBUsingCentralLogin/Default.aspx?.ASPXAUTH=079B144714F15D4934761
64AC79DBE45D91DD19A1DB728F591CFB9B08307E4B0ECCE05E4A4DE5F62E997F4521477F1B3C9FD7A31
A8F25387BE18A64E1B50954C126353791741AC698165140E4C71A12D31A9E22F0AC8BD425D026F6A800
5B5028D039253F66A23AB97DED3F1DB3D9009B691C615B77BAE20

79301c06.indd 356 10/6/08 12:13:23 PM

357

Chapter 6: Forms Authentication

No prompt for login occurs, though, because the master forms authentication cookie has already been
issued. As with the first participating application, the initial redirect from the central login application
back to application B (in this case), results in the forms authentication ticket showing on the URL. When
you navigate deeper into the site, this will go away.

Although I can’t show it here in a book, if you take the code for the central login application in Visual
Studio and attach to w3wp.exe with the debugger, you can see how tickets are renewed in the sliding
expiration case with the following steps:

	 1.	 Set the timeout attribute in the central login application to three minutes or more.

	 2.	 Access one of the participating applications and go through the login process.

	 3.	 Attach the central login application with the debugger and set breakpoints in the Load event of
the login page.

	 4.	 Wait for 2.5 minutes (50 percent of the central application’s timeout plus one minute). This is
the timeout on the ticket sent to the participating application.

	 5.	 Access another page in the participating application. At this point, you will see that the break-
points in the central login page are hit and a new forms authentication ticket is issued for the
participating application. If you inspect the new IssueDate and ExpirationDate, you will
see that they have all been updated with new values. Because the master forms authentication
ticket was 2.5 minutes old when the redirect back to the central login application occurred, the
FormsAuthenticationModule in the central login application automatically renewed the mas-
ter ticket as well.

Final Notes on the SSO-Lite Solution
You have seen that with cross-application redirects in ASP.NET 2.0 and ASP.NET 3.5’s forms authentica-
tion, it is possible to sort of cobble together an SSO-like solution. However, now that I have shown how
to accomplish it, there are a number of technical points that you still need to keep in mind.

The solution depends entirely on redirects between different servers and different domains. ❑❑

There may be the possibility of getting browser security warnings when running under SSL
and a redirect occurs to a completely different application and DNS domain.

Because of the dependency on redirects, you need to be careful in how participating applica-❑❑

tions are structured as well as in the ticket timeouts. It is entirely possible that a user working
on a form in an application posts data back to the server and then loses all of the information
when a silent reauthentication with the central login site occurs.

In the case of sliding expirations, the sample depends on very specific behavior around the ❑❑

renewal of forms authentication tickets. Although this renewal behavior is documented, the
trick with adding a one minute offset is fragile, both due to the potential for changes in the
underlying forms authentication behavior as well as the variability around clock skew between
participating applications and the central login server. A more robust solution could involve a
custom HttpModule installed on each participating site that would optionally renew the ticket
based on information carried in the UserData property of the ticket.

You may want more control over how ticket timeouts are handled in general, both for the master ❑❑

forms authentication ticket and for the participating sites. For example, you may want configu-
rable ticket timeouts that vary depending on which participating application is requesting a ticket.

79301c06.indd 357 10/6/08 12:13:23 PM

358

Chapter 6: Forms Authentication

There was no concept of federation or trust shown in the sample SSO solution. For an in-house ❑❑

IT shop, this probably would not be an issue because developers at least know of other develop-
ment organizations sharing server farms and there is an implicit level of trust. However, in the
case of disparate Internet facing sites run by different companies, trust is an incredibly impor-
tant aspect of any SSO solution. Attempting to create an SSO solution on top of forms authenti-
cation for such a scenario probably isn’t realistic.

Last, the sample application allows any participating application to make use of it. With the ❑❑

prevalence of phishing attacks on the Internet these days, you would want to add some addi-
tional security in an SSO-lite solution. At a minimum, you would want the central login applica-
tion to only accept login attempts from URLs that are “trusted” by the central login application.
This would prevent attacks where a malicious website poses as the login page to a legitimate
site, and then through social engineering attacks (that is, an unwary user clicking through a
spam email) harvests a valid forms authentication ticket issued by the central login application.
This specific scenario is why, for more complex SSO scenarios, you would want to use a com-
mercial SSO product that incorporates the concept of trust, both trust between participating
sites as well as trust between applications and the website that issues credentials.

Overall, I think these points highlight the fact that cross-application redirects can definitely be used for
solving some of the simpler problems companies run into around single sign-on. However, if you find
that your websites require more than just a basic capability to share tickets across servers and applica-
tions, you will probably need to either write more code to handle your requirements or go with a third-
party SSO solution.

Enforcing Single Logons and Logouts
A question that comes up from time to time is the desire to ensure the following behavior when users
login with forms authentication:

Users should be allowed to login once, and only once. If they attempt to log in a second time in ❑❑

an application, the login should be rejected.

If users explicitly log out, the fact that they logged out should in some way be remembered to ❑❑

prevent replaying previous authentication tickets.

Both of these design questions highlight the fact that forms authentication is a lightweight mechanism
for enforcing authentication. Forms authentication as a feature does not have any back-end data store. As
a result there isn’t an out-of-box solution that automatically keeps track of login sessions and subsequent
logouts. However, with a little bit of coding, it is possible to deal with both scenarios in ASP.NET 2.0 and
ASP.NET 3.5.

The solution outlined in this section relies on the Membership feature of ASP.NET 2.0 and ASP.NET 3.5.
There is an extensive discussion of extending Membership in Chapters 11, 12, and 13. However, because
this chapter deals with forms authentication, it makes more sense to show the Membership-based
solution at this point rather than deferring it. Because Membership is designed to work hand-in-hand
with forms authentication, it is a logical place to store “interesting” information about the logged-in or
logged-out state of a user account. Of course, you could write your own database solution for the same
purposes, or possibly even use the Profile feature in ASP.NET 2.0 and ASP.NET 3.5 for similar purposes,

79301c06.indd 358 10/6/08 12:13:24 PM

359

Chapter 6: Forms Authentication

but given that Membership is readily available and is part of the authentication stack in ASP.NET 2.0
and ASP.NET 3.5, it makes sense to leverage it.

Enforcing a Single Logon
For the first scenario of preventing duplicate login attempts, the fact that Membership stores its informa-
tion in a database (or in AD and ADAM, if you so choose) makes it very useful in web farms. Any infor-
mation stored into the MembershipUser instance for a logged-on user will be available from any other
web server in the farm. In the same vein, because Membership providers can be configured in multiple
applications to point at the same database, it is also possible to use information in a MembershipUser
instance across multiple applications.

The MembershipUser object doesn’t have many places for storing additional information. However,
the Comment property on MembershipUser is not used by ASP.NET, so it is a convenient place to store
information without needing to write derived versions of MembershipUser as well as derived versions
of MembershipProvider(s).

Enforcing the concept of a single logon requires tracking two pieces of information associated with a
successful logon:

The expiration time for the successful logon❑❑

Some type of identifier associated with the logon❑❑

Knowing when a successful logon expires is important because most website users probably never use
explicit logout mechanisms. Instead, most users navigate through a site, perform whatever required
work there is and then close the browser. In this case, if a user comes back to the site at a later point
after the original logon session has expired, you do not want to nag the user about preexisting logon
sessions that have since expired. Instead, you want an authentication solution that recognizes the previ-
ous logon has expired and silently cleans up after the fact.

The second piece of information is important to keep track of because you need some concrete repre-
sentation of the fact that a user logged in to the website. Just storing an expiration date is not sufficient.
An expiration date indicates when an active logon session expires, but the date alone does not give you
enough information to correlate to the fact that someone logged in to a website. By tracking some type
of session identifier, you can check on each inbound request whether the authentication data is for the
active logon session or for some other logon session.

A logon session identifier also gives the website user the ability to forcibly logout another active session.
This scenario is important if, for example, a user logs in to your website on one machine and forgets
about it. Then the user walks down the hallway to another machine and attempts to log in again. With
the logon session identifier, you have a way to allow the user to log on using other machines while
ensuring that the previous logon session (or sessions) that are sitting idle on some other machine can-
not be reused when the individual gets back to his or her desk.

So, just from this brief overview of the main problems involved with enforcing a single login, you can
see that there is a fair amount of tracking and enforcement necessary to get all this working. The good
thing, though, is that it is possible to build this type of enforcement using the existing forms authentica-
tion and Membership features.

79301c06.indd 359 10/6/08 12:13:24 PM

360

Chapter 6: Forms Authentication

You will start out building the solution by looking at a sample login page. Since ASP.NET 2.0 and ASP.
NET 3.5 conveniently include the UI login controls, building the basic UI with logical events during the
login process is a snap. Drop a login control onto a page, and then convert it into a template. Converting
it into a template allows you to add UI customizations as needed. In this case, you need to add a check
box that allows an end user to forcibly logout other active logon sessions.

<!-- snip -->
<tr>
 <td colspan=”2”>
 <asp:CheckBox ID=”ForceLogout” runat=”server”
 Text=”Check here to invalidate other logon sessions.” />
 </td>
</tr>
<!-- snip -->

So much for the UI aspect of the login control. Switching to the code-behind for the page, there are two
events that you want to handle:

LoggingIn❑❑ : This event gives you the opportunity to perform some checks before the Login
control attempts to validate credentials using the Membership feature. It is a good place to
check and see whether or not another active logon session is in progress.

LoggedIn❑❑ : This event occurs after the Login control has successfully validated credentials.
Because enforcing a single login requires some extra work on your part, this is the logical point
to create a FormsAuthenticationTicket with extra information and issue it.

The LoggedIn event is where you store information inside of Membership that indicates the logon ses-
sion ID as well as the session expiration inside of the forms authentication ticket.

C#
//snip…
protected MembershipUser loginUser;

protected void Login1_LoggedIn(object sender, EventArgs e)
 {
 if (loginUser == null)
 loginUser = Membership.GetUser(Login1.UserName);

 //represents the active login “session”
 Guid g = System.Guid.NewGuid();

 HttpCookie c = Response.Cookies[FormsAuthentication.FormsCookieName];
 FormsAuthenticationTicket ft = FormsAuthentication.Decrypt(c.Value);

 //Generate a new ticket that includes the login session ID
 FormsAuthenticationTicket ftNew =
 new FormsAuthenticationTicket(
 ft.Version,
 ft.Name,
 ft.IssueDate,
 ft.Expiration,
 ft.IsPersistent,

79301c06.indd 360 10/6/08 12:13:24 PM

361

Chapter 6: Forms Authentication

 g.ToString(),
 ft.CookiePath);

 //Store the expiration date and login session ID in Membership
 loginUser.Comment =
 “LoginExpiration;” + ft.Expiration.ToString() +
 “|LoginSessionID;” + g.ToString();
 Membership.UpdateUser(loginUser);

 //Re-issue the updated forms authentication ticket
 Response.Cookies.Remove(FormsAuthentication.FormsCookieName);

 //Basically clone the original cookie except for the payload
 HttpCookie newAuthCookie =
 new HttpCookie(
 FormsAuthentication.FormsCookieName,
 FormsAuthentication.Encrypt(ftNew));
 //Re-use the cookie settings from forms authentication
 newAuthCookie.HttpOnly = c.HttpOnly;
 newAuthCookie.Path = c.Path;
 newAuthCookie.Secure = c.Secure;
 newAuthCookie.Domain = c.Domain;
 newAuthCookie.Expires = c.Expires;

 //And set it back in the response
 Response.Cookies.Add(newAuthCookie);

 }

VB.NET
…
 Protected loginUser As MembershipUser
 Protected Sub Login1_LoggedIn(_
 ByVal sender As Object, _
 ByVal e As EventArgs) Handles Login1.LoggedIn
 If loginUser Is Nothing Then
 loginUser = Membership.GetUser(Login1.UserName)
 End If

 ‘DetermineExpirationForNewLogin();

 ‘represents the active login “session”
 Dim g As Guid = System.Guid.NewGuid()

 Dim c As HttpCookie = Response.Cookies(FormsAuthentication.FormsCookieName)
 Dim ft As FormsAuthenticationTicket = _
 FormsAuthentication.Decrypt(c.Value.ToString)

 ‘Generate a new ticket that includes the login session ID
 Dim ftNew As New FormsAuthenticationTicket(_
 ft.Version, ft.Name, ft.IssueDate, ft.Expiration, _
 ft.IsPersistent, g.ToString(), ft.CookiePath)

79301c06.indd 361 10/6/08 12:13:24 PM

362

Chapter 6: Forms Authentication

 ‘Store the expiration date and login session ID in Membership
 loginUser.Comment = “LoginExpiration;” & ft.Expiration.ToString() &
 “|LoginSessionID;” & g.ToString()
 Membership.UpdateUser(loginUser)

 ‘Re-issue the updated forms authentication ticket
 Response.Cookies.Remove(FormsAuthentication.FormsCookieName)

 ‘Basically clone the original cookie except for the payload
 Dim newAuthCookie As New HttpCookie(FormsAuthentication.FormsCookieName,
 FormsAuthentication.Encrypt(ftNew))
 newAuthCookie.HttpOnly = c.HttpOnly
 newAuthCookie.Path = c.Path
 newAuthCookie.Secure = c.Secure
 newAuthCookie.Domain = c.Domain
 newAuthCookie.Expires = c.Expires

 ‘And set it back in the response
 Response.Cookies.Add(newAuthCookie)

 End Sub

After a successful login, the page first ensures there is a MembershipUser reference available for the
user that is logging in. The GetUser(…) overload that accepts a username must be used because even
though the user’s credentials have been successfully verified at this point, from a forms authentication
viewpoint, the page is still running with an anonymous user on the current HttpContext. It won’t be
until the next page request that the FormsAuthenticationModule has a cookie on the request that it
can convert into a FormsIdentity.

Because the LoggedIn event won’t run unless other preliminary checks ensure that it is alright for the
user to login, there aren’t any other validation checks in this event handler. To reach this event, the
credentials will already have been verified as matching, and the other checks in the LoggingIn event
(shown a little bit later) will also have been passed.

For this sample, a Guid was chosen as the representation of a login session—so the event handler
creates a new Guid to represent a new instance of a login session. As you have seen in other sections,
because the forms authentication APIs do not expose timeout information, you need to get to it through
a workaround. In this case, because the Login control has already called SetAuthCookie internally,
there is a valid forms authentication cookie sitting in the Response. With this cookie, you can get the
FormsAuthenticationTicket for the user that is logging in.

A new FormsAuthenticationTicket is created that is a clone of the already issued ticket, with one
difference. The UserData information in the ticket is where the Guid login session identifier is stored.
Note that because this sample application relies on the UserData property, enforcing a single logon in
this manner will only work with clients that support cookies. The Expiration and the Guid for the
ticket are also packaged up and stored in the MembershipUser instance for the user logging in. In more
complex applications, you could create a custom class that represented this type of information, run
the class through the XmlSerializer, and store the output in the Comment property. For simplicity
though, the sample application stores the information with the following format:

LoginExpiration;expiration_date|LoginSessionID;the_Guid

79301c06.indd 362 10/6/08 12:13:24 PM

363

Chapter 6: Forms Authentication

Each piece of information is a name-value pair, with different name-value pairs delimited with the pipe
character. Within a name-value pair, the two pieces of information are delimited by a semicolon. Once
the Comment field has the new information, Membership.UpdateUser is called to store the changes
back to the database.

The last piece of work during login is to replace the forms authentication cookie issued by the Login
control with the FormsAuthenticationTicket that has the UserData in it. Again, rather than
attempting to hard-code pieces of forms authentication configuration information into the application,
the sample code simply reuses all of the settings from the Login control’s cookie to create a new cookie
with all of the correct settings. The Login control’s original cookie is then removed from the Response,
and the new cookie is added in its place.

At this point, when the login page completes, the user is successfully logged in with the session identi-
fier flowing back and forth between the browser and the web server inside of the forms authentication
ticket. There is also a persistent representation of the expiration time for the login as well as the session
identifier stored in the Membership system. These pieces of information form the basis for checking the
validity of a login on each and every request.

Because the FormsAuthenticationModule runs during the AuthenticateRequest event in the pipe-
line, it makes sense to perform additional validations after forms authentication has performed the basic
work of determining whether or not there is a valid forms-authenticated user for the request. A custom
HttpModule is used to enforce that the current request is associated with the current login session.

C#
public class FormsAuthSessionEnforcement : IHttpModule
{
 public FormsAuthSessionEnforcement(){}
 public void Dispose() {}

 public void Init(HttpApplication context)
 {
 context.PostAuthenticateRequest += new EventHandler(OnPostAuthenticate);
 }

 private void OnPostAuthenticate(Object sender, EventArgs e)
 {
 HttpApplication a = (HttpApplication)sender;
 HttpContext c = a.Context;

 //If the user was authenticated with Forms Authentication
 //Then check the session ID.
 if (c.User.Identity.IsAuthenticated == true)
 {
 FormsAuthenticationTicket ft =
 ((FormsIdentity)c.User.Identity).Ticket;

 Guid g = new Guid(ft.UserData);

 MembershipUser loginUser = Membership.GetUser(ft.Name);
 string currentSessionString =

79301c06.indd 363 10/6/08 12:13:24 PM

364

Chapter 6: Forms Authentication

 loginUser.Comment.Split(“|”.ToCharArray())[1];
 Guid currentSession =
 new Guid(currentSessionString.Split(“;”.ToCharArray())[1]);

 //If the session in the cookie does not match the current session as
 // stored in the Membership database, then terminate this request
 if (g != currentSession)
 {
 FormsAuthentication.SignOut();
 FormsAuthentication.RedirectToLoginPage();
 }
 }
 }
}

VB.NET
Public Class FormsAuthSessionEnforcement
 Implements IHttpModule
 Public Sub New()
 End Sub

 Public Sub Init(ByVal context As HttpApplication) Implements IHttpModule.Init
 AddHandler context.PostAuthenticateRequest, AddressOf OnPostAuthenticate
 End Sub

 Private Sub OnPostAuthenticate(ByVal sender As Object, ByVal e As EventArgs)
 Dim a As HttpApplication = CType(sender, HttpApplication)
 Dim c As HttpContext = a.Context

 If c.User Is Nothing Then
 Return
 End If

 ‘If the user was authenticated with Forms Authentication
 ‘Then check the session ID.
 If c.User.Identity.IsAuthenticated = True Then
 Dim ft As FormsAuthenticationTicket = _
 (CType(c.User.Identity, FormsIdentity)).Ticket

 Dim g As New Guid(ft.UserData)

 Dim loginUser As MembershipUser = Membership.GetUser(ft.Name)
 Dim currentSession As Guid
 ‘If there isn’t any session information in Membership at this point
 ‘then it is likely the user logged out, and an old cookie is
 ‘being replayed.
 If (Not String.IsNullOrEmpty(loginUser.Comment)) Then
 Dim currentSessionString As String = _
 loginUser.Comment.Split(“|”.ToCharArray())(1)
 currentSession = _
 New Guid(currentSessionString.Split(“;”.ToCharArray())(1))
 Else
 currentSession = Guid.Empty
 End If

79301c06.indd 364 10/6/08 12:13:24 PM

365

Chapter 6: Forms Authentication

 ‘If the session in the cookie does not match the current session as
 ‘stored in the Membership database, then terminate this request
 If g <> currentSession Then
 FormsAuthentication.SignOut()
 FormsAuthentication.RedirectToLoginPage()
 End If

 End If
 End Sub

 Public Sub Dispose() Implements IHttpModule.Dispose
 End Sub

End Class

The custom module hooks the PostAuthenticateRequest event so that it can inspect the authenti-
cated credentials after the FormsAuthenticationModule has run. If the current request doesn’t have
an authenticated user, the module exits. On the other hand, if there is an authenticated user, the module
gets a reference to the FormsAuthenticationTicket and extracts the Guid login session identifier.
The login information for the authenticated user is also retrieved from the Membership database.

The module is only concerned with checking the validity of the session identifier so that it doesn’t bother
retrieving the expiration date from the MembershipUser instance because the FormsAuthentication​
Module will already have made this check. The module does check the session identifier in the ticket
against the session identifier stored in the database. If they match, the request is allowed to proceed. How-
ever, if the two identifiers do not match, this is an indication that the current request is not associated with
an active and valid login session. In this case, the module calls FormsAuthentication.SignOut, which
has the effect of issuing a cookie that will clear the forms authentication cookie in the browser. Then the
module redirects the current request to the login page for the application.

Because all this logic is encapsulated in an HttpModule, the module needs to be registered in each
application that wants to make use of its services. In terms of code deployment, for the sample applica-
tion the code is in the App_Code directory; although again you can instead choose to author it in a sepa-
rate assembly deployed in the bin or the GAC. Depending on how the module is deployed, you will
need to add more information to the type attribute.

 <system.webServer>
 <modules>
 <add
 name=”FormsAuthSessionEnforcement”
 type=”FormsAuthSessionEnforcement”/>
 </modules>
 </system.webServer>

Note that the sample code shown here only includes checks that make sense in the case of absolute
ticket expirations. The custom module and login page do not handle the case where sliding expirations
are enabled. You would need extra logic to periodically update the expiration data in the Membership
database whenever the FormsAuthenticationModule renewed the ticket. As a result, the configura-
tion for the sample application only allows absolute expirations.

<forms slidingExpiration=”false” />

79301c06.indd 365 10/6/08 12:13:24 PM

366

Chapter 6: Forms Authentication

When the module exits, one of two outcomes has occurred: either the login session is valid and the
request continues, or the session is invalid and the user is prompted to log in again. Assuming that the
user is prompted for a login, this brings us full circle back to the login page. As shown earlier, there is
a check box on the login page that allows a user to clear active login sessions. The setting of this check
box, as well as the logic to prevent duplicate logins, is in the LoggingIn event of the Login control.

C#
protected void Login1_LoggingIn(object sender, LoginCancelEventArgs e)
 {
 if (loginUser == null)
 loginUser = Membership.GetUser(Login1.UserName);

 //See if the user indicates that they want an existing login session
 //to be forcibly terminated
 CheckBox cb = (CheckBox)Login1.FindControl(“ForceLogout”);
 if (cb.Checked)
 {
 loginUser.Comment = String.Empty;
 Membership.UpdateUser(loginUser);
 return;
 }

 //Only need to check if the user instance already has login information
 //stored in the Comment field.
 if ((!String.IsNullOrEmpty(loginUser.Comment)) &&
 loginUser.Comment.Contains(“LoginExpiration”))
 {
 string currentExpirationString =
 loginUser.Comment.Split(“|”.ToCharArray())[0];
 DateTime currentExpiration =
 DateTime.Parse((currentExpirationString.Split(“;”.ToCharArray()))[1]);

 //The user was logged in at some point previously and the login is
 //still valid
 if (DateTime.Now <= currentExpiration)
 {
 e.Cancel = true;
 Literal tx = (Literal)Login1.FindControl(“FailureText”);
 tx.Text = “You are already logged in.”;
 }
 }
 }

VB.NET
 Protected Sub Login1_LoggingIn(_
 ByVal sender As Object, _
 ByVal e As LoginCancelEventArgs) _
 Handles Login1.LoggingIn

 If loginUser Is Nothing Then
 loginUser = Membership.GetUser(Login1.UserName)
 End If

79301c06.indd 366 10/6/08 12:13:24 PM

367

Chapter 6: Forms Authentication

 ‘See if the user indicates that they want an existing login session
 ‘to be forcibly terminated
 Dim cb As CheckBox = CType(Login1.FindControl(“ForceLogout”), CheckBox)
 If cb.Checked Then
 loginUser.Comment = String.Empty
 Membership.UpdateUser(loginUser)
 Return
 End If

 ‘Only need to check if the user instance already has login information
 ‘stored in the Comment field.
 If ((Not String.IsNullOrEmpty(loginUser.Comment))) AndAlso _
 loginUser.Comment.Contains(“LoginExpiration”) Then
 Dim currentExpirationString As String = _
 loginUser.Comment.Split(“|”.ToCharArray())(0)
 Dim currentExpiration As DateTime = _
 DateTime.Parse((currentExpirationString.Split(“;”.ToCharArray()))(1))

 ‘The user was logged in at some point previously and the login is still
 ‘valid
 If DateTime.Now <= currentExpiration Then
 e.Cancel = True
 Dim tx As Literal = _
 CType(Login1.FindControl(“FailureText”), Literal)
 tx.Text = “You are already logged in.”
 End If
 End If
 End Sub

Duplicate login checks always require a MembershipUser to be handy, so the event first ensures that
an instance is available. Because the LoggingIn event is always fired by the Login control before the
LoggedIn event, the check that is made in the LoggedIn event will always find a MembershipUser
instance already available for use.

If the check box is selected (that is, the website user indicated that they want any active login session
to be invalidated), the session information inside of the MembershipUser instance is cleared and the
information is saved back to the Membership database. In essence, a setting of String.Empty in the
MembershipUser.Comment field is an indication that the user is not logged in. One side note: Placing
the check box on the Login control required converting the control into a template. Template editing
mode for the control allows you to add arbitrary controls to the layout. However, there is not a conve-
nient strongly typed reference to any controls that you add (hence the need for calling FindControl to
get a reference to the check box).

If there is login information contained in the Comment property, then the expiration date is extracted.
From this, you can see that there are two different points in the application where expiration date and
session identifiers are checked. The login session identifier is checked after the user is logged in. The
expiration date is checked before the user is logged in. If the expiration date from the MembershipUser
instance indicates that there is still a valid login session (that is, there is a session that will expire some-
time in the future), the remainder of the processing of the Login control is halted by setting the Cancel
property on the event arguments to true. A reference to the Literal control that displays error text is
found, and appropriate error information is displayed to the user.

79301c06.indd 367 10/6/08 12:13:24 PM

368

Chapter 6: Forms Authentication

Each time a user logs in there are a few possible decision trees that will occur on the Login page:

	 1.	 The user is logging in for the very first time to the application. As a result, all the checks in the
LoggingIn event are bypassed, and a login occurs.

	 2.	 The user is logging in after a previous login session already expired. In this case, the expiration
date check in the LoggingIn event detects this, and the user is allowed to log in.

	 3.	 The user is logging in, but there is already a valid login session as indicated by the expiration
date information within the Comment field. In this case, the login is not allowed to proceed and
an error is returned.

	 4.	 The user is logging in and explicitly states that any previous session should be invalidated. This
is similar to the first point, with some extra work performed to clear the Comment field prior to
allowing the login to proceed.

You can try all this out by stepping through the process of logging in multiple times:

	 1.	 If you don’t already have a user, you can quickly create one by using the ASP.NET Configura-
tion tool inside of Visual Studio (Website ➪ ASP.NET Configuration Tool).

	 2.	 Log in with a user to the sample site. If you look in the database, you will see login information
inside of the Comment column of the aspnet_Membership database table. The data looks like:
LoginExpiration;5/22/2005 12:52:51 PM|LoginSessionID;71fa38d5-97f8-4c62-
8bbb-bac4ab2f352b.

	 3.	 Open up a second browser window and type the address of a secured page in the application.
This will require you to log in again.

	 4.	 Note that when you attempt to log in in the second browser instance, the login fails because of
the checks being made in the LoggingIn event on the login page.

	 5.	 Now attempt to log in but make sure to click the check box to invalidate other login sessions.
You will be able to log in at this point successfully. If you check the Comment column in the
database, you will see updated information there.

	 6.	 Flip back to the first browser window and attempt to continue navigating around the site. You
will instead get redirected back to the login page because of the login session ID check being
made by the custom HttpModule. The module detects the login session in the first browser is
no longer the active login session.

Enforcing a Logout
An issue related to the single login scenario is the potential for a user to reenter the site as a logged-in
user after he or she has already logged out. If this sounds a bit strange, the following sequence of events
can lead to this:

	 1.	 The user logs in and gets back a valid forms authentication ticket.

	 2.	 At some point in the future, the authentication ticket is hijacked or exposed.

79301c06.indd 368 10/6/08 12:13:25 PM

369

Chapter 6: Forms Authentication

	 3.	 The user logs out, thus clearing the forms authentication cookie from his or her browser.

	 4.	 The malicious individual from step 2 replays the ticket back to the site. Assuming that the expi-
ration date in the ticket is still valid, the malicious user can now run as an authenticated user.

In reality, the possibility of step 2 is open to quite a bit of debate. If you run your entire site under SSL
(or at the very least set requireSSL to true in configuration), hijacking a forms authentication from
a network trace is not possible. Prior to ASP.NET 2.0, though, it was still possible to use some type of
cross-site scripting attack to hijack a cookie using client-side browser code. However, in ASP.Net 2.0 and
ASP.NET 3.5 the HttpOnly property of forms authentication cookies is set to true, so this attack vector
is quite a bit harder to accomplish (though, as noted earlier, it may be possible to use the TRACE/TRACK
command which, if supported on the web server, still allows access to the cookie).

Furthermore, there isn’t anything in the steps listed earlier that would prevent this type of replay attack
from occurring with a technically savvy user that sits down at a coworker’s machine and attempts to
physically copy a cookie and email it back to himself (though even this attack would be partially miti-
gated by using only session based cookies). Anyway, the point here is that for high-security sites, you
don’t want to allow theoretical vulnerabilities, especially if there are reasonable steps that you can take
to prevent the problem in the first place.

Because you have already seen the solution for preventing multiple logins, it is pretty easy to extend it
one step further. A value of String.Empty in the MembershipUser.Comment field is already treated as
an indicator that there is no active login session. If you add a LoginStatus control to the pages in your
site, you can hook the LoggingOut event and perform some extra cleanup.

C#
 protected void LoginStatus1_LoggingOut(object sender, LoginCancelEventArgs e)
 {
 //Clear the information in Membership that tracks the
 //the current login session.
 MembershipUser mu = Membership.GetUser();
 mu.Comment = String.Empty;
 Membership.UpdateUser(mu);
 }

VB.NET
 Protected Sub LoginStatus1_LoggingOut(_
 ByVal sender As Object, _
 ByVal e As LoginCancelEventArgs) _
 Handles LoginStatus1.LoggedOut
 ‘Clear the information in Membership that tracks the
 ‘the current login session.
 Dim mu As MembershipUser = Membership.GetUser()
 mu.Comment = String.Empty
 Membership.UpdateUser(mu)
 End Sub

79301c06.indd 369 10/6/08 12:13:25 PM

370

Chapter 6: Forms Authentication

Now whenever a website user explicitly logs out of a site, the login information for that user is deleted
from the user record in the Membership database. With this change, there is one extra modification
needed in the custom HttpModule as well.

C#
private void OnPostAuthenticate(Object sender, EventArgs e)
 {
 HttpApplication a = (HttpApplication)sender;
 HttpContext c = a.Context;

 //If the user was authenticated with Forms Authentication
 //Then check the session ID.
 if (c.User.Identity.IsAuthenticated == true)
 {
 FormsAuthenticationTicket ft =
 ((FormsIdentity)c.User.Identity).Ticket;

 Guid g = new Guid(ft.UserData);
 MembershipUser loginUser = Membership.GetUser(ft.Name);

 Guid currentSession;
 //If there isn’t any session information in Membership at this point
 //then it is likely the user logged out, and an old cookie is
 //being replayed.
 if (!String.IsNullOrEmpty(loginUser.Comment))
 {
 string currentSessionString =
 loginUser.Comment.Split(“|”.ToCharArray())[1];
 currentSession =
 new Guid(currentSessionString.Split(“;”.ToCharArray())[1]);
 }
 else
 currentSession = Guid.Empty;

 //If the session in the cookie does not match the current session as
 // stored in the Membership database, then terminate this request
 if (g != currentSession)
 {
 FormsAuthentication.SignOut();
 FormsAuthentication.RedirectToLoginPage();
 }

 }

VB.NET
 Private Sub OnPostAuthenticate(ByVal sender As Object, ByVal e As EventArgs)
 Dim a As HttpApplication = CType(sender, HttpApplication)
 Dim c As HttpContext = a.Context

 If c.User Is Nothing Then
 Return
 End If

79301c06.indd 370 10/6/08 12:13:25 PM

371

Chapter 6: Forms Authentication

 ‘If the user was authenticated with Forms Authentication
 ‘Then check the session ID.
 If c.User.Identity.IsAuthenticated = True Then
 Dim ft As FormsAuthenticationTicket = _
 (CType(c.User.Identity, FormsIdentity)).Ticket

 Dim g As New Guid(ft.UserData)
 Dim loginUser As MembershipUser = Membership.GetUser(ft.Name)

 Dim currentSession As Guid
 ‘If there isn’t any session information in Membership at this point
 ‘then it is likely the user logged out, and an old cookie is
 ‘being replayed.
 If (Not String.IsNullOrEmpty(loginUser.Comment)) Then
 Dim currentSessionString As String = _
 loginUser.Comment.Split(“|”.ToCharArray())(1)
 currentSession = _
 New Guid(currentSessionString.Split(“;”.ToCharArray())(1))
 Else
 currentSession = Guid.Empty
 End If

 ‘If the session in the cookie does not match the current session as
 ‘stored in the Membership database, then terminate this request
 If g <> currentSession Then
 FormsAuthentication.SignOut()
 FormsAuthentication.RedirectToLoginPage()
 End If

 End If
 End Sub

The bolded section shows the changes to the module. Instead of just assuming that there will always
be a value in the Comment property for the authenticated user, the module instead checks to see if the
Comment property has any valid information in it. If there is no information in the Comment property,
then the comparison between the session identifier in the forms authentication ticket and the value
Guid.Empty always fails. If a malicious user attempts to replay an otherwise valid forms authentication
cookie, and the true user logged out of the application, the replayed ticket will never be accepted.

Looking at this code, you can see why for very secure sites, sliding expirations should never be used.
Although you now have sample code that keeps track of the logged-in versus logged-out status of a
user, there really isn’t much you can do to force a user to actually log out. How many of us just close
down the browser when we are done with a site? In cases like this, the only remaining protection is
for the forms authentication ticket to eventually expire. At least with absolute expirations the window
of opportunity for a successful replay attack can be substantially narrowed. With sliding expirations,
as long as a valid ticket is replayed to the site, the ticket will continue to work and will be periodically
updated as well.

79301c06.indd 371 10/6/08 12:13:25 PM

372

Chapter 6: Forms Authentication

Summary
Out of the box, forms authentication in ASP.NET 2.0 and ASP.NET 3.5 adds new protections by includ-
ing the HttpOnly attribute on all forms authentication cookies. Used in conjunction with encryption
and signing of the forms authentication ticket, the requireSSL attribute and absolute ticket expira-
tions, you can quickly restrict the ability of malicious users to gain access to a forms authentication
cookie.

When running an application in the new IIS 7.0 integrated mode, you can enable the managed Forms-
AuthenticationModule to authenticate ASP.NET and non-ASP.NET resources. This comes as a result of
having ASP.NET access to all request types when running under the integrated mode in IIS 7.0.

ASP.NET 2.0 and ASP.NET 3.5 also include a cookieless mode of operation, whereby the forms authenti-
cation ticket is embedded in the URL. This makes it much easier for developers to author sites that work
with mobile browsers as well as standard desktop browsers. In the interest of security, though, develop-
ers should avoid cookieless forms authentication tickets for sites that require high degrees of security.
It is simply too easy to “leak” or expose a cookieless forms authentication ticket to someone other than
the original user.

Although forms authentication seems pretty simple, with a bit of custom code, you can actually solve
some rather complex authentication problems. The ability in ASP.NET 2.0 and ASP.NET 3.5 to pass forms
authentication tickets across applications makes it possible to solve some single sign-on issues that previ-
ously required complex third-party SSO applications. Of course, there is also a limit to how far you can
stretch the new cross-application capabilities of forms authentication. For many developers, commercial
SSO solutions will still make sense.

The combination of forms authentication and Membership finally gives developers the basic plumb-
ing needed to solve the single-logon problem. Although neither feature includes support for enforcing
single-logons, both features are sufficiently extensible that with a reasonable amount of custom code
you can prevent users from performing multiple logons. You can also provide protection so that when a
user explicitly signs out, cookie replay attacks with a forms authentication cookie are not allowed.

79301c06.indd 372 10/6/08 12:13:25 PM

7
Integrating ASP.NET

Security with Classic ASP

All the great security features in ASP.NET do not really help you when you look at your older
classic ASP applications. Although forms authentication and URL authorization have been around
since the ASP.NET 1.0 days, these features have not been of any use in the ASP world. With the
introduction of the Membership and Role Manager features in ASP.NET 2.0, you had even more
authentication and authorization functionality built into ASP.NET, which ASP.NET 3.5 continues
to support. But again, it seems like that functionality is orphaned in the ASP.NET world and never
made it over to the world of classic ASP.

Why attempt to bring the ASP.NET and classic ASP worlds together? In terms of sheer volume of
code written, the majority of web applications out there are still running on classic ASP. Even if
you surf around Microsoft’s own sites, such as the MSDN online library and various links and
subsites of www.microsoft.com, you still encounter a lot of classic ASP pages.

In ASP.NET 2.0 a number of small changes were made in some admittedly esoteric aspects of the
runtime to make it possible to more tightly integrate ASP.NET and classic ASP. These changes
also rely on modifi cations made earlier to IIS 6 around handling for ISAPI extensions. Both of
these changes taken together make it possible to wrap classic ASP sites inside of ASP.NET.

With the release of ASP.NET 3.5 and IIS 7.0, the integration between ASP.NET and classic ASP is
made even easier, especially with IIS 7.0’s new integrated mode. As you know, IIS 7.0 provides
two main modes of executing: the classic mode, which resembles that of IIS 6, and, integrated
mode, which is new and unites the ASP.NET and IIS request pipeline into a single, integrated
request pipeline.

79301c07.indd 373 10/6/08 12:13:51 PM

374

Chapter 7: Integrating ASP.NET Security with Classic ASP

This chapter covers the following topics:

ISAPI extension mapping behavior in IIS 5.❑❑

Wildcard mappings in IIS 7.0 and how they work.❑❑

The ❑❑ DefaultHttpHandler in ASP.NET 3.5.

Using the ❑❑ DefaultHttpHandler with ASP.NET and classic ASP.

Authenticating classic ASP using ASP.NET in IIS 7.0 classic and integrated modes.❑❑

Authorizing classic ASP using ASP.NET in IIS 7.0 classic and integrated modes.❑❑

Adding roles from Role Manager for use in classic ASP.❑❑

Passing data from classic ASP pages to ASP.NET pages.❑❑

IIS 5 ISAPI Extension Behavior
Before ASP.NET there was IIS 5, and it was good. You could write classic ASP applications that incorpo-
rated their own authentication and authorization behavior. And you could add other external resources
like images, stylesheets, and so on and reference them from your classic ASP applications. However,
sometimes you wanted to perform some preliminary work prior to passing a request on to ASP. Prob-
ably the most frequently asked-for capability was URL rewriting, for which the new IIS 7.0 Integration
mode offers an easy solution.

However, in IIS 5 the only way to accomplish something like this was by writing an ISAPI filter, a rather
daunting prospect for most us. The underlying reason for this restriction is that in IIS5 the core runtime is
only extensible through ISAPI filters and extensions; that was the extensibility mechanism at the time.

Of course, one nice side effect in IIS 5 was that the authentication model for classic ASP was the IIS
authentication model. There was no artificial bifurcation between IIS authentication modes and some
other ASP-like authentication mode. This meant that after you had things configured in IIS, your
ASP security just worked with IIS’s implementation of integrated security. Furthermore, when an ASP
application relied on just plain HTML pages, image files, CSS files, and the like, there was no need
for special security configuration work to get these to work. ASP, IIS, and static files lived together
peacefully.

Then along came ASP.NET 1.0 and 1.1 running on top of IIS 5, and the security story became a little
weird. ASP.NET security was in its own world and hence one scenario that was definitely lost was that
ASP.NET pages and classic ASP pages were oblivious of one another.

In ASP.NET, you finally had a way to modify parameters of an incoming request prior to having a page
run. But if you were thinking you could shoehorn classic ASP into ASP.NET to take advantage of the
HttpModule extensibility in ASP.NET, you were sorely disappointed. The core technical reason for
this is that in IIS 5, when a request is mapped to an ISAPI extension that is the end of the road for that
request. After the request is handed off to a specific ISAPI extension, the mapped extension owns the
request for the rest of its lifetime.

There was no concept in IIS 5 of being able to route a request to one extension (aspnet_isapi.dll,
for instance) and then somehow reroute the request to another extension, for example, asp.dll, which

79301c07.indd 374 10/6/08 12:13:51 PM

375

Chapter 7: Integrating ASP.NET Security with Classic ASP

is responsible for .asp and .asa files. Of course, you could get a little enterprising and implement
some redirection-based mechanisms that hopped information back and forth between classic ASP
and ASP.NET, but those solutions always end up being a bit awkward. Any customer on a slow Inter-
net link is also aware of the overhead involved with all these redirects, which usually makes any such
solution chancy at best for those still living in a 56K world.

There was another problem with the ISAPI extension handling in IIS 5 when using ASP.NET and that
was in the area of static file handling. As you saw in Chapter 3 in the section on blocking access to
non-ASP.NET file types, most common static file extensions are already mapped to ISAPI extensions
or to the core IIS runtime itself. As a result, if you wrote an ASP.NET application that needed to pro-
tect access to XML or .htm files, you had to explicitly map each of these file extensions to the ASP.NET
ISAPI extension. If you did not carry out this step, IIS 5 would happily serve the files directly without
any authentication or authorization by ASP.NET. Of course, if your HTML or XML files happened to
include sensitive data, this was not exactly the desired outcome.

What was especially aggravating with IIS 5 was that if you had more than one or two static file exten-
sions to be protected by ASP.NET, you had to go through a fair amount of manual configuration on
each of your web servers to ensure the correct association of static file types to ASP.NET. And of course
if you wanted a mixture of authentication and authorization policies for these files (for example, maybe
some images were viewable by everyone, but others need to be secured) you had two choices:

Have all requests for the static files flow through ASP.NET, in which case you would encounter ❑❑

slower performance when serving the static files for anonymous users.

Separate the files that were accessible to anonymous users into one directory structure outside of ❑❑

ASP.NET, so they could take advantage of the faster file-serving performance afforded by IIS 5.

Both of these options had their shortcomings: You could trade off performance for centralized manage-
ment of authentication, or you could get optimal performance but with the overhead of keeping two
different directory structures for anonymous and authenticated users.

IIS 7.0 Wildcard Mappings
IIS 6 introduced the concept of wildcard mappings. Wildcard mappings are a way to tell IIS 6 that every
incoming request, regardless of file type, should be routed to one or more ISAPI extensions. Since these
extensions are configured in IIS 6 to handle any incoming request, the term “wildcard” is used to indi-
cate that request handling is independent of a specific file type. Not only can you configure a single
ISAPI extension with wildcard mappings, but you can also configure multiple ISAPI extensions to act
as a chain of wildcard mappings. IIS 6 will walk through the list of configured mappings in sequence,
passing control of the request to each extension in turn.

After the wildcard mapped extensions have completed their processing, IIS 6 passes control of the
request to the extension or internal runtime handling appropriate for the file type. The IIS 6 ISAPI API
also included additional functionality for extension authors that know their extensions will be used as
part of a wildcard mapping. In the case of ASP.NET 3.5, the DefaultHttpHandler class (covered in the
“DefaultHttpHanlder” section this chapter) includes extra logic that allows ASP.NET to gain control
of a request for non-ASP.NET resources both before and after the default processing for that request
occurs. This enables you to integrate ASP.NET 3.5 so that it can perform both preprocessing and post-
processing of a classic ASP request.

79301c07.indd 375 10/6/08 12:13:51 PM

376

Chapter 7: Integrating ASP.NET Security with Classic ASP

When an application is hosted in IIS 7.0 and configured to run under the classic application pool, it
resembles an application running under IIS 6.0. For the coming sections the demonstration will han-
dle applications hosted inside IIS 7.0 and configured to run under the classic application pool. When
an application is running in the new IIS 7.0 Integration mode, the process of ASP.NET handling non-
ASP.NET resources differs, as you have seen throughout the previous chapters in the book. However,
a review on the how ASP.NET can handle non-ASP.NET resources when the application is running
under the default application pool is worth repeating.

Configuring a Wildcard Mapping
To keep things simple initially, let’s take a simple ASP page and a simple ASP.NET application and con-
figure the two to work together using an IIS 7.0 wildcard mapping for an application running under the
classic application pool. After creating the basic folder structure, and marking the folder as an applica-
tion in IIS 7.0 running under the classic application pool, the next step is to add a wildcard mapping so
that all requests for resources will first flow through ASP.NET.

After you click on the web application hosted in IIS 7.0, the Handler Mappings applet shows under the
IIS features, as you can see in Figure 7-1.

Figure 7-1

Double-click the Handler Mappings applet icon to check the list of all extension mappings inherited by
your application from the Default Web Site. Figure 7-2 shows the list of handlers defined on the applica-
tion running under the classic application pool in IIS 7.0.

79301c07.indd 376 10/6/08 12:13:51 PM

377

Chapter 7: Integrating ASP.NET Security with Classic ASP

Figure 7-2

Unless you have a photographic memory, you probably do not remember the full path to the ASP.NET
ISAPI extension. So, before configuring wildcard mappings, it is helpful to select one of the preexisting
mappings (for example, the .aspx mapping) and click the Edit link on the action pane on the right side
of the IIS Manager tool. The Edit Script Map dialog box, shown in Figure 7-3, conveniently holds the full
path to the ASP.NET ISAPI extension in the Executable text box.

Figure 7-3

Copy the path and then cancel out of the dialog box. Now you can click the Add Script Map link on
the action pane to open the dialog box for configuring wildcard extension mappings (see Figure 7-4.)
Paste in the full path to the ASP.NET ISAPI extension into the Executable text box. In addition, enter *
as the request path to capture all types of requests. Finally, give the new mapping a name of your
own choice.

79301c07.indd 377 10/6/08 12:13:52 PM

378

Chapter 7: Integrating ASP.NET Security with Classic ASP

Figure 7-4

Now click the Request Restrictions button located at the bottom of the dialog box. Figure 7-5 shows
the resulting dialog box that enables you to edit additional configuration settings for the new wild-
card mapping.

Figure 7-5

The tab of concern for now is the Mapping tab. The “Invoke handler only if request is mapped to”
checkbox helps you to decide when to allow the mapping to run and execute. You have several options
either when a physically existing file in the filesystem is requested, when a physically existing directory
in the filesystem is requested, and finally an option for both a file and directory at the same time. How-
ever, if you unselect the check box, you are telling the current extension mapping not to verify if the
file or directory physically exists in the filesystem prior to passing the request to ASP.NET. This has the
same functionality as the “Verify that File Exists” option in IIS 6.0 when adding a new extension map-
ping. By default this checkbox is selected and the File option is chosen. This means that the wildcard
mapping you are creating will check if the resource requested physically exists in the filesystem prior
to sending it to the ASP.NET engine.

Close out of all of the dialog boxes by clicking OK. You have now configured an application hosted
inside of IIS 7.0 and running under the classic application pool that will forward all requests initially to

79301c07.indd 378 10/6/08 12:13:52 PM

379

Chapter 7: Integrating ASP.NET Security with Classic ASP

the ASP.NET 2.0 ISAPI extension, which is still the same ISAPI for ASP.NET 3.5. Due to the functionality
of the DefaultHttpHandler inside of ASP.NET 3.5, these requests will hand off to IIS 7.0 for execution
by the appropriate extension or internal runtime logic. After the appropriate extension or IIS 7 has com-
pleted its processing, ASP.NET 3.5 will have the chance to perform some postprocessing, after which
the request will complete.

If you look at the application’s web.config configuration file, you will notice the following entry that
was added to the <handlers> configuration section inside the <system.webServer> configuration
section group.

<add
 name=”WildCard”
 path=”*”
 verb=”*”
 modules=”IsapiModule”
 scriptProcessor=”%windir%\Microsoft.NET\Framework\v2.0.50727\aspnet_isapi.dll”
 resourceType=”File”
 requireAccess=”None”
/>

The preceding configuration element simply resembles the wildcard mapping configuration that you
have just added inside the IIS 7.0 Manager tool.

For now just a simple ASP page is used:

<%
Response.Write(“This is text from the classic ASP application” + “
”)
%>

When you access this page (in the sample application this is default.asp), the classic ASP ISAPI
extension (ASP.dll) will eventually get the chance to parse and run the page, resulting in a string
being output to the browser.

Now it’s time to get a little frisky and see if ASP.NET can output some text in addition to the text coming
from the classic ASP application. Try adding the following code to global.asax:

C#
 void Application_BeginRequest(Object sender, EventArgs e)
 {
 HttpContext context = HttpContext.Current;
 context.Response.Write(“This came from the ASP.NET global.asax eventhander”);
 }

VB.NET
 Sub Application_BeginRequest(ByVal sender As Object, ByVal e As EventArgs)
 Dim context As HttpContext = HttpContext.Current
 context.Response.Write(“This came from the ASP.NET global.asaxevent hander”)
 End Sub

79301c07.indd 379 10/6/08 12:13:52 PM

380

Chapter 7: Integrating ASP.NET Security with Classic ASP

When you run default.asp, instead of getting back two pieces of text (one from ASP.NET and one
from classic ASP), you instead get an error saying, “This type of page is not served.” Hmmm—what
happened? First everything was working with the wildcard mapping, and now that you add one simple
line of code to ASP.NET, everything breaks!

The reason for this behavior is quite simple. When ASP.NET detects that a response has been modified,
prior to handing the request back to IIS 7.0 it checks to see if the request was either a POST request, or
a request for a classic ASP page. If the request is a POST request or a classic ASP request, ASP.NET will
throw an exception rather than hand control back to IIS 7.0. ASP.NET considers a response to have been
modified if any of the following occur:

One or more HTTP headers in the response have been set or modified (for example setting a ❑❑

cookie).

Text has been written to the response, regardless of whether this text has been buffered or ❑❑

already sent to the client.

Code in the ASP.NET application modified the ❑❑ HttpCachePolicy associated with the response.

A ❑❑ Stream was assigned to the Response.Filter property. This is an advanced operation and
is normally used by developers who need to modify the raw contents of the response prior to
sending it back to the browser.

The last two restrictions probably are not particularly onerous for developers. However, the first two
restrictions effectively mean that you need to be careful about what an ASP.NET application is doing
when you use it as a wildcard mapping. If you think about it, though, these restrictions do make sense;
ASP.NET and classic ASP still live in separate worlds and know nothing about the internal processing
logic of the other’s ISAPI extension.

Without some major surgery to the guts of IIS, ASP, and ASP.NET, it is basically impossible for two
ISAPI extensions to manipulate the data that is sent back in a response. For example, how would you
integrate ASP.NET’s fragment caching with the response written from a classic ASP page? Or how
would the response buffering behavior in classic ASP (the Enable Buffering check box for ASP) coexist
with response buffering in ASP.NET? The simple answer is that both ISAPI extensions have many inter-
nal assumptions about a request lifecycle and ownership of the actual response data. There is no easy
way to reconcile these assumptions in ASP.NET 3.5 or IIS 7.0 when an application is running under the
classic application pool.

Now that you understand that ASP.NET cannot touch anything in the response when interacting with
classic ASP, what are some of the things you can safely do in ASP.NET? Any ASP.NET APIs that do not
touch the response are safe to use. So, for example, you can call any of the following:

Forms authentication APIs that create tickets as well as encrypting and decrypting string ❑❑

representations of the tickets. However you cannot call methods like SetAuthCookie or
RedirectFromLoginPage.

Application services that do not directly interact with the ❑❑ Response object are safe to call. You
could call most of the Membership, Role Manager, and Profile APIs without any problems.

You can freely use the ❑❑ Request object to inspect information; you could look at the forms
authentication cookie (if one was sent) or query-string and forms variables.

You can access other application services such as session state or the Cache API.❑❑

79301c07.indd 380 10/6/08 12:13:52 PM

381

Chapter 7: Integrating ASP.NET Security with Classic ASP

As a simple example, you can take the sample ASP.NET application used earlier, and instead of touch-
ing the Response, log information about the incoming request to a text file:

C#
void Application_BeginRequest(Object sender, EventArgs e)
{
 StreamWriter sw = File.CreateText(Server.MapPath(“~/App_Data/logfile.txt”));
 sw.WriteLine(“A request was made to: “ + Request.Path);
 sw.Flush();
 sw.Close();
}

VB.NET
 Sub Application_BeginRequest(ByVal sender As Object, ByVal e As EventArgs)
 Dim sw As StreamWriter = _
 File.CreateText(Server.MapPath(“~/App_Data/logfile.txt”))
 sw.WriteLine(“A request was made to: “ & Request.Path)
 sw.Flush()
 sw.Close()
 End Sub

If you access default.asp, everything still works, and the ASP.NET applications App_Data directory
contains the text log file containing information about the request. So, you can safely carry out complex
operations from inside of the ASP.NET application. From a design standpoint, this means you can think
of a wild-carded ASP.NET application as something of a bridge to the managed world for a classic ASP
application.

At this point, you might be thinking there is a sneaky way to start doing interesting “stuff” inside of
ASP.NET and then pass the results off to classic ASP. Obviously, from the previous sample you could
hack up an approach whereby ASP.NET writes information to a file in a common location, and classic
ASP reads from it. But that approach is going to fall apart quickly. How about just stuffing information
onto the query string inside of ASP.NET and then picking these values up over in the classic ASP code?

C#
Request.QueryString.Add(“foo”, “It would be nice if this worked.”);

VB.NET
Request.QueryString.Add(“foo”, “It would be nice if this worked.”)

This code is a nice idea, but it is not going to work, because inside of ASP.NET, information such as
Request.QueryString and Request.Form are contained in read-only collections. You could write
code inside of the classic ASP application that would place values on the query-string, and then when a
redirect occurred the ASP.NET application could read these values and do some work, but the problem
that is being addressed in this chapter involves authentication and authorization. In these cases, the
flow of data is in the other direction; you need ASP.NET to communicate the results of an authentica-
tion or authorization decision to the classic ASP application (or at least store the results in a way that
protects the classic ASP application).

79301c07.indd 381 10/6/08 12:13:52 PM

382

Chapter 7: Integrating ASP.NET Security with Classic ASP

Of course, the issue with using all of the ASP.NET capabilities is that the results are still “locked up” as
it were inside of the ASP.NET application. How do you actually throw any of the data over the wall to
the classic ASP application? Prior to ASP.NET 2.0, you would probably pursue options such as:

Write a web service that wraps managed code, and then access it using SOAP tools from your ❑❑

classic ASP applications

Wrap the managed code into a COM component, thus making the logic available to the classic ❑❑

ASP world as well

Both of these approaches are still valid in the world of ASP.NET 2.0 and ASP.NET 3.5. However, they also
tend to be a bit heavyweight. Writing a web service or a COM-callable wrapper to an inventory control
API might make sense; sometimes all you want to accomplish is basic authentication and authorization.
Even for these two aspects of a website, writing a web service and making something like forms authen-
tication globally available as a service can be appealing.

However, considering that forms authentication and URL authorization are already built into ASP.NET,
it seems like overkill to wrap these features just to make them useful in classic ASP. And there is also
the extra overhead of having to write and maintain the wrappers as well as figure out how to configure
them in production. A much easier approach would be to use these types of ASP.NET features from
inside an ASP.NET code-base and make the results available as necessary to the classic ASP application.

The Resource Type Setting
You might have noticed that the dialog box for editing additional configuration settings for the wild-
card mapping had a check box, “Invoke handler only if request is mapped to”, that was checked by
default, having the File option selected. Such a configuration setting tells IIS 7.0 that it should first verify
that the requested resource actually exists on the filesystem prior to passing the request on to ASP.NET.
If you use wildcard mappings for only basic ASP.NET processing, this may be an acceptable setting.

The configuration setting is reflected in the <handlers> configuration section by adding the
resourceType attribute. The resourceType attribute, already shown above, takes several input values,
including File, Directory, Either, or Unspecified. All the values’ meanings are clear and direct, except
perhaps the Unspecified value. This value is set when the “Invoke handler only if request is mapped to”
check box is unchecked and hence this tells IIS not to verify that the resource physically exists prior to
sending it to ASP.NET or any other extension configured.

However, if you look at the default file associations that are mapped to ASP.NET, you will see quite a
few mappings that have this setting turned off. As a result, if you plan to run application running in IIS
7.0 that contains a mixture of ASP.NET and ASP content, you should leave this setting unchecked. The
reason is that a number of “resources” that are requested from an ASP.NET site do not physically exist
on the filesystem.

The easiest way to demonstrate this is by dropping a TreeView control onto a form and hooking it up
to a sitemap file:

<asp:TreeView ID=”TreeView1” runat=”server” DataSourceID=”SiteMapDataSource1”>
</asp:TreeView>

<asp:SiteMapDataSource ID=”SiteMapDataSource1” runat=”server” />

79301c07.indd 382 10/6/08 12:13:52 PM

383

Chapter 7: Integrating ASP.NET Security with Classic ASP

If you add a web.sitemap file to a project and the ASP.NET application is configured with a wildcard
mapping, when the TreeView renders all collapse icons will be missing. Furthermore, the page will
load with a JavaScript error because the HTML source for the page contains references like:

<img
 src=”/wildcardmapping/WebResource.axd?d=OXSMoGKl5Uw3RgQR7RCe_WMrxaink7zs4hqaurgE
2G81&t=633408398072242656”
 alt=”Collapse foo1”
 style=”border-width:0;”
/>

These types of references point back at webresource.axd, the central content handler in ASP.NET 3.5
for serving up JavaScript and images. If the “Invoke handler only if request is mapped to” check box is
checked, then IIS 7.0 will fail requests like these because it cannot locate any file called webresource.axd
on the filesystem.

Because webresource.axd serves the JavaScript used by validator controls, and it is likely that you
will need the validator controls for any ASP.NET login page that front-ends a classic ASP site, remem-
ber that you must uncheck this setting when setting up a wildcard mapping.

DefaultHttpHandler
All of the previous discussions have lead up to the need for some kind of “glue” that ASP.NET can use
to pass data to classic ASP. The solution to this need is the DefaultHttpHandler class. In the previous
examples, it was the DefaultHttpHandler that was responsible for passing the request back to IIS 7.0
whenever an ASP page was requested. Also, it was the DefaultHttpHandler that performed the vari-
ous checks to ensure that the response had not been modified prior to either processing a POST request
or passing control to classic ASP.

The DefaultHttpHandler runs during the handler execution phase of the ASP.NET HTTP pipeline. In
other words, DefaultHttpHandler runs at the same point in time as the .aspx page handler; although
instead of running an .aspx page, the DefaultHttpHandler deals with handing control to IIS 7.0. This
means that the earlier events in the HTTP pipeline are available, and any of the logic associated with
those events will run (for example, the FormsAuthenticationModule will run during Authenticate​
Request and so on).

The DefaultHttpHandler is configured in the root web.config file as shown here:

<add path=”*” verb=”GET,HEAD,POST”
 type=”System.Web.DefaultHttpHandler” validate=”True” />

Because this handler mapping is the second to last mapping, it means that any GET, HEAD, or POST request
made to an ASP.NET application for a file type other than ones that are explicitly recognized by ASP.NET,
will be routed to the DefaultHttpHandler. Prior to the configuration for DefaultHttpHandler, the
default root web.config contains a number of obvious mappings (for example, .aspx requests are mapped
to the PageHandlerFactor) and some other less obvious mappings (for example, SQL Server .mdf and
.ldf files are mapped to the ForbiddenHandler).

If a request is made for an unrecognized file type, but the HTTP verb for the request is not GET, HEAD,
or POST, then the request will bypass the DefaultHttpHandler and fall through to the final handler
mapping, which points at the HttpMethodNotAllowedHandler.

79301c07.indd 383 10/6/08 12:13:52 PM

384

Chapter 7: Integrating ASP.NET Security with Classic ASP

It is important to remember here that when an application is running under the classic application pool
hosted inside IIS 7.0, the HttpHandlers that take effect are those defined within the root web.config
or the application’s web.config configuration files inside the <httphandlers> configuration section.
So, to detect the above handler mapping, you now know where exactly you should be looking. This
is different from the case when the application is running under the default application pool hosted
inside IIS 7.0, where only the handlers defined within the <handlers> configuration section, located
inside the <system.webServer> configuration section group, in either the applicationHost.config or the
application’s web.config configuration files take effect at runtime.

Internally, the DefaultHttpHandler has two code paths: one that eventually hands control back to IIS,
and a separate path that handles the case where the response has already been modified in some manner.
On one hand, when an ASP.NET application modifies the response, if the DefaultHttpHandler deter-
mines that the request is really for a static file, then the DefaultHttpHandler passes the request to
another internal handler called the StaticFileHandler. On the other hand, if the DefaultHttpHandler
determines that the conditions for passing control back to IIS 7.0 have not been violated, the handler passes
control back to IIS 7.0 using the HSE_REQ_EXEC_UNICODE_URL server support function in the ISAPI API.

Normally, this means that requests for any kind of non-ASP.NET resource will be automatically routed to
IIS 7.0, at which point IIS 7.0 will either serve the file itself (in the case of static files), or pass the request
on to the appropriate ISAPI extension (in the case of ASP pages). There is a boundary scenario with static
files in that you can programmatically configure an HttpCachePolicy for the Response when a request
is made for a static file (remember, this is one of the conditions the DefaultHttpHandler checks for).
Doing so allows you to use some aspects of ASP.NET output caching to explicitly configure the way you
want to cache static file content. Because the cache policy is modified, the DefaultHttpHandler will
never pass the request back out to IIS 7.0; there is no logic in IIS 7.0 that would know what to do with an
ASP.NET HttpCachePolicy. So, instead the internal StaticFileHandler is used to serve the static
content, taking into account the output cache settings set on the Response.Cache property. Because the
StaticFileHandler defaults a number of output cache settings, programmatically modifying the
response’s cache policy in such a way that it plays well with the StaticFileHandler is tricky; it is
also an extensibility scenario that really hasn’t been tested extensively.

Using the DefaultHttpHandler
The DefaultHttpHandler is a public class with a number of virtual methods that you can override.
As a first step towards integrating ASP.NET authentication and authorization with classic ASP, you can
create a custom HttpHandler that derives from DefaultHttpHandler:

C#
public class CustomHandler : DefaultHttpHandler
{
 public CustomHandler() {}

 public override string OverrideExecuteUrlPath()
 {
 //gets called just before control is handed back to IIS 6
 return null;
 }

79301c07.indd 384 10/6/08 12:13:52 PM

385

Chapter 7: Integrating ASP.NET Security with Classic ASP

 public override void EndProcessRequest(IAsyncResult result)
 {
 //gets called when the original ISAPI extension is done processing
 //This step is useful for post-processing
 base.EndProcessRequest(result);
 }
}

VB.NET
Public Class CustomHandler
 Inherits DefaultHttpHandler

 Public Sub New()
 End Sub

 Public Overrides Function OverrideExecuteUrlPath() As String
 ‘gets called just before control is handed back to IIS 7.0
 Return Nothing
 End Function

 Public Overrides Sub EndProcessRequest(ByVal result As IAsyncResult)
 ‘gets called when the original ISAPI extension is done processing
 ‘This step is useful for post-processing
 MyBase.EndProcessRequest(result)
 End Sub
End Class

This code represents the basic skeleton of a custom HttpHandler. It overrides the two core methods
available on DefaultHttpHandler: OverrideExecuteUrlPath and EndProcessRequest. You want
to override the method OverrideExecuteUrlPath rather than the virtual BeginProcessRequest
method for the following reasons:

Although you could override ❑❑ BeginProcessRequest (it is virtual), this method contains the
internal logic used by DefaultHttpHandler to determine whether the request can be for-
warded to IIS 7.0, or whether the request needs to be passed to the static file handler (or failed
in the case of a classic ASP request). The logic for making this determination is internal and,
thus, is not accessible to developers.

The ❑❑ OverrideExecuteUrlPath and the OnExecuteUrlPreconditionFailure virtual
methods are intended as the two integration points for custom handlers when the request is
being processed. Although this chapter deals only with OverrideExecuteUrlPath, you also
have the option to override OnExecuteUrlPreconditionFailure. This second method is
called when the DefaultHttpHandler determines that the current request cannot be passed
to IIS 7.0; if you know that you do not want the static file handler attempting to process your
requests, then you can override OnExecuteUrlPreconditionFailure and throw some other
kind of error instead.

The ❑❑ DefaultHttpHandler will have already populated the protected Context property for
you before calling into OverrideExecuteUrlPath. Without access to a valid HttpContext,
there would not be much point in writing a custom handler in the first place.

79301c07.indd 385 10/6/08 12:13:52 PM

386

Chapter 7: Integrating ASP.NET Security with Classic ASP

Unlike BeginProcessRequest, you can override EndProcessRequest if needed. For purposes of this
chapter, nothing needs to be cleaned up or postprocessed in an override of EndProcessRequest. How-
ever, if you were attempting to integrate session state between ASP.NET and classic ASP, overriding
EndProcessRequest would be the correct place to write session data modified in classic ASP back into
the ASP.NET session state store. (Of course, the whole issue with integrating ASP.NET and classic ASP
session state would warrant at least part of another book.)

The current sample code does not actually do anything inside of the overrides. EndProcessRequest
simply delegates control to the base class. OverrideExecuteUrlPath returns a null value, which in the
case of an ASP.NET application applying authentication and authorization logic to a classic ASP appli-
cation is the correct thing to do. If you return a null value, the currently requested path is the one that
IIS 6 will continue executing when it regains control of the request.

The secondary idea behind OverrideExecuteUrlPath, and the reason that it returns a string value,
is that developers can choose to modify the actual path that is returned back to IIS 7.0. As a quick side
note, if you were to change the logic inside of OverrideExecuteUrlPath to look as follows:

C#
 public override string OverrideExecuteUrlPath()
 {
 //gets called just before control is handed back to IIS 7.0
 return “/wildcardmapping/default2.asp”;
 }

VB.NET
 Public Overrides Function OverrideExecuteUrlPath() As String
 ‘gets called just before control is handed back to IIS 7.0
 Return “/wildcardmapping_vb/default.asp”
 End Function

When you ran the sample application and request default.asp, the actual classic ASP page that would
run would be default2.asp. This is a pretty powerful extensibility point but again not something that
you need for front-ending a classic ASP application. Some Microsoft development teams, such as Share-
Point, use this ability to modify the path prior to passing control to the SharePoint ISAPI extension.

Having written a custom HttpHandler, you still need to register the handler with ASP.NET so that it
recognizes it.

<httpHandlers>
 <add path=”*.asp” verb=”GET,HEAD,POST” type=”CustomHandler” validate=”true” />
</httpHandlers>

You register HTTP handlers inside of the <httpHandlers /> configuration element. In this case,
because the custom handler is intended to work with only classic ASP pages, the path attribute is set
to *.asp. You want the custom handler to work with any of the likely HTTP verbs, so GET, HEAD, and
POST are all specified. The type registration is simply a .NET Framework type string. In the sample
application the CustomHandler class is located inside the App_Code directory, so only the classname
is needed. Because I did not add an explicit namespace definition in the file located in App_Code, the

79301c07.indd 386 10/6/08 12:13:53 PM

387

Chapter 7: Integrating ASP.NET Security with Classic ASP

class ends up in the default namespace and hence does not include a namespace in the type definition.
Chances are that in a real production scenario you would implement the custom handler in a stand-
alone assembly, in which case the type attribute requires the namespace qualified class name and at
least an assembly reference—something like MyNamespace.CustomHandler, TheHandlerAssembly.

Although the default HTTP handler definitions in the root web.config include a mapping of * to the
DefaultHttpHandler, the previous registration is still sufficient. When ASP.NET processes the set of
defined <httpHandlers />, it will see the handlers defined in the application’s web.config file after
the handlers defined in the root web.config file. Because the last matching handler definition takes
precedence, the mapping to *.asp inside of the application’s web.config will always win out over the
more generic mapping defined in the root web.config file.

To see if everything is working at this point, you can set some breakpoints inside of CustomHandler,
and then run the application requesting the default.asp page. The breakpoint in OverrideExecute​
UrlPath is hit first (as expected, this also shows that the DefaultHttpHandler is ready to forward the
request to IIS 7.0). Later, the breakpoint in EndProcessRequest is reached as well. And finally the out-
put from the classic ASP page appears in your browser. So at this point, you have a functioning custom
handler and both ASP.NET and classic ASP are working properly.

Serving Classic ASP in IIS 7.0 Integration Mode
The preceding sections emphasized how to define a wildcard mapping for an application that is
hosted inside IIS 7.0 and running under the classic .NET application pool that resembles that of the
IIS 6.0 functioning mode. As you can see, it was obvious that the process of serving classic ASP pages
in an ASP.NET application has not changed at all. You still need to define a wildcard mapping so that
the .asp pages are processed by the ASP.NET ISAPI extension before IIS 7.0 takes back control on
those resources.

Chapter 2 explained in depth the details of the new IIS 7.0 Integration mode. The discussion will not be
repeated here; however, refreshing your memory with the major concepts behind the new integration
mode should be helpful.

With the new IIS 7.0 Integration mode, ASP.NET unites with the IIS request pipeline and hence the name
integration! Prior to IIS 7.0, a request used to pass through the IIS request pipeline where a set of events
would be fired and handled by core native modules inside IIS only. Once IIS finishes its processing on the
request, it is handed off to the correct ISAPI extension configured at the level of IIS. Assuming an .aspx
page was requested, the ASP.NET engine starts its own managed request pipeline to serve the request
and generate a response to be sent back to IIS in order to be sent back to the client making the request.

Now things have changed drastically! The IIS and ASP.NET request pipelines unite and integrate into a
single request pipeline, getting rid of the overhead that we had before because of the presence of two dif-
ferent request pipelines. Integrating both pipelines has so many advantages and improvements, among
which is that managed and native modules will be executing side by side in the same request pipeline.
Throughout the request pipeline, the IIS core engine fires events during the life cycle of the request. Mod-
ules, whether native or managed, subscribe to these events and fire accordingly. IIS 7.0 core web server
makes use of the Managed Engine in making the integration successful. The Managed Engine works as a
wrapper over all the managed modules and hence when an event is fired by the IIS core engine, the

79301c07.indd 387 10/6/08 12:13:53 PM

388

Chapter 7: Integrating ASP.NET Security with Classic ASP

native modules that subscribe to the current event are retrieved and executed on the spot, whereas the
managed modules are accessed through the Managed Engine that checks which managed modules
subscribe to the event fired by the IIS core engine and requests executing the modules, as necessary.

The presence of the unified and integrated mode gives the ASP.NET engine a chance to have a say in
every request that hits the IIS web server. Why? The reasoning is simple and comes from the fact that
inside the integration mode, both managed and native modules can subscribe to the same events that are
fired by the IIS core engine when a new request comes in. This means that there is no additional work
required by the administrator or developer to give the ASP.NET engine a chance to process a request
for a non-ASP.NET resource. ASP.NET in the integration mode has full access to every request that
passes through the integrated mode and hence the ASP.NET engine treats a request for an ASP.NET page
the same as it treats a classic ASP page.

Another important advantage that ASP.NET developers gain is that all the ASP.NET features can now
be applied on the non-ASP.NET resources. For instance, FormsAuthenticationModule, Membership, and
Role management can all be used now with resources that are not ASP.NET. Hence, a developer work-
ing on a classic ASP application can now make use of those features instead of having to re-write them
from scratch. You will see in the coming sections of this chapter how you can authenticate and autho-
rize classic ASP pages using ASP.NET core features.

By default, when you open the IIS 7.0 Manager tool and create a new website, application, or virtual
directory, the application is automatically set to run under the default application pool. The default
application pool puts the application running into the new IIS 7.0 integrated mode and hence you can
notice the difference between the classic .NET application pool that puts the application to run as if it
were running inside IIS 6.0. There is nothing special to configure an application to run in the integrated
mode, except to assign the default application pool as the application’s application pool, which again is
set by default on any new application that is created inside IIS 7.0.

To test the power of the new IIS 7.0 integrated mode, create a new application and add a simple .asp
page that contains the following code:

 <%
 Response.Write(“A classic ASP page running inside the IIS 7.0 Integrated mode!”)
 %>

The code is simple but it serves the purpose of showing how you can easily run and execute a non-
ASP.NET application inside an ASP.NET application without having to do any configurations or
workarounds on the IIS web server level.

Later in this chapter, you will learn how to authenticate and authorize classic ASP requests using the
ASP.NET features.

Finally, it is important to mention that when an application is running under the integrated mode, you
cannot use the DefaultHttpHandler or any other custom class derived from that handler. While run-
ning under the integration mode, the DefaultHttpHandler will not be able to return back the request
to IIS 7.0 and hence it will treat a non-ASP.NET resource as a static resource and executes accordingly.
This is not bad news at all, because by now you know that when an application is running under the
integration mode, the ASP.NET engine has access to all requests, whether those requests are ASP.NET
or non-ASP.NET resources.

79301c07.indd 388 10/6/08 12:13:53 PM

389

Chapter 7: Integrating ASP.NET Security with Classic ASP

Authenticating Classic ASP with ASP.NET
The next step is to build the functionality inside of the ASP.NET application to support forms authenti-
cation for classic ASP users. The general idea is that with both ASP pages and ASP.NET pages located in
same virtual directory (and, thus, the same application in IIS 7.0), you want unauthenticated users to be
forced to authenticate using ASP.NET’s forms authentication mechanism.

After a user successfully logs in with forms authentication, the user should be redirected to the origi-
nal requested page. This should occur regardless of whether the originally requested resource was an
ASP.NET page or a classic ASP page. On subsequent requests, again regardless of the type of requested
resource, you want ASP.NET to transparently verify the validity of the forms authentication cookie and
then pass the request along.

For starters, you need to configure the ASP.NET application with the basics necessary to enable forms
authentication and enforce authenticated access:

 <authentication mode=”Forms”/>

 <authorization>
 <deny users=”?”/>
 </authorization>

With these settings, anonymous users will be redirected to the forms authentication login page. For
now, just add a basic login page called Login.aspx to the sample application, and place a Login control
onto the web page.

You can’t directly access default.asp at this point. Instead, because the wildcard mapping first
routes the request to ASP.NET, and the ASP.NET configuration denies access to all anonymous users,
you are redirected to the login page. In fact, anonymous requests never even make it to the logic inside
of the CustomHandler class. The UrlAuthorizationModule running during the AuthorizeRequest
event in the HTTP pipeline detects that the user is anonymous and immediately forwards the call to
EndRequest—in effect short-circuiting the request processing and bypassing the custom handler. The
information about the original request to default.asp is still retained:

http://localhost/wildcardmapping/login.aspx?ReturnUrl=%2fwildcardmapping%2fDefault.asp

The next step is to add in a basic user store and authenticate credentials against that user store. I cover
the new Membership feature in detail in Chapter 10, but for now the sample just uses the Membership
feature with only a minor change to its default configuration. Because I happen to be running a local
instance of SQL Server 2005, the connection string for all of the SQL-based providers (including Mem-
bership) needs to be changed:

 <connectionStrings>
 <remove name=”LocalSqlServer”/>
 <add
 name=”LocalSqlServer”
 connectionString=”server=.\SQL2005;Integrated Security=true;database=aspnetdb”
 />
 </connectionStrings>

79301c07.indd 389 10/6/08 12:13:53 PM

390

Chapter 7: Integrating ASP.NET Security with Classic ASP

All of the provider-based features that have SQL providers use the same connection string,
LocalSqlServer. For the sample application the default definition of LocalSqlServer is removed
and is redefined to point at a local SQL Server instance running the aspnetdb database.

The login page for the application is Login.aspx, and again no special behavior is needed here. Just
dropping a Login control onto the page is sufficient because the Login control automatically works
with the Membership feature.

C#
<%@ Page Language=”C#” AutoEventWireup=”true”
CodeFile=”Login.aspx.cs” Inherits=”Login” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>
 <title>Login Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <div>
 <asp:Login ID=”Login1” runat=”server”>
 </asp:Login>
 </div>
 </form>
</body>
</html>

VB.NET
<%@ Page Language=”vb” AutoEventWireup=”true” _
CodeFile=”Login.aspx.vb” Inherits=”Login” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN” _
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <div>
 <asp:Login ID=”Login1” runat=”server”>
 </asp:Login>
 </div>
 </form>
</body>
</html>

Now if you attempt to navigate to default.asp, you will be redirected to Login.aspx. Type in some
valid credentials (if you need to create some credentials first just use the ASP.NET Configuration tool
from inside of Visual Studio), and log in. Assuming that the credentials are valid, you will be redirected
back to default.asp, and you will have a valid forms authentication cookie for subsequent pages.

79301c07.indd 390 10/6/08 12:13:53 PM

391

Chapter 7: Integrating ASP.NET Security with Classic ASP

At this point in the sample, the custom handler is not really adding anything, though you will rectify
this shortly. The main thing to keep in mind is that with nothing more than a wildcard mapping, a
slight tweak to a connection string, the forms authentication feature, and one login page, you now have
an ASP.NET application authenticating and logging users in prior to handing the users to classic ASP.
Now that you know the steps involved, you can whip up all this up in about five minutes flat! In fact,
for many smaller ASP.NET-to-classic ASP integration problems, this may actually be all you need.

Will Cookieless Forms Authentication Work?
Cookieless forms authentication may not work as an authentication mechanism for classic ASP. For the
heck of it, try adding the following to web.config.

<authentication mode=”Forms”>
 <forms cookieless=”UseUri” />
</authentication>

Initially, things will look like they are working, and you will successfully get redirected to
default.asp. The resultant URL looks something like:

http://localhost/wildcardmapping/(F(kc9ofAIFfj1TpnvRRoC9_me0TPhW4m9_x8n0od-
KUmjaLB__BWQplUyZ7lWW4ORKjkGJZcYMAIH662Evl4CRiA0sXEfOp1mHhH6WpzBoJkI1))/Default.asp

The problem with this URL is not the fact that the cookieless forms authentication ticket is embedded in
the URL. That actually will not impact classic ASP because the ASP.NET ISAPI filter removes the ticket
from the URL long before the request is forwarded to ASP.dll. Problems arise if your classic ASP code
starts constructing redirects from inside of its code-base.

Chapter 6 explained that there were some restrictions on the way in which ASP.NET code could con-
struct URLs and still retain the forms authentication ticket. ASP.NET provides the handy syntax to indi-
cate an application-relative reference. However no such shorthand exists in classic ASP. You might have
code in your classic ASP application that issues redirects with code like the following:

C#
Response.Redirect(“/wildcardmappings/SomeOtherPage.aspx”);

VB.NET
Response.Redirect(“/wildcardmappings/SomeOtherPage.aspx”)

This style of redirect will lose the forms authentication ticket that was embedded on the URL. Given
the limited programming model available in classic ASP, there is not an easy way to grab the ticket out
of the URL and preserve it when you redirect. If your classic ASP application uses only relative redirects
like the following then you will most likely be able to use cookieless forms authentication with a clas-
sic ASP application.

‘This type of redirect preserves the cookie-less ticket
Response.Redirect(“default2.asp”)

79301c07.indd 391 10/6/08 12:13:53 PM

392

Chapter 7: Integrating ASP.NET Security with Classic ASP

The same approach will work if you have any <a /> tags or other relative URL references in your clas-
sic ASP pages. From the browser’s standpoint, relative URL references are always considered relative to
the last path in the URL, which in the case of cookieless forms authentication means relative to the full
URL including the cookieless ticket.

Passing Data to ASP from ASP.NET
Up to this point, you have seen the mechanics of getting forms authentication working with classic
ASP. The next step is to come up with a way to pass the authenticated username over to the classic ASP
application. There probably are not many ASP sites out there that require authentication but then throw
away the authenticated username. The problem of getting the authenticated username over to the ASP
application, however, is just a specific example of the more general problem of passing data from ASP.
NET over to a classic ASP application.

This is where the custom HttpHandler comes in handy. Rather than having to cobble together some
kind of redirection-based mechanism, you can use the HTTP headers for the request as a way to pass
information along from ASP.NET into a classic ASP application. In fact, for quite a few years, a variety
of third-party authentication products have relied on manipulating HTTP headers as a platform-neutral
way to pass information between different web applications.

In the case of a custom HttpHandler, you can change the HTTP headers for a request by using the pro-
tected ExecuteUrlHeaders property. You might think that you could just use the Context property to
get to the Request.Headers property and then manipulate the resulting NameValueCollection. This
will not work because Request.Headers is a read-only collection; its intended use in earlier versions
of ASP.NET never included modifying the headers of a request. DefaultHttpHandler gets around this
by storing a copy if the incoming HTTP headers in a separate NameValueCollection and making this
collection available to developers via the ExecuteUrlHeaders property.

As an example, you can try adding an arbitrary header to the incoming request from inside of the cus-
tom handler.

C#
public override string OverrideExecuteUrlPath()
{
 this.ExecuteUrlHeaders.Add(“Some Custom Header”, “Some Custom Value”);
 return null;
}

VB.NET
 Public Overrides Function OverrideExecuteUrlPath() As String
 Me.ExecuteUrlHeaders.Add(“Some Custom Header”, “Some Custom Value”)
 Return Nothing
 End Function

Now, the custom HttpHandler inserts a new header value for the request. To verify that this custom
HTTP header made it to the classic ASP page, you can add code to default.asp that dumps out the
request headers.

79301c07.indd 392 10/6/08 12:13:53 PM

393

Chapter 7: Integrating ASP.NET Security with Classic ASP

<%
For Each value In Request.ServerVariables
 if (value <> “ALL_HTTP”) AND (value <> “ALL_RAW”) then
%>
<%= value %> = <%= Request.ServerVariables(value) %>
<%
 End if
Next
%>

The ASP code intentionally skips over the ALL_HTTP and ALL_RAW variables because these contain a
concatenated dump of all of the headers in a rather unreadable form. If you open a browser and log in
to default.asp, you get nicely formatted output showing all the request headers. At the end of the list,
you will see the following:

HTTP_SOME CUSTOM HEADER = Some Custom Value

You can easily access custom HTTP header values from inside of classic ASP by just indexing into
Request.ServerVariables. With this basic technique, you can pass information from ASP.NET 3.5 to
classic ASP. As long as the information you need to pass can be serialized into a string in ASP.NET, and
your classic ASP code can do something useful with that string value, you have a very easy way to pass
information between the two environments. No need for kludgy redirects or expensive web service calls!

Although the samples in this chapter do not need to move very much information around from ASP.NET
to classic ASP, you might be wondering just how much data you can actually stuff into an HTTP header.
As an experiment, you can try adding large strings into the header. The following code uses a 32KB
string as the value for a custom HTTP header:

C#
public override string OverrideExecuteUrlPath()
{
 //gets called just before control is handed back to IIS 7.0
 this.ExecuteUrlHeaders.Add(“Some Custom Header”, “Some Custom Value”);

 StringBuilder largeString = new StringBuilder();
 largeString.Append(new String(char.Parse(“a”), 32768));
 this.ExecuteUrlHeaders.Add(“A Very Large Header”, largeString.ToString());

 return null;
}

VB.NET
Public Overrides Function OverrideExecuteUrlPath() As String
 ‘gets called just before control is handed back to IIS 7.0
 Me.ExecuteUrlHeaders.Add(“Some Custom Header”, “Some Custom Value”)

 Dim largeString As New StringBuilder()
 largeString.Append(New String(Char.Parse(“a”), 33870))
 Me.ExecuteUrlHeaders.Add(“A Very Large Header”, largeString.ToString())

 Return Nothing
End Function

79301c07.indd 393 10/6/08 12:13:53 PM

394

Chapter 7: Integrating ASP.NET Security with Classic ASP

The custom header value “A Very Large Header” was passed to classic ASP without a problem,
and the entire 32KB string showed up on default.asp. Part of the reason such enormous headers are
allowed is that by the time ASP.NET is handing a request back to IIS 7.0, the normal URL length and
header size restrictions enforced by http.sys and ASP.NET have already occurred. Playing around
with this a bit more, it turns out you can send as much as 65,535 bytes in an additional custom header
(that is, 1 byte less than 64KB). Realistically, though, for purposes of authentication and authorization,
you aren’t going to need much more than a few kilobytes of space for username and role information.

Passing Username to ASP
Now that you have seen most of the work necessary to move information from ASP.NET over to classic
ASP, the sample application should be extended to pass the authenticated username from ASP.NET forms
authentication over to classic ASP. However, there is one very convenient piece of work that ASP.NET
already performs on your behalf! A side effect of running the request through ASP.NET first is that the
authenticated user information is automatically placed in the appropriate HTTP headers. For example,
if you log in with the account classicASP from ASP.NET, the header information that ASP.NET sets
up for classic ASP already includes the following:

AUTH_USER = classicASP
LOGON_USER = classicASP

For classic ASP code that was already using either of these server variables to identify the user, integrat-
ing forms authentication and ASP couldn’t be easier.

Authenticating Classic ASP with IIS 7.0
Integrated Mode

Authenticating a classic ASP page that is part of an ASP.NET application running under the classic
.NET application pool inside IIS 7.0 does not require any extra efforts except the trick of defining a wild-
card mapping inside IIS 7.0 so that ASP.NET gets the chance to process the classic ASP page. Defining
and enforcing authentication on classic ASP pages, as you have seen in the above section, is no differ-
ent from what you do for ASP.NET resources. First, you define the <authentication> configuration
section inside the web.config configuration file of the application. Once the web.config configura-
tion file is configured properly to handle authentication, you add an .aspx login page to allow users
to enter their credentials to be authenticated by the application.

The preceding section shows how to authenticate classic ASP pages inside an ASP.NET application that
is running under the classic .NET application pool. The same configurations and additions are needed
when you want to authenticate classic ASP pages when running inside an ASP.NET application that is
configured with the default application pool or in other words the integrated mode. You still need to
define the <authentication> configuration section inside the web.config configuration file and add
an .aspx Login page to gather credentials and authenticate users.

Until now there has been nothing mentioned about wildcard mapping when it is time to authenti-
cate classic ASP pages with IIS 7.0 integration mode. With the new IIS 7.0 integrated mode there is no
need for any extension mapping, since the ASP.NET engine has full control and access to any request
that hits the IIS web server; hence, no additional configuration is needed by IIS 7.0 except putting the

79301c07.indd 394 10/6/08 12:13:53 PM

395

Chapter 7: Integrating ASP.NET Security with Classic ASP

application to run under the default application pool. However, there is one step required to authenti-
cate a request for non-ASP.NET resources, in this case classic ASP pages, which is to configure any ASP.
NET authentication type you choose to authenticate non-ASP.NET resources.

As mentioned previously in this book, when an application runs in the integrated mode, IIS 7.0 makes
full use of all the configuration sections defined within the <system.webServer> configuration sec-
tion group to load any custom HttpHandler, HttpModule or any other custom configuration setting
while the application is running. ASP.NET existed before the days of IIS 7.0 and hence all the ASP.NET
modules and features target only ASP.NET resources. For instance, the managed FormsAuthentication​
Module, if installed on IIS 7.0, for applications running under the default application pool, is defined
inside the <modules> configuration section within the <system.webServer> configuration section
group located inside the applicationHost.config IIS 7.0 configuration file, as follows:

<add name=”FormsAuthentication” type=”System.Web.Security.
FormsAuthenticationModule” preCondition=”managedHandler” />

The preceding shows how the managed FormsAuthenticationModule is added into the list of man-
aged modules on IIS 7.0. For an in-depth discussion on the new IIS 7.0 integrated mode and the
applicationHost.config IIS 7.0 configuration file, please refer back to Chapter 2.

The important attribute to watch for now is the preCondition attribute. In the above configuration
section, it is set to the managedHandler value. This means that the added module will serve and run
only for managed resources (i.e. ASP.NET resources). To be able to use the same module to authenticate
non-ASP.NET resources (in this case, classic ASP pages), you need to add the following configuration
sections into the <modules> configuration section inside the <system.webServer> configuration sec-
tion group located in the application’s web.config configuration file:

 <system.webServer>
 <modules>
 <remove name=”FormsAuthentication”/>
 <add
 name=”FormsAuthentication”
 type=”System.Web.Security.FormsAuthenticationModule”
 preCondition=””
 />
 </modules>
 </system.webServer>

As you know by now, the FormsAuthenticationModule is already added inside the applicationHost​
.config IIS 7.0 configuration file. What you need to do first is remove the module’s entry by specifying
the module’s name, as specified in the <add /> element above.

After removing the module, you need to add it again, but this time setting the value of the preCondition
attribute to an empty string represented by empty double quotes. This instructs the IIS 7.0 web server
core engine to list the FormsAuthenticationModule as a managed authentication module that can be
applied to all resources that are processed by ASP.NET engine. That is all you need to ensure that non-
ASP.NET resources, in this case classic ASP pages, get authenticated using ASP.NET features and
modules.

Once the above has been added to the application’s web.config configuration file, you still need to con-
figure the <authentication /> configuration section group to work with Forms authentication. The

79301c07.indd 395 10/6/08 12:13:53 PM

396

Chapter 7: Integrating ASP.NET Security with Classic ASP

same steps that were mentioned in the above section can be used here without any changes except for
adding/removing the authentication module of choice, whether Forms or Windows authentication.

A closing note here is that the above configuration change works not only for classic ASP pages but also
for any non-ASP.NET resource, including images, cascading style sheets, PHP pages, etc. You can now
benefit from pre-existing ASP.NET features to manage other non-ASP.NET resources and even pages
from other technologies.

Authorizing Classic ASP with ASP.NET
You have seen that forms authentication is already working with classic ASP application, in part
because there is a URL authorization rule that denies access to anonymous users. In effect, you already
have the basics of authorization working. The sample application, though, can be modified a bit more to
include more extensive authorization rules.

For example, let’s say there is an administrative folder for the ASP application that should only grant
access to users that are in the “Administrators” role. You can create a URL authorization rule that pro-
tects the ASP subdirectory.

<location path=”ASPAdminPages”>
 <system.web>
 <authorization>
 <allow roles=”Administrators”/>
 <deny users=”*”/>
 </authorization>
 </system.web>
</location>

Now, whenever an attempt is made to access a classic ASP page in the ASPAdminPages subdirectory,
ASP.NET’s URL authorization will enforce this rule. Using the ASP.NET Configuration tool available
from inside of Visual Studio, you can enable the Role Manager feature, create a new role called “Admin-
istrators” and add a user to the new role. The only change that occurs in configuration is the addition of
the <roleManager /> element (by default Role Manager is not enabled, hence the need to turn it on):

<roleManager enabled=”true” />

As with the Membership feature, the default Role Manager provider uses the LocalSqlServer connec-
tion string. Because this was changed earlier, Role Manager will automatically associate role informa-
tion in the aspnetdb database with the user account information located in the same database.

At this point, if you try logging into a classic ASP page located within the ASPAdminPages directory,
you get redirected to the login page for the application. If you log in with an account that you added to
the “Administrators” role, you can access pages in this subdirectory.

Once again you can see that once wildcard mappings are setup in IIS 7.0, you just go about building
authentication and authorization inside of ASP.NET as you normally would. The only difference is that
the authorization rules also automatically protect access to the classic ASP pages. As with the authenti-
cation setup discussed earlier, even though there is a custom HTTP handler in the ASP.NET application,
it still is not needed at this point. You could pull the custom HTTP handler, and everything shown so
far with forms authentication and URL authorization would still function properly.

79301c07.indd 396 10/6/08 12:13:54 PM

397

Chapter 7: Integrating ASP.NET Security with Classic ASP

Passing User Roles to Classic ASP
By this point, you are probably wondering why there even is a custom HTTP handler in the ASP.NET
application. Forms authentication and URL authorization seem to be working just fine; why is this han-
dler sitting around in the application? Well, you finally made it to the point where the built-in magic of
wildcard mappings runs out of steam. Even though authorizing classic ASP pages is useful, chances are
that some of your ASP applications need the full role information for an authenticated user. Just pro-
tecting individual pages or entire subdirectories is not sufficient.

Solving this problem does require passing data from ASP.NET to classic ASP, and as a result you will
need a custom HTTP handler to hand the role information to your classic ASP pages. Because the sample
application uses Role Manager, you can modify the custom handler in the application to pack the user’s
roles into a custom header.

C#
public override string OverrideExecuteUrlPath()
{
 //gets called just before control is handed back to IIS 6
 HttpContext c = this.Context;

 StringBuilder userRoles = new StringBuilder();
 RolePrincipal rp = (RolePrincipal)c.User;

 //Move the user roles into a semi-colon delimited string
 string rolesHeader;
 if ((rp != null) && (rp.GetRoles().Length > 0))
 {
 foreach (string role in rp.GetRoles())
 userRoles.Append(role + “;”);
 rolesHeader = userRoles.ToString(0, userRoles.Length - 1);
 }
 else
 rolesHeader = String.Empty;

 this.ExecuteUrlHeaders.Add(“Roles”, rolesHeader);
 return null;
}

VB.NET
Public Overrides Function OverrideExecuteUrlPath() As String
 ‘gets called just before control is handed back to IIS 7.0
 Dim c As HttpContext = Me.Context

 Dim userRoles As New StringBuilder()
 Dim rp As RolePrincipal = CType(c.User, RolePrincipal)

 Dim rolesHeader As String
 If (rp IsNot Nothing) AndAlso (rp.GetRoles().Length > 0) Then
 For Each role As String In rp.GetRoles()
 userRoles.Append(role & “;”)
 Next role

79301c07.indd 397 10/6/08 12:13:54 PM

398

Chapter 7: Integrating ASP.NET Security with Classic ASP

 rolesHeader = userRoles.ToString(0, userRoles.Length - 1)
 Else
 rolesHeader = String.Empty
 End If

 Me.ExecuteUrlHeaders.Add(“Roles”, rolesHeader)

 Return Nothing
End Function

First the custom HTTP handler gets a reference to the authenticated user on the context. Because the
sample application enabled the Role Manager feature, the RolePrincipal is the object representation of
an authenticated user that is attached to the current context automatically by the RoleManagerModule.
You can then retrieve all the roles that a user belongs to from the RolePrincipal.GetRoles method.

When you run the sample application again, the role information can be seen in the “Roles” custom
header. The original header name is prepended with HTTP_ by ASP, which is why the following sample
output has a header called HTTP_ROLES rather than just ROLES.

HTTP_ROLES = Administrators;Regular User;Valued Customer

The classic ASP pages can retrieve this role information in a more useful form by just cracking the
header apart into an array.

<%
Dim arrRoles
arrRoles = split(Request.ServerVariables(“HTTP_ROLES”),”;”)

For Each role In arrRoles
 Response.Write(role) + “
”
Next
%>

This ASP page simply converts the string into an array, and then dumps the array out on the page.
Assuming your classic ASP applications have some type of wrapper or common include function for
retrieving roles and checking role access, you simply need to tweak that type of code to fetch the role
information from the custom HTTP header instead.

Safely Passing Sensitive Data to Classic ASP
At this point, it almost looks like the authentication and authorization scenario is solved. Everything
works, and you have a simple but very effective way for passing role information over to classic ASP.
There is however one security problem with the previous code. Because the custom handler is manipu-
lating a custom HTTP header, there are no special protections enforced for the header’s value. As a
result, there is nothing that would prevent a malicious user from logging in and attempting to send
a forged HTTP header called Roles that contained some roles that the user really didn’t belong to.
This type of attack will not work with HTTP headers such as LOGON_USER, because the value of these
headers is automatically set in IIS and by ASP.NET. There is no way that a malicious user could forge
their username by sending fake headers to ASP.NET. However, with the theory that it is better to be
safe than sorry, you can add extra protections into the custom HTTP handler that will make it impos-
sible to create a forged header—regardless of how ASP.NET handles header merging. Just as forms

79301c07.indd 398 10/6/08 12:13:54 PM

399

Chapter 7: Integrating ASP.NET Security with Classic ASP

authentication and other cookie-based features support digitally signing their payloads, you can also
add a hash-based signature to your sensitive custom HTTP headers.

The sample defines a helper class that encapsulates the work involved in hashing string values as well
as verifying hash values. The creation of a hash value for a custom HTTP header is performed from
inside of the custom HTTP handler, while verification of the hashed header occurs inside of the classic
ASP code. The need to access the same logic in both places means that the hash helper class also needs
to be exposed via COM so that classic ASP can call into it.

Start by just defining the hash helper class and its static constructor:

C#
namespace HashLibrary
{
 public class Helper
 {
 private static string hashKey =
 “a 128 character random key goes here”;

 private static byte[] bKey;

 static Helper()
 {
 //Cache the byte representation of the signing key
 bKey = ConvertStringKeyToByteArray(hashKey);
 }

 //snip…
 }
}

VB.NET
Namespace HashLibrary
Public Class Helper

 Private Shared hashKey As String = “a 128 character random key goes here”

 Private Shared bKey() As Byte

 Shared Sub New()
 ‘Cache the byte representation of the signing key
 bKey = ConvertStringKeyToByteArray(hashKey)
 End Sub

 ‘snip…

End Class

Because the intent of this helper class is for it to create and verify hashes, some common key material
must be shared across all applications that perform these operations. For a production application,
you would use configurable keys, along the lines of <machineKey />, because this allows for flexible

79301c07.indd 399 10/6/08 12:13:54 PM

400

Chapter 7: Integrating ASP.NET Security with Classic ASP

definition of keys and makes it easier to rotate keys. For simplicity, though, the sample application
hard-codes a 128-character (that is, a 64-byte) key. You can easily generate one using the GenKeys
sample code that was covered in Chapter 6. Needless to say, in a secure application you should never
store key material inside code. For our purposes, though, building a custom configuration section or
dragging protected configuration into the mix at this point will simply clutter up the sample.

The hash functions inside the .NET Framework use byte arrays, so the string hash key needs to be con-
verted. Because the private static variable holds the hash key as a string, it performs a one-time conver-
sion of the key into a byte array inside of the static constructor. This one-time conversion eliminates
the parsing overhead of having to convert the string hash key into a byte array every time the key is
needed. The ConvertStringKeyToByteArray method is covered later in this chapter, although the
purpose of the method is pretty clear from its name.

The helper class exposes a public static method that hashes a string value and returns the resulting
hash as a string.

C#
public static string HashStringValue(string valueToHash)
{
 using (HMACSHA1 hms = new HMACSHA1(bKey))
 {
 return ConvertByteArrayToString(
 hms.ComputeHash(Encoding.Unicode.GetBytes(valueToHash))
);
 }
}

VB.NET
 Public Shared Function HashStringValue(ByVal valueToHash As String) As String
 Using hms As New HMACSHA1(bKey)
 Return ConvertByteArrayToString(_
 hms.ComputeHash(Encoding.Unicode.GetBytes(valueToHash)))
 End Using
 End Function

Because you do not want an external user to be able to forge any of the custom HTTP header values,
you need to use a hash algorithm that cannot be spoofed by other users. As with forms authentica-
tion, the sample code uses the HMACSHA1 algorithm because it relies on a secret key that will only
be known by your application. Given a string value to hash, the HashStringValue method does the
following:

	 1.	 Creates an instance of the HMACSHA1 algorithm, initializing it with the secret key.

	 2.	 Converts the string into a byte array because hash functions operate on byte arrays—not strings.

	 3.	 Hashes the resulting byte array.

	 4.	 Converts the result back into a string using another helper method that will be covered a little later.

Now that you have a convenient way to securely sign a string, you need a way to verify the signature.

79301c07.indd 400 10/6/08 12:13:54 PM

401

Chapter 7: Integrating ASP.NET Security with Classic ASP

C#
 public static bool ValidateHash(string value, string hash)
 {
 using (HMACSHA1 hms = new HMACSHA1(bKey))
 {
 if (HashStringValue(value) != hash)
 return false;
 else
 return true;
 }
 }

VB.NET
 Public Shared Function ValidateHash(ByVal value As String, ByVal hash As String) _
 As Boolean
 Using hms As New HMACSHA1(bKey)
 If HashStringValue(value) <> hash Then
 Return False
 Else
 Return True
 End If
 End Using
 End Function

The ValidateHash method is the companion to the HashStringValue method. In ValidateHash,
given a piece of string data (the value parameter), and the digital signature for the data (the hash
parameter), the method uses HMACSHA1 to generate a hash of the string data. Assuming that the
piece of code that initially signed the string data, and thus generated the hash parameter, shares the
same signing key, then hashing the value parameter should yield a hash value that matches the hash
parameter.

Because the intent is for classic ASP pages to verify the hash values for custom HTTP headers, the logic
inside of the ValidateHash method must also be made available through a COM interop.

C#
#region COM support
 public Helper() { }

 public bool ValidateHashCOM(string value, string hash)
 {
 return Helper.ValidateHash(value, hash);
 }
#endregion

VB.NET
#Region “COM support”
 Public Sub New()
 End Sub

79301c07.indd 401 10/6/08 12:13:54 PM

402

Chapter 7: Integrating ASP.NET Security with Classic ASP

 Public Function ValidateHashCOM(ByVal value As String, ByVal hash As String) _
 As Boolean
 Return Helper.ValidateHash(value, hash)
 End Function

There are a few requirements to make a .NET Framework class visible via a COM wrapper. The class
needs a default constructor because there is no concept of parameterized class construction in COM.
Additionally, any methods exposed to COM must have signatures that are compatible with COM types.
Because there is no concept of static methods in COM, it was just easier to add a default constructor to
the Helper class as well as a public instance method that simply wraps the public static ValidateHash
method. From ASP.NET, you would use the static methods on the Helper class. From classic ASP and
COM, you first instantiate an instance of the Helper class and then call ValidateHashCOM on the
instance.

The Helper class also has two methods for converting hex strings to and from byte arrays.

C#
public static byte[] ConvertStringKeyToByteArray(string stringizedKeyValue)
{
 byte[] keyBuffer = new byte[64];

 if (stringizedKeyValue.Length > 128)
 throw new ArgumentException(
 “This method is hardcoded to accept only a 128 character string”);

 for (int i = 0; i < stringizedKeyValue.Length; i = i + 2)
 {
 //Convert the string key - every 2 characters represents 1 byte
 keyBuffer[i / 2] =
 Byte.Parse(
 stringizedKeyValue.Substring(i, 2),
 System.Globalization.NumberStyles.HexNumber
);
 }

 return keyBuffer;
}

VB.NET
Public Shared Function ConvertStringKeyToByteArray(_
ByVal stringizedKeyValue AsString) As Byte()
 Dim keyBuffer(63) As Byte
 If stringizedKeyValue.Length > 128 Then
 Throw New ArgumentException(“This method is “ & _
 “hardcoded to accept only a 128 character string”)
 End If
 For i As Integer = 0 To stringizedKeyValue.Length - 1 Step 2
 ‘Convert the string key - every 2 characters represents 1 byte
 keyBuffer(i \ 2) = Byte.Parse(_
 stringizedKeyValue.Substring(i, 2), _
 System.Globalization.NumberStyles.HexNumber)

79301c07.indd 402 10/6/08 12:13:54 PM

403

Chapter 7: Integrating ASP.NET Security with Classic ASP

 Next i
 Return keyBuffer
 End Function

The ConvertStringKeyToByteArray method is currently hard-coded to work only with 64-byte keys.
Given a 128 character string (which is the hex string representation of a 64-byte value), the method iter-
ates through the string extracting each set of two hex characters (0-9 and A-F). Each pair of hex charac-
ters is then converted into a byte value with a call to Byte.Parse. The net result is that a 128 character
string is converted into a byte[64].

The reverse operation of converting a byte array into a string is shown here:

C#
public static string ConvertByteArrayToString(byte[] value)
{
 StringBuilder sb = new StringBuilder(128);

 if (value.Length > 64)
 throw new ArgumentException(
 “This method is hardcoded to accept only a byte[64].”);

 foreach (byte b in value)
 {
 sb.Append(b.ToString(“X2”));
 }
 return sb.ToString();
}

VB.NET
Public Shared Function ConvertByteArrayToString(ByVal value() As Byte) As String
 Dim sb As New StringBuilder(128)
 If value.Length > 64 Then
 Throw New ArgumentException(“This method is “ & _
 “hardcoded to accept only a byte[64].”)
 End If
 For Each b As Byte In value
 sb.Append(b.ToString(“X2”))
 Next b

 Return sb.ToString()
End Function

As with ConvertStringKeyToByteArray, the ConvertByteArrayToString method assumes
128-character strings. Converting a byte array to a string is much easier because you can convert each
byte value to a hex-string equivalent by using the string format of X2.

The only other work needed in the hash helper is to attribute the assembly so that the public Helper
class is visible to COM. The assembly is also strongly named and will be deployed in the GAC.

79301c07.indd 403 10/6/08 12:13:54 PM

404

Chapter 7: Integrating ASP.NET Security with Classic ASP

C#
//from assemblyinfo.cs
[assembly: ComVisible(true)]

// The GUID is for the ID of the typelib if this project is exposed to COM
[assembly: Guid(“5252f41f-a404-43eb-8d55-8fbdeb2011df”)]

[assembly: AssemblyVersion(“1.0.0.0”)]
[assembly: AssemblyFileVersion(“1.0.0.0”)]

[assembly: AllowPartiallyTrustedCallers()]

VB.NET
‘from assemblyinfo.vb
<Assembly: ComVisible(True)>

‘ The following GUID is for the ID of the typelib if this project is exposed to COM
<Assembly: Guid(“42de7270-c824-4ed1-9c24-59caaaaf24d3”)>

<Assembly: AssemblyVersion(“1.0.0.0”)>
<Assembly: AssemblyFileVersion(“1.0.0.0”)>
<Assembly: System.Security.AllowPartiallyTrustedCallers()>

At this point, you can integrate the Helper class into the custom HTTP handler. Rather than passing
the role information for the user in the clear as a simple string, the custom handler will instead calcu-
late the signed hash for all of the roles.

C#
public override string OverrideExecuteUrlPath()
{
 //gets called just before control is handed back to IIS 6
 HTTPContext c = this.Context;

 StringBuilder userRoles = new StringBuilder();
 RolePrincipal rp = (RolePrincipal)c.User;

 string rolesHeader;
 if ((rp != null) && (rp.GetRoles().Length > 0))
 {
 foreach (string role in rp.GetRoles())
 userRoles.Append(role + “;”);
 rolesHeader = userRoles.ToString(0, userRoles.Length - 1);
 rolesHeader = rolesHeader + “,” +
 Helper.HashStringValue(rolesHeader);
 }
 else
 rolesHeader = String.Empty;

 this.ExecuteUrlHeaders.Add(“Roles”, rolesHeader);
 return null;
}

79301c07.indd 404 10/6/08 12:13:54 PM

405

Chapter 7: Integrating ASP.NET Security with Classic ASP

VB.NET
Public Overrides Function OverrideExecuteUrlPath() As String
 ‘gets called just before control is handed back to IIS 7.0
 Dim c As HttpContext = Me.Context

 Dim userRoles As New StringBuilder()
 Dim rp As RolePrincipal = CType(c.User, RolePrincipal)

 Dim rolesHeader As String
 If (rp IsNot Nothing) AndAlso (rp.GetRoles().Length > 0) Then
 For Each role As String In rp.GetRoles()
 userRoles.Append(role & “;”)
 Next role
 rolesHeader = userRoles.ToString(0, userRoles.Length - 1)
 rolesHeader = rolesHeader & “,” & Helper.HashStringValue(rolesHeader)
 Else
 rolesHeader = String.Empty
 End If

 Me.ExecuteUrlHeaders.Add(“Roles”, rolesHeader)
 Return Nothing
 End Function

The extra code appends the HMACSHA1 hash of the role string to the end of the custom header. Now
when you log in to the ASP application, the header looks like:

HTTP_ROLES = Administrators;Regular User;Valued Customer,
5F9AFD42A9ABCE50FE651A39A1F5EB63E5142D21

To use the hash helper from inside of the ASP.NET application, you also need to add an assembly refer-
ence because the helper is deployed in the GAC:

<compilation debug=”true”>
 <assemblies>
 <add assembly=”HashLibrary, Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=729492b6d2638318” />
 </assemblies>
 </compilation>

The only work left to do at this point is make the hash helper available to the classic ASP application.
Because the helper assembly was already compiled with the necessary attributes to make it visible in
COM, you just need to register the assembly with the regasm.exe utility:

%windir%\Microsoft.NET\Framework\v2.0.50727\regasm HashLibrary.dll

The result of running regasm is that the Helper class is registered as a COM type in the Windows
Registry and is associated with the type library GUID that was defined in the helper project’s Assem-
blyInfo.cs file. Because the intent for now is to just call the Helper class from ASP, there wasn’t any
additional information specified in the Helper project to give the Helper class a fixed COM CLSID.
Classic ASP uses late-bound COM calls anyway so the extra work to configure the Helper class with a
fixed class ID is not necessary.

79301c07.indd 405 10/6/08 12:13:54 PM

406

Chapter 7: Integrating ASP.NET Security with Classic ASP

You can use the hash helper from ASP as shown here:

<%
Dim objHelper, signedRoles, strRoles, strRolesHash, arrRoles

if (Request.ServerVariables(“HTTP_ROLES”) <> “”) then
 signedRoles = split(Request.ServerVariables(“HTTP_ROLES”),”,”)

 strRoles = signedRoles(0)
 strRolesHash = signedRoles(1)

 Set objHelper = Server.CreateObject(“HashLibrary.Helper”)
 result = objHelper.ValidateHashCOM(strRoles, strRolesHash)
 if (result = true) then
 arrRoles = split(strRoles,”;”)
 For Each role In arrRoles
 Response.Write(role) + “
”
 Next
 else
 Response.Write(“No valid roles were found for the user.”)
 end if
else
 Response.Write(“No roles were found for the user.”)
end if
%>

Assuming that a custom “Roles” header was sent, this ASP code splits the value into two parts: the
string containing the actual role information and the string containing the digital signature of the role
string. With these two values, the ASP code creates an instance of the Helper class using COM, and
then calls the ValidateHashCOM method to verify the digital signature that was sent in the header.
Because the custom HTTP handler is using the same key material, the Helper class successfully vali-
dates that the signature in the custom header is valid.

You can try testing the negative case by tweaking the custom handler to include bogus data in the
signature:

C#
 this.ExecuteUrlHeaders.Add(“Roles”, rolesHeader + “1”);

VB.NET
 Me.ExecuteUrlHeaders.Add(“Roles”, rolesHeader + “1”)

Because the digital signature is the last part of the custom HTTP header, appending an extra character cre-
ates an invalid hash value. Now when you try to run the sample ASP code, the hash verification will fail.

You have seen how the hash verification is handled, with the signature being created in the handler and
then validated in classic ASP. You can integrate this kind of logic into whatever ASP code you currently
use for authorization. The logic for splitting the custom header and verifying it can easily be wrapped
in a custom include file or function without necessarily affecting any other code in your ASP applica-
tion that depends on retrieving and checking role information.

79301c07.indd 406 10/6/08 12:13:54 PM

407

Chapter 7: Integrating ASP.NET Security with Classic ASP

Full Code Listing of the Hash Helper
Since the hash Helper class was shown piecemeal earlier, the Helper class is shown in its entirety here:

C#
using System;
using System.Collections.Generic;
using System.Text;
using System.Security.Cryptography;

namespace HashLibrary
{
 public class Helper
 {
 private static string hashKey = “179C4AB2765118F23CCB273EF2BB31016154F0103
3F237F1BC0B04662232D51BE7416119B88D52B5C346CA9E03A4EA34875C4D15A976A353155532464947
81D5”;

 private static byte[] bKey;

 static Helper()
 {
 //Cache the byte representation of the signing key
 bKey = ConvertStringKeyToByteArray(hashKey);
 }

 public static byte[] ConvertStringKeyToByteArray(string stringizedKeyValue)
 {
 byte[] keyBuffer = new byte[64];

 if (stringizedKeyValue.Length > 128)
 throw new ArgumentException(
 “This method is hardcoded to accept only a 128 character string”);

 for (int i = 0; i < stringizedKeyValue.Length; i = i + 2)
 {
 //Convert the string key - every 2 characters represents 1 byte
 keyBuffer[i / 2] =
 Byte.Parse(
 stringizedKeyValue.Substring(i, 2),
 System.Globalization.NumberStyles.HexNumber
);
 }

 return keyBuffer;
 }

 public static string ConvertByteArrayToString(byte[] value)
 {
 StringBuilder sb = new StringBuilder(128);

 if (value.Length > 64)
 throw new ArgumentException(

79301c07.indd 407 10/6/08 12:13:54 PM

408

Chapter 7: Integrating ASP.NET Security with Classic ASP

 “This method is hardcoded to accept only a byte[64].”);

 foreach (byte b in value)
 {
 sb.Append(b.ToString(“X2”));
 }
 return sb.ToString();
 }

 public static string HashStringValue(string valueToHash)
 {
 using (HMACSHA1 hms = new HMACSHA1(bKey))
 {
 return ConvertByteArrayToString(
 hms.ComputeHash(Encoding.Unicode.GetBytes(valueToHash)));
 }
 }

 public static bool ValidateHash(string value, string hash)
 {
 using (HMACSHA1 hms = new HMACSHA1(bKey))
 {
 if (HashStringValue(value) != hash)
 return false;
 else
 return true;
 }
 }

#region COM support
 public Helper() { }

 public bool ValidateHashCOM(string value, string hash)
 {
 return Helper.ValidateHash(value, hash);
 }
#endregion

 }
}

VB.NET
Imports Microsoft.VisualBasic
Imports System
Imports System.Collections.Generic
Imports System.Text
Imports System.Security.Cryptography

Namespace HashLibrary
Public Class Helper
 Private Shared hashKey As String = “179C4AB2765118F23CCB273EF2BB31016154F01033F2
37F1BC0B04662232D51BE7416119B88D52B5C346CA9E03A4EA34875C4D15A976A35315553246494781D
5”

79301c07.indd 408 10/6/08 12:13:55 PM

409

Chapter 7: Integrating ASP.NET Security with Classic ASP

 Private Shared bKey() As Byte

 Shared Sub New()
 ‘Cache the byte representation of the signing key
 bKey = ConvertStringKeyToByteArray(hashKey)
 End Sub

 Public Shared Function ConvertStringKeyToByteArray(_
 ByVal stringizedKeyValue As String) As Byte()
 Dim keyBuffer(63) As Byte
 If stringizedKeyValue.Length > 128 Then
 Throw New ArgumentException(“This method is hardcoded “ & _
 “to accept only a 128 character string”)
 End If
 For i As Integer = 0 To stringizedKeyValue.Length - 1 Step 2
 ‘Convert the string key - every 2 characters represents 1 byte
 keyBuffer(i \ 2) = Byte.Parse(_
 stringizedKeyValue.Substring(i, 2), _
 System.Globalization.NumberStyles.HexNumber)
 Next i
 Return keyBuffer
 End Function

Public Shared Function ConvertByteArrayToString(ByVal value() As Byte) As String
 Dim sb As New StringBuilder(128)
 If value.Length > 64 Then
 Throw New ArgumentException(“This method is hardcoded _
 to accept only a byte[64].”)
 End If
 For Each b As Byte In value
 sb.Append(b.ToString(“X2”))
 Next b

 Return sb.ToString()
End Function

Public Shared Function HashStringValue(ByVal valueToHash As String) As String
 Using hms As New HMACSHA1(bKey)
 Return ConvertByteArrayToString(_
 hms.ComputeHash(Encoding.Unicode.GetBytes(valueToHash)))
 End Using
 End Function

 Public Shared Function ValidateHash(_
 ByVal value As String, ByVal hash As String) As Boolean
 Using hms As New HMACSHA1(bKey)
 If HashStringValue(value) <> hash Then
 Return False
 Else
 Return True
 End If
 End Using

79301c07.indd 409 10/6/08 12:13:55 PM

410

Chapter 7: Integrating ASP.NET Security with Classic ASP

 End Function

#Region “COM support”
 Public Sub New()
 End Sub
 Public Function ValidateHashCOM(_
 ByVal value As String, ByVal hash As String) As Boolean
 Return Helper.ValidateHash(value, hash)
 End Function
#End Region
End Class
End Namespace

Authorizing Classic ASP with
IIS 7.0 Integrated Mode

This section is not going to repeat what has already been mentioned in the section on authenticating
classic ASP with the IIS 7.0 integrated mode. As you have seen in the above section, authorizing classic
ASP pages residing inside an ASP.NET application that runs under the classic .NET application pool
inside IIS 7.0 requires no additional steps compared to authorizing ASP.NET resources in terms of con-
figuration settings. The only required configuration is the wildcard mapping so that the ASP.NET
engine gets the chance to receive classic ASP page requests for several sorts of processing needed.

The authorization for non-ASP.NET resources is no different from the authentication of non-ASP.NET
resources in an application that is running in the integrated mode. No extension mappings are needed
because the ASP.NET engine automatically has access to every request that comes into the IIS web
server; hence, the mapping is done automatically for you by the IIS 7.0 web server core engine.

What is left for you as a developer to enable and make use of ASP.NET authorization modules on non-
ASP.NET resources is to change some configuration settings inside the application’s web.config con-
figuration file.

For the sake of showing how to authorize non-ASP.NET resources, I will show you how the managed
UrlAuthorizationModule is defined inside the <modules> configuration section under the <system​
.webServer> configuration section group located in the IIS 7.0 applicationHost.config configura-
tion file:

<add name=”UrlAuthorization” type=”System.Web.Security.UrlAuthorizationModule”
preCondition=”managedHandler” />

The preceding module entry registers the managed UrlAuthorizationModule with IIS 7.0 and makes
it available to be used by applications that are configured with the new IIS 7.0 integrated mode. Again,
notice the preCondition attribute that is used to specify that this module works and runs only when
managed resources are accessed.

To enable the above module for resources other than ASP.NET ones, the same trick that was explained
above can be used.

79301c07.indd 410 10/6/08 12:13:55 PM

411

Chapter 7: Integrating ASP.NET Security with Classic ASP

 <add
 name=”UrlAuthorization”
 type=”System.Web.Security.UrlAuthorizationModule”
 preCondition=””
 />

Notice the bolded preCondition attribute whose value is set to an empty string, signaling to IIS 7.0
that this managed module is to be used to authorize non-ASP.NET resources.

After the above configuration has been added into the application’s web.config configuration file, you
can follow the same steps as above for authorizing classic ASP pages in an ASP.NET application—the
same steps that you have always used to authorize ASP.NET resource, but now those same settings are
used to authorize non-ASP.NET resources.

Passing Data from ASP.NET to Classic ASP in IIS 7.0
Integrated Mode

You have seen how to implement a custom DefaultHttpHandler and override the OverrideExecute​
UrlPath() method to add any custom headers you want to pass from ASP.NET to classic ASP when
the request is back to IIS 7.0, by adding custom headers’ entries into the protected ExecuteUrlHeaders
property defined on the DefaultHttpHandler class.

When an application is running in the new IIS 7.0 integrated mode, any request that comes into the
IIS web server goes through the integrated request pipeline, where ASP.NET has access to the request
throughout the entire pipeline. When it is time to select a handler for the request, the IIS 7.0 Web server
core engine selects the ISAPI extension mapped in IIS to run and execute classic ASP pages. At this
time, the classic ASP page gets executed and then after the execution stage in the integrated request
pipeline, the request continues through the rest of events that are usually fired for a request in the
integrated request pipeline. In other words, and contrary to how things happen in the classic mode
(IIS 6.0 mode), there is no concept of a request sent back from ASP.NET to IIS 7.0. The ASP.NET engine
would have access to the request at all the stages of the integrated request pipeline and it is only that
IIS 7.0 selects the correct handler to execute the page requested when it is time to actually run the page
and generate its output HTML to be sent back to the server. Hence, the DefaultHttpHandler has no
role when the application is running in the integrated mode, same pipeline, same execution path, and,
therefore, the same request and response.

Given the fact that the DefaultHttpHandler is not used anymore in the integrated mode, this means
we cannot use the same method that was explained above to pass custom headers or data from ASP.NET
to classic ASP.

A way around this limitation is to define a new IIS 7.0 managed module and register it with the
<modules> configuration section inside the <system.webServer> configuration section group. The
new module is called PassingDataToClassicASP and is defined in the App_Code folder of the “man-
agedmapping” application accompanying this chapter as part of the source code. To define the module,
add the following configuration element:

 <!-- When an application is running under IIS 7.0 Integrated Mode you should
 register the HttpModule here. -->
 <add

79301c07.indd 411 10/6/08 12:13:55 PM

412

Chapter 7: Integrating ASP.NET Security with Classic ASP

 name=”PassingDataToClassicASP”
 type=”PassingDataToClassicASP”
 />

Because the above module is defined in the App_Code folder, you only need to specify the full name of
the module without any assembly name. In this case, the full name of the module is just the name of the
class since no namespace was defined in the code.

The module developed subscribes to the BeginRequest event to add a custom header to the collection
of headers on the current request.

C#
using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Collections.Specialized;
using System.Web;
using System.Web.Security;
using System.Xml.Linq;

public class PassingDataToClassicASP : IHttpModule
{
 public PassingDataToClassicASP()
 {
 }
 #region IHttpModule Members

 public void Dispose()
 {
 throw new NotImplementedException();
 }

 public void Init(HttpApplication context)
 {
 // Subscribe to the BeginRequest Event
 context.BeginRequest += new EventHandler(context_BeginRequest);
 }

 void context_BeginRequest(object sender, EventArgs e)
 {
 // Add custom header
 HttpContext.Current.Request.Headers.Add(“My Custom Key”, “Custom Data”);
 }

 #endregion
}

VB.NET
Imports Microsoft.VisualBasic
Imports System
Imports System.Data
Imports System.Configuration

79301c07.indd 412 10/6/08 12:13:55 PM

413

Chapter 7: Integrating ASP.NET Security with Classic ASP

Imports System.Collections
Imports System.Collections.Specialized
Imports System.Linq
Imports System.Reflection
Imports System.Web
Imports System.Web.Security
Imports System.Web.UI
Imports System.Web.UI.HtmlControls
Imports System.Web.UI.WebControls
Imports System.Web.UI.WebControls.WebParts
Imports System.Xml.Linq

Public Class PassingDataToClassicASP Implements IHttpModule
 Public Sub New()
 End Sub

 #Region “IHttpModule Members”

 Public Sub Dispose() Implements IHttpModule.Dispose
 Throw New NotImplementedException()
 End Sub

 Public Sub Init(ByVal context As HttpApplication) Implements IHttpModule.Init
 ‘ Subsribe to the BeginRequest Event
 AddHandler context.BeginRequest, AddressOf context_BeginRequest
 End Sub

 ‘’’ <summary>
 ‘’’ </summary>
 ‘’’ <param name=”sender”></param>
 ‘’’ <param name=”e”></param>
 Private Sub context_BeginRequest(ByVal sender As Object, ByVal e As EventArgs)
 HttpContext.Current.Request.Headers.Add(“My Custom Key”, “Custom Data”)
 End Sub

 #End Region
End Class

This is a very simple module, code-wise. When an application is running under the new IIS 7.0 inte-
grated mode, the HttpRequest.Headers collection is Read/Write, contrary to how the headers’ collec-
tion behaves when the application is running in the classic .NET application pool, which is Read Only.
This means that you can add as many custom headers as you want to the current request using the
Add() method on the HttpRequest.Headers collection.

Inside the classic ASP page, you can retrieve the custom header as follows:

<% = Request.ServerVariables(“HTTP_My Custom Key”) %>

Nothing in the classic ASP page code has changed from the above sections. What is different is that
the ASP.NET code is no longer making use of the DefaultHttpHandler’s ExecuteUrlHeaders prop-
erty to add the custom headers. A new managed IIS 7.0 module is developed and it subscribes to the
BeginRequest event to add the custom headers. In addition, the HttpRequest.Headers collection
is configured as Read/Write when the application is running under the new IIS 7.0 integrated mode;

79301c07.indd 413 10/6/08 12:13:55 PM

414

Chapter 7: Integrating ASP.NET Security with Classic ASP

therefore, you can add new entries directly to it. The integrated mode has made the process of passing
data from ASP.NET to classic ASP a matter of defining a simple managed module, subscribing to events
as needed, and adding custom headers to the Read/Write HttpRequest.Headers collection.

What if you want to pass the username that ASP.NET used for authentication to the classic ASP page?
The answer is simple: subscribe to the PostAuthenticateRequest event and add the currently
authenticated username as a custom header to the HttpRequest.Headers collection.

If you have enabled role management for your application and you want to pass the set of roles that the
currently authenticated user belongs to, you would subscribe to the PostAuthorizeRequest event and
add the set of roles that the current user belongs to (the same way as was explained in the above section
using the DefaultHttpHandler).

The most important advantage in this solution is that now you can control at what stage in the inte-
grated request pipeline you fill in custom data to pass to the classic ASP page. With the help of the
read/write HttpRequest.Headers collection and by developing a new managed IIS 7.0 module, you
can send whatever data you want from ASP.NET to the classic ASP page before the classic ASP page
gets handled by the specific page hander that is selected by the IIS 7.0 Web server core engine to exe-
cute the classic ASP page. For a full discussion on the sequence of events that fire inside the integrated
request pipeline, refer to Chapter 3.

Summary
Prior to ASP.NET 2.0 and IIS 6, your options for integrating authentication and authorization rules
between ASP.NET and classic ASP were limited. You could write awkward redirection-based logic that
moved data around on query-strings, or you could invest a fair amount of effort attempting to wrap
ASP.NET functionality inside of a web service.

With IIS 6 and ASP.NET 2.0, extra logic was added to the runtimes of both products that finally made it
easier to integrate the ASP and ASP.NET environments. IIS 6 added a new feature called wildcard map-
pings that allow arbitrary ISAPI extensions to participate in the request lifecycle of any resource. This
allows you to route all .asp requests to ASP.NET. ASP.NET 2.0 includes the necessary logic to recognize
when wildcard mappings are being used. Unlike earlier versions of ASP.NET, ASP.NET 2.0 will route a
request to IIS 6 for further processing.

The combination of IIS 6 wildcard mappings and ASP.NET 2.0’s DefaultHandler means that you can
now use ASP.NET authentication and authorization in conjunction with a classic ASP site. The basic
steps necessary to enable this integration are:

	 1.	 Use wildcard mappings to route all .asp requests to the ASP.NET ISAPI extension.

	 2.	 Add some .aspx pages to your classic ASP application. The basic ASP.NET page that you will
need is some kind of login page.

	 3.	 Although the ASP and ASP.NET pages all live in the same directory structure, you can still add
a web.config file into this structure for the ASP.NET pages. This web.config file includes set-
tings to turn on forms authentication, define URL authorization rules, and enable the Member-
ship and Role Manager features for automatic authentication and authorization support.

79301c07.indd 414 10/6/08 12:13:55 PM

415

Chapter 7: Integrating ASP.NET Security with Classic ASP

	 4.	 Optionally, you can author a custom HTTP handler that derives from DefaultHandler. This is
only necessary if you plan to pass information from ASP.NET over to classic ASP. For example,
as was demonstrated in this chapter, a custom handler can pass the role information from Role
Manager over to ASP using a custom HTTP header.

After steps 1–3 have been accomplished (and optionally step 4), access to your ASP pages is controlled by
the authentication and authorization mechanisms of ASP.NET. This allows you to migrate the authentica-
tion and authorization rules for your mixed application environments exclusively into ASP.NET.

ASP.NET 2.0 and IIS 6.0 did a great job facilitating the communication between ASP.NET and classic
ASP. However, there were still steps you needed to configure from the IIS 6 side, where you had to add
a new wildcard mapping so that .asp requests get redirected to the ASP.NET engine. In addition, you
had to develop a custom DefaultHttpHandler to be able to perform any ASP.NET processing before
the .asp request is handed back to IIS 6 for execution by the ISAPI extension that is configured to
handle such request types.

The above steps are still valid and required with ASP.NET 3.5 and IIS 7.0 when an application is run-
ning under the classic .NET application pool inside IIS 7.0. However, ASP.NET 3.5 and IIS 7.0 provide
a more mature model to integrate the communication between ASP.NET and classic ASP. This model
is represented by the introduction of the new integration mode in IIS 7.0, where ASP.NET and IIS 7.0
share the same request pipeline and therefore the ASP.NET engine will implicitly have access to any
request that passes through the pipeline, whether the request is for an ASP.NET resource, a classic ASP
resource, or any other non-ASP.NET resource.

The above improvement implies that the developer has now zero effort to make ASP.NET get control over
non-ASP.NET resources. Even better, you do not need to implement any custom DefaultHttpHandler
to pass data from ASP.NET to classic ASP. On the contrary, all you have to do is develop a new man-
aged IIS 7.0 module, subscribe to the suitable events inside the unified request pipeline (BeginRequest,
PostAuthenticateRequest, etc.), and fill in the data you want to pass to the classic ASP pages inside
custom headers of the HttpRequest.Headers collection that has been modified to allow additions of
new custom headers.

Once the application has been configured to run under the new integrated mode inside IIS 7.0, classic
ASP pages can benefit from the ASP.NET 3.5 features without any cost or effort from the developer side.
Data can be passed easily from ASP.NET to classic ASP by developing a new managed IIS 7.0 module.
Then you can configure ASP.NET authentication and authorization in the application’s web.config
configuration file and all resources, classic ASP or any other type of resource, inside the ASP.NET appli-
cation, running under the integrated mode, are forced to abide by the ASP.NET rules set in the afore-
mentioned configuration file, whether for authentication or authorization.

79301c07.indd 415 10/6/08 12:13:55 PM

79301c07.indd 416 10/6/08 12:13:55 PM

8
Session State

Session state probably does not strike most people as having much of anything to do with secu-
rity. However, some security-related design points are worth touching on when thinking about
how session state is used in an application. ASP.NET 3.5 plays an important role in securing cook-
ieless sessions as well as locking down behavior in lower trust levels.

This chapter covers the following topics on ASP.NET 3.5 session state:

Session state and the concept of a logon session.❑❑

How session data is partitioned across applications.❑❑

Cookie-based session IDs.❑❑

Cookieless sessions and session ID regeneration.❑❑

Confi guring session state inside IIS 7.0.❑❑

Protecting against session state denial-of-service attacks.❑❑

Trust-level restrictions when using session state.❑❑

Database security when using storing session state in SQL Server.❑❑

Securing the out-of-process state server.❑❑

Does Session State Equal Logon Session?
An architectural question that comes up time and time again with session state is whether ses-
sion state can be considered equivalent to a logon session. Hopefully after reading this section,
you will agree that the answer to this question is unequivocally no! When developers ask about

79301c08.indd 417 10/6/08 12:14:21 PM

418

Chapter 8: Session State

having the concept of a logon session object in ASP.NET, not only are they looking for a convenient
storage location associated with a user, but they are also usually looking for a mechanism that prevents
problems such as duplicate logins. (A workaround using forms authentication for this was shown ear-
lier in Chapter 6.)

However, in ASP.NET session state is a service that is always available on each and every page in an
application. There is no concept of having to authenticate to obtain a valid session object. More impor-
tant, no mechanism inside of ASP.NET enforces validity of a session identifier (that is, is the identifier
a value that was originally generated by ASP.NET?). As long as a browser is able to send a well-formed
session identifier to ASP.NET, and the session identifier meets some basic syntax checks, the corre-
sponding session data is available to the application.

Contrast this with something like forms authentication, where, in the default configuration, it is next to
impossible to create a forged forms authentication ticket. (You would need to guess an encryption key
as well as the key used for the HMACSHA1 signature.) The problem with depending on session state as
an indicator of a logon session is that unlike forms authentication, it is trivial to create a valid session
identifier.

Because a session identifier is nothing more than a 120-bit random number encoded using letters
and numbers (this works out to a 24-character cookie value due to the way session state encodes the
random number), you or I can easily create a perfectly valid session identifier. Of course, if you send
such an identifier to ASP.NET, there probably isn’t going to be any session data associated with it. (You
have 2^120 possible combinations to guess if you were actually trying to grab someone else’s session.)
Instead ASP.NET spins up a new session object for you based on the ID.

If your application’s code stored data inside of the Session object that indicated logon information,
potentially even information indicating the logon status, you can quickly see how with a trivial client-
side “attack,” a user already logged on can quickly get into a logged-off state. There is another more
subtle problem with using session state as a kind of logon session service: session identifiers cannot
flow across domains.

The configuration options for session state, unlike forms authentication, don’t include options for setting
a cookie domain or a cookie path. Furthermore, when using the cookieless mode of operation, there is no
facility equivalent to the cross-application redirection capability in forms authentication. For both of these
reasons, attempting to keep track of a logon session across a set of applications running under different
DNS addresses (although at least sharing a common domain suffix, for example, mycompany.com) is
simply not possible with cookieless session state. The cookieless identifier that associates a user to ses-
sion information will be different across various applications and no functionality is available to syn-
chronize session state data from multiple applications.

A second flaw with attempting to use session state as a surrogate logon session service is that even if
multiple applications share the same DNS namespace (meaning that all the applications run as virtual
directories underneath www.mycompany.com), the very nature of session state is to segment data by
application. You take a closer look at this in the next section, but in a nutshell the session state from
application A is never available to the session state in application B. It does not matter whether you use
out-of-process (OOP) session state in an attempt to make session data available across a web farm; even
the OOP modes of operation segment data from different applications.

A final shortcoming of using session state for tracking logon status is the inability to set the Secure
property of the session state cookie (assuming that you are using cookied mode, of course). Unlike forms

79301c08.indd 418 10/6/08 12:14:21 PM

419

Chapter 8: Session State

authentication, the session state cookie always flows across the network regardless of the state of any
SSL security on the connection. If you think about it, this makes sense for a feature like session state
because many applications would break if the data in session randomly became unavailable when a
user surfed between secure and insecure pages.

This means that session state as implemented in the default providers that ship with ASP.NET 3.5 is not
explicitly associated to a user. Although ASP.NET 3.5 exposes extensibility hooks that allow you or a
third party to write such functionality, out-of-the-box session state is basically an anonymous data stor-
age mechanism. As long you have a valid identifier, you can get and set session data. However, this is
exactly the functionality you want to avoid with a logon session; the whole point of a logon session is
that it requires authentication to obtain a session, and once established there is a persistent association
between an authenticated user and the actual session data.

About the only situation where session state could be used is in a single-application scenario. If you are
writing a single application and you never need to flow authentication information to any other appli-
cation, you could potentially turn session state into a surrogate logon session service. Technically, you
could create a login form, and when a user sent valid credentials, instead of issuing a forms authentica-
tion ticket, you could write some information into session state. When the user returned to the site, and
the session state was still active, you could check the session data to determine the logged on status.

Even for this limited scenario, there is another argument against using session state as an indication of
the logged-in status for a user. Session state can potentially live forever; there is no concept of an abso-
lute expiry for session state data. Instead, as long as a request is periodically made with the session state
expiration time window, the time to live of the session data will be renewed. Unlike forms authentica-
tion, there is no way to lock down the lifetime of session data with an absolute expiration. For secure
sites, the last thing you want is for an authenticated user to “live forever” on the website.

The following table compares the important security features of forms authentication against session
state and shows why session state should be used solely as a convenient data storage service, not as a
login mechanism.

Security Feature Forms Authentication SessionState

Control DNS domain of cookie Yes No

Control path of cookie Yes No

Require SSL for cookie Yes No

Information is shareable across applications Yes No

Supports absolute expirations Yes No

A valid Identifier can be easily forged No Yes

Of course, from this discussion you might be wondering if you should use session state at all! The best
way to think about session data is to treat session state as if it were data stored in forms variables on
a page. The one major difference being that you do not need to move data back and forth in an HTML
form when you use session state. Instead, session state acts as a server-side store for this type of infor-
mation. From the point of view of data security, you should treat session state data as if it were being
sent back and forth in a web page.

79301c08.indd 419 10/6/08 12:14:22 PM

420

Chapter 8: Session State

For example, if you were filling out an online insurance application, you might choose to store each
page’s entries in session state to make the application process run faster. From a security and privacy
standpoint, though, this data could just as easily have ended up in hidden fields or in form elements
located on different web pages. As a result, you would want to ensure that any session state data entered
during the application process came from pages that were submitted over an SSL connection. Similarly,
you would want to process or display this information to the user only over an SSL connection. From a
developer standpoint, you would need to be diligent enough to ensure that this type of information was
not accessed from an insecure page such as a non-SSL home page.

Session Data Partitioning
Another question that frequently arises is around data partitioning of session data between applications.
From time to time, someone will have a panic attack because, at first glance, session state looks as if it
would leak data from one application into another. Especially in the case of out-of-process session state,
where all servers and all applications share a central database (or session server), it is understandable
why some developers are a bit leery about accidental data sharing.

The example here starts with the simpler case of in-process session state. When using the in-process
mode of operation (ASP.NET 3.5 is really an in-process session state provider, because session state is a
provider-based feature as well), the data storage mechanism that is used is the ASP.NET Cache object.
Because the Cache object manages a chunk of memory inside an application domain, you automatically
gain the benefit of partitioning. There is no remoting capability built into either the Cache object or the
in-process session state provider.

As a result, short of attaching a debugger or using Win32 APIs to poke around in memory, there isn’t
any way that application A’s session state can accidentally show up inside of application B. Each ASP.
NET application on the web server lives in its own application domain, and there is no mechanism to
reach out and access session data across application domains. Of course, nothing prevents you from
writing some cross-appdomain remoting objects that would give you this capability, but realistically if
you want to go down that road, you would probably want to write a custom ASP.NET session state pro-
vider that runs against a central application domain used for storing common session state data.

Now for the potentially more worrisome scenarios: What happens when you run with one of the out-
of-process session state providers? Is there some way that application A could reach into application B’s
session state data when using the SQL Server-based provider? Clearly this is not the case, because if that
were actually happening, ASP.NET’s out-of-process session state would have been broken all the way
back in ASP.NET 1.0.

In the case of both the OOP session server, and the OOP provider that uses SQL Server, ASP.NET
includes an application identifier with the session state data. For example, if you take two sample appli-
cations using the same session state configuration:

<sessionState mode=”SQLServer” sqlConnectionString=”server=.;Integrated
Security=true” />

and both applications manipulate session data with the following code (the application name is differ-
ent in the other application, of course):

Session[“somevariable”] = “Application A: somedata” + DateTime.Now.ToString();

79301c08.indd 420 10/6/08 12:14:22 PM

421

Chapter 8: Session State

you end up with two different sets of data in the session state SQL database. In the case of the SQL
database, two tables are used: ASPStateTempApplications and ASPStateTempSessions. The temporary
applications table shows information for the two different ASP.NET applications:

AppId AppName
---------- --
489834269 /lm/w3svc/1/root/ sessionstateappa
896781384 /lm/w3svc/1/root/ sessionstateappb

ASP.NET uses the IIS metabase path of each application as an identifier when partitioning session state
data. Looking in the table that stores the actual session state data, along with a number of other col-
umns containing data and lock status, there is a SessionID column:

SessionId

2mhd20eb0op3v3eb5j05yq4504500497
2mhd20eb0op3v3eb5j05yq4504500498

At first glance, the IDs from the two applications look almost exactly the same. Take a look at the bolded
portion of the session identifier, though. This portion of the identifier differs between the two rows of data
because the extra eight characters (padded so there are two hex characters per byte of application ID) are
actually the application identifiers from the ASPStateTempSessions table. The first 24 characters in the
SessionId column are the same because these 24 characters represent that actual session identifier that is
sent back to the browser in the cookie. You will also see this value if you retrieve the Session.SessionID
property.

So, things become quite a bit clearer around data partitioning for the OOP modes of operation. ASP.NET
keeps track of the different applications that have been registered in the OOP session state stores. When-
ever a request comes through to get or set data, the primary key (or the cache lookup key in the case of
the session state server) for the data includes the client’s session identifier and some extra information
identifying the specific web application that originated the request.

One interesting point is obvious from looking at how the applications are stored in the database. For
applications deployed on a web farm, you must ensure that each application installation is made to the
same virtual web server on each web server. If you accidentally mix up the virtual web servers during
installation, one of two things will happen:

One of your application installations will end up with a totally different metabase path, and it ❑❑

will store session data separately from all of the other application installs.

If you have applications spread out across your web servers, the potential exists that you ❑❑

accidentally install application A in application B’s virtual web server, and vice versa. If that
happens, you probably will end up with exceptions inside of your web applications when you
attempt to cast session data retrieved from the wrong row of session data back to an incompat-
ible data type.

Cookie-Based Sessions
Storing the session identifier in a cookie is the most common mode of operation for developers; it is
also the default mode of operation for ASP.NET 3.5. Because it follows the programming model as ses-
sion state in Classic ASP, many developers never need to deal with the cookieless mode of operation.

79301c08.indd 421 10/6/08 12:14:22 PM

422

Chapter 8: Session State

You saw earlier that session state providers ensure that data in the back-end data store is properly
partitioned by application. This is important because if you look at the session identifier in use across
multiple applications on the same web server, you see that it is the exact same identifier. The application
ID-based partitioning is hidden inside of the session state providers.

Sharing Cookies Across Applications
If you write other application code that depends on Session.SessionID, the same value is going to
show up in different applications. If your intent is to hook other application logic and data storage off
of SessionID, you may want to use a different identifier, such as a combination of authenticated user-
name and application name. The one thing you definitely do not want to do is to come up with a solu-
tion that forces creation of a new session identifier in each unique application.

Think about a scenario in which you have multiple applications sitting on the same server. The
HttpCookie that the session state feature issues will have the following characteristics:

The ❑❑ Domain property is never set on the HttpCookie, so it will default to the domain of the
server.

The ❑❑ Path property will be hardcoded to /.

No explicit expiration date will be set on the cookie.❑❑

The value of the cookie is set to the 24-character identifier that you can get from ❑❑ Session​
.SessionID.

With this combination of values, anytime the browser user surfs between applications on the same
server (or applications living under the same DNS name in the case of a load-balanced web farm), the
session cookie will be sent to each and every application. This means that, over time, the session state
feature will be accumulating session data for each application. If you were suddenly to send back a fake
cookie that reset the session state cookie from one of your responses, the net result would be that all of
the session state data in all of the other applications would be lost.

Let me state that a different way, because this is central to the way the ASP.NET session state feature
works. For each full DNS hostname, a browser gets one, and only one, session state cookie. That cookie
is shared across all applications, and if the cookie is ever lost or reset, all session data in all applications
that received that cookie will be lost. I want to drive home that point because sometimes developers
wonder whether they should include custom logic in their logout process for session state.

There is a method on the Session object called Abandon. Calling Session.Abandon invalidates the
session state data in the back-end data store (cache entry invalidation for in-process and session state
server and deleting the row of data for SQL-based session data) for the specific application that called
the method. However, calling Session.Abandon doesn’t clear the session cookie. If you called Session​
.Abandon from application A, and if ASP.NET then cleared the session cookie, any session data in other
applications would be lost. The fact that the session identifier can be shared between many applications
is the reason ASP.NET invalidates only session data, not the cookie, during a call to Abandon.

79301c08.indd 422 10/6/08 12:14:22 PM

423

Chapter 8: Session State

If you do want to enforce that session data for a user is eliminated when that user logs out of an applica-
tion, calling Abandon is sufficient. Extending the previous sample applications a bit more, you can add
a page that explicitly calls the Abandon method and see the effect inside of SQL Server. When you first
access the sample site, you get a row of session data as expected:

SessionId Created
-------------------------------- ----------------------------------
2mhd20eb0op3v3eb5j05yq4504500497 4/8/2008 11:10:35 AM

When Abandon is called, in the case of the SQL Server-based provider, an immediate delete command
is issued and the session data is removed from the database. If you then access another page in the appli-
cation, thus recreating the session data, the same session ID is retained (shown in bold), but a new row
in the database is created with new values for the creation and expiration date.

SessionId Created
-------------------------------- ----------------------------------
2mhd20eb0op3v3eb5j05yq4504500497 4/8/2008 11:12:30 AM

If you happen to be developing a standalone application, and thus you don’t need the session identifier
to remain stable across different applications, you can issue a clear cookie from your logout logic. How-
ever, this is the only scenario where explicitly clearing the session cookie can be done, because there
aren’t any other ASP.NET applications relying on the value.

Protecting Session Cookies
As with forms authentication in ASP.NET 3.5, the session state feature explicitly sets the HttpOnly
property on the cookie to true. Because applications store interesting information inside of session
state, ASP.NET protects the session identifier from client-side cross-site scripting (XSS) attacks (for more
details on XSS attacks and other security features of HttpOnly cookies, see the discussion in Chapter
6 on forms authentication cookies). The likelihood of an attacker ever guessing a live session cookie is
astronomically low. (With 120 bits in the session identifier, that works out to an average of 2^60 guesses
required. Come back in the next millennium when you finally get a match.)

That pretty much leaves cookie hijacking as the most viable option for getting to someone else’s session
data, hence the addition of HttpOnly protection in ASP.NET 3.5. The theory is that few (if any) applica-
tions should harvest the session identifier client-side for other uses. Typically, developers slipstream
off the value of Session.SessionID in their server-side logic and do not need to pass it around client-
side. As a result of risks of accidentally exposing a session identifier across multiple client-side applica-
tions, I definitely recommend changing that type of logic prior to upgrading to ASP.NET 3.5.

Some developers may wonder why session state doesn’t include at least the encryption and signing protec-
tions found in other cookie-based features, such as forms authentication and Role Manager. There was a
fair amount of debate around adding encryption and signing to the session state cookie since ASP.NET 2.0.
However, because the default session state cookie is a cryptographically strong 120-bit random number,
there didn’t seem to be much point in layering the overhead of encryption and signing on top of it. Fur-
thermore, not only is the session state identifier a strong random number, because the session state identi-
fier is stored in a session-based cookie, the session ID changes from browser session to browser session.

79301c08.indd 423 10/6/08 12:14:22 PM

424

Chapter 8: Session State

Unlike forms authentication, which relies on a fixed encryption key and a fixed validation key, with
session state the only time you can really attack someone else’s session state is while that user’s session
is still alive. There is no such thing as an offline brute force decryption attack or hash collision attack
with session state. With session state, an attacker must successfully guess (incredibly unlikely) or hijack
(possible but difficult to accomplish) a session identifier while that session is still alive somewhere in
an application. Although an attacker could theoretically stumble across a session identifier associated
with an expired session, this is not of any use because an expired session means that the data associ-
ated with that session is no longer available.

Session ID Reuse
This leads to another point around the behavior of cookie-based sessions after the session has expired.
If a browser user accesses an application and sends a session cookie along with the request, but the ses-
sion has expired since the last time the application was accessed, the old session data is no longer acces-
sible. However, when running in cookied mode, the session identifier will be reused to create a new
session for the application.

Because a session identifier may be shared across multiple web applications, the session state feature
will not invalidate the session identifier just because the session has expired. Instead, the session state
feature sets up a new session state object that is associated with the preexisting identifier. By doing so,
session state prevents the problem of one application invalidating a session identifier when there is still
live session data associated with that identifier in other applications.

You can see this pretty easily by using two applications, both with session state enabled. Set the timeout
for session state in one application to one minute, and leave the other application’s timeout at its default.
After accessing both applications at least once, wait for a bit more than one minute. This gives the appli-
cation with the short timeout the opportunity for the session state to expire.

When you access the applications again (using the same browser session), the application with the short
timeout has indeed expired its session data. However, the second application, with the default timeout,
still has an active session, and the data in that session is still retrievable because expiration of cookie-
based sessions doesn’t cause the session identifier to be regenerated.

Put a different way, cookie-based session state always supports Session ID reuse. As long as the
browser sends a well-formed session identifier to the server, that identifier will be reused. Sometimes
developers assume that session state will create a new session identifier when a session expires, and as
a result, developers create application functionality that depends on a new session identifier being cre-
ated after a session expires. This assumption is incorrect, though, and developers cannot rely on new
session identifier being generated when running in cookied mode.

Cookieless Sessions
ASP.NET 1.1 added support for a cookieless session state. As mentioned in earlier chapters, the cook-
ieless mechanism that was added in ASP.NET 1.1 for session state has been expanded to encompass
cookieless support for forms authentication as well anonymous identification. You can easily enable
cookieless operations with the following configuration:

<sessionState cookieless=”UseUri” />

79301c08.indd 424 10/6/08 12:14:22 PM

425

Chapter 8: Session State

You can also issue cookieless session identifiers based on the capabilities of a user’s browser with one
of the following options: AutoDetect or UseDeviceProfile. These options use different detection
mechanisms to determine whether the user’s browser should be sent a cookieless session identifier.
Accessing an application that uses cookieless session state results in the session identifier showing up
on the URL

http://localhost/CookielessSessionState/(S(kgtn5145tznbsymgj0xsm445))/Default.aspx

The value in the URL is the same value that is returned from Session.SessionID. If you use the fol-
lowing line of code on the default.aspx page shown earlier:

Response.Write(Session.SessionID + “
”);

the identifier output on the page matches the value shown in the URL:

kgtn5145tznbsymgj0xsm445

This behavior should start a few security antennae wiggling! Now anybody who looks at the address
bar in the browser knows his or her session identifier. A user who understands how ASP.NET works
will recognize this value and a malicious user that understands ASP.NET session state may start think-
ing about what can be done with this information.

Especially in cookieless mode, don’t use the session identifier as an indication of an authentication ses-
sion. If you have logic that works this way, all a user has to do is come up with a 24-character string,
and suddenly that user would be authenticated.

Of course, the real security issue with cookieless session state is the common weakness that was dis-
cussed earlier with cookieless forms authentication. It is very, very easy for a user to unwittingly leak
the session identifier to other people (email it, save it to disk as an Internet Explorer shortcut, and so
on). On shared machines such as kiosks, the cookieless identifier has a very real likelihood of sticking
around across the browser session of completely different users.

Given the comparative weakness of cookieless session identifiers, when is cookieless session state
appropriate?

For an internal corporate application that needs to be available from a mobile device that ❑❑

doesn’t support cookies: The likelihood of leaking the identifier is much lower in this scenario.

For Internet facing applications that need to support mobile users: ❑❑ For such an application
you should not store anything sensitive inside of session state: this means no personally identifi-
able information and definitely nothing like credit card numbers, Social Security identifiers, and
so on. Furthermore, the session identifier should not be used within the application’s logic as a
key that can lead to any kind of sensitive or personally identifiable information.

I intentionally left out a potential third scenario of an e-commerce site that wants to support cookieless
users. If you need to support these types of customers and you are thinking of using cookieless session
state, exercise caution. A customer using a desktop browser with cookieless session state is at risk for
leaking the session identifier outside of the browser due to the ease with which you can get to an email
application from inside of all popular browsers (for example, Hi Mom; here’s that item I was talking
about on the Web!). If you do choose to support cookieless session state on an e-commerce site, only use
it to hold anonymous information such as shopping cart items. Do not use session state in a way that a

79301c08.indd 425 10/6/08 12:14:22 PM

426

Chapter 8: Session State

session identifier could ever be used to get back to information about a specific person. Although run-
ning the entire e-commerce site under SSL is also a way to mitigate the security problem of cookieless
identifiers, for performance reasons most e-commerce sites would probably be unwilling to do this.

The following list contains many of the security limitations of cookieless session identifiers:

The identifier is immediately visible inside the address bar of the browser.❑❑

The only way to prevent man-in-the middle attacks is to run the entire site under SSL, although ❑❑

this is also a limitation of the session state feature as a whole.

The identifier can be easily pasted into an email and shared with other users.❑❑

Because the identifier is in the URL, cached URLs with the session identifier can end up in the ❑❑

browser’s URL history.

Proxy servers and caching servers can end up with URLs in their caches that contain the cookie-❑❑

less session identifier.

Configuring Session State Inside IIS 7.0
The <sessionState> configuration section is usually edited inside the application’s web.config.
If you want to change the default predefined values, you can configure a <sessionState> section
by specifying the session state mode and cookie settings. Although the application’s web.config file
provides very good IntelliSense to do this, IIS 7.0 provides a graphical user interface to edit the applica-
tion’s <sessionState> configuration section. To edit the <sessionState> section, double-click the
Session State applet inside IIS 7.0 Manager, as shown in Figure 8-1.

Figure 8-1

79301c08.indd 426 10/6/08 12:14:22 PM

427

Chapter 8: Session State

Figure 8-2 shows the IIS 7.0 Windows form used to edit the <sessionState> section for an application.

Figure 8-2

All the different session state mode options are listed so that you can select a single mode setting. If
a setting requires additional information (for instance, the SQL Server session state), a UI section is
enabled so that you can edit the needed information. Moreover, you can specify the session cookie
mode, name, and timeout of the cookie in case Use Cookies was selected. The last checkbox on the
screen, Use Hosting Identity for Impersonation, allows you to use Windows authentication and the
host process identity (either ASP.NET or Windows service identity) for connections to the database.

Session State for Applications Running in
IIS 7.0 Integrated Mode

When an ASP.NET application is running under the default application pool inside IIS 7.0 (i.e., inte-
grated mode), the HTTP request processing pipelines get unified and integrated into a single pipeline,
enabling the application to access any request that reaches IIS 7.0’s gate. This means that both native and
managed requests will pass through the unified HTTP request pipeline. If the current request is for a
native or non-managed resource, the managed handler is null and the native request will be processed
and executed by the IIS 7.0 core engine.

As you learned in Chapter 3, the session state of an ASP.NET web application is accessible after the
AcquireRequestState event of the HTTP request pipeline is fired. At this stage, the SessionState​
Module that has already subscribed to the AcquireRequestState in the HTTP request pipeline would
fire its AcquireRequestState’s event handler and get the session state initialized for the current request.
Several conditions are checked, of course, to ensure the session state can be initialized, among which

79301c08.indd 427 10/6/08 12:14:23 PM

428

Chapter 8: Session State

the handler for the current request implements the IRequestSessionState interface, which is a marker
interface with no methods or properties inside to be implemented by the implementer. If the handler for
the current request is a managed handler (that is, a handler for .aspx files, .asmx files, and so on), then
the process of initializing the session state for the current continues successfully, else there will be no
session state attached to the current request.

The preceding discussion applies to all managed resources. However, what happens when an ASP.NET
web application is executing in the integrated mode and accepting not only managed requested but also
non-managed or native requests? As mentioned previously, the ASP.NET runtime does not create any
managed handler for the non-managed requests; therefore, when the managed SessionStateModule
checks to see if the current handler created implements the managed IRequiresSessionState marker
interface, the checking would fail.

What if the developer wants some sort of session management when an ASP.Net web application is
executing within the new IIS 7.0 integrated mode even for non-managed resources? Such a concern has
been raised on the online forums and the IIS team at Microsoft recommends the following technique.

The HTTP request pipeline contains two main events that deal with the process of mapping a man-
aged handler for the current request being processed. Those events are the MapRequestHandler and
PostMapRequestHandler. Inside the former event, the handler is decided on for the current HTTP
request. If the request corresponds to a managed request, a managed handler is created; otherwise,
the handler for current request will be null. The PostMapRequestHandler is the best place to check to
determine whether a handler has been created for the current request. For now, this gives you a hint on
where you can detect whether the HTTP request processed inside the integrated HTTP request pipe-
line is for a managed resource or a native resource.

Directly after the PostMapRequestHandler, the AcquireRequestState is fired and the managed
SessionStateModule’s event handler for the aforementioned event gets executed only at this time.
This means that if the current request corresponds to a managed resource, the managed handler for the
current request would have been already created, as the AcquireRequestState event fires after the
MapRequestHandler event has been fired. Therefore, if the current request is a native one, the handler
for it will be null and no session state will be initialized. On the other hand, if the current request is for
a managed resource, the handler will be checked to see if it requires session state, and if so, the session
state will be initialized for the current request.

The trick now lies in the fact that if the managed SessionStateModule finds out that the current request
has a managed handler created and that handler implements the IRequiresSessionState marker
interface, the session state for the current request gets initialized regardless of whether the request was
originally for a native request. What you can do is create a new C# or VB.NET class and let this class
implement the IHttpHandler and IRequiresSesionState. Then, when the PostMapRequestHandler
is fired, you check to see if the current request has a null handler (that is, that this is a native request),
create a new instance of the custom dummy handler, and pass to it an instance of the current handler.
Then you can make the current managed handler point to the instance you have already created for your
custom handler. When the AcquireRequestState executes, the managed SessionStateModule will
notice that there is a managed handler accompanying the current request and that implements the
IRequiresSessionState marker interface. Thus, it proceeds in initializing the session state for the
current native request, and you now have access to the session state at later events inside the integrated
HTTP request pipeline.

79301c08.indd 428 10/6/08 12:14:23 PM

429

Chapter 8: Session State

However, the solution is not over yet. You want to make sure that after the AcquireRequestState
event is fired and executed, the current request points to an instance of the custom dummy handler. This
means the request is originally for a native resource and that you should reset the current managed
handler to the same instance of the managed handler that was created for the current request while the
request was about to enter the PostMapRequestHandler event. Remember that you have already passed
an instance of original handler that was originally created for the current request by the ASP.NET run-
time. All you need to do now is to subscribe to the PostAcquireRequestState event and perform the
switch of the handler back to the original one in case the current handler was of the type of the custom
dummy handler.

This is a workaround solution and works fine for the purpose of making sure the session state gets ini-
tialized even for non-managed requests.

To demonstrate this solution, you first need to create a new custom HTTP module to be able to subscribe
to the previously mentioned events.

C#
using System;
using System.Data;
using System.Configuration;
using System.Linq;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Linq;

public class SessionStateForNativeRequestsModule : IHttpModule
{
 #region IHttpModule Members

 public void Dispose()
 {
 throw new NotImplementedException();
 }

 public void Init(HttpApplication context)
 {
 // Subscribe to the PostMapRequestHandler
 context.PostMapRequestHandler +=
 new EventHandler(context_PostMapRequestHandler);

 // Subscribe to the PostAcquireRequestState
 context.PostAcquireRequestState +=
 new EventHandler(context_PostAcquireRequestState);
 }

 void context_PostAcquireRequestState(object sender, EventArgs e)
 {

79301c08.indd 429 10/6/08 12:14:23 PM

430

Chapter 8: Session State

 }

 void context_PostMapRequestHandler(object sender, EventArgs e)
 {
 }

 #endregion
}

VB.NET
Imports Microsoft.VisualBasic
Imports System
Imports System.Data
Imports System.Configuration
Imports System.Web
Imports System.Web.Security

Public Class SessionStateForNativeRequestsModule
 Implements IHttpModule
 #Region “IHttpModule Members”

 Public Sub Dispose() Implements IHttpModule.Dispose
 Throw New NotImplementedException()
 End Sub

 Public Sub Init(ByVal context As HttpApplication) Implements IHttpModule.Init
 ‘ Subscribe to the PostMapRequestHandler
 AddHandler context.PostMapRequestHandler, _
 AddressOf context_PostMapRequestHandler

 ‘ Subscribe to the PostAcquireRequestState
 AddHandler context.PostAcquireRequestState, _
 AddressOf context_PostAcquireRequestState
 End Sub

 Private Sub context_PostAcquireRequestState(_
 ByVal sender As Object, ByVal e As EventArgs)

 End Sub

 Private Sub context_PostMapRequestHandler(_
 ByVal sender As Object, ByVal e As EventArgs)

 End Sub

 #End Region
End Class

Before going into the details of the implementation of the preceding HTTP module, let’s create the cus-
tom dummy handler that will implement the IRequireSessionState and that will be used as a tem-
porary managed handler to fake the managed SessionStateModule to initialize the session state for
native or non-managed resources. Create a new C# or VB.NET class that implements the IHttpHandler
interface and IRequiresSessionState marker interface.

79301c08.indd 430 10/6/08 12:14:23 PM

431

Chapter 8: Session State

C#
using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.SessionState;
using System.Web.Security;
using System.Web.UI;

public class CustomNativeHandler : IHttpHandler, IRequiresSessionState
{

 #region IHttpHandler Members

 public bool IsReusable
 {
 get { return false; }
 }

 public void ProcessRequest(HttpContext context)
 {
 // This method won’t be called, but to be on the safe
 // side, through an exception.
 throw new NotImplementedException();
 }

 #endregion

 #region Fields
 internal readonly IHttpHandler ManagedHandler;
 #endregion

 #region Constructors
 public CustomNativeHandler(IHttpHandler managedHandler)
 {
 ManagedHandler = managedHandler;
 }
 #endregion
}

VB.NET
Imports Microsoft.VisualBasic
Imports System
Imports System.Data
Imports System.Configuration
Imports System.Web
Imports System.Web.SessionState
Imports System.Web.Security

79301c08.indd 431 10/6/08 12:14:23 PM

432

Chapter 8: Session State

Public Class CustomNativeHandler
 Implements IHttpHandler, IRequiresSessionState
 #Region “IHttpHandler Members”

 Public ReadOnly Property IsReusable() As Boolean Implements _
 IHttpHandler.IsReusable
 Get
 Return False
 End Get
 End Property

 Public Sub ProcessRequest(ByVal context As HttpContext) Implements _
 IHttpHandler.ProcessRequest
 ‘ This method won’t be called, but to be on the safe
 ‘ side, through an exception.
 Throw New NotImplementedException()
 End Sub

 #End Region

 #Region “Fields”
 Friend ReadOnly ManagedHandler As IHttpHandler
 #End Region

 #Region “Constructors”
 Public Sub New(ByVal managedHandler As IHttpHandler)
 Me.ManagedHandler = managedHandler
 End Sub
 #End Region
End Class

The preceding handler is quite basic and simple. The ProcessRequest method would never be called
and executed; however, throwing an exception inside makes it safer and reminds you to remove this
dummy handler after you are finished with it.

In addition, the handler contains an internal read-only field called ManagedHandler that holds the
managed handler (if any) that was originally created by the .NET Framework. This handler might be
null or it might be a valid managed handler.

To be able to initialize the ManagedHandler field, you must add a constructor passes in as input param-
eter a pointer to the managed handler that was created as part of the current HttpContext of the
request.

To complete the discussion on the above handler, the IsReusable property has to return a value of
false. This property decides whether to use the same instance of the handler to process more than
one request. However, in this case, because each instance of the handler contains data representing the
handler created originally by the .NET Framework, the IsReusable property should return a value of
false, meaning that every instance should only be used once.

Now that the dummy handler is developed, let’s go back to the HTTP module and fill in the blanks to
the event handler for the PostMapRequestHandler and PostAcquireRequestState events.

79301c08.indd 432 10/6/08 12:14:23 PM

433

Chapter 8: Session State

C#
 void context_PostMapRequestHandler(object sender, EventArgs e)
 {
 // Get an instance of the current Context
 HttpContext context = ((HttpApplication)sender).Context;

 // If the current HttpHandler is null, then this must be
 // a native request being processed.
 if (context.Handler == null)
 context.Handler = new CustomNativeHandler(context.Handler);
 }

VB.NET
Private Sub context_PostMapRequestHandler(_
ByVal sender As Object, ByVal e As EventArgs)
 ‘ Get an instance of the current Context
 Dim context As HttpContext = (CType(sender, HttpApplication)).Context

 ‘ If the current HttpHandler is null, then this must be
 ‘ a native request being processed.
 If context.Handler Is Nothing Then
 context.Handler = New CustomNativeHandler(context.Handler)
 End If
End Sub

Inside the PostMapRequestHandler event handler, a checking is done to make sure the current
request is a native one by simply checking whether an instance of a managed handler has been cre-
ated. If the current HttpContext’s handler is null, this tells you that the current request is for a native
resource, and so the code creates a new instance of the CustomNativeHandler and assigns it to the
handler’s property of the current HttpContext; otherwise, nothing should be done.

C#
 void context_PostAcquireRequestState(object sender, EventArgs e)
 {
 // Get an instance of the current Context
 HttpContext context = ((HttpApplication)sender).Context;

 // Use “as” so that if the current handler
 // is not a CustomNativeHandler, then no exception
 // will be thrown, like in the case of casting.
 CustomNativeHandler customHandler =
 context.Handler as CustomNativeHandler;

 // If the current handler is our custom dummy handler
 // then revert back to the managed handler that was
 // originally created by the .NET Framework for the
 // current request
 if (customHandler != null)
 context.Handler = customHandler.ManagedHandler;
 }

79301c08.indd 433 10/6/08 12:14:23 PM

434

Chapter 8: Session State

VB.NET
Private Sub context_PostAcquireRequestHandler(_
ByVal sender As Object, ByVal e As EventArgs)
 ‘ Get an instance of the current Context
 Dim context As HttpContext = (CType(sender, HttpApplication)).Context

 ‘ Use “as” so that if the current handler
 ‘ is not a CustomNativeHandler, then no exception
 ‘ will be thrown, like in the case of casting.
 Dim customHandler As CustomNativeHandler = _
 TryCast(context.Handler, CustomNativeHandler)

 ‘ If the current handler is our custom dummy handler
 ‘ then revert back to the managed handler that was
 ‘ originally created by the .NET Framework for the
 ‘ current request
 If customHandler IsNot Nothing Then
 context.Handler = customHandler.ManagedHandler
 End If
End Sub

The PostAcquireRequestState event handler starts by getting an instance of the current HttpContext.
Then a casting is done using the as keyword in C# instead of the normal casting. This ensures that if the
current context’s handler is not an instance of the CustomNativeHandler, no exception will be thrown.
This is followed by a check for the casted handler against the value of null. If the current handler is not
null, the current handler holds an instance of the CustomNativeHandler, and the current context’s han-
dler should be reverted back to the original handler that the .NET Framework created and that was stored
as an internal instance field inside the CustomNativeHandler.

Now that the development of the HTTP module and handler is done, it’s time to configure the applica-
tion’s web.config file and register the SessionStateForNativeRequestModule:

 <system.webServer>
 <modules>
 <add
 name=”SessionStateForNativeRequests”
 type=”SessionStateForNativeRequests”
 />
 </modules>
 </system.webServer>

Run the application and set some breakpoints inside the PostAcquireRequestState event handler.
Try to access a .jpg file residing in the root of your web application. You will notice that the session state
is not getting initialized for the native HTTP request. Why? Well, while I was running this sample, I
was always getting an empty session state for native requests. I checked the code several times to
make sure the logic was implemented successfully. It ended up that I wasn’t mapping the managed
SessionStateModule for all requests. By default, the SessionStateModule is defined inside the
<modules /> configuration section in the applicationHost.config file as follows:

<add
 name=”Session”
 type=”System.Web.SessionState.SessionStateModule”

79301c08.indd 434 10/6/08 12:14:23 PM

435

Chapter 8: Session State

 preCondition=”managedHandler”
/>

Notice the text in bold, which maps the managed SessionStateModule to managed requests only by
specifying a value of managedHandler for the preCondition attribute.

For the preceding solution to work, you need to map the SessionStateModule to all managed and
non-managed requests so that at the AcquireRequestState event the managed SessionStateModule
is queried to check if session state can be created for the current request (that is, the handler created for
the current request implements the IRequiresSessionState marker interface). Without the preceding
mapping, the managed SessionStateModule would never run and do the check and validation for
non-managed requests.

To map the SessionStateModule for all requests, simply add the following to the <module /> con-
figuration section inside the <system.webServer /> configuration section group located in the appli-
cation’s web.config configuration file:

<remove name=”Session” />
<add
 name=”Session”
 type=”System.Web.SessionState.SessionStateModule”
 preCondition=””
/>

Notice that this time the preCondition attribute is reset to an empty string, signaling to the integrated
HTTP request pipeline to allow the managed SessionStateModule to check if it can be initialized for
the requests entering the pipeline.

Now you run the application included with the code included this chapter. The application name is
SessionStateForNativeRequests. You will notice that the session state is getting initialized even for
native requests using the trick proposed by the IIS team.

Session ID Reuse and Expired Sessions
Many of these weaknesses revolve around the ability for a URL with a session identifier to be reused
by someone other than the original intended recipient of the identifier. Because the session state feature
doesn’t have the concept of an absolute expiration, as long as someone (or some user agent) continues to
access a site with a valid session identifier, the underlying data will be kept alive. This behavior is more
of a problem with cookieless session state, though.

Any browser, caching server, proxy server, and so on that keeps URLs lying around in a cache results
in potentially long-term storage of URLs with embedded session identifiers. This is a much less likely
problem in the cookied case because most user agents and caching software ignore session-based cook-
ies. (The browser isn’t going to keep a history of your session-based session cookie for the next 30 days.)

On the other hand, it is almost guaranteed that between the possibility of accidentally leaking session
identifiers and the long-lived storage of URLs through various caching mechanisms, someone will
eventually return to a site and replay a cookieless session identifier. The most likely scenario is one

79301c08.indd 435 10/6/08 12:14:23 PM

436

Chapter 8: Session State

where the user that was originally issued the identifier comes back to the site through some kind of
shortcut. You only need to use the Internet Explorer history feature to see what I mean. Or a site with
cookieless sessions all URLs with the embedded session identifier in it are sitting there in the browser
history waiting for you to click them.

Unlike cookied mode, though, cookieless session state automatically reissues a session identifier under
the following conditions:

A valid (that is, well-formed) session identifier is contained on the request URL.❑❑

The session data associated with that identifier has expired.❑❑

If both of these conditions are true, then the session state feature will automatically create a new session
identifier when it initializes a new session state object. Note that if you call Session.Abandon from an
application using cookieless sessions, the session ID will also be regenerated the next time you access
a page in the application. In this case, calling Abandon is just another way of ending up in the situation
where you have a valid but expired identifier.

To see the behavior when a session expires, you can take the cookieless URL that was shown earlier:

http://localhost/CookielessSessionState/(S(kgtn5145tznbsymgj0xsm445))/Default.aspx

Paste this URL into the browser (assuming, of course, that 20 minutes have passed, which is the default
session timeout). The page still runs successfully, but the URL that comes back in the browser reflects a
new session identifier:

http://localhost/CookielessSessionState/(S(4lakxf45asdoz045slsdnb45))/Default.aspx

The reason for this behavior is that in ASP.NET 3.5, the session state configuration supports a new
attribute: regenerateExpiredSessionId. By default this attribute is set to true, which is why when
expired session identifiers are sent in the URL, ASP.NET automatically issues a new identifier. This
behavior is enabled by default for a few reasons:

It is the best choice from a security standpoint. Given the ease with which cookieless identifiers ❑❑

can live far beyond their intended life, it makes sense to invalidate the identifiers by default.

Unlike cookied sessions, cookieless session identifiers are not shared across multiple applica-❑❑

tions. You can see that cookieless session identifiers do not flow across applications by setting
up two applications on the same server and configuring both to use cookieless session state.
When you access each application in turn, you end up with two different identifiers. This intui-
tively makes sense because URLs are by their very nature unique to an application; hence val-
ues embedded in the URL would also be application-local.

If for some reason you don’t want session identifiers to be regenerated, you can set regenerate​
ExpiredSessionId to false. However, if your application depends on retaining stable session iden-
tifiers across browser sessions (this is one possible reason why you wouldn’t want to issue a new
identifier), you should look at why your application is depending on stable session identifiers. If at all
possible, move to some other mechanism (perhaps requiring a login at which point you have a user
identifier) that is more secure for tracking specific users across different browser sessions.

79301c08.indd 436 10/6/08 12:14:23 PM

437

Chapter 8: Session State

Session ID Denial -of-Service Attacks
The idea behind a session ID denial-of-service (DOS) attack is that a malicious user “poisons” session
state by sending it numerous bogus session identifiers or by forcing the creation of sessions that will
never be used after being initialized. Unlike other poisonings (for example, DNS cache poisoning) that
involve placing incorrect or malicious data into a cache, session ID poisoning is very basic. A malicious
user can spam the web server with session identifiers that are well formed but not associated with any
active session. Hence, the term poisoning because the ASP.NET server ends up with an internal cache
polluted with spurious session identifiers.

In a similar manner, a malicious user can access a page in an application that results in the issuance of
a session identifier, but then throw away the cookie that is sent back by the application. In this manner,
a malicious user can force an application to spin up a new session each time the page is accessed, again
resulting in a session state store that is polluted with unused session state data.

A session identifier does take up a little bit of space and processing overhead on the web server each
time a new session is started up. However, because ASP.NET has a number of internal optimizations
around new and uninitialized sessions, sending a spurious identifier in and of itself is harmless. The
real danger of session ID poisoning occurs if the session state object is accessed after the spurious iden-
tifier is sent. This can be code running in the Session_Start event in global.asax, or there can just
be code running on a regular .aspx page that manipulates session state.

After the Session object is accessed, storage is allocated for the session data. This means that memory
is consumed on the web server for the in-process session state case, and rows are allocated in the data-
base for the SQL OOP scenario. For the session state server, memory is allocated on the OOP session
state server.

For the OOP SQL session state, spurious sessions shouldn’t have a big impact because each spurious
session and subsequent use of that session results in a row in the database. An attacker that attempted
a DOS attack against SQL-based session state causes some extra CPU and disk overhead on the SQL
Server but not much more, because the lifetime of a spurious session looks roughly as follows:

	 1.	 The attacker sends a fake session ID to the server as part of the request or accesses a page that
makes use of session state but then intentionally throws away the a session state identifier.

	 2.	 The ASP.NET page accesses the Session object in some manner, which results in a new row
being written to the ASPStateTempSessions table.

	 3.	 The attack continues to send other fake session IDs, or continues to request the same page but
with no session state cookie, thus resulting in the creation of a new session identifier for each
request.

	 4.	 At some point the session associated with the identifier from step 2 times out.

	 5.	 Every minute (by default) the ASP.NET SQL Server session state cleanup job runs and deletes
expired rows of session data from the database.

As a result of the automatic session cleanup in step 5, a spurious session is only going to take up space
in the SQL Server for an amount of time equal to the timeout setting in configuration (20 minutes by
default). If an attacker uses a standard desktop machine to send 10 spurious session identifiers per

79301c08.indd 437 10/6/08 12:14:23 PM

438

Chapter 8: Session State

second (in other words, the attacker adds 10 requests per second (RPS) overall to your site’s load), an
attack can accumulate 600 spurious sessions in a minute, and 12,000 spurious sessions in the default 20
minute timeout period.

If you have 12,000 spurious sessions in the database, and each session is associated with 5KB of data,
you are looking at roughly 58–59MB of extra data sitting in the session state database. Furthermore,
the SQL Server machine has to chug through and delete 600 rows of bogus session data each time the
cleanup job wakes up on its 60-second interval. Overall, it is not good that this type of extra overhead is
being incurred, but on the other hand, short of a concentrated attack against a web farm using OOP SQL
Session state, an attacker is going to have a hard time being anything more than a nuisance.

One of the reasons I picked such a low request per second value for describing the issue is that many
websites have a variety of real-time security monitors in place: one of them checks on the requests per
second value. If your security monitoring apparatus suddenly sees a spike in traffic (for example, the cur-
rent RPS compared to the average RPS during the last 30 minutes) it probably will set off several alarms.
However, slipping in an extra 10 requests per second is trivial for today’s web server hardware; probably
only paranoid security measures would detect such a small increase in the overall traffic of a site.

Although SQL Server-based session state is pretty hard to overrun with a session ID DOS attack, the
story is a bit different when using in-process session state or the OOP session state server. In both of
these cases, an attacker is causing memory consumption to occur with each and every spurious session.
Unlike SQL Server session state where disk space is relatively cheap (imagine an attacker attempting to
overflow a terabyte of storage on the session state server; good luck!), memory is a scarce resource on
the web server.

Taking the previous scenario with 10 spurious requests per second, and 5KB of spurious data, you end
up permanently losing 58–59MB of memory from your web server due to space wasted storing spurious
session data. Furthermore, you incur the additional overhead of the in-memory items aging out (session
state items are held in the ASP.NET Cache object) and the subsequent overhead of garbage collection
attempting to recompact and reclaim memory caused by session data constantly aging out and being
replaced by other spurious session data.

Although 58–59MB does not seem like a lot of memory, the real risk of a session ID DOS attack comes
when you have an application that depends on storing larger amounts of data in session state. For
example, if an application stores 50KB of data in session state instead of 5KB of data, you have a very
real problem. An attacker could consume around 570MB of memory over a 20-minute period. On serv-
ers running multiple ASP.NET applications, that is enough memory consumption to probably force the
appdomain of the problematic ASP.NET application to recycle. If you are running on Windows Server
2008 or Windows Vista and IIS 7.0, and if you have set memory-based process recycling limits, it is pos-
sible that the IIS 7.0 worker process will also be forced into periodic recycling.

The general guidance here is that if you depend on in-process session state or the OOP session state
server, and if your website is Internet-facing and hence reachable by an attacker, you should do the
following to detect and mitigate session ID DOS attacks:

Monitor the application specific ASP.NET performance counter for Sessions Active as shown in ❑❑

Figure 8-3.

79301c08.indd 438 10/6/08 12:14:24 PM

439

Chapter 8: Session State

Figure 8-3

Inside of the performance monitor MMC, you can get to this counter by selecting ASP.NET ❑❑

Apps v2.0.x.y for the performance object, and then choosing to monitor all ASP.NET instances,
or just specific ones. After you choose the desired instances, the Sessions Active option is avail-
able in the Select Counters from List list box. You need to profile the usage of your application
to determine an appropriate upper limit. Chances are that most applications could probably get
by with a limit of somewhere between 100 and 500 sessions for an application. Because the per-
formance monitor supports configuring alerts, you can set up an alert that sends emails or runs
some other program if the number of active sessions exceeds an appropriate limit.

Monitor the overall requests per second on your site. If the RPS at any point in time shows an ❑❑

abnormal spike relative to the last few minutes (or perhaps hours) of activity, send out an alert
so that someone can investigate and determine what is happening.

Set appropriate memory limits on applications that use session state. This is very easy to ❑❑

accomplish in IIS 7.0 because you can set a memory-based process recycling limit on the Recy-
cling section of an application pool. Again, you will need to determine appropriate upper limits
for your applications. Once set, though, the side effect of a sustained DOS is that the problem-
atic application will periodically recycle as memory is consumed. Other applications in other
application pools will be unaffected, though.

The simplest way to mitigate the entire session ID DOS scenario is to use session state only on ❑❑

pages that require an authenticated user. As mentioned earlier, just sending a session identifier
to ASP.NET does not do much of anything. ASP.NET will delay initialization of the session state
object until it is actually needed. As a result, if you access the Session object only on pages that
require an authenticated user, the only way an attacker could perform a DOS is to log in first.
Typically, attackers want to remain anonymous and aren’t going to set up a user account on
your site just to launch a DOS.

Trust Levels and Session State
As with just about every other aspect of ASP.NET, the session state feature is affected by the trust-level
settings for your machine and your application. For in-process session state, the effect of the trust level
is limited to restrictions around serialization and deserialization, which were originally introduced

79301c08.indd 439 10/6/08 12:14:24 PM

440

Chapter 8: Session State

with ASP.NET 2.0 (a bit more on that later in this section). However, both SQL Server and the OOP ses-
sion state server require applications to run in Medium trust or higher for these features to be used.

You can take any of the previous sample applications that used SQL Server-based session state and add
a <trust /> level element as follows:

<trust level=”Low”/>

You get back an error page to the effect that you can’t use session state at that trust level. If you tweak
the trust level to Medium, the application will start working again.

Things get a bit interesting, though, if you take an additional step and edit the actual trust policy file
(for all the details on trust level and their relationship to trust policy files, see Chapter 4). Change the
trust level to use a custom trust level:

<trust level=”Medium_Custom”/>

This custom trust level sets the AspNetHostingPermission.Level to Medium, so effectively the
application is running a modified version of the Medium trust level. Then in the trust policy file associ-
ated with this trust level, remove the following permission element:

<IPermission
 class=”SqlClientPermission”
 version=”1”
 Unrestricted=”true”
 />

When you rerun the application, session state still works! There are a few reasons for this behavior.
Session state is a heavily used feature by customers, so ASP.NET should not impose excessive security
requirements just to get session state working. However, in the case of SQL Server-based session state
there is obviously a perfectly good permission class supplied by the framework that models access
rights for using SQL Server. The problem is that if ASP.NET relied on the presence of SqlClientPer-
mission in the trust policy, it would effectively be allowing any page in the application to use SQL
Server.

However, if a developer wants to enable SQL Server session state and does not want random pieces
of page code using ADO.NET and attempting to access SQL Server, having session state condition its
behavior on SqlClientPermission is excessively permissive. The compromise approach for all of
this is why SQL Server session state works in the absence of SqlClientPermission. Instead, ASP.NET
requires that the application be running at Medium trust or above. As long as this condition is met, the
session state feature will call into SQL Server on behalf of the application.

Technically, SQL Server session state works in Medium trust because the entire code stack for session
state is trusted code. For example, if you think about the process by which session data is stored, the
call stack from top to bottom is roughly:

	 1.	 The EndRequest event is run by the HTTP pipeline.

	 2.	 The SessionStateModule that hooks EndRequest is called.

79301c08.indd 440 10/6/08 12:14:24 PM

441

Chapter 8: Session State

	 3.	 As part of the processing in SessionStateModule, it calls into the internal class that imple-
ments the SQL Server session state provider.

	 4.	 That provider calls into ADO.NET.

All of this code, though, is trusted code that lives in the global assembly cache (GAC). As a result, when
ADO.NET in step 4 triggers a demand for SqlClientPermission, the call stack above that demand
consists entirely of ASP.NET code sitting somewhere inside of System.Web.dll which exists in the
GAC. From the Framework’s standpoint, only trusted code is on the stack, and as a result the call to SQL
Server succeeds. In the case of the out-of-process session state server, a similar situation exists though
the OOP state server uses Win32 sockets instead.

You can see from all of this that whenever significant work is performed by the session state feature,
only trusted ASP.NET code is on the stack. As a result, the session state feature has to be a bit more
careful in terms of what it allows because permission checks and demands will always succeed. The
trust-level requirements for the various modes of session state are shown in the following table.

Session State Mode Required CAS Permissions Required Trust Level

In process None Minimal

Sql Server None Medium

State Server None Medium

Custom Depends on custom provider
implementation

Minimal. Custom providers can be more
restrictive if desired.

Serialization and Deserialization Requirements
Session state is a lot like no-compile pages ASP.NET 3.5; both features involve only trusted ASP.NET
code running on the stack, which means that without extra protections, a savvy and malicious devel-
oper could trick ASP.NET into running privileged code. If you think back to the discussion on
processRequestInApplicationTrust in Chapter 4, the solution for no-compile pages (and for that
matter, any type of .aspx page) was for ASP.NET to call PermitOnly on the PermissionSet represent-
ing the permissions granted in the application’s trust policy.

Session state also internally checks the value of processRequestInApplicationTrust. If this setting
is true (by default it is true, and unless there is a specific reason for it, you should not change this
setting), session state calls PermitOnly prior to either serializing or deserializing session state data.
This means that any types deployed in the GAC that also implement custom serialization logic are still
restricted to the permission set defined by the application’s trust policy when the types are serialized or
deserialized by the Session state feature. Because session state uses binary serialization, this means any
GAC’d types with custom implementations of ISerializable cannot be lured into performing a privi-
leged operation through the use of session state in a partial trust application.

This protection closes a potential loophole with storing an instance of a GAC’d type in session state. If
enough was understood about the internals of the GAC’d type, then when either of the out-of-process ses-
sion state providers serialized the GAC’d type prior to saving it, session state would inadvertently trigger
privileged code inside of the GAC’d type’s serialization logic. With the PermitOnly in effect, though, a
developer can no longer use session state to make an end-run around the application’s trust policy.

79301c08.indd 441 10/6/08 12:14:24 PM

442

Chapter 8: Session State

To highlight this, you can create a simple class that attempts to connect to SQL Server:

C#
[Serializable()]
public class SomeObject : ISerializable
{
 public SomeObject() { }

 protected SomeObject(SerializationInfo info, StreamingContext context)
 {
 SqlConnection conn =
 new SqlConnection(“server=.\SQL2005;database=pubs;Integrated Security=true”);
 SqlCommand cmd = new SqlCommand(“select * from authors”, conn);

 conn.Open();
 SqlDataReader dr = cmd.ExecuteReader();

 conn.Close();
 }

 public void GetObjectData(SerializationInfo info, StreamingContext context)
 {
 info.AddValue(“foo”, “bar”);

 SqlConnection conn =
 new SqlConnection(“server=.\SQL2005;database=pubs;Integrated Security=true”);
 SqlCommand cmd = new SqlCommand(“select * from authors”, conn);

 conn.Open();
 SqlDataReader dr = cmd.ExecuteReader();

 conn.Close();
 }
}

VB.NET
 <Serializable()> _
 Public Class SomeObject
 Implements ISerializable
 Public Sub New()
 End Sub

 Protected Sub New(ByVal info As SerializationInfo, _
 ByVal context As StreamingContext)
 Dim conn As New _
 SqlConnection(“server=.\SQL2005;database=pubs;Integrated Security=true”)
 Dim cmd As New SqlCommand(“select * from authors”, conn)

 conn.Open()
 Dim dr As SqlDataReader = cmd.ExecuteReader()

 conn.Close()

79301c08.indd 442 10/6/08 12:14:24 PM

443

Chapter 8: Session State

 End Sub

 Public Sub GetObjectData(ByVal info _
 As SerializationInfo, ByVal context _
 As StreamingContext) Implements ISerializable.GetObjectData
 info.AddValue(“foo”, “bar”)

 Dim conn As New _
 SqlConnection(“server=.\SQL2005;database=pubs;Integrated Security=true”)
 Dim cmd As New SqlCommand(“select * from authors”, conn)

 conn.Open()
 Dim dr As SqlDataReader = cmd.ExecuteReader()

 conn.Close()
 End Sub
 End Class

The sample class is marked with the Serializable attribute, indicating that it supports being binary
serialized. Inside the ISerializable method associated with serialization, and in the special
ISerializable constructor, the class attempts to execute a command against SQL Server. This opera-
tion results in a demand for SqlClientPermission, which you can use to show the effects of enforc-
ing the application trust policy.

After marking the class’s assembly with the APTCA attribute, signing it with a strong name, and adding
it to the GAC, you can create a sample web application that makes use of this class. The web application
will be configured to run in partial trust and use SQL Server session state.

<trust level=”Medium_Custom”/>

<sessionState mode=”SQLServer” sqlConnectionString=”server=.\SQL2005;Integrated
Security=true” timeout=”30”/>
<compilation debug=”true”>
 <assemblies>
 <add assembly=”BusinessObjects, Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=9cd23ad80158bbfe”/>
 </assemblies>
</compilation>

Using SQL Server-based session state means that the session state feature will use binary serialization
to load and store any objects placed inside of session state. A simple page that makes use of the GAC’d
type is shown here.

C#
 protected void Page_Load(object sender, EventArgs e)
 {
 if (Session[“ObjectReference”] != null)
 {
 object o2 = Session[“ObjectReference”];
 }

79301c08.indd 443 10/6/08 12:14:24 PM

444

Chapter 8: Session State

 SomeObject obj = new SomeObject();
 Session[“ObjectReference”] = obj;
 }

VB.NET
 Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs) _
 Handles Me.Load
 If Session(“ObjectReference”) IsNot Nothing Then
 Dim o2 As Object = Session(“ObjectReference”)
 End If

 Dim obj As New SomeObject()
 Session(“ObjectReference”) = obj
 End Sub

The page stores a reference to the GAC’d type inside of Session[“ObjectReference”]. Because the
page attempts to get a value first, this triggers deserialization of the object instance within the session
state feature. Prior to ASP.NET 3.5 and mainly in ASP.NET 2.0, there was a slight optimization added
to the out-of-process session state providers. These providers load only the raw blob data when the
AcquireRequestState event occurs in the HTTP pipeline. However, the session state providers will
not attempt to deserialize the blob into an actual object instance until a piece of code runs and explicitly
accesses the session state variable.

Attempting to get an instance of the GAC’d type from session state triggers this lazy deserialization.
The page also creates an instance of the GAC’d type and stores it in session state so that later during
either the ReleaseRequestState or EndRequest phase the session state provider will have to serialize
the object instance.

If you run the page code while the custom trust policy still includes SqlClientPermission, the page
runs without a problem. However, if you remove the SqlClientPermission from the trust policy file,
the next time you run the page it will fail. Depending on whether you run the page for a brand new ses-
sion or run the page after session data already exists in the database, the attempt to retrieve an instance
of SomeObject fails, or the request fails after the page has run when an attempt is made to serialize the
instance of SomeObject.

Overall, the sample highlights the fact that you should not use GAC’d types with out-of-process session
state in partially trusted applications if the trusted type carries out any kind of privileged operation
using custom serialization. Realistically, this scenario probably will not affect most developers because
normally serializable types do not access external resources from inside of custom serialization logic.
However, you may encounter custom types written by a development organization or third-party ven-
dor that have this behavior.

If you have an application that was working with OOP session state under full trust, but the applica-
tion stops working after you drop to High trust or lower, the application trust policy enforcement in
ASP.NET 3.5 session state may be the problem. Also note that although the sample shown earlier used
custom serialization with ISerializable, the same issue arises if you implement custom serializa-
tion using the version tolerant serialization (VTS) mechanism in the 2.0 version of the Framework.
Essentially different methods are involved, but you still have the same effect with ASP.NET 2.0 or
ASP.NET 3.5 enforcing a PermitOnly prior to any VTS-related methods being called.

79301c08.indd 444 10/6/08 12:14:24 PM

445

Chapter 8: Session State

Database Security for SQL Session State
SQL Server session state is the most common out-of-process session state mode used by developers. As
a result of its popularity, a few quick notes around the database store are in order. The thing to keep in
mind when using SQL Server session state is that the information sitting in the session state database
is effectively a snapshot of various pieces of application data associated with individual users. If you
have sensitive information or privacy related information stored in session, the potential exists for
other malicious code to reach into the SQL Server session state store and retrieve it.

Prior to ASP.NET 2.0, you could store session state inside of tempdb or inside of a specific database
called ASPState. Both of these deployment options open up the potential for session data in one appli-
cation being accessible from another application. The specific risk is that each ASP.NET application
that is pointed either tempdb or ASPState has to be configured with dbo-level credentials. The entire
schema created by the SQL Server-based session state feature is owned by the dbo user. Furthermore,
the code inside of the SQL Server session state provider prepends all of the stored procedure names
with dbo.

As a result, if multiple ASP.NET applications are configured to point at one of the common session state
databases, page code inside of these ASP.NET applications can easily issue a select statement directly
against the session state database. Take the following simple command:

Select * from ASPStateTempSessions

If a page in an application issues this command using ADO.NET, it now has a DataSet or
SqlDataReader that contains the raw object data. In ASP.NET 3.5, the SessionItemShort and
SessionItemLong columns contain the serialized representations of session state objects. The blob
values in these columns are not directly usable with the binary formatter; however, with a little snoop-
ing around and reverse engineering, you can pretty easily tease out the basic structure of the data in
these fields.

After a malicious user has done this, that user can read selected byte sequences from these columns and
feed them to the BinaryFormatter. For a single application using one of the default session state data-
bases, this isn’t a security problem because the single application is supposed to be able to manipulate
its own session data. Jumping through hoops to do this through ADO.NET and the BinaryFormatter
doesn’t expose any data. However, chances are that if multiple applications are using SQL Server session
state, development team A did not intend to allow its data to be snooped by the application written by
development team B.

And taking paranoia one step further, in scenarios where multiple applications share the same session
state data store, it is also possible for one application to synthesize the byte representation for serialized
data and inject it into one of the session state rows containing data for another application. For example,
maybe a marketing oriented application uses the same session state database as a web-based loan appli-
cation does. The marketing application could be crafted so that a malicious developer could write code
to edit a row of session data associated with the loan application, maybe to do something along the
lines of editing credit information that is temporarily being stored in the session state database for use
by an online approver.

So, what does this really boil down to for developers using ASP.NET 2.0 or ASP.NET 3.5? Fortunately,
ASP.NET 2.0 and ASP.NET 3.5 have the ability to deploy session state into any arbitrary database (not

79301c08.indd 445 10/6/08 12:14:24 PM

446

Chapter 8: Session State

just tempdb and ASPState). As a result, it is very easy for ASP.NET 2.0 and ASP.NET 3.5 applications to
segment session state stores and prevent different applications from peeking into another application’s
session data. Locking down session state data in ASP.NET 2.0 and ASP.NET 3.5 should include the fol-
lowing steps:

	 1.	 Install the session state schema in separate databases when applications handling sensitive data
may be storing some of this information temporarily into session state. You can use the Frame-
work’s aspnet_regsql.exe tool, located in the install directory, to do this using the -sstype
c and -d <database> options.

	 2.	 In the configuration for your web applications, add the new attribute allowCustomSqlDatabase
to the <sessionState /> configuration element. Doing so allows you to enter the extra database
information into the sqlConnectionString attribute of the <sessionState /> element. If you
don’t set allowCustomSqlDatabase to true though and you attempt to use a custom database
(something other than tempdb or ASPState), an exception is thrown at runtime.

	 3.	 Configure the connection credentials for the custom session state database so that other ASP.NET
applications cannot access it. You can accomplish this by running the ASP.NET application in
its own worker process with a unique identity, by setting a unique application impersonation
identity for the application, or by using a unique set of standard SQL Server credentials in the
connection string.

A sample configuration that would allow you to isolate a session state database to a single ASP.NET
application is shown here:

<sessionState mode=”SQLServer” allowCustomSqlDatabase=”True”
 sqlConnectionString=”server=.\SQL2005;Integrated Security=true;database=mycusto
mdb” />

<identity impersonate=”true” userName=”user” password=”password”/>

This configuration tells the session state feature that is allowable to have a database attribute in the
connection string that points at something other than aspnetdb or ASPState. Because application
impersonation is also configured, the SQL session state provider will connect to the database using the
configured application impersonation credentials. As long as no other ASP.NET applications use the same
set of application impersonation credentials, the session state data is limited to only one application.

As a side note, in ASP.NET 2.0 and ASP.NET 3.5, the impersonation behavior of the SQL provider was
tweaked a bit. The SQL provider by default always suspends client impersonation prior to communi-
cating with SQL Server. This means if you have client impersonation configured in your application
(for example, you are using Windows authentication and <identity impersonate=”true” />), the
SQL server provider reverts to the process identity (or application impersonation identity if application
impersonation is in effect) prior to communicating with SQL Server. If you want to retain the old ASP.
NET 1.1 impersonation behavior, you can use the useHostingIdentity attribute on the <session-
State /> element and set it to false.

So, as long as the underlying process identity of the ASP.NET application or the application imperson-
ation identity has dbo privileges in the SQL Server session state database, you can safely use integrated
security with the session state connection string. This eliminates the need to add all your Active Direc-
tory user accounts to the session state database if you choose to use integrated security with your
session state database (though there were also other bugs in ASP.NET 1.1 that made it difficult to use
integrated security with session state).

79301c08.indd 446 10/6/08 12:14:24 PM

447

Chapter 8: Session State

Security Options for the OOP State Server
The out-of-process session state server runs as an NT service using the aspnet_state.exe executable.
Because the state service itself simply listens on a socket, it doesn’t have any built-in security protec-
tions that prevent arbitrary hosts on the network from connecting to the state server. Unlike SQL
Server, the OOP state server has no concept of integrated security. As a result, server administrators
should use other network security mechanisms such as IP security (IPSEC) rules to prevent random
machines from attempting to connect to the state server.

Beyond network layer security mechanisms, there are two other security options you should be aware
of when using the OOP state server. The first thing you should do is change the default network port
that the state server listens on. By default, the state server listens on port 42424. Because this is a well-
known port for the state server, you can make the state server listen on a different port by finding the
following registry key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\aspnet_state\Parameters

Underneath this key, you can add a new DWORD registry value named Port. Set the actual value to a dif-
ferent port number that you want the state service to listen on. With this change a malicious network
user now has to perform a port scan in order to find the state service as opposed to just connecting to
port 42424.

Because the OOP state server is usually deployed to support multiple remote web servers, you will
quickly find out that your remote OOP state server doesn’t work out of the box. The reason for this is
that the ASP.NET state service by default only allows connections from localhost. This prevents server
administrators from installing ASP.NET on machines and then unknowingly having state servers sit-
ting around listening for remote connections on the network. To allow an instance of the ASP.NET state
service to accept remote connections, you can add another DWORD registry value under the Parameters
key called AllowRemoteConection. Setting AllowRemoteConnection to “1” enables the state service
to accept remote network connections.

Summary
Although session state is usually considered just a handy item in the developer’s arsenal of ASP.NET
tools, there are a number of subtle security issues to keep in mind. ASP.NET 2.0 and ASP.NET 3.5 include
cookieless support for the session state feature. However, as with other features that support cookieless
behavior, the potential to accidentally leak cookieless tickets is a risk. As a result, if you choose cookie-
less sessions, do not store any private or privileged information inside session state; this minimizes the
impact of other users accidentally reusing a cookieless session ticket.

Session state has the concept of session ID reuse. In cookied modes, session IDs are shared across all
applications running under a common DNS host name. This means that even if you call Session​
.Abandon in one application, the session identifier remains in the cookie and the identifier continues
to be used by all applications. However, in the application where Abandon was called, the session data
is deleted, so you end up with fresh session data the next time the user returns to that specific application.

For applications that use cookieless session identifiers, ASP.NET session state doesn’t reuse session iden-
tifiers by default. Instead, if you call Abandon or access an application with an expired session identifier,

79301c08.indd 447 10/6/08 12:14:24 PM

448

Chapter 8: Session State

session state detects this and issues a new session identifier. This behavior is intended to minimize the
potential for a user to accidentally or intentionally use a cookieless session identifier that was originally
issued to a different user.

If you use in-process session state or the out-of-process session state server, be aware of the potential for
DOS attacks. DOS attacks can be launched against these types of session states in an attempt to force an
excessive amount of memory consumption on your servers. A simple mitigation is to start using session
state only after a user has logged in; prior to that point, if you never access session state, ASP.NET does
not allocate any space in memory for session state data. Also, attackers usually want to remain anony-
mous and thus tend to avoid launching any of type of attack that requires an identifiable account on the
website.

Last, be aware of the potential for exposing session state data in SQL Server to other applications that
share the same back-end session state database. With the support in ASP.NET 2.0 and ASP.NET 3.5 for
custom databases, it is easy to give each application its own session state database, thus preventing one
application from snooping around in the session data of another application.

79301c08.indd 448 10/6/08 12:14:25 PM

9
Security for Pages and

Compilation

A good deal of writing a secure page depends on often-discussed topics such as input validation,
handling malicious input, preventing SQL injection attacks, and so on. However, ASP.NET pro-
vides some lesser known confi gurable security features that add a degree of extra security to your
pages. This chapter will review some security features for pages and compilation that have been
around since ASP.NET 1.1, as well as security features in ASP.NET 2.0 and ASP.NET 3.5.

The topics that will be covered include:

Request validation and viewstate protection.❑❑

Options for securing page compilation.❑❑

Protecting against fraudulent postbacks.❑❑

Site navigation security.❑❑

Request Validation and
Viewstate Protection

Two well-known protection mechanisms for ASP.NET pages are request validation and viewstate
protection. Request validation has always been a bit of a mystery to developers, so in this section
you will see exactly how it works in ASP.NET 2.0 and ASP.NET 3.5. Viewstate protections have
been around since ASP.NET 1.0, but there have been some features added for viewstate protection
in ASP.NET 2.0, which are now also part of ASP.NET 3.5.

79301c09.indd 449 10/6/08 12:14:44 PM

450

Chapter 9: Security for Pages and Compilation

Request Validation
Request validation is meant to detect strings posted to a web server that may contain suspicious char-
acter sequences. In general, request validation attempts to detect string information, which if subse-
quently rendered on a page, could result in a successful cross-site scripting attack. Request validation
is not a general-purpose input validation mechanism. Constraining input to a valid set of values and
preventing data from containing SQL injection attacks are still tasks the developer must implement.

By default, request validation is turned on. You can change the request validation settings with either
the validateRequest attribute of the <pages /> element or the ValidateRequest attribute of the
@Page directive. In general, you should keep request validation turned on, and turn it off on selected
pages where you are encountering problems. The request validation feature checks the following
Request collections for suspicious strings:

Form variables❑❑

Query string variables❑❑

The Cookie collection❑❑

The actual string checks are pretty straightforward. Request validation looks for character sequences
such as:

<followed by an exclamation point:❑❑ For example, <! is not allowed.

<followed by the letters a through z:❑❑ The theory is that a character sequence that starts out
looking like <s could potentially be the beginning of a <script> element for example. So in
general, the request validation feature pessimistically rejects these types of character sequences.

&❑❑ followed by a pound sign: So, the sequence “{” would be rejected. This prevents
encoding based attacks, where a person attempts to submit script code as a sequence of HTML-
encoded characters in the hope that it will subsequently be accidentally decoded prematurely.

Back in the ASP.NET 2.0 development cycle, there were many more stringent checks added to request
validation. However, these checks were backed out because for every case that ASP.NET was protect-
ing against, you could come up with an innocuous reason for submitting the string in a form. For
example, at one point with ASP.NET 2.0 or ASP.NET 3.5 if you submitted text in a form that said “The
onclick event looks like ‘onclick=alert(‘hello world’)’”, the server would reject it. Unfortunately, that
level of parameter checking ended up causing early developers to turn off request validation entirely
in an attempt to get their forms working. So instead, request validation was reverted to a simpler set of
validation checks, the idea being that it was better to have everyone benefit from some level of request
validation rather than forcing many developers to turn off the feature.

Even with the basic set of request validations, you can still run into problems if you are writing a con-
trol like a rich text box. Many of the rich text editors allow users to type in basic HTML tags such as
. Of course if you try this with request validation turned on, the page request will promptly fail
because ASP.NET detects the < characters followed by a letter. If you implement rigorous input valida-
tion in your application though, you could safely turn off request validation for this case.

However, a more secure approach to this problem is to pre-encode strings on the client using your own
custom mapping. For example, if you write a rich text editor that supports bold and italic characters,

79301c09.indd 450 10/6/08 12:14:44 PM

451

Chapter 9: Security for Pages and Compilation

just before the form is submitted you could convert all instances of to [html bold] and all
instances of <i> to [html italic]. Then on the server side you would search for that string token and
convert it the correct HTML markup. Doing this is a bit laborious because you have to preprocess and
postprocess all the strings that you care about. But it does have the benefit of allowing request valida-
tion to stay in place. Also, this type of development work will make it very clear to you the specific sub-
set of strings that you want to allow in your application.

Securing viewstate
The ability to protect viewstate with a hash signature and encryption has been available since ASP.NET
1.0. You are probably very familiar with how it works by now, so rather than rehashing the basics, I will
cover what has been added in ASP.NET 2.0 that still applies to ASP.NET 3.5 as well as one dusty corner
of viewstate security that some developers do not know about.

By default, all pages have their EnableViewStateMac property set to true. Combined with the
default <machineKey /> setting of SHA1 for the validation attribute, this means that .aspx pages
include a hash value along with their viewstate data. The only new thing in this regard was the addi-
tion of ASP.NET 2.0 to the AES algorithm to the <machineKey /> section. Although it looks a bit
strange, you can set the validation attribute in ASP.NET 2.0 and ASP.NET 3.5 to SHA1, MD, 3DES,
or AES. Because older versions of ASP.NET overloaded the validation attribute for viewstate protec-
tion and forms authentication protection, you end up with options for specifying symmetric encryption
algorithms in an attribute that theoretically references one-way hashing algorithms.

Forms authentication ignores the nonhashing options for the validation attribute, but the Page class
does make use of the encryption options. If you set either 3DES or AES in the validation attribute,
then assuming your .aspx pages have EnableViewStateMac set to true, ASP.NET will first hash
the page’s viewstate data using SHA1 (HMACSHA1 to be precise), and then it will encrypt both the
viewstate and the hash value using either 3DES or AES. Unlike the companion decryption attribute
in <machineKey />, for the validation attribute you have to explicitly choose the type of encryption
algorithm you want to use. There is no capability for ASP.NET to auto-select a viewstate encryption
algorithm on your behalf.

There is an extra option that developers can use in their code to make viewstate more secure: the
ViewStateUserKey property. Although this property is not new in ASP.NET 2.0 or ASP.NET 3.5, many
developers are unaware of its existence. When viewstate is being hashed you can add a per-user identi-
fier to the information that is used when hashing viewstate. By default, when ASP.NET hashes the view
state for the page, it includes extra information derived from the .aspx page as part of the stream of data
that is being hashed. This mechanism ensures that the viewstate from one page cannot be posted to a
different page (excepting the cross-page posting feature in ASP.NET 2.0 and ASP.NET 3.5).

This default protection, though, won’t prevent a malicious user from hijacking the viewstate data shown
in one user’s browser and then attempting to submit it in a separate browser. For example if a web appli-
cation automatically trusts all its postback data and doesn’t perform any additional security checks, it
becomes possible for someone to steal the viewstate form variable and then replay it to trigger actions on
the server that a user may not normally have rights to. You have the option of injecting your own user-
specific information into the data stream being hashed by setting a value on the ViewStateUserKey
property. Because the intent of the property is to prevent user A from posting user B’s viewstate back to
the server, the logical choice for a ViewStateUserKey value is the value from User.Identity.Name.

79301c09.indd 451 10/6/08 12:14:44 PM

452

Chapter 9: Security for Pages and Compilation

C#
protected void Page_Init(object sender, EventArgs e)
{
 this.ViewStateUserKey = User.Identity.Name;
}

VB.NET
 Protected Sub Page_Init(ByVal sender As Object, _
 ByVal e As EventArgs) Handles Me.Init()
 Me.ViewStateUserKey = User.Identity.Name
 End Sub

With this code, even if a malicious user attempts to submit hijacked viewstate information, the postback
will fail because the viewstate hash is now derived in part from the user’s name.

You have to set the ViewStateUserKey property early on in the page lifecycle during the Init
event. Because the property value affects the deserialization and validation of viewstate, ASP.NET
has to have the correct ViewStateUserKey value before it attempts to process the viewstate. Setting
ViewStateUserKey during a page’s Load event is far too late because by that point ASP.NET has
already deserialized viewstate.

ASP.NET 2.0 and ASP.NET 3.5 include an option for determining when viewstate encryption occurs: a
property on the Page class called ViewStateEncryptionMode. The possible values for this property
are Auto, Never, and Always, with the default being Auto. You can set this value globally in configura-
tion using the viewStateEncryptionMode attribute of the <pages /> configuration section. You can
also customize the value on a per-page basis using the ViewStateEncryptionMode attribute of the
@Page directive. Although you can set the property at runtime, either the configuration setting or the
page directive are the normal approaches for setting this value. If you attempt to programmatically
set ViewStateEncryptionMode, you will need to do so in an override of the FrameworkInitialize
method on the page class. This is a new “ultra-early” initialization method where you can set various
page properties that really can’t be set during the normal page initialization phase.

During viewstate serialization, the Page class and the ObjectStateFormatter class look at the
ViewStateEncryptionMode property before looking at the setting for EnableViewStateMac. Clearly,
if the property setting is Never, nothing else happens and the ObjectStateFormatter follows the
ASP.NET 1.1 behavior for hashing and encrypting viewstate. However, if ViewStateEncryptionMode
is set to Always, regardless of the page’s current setting for EnableViewStateMac, ASP.NET will
always encrypt viewstate. Furthermore, this encryption will use the encryption algorithm determined
by the decryption attribute on <machineKey />. So by default, this means with a setting of Always,
your page’s viewstate will be encrypted using AES. Two things to keep in mind if you set
ViewStateEncryptionMode to Always:

The encryption options in the ❑❑ validation attribute are ignored. Forcing viewstate encryption
means that the selection of the encryption algorithm follows the rules for forms authentication.

The other validation options in the ❑❑ validation attribute are also ignored. When
ViewStateEncryptionMode forces viewstate encryption, only encryption occurs. No hashing
of the viewstate data stream occurs. However, if you set a value for ViewStateUserKey, it
will be added to the encrypted data stream, so you still gain the extra viewstate protection of
this property.

79301c09.indd 452 10/6/08 12:14:44 PM

453

Chapter 9: Security for Pages and Compilation

The last (and the default) option for ViewStateEncryptionMode is Auto. The Auto setting is intended for
use by controls in conjunction with the new Page method RegisterRequiresViewStateEncryption.
Because the default page setting is Auto, various controls in the framework, or third-party controls, can
proactively turn on viewstate encryption if the controls “know” that they deal with sensitive data. The
idea behind the Auto setting is that individual control developers know the guts of their code much
better than the developers using them do. Rather than forcing developers to slog through lengthy API
documents to determine whether sensitive data is being processed by a control, a control developer can
just make that determination up front.

If a control calls Page.RegisterRequiresViewStateEncryption and the current
ViewStateEncryptionMode is Auto, regardless of the EnableViewStateMac setting, the page’s
viewstate will end up being encrypted. Because the default setting of EnableViewStateMac is true,
but the validation attribute in <machineKey /> defaults to SHA1, under normal conditions all of
your page’s viewstate is for all practical purposes being transmitted in the clear. Even though the hid-
den __VIEWSTATE is base64 encoded, with the default behavior there is nothing preventing a user from
un-encoding the field and looking at the raw data. The ViewStateEncryptionMode behavior allows a
control to increase the security of the page’s viewstate by forcing this data to be encrypted, even when
the page developer may not realize that sensitive information is being stored in viewstate.

Within ASP.NET, the following controls (all of them are data controls) may call
RegisterRequiresViewStateEncryption:

FormView❑❑ : If there are any key values in the DataKeyNames property, FormView forces
viewstate encryption.

DetailsView❑❑ : If there are any key values in the DataKeyNames property, the DetailsView
forces viewstate encryption.

GridView❑❑ : If there are any key values in the DataKeyNames property, and the control is not
auto-generating the columns used in the GridView control, then GridView forces viewstate
encryption.

DataList❑❑ : If there is a key value stored in the DataKeyField property then the DataList
forces viewstate encryption.

ListView❑❑ : If there are any key values in the DataKeyNames property, ListView forces
viewstate encryption.

As you can see, the preceding are data controls that are part of ASP.NET 2.0 and ASP.NET 3.5, except for
the ListView, which is newly introduced to ASP.NET 3.5. You should keep this behavior in mind if you
port your old ASP.NET 1.1 data control logic over to use the ASP.NET 3.5 data controls.

If you choose to store the primary key values in these controls (and for some control scenarios you need
to do this), you will end up triggering viewstate encryption. This isn’t a “bad” thing, because chances
are that you don’t want the outside world looking at your database primary keys through reverse engi-
neering client-side viewstate. However, if your application works perfectly in development, but fails
when you push it out to your web farm, the ViewStateEncryptionMode behavior might be causing
the problem. Because viewstate encryption uses the encryption key material from <machineKey />,
the <machineKey /> by default sets the decryption key to AutoGenerate, IsolateApps, your data
pages can fail in a multiserver web farm. As with forms authentication there is a simple solution: if you
use any of these four controls and you run in a web farm, explicitly set the decryptionKey attribute in
<machineKey /> and synchronize the value across all your web servers.

79301c09.indd 453 10/6/08 12:14:45 PM

454

Chapter 9: Security for Pages and Compilation

One thing to keep in mind with ViewStateEncryptionMode is that you are not always guaranteed
that encryption will occur. If the page has explicitly turned off ViewStateEncryptionMode by setting
it to Never, regardless of whether a control requests viewstate encryption, the page is not going to force
encryption. In this case, only the protections specified in the validation attribute of <machineKey />
will apply. The interaction between ViewStateEncryptionMode and a control results in a more secure
page only if the mode is set to Auto and if no other steps have been taken to turn off viewstate encryp-
tion for the page.

The compatabilityMode Attribute in ASP.NET 3.5 SP 1
ASP.NET 3.5 SP1 introduced a new attribute in the <machineKey /> configura-
tion element called compatibilityMode. The new attribute can have one of the
two possible values: Framework20SP1 or Framework20SP2. The attribute defaults
to Framework20SP1, which maintains compatibility with the 2.0 and 3.5 ASP.NET
releases. However, switching the compatibilityMode attribute to Framework20SP2
introduces a slight change to how viewstate and other page variables get encrypted/
encoded when viewstate encryption is turned on. The result is that running in the
latter mode results in viewstate that cannot be decoded on web servers running older
versions of ASP.NET. Therefore, to make use of the new compatibilityMode attri-
bute to benefit from the slight changes that it introduced into the framework, you have
to have ASP.NET 3.5 SP1 installed on the web server running the application(s) that is
utilizing the new attribute.

Page Compilation
The dynamic page compilation model that was introduced since ASP.NET 2.0 does away with the
monolithic code-behind assembly from ASP.NET 1.1. Instead, developers can just author their page
markup and code-behind pages, and then deploy all the content to a web server. Although this model
of XCOPY everything works well inside of a corporate firewall, for Internet-facing applications admin-
istrators understandably may not want the .vb or .cs code-behind files existing on their production
servers. To address this issue, ASP.NET 2.0 and ASP.NET 3.5 have the concept of precompilation. A pre-
compiled website is one where ASP.NET has already converted the page code and markup into multiple
assemblies. The output from precompilation are just a series of .aspx/.ascx files along with compiled
code in multiple assemblies sitting in the /bin directory.

With a precompiled site, the page and user control files that are left in an application’s folder structure
can optionally include the original markup because there are two modes of precompilation: updatable
and non-updatable. If you use updatable precompilation the markup is preserved in the .aspx and .ascx
files. Non-updatable precompilation still generates .aspx files, but these files are just empty stubs. In
either case, you can use precompiled sites to ensure that your assemblies are deployed to a production
server without the need to push any page code.

You can invoke precompilation in two ways. The easiest is to just select Publish Website from the
Build menu option in Visual Studio 2005 or Visual Studio 2008. (Note: this option does not exist in the

79301c09.indd 454 10/6/08 12:14:45 PM

455

Chapter 9: Security for Pages and Compilation

Express editions of Visual Studio 2005 and Visual Studio 2008.) You can also invoke precompilation
using the aspnet_compiler.exe program that is located in the framework installation directory. The
command-line tool is useful if you have an automated build process that you are currently using for
building websites. When you move to ASP.NET 2.0 or ASP.NET 3.5, you can update your build process
to invoke the aspnet_compiler tool instead. A command-line invocation looks something like this:

aspnet_compiler -m /LM/W3SVC/1/ROOT/PageSecurity d:\inetpub\wwwroot\somedir

You can also reference your application code using a physical path or a virtual path. The preceding
example uses an IIS metabase path to reference the specific application that should be compiled.

Some developers in ASP.NET 1.1 took advantage of the code-behind assembly by signing it. Then on
their web servers, they had Framework CAS policies that only allowed signed assemblies with a specific
public key to run, or that restricted permissions based on specific public keys. If you want to accom-
plish the same thing in ASP.NET 2.0 or ASP.NET 3.5, you must use precompilation. Both the Visual
Studio 2008 (and 2005) UIs and the command-line compiler give you the option to sign your precom-
piled assemblies. You will need to generate a .snk file with the key material ahead of time. After you
have generated the public/private key-pair you can then use either Visual Studio 2008 (or 2005) or the
command-line compiler to generate and sign the precompiled assemblies. In Figure 9-1, you can see an
example of precompiling a website and signing the precompiled assemblies.

Figure 9-1

Notice that updatable precompilation wasn’t selected. This ensures that all the code in the site is com-
piled ahead of time and that no dynamic generation of page classes will occur at runtime. This also
means that all your application code, including any inline code on an .aspx page or .ascx control, will
be stripped out and compiled into precompiled assemblies. Also note that the Mark assemblies with
APTCA option is checked. This is necessary if you want to run a signed precompiled site in anything
less than Full trust.

In Figure 9-2, you can see the result of signing precompiled output in ildasm.

79301c09.indd 455 10/6/08 12:14:45 PM

456

Chapter 9: Security for Pages and Compilation

Figure 9-2

The precompiled assembly called App_Web_0cbcyix7.dll now has a public key embedded in its
manifest.

With the signed assembly, you can use the .NET Framework Configuration MMC. (Look for mscorcfg.msc
in the directory where you installed the Framework SDK.) The tool is no longer installed as part of the Frame-
work itself to set up a code group with a public key based membership condition. If precompilation outputs
multiple assemblies (which will normally be the case), you can just choose one of the assemblies for purposes
of setting up the public key based membership condition. Figure 9-3 shows the step in the wizard that walks
you through creating a new code group with a strong-name membership condition.

Figure 9-3

79301c09.indd 456 10/6/08 12:14:45 PM

457

Chapter 9: Security for Pages and Compilation

In this wizard step, the Strong Name condition has been chosen. In the File dialog box, the precompiled
assembly has been selected so that the wizard will extract the public key token from it. Once the token is
extracted, the wizard enables you to choose a permission set to associate with assemblies that match the
membership condition. Although ASP.NET trust policy files are really the de rigueur approach for grant-
ing permissions to web applications, you may be in an environment where permissions are also locked
down using the Framework’s CAS policies. After you set up a new code group, you can use the .NET
Framework Configuration MMC to associate a custom permission set for your precompiled ASP.NET sites.

Although it is not new to ASP.NET 2.0 and ASP.NET 3.5, you can change the location of the temporary
files used by ASP.NET at runtime. Normally, any type of temporary per-application file storage for ASP.
NET is placed somewhere in the following directory:

%windir%\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\

One reason you might want to change the location is that you installed the framework onto your system
drive, but you want the auto-generated compiler output, spooled data from large requests, and so on
to be located on a separate drive. If you host a large number of applications, it is possible to have a very
large file structure within the Temporary ASP.NET Files location, in which case the system drive may
not be the right place for them.

From a security perspective, the fact that many different applications are sharing the same general direc-
tory structure can also be troublesome. Even though there is no way for code in a partially trusted web
application to reach out into this directory structure, many ASP.NET sites still run in Full trust. A mali-
cious developer could take advantage of a fully trusted application and write code to open and read the
temporary files in this directory structure from other applications. As a side note, this is another reason
why running in Medium trust for untrusted hosting environments is so important; this attack vector
simply isn’t available in Medium trust.

If you want you can change the location used by ASP.NET for storing its temporary files with the
tempDirectory attribute of the <compilation /> configuration section. For example, the following
configuration section remaps the temporary file location to a location on the D drive.

<compilation tempDirectory=”D:\Chapter 9\NewTempDirectory” />

Of course, just changing the location of the temporary directory is not sufficient. You also need to
ensure that the process account, or the application impersonation account if you are using application
impersonation, has the following directory rights:

Read/Read & Execute/List Folder Contents❑❑

Write❑❑

Modify❑❑

Special Permission: Delete Subfolders and Files❑❑

Special Permission: Change Permissions❑❑

These are the same set of rights granted to accounts on the Temporary ASP.NET Files directory if you
use the aspnet_regiis -ga option in ASP.NET 2.0 and ASP.NET 3.5 to configure nondefault process
accounts. After you configure the NTFS ACLs appropriately, you will see that your web application
uses the new tempDirectory location for all temporary ASP.NET files.

79301c09.indd 457 10/6/08 12:14:45 PM

458

Chapter 9: Security for Pages and Compilation

Fraudulent Postbacks
ASP.NET relies heavily upon postbacks and on the client-side postback logic that the runtime emits.
With ASP.NET 1.1, there is a potential security issue with postbacks because the client-side JavaScript
that triggers postbacks is easy to modify. This security issue is referred to as the fraudulent postback
problem. To illustrate the problem, you can construct a simple page with some ASP.NET controls that
use the client-side postback logic.

<form id=”form1” runat=”server”>
<div>
 <asp:LinkButton
 ID=”btnSensitive“ runat=”server” Visible=false
 OnClick=”btnSensitive_Click”>Click Me!</asp:LinkButton>

 Trigger fraudulent postback

 <asp:LinkButton ID=”LinkButton1” runat=”server”>
 Ignore Me!</asp:LinkButton></div>

<script type=”text/javascript”>
function fraudulentPostback()
{
 var theForm = document.forms[‘form1’];
 theForm.__EVENTTARGET.value = ‘btnSensitive’;
 theForm.__EVENTARGUMENT.value = ‘’;
 theForm.submit();
}
</script>

</form>

This ASP.NET page has two LinkButton controls: I chose that control type because LinkButton(s)
emit the __doPostBack function and the supporting form variables used by ASP.NET for submitting
postbacks. Note that the same issue can also be triggered with less complex server-side controls, such
as the Button control, that don’t rely on the _doPostBack method. In the sample page, the first Link-
Button has its Visible property set to false. Many developers use control visibility or the enabled/
disabled state of a control as a kind of surrogate client-side security mechanism. For instance, you might
intentionally hide a set of update controls on a page if you know the current user has only view rights
to a piece of data.

The reason for the second LinkButton on the page is simply to force the rendering of the hidden __
EVENTTARGET and __EVENTARGUMENT fields for this example. Most moderately complex ASP.NET
pages will have multiple controls on them that can trigger postbacks, so even if one set of controls is
disabled or hidden, the other controls will still trigger the rendering of these hidden fields. The sample
page has an <a> tag that points at a JavaScript function called fraudulentPostback. The code in the
function contains a copy of the JavaScript from the __doPostBack function, the one modification being
that fraudulentPostback hardcodes the event target as the btnSensitive control. In other words, the
fraudulentPostback function is faking the postback process that would occur if btnSensitive were
visible on the page, and the browser user clicked it.

79301c09.indd 458 10/6/08 12:14:45 PM

459

Chapter 9: Security for Pages and Compilation

The server code for this page is very basic: The click event for the hidden link button simply writes
some text:

C#
protected void btnSensitive_Click(object sender, EventArgs e)
{
 Response.Write(“Sensitive operation has been carried out.”);
}

VB.NET
 Protected Sub btnSensitive_Click(ByVal sender As Object, _
 ByVal e As EventArgs) Handles btnSensitive.Click
 Response.Write(“Sensitive operation has been carried out.”)
 End Sub

The problem in a real application, of course, occurs when the click event for a hidden or disabled con-
trol actually carries out a sensitive operation based solely on the assumption that the postback data can
be trusted.

When you run the page in the browser, the HTML for the form includes only the following control tags:

<form name=”form1” method=”post” action=”FraudulentPostback.aspx” id=”form1”>
…
<input type=”hidden” name=”__EVENTTARGET” id=”__EVENTTARGET” value=”“ />
<input type=”hidden” name=”__EVENTARGUMENT” id=”__EVENTARGUMENT” value=”“ />
…
Trigger fraudulent postback

Ignore Me!
…

Notice that the rendered HTML does not have an <a> tag for the btnSensitive LinkButton control. At
this point though, you can still click on the LinkButton1 link button. ASP.NET is fooled into thinking
that the browser user actually clicked the nonexistent btnSensitive link button, and as a result the
code in btnSensitive_Click runs. In a nutshell, this entire process is the crux of the fraudulent post-
back problem. As long as someone can load a page in a browser and have it run JavaScript, it is possible
to run JavaScript code that sends postback data to ASP.NET for controls and actions that don’t actually
exist on the rendered HTML page.

The first line of defense against this problem is simply to use defense-in-depth coding techniques in
your web application. A security-conscious developer would not trust the postback data in a server-side
event. Instead of assuming that just because a server-side event has been fired that the business logic
within it is safe to run, you would perform server-side authorization checks. For example, you could
perform a role-based authorization check in the click event that confirms the current user is in the
appropriate role before it carries out the requested sensitive work. Alternatively, you could perform the
same type of security check farther down in your middle tier.

79301c09.indd 459 10/6/08 12:14:45 PM

460

Chapter 9: Security for Pages and Compilation

Unfortunately, not all developers are diligent about building this level of security into their applica-
tions. If an application relies solely on the presentation tier doing the right thing, then it is rather easy
to forge postbacks as you just saw. ASP.NET 2.0 and ASP.NET 3.5 have an additional layer of protection,
called event validation, that specifically addresses the problem of fraudulent postbacks.

By default, event validation is turned on in ASP.NET 2.0 and ASP.NET 3.5. So, if you were to take the
code shown earlier and run it on ASP.NET 2.0 or ASP.NET 3.5, instead of the btnSensitive_Click
event running, you get an exception and stack trace like the following:

[ArgumentException: Invalid postback or callback argument. …]
System.Web.UI.ClientScriptManager.ValidateEvent(String uniqueId, String argument)
System.Web.UI.Control.ValidateEvent(String uniqueID, String eventArgument)
System.Web.UI.WebControls.LinkButton.RaisePostBackEvent(String eventArgument)
…

Here, the LinkButton control makes use of the event validation feature in ASP.NET 2.0 and ASP.NET
3.5. When the postback event is passed to the LinkButton, it in turn uses the ClientScriptManager
object to validate that the current event is actually valid. Because the LinkButton control is actually
not visible on the page, clearly the postback event could not have been triggered by it, and as a result
the exception occurs.

Event validation can be controlled globally in an application with the enableEventValidation attri-
bute in the <pages /> configuration section. You can also turn validation on or off on a per-page basis
with the EnableEventValidation attribute on the @Page directive. There is a property on the Page
class of the same name that you can set as well, although you can only set the EnableEventValidation
property during FrameworkInitialize. By default, event validation is turned on for all pages in
ASP.NET 2.0 and ASP.NET 3.5.

When event validation is enabled, and a control that makes use of event validation is on the page, the
following general steps occur when the page runs:

	 1.	 When the control is creating postback event references for a page, it also calls the Register-
ForEventValidation method on the ClientScriptManager object associated with the page.
Internally the ClientScriptManager creates and stores a hash value of the data that is passed
to the RegisterForEventValidation method. A control can choose to hash just a string that
uniquely identifies the control, a combination of both the control’s identifier and the event argu-
ments, or a hash can be generated from an instance of PostBackOptions. For example, the
Button control generates a validation hash using its PostBackOptions, while the GridView
hashes its UniqueID and the event arguments for the postback reference being created.

	 2.	 The ClientScriptManager then takes all of the hash values that it created, and it serializes them
into a hidden input field called __EVENTVALIDATION. The hidden input field is protected in
the same way that the hidden __VIEWSTATE field is protected. By default the serialized repre-
sentation of the event validation hash codes is itself hashed using the <machineKey /> infor-
mation, and this value is included in the __EVENTVALIDATION field. If encryption has been
enabled (or was forced on due to the new ViewStateEncryptionMode settings), the information
will be encrypted.

	 3.	 When a postback subsequently occurs, the postback is raised to a specific control on the page.
For example, if a control implements IPostBackEventHandler, then if an event reference
for that control triggered the event, ASP.NET will call the control’s RaisePostBackEvent

79301c09.indd 460 10/6/08 12:14:46 PM

461

Chapter 9: Security for Pages and Compilation

implementation. At that point, it is the control’s responsibility to call ClientScriptManager​
.ValidateEvent, passing the same set of parameters to ValidateEvent that were originally
passed into the RegisterEventForValidation method. If you are authoring a control that reg-
isters for event validation with PostBackOptions, you will need to pass the PostBackOptions​
.TargetControl.UniqueID and PostBackOptions.Argument properties to ValidateEvent
because there is no ValidateEvent overload that accepts an instance of PostBackOptions.

	 4.	 The ClientScriptManager delay loads the data in the __EVENTVALIDATION field. If no
controls on the page ever call ValidateEvent, then the ClientScriptManager does not need
to deserialize the event validation information, thus saving processing overhead. Only when
ValidateEvent is called for the first time during a postback will the ClientScriptManager
derserialize the event validation information.

	 5.	 Inside the ValidateEvent method, the ClientScriptManager looks at the string identi-
fier and optional arguments that were passed to it. It hashes these values and then checks in
the deserialized event validation information to see if the same hash values exist. If a match
is found, then the postback event and its associated arguments are valid (that is, the postback
event and its arguments were originally rendered on the page). If the hash of the information
that the control passed to ValidateEvent cannot be found, this is an indication that a forged
postback has occurred. In this case, the ClientScriptManager throws the exception that you
saw earlier.

On one hand, the net result of all of this work is that if a control registers for event validation, and the
set of event information that was registered arrives at the server during a subsequent postback, then
the postback will be considered valid. On the other hand, if event data posted back to ASP.NET comes
from an event reference that was never rendered, or a control that was never rendered, when the
ClientScriptManager attempts to find a previous registration for the event or control it fails and
throws an exception.

One thing to note about event validation is that it is not an ironclad guarantee that a postback is valid.
Event validation is only as strong as its weakest link, specifically the hidden __EVENTVALIDATION
field. Just as viewstate from one user can potentially be hijacked and submitted by a second user, the
same attack vector exists for the event validation field. However, because the event validation field is
protected in the same way as viewstate, you can set a ViewStateUserKey that will make the event vali-
dation field unique to each user.

Many of the controls in ASP.NET 3.5 make use of event validation. A partial list of the ASP.NET controls
that make use of event validation is:

Button❑❑

CatalogZoneBase❑❑

Checkbox❑❑

DetailsView❑❑

FormView❑❑

GridView❑❑

HiddenField❑❑

ImageButton❑❑

79301c09.indd 461 10/6/08 12:14:46 PM

462

Chapter 9: Security for Pages and Compilation

LinkButton❑❑

ListBox❑❑

Menu❑❑

RadioButton❑❑

TextBox❑❑

TreeView❑❑

WebPartZoneBase❑❑

Because the ClientScriptManager APIs for event validation are all public, if you author custom con-
trols (both web controls and user controls), you can also make use of event validation. Just follow the
general registration flow describer earlier. Register your control’s event data for validation when your
control is setting up postback event references. In the methods where your control processes postback
events, first call ValidateEvent to ensure that the postback is valid prior to carrying out the rest of
your control’s event processing.

Also note that even though this discussion has been about event validation for postbacks, the event
validation mechanism in ASP.NET 2.0 and ASP.NET 3.5 also works for callbacks. In fact, ASP.NET con-
trols that support callbacks like the TreeView control make use of event validation for both postbacks
and callbacks.

Site Navigation Security
ASP.NET 2.0 and ASP.NET 3.5 include a set of navigation controls such as Menu and TreeView that
work with navigation data. One source of this navigation data is the Site Navigation feature, which
makes use of SiteMapProvider(s). There is one concrete implementation of a SiteMapProvider
included in ASP.NET called the XmlSiteMapProvider. Its purpose is to parse Xml in a .sitemap file
and return this information as a linked set of SiteMapNode instances that controls like the Menu control
can then render. The interesting aspect of the Site Navigation feature from a security perspective is that
you will likely define navigation data in a .sitemap file that closely mirrors the navigation hierarchy of
your site. A potential security mismatch can occur if your navigation UI renders links to pages that nor-
mally would be inaccessible to a user. Even though an unauthorized user won’t be able to actually run
such pages, you may not want to even display inaccessible links in the first place.

The base SiteMapProvider class has support for a feature called security trimming. If security trim-
ming is turned on for a SiteMapProvider, prior to returning a SiteMapNode from a provider method,
the SiteMapProvider first checks to see if the URL represented by the SiteMapNode is actually acces-
sible to the current user. You enable security trimming with the securityTrimmingEnabled attribute
as shown in the following sample provider definition:

<siteMap>
 <providers>
 <clear />
 <add name=”AspNetXmlSiteMapProvider”
 type=”System.Web.XmlSiteMapProvider, …”

79301c09.indd 462 10/6/08 12:14:46 PM

463

Chapter 9: Security for Pages and Compilation

 siteMapFile=”web.sitemap”
 securityTrimmingEnabled=”true”
 />
 </providers>
</siteMap>

When security trimming is enabled, the XmlSiteMapProvider, its immediate base class
(StaticSiteMapProvider) and the base SiteMapProvider class all call into SiteMapProvider​
.IsAccessibleToUser to determine whether a node is considered accessible. If the URL is not acces-
sible by the current user, then the corresponding SiteMapNode is skipped and is not returned to the
user. In some cases, this means a null value is returned to the calling code; in other cases, it means
that the node is not included in a SiteMapNodeCollection returned to the user, and in some other
cases, it means that node traversal of site map data is halted when an inaccessible node is reached. If
you author a custom SiteMapProvider, you can make use of IsAccessibleToUser as well to per-
form authorization checks for your own node instances.

By default, security trimming is not turned on for the default XmlSiteMapProvider configured in
the <sitemap /> configuration element. This means that even if you have authorization rules set up
in web.config for your site, your navigation controls will render links to all of the URLs defined in a
sitemap even if the current user cannot access them. Even though it would technically be more secure
to have turned security trimming on, developers would probably see nodes appearing and disappear-
ing randomly each time they edited the authorization rules in web.config. Without understanding
that Site Navigation performs security trimming, this would lead folks to think the navigation feature
was broken.

The logic inside of the IsAccessibleToUser method uses the authorization logic contained in both
UrlAuthorizationModule and FileAuthorizationModule. It also works with optional role informa-
tion defined using the roles attribute of a sitemap node in a .sitemap file. Because the authorization
rules in the <authorization /> configuration element can apply to only pages inside of a web appli-
cation, SiteMapNode class allows you to define additional role information about a specific URL. For
example, if your .sitemap file had a node definition that pointed at www.microsoft.com, there is no
way for URL authorization to decide whether a user is authorized to this URL because it lies outside the
scope of your web application. To deal with these types of URLs, or to just define additional role infor-
mation for an application’s URLs, you can put a semicolon or comma delimited set of roles in the roles
attribute of a <siteMapNode /> element in a .sitemap file.

<siteMapNode url=”http://www.microsoft.com” title=”External Link”
 roles=”Regular Users, Power Users” />

Another reason that the Site Navigation feature allows for defining roles on a <siteMapNode /> is
that not all nodes represent navigable content. For example, if your navigation structure includes menu
headers, these headers are only intended for organizing the display of navigation UI.

<siteMapNode title=”Administrative Pages” roles=”Adminstrator” >
 <siteMapNode url=”ManageUsers.aspx” title=”Manage Users”
 roles=”Adminstrator”/>
 <siteMapNode url=”ManageRoles.aspx” title=”Manage Roles”
 roles=”Adminstrator”/>
</siteMapNode>

79301c09.indd 463 10/6/08 12:14:46 PM

464

Chapter 9: Security for Pages and Compilation

In this example, the first node is just being used to create a menu entry that a user can hover over. How-
ever, the entry is itself not navigable; instead, you would select either Manage Users or Manage Roles
in a pop-up menu to navigate to a specific page. Because no URL is associated with the first node, the
only way to have SiteMapProvider determine if a user should even see the node in navigation UI is
by attributing it with the roles attribute. If you write a custom provider that loads its navigation data
from somewhere else, you can also supply role information for this type of node by supplying a collec-
tion of role strings in the SiteMapNode constructor.

Also note that the role information is repeated in the two child nodes for managing users and roles.
The Site Navigation feature does not have the concept of role inheritance. So, even though a role defini-
tion was added to the Administrative Pages node, you still need to mirror the role information in all of
the child nodes. If you don’t do this, a piece of code that accesses one of the child nodes directly with a
call to FindSiteMapNode would succeed, while node traversal starting at the parent node would fail.
As a result, if you don’t copy the role definitions to the children, you end up with inconsistent results
returned from the provider, depending on what methods you are calling.

This behavior means that the IsAccessibleToUser method potentially has three different sets of
authorization information that it can reference when deciding whether a SiteMapNode’s URL is acces-
sible to the current user. IsAccessibleToUser goes through the following evaluation sequence to
determine whether a user is authorized to the URL of a SiteMapNode:

	 1.	 If the roles attribute was defined in the .sitemap file for a <siteMapNode /> element, then
the provider calls HttpContext.Current.User.IsInRole for each and every role in the roles
attribute. If the current user is in at least one of the defined roles, the provider will return the
SiteMapNode. This means that the roles attribute of a <siteMapNode /> expands access beyond
the authorization rules defined in an <authorization /> tag. As long as there is at least one
match between the current user’s roles and the roles in the roles attribute, SiteMapProvider
considers a SiteMapNode to be visible to the user.

	 2.	 If the roles attribute is set to * (that is, roles=“*”), this means all users are allowed to see the
node, and thus the provider returns the node.

	 3.	 If the site map node has no URL, and no match was found in the roles attribute for the cur-
rent’s user’s roles, then the current user is considered to not have rights to the node. Depend-
ing on the provider method that was called, this means either a null value is returned or the
provider skips the node and does not include it in the results. This behavior is important to
keep in mind if your sitemap contains spacer or header nodes such as the Administrative Pages
node shown earlier. Without a roles attribute defining at least one piece of role information on
these types of nodes, all users will not have rights to view the node when security trimming is
enabled.

	 4.	 If no match is found in the roles attribute or the roles attribute does not exist, and the node
has a URL, the provider will call into FileAuthorizationModule if Windows authentication
is enabled for the website. With Windows authentication enabled, there will be a
WindowsIdentity on the context, and as a result the provider can call an internal method on
the FileAuthorizationModule that performs authorization checks against the physical file
associated with the SiteMapNode. If the authorization check succeeds, then the SiteMapNode is
returned to the caller.

	 5.	 If the file authorization check fails, or if Windows authentication is not enabled on the site,
the provider calls an internal method on the UrlAuthorizationModule, passing it the URL

79301c09.indd 464 10/6/08 12:14:46 PM

465

Chapter 9: Security for Pages and Compilation

from the SiteMapNode. This authorization check mirrors the behavior you get from the
<authorization /> section in your web.config. If the check succeeds, then the SiteMap-
Node is returned to the caller.

	 6.	 If all of the previous checks fail, the user is considered to not have the rights to view the
SiteMapNode, and either a null value will be returned by the provider or the provider will stop
walking through SiteMapNode(s). On one hand, for example, if FindSiteMapNode was called,
a null would be returned. On the other hand, if GetChildNodes was called and the current
user did not have access to some of the children of the specified node, then those child nodes
would not be included in the returned SiteMapNodeCollection.

One point of confusion about the security trimming behavior that some developers run into is that they
expect the roles attribute to be the exclusive definition of authorization information for their nodes.
You can end up being surprised when you see nodes still being rendered in your UI even though your
roles attributes would seem to indicate that a user should not be seeing a node. What is happening in
this case is that the provider falls through the roles attribute check and continues to the file and URL
authorization checks. And then one of these two authorization checks succeed.

One side effect of all of this processing is that the performance of iterating through a sitemap with secu-
rity trimming turned on is substantially less than when it is turned off. Because file authorization and
URL authorization were really intended for authorization checks for single page, they tend to be rather
inefficient when a feature like Site Navigation comes along and starts asking for hundreds of authori-
zation checks on a single page request. You can run a sitemap with 150-300 nodes in it with security
trimming turned on, and other than increased CPU utilization you shouldn’t see any effect on your
application performance. However, if you plan to create a sitemap with thousands of nodes in it, the
default security trimming behavior will probably be too expensive for your application.

Another issue you might run into when you turn on security trimming is that all of your naviga-
tion UI may suddenly disappear, depending on the kind of navigation structure you have in your
.sitemap. If your structure has a root node that you don’t ever intend to display (that is, you set up
your SiteMapDataSource to skip this node), you still need to put a roles=“*” attribute in the root
node as shown here:

<?xml version=”1.0” encoding=”utf-8” ?>
<siteMap xmlns=”http://schemas.microsoft.com/AspNet/SiteMap-File-1.0” >
 <siteMapNode title=”hidden root” roles=”*”>
 <siteMapNode title=”Administrator Pages” roles=”Administrator”>
 <siteMapNode url=”ManageUsers.aspx” title=”Manage Users”
 roles=”Administrator” />
 <siteMapNode url=”ManageRoles.aspx” title=”Manage Roles”
 roles=”Administrator” />
 </siteMapNode>
 <siteMapNode title=”Regular Pages” roles=”*”>
 <siteMapNode url=”http://www.microsoft.com” title=”External link”
 roles=”*” />
 <siteMapNode url=”Default.aspx” title=”Home Page” roles=”*” />
 </siteMapNode>
 </siteMapNode>
</siteMap>

79301c09.indd 465 10/6/08 12:14:46 PM

466

Chapter 9: Security for Pages and Compilation

Without the bolded “roles” definition, any attempt to render the full sitemap will result in no nodes
being returned. Because the root node has no URL, the provider only has the roles attribute to go
against for authorization information. As a result, if you leave out the roles attribute, the provider
will think that no one is authorized to that node, and node traversal through the rest of the sitemap
will stop.

If you want the XmlSiteMapProvider that ships with ASP.NET 2.0 and ASP.Net 3.5 to rely only on the
information contained in the roles attribute, you can derive from the provider and implement custom
logic in an override of the IsAccessibleToUser method.

C#
public class CustomAuthorization : XmlSiteMapProvider
{
 public override bool IsAccessibleToUser(HttpContext context, SiteMapNode node)
 {
 if (node == null)
 {
 throw new ArgumentNullException(“You must specify a node.”);
 }

 if (context == null)
 {
 throw new ArgumentNullException(“The supplied context cannot be null”);
 }

 if (!SecurityTrimmingEnabled)
 {
 return true;
 }

 if (node.Roles != null && node.Roles.Count > 0)
 {
 foreach (string role in node.Roles)
 {
 // Grant access if one of the roles is a “*”.
 if (String.Equals(role, “*”,
 StringComparison.InvariantCultureIgnoreCase))
 {
 return true;
 }
 else if (context.User != null && context.User.IsInRole(role))
 {
 return true;
 }
 }
 }
 //If you make it this far, the user is not authorized
 return false;
 }
}

VB.NET

79301c09.indd 466 10/6/08 12:14:46 PM

467

Chapter 9: Security for Pages and Compilation

Public Class CustomAuthorization Inherits XmlSiteMapProvider
 Public Overrides Function IsAccessibleToUser(_
 ByVal context As HttpContext, _
 ByVal ByVal node As SiteMapNode) As Boolean
 If node Is Nothing Then
 Throw New ArgumentNullException(“node”)
 End If
 If context Is Nothing Then
 Throw New ArgumentNullException(“context”)
 End If
 If (Not SecurityTrimmingEnabled) Then
 Return True
 End If
 If node.Roles IsNot Nothing AndAlso node.Roles.Count > 0 Then
 For Each role As String In node.Roles
 ‘ Grant access if one of the roles is a “*”.
 If String.Equals(role, “*”, _
 StringComparison.InvariantCultureIgnoreCase) Then
 Return True
 ElseIf context.User IsNot Nothing AndAlso_
 context.User.IsInRole(role) Then
 Return True
 End If
 Next role
 End If

 ‘If you make it this far, the user is not authorized
 Return False
 End Function
End Class

This code mirrors the logic inside of SiteMapProvider.IsAccessibleToUser, but instead of attempt-
ing other checks at the end of the method, this custom provider looks only at the information in the
roles attribute. If you use this custom provider in your site, you will see that now the roles attribute
is the only thing controlling whether a SiteMapNode is returned to calling code. A nice performance
benefit of this approach is that bypassing the file and URL authorization checks substantially increases
the performance of security trimming. With the preceding code you could realistically accommodate a
1000 node sitemap.

This custom code brings up a very important security point though. Don’t be fooled into thinking that
security trimming with the previous custom code makes your site secure. The only thing the custom
code does is to give you the ability to precisely control authorization of your sitemap information inde-
pendently of the authorization rules you have defined either in web.config or through NTFS ACLs. Just
because Site Navigation now hides nodes based exclusively on the sitemap’s role information doesn’t
mean that your pages are secure. A user who knows the correct URL for a page can always attempt to
access it by typing it into a browser. As a result, if you use an approach like the custom provider you
must always ensure that you have still correctly secured your pages and directories with URL authori-
zation and file authorization.

79301c09.indd 467 10/6/08 12:14:46 PM

468

Chapter 9: Security for Pages and Compilation

Summary
Since ASP.NET 1.0, page developers have benefited from the ability to hash and encrypt viewstate. You
could also make viewstate information unique to a specific user with the ViewStateUserKey property.
With the introduction of the viewstate encryption mode feature back in ASP.NET 2.0, control developers
had the option of automatically turning on viewstate encryption when they know their controls store
potentially sensitive data in viewstate.

When data is submitted to an ASP.NET page, all input should initially be considered untrusted.
Although the majority of the work involved in scrubbing input data lies with the developer, ASP.NET
does have some protections that work on your behalf. Since ASP.NET 1.1, the runtime validates form
data, query-string values and cookie values for suspicious string sequences. Although this type of
check is not exhaustive, it does cover the most likely forms of malicious input. Both ASP.NET 2.0 and
ASP.NET include logic to protect against fraudulent postbacks. Because postbacks can be easily trig-
gered with a few lines of JavaScript, it is possible to forge postback data to controls and events that
were not rendered on the page. By default, ASP.NET 2.0 and ASP.NET 3.5 check for this situation and
will not trigger server-side events for nonvisible or disabled controls and events that were never ren-
dered on the client.

79301c09.indd 468 10/6/08 12:14:46 PM

10
The Provider Model

Many of the features in both ASP.NET 2.0 and ASP.NET 3.5, including the Membership and Role
Manager features, are built using the provider model. The provider model is not just an architec-
tural model limited to ASP.NET 2.0 or ASP.NET 3.5 features; the base classes are available for you
to build your own provider-based features.

This chapter covers the theory and intent behind the provider model so that you have a good
idea of the patterns used by provider-based features. You will be introduced to the base provider
classes, the services they provide, and the general assumptions around the ASP.NET provider
model. Last, you will see some examples of how you can create your own custom feature using
the provider model.

This chapter will cover the following topics:

Why have providers?❑❑

Patterns found in the Provider model.❑❑

Core provider classes.❑❑

Building a provider-based feature.❑❑

Why Have Providers?
Traditionally, when a software vendor creates a programming framework or a software platform,
a good deal of the framework logic is baked into the actual binaries. If extensibility is required,
then a product like an operating system incorporates a device driver model that allows third par-
ties to extend it. For something like the .NET Framework, extensibility is usually accomplished by
deriving from certain base classes and implementing the expected functionality.

79301c10.indd 469 10/6/08 12:15:09 PM

470

Chapter 10: The Provider Model

The device driver model and the derivation model are two ends of the extensibility spectrum. With device
drivers, higher-level functionality such as a word processor is insulated from the specifics of how abstract
commands are actually carried out. Clearly, modern-day word processors are oblivious to the technical
details of how any specific graphics card displays pixels or how any vendor’s printer renders fonts.

Writing software that derives from base classes defined in a framework or software development kit
(SDK) usually implies another piece of code that knows about the custom classes you’re writing. For
example, if you implement a custom collection class, somewhere else you have code that references the
assembly containing your custom collection class and that code also contains explicit references to the
custom collection class.

What happens though if you want to have the best of both worlds? How do you get the separation of
functionality afforded by the device driver model, while still retaining the ability to write custom code
that extends or replaces core functionality in the .NET Framework? The answer in both the 2.0 and 3.5
Frameworks is the provider model that both ASP.NET 2.0 and ASP.NET 3.5 rely heavily upon. The pro-
vider model allows you to swap custom logic into your application in much the same way you would
install device drivers for a new graphics card. And you can swap in this custom logic in such a way that
none of your existing code needs to be touched or recompiled.

Simultaneously, though, there are well-defined provider APIs that you can code against to create your
own custom business logic and business rules. If you choose, you can write applications to take a direct
dependency on your custom code but this is definitely not a requirement. Well-written providers can
literally be transparently “snapped into” an application.

To accomplish this, both the 2.0 and 3.5 Framework include the same base classes and helper methods
that provide the basic programming structure for the provider model. Specific features within the
Frameworks extend these base classes and build feature-specific providers. To make this all a bit more
concrete, you can use the Membership feature as a sort of canonical example of a provider-based feature.

The Membership feature, of course, deals with the problem of creating user credentials, managing these
credentials, and verifying credentials provided by applications. When the Membership feature was first
designed, a number of different design options were available:

Write a set of Membership-related classes that contained all the business logic and data stor-❑❑

age functionality as designed by the ASP.NET team. This option is the “black-box” option; you
would end up with functional APIs, and zero extensibility.

Keep the same set of classes from option 1, but add protected virtual methods and/or event-❑❑

based extensibility hooks. This model would be more akin to the control development model in
ASP.NET. With this model you start out with either an ASP.NET control or a third-party con-
trol, and through event hookups or derivations you modify the behavior of a control to better
suit your needs.

Separate the intent of the Membership feature from the actual business logic and data storage ❑❑

functionality necessary to get a functional Membership feature. This approach involves defin-
ing one set of classes that all developers can use, but having concrete implementations of other
classes (the provider base classes) that contain very specific functionality. Along with this sepa-
ration, the design requires the ability to swap out concrete provider implementations without
impacting the common set of classes that all developers rely upon.

Now, of course, because this book isn’t a mystery story, you know the outcome of these various design
decisions. Both ASP.NET 2.0 and ASP.NET 3.5 went with the third option: providing a common set of

79301c10.indd 470 10/6/08 12:15:09 PM

471

Chapter 10: The Provider Model

Membership classes for everyone to use, while compartmentalizing most of the business logic and data
storage rules inside of various Membership providers.

It is pretty clear why you wouldn’t want the first option. Creating useful APIs and great functionality
inside of black boxes is nice until about 60 seconds after the first developer lays eyes on it and determines
that for their needs they require some different logic. The second design option is actually not all that
unreasonable. Clearly, ASP.NET developers are comfortable with the event-based extensibility that has
been around since ASP.NET 1.0 (and for that matter all the way back to earlier versions of Visual Basic).

However, event-driven extensibility and protected virtual methods have the shortcoming that if an
application wants different behavior than what is built into the Framework, then some other piece of
code needs to be explicitly linked or referenced. For example, using the second design approach, what
happens if you want to create users somewhere other than the default SQL Server schema that ships in
both ASP.NET 2.0 and ASP.NET 3.5? If creating users raised some kind of event where you could cre-
ate the actual MembershipUser in a back-end data store, you could hook this event and then return the
new object, probably as a property on an event argument.

The shortcoming here is that now in every application where you want to use your custom data store
you also need to include code that explicitly wires up the event hookups. If the extensibility mechanism
used a protected virtual method instead, then each of your applications would need code that explicitly
created the custom implementations of the various Membership classes. For both cases, you effectively
have a compile-time dependency on your custom code. If you ever want to choose a different custom
implementation of Membership, you have the hassle of recompiling each of your applications to refer-
ence the new code.

The third option, the provider-based design approach, breaks the compilation dependency. With the
2.0 and 3.5 Frameworks, you can write code against a common set of classes (that is, Membership,
MembershipUser, and MembershipUserCollection). Nowhere in your code-base do you need a
compile-time reference to your custom implementation of a MembershipProvider. If you wake up
tomorrow and decide to throw out your custom MembershipProvider, there is no problem; you drop
a different assembly onto your desktops or servers, tweak a configuration setting, and the rest of your
applications continue to work. Sounds a lot like swapping out graphics cards and device drivers with-
out the “excitement” that such upgrades usually entail.

Of course, the ability to tweak some settings in configuration requires that the Membership feature
use some kind of dynamic type loading mechanism. Underneath the hood, this mechanism allows a
feature to convert a configuration setting into a reference to a concrete provider class. And, of course, a
dynamic type loading mechanism also requires at least a basic programming contract that defines the
type signature that the Membership feature expects to dynamically load.

So, a provider-based feature, in short, has the following characteristics:

A well-defined set of public APIs that most application code is expected to code against.❑❑

A well-defined set of one or more interfaces or class definitions that define the extensible set of ❑❑

classes for the feature. In both the 2.0 and 3.5 Frameworks, these are the provider base classes.

A configuration mechanism that can generically associate concrete provider implementations ❑❑

with each feature.

A type-loading mechanism that can read configuration and create concrete instances of the pro-❑❑

viders to hand back to the feature APIs.

79301c10.indd 471 10/6/08 12:15:09 PM

472

Chapter 10: The Provider Model

Matching up these characteristics, you can see that the Membership feature and the Framework have
the following:

	 1.	 Public classes like Membership and MembershipUser that you write most of your code against.

	 2.	 A MembershipProvider class that defines the programming contract for all implementations
of business logic and data storage for use with the Membership feature.

	 3.	 A provider configuration class that encapsulates the configuration information for any provider.
This configuration class (System.Configuration.ProviderSettings), and the accompany-
ing XML configuration syntax, is used by MembershipProvider(s) to declaratively define type
information (among other things).

	 4.	 A System.Web.Configuration.ProvidersHelper class that acts as a class factory mecha-
nism for returning instances of configured providers to any feature, including Membership.

Patterns Found in the Provider Model
If you have architected a fair number of applications, you invariably have come across design patterns,
both theoretical ones that you considered when writing an application and the actual design patterns
that you adopted in your application. The provider model in the .NET Framework is no different, with
various pieces of the provider development stack mapping to well-known design patterns.

For the classic guide to design patterns, pick up a copy of “Design Patterns: Elements of Reusable
Object-Oriented Software” by the Gang of Four: Eric Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Addison-Wesley ISBN: 0-201-63361-2.

The provider-based features in both ASP.NET 2.0 and ASP.NET 3.5 are implementations of the follow-
ing well-known design patterns:

Strategy❑❑

Factory Method❑❑

Singleton❑❑

Façade❑❑

Of the four common design patterns, the Strategy pattern is the core design concept that really makes
the provider model so powerful.

The Strategy Pattern
In a nutshell, the Strategy design pattern is a design approach that encapsulates important pieces of
a feature’s functionality in a manner that allows the functionality to be swapped out with different
implementations. A Strategy design approach allows a feature to define a public-facing definition
of common functionality, while abstracting away the nitty-gritty of the implementation details that
underlie the common functionality.

If you were to design your own feature using the Strategy pattern, you would probably find that the
dividing line between a public API and a specific implementation to be somewhat fuzzy. Strategy-based

79301c10.indd 472 10/6/08 12:15:10 PM

473

Chapter 10: The Provider Model

approaches work best when there is a common set of well-defined functionality that you expect most
developers will need. However, you also need to be able to implement that functionality in a way that
can be reasonably separated from the public API; otherwise you can’t engineer the ability to swap out
the lower layers of the feature.

For example, say that you wanted to implement a class that could be used to balance your checkbook.
The general operations you perform against a checkbook are well understood: debit, credit, reconcile
balances, and so on. However, the way in which you store the checkbook information is all over the map:
You could store your checkbook in Excel, in a commercially available financial package, and so forth. So,
the checkbook design is one where you could define a public checkbook API for developers to consume,
while still allowing developers the freedom to swap in different storage mechanisms for different data
stores. With this approach you would have a Strategy-based design for storing checkbook data.

However, if you take the checkbook example a bit further, what happens to the non-storage-related
operations for the checkbook? The debit and credit operations involve a few steps: loading/storing data
using a configurable data store and carrying out accounting computations against that data. Does it
make sense for the accounting operations to be swapped out? Are there really multiple ways to add and
subtract values in a checkbook ledger?

It is this kind of design decision where the Strategy approach gets a bit murky. Realistically, you could
argue this decision either way. On one hand, for a consumer application that has a checkbook, it would
probably be overkill to abstract the computations via the Strategy pattern. On the other hand, if you
were authoring an enterprise resource planning (ERP) package, and you needed to accommodate dif-
ferent accounting rules for various businesses and even different countries, then creating a configurable
accounting engine would make sense.

If you take a closer look at how some of the provider-based features in both the 2.0 and 3.5 Frameworks
approached these decisions, you will see different degrees of business logic configurability with the
Strategy pattern:

Membership:❑❑ Both the data storage and the business logic are abstracted into the provider
layer. Provider authors are responsible for data storage related tasks and the core business logic
that makes the Membership feature work. For example, if you choose to implement self-service
password resets, your provider not only has to deal with the data storage necessary to support
this feature; it is up to you to write the logic that handles things like a customer entering too
many wrong password answers. Although the class definitions in Membership suggest how you
should go about implementing this kind of logic, as a provider author you have a large amount
of leeway in terms of implementing business logic in your providers.

Role Manager:❑❑ As with Membership, both data storage and business logic are the responsibility
of the providers. However, the Role Manager API is simple enough that for all practical pur-
poses Role Manager providers are primarily data storage engines.

Profile:❑❑ The providers for the Profile feature deal only with data storage and serialization. How-
ever, because the Profile feature is essentially a programming abstraction for exposing data in a
consistent manner without forcing the page developer to wrestle with different back-end data
stores, the data-centric nature of Profile providers is expected. The only real “logic” that a pro-
vider implementer would normally deal with is around caching and mapping from a property
on a customer’s profile to a specific piece of data in some back-end system.

Web Parts Personalization:❑❑ Personalization providers can actually come in two flavors: pro-
viders that only implement data storage against a different back-end, and providers that

79301c10.indd 473 10/6/08 12:15:10 PM

474

Chapter 10: The Provider Model

fundamentally change the way in which web parts personalization works (that is, changing the
“business logic” of web parts). However, writing a personalization provider that changes the
core logic of web parts is a nontrivial undertaking to say the least, so the most likely personal-
ization providers will be ones that work against data stores other than SQL Server. If you take
a look at the nonabstract virtual methods on the PersonalizationProvider base class, you
will see methods that deal with web parts security as well as the logic of how web parts work as
opposed to just the data storage aspect of web parts.

Site Navigation:❑❑ Along the same lines as web parts, the providers in Site Navigation can either
be data-centric, or they can also alter the core logic of the Site Navigation feature. On one hand,
if you author a provider that derives from StaticSiteMapProvider, then most of the logic
around traversing navigation data is already handled for you. You are left to implement one
abstract method that is responsible for loading navigation data and converting it into a struc-
ture that can be consumed by the StaticSiteMapProvider. On the other hand, if you derive
directly from SiteMapProvider, then you not only handle data-storage-related tasks, you can
also be very creative in terms of how you handle the logic for traversing site navigation data
(that is, use XPath queries, use a custom in-memory graph structure, and so on) as well as the
security of individual SiteMapNode instances.

Health Monitoring: ❑❑ Because the nature of the Health Monitoring feature (also referred to as
Web Events) is to store diagnostic data, providers written for this feature only deal with data
storage. Although storing data when a high volume of diagnostic events are being generated
can require some very creative approaches, at the end of the day a Health Monitoring provider
is just a pipe for storing or forwarding diagnostic information.

Session: ❑❑ Session state is a bit of a hybrid when it comes to the provider layer. Session state pro-
viders of course have to deal with loading and storing data. However, the providers are also
responsible for handling some of the logic in session state around concurrent access to session
data. Additionally, you may write a custom session state provider to work in conjunction with
custom session ID generators and custom partition information, in which case a bit more of the
logic for session state is also in your hands. However, even in this case, 90 percent of the pur-
pose of a session state provider revolves around data storage as opposed to session state logic.
Most of the real logic around session state is bound up inside of the SessionStateModule.

From the previous brief overview of various provider-based features in both ASP.NET 2.0 and ASP.NET 3.5,
you can see that all the providers’ abstract away data storage details from developers who use a feature.
To varying degrees, some of the providers also abstract away the core logic of the feature.

Factory Method
The Strategy pattern would not be very useful in the 2.0 and 3.5 Frameworks if you did not have a way
to easily swap out different providers when using different features. Because the Strategy pattern is
inherently about making it easy to choose different implementations of a feature, the Factory Method
pattern is a logical adjunct to it. The idea behind the Factory Method is to separate the creation of cer-
tain classes from the feature that consumes those classes. As long as classes implement a common inter-
face, or derive from a common class, a feature can encapsulate class creation using a generic mechanism
that does not require any hard compile-time dependencies.

In other words, a feature that makes use of the Factory Method pattern does not hard-code references
to concrete types. Instead a feature references classes via interfaces or base class references, and defers
the actual creation of concrete implementations to some other piece of code. Of course, the magic of the

79301c10.indd 474 10/6/08 12:15:10 PM

475

Chapter 10: The Provider Model

Factory Method lies within this “other code,” and that leads to the question of how can you actually
write something that generically creates types without hard-coding the type definition at compile time?

Luckily for us, both the 2.0 and 3.5 Frameworks include excellent support for reflection, which in turn
makes it trivial to take a string definition of a type and convert it into an actual class. Hence, there is no
need for a compile-time dependency on a concrete type. Following along this design approach, both the
2.0 and 3.5 Frameworks also have an extensive configuration system that makes it a pretty convenient
place to store information such as string-ized type references. So, the combination of (configuration +
reflection) is what enables both the 2.0 and 3.5 Frameworks to make use of the Factory Method pattern
for its provider-based features.

If you use any of the existing provider-based features, the Factory Method implementation is transpar-
ent to you. For example, if you use the Membership feature, you just configure one or more providers as
follows:

<membership defaultProvider=”AccessMembershipProvider”>
 <providers>
 <add name=”AccessMembershipProvider”
 type=”Samples.AccessMembershipProvider, SampleAccessProviders”
 … />
 <add name=”AnotherProvider”
 type=”SomeOtherNamespace.SomeOtherProvider, AnotherAssembly”
 … />
 </providers>
</membership>

Then at runtime, all the configured providers are automatically available for you to use with the Mem-
bership feature. Underneath the hood, the Membership feature uses a helper class (that is, a generic
class factory) to instantiate each provider and hook it up to the feature.

The 2.0 and 3.5 Frameworks class that contains the logic for creating arbitrary providers is System.Web​
.Configuration.ProvidersHelper. It exposes two static helper methods (InstantiateProvider
and InstantiateProviders) that you can use when creating your own provider based features. As
you would expect, InstantiateProviders is just a helpful wrapper method for creating one or more
providers; internally, it just iterates over the information passed to it and calls InstantiateProvider
multiple times.

The method signature for InstantiateProviders is:

C#
public static void InstantiateProviders(
 ProviderSettingsCollection configProviders,
 ProviderCollection providers,
 Type providerType)

VB.NET
Public Shared Sub InstantiateProviders(_
 ByVal configProviders As providerSettingsCollection, _
 ByVal providers As ProviderCollection, _
 ByVal providerType As Type)

79301c10.indd 475 10/6/08 12:15:10 PM

476

Chapter 10: The Provider Model

Let’s take a closer look at what each of these parameters represents and how each parameter maps to
a provider configuration section such as the one used for the Membership feature. The first parameter
accepts a collection containing one or more instances of System.Configuration.ProviderSettings.
A ProviderSettings instance is a strongly typed representation of the configuration for a single pro-
vider, although because any feature can define and use an arbitrary set of providers, the actual “strong”
representation is only relevant to the common configuration information you would expect to find for
any provider regardless of its associated feature.

The public properties that are available from a ProviderSettings instance are Name and Type (both
Strings) as well as the Parameters property, which is a NameValueCollection. If you use the abbre-
viated Membership provider with the following definition:

<providers>
 <add name=”AccessMembershipProvider”
 type=”Samples.AccessMembershipProvider, SampleAccessProviders”
 connectionStringName = “some connection string”
 enablePasswordRetrieval = “false”
 … />
</providers>

You can see that the name and type configuration attributes on a provider’s <add/> element are what
map to the Name and Type properties on an instance of ProviderSettings. All the other configuration
attributes are lumped into the Parameters NameValueCollection containing key-value pairs. It is
up to the individual 2.0 and 3.5 Frameworks features to perform further processing on these key-value
pairs. This is the underlying reason why most of the validation of a provider’s configuration needs to be
baked into each individual provider as opposed to having the smarts in the configuration class (more
on this design aspect a bit later in the chapter). If you take a look at the various provider-based features
in both ASP.NET 2.0 and ASP.NET 3.5, you will see that each feature’s configuration classes deal with
providers using the rather generic ProviderSettings class. For example there is no such thing cur-
rently as a “MembershipProviderSettings” versus a “RoleManagerProviderSettings” class.

The second parameter to ProvidersHelper.InstantiateProviders is a ProviderCollection.
The caller to this method is responsible for creating an empty instance of a ProviderCollection.
The ProvidersHelper class will populate the collection with one or more providers. Because every
provider in both ASP.NET 2.0 and ASP.NET 3.5 ultimately derives from a common base class (System​
.Configuration.ProviderBase), the ProvidersHelper class is able to deal with any arbitrary pro-
vider type in a generic manner.

The last parameter to the InstantiateProviders method is a Type object. A provider-based fea-
ture passes in a Type object that represents the base provider type required by that feature. For
example, when the Membership feature needs to create all its configured providers, it will pass
“typeof(MembershipProvider)” as the value for this parameter. The resulting Type reference is
used by the ProvidersHelper class to verify that the provider type being instantiated (remember
this is defined by the Type property on a ProviderSettings instance) actually derives from the type
passed in the third parameter. This allows some basic validation to occur at provider instantiation time
and prevents problems such as accidentally instantiating a RoleProvider-derived class for the Mem-
bership feature.

As noted a little earlier, ProvidersHelper.InstantiateProviders is just a convenient way to con-
vert a set of provider configuration information into multiple provider instances. If for some reason
you had a provider-based feature that only supported a single provider, you could instead call
ProvidersHelper.InstantiateProvider directly. The method signature is:

79301c10.indd 476 10/6/08 12:15:10 PM

477

Chapter 10: The Provider Model

C#
public static ProviderBase InstantiateProvider(
 ProviderSettings providerSettings,
 Type providerType)

VB.NET
Public Shared Function InstantiateProvider(_
 ByVal providerSettings As ProviderSettings, _
 ByVal providerType As Type) As ProviderBase

As you can see, the parameters closely mirror the parameters for InstantiateProviders, but just for
a single provider. Internally, this method performs a few basic tasks to create a concrete provider type:

	 1.	 A Type object representing the provider type as defined in the “type” configuration attribute is
obtained.

	 2.	 The helper validates that the Type from step 1 is actually compatible with the providerType
information that was passed to InstantiateProvider. This ensures that the loose type
definition obtained from configuration (represented by ProviderSettings.Type) has been
successfully translated to a type definition that is compatible with the feature that is calling
ProvidersHelper.

	 3.	 Using the System.Activator class, the helper creates a concrete instance of the desired provider.

	 4.	 With the concrete instance in hand, the helper passes the configuration attributes on
ProviderSettings.Parameters to the provider’s Initialize method. This is covered in
the “Core Provider Classes” section later in this chapter, but the ProviderBase class defines
a common Initialize method that must be called for a concrete provider to bootstrap itself.
Without the call to Initialize, an instance of any given provider is sort of in a zombie-like
state: It exists but doesn’t have any of the information necessary for it to function.

	 5.	 After the provider successfully initializes itself, the helper method returns the provider instance
as a reference to the base type: ProviderBase. It is up to the calling code or feature to then cast
the ProviderBase reference back to the base type used by the feature. However, because the
helper method already validated that the ProviderSettings.Type was compatible with a fea-
ture’s expected type, by this point the feature has the assurance that its type-cast will succeed.

To see all this working, the following sample code shows a simple example of manually creating a
ProviderSettings instance and then using it to create an instance of the SqlMembershipProvider.

C#
using System;
using System.Configuration;
using System.Configuration.Provider;
using System.Web.Security;
using System.Web.Configuration;
namespace CreateMembershipProvider1
{
 class Program
 {
 static void Main(string[] args)
 {

79301c10.indd 477 10/6/08 12:15:10 PM

478

Chapter 10: The Provider Model

 ProviderSettings ps = new ProviderSettings(
 “ManuallyCreated”,
 “System.Web.Security.SqlMembershipProvider, System.Web,
 Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”);

 //Can add one or more provider-specific configuration attributes here
 ps.Parameters.Add(“connectionStringName”, “LocalSqlServer”);

 //This is the expected base type of the provider instance
 Type t = typeof(MembershipProvider);

 //Use the helper class to instantiate the provider
 ProviderBase pb = ProvidersHelper.InstantiateProvider(ps, t);

 //At this point you can safely cast to either the explicit provider
 //type, or to MembershipProvider
 SqlMembershipProvider smp = (SqlMembershipProvider)pb;

 //Do something with the provider – though for other reasons this
 //won’t work!
 MembershipCreateStatus status;
 smp.CreateUser(“delete_this_user”, “pass^word”, “some@where.org”,
 “question”, “answer”, false, null, out status);
 }
 }
}

VB.NET
Imports System
Imports System.Configuration
Imports System.Configuration.Provider
Imports System.Web.Security
Imports System.Web.Configuration

Namespace CreateMembershipProvider1
 Friend Class Program
 Shared Sub Main(ByVal args() As String)
 Dim ps As New ProviderSettings(“ManuallyCreated”, _
 “System.Web.Security.SqlMembershipProvider, System.Web, Version=2.0.0.0, _
 Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”)

 ‘Can add one or more provider-specific configuration attributes here
 ps.Parameters.Add(“connectionStringName”, “LocalSqlServer”)

 ‘This is the expected base type of the provider instance
 Dim t As Type = GetType(MembershipProvider)

 ‘Use the helper class to instantiate the provider
 Dim pb As ProviderBase = ProvidersHelper.InstantiateProvider(ps, t)

 ‘At this point you can safely cast to either the explicit provider
 ‘type, or to MembershipProvider
 Dim smp As SqlMembershipProvider = CType(pb, SqlMembershipProvider)

79301c10.indd 478 10/6/08 12:15:10 PM

479

Chapter 10: The Provider Model

 ‘Do something with the provider – though for other reasons this
 ‘won’t work!
 Dim status As MembershipCreateStatus
 smp.CreateUser(“delete_this_user”, _
 “pass^word”, _
 “some@where.org”, _
 “question”, _
 “answer”, _
 False, _
 Nothing, _
 status)
 End Sub
 End Class
End Namespace

This sample console application shows you roughly the same steps that the Membership feature follows
when it creates the membership providers that you define in configuration. The ProviderSettings
class that is created contains the “name” and “type” values that you use when configuring Membership
providers. The sample code then adds a provider-specific configuration attributein this case, the con-
nectionStringName attribute that references a connection string defined somewhere in the <connec-
tionStrings /> configuration section. Although that is the only attribute defined in this sample, you
could add as many provider-specific configuration attributes as needed at this point.

ProvidersHelper.InstantiateProvider is called, passing in the Type object for MembershipProvider
because the expectation is that the string value for the type parameter used earlier in the sample will actu-
ally resolve to a provider that derives from MembershipProvider. If you run this code in a debugger, you
can successfully cast the return value from InstantiateProvider to a SqlMembershipProvider. How-
ever, as a result of the way many provider-based features work in both ASP.NET 2.0 and ASP.NET 3.5,
attempting to subsequently call CreateUser on the returned provider instance will fail.

This happens because most provider-based features expect to operate in the larger context of their
associated feature. As part of this assumption, there is the expectation that any individual provider can
reference the ProvidersCollection associated with a feature. Because this sample code is creating a
provider in a vacuum, when the CreateUser method eventually leads to some internal Membership
validation, you will get an error to the effect that the provider you just created does not actually exist.
When you use any of the provider-based features in both ASP.NET 2.0 and ASP.NET 3.5, though, you
will not run into this issue because the various features are responsible for instantiating providers and,
thus, will maintain a ProvidersCollection with references to all the feature providers defined in
configuration.

As a second example, you can extend the sample code to instantiate multiple providers by using
ProvidersHelper.InstantiateProviders. Instantiating multiple providers, and storing the resul-
tant collection is the process that most ASP.NET 2.0 and ASP.NET 3.5 provider-based features follow:

C#
static void Main(string[] args)
{
 ProviderSettings ps = new ProviderSettings(“ManuallyCreated_1”,
 “System.Web.Security.SqlMembershipProvider, System.Web,
 Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”);

79301c10.indd 479 10/6/08 12:15:10 PM

480

Chapter 10: The Provider Model

 //Add multiple provider-specific configuration attributes here
 ps.Parameters.Add(“connectionStringName”, “LocalSqlServer”);
 ps.Parameters.Add(“requiresQuestionAndAnswer”, “false”);

 //Create another ProviderSettings instance for a second provider
 ProviderSettings ps2 = new ProviderSettings(“ManuallyCreated_2”,
 “System.Web.Security.SqlMembershipProvider, System.Web,
 Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”);
 ps2.Parameters.Add(“connectionStringName”, “LocalSqlServer”);
 ps2.Parameters.Add(“requiresQuestionAndAnswer”, “true”);

 Type t = typeof(MembershipProvider);

 //Need a collection since in this case you are getting multiple
 //providers back from the helper class
 ProviderSettingsCollection psc = new ProviderSettingsCollection();
 psc.Add(ps);
 psc.Add(ps2);

 //Call the helper class to spin up each provider
 MembershipProviderCollection mp = new MembershipProviderCollection();
 ProvidersHelper.InstantiateProviders(psc, mp, t);

 //Get a reference to one of the multiple providers that was instantiated
 SqlMembershipProvider smp2 = (SqlMembershipProvider)mp[“ManuallyCreated_2”];
}

VB.NET
Shared Sub Main(ByVal args() As String)
 Dim ps As New ProviderSettings(“ManuallyCreated_1”, “System.Web.Security.
 SqlMembershipProvider, System.Web, Version=2.0.0.0, _
 Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”)

 ‘Add multiple provider-specific configuration attributes here
 ps.Parameters.Add(“connectionStringName”, “LocalSqlServer”)
 ps.Parameters.Add(“requiresQuestionAndAnswer”, “false”)

 ‘Create another ProviderSettings instance for a second provider
 Dim ps2 As New ProviderSettings(“ManuallyCreated_2”, “System.Web.Security.
 SqlMembershipProvider, System.Web, Version=2.0.0.0, _
 Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”)
 ps2.Parameters.Add(“connectionStringName”, “LocalSqlServer”)
 ps2.Parameters.Add(“requiresQuestionAndAnswer”, “true”)

 Dim t As Type = GetType(MembershipProvider)

 ‘Need a collection since in this case you are getting multiple
 ‘providers back from the helper class
 Dim psc As New ProviderSettingsCollection()
 psc.Add(ps)
 psc.Add(ps2)

79301c10.indd 480 10/6/08 12:15:10 PM

481

Chapter 10: The Provider Model

 ‘Call the helper class to spin up each provider
 Dim mp As New MembershipProviderCollection()
 ProvidersHelper.InstantiateProviders(psc, mp, t)

 ‘Get a reference to one of the multiple providers that was instantiated
 Dim smp2 As SqlMembershipProvider = CType(mp(“ManuallyCreated_2”), _
 SqlMembershipProvider)
End Sub

In the second sample, the call to InstantiateProviders requires an empty ProviderCollection.
The helper class creates and initializes each provider in turn and then places a reference to each pro-
vider inside of the supplied ProviderCollection object.

If you were to look inside of the code for a static feature class like Membership, you would see that it
actually uses a derived version of ProviderCollection called MembershipProviderCollection.
Additionally, if you look at a static feature class like Membership, you now understand where the value
for the Providers property comes from. Once Membership completes its call to ProvidersHelper
factory method, the MembershipProviderCollection instance becomes the return value for the
Membership.Providers property.

The Singleton Pattern
The Singleton Pattern is used when a developer wants a single instance of class to exist within an
application. Rather than the standard object-oriented approach of creating objects and destroying
them after use, the Singleton Pattern results in a single object instance being used for the duration
of an application’s lifetime. Frequently, the Singleton Pattern is used when object instantiation and
destruction of a class is very expensive, and hence you may only want one instance of the class to
ever incur the overhead of object construction. The Singleton Pattern is also used when you want to
mediate access to a specific resource with a single object instance gating access to the resource, it is
possible to implement synchronization logic within the object instance so that only a single active
thread can access the resource at a time.

ASP.NET 2.0 and ASP.NET 3.5 use the Singleton Pattern for all the providers that are instantiated by
its provider-based features. However, both ASP.NET 2.0 and ASP.NET 3.5 do not require that indi-
vidual providers be instantiated via a Singleton Pattern. In reality, nothing prevents you from using
the ProvidersHelper (as shown in the previous section) or from manually creating and initializing
a provider yourself. As you saw in the Membership provider example, if you step outside the bound-
aries of the feature’s initialization behavior you will probably run into exceptions down the road.

A more precise statement would be that the provider-based features in ASP.NET implicitly use the
Singleton Pattern as long as you interact with providers by way of the various feature classes (that is,
Membership, ProfileCommon, Roles, and so on). Features will use the ProvidersHelper class to cre-
ate and initialize one, and only one, instance of each configured provider. For the duration of the appli-
cation’s lifetime the providers stay in memory and are used whenever you write code that makes use of
the feature. The ASP.NET 2.0 and ASP.NET 3.5 features do not new()up providers on each and every
page request.

From your perspective as a provider implementer, this means your providers need to be structured to
allow multiple concurrent callers in any of the public methods. If your providers internally have any
shared state, and if you intend to modify that state inside of a method, it is up to you to synchronize

79301c10.indd 481 10/6/08 12:15:10 PM

482

Chapter 10: The Provider Model

access to that state. The use of the Singleton Pattern suggests the following best practices on your cus-
tom providers:

If at all possible, common provider states should be initialized in the provider’s ❑❑ Initialize
method. For provider instances being initialized by a feature, you are guaranteed that one and
only one thread of execution will ever call into the Initialize method. The feature classes
internally serialize access during feature initialization. This means that you can safely create
and set internal state in a provider’s Initialize method without having to synchronize access
to it at this point.

You should not call back into a feature from inside of the ❑❑ Initialize method. For example,
in a custom Membership provider, you should not create instances of MembershipUser or
call into the static Membership class. These types of operations will usually cause a feature to
attempt to initialize itself a second time, which in turn triggers initialization of your custom pro-
vider a second time. At which point you have a second instance of your provider that attempts
to call back into the feature, and you end up in an infinite loop of initialization.

If your provider needs to initialize some type of shared state, and if this initialization requires ❑❑

calling other methods in the feature, you need to separate this logic into internal methods that
are “lazily” called. This means sometime after the provider is initialized, when any of its public
methods are called, you need to check to see whether this secondary initialization has occurred;
if it hasn’t, you need to take some kind of lock and then perform the secondary initialization.
This is the approach used by the XmlSiteMapProvider when it loads its navigation data from
an XML file. The actual parsing of the XML file occurs after the provider has been initialized
when a public method is first called. Internally the XmlSiteMapProvider serializes the initial-
ization process to ensure that if multiple threads are calling into the provider, the secondary
initialization occurs once and only once.

Public instance methods on the provider should be as stateless as possible. If your custom pro-❑❑

vider needs only to read some shared state (for example, a connection string loaded earlier during
Initialize), you won’t need to worry about thread-safety issues. You can just write the code in each
instance method without introducing any synchronization code. Writing to shared state should
be avoided if at all possible, because providers must expect to have multiple concurrent requests
flowing through their methods at any point in time. If for some reason a provider needs to write
to shared state, it will be less performant because of the need to use some type of locking to ensure
thread-safe operations. As an aside, most of the ASP.NET 2.0 and ASP.NET 3.5 providers do not
have any type of synchronization logic in their methods. For example, the public instance meth-
ods on SqlMembershipProvider never need to lock anything because the only shared state used
by the SqlMembershipProvider is read-only configuration data that was passed during the call
to Initialize.

Façade
A Façade is a design approach for wrapping complex details from multiple subsystems with an easy-to-
use class or programming interface. Another way to look at the Façade Pattern is as a “good enough” API
that exposes the most common functionality needed by a developer without requiring developers to wade
through complex implementations of underlying classes. You could argue that any layered API is effec-
tively a Façade with each layer of a programming API providing an easier interface to the next level down.

In both ASP.NET 2.0 and ASP.NET 3.5, the Façade pattern is evidenced by various entry-point classes
that are closely associated with the related feature. The use of these entry points eliminates the need
for many developers to ever interact directly with individual providers. In other cases, the entry-point

79301c10.indd 482 10/6/08 12:15:11 PM

483

Chapter 10: The Provider Model

classes hide the complexities involved when mediating the flow of data between providers and other
classes that manipulate data. The general application of the Façade pattern is listed here for a number of
the ASP.NET 2.0 and ASP.NET 3.5 features:

Membership:❑❑ The static Membership class is the main entry point into the feature. Developing
against this class allows you to use the feature without using a MembershipProvider directly.
Internally, the class automatically handles initialization of the feature on your behalf. It also
exposes many static methods that provide multiple options for creating and modifying data;
internally the Membership class maps these methods to the appropriate provider methods. For
example, there is only one CreateUser method defined on MembershipProvider, but the static
Membership class provides four different CreateUser methods that cover the common ways to
create users. Internally, the static Membership class “fills in the blanks” when it calls the provider.

Role Manager: ❑❑ The static Roles class is the main feature entry point. As with the Member-
ship feature, the Roles class automatically initializes the configured providers for you. It also
exposes a number of overloads for adding and deleting users to and from roles that are a bit
easier to use than the more generic method definitions on RoleProvider.

Profile: ❑❑ The Profile feature actually has two main entry points. For administrative functional-
ity, the static ProfileManager class is used; it performs the same functionality as described for
Membership and Role Manager. However, the more common entry point for most developers is
the ProfileCommon class that is auto-generated by the ASP.NET compiler at runtime (available
from Page.Profile). This class derives from ProfileBase. The net result of these two classes
is that as a developer you have an easy-to-use strongly typed object available from the Profile
property on a Page class. However, underneath the hood, this object hides all the complexities of
hooking up providers to properties, serializing and deserializing data, as well as the intricacies of
triggering the loads and saves of individual property data. More than any other provider-based
feature, the Profile feature is a great example of the Façade pattern. The more you delve into what
actually makes the Profile feature tick, the more you realize the large amount of functionality that
is all tucked away behind the Profile property on the Page class.

Web Parts Personalization: ❑❑ Like Membership and Role Manager, Personalization has a static
management class called PersonalizationAdministration that acts as a façade for the more
generic methods defined on PersonalizationProvider. The WebPartsPersonalization
class acts as a runtime façade for the WebPartManager. While a WebPartManager drives the
page lifecycle for web parts, it uses the API defined on WebPartsPersonalization for
data-related tasks including loading and storing data as well as extracting and applying per-
sonalization data. You can swap out different pieces of personalization functionality both in
WebPartsPersonalization and lower down in the provider layer, yet the WebPartManager is
unaware of such changes because it interacts only with a WebPartPersonalization instance.

Site Navigation: ❑❑ The static SiteMap class acts as the main entry point for this feature. It will
automatically initialize configured providers on your behalf. In this sense, it is a weak façade
implementation because you typically call SiteMap.CurrentNode, after which you start work-
ing with SiteMapNode and SiteMapProvider instances directly.

Session: ❑❑ You interact with the Session feature through an instance of HttpSessionState,
usually through the Session property on the current context or on a page. From your point of
view the Session State feature is basically a dictionary where you can add and remove objects.
However, the HttpSessionState object and the associated SessionStateModule hide the
large amount of complexity involved in managing session. Tasks such as serialization/deserial-
ization, managing session concurrency, and managing session setup and expiration all happen
automatically with the complexities hidden from view.

79301c10.indd 483 10/6/08 12:15:11 PM

484

Chapter 10: The Provider Model

Core Provider Classes
You have seen a number of the different support classes that are common to providers. In this sec-
tion, you walk through each of the core classes so that you can see in one place the different provider-
related classes.

System.Configuration.Provider Classes
The core provider classes that define the base functionality for a provider are found in the System.
Configuration.Provider namespace. These classes are available for use both in ASP.NET and non-
ASP.NET applications.

ProviderBase
Of course, the most important provider class is the base class from which most providers derive:
System.Configuration.Provider.ProviderBase. The class signature is:

C#
public abstract class ProviderBase {

 public virtual string Name { get };
 public virtual string Description {get };

 public virtual void Initialize(string name, NameValueCollection config);
 }

VB.NET
Public MustInherit Class ProviderBase

 Public Overridable ReadOnly Property Description As String
 Public Overridable ReadOnly Property Name As String

 Public Overridable Sub Initialize(_
 ByVal name As String, _
 ByVal config As NameValueCollection)

End Class

Feature-specific provider definitions derive from ProviderBase, and as a developer you write cus-
tom providers that in turn derive from a feature’s provider base class definition. It is unlikely that
you would ever author a provider that directly derives from ProviderBase because ProviderBase
exposes very little functionality.

ProviderBase is abstract because that forces you to derive from it and it also would make little sense
to new() up ProviderBase. However, the functionality that is available on ProviderBase is all virtual
because ProviderBase does supply basic functionality common to all providers. If you have looked at
the configuration sections for both ASP.NET 2.0 and ASP.NET 3.5 provider-based features you notice
that “name” and “type” are always present. Although it is not immediately obvious, all ASP.NET pro-
viders also have a configurable “description” attribute as well.

79301c10.indd 484 10/6/08 12:15:11 PM

485

Chapter 10: The Provider Model

The type attribute is not exposed by ProviderBase, because by the time you have a concrete pro-
vider in hand, you know its type. However, the “name” and “description” attributes are available on
ProviderBase. The read-only Name property is important because this is how you index into provider
collections for various features that support defining multiple providers. The read-only Description
property is mainly intended for administrative applications where you may want to see a list of the
providers currently configured for an application.

By default, the ASP.NET providers contain localized resource strings for the descriptions. This means
that if you query the Description property in a French application, you get back French text for each
provider description; while in an English application you get back an English description. However, if
you explicitly configure the “description” attribute in your web.config, providers always return the
configuration value from the Description property, regardless of locale. The default implementation
of ProviderBase.Description returns the Name property if for some reason a provider implementer
forgot to explicitly initialize the description.

The most important method on ProviderBase is Initialize. Normally, this method is called dur-
ing a feature’s initialization. As described earlier in the section on the Factory Method pattern, static
feature classes use the ProvidersHelper class to call Initialize on each configured provider. The
name parameter is the value of the name attribute from configuration, while the config parameter is
the Parameters property from the ProviderSettings configuration class: the list of name-value pairs
from the <add /> provider element without “name” and “type.”

The default implementation of Initialize performs the following work on your behalf:

	 1.	 The method checks to see whether the provider has been initialized before. If the provider has
already been initialized, it throws an exception. This means that provider implementers should
always call base.Initialize to gain protection against double-initialization.

	 2.	 The name parameter is stored internally and is thus available from the Name property.

	 3.	 If a key called “description” is available in the NameValueCollection passed via the config
parameter, the value is stored internally and thus is available from the Description property.
Note that if the “description” key is found, it is removed from the NameValueCollection and
is no longer available from the collection when control passes back to the provider.

The general approach provider implementers should take when using ProviderBase.Initialize is:

	 1.	 If a “description” attribute is not available from configuration, add a key called “description”
to the NameValueCollection that is passed to Initialize. For the value you can follow
ASP.NET’s approach and insert a localized value, or for simplicity you can add a hard-coded
description of the provider.

	 2.	 Immediately after any logic for “description,” make a call to base.Initialize. This protects
against double-initialization before your provider does anything substantial.

	 3.	 After the call to base.Initialize, your provider should carry out feature-specific initializa-
tion tasks.

ProviderException
Sometimes when an error occurs within a provider, the built-in 2.0 and 3.5 Frameworks’ exception
classes don’t have anything that maps nicely to the problem. Furthermore, you may not want to
create a plethora of custom exception classes for comparatively rare or obscure error conditions. The

79301c10.indd 485 10/6/08 12:15:11 PM

486

Chapter 10: The Provider Model

System.Configuration.Provider.ProviderException class is intended as a convenient excep-
tion class for these cases. For example, the Membership providers throw a ProviderException if the
password format is incorrect. Rather than creating a “PasswordFormatException” that would rarely
occur, a ProviderException was used.

Realistically, whether you use ProviderException is more of a philosophical decision. The ASP.NET
team didn’t want to spam the System.Web namespace with dozens of exception classes for one-off or
rare error conditions. However, there is nothing wrong if you disagree with that approach and instead
create a rich and detailed set of exceptions for your applications.

The class signature for ProviderException is very simple. It just derives from System.Exception:

C#
[Serializable]
public class ProviderException : Exception
{
 public ProviderException();

 public ProviderException(string message);

 public ProviderException(string message, Exception innerException);

 protected ProviderException(SerializationInfo info,
 StreamingContext context);
}

VB.NET
<Serializable> _
Public Class ProviderException
 Inherits Exception

 Public Sub New()

 Public Sub New(ByVal message As String)

 Protected Sub New(ByVal info As SerializationInfo, _
 ByVal context As StreamingContext)

 Public Sub New(ByVal message As String, ByVal innerException As Exception)

End Class

There is no custom logic inside of ProviderException. Each of the nondefault constructor overloads
simply calls the base constructor implementations in Exception.

ProviderCollection
As you saw in the Factory Method section, provider-based features usually deal with multiple provid-
ers. The approach used by various features is to have a feature-specific provider collection that in turn
derives from System.Configuration.Provider.ProviderCollection. The ProvidersHelper
class can then work with the common ProviderCollection class, while individual features can
expose strongly typed collection classes. From a configuration standpoint, all the <add /> provider

79301c10.indd 486 10/6/08 12:15:11 PM

487

Chapter 10: The Provider Model

elements in your web.config eventually end up as concrete providers that can be referenced from a
ProviderCollection-derived class.

For example, in the Membership feature the Membership.Providers property returns a reference
to a MembershipProviderCollection containing a reference to every provider defined within the
<membership /> configuration section. The advantage to working with MembershipProvider
Collection as opposed to ProviderCollection is that you know any provider returned from the
collection indexer derives from MembershipProvider. The collection also validates that any provid-
ers added to it derives from MembershipProvider.

The definition for ProviderCollection is simple, and it exposes the common collection-based func-
tionality you would expect:

C#
public class ProviderCollection : IEnumerable, ICollection
{
 public ProviderCollection();

 public virtual void Add(ProviderBase provider);
 public void Remove(string name);

 public ProviderBase this[string name] { get };

 public IEnumerator GetEnumerator();

 public void SetReadOnly();
 public void Clear();

 public int Count { get };
 public bool IsSynchronized { get };
 public object SyncRoot { get };

 public void CopyTo(ProviderBase[] array, int index);
 void ICollection.CopyTo(Array array, int index);

}

VB.NET
<DefaultMember(“Item”)> _
Public Class ProviderCollection
 Implements ICollection, IEnumerable

 Public Sub New()

 Public Overridable Sub Add(ByVal provider As ProviderBase)
 Public Sub Remove(ByVal name As String)

 Public ReadOnly Default Property Item(ByVal name As String) As ProviderBase

 Public Function GetEnumerator() As IEnumerator

 Public Sub SetReadOnly()

79301c10.indd 487 10/6/08 12:15:11 PM

488

Chapter 10: The Provider Model

 Public Sub Clear()

 Public ReadOnly Property Count As Integer
 Public ReadOnly Property IsSynchronized As Boolean
 Public ReadOnly Property SyncRoot As Object

 Public Sub CopyTo(ByVal array As ProviderBase(), ByVal index As Integer)
 Private Sub System.Collections.ICollection.CopyTo(_
 ByVal array As Array, _
 ByVal index As Integer) Implements ICollection.CopyTo

End Class

I won’t cover every method and property, because you are probably already familiar with quite a num-
ber of collection classes. The two pieces of important functionality that ProviderCollection delivers
are validation for read-only collections and a common type for ProvidersHelper to use when it cre-
ates multiple providers inside of the ProvidersHelper.InstantiateProviders method.

Usually after a feature has completed initialization, the feature will call SetReadOnly on its
ProviderCollection. This ensures that the set of providers available through the feature exactly mirrors
the set of providers defined in configuration. After a call to SetReadOnly the ProvidersCollection class
enforces the read-only nature of the collection. Attempts to call Add or Remove will fail with an exception.

The usual implementation model is for a feature-specific provider collection to derive from
ProviderCollection and at least override the Add method. For ease of use, features also commonly
implement a feature-specific indexer that supplements the default indexer on ProviderCollection
as well as a feature-specific implementation of CopyTo. In other words, any portion of the
ProviderCollection type signature that deals with a parameter of type ProviderBase is
either overridden or supplemented by feature-specific provider collections.

You can actually see that ProviderBase itself follows a similar approach because its implementa-
tion of ICollection.CopyTo requires an explicit interface cast. If instead you call CopyTo directly
on ProviderBase, you will be using the method that accepts an array of ProviderBase instances,
as opposed to just an array of object. The general idea is to specialize the portion of the collection
that deals with common types by adding methods or overriding methods so that you can deal with a
more specific type.

A feature-specific provider collection performs type-specific validation in an override of the Add method
(that is, are you adding the correct provider type to the collection?). A feature-specific provider also per-
forms the necessary type casts inside of its additional CopyTo and default indexer implementations. For
example, if you work with a MembershipProviderCollection and if you use the default indexer, you
know that the return value from its default indexer is already a MembershipProvider. If, instead, you
worked with a MembershipProviderCollection instance as a ProviderCollection reference, you
would have to perform a cast on the return value from the default indexer on ProviderCollection.

You may be wondering why the provider-based features didn’t simply use the generic functionality that
was introduced in the 2.0 Framework. Certainly, from an elegance standpoint, you would not have to
muck around with collection hierarchies and the minutia of which methods to override or reimplement
if ProviderCollection was instead defined as a generic type. The simple answer is that the provider
model was already developed very early on in the lifecycle of the 2.0 Framework. A substantial number
of provider-based features were pretty well fleshed out by the time that Framework generics had stabi-

79301c10.indd 488 10/6/08 12:15:11 PM

489

Chapter 10: The Provider Model

lized. (Remember that building one piece of the framework that is in turn dependent on another core
piece of the framework gets pretty “interesting” at times!)

Once generics had stabilized though, there had not been a decision yet on whether generics would be
considered CLS-compliant, that is, would a public API that exposed generics be reusable across many
different compilers that targeted the .NET Framework? Eventually, the decision was made in late 2004
to define generics as being CLS-compliant. By that point though, the development teams were pretty
much in ship mode for .NET 2.0 Beta 2, which was way too late for folks to rummage through all the
provider-based features and swap out old-style 1.1 collections for 2.0 generics (sometimes making what
would appear to be a common-sense design change in a large product like the .NET Framework turns
out to be akin to standing a 747 on its wing and pulling a 9G turn, it would be nice if it worked, but it
is more likely that various pieces will come flying off). The 3.5 Framework and especially ASP.NET 3.5
did not change the implementation of the providers that were already introduced by ASP.NET 2.0 and
hence ASP.NET 3.5 uses the same providers as those in ASP.NET 2.0.

System.Web.Configuration Classes
Because most of the concrete provider implementations in both the 2.0 and 3.5 Frameworks exist
within ASP.NET 2.0 and ASP.NET 3.5, the helper class for creating providers ended up in the
System.Web.Configuration namespace. If you implement a provider-based feature or if you plan
to use an existing provider-based feature outside of both ASP.NET 2.0 and ASP.NET 3.5, you can still
reference this namespace though and make use of the helper class.

The System.Web.Configuration.ProvidersHelper class provides two convenient helper methods
for instantiating providers. The class is typically used by features during feature initialization as men-
tioned earlier. Although you can certainly instantiate providers manually using the helper class, there
are usually other feature-specific dependencies that end up breaking when you use such an approach.

I won’t cover the helper class again here, because the previous section on the Factory Method went into
detail on how to use the class as well how it acts as a provider factory for the Framework. The class sig-
nature is:

C#
public static class ProvidersHelper {

 public static ProviderBase InstantiateProvider(
 ProviderSettings providerSettings, Type providerType)

 public static void InstantiateProviders(
 ProviderSettingsCollection configProviders,
 ProviderCollection providers, Type providerType)
}

VB.NET
Public Class ProvidersHelper

 Public Shared Function InstantiateProvider(ByVal providerSettings As
 ProviderSettings, ByVal providerType As Type) As ProviderBase

79301c10.indd 489 10/6/08 12:15:11 PM

490

Chapter 10: The Provider Model

 Public Shared Sub InstantiateProviders(ByVal configProviders As
 ProviderSettingsCollection, ByVal providers As ProviderCollection,
 ByVal providerType As Type)

End Class

System.Configuration Classes
One of the important points for provider-based features is that you can swap out providers through
configuration. The configuration-driven nature of provider-based features means that you can write
code that uses a feature without hard-coding any compile-time dependencies on a specific provider
implementation.

To support this functionality two configuration classes represent provider configuration data.

ProviderSettings
The System.Configuration.ProviderSettings class is the programmatic representation of a pro-
vider <add /> element in configuration. The ProviderSettings class exposes properties for some
of the common configuration attributes found in a provider <add /> element, while still retaining
the flexibility for feature providers to define their own custom set of configuration (and this runtime)
attributes.

The class signature for ProviderSettings (less configuration class-specific internals) is shown here:

C#
public sealed class ProviderSettings : ConfigurationElement
{

 public ProviderSettings();
 public ProviderSettings(String name, String type);

 //ConfigurationElement specific methods snipped out for brevity

 [ConfigurationProperty(“name”, RequiredValue = true, IsCollectionKey=true)]
 public String Name { get; set; }

 [ConfigurationProperty(“type”, RequiredValue = true)]
 public String Type {get; set;}

 public NameValueCollection Parameters { get; }

}

VB.NET
Public NotInheritable Class ProviderSettings
 Inherits ConfigurationElement

 Public Sub New()
 Public Sub New(ByVal name As String, ByVal type As String)

79301c10.indd 490 10/6/08 12:15:11 PM

491

Chapter 10: The Provider Model

 ‘ConfigurationElement specific methods snipped out for brevity

 <ConfigurationProperty(“name”, IsRequired:=True, IsKey:=True)> _
 Public Property Name As String

 Public ReadOnly Property Parameters As NameValueCollection

 Protected Friend Overrides ReadOnly Property Properties As
 ConfigurationPropertyCollection

 <ConfigurationProperty(“type”, IsRequired:=True)> _
 Public Property Type As String

End Class

As you can see from the type signature, the only configuration attributes that are common across all pro-
viders are the “name” and “type” configuration attributes, which map respectively to the Name and Type
properties. All other provider properties that you see when looking in machine.config or web.config
are considered to be feature-specific provider attributes. The declarative ConfigurationProperty
attributes on the Name and Type properties are interpreted by the configuration system at runtime.
These attributes are what “tell” the configuration system how to translate an Xml attribute to a property
on the ProviderSettings class.

Feature-specific provider attributes are parsed by the configuration system and added as name-value
pairs to the NameValueCollection available from the Parameters property. As a result, the process
by which configuration settings in web.config eventually end up in a provider is:

	 1.	 At runtime a feature class, such as the static Membership class, makes a call into the configura-
tion system asking for its configuration section to be parsed and loaded.

	 2.	 After the configuration file has been parsed, the values are returned back to the feature class as
one or more configuration objects. In the case of the provider <add /> elements, each config-
ured provider results in an instance of ProviderSettings. All attributes other than “name”
and “type” end up in the ProviderSettings.Parameters property.

	 3.	 The feature class calls ProvidersHelper.InstantiateProviders and passes the
ProviderSettings to the helper class (to be precise an instance of
ProviderSettingsCollection containing one or more ProviderSettings is passed to the
helper class).

	 4.	 The ProvidersHelper class uses ProviderSettings.Type to determine the correct type that
needs to be instantiated.

	 5.	 Once the provider has been instantiated, the ProviderBase.Initialize method is called. The
name parameter for this method comes from ProviderSettings.Name, whereas the config
parameter comes from ProviderSettings.Parameters.

	 6.	 The provider internally calls base.Initialize to set the Name of the provider and optionally
the Description. Feature-specific providers then use the remainder of the name-value pairs
from ProviderSettings.Parameters for feature-specific initialization logic.

If you look in both the 2.0 and 3.5 Frameworks, you won’t find any feature-specific configuration classes
that derive from ProviderSetting; in fact, ProviderSettings is sealed, so in both the 2.0 and 3.5
Frameworks you cannot write feature-specific ProviderSettings classes even if you wanted to.

79301c10.indd 491 10/6/08 12:15:11 PM

492

Chapter 10: The Provider Model

As a result, when you are working with configuration files at design time, the IntelliSense in the
design environment is only able to validate the “name” and “type” attributes. If you are configuring a
MembershipProvider, for example, you will not get any IntelliSense for the SQL or the Active Direc-
tory/Active Directory Application Mode (AD/ADAM or ADLDS) provider properties. Instead, you are
left to the documentation to determine which additional key-value pairs are allowed in the provider
<add /> element within the <membership /> configuration element.

Early in the 2.0 Framework and currently in 3.5 Framework, this behavior was chosen to avoid having
to engineer feature-specific settings classes along with an accompanying XSD schema for IntelliSense
validation. The design problem with having feature-specific ProviderSettings classes is that for
many features you cannot completely define the feature-specific attributes with a single configuration
class. For example, within Membership the allowable attributes on the SQL provider only partially
overlap with the allowable attributes on the AD/ADAM or ADLDS provider. Both the SQL and the AD/
ADAM or ADLDS providers have implementation-specific attributes in addition to common Member-
ship attributes.

This problem is common to all providers because the whole point of providers is to allow you to write
your own custom implementations, which usually results in custom provider attributes. If each feature
had a more strongly typed definition of ProviderSettings, you would still need a property like the
ProviderSettings.Parameters property to allow for extensibility.

There is also an issue with XSD-based IntelliSense validation. It becomes problematic because <add />
was chosen as the common way for configuring a provider. However, because <add /> elements vary
by their attributes, you can’t define an XSD validation rule that says “allow <add /> with the attribute
set A or allow <add /> with the attribute set B, but don’t allow an <add /> element with a mixture
of attribute sets A and B.” Furthermore, the existing <add /> element has a common XSD definition
that is used in every feature-specific configuration section. The same <add /> element is used within
<membership />, <profile />, <sitemap />, and so on. To really support strongly typed provider
configuration sections and classes, you would need:

A different configuration approach that was element-driven as opposed attribute driven. Some-❑❑

thing like a <membershipProvider /> configuration element, a <roleManagerProvider />
configuration element, and so on. This would allow for feature-specific XSD schemas.

Feature-specific configuration classes that derive from ❑❑ ProviderSettings. This work would at
least be pretty easy to accomplish.

Some type of extensibility mechanism that would allow you to tell both the 2.0 and 3.5 Frame-❑❑

works about new provider types and to supply provider-specific XSD extensions. This would
enable IntelliSense to validate both the core set of feature-specific configuration information as
well as your custom provider configuration information. Again, though, this extensibility mech-
anism would probably need to be element-based as opposed to attribute-based.

The nice thing about the current design though is that when you author a custom provider, you do not
have to author a custom configuration section and a related custom configuration class. The existing
ProviderSettings class and the <add /> configuration element are flexible enough that you don’t
need to write any special configuration code to plug in your own custom providers.

79301c10.indd 492 10/6/08 12:15:12 PM

493

Chapter 10: The Provider Model

ProviderSettingsCollection
Because most provider-based features support configuring multiple providers, the System
.Configuration.ProviderSettingsCollection class is used to hold all the ProviderSettings
that resulted from parsing a configuration file.

The class definition, less configuration class-specific methods, is shown here:

C#
[ConfigurationCollection(typeof(ProviderSettings))]
public sealed class ProviderSettingsCollection : ConfigurationElementCollection
{
 public ProviderSettingsCollection();

 public ProviderSettingsCollection Providers { get; }

 public void Add(ProviderSettings provider);
 public void Remove(String name);
 public void Clear();

 public ProviderSettings this[object key] { get; }
 public ProviderSettings this[int index] { get; set; }

 //Other configuration class specific methods removed for brevity
}

VB.NET
<ConfigurationCollection(GetType(ProviderSettings)), DefaultMember(“Item”)> _
Public NotInheritable Class ProviderSettingsCollection
 Inherits ConfigurationElementCollection

 Public Sub New()
 Public Sub Add(ByVal provider As ProviderSettings)
 Public Sub Clear()
 Public Sub Remove(ByVal name As String)

 Public Default Property Item(ByVal index As Integer) As ProviderSettings
 Public ReadOnly Default Property Item(ByVal key As String) As ProviderSettings
 Protected Friend Overrides ReadOnly Property _
 Properties As ConfigurationPropertyCollection

 ‘Other configuration class specific methods removed for brevity
End Class

The second code sample in the earlier section on the Factory Method showed how you could manually
construct a ProviderSettingsCollection, populate it with multiple ProviderSettings instances,
and then pass the collection to ProvidersHelper.InstantiateProviders. From an application devel-
opment perspective though, you probably will not ever deal with a ProviderSettingsCollection.
Instead, you may use a ProviderSettingsCollection class for administrative purposes to program-
matically read and modify a configuration file.

79301c10.indd 493 10/6/08 12:15:12 PM

494

Chapter 10: The Provider Model

If you do author a provider-based feature, and you create a configuration section class for that feature,
the configuration system will automatically convert the provider <add /> elements into an instance of
ProviderSettingsCollection on your configuration section class. You do not need to manually call
Add, Remove, and similar methods from inside your custom configuration class. Instead, you would
simply add a property on your configuration class of type ProviderSettingsCollection and attri-
bute it appropriately.

Using the MembershipSection class as an example, it has a public property for its <provider />
section as shown here:

C#
[ConfigurationProperty(“providers”)]
public ProviderSettingsCollection Providers { get; }

VB.NET
<ConfigurationProperty(“providers”)> _
Public ReadOnly Property Providers As ProviderSettingsCollection

So, when the configuration system is parsing a configuration file, and it is processing a <providers />
element like:

<providers>
 <add name=”foo” type=”bar” … />
</providers>

The configuration system knows that the results of parsing everything underneath <providers />
results in a collection of information represented by ProviderSettingsCollection. Because a Pro-
viderSettingsCollection is as an Add-Remove-Clear ()collection, the configuration system also
knows to expect the Xml elements <add />, <remove /> and <clear /> underneath the <providers
/> configuration element.

As the configuration system encounters each of these elements, it converts them into a method call to
the Add, Remove and Clear methods on the ProviderSettingsCollection class. Because Provider-
SettingsCollection is attributed with the ConfigurationCollection attribute, and this attribute
indicates that the collection contains instances of ProviderSettings, the configuration system will
look at the declarative attributes on the ProviderSettings class when it processes the contents of the
<providers /> section.

Because ProviderSettings has two properties adorned with the ConfigurationProperty attribute,
the configuration system knows that when it parses a name or type attribute it needs to assign these to
the Name and Type properties respectively on the ProviderSettings instance. Because the Configu-
rationProperty attribute on ProviderSettings.Name also includes IsCollectionKey = true,
the configuration system will treat the name attribute as the key value when calling various methods
on ProviderSettingsCollection. For example, a <remove name=”foo” /> configuration element
is interpreted as a call to ProviderSettingsCollection.Remove with the value foo being used as a
parameter to the method.

As mentioned earlier, from your perspective all this complexity is transparent to you. As long as you
have a property of type ProviderSettingsCollection with the requisite ConfigurationProperty
attribute, the configuration system will automatically parse your provider definitions for you.

79301c10.indd 494 10/6/08 12:15:12 PM

495

Chapter 10: The Provider Model

Building a Provider-Based Feature
Now that you have seen the rationale and architecture behind provider-based features, walking through
the basic steps of writing a simple provider-based feature along with a custom provider will help you tie
together the previous concepts to the provider support classes in both the 2.0 and 3.5 Frameworks. In this
section, you will walk through the steps of building a provider-based feature, as shown in Figure 10-1.

Figure 10-1

Because the intent of this section is to concentrate on creating a provider-based feature, the feature used
for the sample will define and implement only one method that simply requests a string from its default
provider. The sample provider base class definition is:

C#
using System;
using System.Configuration.Provider;

namespace SampleFeature
{
 public abstract class SampleFeatureProvider : ProviderBase
 {
 //Properties
 public abstract string Color { get; }
 public abstract string Food { get; }

 //Methods
 public abstract string GetMeAString(string andPutThisOnTheEndOfIt);
 }
}

VB.NET
Imports Microsoft.VisualBasic
Imports System
Imports System.Configuration.Provider

79301c10.indd 495 10/6/08 12:15:12 PM

496

Chapter 10: The Provider Model

Namespace SampleFeature
 Public MustInherit Class SampleFeatureProvider
 Inherits ProviderBase
 ‘Properties
 Public MustOverride ReadOnly Property Color() As String
 Public MustOverride ReadOnly Property Food() As String

 ‘Methods
 Public MustOverride Function GetMeAString(_
 ByVal andPutThisOnTheEndOfIt As String) As String

 End Class
End Namespace

A provider implementation for the sample feature is required to implement the GetMeAString method as
well as the two abstract properties. The general convention for handling feature-specific configuration set-
tings in a provider-based feature is to define abstract property getters on the provider base class. With this
abstract class definition, the configuration settings for a “color” attribute and a “food” attribute will be
available through their corresponding properties on the feature’s providers. This approach allows devel-
opers to access configuration settings at runtime without having to use any of the configuration classes.

Because the sample feature will allow you to configure multiple instances of a provider, a correspond-
ing provider collection class is also defined.

C#
using System;
using System.Configuration.Provider;

namespace SampleFeature
{
 public class SampleFeatureProviderCollection : ProviderCollection
 {
 public override void Add(ProviderBase provider)
 {
 if (provider == null)
 throw new ArgumentNullException(
 “You must supply a provider reference”);

 if (!(provider is SampleFeatureProvider))
 throw new ArgumentException(
 “The supplied provider type must derive from SampleFeatureProvider”);

 base.Add(provider);
 }

 new public SampleFeatureProvider this[string name]
 {
 get { return (SampleFeatureProvider)base[name]; }
 }

79301c10.indd 496 10/6/08 12:15:12 PM

497

Chapter 10: The Provider Model

 public void CopyTo(SampleFeatureProvider[] array, int index)
 {
 base.CopyTo(array, index);
 }
 }
}

VB.NET
Imports Microsoft.VisualBasic
Imports System
Imports System.Configuration.Provider

Namespace SampleFeature
 Public Class SampleFeatureProviderCollection
 Inherits ProviderCollection
 Public Overrides Sub Add(ByVal provider As ProviderBase)
 If provider Is Nothing Then
 Throw New ArgumentNullException(_
 “You must supply a provider reference”)
 End If

 If Not(TypeOf provider Is SampleFeatureProvider) Then
 Throw New ArgumentException(_
 “The supplied provider type must derive from “ & _
 “SampleFeatureProvider”)
 End If

 MyBase.Add(provider)
 End Sub

 Default Public Shadows ReadOnly Property Item(_
 ByVal name As String) As SampleFeatureProvider
 Get
 Return CType(MyBase.Item(name), SampleFeatureProvider)
 End Get
 End Property
 Get
 Return CType(MyBase.Item(name), SampleFeatureProvider)
 End Get
 End Property

 Public Overloads Sub CopyTo(_
 ByVal array() As SampleFeatureProvider, _
 ByVal index As Integer)
 MyBase.CopyTo(Array, index)
 End Sub
 MyBase.CopyTo(array, index)
 End Sub

 End Class
End Namespace

79301c10.indd 497 10/6/08 12:15:12 PM

498

Chapter 10: The Provider Model

As you can see, a provider collection class is pretty much boilerplate code. The override for the Add
method has some extra validation logic to ensure that only instances of SampleFeatureProvider are
added to the collection. The default indexer and the CopyTo implementations simply cast the provider
reference returned by the underlying ProviderCollection to a SampleFeatureProvider reference.

The public portion of the sample feature is accessible through a static entry class called SampleFeature​
MainEntryPoint. This design mirrors the approach used by many of the ASP.NET 2.0 and ASP.NET 3.5
provider-based features. The class definition below shows the relevant portions used for the public API.

C#
using System;
using System.Configuration;
using System.Configuration.Provider;
using System.Web.Configuration;

namespace SampleFeature
{
 public static class SampleFeatureMainEntryPoint
 {
 //Initialization related variables and logic
 //snip…

 //Public feature API
 private static SampleFeatureProvider defaultProvider;
 private static SampleFeatureProviderCollection providerCollection;

 public static SampleFeatureProvider Provider
 {
 get
 {
 return defaultProvider;
 }
 }

 public static SampleFeatureProviderCollection Providers
 {
 get
 {
 return providerCollection;
 }
 }

 public static string GetMeAString(string someString)
 {
 return Provider.GetMeAString(someString);
 }
 }
}

79301c10.indd 498 10/6/08 12:15:12 PM

499

Chapter 10: The Provider Model

VB.NET
Imports Microsoft.VisualBasic
Imports System
Imports System.Configuration
Imports System.Configuration.Provider
Imports System.Web.Configuration

Namespace SampleFeature
 Public NotInheritable Class SampleFeatureMainEntryPoint
 ‘Initialization related variables and logic
 ‘snip…

 ‘Public feature API
 Private Shared defaultProvider As SampleFeatureProvider
 Private Shared providerCollection As SampleFeatureProviderCollection

 Public Shared ReadOnly Property Provider() As SampleFeatureProvider
 Get
 ‘Initialize();
 Return defaultProvider
 End Get
 End Property

 Public Shared ReadOnly Property Providers() _
 As SampleFeatureProviderCollection
 Get
 ‘Initialize();
 Return providerCollection
 End Get
 End Property
 Get
 ‘Initialize();
 Return providerCollection
 End Get
 End Property

 Public Shared Function GetMeAString(ByVal someString As String) As String
 Return Provider.GetMeAString(someString)
 End Function

 End Class
End Namespace

The static feature class allows you to access its default provider via the Provider property. If you con-
figure multiple providers with the feature, you can choose a specific provider with the corresponding
Providers property. Last, the static feature class exposes the functionality that is implemented by
way of a provider. This sample intentionally has a simplistic piece of logic; you can ask the feature for
a string, and it will return a string from the default provider. Complex provider-based features like
Membership have a hefty number of static feature methods providing a variety of overloads that map
to methods in the underlying providers.

79301c10.indd 499 10/6/08 12:15:12 PM

500

Chapter 10: The Provider Model

A provider-based feature can be considered to go through a lifecycle of sorts:

	 1.	 First the feature is in an uninitialized state. Any call to a method on the static feature class
should result in initialization.

	 2.	 If initialization succeeds, the feature is considered initialized.

	 3.	 If initialization failed, the feature can still be considered initialized, but in a failed state. The fact
that initialization failed needs to be stored somewhere.

So, a side effect of the feature’s initialization should either be a functioning static class, or some per-
sistent representation of the initialization failure. The sample feature’s private Initialize method is
written to throw an exception if initialization failed. As a result, any attempt to call a public property
or method on the SampleFeatureMainEntryPoint class results in an exception if initialization failed.
More specifically, any attempt to call a public static method or property will fail with an exception stat-
ing that the type initializer failed. If you then drill into the InnerException, you will see the specific
details of what caused the failure.

Because the initialization process for the feature is the place where configuration and providers come
together, let’s take a look at the initialization related code for the static feature class.

C#
public static class SampleFeatureMainEntryPoint
{
 //Initialization related variables and logic
 private static bool isInitialized = false;
 private static Exception initializationException;

 private static object initializationLock = new object();

 static SampleFeatureMainEntryPoint()
 {
 Initialize();
 }

 private static void Initialize()
 {
 //implementation
 }
}

VB.NET
 Public NotInheritable Class SampleFeatureMainEntryPoint
 ‘Initialization related variables and logic
 Private Shared isInitialized As Boolean = False
 Private Shared initializationException As Exception

 Private Shared initializationLock As Object = New Object()

 Private Sub New()
 End Sub
 Shared Sub New()

79301c10.indd 500 10/6/08 12:15:12 PM

501

Chapter 10: The Provider Model

 Initialize()
 End Sub

 Private Shared Sub Initialize()
 ‘implementation
 End Sub

End Class

The feature class holds its initialization state inside two private variables. If the initialization process
has occurred, regardless of its success, then isInitialized will be set to true. If the initialization
process failed, an exception has occurred, and this exception will be cached for the lifetime of the appli-
cation, using the initializationException variable. Both variables are static because the initializa-
tion process itself is triggered by the feature class’s static constructor.

Because both the 2.0 and 3.5 Frameworks calls the type’s static constructor before running any public
properties and methods call, the very first call to any portion of the public API will cause the Initialize
method to carry out the necessary initialization work. This is the one point where a call to Initialize
will actually result in feature initialization. The actual logic within the Initialize method is shown here:

C#
 private static void Initialize()
 {
 //If for some reason the feature has already initialized
 //then exit, or optionally throw if init failed
 if (isInitialized)
 {
 if (initializationException != null)
 throw initializationException;
 else
 return;
 }

 //Start the initialization
 lock (initializationLock)
 {
 //Need to double-check after the lock was taken
 if (isInitialized)
 {
 if (initializationException != null)
 throw initializationException;
 else
 return;
 }
 try
 {
 //Get the feature’s configuration info
 SampleFeatureConfigurationSection sc =
 (SampleFeatureConfigurationSection)
 ConfigurationManager.GetSection(“sampleFeature”);

 if (sc.DefaultProvider == null ||
 sc.Providers == null || sc.Providers.Count < 1)

79301c10.indd 501 10/6/08 12:15:12 PM

502

Chapter 10: The Provider Model

 throw new ProviderException(“The feature requires that you “ +
 “ specify a default “ +
 “feature provider as well as at least one “ +
 “provider definition.”);

 //Instantiate the feature’s providers
 providerCollection = new SampleFeatureProviderCollection();
 ProvidersHelper.InstantiateProviders(
 sc.Providers,
 providerCollection,
 typeof(SampleFeatureProvider));

 providerCollection.SetReadOnly();

 defaultProvider = providerCollection[sc.DefaultProvider];
 if (defaultProvider == null)
 {
 throw new ConfigurationErrorsException(
 “The default feature provider was not specified.”,
 sc.ElementInformation.Properties[“defaultProvider”].Source,
 sc.ElementInformation.Properties[“defaultProvider”].LineNumber);
 }
 }
 catch (Exception ex)
 {
 initializationException = ex;
 isInitialized = true;
 throw ex;
 }

 isInitialized = true; //error-free initialization

 }//end of lock block
 }//end of Initialize method

 //Public feature API
 //snip…
 }
}

VB.NET
 Private Shared Sub Initialize()
 ‘ If for some reason the feature has already initialized
 ‘ then exit, or optionally throw if init failed
 If isInitialized Then
 If initializationException IsNot Nothing Then
 Throw initializationException
 Else
 Return
 End If
 End If

 ‘ Start the initialization

79301c10.indd 502 10/6/08 12:15:12 PM

503

Chapter 10: The Provider Model

 SyncLock initializationLock
 ‘ Need to double-check after the lock was taken
 If isInitialized Then
 If initializationException IsNot Nothing Then
 Throw initializationException
 Else
 Return
 End If
 End If
 Try
 ‘Get the feature’s configuration info
 Dim sc As SampleFeatureConfigurationSection = CType(_
 ConfigurationManager.GetSection(“sampleFeature”), _
 SampleFeatureConfigurationSection)

 If sc.DefaultProvider Is Nothing _
 OrElse sc.Providers Is Nothing OrElse sc.Providers.Count < 1 Then
 Throw New ProviderException(_
 “The feature requires that you specify a default “ & _
 “feature provider as well as at least one “ & _
 “provider definition.”)
 End If

 ‘Instantiate the feature’s providers
 providerCollection = New SampleFeatureProviderCollection()
 ProvidersHelper.InstantiateProviders(_
 sc.Providers, _
 providerCollection, _
 GetType(SampleFeatureProvider))
 providerCollection.SetReadOnly()
 defaultProvider = providerCollection(sc.DefaultProvider)
 If defaultProvider Is Nothing Then
 Throw New ConfigurationErrorsException(_
 “The default feature provider was not specified.”, _
 sc.ElementInformation.Properties(“defaultProvider”).Source, _
 sc.ElementInformation.Properties(“defaultProvider”).LineNumber)
 End If
 Catch ex As Exception
 initializationException = ex
 isInitialized = True
 Throw ex
 End Try

 isInitialized = True ‘error-free initialization
 End SyncLock
 End Sub

The method first attempts to quickly return whether the feature was already initialized; if the initial-
ization caused an error, the exception that caused the failure is thrown instead. Because this sample
feature depends on a static constructor though, this type of check is not actually needed. I show it here
so that you can see how the ASP.NET provider-based features carry out their initialization logic. In the
case of the ASP.NET 2.0 and ASP.NET 3.5 static feature classes, the first if block is what runs 99.9 percent
of the time this type of method is called, so the overhead of calling into Initialize from the public
API is normally just the overhead of an extra method call.

79301c10.indd 503 10/6/08 12:15:12 PM

504

Chapter 10: The Provider Model

However, if the Initialize method detects that the feature has not been initialized, the method enters
a synchronization block using the C# lock syntax in the C# code block and VB.NET SyncLock syntax in
the VB.NET code block shown above. Immediately after entering the lock section (now a maximum of
one and only one thread can ever be running inside of the lock block), the method double-checks the
initialization results. This is the classic lock-and-double-check approach to performing common synchro-
nization for a class. Because, theoretically, two threads of execution may have simultaneously entered the
static method, the code makes a second check against the initialization flag to cover the case where a sec-
ond thread completed initialization after the first thread checked the Boolean isInitialized variable.

Again this static feature class is written a little bit differently from how ASP.NET provider-based fea-
tures are written. For historical reasons, the ASP.NET provider-based features did not use static classes
until later in the development cycle. As a result, their initialization processes depended on having a call
to a private initialization method inside of every public method and property. This would be equivalent
to having the sample class above calling Initialize from inside of the Provider and Providers
properties as well as the GetMeAString method. Because the ASP.NET approach did not use a static
constructor, the feature class needed to provide its own synchronization (like that shown previously)
during initialization because it was very likely that there would be multiple threads running inside of
the initialization method. The sample feature class, though, calls Initialize from its static constructor,
so it is not really necessary to use the first if-check or the lock block or SyncLock block with the sec-
ond if-check. Instead, both the 2.0 and 3.5 Frameworks will ensure thread safety when the Initialize
method is called from the static constructor; because the method is called from the static constructor, it
never needs to be called again from the public properties or methods on the sample feature class.

The try-catch block is where the meat of the feature initialization occurs. Using the Configuration-
Manager class in System.Configuration, the Initialize method gets a strongly typed reference to
the configuration section class for the feature (discussed later in this chapter). The feature’s configura-
tion section class exposes two important properties: DefaultProvider and Providers. These proper-
ties define the default provider that the static feature class should use as well as the set of all configured
providers for the feature. If the configuration section in the application’s configuration file is wrong,
and it lacks definitions of a default provider and at least one feature provider, the initialization process
throws a ProviderException indicating the problem.

With the configuration information now available, the Initialize method creates an empty Sample​
FeatureProviderCollection class that will eventually hold a reference to each provider that was
configured for the feature. This collection is also accessible from the static feature class’s Providers
property. The ProvidersHelper class is called to populate this provider collection based on the pro-
viders defined in the application’s configuration file. Assuming that the helper successfully ran to com-
pletion, the provider collection is then marked as read-only. You don’t want application developers to be
able to modify the feature’s provider collection after initialization has occurred.

The Initialize method then attempts to get a reference to the default provider and make it available
from the static feature class’s DefaultProvider property. If there is no provider in the provider collec-
tion with a Name that matches the value of the feature’s “defaultProvider” configuration attribute, then
a ConfigurationErrorsException is thrown. Assuming that the application is running in a high
enough trust level, the error message that is returned from the exception will include the file path to the
configuration file as well as the line number on which the problematic “defaultProvider” attribute
for the feature was defined.

By this point, the Initialize method is able to complete without error, or it catches whatever excep-
tion occurred. In either case, the feature marks itself as being initialized. In the error case, it also stores

79301c10.indd 504 10/6/08 12:15:13 PM

505

Chapter 10: The Provider Model

a reference to the exception that caused initialization to fail. This is another point where the ASP.NET
provider-based features are a little different from the sample feature. The ASP.NET provider-based fea-
tures need to store the exception and rethrow it whenever their private initialization methods are called
from their public properties and methods. However, the sample feature class shown previously instead
relies on the 2.0 or 3.5 Framework to do the heavy lifting.

Because Initialize was called from the static constructor, the 2.0 or 3.5 Framework will remember
that the static constructor failed. This means if the Initialize method fails, subsequent attempts to
call public properties or methods on the static feature class result in a System.TypeInitialization-
Exception being thrown. The InnerException property on this exception instance will represent the
true exception that was thrown from inside of the Initialize method. From a programming stand-
point either the ASP.NET approach or the approach shown previously that relies on a static constructor
is valid. The decision is up to you.

Using the static constructor eliminates the need for funky lock logic, but you do need to drill into the
TypeInitializationException to find the root cause of a failure. The ASP.NET approach means that
you will always have the problematic exception being thrown from public APIs and properties. But you
will need to use locking inside of your feature’s initialization logic and have each public property and
method on your feature class call back to your initialization method to cause the initialization excep-
tion to be rethrown.

At this point, let’s take a look at the feature’s configuration section class. You want a configuration class
that provides strongly typed access for a configuration that looks like:

<sampleFeature defaultProvider=”DefaultSampleFeatureProvider”>
 <providers>
 <add name=”DefaultSampleFeatureProvider”
 type=”SampleFeature.SampleFeatureProviderImplementation, SampleFeature”
 connectionStringName=”SomeConnectionString”
 color=”red”
 food=”burgers”
 description=”this came from config” />
 </providers>
</sampleFeature>

The feature itself has its own configuration section as indicated by the <sampleFeature /> configura-
tion element. The one allowable attribute on this element is the “defaultProvider” attribute. Nested
within a <sampleFeature /> is a <providers /> section allowing for one or more provider defini-
tions. Aside from the “name” and “type” attributes, all the other attributes are feature-specific.

The configuration section class that models this configuration section is shown here:

C#
using System;
using System.Configuration;

namespace SampleFeature
{
 public class SampleFeatureConfigurationSection : ConfigurationSection
 {

79301c10.indd 505 10/6/08 12:15:13 PM

506

Chapter 10: The Provider Model

 public SampleFeatureConfigurationSection(){}

 [ConfigurationProperty(“providers”)]
 public ProviderSettingsCollection Providers
 {
 get
 {
 return (ProviderSettingsCollection)base[“providers”];
 }
 }

 [ConfigurationProperty(“defaultProvider”,
 DefaultValue = “DefaultSampleFeatureProvider”)]
 [StringValidator(MinLength = 1)]
 public string DefaultProvider {
 get
 {
 return (string)base[“defaultProvider”];
 }
 set
 {
 base[“defaultProvider”] = value;
 }
 }
 }
}

VB.NET
Imports Microsoft.VisualBasic
Imports System
Imports System.Configuration

Namespace SampleFeature
 Public Class SampleFeatureConfigurationSection
 Inherits ConfigurationSection
 Public Sub New()
 End Sub

 <ConfigurationProperty(“providers”)> _
 Public ReadOnly Property Providers() As ProviderSettingsCollection
 Get
 Return CType(MyBase.Item(“providers”, _
 ProviderSettingsCollection
 End Get
 End Property

 DefaultValue:=”DefaultSampleFeatureProvider”), _
 StringValidator(MinLength:=1)> _
 Public Property DefaultProvider() As String
 Get
 Return CStr(MyBase.Item(“defaultProvider”))
 End Get
 Set(ByVal value As String)

79301c10.indd 506 10/6/08 12:15:13 PM

507

Chapter 10: The Provider Model

 MyBase.Item(“defaultProvider”) = value
 End Set
 End Property
 End Class
End Namespace

Inheriting from ConfigurationSection means that this class represents a configuration section in
an application configuration file. The default constructor is used by the configuration system when it
new()’s up configuration section classes while parsing configuration. The only custom code that you
need to write in the configuration class are the custom properties that represent configuration attributes
and nested configuration sections.

The Providers property represents the nested <providers /> configuration section. The declara-
tive attribute on the property causes the configuration system to parse the <providers /> section
and its nested elements into an instance of a ProviderSettingsCollection. By using the
ProviderSettingsCollection class, you automatically leverage the built-in behavior of the
<providers /> configuration section without the need to write any additional code.

The DefaultProvider property has two declarative attributes on it. The ConfigurationProperty attri-
bute indicates that if a “defaultProvider” attribute is found within the <sampleFeature /> element
that its value will be available via the DefaultProvider property. The ConfigurationProperty also
has a default value indicating that the property should be set to “DefaultSampleFeatureProvider” if
the attribute is not found in the configuration file. Last, the StringValidator attribute tells the configu-
ration system that if the attribute exists in configuration, the attribute must be a non-empty string. This
type of declarative validation rule is automatically enforced when the configuration system attempts to
parse the configuration.

In the SampleFeatureMainEntryPoint.Initialize method, the following code is what triggers the
parsing and loading of the configuration section:

C#
SampleFeatureConfigurationSection sc =
 (SampleFeatureConfigurationSection)ConfigurationManager.GetSection(
 “sampleFeature”);

VB.NET
Dim sc As SampleFeatureConfigurationSection = _
 CType(ConfigurationManager.GetSection(“sampleFeature”), _
 SampleFeatureConfigurationSection)

The configuration runtime knows to associate the <sampleFeature /> configuration section with the
SampleFeatureConfigurationSection class once you add the following section definition to your
application’s configuration file:

<configSections>
 <section name=”sampleFeature”
 type=”SampleFeature.SampleFeatureConfigurationSection, SampleFeature”
 allowDefinition=”MachineToApplication” />
 </configSections>

79301c10.indd 507 10/6/08 12:15:13 PM

508

Chapter 10: The Provider Model

A <section /> element is used to associate an XML element called sampleFeature to the custom
configuration class you just saw. The type attribute tells the configuration system where to find the
class; in this case, the class is located in an unsigned assembly called SampleFeature.dll. Depend-
ing on whether you are defining the custom section for a web application, you can also use the
“allowDefinition” attribute to control the inheritance behavior of the configuration section. Because
provider-based features usually do not allow redefinition in the level of individual subdirectories, the
“allowDefinition” attribute is set to limit the “sampleFeature” element to only machine.config,
the root web.config or an application’s web.config file.

At this point, the only piece left to implement for the sample feature is a concrete provider. The basic
implementation of a concrete provider (less the initialization step) is:

C#
using System;
using System.Configuration;
using System.Configuration.Provider;

namespace SampleFeature
{
 public class SampleFeatureProviderImplementation : SampleFeatureProvider
 {
 private string color;
 private string food;
 private String connectionString;

 public override string Color
 {
 get { return color; }
 }

 public override string Food
 {
 get { return food; }
 }

 public override string GetMeAString(string andPutThisOnTheEndOfIt)
 {
 return “This string came from the “ +
 “ SampleFeatureProviderImplementation.\r\n” +
 “The provider description is: “ + Description + “\r\n” +
 “The provider color is: “ + Color + “\r\n” +
 “The provider food is: “ + Food + “\r\n” +
 andPutThisOnTheEndOfIt;
 }

 //Initialize method snipped out for now…
 }
}

79301c10.indd 508 10/6/08 12:15:13 PM

509

Chapter 10: The Provider Model

VB.NET
Imports Microsoft.VisualBasic
Imports System
Imports System.Configuration
Imports System.Configuration.Provider

Namespace SampleFeature
 Public Class SampleFeatureProviderImplementation
 Inherits SampleFeatureProvider
 Private color_Renamed As String
 Private food_Renamed As String
 Private connectionString As String

 Public Overrides ReadOnly Property Color() As String
 Get
 Return color_Renamed
 End Get
 End Property

 Public Overrides ReadOnly Property Food() As String
 Get
 Return food_Renamed
 End Get
 End Property

 Public Overrides Function GetMeAString(_
 ByVal andPutThisOnTheEndOfIt As String) As String
 Return _
 “This string came from the SampleFeatureProviderImplementation.” & _
 Constants.vbCrLf & “The provider description is: “ & _
 Description & _
 Constants.vbCrLf & _
 “The provider color is: “ & _
 Color & Constants.vbCrLf & _
 “The provider food is: “ & _
 Food & Constants.vbCrLf & _
 andPutThisOnTheEndOfIt()
 End Function

 ‘Initialize method snipped out for now…

 End Class
End Namespace

The concrete provider implementation inherits from SampleFeatureProvider and overrides the
two abstract properties as well as the single abstract method defined on the provider base class. The
value of the public properties is established when the provider is initialized, while the public method
simply plays back the property values as well as some extra strings. Assuming that you configure an
instance of SampleFeatureProviderImplementation as the default provider in configuration, a call

79301c10.indd 509 10/6/08 12:15:13 PM

510

Chapter 10: The Provider Model

to SampleFeatureMainEntryPoint.GetMeAString is simply forwarded to the method implementa-
tion shown previously. Remember that the forwarding code in the static feature class references the
static Provider property, which contains a reference to the default provider defined in configuration:

C#
public static string GetMeAString(string someString) {
 return Provider.GetMeAString(someString); }

VB.NET
Public Shared Function GetMeAString(ByVal someString As String) As String
 Return Provider.GetMeAString(someString)
End Function

This is the same approach used by most of the ASP.NET 2.0 and ASP.NET 3.5 provider-based features
and explains why you can use static classes like Membership and these classes just work because their
static methods internally forward their calls to the default feature provider.

Of course, the concrete provider really can’t accomplish anything unless it is initialized first:

C#
public override void Initialize(string name,
 System.Collections.Specialized.NameValueCollection config)
{
 if ((config == null) || (config.Count == 0))
 throw new ArgumentNullException(
 “You must supply a non-null, non-empty value for config.”);

 if (string.IsNullOrEmpty(config[“description”]))
 {
 config.Remove(“description”);
 config.Add(“description”,
 “This would be where you put a localized description for the provider.”);
 }

 //Let ProviderBase perform the basic initialization
 base.Initialize(name, config);

 //Perform feature-specific provider initialization here

 //Color
 if (string.IsNullOrEmpty(config[“color”]))
 {
 color = “The default color for the provider”;
 }
 else
 {
 color = config[“color”];
 }

79301c10.indd 510 10/6/08 12:15:13 PM

511

Chapter 10: The Provider Model

 config.Remove(“color”);

 //Food
 if (string.IsNullOrEmpty(config[“food”]))
 {
 food = “The default food for the provider”;
 }
 else
 {
 food = config[“food”];
 }
 config.Remove(“food”);

 //Get the connection string
 string connectionStringName = config[“connectionStringName”];
 if (String.IsNullOrEmpty(connectionStringName))
 throw new ProviderException(
 “You must specify a connectionStringName attribute for the provider”);

 ConnectionStringsSection cs =
 (ConnectionStringsSection)ConfigurationManager.GetSection(
 “connectionStrings”);
 if (cs == null)
 throw new ProviderException(
 “The <connectionStrings/> configuration section was not defined.”);

 if (cs.ConnectionStrings[connectionStringName] == null)
 throw new ProviderException(
 “The connectionStringName could not be found “ +
 “in the <connectionStrings /> configuration section.”);
 else
 connectionString =
 cs.ConnectionStrings[connectionStringName].ConnectionString;

 if (String.IsNullOrEmpty(connectionString))
 throw new ProviderException(
 “The specified connection string has an invalid value.”);
 config.Remove(“connectionStringName”);

 //Check to see if unexpected attributes were set in configuration
 if (config.Count > 0)
 {
 string extraAttribute = config.GetKey(0);
 if (!String.IsNullOrEmpty(extraAttribute))
 throw new ProviderException(“The following unrecognized attribute was “ +
 “found in the “ + Name + “‘s configuration: ‘“ +
 extraAttribute + “‘“);
 else
 throw new ProviderException(“An unrecognized attribute was “ +
 “found in the provider’s configuration.”);
 }
}

79301c10.indd 511 10/6/08 12:15:13 PM

512

Chapter 10: The Provider Model

VB.NET
 Public Overrides Sub Initialize(_
 ByVal name As String, _
 ByVal config As System.Collections.Specialized.NameValueCollection)
 If (config Is Nothing) OrElse (config.Count = 0) Then
 Throw New ArgumentNullException(_
 “You must supply a non-null, non-empty value for config.”)
 End If

 If String.IsNullOrEmpty(config(“description”)) Then
 config.Remove(“description”)
 config.Add(“description”, _
 “This would be where you put a localized description “ & _
 “for the provider.”)
 End If

 ‘Let ProviderBase perform the basic initialization
 MyBase.Initialize(name, config)

 ‘Perform feature-specific provider initialization here

 ‘Color
 If String.IsNullOrEmpty(config(“color”)) Then
 color_Renamed = “The default color for the provider”
 Else
 color_Renamed = config(“color”)
 End If
 config.Remove(“color”)

 ‘Food
 If String.IsNullOrEmpty(config(“food”)) Then
 food_Renamed = “The default food for the provider”
 Else
 food_Renamed = config(“food”)
 End If
 config.Remove(“food”)

 ‘Get the connection string
 Dim connectionStringName As String = config(“connectionStringName”)
 If String.IsNullOrEmpty(connectionStringName) Then
 Throw New ProviderException(_
 “You must specify a connectionStringName “ & _
 “attribute for the provider”)
 End If

 Dim cs As ConnectionStringsSection = CType _
 (ConfigurationManager.GetSection(“connectionStrings”), _
ConnectionStringsSection)
 If cs Is Nothing Then
 Throw New ProviderException(_
 “The connectionStringName could not be found “ & _
 “in the <connectionStrings /> configuration section.”)
 End If

 If cs.ConnectionStrings(connectionStringName) Is Nothing Then

79301c10.indd 512 10/6/08 12:15:13 PM

513

Chapter 10: The Provider Model

 Throw New ProviderException(_
 “The connectionStringName could not be found “ & _
 “in the <connectionStrings /> configuration section.”)
 Else
 connectionString = cs.ConnectionStrings _
 (connectionStringName).ConnectionString
 End If

 If String.IsNullOrEmpty(connectionString) Then
 Throw New ProviderException(_
 “The specified connection string has an invalid value.”)
 End If
 config.Remove(“connectionStringName”)

 ‘Check to see if unexpected attributes were set in configuration
 If config.Count > 0 Then
 Dim extraAttribute As String = config.GetKey(0)
 If (Not String.IsNullOrEmpty(extraAttribute)) Then
 Throw New ProviderException(_
 “The following unrecognized attribute was “ & _
 “found in the “ & _
 Name & _
 “‘s configuration: ‘“ & _
 extraAttribute & “‘“)
 Else
 Throw New ProviderException(_
 “An unrecognized attribute was “ & _
 “found in the provider’s configuration.”)
 End If
 End If
 End Sub

The name parameter contains the “name” attribute from the provider’s <add /> configuration element,
while the config parameter contains all the other attributes that the configuration runtime found on
the <add /> provider element. The provider first makes a sanity check to ensure that it was passed a
valid collection of configuration attributes. When a provider is initialized via a static feature provider
that in turn uses a configuration class, this sanity check is redundant. However, as mentioned earlier,
there isn’t anything that prevents a developer from attempting to new() up a provider and manually
initialize it (hence, the sanity check).

If a “description” attribute was not supplied in the provider’s <add /> element, or if it was the empty
string, then the provider supplies a default description instead. Although the sample does not show it
here, this is the point at which both ASP.NET 2.0 and ASP.NET 3.5 providers will fall back and return
a localized description for a provider if you did not supply a “description” in configuration. With the
“name” and “description” attributes squared away, the provider calls the Initialize implementation
on ProviderBase. ProviderBase will automatically hook up these two attributes to the Name and
Description properties defined on ProviderBase.

After the base class performs its initialization tasks, the next pieces of code transfer the “color” and
“food” attributes from configuration and hook them up to the provider’s Color and Food properties.
Notice that the provider treats these attributes as optional and automatically supplies default values
if they were not specified in configuration. Because the configuration class for providers treats all

79301c10.indd 513 10/6/08 12:15:13 PM

514

Chapter 10: The Provider Model

attributes other than “name” and “type” as optional, you need to implement code in your custom pro-
viders to either enforce additional required attributes or supply reasonable defaults, as shown in the
sample provider. Also notice how after each configuration attribute is used, the attribute is removed
from the configuration collection with a call to the Remove method.

The next block of logic deals with handling a connection string attribute. The sample feature obviously
does not use any type of connection string, but I included the code for handling connection strings
because it is pretty likely that many of you writing custom providers will need to deal with connection
strings at some point. The sample provider requires a “connectionStringName” attribute on each pro-
vider <add /> element. If it does not find the attribute in the attribute collection passed to Initialize,
the provider throws an exception.

Assuming that the attribute was defined, the provider goes through the following series of steps to get
the actual connection string:

	 1.	 The provider gets a reference to the strongly typed configuration class for the
<connectionStrings /> configuration section. Remember that this was a new section in the
2.0 Framework and currently supported in the 3.5 Framework and is intended to be the place
for storing database connection strings (as opposed to <appSettings />).

	 2.	 The provider looks for the connection string defined by “connectionStringName” in the
<connectionStrings /> section. If there is no such connection string with that name, the
provider throws an exception.

	 3.	 The provider gets the value of the specified connection string and performs a basic verification
to ensure it was not set to the empty string. If the connection string’s value was set to the empty
string, the provider throws an exception.

	 4.	 The provider stores the connection string internally and then removes the
“connectionStringName” attribute from the configuration attribute collection.

By this point, the provider and ProviderBase have processed all the configuration attributes that are
known to the two classes. As a final verification, the provider checks to see if there are any remain-
ing attributes in the configuration attribute collection. If there are remaining attributes, the provider
throws an exception because it does not know what to do with them. This is an important design
point because all the ASP.NET 2.0 and ASP.NET 3.5 providers perform similar processing with their
configuration attributes. For example, if you were to supply additional attributes when configuring a
SqlMembershipProvider, the provider would fail with a similar exception.

One subtle point with the way the Initialize method is coded is that it is possible for the provider
to fail initialization and end up in a sort of ”zombie” state; the provider exists in memory, but it has
not completed enough of its initialization to be of any use. Theoretically, if you could get a reference to
a zombie provider, you could call properties and methods on it, and depending on when the provider
initialization failed, you would get different results. It turns out that the ASP.NET 2.0 and ASP.NET 3.5
providers also have the same small loophole. The ASP.NET providers do not have extra protections that
throw exceptions from public properties or methods because these protections already exist in the static
feature classes. Assuming that you aren’t trying to create and initialize providers manually, the static
feature classes will fail initialization when one of the configured providers throws an exception from
an Initialize call. This, in turn, means that if you attempt to get a reference to a configured provider
via a call to either the Provider or Providers properties on the static feature class, you will also get
an exception.

79301c10.indd 514 10/6/08 12:15:13 PM

515

Chapter 10: The Provider Model

This behavior holds true for the sample feature as well. If a provider fails initialization, attempting to
call SampleFeatureMainEntryPoint.Provider (or Providers) will return a TypeInitialization​
Exception, and you won’t actually be able to get a reference to a “zombie” provider. Of course, you
could still attempt to manually create and initialize a provider, but this approach is outside the intended
usage boundaries of provider-based features. You can certainly implement additional protections in
your providers to cover this case, but because a developer cannot “accidentally” misuse a provider
when going through a static feature class, this design loophole was not addressed in both the 2.0 and
3.5 Frameworks.

Now that you have the end-to-end sample feature coded up (finally!), let’s actually try it out in a few
scenarios. You can compile all the previous code into a standalone assembly. Then reference the assem-
bly from a console application that has the following configuration:

<configuration>
 <configSections>
 <section name=”sampleFeature”
 type=”SampleFeature.SampleFeatureConfigurationSection, SampleFeature”
 allowDefinition=”MachineToApplication” />
 </configSections>

 <sampleFeature >
 <providers>
 <add name=”DefaultSampleFeatureProvider”
 type=”SampleFeature.SampleFeatureProviderImplementation, SampleFeature”
 connectionStringName=”SomeConnectionString”
 color=”red”
 food=”burgers”
 description=”this came from config” />

 <add name=”SecondSampleFeatureProvider”
 type=”SampleFeature.SampleFeatureProviderImplementation, SampleFeature”
 connectionStringName=”SomeConnectionString”
 color=”green”
 food=”milk-shake” />

 <add name=”ThirdSampleFeatureProvider”
 type=”SampleFeature.SampleFeatureProviderImplementation, SampleFeature”
 connectionStringName=”SomeConnectionString” />

 </providers>
 </sampleFeature>

 <connectionStrings>
 <add name=”SomeConnectionString”
 connectionString=”the connection string value” />
 </connectionStrings>

</configuration>

The test application’s configuration includes the <section /> that tells the configuration system
how to parse the <sampleFeature /> configuration element. There are three providers defined for
the sample feature. Notice how the “defaultProvider” is not defined on the <sampleFeature />
element while there is a provider <add /> element using the default value for this attribute of

79301c10.indd 515 10/6/08 12:15:14 PM

516

Chapter 10: The Provider Model

“DefaultSampleFeatureProvider.” The second and third provider definitions do not include a
“description,” whereas the third provider definition defines the bare minimum number of required attri-
butes (that is, “name,” “type,” and “connectionStringName”). Last, there is a <connectionStrings />
section that all the provider definitions reference.

You can use the feature with the following sample test console application:

C#
using System;
using SampleFeature;

namespace SampleFeatureConsoleTest
{
 class Program
 {
 static void Main(string[] args)
 {
 try
 {
 Console.WriteLine(
 SampleFeatureMainEntryPoint.GetMeAString(“console app”));
 }
 catch(Exception ex) { }

 SampleFeatureProvider sp =
 SampleFeatureMainEntryPoint.Providers[“SecondSampleFeatureProvider”];
 string anotherString = sp.GetMeAString(“Using the second provider.”);
 Console.WriteLine(anotherString);

 SampleFeatureProvider sp2 =
 SampleFeatureMainEntryPoint.Providers[“ThirdSampleFeatureProvider”];
 string anotherString2 = sp2.GetMeAString(
 “This provider had no config attributes defined.”);
 Console.WriteLine(anotherString2);
 }
 }
}

VB.NET
Imports Microsoft.VisualBasic
Imports System
Imports System.Collections.Generic
Imports System.Linq
Imports System.Text
Imports SampleFeature

Namespace SampleFeatureConsole
 Friend Class Program
 Shared Sub Main(ByVal args() As String)
 Try
 Console.WriteLine(SampleFeatureMainEntryPoint. _
 GetMeAString(“console app”))

79301c10.indd 516 10/6/08 12:15:14 PM

517

Chapter 10: The Provider Model

 Catch ex As Exception
 End Try

 Dim sp As SampleFeatureProvider =
 SampleFeatureMainEntryPoint.Providers(“SecondSampleFeatureProvider”)
 Dim anotherString As String = sp.GetMeAString _
 (“Using the second provider.”)
 Console.WriteLine(anotherString)

 Dim sp2 As SampleFeatureProvider =
 SampleFeatureMainEntryPoint.Providers(“ThirdSampleFeatureProvider”)
 Dim anotherString2 As String = sp2.GetMeAString _
 (“This provider had no config attributes defined.”)
 Console.WriteLine(anotherString2)

 Console.Read()
 End Sub

 End Class
End Namespace

The sample application works just as you would expect any other provider-based feature to work. With
just the provider definition in configuration, it calls the static feature class to output a string. Internally,
this results in a call to the default provider. The other two code blocks demonstrate accessing the two
nondefault providers and then calling methods directly on them. The sample output is:

This string came from the SampleFeatureProviderImplementation.
The provider description is: this came from config
The provider color is: red
The provider food is: burgers
console app

This string came from the SampleFeatureProviderImplementation.
The provider description is: This would be where you put a localized description
for the provider.
The provider color is: green
The provider food is: milk-shake
Using the second provider.

This string came from the SampleFeatureProviderImplementation.
The provider description is: This would be where you put a localized description
for the provider.
The provider color is: The default color for the provider
The provider food is: The default food for the provider
This provider had no config attributes defined.

You can see how the description varies between the providers, with the second and third providers
relying on the default description defined inside of the provider’s Initialize method. The output
from the third provider also demonstrates how the provider can fall back to reasonable defaults when
option feature-specific attributes are not defined in the provider’s configuration.

If you run the sample console application along with the sample provider code in a debugger, you
can play around with intentionally creating bad configurations. Then you can see how the exception

79301c10.indd 517 10/6/08 12:15:14 PM

518

Chapter 10: The Provider Model

behavior inside of the static feature class’s Initialize method causes the second and third attempts
to call into the feature to fail (this is why the test app eats all exceptions from the first attempt to use
the feature).

Just for grins, you can take the sample feature and drop it into the “/bin” directory of a web applica-
tion. Take the configuration section shown for the sample console application and drop it into the web.
config for a sample web application. Then create a test page with roughly the same code as shown
above for the console application and have it write out the results to a web page. You will get the exact
same feature behavior as was demonstrated for the console application.

Summary
The 2.0 Framework introduced a new design concept with provider-based features, which .NET 3.5 con-
tinues to support and make good use of. Rather than creating features and services where the internal
implementations are “black boxes,” the new provider-based features allow you to author custom imple-
mentations of business logic and data access logic. You can then swap these custom implementations
into place with a few simple configuration settings.

The core design pattern used by provider-based features is the Strategy pattern. The Strategy pattern is
a design approach that allows you to plug in different implementations for the core logic of a feature. In
the case of both the 2.0 or 3.5 Frameworks and both ASP.NET 2.0 and ASP.NET 3.5, the providers are the
implementation of the Strategy design pattern.

A number of support classes exist in System.Configuration, System.Configuration.Providers
and System.Web.Configuration to make it easier to write provider-based features yourself. You can
use the existing provider base class in conjunction with provider-specific configuration classes to build
the basic underpinnings of a provider-based feature.

Overall the sample provider-based feature that was shown had roughly 200 lines for code (and that
includes the braces!). Approximately half of the code is boilerplate implementation of things like the
provider collection and the configuration class. However, with around only 100 lines of actual initial-
ization code (and again the basics of initialization are the same regardless of feature), you can create
a custom provider-based feature that you can use across the spectrum of fat client and web-based
applications.

79301c10.indd 518 10/6/08 12:15:14 PM

11
Membership

One of the unique aspects of ASP.NET 2.0 and ASP.NET 3.5 is that they introduce a number of pow-
erful application services that are built using the provider model. Membership is one of the services
addressing the common need that websites have for creating and managing users and their creden-
tials. Although the Membership feature ships with a great deal of functionality right out of the box,
it is also fl exible enough for you to customize or extend many of the core aspects of the feature.

This chapter discusses the core classes of the Membership feature: the public static Membership
class, the base MembershipProvider class, and the MembershipUser class all include func-
tionality that is common regardless of the kind of providers used with the feature. You will see
the various coding assumptions baked into the Membership feature for each of these classes.
MembershipProvider is covered in detail so that you get a better idea about what needs to be
implemented as well as the general behavior that ASP.NET expects from custom providers.

Last, you gain some insight into miscellaneous design concepts and areas of the Membership
feature. The idea of user uniqueness is covered along with guidance about how to create a cus-
tom hash algorithm for use by providers. You also see how you can use the Membership feature
in applications other than ASP.NET websites.

This chapter will cover the following topics:

The ❑❑ Membership class

The ❑❑ MembershipUser class

The ❑❑ MembershipProvider base class

The “primary key” for membership❑❑

Supported environments❑❑

Using custom Hash algorithms❑❑

79301c11.indd 519 10/6/08 12:15:36 PM

520

Chapter 11: Membership

The Membership Class
Probably the first exposure many of you had to the Membership feature was through the similarly
named Membership class. This class is defined as a public static class, and the style of programming
you use with it is meant to parallel other common ASP.NET classes such as Request, Response, and
so on. Rather than having to muddle around trying to figure out how to get up and running with the
feature, the idea is that after developers know of the Membership class, they can quickly access the
functionality of the feature.

As with many provider-based features, the most important task the Membership class provides has
already completed before any of your code does anything substantial with the feature. The previous
chapter, on the provider model, showed how a static feature class is responsible for initializing a fea-
ture, including the instantiation and initialization of all providers associated with the feature. Because
the Membership class is static, it performs initialization only once during the lifetime of an application.
Furthermore, it instantiates only one instance of each configured MembershipProvider. So, if you
plan on writing custom MembershipProviders, you need to follow the guidelines from Chapter 10 to
ensure that your custom providers are thread-safe in all public properties and methods.

Although the Membership class is static, for historical reasons (the Membership feature was imple-
mented very early on in the development cycle of ASP.NET 2.0) the class doesn’t take advantage of the
2.0 Framework’s support for static constructors. Instead, if you were to disassemble the class you would
see that it has an internal initialization method that implements locking semantics to ensure that it ini-
tializes the feature only once. Furthermore, scattered (or perhaps more accurately, liberally spammed)
through all the properties and methods are internal calls to the initialization method to ensure that the
feature has parsed configuration and instantiated providers before attempting to do anything substan-
tial with the feature.

If you look at the public signature of the Membership class, the properties and methods are broken
down into three general areas:

Public properties that mirror data loaded from configuration❑❑

Public methods that are just façades on top of the underlying default provider❑❑

Utility methods that can be used by providers❑❑

Before delving into each of these areas though, you need to be familiar with the difference between
the feature’s providers, and the feature’s default provider. By now, you have probably seen many exam-
ples of the Membership feature’s configuration. The default configuration can always be found up in
machine.config (more on why this is the case a little bit later).

Because you can configure multiple providers for the Membership feature, much of the public API on the
Membership static class may seem a bit redundant. Furthermore, you might wonder how a method like
Membership.CreateUser maps to all the providers you have configured. This is where the concept of
the default provider comes in. The <membership /> configuration element has a defaultProvider
attribute that defines the specific provider that the static Membership class “talks” to for much of its API.

<membership defaultProvider=”SomeProviderDefinition”>
 <providers>
 <add name=”SomeProviderDefinition” … />

79301c11.indd 520 10/6/08 12:15:36 PM

521

Chapter 11: Membership

 <add name=”A_Different_Provider_Definition” … />
 </providers>
</membership>

If you have only one provider defined in configuration, using the static Membership class and getting
a reference to the single default provider are pretty much the same thing. The only difference between
the two approaches is that the static Membership class provides several convenient overloads that map
to the method signatures found on a MembershipProvider. For example, several CreateUser over-
loads on the static Membership class internally map to the single CreateUser method that is defined
on MembershipProvider.

However, if you have multiple provider references in configuration, it is almost guaranteed that the
static Membership class will be of limited use to you. In fact, I would go so far as to say that other than
using the Membership class for reading global Membership configuration settings, you probably won’t
use the Membership class at all in this scenario. By way of example, even the login controls that rely
heavily on the Membership feature don’t make much use of the static Membership class. Instead, the
login controls get a reference to individual providers via the Membership.Providers property and
then invoke various pieces of functionality directly on the providers with a MembershipProvider
reference.

Of all the properties available on the Membership class, only the following ones are global to the
feature:

HashAlgorithmType❑❑ : This is a string property that echoes back the value of the
hashAlgorithmType attribute from configuration. It is mainly of use to custom provider
implementers that need to know which hash algorithm an application expects from its
providers.

Provider❑❑ : Returns a MembershipProvider reference to the provider defined by the
defaultProvider attribute on the <membership /> configuration element. If you have
only one provider, you probably won’t use this property.

Providers❑❑ : Returns a MembershipProviderCollection containing one reference to each
provider defined within the <providers /> element contained within a <membership />
element. If your application needs to use multiple providers, you will become very familiar
this property.

UserIsOnlineTimeWindow❑❑ : Defines the number of minutes that should be used to determine
whether a user has been considered active on the site.

Several other static public properties are available on the Membership class, but I won’t list them here.
These properties are just part of the Membership façade that maps to the same set of properties on the
default provider. So, if you access the Membership.PasswordStrengthRegularExpression property
for example, you are really retrieving the value of the PasswordStrengthRegularExpression prop-
erty from the default Membership provider. There is also a public event definition: the Validating​
Password event. If you register an event handler with this property, in reality you are registering
your event handler with the default provider.

Most of the public methods on the Membership class are also façades that just forward their calls
internally to the default provider. The purpose of these façade methods is to make the underlying
MembershipProvider API a little less intimidating. As such, the façade methods “fill in the blanks”
for method overloads that have fewer parameters than their counterparts on the MembershipProvider

79301c11.indd 521 10/6/08 12:15:36 PM

522

Chapter 11: Membership

class. On one hand, for example, administrative methods like Membership.FindUsersByName don’t
require you to supply more advanced parameters such as page index or page size; you can just call the
narrower overloads on the Membership class without having to juggle the extra information. On the
other hand, if you take advantage of this functionality with a 100,000 user data store, you will quickly
regret not using the wider overloads that support paging.

This leads to a bit of a philosophical question: to use or not to use the façade methods on the static
Membership class. If you are just writing a small site for yourself and you want to get up and running
with a minimum of hassle, all the façade methods are reasonable. However, if you plan on having more
than a few hundred users on your site, and definitely if you are working on production-grade line-of-
business or Internet-facing applications, you should look more carefully at the façade methods that you
use. At a minimum, I would recommend using the widest overloads possible because they give you full
access to all the parameters from the underlying MembershipProvider.

To be absolutely flexible, though, and to ensure your applications are maintainable over the long haul,
you should use the Membership.Providers property to get a reference to the desired provider, and
then use the resulting MembershipProvider reference to carry out your tasks. This programming
style will give you the flexibility in the future to use multiple providers in your application, something
that will be somewhat monotonous to retrofit into an application that relied exclusively on the static
Membership class:

C#
//This is OK for simpler applications
MembershipUser mu = Membership.CreateUser(“I_am_new”,”123password@#”);

//This is better to use for larger applications
MembershipProvider mp = Membership.Providers[“Provider_Number_2”];

MembershipCreateStatus status;
MembershipUser mu;
mu = mp.CreateUser(“username”, “12password@#”, “email”,
 “passwordquestion”, “passwordanswer”,
 true /*isApproved*/, null /*providerUserKey*/, out status);

VB.NET
 ‘This is OK for simpler applications
 Dim mu As MembershipUser = Membership.CreateUser(“I_am_new”, “123password#”)
 ‘This is better to use for larger applications
 Dim mp As MembershipProvider = Membership.Providers(“Provider_Number_2”)
 Dim status As MembershipCreateStatus
 Dim mu As MembershipUser
 mu = mp.CreateUser(“username”, _
 “12password@#”, _
 “email”, _
 “passwordquestion”, _
 “passwordanswer”, _
 True, _
 Nothing, _
 status)

79301c11.indd 522 10/6/08 12:15:36 PM

523

Chapter 11: Membership

Obviously, it is a bit more of a hassle to use the provider directly in this case because the CreateUser
overload supports quite a few more parameters. But after you code it this way, it is much easier to swap
out providers later, potentially even adding logic that chooses a different provider on the fly based on
information supplied by the user. It also makes it easier to adjust the code if you choose to turn on or off
features like unique email addresses and self-service password resets.

The third set of methods on the Membership class are utility methods. Currently, there is only one:
GeneratePassword. If you write custom providers that support self-service password reset with auto-
generated passwords, this method comes in handy. The method signature is shown here:

C#
 Public Shared Function GeneratePassword(ByVal length As Integer, _
 ByVal numberOfNonAlphanumericCharacters As Integer) _
 As String

VB.NET
 Public Shared Function GeneratePassword(ByVal length As Integer, _
 ByVal numberOfNonAlphanumericCharacters As Integer) _
 As String

One mode of self-service password reset automatically generates a random password when a user has
forgotten his or her password. Because generating a string random password is a pain to get correct, it
is actually a handy utility to have around.

The method generates a random string of characters based on the length parameter. Furthermore, it
will ensure that at least a number of these characters are considered to be nonalphanumeric charac-
ters (for example, Char.IsLetterOrDigit returns false for a certain number of random characters)
based on the second parameter. Note that the method may generate a password with more nonalpha-
numeric characters than specified by the numberOfNonAlphanumericCharacters parameter; you are
only guaranteed that the auto-generated password has at least this many nonalphanumeric characters.
Last, the method ensures that each randomly generated character won’t trigger a false positive from
ASP.NET’s request validation functionality. It would be frustrating to say the least if the system auto-
generated a new password only for the poor website user to always be rejected on the login page
because ASP.NET detected a potentially suspicious character in the submitted password when request
validation was turned on.

The MembershipUser Class
Regardless of whether you code against the static Membership class or directly against Membership​
Providers, you will invariable deal with the MembershipUser class. The MembershipUser class is
intended to be a lightweight representation of a user (though in retrospect it is just a tad bit too light-
weight—hopefully, basic information such as first name, last name, and/or friendly name will be tacked
on in a future release). The class is not intended to be an exhaustive or comprehensive representation of
everything you would ever want to store about a user.

For ASP.NET 2.0 and ASP.NET 3.5, if you need to store more extensive information about a user, the
usual approach is to leverage the Profile feature by defining the additional properties you need within
the <profile /> configuration section. Alternatively, you can author a custom provider (perhaps

79301c11.indd 523 10/6/08 12:15:37 PM

524

Chapter 11: Membership

deriving from an existing provider type) that works with a derived version of MembershipUser. Using
the Profile feature is definitely the simpler of the two approaches. However, writing a custom pro-
vider and custom MembershipUser class is appropriate if you do not want to use the Profile feature
in your website. For more about the different approaches used to extend the Membership provider
model in ASP.NET 2.0 and ASP.NET 3.5, see the article at http://www.code-magazine.com/Article​
.aspx?quickid=0703071). It will give you a detailed explanation on how to set up a custom Member-
ship provider that attaches additional data into the MembershipUser without using the Profile feature.

The main purpose of the MembershipUser class is to contain the basic pieces of information relevant to
authenticating a user. Some of the properties are self-explanatory, but I have listed them here with an
explanation for each:

Comment❑❑ : Intended as the one generic property on MembershipUser that you can use to store
any information you deem appropriate. No part of the Membership feature makes use of this
property, and it is safe to say that future releases of the Membership feature will also leave this
property alone. Although you can go overboard and implement entire universes of functional-
ity with this property, it comes in handy when you need to store just a few extra pieces of infor-
mation and need a convenient place to put them, perhaps those pesky first name and last name
properties!

Username❑❑ : This is the username that your website users type when logging in. It is also one
component of the primary key for users in the Membership feature and other related ASP.NET
application services.

CreationDate❑❑ : The date and time when the user was first created in the back-end data store.
The property returns its value as a local date time, but the expectation is that providers store it
in universal coordinate date time (UTC).

ProviderUserKey❑❑ : An alternate representation of the primary key for a MembershipUser.
Where Username is considered to be part of the primary key for identifying a user across all
ASP.NET features, the ProviderUserKey is a data-store specific primary key for the user. This
can be useful when retrofitting a custom MembershipProvider onto an existing data store and
you want to integrate it with other features you have written that already rely on a data-store-
specific primary key. Note that because this property is typed as object, it is up to you to make
the correct type casts within your code.

ProviderName❑❑ : The string name of the provider that manages the MembershipUser instance.
Because the MembershipUser class supports a number of methods that deal with the user
object, each user object needs to know the provider that should be called. In other words, a
MembershipUser’s methods act as a mini-façade on top of the provider that initially was
responsible for creating the MembershipUser. As a side note, the reason that this property is a
string (it was a MembershipProvider reference early on in ASP.NET 2.0 and is kept the same
in ASP.NET 3.5) is to make it possible to serialize a MembershipUser instance. If this property
had been left as a reference type, this would have required all MembershipProvider instances
to also be serializable.

Email❑❑ : An optional email address for the user. This property is very important if you want to
support self-service password resets because without an email address there is no way to com-
municate to the users the newly generated password or their old password.

IsApproved❑❑ : A Boolean property that provides a basic mechanism for indicating whether a
user is actually allowed to log into a site. If you set IsApproved to false for a user, even if
the user supplies the correct username-password credentials at login, the login attempt (that

79301c11.indd 524 10/6/08 12:15:37 PM

525

Chapter 11: Membership

is, the call to ValidateUser) will fail. With the IsApproved property, you can implement a
basic two-step user creation process where external customers request an account and internal
personnel approve each account. The Web Administration Tool that is accessible inside of the
Visual Studio environment provides a UI for this type of basic two-step creation process.

IsOnline❑❑ : A Boolean property indicating whether the user has been active on the site within
the last Membership.UserIsOnlineTimeWindow minutes. The actual computation of whether
a user is considered online is made inside of this property by comparing the LastActivity-
Date property for the user to the current UTC time on the web server. If you rely on this prop-
erty, make sure that your web servers regularly synchronize their time with a common time
source. Note that the IsOnline property is not virtual in this release, so if you want to imple-
ment alternate logic for IsOnline, you have to add your own custom property to a derived
implementation of MembershipUser.

IsLockedOut❑❑ : A Boolean property indicating whether the user account has been locked out due
to a security violation. This property has a distinctly different connotation from the IsApproved
property. While IsApproved simply indicates whether a user should be allowed to log into a
site, IsLockedOut indicates whether an excessive number of bad login attempts have occurred.
If you support self-service password reset or password retrieval using a password question-
and-answer challenge, this property also indicates whether an excessive number of failed
attempts were made to answer the user’s password question.

PasswordQuestion❑❑ : You can choose to support self-service password resets or self-service
password retrieval on your site. For added protection, you can require that the user answer a
password question before resetting the password or retrieving the current password. This prop-
erty contains the password question that was set for the user. It is up to you whether to allow each
user to type in a unique question, or if you provide a canned list of password questions. Note that
even though you can retrieve the password question for a user, the password answer is not
exposed as a property because it should only be managed internally by providers.

LastActivityDate❑❑ : The last date and time that the user was considered to be active. Certain
methods defined on MembershipProvider are expected to update this value in the back-end
data store when called. Other companion features, such as Profile and Web Parts Personaliza-
tion, update this value assuming that you use the ASP.NET SQL providers for all these features.
The property is returned as a local date time, but providers should internally store the value in
UTC time.

LastLoginDate❑❑ : The last date and time a successful call to ValidateUser occurred. Provid-
ers are expected to update this value after each successful password validation. The property is
returned as a local date time, but providers should internally store the value in UTC time.

LastPasswordChangedDate❑❑ : The last date and time that the password was changed, either
by the user explicitly updating their password or by having the system create a new auto-
generated password. The property is returned as a local date time, but providers should inter-
nally store the value in UTC time.

LastLockoutDate❑❑ : The last date and time that the user account was locked out, either due to
an excessive number of bad passwords or because too many bad password answers were sup-
plied. This value is only expected to be reliable when the account is in a locked out state (that
is, this.IsLockedOut is true). For accounts that are not locked out, this property may instead
return a default value. The property is returned as a local date time, but providers should inter-
nally store the value in UTC time.

79301c11.indd 525 10/6/08 12:15:37 PM

526

Chapter 11: Membership

Extending MembershipUser
The MembershipUser class is public but it is not sealed, so you can write derived versions of this
class. Most of its public properties are defined virtual for this reason. In fact, the ActiveDirectory​
MembershipProvider takes advantage of this and uses a derived version of MembershipUser to help
optimize the interaction of the provider with an Active Directory or Active Directory Application
Mode data store.

The class definition for MembershipUser is:

C#
public class MembershipUser
{
 //Virtual properties
 public virtual string UserName{ get; }
 public virtual object ProviderUserKey{ get; }
 public virtual string Email{ get; set; }
 public virtual string PasswordQuestion{ get; }
 public virtual string Comment{ get; set; }
 public virtual bool IsApproved{ get; set; }
 public virtual bool IsLockedOut{ get; }
 public virtual DateTime LastLockoutDate{ get; }
 public virtual DateTime CreationDate { get; }
 public virtual DateTime LastLoginDate { get; set; }
 public virtual DateTime LastActivityDate { get; set; }
 public virtual DateTime LastPasswordChangedDate { get; }
 public virtual string ProviderName { get; }

 //Non-virtual properties
 public bool IsOnline { get; }

 //Constructors
 public MembershipUser(
 string providerName,
 string name,
 object providerUserKey,
 string email,
 string passwordQuestion,
 string comment,
 bool isApproved,
 bool isLockedOut,
 DateTime creationDate,
 DateTime lastLoginDate,
 DateTime lastActivityDate,
 DateTime lastPasswordChangedDate,
 DateTime lastLockoutDate)
 protected MembershipUser() { }

 //Methods - all are virtual
 public virtual string GetPassword()
 public virtual string GetPassword(string passwordAnswer)
 public virtual bool ChangePassword(string oldPassword, string newPassword)
 public virtual bool ChangePasswordQuestionAndAnswer(
 string password, string newPasswordQuestion, string newPasswordAnswer)

79301c11.indd 526 10/6/08 12:15:37 PM

527

Chapter 11: Membership

 public virtual string ResetPassword(string passwordAnswer)
 public virtual string ResetPassword()
 public virtual bool UnlockUser()
}

VB.NET
Public Class MembershipUser
 ‘ Overridable Properties
 Public Overridable Property Comment() As String
 Public Overridable ReadOnly Property CreationDate As DateTime
 Public Overridable Property Email As String
 Public Overridable Property IsApproved As Boolean
 Public Overridable ReadOnly Property IsLockedOut As Boolean
 Public Overridable Property LastActivityDate As DateTime
 Public Overridable ReadOnly Property LastLockoutDate As DateTime
 Public Overridable Property LastLoginDate As DateTime
 Public Overridable ReadOnly Property LastPasswordChangedDate As DateTime
 Public Overridable ReadOnly Property PasswordQuestion As String
 Public Overridable ReadOnly Property ProviderName As String
 Public Overridable ReadOnly Property ProviderUserKey As Object
 Public Overridable ReadOnly Property UserName As String

 ‘ Non-Overridable Properties
 Public ReadOnly Property IsOnline As Boolean
 ‘ Constructors
 Protected Sub New()

 Public Sub New(ByVal providerName As String, ByVal name As String, _
 ByVal providerUserKey As Object, ByVal email As String, _
 ByVal passwordQuestion As String, ByVal comment As String, _
 ByVal isApproved As Boolean, ByVal isLockedOut As Boolean, _
 ByVal creationDate As DateTime, ByVal lastLoginDate As DateTime, _
 ByVal lastActivityDate As DateTime, ByVal lastPasswordChangedDate As DateTime, _
 ByVal lastLockoutDate As DateTime)

 ‘ Methods - all are overridable
 Public Overridable Function ChangePassword(ByVal oldPassword As String, _
 ByVal newPassword As String) As Boolean

 Friend Function ChangePassword(ByVal oldPassword As String, _
 ByVal newPassword As String, ByVal throwOnError As Boolean) As Boolean

 Public Overridable Function ChangePasswordQuestionAndAnswer _
 (ByVal password As String, _
 ByVal newPasswordQuestion As String, ByVal newPasswordAnswer _
 As String) As Boolean

 Public Overridable Function GetPassword() As String
 Friend Function GetPassword(ByVal throwOnError As Boolean) As String
 Public Overridable Function GetPassword(ByVal passwordAnswer As String) As String

 Friend Function GetPassword(ByVal answer As String, _
 ByVal throwOnError As Boolean) As String

79301c11.indd 527 10/6/08 12:15:37 PM

528

Chapter 11: Membership

 Private Function GetPassword(ByVal answer As String, _
 ByVal useAnswer As Boolean, ByVal throwOnError As Boolean) As String

 Public Overridable Function ResetPassword() As String
 Friend Function ResetPassword(ByVal throwOnError As Boolean) As String
 Public Overridable Function ResetPassword(ByVal _
 passwordAnswer As String) As String

 Friend Function ResetPassword(ByVal passwordAnswer As String, _
 ByVal throwOnError As Boolean) As String

 Private Function ResetPassword(ByVal passwordAnswer As String, _
 ByVal useAnswer As Boolean, ByVal throwOnError As Boolean) As String

 Public Overrides Function ToString() As String
 Public Overridable Function UnlockUser() As Boolean
 Friend Overridable Sub Update()
 Private Sub UpdateSelf()
End Class

As mentioned earlier, the IsOnline property cannot be overridden, so you are left with the default
implementation. All the other properties, though, can be overridden. The default implementation for
these properties simply returns the property values that were set when the object was first constructed.
As you can see from the lengthy constructor parameter list, the usage model for MembershipUser is:

	 1.	 Either a provider or your code new()’s up an instance, passing in all the relevant data.

	 2.	 You subsequently access the properties set in the constructor via the public properties.

	 3.	 If you want to then update the MembershipUser object, you pass the modified instance back
to the UpdateUser method implemented either on the static Membership class or on a specific
MembershipProvider.

Note that with this approach, updating the user is a little awkward because there is no update method
on the user object itself. Instead, the user object is passed as a piece of state to the UpdateUser method
on a provider.

The capability to override individual properties is somewhat limited, though, because you don’t have access
to the private variables that back each of these properties. The most likely purpose of an override would be
to throw an exception (for example, NotSupportedException) for properties that may not be supported
by custom providers. For example, if you authored a custom provider that did not support the concept of
account lockouts, you could throw a NotSupportedException from a LastLockoutDate override.

All the public methods currently defined on MembershipUser can be overridden. The default imple-
mentations of these methods are just façades that do two things:

Get a reference to the ❑❑ MembershipProvider based on the providerName parameter supplied
in the constructor.

Call the method on the ❑❑ MembershipProvider reference that corresponds to the public method
on the MembershipUser object (for example, the ResetPassword overloads on Membership​User
call the ResetPassword method on the appropriate provider).

79301c11.indd 528 10/6/08 12:15:37 PM

529

Chapter 11: Membership

The providerName parameter on the constructor is actually a very important piece of information that
effectively limits any kind of “tricks” involving manual creation of providers. Remember from Chapter
10 that the provider initialization sequence is something that you can accomplish with a few lines of
your own custom code.

However, if you attempt to instantiate MembershipProviders with your own code, and if you need to
manipulate MembershipUser instances, your code will fail. Inside of the MembershipUser constructor,
a validation check ensures providerName actually exists in the Membership.Providers collection. If
the provider cannot be found, an exception is thrown. If you wanted to try something like spinning up
dozens or hundreds of provider instances on the fly without first defining the providers in configura-
tion, the basic approach or just instantiating providers manually won’t work.

MembershipUser State after Updates
If you call any of the public methods on MembershipUser that affect the state of the user object (that is,
all methods except for the GetPassword overloads), then the MembershipUser instance calls an internal
method called UpdateSelf. Unfortunately, in ASP.NET 2.0 and ASP.NET 3.5 this method is not public
or protected, let alone being defined as virtual, so the behavior of this method is a black box. What hap-
pens is that after the state of the MembershipUser instance is modified, the base class internally triggers
a call to GetUser() on the user object’s associated provider instance. If you look at an SQL trace on the
SqlMembershipProvider, or if you trace method calls on a custom provider, this is why you always see
an extra user retrieval running after most of the methods on MembershipUser are called.

With the MembershipUser instance returned from the GetUser call, the internal UpdateSelf
method transfers the latest property values from the returned MembershipUser instance to the prop-
erties on the original MembershipUser instance. The idea here is that some of the public methods on
MembershipUser cause changes to related properties (for example, calling ResetPassword implicitly
changes the LastPasswordChangedDate). The theory was that it wouldn’t make sense for a method call
to change the state of the MembershipUser instance and then have the instance not reflect the changes.
However, arguably there isn’t anything wrong with a different approach that would have left the origi-
nal MembershipUser instance intact despite the changes in the data store. Some developers will prob-
ably find it a little odd that the original MembershipUser instance suddenly changes on them.

Because some of the properties on a MembershipUser instance are public read-only properties, the
behavior of this self-updating gets a little weird. The UpdateSelf method transfers updated values for
read-only properties directly to the private variables of the MembershipUser base class. For properties
that have setters, UpdateSelf transfers property data by calling the public MembershipUser setters
instead. This means that if you have written a derived MembershipUser class, and overridden the pub-
lic setters and the constructors, the UpdateSelf behavior may either bypass your custom logic or it
may call your logic too many times.

For example, if a derived MembershipUser class overrides the constructor and performs some manipu-
lations on PasswordQuestion prior to calling the base constructor, then the private variable holding
the password question will reflect this work. If you then subsequently call ChangePasswordQuestion​
AndAnswer on the MembershipUser instance, the internal UpdateSelf method will cause the following
to occur:

	 1.	 A new MembershipUser instance is retrieved from the call to GetUser (assume that you write
a custom provider that returns a derived MembershipUser instance). As a result, this new
instance will have its password question processed in your custom constructor.

79301c11.indd 529 10/6/08 12:15:37 PM

530

Chapter 11: Membership

	 2.	 UpdateSelf then takes the result of MembershipUser.PasswordQuestion and transfers its
value directly to the private variable on the original MembershipUser instance that stores the
question.

With this sequence you are probably OK because the custom processing in your constructor happened
only once and then the result was directly stored in a private variable on the original instance. What
happens, though, for a property with a public setter (for example, the Comment property)? Now the
sequence of steps is:

	 1.	 A new MembershipUser instance is retrieved from the call to GetUser. The new instance does
something to the Comment in your custom constructor.

	 2.	 UpdateSelf takes the result of MembershipUser.Comment and calls the public Comment setter
on the original MembershipUser instance. If you have custom logic in your setter as well, then
it will end up manipulating the Comment property a second time, which will potentially result
in a bogus value.

To demonstrate this, start out with a custom MembershipUser type, as shown below:

C#
using System.Web.Security;
…
public class CustomMembershipUser : MembershipUser
{
 public CustomMembershipUser() {}

 //Copy constructor
 public CustomMembershipUser(MembershipUser mu) :
 base(mu.ProviderName, mu.UserName, mu.ProviderUserKey, mu.Email,
 mu.PasswordQuestion, mu.Comment, mu.IsApproved, mu.IsLockedOut,
 mu.CreationDate, mu.LastLoginDate, mu.LastActivityDate,
 mu.LastPasswordChangedDate, mu.LastLockoutDate) { }

 public override string Comment
 {
 get
 { return base.Comment; }
 set
 {
 base.Comment =
 value + “ Whoops! Extra modification occurred in property setter”;
 }
 }
}

VB.NET
Imports System.Web.Security

...

Public Class CustomMembershipUser
 Inherits MembershipUser

79301c11.indd 530 10/6/08 12:15:37 PM

531

Chapter 11: Membership

 Public Sub New()
 End Sub

 Public Sub New(ByVal providerName As String, _
 ByVal name As String, ByVal providerUserKey As Object, _
 ByVal email As String, ByVal passwordQuestion As String, _
 ByVal comment As String, ByVal isApproved As Boolean, _
 ByVal isLockedOut As Boolean, ByVal creationDate As DateTime, _
 ByVal lastLoginDate As DateTime, _
 ByVal lastActivityDate As DateTime, _
 ByVal lastPasswordChangedDate As DateTime, _
 ByVal lastLockoutDate As DateTime)
 MyBase.New(providerName, name, providerUserKey, email, _
 passwordQuestion, comment, isApproved, _
 isLockedOut, creationDate, lastLoginDate, _
 lastActivityDate, lastPasswordChangedDate, lastLockoutDate)
 End Sub

 Public Overrides Property Comment() As String
 Get
 Return MyBase.Comment
 End Get
 Set(ByVal value As String)
 MyBase.Comment = value & _
 “ Whoops! Extra modification occurred in property setter”
 End Set
 End Property
End Class

Try using this custom type to retrieve a MembershipUser and perform what should be a no-op update:

C#
…
MembershipUser mu = Membership.GetUser(“testuser”);

//Convert the MembershipUser into the custom user type
CustomMembershipUser cu = new CustomMembershipUser(mu);

Response.Write(“Comment before update: “ + cu.Comment + “
”);
Membership.UpdateUser(cu);
Response.Write(“Comment after update: “ + cu.Comment);

VB.NET
…
Dim mu As MembershipUser = Membership.GetUser(“testuser”)
mu.Comment = “This is the original comment”
Membership.UpdateUser(mu)

Dim cu As New CustomMembershipUser(mu)

Response.Write(“Comment before update: “ & cu.Comment & “
”)
Membership.UpdateUser(cu)

Response.Write(“Comment after update: “ & cu.Comment)

79301c11.indd 531 10/6/08 12:15:37 PM

532

Chapter 11: Membership

When you run this code snippet in a page load event, the output is bit surprising:

Comment before update: This is the original comment
Comment after update: This is the original comment Whoops! Extra modification
occurred in property setter

Even though the code snippet appears to change none of the properties on the MembershipUser
instance, after the update the Comment property has clearly been modified. This is due to the behavior
of the internal UpdateSelf method on MembershipUser; in this case, UpdateSelf was triggered by
code inside of the Membership class implementation of UpdateUser. (Membership.UpdateUser calls
an internal method on MembershipUser which in turn calls UpdateSelf). You will see the same side
effect from calling methods on MembershipUser as well. If you run into this problem, you can avoid
the “stealth” update by calling UpdateUser on a provider directly. Doing so bypasses the refresh logic
hidden inside of the Membership and MembershipUser classes.

It is likely, though, that derived versions of MembershipUser probably won’t be changing the data that
is returned inside of property setters. However, developers may author derived classes that implement
custom dirty detection (that is, if the setters weren’t called and an update is attempted, do nothing with
the MembershipUser object) as well as throw exceptions from unsupported properties.

For the case of dirty detection, the only real workaround is to override the methods as well as the prop-
erties on MembershipUser. Then you can write code in the method overrides that does something like:

C#
using System.Web.Security;

public class CustomMembershipUser : MembershipUser
{
 //Used by a custom provider to determine if the user object really
 //needs to be updated.
 internal bool isDirty = false;
…
 public override string Comment
 {
 set
 {
 base.Comment = value;
 isDirty = true;
 }
 }

 public override bool ChangePassword(string oldPassword, string newPassword)
 {
 //When this call returns, UpdateSelf will have triggered the object’s
 //dirty flag by accident.
 bool retVal = base.ChangePassword(oldPassword, newPassword);

 //reset your private dirty tracking flags to false at this point
 isDirty = false;
 }
}

79301c11.indd 532 10/6/08 12:15:37 PM

533

Chapter 11: Membership

VB.NET
Imports System.Web.Security

Public Class CustomMembershipUser
 Inherits MembershipUser

 ‘Used by a custom provider to determine if the user object really
 ‘needs to be updated.
 Friend isDirty As Boolean = False

…

 Public Overrides WriteOnly Property Comment() As String
 Set(ByVal value As String)
 MyBase.Comment = value
 isDirty = True
 End Set
 End Property

 Public Overrides Function ChangePassword(ByVal oldPassword As String, _
 ByVal newPassword As String) As Boolean
 ‘When this call returns, UpdateSelf will have triggered the object’s
 ‘dirty flag by accident.
 Dim retVal As Boolean = MyBase.ChangePassword(oldPassword, newPassword)
 ‘reset your private dirty tracking flags to false at this point
 isDirty = False
 End Function
End Class

On one hand, basically you need to explicitly manage your dirty detection logic and ensure that after
you call the base implementation, your reset your internal dirty detection flags because they may have
been spuriously tripped due to the way UpdateSelf works.

On the other hand, if you throw exceptions from some of your property getters and setters, you may be
wondering if it is even possible to write a derived MembershipUser class. Theoretically, if the second the
internal UpdateSelf method attempts to transfer property data back to the original Membership​User
instance, your custom class should blow up. In the finest programming tradition (and trust me; I mean
this tongue in cheek), the solution in ASP.NET 2.0 and ASP.NET 3.5 is that the transfer logic inside of
UpdateSelf is wrapped in a series of try-catch blocks. So, the guts of this method look something like:

C#
try
{
 Comment = newUserFromGetUser.Comment;
}
catch (NotSupportedException) { }

VB.NET
Try
 Comment = newUserFromGetUser.Comment
Catch e1 As NotSupportedException
End Try

79301c11.indd 533 10/6/08 12:15:38 PM

534

Chapter 11: Membership

And here you thought jokes about Microsoft code relying on swallowing exceptions was a joke; however,
ildasm.exe does not lie. Seriously though, the trick to making sure that a derived MembershipUser
class does not fail because of unimplemented properties is to always throw a NotSupportedException
(or a derived version of this exception) from any properties that you do not want to support. The internal
UpdateSelf will always eat a NotSupportedException when it is transferring property data between
MembershipUser instances. If you use a different exception type, though,you will quickly see that your
derived MembershipUser type fails whenever its public set methods are called. Needless to say, making
UpdateSelf protected virtual is on the list of enhancements for a future release!

The way in which updated property data is transferred back to the original MembershipUser instance
is summarized in the following table:

Property Name Transferred to Private Variable Transferred Using Public Setter

Comment No Yes

CreationDate Yes No

Email No Yes

IsApproved No Yes

IsLockedOut Yes No

LastActivityDate No Yes

LastLockoutDate Yes No

LastLoginDate No Yes

LastPasswordChangedDate Yes No

PasswordQuestion Yes No

ProviderUserKey Yes No

Why Are Only Certain Properties Updatable?
Only a subset of the properties on a MembershipUser instance has public setters. The reasons for
this differ depending on the specific property. The different reasons for each read-only property are
described in the following list:

UserName❑❑ : In this release of the Membership feature, a username is considered part of the
primary key for a MembershipUser. As a result, there is no built-in support for updating the
username. There are no public APIs in any of the application services that allow you to make
this change, though of course there is nothing stopping enterprising developers from tweaking
things down in the data layer to make this work. From an API perspective, because username is
not meant to be updated, this property is left as a read-only property.

ProviderUserKey❑❑ : Because this property is a data-store specific surrogate for UserName, the
same feature restriction applies. The Membership feature doesn’t expect the underlying primary
key for a user to be updatable. Again, this may change in a future release.

79301c11.indd 534 10/6/08 12:15:38 PM

535

Chapter 11: Membership

PasswordQuestion❑❑ : This piece of user data is updatable, but you need to use the
Change​PasswordQuestionAndAnswer method to effect a change. You cannot just change
the property directly and then call Update on a provider.

IsLockedOut❑❑ : The value for this property is meant to reflect the side effect of previous login
attempts or attempts to change a password using a question and answer challenge. As a result,
it isn’t intended to be directly updatable through any APIs. Note that you can unlock a user
with the UnlockUser method on MembershipUser.

LastLockoutDate❑❑ : As with IsLockedOut, the value of this property is a side effect of an
account being locked, or being explicitly unlocked. So, it is never intended to be directly updat-
able though the APIs.

CreationDate❑❑ : This date/time is determined as a side effect of calling CreateUser. After a
user is created, it doesn’t really make sense to go back and change this date.

LastPasswordChangedDate❑❑ : As with other read-only properties, the value is changed as a
side effect of calling either ChangePassword or ResetPassword. From a security perspective,
it wouldn’t be a good idea to let arbitrary code change this type of data because then you
wouldn’t have any guarantee of when a user actually triggered a password change.

IsOnline❑❑ : This is actually a computed property as described earlier, so there is no need for a
setter. You can indirectly influence this property by setting LastActivityDate.

ProviderName❑❑ : When a MembershipUser instance is created, it must be associated with a valid
provider. After this association is established, though, the Membership feature expects the same
provider to manage the user instance for the duration of its lifetime. If this property were settable,
you could end up with some strange results if you changed the value in between calls to the
other public methods on the MembershipUser class.

Among the properties that are public, Email, Comment, and IsApproved are pretty easy to understand.
Email and Comment are just data fields, while IsApproved can be toggled between true and false,
with a value of false causing ValidateUser to fail even if the correct username and password are
supplied to the method.

LastActivityDate is public so that you can write other features that work with the Membership
online tracking feature. For example, you could implement a custom feature that updates the user’s
LastActivityDate each time user-specific data is retrieved. The ASP.NET SQL providers actually
do this for Profile and Web Parts Personalization. However the ASP.NET SQL providers all use a com-
mon schema, so the Profile and Personalization providers perform the update from inside of the data-
base. The LastActivityDate property allows for similar behavior but at the level of an object API as
opposed to a data layer.

The last settable property on MembershipUser is the LastLoginDate property. However, leaving
LastLoginDate as settable may seem a bit odd. It means that someone can write code to arbitrarily set
when a user logged in, which, of course, means audit trails for logins can become suspect. Some develop-
ers, though, want to integrate the existing Membership providers with their own authentication systems.
For these scenarios, there is the concept of multiple logins, and thus the desire to log a user account into
an external system while having the Membership feature reflect when this external login occurred.

If you want to prevent LastLoginDate from being updatable (currently only the SQL provider even
supports getting and setting this value), you can write a derived MembershipProvider that returns a
derived MembershipUser instance. The derived MembershipUser instance can just throw a NotSup-
portedException from the LastLoginDate setter.

79301c11.indd 535 10/6/08 12:15:38 PM

536

Chapter 11: Membership

DateTime Assumptions
There are quite a number of date-related properties on the Membership feature, especially for the
MembershipUser class. For smaller websites the question of how date-time values are handled is
probably moot. In single-server environments, or web farms running in a single data center, server
local time would be sufficient. However, as the feature was being iterated on, a few things became
pretty clear:

The ❑❑ ActiveDirectoryMembershipProvider relies on AD/ADAM or ADLDS for storage.
The Active Directory store keeps track of significant time-related data using UTC time, not
server local time.

If in the future the feature is ever extended to officially support database replication with the ❑❑

SqlMembrshipProvider, then problems with running in multiple time zones will become
an issue.

For both of these reasons, the code within the providers as well as within the core Membership classes
was changed to instead use UTC time internally. Unlike the forms authentication feature that unfortu-
nately has the quirk of using local times as opposed to UTC times, the desire was to have the Member-
ship feature always work in UTC time to avoid problems with multiple time-zone support as well as
clock adjustments (that is, daylight savings time).

Although the Membership feature doesn’t support database replication in ASP.NET 2.0 and ASP.NET 3.5
(it has never been tested), it is theoretically possible in future releases to have a network topology
whereby different slices of Membership data are created in completely different time zones and then
cross-replicated between different data centers. For this kind of scenario, having a common time mea-
sure is critical.

On a less theoretical note, it is likely that some websites will do things such as create new users right
around the time server clocks are being adjusted. If information such as CreationDate were stored in
machine local time, you would end up with some bizarre data records indicating that users were being
created in the recent past or the soon-to-arrive future. Especially with security sensitive data this isn’t a
desirable outcome.

Some folks may also have server deployments that span time zones. For example, you may have multiple
data centers with web servers running into two different time zones, with each set of web servers pointed
back to a central data center running your database servers. In this kind of scenario, which time zone do
you pick? If you don’t use UTC time, you will always end up with weird date-time behavior because with
this type of physical deployment some set of servers will always be in a different time zone than the time
zone you selected for storing your data.

From a programming perspective, the .NET Frameworks traditionally returned machine local times
from all public APIs. To handle this behavior while still handling UTC times internally, the Member-
ship feature assumes that all date-time parameters passed in to public properties and methods are in
local time. Furthermore, whenever date-time data is returned from public properties and methods, data
is always converted back to machine local time. Internally though, the core Membership classes as well
as the default providers manipulate and store date-time data in UTC time. If you look at the data stored
by the SqlMembershipProvider in a database, you will see that all the date-time-related columns
appears to be wrong (assuming, of course, that you don’t actually live somewhere in the GMT time
zone!). The reason is that by the time any Membership data is stored, the date-time-related variables
have been converted to UTC time.

79301c11.indd 536 10/6/08 12:15:38 PM

537

Chapter 11: Membership

From the standpoint of someone using the Membership feature, this behavior should be mostly trans-
parent to you. You can retrieve instances of MembershipUser objects, set date-related properties, or
perform date-related queries all using the local time for your machine. The only potential for confusion
occurs if you perform search queries using other features such as Profile that support date ranges for
search parameters. If your query happens to span a time period when the clocks were reset, you will
probably get slightly different results than if the Membership feature had stored data keyed off of a
machine’s local time.

Within the Membership feature, the way in which UTC times are enforced is:

The various classes always call ❑❑ ToUniversalTime on any date-time parameters passed in to them.

The ❑❑ MembershipUser class calls ToUniversalTime on all date-time parameters for its construc-
tor as well as in the setters for any public properties. This means that you can set a machine-local
date time for a property like LastActivityDate, and MembershipUser will still ensure that it is
treated as a UTC time internally. Due to the way the .NET Framework System.DateTime class
works, you can actually pass UTC date-time parameters if you want to the MembershipUser
class (or any class for that matter). This works because the result of calling ToUniversalTime
on a UTC System.DateTime is a no-op.

For public getters, the ❑❑ MembershipUser class calls ToLocalTime on date-time data prior to
returning it. As a result, all data retrieved from the Membership feature will always reflect
machine-local times.

The one thing you should do for your servers, both web servers and whatever back-end servers store
Membership data, is to regularly synchronize your server clocks with a common time source. Although
this recommendation isn’t made specifically because of any inherent problem with using UTC time, the
implementation details for supporting UTC time highlight the need for synchronized clocks.

Especially for the SqlMembershipProvider, date-time values are usually created and compared on
the web server, and then transmitted and stored on a database server. In any web farm with more than
one server, this means that no single master server is responsible for generating date-time values. You
could definitely end up with one web server logging a failed login attempt (and hence updating the
date-time-related failure data) and a different server loading this information during the course of
processing a second login attempt. Excessive amounts of clock skew across a web farm will lead to
incorrect time calculations being made in this type of scenario. A few seconds of time skew isn’t going
to be noticeable, but if your servers are minutes apart, you will probably see intermittent problems with
date-time-related functionality.

If you plan on writing custom providers for the Membership feature, you should keep the “UTC-ness” of
the feature in mind. If at all possible, custom providers should follow the same behavior as the built-in
providers, and store all date-time information internally as UTC date times.

The MembershipProvider Base Class
The central part of the Membership feature is its use of providers that derive from System.Web.Security​
.MembershipProvider. Out of the box, the Framework ships with two implementations of this class:
SqlMembershipProvider and ActiveDirectoryMembershipProvider. Both of these providers are
discussed in more detail in succeeding chapters. Because the Membership feature allows you to configure
any type of provider, you can also write your own custom implementations of this class.

79301c11.indd 537 10/6/08 12:15:38 PM

538

Chapter 11: Membership

The base class definition that all providers must adhere to is shown below. The class definition falls into
three major areas: abstract properties, abstract and protected methods, and a small number of event-
related definitions.

C#
public abstract class MembershipProvider : ProviderBase
{
 //Properties
 public abstract bool EnablePasswordRetrieval { get; }
 public abstract bool EnablePasswordReset { get; }
 public abstract bool RequiresQuestionAndAnswer { get; }
 public abstract string ApplicationName { get; set; }
 public abstract int MaxInvalidPasswordAttempts { get; }
 public abstract int PasswordAttemptWindow { get; }
 public abstract bool RequiresUniqueEmail { get; }
 public abstract MembershipPasswordFormat PasswordFormat { get; }
 public abstract int MinRequiredPasswordLength { get; }
 public abstract int MinRequiredNonAlphanumericCharacters { get; }
 public abstract string PasswordStrengthRegularExpression { get; }

 //Public Methods
 public abstract MembershipUser CreateUser(string username,
 string password, string email, string passwordQuestion,
 string passwordAnswer, bool isApproved, object providerUserKey,
 out MembershipCreateStatus status)

 public abstract bool ChangePasswordQuestionAndAnswer(string username,
 string password, string newPasswordQuestion, string newPasswordAnswer)

 public abstract string GetPassword(string username, string answer)
 public abstract bool ChangePassword(string username, string oldPassword,
 string newPassword)

 public abstract string ResetPassword(string username, string answer)
 public abstract void UpdateUser(MembershipUser user)
 public abstract bool ValidateUser(string username, string password)
 public abstract bool UnlockUser(string userName)
 public abstract MembershipUser GetUser(object providerUserKey,
 bool userIsOnline)

 public abstract MembershipUser GetUser(string username, bool userIsOnline)
 public abstract string GetUserNameByEmail(string email)
 public abstract bool DeleteUser(string username, bool deleteAllRelatedData)
 public abstract MembershipUserCollection GetAllUsers(int pageIndex,
 int pageSize, out int totalRecords)

 public abstract int GetNumberOfUsersOnline()
 public abstract MembershipUserCollection FindUsersByName(
 string usernameToMatch, int pageIndex, int pageSize,
 out int totalRecords)

 public abstract MembershipUserCollection FindUsersByEmail(string emailToMatch,
 int pageIndex, int pageSize, out int totalRecords)

79301c11.indd 538 10/6/08 12:15:38 PM

539

Chapter 11: Membership

 //Protected helper methods
 protected virtual byte[] EncryptPassword(byte[] password)
 protected virtual byte[] DecryptPassword(byte[] encodedPassword)

 //Events and event related methods
 public event MembershipValidatePasswordEventHandler ValidatingPassword
 protected virtual void OnValidatingPassword(ValidatePasswordEventArgs e)
}

VB.NET
Public MustInherit Class MembershipProvider
 Inherits ProviderBase
 ‘ Properties
 Public MustOverride Property ApplicationName() As String
 Public MustOverride ReadOnly Property EnablePasswordReset() As Boolean
 Public MustOverride ReadOnly Property EnablePasswordRetrieval() As Boolean
 Public MustOverride ReadOnly Property MaxInvalidPasswordAttempts() As Integer

 Public MustOverride ReadOnly Property MinRequiredNonAlphanumericCharacters() _
 As Integer

 Public MustOverride ReadOnly Property MinRequiredPasswordLength() As Integer
 Public MustOverride ReadOnly Property PasswordAttemptWindow() As Integer

 Public MustOverride ReadOnly Property PasswordFormat() _
 As MembershipPasswordFormat

 Public MustOverride ReadOnly Property PasswordStrengthRegularExpression() _
 As String
 Public MustOverride ReadOnly Property RequiresQuestionAndAnswer() As Boolean
 Public MustOverride ReadOnly Property RequiresUniqueEmail() As Boolean

 ‘ Public Methods
 Public MustOverride Function CreateUser(ByVal username As String, _
 ByVal password As String, _
 ByVal email As String, _
 ByVal passwordQuestion As String, _
 ByVal passwordAnswer As String, _
 ByVal isApproved As Boolean, _
 ByVal providerUserKey As Object, _
 <Out()> ByRef status As _
 MembershipCreateStatus) _
 As MembershipUser

 Public MustOverride Function ChangePasswordQuestionAndAnswer(_
 ByVal username As String, _
 ByVal password As String, _
 ByVal newPasswordQuestion As String, _
 ByVal newPasswordAnswer As String) _
 As Boolean

 Public MustOverride Function GetPassword(ByVal username As String, _
 ByVal answer As String) As String

79301c11.indd 539 10/6/08 12:15:38 PM

540

Chapter 11: Membership

 Public MustOverride Function ChangePassword(ByVal username As String, _
 ByVal oldPassword As String, ByVal newPassword As String) As Boolean

 Public MustOverride Function ResetPassword(ByVal username As String, _
 ByVal answer As String) As String

 Public MustOverride Sub UpdateUser(ByVal user As MembershipUser)

 Public MustOverride Function ValidateUser(ByVal username As String, _
 ByVal password As String) As Boolean

 Public MustOverride Function UnlockUser(ByVal userName As String) As Boolean

Public MustOverride Function GetUser(ByVal providerUserKey As Object, _
 ByVal userIsOnline As Boolean) _
 As MembershipUser

Public MustOverride Function GetUser(ByVal username As String, _
 ByVal userIsOnline As Boolean) _
 As MembershipUser

Public MustOverride Function GetUserNameByEmail(ByVal email As String) _
As String

Public MustOverride Function DeleteUser(ByVal username As String, _
 ByVal deleteAllRelatedData As Boolean) _
 As Boolean

Public MustOverride Function GetAllUsers(ByVal pageIndex As Integer, _
 ByVal pageSize As Integer, _
 <Out()> ByRef totalRecords As Integer) _
 As MembershipUserCollection

Public MustOverride Function GetNumberOfUsersOnline() As Integer

Public MustOverride Function FindUsersByEmail(ByVal emailToMatch As String, _
 ByVal pageIndex As Integer, _
 ByVal pageSize As Integer, _
 <Out()> ByRef totalRecords _
 As Integer) _
 As MembershipUserCollection

Public MustOverride Function FindUsersByName(ByVal usernameToMatch As String, _
 ByVal pageIndex As Integer, _
 ByVal pageSize As Integer, _
 <Out()> ByRef totalRecords As Integer) _
 As MembershipUserCollection
‘ Protected Helper Methods
Protected Overridable Function EncryptPassword(_
ByVal password As Byte()) As Byte()

Protected Overridable Function DecryptPassword(_
ByVal encodedPassword As Byte()) As Byte()

 ‘ Events and event related methods

79301c11.indd 540 10/6/08 12:15:38 PM

541

Chapter 11: Membership

Protected Overridable Sub OnValidatingPassword(_
ByVal e As ValidatePasswordEventArgs)

Public Event ValidatingPassword As MembershipValidatePasswordEventHandler

End Class

If you are thinking about writing a custom provider, the extensive abstract class definition may seem a
bit intimidating at first. An important point to keep in mind, though, is that not only is the Membership
feature pluggable by way of providers; the breadth of functionality you choose to implement in a pro-
vider is also up to you. Although the SQL and AD based providers implement most of the functionality
defined by the abstract class (the SQL provider implements 100% of it and the AD provider implements
about 95% of it), it is a perfectly reasonable design decision to implement only the slice of provider func-
tionality that you care about. For example, you may not care about exposing search functionality from
your provider, in which case you could ignore many of the Get* and Find* methods.

The way to think about the available functionality exposed by a provider is to break it down into the
different areas described in the next few sections. If there are broad pieces of functionality you don’t
care about, you can just stub out the requisite properties and methods for that functionality in your
custom provider by throwing a NotSupportedException.

Basic Configuration
A portion of the MembershipProvider class signature deals directly with configuration information
that is usually expected to be available from any custom provider.

All providers should at least implement the getter for the ApplicationName property. The concept of
separating data by application name is so common to many of the provider-based features in ASP.NET 2.0
and ASP.NET 3.5 that the getter should always be implemented. If it turns out that you are mapping
Membership to a data store that does not really have the concept of an “application” (for example, the
AD provider doesn’t support the concept of an application but it does implement the getter), you can
have the setter throw a NotSupportedException. Internally, your custom provider can just ignore the
application name that it loaded from configuration.

User Creation and User Updates
Most of the functionality on a MembershipProvider isn’t of much use unless users are created in the
first place. You have two approaches to this:

You can write a full-featured provider that implements the create-, delete-, and update-related ❑❑

methods.

You can stub out all the create-, delete-, and update-related methods if you have some other ❑❑

mechanism for populating the data store. For example, your provider may only expose the
ability to validate a username-password pair. The actual user accounts may be created through
some other mechanism. In this scenario, your custom provider could just choose not to imple-
ment the ability to create and update users.

79301c11.indd 541 10/6/08 12:15:38 PM

542

Chapter 11: Membership

The properties related to user creation and user updates mostly deal with the user’s password.

MinRequiredPasswordLength❑❑ : On one hand, if a provider supports enforcing password
strengths, it should return the minimum length of passwords allowed when using the provider.
On the other hand, if a provider does not enforce any kind of password strength requirements,
it should just return either zero or one from this property. If a provider doesn’t care about pass
word lengths, then it can return the number one as a reasonable default. The CreateUser​
Wizard and the ChangePassword controls both use this property when outputting error infor-
mation. However, neither of the controls automatically generates any type of validators based
on this property; they just use the property value for outputting default error information if an
invalid password was entered into the controls.

MinRequiredNonAlphanumericCharacters❑❑ : A provider that enforces password strength
rules can choose to also require a minimum number of nonalphanumberic characters in pass-
words. A custom provider that either does not enforce password strength or does not have the
additional requirement around nonalphanumeric characters should just return zero from this
property. The CreateUserWizard and the ChangePassword controls both use this property
when outputting error information. However, neither of the controls automatically generates
any type of validators based on this property; they just use the property value for outputting
default error information if an invalid password was entered into the controls.

PasswordStrengthRegularExpression❑❑ : Because some developers have more complex
password rules, they may use regular expressions instead of (or in addition to) the previous
constraints. A provider that supports custom regular expressions should return the regular
expression that was configured via this property. If a provider does not support enforcing
password strength via a custom regular expression, it should just return an empty string from
this property. You could argue that throwing a NotSupportedException would make sense,
but returning a hard-coded empty string is just as effective and doesn’t result in an unexpected
exception when reading the property. Note that the CreateUserWizard and ChangePassword
controls don’t make use of this property. Both of these controls also support specifying a regu-
lar expression for password validation; however, the regular expression on these controls is
intended for use in a client-side regular expression validator (that is, a regular expression that
works in JavaScript) and as a result they do not use the value returned from this property.

ValidatingPassword❑❑ : This is a public event defined on the base MembershipProvider class.
Because it is not defined as virtual, it’s possible for developers to register custom password vali-
dation handlers even though a custom provider may not support extensible password validation
and, thus, will never fire this event. For now, the best way to inform developers that a provider
doesn’t support extensible password validation is to document the limitation. There is a related
protected virtual method that providers use (OnValidatingPassword) to fire the event.

RequiresUniqueEmail❑❑ : If you want to ensure that any user created with your custom mem-
bership provider has a unique email, return true from this property. If you do not care about
email uniqueness return false from this property. The CreateUser control in the Login
controls will add a validator that requires a valid email address in the event a provider returns
true from this property.

The methods related to user creation and updates deal with both the MembershipUser object as well,
changing just the user’s password.

CreateUser❑❑ : If your provider supports creating users, you would implement this method.
However, if you have some other mechanism for creating users you should just throw a

79301c11.indd 542 10/6/08 12:15:38 PM

543

Chapter 11: Membership

Not​Supported​Exception from this method. If your provider requires unique email addresses
(based on the requiresUniqueEmail configuration attribute), then its implementation should
perform the necessary validations to enforce this. If your provider doesn’t support explicitly
defining the data-store-specific primary key with the providerUserKey parameter, it should
throw a NotSupportedException in the event that a non-null value is supplied for this param-
eter. For other parameters, your provider should perform validations based on the password
strength enforcement properties and password question and answer configuration properties.
If a provider supports extensible password validation routines, it should raise the Validating​
Password event as well. This allows developers to provide custom password validation, with
the most likely place to do this being global.asax. Because the CreateUser method returns a
status parameter of type MembershipCreateStatus, you can set the status to one of the error
codes (that is, something other than MembershipCreateStatus.Success) in the event that a
validation check fails. Normally, the CreateUser method should not return an exception if a
parameter validation fails because there is an extensive set of status codes that can be returned
from this method. A NotSupportedException should only be thrown for cases where a param-
eter is supplied but the provider doesn’t support the functionality that would make use of this
parameter (that is, attempting to set the providerUserKey or supplying questions and answers
when the provider can’t store these values or make use of them). The CreateUserWizard inter-
nally calls this method on the provider configured for use with the control.

DeleteUser❑❑ : The companion to the CreateUser method. If a custom provider supports creating
users, it likely also supports deleting users. Depending on how a custom provider is written, other
features may depend on the users created with the provider. For example, the SqlMembership​
Provider uses a database schema that integrates with other features such as Role Manager. If
this is the case for a custom provider, it should support the ability to perform a “clean” delete that
can remove related data from other features prior to deleting the membership user data. As with
CreateUser, if a provider doesn’t support user deletion it should just throw a NotSupported​
Exception from this method.

UpdateUser❑❑ : After a user is created there is a subset of data on MembershipUser that is
updatable. If a custom provider supports updating any user information (Email, Comment,
IsApproved, LastLoginDate, and LastActivityDate), the provider should implement this
method. A custom provider can choose to only allow a subset of these properties to be updat-
able. If email addresses can be updated, a custom provider should enforce the uniqueness of
the new value based on the requiresUniqueEmail configuration attribute. The best way to
enforce this is by creating a derived MembershipUser class that goes hand in hand with the
custom provider. The custom MembershipUser class should throw NotSupportedExceptions
from the property setters for properties that are not updatable. In this way, you prevent a devel-
oper from updating property data that you don’t want to be changed via the provider. The cus-
tom provider should also ignore these properties and not use them when issuing a user update.
Additionally, a custom provider that uses a derived MembershipUser type should ensure that
the derived MembershipUser class is always passed as a parameter to the UpdateUser method.
If some other type is used (for example, the base MembershipUser type), the provider should
throw an ArgumentException to make it clear to developers that only the derived Membership​
User type is allowed. This is the general approach used by the ActiveDirectoryMembership​
Provider. This provider has a related MembershipUser-derived class that does not allow
updates to LastLoginDate or LastActivityDate; it prevents updates to these properties
by throwing a NotSupportedException from these properties on the ActiveDirectory​
MembershipUser class. However, the AD-based provider skips some performance optimiza-
tions in its update method internally if the wrong MembershipUser type is passed to it. I

79301c11.indd 543 10/6/08 12:15:39 PM

544

Chapter 11: Membership

recommend throwing an ArgumentException instead for custom providers because it makes
it clearer that there is a specific MembershipUser-derived type that must be used. Of course,
if your provider doesn’t support updating any user data, it should just throw a NotSup-
ported​Exception instead.

ChangePassword❑❑ : If your provider supports creating users, you should support the ability
for users to at least change their passwords via this method. Your provider should perform
validations based on the password strength enforcement properties if your provider supports
any type of strength enforcement. Furthermore, if a provider supports extensible password
validation routines, it should raise the ValidatingPassword event as well. Because a user’s
old password is required to change the password, if a provider keeps track of bad passwords,
it should include tracking logic in this method that keeps track of bad password attempts and
locks out users as necessary. On one hand, users who have already been locked out should
never be allowed to change their password. On the other hand, if you create users through
some other mechanism, it is possible that you also have a separate process for allowing users
to update their passwords, in which case you should just throw a NotSupportedException.
The ChangePassword control in the Login controls calls this method on the provider associated
with the control.

OnValidatingPassword❑❑ : This protected virtual method is defined on the base Membership​
Provider class and should be used by custom providers to raise the password validation event
from the CreateUser, ChangePassword, and ResetPassword methods. If the event argument
for this event is returned with an exception object, the provider should throw the returned
exception rather than continuing. If instead the returned event argument just has the Cancel
property set to true, a custom provider should throw a ProviderException stating that the
password validation failed. If a custom provider doesn’t allow for custom password valida-
tion logic to be registered by way of the ValidatingPassword event, there is no great way to
communicate this to developers other than through documentation. Unfortunately, the internal
property that holds the event delegates for this event is not accessible, so a custom provider has
no way to check whether or not events have been registered for it.

Retrieving Data for a Single User
The provider signature supports a number of methods for retrieving single user objects and sets of user
data. If a custom provider supports more than just the ValidateUser method, it should at least support
the ability to fetch a single MembershipUser instance for a given user.

GetUser❑❑ : There are two GetUser overloads: one that retrieves users by name and one that
retrieves users by way of a data-store-specific primary key. At a minimum, a custom provider
that supports retrieving users should support fetching a MembershipUser by username. This
is probably the most common approach for many developers because the username is available
off of the HttpContext after a user logs in. If you don’t want to support the concept of retriev-
ing a user with a ProviderUserKey, you can throw a NotSupportedException from this
overload. The ChangePassword and PasswordRecovery controls internally call the GetUser
overload that accepts a username.

GetUserNameByEmail❑❑ : If your provider supports storing email addresses for users, it should
support the ability to retrieve users by way of their email address. Of course, requiring unique
email addresses is pretty much a requirement if you want this method to return any sensible
data. Although a provider could allow storing users with duplicate email addresses, calling this

79301c11.indd 544 10/6/08 12:15:39 PM

545

Chapter 11: Membership

method will result in ambiguous data because it can only return a single username. If there are
duplicates, a custom provider can either return the first matching username, or it can throw
some kind of exception. The general convention, though, is to return the first matching user-
name if unique emails are not required and to throw a ProviderException if unique emails
are required and more than one matching user record was found. If a provider does not need to
support email-based retrieval, it should just throw a NotSupportedException instead.

Retrieving and Searching for Multiple Users
The ability to search for and retrieve multiple users is considered to be more of an administrative task than
a normal runtime task. Administrative applications have the most need for the ability to search for users
and return arbitrary sets of users. There are no provider properties on MembershipProvider-related to
this functionality, though custom providers may have provider-specific configuration properties that deal
with search functionality. For example, the ActiveDirectoryMembershipProvider has configuration
properties that control how search related methods work. There are number of search-related methods,
though, that provider implementers can choose to write.

GetAllUsers❑❑ : As the name implies, a provider should return all users from the underlying
data store. This method is mostly useful for small numbers of users (the low hundreds at most),
because for any large quantity of user records, retrieving every possible user is ungainly. The
method on the provider class includes parameters to support paging. However, paging can some-
times be difficult to implement, especially for data stores that don’t natively expose any concept
of paged results. If your provider doesn’t support paging, it can just ignore the pageIndex and
pageSize parameters; there isn’t really any good way to communicate the existence or lack of
paging based on this method’s parameter signature. The ASP.NET configuration tool that is
available from inside of the Visual Studio environment makes use of this method. If your pro-
vider doesn’t support this type of search functionality, throw a NotSupportedException.

FindUsersByName❑❑ : A filtered search method that can retrieve a set of users based on username.
As with GetAllUsers some provider implementers will be able to support paging semantics,
while other custom providers will need to ignore the paging-related parameters. Another aspect
of this search method is support for wildcard characters in the usernameToMatch parameter:
you will need to document the level of support a custom provider has for wildcard characters.
The general expectation is that if the underlying data store (that is, SQL Server) supports wild-
cards in its native query language, the provider should allow the same set of wildcard charac-
ters in the usernameToMatch parameter. The ASP.NET configuration tool that is available from
inside of the Visual Studio environment makes use of this method. If your provider doesn’t sup-
port this type of search functionality, throw a NotSupportedException.

FindUsersByEmail❑❑ : This method has the same functionality and guidance as FindUsersBy​
Name with the one difference that it instead supports searching by email address.

Validating User Credentials
When you boil the Membership feature down to its basics, validating passwords is at its core. All other
areas of functionality described in this section are pretty much optional; there are other ways that you
can support functionality, like user creation or searching for users. Without the ability to validate user
credentials, though, it would be sort of pointless to write a MembershipProvider. The basic support
expected from all MembershipProviders is the ability to validate a username-password pair.

79301c11.indd 545 10/6/08 12:15:39 PM

546

Chapter 11: Membership

More advanced, and thus optional, functionality allows for tracking bad password attempts and bad pass-
word answer attempts. If certain configurable thresholds are met or exceeded, a provider should incorpo-
rate the ability to lock out user accounts and then subsequently unlock these accounts. If a provider does
support tracking bad password and bad password answer attempts, it needs to keep track of this when-
ever ValidateUser, ChangePassword, ChangePasswordQuestionAndAnswer, Reset​Password, and
GetPassword are called. Each of these methods involves a password or a password answer to work
properly, although the password answer functionality in ResetPassword and GetPassword is also
optional (see the next section on self-service password resets and retrieval). Furthermore, in each of
these methods if the correct password or password answer is supplied, then a custom provider should
reset its internal tracking counters (either password counters or password answer counters) to reflect
this fact. In the next chapter, on SqlMembershipProvider, you will see how the SQL provider han-
dles these types of counters in various MembershipProvider methods.

The properties related to validating user passwords are:

MaxInvalidPasswordAttempts❑❑ : For more secure providers that support tracking bad pass-
words (and also bad password answers if they support question-and-answer-based password
resets or password retrieval), this setting indicates the maximum number of bad password
attempts. If a provider supports tracking bad password answers, this configuration setting
is also intended to be used as the maximum number of allowable bad password answers.
Although the MembershipProvider could have specified two different properties for track-
ing bad passwords versus bad password answers, the decision was made to support the same
upper limit for both pieces of data. There is always a debate over exactly what “maximum”
means when tracking bad attempts; some folks would choose maximum to mean a threshold
that can be reached but not exceeded. A reasonable case can be instead be made that this type
of limit should instead be triggered only when it is exceeded. Realistically, either approach is
valid; the ASP.NET providers consider the maximum number of attempts to have occurred when
internal tracking counters exactly equal the value of this configuration setting. This means that
if this property is set to five, then when the fifth bad password is supplied something happens;
that is, the user account is locked out. Custom provider implementers may choose to be slightly
different and instead carry out some action on the sixth attempt. The main thing is to communi-
cate clearly to folks exactly how this property triggers account lockouts and other behavior. If a
custom provider does not support any type of bad password or bad password answer tracking,
it should return an appropriately large value instead (Int32.MaxValue, for example). Custom
providers should avoid throwing an exception because developers may want to use administra-
tive UI that lists all providers configured on a system along with their current configuration set-
tings based on the MembershipProvider properties. Returning a very large value gets across
the point that the provider does not enforce anything without causing the administrative UI to
blow up with an unexpected exception.

PasswordAttemptWindow❑❑ : If a provider supports tracking bad passwords or bad password
answer attempts, there usually needs to be some finite time window during which the provider
actively keeps track of bad attempts. The value returned from this property indicates the length
of time during which a provider would consider successive failed attempts to be additive; for
example, the provider would increment internal tracking counters that are compared against
MaxInvalidPasswordAttempts. The specifics of how a provider deals with the password
attempt window over time are considered provider-specific. It is up to the provider imple-
menter to document exactly how the PasswordAttemptWindow interacts with the value for
MaxInvalidPasswordAttempts. If a provider does not support the concept of tracking bad
attempts, it can instead return a dummy value such as zero from this property rather than

79301c11.indd 546 10/6/08 12:15:39 PM

547

Chapter 11: Membership

throwing an exception. A return value of zero implies that the provider considers each new
failed attempt as an isolated event unrelated to prior failed attempts.

There are only two methods for credential validation, with ValidateUser being the method that most
developers expect to be implemented by all providers.

ValidateUser❑❑ : If there is one core method that “is” the Membership feature, this is it. Any cus-
tom provider will be expected to support this property. After a successful login, the user’s Last​
LoginDate should be updated. Login controls such as the Login control and the CreateUser​
Wizard depend on this method. Providers that support tracking bad password attempts should
increment tracking counters in this method and lock out user accounts as necessary. In general, if
a user account is already locked out, ValidateUser should always return false. Similarly, if a
custom provider supports the concept of approving a user prior to allowing the user to log on to a
site, the provider should also return false if the user’s IsApproved flag is set to false.

UnlockUser❑❑ : This is an optional method for providers that can lockout user accounts after
an excessive number of bad passwords or bad password answers. If a custom provider sup-
ports this concept, then there needs to be a way to unlock user accounts. There are two gen-
eral approaches to this. A provider can internally support the concept of auto-unlocking user
accounts. Although auto-unlocking is not explicitly supported by the Membership feature,
there is nothing to prevent a custom provider implementer from building this type of logic
into any of the methods that deal with passwords and password answers (i.e. ValidateUser,
ChangePassword, and so on). However, if a provider doesn’t support auto-unlocking behavior,
it should support explicitly unlocking a user account via the UnlockUser method. At a mini-
mum an unlocked user account should have its IsLockedOut property set to false. Typically,
internal tracking counters are reset as well, and the LastLockoutDate property for the user can
be reset to a default value. If a provider doesn’t cause users to be locked out, or if some other
mechanism outside of Membership is used to unlock users, a custom provider should throw a
NotSupportedException instead.

Supporting Self-Service Password Reset or Retrieval
Several properties provide information about the self-service password reset and password retrieval
capabilities of Membership. The general idea behind this feature is that website users can retrieve their
password, or have the system reset their password, if they forget the original password. Typically, for
enhanced security the user needs to answer a special password question before the system retrieves or
resets the password.

Although you may author a provider that supports only one of these options (that is, only password
retrieval or only password resets), or none of these options, you should still implement the following
properties so that server controls and administrative tools can determine the level of support that a
custom provider has for password reset and retrieval:

EnablePasswordRetrieval❑❑ : Indicates whether the provider instance allows passwords to be
retrieved in an unencrypted format. If you author a provider that supports password storage
with reversible encryption, the value of this property may be retrieved from a provider configu-
ration attribute just as it is with the SqlMembershipProvider. If you never plan to support this
functionality just return false. The PasswordRecovery control in Login controls looks at the
value of this property to determine what kind of UI to render.

79301c11.indd 547 10/6/08 12:15:39 PM

548

Chapter 11: Membership

EnablePasswordReset❑❑ : Indicates whether the provider allows a user’s password to be reset to
a randomly generated password value. As with the SqlMembershipProvider, you can derive
this value from your provider’s configuration. If you don’t plan on ever supporting this func-
tionality, you can instead always return false from this property. The PasswordRecovery
control also looks at this property value to determine what kind of UI to render.

RequiresQuestionAndAnswer❑❑ : If your provider requires that a password question be success-
fully answered before performing either a password reset or retrieving a password, then you
would return true from this property. As with the previous two properties this value can be
driven from configuration as the SqlMembershipProvider does. Or if you don’t support this
kind of functionality just return false. The CreateUser control in the Login controls uses this
property to determine whether it should prompt a new user for a password question and answer.
The PasswordRecovery control in the Login controls also looks at this property value to deter-
mine whether or not it should challenge the user before resetting or retrieving a password.

PasswordFormat❑❑ : Indicates the way in which passwords will be stored in a backend system by
the provider. Providers that are configurable, such as the SqlMembershipProvider, can derive
this value from configuration. Other providers, such as the ActiveDirectoryMembership​
Provider, always return a hard-coded value because the underlying data store only supports a
single storage format. None of the Login controls directly depends on this property. However,
you may write Membership-related logic that only makes sense for certain password formats.
For example, sending an email with the person’s old password is never going to work unless
the provider stores the password using reversible encryption as opposed to hashing.

The methods related to password resets and password retrieval are described in the following list. In some
cases password reset and retrieval influences only part of the parameter signature of a method. In other
cases, entire methods can be removed out if you don’t plan on supporting either piece of functionality.

CreateUser❑❑ : You can always create a user even if you don’t plan on implementing password
resets and password retrieval. The passwordQuestion and passwordAnswer parameters to
this method will be important to you if your provider returns true from RequiresQuestion​
AndAnswer. Developers will probably expect your CreateUser implementation to enforce the
requirement that both parameters be supplied in the event you return true from Requires​
QuestionAndAnswer. Note that if you want to, you can choose not to support password resets
or retrieval and yet still require a question and answer. Though not recommended, this would
give your provider two extra properties for storing user-related data. From a security perspec-
tive, a custom provider should always store the password answer in a secure format. Because
the password answer is essentially a surrogate password, providers should not store the pass-
word answer in cleartext.

ChangePasswordQuestionAndAnswer❑❑ : This method should be implemented if your provider
returns true from RequiresQuestionAndAnswer. If you don’t implement this method, then
after a new user account is created your users will not have the ability to ever change their secret
password question and answer. Because this method requires a user’s password in order to com-
plete successfully, providers that keep track of bad password attempts should increment their
tracking counters in this method and lock out users as necessary. Providers also need to handle
the case where a user is already locked out; locked-out users should not be allowed to change
their password question and answer. If your provider does not use password questions and
answers (either you do not support reset/retrieval or you do not want to impose the added
security measure of a question-answer challenge), then you should throw a NotSupported​
Exception from this method.

79301c11.indd 548 10/6/08 12:15:39 PM

549

Chapter 11: Membership

GetPassword❑❑ : Implement this method if your provider is able to store passwords with revers-
ible encryption and you want to give your users the ability to retrieve their old passwords. On
one hand, if a custom provider requires a password answer prior to retrieving a password, and
if the provider also keeps track of bad password answer attempts, it should increment track-
ing counters from inside of this method and lock out users as necessary. Providers need to also
handle the case where a user is already locked out, in which case locked-out users should not be
allowed to retrieve their password even if they have a valid answer. On the other hand, if a cus-
tom provider does not require an answer, then it can just ignore the answer parameter. If your
provider’s underlying data store does not support reversible encryption or if you do not want
this type of functionality to be available, then throw a NotSupportedException instead. The
PasswordRecovery control in the Login controls will use this method if it detects that the cur-
rent provider supports password retrieval (that is, EnablePasswordRetrieval returns true).
Note that if your provider does not require a valid password answer to a password question
(that is, RequiresQuestionAndAnswer returns false), then your provider should ignore the
answer parameter to this method.

ResetPassword❑❑ : If your provider allows users to reset their own passwords, then your provider
should implement this method. If a provider supports extensible password validation routines, it
should raise the ValidatingPassword event from this method as well. The PasswordRecovery
control in the Login controls will use this method if your provider returns true from Enable​
PasswordReset. If a custom provider requires a password answer prior to resetting a password,
and if the provider also keeps track of bad password answer attempts, it should increment track-
ing counters from inside of this method and lock out users as necessary. Providers also need to
handle the case where a user is already locked out, in which case locked-out users should not
be allowed to reset their password even if they have a valid answer. However, if a custom pro-
vider doesn’t require an answer, it can just ignore the answer parameter. If a custom provider
does not support password resets, your provider should return a NotSupportedException
from this method. When resetting passwords, a custom provider can call the Membership​
.GeneratePassword static helper method. This method can be used to auto-generate a valid ran-
dom password that meets minimum length and minimum nonalphanumeric character require-
ments. Note though that this helper method cannot guarantee a random password that matches
a password-strength regular expression; attempting to programmatically reverse engineer a
regular expression would have made this helper method way too complex, and it is doubtful
that you could even write code to successfully accomplish this. It is up to the custom provider
implementation whether or not it should even try to validate an auto-generated password
against a specified regular expression. By way of comparison, neither the SQL nor AD-based
ASP.NET providers attempt this.

Tracking Online Users
The Membership feature has the ability to keep track of users who are considered active on a website
(that is, online) versus users who are in the system but have not necessarily been active within a con-
figurable time period. The time period in which a user must be active, and thus considered online, is
defined by the Membership.UserIsOnlineTimeWindow property. As discussed earlier, the internal
implementation of MembershipUser.IsOnline uses this configuration property in conjunction with
the user’s LastActivityDate to determine whether a user is considered online.

79301c11.indd 549 10/6/08 12:15:39 PM

550

Chapter 11: Membership

For this functionality to work, though, a custom provider must update the LastActivityDate inside
of various methods. The MembershipProvider also exposes a method that can be used to get the count
of online users for a website.

GetNumberOfUsersOnline❑❑ : If a provider stores the LastActivityDate for its users, it should
implement this method. The return value is a count of the number of users whose LastActivity​
Date is greater than or equal to the current date time less the UserIsOnlineTimeWindow. Note
that an implementation of this method may result in a very expensive query or aggregation being
performed. Although the ASP.NET SqlMemebershipProvider does not do anything to miti-
gate this issue, custom providers may want to implement some kind of internal caching logic so
that calls to the GetNumberOfUsersOnline method do not trigger incessant table scans or other
expensive operations in the underlying data store. If a provider does not support keeping track
of when users are online, it can instead throw a NotSupportedException from this method.

ValidateUser❑❑ : Each time a user attempts to login, the LastActivityDate should be updated.
There is no strict rule on whether this date should only be updated for successful logins, or for
both successful and failed logins. The SqlMembershipProvider happens to update the date for
both cases, but it is also reasonable to say a user is not truly online until after a successful login
has occurred.

GetUser❑❑ : Both GetUser overloads have a parameter called userIsOnline. If the provider sup-
ports updating a user’s LastActivityDate, and if this parameter is set to true, then each time
a user object is retrieved it should first have its LastActivityDate updated. Providers that do
not support counting online users can just ignore the userIsOnline parameter. It also would not
be unreasonable for a custom provider to throw a NotSupportedException if userIsOnline
is set to true and the provider does not support tracking online users.

CreateUser❑❑ : Custom providers can choose to set the LastActivityDate to the creation date
(SqlMembershipProvider does this) or instead set LastActivityDate to a default value. It is
up to you to determine if it makes more sense to say that a newly created user is immediately
online or not. Some developers will probably prefer to not have CreateUser mark a Membership​
User as online if users are usually created in a batch process of if user accounts are created by
someone other than a live user on a website.

UpdateUser❑❑ : A provider can support updating a user’s LastActivityDate using the value on
the MembershipUser object passed to this method.

In the SqlMembershipProvider there aren’t any other Membership operations that result in updating
a user’s LastActivityDate. Other methods that update a user’s password or password question and
answer do not cause any changes to LastActivityDate when using the SQL provider. Again, though,
this is a philosophical decision that can be argued either way. There would be nothing wrong with a
custom provider when you feel that these types of operations should result in an update to
LastActivityDate.

General Error-Handling Approaches
If you look closely at the MembershipProvider definition, you can see that there is one method with an
out parameter (the status parameter on CreateUser), whereas all the other methods just handle input
parameters. Furthermore, the default providers typically have different error behavior depending on
whether a Boolean is used as a return value. Unfortunately, there wasn’t enough time in the ASP.NET 2.0
development cycle to fine-tune error handling and exception behavior for the Membership feature, so the

79301c11.indd 550 10/6/08 12:15:39 PM

551

Chapter 11: Membership

end result can be a bit confusing at times and less than elegant. It is important to mention that ASP.NET 3.5
does not introduce any changes to the error handling and exception behavior for the Membership feature
and hence what applies to ASP.NET 2.0 in this field applies also to ASP.NET 3.5.

The general rules of thumb are listed here. Both the SQL- and AD-based providers follow these rules:

For all methods, if the provider is asked to do something that it doesn’t support, it should just ❑❑

throw a NotSupportedException. This can be the case when an entire method is simply not
supported. This can also occur if a method is implemented, but another configuration setting on
the provider indicates that the method should not succeed. For example, the default providers
implement ResetPassword, but if EnablePasswordReset is set to false in configuration, then
the providers throw a NotSupportedException. Another example is when a parameter to a
method was supplied (for example, providerUserKey for CreateUser) but the provider can-
not actually do anything with the parameter.

If a method has an ❑❑ out parameter for communicating a result status, the method should usually
return error conditions via that parameter.

A well-written provider should perform a rigorous set of parameter validations that ensures ❑❑

method parameters have reasonable values. The ASP.NET providers throw an Argument​
Exception for parameter validations that fail for non-null values, and they throw an Argument​
NullException for parameter validations that fail because of unexpected null values.

If the return type of a provider method is ❑❑ Boolean, and if the success of the method depends on
a correct password being passed to the method, the method should simply return false for bad
passwords. This means methods like ValidateUser, ChangePassword, and ChangePassword​
QuestionAndAnswer should simply return false if the provider determines that the user
either supplied the wrong password or if the user was already locked out or not approved. The
theory here is that especially for a method like ValidateUser, it makes more sense to provide a
“thumbs-up/thumbs-down” result than to throw an exception for a bad password.

For the other methods that return a ❑❑ Boolean value (DeleteUser and UnlockUser), the pro-
vider can return a value of false if the operation failed because the user record couldn’t be
found. As you will see shortly, in other methods a nonexistent user record instead causes an
exception with the default ASP.NET providers. Although no Login controls depend on these
two methods currently, it is possible that future Login controls might use these methods, in
which case the controls would expect custom providers to follow the same behavior.

A provider should throw the special ❑❑ MembershipPasswordException type when a bad pass-
word answer is supplied to either ResetPassword or GetPassword. This type allows develop-
ers and the Login controls to recognize that the specific problem is an incorrect password answer.
Unfortunately, this behavior is a perfect example of the somewhat schizophrenic exception and
error-handling behavior in the default providers; it would have been better to rationalize the
behavior of bad passwords and bad password answers in a more consistent manner.

If a provider performs business-logic-related checks in the provider or in the back-end data ❑❑

store, it can use the ProviderException class to return the error condition. The kinds of checks
that can fail include not finding the specified user in the system (for example, you attempt to
update a nonexistent user) or attempting to use a mal-formed regular expression for password
validations. This was the approach used by the ASP.NET providers to eliminate the need to
spam the System​.Web.Security namespace with many custom exceptions. However, it is
also a reasonable approach for building a rich exception hierarchy that is more expressive and
return. If you intend for a custom provider to work with the various Login controls, though,

79301c11.indd 551 10/6/08 12:15:39 PM

552

Chapter 11: Membership

your custom exceptions should derive from ProviderException. The Login controls will, in
many cases, suppress exceptions in order to perform failure actions or to display failure text
configured for a control. The Login controls can only do this, though, for exception types that
they recognize, ProviderExceptions and ArgumentExceptions being two of the exception
types that they handle.

Last, the default ASP.NET providers usually don’t handle unexpected exceptions that can arise ❑❑

from the underlying classes they call into. For example, the SqlMembershipProvider doesn’t
catch and remap SQL-Server-related exceptions. The ActiveDirectoryMembershipProvider
for the most part also doesn’t suppress or remap exceptions from the System.Directory​
Services namespace. The assumption is that data-layer exceptions are usually indicative that
something has seriously gone wrong, and as a result these types of exceptions are not error con-
ditions that the provider knows how to handle.

The “Primary Key” for Membership
I have alluded to the fact that the Membership feature considers a username to be part of the “primary
key” for the Membership feature. Because the feature is provider-based, and all the ASP.NET 2.0 and
ASP.NET 3.5 SQL providers support an “applicationName” attribute in configuration, the precise state-
ment is that the Membership feature implicitly considers the combination of applicationName and
username to be an immutable identifier for users. Although a more database-centric definition of a pri-
mary key could have been modeled in Membership and other related features, the intent was to keep
the user identifier as simple and as generic as possible.

Because it is likely that just about any conceivable Membership store ever devised will support a string
type, choosing username and application name seems pretty safe. This also means that it is possible for
developers to write custom features that link to Membership data at an object level in a reliable manner.
For example, if you had an inventory application running off in a corner somewhere that you needed
to integrate with a website running Membership, it is pretty likely that you will at least be able to find a
string-based username in the inventory system that has some mapping and relevance to your website.
Using a database primary key/foreign key relationship probably will not work if your inventory system
is running on some “interesting” relic that has been repeatedly upgraded over the decades, other sys-
tems that you need to integrate with are black boxes, and you can’t just dive down and set up relation-
ships at the data layer.

In other words, username and application name were chosen as the “primary key” because you can
always pass these values around in a middle-tier object layer without requiring any kind of compat-
ibility between features lower down in the data layer. In some cases, though, there may not be a con-
cept of an application name for some data stores. The ActiveDirectoryMembershipProvider, for
example, does not do anything with the applicationName attribute in configuration, whereas the
SqlMembershipProvider does use the application name to create part of the primary key and actu-
ally stores the application name in the database.

However, even in the case of the AD-based provider you could argue that each separate instance of
an AD provider defined in configuration logically correlates to an “application.” So, if you wanted to
use Web Parts Personalization (using the SQL provider) with the AD membership provider, you could
still separate user data in the Web Parts Personalization data store based on which AD provider was
actually used to authenticated a user. It would be up to you to set up the applicationName attribute

79301c11.indd 552 10/6/08 12:15:40 PM

553

Chapter 11: Membership

for your Web Parts Personalization providers in a way that correlated to the different configured AD
membership providers, but you could do this pretty easily.

Although having a common identifier for objects is useful, it does not perform well. If you know that you
have features that are compatible at the data layer with Membership (for example, maybe you have all the
tables for your feature and the Membership feature in the same database), it is probably easier and more
natural to pass around database primary keys (for example, GUIDs, integers, and the like). There is an
even bigger issue if you allow changes to usernames. Although the Membership API does not support
this, and none of the other provider-based features support it, it is a common request by developers to
have the ability to change usernames after a user has been created. Because all the ASP.NET features
key off username, this can be a bit awkward; from a data integrity standpoint primary keys really are
not supposed to be updated.

The way most developers deal with this design problem is to create a data-store-specific primary key
value, and then to mark the username as some type of alternate key. The alternate key ensures unique-
ness, while the primary key ensures that data relationships are not mucked up each time someone
updates a username. Of course, you may already be thinking, what about that ProviderUserKey
property we just saw a while back? That property (and it also shows up as a parameter in a few places
in Membership) was the start of an abortive attempt to provide a more data-layer-centric approach to
handling Membership data. However, further integration of this property into the Membership feature
and other provider-based features was halted due to time constraints.

If you do not care about the portability of the username and application name, you can create and retrieve
users based on the ProviderUserKey. The reason for the name of this property on MembershipUser is
to make it clear that not all providers are necessarily databases. So, rather than calling the property
PrimaryKey, the more generic name of ProviderUserKey was chosen.

The CreateUser method lets you pass in an explicit value for the database primary key, assuming that
the underlying provider allows you to specify the primary key. The GetUser method has an overload
that allows you to retrieve a user based on the data store’s primary key value. Of course, this probably
strikes you as a rather limited offering: What about updating a user based on the ProviderUserKey?
Well, you can’t do that. For that matter, other than creating a user and getting a single user instance
back, there is no other support in the Membership feature, or any other feature, for manipulating data
based on the data-store-specific primary key. There may (or may not) be work in a future release to
bake the concept of a primary key more deeply into the Membership feature as well as the related Pro-
file, Role Manager, and Web Parts Personalization features.

One very important thing to keep in mind, though, with data-store-specific keys is that after you start
designing provider-based features with a hard dependency on a specific key format, you have potentially
limited your interoperability with other features, including features that no one has dreamed up yet.
Although the combination of username and application name can be a bit awkward at times, it does it make
it possible for completely random features to integrate at the level of the various provider-based object APIs.

For example, although Role Manager is frequently referred to as a companion feature to Member-
ship, the reality is that you do not need to use Membership to leverage Role Manager. You can use
Role Manager on an intranet web server with Windows authentication. Because Role Manager keys
off of username and application name, it is very easy to use the domain credentials of the user as the
username value in Role Manager even though no data-layer relationship exists between Role Manager
and an Active Directory environment. The application name in Role Manager can then be set based on
the name of the website that is using the feature, or it can be set based on the AD domain that users
authenticate against prior to using the application.

79301c11.indd 553 10/6/08 12:15:40 PM

554

Chapter 11: Membership

Supported Environments
Although the Membership feature is technically a part of ASP.NET 2.0 and ASP.NET 3.5 (the feature
exists in the System.Web.Security namespace and is physically located in System.Web.dll), you
can use the Membership feature outside of ASP.NET. This means that you can call any of the function-
ality in the Membership feature from console applications, NT service applications, fat client applica-
tions (that is, Windows Forms apps), and so on. Although you will need to reference the appropriate
ASP.NET namespace and assembly, beyond this requirement nothing special is needed to get Member-
ship working outside of ASP.NET.

The Membership feature always requires at least Low trust to work. For ASP.NET applications, this
means that you must run in Low trust or higher. For a non-ASP.NET application, the AspNetHosting​
Permission must be granted to the calling code with a level of Low or higher.

As an example of using the feature outside of ASP.NET, you can write a basic console application that
creates MembershipUser instances. This can come in handy if you need to prepopulate the database for
the SqlMembershipProvider. When you create a non-ASP.NET application, it must reference System​
.Web.dll. Figure 11-1 shows the proper reference for a console application set up in Visual Studio 2005.

Figure 11-1

Because the Membership feature has default settings defined in machine.config, you do not necessar-
ily need to configure the feature for your applications. However, the default applicationName as set in
configuration is /. This value probably will not make much sense for complex applications, so you may
need to change it for both your web and non-web applications. Additionally, the default Membership
provider in machine.config points at a local SQL Server Express database, which is probably not use-
ful for a lot of corporate applications.

79301c11.indd 554 10/6/08 12:15:40 PM

555

Chapter 11: Membership

In non-ASP.NET applications, you can add an app.config file to the project that contains the desired
<membership /> configuration section. One thing to note is that if you add app.config to a non-ASP.NET
project, it is created without the namespace definition on the <configuration /> element. This has the
effect of disabling IntelliSense within the design environment. Don’t worry, though, because the configura-
tion syntax is the same regardless of whether you are working with an ASP.NET application or a non-
ASP.NET application.

The app.config file for the sample console application is shown here with the type of the provider
snipped for brevity. The connection string shown below also assumes that you have already set up the
aspnetdb database in SQL Server using the aspnet_regsql tool:

 <configuration>
 <connectionStrings>
 <add
 name=”ConsoleDatabase”
 connectionString=”server=.\SQL2005;Integrated Security=true;database=aspnet
db”
 />
 </connectionStrings>

Even though it may look a little strange, it is perfectly acceptable to have a <system.web /> configura-
tion section located inside of a configuration file for a non-ASP.NET application. From the Framework’s
point of view, <system.web /> and its nested configuration sections are just another set of information
to parse. There is no dependency on an ASP.NET application host for the Membership-related configu-
ration classes.

The previous sample configuration clears the <providers /> collections. It is usually a good idea to
clear out provider collections if you don’t need any of the inherited definitions. In the case of the sam-
ple console application, you need your own definition to set the applicationName attribute appropri-
ately. As a result, there is no reason to incur the overhead of instantiating the default provider defined
up in machine.config. Also notice that the configuration file resets the defaultProvider on the
<membership /> element to point at the ConsoleMembershipProvider definition.

At this point, you have done everything necessary from a configuration perspective to get the console
application to work with the Membership feature. The only thing left to do is to write some code.

C#
using System;
using System.Web.Security;

namespace MemConsoleApp
{
 class Program
 {
 static void Main(string[] args)
 {
 MembershipCreateStatus status;
 MembershipUser mu =
 Membership.CreateUser(args[0], args[1], args[2],

79301c11.indd 555 10/6/08 12:15:40 PM

556

Chapter 11: Membership

 args[3], args[4], true, out status);

 Console.WriteLine(status.ToString());
 }
 }
}

VB.NET
Imports Microsoft.VisualBasic
Imports System
Imports System.Web.Security
Namespace MemConsoleApp
 Friend Class Program
 Shared Sub Main(ByVal args() As String)
 Dim status As MembershipCreateStatus
 Dim mu As MembershipUser = Membership.CreateUser(args(0), _
 args(1), _
 rgs(2), _
 args(3), _
 args(4), _
 True, _
 status)
 Console.WriteLine(status.ToString())
 End Sub
 End Class
End Namespace

The sample application uses the static Membership class to create a user. To reference the feature, it
includes a namespace reference at the top of the file to System.Web.Security. It expects the command-
line parameters to be the username, password, email address, password question, and password answers
respectively. For brevity, the application doesn’t include any error checking on the arguments. You can
see how little code is necessary to take advantage of the Membership feature; it probably takes more time
to set the assembly reference and tweak the configuration file that it does to write the actual code that
creates users.

After compiling the application, you can invoke it from the command line, and the results of the user
creation will be output to the console. A successful user creation looks like this:

MemConsoleApp.exe testuser pass!word test@nowhere.org Question Answer
Success

Because the console application uses the CreateUser overload that returns a status, if you attempt to
create the same user a second time, you see the following error message.

MemConsoleApp.exe testuser pass!word test@nowhere.org Question Answer
DuplicateUserName

In this case, the error message is just the string version of the returned MembershipCreateStatus.
Although the sample application only shows user creation, the full spectrum of the Membership feature
is available for you to use outside of ASP.NET. You can consume the existing API as well as write cus-
tom providers for use in non-web environments. In future releases, Membership may also be extended
further so that features such as Web Service-callable providers will be available right out of the box.

79301c11.indd 556 10/6/08 12:15:40 PM

557

Chapter 11: Membership

Using Custom Hash Algorithms
The <membership /> configuration element includes the hashAlgorithmType configuration attri-
bute. By default the Membership feature (or more specifically the SqlMembershipProvider) uses SHA1
when storing passwords. You can set this attribute to any string that the .NET Framework recognizes as
a valid hashing algorithm, and the SqlMembershipProvider will use that algorithm instead. If you
look at the documentation for the System.Security,Cryptography.HashAlgorithm class’s Create
method, there is a list of the default strings (that is, simple names) that the .NET Framework recog-
nizes and supports for referring to hash algorithms. Any one of these strings can be used in the
hashAlgorithmType attribute. You can retrieve the name of the hashing algorithm configured for
the Membership feature by getting the value of the Membership.HashAlgorithm property.

Although the hash algorithm is a feature-level setting, it is really more of an opt-in approach for indi-
vidual providers. The setting on the <membership /> element would be useless if individual Member-
ship providers didn’t explicitly read the value from the Membership.HashAlgorithm property and then
internally make use of the correct algorithm. Currently, the hashing functionality for the SqlMembership​
Provider calls an internal method on MembershipProvider. This internal method, in turn, creates the
appropriate hash algorithm based on the hashAlgorithmType attribute and then hashes the password
with a random salt value. In a future release, the internal method that does this may be made public.
For now, though, this means custom provider implementers that support password hashing need to
write code that follows the same approach:

	 1.	 Fetch the value of Membership.HashAlgorithm.

	 2.	 Call HashAlgorithm.Create, passing it the string from step 1.

	 3.	 With the resulting reference to the hash algorithm class, hash the password and optionally other
information such as a random password salt if the provider supports this.

	 4.	 Store the hashed value in the back-end data store

Assuming that you can depend on providers to follow these steps, you have the ability to influence a
provider’s hashing processing by configuring different hash algorithms. Using any of the default hash
algorithms in the Framework is very easy; you just set the hashAlgorithmType attribute to something
else such as SHA256, SHA512 and so on.

What happens, though, if you need to configure a hash algorithm that doesn’t ship in the 2.0 or 3.5 Frame-
work? In this case, you have the option of writing your own hash algorithm implementation and register-
ing it with either the .NET 2.0 or 3.5 Framework. Although you can definitely create your own custom
hashing algorithm that you instantiate and call directly from inside of a web page, because Membership
depends on the loosely typed HashAlgorithm.Create method, you must register your hash algorithm
with either the .NET 2.0 or 3.5 Framework for it to be used by the SqlMembershipProvider or any other
providers that follow the same programming approach.

To see how this works, you can create a basic hash algorithm class like the one shown here:

C#
using System.Security.Cryptography;
using System.Text;

namespace CustomHashAlgorithm

79301c11.indd 557 10/6/08 12:15:40 PM

558

Chapter 11: Membership

{
 public class DummyHashClass : HashAlgorithm
 {
 protected override void HashCore(byte[] array, int ibStart, int cbSize)
 {
 return; }

 protected override byte[] HashFinal()
 {
 return Encoding.UTF8.GetBytes(“DUMMYHASHVALUE”); }

 public override void Initialize()
 {
 return; }
 }
}

VB.NET
Imports System.Security.Cryptography
Imports System.Text

Namespace CustomHashAlgorithm
 Public Class DummyHashClass
 Inherits HashAlgorithm
 Protected Overrides Sub HashCore(ByVal array() As Byte, _
 ByVal ibStart As Integer, _
 ByVal cbSize As Integer)
 Return
 End Sub

 End Class
End Namespace

Clearly, you would never use an “algorithm” like this in production, but for showing the hashAlgorithm​
Type attribute in configuration, it is good enough. Rather than actually hashing anything, the custom
class always returns a hard-coded string. After you compile this class and deploy the assembly into the
/bin folder of an ASP.NET application, the next step is to make the class visible to the cryptographic
infrastructure in the .NET Framework.

You register custom cryptographic algorithms, both hashing and encryption algorithms, using the
<crytpographySettings /> configuration element found within <mscorlib />.

<mscorlib>
 <cryptographySettings>
 <cryptoNameMapping>
 <cryptoClasses>
 <cryptoClass
 MyDummyHashClass=”CustomHashAlgorithm.DummyHashClass, CustomHashAlgorithm”/>
 </cryptoClasses>

 <nameEntry name=”TestAlgorithm” class=”MyDummyHashClass”/>

79301c11.indd 558 10/6/08 12:15:40 PM

559

Chapter 11: Membership

 </cryptoNameMapping>
 </cryptographySettings>
</mscorlib>

The way this configuration works is:

The ❑❑ <cryptoClass /> element associates a name (in this case MyDummyHashClass) with a
.NET Framework type. In this case, I am using a reference to just a class and an assembly. In
production applications, your custom hash algorithm type would probably be in the GAC and,
thus, you would instead use a strong-named reference here. Because the sample is not strong-
named, the assembly CustomHashAlgorithm has to be deployed in an ASP.NET application’s
/bin directory for the type to be loaded.

The ❑❑ <nameEntry /> element associates a friendly name with the custom hash algorithm class. In
the sample configuration, this allows TestAlgorithm to be passed to HashAlgorithm.Create,
which will then return a reference to the DummyHashClass type.

A very important note about this configuration: You must place the configuration in machine.config!
If you try to place the configuration section inside of web.config, the cryptography infrastructure
will never see your custom type because the <mscorlib /> cryptography settings are only valid
when defined in machine.config. Although you can place them in other configuration files, they will
never be processed. If you end up banging your head against a wall wondering why your custom hash
class is never being used, it is probably because the configuration for it is not in the right place.

With the sample hash algorithm configured in machine.config, you can create a sample ASP.NET
application that makes use of it. The following configuration element tells the Membership feature to
use the custom type.

<membership hashAlgorithmType=”TestAlgorithm” />

Now if you create a new user with the SqlMembershipProvider, the new user’s password will be
hashed using the custom hash algorithm. You can verify this by looking in the database—you will see
that the password value is RFVNTVlIQVNIVkFMVUU=. This is just the base64-encoded representation
of the byte[] returned by any hash algorithm. If you run the following code snippet to decode this
string, the Membership feature successfully use the custom hash algorithm and end up with a pass-
word of DUMMYHASHVALUE.

C#
byte[] dbResult = Convert.FromBase64String(“RFVNTVlIQVNIVkFMVUU=”);
string dbString = Encoding.UTF8.GetString(dbResult);
Response.Write(“The encoded password is “ + dbString);

VB.NET
Dim dbResult() As Byte = Convert.FromBase64String(“RFVNTVlIQVNIVkFMVUU=”)
Dim dbString As String = Encoding.UTF8.GetString(dbResult)
Response.Write(“The encoded password is “ & dbString)

Because the registration of custom hash algorithms has to occur in machine.config, you will probably
find custom hash algorithms (that is, non-Framework algorithms) primarily useful when they need to be

79301c11.indd 559 10/6/08 12:15:40 PM

560

Chapter 11: Membership

used globally for many applications on a server. Although it is possible, it probably doesn’t make much
sense to use Membership in a way where custom hash algorithms are defined on a per-application basis
(that is, dozens of applications on a machine with each application using a completely different custom
hashing implementation). This kind of approach would result in dozens of custom algorithms needing
to be registered up in machine.config.

Summary
For a lot of developers, the Membership feature will be equivalent to using the Login controls and the
public static Membership class. If you never have to deal with multiple providers, or provider-specific
functionality, everything you need to use can be found on the Membership class. However, more com-
plex sites will probably need to code against the MembershipProvider class, especially if they need to
handle multiple providers.

Because the Membership feature deals with various aspects of a user, the MembershipUser class is avail-
able for carrying out user-oriented functions such as password management and user updates. As with
the MembershipProvider class, you can also choose to implement a custom MembershipUser class. The
usual coding approach is for custom provider implementers to optionally supply a custom Membership​
User class as well.

For custom provider implementers, it can be helpful to group the functionality of a Membership
Provider into different areas. Depending on how you plan to use a custom provider, you can choose to
implement a very narrow set of functionality and eliminate the remainder of the provider implementa-
tion. For each of the functional areas, though, there are usually a few basic expectations that should be
met for higher level applications and controls like the Login controls and the Web Administration Tool.

If you are thinking about integrating the Membership feature with custom providers for other ASP.NET
application services, or with your own features, then understanding the definition of a “user” is very
important. Keep in mind that across the ASP.NET application services, a user is identified by a combi-
nation of username and an application name defined in a provider’s configuration. Although this com-
bination of identifiers can be a bit cumbersome from a database-centric viewpoint, it does make it much
easier to integrate different features written by completely different companies and development teams
when there are no common assumptions on data types and primary keys.

Probably the biggest “stealth” feature of Membership, and other application services, is that the Mem-
bership feature works outside of ASP.NET. This makes it much easier to administer Membership data,
and it also opens up a number of interesting possibilities for reusing authentication information across
a spectrum of different client front ends.

79301c11.indd 560 10/6/08 12:15:40 PM

12
SqlMembershipProvider

The Membership feature comes with two different providers by default: one that works with
SQL Server and one that works with Active Directory. The subject of this chapter is the SQL-based
provider. This provider is sort of the showcase provider for the Membership feature because it
implements the full range of functionality exposed by the Membership API. It can be used by appli-
cations with only a handful of user accounts as well as very large sites with hundreds of thou-
sands of user accounts. The provider can be used inside of ASP.NET applications as well as in
non-ASP.NET applications. As with the parent Membership feature, SqlMembershipProvider
can be used with Low trust and above, although when running it with Low trust, you need to
explicitly add SqlClientPermission for the provider to work.

This chapter will cover the following aspects of SqlMembershipProvider in detail:

The common database schema used by all SQL-based providers in ASP.NET.❑❑

The database schema that supports ❑❑ SqlMembershipProvider.

Caveats to keep in mind when using SQL Server Express instead of SQL Server.❑❑

Security for the Membership database.❑❑

How to change password formats.❑❑

How to change the way that passwords are automatically generated.❑❑

How to use custom encryption.❑❑

How to enforce custom password strength rules.❑❑

How account lockout works with the provider.❑❑

How to extend the provider to implement auto-unlock behavior.❑❑

How to support multiple portal-style applications with a single provider.❑❑

How to manage application’s users through IIS 7.0.❑❑

79301c12.indd 561 10/6/08 12:16:01 PM

562

Chapter 12: SqlMembershipProvider

After covering these topics, you should have a good sense of how the provider works, as well as how
you can build extended functionality on top of the SQL provider without needing to write a custom
provider from scratch.

Understanding the Common
Database Schema

All the default SQL-based providers in ASP.NET 2.0 and ASP.NET 3.5 share a common schema. The
common tables and supporting stored procedures allow ASP.NET to share the same user data across
the Membership, Role Manager, Profile, and Web Parts Personalization features. If you choose to use
multiple features, and you take the extra step of pointing the various features at the same database, the
end result is that all ASP.NET features will share a common set of user and application data. With this
scenario, you can work with data through a feature’s object API or directly against the database. At both
levels of programming, you will be dealing with the same piece of user data.

This integration is not actually required to use any of the features. The integration support is nice to have
if you choose to install all the feature schemas in a single database. However, it’s possible to install each
feature’s database schema into a separate database, potentially on completely different servers. If you
do this, all the features will still work. Because each one depends on a username and the application
name from configuration as the identifying data for a user, each feature’s database will have its own
unique row of data identifying a user. For example, if you install three ASP.NET features into three dif-
ferent databases, over time the user “foo” will end up with three records: one in each feature database.

This approach leads to object level integration of user data; the only way features “know” they are deal-
ing with the same user is from the username and application name data that is available from the various
features of the APIs. At the database level, though, there are no foreign key relationships or common pri-
mary keys linking together the same user record across multiple databases or multiple servers.

As a developer or administrator, you don’t ever need to install the common database schema directly.
Instead, each time you choose to install at least one of the SQL-based ASP.NET features, the common
schema elements are also created on your behalf. If you want to see where these common schema ele-
ments are defined, though, you can look in the file InstallCommon.sql, which exists in the frame-
work’s install directory.

Storing Application Name
You have seen references to the concept of an application name in a number of the previous chapters.
The idea behind an application name is that providers (such as the SQL providers) that work with rela-
tional data can horizontally partition data in a table through the use of a partitioning key. That key is
the application name. The ASP.NET SQL-based providers all use the applicationName configuration
attribute internally when working with the database. For example, when SqlMembershipProvider
attempts to a retrieve a user, foo, from the database, in reality it is looking for a user, foo, who belongs
to application name “bar.” In this way, it becomes possible to host multiple web applications with a
single SQL Server database installation. The horizontal partitioning by application name ensures that
each application works with its own slice of data.

79301c12.indd 562 10/6/08 12:16:01 PM

563

Chapter 12: SqlMembershipProvider

The application names are stored in the common feature schema’s table aspnet_Applications:

CREATE TABLE [dbo].aspnet_Applications (
 ApplicationName nvarchar(256) NOT NULL UNIQUE,
 LoweredApplicationName nvarchar(256) NOT NULL UNIQUE,
 ApplicationId uniqueidentifier PRIMARY KEY NONCLUSTERED
 DEFAULT NEWID(),
 Description nvarchar(256))

As you can see, there isn’t much stored for an application. In fact, the only portion of the row that is
generated by a provider is the data for the ApplicationName column. Within the stored procedures
for many of the SQL-based features, you will see code like the following:

EXEC dbo.aspnet_Applications_CreateApplication
 @ApplicationName, @ApplicationId OUTPUT

Each time an SQL-based provider attempts to create a new row of data, it issues a command like this to
ensure that a row is first created in the aspnet_Applications table. The application data that is reg-
istered corresponds to the value of the applicationName attribute set in the provider’s configuration.
This means that in ASP.NET 2.0 and ASP.NET 3.5, applications are auto-magically registered on behalf
of providers. There is, unfortunately, no public API for accomplishing this.

Other stored procedures that retrieve or update data (as opposed to creating new rows of data)
usually have a stored procedure parameter for application name that is used as a join key into the
aspnet_Applications table.

SELECT …
FROM dbo.aspnet_Applications a, …
WHERE LOWER(@ApplicationName) = a.LoweredApplicationName
AND …

In these cases, the expectation is that the row in the aspnet_Applications table already exists. These
types of stored procedures will not automatically cause creation of a row in the aspnet_Applications
table because without a row in this table, there is no way any data for that application will exist in the
feature’s tables anyway.

The other columns in the table are either filled in by the application creation stored procedure (that is,
LoweredApplicationName and ApplicationId) or are unused in ASP.NET 2.0 and ASP.NET 3.5 (the
Description column will always be null). If a basic object model is built for developers to manipu-
late these common tables in a future release, then unused columns like Description will become
accessible.

The Common Users Table
The central user table that is common to all feature schemas is aspnet_Users:

CREATE TABLE [dbo].aspnet_Users (
ApplicationId uniqueidentifier NOT NULL FOREIGN KEY REFERENCES
 [dbo].aspnet_Applications(ApplicationId),
UserId uniqueidentifier NOT NULL PRIMARY KEY NONCLUSTERED
 DEFAULT NEWID(),

79301c12.indd 563 10/6/08 12:16:01 PM

564

Chapter 12: SqlMembershipProvider

UserName nvarchar(256) NOT NULL,
LoweredUserName nvarchar(256) NOT NULL,
MobileAlias nvarchar(16) DEFAULT NULL,
IsAnonymous bit NOT NULL DEFAULT 0,
LastActivityDate DATETIME NOT NULL)

As you can see, this table has a foreign key relationship to the aspnet_Applications table. Because of
this providers can partition their data based on application name. Every time an SQL-based provider
retrieves data from the database, it always includes application name as part of its WHERE clause. The
result is that the application’s ApplicationId value is used as part of the filter when retrieving data
from aspnet_Users.

The object APIs for the various ASP.NET features and of the stored procedures contain no function-
ality for querying tables like aspnet_Users without using an application name. In other words, no
API allows you to query across all the data in the users table. All database operations are always con-
strained to just the slice of data relevant to a specific application name.

As with the application table, whenever various ASP.NET features need to create a row of data associ-
ated with a user, they first ensure that a record in the aspnet_Users table exists for that user.

EXEC @ReturnValue = dbo.aspnet_Users_CreateUser @ApplicationId, @UserName, 0,
 @CreateDate, @NewUserId OUTPUT

Here once a feature has the correct ApplicationId (perhaps just newly created from the application
creation stored procedure mentioned in the last section), it usually checks to see if a user record exists
for a given username. If no record exists, it creates one in the aspnet_Users table with a call to this
stored procedure.

As with applications, this means in ASP.NET 2.0 and ASP.NET 3.5 that user records in the common
aspnet_Users table are auto-magically created just before they are needed. There is no public API
for creating generic user records in this table. Also note that a user record in the aspnet_Users table
doesn’t mean that the user is registered in the Membership feature. The aspnet_Users table’s purpose
is to map from an application name and a username to a GUID (that is, uniqueidentifier). This
GUID is then used as a key to index into a feature’s data tables.

Usually, a feature accomplishes this mapping with a piece of SQL similar to the following:

SELECT @UserId = u.UserId
FROM dbo.aspnet_Applications a, dbo.aspnet_Users u, ….
WHERE LOWER(@ApplicationName) = a.LoweredApplicationName
AND u.ApplicationId = a.ApplicationId
AND LOWER(@UserName) = u.LoweredUserName
AND ….

You can see how a feature first indexes into the aspnet_Applications table to get the GUID key for
an application. The application’s key is then used as a filter when looking in the aspnet_Users table for
the data record corresponding to a specific username. Assuming that the user exists, the end result is
the GUID key that represents a (username, application name) pair. For the SQL providers, there is code
all over the place that translates from this somewhat cumbersome identifier, to the more compact and
database-centric primary key identifier for a user.

79301c12.indd 564 10/6/08 12:16:01 PM

565

Chapter 12: SqlMembershipProvider

If you make use of the ASP.NET provider-based features, and if you choose to install the entire feature
schema in a single database, then the aspnet_Users table is very useful albeit in a mostly silent man-
ner. With all the features pointed at the same database, each time one feature needs to create or refer-
ence a row of user data, it will end up pointing at the same row of data in aspnet_Users. For example,
if you register a new user in the Membership feature, when that user personalizes a page with Web
Parts Personalization, the personalization data will be linked to the same row in the aspnet_Users
table assuming that the personalization provider is configured with the same application name as the
membership provider.

This use of common user data is what enables the Membership.DeleteUser method to clean up data
from other features. Although you could go feature by feature and issue delete commands to clean up
user data, the DeleteUser method takes advantage of the fact that all the SQL-based features will key
off of the same ApplicationId and the same UserId when running in the same database and all pro-
viders are configured with the same application name. As a result, if you call the DeleteUser method
and pass it a value of true for the deleteAllRelatedData parameter, SqlMembershipProvider will
call a stored procedure that iterates through all the other user-specific feature tables deleting data
based on the common GUID identifier for a user.

Currently, only the Membership feature exposes the GUID UserId column by way of the provider​
UserKey parameter supported on CreateUser and GetUser. If you create a new user, you can option-
ally specify the GUID you want to store in the UserId column. You can retrieve a MembershipUser
based on the UserId column with the GetUser overload that accepts a providerUserKey. How-
ever, other than these special methods in Membership, the linking of feature data to the same record
in aspnet_Users and providing a global delete method, there is currently no other public functionality
in ASP.NET that relies on the common users table. Furthermore, it is only the Membership feature that
even provides a public API into the common users table. Future releases may expose the provider​
UserKey more broadly in other APIs, which would allow you to work with user data based on the
UserId column as opposed to the somewhat awkward (username, application name) pair.

As with the aspnet_Applications table, the aspnet_Users table includes a number of other col-
umns that are automatically filled in when a new user is created: LoweredApplicationName and
ApplicationId. The LastActivityDate column is filled in with a UTC date time that is passed
down from the provider running on the web server. (See Chapter 11 for a discussion on how date-
time data is handled across the entire ASP.NET 2.0 and ASP.NET 3.5 SQL-based providers.) This date
is intentionally stored in the aspnet_Users table rather than a feature-specific table. This allows the
different ASP.NET features to update a common piece of date-time data whenever certain events occur
within a feature. Features can then reference the LastActivityDate column to determine things like
whether the user is online (Membership) or whether a user is considered stale and thus the associated
data for that user can safely be purged from the database (Profile and Web Parts Personalization).

Currently, the LastActivityDate column is periodically updated in the following cases:

Membership updates this column whenever a user logs in. The date is initially set when ❑❑

the user is created. It can also be optionally updated when retrieving a MembershipUser
object.

Role Manager will put the current UTC date time in this column if it needs to automatically ❑❑

create user records prior to assigning the users to roles. For example, this can occur if you use
Role Manager in combination with Windows authentication.

79301c12.indd 565 10/6/08 12:16:01 PM

566

Chapter 12: SqlMembershipProvider

The Profile feature updates this column each time a user’s profile data is retrieved or updated.❑❑

The Web Parts Personalization data updates this column each time a user’s personalization data ❑❑

for any page is retrieved or updated. It also updates this column each time a user’s personaliza-
tion data for any page is reset.

The general idea behind the updates to LastActivityDate is that for an ASP.NET site that makes use
of a number of the SQL-based providers, an active user on a site will probably regularly cause one of the
listed events to occur. Users do log in to sites, view pages with personalized web parts and use other
pieces of functionality that retrieve information from their user profile.

As a result, it is likely that the LastActivityDate will be a rough indicator of the last time the user
did anything significant. Of course, the activities that update this column aren’t guaranteed to occur on
any kind of regular interval. It would be possible for someone to log in to a site, and then never access
a page with a web part on it. Or a very long period of time could pass between a user logging in and a
user hitting a page that retrieves data from their user profile. As a result, any feature APIs that depend
on this data work on the “good enough” concept—that is, the value in the LastActivityDate column
is good enough as an indicator of user activity. Especially for APIs that are used for purging stale user
data, you do not need accuracy down to the second to determine whether a user has been active on a
website in the past three months. However, if you are looking for a very precise and deterministic indi-
cator of user activity on a website you will need to create your own solution.

The IsAnonymous column is set based on whether the provider on the web server is issuing a com-
mand on behalf of an authenticated user or an anonymous user. For ASP.NET 2.0 and ASP.NET 3.5,
you will only see a value of true in this column if you enable the Anonymous Identification feature
and then store data with the Profile feature for anonymous users. The Membership, Role Manager, and
Web Parts Personalization features all exclusively work with authenticated users in ASP.NET 2.0 and
ASP.NET 3.5 and, hence, they always store a value of false in this column.

The MobileAlias column is an orphan in ASP.NET 2.0 and ASP.NET3.5. It was originally placed in the
table early on in the development of ASP.NET 2.0 when mobile clients were being considered. However,
as the mobile work in ASP.NET 2.0 was scaled back, there wasn’t a driving need to expose this column
via the providers. The original idea was to have an alternate identifier for mobile users who sometimes
are identified by a shorter identifier than a username. For example, a mobile user might be identified by
a just one or two characters and a few numbers (for example, JS1234) because it is easier for someone to
tap in a few digits on a handset as opposed to laboriously typing in a text-based username. In a future
release, this column may end up finding a use, though it is equally likely that it remains an orphan col-
umn in future releases. For now, I would recommend that curious developers avoid using the column
for other uses.

Versioning Provider Schemas
Because feature requirements and thus database schemas change over time, the common database
schema includes a version table aspnet_SchemaVersions and related stored procedures. Although
the table is not exposed through any public APIs, the ASP.NET features register their schema versions
when they are installed. At runtime, the SQL-based providers check the schema version in the database
to ensure that the provider and the installed database schema are in sync. Although this table and the
version checks may seem a bit pointless for ASP.NET 2.0 and ASP.NET 3.5, it is highly likely that the
database schemas will change in future major releases.

79301c12.indd 566 10/6/08 12:16:02 PM

567

Chapter 12: SqlMembershipProvider

CREATE TABLE [dbo].aspnet_SchemaVersions (
Feature nvarchar(128) NOT NULL PRIMARY KEY CLUSTERED
 (Feature, CompatibleSchemaVersion),
CompatibleSchemaVersion nvarchar(128) NOT NULL,
IsCurrentVersion bit NOT NULL)

Each time a feature installs its database schema into the database, it writes the name of the feature into
the Feature column. It also fills in the current version signature in the CompatibleSchemaVersion
table. If the schema that is being installed is considered the most current version of the feature’s schema,
then the installation script also sets IsCurrentVersion to true. For ASP.NET 2.0 and ASP.NET 3.5 of
course there is only one row in this table for each feature. Each feature currently sets the schema version
to the string “1” and marks IsCurrentVersion as true.

The intended use of this table is that in future versions, service packs, and so on each new version of
a feature schema installs a new row into this table. Furthermore, if a new version of a feature schema
is not structured to support older providers, the older version rows in the database are deleted. For
example, the current Membership feature inserts a row into the table with the values Membership, 1
and true. If a major release of the Framework results in an entirely new Membership schema in the
database, the Membership SQL installation scripts would probably insert a new set of data with the
values Membership, 2 and true.

However, if the new version of Membership does not support the older ASP.NET 2.0 or ASP.NET 3.5
SqlMembershipProvider implementation (meaning that the old stored procedures no longer existed),
when the new Membership script runs, it would delete the old version 1 row from the database. When
an ASP.NET 2.0 or ASP.NET 3.5 SqlMembershipProvider checks for a row in this table for the Mem-
bership feature with a version of “1” it will not find it. If this happens the provider throws a Provider​
Exception stating that the provider is pointed at an incompatible database. The version check and
exception behaviors just described are coded into all the ASP.NET 2.0 and ASP.NET 3.5 providers.
These checks come in handy for future releases where you may be running web servers with differ-
ent versions of the framework all pointed at a single database.

Now this previous example is theoretical only; there are no plans to break ASP.NET 2.0 and
ASP.NET 3.5 provider-based sites whenever new versions of the framework come out. In fact, the gen-
eral idea is to have a database schema that versions well over time and that supports older and newer
stored procedures and table layouts. In fact, one of the main reasons for the version table is to ensure
that in the future if a new version of ASP.NET providers are pointed at an old database, then the new
providers detect this and inform you of the problem. In an upgrade scenario, it is likely that after you
upgrade a database, you will have two rows of data per feature in the schema version table:

Membership 1 false
Membership 2 true
Profile 1 false
Profile 2 true
Etc.

When a new provider runs, it expects to find a row of data indicating that the version “2” schema is
installed. However, an older ASP.NET 2.0 or ASP.NET 3.5 provider would see that the database still
supports version “1,” and as a result it too would be able to run successfully. The fact that a newer data-
base schema might “hollow out” the old stored procedures and map them to new stored procedures is

79301c12.indd 567 10/6/08 12:16:02 PM

568

Chapter 12: SqlMembershipProvider

something that would be entirely transparent to the providers. The IsCurrentVersion column just
serves as a convenient indicator for you to determine the actual schema scripts that were last installed
in the database. With the previous sample rows, this would mean although ASP.NET 2.0, ASP.NET 3.5,
and newer providers are supported, the actual table schemas and stored procedures installed in the
database are from the later version of the Framework.

A related piece of flexibility the version table gives ASP.NET is the ability to release out-of-band ver-
sions of the SQL providers for various external or experimental projects. The version table makes it
much easier to play around with these types of releases in a way that ensures the various provider ver-
sions are actually pointed at compatible back ends. Because the version column in the database is just
a string, it makes it easier to store more expressive version information for these types of releases than
just a simple number.

You can see the version checks being performed by providers today if you sniff the network connection
to SQL Server with a tool like SQL Profiler. Each provider will make a call to aspnet_CheckSchema​
Version to ensure that the provider is running against a database that supports the expected schema
version. Because it would be expensive to make this check before each and every SQL call, the provid-
ers make this check just before the first SQL command is issued by the provider. Subsequent calls to the
database over the lifetime of an app-domain simply reuse the original and now cached schema check
result. This means that you could intentionally confuse a provider by using it once and then changing
the database schema to an incompatible state. However, in production use making the schema check
once during the provider’s lifetime and then caching the result is sufficient.

Currently, all schema checks are implemented with private code, so the version functionality can be
used by only ASP.NET providers. Although the version table is simple enough to use that you could
hack in your own information, if you author your own SQL-based providers you should include your
own custom mechanism for handling schema versioning over multiple releases.

Querying Common Tables with Views
There is technically one common public API available for use with the aspnet_Applications and
aspnet_Users tables. As with the provider-specific features, the common table schema includes some
SQL Server views for querying the underlying tables. Whenever the common database schema is
installed, it includes two views: vw_aspnet_Applications and vw_aspnet_Users.

As the names suggest, the vw_aspnet_Applications view is simply a view that maps directly to all
the columns in the aspnet_Applications table, whereas the vw_aspnet_Users table is a view that
maps to all the columns in the aspnet_Users table. In both cases, developers are allowed to write
read-only queries against these views because the development team plans to make sure that in future
versions of the database schema the view definitions stay the same. Although nothing prevents you
from writing inserts or updates against the views, the general guidance is that database level SELECT
queries are supported against the views while any kind of data modification needs to go through a pub-
licly supported provider API. As a result, if you are enterprising and you write inserts or updates to go
against these views, do not be surprised if they break in a future release.

79301c12.indd 568 10/6/08 12:16:02 PM

569

Chapter 12: SqlMembershipProvider

Linking Custom Features to User Records
Because all the ASP.NET features take advantage of the aspnet_Users and aspnet_Applications
tables, you might be wondering if you can do so as well. For example, if you author a custom Profile
provider that uses SQL Server, it would be reasonable to link your custom data with these tables. That
way if someone used other ASP.NET SQL-based providers in conjunction with your custom Profile pro-
vider, everybody would be sharing a common set of data.

The “official” guidance is that this level of integration is technically not supported. Technically, the
only way in which custom providers, or custom features, can be integrated with ASP.NET SQL-based
providers is by way of the (username, application name) pair. However, because the existing SQL-based
providers are so tightly integrated with these two tables, it isn’t likely that the product team can easily
change the primary keys for applications or users without causing some major data migration pain in
future releases of the Framework.

With this in mind, it’s reasonably safe for custom provider implementers and feature implementers to
rely on the user and application tables. (Disclaimer: if something goes horribly awry in a future release,
consider yourself warned!) Because SqlMembershipProvider explicitly supports the use of the GUID
primary key via the providerUserKey parameter on various APIs, it isn’t likely that this key will ever
change. You have two general ways to take advantage of this:

You could implement a custom database schema that has a ❑❑ UserId column of type unique​
identifier. For safety, though, you could always retrieve this key by calling Membership​
.GetUser and then storing the ProviderUserKey property in your database tables. However,
you would not have any integration at the database level.

You could create your tables with a foreign key dependency to ❑❑ aspnet_Users. Your stored
procedures would work like the ASP.NET stored procedures. You would convert an application
name parameter to an ApplicationId and then you would use ApplicationId and a user-
name to get to a GUID UserId.

Of these two approaches, the second one makes the most sense. The only aspect of the second option
that isn’t officially supported is creating a foreign key on your tables that references aspnet_Users​
.UserId. You can perform the application name to ApplicationId resolution using the publicly
supported vw_aspnet_Applicatons view. Similarly, you can then get the UserId by querying the
vw_aspnet_Users view. So, the only risk you run is that a future version of ASP.NET creates a new
users table and deprecates the old one, in which case all you would need to do is to update your for-
eign key references after a database upgrade.

Resolving an application name to an ApplicationId can be done with the following code:

create procedure getApplicationId
@pApplicationName nvarchar(256)
as
select ApplicationId
from dbo.vw_aspnet_Applications
where LoweredApplicationName = LOWER(@pApplicationName)

79301c12.indd 569 10/6/08 12:16:02 PM

570

Chapter 12: SqlMembershipProvider

Fetching the UserId after you have the ApplicationId is just as easy:

create procedure getUserId
@pApplicationId uniqueidentifier,
@pUsername nvarchar(256)
as
select UserId
from dbo.vw_aspnet_Users
where LoweredUserName = LOWER(@pUsername)
and ApplicationId = @pApplicationId

And, of course, you can get to the UserId from a (username, application name) pair with just one query
as well:

create procedure getUserId2
@pApplicationName nvarchar(256),
@pUsername nvarchar(256)
as
select UserId
from dbo.vw_aspnet_Users u,
 dbo.vw_aspnet_Applications a
where a.LoweredApplicationName = LOWER(@pApplicationName)
and u.LoweredUserName = LOWER(@pUsername)
and u.ApplicationId = a.ApplicationId

All these pieces of T-SQL use views, so they don’t depend on any unsupported functionality. If you
author a custom provider that requires developers to use the existing SqlMembershipProvider to reg-
ister users, then you don’t need to worry about writing any other SQL. If you always create users with
the Membership feature first, the necessary rows of data will already exist in the application and user
tables. In essence, with this approach you are depending on ASP.NET to set things up ahead of time for
you, and the only risk you are taking with your schema is a foreign key directly into an ASP.NET table.

However, what happens if you want to create your own custom Membership provider, but you still
want your data to be integrated with other features such as Profile and Web Parts Personalization? Now
you have the problem of getting a row of data into the user and application tables. If you wanted to, you
could still require that SqlMembershipProvider be used even though someone really uses your cus-
tom provider for user management. You could register a user with SqlMembershipProvider simply to
take advantage of the fact that by doing so you will get user and application rows set up properly.

That approach, though, is admittedly pretty clunky, and customers would wonder why the Member-
ship user table holds all this extra data. The better approach would be to insert the common data into
aspnet_Users and aspnet_Applications—but, of course, the catch-22 here is that ASP.NET 2.0 and
ASP.NET 3.5 have no publicly supported way to do so. Assuming that you are fine with taking the
added risk of using officially undocumented and unsupported stored procedures, you can solve this
problem by using the stored procedures that already exist in the default ASP.NET schemas:

aspnet_Applications_CreateApplication❑❑ : Other ASP.NET features use this undocu-
mented and unsupported feature to automatically create an application as needed. You pass it
the string value for the application name, and it returns as an output parameter the GUID for
the newly created application.

79301c12.indd 570 10/6/08 12:16:02 PM

571

Chapter 12: SqlMembershipProvider

aspnet_Users_CreateUser❑❑ : This undocumented and unsupported stored procedure creates
a row in the aspnet_Users table for a new user. You pass it the ApplicationId, username
of the new user, and the settings for IsAnonymous and LastActivityDate. The procedure
returns the GUID for the newly created user.

To at least mitigate the risk of these stored procedures changing or being renamed, you should limit the
places where you call unsupported stored procedures. For example, if you wrote a stored procedure for
a custom Membership implementation and you wanted to create a new user, you could write something
like this:

create procedure MyCustomUserCreation
@pApplicationName nvarchar(256),
@pUsername nvarchar(256),
@pUserId uniqueidentifier OUTPUT
as

declare @applicationID uniqueidentifier
declare @retVal int
declare @rightNow datetime

set @rightNow = getutcdate()

--this ensures the row in the application data exists
--if the application already exists, the sproc just performs
--a select
exec dbo.aspnet_Applications_CreateApplication @pApplicationName,
 @applicationID OUTPUT

--if for some reason the user record was already registered
--just return it
select @pUserId = UserId
from dbo.vw_aspnet_Users u,
 dbo.vw_aspnet_Applications a
where a.LoweredApplicationName = LOWER(@pApplicationName)
and u.LoweredUserName = LOWER(@pUsername)
and u.ApplicationId = a.ApplicationId

if (@pUserId is null)
begin
 exec @retVal = dbo.aspnet_Users_CreateUser @applicationID, @pUsername,
 0, @rightNow, @pUserId OUTPUT
End

if (@retVal = -1) --other error handling here
 return @retVal

--if you make it this far, create the rest of the user
--data in your custom tables

return 0

79301c12.indd 571 10/6/08 12:16:02 PM

572

Chapter 12: SqlMembershipProvider

This stored procedure uses a mix of supported views and the unsupported stored procedures for creat-
ing applications and users. It starts by ensuring that a row in aspnet_Applications already exists
by calling the aspnet_Applications_CreateApplication stored procedure. Internally, this stored
procedure first attempts to return a row of application data if the application already exists. If the appli-
cation does not exist, the stored procedure creates it for you. As a result, it is safe to repeatedly call this
stored procedure with the same application name, because only the very first call results in an insert.

The user creation stored procedure then checks to see if the user record was already registered in the
aspnet_Users table. If the user already exists, it just fetches the existing UserId by querying the
view. However, if the user is not already in aspnet_Users, then the stored procedure calls the
aspnet_Users_CreateUser stored procedure to insert a row into the aspnet_Users table. Assum-
ing that no errors occur by this point, you would then write additional code to perform the necessary
inserts into your custom data tables.

On one hand, wrapping this kind of logic inside of your own stored procedure ensures that if the
ASP.NET procedures change in a future release, you have to edit only this one stored procedure. On the
other hand, if you spam your code base with calls to the ASP.NET application creation and user creation
stored procedures, you risk having to implement mass rework each time you upgrade the database
with newer ASP.NET stored procedures. And, of course, in the extreme you could clone and rename the
two ASP.NET stored procedures that are being used, though such an approach is likely to break if the
underlying schemas for the aspnet_Users and aspnet_Applications tables change.

Why Are There Calls to the LOWER Function?
In a few of the previous samples there is code that looks like LOWER(@pUsername) and LOWER
(@pApplicationName). You might be wondering, why not just perform joins directly against the
UserName and ApplicationName columns in the views? If you install your database using a case-
insensitive sort order, you do not need to muck around with the LOWER function. However, because
ASP.NET can’t control the collation orders of customer databases, many of the stored procedures in
ASP.NET use columns whose sole purpose is to store the lowered representation of string data.

For example, the aspnet_Users table has a UserName column and a LoweredUserName column. If you
install this schema in a database that is case-sensitive, you will see that the ASP.NET features still work in
a case-insensitive manner. You could create a new user called “TEST” using SqlMembershipProvider,
and you could still log in by typing in a username of “test”. This means that ASP.NET stored procedures
have to perform extra work during inserts, updates, and selects to ensure that string data is being que-
ried in a case-insensitive manner regardless of the collation order for the underlying database.

Typically, at insert time (and updates in the case of data like email addresses), various stored procedures
explicitly lower the data prior to inserting it into a Lowered* column. The original casing is preserved in
a separate column. So, when you create a new user, the value TEST goes into the UserName column, but
the lowercased representation of test goes into the LoweredUserName column. Whenever an ASP.NET
feature performs a username-based query, it always lowercases the search parameter and then com-
pares it against the LoweredUserName column. This is why some of the view samples earlier used the
syntax LoweredUserName = LOWER(@pUserName). However, when you get a MembershipUser from
the database, the Username property reflects the original casing used at creation time.

The reason that the ASP.NET stored procedures enforce the lowercasing is that, for the most part,
the string data managed by the various features is intended to be used in a case-insensitive manner.
Usernames and email addresses are typically not expected to be case-sensitive. When you log in to a

79301c12.indd 572 10/6/08 12:16:02 PM

573

Chapter 12: SqlMembershipProvider

Windows desktop, for example, you can type your username in all capitals if you want, and the login
still works. Similarly, you can email yourself using all capital letters, and the email will still reach you.
In general, this behavior means that the following pieces of data are stored using two columns of data
and are treated as case-insensitive for search and data modification purposes:

Application name❑❑

Username❑❑

Email address❑❑

Role names❑❑

Virtual paths stored by Web Parts Personalization❑❑

If you are an experienced database developer all this probably raises a second question: Why the
kludgy workaround? You may not realize it, but the database schemas for the provider-based features
in ASP.NET are actually supported on SQL Server 7.0, 2000, and 2005.

Unfortunately, due to the wide range of supported SQL Server versions, there is not a single silver bul-
let for enforcing case-insensitivity. Only with SQL Server 2000 or later are you able to explicitly control
collations on a column-by-column basis. Although the development team could have created a 2000/2005
table schema that was separate from the 7.0 schema, the workaround for handling lowercased data
would still have been necessary for the 7.0 specific schema. Because supporting SQL Server 7.0 requires
a workaround in all the stored procedures anyway, it did not make much sense to fork the database sche-
mas and then have to support two subtly different sets of stored procedures and tables going forward.

The Membership Database Schema
The Membership database schema (contained in InstallMembership.sql) deals with storing Membership-
specific data. Where overlaps exist with the common table schema (the username and application name), the
data is stored using the common tables. As a result, only one additional table is added by Membership: the
aspnet_Membership table. There is also a view called vw_aspnet_MembershipUsers that maps most,
though not all, of the columns on this table. The vast majority of the Membership database schemas that are
installed are for stored procedures used by SqlMembershipProvider.

The aspnet_Membership table is:

CREATE TABLE dbo.aspnet_Membership (
ApplicationId uniqueidentifier NOT NULL
 FOREIGN KEY REFERENCES dbo.aspnet_Applications(ApplicationId),
UserId uniqueidentifier NOT NULL
 PRIMARY KEY NONCLUSTERED
 FOREIGN KEY REFERENCES dbo.aspnet_Users(UserId),
Password nvarchar(128) NOT NULL,
PasswordFormat int NOT NULL DEFAULT 0,
PasswordSalt nvarchar(128) NOT NULL,
MobilePIN nvarchar(16),
Email nvarchar(256),
LoweredEmail nvarchar(256),
PasswordQuestion nvarchar(256),

79301c12.indd 573 10/6/08 12:16:02 PM

574

Chapter 12: SqlMembershipProvider

PasswordAnswer nvarchar(128),
IsApproved bit NOT NULL,
IsLockedOut bit NOT NULL,
CreateDate datetime NOT NULL,
LastLoginDate datetime NOT NULL,
LastPasswordChangedDate datetime NOT NULL,
LastLockoutDate datetime NOT NULL,
FailedPasswordAttemptCount int NOT NULL,
FailedPasswordAttemptWindowStart datetime NOT NULL,
FailedPasswordAnswerAttemptCount int NOT NULL,
FailedPasswordAnswerAttemptWindowStart datetime NOT NULL,
Comment ntext)

Many columns in the table should be familiar to you because they map directly to properties on the
MembershipUser class. A brief summary of each of the column values is listed here:

ApplicationId❑❑ : This column is included solely as a performance optimization for few stored pro-
cedures. Including the ApplicationId allows these procedures to perform a select directly against
the aspnet_Membership table without first having to join through the aspnet_Applications
table. From a data consistency standpoint though, the column isn’t necessary, because UserId rep-
resents the combination of username and application name.

UserId❑❑ : The primary key for the table. You can think of a MembershipUser as being a “deri-
vation” of the base user record stored in aspnet_Users. The UserId column is used by
SqlMembershipProvider to join back to aspnet_Users to fetch the actual username as well
as the LastActivityDate for a user.

Password❑❑ : Stores the password for the user in the format configured on SqlMemershipProvider.
As a result, the value of this column can contain a cleartext password, an encrypted password, or
a hashed representation of the password plus the salt value from the PasswordSalt column.

PasswordFormat❑❑ : This column is used internally by SqlMembershipProvider when decoding
the value in the Password and PasswordAnswer columns. When you set the password format
on a provider, that format is used to encode the password and password answer. The specific
password format that was used is then stored by the provider in this column. If you subsequently
change the password format for the provider, preexisting passwords and password answers are
still usable. SqlMembershipProvider will continue to decode and encode preexisting pass-
words and answers using the format that was originally used when the record was created. The
possible values for this column are: 0 = clear text, 1 = hashed, and 2 = encrypted.

PasswordSalt❑❑ : If you choose a hashed password format with SqlMembershipProvider, the
provider will automatically generate a random 16-byte salt value and then hash passwords and
password answers using a string that consists of the text and the random salt values. The result
of the hashing operation is stored in the Password column. Because the salt value is always
required to validate the password and password answer, it is stored in this column.

MobilePIN❑❑ : Another leftover from earlier plans for more extensive support for mobile users.
The idea was that in conjunction with MobileAlias from aspnet_Users, you would be able
to validate a mobile user’s credentials using a custom PIN. Just as a traditional username could
be too unwieldy for mobile users to type in, a traditional password could also be unwieldy.
Instead, the idea was that you could validate a mobile user with just a PIN, much in the way
you use ATM cards today and validate them using just a PIN code. None of this functionality
was implemented in ASP.NET 2.0 or ASP.NET 3.5, but the column was left in the table in case a
future release chooses to implement this.

79301c12.indd 574 10/6/08 12:16:02 PM

575

Chapter 12: SqlMembershipProvider

Email❑❑ : The email address for a user. SqlMembershipProvider enforces uniqueness of this
value based on the requiresUniqueEmail configuration setting.

LoweredEmail❑❑ : The result of calling LOWER on the email column. This ensures the provider can
perform case-insensitive lookups based on email address, regardless of the collation order of the
underlying database.

PasswordQuestion❑❑ : If a provider is configured to use password questions and answers (that is,
requiresPasswordQuestionAndAnswer is set to true in configuration), this is the column where
the question is stored. Note that the question is always stored in cleartext and that, furthermore,
the expectation is that the entire question is stored in this column. Some developers may instead
want to have a limited list of common password questions, in which case a domain lookup table
of questions would be more useful. In this case, the functionality of SqlMembershipProvider
would result in the same question text repeatedly showing up in this column for many users. If
you want to use a domain table to limit the number of possible password questions, you could
instead store the string value of the question’s primary key in this column and write extra code
to resolve this value against a lookup table.

PasswordAnswer❑❑ : The user’s secret answer to a password question is stored in this column.
For security reasons, SqlMembershipProvider actually stores an encoded representation of
the password answer based on the password format that was applied to the user’s password.
This means that if the user’s password was stored as a hash value, a hash of the secret answer
is also stored as opposed to storing the answer in cleartext. If you configure the provider to use
hashing or encryption, you will need to test the effective maximum length of password answer
that can be stored. For hashing and encryption, a base64-encoded representation is stored in this
field. Stronger hash algorithms can result in a base64-encoded representation that is too large to
store in this field because the column is an nvarchar(128). Similarly, the encrypted version of
a password answer may also be too large to store in this field after taking into account the over-
head of encryption and base64 encoding.

IsApproved❑❑ : Stores the value of the MembershipUser.IsApproved property.

IsLockedOut❑❑ : This column is set to true whenever the provider detects that too many bad
passwords or bad password answers have been supplied. The provider configuration attributes
maxInvalidPasswordAttempts and passwordAttemptWindow control this behavior.

CreateDate❑❑ : The UTC date time when SqlMembershipProvider was used to create the user
record in the table. There can be an edge case where a different type of authentication is used
initially on a website with other ASP.NET provider-based features. At a later point, the web-
site may be switched over to use Membership with SqlMembershipProvider. In this case,
SqlMembershipProvider will only insert a user into the aspnet_Membership table because
the user record already exists in aspnet_Users. For this reason, you may see that for newly
created users the value of CreateDate in aspnet_Membership is different than the Last​
ActivityDate column in aspnet_Users.

LastLoginDate❑❑ :SqlMembershipProvider stores the UTC date time of a successful login
attempt in this column whenever ValidateUser is called. When a user is first created, the
provider sets this column to the same value as the CreateDate column.

LastPasswordChangedDate❑❑ : The last UTC date time when the provider changed the password
stored in the Password column. When a user is first created, the provider sets this column to
the same value as the CreateDate column.

LastLockoutDate❑❑ : Used in conjunction with the IsLockedOut field. If the user is in a locked-
out state, this column contains the UTC date time when the lockout occurred. For users that are
not locked out, this field instead contains a default value of “01/01/1754.”

79301c12.indd 575 10/6/08 12:16:02 PM

576

Chapter 12: SqlMembershipProvider

FailedPasswordAttemptCount❑❑ : The provider keeps track of bad password attempts in this col-
umn. Even though determining account lockout for bad passwords and bad password answers
uses the same configuration attributes (maxInvalidPasswordAttempts and passwordAttempt​
Window), the provider keeps track of bad password attempts separately from bad password
answer attempts. Any time that an account is unlocked or any time the correct password is
used for an account, this field is reset to zero.

FailedPasswordAnswerAttemptCount❑❑ : If the provider is configured to allow question-and-
answer-based password retrieval or password resets (that is, requiresQuestionAndAnswer is
set to true in configuration and either enablePasswordRetrieval or enablePasswordReset
is set to true), then the provider keeps track of failed password answer attempts in this column.
After a user account is unlocked, this counter is reset to zero. Any successful use of a password
(that is, ValidateUser succeeded) or password answer (that is, GetPassword is called using a
password answer) will also reset this column to zero.

FailedPasswordAttemptWindowStart❑❑ : When the provider keeps track of bad passwords, it
needs to know the start of the time window in UTC time during which it should track bad
attempts. It stores the start of this time window in this column. Any time an account is unlocked,
or any time the correct password is used for an account, this field is reset to a default value of
01/01/1754.

FailedPasswordAnswerAttemptWindowStart❑❑ : When the provider keeps track of bad pass-
word it needs to know the start of the time window during which it should track bad attempts.
It stores the start of this time window in UTC time in this column. Notice how the provider
keeps track of bad password answer attempts separately from bad password attempts by stor-
ing the tracking information for each type of event in a different set of columns. Any time an
account is unlocked, or any time the correct password or correct password answer is used for the
account, this field is reset to a default value of 01/01/1754.

Comment❑❑ : A catch-all column that you can use to store miscellaneous data. Because this is an
ntext column, you can actually store an immense amount of data in this field and then retrieve
it from the MembershipUser.Comment property.

In addition to the single database table, the Membership feature also installs a single view:
vw_aspnet_MembershipUsers. This view maps most of the columns from aspnet_Membership one for
one. However, the Password and PasswordSalt columns aren’t included in the view because the view
is really intended for reporting purposes. From a security standpoint these columns were left out of the
view because they are intended for internal use only by the provider and its stored procedures. The
PasswordAnswer column probably should also have been left out of the view, but because the answer
was actually stored in cleartext for most of the development cycle, it ended up being left in the view.

The view also joins in all the columns from the aspnet_Users table. This makes the vw_aspnet_​
MembershipUsers view easier to use because most reporting queries written against this view will at
the very least need the UserName column from the aspnet_Users table.

SQL Server-Specific Provider Configuration Options
Because SqlMembershipProvider connects to SQL Server, it uses two SQL Server-specific configura-
tion attributes on the provider definition:

connectionStringName❑❑ : As you would expect, the provider needs to know what database and
server to connect to. The value of this attribute must point at a named connection string defined
up in the <connectionStrings /> section.

79301c12.indd 576 10/6/08 12:16:03 PM

577

Chapter 12: SqlMembershipProvider

commandTimeout❑❑ : As you work with larger databases, you may find that the default ADO.NET
SqlCommand timeout of 30 seconds is too short for certain operations. For SqlMembership
Provider the Find* and Get* search methods can result in long-running queries especially with
poor query parameters. You can change the command timeout that the provider uses with this
configuration attribute. You can increase or decrease the amount of time that ADO.NET will
wait for a SqlCommand to complete.

Working with SQL Server Express
Sometimes folks think that there is a separate set of providers for SQL Server 2005 Express different
from the regular SKUs of SQL Server. SqlMembershipProvider as well as all the other SQL-based
providers in ASP.NET 2.0 and ASP.NET 3.5 work equally well against the Express and non-Express ver-
sions of SQL Server 2005. However, there are some differences in how the database schema is installed
when using SQL Server Express.

SQL Server Express (SSE) is the low-end SKU of SQL Server 2005. It normally installs on a machine as a
named instance: SQLEXPRESS. As a result, you can install SSE on machines running SQL Server 2000
or other versions of SQL Server 2005 without interfering with these installations. There is also a special
mode of operation supported by SSE called user instancing. The internal database code shared across
all the ASP.NET SQL-based providers includes special logic in the event a provider runs against SSE
that has user instancing enabled.

The idea behind user instancing is that the central SSE named instance (identified in a connection
string as server=.\SQLEXPRESS) can be used to spawn additional instances of the SQL Server
worker process. These spawned instances are referred to as user instances. They are referred to as
“user” instances because the SQLEXPRESS named instance spawns these extra worker processes to
run with the account credentials of a user—specifically, the Windows user credentials that opened an
ADO.NET connection in the first place.

To make use of SSE user instancing, you use a special form of ADO.NET connection string. You can see
an example of a user-instanced connection string by looking at the <connectionStrings /> section in
machine.config:

<connectionStrings>
 <add name=”LocalSqlServer”
 connectionString=”data source=.\SQLEXPRESS;
 Integrated Security=SSPI;
 AttachDBFilename=|DataDirectory|aspnetdb.mdf;
 User Instance=true”
 providerName=”System.Data.SqlClient”/>
</connectionStrings>

The bolded portions of the connection string cause ADO.NET and SSE to handle the initial database
connection in a different manner from when connecting to a regular version of SQL Server.

The data source portion of the connection string tells ADO.NET to initially open a connection
against the named SSE instance. The User Instance=true portion of the connection string is a hint
to ADO.NET and SSE that the connection should really be rerouted to a spawned worker process running
with the account credentials currently active on the operating system thread at the time the ADO.NET
connection was opened. The AttachDBFilename portion of the connection string tells SSE that once

79301c12.indd 577 10/6/08 12:16:03 PM

578

Chapter 12: SqlMembershipProvider

the spawned user instance is up and running, it should attach the SQL Server mdf data file at the spec-
ified location as a database in the spawned user instance.

ADO.NET actually preprocesses the AttachDBFilename syntax and substitutes in the full physical
path information in place of |DataDirectory|. This syntax refers to an app-domain-level variable that
host processes fill in. A client application such as a ClickOnce application will place one value inside of
this app-domain variable. You can see what an ASP.NET host process uses with the following code:

Response.Write(System.AppDomain.CurrentDomain.GetData(“DataDirectory”));

If you run this code in an IIS-based web, you will get back a path that looks something like:

C:\inetpub\wwwroot\379301_code\379301 ch12_code\cs\SSESample\App_Data

After ADO.NET substitutes the value of the DataDirectory app-domain variable in the connection
string, it then passes the information down to SSE. So by the time SSE gets the connection string infor-
mation, it is actually looking at a full physical file path to an .mdf file located somewhere within the
directory structure of the web application.

SSE is able to attach a database in the user instance because within the user instance your code is running
with System Administrator privileges. Because the user instance is spawned with some set of credentials,
and that same set of credentials is sending commands over an ADO.NET connection, from the point of
view of SSE those credentials have SA privileges. This makes sense because the credentials had the right
to spawn a worker process in the first place, so the same credentials might as well have full control over
any database operations within the user instance. Note that by default interactive users on a machine, as
well as accounts like NETWORK SERVICE and ASPNET, have rights to connect to the default SSE named
instance. As a result, this same set of accounts also has rights to request user instancing, thus elevating
themselves to the System Administrators role within the scope of the spawned user instance.

There is still another set of rights that must be satisfied for SSE user instances to work: NTFS file ACLs.
If you start out designing your application inside of Visual Studio, and if you create an App_Data direc-
tory, then Visual Studio will automatically grant Read and Write ACLs on this directory to ASPNET and
NETWORK SERVICE. As a result, when SSE attempts to read or write data to or from the .mdf file, the
calls succeed because the credentials for the user instance have write access to the file.

However, if you just copy a bunch files to a location on the filesystem and then map an application in
IIS to this file location, attempts to use SSE user instancing will probably fail. By default, the ACLs on
inetpub\wwwroot don’t normally grant any Write access to the traditional web process accounts. As a
result, if you rely on the automatic database creation process, you will instead end up with an error to
the effect that SSE does not have write access to the database file. The simplest way to ensure that every-
thing works properly is to create the web application inside of Visual Studio initially and let the design
environment automatically place the correct ACLs on the App_Data directory for you.

When your website opens a connection with SSE user instancing requested:

	 1.	 An instance of sqlservr.exe is running initially as NETWORK SERVICE. This is the named
SSE instance.

79301c12.indd 578 10/6/08 12:16:03 PM

579

Chapter 12: SqlMembershipProvider

	 2.	 A new SSE user instance is spawned resulting in a second instance of sqlservr.exe running.
This instance runs with user credentials based on the identity of the operating system thread
that opened the connection.

	 3.	 If this is the first time that a user instance with the credentials from step 2 has ever been launched
on the machine, SSE clones the master, msdb, and tempdb databases to support the user instance.
If you look in the AppData directory on your hard drive, and then drill down to users\user
name\AppData\Local\Microsoft\Microsoft SQL Server Data\SQLEXPRESS, you will
see that these three databases have been created.

	 4.	 The special logic contained in ASP.NET’s internal SQL provider code detects whether or not the
.mdf file specified in the connection string even exists at the specified file path. If the .mdf file
does not physically exist, then the providers incur about a 15 second delay while they run all
the SQL installation files for the application services (that is, everything except session state gets
installed) against the user instance. The end result of this work is that an .mdf file is created in
the file location specified by the connection string. As the last part of this work, the provider
infrastructure detaches the newly created .mdf file.

	 5.	 Within the new user instance, the database file specified by AttachDBFilename is attached to
the instance and registered in the metadata tables in the user instance’s master database. If you
are accustomed to working with databases as a named database in other versions of SQL Server,
this might seem a bit strange. However, using the attach syntax in the connection string causes
the SSE user instance to attach the database on your behalf.

The connection string shown earlier exists in machine.config to allow developers that use Visual
Studio to get up and running “auto-magically” with the application services. Rather than running
aspnet_regsql.exe manually to install the database scripts into a specific database on a database
server, you can write code against a feature like Membership, and the database will automatically be
created for you.

From an ease-of-use perspective, this is actually pretty powerful and makes features like Membership
so straightforward to use that developers potentially don’t need to understand or muck around with
databases. Of course, this rosy scenario actually has a few streaks on the window, as you will shortly
see. The automatic database creation behavior was originally intended for client applications such as
ClickOnce apps. In a client environment, a user instance makes a fair amount of sense because someone
is actually running interactively on a machine with a well-established set of credentials.

Furthermore, while running in a client environment, there is likely to be sufficient processing power
on the machine to handle the overhead of user instancing. Just running the named SSE instance plus a
user instance with the ASP.NET database tables in them incurs up to about 45-75MB of memory over-
head. That’s a pretty hefty wallop, but nonetheless manageable on a single desktop machine. When the
user instancing capability was used for the ASP.NET application services, the main scenario was to sup-
port development in Visual Studio (in essence, this is another client application scenario, albeit in this
case the client application is a development environment).

However, the SSE story on a web server starts to break down because of a few constraints with user
instancing. The most obvious one is that user instancing is tied to a specific user identity, which leads
to the potential for multiple user instances floating around on a server. With around a 45MB overhead
when the SQL providers auto-create the database, and around 25MB of overhead once the database
exists, it would not take long for a shared web server to run out of memory space.

79301c12.indd 579 10/6/08 12:16:03 PM

580

Chapter 12: SqlMembershipProvider

The next issue with user instancing deals specifically with the operating system thread identity that
is used when making the initial ADO.NET connection. As mentioned earlier, this identity is criti-
cal because SSE needs to ensure that cloned databases like the master database exist for these user
accounts. Additionally, SSE needs the security token of the client to create a new child process run-
ning the SQL Server executable. It turns out, though, that for SSE to actually know where to create
and look for the cloned versions of master and other databases, a Windows user profile needs to be
loaded into memory.

In the scenario with a client application, the dependency on the Windows user profile is a nonissue. The
second you log on to a Windows machine with some credentials, your Windows user profile is loaded.
Hence, any application that you choose to run, including Visual Studio, will be able to find data that
is stored in the Windows user profile. What happens, though, for a noninteractive scenario like IIS 7.0
application pools? It turns out that when you run ASP.NET (any version of ASP.NET for that matter)
on IIS 7.0, the Windows user profile is never loaded for the account identity used for the application pool
when the application pool uses an account other than NETWORK SERVICE.

If you write an ASP.NET application that uses Membership with the default connection string, in some
circumstances the application services database is automatically created for you. The reason this works
is basically by accident. Because the default identity for IIS 7.0 application pools is NETWORK SERVICE,
and NETWORK SERVICE is commonly used for other services on a Windows Server 2008 machine, the
Windows user profile for NETWORK SERVICE gets loaded as a side effect of the operating system start-
ing up. As a result, when you use SSE with the default connection string using the default IIS 6 applica-
tion pool identity, the named SSE instance is able to query the Windows user profile for the location of
the Local Settings folder for NETWORK SERVICE.

However, if you attempt to use application impersonation or to change the application pool identity to a
different account, any code you write that uses the default SSE connection string will fail. For all other
application pool identities, there is no Windows user profile available. As a result, if you attempt to use
SSE user instances, you will instead end up with the following exception:

Failed to generate a user instance of SQL Server due to failure in retrieving the
user’s local application data path. Please make sure the user has a local user
profile on the computer. The connection will be closed.

Other information is displayed along with this error, but if you see this error, you aren’t ever going to
get SSE user instancing to work (ignoring any crazy hacks that forcibly load a Windows user profile
using an NT service or schedule batch job).

This behavior basically leaves you wondering when to use the default connection string and when to
change it. If you perform most of your development using file-based, as opposed to IIS-based, web-
sites on your own machine, then you can leave the SSE connection string as is. File-based webs use the
Cassini web server instead of the IIS 7.0 process model. Cassini runs with your logged-in credentials, so
SSE will always be able to find your Windows user profile. This security model meshes well with SSE’s
assumptions about user instancing.

However, if you are developing websites with IIS 7.0 (some of you probably run Windows Server 2008 for a
development “desktop”), or if you are developing websites that will be deployed to IIS 7.0, then you definitely
should consider changing the SSE style connection string. There are a few reasons for this suggestion:

As noted earlier, unless your IIS 7.0 application pool runs as NETWORK SERVICE, the SSE ❑❑

style connections are not going to work anyway.

79301c12.indd 580 10/6/08 12:16:03 PM

581

Chapter 12: SqlMembershipProvider

There is a somewhat non-obvious problem with handshaking between an IIS 7.0 website and ❑❑

the development environment over who has control over the .mdf file (more on this in a bit).

From a security perspective, you should ❑❑ not run with user instancing on any of your production
machines if untrusted applications are deployed on them.

The last point may not be something that many of you run into. Most companies have SQL Server
installations running on separate machines, in which case user instances would never come into the
picture. (You can’t connect to an SSE user instance from across the network; only local connections are
accepted against user instances.) If you happen to be in an environment where SSE is installed locally
on your web servers as a sort of low-cost database, you still should be aware of the security implications
of user instancing.

Imagine a scenario where you have two different application pools on IIS 7.0 both running as NET-
WORK SERVICE. If you put applications from two different untrusted clients into the two different
application pools, you may think that you have enforced a reasonable degree of isolation between the
two applications. The idea is that the two clients do not know or trust each other; perhaps for example
this is an Internet facing shared hosting machine. Because their sites are in different application pools,
the applications can’t reach into each other’s memory spaces and carry out malicious tasks. If you are
running in something like Medium trust, the applications can’t use file I/O to try to read each other’s
application files. So, you might think you are reasonably safe at this point.

However, if these applications use a connection string that specifies SSE user instances, you will come
to grief. Because both application pools run as NETWORK SERVICE, SSE will spin up one, and only
one, instance of sqlservr.exe running as NETWORK SERVICE. Both applications will connect to
this single user instance, and both applications as a result will be running with System Administrator
privileges within this single user instance. The end result is that two untrusted applications have access
to each other’s data. And, of course, attempting to switch the application pool identities to something
else immediately breaks SSE user instancing!

There is a scenario, though, where SSE user instancing is reasonable for IIS 7.0 production machines. If
you are running in a corporate environment (and this can be an intranet, an extranet, or the Internet)
and all the applications on the machine are from trusted sources, SSE user instancing can probably be
left in place. Because all the code authors are presumably from the same or trusted organizations, there
probably aren’t any concerns with snooping each other’s data. Also, corporate developers running local
SQL Server installations on their web servers probably are not storing confidential information in these
databases. You may just be storing information such as Web Parts Personalization data; if the worst
happens and someone walks away with everyone’s preferred background color for a web part on page
two of your application, it is not the end of the world.

A cautionary note for this scenario is still needed, though. Even if all the applications on a machine
trust each other, I still would not store any security-sensitive data in an SSE user-instanced database.
For example, I would still recommend storing Membership and Role Manager data at a minimum
inside of a regular SQL Server database that can be protected. And ideally such a database would be
running on a remote machine, not locally on the web server.

Note that although this section is discussing the user instance mode of SSE, you can install SSE on a
machine just as you would normally install any other version of SQL Server. You can then have local
and remote web servers connect to SSE using the more traditional database connection string syntax:

 “server=remoteserver\SQLEXPRESS;database=aspnetdb;Integrated Security=true”

79301c12.indd 581 10/6/08 12:16:03 PM

582

Chapter 12: SqlMembershipProvider

This connection string works the same way as connections to named instances of SQL Server 2000 work
today. With this approach you need to manually enable remote network connections to SSE because,
by default, even the named instance of SSE only allows local connections. Also, you can turn off user
instancing on your machines that are running SSE at install time. (There is an advanced option for
turning off support.) Alternatively, you can connect to the SSE named instance using credentials that
have System Administrator privileges. Then using a command line tool like OSQL.exe or SQLCMD.exe,
you can run the following SQL commands:

exec sp_configure ‘show advanced option’, ‘1’
go
reconfigure with override
go
exec sp_configure ‘user instances enabled’, 0
go
reconfigure with override
go

Unless you intend to support user instancing for development purposes or web servers where you
trust all the users and you aren’t storing sensitive data, you should turn off support for user instances.
Especially in environments such as shared hosting servers that support multiple untrusted clients, you
should always disable SSE user instancing.

Sharing Issues with SSE
If you work with an IIS-based web application inside of Visual Studio, you will probably run into cases
with lock contention over the .mdf file containing the application services database. An .mdf file cannot
be opened by more than one instance of sqlservr.exe at a time. If you are developing with file-based
webs, you will not run into this issue because the Visual Studio environment and the Cassini web server
run under the same credentials: the interactive user. Whenever either environment attempts to manipu-
late an .mdf both processes are routed to the same SSE user instance, and hence there is no file contention.

With an IIS-based web, you potentially have two different user accounts causing two different SSE user
instances to be spawned. IIS will spawn a user instance running as NETWORK SERVICE, whereas the
Visual Studio design environment will cause a user instance running as the interactive user to be spawned.
You can run into a problem with this environment if you start debugging your application in IIS 7.0, thus
causing the user instance running as NETWORK SERVICE to own the application services .mdf file.

Then if you go back into Visual Studio and try to run the Web Administration Tool (WAT), Visual Stu-
dio will start up a Cassini instance running as you. When you then surf around the WAT and access
functionality that needs to access the .mdf, you may get an error message like the following:

Unable to open the physical file “C:\inetpub\wwwroot\379301_code\379301 ch12_code\
cs\SSESample\App_Data\aspnetdb.mdf”.
Operating system error 32: “32(The process
cannot access the file because it is being used by another process.)”.
An attempt to attach an auto-named database for file
C:\inetpub\wwwroot\379301_code\379301ch12_code\cs\SSESample\App_Data\aspnetdb.mdf
failed.
A database with the same name exists, or specified file cannot be opened,
or it is located on UNC share.

79301c12.indd 582 10/6/08 12:16:03 PM

583

Chapter 12: SqlMembershipProvider

or

Cannot open user default database. Login failed. Login failed for user ‘DOMAIN\
user’.

These errors can occur because the SSE user instance for IIS 7.0 is still up and running, and thus the SSE
user instance for WAT in Cassini cannot get open the same .mdf file. Technically, this type of issue is
not supposed to occur in many cases because within Visual Studio there are certain click paths that cre-
ate an app_offline.htm file in the root of the IIS 7.0 website. Placing an app_offline.htm in the root
of an application causes the application’s add-domain to recycle and put the application in an offline
mode that refuses any request targeting any resource within the application.

The idea behind Visual Studio placing a temporary app_offline.htm in the root of an IIS-based web-
site is that when the app-domain recycles, all the ADO.NET connections to the SSE user instance drop.
As a result, the SSE user instance should quickly detect that there are no active connections to the cur-
rently attached database, and therefore the SSE user instance should release any attached .mdf files.
Unfortunately, the SSE auto-detach behavior and Visual Studio handshaking behavior have been flaky
since day one, and therefore the extra work that Visual Studio does to force a detaching of the applica-
tion services database sometimes does not work.

If you end up in this situation, the quickest way to force an app-domain restart in the IIS application is
to touch the web.config. Put a space in the file, or make some trivial edit, and then save the updated
web.config. ASP.NET will detect that web.config has changed, and it will cycle the app-domain,
which in turn will trigger the auto-detach behavior in SSE. If you have problems going in the other
direction (that is, the data designer in Visual Studio or the WAT has grabbed access to the .mdf file),
you have two options. You can rectify the problem by finding the sqlservr.exe instance in Task
Manager that is running with your logged-in identity and just kill the process. Or you can right-click
on the application services database in the Visual Studio Solution Explorer and select Detach. When
you then switch to your IIS 7.0 application, the SSE user instance running as NETWORK SERVICE
will be able to grab access to the .mdf file again.

As you can see from this process of sharing the application services .mdf file between the design envi-
ronment and IIS, this is yet another reason why using SSE for any of the ASP.NET application services
is frequently more trouble than it is worth when developing against IIS 7.0. In general, I would only use
SSE when developing file-based webs where the entire hand-shaking issue never arises.

Changing the SSE Connection String
So, what happens if you don’t want to use SSE user instancing? Does this suddenly mean that you
have to redefine every application provider just to switch over the connection string? Thankfully, the
answer to this is no! All the ASP.NET providers, regardless of whether they are defined in machine​
.config or the root web.config, reference the connection string named LocalSqlServer. Because
the <connectionStrings /> configuration section is a standard add-remove-clear collection, you
can just redefine the LocalSqlServer connection string to point at a different server and database:

<connectionStrings>
 <remove name=”LocalSqlServer”/>
 <add name=”LocalSqlServer”
 connectionString=”data source=.\SQLEXPRESS;
 Integrated Security=SSPI;database=aspnetdb”/>
</connectionStrings>

79301c12.indd 583 10/6/08 12:16:03 PM

584

Chapter 12: SqlMembershipProvider

This connection string redefines the common connection string shared by all SQL providers to point at
the default local SSE named instance, but instead specifies connecting to a database called aspnetdb.
This is the more traditional SQL Server connection string that you probably familiar with from SQL
Server 2000. For other server locations, you can change the data source portion of the connection string
to point at the correct server.

With the connection string shown previously, you can use the aspnet_regsql tool to install all the
application services database schemas in a database called aspnetdb on the local SSE instance. The
aspnet_regsql.exe tool is located in the Framework’s installation directory:

aspnet_regsql -S .\SQLEXPRESS -E -A all -d aspnetdb

For this to work with a remote SSE instance, you need to use the SQL Server Configuration Manager
tool that comes with SSE and enable either the Named Pipes or TCP/IP protocol for the remote SSE
instance. SSE by default disables these protocols to prevent connections made by remote servers.

After you have installed the application services databases, you still need to grant the appropriate login
rights and permissions in the application services database. These steps aren’t unique to SSE because
you will have to do this for any variation of SQL Server other than user-instanced SSE installations. The
subject of database security is the topic for the next section.

Database Security
After the database schema is installed using aspnet_regsql, your applications still won’t be able to use
the database. You need to grant the appropriate account login rights to the SQL Server. And then you
need to grant the appropriate rights in the application services database. The first question that needs to
be answered is, which account do the SQL-based providers use when connecting to SQL Server?

Internally, all the SQL providers, including SqlMembershipProvider, will suspend client imperson-
ation if it is in effect. This means that the identity used by the providers for communicating with SQL
Server when using integrated security will be one of the following:

The process identity of the IIS 7.0 worker process. This is NETWORK SERVICE by default, but ❑❑

it can be different if you have changed the identity of the application pool.

If you configured application impersonation for your application, then the provider connects ❑❑

using the explicit credentials specified in the <identity /> configuration element.

If you have <identity impersonate=”true” /> and you are using Windows authentication, the
providers always suspend client impersonation. From a security perspective, it is not a good approach
to grant login and database access to all potential Windows accounts on your website. If your connec-
tion string uses standard SQL security instead of integrated security, then the identity that connects to
SQL Server is pretty easy to identify; it is simply the standard SQL user account that is specified in the
connection string.

After you have identified the specific identity that will be used when connecting to SQL Server, you
need to first grant login rights on the server to this identity. You can use the graphical management
tools supplied with SQL Server 2000 and the nonexpress SKUs of SQL Server 2005 to do this. If you
need to grant access to the NETWORK SERVICE account without a graphical tool, you can type in “NT
AUTHORITY\NETWORK SERVICE” for the NETWORK SERVICE account of a local machine.

79301c12.indd 584 10/6/08 12:16:03 PM

585

Chapter 12: SqlMembershipProvider

However, if you want to grant access to the NETWORK SERVICE account for a remote web server, you
need to grant access to DOMAIN\MACHINENAME$. This special syntax references the machine account for
a server in a domain. The MACHINENAME$ portion of this account actually references the NETWORK
SERVICE account for a remote machine. If your website uses some other kind of domain credentials,
you would just type DOMAIN\USERNAME instead.

If you want, you can also grant login rights using plain old TSQL to accomplish this:

exec sp_grantlogin N’bhaidar-PC\DEMOTEST$’

You use a standard SQL Server login account instead of a domain style name if your connection string
uses standard SQL credentials. If you choose to use a locally installed SSE database, for some strange
reason there is no graphical management tool for this type of operation that is available out of the box
with the SSE installation. Instead, you need to use command-line tools like OSQL.exe or SQLCMD.exe to
run this command. There is nothing quite like forward progress that throws you a decade back in time!

After login rights are granted on the SQL Server, you then need to grant permissions for that login
account to access the application services database. Assuming that you want to grant login rights for a
local NETWORK SERVICE account to a database called aspnetdb, the TSQL for this looks like:

use aspnetdb
go

exec sp_grantdbaccess ‘NT AUTHORITY\NETWORK SERVICE’
go

You just use a different value for the username passed to sp_grantdbaccess, depending on whether
you are granting login rights to a different domain account or to a standard SQL account. Of course,
if you are using any of the graphical management tools, you can also use them to grant access to the
database.

By this point, you have set things up in SQL Server so that the appropriate account can at least connect
to SQL Server and reach the database. The last step is granting rights in the database to the account—
this includes things like rights to query views and execute stored procedures. The ASP.NET schemas,
though, are installed with a set of SQL Server roles that make this exercise substantially simpler.

Although you could make the application pool identity a dbo in the application services database, for
example, this goes against the grain of granting least privilege. Furthermore, if you installed the ASP.NET
schema in a preexisting database, you probably do not want the ASP.NET process identity (or whatever
credentials are being used) to have such broad privileges.

The ASP.NET schema includes a set of roles for each set of application services with the following suffixes:

BasicAccess:❑❑ Database rights granted to this role are restricted to stored procedures that are
needed for minimal feature functionality. The role does not have execute rights on stored proce-
dures that deal with more advanced feature functionality.

ReportingAccess:❑❑ This role has rights to stored procedures that deal with read-only operations
and search operations. The role also has rights to perform selects against the SQL Server views
that were created for the feature.

FullAccess:❑❑ These roles have rights to execute all the stored procedures associated with the fea-
ture as well as having select rights on all of a feature’s SQL views.

79301c12.indd 585 10/6/08 12:16:04 PM

586

Chapter 12: SqlMembershipProvider

None of the feature-specific roles grant access directly to the SQL tables because the features deal with
data by way of stored procedures and, optionally, views. As a result, there is no reason for a member of
a feature’s roles to manipulate the tables directly. This also means that in future releases the ASP.NET
team has the freedom to change the underlying table schemas because all access to the data in these
tables is by way of stored procedures or views.

Technically, the Health Monitoring feature (aka Web Events) is an exception to this rule because it does
not provide any mechanism for querying data from the event table other than through direct SELECT
statements. Other features like Membership, though, expect you to always go through the object API or
for purposes of running reports, through the SQL Server views.

For the Membership feature, three roles are available to you:

aspnet_Membership_BasicAccess❑❑ : This role only allows you to call ValidateUser as well as
GetUser and GetUserNameByEmail.

aspnet_Membership_ReportingAccess❑❑ : This role allows you to call GetUser, GetUserName​
ByEmail, GetAllUsers, GetNumberOfUsersOnline, FindUsersByName, and FindUsersBy​
Email. Members of this role can also issue select statements against the Membership views.

aspnet_Membership_FullAccess❑❑ : This role can call any of the methods defined on
SqlMembershipProvider as well as query any of the Membership views.

Most of the time, you will just add the appropriate account to one of the FullAccess roles. The other,
more restrictive roles are there for security-sensitive sites that may have separate web applications for
creating users as opposed to logging users in to the website. You can add an account to a role through
any of the SQL Server graphical tools, or you can use TSQL like the following:

exec sp_addrolemember ‘aspnet_Membership_FullAccess’,
 ‘NT AUTHORITY\NETWORK SERVICE’

After this command runs, whenever a website running as NETWORK SERVICE has an SqlMembership​
Provider that attempts to call a Membership stored procedure in the database, the call will succeed
because NETWORK SERVICE has login rights on the server and belongs to a database role that grants all
the necessary privileges to execute stored procedures.

Database Schemas and the DBO User
Many of the previous topics assume that you have sufficient privileges to install the application ser-
vices schemas on your database server. If you or a database administrator have rights to create data-
bases (that is, you are in the db_creator server role), or have “dbo” rights in a preexisting database,
then you can just run the aspnet_regsql tool without any worries.

However, there is a very important dependency that the current SQL-based providers have on the con-
cept of the dbo user. If you look at any of the .sql installation scripts in the Framework’s installation
directory, you will see that all the tables and stored procedures are prepended with dbo:

CREATE TABLE dbo.aspnet_Membership
CREATE PROCEDURE dbo.aspnet_Membership_CreateUser

79301c12.indd 586 10/6/08 12:16:04 PM

587

Chapter 12: SqlMembershipProvider

and so on.

Furthermore, the code inside of all the stored procedures explicitly references object names (that is,
tables and stored procedures) using the explicit dbo username:

EXEC dbo.aspnet_Applications_CreateApplication …
SELECT @NewUserId = UserId FROM dbo.aspnet_Users …

and so on.

If you disassemble any of the SQL providers with a tool like ildasm, you will also see that the provid-
ers themselves use the dbo owner name when calling stored procedures:

SqlCommand cmd = new SqlCommand(“dbo.aspnet_Membership_GetUserByEmail”,…);

If you install the database schemas as a member of the System Administrators role, or as a member of
the Database Creators role, none of this will affect you because an SA or a database creator is treated as
dbo within a newly created database. In this case, because you are dbo, you can of course create objects
associated with the dbo username.

Problems arise, though, if you do not have dbo privileges in the database. For example, you can be run-
ning as someone other than dbo and still create tables in a database. Unfortunately, though, if you were
to just issue a command like:

CREATE PROCEDURE aspnet_Membership_CreateUser

a table object called your_account_name.aspnet_Membership_CreateUser is created instead. If
this were allowed to happen, a provider like SqlMembershipProvider would never work because the
provider would always be looking for a stored procedure owned by dbo and would never see the user-
owned stored procedure. The reason that all the providers explicitly look for a dbo-owned object is that
at least on SQL Server 2000 (which is expected to be the main platform for running the application ser-
vices databases for the first few years), there is a slight performance drain if you call stored procedures
without including the owner name.

From experience, the ASP.NET team found that this slight performance drain was actually so severe
with the SQL Server schema for session state back in ASP.NET 1.1 that they had to QFE the session state
database scripts and Session State server code to always use owner-qualified stored procedure names.
To prevent the same problem with contention over stored procedure compilation locks from occurring
with the ASP.NET 2.0 or ASP.NET 3.5 database schema, the decision was made to owner-qualify all
objects in the application services schemas.

Of course, that decision created the problem of which owner name to use. Because dbo is a common
owner name that is always available in SQL Server databases, the decision was made to hard-code the
dbo owner name into the schemas and the providers. After ASP.NET 2.0 Beta 1 shipped, problems arose
with shared hosting companies that sell SQL Server databases for their customers.

79301c12.indd 587 10/6/08 12:16:04 PM

588

Chapter 12: SqlMembershipProvider

Some of these hosters do not grant dbo privileges in the database purchased by the customer. If you
attempt to run the older ASP.NET 2.0 Beta 1 versions of the database scripts the attempt fails. To work
around this, the new requirement is that you must be one of the following to install the database schemas
for the application services:

You can be ❑❑ dbo in the database.

You must be a member of both the ❑❑ db_ddladmin and db_securityadmin roles in the database.

If you belong to both the db_ddladmin and db_securityadmin roles in a database, then as long as a
shared hoster or some other entity creates the database for you ahead of time, you can log in to the data-
base and successfully run any of the SQL installation scripts. You need to be in the db_ddladmin role
to issue commands like CREATE TABLE or CREATE PROCEDURE. Other than db_ddladmin, only dbo
has this right by default. As strange as it may seem, a db_ddladmin member can create database objects
owned by other user accounts. However, just because a db_ddladmin can create such objects does not
mean a member of that role can use those objects.

As a result, you also need to belong to db_securityadmin because at the end of the SQL installation
scripts there are commands that create SQL Server roles and then grant execute rights and select rights on
the stored procedures and views to the various roles. If you aren’t a member of the db_securityadmin
role, the scripts won’t be able to setup the SQL Server roles and associated permissions properly. Although
some hosters or companies might still be reticent to grant db_ddladmin and db_securityadmin rights,
this set of rights is appropriate for most scenarios where all you want to do is prevent handing out dbo
rights to everyone.

A very important point to keep in mind from this discussion is that although you need to run with
some kind of elevated privileges to install the database scripts, you don’t need these privileges to use
the database objects. For any SQL-based provider to successfully call the stored procedures, you only
need to add the appropriate security accounts to one or more of the predefined SQL Server roles. You
don’t have to grant the security accounts on your web servers dbo privileges or either of the two special
security roles just discussed. In this way, at runtime you can still restrict the rights granted to the web
server accounts and thus maintain the principle of least privilege when using any of the SQL-based
providers.

For future Framework releases, the ASP.NET team is considering tweaking the SQL-based providers to
allow for configurable owner names. Implementing the feature would allow you to install the applica-
tion services schema using any arbitrary user account. The account would only need rights to create
tables, views and stored procedures, which is an even lower set of privileges than those available from
db_ddladmin and db_securityadmin. Then the providers would have an extra configuration attribute
for you to specify the correct owner name to be prepended by the providers to all stored procedure calls.

Changing Password Formats
When you configure SqlMembershipProvider, you have the option of storing passwords in cleartext,
as hashed values, or as encrypted values. By default, the provider will use SHA1 hashing with a random
16-byte salt value. As mentioned in the Membership chapter, you can change the hashing algorithm by
defining a different algorithm in the hashAlgorithmType configuration attribute on the <membership
/> element. If you choose encrypted passwords, the provider by default uses whatever is configured
for encryption on the <machineKey /> element. The default algorithm for <machineKey /> is AES,
although you can change this to 3DES instead with the “decryption” attribute.

79301c12.indd 588 10/6/08 12:16:04 PM

589

Chapter 12: SqlMembershipProvider

If you choose to use encrypted passwords with SqlMembershipProvider, then you must explicitly
provide a value for the decryptionKey attribute on <machineKey />, because if you were allowed
to encrypt with the <machineKey /> default of AutoGenerate,IsolateApps your passwords could
become undecryptable. For example, there would be no way to decrypt passwords across a web farm.
Also, whenever the Framework is upgraded or installed on a machine, the auto-generated machine keys
are regenerated. Overall, the danger of leading developers into a dead end with encryption was so great
that the provider now requires you to explicitly supply the decryption key for <machineKey />.

Normally, you set the passwordFormat configuration attribute on the provider just once. However, some
confusion can arise if you change the password format after you create Membership user accounts, thus
storing passwords (and potentially password answers) in the database. When a user account is first cre-
ated, and the password is encoded, the format used to encode the password and the password answer
is stored in the database in the PasswordFormat column. After this occurs, the format that was used at
user creation time is used for the lifetime of the record in the database. Even if you switch the password
format configured on the provider, existing user records will continue to use the old password format.

You can see this if you use a basic test site and start out with cleartext passwords:

<membership defaultProvider=”formatTest”>
 <providers>
 <add
 name=”formatTest”
 …
 passwordFormat=”Clear”
 …
 </providers>
</membership>

You can create a new user and look in the database to confirm that the password is stored in cleartext. If
you then modify the provider definition to instead use passwordFormat=’Hashed’ and then create a
second user, this user’s password is stored as a base64-encoded hash value along with the random salt.

However, you can still log in with the first user account despite the fact that the password format used
for the first user differs from the current setting on the provider. Additionally, you can use a control
like the ChangePassword control to change the password of the first user. After you change the first
user’s password, the new password is still being stored using cleartext.

There really isn’t a great way to work around this behavior, though it admittedly isn’t likely that this
would ever happen in a production environment. However, you may run into this problem in a devel-
opment environment if you start with a set of test accounts using one password format and then later
during the development a final decision is made to use a different password format. In this case, you
may not want to migrate existing accounts into production using the old password format, especially if
everything started out using cleartext.

If you just need to convert existing accounts with cleartext passwords to use a more secure format, you
can query the database directly to extract the original passwords (and if necessary the original password
answers as well). Then you can delete all the existing users using cleartext passwords and regenerate the
accounts using the cleartext passwords that you stored off to the side. Of course, even this approach will
lead to a problem if you depend on the user’s primary keys for other data—perhaps you linked some
of your own custom tables to the aspnet_Users table and, thus, you don’t want the keys for each of
the users to change. In this case, you can just use the old GUID UserId value as the providerUserKey
parameter to CreateUser when you recreate the new user accounts.

79301c12.indd 589 10/6/08 12:16:04 PM

590

Chapter 12: SqlMembershipProvider

However, what happens if you want to roll existing users over from encrypted or hashed passwords to a
different format? For this scenario, you are stuck; there is no way to force existing user accounts to use a
new password format. The problem is that to regenerate a password you need to call the ChangePassword
method on the provider. As part of this method, you have to supply the old password, so it isn’t likely that
you can automate this process because you don’t know the original password. You will probably need the
users who know their passwords to log into a site and change their password.

But even this doesn’t solve the problem because as part of the logic inside of ChangePassword, the pro-
vider first fetches the existing password information, including the password format from the database.
The provider internally validates the oldPassword parameter of this method using the password data
and format retrieved from the database. Assuming that this validation succeeds, the provider encodes
the newPassword parameter using the password format that is stored in the database. As a result, there
isn’t a way to get in between the validation of the oldPassword and the encoding of newPassword
parameter to tell the provider to use a new password format.

For this reason, you should avoid situations that require changing the password format for a produc-
tion system. If you try to change a production system from using hashed passwords to using encrypted
passwords, you really don’t have any option other than recreating user accounts on the fly when users
log in. With hashed passwords, you can’t automate the change, because there is no way to get back to
the cleartext versions of the passwords.

If you try to change a production system from using encrypted passwords to using hashed passwords,
you can potentially automate this because you at least know the decryption key. However, you will need
to write code that converts from the base64-encoded representations of the password and password
answers into a byte[], at which point you have to write your own code to decrypt the passwords using
the correct algorithm. This method comes with a potential privacy issue because your website customers
probably don’t expect to have their passwords decrypted for any reason other than logging in.

As you can see, neither of these scenarios is optimal, so make sure that the password format you plan to
use is determined well before your website goes into production. After you have live users on your site,
changing your mind about the password format can require you to delete and then regenerate existing
user accounts.

Custom Password Generation
If you use the password reset feature of SqlMembershipProvider, then you will be depending on the
default behavior the provider supplies for automatically generating passwords. The default behavior
uses the Membership.GeneratePassword method to create a password that conforms to the config-
ured password strength requirements. These are defined by the provider’s minRequiredPassword​
Length and minRequiredNonAlphanumericCharacters configuration attributes. Note that even if
you set the minRequiredNonAlphanumericCharacters attribute to zero, it is likely that the auto-
generated password will still contain nonalphanumeric characters.

The internal implementation of Membership.GeneratePassword randomly selects password char-
acters from a predefined set of nonalphanumeric characters as well as the standard set of uppercase
and lowercase alphanumeric characters and numbers. As a result the GeneratePassword method
only guarantees that there are at least as many nonalphanumeric characters as required by the
minRequiredNonAlphanumericCharacters. The method does not guarantee creating exactly as

79301c12.indd 590 10/6/08 12:16:04 PM

591

Chapter 12: SqlMembershipProvider

many nonalphanumeric characters as specified in the configuration attribute; instead, it is likely
that GeneratePassword will generate a few more nonalphanumeric characters than specified by
minRequiredNonAlphanumericCharacters.

If you don’t want this behavior, or if you have your own requirements and algorithm for creating ran-
dom passwords, you can choose to override the public virtual GeneratePassword method defined on
SqlMembershipProvider.

public virtual string GeneratePassword();

An override of this virtual method does not take any parameters and is expected to return a string
containing the randomly generated password. You have access to the provider’s configured password
strength requirements via MinRequiredPasswordLength and MinRequiredNonAlphanumeric​
Characters that are defined up on MembershipProvider.

As an example of this, you can write a provider that derives from SqlMembershipProvider and that
overrides just the GeneratePassword method. For simplicity, you can implement the derived provider
in the App_Code directory of your website; although if you needed this functionality available across all
your websites you would instead create a derived provider using a standalone class library.

The following sample code shows a custom password generator that handles the case where zero nonal-
phanumeric characters are required:

C#
using System;
using System.Web.Security;
using System.Security.Cryptography;

public class CustomPasswordGeneration : SqlMembershipProvider
{
 private static char[] randChars =
 “a0bcde1fghij2klmno3pqrst4uvwxy5zABCD6EFGHI7JKLMN8OPQRS9TUVWXYZ”.ToCharArray();

 public override string GeneratePassword()
 {
 if (MinRequiredNonAlphanumericCharacters == 0)
 {
 RNGCryptoServiceProvider rcsp = new RNGCryptoServiceProvider();
 //Always generate at least 14 characters in the random password
 int desiredLength =
 MinRequiredPasswordLength < 14 ? 14 : MinRequiredPasswordLength;

 byte[] randBytes = new byte[desiredLength];
 char[] convertedResult = new char[desiredLength];

 //First get some random values
 rcsp.GetBytes(randBytes);
 //Then convert these values into characters
 for (int i = 0; i < desiredLength; i++)
 {
 int indexOffset = ((int)randBytes[i]) % randChars.Length;

79301c12.indd 591 10/6/08 12:16:04 PM

592

Chapter 12: SqlMembershipProvider

 convertedResult[i] = randChars[indexOffset];
 }

 return new String(convertedResult);

 }
 else
 {
 return base.GeneratePassword();
 }
 }
}

VB.NET
Imports Microsoft.VisualBasic
Imports System
Imports System.Web.Security
Imports System.Security.Cryptography
Public Class CustomPasswordGeneration
 Inherits SqlMembershipProvider

 Private Shared randChars() As Char = _
“a0bcde1fghij2klmno3pqrst4uvwxy5zABCD6EFGHI7JKLMN8OPQRS9TUVWXYZ”.ToCharArray()

 Public Overrides Function GeneratePassword() As String
 If MinRequiredNonAlphanumericCharacters = 0 Then
 Dim rcsp As New RNGCryptoServiceProvider()
 ‘Always generate at least 14 characters in the random password
 Dim desiredLength As Integer

 desiredLength = _
 If(MinRequiredPasswordLength < 14, 14, MinRequiredPasswordLength)

 Dim randBytes(desiredLength - 1) As Byte
 Dim convertedResult(desiredLength - 1) As Char
 ‘First get some random values
 rcsp.GetBytes(randBytes)

 ‘Then convert these values into characters
 For i As Integer = 0 To desiredLength - 1
 Dim indexOffset As Integer = _
 (CInt(Fix(randBytes(i)))) Mod randChars.Length()

 convertedResult(i) = randChars(indexOffset)
 Next i
 Return New String(convertedResult)
 Else
 Return MyBase.GeneratePassword()
 End If
 End Function
End Class

79301c12.indd 592 10/6/08 12:16:04 PM

593

Chapter 12: SqlMembershipProvider

The sample code overrides just the GeneratePassword method of SqlMembershipProvider. In the
event that the custom provider is configured to not require nonalphanumeric characters, then the cus-
tom password generation logic runs. Otherwise, the override just delegates to the base class. You can of
course extend this to handle cases that require a nonzero number of nonalphanumeric characters, and
you want to specify the exact number of nonalphanumeric characters allowed.

The custom password generator follows the same approach as the default Membership providers by
always generating at least a 14-character-long random password. In the unlikely event that the provider
is configured to require even more characters, it will honor the longer length instead. The custom pro-
vider first gets the appropriate number of random byte values using RNGCryptoServiceProvider.
This ensures that the values are truly random as opposed to having some hidden dependency on a
known seed.

The byte values are then converted into characters by treating each random byte value as an integer
and then performing a modulus operation on the integer. The resulting value is used as an index into
the fixed character array randChars defined at the start of the class. The custom provider implementa-
tion allows only uppercase and lowercase representations of a-z as well as the numbers 0-9 in a ran-
domly generated password. Using this approach you can easily change the characters allowed in a
random password by editing the characters in the randChars variable. Because the modulus operation
always runs based on the length of randChars, you can change the length of the array without worry-
ing about updating constants elsewhere in the code.

After each random byte has been converted into a character, the array of characters is returned as a
string. You can try this code out with the sample configuration shown here:

<add name=”customPasswordGeneration”
 type=”CustomPasswordGeneration”
 connectionStringName=”LocalSqlServer”
 minRequiredNonalphanumericCharacters=”0”
/>

Notice that the type string for the provider contains only the name of the class. This works because
the ASP.NET ProvidersHelper class that you saw earlier in Chapter 10 has extra logic that can resolve
types from special ASP.NET directories, including the App_Code directory. As a result, the assembly
name and optional string name information is not required for this case.

If you run a sample page with code like the following:

C#
CustomPasswordGeneration cgprovider =
 (CustomPasswordGeneration)Membership.Providers[“customPasswordGeneration”];

Response.Write(cgprovider.GeneratePassword());

VB.NET
 Dim cgprovider As CustomPasswordGeneration = _
CType(Membership.Providers(“customPasswordGeneration”), CustomPasswordGeneration)

 Response.Write(cgprovider.GeneratePassword())

79301c12.indd 593 10/6/08 12:16:04 PM

594

Chapter 12: SqlMembershipProvider

you will get random passwords output like the following strings:

E73iDeRIs68USd
Ws25gpbZU6P2wo
U5EcY4WxissPfY

and so on.

If you change the configuration for the custom provider to require one or more nonalphanumeric
characters, the random password generation reverts to the default behavior implemented by
SqlMembershipProvider.

Implementing Custom Encryption
In the previous chapter, you saw how to implement custom hash algorithms that work with
SqlMembershipProvider. Unlike hash operations, encryption is not something that can be declara-
tively customized using the <membership /> element. While hash operations are pretty straightfor-
ward from an API standpoint (a byte[] goes in, and a different byte[] comes out the other side),
encryption operations are not as simple to make universally configurable.

If you choose encrypted passwords with Membership, by default SqlMembershipProvider will use
the encryption routines buried within the internals of the <machineKey /> configuration section. There
had been consideration at one point of making the encryption capabilities in this configuration section
more generic and more customizable. However, that work was never done because configuring encryp-
tion algorithms can involve quite a number of initialization parameters (initialization vectors, padding
modes, algorithm specific configuration properties, and so on).

Therefore, if you want to use a custom encryption algorithm in conjunction with SqlMembership​
Provider, you will need to write some code. The base class MembershipProvider exposes the
EncryptPassword and DecryptPassword methods as protected virtual. You can derive from
SqlMembershipProvider and override these two methods because internally the SQL provider
encrypts and decrypts data by calling these base class methods. The method signatures for encryp-
tion and decryption are very basic:

C#
protected virtual byte[] DecryptPassword(byte[] encodedPassword)
protected virtual byte[] EncryptPassword(byte[] password)

VB.NET
Protected Overridable Function DecryptPassword(ByVal encodedPassword As Byte()) _
As Byte()
Protected Overridable Function EncryptPassword(ByVal password As Byte()) As Byte()

Your custom encryption implementation needs to take a byte[] in C# or Byte() in VB.NET, either
encrypt or decrypt it, and then return the output as a different byte[]in C# or Byte() in VB.NET.
By the time decryption override is called, MembershipProvider has already converted the base64-

79301c12.indd 594 10/6/08 12:16:04 PM

595

Chapter 12: SqlMembershipProvider

encoded representation of the password in the database back into a byte[]in C# or Byte() in VB.NET.
Similarly, after your custom encryption routine runs, the provider will convert the resulting byte[] in
C# or Byte() in VB.NET back into a bas64-encoded string for storage in the database.

Remember that SqlMembershipProvider stores passwords and password answers as an nvarchar(128).
Custom encryption routines that cause excessive bloat need to keep this mind. If you suspect that a custom
encryption algorithm may increase the size of the password and password answer (taking into account the
subsequent base64 encoding as well), you should have extra maximum length rules to prevent this prob-
lem. For passwords, you could make sure to hook the ValidatingPassword event or override password-
related methods on the provider to enforce a maximum password length. For password answer maximum
length enforcement, you always need to derive from SqlMembershipProvider because this is the only
way to validate password answer lengths prior to their encoding.

SqlMembershipProvider gives some protection against excessively long encoded values because it
always validates that the encoded (that is, base64 encoded) representation of passwords and password
answers are less than or equal to 128 characters. If an encoded representation exceeds this length, the
provider throws an exception to that effect. However, proactively checking the maximum lengths of
the cleartext password and password answer representations makes it easier to communicate to users
to limit the size of these strings. Having some kind of a client-side validation check on the browser for
such lengths means that users will not be scratching their heads wondering why a perfectly valid pass-
word or password answer keeps failing.

As a simple example for implementing custom encryption, the following code shows a custom provider
that has overridden the encryption and decryption methods to instead preserve the cleartext represen-
tations of the passwords and password answers:

C#
using System;
using System.Web.Security;

//Just replays the password/answer
public class CustomEncryption : SqlMembershipProvider
{
 protected override byte[] EncryptPassword(byte[] password)
 { return password; }

 protected override byte[] DecryptPassword(byte[] encodedPassword)
 { return encodedPassword; }
}

VB.NET
Imports Microsoft.VisualBasic
Imports System
Imports System.Web.Security

‘Just replays the password/answer
Public Class CustomEncryption
 Inherits SqlMembershipProvider

79301c12.indd 595 10/6/08 12:16:05 PM

596

Chapter 12: SqlMembershipProvider

 Protected Overrides Function EncryptPassword(ByVal password() As Byte) As Byte()
 Return password
 End Function

Protected Overrides Function DecryptPassword(ByVal encodedPassword() As Byte)_
 As Byte()
 Return encodedPassword
 End Function
End Class

Obviously, you would never use this kind of code in production—but the sample does make it clear how
simple it is from an implementation perspective to clip in your own custom encryption and decryption
logic. Assuming that you are using a commercial implementation of an encryption algorithm, the byte[]
parameters to the two methods are what you would use with the System.Security.Cryptography​
.CryptoStream’s Read and Write methods.

To use this custom provider, configure a sample application with a reference to the provider, making
sure that you explicitly set the passwordFormat attribute for the provider.

<add name=”customEncryptionProvider”
 type=”CustomEncryption”
 passwordFormat=”Encrypted”
 connectionStringName=”LocalSqlServer” />

Now if you create a user with the following lines of code:

C#
CustomEncryption cencprovider =
 (CustomEncryption)Membership.Providers[“customEncryptionProvider”];

MembershipCreateStatus status;
cencprovider.CreateUser(“customEncryption22”, “this is the cleartext password”,
 “foo@nowhere.org”, “question”,
 “this is the cleartext answer”, true, null, out status);

VB.NET
Dim cencprovider As CustomEncryption = _
 CType(Membership.Providers(“customEncryptionProvider”), CustomEncryption)

 Dim status As MembershipCreateStatus

 cencprovider.CreateUser(“customEncryption2”, _
 “this is the cleartext password”, _
 “foo1@nowhere.org”, “question”, _
 “this is the cleartext answer”, _
 True, Nothing, status)

The database contains the base64-encoded representations stored for the password and the password
answer, which are really just 16-byte salt values plus the cleartext strings preserved by the custom
encryption routine. It turns out that when SqlMembershipProvider encrypts passwords and pass-
word answers, it still prepends a 16-byte random salt value to the byte representation of these strings

79301c12.indd 596 10/6/08 12:16:05 PM

597

Chapter 12: SqlMembershipProvider

(that is, password --> unicode byte[16 byte salt, then the byte representation of the password
or answer]). However, I would not recommend taking advantage of this because the existence of the
salt value, even in encrypted passwords and password answers, is an internal implementation detail.
The existence of this value as well as its location could change unexpectedly in future releases. For
example, the password is stored as:

we0UiiaUuwqIdS1dS0M5nQAaABpAHMAIABpAHMAIAB0AGgAZQAgAGMAbABlAGEAcgB0AGUAeAB0ACAAcABh
AHMAcwB3
AG8AcgBkAA==

If you convert this to a string with the following code:

C#
string result = “ base 64 string here”;
byte[] bResult = Convert.FromBase64String(result);
Response.Write(Encoding.Unicode.GetString((Convert.FromBase64String(result))));

VB.NET
Dim result As String = “base 64 string here”
Dim bResult() As Byte = Convert.FromBase64String(result)
Response.Write(Encoding.Unicode.GetString((Convert.FromBase64String(result))))

the result consists of eight nonsense characters (for the 16-byte random salt value) plus the original pass-
word string of “this is the cleartext password”. The size of the base64-encoded password representation
demonstrates the bloating effect the encoding has on the password. In this case, the original password
contained 30 characters; adding the random salt value results in a 38-character password. Each character
consumes 2 bytes when converted in a byte array, which results in a byte[76]. However, the base64-
encoded representation contains 104 characters for these 76 byte values, which is around 1.37 encoded
characters for each byte value and roughly 2.7 base64 characters for each original character in the
password.

If you use the default of AES encryption with SqlMembershipProvider, the same password results in
108 encoded characters—roughly the same overhead. This tells you that most of the string bloat comes
from the conversion of the Unicode password string into a byte array as well as the overhead from the
base64 encoding; the actual encryption algorithm adds only a small amount to the overall size. As a
general rule of thumb when using encryption with SqlMembershipProvider, you should plan on
three encoded characters being stored in the database for each character in the original password and
password answer strings.

This gives you a safe upper limit of around 42 characters for both of these values when using encryp-
tion. For passwords, this is actually enormous because most human beings (geniuses and savants
excluded!) can’t remember a 42-character long password. For password answers, 42 characters should
be sufficient when using encryption as long as the password questions are such that they result in rea-
sonable answers. Questions like what is your favorite car or color or mother’s maiden name? probably
don’t result in 40+-character-long answers. However, if you allow freeform password questions where
the user supplies the question, the resulting answer could be excessively long. Remember, though, that
even with password answers, the user has to remember the exact password answer to retrieve or reset
a password. As a result, it is unlikely that a website user will create an excessively long answer, because
just as with passwords, folks will have trouble remembering excessively long answers.

79301c12.indd 597 10/6/08 12:16:05 PM

598

Chapter 12: SqlMembershipProvider

Enforcing Custom Password Strength Rules
By default, SqlMembershipProvider enforces password strength using a combination of the
minRequired​PasswordLength, minRequiredNonalphanumericCharacters, and passwordStrength​
RegularExpression provider configuration attributes. The default provider configuration in machine​
.config causes the provider to require at least seven characters in the password with at least one of
these being a nonalphanumeric character. There is no default password strength regular expression
defined in machine.config.

If you choose to define a regular expression, the provider enforces all three password constraints:
minimum length, minimum number of nonalphanumeric characters, and matching the password
against the configured regular expression. If you want the regular expression to be the exclusive deter-
minant of password strength, you can set the minRequiredPasswordLength attribute to one and the
minRequiredNonalphanumericCharacters to zero. Although the provider still enforces password
strength with these requirements, your regular expression will expect that passwords have at least one
character in them—so effectively only your regular expression will really be enforcing any kind of
substantive rules.

You can see that just with the provider configuration attributes you can actually enforce a pretty robust
password. However, for security-conscious organizations password strength alone isn’t sufficient. The
classic problem of course is with users and customers “changing” their passwords by simply using an
old password, or by creating a new password that revs one digit or character from the old password. If
you have more extensive password strength requirements, you can enforce them in one of two ways:

Hook the ValidatingPassword event on the provider:❑❑ This approach doesn’t require you to
derive from the SQL provider and as a result doesn’t require deployment of a custom provider
along with the related configuration changes in web.config. However, you do need some way
to hook up your custom event handler to the provider in every web application that requires
custom enforcement.

Derive from SqlMembershipProvider and override those methods that deal with creating or ❑❑

changing passwords (CreateUser, ChangePassword and ResetPassword): You have to ensure
that your custom provider is deployed in such a way that each website can access it, and you
also need to configure websites to use the custom provider. Because you would be overriding
methods anyway, this approach also has the minor advantage of having easy access to other
parameters passed to the overridden methods. With this approach, you won’t have to worry
about hooking up the ValidatingPassword event.

Realistically, either approach is perfectly acceptable. The event handler was added in the first place
because much of the extensibility model in ASP.NET supports event mechanisms and method over-
rides. For example, when you author a page, you are usually hooking events on the page and its con-
tained controls as opposed to overriding methods like OnClick or OnLoad. For developers who have
simple password strength requirements for one or a small number of sites, using the Validating​
Password event is the easier approach.

Using the ValidatingPassword event is as simple as hooking the event on an instance of SqlMembership​
Provider. To hook the event for the default provider, you can subscribe to Membership.Validating​
Password. To hook the event on one of the nondefault provider instances, you need to first get a reference
on the provider instance and then subscribe to MembershipProvider.ValidatingPassword. When the
event is fired, it passes some information to its subscribers with an instance of ValidatingPassword​
EventArgs.

79301c12.indd 598 10/6/08 12:16:05 PM

599

Chapter 12: SqlMembershipProvider

C#
public sealed class ValidatePasswordEventArgs : EventArgs
{
 public ValidatePasswordEventArgs(
 string userName,
 string password,
 bool isNewUser)

public string UserName { get; }
public string Password { get; }
public bool IsNewUser { get; }
public bool Cancel {get; set; }
public Exception FailureInformation {get; set;}
}

VB.NET
Public NotInheritable Class ValidatePasswordEventArgs
 Inherits EventArgs

 Public Sub New(ByVal userName As String, _
 ByVal password As String, _
 ByVal ByVal isNewUser As Boolean)

 Public Property Cancel As Boolean
 Public Property FailureInformation As Exception
 Public ReadOnly Property IsNewUser As Boolean
 Public ReadOnly Property Password As String
 Public ReadOnly Property UserName As String

End Class

An event handler knows the user that the password creation or change applies to from the UserName
property. You know whether the password in the Password parameter is for a new password (that
is, CreateUser was called) or a changed password (that is, ResetPassword or ChangePassword
was called) by looking at the IsNewUser property. If the property is true, then the UserName and
Password are for a new user; otherwise, the event represents information for an existing user who
is changing or resetting a password. The event handler doesn’t know the difference between a pass-
word change and a password reset.

After an event handler has inspected the password using whatever logic it wants to apply, it can
indicate the success or failure of the check via the Cancel property. If the custom password strength
validation fails, then the event handler must set this property to true. If you also want to return some
kind of custom exception information, you can optionally new() up a custom exception type and set
it on the FailureInformation property. Remember that SqlMembershipProvider always returns
a status code of MembershipCreateStatus.InvalidPassword from CreateUser. As a result of this
method’s signature, the provider doesn’t throw an exception when password strength validation fails;
instead, it just returns a failure status code.

SqlMembershipProvider will throw an exception if a failure occurs in either ChangePassword or
Reset​Password. It will throw the custom exception from FailureInformation if it is available. If an
event handler only sets Cancel to true, the provider throws ArgumentException from ChangePass-
word or ProviderException from ResetPassword. Remember that if you want to play well with the

79301c12.indd 599 10/6/08 12:16:05 PM

600

Chapter 12: SqlMembershipProvider

Login controls, the exception type that you set on FailureInformation should derive from one of these
two exception types.

The reason for the different exception types thrown by SqlMembershipProvider is that in Change​
Password, the new password being validated is something your user entered, and hence Argument​
Exception is appropriate. In the case of ResetPassword, though, the new password is automatically
generated with a call to GeneratePassword. Because the new password is not something supplied
by user input, throwing ArgumentException seemed a bit odd. So instead, ProviderException is
thrown because the provider’s password generation code failed. Unless you use password regular
expressions, you probably won’t run into ProviderException being thrown from ResetPassword.
Because you can’t determine if you are being called from ChangePassword or ResetPassword from
inside of the ValidatingPassword event, it is reasonable to throw either exception type.

Hooking the ValidatePassword Event
When you hook the ValidatingPassword event, SqlMembershipProvider will raise it from inside of
CreateUser, ChangePassword, and ResetPassword. The simplest way to perform the event hookup is
from inside global.asax, with the actual event existing in a class file in the App_Code directory.

A custom event handler needs to have the same signature as the event definition:

C#
public delegate void MembershipValidatePasswordEventHandler(
 Object sender, ValidatePasswordEventArgs e);

VB.NET
Public Delegate Sub MembershipValidatePasswordEventHandler(_
 ByVal sender As Object, _
 ByVal e As ValidatePasswordEventArgs)

The following sample code shows a password strength event handler that enforces a maximum length
of 20 characters for a password. If the length is exceeded, it sets an ArgumentException on the event
argument:

C#
public class ValidatingPasswordEventHook
{
 public static void LimitMaxLength(Object s, ValidatePasswordEventArgs e)
 {
 if (e.Password.Length > 20)
 {
 e.Cancel = true;
 ArgumentException ae =
 new ArgumentException(“The password length cannot exceed 20 characters.”);
 e.FailureInformation = ae;
 }
 }
}

79301c12.indd 600 10/6/08 12:16:05 PM

601

Chapter 12: SqlMembershipProvider

VB.NET
Imports Microsoft.VisualBasic
Imports System
Imports System.Web.Security
Public Class ValidatingPasswordEventHook
 Public Shared Sub LimitMaxLength(ByVal s As Object, _
 ByVal e As ValidatePasswordEventArgs)
 If e.Password.Length > 20 Then
 e.Cancel = True
 Dim ae As _
 New ArgumentException(“The password length cannot exceed20 characters.”)
 e.FailureInformation = ae
 End If
 End Sub
End Class

The event handler is written as a static method on the ValidatingPasswordEventHook class. Because
the event may be called at any time within the life of an application, it makes sense to define the event
handler using a static method so that it is always available and doesn’t rely on some other class instance
that was previously instantiated.

The sample event handler is hooked up inside of global.asax using the Application_Start event:

C#
void Application_Start(object sender, EventArgs e)
{
 SqlMembershipProvider smp =
 (SqlMembershipProvider)Membership.Providers[“sqlPasswordStrength”];

 smp.ValidatingPassword +=
 new MembershipValidatePasswordEventHandler(
 ValidatingPasswordEventHook.LimitMaxLength);
}

VB.NET
 Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)
 Dim smp As SqlMembershipProvider = _
 CType(Membership.Providers(“sqlPasswordStrength”), SqlMembershipProvider)

 AddHandler smp.ValidatingPassword, _
 AddressOf ValidatingPasswordEventHook.LimitMaxLength
 End Sub

In this case, the event hookup is made using a provider reference directly as opposed to hooking up to
the default provider via the Membership.ValidatingPassword event property. Now if you attempt to
create a new user with an excessively long password, you receive InvalidStatus as the output param-
eter. For existing users, if you attempt to change the password with an excessively long password,
ArgumentException set inside of the event handler is thrown instead.

79301c12.indd 601 10/6/08 12:16:05 PM

602

Chapter 12: SqlMembershipProvider

Implementing Password History
A more advanced use of password strength validation is enforcing the rule that previously used pass-
words not be reused for new passwords. Although SqlMembershipProvider doesn’t expose this kind
of functionality, you can write a derived provider that keeps track of old passwords and ensures that
new passwords are not duplicates. The sample provider detailed in this section keeps track of password
history when hashed passwords are used. Hashed passwords are used for this sample because it is a
somewhat more difficult scenario to handle.

Neither SqlMembershipProvider nor the base MembershipProvider class exposes the password
salts for hashed passwords. Without this password salt, you need to do some extra work to keep track
of password history in a way that doesn’t rely on any hacks or undocumented provider behavior. The
remainder of this section walks you through an example that extends SqlMembershipProvider by
incorporating password history tracking. The sample provider checks new passwords against the his-
tory whenever ChangePassword is called. It adds items to the password history when a user is first cre-
ated with CreateUser, and whenever the password subsequently changes with ChangePassword or
ResetPassword.

As a first step, the custom provider needs a schema for storing the password history:

create table dbo.PasswordHistory (
 UserId uniqueidentifier NOT NULL,
 Password nvarchar(128) NOT NULL,
 PasswordSalt nvarchar(128) NOT NULL,
 CreateDate datetime NOT NULL
)

alter table dbo.PasswordHistory add constraint PKPasswordHistory
PRIMARY KEY (UserId, CreateDate)

alter table dbo.PasswordHistory add constraint FK1PasswordHistory
FOREIGN KEY (UserId) references dbo.aspnet_Users(UserId)

The provider stores one row for each password that has been associated with a user. It indexes the his-
tory on a combination of the UserId as well as the UTC date time that the password was submitted to
the Membership system. This allows each user to have multiple passwords, and thus multiple entries
in the history. The table also has a foreign key pointing to the aspnet_Users table just to ensure that
the user really exists and that if the user is eventually deleted then the password history rows have to
be cleaned up as well. As noted earlier in the chapter, this foreign key relationship is not officially sup-
ported because it is directly referencing the aspnet_Users table. However, this is the only part of the
custom provider that uses any Membership feature that is considered undocumented.

As you can probably infer from the column names, the intent of the table is to store an encoded pass-
word representation and the password salt that was used to encode the password. Because the custom
provider that uses this table supports hashing, each time a new password history record is generated the
custom provider needs to store the password in a secure manner. It does this by hashing the password
with the same algorithm used to hash the user’s login password. Just like SqlMembershipProvider,
the custom provider will actually hash a combination of the user’s password and a random salt value to
make it much more difficult for someone to reverse engineer the hash value stored in the Password col-
umn. Because of this, the table also has a column where the random salt value is stored, though this salt
value is not the same salt the provider uses for hashing the user’s login password.

79301c12.indd 602 10/6/08 12:16:05 PM

603

Chapter 12: SqlMembershipProvider

Whenever a password history row has to be inserted, the following stored procedure will be used:

create procedure dbo.InsertPasswordHistoryRow
@pUserName nvarchar(256),
@pApplicationName nvarchar(256),
@pPassword nvarchar(128),
@pPasswordSalt nvarchar(128)
as

declare @UserId uniqueidentifier
select @UserId = UserId
from dbo.vw_aspnet_Applications a,
 dbo.vw_aspnet_Users u
where a.LoweredApplicationName = LOWER(@pApplicationName)
and a.ApplicationId = u.ApplicationId
and u.LoweredUserName = LOWER(@pUserName)

if not exists (select 1 from dbo.vw_aspnet_MembershipUsers
 where UserId = @UserId)
 return -1

begin transaction

 select 1
 from vw_aspnet_MembershipUsers WITH (UPDLOCK)
 where UserId = @UserId
 if (@@Error <> 0)
 goto AnErrorOccurred

 insert into dbo.PasswordHistory
 values (@UserId,@pPassword,@pPasswordSalt,getutcdate())
 if (@@Error <> 0)
 goto AnErrorOccurred

 --trim away old password records that are no longer needed
 delete
 from dbo.PasswordHistory
 where UserId = @UserId
 and CreateDate not in
 (
 select TOP 10 CreateDate --only 10 passwords are ever maintained in history
 from dbo.PasswordHistory
 where UserId = @UserId
 order by CreateDate DESC
)
 if (@@Error <> 0)
 goto AnErrorOccurred

commit transaction

return 0

AnErrorOccurred:
 rollback transaction
 return -1

79301c12.indd 603 10/6/08 12:16:05 PM

604

Chapter 12: SqlMembershipProvider

The parameter signature for the stored procedure expects a username and an application name: the
object-level primary key of any user in Membership. The stored procedure converts these two param-
eters into the GUID UserId by querying the application and user table views as shown earlier in the
chapter. The procedure also makes a sanity check to ensure that the UserId actually exists in the Mem-
bership table by querying its associated view. Technically, this should never occur because the custom
provider only calls this stored procedure after the base SqlMembershipProvider has created a user
row in the aspnet_Membership table.

After the procedure knows that the UserId is valid, it starts a transaction and places a lock on the
user’s Membership record. This ensures that, on the off chance that multiple calls are made to the
database to insert a history record for a single user, each call completes its work before another call is
allowed to manipulate the PasswordHistory table. This serialization is needed because after the data
from the procedure’s password and password salt parameter are inserted, the procedure removes old
history records. The procedure needs to complete both steps successfully or roll the work back.

It is at this point in the procedure that you would put in any logic appropriate for determining “old”
passwords for your application. In the case of the sample provider, only the last 10 passwords for a user
are retained. Passwords are sorted according to when the records were created, with the oldest records
being candidates for deletion. When you get to the eleventh and subsequent passwords, the stored pro-
cedure automatically purges the older records. If you don’t have some type of logic like this, over time
the password history tracking will get slower and slower. After the old password purge is completed
the transaction is committed. For the sake of brevity, more extensive error handling is not included
inside of the transaction. Theoretically, something could go wrong after the insert or delete statement,
which would warrant more extensive error handling than that shown in the previous sample.

The companion to the insert stored procedure is a procedure to retrieve the current password history
for a user:

create procedure dbo.GetPasswordHistory
@pUserName nvarchar(256),
@pApplicationName nvarchar(256)
as

select [Password], PasswordSalt, CreateDate
from dbo.PasswordHistory ph,
 dbo.vw_aspnet_Applications a,
 dbo.vw_aspnet_Users u
where a.LoweredApplicationName = LOWER(@pApplicationName)
and a.ApplicationId = u.ApplicationId
and u.LoweredUserName = LOWER(@pUserName)
and ph.UserId = u.UserId
order by CreateDate DESC

This procedure is pretty basic. It accepts the username and application name and uses these two values
to get to the UserId. At this point, the procedure returns all the rows from the PasswordHistory table
with the most recent passwords being retrieved first.

The next step in developing the custom provider is to rough out its class signature:

79301c12.indd 604 10/6/08 12:16:05 PM

605

Chapter 12: SqlMembershipProvider

C#
using System;
using System.Configuration;
using System.Configuration.Provider;
using System.Data;
using System.Data.SqlClient;
using System.Security.Cryptography;
using System.Text;
using System.Web.Configuration;
using System.Web.Security;

public class ProviderWithPasswordHistory : SqlMembershipProvider
{
 private string connectionString;

 //Overrides of public functionality
 public override void Initialize(string name,
 System.Collections.Specialized.NameValueCollection config)

 public override string ResetPassword(string username, string passwordAnswer)

 public override MembershipUser CreateUser(…)

 public override bool ChangePassword(string username,
 string oldPassword, string newPassword)

 //Private methods that provide most of the functionality
 private byte[] GetRandomSaltValue()

 private void InsertHistoryRow(string username, string password)

 private bool PasswordUsedBefore(string username, string password)
}

VB.NET
Imports Microsoft.VisualBasic
Imports System
Imports System.Configuration
Imports System.Configuration.Provider
Imports System.Data
Imports System.Data.SqlClient
Imports System.Security.Cryptography
Imports System.Text
Imports System.Web.Configuration
Imports System.Web.Security

Public Class ProviderWithPasswordHistory
 Inherits SqlMembershipProvider

 Private connectionString As String

 ‘Overrides of public functionality

79301c12.indd 605 10/6/08 12:16:05 PM

606

Chapter 12: SqlMembershipProvider

 Public Overrides Sub Initialize(_
 ByVal name As String, _
 ByVal config As System.Collections.Specialized.NameValueCollection)
 End Sub
 Public Overrides Function ResetPassword(_
 ByVal username As String, _
 ByVal passwordAnswer As String) As String
 End Function
 Public Overrides Function CreateUser(_
 ByVal username As String, _
 ByVal password As String, _
 ByVal email As String, _
 ByVal passwordQuestion As String, _
 ByVal passwordAnswer As String, _
 ByVal isApproved As Boolean, _
 ByVal providerUserKey As Object, _
 <System.Runtime.InteropServices.Out()> ByRef status As MembershipCreateStatus) _
 As MembershipUser
 End Function

Public Overrides Function ChangePassword(ByVal username As String, _
 ByVal oldPassword As String, _
 ByVal newPassword As String) As Boolean
 End Function

‘Private methods that provide most of the functionality
Private Function GetRandomSaltValue() As Byte()
End Function

Private Sub InsertHistoryRow(ByVal username As String, ByVal password As String)
End Sub

Private Function PasswordUsedBefore(ByVal username As String, _
 ByVal password As String) As Boolean
 End Function

End Class

The custom provider will perform some extra initialization logic in its Initialize method. Then the
actual enforcement of password histories occurs within ChangePassword and ResetPassword. Create​
User is overridden because the very first password in the password history is the one used by the user
when initially created. The private methods support functionality that uses the data layer logic you just
saw: the ability to store password history as well as a way to determine whether a password has ever
been used before. The GetRandomSaltValue method is used to generate random salt prior to storing
password history records.

Start out looking at the Initialize method:

C#
public override void Initialize(string name,
 System.Collections.Specialized.NameValueCollection config)
{
 //We need the connection string later
 //So grab it before the SQL provider removes it from the

79301c12.indd 606 10/6/08 12:16:06 PM

607

Chapter 12: SqlMembershipProvider

 //configuration collection.
 string connectionStringName = config[“connectionStringName”];

 base.Initialize(name, config);
 if (PasswordFormat != MembershipPasswordFormat.Hashed)
 throw new NotSupportedException(
 “You can only use this provider with hashed passwords.”);

 connectionString =
WebConfigurationManager.ConnectionStrings[connectionStringName].ConnectionString;
}

VB.NET
 Public Overrides Sub Initialize(ByVal name As String, _
 ByVal config As System.Collections.Specialized.NameValueCollection)
 ‘We need the connection string later
 ‘So grab it before the SQL provider removes it from the
 ‘configuration collection.
 Dim connectionStringName As String = config(“connectionStringName”)
 MyBase.Initialize(name, config)
 If PasswordFormat <> MembershipPasswordFormat.Hashed Then
 Throw New NotSupportedException(“You can only use “ & _
 “this provider with hashed passwords.”)
 End If
 connectionString = _
 WebConfigurationManager.ConnectionStrings _
 (connectionStringName).ConnectionString
 End Sub

The override uses the connection string name that was configured on the provider (that is, the provider’s
connectionStringName attribute) to get the connection string from the <connectionStrings />
section. The provider also performs a basic sanity check to ensure that the password format has been
set to use hashed passwords. If you want you can follow the same approach shown for this sample pro-
vider and extend it to support password histories for encrypted passwords.

The first step in the lifecycle of a user is the initial creation of that user’s data in the Membership tables.
Because the custom provider tracks a user’s password history, it needs to store the very first password that
is created. It does this with the private InsertHistoryRow method. The first part of this private method
sets up the necessary ADO.NET command for calling the insert stored procedure shown earlier:

C#
private void InsertHistoryRow(string username, string password)
{
 using (SqlConnection conn = new SqlConnection(connectionString))
 {
 //Setup the command
 string command = “dbo.InsertPasswordHistoryRow”;
 SqlCommand cmd = new SqlCommand(command, conn);
 cmd.CommandType = System.Data.CommandType.StoredProcedure;

 //Setup the parameters
 SqlParameter[] arrParams = new SqlParameter[5];
 arrParams[0] = new SqlParameter(“pUserName”, SqlDbType.NVarChar, 256);

79301c12.indd 607 10/6/08 12:16:06 PM

608

Chapter 12: SqlMembershipProvider

 arrParams[1] = new SqlParameter(“pApplicationName”,
 SqlDbType.NVarChar, 256);
 arrParams[2] = new SqlParameter(“pPassword”, SqlDbType.NVarChar, 128);
 arrParams[3] = new SqlParameter(“pPasswordSalt”, SqlDbType.NVarChar, 128);
 arrParams[4] = new SqlParameter(“returnValue”, SqlDbType.Int);

VB.NET
Private Sub InsertHistoryRow(ByVal username As String, ByVal password As String)
 Using conn As New SqlConnection(connectionString)
 ‘Setup the command
 Dim command As String = “dbo.InsertPasswordHistoryRow”
 Dim cmd As New SqlCommand(command, conn)
 cmd.CommandType = System.Data.CommandType.StoredProcedure

 ‘Setup the parameters
 Dim arrParams(4) As SqlParameter
 arrParams(0) = New SqlParameter(“pUserName”, SqlDbType.NVarChar, 256)
 arrParams(1) = New SqlParameter(“pApplicationName”, _
SqlDbType.NVarChar,256)
 arrParams(2) = New SqlParameter(“pPassword”, SqlDbType.NVarChar, 128)
 arrParams(3) = New SqlParameter(“pPasswordSalt”, SqlDbType.NVarChar, 128)
 arrParams(4) = New SqlParameter(“returnValue”, SqlDbType.Int)

So far, this is all pretty standard ADO.NET coding practices. The next block of code gets interesting,
though, because it is where a password is hashed with a random salt prior to storing it in the database:

C#
 //Hash the password again for storage in the history table
 byte[] passwordSalt = this.GetRandomSaltValue();
 byte[] bytePassword = Encoding.Unicode.GetBytes(password);
 byte[] inputBuffer = new byte[bytePassword.Length + 16];

 Buffer.BlockCopy(bytePassword, 0, inputBuffer, 0, bytePassword.Length);
 Buffer.BlockCopy(passwordSalt, 0, inputBuffer, bytePassword.Length, 16);

 HashAlgorithm ha = HashAlgorithm.Create(Membership.HashAlgorithmType);
 byte[] bhashedPassword = ha.ComputeHash(inputBuffer);
 string hashedPassword = Convert.ToBase64String(bhashedPassword);
 string stringizedPasswordSalt = Convert.ToBase64String(passwordSalt);

VB.NET
 ‘Hash the password again for storage in the history table
 Dim passwordSalt() As Byte = Me.GetRandomSaltValue()
 Dim bytePassword() As Byte = Encoding.Unicode.GetBytes(password)
 Dim inputBuffer(bytePassword.Length + 16 - 1) As Byte

 Buffer.BlockCopy(bytePassword, 0, inputBuffer, 0, bytePassword.Length)
 Buffer.BlockCopy(passwordSalt, 0, inputBuffer, bytePassword.Length, 16)

 Dim ha As HashAlgorithm = _
 HashAlgorithm.Create(Membership.HashAlgorithmType)
 Dim bhashedPassword() As Byte = ha.ComputeHash(inputBuffer)

79301c12.indd 608 10/6/08 12:16:06 PM

609

Chapter 12: SqlMembershipProvider

 Dim hashedPassword As String = Convert.ToBase64String(bhashedPassword)

 Dim stringizedPasswordSalt As String = _
 Convert.ToBase64String(passwordSalt)

As a first step, the provider gets a random 16-byte salt value as a byte[]in C# or Byte() in VB.NET.
Because this salt value needs to be combined with the user’s password, the password is also converted to a
byte[] in C# or Byte() in VB.NET. Then the salt value and the byte representation of the password are
combined using the Buffer object into a single array of bytes that looks like: byte[password as bytes,
16 byte salt value] in C# or Byte(password as bytes, 16 byte salt value) in VB.NET. This
approach ensures that the hashed password will be next to impossible to reverse engineer, but it does so
without relying on the internal byte array format used by SqlMembershipProvider when it hashes pass-
words. This means more code in the custom provider, but it also means the provider’s approach to securely
storing passwords won’t break if the internal implementation of SqlMembershipProvider changes in a
future release.

With the combined values in the byte array, the provider uses the hash algorithm configured for Mem-
bership to convert the array into a hashed value. At this point, both the resultant hash and the random
salt that were used are converted in a base64-encoded string for storage back in the database.

C#
 //Put the results into the command object
 arrParams[0].Value = username;
 arrParams[1].Value = this.ApplicationName;
 arrParams[2].Value = hashedPassword;
 arrParams[3].Value = stringizedPasswordSalt; //need to remember the salt
 arrParams[4].Direction = ParameterDirection.ReturnValue;

 cmd.Parameters.AddRange(arrParams);

 //Insert the row into the password history table
 conn.Open();
 cmd.ExecuteNonQuery();

 int procResult = (int)arrParams[4].Value;
 conn.Close();
 if (procResult != 0)
 throw new ProviderException(
 “An error occurred while inserting the password history row.”);
 }
}

VB.NET
 ‘Put the results into the command object
 arrParams(0).Value = username
 arrParams(1).Value = Me.ApplicationName
 arrParams(2).Value = hashedPassword
 arrParams(3).Value = stringizedPasswordSalt
 arrParams(4).Direction = ParameterDirection.ReturnValue

 cmd.Parameters.AddRange(arrParams)

79301c12.indd 609 10/6/08 12:16:06 PM

610

Chapter 12: SqlMembershipProvider

 ‘Insert the row into the password history table
 conn.Open()
 cmd.ExecuteNonQuery()

 Dim procResult As Integer = CInt(Fix(arrParams(4).Value))
 conn.Close()
 If procResult <> 0 Then
 Throw New ProviderException(“An error occurred while “ & _
 “inserting the password history row.”)
 End If

The remainder of the InsertHistoryRow method packages up all the data into SqlCommand object’s
parameters and then inserts them using the InsertPasswordHistoryRow stored procedure. Because
the stored procedure returns a -1 value if it could not find the user in the vw_aspnet_MembershipUsers
view or if an error occurred during the insert, the provider checks for this error condition and throws
an exception if this occurs.

Because this method relies on generating a random 16-byte salt, take a quick look at the private helper
method that creates the salts:

C#
private byte[] GetRandomSaltValue()
{
 RNGCryptoServiceProvider rcsp = new RNGCryptoServiceProvider();
 byte[] bSalt = new byte[16];
 rcsp.GetBytes(bSalt);
 return bSalt;
}

VB.NET
Private Function GetRandomSaltValue() As Byte()
 Dim rcsp As New RNGCryptoServiceProvider()
 Dim bSalt(15) As Byte
 rcsp.GetBytes(bSalt)

 Return bSalt
End Function

This code should look familiar from the earlier topic on custom password generation. In this case, the
random number generator is used to create a fixed-length array of random bytes that will be used as a
salt for the provider’s hashing. The use of a salt value makes it substantially more difficult for anyone to
guess a password stored in the password history table using a dictionary-based attack.

The create user method looks like this:

C#
public override MembershipUser CreateUser(
 string username, string password, string email, string passwordQuestion,
 string passwordAnswer, bool isApproved, object providerUserKey,
 out MembershipCreateStatus status)
{

79301c12.indd 610 10/6/08 12:16:06 PM

611

Chapter 12: SqlMembershipProvider

 MembershipUser mu;
 mu = base.CreateUser(username, password, email,
 passwordQuestion, passwordAnswer,
 isApproved, providerUserKey,
 out status);
 if (status != MembershipCreateStatus.Success)
 return mu;

 //Only insert the password row if the user was created
 try {
 InsertHistoryRow(username, password);
 return mu;
 }
 catch(Exception ex)
 {
 //Attempt to cleanup after a creation failure
 base.DeleteUser(username,true);
 status = MembershipCreateStatus.ProviderError;
 return null;
 }
}

VB.NET
PPublic Overrides Function CreateUser(ByVal username As String, _
 ByVal password As String, _
 ByVal email As String, _
 ByVal passwordQuestion As String, _
 ByVal passwordAnswer As String, _
 ByVal isApproved As Boolean, _
 ByVal providerUserKey As Object, _
 <System.Runtime.InteropServices.Out()> _
 ByRef status As MembershipCreateStatus) _
 As MembershipUser
 Dim mu As MembershipUser

 mu = MyBase.CreateUser(username, password, email, _
 passwordQuestion, passwordAnswer, _
 isApproved, providerUserKey, status)

 If status <> MembershipCreateStatus.Success Then
 Return mu
 End If
 ‘Only insert the password row if the user was created
 Try
 InsertHistoryRow(username, password)
 Return mu
 Catch ex As Exception
 ‘Attempt to cleanup after a creation failure
 MyBase.DeleteUser(username, True)
 status = MembershipCreateStatus.ProviderError
 Return Nothing
 End Try
 End Function

79301c12.indd 611 10/6/08 12:16:06 PM

612

Chapter 12: SqlMembershipProvider

The custom provider doesn’t attempt to save the password unless the user is successfully created by
SqlMembershipProvider. If the base provider is successful, then the password history is inserted with a
call to the custom provider’s InsertHistoryRow method. If the call is successful (which should always be
the case unless something goes wrong with the database), then the MembershipUser instance returned
from the base provider is returned to the caller. If something does go wrong, the custom provider
attempts to compensate by deleting the newly created user. This is intended to prevent the case where
the user is created in the database, but the password is not properly logged to the password history. In
the error case, the custom provider returns a ProviderError status code to indicate to the caller that the
CreateUser method did not succeed.

At this point, you can test the custom provider with a page that uses the CreateUserWizard control.
Configure the wizard control to use an instance of the custom provider:

In config:

<add name=”passwordHistoryProvider”
 type=”ProviderWithPasswordHistory”
 connectionStringName=”LocalSqlServer”
 applicationName=”passwordHistory”/>

On the page:

<asp:CreateUserWizard ID=”CreateUserWizard1” runat=”server” …other attributes…
 MembershipProvider=”passwordHistoryProvider” />

Now you can use CreateUserWizard to create new users. For each newly created user, the initial pass-
word is logged to the PasswordHistory table:

UserId {A71E13F5-DB58-4E10-BEB4-9825E5A263F2}
Password tJUZ5K1A5JuWcrZoJjF1OMXGM+8=
PasswordSalt B8sbL04yOYwGyYZHT7AADA==
CreateDate 2005-07-27 21:04:10.257

So far so good. A user is registered in the Membership tables and the initial password is stored in the
history. The next step is to get the custom provider working with the ChangePassword method. Chang-
ing a password requires the provider to retrieve the history of all the user’s passwords and then search
through the history to see if any of the old passwords match the value of the new password passed to
ChangePassword.

The private method PasswordUsedBefore returns a bool value indicating whether or not a given pass-
word has ever been used before by a user. The first part of the method just uses standard ADO.NET calls
to retrieve the password history using the GetPasswordHistory stored procedure:

C#
private bool PasswordUsedBefore(string username, string password)
{
 using (SqlConnection conn = new SqlConnection(connectionString))
 {
 //Setup the command
 string command = “dbo.GetPasswordHistory”;
 SqlCommand cmd = new SqlCommand(command, conn);
 cmd.CommandType = System.Data.CommandType.StoredProcedure;

79301c12.indd 612 10/6/08 12:16:06 PM

613

Chapter 12: SqlMembershipProvider

 //Setup the parameters
 SqlParameter[] arrParams = new SqlParameter[2];
 arrParams[0] = new SqlParameter(“pUserName”, SqlDbType.NVarChar, 256);
 arrParams[1] = new SqlParameter(“pApplicationName”,
 SqlDbType.NVarChar, 256);
 arrParams[0].Value = username;
 arrParams[1].Value = this.ApplicationName;

 cmd.Parameters.AddRange(arrParams);

 //Fetch the password history from the database
 DataSet dsOldPasswords = new DataSet();
 SqlDataAdapter da = new SqlDataAdapter(cmd);
 da.Fill(dsOldPasswords);

VB.NET
Private Function PasswordUsedBefore(ByVal username As String, _
 ByVal password As String) As Boolean

 Using conn As New SqlConnection(connectionString)
 ‘Setup the command
 Dim command As String = “dbo.GetPasswordHistory”
 Dim cmd As New SqlCommand(command, conn)
 cmd.CommandType = System.Data.CommandType.StoredProcedure

 ‘Setup the parameters
 Dim arrParams(1) As SqlParameter
 arrParams(0) = New SqlParameter(“pUserName”, SqlDbType.NVarChar, 256)
 arrParams(1) = New SqlParameter(“pApplicationName”, _
 SqlDbType.NVarChar, 256)
 arrParams(0).Value = username
 arrParams(1).Value = Me.ApplicationName

 cmd.Parameters.AddRange(arrParams)

 ‘Fetch the password history from the database
 Dim dsOldPasswords As New DataSet()
 Dim da As New SqlDataAdapter(cmd)
 da.Fill(dsOldPasswords)

The end result of this code is a DataSet and a DataTable containing one or more rows of old pass-
words for the user from the PasswordHistory table. The interesting part of the method involves com-
paring each row of old password data in the returned DataSet to the password parameter that was
passed to the method.

C#
 HashAlgorithm ha = HashAlgorithm.Create(Membership.HashAlgorithmType);
 foreach (DataRow dr in dsOldPasswords.Tables[0].Rows)
 {
 string oldEncodedPassword = (string)dr[0];
 string oldEncodedSalt = (string)dr[1];
 byte[] oldSalt = Convert.FromBase64String(oldEncodedSalt);

79301c12.indd 613 10/6/08 12:16:06 PM

614

Chapter 12: SqlMembershipProvider

 byte[] bytePassword = Encoding.Unicode.GetBytes(password);
 byte[] inputBuffer = new byte[bytePassword.Length + 16];

 Buffer.BlockCopy(bytePassword, 0, inputBuffer, 0, bytePassword.Length);
 Buffer.BlockCopy(oldSalt, 0, inputBuffer, bytePassword.Length, 16);

 byte[] bhashedPassword = ha.ComputeHash(inputBuffer);
 string hashedPassword = Convert.ToBase64String(bhashedPassword);

 if (hashedPassword == oldEncodedPassword)
 return true;
 }
 }
 //No matching passwords were found if you make it this far
 return false;
}

VB.NET
 Dim ha As HashAlgorithm = _
 HashAlgorithm.Create(Membership.HashAlgorithmType)
 For Each dr As DataRow In dsOldPasswords.Tables(0).Rows
 Dim oldEncodedPassword As String = CStr(dr(0))
 Dim oldEncodedSalt As String = CStr(dr(1))
 Dim oldSalt() As Byte = Convert.FromBase64String(oldEncodedSalt)

 Dim bytePassword() As Byte = Encoding.Unicode.GetBytes(password)
 Dim inputBuffer(bytePassword.Length + 16 - 1) As Byte

 Buffer.BlockCopy(bytePassword, 0, _
 inputBuffer, 0, _
 bytePassword.Length)
 Buffer.BlockCopy(oldSalt, 0, inputBuffer, bytePassword.Length, 16)

 Buffer.BlockCopy(bytePassword, 0, _
 inputBuffer, 0, _
 bytePassword.Length)

 If hashedPassword = oldEncodedPassword Then
 Return True
 End If
 Next dr
 End Using

 ‘No matching passwords were found if you make it this far
 Return False
End Function

Once again, an instance of HashAlgorithm matching hashAlgorithmType for the Membership feature
is used. Each row of password data from the database has the password salt that was used to hash and
encode the result that is stored in the corresponding Password column. Much like the original hashing
done inside of InsertHistoryRow, the PasswordUsedBefore method converts the password param-
eter into a byte array and combines it with the byte array representation of the password salt retrieved

79301c12.indd 614 10/6/08 12:16:06 PM

615

Chapter 12: SqlMembershipProvider

from the database. This combination is then hashed using the hashing algorithm created a few lines
earlier in the code.

To make it easier to compare the hashed value of the password parameter to the old password from the
database, the result of hashing the password parameter with the old salt value is converted to a base64-
encoded string. As a result, the comparison is as simple as comparing the string from the database (that
is, the Password column) to the base64-encoded representation of the encoded password parameter. If
the two strings match, the method knows that the password parameter has been used before for that
user, and the method returns true. If the method loops through all the password history records in the
database and never finds a match, the method returns false, indicating that the password parameter
has never been used before.

One thing to note about the password history implementation is that each old password is encoded
using a different random salt value. That is why, for each row of password history data retrieved from
the database, the custom provider must rehash the password parameter for comparison. A second
thing to note about the implementation of the PasswordUsedBefore method is that it does not include
any protections against two different threads of execution both attempting to change the password for
the same user. It is theoretically possible that on two different web servers (or two different threads on
the same server) a change password operation could be occurring at the same time.

However, if this occurs one of two things happens. Both operations could be attempting to change the
user’s password to the same value, in which case one of the two password change operations would
effectively end up as a no-op, but the same password would show up twice in the password history table.
In the alternative outcome, one change password successfully completes before the other change pass-
word attempt, in which case the second password change attempt would fail because it would be using
the wrong value for the oldPassword parameter. The net outcome, though, is that this scenario has a low
likelihood of occurring, and even if it does occur it has little effect on the overall security and accuracy of
the password history feature.

Now that you have seen how the custom provider can compare a new password against all the old
passwords in the database, look at how it is used from the ChangePassword method:

C#
public override bool ChangePassword(string username, string oldPassword,
 string newPassword)
{
 if (PasswordUsedBefore(username, newPassword))
 return false;

 bool result = base.ChangePassword(username, oldPassword, newPassword);

 if (result == false)
 return result;

 //Only insert the password row if the password was changed
 try
 {
 InsertHistoryRow(username, newPassword);
 return true;
 }
 catch (Exception ex)
 {

79301c12.indd 615 10/6/08 12:16:06 PM

616

Chapter 12: SqlMembershipProvider

 //Attempt to cleanup after a failure to log the new password
 base.ChangePassword(username, newPassword, oldPassword);
 return false;
 }
}

VB.NET
Public Overrides Function ChangePassword(ByVal username As String, _
 ByVal oldPassword As String, _
 ByVal newPassword As String) As Boolean
 If PasswordUsedBefore(username, newPassword) Then
 Return False
 End If

 Dim result As Boolean = MyBase.ChangePassword(username, oldPassword, newPassword)

 If result = False Then
 Return result
 End If

 ‘Only insert the password row if the password was changed
 Try
 InsertHistoryRow(username, newPassword)
 Return True
 Catch ex As Exception
 ‘Attempt to cleanup after a failure to log the new password
 MyBase.ChangePassword(username, newPassword, oldPassword)
 Return False
 End Try
End Function

First, the ChangePassword override validates the newPassword parameter against the password his-
tory. If the newPassword parameter matches any of the old passwords, then the method immediately
returns false. Remember that because ChangePassword returns a bool, the convention used by the
Membership feature is to return a false value as opposed to throwing an exception.

If no old matching passwords were found, the provider calls into the base provider to perform the pass-
word change operation. If for some reason the base provider fails, a false is also returned. If the base
provider succeeds, though, the custom provider needs to store the new password in the password his-
tory table with a call to InsertHistoryRow. Normally, this operation succeeds, and the caller receives
a true return value indicating that the password was successfully changed.

If the password history was not successfully updated, the custom provider compensates for the failure
by resetting the user’s password to the original value. If you look at the call to the base provider in
the catch block you can see that the two password parameters from the original method call are sim-
ply reversed to cause the user to revert to the original password. And, of course, in the failure case a
false value is again returned to the caller.

You can try the password change functionality with a simple page using the ChangePassword Login
control configured to use the custom provider.

<asp:ChangePassword ID=”ChangePassword1” runat=”server”
 MembershipProvider=”passwordHistoryProvider” />

79301c12.indd 616 10/6/08 12:16:06 PM

617

Chapter 12: SqlMembershipProvider

After logging in with an account created using the custom provider, you can navigate to the change
password page and try different variations of new passwords. For each new unique password another
new row shows up in the PasswordHistory table. However, for each new non-unique password the
ChangePassword control displays an error message saying the new password is invalid. Although I
will not show it here, you can easily write some code that integrates between the custom provider’s
behavior and the ChangePassword control that would allow error messages to be more precise when-
ever duplicate passwords are used.

The last piece of functionality that the custom provider implements is the ResetPassword method:

C#
public override string ResetPassword(string username, string passwordAnswer)
{
 string newPassword = base.ResetPassword(username, passwordAnswer);

 //No recovery logic at this point
 InsertHistoryRow(username, newPassword);

 return newPassword;
}

VB.NET
Public Overrides Function ResetPassword(ByVal username As String, _
 ByVal passwordAnswer As String) As String
 Dim newPassword As String = MyBase.ResetPassword(username, passwordAnswer)

 ‘No recovery logic at this point since once the reset has occurred
 ‘there is not a way to “undo” a call to ResetPassword
 InsertHistoryRow(username, newPassword)

 Return newPassword
End Function

The custom provider delegates to the base provider to reset the password. There’s no need to compare
the reset password against the password history because the default reset password logic generates
a completely random new password. Unless you are worried about the one in a billion chance (or so)
of repeating a random password, you can save yourself the performance hit of checking against the
password history for this case. If the password reset succeeds, the override calls InsertHistoryRow to
store the auto-generated password in the PasswordHistory table.

Unlike CreateUser and ChangePassword, the sample code does not attempt to recover from a prob-
lem at this point. A simple try-catch block can’t compensate for errors in the case of resetting pass-
words. You could use the new ADO.NET 2.0 TransactionScope class, though, to wrap both the base
provider SQL calls and the password history SQL code in a single transaction. This approach would
also be a more elegant solution to the compensation logic shown earlier for the CreateUser and
ChangePassword overloads.

79301c12.indd 617 10/6/08 12:16:07 PM

618

Chapter 12: SqlMembershipProvider

Account Lockouts
Membership providers can choose to implement account lockouts as a protection against brute force
guessing attacks against a user’s password and password answer. SqlMembershipProvider imple-
ments protections against both attacks and will lock out accounts for both cases. Deciphering the pro-
vider configuration attributes for account lockouts and trying to understand exactly when accounts are
locked in SQL can be a bit confusing when using the SQL provider.

SqlMembershipProvider keeps track of failed attempts at using a password by storing tracking
information in the FailedPasswordAttemptCount and FailedPasswordAttemptWindowStart col-
umns of the aspnet_Memership table. The provider tracks failed attempts at using a password answer
separately in a different set of columns: FailedPasswordAnswerAttemptCount and FailedPassword​
AnswerAttemptWindowStart. When a user is first created, the counter columns are set to a default
value of zero while the date-time columns are set to default values of 01/01/1754.

Each time a provider method is called that accepts a password parameter, the provider internally vali-
dates that the password is correct. ValidateUser is the most common method where this occurs, but
password validation also occurs for ChangePassword (validating the old password) as well as Change​
PasswordQuestionAndAnswer. The first time an incorrect password is supplied, two things occur:

The ❑❑ FailedPasswordAttemptCount in the database is incremented by one.

The ❑❑ FailedPasswordAttemptWindowStart column is set to the current UTC date time.

The next time a method that accepts a password parameter is called, the provider realizes that a bad
password was supplied sometime in the past. Therefore, the provider configuration attributes password​
AttemptWindow and maxInvalidPasswordAttempts are used.

Assume that a method call is made that requires a password, and that on the second attempt a bad pass-
word again is used. The provider needs to determine whether or not this second bad attempt is a discrete
event, or if it should be considered part of a continuing chain of correlated password attempts. To make
this determination, the provider compares the value of [(current UTC date-time) – “password​
AttemptWindow”] against the FailedPasswordAttemptWindowStart value in the database. If the
current bad password attempt has occurred within passwordAttemptWindow minutes from Failed​
PasswordAttemptWindowStart, then the provider considers the current bad attempt to be related to
previous bad password attempts, and the provider increments FailedPasswordAttemptCount. The
provider also updates FailedPasswordAttemptWindowStart to the current UTC date time.

For example, if the data indicates a bad password was supplied at 10:00 AM UTC, and the password​
AttemptWindow is set to 10 (that is, 10 minutes), a subsequent bad password attempt that occurs any-
where from 10:00AM UTC through 10:10 AM UTC is considered related to the original bad password
attempt. As a result, the bad password attempt counter will be incremented by one, and the window
start will be updated to the current date-time. This last operation is very important to note. You might
think that a passwordAttemptWindow setting of 10 minutes means that all bad passwords within a
fixed 10 minute period are counted. However, this is not how the SQL provider works.

Instead, the tracking window is always rolled forward whenever a bad password attempt occurs within
passwordAttemptWindow minutes from the last bad password attempt. The reason for this behavior is
that if the provider only tracked bad password attempts in a fixed window you could end up with the fol-
lowing sequence of events (assume a lockout on the fifth bad attempt and a 10-minute tracking window):

79301c12.indd 618 10/6/08 12:16:07 PM

619

Chapter 12: SqlMembershipProvider

Bad password attempt #1 at 10:00 AM UTC
Bad password attempt #2 at 10:08 AM UTC
Bad password attempt #3 at 10:09 AM UTC
Bad password attempt #4 at 10:10 AM UTC
Bad password attempt #1 at 10:11 AM UTC <-- what happens here?
Bad password attempt #2 at 10:12 AM UTC
Bad password attempt #3 at 10:13 AM UTC
Bad password attempt #4 at 10:14 AM UTC

If the provider started a fixed tracking window at 10:00 AM UTC in this example and started counting,
it would eventually count four bad attempts by 10:10 AM UTC. But when the next bad password attempt
occurs at 10:11 AM UTC, the provider would throw away all the old attempts because the first 10-minute
tracking window had expired. You could now continue to rack up more bad password attempts starting
at 10:11 AM UTC. In the example, you could have four more bad password attempts starting at 10:11 AM
UTC with no ill effect. The problem with this behavior is that if you look backward in time, you see that
from 10:08 AM UTC through 10:14 AM UTC there have been seven bad password attempts in a 10-min-
ute period, and yet the provider did not trigger an account lockout.

Of course, this is only a theoretical example because SqlMembershipProvider instead rolls the start
of the tracking time window forward with each bad attempt. If you step through the same sequence of
events with the SQL provider, you instead have the following behavior:

 FailedPasswordAttemptWindowStart
Bad password attempt #1 at 10:00 AM UTC 10:00 AM UTC
Bad password attempt #2 at 10:08 AM UTC 10:08 AM UTC
Bad password attempt #3 at 10:09 AM UTC 10:09 AM UTC
Bad password attempt #4 at 10:10 AM UTC 10:10 AM UTC
Bad password attempt #5 at 10:11 AM UTC lockout! 10:11 AM UTC
Cannot login due to lockout at 10:11 AM UTC
Cannot login due to lockout at 10:11 AM UTC
Cannot login due to lockout at 10:11 AM UTC
etc…

In this case, with each bad password attempt the provider looks back in time to determine whether or
not the current attempt is correlated to the last bad attempt as stored in the FailedPasswordAttempt​
WindowStart column. Because the first five attempts all occur less than 10 minutes apart, each attempt
causes the bad password attempt counter to increment and the start of the tracking window is updated
as well. As a result, when the fifth attempt occurs at 10:11 AM UTC, the provider increments the counter
and realizes that the maxInvalidPasswordAttempts threshold has been hit. As a result the provider
locks the account out at this point. Any subsequent password attempts never make it far enough to
attempt validating the password because the provider sees that the account has already been locked out.

Note that SqlMembershipProvider interprets the maxInvalidPasswordAttempts configuration attri-
bute as a trip wire. If the number of bad password attempts exactly matches the value of this configura-
tion setting, the account is immediately locked out. So, technically, a setting of 5 really means a user
is allowed only four bad passwords; the fifth incorrect password results in a lockout. If you happen to
write a custom provider, you can certainly choose to interpret this configuration attribute differently
(for example, a custom provider could choose to lock out the user only on the sixth attempt, in which
case the attribute would be considered a threshold rather than a limit that triggers a lockout).

The previous discussion focused on bad password attempts; the exact same logic applies, though, to
bad password answer attempts. Any methods that accept a password answer (ResetPassword and

79301c12.indd 619 10/6/08 12:16:07 PM

620

Chapter 12: SqlMembershipProvider

GetPassword) cause the provider to keep track of bad answer attempts using the exact same logic and
the exact same provider configuration attributes. The only difference is that the counter and window start
information is stored in a separate set of columns than the tracking information for bad passwords.

This raises an interesting question: What happens if a user enters bad passwords and bad password
answers for an account? Until the limit specified by maxInvalidPasswordAttempts is reached, the
provider increments counters and updates the start windows using different columns in the database.
For a time, this means that bad password attempts and bad password answer attempts are considered
separate occurrences that have no effect on each other. Assume that the bad password and bad password
answer counters both reach 4 (the default for maxInvalidPasswordAttempts in machine.config is 5).

The next bad attempt that occurs (either password or password answer) within the tracking time
window will trigger an account lockout. So even though bad attempts for passwords and answers
have been tracked independently up to this point, after one of the counters hits the tripwire defined
by maxInvalidPasswordAttempts, the user is locked out. A locked-out user account is no longer
allowed to validate passwords with the provider and a locked-out user account can no longer use the
password-answer-related methods. An account lockout triggered by one type of bad information locks
everything out. The provider doesn’t lock out only password-related functionality, only answer-related
functionality.

Of course, after a user account is locked out, you need some way to unlock the account. The SQL pro-
vider does not incorporate the concept of automatic account lockouts (more on this in the next section).
However, the AD-based provider does support automatic unlocking because the Active Directory engine
natively has this functionality. For the SQL provider, you need to explicitly call the UnlockUser method
to unlock user accounts. When UnlockUser is called the following occurs:

	 1.	 The user account is unlocked: IsLockedOut is reset to false.

	 2.	 The password counter in the database is reset to zero, and the password window start column is
reset to 01/01/1754.

	 3.	 The password answer counter in the database is reset to zero, and the password answer window
start column is reset to 01/01/1754.

This behavior means that when you inspect a MembershipUser object, the LastLockoutDate property
contains a useful value only when IsLockedOut is set to true. When a user account is not locked out,
the LastLockoutDate property contains a bogus default value. Furthermore, the MembershipUser
object does not indicate what caused the lockout (was it bad passwords or bad password answers?). It
only indicates that a lockout has occurred. If you need to determine the specific reason for the lockout,
you can query the vw_aspnet_MembershipUsers view because the view exposes the four columns
that store the password- and password-answer-tracking information.

The tracking information is also reset during the normal course of calling provider methods with valid
passwords and valid password answers. The automatic reset of the tracking information occurs in the
following ways:

When a valid password is used for ❑❑ ValidateUser, ChangePassword or ChangePassword​
QuestionAndAnswer both the password- and password-answer-tracking columns are reset to
their defaults (that is, zero and 01/01/1754).

When a valid password answer is used for ❑❑ ResetPassword or GetPassword only, the password
answer tracking columns are reset to their defaults.

79301c12.indd 620 10/6/08 12:16:07 PM

621

Chapter 12: SqlMembershipProvider

All tracking information is reset when a good password is supplied because the password is considered
the main source of security for a user account. If a user supplies a correct password, that is considered
proof that at a specific point in time the user knows the “master” credential for the account. As a result,
the password answer counters are also reset because the password answer is considered a “secondary”
credential for the account. However, if a correct password answer is supplied to a method, that is only
considered good enough to reset the answer-related-tracking counters. Knowing the password answer
is not considered sufficient proof that a user also knows the “master” credential for the account.

Implementing Automatic Unlocking
One potential issue that folks raise about SqlMembershipProvider is that the current lockout behav-
ior can lead to a denial of service (DoS) attack. Theoretically, a malicious user could spam a login page
with likely user accounts to force account lockouts for a large number of website users. After the user
accounts are locked out, the users have no way to get back onto the website until an administrator inter-
venes and unlocks the accounts.

Although an auto-unlock feature for accounts is a partial deterrent to this type of DoS attack, you
should be aware that after you have automatic unlocking, the DoS attack can now be turned into a
long-running brute force password attack. Instead of cutting the attack off after a few attempts per user
account, an auto-unlock feature allows an attacker to iterate through a few passwords, back off for the
duration of the account lockout, and then iterate through some more passwords for each user account.
If you don’t monitor web logs (and potentially add custom auditing on top of the SQL provider) for this
type of activity, you can literally end up with a brute force password attack running for weeks on end.

For example, if you have a 30-minute auto-unlock period after five bad passwords, and an attacker
tries guessing passwords for 4 weeks, the attacker can run 240 bad passwords per account per day for a
rough total of 6720 bad passwords per user account per month on a site. I would highly recommend that
if you add automatic unlock behavior as shown in this section, you also implement additional security
measures to mitigate a long-running password-guessing attack. Even if an attacker never successfully
guesses a password because of password strength rules, a long-running password-guessing attack
can also look like a denial of service attack because each user account that is being attacked ends up
in a locked-out state for the vast majority of the time. Other than for a few seconds at the expiration of
the auto-unlock period, accounts end up locked out again when the password-guessing attack sweeps
through the same set of accounts on its next iteration. And, of course, a really savvy attacker will prob-
ably only guess (lockout limit –1) passwords at a time for a user, thus keeping a long-running password
guessing attack below the radar if you are only looking at rates of account lockouts.

As a result, the best argument for implementing auto-unlocking is as a convenience for sites that are
already partially protected against brute force attacks by other security measures. For example, if you
run your site under SSL, then a brute force attack is less likely due to the increased likelihood that the
spike in SSL processing overhead from an attack would be detected by the site’s administrators. If your
website is only accessible over VPNs or private frame relay networks, the likelihood of a random attacker
getting in and wreaking havoc is lower. In these cases, automatic unlock behavior provides a better
user experience and cuts down on password-related support calls.

A custom provider that implements auto-unlock behavior needs a place for users to configure the timeout
beyond which the provider should automatically unlock the user account. For this example, you want the
provider configuration to look like the following:

79301c12.indd 621 10/6/08 12:16:07 PM

622

Chapter 12: SqlMembershipProvider

<add name=”autounlocksample”
 type=”AutoUnlockProvider”
 connectionStringName=”LocalSqlServer”
 autoUnlockTimeout=”30”
 applicationName=”passwordHistory”/>

The custom attribute autoUnlockTimeout tells the provider how many minutes after a lockout a user
account should be automatically unlocked. The provider stores this attribute inside of an override of the
Initialize method:

C#
using System;
using System.Configuration.Provider;
using System.Web.Security;

public class AutoUnlockProvider : SqlMembershipProvider
{
 private int autoUnlockTimeout = 60; //Default to 60 minutes

 public override void Initialize(string name,
 System.Collections.Specialized.NameValueCollection config)
 {
 string sunlockTimeOut = config[“autoUnlockTimeout”];
 if (!String.IsNullOrEmpty(sunlockTimeOut))
 autoUnlockTimeout = Int32.Parse(sunlockTimeOut);
 config.Remove(“autoUnlockTimeout”);

 base.Initialize(name, config);
 }

 //other overrides
}

VB.NET
Imports Microsoft.VisualBasic
Imports System
Imports System.Configuration.Provider
Imports System.Web.Security

Public Class AutoUnlockProvider
 Inherits SqlMembershipProvider

 Private autoUnlockTimeout As Integer = 60 ‘Default to 60 minutes

 PPublic Overrides Sub Initialize(ByVal name As String, _
 ByVal config As System.Collections.Specialized.NameValueCollection)

 Dim sunlockTimeOut As String = config(“autoUnlockTimeout”)
 If (Not String.IsNullOrEmpty(sunlockTimeOut)) Then
 autoUnlockTimeout = Int32.Parse(sunlockTimeOut)
 End If
 config.Remove(“autoUnlockTimeout”)
 MyBase.Initialize(name, config)

79301c12.indd 622 10/6/08 12:16:07 PM

623

Chapter 12: SqlMembershipProvider

 End Sub

 ‘other overrides

End Class

Before calling the base class Initialize method, the custom provider looks for the autoUnlockTimeout
attribute in configuration. If it finds the attribute, it stores its value and removes it from the configuration
collection. If the attribute is not supplied in the provider’s configuration, it defaults to a 60-minute-long
timeout after which locked accounts can be automatically unlocked.

Because there are a number of different provider methods that should automatically unlock the user,
the core functionality is implemented in a single private method:

C#
private bool AutoUnlockUser(string username)
{
 MembershipUser mu = this.GetUser(username,false);
 if ((mu != null) &&
 (mu.IsLockedOut) &&
 (mu.LastLockoutDate.ToUniversalTime().AddMinutes(autoUnlockTimeout)
 < DateTime.UtcNow)
)
 {
 bool retval = mu.UnlockUser();
 if (retval)
 return true;
 else
 return false; //something went wrong with the unlock
 }
 else
 return false; //not locked out in the first place
 //or still in lockout period
}

VB.NET
Private Function AutoUnlockUser(ByVal username As String) As Boolean
 Dim mu As MembershipUser = Me.GetUser(username,False)
 If (mu IsNot Nothing) _
 AndAlso (mu.IsLockedOut) _
 AndAlso (mu.LastLockoutDate. _
 ToUniversalTime(). _
 AddMinutes(autoUnlockTimeout) < DateTime.UtcNow) Then
 Dim retval As Boolean = mu.UnlockUser()
 If retval Then
 Return True
 Else
 Return False ‘something went wrong with the unlock
 End If
 Else
 Return False ‘not locked out in the first place

79301c12.indd 623 10/6/08 12:16:07 PM

624

Chapter 12: SqlMembershipProvider

 End If
 ‘or still locked out
End Function

For any given username, this method loads the MembershipUser instance for that user. If the
Membership​User instance indicates that the user is locked out, the provider checks to see how much
time has elapsed since that last lockout. If more than autoUnlockTimeout minutes have elapsed, the
method calls UnlockUser to automatically unlock the account. The return value from the method indi-
cates whether the user account was unlocked. Normally, calling this method for users still within the
autoUnlockTimeout period returns false, whereas calling the method for users who are past the
timeout period results in a true return value.

To demonstrate how this method works with methods that deal with passwords, the following code
shows ValidateUser automatically unlocking users as necessary:

C#
public override bool ValidateUser(string username, string password)
{
 bool retval = base.ValidateUser(username, password);

 //The account may be locked out at this point
 if (retval == false)
 {
 bool successfulUnlock = AutoUnlockUser(username);
 if (successfulUnlock)
 //re-attempt the login
 return base.ValidateUser(username, password);
 else
 return false;
 }
 else
 return retval; //first login was successful
}

VB.NET
Public Overrides Function ValidateUser(ByVal username As String, _
 ByVal password As String) As Boolean
 Dim retval As Boolean = MyBase.ValidateUser(username, password)

 ‘The account may be locked out at this point
 If retval = False Then
 Dim successfulUnlock As Boolean = AutoUnlockUser(username)
 If successfulUnlock Then
 ‘re-attempt the login
 Return MyBase.ValidateUser(username, password)
 Else
 Return False
 End If
 Else
 Return retval ‘first login was successful
 End If
End Function

79301c12.indd 624 10/6/08 12:16:07 PM

625

Chapter 12: SqlMembershipProvider

First, the custom provider lets the base provider attempt to validate the user’s credentials. If the base
call succeeds, no further work is necessary. However, if the initial result is false, the method attempts
to unlock the user. There may be other reasons why ValidateUser fails (for example, the user account
specified by username may not even exist in the Membership database). If the unlock attempt succeeds,
though, the custom provider again calls the base class’s ValidateUser. This sequence of calls will
usually result in the second attempt succeeding, assuming, of course, that that password parameter is
valid. If the automatic unlock attempt did not succeed, then the custom provider returns false because
there isn’t any point in calling base.ValidateUser again for a user that is still locked out.

The same implementation pattern can be used with the password-related methods ChangePassword
and ChangePasswordQuestionAndAnswer. The override for these methods looks the same as the
ValidateUser override with the one difference being that the calls to the base class use the appropriate
method. With the custom ValidateUser implementation, you can try logging in with an account and
intentionally force a lockout. After autoUnlockTimeout minutes pass, the next call to ValidateUser
will succeed if you supply the correct password. In fact, this functionality also works transparently
with a control like the Login control. This is another example of how provider customization can be
completely transparent to the user interface layer.

The other aspect of automatically unlocking users is in methods that deal with password answers. The
override for ResetPassword is:

C#
public override string ResetPassword(string username, string passwordAnswer)
{
 //A MembershipPasswordException could be due to a lockout
 try
 {
 return base.ResetPassword(username, passwordAnswer);
 }
 catch (MembershipPasswordException me) {}

 bool successfulUnlock = AutoUnlockUser(username);
 if (successfulUnlock)
 //re-attempt the password reset
 return base.ResetPassword(username, passwordAnswer);
 else
 throw new ProviderException(
 “The attempt to auto unlock the user failed during ResetPassword.”);
}

VB.NET
Public Overrides Function ResetPassword(ByVal username As String, _
 ByVal passwordAnswer As String) As String
 ‘A MembershipPasswordException could be due to a lockout
 Try
 Return MyBase.ResetPassword(username, passwordAnswer)
 Catch [me] As MembershipPasswordException
 End Try
 Dim successfulUnlock As Boolean = AutoUnlockUser(username)
 If successfulUnlock Then

79301c12.indd 625 10/6/08 12:16:07 PM

626

Chapter 12: SqlMembershipProvider

 ‘re-attempt the password reset
 Return MyBase.ResetPassword(username, passwordAnswer)
 Else
 Throw New ProviderException(“The attempt to auto “ & _
 “unlock the user failed during ResetPassword.”)
 End If
 End Function

In this case, the ResetPassword method will throw a MembershipPasswordException if the user is
locked out. As a result, the first call to the base class is wrapped in a try-catch block that suppresses
this exception. In the event that the user is locked out, the override calls AutoUnlockUser to attempt to
unlock the user account. If the user account was successfully unlocked, the custom provider attempts to
reset the password again by calling into the base class. However, if the automatic unlock attempt failed
for some reason, it throws a ProviderException to alert callers to the fact that the reset attempt failed.
You could also choose to rethrow the MembershipPasswordException if you put extra logic into
AutoUnlockUser to determine exactly why the unlock attempt failed.

If you use a sample page that calls ResetPassword, you can intentionally supply five bad password answers
to cause the user account to be locked out. As with ValidateUser, if you now wait autoUnlock​Timeout
minutes to pass, the next call to ResetPassword with a valid answer will succeed. Note, though, unlike
the Login control, if you use the PasswordRecovery control with this custom provider the Password​
Recovery control is unable to load the MembershipUser object for a locked-out user. Therefore, you will
need to customize the PasswordRecovery control to work with the automatic unlock logic in the custom
provider. The GetPassword method in the custom provider implements the same logic shown for Reset-
Password. The only difference, of course, is that the GetPassword method calls base.GetPassword in the
appropriate places. Overall though, you can see how straightforward it is to add automatic unlock logic to
SqlMembershipProvider with a little bit of code. The best part is that you can implement this functional-
ity using publicly available APIs, so you don’t have to worry about any future changes in the provider
breaking your custom code.

Supporting Dynamic Applications
Normally, an instance of SqlMembershipProvider knows which application name to use by looking
at the value of the applicationName configuration attribute. The default configuration in machine​
.config sets applicationName to /, so most developers will probably want to explicitly redefine
membership providers in their applications to use a more suitable name. Many of the previous exam-
ples of extending SqlMembershipProvider showed configurations that used more appropriate val-
ues for applicationName.

The one constraint on the applicationName attribute, though, is that it is statically defined. After you
set the value in configuration, the provider remembers that value for the rest of its lifetime. If you look
at the MembershipProvider base class definition, though, you see that the ApplicationName property
for the provider is abstract and that a setter is also defined. Concrete providers like SqlMembershipPro-
vider can choose to implement the setter so that developers can change the application name at runtime.

This means that you can write code that switches between different application data living in the same
Membership table with code like the following:

79301c12.indd 626 10/6/08 12:16:07 PM

627

Chapter 12: SqlMembershipProvider

C#
p = (SqlMembershipProvider)Membership.Provider; //assume default provider is SQL
p.ValidateUser(“someuser”,”somepassword”);

p.ApplicationName = “A_Different_Value_Than_Configuration”;

p.ValidateUser(“some other user”, “password”);

VB.NET
p = CType(Membership.Provider, SqlMembershipProvider) _
 ‘assume default provider is SQL

p.ValidateUser(“someuser”, “somepassword”)

p.ApplicationName = “A_Different_Value_Than_Configuration”

p.ValidateUser(“some other user”, “password”)

Supporting the setter for ApplicationName can actually be quite useful for single-threaded applica-
tions. For example, if you used an application like the console application shown in the previous chap-
ter for creating users, you could easily pass the desired application name as a command-line argument
and then set this value on the provider instance. In this way, the create user console application would
have no hard-coded dependencies on the application name.

The flaw with this approach is that in any kind of multithreaded environment, such as ASP.NET, it is
likely that multiple pages will be running simultaneously. If two pages both have code like that in the
preceding example, which one wins? Remember that each configured provider is instantiated only once
and that the same instance is used by all threads in an ASP.NET application. The answer to this ques-
tion for SqlMembershipProvider is that it depends.

At best, no corruption of the internal application name variable occurs, and the two pages run ❑❑

in just the correct sequence that each page works with the correct application name value.

One page stomps on the application name value that was just set by the other page, and as a ❑❑

result one of the two pages ends up working with the wrong set of data.

The worst-case scenario is that both pages attempt to update the provider’s private application ❑❑

name variable, with unknown results. This outcome would probably occur intermittently on
a multiprocessor machine where you not only have threads logically running in parallel, but
you also physically have different threads running simultaneously on different processors. The
“nice” thing about this outcome is that it would probably only occur intermittently under stress,
so you would go nuts trying to reproduce the problem!

The ASP.NET development team had considered at one point adding some locking to the get and set
properties in SqlMembershipProvider’s ApplicationName property. However, the setter for this prop-
erty was not really intended to support dynamically switching application names in a high-concurrency
application like ASP.NET. Even if the locking semantics were added, you would end up with a “hot”
lock. Developers who wrote web applications that constantly set and reset the application name would
find that a fair amount of time was being spent entering and exiting a lock section around the applica-
tion name variable.

79301c12.indd 627 10/6/08 12:16:08 PM

628

Chapter 12: SqlMembershipProvider

Even if the team had added locking, it still would not prevent multiple pages running simultaneously
from overwriting each other’s application name. It is the old problem with the Singleton pattern: access
to shared state not only has to be serialized, but any operations that depend on the shared state are also
liable to cause errors if the intent was that the change to shared state was supposed to be private to the
calling thread.

The solution to this problem in ASP.NET 2.0 was to make the ApplicationName property abstract,
and, of course, this is being inherited by ASP.NET 3.5. Although SqlMembershipProvider doesn’t
take advantage of this fact, you can. If you have an application where each page request needs to run in
the context of a specific application name, and you want SqlMembershipProvider to dynamically use
the correct application name, then you need to write a custom provider that overrides the Application​
Name getter. You can leave the setter alone because internally SqlMembershipProvider never uses it.
Common scenarios that require this type of dynamic functionality are portal applications where one
ASP.NET app-domain may actually be serving up multiple virtual “applications.” In this type of sce-
nario, it would be incredibly unwieldy to have to register a separate provider instance for each applica-
tion. In the case of self-registered “applications,” you wouldn’t even be able to use a
configuration-driven approach.

You have two design choices for the ApplicationName override. You can make the provider directly
aware of contextual information for the request that determines the correct value for application name.
Or you can write some other code (for example, an HttpModule) that processes information from a
request and then stores the resulting application name in a convenient location such as HttpContext.
For this sample, I use the latter approach. From an architectural perspective, you probably don’t want
a custom provider to know all the details about how an application name is determined. Instead, you
want the provider to look at a central location that holds the code that determines the correct value
neatly factored out into a separate class.

An HttpModule is the logical place to centralize the logic for determining the correct application name:

C#
using System;
using System.Web;

public class PortalApplicationProcessor : IHttpModule
{
 public void Dispose()
 { return; }

 private void DetermineApplicationName(Object sender, EventArgs e)
 {
 HttpApplication app = (HttpApplication)sender;
 HttpContext context = app.Context;

 string qAppName = app.Request.QueryString[“appname”];
 if (!String.IsNullOrEmpty(qAppName))
 context.Items[“ApplicationName”] = qAppName;
 else
 context.Items[“ApplicationName”] = “NOTSET”;
 }

 public void Init(HttpApplication app)
 {

79301c12.indd 628 10/6/08 12:16:08 PM

629

Chapter 12: SqlMembershipProvider

 app.BeginRequest +=
 new EventHandler(this.DetermineApplicationName);
 }
}

VB.NET
Imports Microsoft.VisualBasic
Imports System
Imports System.Web

Public Class PortalApplicationProcessor
 Implements IHttpModule
 Public Sub Dispose() Implements IHttpModule.Dispose
 Return
 End Sub

 Private Sub DetermineApplicationName(ByVal sender As Object, _
 ByVal e As EventArgs)
 Dim app As HttpApplication = CType(sender, HttpApplication)
 Dim context As HttpContext = app.Context
 Dim qAppName As String = app.Request.QueryString(“appname”)
 If (Not String.IsNullOrEmpty(qAppName)) Then
 context.Items(“ApplicationName”) = qAppName
 Else
 context.Items(“ApplicationName”) = “NOTSET”
 End If
 End Sub

 Public Sub Init(ByVal app As HttpApplication) Implements IHttpModule.Init
 AddHandler app.BeginRequest, AddressOf DetermineApplicationName
 End Sub
End Class

This module hooks the BeginRequest event to ensure that the application name has been deter-
mined before anything significant, such as authentication, has occurred. The module looks on the
query-string for a variable called appname. If it finds this query-string variable, it stores it in the
HttpContext’s Items collection. If the query-string variable is not found, then a default value is
stored in the context instead. The only link required between HttpModule and a custom provider is a
common agreement on what to call the variable in HttpContext. In this example, the context variable
is called ApplicationName. Although this sample uses a query-string variable, you could certainly
determine the application name from a form variable, a custom HTTP header, and so on.

The next step is to write a custom provider that overrides the ApplicationName property getter:

C#
public class ApplicationProvider : SqlMembershipProvider
{
 public override string ApplicationName
 {
 get
 {
 string appNameFromContext =
 (string)HttpContext.Current.Items[“ApplicationName”];

79301c12.indd 629 10/6/08 12:16:08 PM

630

Chapter 12: SqlMembershipProvider

 if (appNameFromContext != “NOTSET”)
 return appNameFromContext;
 else
 return base.ApplicationName;
 }
 }
}

VB.NET
Imports Microsoft.VisualBasic
Imports System
Imports System.Web
Imports System.Web.Security

Public Class ApplicationProvider
 Inherits SqlMembershipProvider
 Public Overrides Property ApplicationName() As String
 Get
 Dim appNameFromContext As String = _
 CStr(HttpContext.Current.Items(“ApplicationName”))
 If appNameFromContext <> “NOTSET” Then
 Return appNameFromContext
 Else
 Return MyBase.ApplicationName
 End If
 End Get
 Set(ByVal value As String)
 Throw New NotSupportedException()
 End Set
 End Property
End Class

The code for the custom provider is trivial. The ApplicationName property first looks in the context to
see if a nondefault value for the ApplicationName variable was set. If such a value is found, the pro-
vider returns it. Otherwise, the provider reverts to the application name value stored in the provider’s
configuration.

At this point, all coding necessary to support dynamic application names is complete. You can test
the custom provider by configuring a test application to use the provider as well as the associated
HttpModule.

<system.webServer>
 <modules>
<add name =”PortalProcessor” type=”PortalApplicationProcessor”/>
</modules>
</system.webServer>

<membership defaultProvider=”portalAware”>
 <providers>
 <add name=”portalAware” type=”ApplicationProvider”
 connectionStringName=”LocalSqlServer” />
 </providers>
</membership>

79301c12.indd 630 10/6/08 12:16:08 PM

631

Chapter 12: SqlMembershipProvider

Now that the sample application knows about the custom HttpModule, you can start authoring pages
that make use of Membership in a dynamic manner. For example, you can drop the CreateUserWizard
control onto a page and then request it with different URLs:

http://localhost/ChangingApplicationName/CreateUser.aspx?appname=fooapp2

—or—

http://localhost/ChangingApplicationName/CreateUser.aspx?appname=barapp

After stepping through the wizard, new users are automatically created in the Membership database
and associated with different application names based on the appname query-string variable. If you use
other controls like the Login control with the query-string variable, you can log in using credentials
from different application names.

This all works so transparently because internally SqlMembershipProvider always calls the pub-
lic ApplicationName getter whenever the provider needs this value. In the stored procedures for
SqlMembershipProvider, almost every single stored procedure needs an application name. When
the SqlMembershipProvider is building its SqlCommand objects, it fills in the application name
stored procedure parameter with the value returned from the ApplicationName getter. Because the
custom provider overrides this getter, the fact that the application name value is changing on each
request is transparent to SqlMembershipProvider.

This approach is also safe from a concurrency perspective because the custom provider is depend-
ing on the HttpContext for the application name value. Because the context is local to each ASP.NET
request, there is no chance that simultaneous page requests will tromp on each other’s application
name. Even if two different page threads are simultaneously calling the ApplicationName getter,
each thread will end up with a different value pulled from that thread’s associated HttpContext.

Although this sample demonstrates how to dynamically set the application name for a web applica-
tion, the same technique is applicable to Web Service calls using .asmx files. The .asmx requests also
have an HttpContext associated with the request, so the one difference is where you pull the applica-
tion name from. Assuming that your web requests are submitted via HTTP, you could use the query-
string, or you could use custom SOAP headers for storing the application name value. About the only
tricky thing with overriding ApplicationName occurs if you want to use Membership from a “lights-
out” application like an NT service. In this type of scenario, the same architectural approach applies,
but instead of an HttpModule you will need to write code that determines the application name from
some other data (for example, the request data that is queued to the service thread) and then initializes
a shared memory location (for example, thread local storage being the most likely candidate) prior to
calling into a custom provider.

If you are working with a portal application that can change its application context on each request, keep
a few security points in mind. Even though it is trivial to make providers pick up a different application
name on each request, remember that other features like forms authentication still work at the level of an
ASP.NET application. If you validate credentials with a custom Membership provider, make sure that the
forms authentication ticket you issue to one portal is not accidentally honored by another portal running
in the same ASP.NET application. Similarly, if you write a custom Role Manager provider that overrides
ApplicationName, make sure that your different portal applications don’t accidentally honor each oth-
er’s role information. In other words, customizing the ASP.NET providers is only one part of the broader
architectural problem of making ASP.NET applications “act” like hundreds or thousands of virtual
applications.

79301c12.indd 631 10/6/08 12:16:08 PM

632

Chapter 12: SqlMembershipProvider

One other architectural solution has been proposed for dealing with dynamically setting the applica-
tion name: why not just add applicationName as a parameter to every method on the entire ASP.NET
provider and feature classes? Certainly, this is a technically viable option. There are problems with this
approach, though:

Developers would have to explicitly manage the application name throughout their code, ❑❑

whereas today the value gets set once and you can forget about it.

From a testing perspective, the test cost of having another parameter inside of every provider ❑❑

and feature method is rather expensive. Although for your own development it doesn’t seem
like much overhead, for the ASP.NET team there is a nonzero cost each time a new method is
added or a method signature widens.

For both of these reasons, it is unlikely that future releases of ASP.NET will add an applicationName
parameter back into the APIs. What is more likely is that the general approach outlined in this section
will get baked into the provider APIs in some future release.

Managing an Application’s Users Through IIS 7.0
As part of the IIS 7.0 and ASP.NET integration, administrators and developers now have the chance of
managing an application’s users through a new IIS 7.0 applet. Figure 12-1 shows the .NET Users applet
in the ASP.NET category of the IIS 7.0 Manager tool.

Figure 12-1

To access the users’ management section, simply double-click the .NET Users applet. Figure 12-2 shows
the details of the .NET Users applet.

79301c12.indd 632 10/6/08 12:16:08 PM

633

Chapter 12: SqlMembershipProvider

Figure 12-2

The main features the administrator or the developer can make use of are listed on the right Action
pane. If you have any registered users in the database, they will show up in the middle grid with the
following columns:

Name❑❑

Email Address❑❑

Created❑❑

Last Login❑❑

By default, the .NET Users applet communicates with the default Membership provider set in the
application’s web.config. If you do not specify any provider, the one set in the machine.config,
AspNetSqlMembershipProvider will take effect.

To add a new user to the database, click on the Add link. Figure 12-3 shows the resulting dialog box.

To create a new user, you have to supply data for the following fields:

User Name❑❑

Email❑❑

Password❑❑

Confirm Password❑❑

Question❑❑

Answer❑❑

79301c12.indd 633 10/6/08 12:16:08 PM

634

Chapter 12: SqlMembershipProvider

Figure 12-3

Once you are done, click the OK button. A new user has been created in the database and now will be
listed in the middle grid, as mentioned above.

Now if you click on a user record listed in the middle grid, you get a new set of actions that you can
perform on the user. You can reset the user’s password, edit the username and email and, finally,
remove the user from the database.

In addition, if you have registered more than one Membership provider in the application’s
web.config file, you can select which provider to be the default provider by clicking on the Set
Default Provider option in the Action pane. A small pop-up Windows Forms is shown with a single
combo box listing all the Membership providers added in the application’s web.config file or the
ones added directly into the machine.config.

You can also use the .NET Users applet to manage the Membership, Role, and Profile providers in an
application. Figure 12-4 shows the Provider’s applet in the IIS 7.0 Manager tool that can be reached once
you click on the Providers menu in the Action pane.

Note that Figure 12-4 shows the Features combo box. This is used to choose which feature you want to
manage its providers. Currently, there are three features: Users, Roles, and Profile.

The middle grid, in this case, lists all the registered providers for the application. You can add addi-
tional providers by clicking on the Add menu in the Action pane. Figure 12-5 shows the dialog box that
allows you to add a new provider.

79301c12.indd 634 10/6/08 12:16:08 PM

635

Chapter 12: SqlMembershipProvider

Figure 12-4

Figure 12-5

79301c12.indd 635 10/6/08 12:16:09 PM

636

Chapter 12: SqlMembershipProvider

The two major fields to fill are the Type and Name fields. These two fields have been explained before
and their importance was highlighted. In the Type field, you can either select a provider that ships with
the .NET 2.0 or .NET 3.5 Frameworks or even select a custom provider that you have already defined in
the App_Code ASP.NET folder or you have added a reference to it from a class library. Once the Type
field is filled, you have to give a name for the newly added provider. Moreover, you can set values for all
the properties defined on the base MembershipProvider, including RequiresUniqueEmail, Connection-
StringName, and so on.

In addition, if you have specified a connection string name that has not yet been defined in the applica-
tion’s web.config file, you can easily add it by clicking on the Connection Strings menu in the Action
pane. A new applet in IIS 7.0 opens, called the Connection Strings applet. Using this applet you can add
as many connection strings as you may require and store them in the application’s web.config file.

The middle grid now holds the details about the defined connection strings in the application’s web.
config file. To define a new connection string, simply click on the Add menu in the Action pane.

Figure 12-6 shows the dialog box that pops up to provide the details of the new connection strings.

Figure 12-6

For a new connection string, you need to provide the name of the connection string, SQL Server
address, database name, and credentials whether Windows Authentication or specify credentials. In
addition, you have the choice of defining the connection manually by selecting the Custom option on
the Form. Choosing this option allows you to write the connection string manually.

In chapter after chapter you are noticing the deep integration between IIS 7.0 and ASP.NET. This section
highlighted a new integration feature—a set of UI tools that allow you to manage an application’s users,
providers, and connection strings.

79301c12.indd 636 10/6/08 12:16:09 PM

637

Chapter 12: SqlMembershipProvider

Summary
The provider works in both ASP.NET and non-ASP.NET environments that are running at Low trust
or higher. Remember, though, that the provider needs SqlClientPermission in partial trust envi-
ronments and that this permission is not granted by default in Low trust. SqlMembershipProvider
implements all the security functionality available in the Membership feature. This includes advanced
security features such as question-and-answer-based password resets as well as account lockouts when
bad passwords or bad password answers are used. The provider stores user-related data in a combina-
tion of tables: some common to all SQL-based providers, and some are specific to SqlMembership-
Provider. Although there is nothing technically preventing you from using these tables directly, the
expectation is that public APIs like the MembershipProvider class should be used for inserting and
updating data. Only in the case where you need more extensive read-only access to Membership data
should you query the database directly. ASP.NET ships with a number of SQL views that expose the
data from the underlying tables for you to write SELECT queries against.

Although the default database engine used by SqlMembershipProvider is SQL Server 2005 Express,
developers can easily change the LocalSqlServer connection string in machine.config to point
the provider at any database server running SQL Server 7.0, 2000, or 2005. The only special logic that
SqlMembershipProvider supports (and for that matter all the ASP.NET SQL-based providers) for
SSE is the automatic generation of a database containing the schema for all the SQL-based features.
Although this integration makes it very easy to develop using file-based webs in Visual Studio, you
will probably be better off using the aspnet_regsql tool to manually install the schema when you
develop against IIS 6-based webs.

SqlMembershipProvider can also be extended by developers who want to integrate additional func-
tionality. Because the provider is unsealed, most of the public properties and methods can be overrid-
den by you. In this chapter, you saw how you could take advantage of this functionality to make simple
changes in custom password generation and custom password encryption. More extensive changes
allow you to extend SqlMembershipProvider with new features such as password history tracking
and automatic unlocking of unlocked accounts. Last, with a just a few lines of code you saw how you
can override the ApplicationName property to make SqlMembershipProvider work with multiple
“applications” in portal environments.

79301c12.indd 637 10/6/08 12:16:09 PM

79301c12.indd 638 10/6/08 12:16:09 PM

13
ActiveDirectoryMembership

Provider

The ActiveDirectoryMembershipProvider supports almost the entire set of functionality
defi ned by the Membership API. You can create and manage users with either Active Direc-
tory (AD) or the standalone directory product Active Directory Lightweight Directory Service
(ADLDS), which resembles the ADAM on Windows Server 2003. Furthermore, you can use the
provider in both ASP.NET and non-ASP.NET applications. Because the ActiveDirectory
MembershipProvider closely mirrors the SqlMembershipProvider in terms of functionality,
the interesting parts of ActiveDirectoryMembershipProvider are how the provider works
with the directory server and how certain Membership operations are mapped to AD and ADLDS.

This chapter will cover the following aspects of ActiveDirectoryMembershipProvider in detail:

How the provider works with different directory structures.❑❑

Provider confi guration settings.❑❑

Notes on various pieces of provider functionality.❑❑

The ❑❑ ActiveDirectoryMembershipUser class.

Working with Active Directory.❑❑

Confi guring ADLDS to work with the provider.❑❑

Using the provider in partial trust.❑❑

79301c13.indd 639 10/6/08 12:16:30 PM

640

Chapter 13: ActiveDirectoryMembershipProvider

Supported Directory Architectures
Because the ActiveDirectoryMembershipProvider uses a directory store, you should understand
the various domain architectures that it supports. The ActiveDirectoryMembershipProvider can
work against either an Active Directory (AD) domain (Windows 2000, Windows Server 2003, and Win-
dows Server 2008) or against what is called an application partition deployed in an Active Directory
Lightweight Directory Service (ADLDS) on Windows Server 2008 or Active Directory Application Mode
(ADAM) on Windows Server 2003. Of the two directory server types, AD is the one with more varied
options and, thus, requires a little more preplanning on your part.

The most important thing to keep in mind when using the AD/ADLDS-based provider is that the pro-
vider treats AD and ADLDS as Lightweight Directory Access Protocol (LDAP) servers. In essence, the
provider is talking to these “databases” using LDAP commands. The provider does not interact with
AD as an NT LAN Manager (NTLM) or Kerberos authentication service. This means that the provider
does not return any kind of authenticated domain principal, and the provider cannot be used to gen-
erate a login token. It simply makes LDAP calls and LDAP binds to a directory server, and it returns
the results of those calls. This behavior is sometimes a point of confusion for folks who think that
ActiveDirectoryMembershipProvider generates security tokens and sets the security context on a
thread. Because the provider is implementing the MembershipProvider base class, and the Member-
ship API has no concept of returning security tokens or switching security contexts, the provider has
no support for such operations.

The provider always works in the context of a directory container. This means that the provider is always
pointed at the root of some container, and all provider operations occur within that single container, or
in most cases through the hierarchy of nested child containers. For ADLDS, this is not particularly sur-
prising because ADLDS servers are basically standalone LDAP directories. Even though a single ADLDS
server can host multiple application partitions (that is, these are sort of like mini-domains), the provider
always needs to be pointed at a specific application partition when using ADLDS. Typically, for develop-
ers working with ADLDS, this is common practice; your application knows which application partition
in ADLDS it should be using.

However, for AD you can have a forest with multiple domains, and for many customers the forest
infrastructure is very large and complex. If you use the provider in an AD environment, each config-
ured provider can only be pointed at a single domain or at a specific container within a single domain.
The provider does not support the concept of multidomain operations; realistically, the concept of
seamless support for multiple domains is baked more into the authentication aspect of Active Direc-
tory as opposed to the LDAP aspect of AD.

Even though AD has a global catalog (GC) that can be used for LDAP queries that need to work with data
from many domains, for the most part the ActiveDirectoryMembershipProvider does not make use
of GC functionality. (There are a handful of verification checks where the provider will query the GC,
but this functionality is all internal to the provider.) The provider also does not chase referrals, so you
can’t set up user objects in one domain that are really referrals to objects in another domain and expect
the provider to work. When using AD, you also cannot point the provider at a global catalog (that is, use
GC:// in the connection string). If this were allowed the provider’s search and get methods would prob-
ably work, but all the data modification methods would fail because GC replicas are read-only.

If you want to use the provider in a multidomain AD environment, you need to configure multiple pro-
vider instances, one for each domain or domain-container that you need to work with. In your applica-
tion, you can implement logic that determines which domain it should work with, and your code can

79301c13.indd 640 10/6/08 12:16:30 PM

641

Chapter 13: ActiveDirectoryMembershipProvider

then select the appropriate ActiveDirectoryMembershipProvider instance from the Membership​
.Providers collection. In this fashion, you can still effectively work in a multidomain environment
with only a little extra code on your part.

Note, though, that this means the machine on which the providers are running needs network connec-
tivity to each of the different domains. For an extranet environment that has only a handful of domains,
this probably is not an issue. However, if you have a more complex scenario where you need to access
remote domains from an extranet environment, chances are that a web server in your DMZ is not going
to have network connectivity to reach back into the internal corporate network and then communicate
with some random directory controller. If you are architecting an application that needs to have mul-
tiple provider instances communicating with many different domains, make sure that your network
topology will support this before you go too far down the coding path!

I have been making a number of references to containers for both AD and ADLDS. The provider “knows”
the context that it should be using based on the connection string configured for the provider. Just like
the SQL providers, the ActiveDirectoryMembershipProvider uses a connection string, although in
its case the connection string is an LDAP connection string. (You will see many examples of LDAP con-
nection strings later in this chapter.) The connection string tells the provider which domain, directory
server, or application partition it should work against, and the connection string also gives the provider
enough information to know which container within the domain or directory server the provider should
work with.

If you are working with ADLDS, you always work explicitly with a container because you need to
configure an application partition within which your user data is stored. As a result, the connection
string you have in configuration when using ADLDS always includes some container information in
it. For AD this is not necessarily the case. In AD, you can point the provider at a domain, or a specific
domain controller, without specifying a container. If you do this, the provider will default to using
a combination of the default naming context for the domain and the “Users” container because this
container is commonly available in AD domains. (User creation/deletion will occur in the Users con-
tainer, whereas all other methods are rooted at the default naming context.) If you want to create your
application’s users within only the Users container, then you can define your connection strings with-
out an explicit container in the AD case. Of course, you also have the same ability in AD as you do in
ADLDS to create organizational units (OUs) and to specify these OUs as part of the connection string.

If your user data is spread across multiple containers, you have a few options for configuring the pro-
vider. If the user data exists in containers that are peers of one another, and all the containers have a
common parent, you can point a single provider instance at the parent container. Except for user creation
and user deletion, the provider always performs subtree searches starting with the container determined
from the connection string. For example, if you call GetUser on the provider and the provider is pointed
at a parent container, then the provider will be able to find the user object if it is located in the parent
container, or if it is located in any of the containers nested within the parent, regardless of how deep the
nesting may occur.

If your application needs to create and delete users, then you will need to configure a separate provider
instance for each separate container in which creation and deletion occurs. The reason for the differ-
ent behavior is that for user creation and deletion there is no such thing as a subtree operation. When
you create a user object it must be created in a specific location, and as a result the provider limits user
creation and deletion to the container specified (or implicitly determined) on the connection string. For
applications that have a number of OUs, though, it can be awkward to have to always manipulate dif-
ferent provider instances for each OU when calling common methods like GetUser or ValidateUser.
Therefore, except for CreateUser and DeleteUser, all the provider methods use subtree searches.

79301c13.indd 641 10/6/08 12:16:30 PM

642

Chapter 13: ActiveDirectoryMembershipProvider

What happens if your application deals with multiple OUs sharing a common parent and you do not
want the provider to perform broad search operations across all the OUs? If you intentionally want
to limit all provider operations to a single OU, you can configure multiple provider instances and point
each instance at a specific OU as opposed to a parent container. However, if you have a container structure
that nests multiple OUs in a chain, and you want to limit the provider to only a single OU in the nesting
chain, the reality is that any provider pointed at a nonleaf OU will still perform subtree searches down
through all the remaining OUs. About the only thing you can do for this scenario is to restrict access on
a per-OU basis using different user accounts and then configure the different provider instances with
different sets of credentials.

Provider Configuration
If you configure the provider with the minimum number of required configuration attributes, most of
its functionality will work against existing AD installations. About all you need to get up and running
is a provider definition and a valid connection string:

<connectionStrings>
 <add name=”adconnection” connectionString=”LDAP://mydomain.dns.name”/>
</connectionStrings>

<membership defaultProvider=” someprovider “>
 <providers>
 <clear/>
 <add name=”someprovider”
 type=”System.Web.Security.ActiveDirectoryMembershipProvider, …”
 connectionStringName=”adconnection” />
 </providers>
</membership>

It is pretty much guaranteed that for production applications, though, you will need to delve a little
more deeply into the provider’s configuration. The section “Working with Active Directory” walks you
through a number of the common configuration tasks for setting up the provider.

For now, take a look at the various configuration settings that are available in the <add /> element of
the provider. The available settings fall into the following general groups:

Directory connection settings❑❑

Schema mappings❑❑

Search-specific settings❑❑

Membership provider settings❑❑

Directory Connection Settings
As with SQL provider, you need to at least supply a connection string so that the provider knows where
it should read and write data. However, unlike SQL Server connection strings, there is no such thing
as specifying explicit connection credentials inside of the connection string. Also, connection security
settings cannot be supplied inside of an LDAP connection string. As a result, the provider supports a
number of additional configuration settings.

79301c13.indd 642 10/6/08 12:16:31 PM

643

Chapter 13: ActiveDirectoryMembershipProvider

The connection string that you use for the provider is placed in the <connectionStrings /> section. The
provider references the connection string via the connectionStringName attribute. The connection string
that you create supports a number of different formats, depending on whether you are connecting to AD or
ADLDS. For example, if you are running in a domain called foo.org and you have an AD domain control-
ler called dcserver, the most prevalent forms of the connection string when connecting to AD look like:

LDAP://foo.org❑❑

LDAP://dcserver.foo.org❑❑

LDAP://foo.org/OU=SomeOU,DC=foo, DC=org❑❑

LDAP://dcserver.foo.org/OU=SomeOU,DC=foo,DC=org❑❑

However, if you are connecting to an ADLDS server, you always need to have an application partition
defined. Assuming that you have an ADLDS server called adldsbox in the foo.org DNS namespace,
you could use connection strings like:

LDAP:// adldsbox.foo.org/O=myorg,DC=foo,DC=org❑❑

LDAP:// adldsbox.foo.org/OU=SomeOU,O=myorg,DC=foo,DC=org❑❑

Unlike AD, ADLDS servers can be listening on nondefault LDAP ports. If you install ADLDS to listen
on other ports, then the connection string can look like:

LDAP://adldsbox.foo.org:50001/O=myorg,DC=foo,DC=org❑❑

LDAP://adldsbox.foo.org:50001/OU=SomeOU,O=myorg,DC=foo,DC=org❑❑

If you do install ADLDS on a nondefault port, and you plan on using secure connectivity to the ADLDS
server, you must make sure that SSL support has been configured properly on the ADLDS server and
on each of the machines that needs to connect to the ADLDS server. If you do not change the default port
settings for ADLDS, then SSL traffic by default occurs on port 636 (unsecured traffic occurs on port 389
by default). If your ADLDS server uses these default ports, then you do not need to specify a port num-
ber in the connection string.

Because both AD and ADLDS can replicate changes across servers, the type of connection strings that
you use will have an effect on when the provider sees changes made on other machines. For example,
if you use an AD connection string that points only at a domain, it is possible that across a web farm
different web servers will end up connecting to different domain controllers. This can lead to odd
behavior where changes made to a MembershipUser on one server do not show up immediately on
other servers in your farm. Unfortunately, there is nothing the provider itself can do to mitigate the
inherent latency of AD’s multimaster behavior. However, you can at least use connection strings that
explicitly specify a server; in this case, all provider instances pointed at the same server will see a con-
sistent set of information.

One very important aspect of connecting to the directory server is connection security. From the sam-
ple connection strings, you saw that there is no indication of the secured state of the connection. You
request security for the connection to the directory server via the connectionProtection provider
configuration attribute. This attribute can be set to either None or Secure. By default, if you do not
specify the attribute in your provider’s configuration, the provider will default to Secure.

79301c13.indd 643 10/6/08 12:16:31 PM

644

Chapter 13: ActiveDirectoryMembershipProvider

The reason that the attribute has only one of two settings is that attempting to expose the vagaries of
negotiating secure connections with a directory server can quickly become very complicated. So rather
than leaving it up to you to get things working, the provider simplifies the issue into a simple binary
decision. Either you want connection security automatically established, or you do not. Of course, there
is a bit more complexity than that occurring underneath the hood. There are a number of mix-and-
match combinations you can use with connectionProtection and the credentials used by the pro-
vider when connecting to the directory, though only a subset of settings really make sense.

connectionProtection=None for AD: ❑❑ This is not a combination you should ever use. In AD
environments, any operations that set or change passwords must be done over secure con-
nections, so with a setting of None, the provider will always fail when it attempts things like
ChangePassword or ResetPassword. Also, you need to always use explicit connection creden-
tials with this setting. Because AD has built-in support for automatically securing connections,
there is not much reason for ever using None in an AD environment.

connectionProtection=None for ADLDS: ❑❑ You may find yourself using this combination in
a development environment where you do not have SSL certificates set up for your ADLDS
server and client machines. As with AD, you will need to configure the connection credentials
explicitly to use the None setting. Note that for ADLDS this means that you will be limited
to using only ADLDS user principals for the explicit credentials; domain credentials cannot
be explicitly specified for ADLDS when connectionProtection is set to None. Unlike AD,
though, you can manually configure ADLDS to allow password changes and resets to occur
over unsecured connections. The section on “Using ADLDS” later in the chapter shows you
how to do this. Note, though, that I would not recommend using None in a production setting
with ADLDS; it only makes sense as a convenience early on during a development cycle. Even
for development scenarios, at some point you should get SSL set up so that you are coding in
an environment that more closely matches your, deployment environment.

connectionProtection=Secure for AD: ❑❑ This is the default when connecting to an AD server, and it
is the setting that you should use for most cases when working with AD. Internally, the provider
will first make a check to see if SSL is supported on the directory server. If it is, all LDAP traffic
will flow over Active Directory’s SSL port (that is, port 636). If SSL is not configured for AD, which
is normally the case for at least intranet directory servers, then the provider will fall back and use
signing and sealing for all LDAP traffic. If you have configured SSL in an extranet directory envi-
ronment for example, then the provider will make use of SSL in preference to signing and sealing.
Because the provider internally makes use of the Active Directory Services Interface (ADSI) API,
it turns out that setting up SSL for AD environments gives the best performance when using the
provider to connect securely to AD. Using SSL reduces the number of network connections that
ADSI will open on behalf of the provider when making secure connections to AD.

connectionProtection=Secure for ADLDS: ❑❑ This is the default when connecting to an ADLDS
server. As noted earlier, this setting will not work unless you have explicitly set up SSL on your
ADLDS server as well as on all machines that need to communicate with that server. The reason
for this restriction is that unlike when connecting to AD, the provider only supports the use of
SSL for securing network traffic with the ADLDS server. Even if the ADLDS instance is running
on a server joined to a domain, the provider will not attempt to use signing and sealing.

When you set connectionProtection to Secure, you can find out the actual connection security that
was chosen at runtime by querying the provider’s CurrentConnectionProtection property. This prop-
erty returns a value from the System.Web.Security.ActiveDirectoryConnectionProtection enu-
meration that will tell you if SSL or signing and sealing were chosen.

79301c13.indd 644 10/6/08 12:16:31 PM

645

Chapter 13: ActiveDirectoryMembershipProvider

The last set of connection information that you can configure in the provider’s <add /> element is
explicit connection credentials. The configuration attributes connectionUsername and connection​
Password can be used to explicitly specify the username and password to use when connecting to the
directory server. If you don’t explicitly specify values for these settings the provider attempts to connect
to the directory using either the process credentials from the IIS 7.0 worker process, or the application
impersonation credentials if application impersonation is in effect. If you explicitly specify the username
and password, make sure to use protected configuration (discussed in Chapter 5) so that the credentials
are not stored in cleartext on your production servers.

The format of the username differs, depending on whether you are connecting to AD or ADLDS:

AD: ❑❑ You can specify the username in any format that is supported by Windows. The two most
common username formats are the NT4-style format of DOMAIN\USERNAME and the user
principal name format of username@domain.name.

ADLDS: ❑❑ If you are connecting to an ADLDS server with connectionProtection set to
Secure, then you can explicitly specify either an ADLDS user principal or a domain user
account. For a protection setting of None, though, only an ADLDS user principal can be specified.
An ADLDS principal looks something like CN=Username,OU=AccountOU,O=MyOrganization,​
DC=bhaidar,DC=net. In the section on “Using ADLDS,” there is a walkthrough of how to use
an ADLDS user principal when connecting to an ADLDS server.

Directory Schema Mappings
By default, the provider attempts to map the properties of the MembershipUser class to an appropriate set
of default attributes on the user class in AD and ADLDS. Some aspects of this mapping are configurable,
whereas other aspects are not. The most important constraint is that ActiveDirectoryMembership​
Provider always binds to objects of type user.

The following properties on MembershipUser have fixed schema mappings to attributes in the directory:

ProviderUserKey❑❑ : This value maps to the objectSID attribute on the user object. As a result,
you can get the user’s security identifier (SID) from the ProviderUserKey property and you
can also retrieve MembershipUser instances using the SID as a key.

Comment❑❑ : Maps to the comment attribute on the user class.

CreationDate❑❑ : Maps to the whenCreated attribute on the user class.

LastPasswordChangedDate❑❑ : Maps to the pwdLastSet attribute on the user class.

IsApproved❑❑ : Maps to the userAccountControl attribute when using AD. Maps to the mDS-
UserAccountDisabled attribute when using ADLDS.

IsLockedOut❑❑ : Maps to msDS-User-Account-Control-Computed attribute when using
AD on Windows Server 2003 or Windows Server 2008 or when using ADLDS. This prop-
erty is computed from the lockoutTime attribute and the directory’s account lockout dura-
tion setting when running against Windows 2000 AD (W2K’s schema did not include the
msDS-User-Account-Control-Computed attribute). If you have configured the provider to
support question-and-answer-based password reset, then the provider will also look at the
custom tracking information for bad password answers when determining whether a user is
considered locked out.

79301c13.indd 645 10/6/08 12:16:31 PM

646

Chapter 13: ActiveDirectoryMembershipProvider

LastLockoutDate❑❑ : Maps to the lockoutTime attribute on the user class. If question-and-
answer-based password reset has been enabled, then the lockout date may also come from the
custom attributes that track bad password answer attempts.

Other properties on MembershipUser are either not mapped by default or have default mappings to
directory attributes that you can change.

Username❑❑ : By default, the provider maps this property to the userPrincipalName attribute
in the directory. This mapping will work for you if each of your directory users is created with
a user principal name. For older directories, though, you may be using the NT4-style SAM
account names, in which case you will need to change the mapping for this property. You can
change the mapping to the sAMAccountName attribute in this case. Note that if you try to use
the provider with an already populated directory, and you are scratching your head wondering
why you can’t find any users or successfully validate any credentials, it is probably because
your users have SAM account names, but you have not configured the provider to use the
sAMAccountName attribute for MembershipUser.Username.

Email❑❑ : By default, the provider maps this property to the mail attribute. If you want, you can
change this mapping to any single-valued attribute on the user class that is of type Unicode
String.

PasswordQuestion❑❑ : This property is not mapped by default to anything in the directory. If
you intend to use question-and-answer-based password resets with the provider, there are
actually five different attributes that need to be mapped on the user class. The section on
“Working with Active Directory” walks you through adding custom attributes to the AD
schema and setting up password reset functionality.

Because Active Directory operates in a multimaster environment, some of the properties on Membership​
User cannot be reliably implemented based on directory attributes.

LastActivityDate❑❑ : This property has no mapping and is not supported by the provider. There
is no concept in either AD or ADLDS of touching the user object every time something happens.
Unlike the SQL providers where different features all update a LastActivityDate column
in the database, attempting to engineer a similar approach for AD was not feasible. First, there
would be no way for other features such as Profile to reach into a user object in a directory and
update an arbitrary field (suddenly you would have System.DirectoryServices code sitting
in the middle of the SQL provider code, which would be a bit strange to say the least). Another
problem is that for this value to make any sense in a multimaster environment you would have
to replicate the field to all the various domain controllers. Because it is not likely that most cus-
tomers would want to add a custom attribute and then replicate it across their domain infrastruc-
ture each and every time the attribute was changed, the decision was made not to support the
concept of a last activity date for the provider.

LastLoginDate❑❑ : Both AD and ADLDS store the last logon time for a user using the lastLogon
and lastLogonTimestamp attributes, respectively. However, these attributes aren’t replicated
across domain controllers, and the property is not available from the global catalog. So, it is very
likely that the provider would either get differing values for this property or stale property val-
ues in any domain that had at least two domain controllers. Rather than having the provider
iterate through all domain controllers in a domain attempting to find the latest value, the deci-
sion was made to not implement this property.

79301c13.indd 646 10/6/08 12:16:31 PM

647

Chapter 13: ActiveDirectoryMembershipProvider

If you want to change any of the configurable attribute mappings for the provider, you can do so by
using the following configuration attributes in the provider’s <add /> element:

attributeMapUserName❑❑ : You can use this provider configuration attribute to change which
attribute on the user class the provider uses for identifying a user. You can set this to either
userPrincipalName (the default) or to sAMAccountName.

attributeMapEmail❑❑ : If you don’t want to store user’s email addresses in the default mail
attribute, you can tell the provider to use a different directory attribute instead. The only restric-
tion is that the directory attribute must be of type Unicode String.

attributeMapPasswordQuestion❑❑ : This configuration attribute must be defined for the pro-
vider if you set enablePasswordReset to true. The configuration attribute must reference a
directory attribute of type Unicode String.

attributeMapPasswordAnswer❑❑ : This configuration attribute must be defined for the provider
if you set enablePasswordReset to true. The configuration attribute must reference a direc-
tory attribute of type Unicode String.

attributeMapFailedPasswordAnswerCount❑❑ : This configuration attribute must be defined for
the provider if you set enablePasswordReset to true. The configuration attribute must refer-
ence a directory attribute of type Integer.

attributeMapFailedPasswordAnswerTime❑❑ : This configuration attribute must be defined for
the provider if you set enablePasswordReset to true. The configuration attribute must refer-
ence a directory attribute of type Large Integer/Interval.

attributeMapFailedPasswordAnswerLockoutTime❑❑ : This configuration attribute must be
defined for the provider if you set enablePasswordReset to true. The configuration attribute
must reference a directory attribute of type Large Integer/Interval.

Later on in the “Working with Active Directory” section, I walk you through enabling question-and-
answer-based password reset, including the necessary configuration steps for extending the schema in
the directory.

Along with the directory schema mappings comes a set of default size restrictions on the length of
various string properties. With the SQL provider, it is pretty easy to determine length restrictions by
just looking in the database at the column definitions. For the AD provider, this is harder to accom-
plish unless you can look at the actual directory schema. The default length restrictions for various
MembershipUser-related properties are shown in the following list. Note, though, that it is possible for
you to edit the AD and ADLDS schemas to enforce even shorter size restrictions. If you have done this,
the provider will honor the size restrictions defined in your directory’s schema.

Username❑❑ : If you mapped username to sAMAccountName then your username cannot be longer
than 20 characters. This is a hard-coded size restriction from NT4 days. If you mapped user-
name to userPrincipalName, then a username cannot be longer than 64 characters.

Password❑❑ : As with the SQL provider, the plaintext password for a user cannot be longer than
128 characters.

Comment❑❑ : The provider only allows comments up to 1024 characters in length. This differs from
the SQL provider, where you could basically store the entire English dictionary if you wanted in
a user’s Comment property.

79301c13.indd 647 10/6/08 12:16:31 PM

648

Chapter 13: ActiveDirectoryMembershipProvider

Email❑❑ : A user’s email property cannot be longer than 256 characters.

PasswordQuestion❑❑ : A user’s password question cannot be longer than 256 characters.

PasswordAnswer❑❑ : A user’s cleartext password answer cannot be longer than 128 characters.
However, the end result of encrypting the password answer also cannot be longer than 128
characters. Because the ActiveDirectoryMembershipProvider always encrypts the pass-
word answer using the same encryption method described in Chapter 11 for SqlMembership​
Provider, this limits users to around a 42-character-long cleartext password answer.

Provider Settings for Search
There are a handful of other custom configuration attributes supported on the provider that deal spe-
cifically with how the provider interacts with AD and ADLDS.

enableSearchMethods❑❑ : By default, the provider sets this property to false. You can choose
to set it to true to enable the following provider methods: FindUsersByName, FindUsersBy​
Email, and GetAllUsers. When you carry out LDAP search operations against AD and ADLDS
the most efficient way to query large numbers of users is through the use of stateful search facili-
ties. For example, if you perform directory searches using the System.DirectoryServices
classes, you can perform paged searches to limit the amount of processing the directory server
incurs during any one query operation. This type of search implies that your code hangs on
to an object (the DirectorySearcher) over the course of moving through multiple pages of
results. However, the ActiveDirectoryMembershipProvider is designed for use in state-
less web applications. This means after each call to a provider search method, all the underly-
ing System.DirectoryServices objects that were used during the search are released. As
a result, the provider is not able to take advantage of the paged search facilities in AD and
ADLDS. This means that if the search methods were allowed by default, it would be possible
for a developer to accidentally point the provider at a large directory and then grind the direc-
tory servers to a halt by searching through sets of users. For this reason, the search methods on
the provider can be enabled or disabled—with the default state being disabled.

clientSearchTimeout❑❑ : By default, the provider does not set this property. You can set this
attribute to the number of seconds you want the provider to wait for a response from any LDAP
query it sends to the server. This configuration attribute is used to set the ClientTimeout
property on the DirectorySearcher instance that the provider uses internally. Note that this
timeout applies to any LDAP search operation that the provider issues and, thus, also applies
to methods like UpdateUser or GetUser that need to find a single user object as part of their
normal processing.

serverSearchTimeout❑❑ : By default, the provider does not set this property. You can set this
attribute to the number of seconds the directory server should spend performing a single search
operation. The configuration attribute is used to set the ServerPageTimeLimit property on
the DirectorySearcher instance that the provider uses internally. As with clientSearch​
Timeout, the value for this configuration attribute will affect any LDAP query that the provider
issues and, thus, the configuration setting will affect methods like UpdateUser and GetUser.

As you can see, the area of searching users caused some degree of concern with the feature team.
Searching for a specific user wasn’t the problem because that type of operation yields one or no results
and involves searching for a single user object in the directory. But performing broad searches has the
potential to yield a large number of users, and the problem of mapping the provider’s paging semantics
on top of AD’s paging semantics can exacerbate performance issues.

79301c13.indd 648 10/6/08 12:16:31 PM

649

Chapter 13: ActiveDirectoryMembershipProvider

If you have ever used the DirectorySearcher class, you know that the class also supports a PageSize
property that is normally used in conjunction with the timeout properties. However, there is no pro-
vider configuration attribute that exposes a page size. Instead, when you run a provider method like
FindUsersByName the provider requests results from AD and ADLDS in fixed page sizes of 512 entries.
Then the provider internally iterates through the results and determines whether any search results in
a 512-entry page also lie within the set of rows that were requested by the calling code. Effectively, the
provider has to map the page size and page index parameters on methods like FindUsersByName to
the underlying set of pages that the provider is retrieving via the DirectorySearcher class.

Because of this behavior, the clientSearchTimeout and serverSearchTimeout attributes really only
apply to each page of 512 search results retrieved by the provider. For example, if you specify a server​
SearchTimeout setting of 10 seconds in configuration, and the provider internally needs to retrieve 10
different pages of results from the directory server to complete a method call, the provider can take up
to 100 seconds to retrieve all the data without exceeding the server’s timeout.

The net result of this is that for a single method call to the provider, the provider internally may need to
fetch multiple pages of results from the directory server in order to fulfill the request. For this reason, if
you choose to enable the search methods on the provider, be sure that you do the following:

Do not call ❑❑ GetAllUsers. This method is going to start with the first user in a directory con-
tainer and keep on walking through all the other users. On a large directory, this will be an
incredibly expensive method to call.

For ❑❑ FindUsersByName, always specify at least a partial value for the usernameToMatch param-
eter. This will at least allow the directory server to narrow the set of results based on either the
userPrincipalName or sAMAccountName attributes.

For ❑❑ FindUsersByEmail, always specify at least a partial value for the emailToMatch parame-
ter. This will allow the directory server to narrow the set of results returned based on the “mail”
attribute.

MembershipProvider Settings
Because the ActiveDirectoryMembershipProvider inherits from MembershipProvider, it supports
many of the same configuration settings as found on the SqlMembershipProvider. However, even
though many of the settings are the same, in some cases the way the ActiveDirectoryMembership​
Provider uses the settings will differ.

applicationName❑❑ : Although you can configure this setting on the provider (and you can
retrieve it from the ApplicationName property), it has no effect on the provider’s functionality.
The directory scope within which the provider operates is determined solely by the connection
string. The provider supports configuring applicationName simply for visual consistency with
the SqlMembershipProvider(that is, the configuration looks the same, but that’s about it).

requiresUniqueEmail❑❑ : If this is set to true, then the provider’s CreateUser and UpdateUser
methods will perform a subtree search rooted at the location specified by the connection string
and look for any other user objects with a matching value in their mail attribute. This means
that the provider is guaranteeing local uniqueness of the email value; the provider does not
guarantee that the email value is globally unique in the domain or the forest. Of course, if your
connection string is pointed at an AD domain (that is, you have no container specified in your
connection string), the provider will effectively be guaranteeing email uniqueness for that
domain because the search will be rooted at the domain’s default naming context.

79301c13.indd 649 10/6/08 12:16:31 PM

650

Chapter 13: ActiveDirectoryMembershipProvider

enablePasswordReset❑❑ : The default setting is false. If you set this attribute to true, then you
must also set requiresQuestionAndAnswer to true, and you must specify the five mapping
attributes described earlier so the provider knows where to store bad password answer-tracking
information.

requiresQuestionAndAnswer❑❑ : The default setting is false. You can actually set this attribute
to true without setting enablePasswordReset to true. If requiresQuestionAndAnswer is
set to true, then you must tell the provider the schema mappings in the directory for the pass-
word question and answer by using the attributeMapPasswordQuestion and attribute​
MapPasswordAnswer attributes. You might require questions and answers in order to start hav-
ing users enter this information when their accounts are being created, and then at a later point
turn on password resets. Alternatively, you could just use the PasswordQuestion property on
the MembershipUser object to store some more information about the user (that is, use it as a
second property like the Comment property).

minRequiredPasswordLength❑❑ : By default, this property is set to 7. The provider uses this set-
ting to enforce a minimum password length prior to sending the password down to the direc-
tory server. Note that this property setting only adds a layer of password validation on top of
the directory’s existing password strength enforcement rules. Regardless of the setting you use
for this configuration attribute, a user’s password must always pass the password strength
restrictions defined for the directory server.

minRequiredNonalphanumericCharacters❑❑ : Defaults to requiring one nonalphanumeric
character. As with minRequiredPasswordLength this restriction is enforced in addition to
whatever password strength restrictions are currently enforced by the directory server.

passwordStrengthRegularExpression❑❑ : There is no regular expression set by default. If you
do set a regular expression for this attribute, the regex is enforced in addition to the password
strength restrictions currently enforced by the directory server.

maxInvalidPasswordAttempts❑❑ : By default, this is set to 5. In the case of the ActiveDirectory​
MembershipProvider, the name of this configuration attribute is a little misleading. In reality,
the provider always depends on the directory server for dealing with bad password attempts.
Because AD and ADLDS already have extensive support for tracking bad password attempts
and locking out users as a result of too many bad password attempts, this setting only affects
bad password answers. If you have enabled question-and-answer-based password reset, then
the provider will mark the account as locked out when the number of bad password answer
attempts reaches the limit specified in this configuration attribute.

passwordAttemptWindow❑❑ : Defaults to 10 minutes. The value of this configuration attribute is
used by the provider in conjunction with the maxInvalidPasswordAttempts and password​
AnswerAttemptLockoutDuration configuration attributes for tracking bad password answer
attempts. Although the name of this attribute is a bit misleading, it has no effect on what hap-
pens when bad passwords are used. The provider always relies on AD and ADLDS to handle
tracking bad passwords as well as locking users out when too many bad password attempts
have occurred.

passwordAnswerAttemptLockoutDuration❑❑ : Because AD and ADLDS have the concept of
automatically unlocking a user account after a configurable time period, the ActiveDirectory​
MembershipProvider supports the same capability when tracking bad password answer
attempts. By default, this attribute is set to 30 minutes—which is the same default setting used
by AD and ADLDS for auto-unlocking user accounts that had too many bad password attempts.
After 30 minutes have passed, the provider will consider a user account unlocked in the case
that the account was originally locked out because of too many bad password answer attempts.

79301c13.indd 650 10/6/08 12:16:32 PM

651

Chapter 13: ActiveDirectoryMembershipProvider

Unique Aspects of Provider Functionality
In general, the ActiveDirectoryMembershipProvider’s implementation of MembershipProvider
properties and methods matches the functionality described in earlier chapters for the Membership
API and the SqlMembershipProvider. However, there are some differences in functionality that you
should keep in mind so that you are not surprised when you start working with the provider.

Each of the provider’s methods is listed here with a description of the directory-specific functionality
that occurs in each method.

CreateUser❑❑ : You cannot create users with an explicit value for the providerUserKey param-
eter. If you attempt to create a new user with a non-null providerUserKey, the provider will
throw an exception. If the creation was successful the provider returns an instance of Active​
DirectoryMembershipUser: this custom class is discussed further in the next section. If you
create a user in AD, and the username is mapped to userPrincipalName (UPN), the provider
will perform a GC lookup to confirm that the UPN is not already in use elsewhere in the forest.
This means that if you use the provider in an extranet environment and you use UPNs for the
username, your web servers will require network connectivity to a global catalog server to per-
form this check. Also if you use a UPN for the username the provider will automatically generate
a random 20-character value for the sAMAccountName attribute (this will look something like
$A31000-2B7QQ9PMDFOG). Even though the provider never uses this random value, it must gen-
erate a unique value because AD enforces uniqueness of SAM account names within a domain.
On an ADLDS server, the provider does not do anything special for sAMAccountName because
this attribute does not exist in the ADLDS schema. For both AD and ADLDS, the provider also
automatically sets the cn attribute (that is, the common name for the user object) to the value
passed in the username parameter. If requiresUniqueMail is set to true in the provider’s
configuration, then the provider also verifies that the email address is unique by performing a
subtree search for other users with the same email address. The subtree search is rooted at the
container specified by the connection string. Users are always created in the directory container
determined by the connection string. The actual process of creating the user takes three to four
steps: first, the user object is created, then the password is set on the object (effectively IADsUser​
::SetPassword is called), and then the disabled status of the user object is set. In the case of
ADLDS, the new user account is also added to the Readers security group for the application
partition. If any phase of user creation after the first step fails, the provider will attempt to clean
up after itself by deleting the partially created user object from the directory. This last step is the
reason the identity used by the provider needs the ability to both create and delete user objects
for the CreateUser method to work.

ChangePassword❑❑ : The provider relies on AD and ADLDS to keep track of bad passwords that may
be passed to this method. If enablePasswordReset is set to true, the provider will also disallow
password changes if the user account was already locked out because of bad password answers. If
enablePasswordReset is set to true, the provider resets the password-answer-tracking fields each
time a good password is used with this method. The password change is effectively being invoked
with a call to IADsUser::ChangePassword.

ChangePasswordQuestionAndAnswer❑❑ : As with ChangePassword and ValidateUser, the
provider lets AD and ADLDS handle tracking of bad passwords. If enablePasswordReset
is set to true, the provider will also disallow changes to the question and answer if the user
account was already locked out because of bad password answers. If enablePasswordReset is
set to true, the provider resets the password-answer-tracking fields each time a good password
is used with this method.

79301c13.indd 651 10/6/08 12:16:32 PM

652

Chapter 13: ActiveDirectoryMembershipProvider

DeleteUser❑❑ : No directory-specific functionality. Deleting a user is just a straightforward
removal of the user from the container determined by the connection string.

FindUsersByEmail❑❑ : If the provider configuration attribute enableSearchMethod is not set
to true, this method will throw a NotSupportedException. You can use the LDAP wildcard
character * to perform the equivalent of SQL LIKE queries with this method. See the earlier
“Provider Settings for Search” section for details on how the provider performs broad searches
against a directory. The MembershipUserCollection that is returned contains instances of the
ActiveDirectoryMembershipUser class.

FindUsersByName❑❑ : If the provider configuration attribute enableSearchMethods is not set
to true, this method will throw a NotSupportedException. You can use the LDAP wildcard
character (*) to perform the equivalent of SQL LIKE queries with this method. See the earlier
“Provider Settings for Search” for details on how the provider performs broad searches against
a directory. The MembershipUserCollection that is returned contains instances of the
ActiveDirectoryMembershipUser class.

GeneratePassword❑❑ : This method generates a random password using the same logic used by the
SqlMembershipProvider. Internally, this method just calls Membership.GeneratePassword.
The important thing to note here is that the provider’s ResetPassword method relies on
GeneratePassword. However, Membership.GeneratePassword has no awareness of the
password complexity policy set for the domain or ADLDS server. As a result, it is possible that
the password generated by this method will not pass the directory’s password complexity rules.
If you encounter this situation, you will need to derive from ActiveDirectoryMembership​
Provider and override this method with custom logic that generates conforming passwords.

GetAllUsers❑❑ : If the provider configuration attribute enableSearchMethods is not set to
true, this method will throw a NotSupportedException. See the earlier “Provider Settings
for Search” section for details on how the provider performs broad searches against a directory.
The MembershipUserCollection that is returned contains instances of the ActiveDirectory​
MembershipUser class.

GetNumberOfUsersOnline❑❑ : This method always throws a NotSupportedException because
the provider does not implement any logic for keeping track of the online state of a user.

GetPassword❑❑ : This method always throws a NotSupportedException. Even though theoreti-
cally you can configure your directory to use reversible encryption, this is not a recommended
security practice for AD and ADLDS. The feature team decided not to support this functionality
because they did not want to encourage the usage of reversible encryption.

GetUser❑❑ : Both overloads look for the user object using a subtree search rooted at the container
determined from the connection string. In the case of the overload that accepts the provider​
UserKey parameter, you can supply an instance of System.Security.Principal.Security​
Identifier to the provider, and it will search for a user with a matching SID in its objectSID
attribute. The user object that is returned is an instance of ActiveDirectoryMembershipUser.
Both overloads ignore the userIsOnline parameter because the provider does not track the
online status of users.

GetUserNameByEmail❑❑ : Performs a subtree search rooted at the container determined by the
connection string for a user with a matching email address. If the requiresUniqueEmail
configuration attribute is set to true, and more than one match is found, the provider throws
a ProviderException. Otherwise, the provider returns the username from the first matching
user object that is found.

79301c13.indd 652 10/6/08 12:16:32 PM

653

Chapter 13: ActiveDirectoryMembershipProvider

ResetPassword❑❑ : If enablePasswordReset is set to false, the provider just throws a Not​
SupportedException. The provider disallows password resets for locked-out users, regardless
of whether the user was locked out because of too many bad password attempts or too many bad
password answer attempts. The provider will automatically keep track of bad password answer
attempts using the custom attributes that you configure for the provider. If a valid password
answer is supplied in the passwordAnswer parameter, the provider resets the bad-password-
answer-tracking attributes in the directory to their default values (the counter and two date-
time tracking fields are all set to zero). Assuming that a good password answer is supplied and
the user is not locked out, the provider effectively calls IADsUser::SetPassword to reset the
password to a randomly generated new password value. See the earlier notes on Generate​
Password for caveats about the randomly generated password and the directory’s password
complexity policy.

UnlockUser❑❑ : Resets the user to an unlocked state. For bad password attempts, this means that
the user object’s lockoutTime attribute is reset to zero. The bad-password-answer-tracking
attributes (both the counter field and the two date-time fields) are also reset to zero. Note that
unlike SqlMembershipProvider, after a user is locked out in AD the account will automati-
cally become unlocked, assuming that the account lockout policy in AD and ADLDS has been
configured to allow this. As noted earlier, if you are also using the question-and-answer-based
password reset, the provider also supports automatically unlocking a user account after a con-
figurable time assuming that the lockout occurred because of too many bad password answers.

UpdateUser❑❑ : You can pass either a MembershipUser instance or an ActiveDirectory​
MembershipUser instance to this method. If an ActiveDirectoryMembershipUser instance
is provided, the provider will check to see which updatable properties have changed and will
only write the subset of changed properties back to the directory. The provider supports updat-
ing only the Email, Comment, and IsApproved properties in the UpdateUser method.

ValidateUser❑❑ : Because the provider always operates within the scope of the container (or con-
tainer hierarchy) determined by the connection string, the provider makes an extra check in this
method. If a valid username-password pair is supplied, then the provider checks to see if the
user actually exists within the scope determined from the provider’s connection string. If the
user does not exist within the directory scope, the method still returns false. For example, if
user foo exists in OU=bar, but the provider is pointed at a peer container called OU=baz, then
even if the foo account supplies the correct password, the method still will return false because
the user account does not exist within OU=bar. The provider relies on the bad password lockout
mechanism provided by AD and ADLDS for handling bad password attempts. If a correct pass-
word is supplied and enablePasswordReset is set to true, the provider will automatically
reset the bad-password-answer-tracking attributes to zero. Because ValidateUser is probably
the most heavily called method, you should keep in mind the performance overhead of enabling
password resets on this method. If you do not use password resets, this method performs one
directory search to verify the user is located within the provider’s container scope, and one
LDAP bind to actually verify the credentials. If password resets are enabled, then an additional
LDAP call is always made to check the password-answer-tracking attributes. If these attributes
need to be reset, a second call is made to reset the password-answer-tracking attributes.

The provider also implements the public properties defined by the MembershipProvider base class
as well as a few extra directory-specific properties. The directory-specific properties and Membership​
Provider properties with special behavior are:

ApplicationName❑❑ : The getter just returns the value set in the provider’s configuration. Like
SqlMembershipProvider, if this value was not set in configuration it returns either the virtual

79301c13.indd 653 10/6/08 12:16:32 PM

654

Chapter 13: ActiveDirectoryMembershipProvider

path of the current web application or the name of the .exe (sans the .exe extension) that is cur-
rently running. Again, this behavior was done just to make the property somewhat consistent
with the SQL provider’s behavior. Internally, the provider never uses the ApplicationName
property, and thus the trick of overriding the ApplicationName getter to handle dynamic portal-
style applications will not work. The setter for this property throws a NotSupportedException.

CurrentConnectionProtection❑❑ : This returns the type of connection protection that the pro-
vider ultimately settled on. This property doesn’t return the value of the connectionProtection
attribute in configuration. Remember that when you set the connectionProtection attribute
to Secure in configuration, the provider still needs to follow its internal heuristics to determine
the precise type of connection security it will use. If you set connectionProtection to None,
this property returns the enumeration value ActiveDirectoryConnectionProtection.None.
If you set connectionProtection to Secure, then this property will return either Active​
DirectoryConnectionProtection.Ssl or ActiveDirectoryConnectionProtection.
SignAndSeal, depending on which type of connection security the provider settled on.

EnablePasswordRetrieval❑❑ : Because the provider never supports password retrieval, this
property always returns false.

EnableSearchMethods❑❑ : Returns the value of the enableSearchMethods provider configura-
tion attribute. This allows you to write code that conditionally exposes search logic based on the
provider’s configuration.

PasswordAttemptLockoutDuration❑❑ : Returns the value of the passwordAttemptLockout​
Duration configuration attribute. If you enabled question-and-answer-based password resets
for the provider, then this property indicates the number of minutes after which an account that
was locked out because of too many bad password answers will be considered to have auto-
matically unlocked.

PasswordFormat❑❑ : Regardless of whether the underlying directory server has enabled reversible
encryption for passwords, this property always returns the value MembershipPasswordFormat​
.Hashed.

ActiveDirectoryMembershipUser
As part of the provider’s implementation, it uses a custom derivation of MembershipUser called
ActiveDirectoryMembershipUser. This custom user type serves the following purposes:

It makes the ❑❑ SecurityIdentifier that is the ProviderUserKey property serializable. Because
the Membership feature expects MembershipUser instances to be serializable, and the Security​
Identifier class itself is not serializable, the ActiveDirectoryMembershipUser has some
special logic to translate the ProviderUserKey property into a serializable format.

The ❑❑ LastLoginDate and LastActivityDate properties are overridden to throw NotSupported​
Exceptions from both their getters and setters. This ensures that developers will recognize that
user objects returned from AD or ADLDS do not support these property values.

The class implements a constructor that matches the wide constructor overload on ❑❑

the Membership​User base class. The ActiveDirectoryMemberhipUser class makes
a validation check inside of its constructor to ensure that if a non-null value is supplied

79301c13.indd 654 10/6/08 12:16:32 PM

655

Chapter 13: ActiveDirectoryMembershipProvider

for the providerUserKey parameter that it is of type System.Security.Principal​
.SecurityIdentifier.

The custom class overrides the ❑❑ Email, Comment, and IsApproved properties. Inside of the setters
the ActiveDirectoryMembershipUser class sets internal flags marking each property value as
dirty. This is done as a performance optimization to cut down on the need to update properties
on the directory server if their original values have not changed. The provider checks the dirty
flag for each property inside of its UpdateUser implementation. If the ActiveDirectory​
MembershipUser instance indicates that a property has changed, then the provider adds it to the
set of attributes that will be updated in the directory. Note that the user class considers a call to
a property setter as sufficient indication that the property has changed. It does not attempt a value
comparison to confirm that the value has really changed. Additionally, the provider does not
compare the current value of any of the user properties to the corresponding values in the
directory. The provider assumes that if the user class has marked a property as dirty, its value
should be written back to the directory.

IsApproved and IsLockedOut
Both the IsApproved property and the IsLockedOut properties are computed by ActiveDirectory​
MembershipProvider when a user object is retrieved from the directory. For the IsApproved property,
the provider will compute the value as false if the user object is marked as disabled in the directory
(for example, if you view the user with the AD Users and Computers snap-in, the Account is Disabled
check box is checked). If the user object is enabled in the directory, though, then the IsApproved prop-
erty is computed as true. In other words, there is a one-to-one correspondence between the value of
the IsApproved property and the enabled status of the user in AD and ADLDS.

However, this is not the case for the IsLockedOut property. If the user was locked because of too many bad
password attempts, then both the IsLockedOut property and the locked-out status stored in the directory
will match. However, if you have enabled question-and-answer-based password resets, it is possible that
IsLockedOut will return true because the user had too many bad password answer attempts. In this case
when you look at the user object in the directory (that is, you look at the msDS-User-Account-Control​
-Computed attribute in a Windows Server 2003 or Windows Server 2008 AD or an ADLDS directory), the
account won’t show as being locked out.

This also means that a user could attempt to log in to your website, and have the login fail, yet if that
same user sits down at her desk, she will be able to successfully log on to her machine. If you have
management tools or scripts that query for locked-out users, you will need to update them to also look
at the failed password answer lockout time attribute that you have to add to the directory’s user class
when enabling password resets. If the difference between the current UTC time and the lockout time
stored in the directory is less than or equal to the lockout duration specified in the provider’s password​
Answer​AttemptLockoutDuration configuration attribute, then the user should be considered in a
locked-out state.

Using the ProviderUserKey Property
The ActiveDirectoryMembershipUser class conveniently returns the user’s SID in the Provider​
UserKey property. If you have other code that manipulates users via their SID, you can use this property,
both by reading it for use elsewhere as well as for looking up an ActiveDirectoryMembershipUser
instance by SID.

79301c13.indd 655 10/6/08 12:16:32 PM

656

Chapter 13: ActiveDirectoryMembershipProvider

The following code outputs the string representation of a user’s SID:

C#
using System.Security.Principal;
…
//code to retrieve a MembershipUser in the mu variable
…
SecurityIdentifier sid = (SecurityIdentifier)mu.ProviderUserKey;
Response.Write(“The user’s SID is: “ + sid.ToString());

VB.NET
Imports System.Security.Principal
…
‘ code to retrieve a MembershipUSer in the mu variable
…
Dim sid As SecurityIdentifier = CType(mu.ProviderUserKey, SecurityIdentifier)
Response.Write(“The user’s SID is: “ & sid.ToString() & “
”)

The output from this looks like:

The user’s SID is: S-1-5-21-1582693030-3413920651-2689569351-1110

This format is the Security Descriptor Definition Language (SDDL) representation of the objectSID
attribute on a user object in the directory. You can use the SDDL representation to create your own
instance of a SecurityIdentifier.

C#
//Load a user instance using the SID
string sddlSID = sid.ToString(); //gets the SDDL form
SecurityIdentifier pkey = new SecurityIdentifier(sddlSID);

ActiveDirectoryMembershipUser admu =
 (ActiveDirectoryMembershipUser)Membership.Provider.GetUser(pkey, false);

Response.Write(“The username is: “ + admu.UserName + “
”);
Response.Write(“The user’s SID is: “ +
 ((SecurityIdentifier)admu.ProviderUserKey).ToString());

VB.NET
 ‘Load a user instance using the SID
 Dim sddlSID As String = sid.ToString()
 Dim pkey As New SecurityIdentifier(sddlSID)
 Dim admu As ActiveDirectoryMembershipUser = _
 CType(Membership.Provider.GetUser(pkey, False), _
 ActiveDirectoryMembershipUser)
 Response.Write(“The username is: “ & admu.UserName & “
”)
 Response.Write(“The user’s SID is: “ & _
 (CType(admu.ProviderUserKey,SecurityIdentifier)).ToString())

79301c13.indd 656 10/6/08 12:16:32 PM

657

Chapter 13: ActiveDirectoryMembershipProvider

This code takes the SecurityIdentifier instance that was returned from the previous sample code
and converts it into the string SDDL syntax. It then constructs a new instance of a SecurityIdentifier
passing the SDDL representation to the constructor. The resultant SecurityIdentifier is then passed
to ActiveDirectoryMembershipProvider as the key for looking up a user in the directory. When you
run this code you see that with the SDDL version of the SID, you can successfully get back to the origi-
nal user object:

The username is: demouser@bhaidar.net
The user’s SID is: S-1-5-21-1582693030-3413920651-2689569351-1110

It is worth mentioning at this stage that the above code samples have been tested and executed on a
machine with Windows Server 2008 installed and a domain called bhaidar.net.

Working with Active Directory
Out of the box, there is a reasonably high likelihood that you can get the provider to start working
with an AD domain. Because the first hurdle you will face is the question of connectivity to the direc-
tory, getting the correct connection string is important. Luckily, if you know what your options are
it is also pretty easy to set up. For starters, you can configure a sample application with the provider
that attempts to retrieve a user object from the Users container that is found on all domains. Because
ActiveDirectoryMembershipProvider is not configured in either machine.config or the root
web.config files, you will need to explicitly configure it in web.config.

<membership defaultProvider=”appprovider”>
 <providers>
 <clear/>
 <add name=”appprovider”
 type=”System.Web.Security.ActiveDirectoryMembershipProvider, …”
 connectionStringName=”DirectoryConnection” />
 </providers>
</membership>

Because none of the other provider-specific configuration options are used, the provider will connect
to the directory using the underlying process credentials. This is an important point because it means
that, by default, when running on IIS 7.0 the provider will connect to your directory as NETWORK SER-
VICE (that is, the machine account from the perspective of the directory server). For now, let’s use a
connection string that looks like:

<connectionStrings>
 <add
 name=”DirectoryConnection”
 connectionString=”LDAP://aspmvp.bhaidar.net”
 />
</connectionStrings>

This style of connection string tells the provider to explicitly connect to a specific directory server. Note,
though, that there is no other information in the connection string, which means that the provider will

79301c13.indd 657 10/6/08 12:16:32 PM

658

Chapter 13: ActiveDirectoryMembershipProvider

automatically attempt to bind to the Users container. To see whether this configuration works, a simple
test page writes out some of the properties of a user that already exists in the directory:

C#
MembershipUser mu = Membership.GetUser(“demouser@bhaidar.net”);
Response.Write(“Email address is: “ + mu.Email + “
”);
Response.Write(“Creation date is: “ + mu.CreationDate.ToString() + “
”);

VB.NET
Dim mu As MembershipUser = Membership.GetUser(“demouser@bhaidar.net”)
Response.Write(“Email address is: “ & mu.Email & “
”)
Response.Write(“Creation date is: “ & mu.CreationDate.ToString() & “
”)

When I ran this sample app against a directory server, the following information was returned:

Email address is: demouser@bhaidar.net
Creation date is: 4/27/2008 2:33:29 AM

This isn’t exactly earth-shattering information, but if you think about it, with only some standard
configuration entries and some boilerplate Membership code, you are now accessing a user object in a
directory. No need for kung-fu coding with classes in the System.DirectoryServices namespace, let
alone mucking around with the older ADSI programming APIs.

You can make things more interesting by first trying different variations of the connection string. One
variation simply points the application at the domain, as opposed to a domain controller.

<add name=”DirectoryConnection” connectionString=”LDAP://bhaidar.net”/>

Notice how the connection string no longer points at a specific server. Now the provider is simply
leveraging the default connectivity behavior supported by AD where you can just supply the DNS
name associated with the domain, and the underlying network stack performs the magic of looking
up special directory service entries in DNS to route the request to an actual domain controller.

Although this type of connection string is interesting to know about, and it can be useful in a develop-
ment environment just to get things up and running, in an extranet environment you need to be careful
with this type of connection string. Because you aren’t guaranteed a connection to any specific directory
controller, you can end up in cases where an operation against a user object occurs against one domain
controller, and then at a later point in time the provider connects to a different controller that has not yet
received the replicated changes. This behavior is not a bad thing; you just need to be aware of whether
your application can tolerate this. The nice thing about a serverless connection string is that your applica-
tion isn’t tied to the uptime of any specific directory server. Instead, the provider will connect to what-
ever is available, and if a DC goes down then the provider will simply be routed to a different server.

Another connection string variation (and probably the most common one you will use) includes the
container name.

<add
 name=”DirectoryConnection”
 connectionString=”LDAP://aspmvp.bhaidar.net/CN=Users,DC=bhaidar,DC=net”
/>

79301c13.indd 658 10/6/08 12:16:32 PM

659

Chapter 13: ActiveDirectoryMembershipProvider

With this connection string, the provider will bind to the container specified after the server name. In
this case, the connection string is binding to the Users container. If you have ever used ADSI or System​
.DirectoryServices, this should be a familiar syntax to you for binding to the Users container.

If you use the provider in an extranet environment where different user populations are segmented
into different organizational units (that is, OUs), then you would use a connection string like the
following:

<add
 name=”DirectoryConnection”
 connectionString=”LDAP://aspmvp.bhaidar.net/OU=UserPopulation_A,DC=bhaidar,DC=net”
/>

Now instead of referencing a built-in container, the connection string references an OU that was cre-
ated in the domain. In this case, the OU is a peer of the Users container. However, you can just as easily
bind to OUs that are nested any number of levels deep.

<add
 name=”DirectoryConnection”
 connectionString=”LDAP://aspmvp.bhaidar.net/OU=SomeNestedOU,OU=UserPopulation_A,DC
=bhaidar,DC=net”
/>

For nested containers, you just build up the second part of the connection string with the walk-up path
from the nested OU to the top of the container hierarchy.

UPNs and SAM Account Names
In the previous examples, the provider was implicitly binding to the directory and looking for user
objects based on the user principal name. In my test directory, I always created a UPN for each new user,
so the provider can find user objects and bind to them. For older directory infrastructures, though, user
principal names may not be in wide use, or they may not even be used at all. The provider supports bind-
ing to user objects using the sAMAccountName attribute instead. However, you need to explicitly config-
ure this behavior. The configuration for the provider using a SAM account name looks like:

<add name=”appprovider”
 type=”System.Web.Security.ActiveDirectoryMembershipProvider, …”
 attributeMapUsername=”sAMAccountName”
 connectionStringName=”DirectoryConnection” />

With this configuration, the provider expects that any usernames passed to its methods will be just the
username portion of the NT4-style DOMAIN\USERNAME format. For example, the following code retrieves
the user object for bhaidar\demouser:

MembershipUser mu = Membership.GetUser(“demouser”);

Notice how the username parameter doesn’t include the domain identifier. This is important because if
you attempt to pass full NT4-style usernames to the provider, the calls will never return anything (that
is, if you pass DOMAIN\USERNAME the provider is literally looking for a user object whose SAM account
name is DOMAIN\USERNAME). Because the provider already knows the domain within which it is oper-
ating, it does not need the domain portion of the username. Remember that the provider is effectively

79301c13.indd 659 10/6/08 12:16:33 PM

660

Chapter 13: ActiveDirectoryMembershipProvider

acting like a database provider, except that the “database” is really an LDAP server. When the provider
looks for objects using a SAM account name, it is performing an LDAP search where the sAMAccount​
Name attribute on the directory’s user object equals a specific value. As a result, you only need to supply
the username.

If you happen to set up ActiveDirectoryMembershipProvider, and you are unable to retrieve any
existing users, keep in mind the attributeMapUsername attribute. It is likely that if the connection
string works and you are getting back nulls from methods like GetUser, than your directory users
have been configured only with SAM account names, not UPNs. Switching attributeMapUsername
over to sAMAccountName is probably the most common configuration step that developers need to
make to get the provider working with their directory.

However, if you have been creating user accounts in the directory using the ActiveDirectory​Membership​
Provider with its default setting of UPN-style usernames, you may run into a different problem. When you
create users in the Active Directory Users and Computers MMC, the UI conveniently auto-selects a domain
suffix for your UPN. In fact, the UI remembers previous UPN suffixes that have been used with the tool, and
it displays a drop-down list where you can choose any one of them. However, if you create users directly
with the provider, you may find yourself creating users with just a username and no suffix (for example,
“demouser98” as opposed to “demouser98@bhaidar.net”). This kind of a UPN will sort of work with Active
Directory, but you will find that if you also write code with System​.DirectoryServices there are cases
where a UPN without an @ will fail. As a result, you should always ensure that UPNs have an @ sign and
some kind of domain suffix in them. For Internet-facing sites, it makes sense to create user accounts with
some kind of domain suffix, with the user’s email address being the most likely candidate.

This raises the question of whether you should eventually switch your user population over to UPNs.
Although as far back as Windows 2000, the guidance was to create users with UPNs, the reality is that
many folks still rely on the older NT4-style usernames, especially if their current domain infrastructure
was the result of an NT4 domain upgrade. I certainly wouldn’t recommend reworking your user popu-
lation to use UPNs just because ActiveDirectoryMembershipProvider defaults to UPNs. (That’s
why the username mapping is configurable!) However, it does seem to be a recurring theme that UPNs
are architecturally preferable. For e-commerce sites or extranet sites that rely on Active Directory, UPNs
do make more sense because, typically, you don’t want external users to be aware of AD domain names.
Technically, external sites that do this are leaking a little bit of their security architecture to the public
by requiring a domain name. Also UPNs frequently mirror a person’s email address, so they can be a
more natural username for your website users to grasp.

Container Nesting
You already saw a simple example where nested OUs were used in a connection string. However, con-
tainer nesting raises some interesting issues when working with the provider. If you have different sets
of users in different OUs, and you want some provider operations to span all these sets of users, how do
you go about configuring the provider? Remember that data modification operations can occur only in
the container specified by the connection string, whereas search-oriented operations are rooted at the
container specified by the connection string.

Using the sample directory structure, so far there are users laid out as follows:

Cn=Users
 demouser
OU=UserPopulation_A

79301c13.indd 660 10/6/08 12:16:33 PM

661

Chapter 13: ActiveDirectoryMembershipProvider

 demouserpop
 OU=SomeNestedOU
 demousernestedpop

If you use the following connection string:

<add name=”DirectoryConnection” connectionString=”LDAP://aspmvp.bhaidar.net”/>

then all search operations are rooted at what is called the default naming context for the domain. What
this means is that all containers and OUs are considered children of the default naming context, so this
type of connection string allows searches to be performed across all available containers. Because the
provider performs its search operations using subtree searches, the following code searches across all
containers, as well as down through the container hierarchy to its lowest nested level:

C#
MembershipUserCollection muc = Membership.GetAllUsers();
foreach (MembershipUser mu in muc)
 Response.Write(“Username: “ + mu.UserName + “
”);

VB.NET
Dim muc As MembershipUserCollection = Membership.GetAllUsers()
For Each mu As MembershipUser In muc
 Response.Write(“Username: “ & mu.UserName & “
”)
Next mu

The result from running this code is:

Username: demouser@bhaidar.net
Username: demousernestedpop@bhaidar.net
Username: demouserpop@bhaidar.net
Username: reader@bhaidar.net
Username: useradmin@bhaidar.net

The bolded identities are the three accounts used earlier in the chapter. The demouser account as
well as all the other unbolded user accounts are located in the CN=Users container. The other two
demouser* accounts are from OU=UserPopulation_A and OU=SomeNestedOU.

Similarly, if you perform get operations such as:

C#
MembershipUser mu = Membership.GetUser(“demousernestedpop@bhaidar.net “);

VB.NET
Dim mu As MembershipUser = Membership.GetUser(“demousernestedpop@bhaidar.net”)

The code will return a valid user object because even though the user account is nested two OUs deep, the
Get* methods on the provider start their search at the default naming context (because the connection
string from earlier doesn’t specify a container) and then work their way down. If you explicitly specify a

79301c13.indd 661 10/6/08 12:16:33 PM

662

Chapter 13: ActiveDirectoryMembershipProvider

container hierarchy in your connection string, then get and search methods will be rooted at the container
you specify and then searches will work their way down through any remaining container hierarchy.

However, if you attempt to create a new user or delete an existing user, then these operations only
occur in the container specified on the connection string. In the case of the sample connection string
that doesn’t explicitly specify a container, this means that user creation and deletion only occur in the
CN=Users container. There are other provider methods that involve modifying information for a user,
including UpdateUser, ChangePassword, and so on. Although these methods are technically data-
modification operations, all these methods first bind to a specific user in the directory (a get operation)
prior to making a change. As a result, updates to existing users also have the behavior of being rooted
at a specific point in the directory, and then searching for the user object down through the nested
containers.

With this behavior, it is possible to come up with some interesting provider configurations. For
example, if your site supports multiple sets of users, you could allocate each set of users to a different
OU. You could then configure a separate provider instance for each different OU (and hence each pro-
vider instance would have its own unique connection string). These different providers could be used
exclusively for create and delete operations. For the rest of your site, you could then configure one more
provider pointed at the default naming context or at a root OU, depending on how you structured your
containers. This last provider would be used for things like calling ValidateUser or for fetching a
MembershipUser object to display information on a page. In this way, you would get the flexibility to
create and delete users in different OUs, while still having the convenience of searching, retrieving,
and modifying users across the OUs with a single provider.

Securing Containers
So far, the sample code has been running with the credentials of the IIS 7.0 worker process. The reason
that the samples have worked so far is that the NETWORK SERVICE account is implicitly considered
part of the Authenticated Users group. If you look at the default security configuration in the directory,
you will see that this group has rights to list objects in a container as well as having some read permis-
sions on individual object. The concept of read permissions on objects though differs depending on the
object in question.

In the case of the provider, the object types you care about are user objects. The default permissions
that any authenticated user in a domain has on any other user object in the directory are read general
information, read personal information, read web information, and read public information. General
information, personal information, web information, and public information are just property sets that
conveniently group together dozens of different directory attributes so that permissions can be granted
to them without having to spam dozens or hundreds of ACLs on user objects. These default permis-
sions are why the sample pages running as NETWORK SERVICE were able to find the user object
in the first place and then read the various directory attributes in order to construct an instance of
ActiveDirectoryMembershipUser.

If you attempt to use the sample configuration shown earlier to update an existing user object or create
a new user object, you will get a System.UnauthorizedAccessException. The exception bubbles up
from the underlying System.DirectoryServices API and is triggered because, for obvious reasons,
authenticated domain users don’t have the right to arbitrarily make data modifications to other objects

79301c13.indd 662 10/6/08 12:16:33 PM

663

Chapter 13: ActiveDirectoryMembershipProvider

or containers in the directory. This behavior is roughly equivalent to the exceptions you get when you
haven’t granted login rights to SQL Server or execute permissions to the Membership stored proce-
dures and you attempt to use the SqlMembershipProvider.

One obvious solution would be to just add rights in the directory granting NETWORK SERVICE the
required rights. However, in general this is not the correct approach. Each machine in a domain has
a corresponding machine account in the directory. Because the account is comparatively well known,
granting broad rights to it is not something you should do. Additionally, if you are running in a web
farm, each individual server has a different machine account in the directory that locally is known as
NETWORK SERVICE. So if you granted broad rights to the machine account, you would have to repeat
this task for each and every server running in your web farm.

A better approach would be to at least assign your application’s worker process a different domain
identity and then grant this domain identity the necessary rights in the directory depending on what
your code needs to do with the provider. With this approach, if you run multiple machines in a web
farm, each web server can be configured with the same domain account for the worker process. For a lot
of application scenarios, this is actually a reasonable approach. However, if you need to host multiple
applications in a single worker process, with each application having a different set of privileges in the
directory, or if you want to configure multiple providers in a single application with each provider hav-
ing a different set of privileges, then you will need to use explicit provider credentials instead.

The ActiveDirectoryMembershipProvider exposes the connectionUsername and connection​
Password configuration attributes. With these attributes, you can explicitly set the domain credentials
that the provider will use when connecting to the directory. Even though the default provider behav-
ior is to revert to either the process credentials, or application impersonation credentials if application
impersonation is being used, when explicit credentials are configured the provider always uses them
in lieu of any other security identity.

The advantage of using explicit credentials in combination with application-specific OUs (as opposed to
just using the Users container) is that you have the ability to specify granular permissions for different
sets of application users. With the provider configuration attributes you then have the flexibility to fine-
tune individual providers to allow only certain operations through specific providers. Let’s see how this
works by creating a new admin account to work with the UserPopulation_A container: userpopaadmin.
You want this account to have the ability to create and delete user objects, as well as the ability to reset
passwords and unlock users.

Remember that for a provider instance to be able to create users, it also needs the ability to delete users
(in the event that the multistep user creation process failed) and to set passwords (because part of the
process of creating the user is setting password). Note that the ability to set passwords for new accounts
as well as reset existing passwords is shown as the Reset Password inside of the security dialog boxes
shown in the MMC.

The Active Directory Users and Computers MMC has a Delegation of Control Wizard that steps you
through delegating control over containers like the OUs used here. You can open up the MMC to dis-
play all the containers that are currently available in a directory. In the test directory I am running,
right-clicking the UserPopulation_A container and selecting Delegate Control opens the first step of the
wizard, as shown in Figure 13-1.

79301c13.indd 663 10/6/08 12:16:33 PM

664

Chapter 13: ActiveDirectoryMembershipProvider

Figure 13-1

In the next wizard step, you can select one or more user/group accounts that will all be granted a specific
set of rights over the OU. In Figure 13-2, you can see that I have selected the userpopaadmin account.

On the next step of the wizard, you can select multiple rights to grant to the accounts. Because you want
the admin account to have the ability to create/delete users, reset passwords, and unlock users, the first
three sets of tasks are selected in the wizard (see Figure 13-3).

Figure 13-2

79301c13.indd 664 10/6/08 12:16:33 PM

665

Chapter 13: ActiveDirectoryMembershipProvider

Figure 13-3

The final step of the wizard (not shown) just asks for confirmation of the selections. When you click the Fin-
ish button on the last wizard step, the security changes take effect. You can see the new set of security rights
if you right-click the UserPopulation_A OU and then drill into the security settings for userpopaadmin.
Figure 13-4 shows the two sets of rights highlighted in the Advanced Security Settings dialog box.

Figure 13-4

79301c13.indd 665 10/6/08 12:16:33 PM

666

Chapter 13: ActiveDirectoryMembershipProvider

Notice that the account now has Full Control on any user objects in the container as well as the Create/
Delete User Objects privilege on the container. The account needs to have two different sets of rights
because the intent is for the userpopaadmin account to have a set of specific user object rights within
the container as well as the ability to add and remove user objects in the container. Notice that the
account doesn’t have Full Control on the container itself. This allows other object types that are man-
aged by other user accounts to be stored in the container.

If you highlight the Full Control row and click the Edit button, you will see the set of permissions that
userpopaadmin now has on any user object located in the container. Specifically, it has Write All Prop-
erties permission as well as the Reset Password and Change Password permissions. These permissions
will allow userpopaadmin the ability to set all of the properties on a newly created user object (including
the password property) as well as the ability to reset the password when the ResetPassword method is
called on the provider. These permissions also allow the account to be used when calling the Update
method because this method updates a number of different properties on a user object in the directory.

With the security configuration for the admin user complete, you can make use of it to connect to the
directory with a connection string which points directly at the OU:

<add
 name=”DirectoryConnection”
 connectionString=”LDAP://aspmvp.bhaidar.net/OU=UserPopulation_A,DC=bhaidar,DC=net”
/>

In this example, you configure two providers: one for admin operations and one for get/search
operations:

<membership defaultProvider=”readonlyprovider”>
 <providers>
 <clear/>
 <add name=”adminprovider”
 type=”System.Web.Security.ActiveDirectoryMembershipProvider, …”
 enableSearchMethods=”true”
 connectionUsername=”userpopaadmin@bhaidar.net”
 connectionPassword=”p@ssw0rd”
 connectionStringName=”DirectoryConnection” />

 <add name=”readonlyprovider”
 type=”System.Web.Security.ActiveDirectoryMembershipProvider, …”
 enableSearchMethods=”true”
 connectionStringName=”DirectoryConnection” />
 </providers>
</membership>

The provider named adminprovider uses the explicit credentials with elevated privileges. The
second provider instance named readonlyprovider depends on the default rights that the Authen-
ticated Users group has to read various attributes on a user object. Note that in a production environ-
ment you should use protected configuration (discussed in Chapter 5) so that the explicit credentials
are not stored as cleartext. You can now create users with the admin provider:

79301c13.indd 666 10/6/08 12:16:34 PM

667

Chapter 13: ActiveDirectoryMembershipProvider

C#
MembershipCreateStatus status;
MembershipProvider mp = Membership.Providers[“adminprovider”];

mp.CreateUser(“demouser103@nowhere.org”, “pass!word1”, “demouser103@nowhere.org”,
 null, null, true, null, out status);
Response.Write(status.ToString());

VB.NET
Dim status As MembershipCreateStatus
Dim mp As MembershipProvider = Membership.Providers(“adminprovider”)

mp.CreateUser(“demouser103@nowhere.org”, “pass!word1”, _
 “demouser103@nowhere.org”,Nothing, _
 Nothing, True, Nothing, status)

Read operations use the default provider running as NETWORK SERVICE, and thus the default pro-
vider can only search for users and read attributes on the user object. Note that you can take security
lockdown a step further by removing the Authenticated Users ACL from the default ACL defined for
the user class in the directory’s schema. Doing so gets into the nitty-gritty of managing Active Direc-
tory default ACLs, which is a bit far afield from the topic of how to use ActiveDirectoryMembership​
Provider.

However, if you have changed the default ACL for the user object (you can see the default ACL using
the Active Directory Schema editor, look at the Default Security tab on the Properties dialog box of the
user class) by removing the Authenticated Users group, you can create a read-only user account using
the same approach just shown for the administrative user. Just create a new read-only user account and,
with the Delegation of Control Wizard, grant read permissions on all user objects in the container to the
account. Because the wizard will end up granting read permissions on all attributes of user objects, you
can right-click the container and use the Security tab to fine-tune the specific sets of user attributes that
you really want the read-only account to have access to. The default set of permissions granted to the
Authenticated Users account as described earlier is a good starting point.

Configuring Self-Service Password Reset
Self-service password resets are the one piece of provider functionality that is not “auto-magically”
supported without a moderate amount of intervention on your part. Unlike SqlMembershipProvider,
where this functionality is just a matter of setting the enablePasswordReset configuration attribute to
true, ActiveDirectoryMembershipProvider requires schema changes prior to turning on the func-
tionality. Furthermore, after the schema changes are made you need to configure the ACLs appropri-
ately in the directory so that a provider has rights to read and update these properties.

You could use preexisting directory attributes to store password question-and-answer-related infor-
mation. Although this saves you from having to modify the directory schema, from a long-term per-
spective it makes more sense to extend the schema with attributes to support the provider, rather
than attempt to reuse existing directory attributes. This will prevent problems down the road if you

79301c13.indd 667 10/6/08 12:16:34 PM

668

Chapter 13: ActiveDirectoryMembershipProvider

overloaded a directory attribute for use with the provider, but then find out you actually need to
“take back” the attribute for its original purposes.

The attributes that you need to add are those for the following pieces of information:

Password question: ❑❑ A Unicode string attribute to store the user’s password question.

Password answer: ❑❑ A Unicode string attribute to store the user’s password answer.

Failed password answer count: ❑❑ An attribute of type Integer that is the counter for keeping
track of the number of failed password answer attempts.

Failed password answer time: ❑❑ An attribute of type Large Integer/Interval that will store
the beginning of the time tracking window for failed password answer attempts.

Failed password answer lockout time: ❑❑ An attribute of type Large Integer/Interval
that stores the time the account was locked out because of too many failed password answer
attempts.

You can use the Active Directory Schema snap-in to create five new attributes for storing these values.
Before you do so, note that you have to have rights to edit the schema for your domain. This right is nor-
mally reserved for members of the Schema Admins group because of the sensitive nature of schema edits.
Schema edits are a one-way affair; after you add an attribute, you can never actually delete it. Instead, you
can only deactivate attributes. For this reason, enabling self-service password reset for the provider makes
sense only for Internet facing websites that rely on Active Directory. Making irreversible schema edits to
an extranet directory is less of an issue than making schema edits to your core corporate directories.

Whenever you create a new directory attribute you need to have a name for the attribute as well as an
X.500 OID. The need for the OID is sort of weird, but it is a necessary part of creating any new classes
or attributes in Active Directory. If you happen to have the Windows 2000 Resource Kit lying around, it
has a handy command-line tool called oidgen.exe that will automatically generate a base OID for new
attributes. I created five new attributes in my directory as follows:

Attribute Name (Both LDAP and Common) OID

ampPasswordQuestion 1.2.840.113556.1.4.7000.233.28688.28684.8
.311583.60825.551176.463623.1

ampPasswordAnswer 1.2.840.113556.1.4.7000.233.28688.28684.8
.311583.60825.551176.463623.2

ampFailedPasswordAnswerCount 1.2.840.113556.1.4.7000.233.28688.28684.8
.311583.60825.551176.463623.3

ampFailedPasswordAnswerTime 1.2.840.113556.1.4.7000.233.28688.28684.8
.311583.60825.551176.463623.4

ampFailedPasswordAnswerLockoutTime 1.2.840.113556.1.4.7000.233.28688.28684.8
.311583.60825.551176.463623.5

You can see what configuring the new password answer attribute looks like in Figure 13-5.

79301c13.indd 668 10/6/08 12:16:34 PM

669

Chapter 13: ActiveDirectoryMembershipProvider

Figure 13-5

The configuration for the password question attribute looks exactly the same. Figure 13-6 shows how
the password answer count attribute is configured as an Integer type.

Figure 13-6

79301c13.indd 669 10/6/08 12:16:34 PM

670

Chapter 13: ActiveDirectoryMembershipProvider

The configuration of the failed password answer time attribute is shown in Figure 13-7.

Figure 13-7

Configuring the failed password answer lockout time works the same way, just with a different attri-
bute name and OID.

With the attribute configuration completed, you can add these attributes to the user class in the direc-
tory. You just right-click the user class in the MMC, select Properties and in the Attributes tab, add the
five new attributes as optional attributes. After you have done this, the Attributes tab will look some-
thing like Figure 13-8.

Now that the user object has been modified to include extra attributes for storing password-reset-related
information, you can configure a provider to make use of the new attributes. Using the administrative
provider shown earlier, you can modify its configuration to allow for question-and-answer-based
password resets.

<<add
 name=”adminprovider”
 type=”System.Web.Security.ActiveDirectoryMembershipProvider, System.Web,
 Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”
 enableSearchMethods=”true”
 connectionUsername=”userpopaadmin@bhaidar.net”
 connectionPassword=”p@ssw0rd”
 attributeMapPasswordQuestion=”ampPasswordQuestion”
 attributeMapPasswordAnswer=”ampPasswordAnswer”
 attributeMapFailedPasswordAnswerCount=”ampFailedPasswordAnswerCount”
 attributeMapFailedPasswordAnswerTime=”ampFailedPasswordAnswerTime”
 attributeMapFailedPasswordAnswerLockoutTime=”ampFailedPasswordAnswerLockoutTime”
 enablePasswordReset=”false”

79301c13.indd 670 10/6/08 12:16:34 PM

671

Chapter 13: ActiveDirectoryMembershipProvider

 requiresQuestionAndAnswer=”true”
 connectionStringName=”DirectoryConnection”
/>
 enablePasswordReset=”false”
 requiresQuestionAndAnswer=”true”
 connectionStringName=”DirectoryConnection”
/>

Figure 13-8

Because the provider now has to store a password answer, and you don’t want the plaintext password
answer to be easily viewable by arbitrary accounts (such as Authenticated Users), the provider always
encrypts the password answer. Unless you derive from the provider and add your own custom encryption
routines, this means that the provider encrypts the password answer using the encryption key specified in
machine.config. Just like SqlMembershipProvider, though, ActiveDirectoryMembershipProvider
requires you to explicitly set a decryption key. This requirement exists to prevent the problem that would
occur if different machines have completely different auto-generated encryption keys. If this were allowed
the password answer created on one web server would be useless on another server.

The hashing of the password answer is not supported, because there is no mechanism for having
Active Directory hash anything other than a user’s password. Rather than confuse things by adding a
password​Format attribute on the provider that would be configurable for password answers and have
no effect on the actual password, the feature team decided to support encryption of password answers
only. In this way, there is no ambiguity around the protections for user passwords (AD hashes them)
as opposed to the protections for password answers (they are always encrypted).

As a result of this requirement, the sample application now explicitly defines a decryption key as follows:

<machineKey
 decryptionKey=”A225194E99BCCB0F6B92BC9D82F12C2907BD07CF069BC8B4”
 decryption=”AES” />

79301c13.indd 671 10/6/08 12:16:34 PM

672

Chapter 13: ActiveDirectoryMembershipProvider

With the changes to the admin provider and the definition of a fixed decryption key, the sample appli-
cation can now create users with question and answers. Because the Login controls work seamlessly
with arbitrary membership providers, I just dropped a CreateUserWizard onto a form, configured it
to use the admin provider, and started creating test accounts with questions and answers.

After creating a user with CreateUserWizard, you can dump the contents of the user object with a
low-level tool like ldp.exe or the ADSI Edit MMC. Running ldp.exe and looking at the contents of the
newly created user, you can see the following:

Dn:
 CN=demouser98,OU=UserPopulation_A,DC=bhaidar,DC=net
ampPasswordAnswer:
 DFHsKJYPjy8H8VWdAxifk07ystxUyICny/pzCRONJw45ZVY/pYNlm4XcLlRlW6Zw;
ampPasswordQuestion:
 what is my username?;
distinguishedName:
 CN=demouser98,OU=UserPopulation_A,DC=bhaidar,DC=net;
mail:
 demouser98@bhaidar.net;
name:
 demouser98;
objectCategory:
 CN=Person,CN=Schema,CN=Configuration,DC=bhaidar,DC=net;
objectSid:
 S-1-5-21-1582693030-3413920651-2689569351-1133;
sAMAccountName:
 $AOEH63-9E39GDNR1GC0;
userPrincipalName:
 demouser98;
whenCreated:
 4/27/2008 12:10:23 PM Pacific Daylight Time;

As you would expect after all of the configuration work, the password question was successfully stored,
as was the encrypted version of the password answer.

If you keep using the adminprovider provider, you can create a test page where you attempt to reset
the password using the PasswordRecovery control. If you intentionally supply the wrong answer a
few times, you will see the tracking information stored in the other attributes of the user object.

ampFailedPasswordAnswerCount: 3;
ampFailedPasswordAnswerTime: 128537972320482544;

These attributes are showing that so far three failed password answer attempts have been made. The
weird-looking password answer time is just the integer representation of the UTC date-time that is the
start of the bad password answer tracking window. Because the default number of failed password
answer attempts that can be made is five (the same setting as SqlMembershipProvider), after the
fifth bad password attempt occurs, the tracking information for the user looks like this:

ampPasswordQuestion:
 what is my username?;
ampPasswordAnswer:
 DFHsKJYPjy8H8VWdAxifk07ystxUyICny/pzCRONJw45ZVY/pYNlm4XcLlRlW6Zw;

79301c13.indd 672 10/6/08 12:16:34 PM

673

Chapter 13: ActiveDirectoryMembershipProvider

ampFailedPasswordAnswerCount:
 5;
ampFailedPasswordAnswerTime:
 128537973410049264;
ampFailedPasswordAnswerLockoutTime:
 128537973410049264;

Any attempt at this point to log in with the user’s credentials, change his password, or reset his pass-
word will immediately fail because the provider sees that user is now locked out. As with the failed
password answer time, the lockout time is stored as an integer representing the UTC time when the
lockout occurred. Remember that one difference between this provider and the SQL provider is that if
you wait 30 minutes (the default lockout timeout duration if one is configured for the domain), then the
user account auto-unlocks despite the previous failed password answer attempts.

Of course, if you are impatient, you can use the Unlock method on the provider to forcibly unlock the user:

C#
MembershipProvider mp = Membership.Providers[“adminprovider”];
mp.UnlockUser(“demouser98@bhaidar.net”);

VB.NET
Dim mp As MembershipProvider = Membership.Providers(“adminprovider”)
mp.UnlockUser(“demouser98@bhaidar.net”)

The result of unlocking the user with the admin provider looks like this:

ampPasswordQuestion:
 what is my username?;
ampPasswordAnswer:
 DFHsKJYPjy8H8VWdAxifk07ystxUyICny/pzCRONJw45ZVY/pYNlm4XcLlRlW6Zw;
ampFailedPasswordAnswerCount:
 0;
ampFailedPasswordAnswerTime:
 0;
ampFailedPasswordAnswerLockoutTime:
 0;

After an unlocking operation, the provider resets the count to zero and also stores a zero value in the
two time-tracking fields. At this point, if you choose to reset the password, the new password will be
sent to you. As a side note, if you want to get the PasswordRecoveryControl to work on a web server
that has the default SMTP service installed, you will need a configuration entry like the following:

<system.net>
 <mailSettings>
 <smtp deliveryMethod=”PickupDirectoryFromIis”>
 <network host=”localhost” port=”25” defaultCredentials=”true”/>
 </smtp>
 </mailSettings>
</system.net>

79301c13.indd 673 10/6/08 12:16:34 PM

674

Chapter 13: ActiveDirectoryMembershipProvider

Without this entry, the PasswordRecoveryControl will fail when it attempts to email the password. In
the case of my sample application, because I reset the email address of my test user account to match the
domain address of my web server (that is, the demouser98@bhaidar.net account now has an email
address of demouser98@aspmvp.bhaidar.net and my local SMTP server is running on a machine with
the DNS address of aspmvp.bhaidar.net), the PasswordRecoveryControl sent the password reset
email to my local mailroot directory, C:\inetpub\mailroot\. The text of the email looks like:

Please return to the site and log in using the following information.
User Name: demouser98@bhaidar.net
Password: NfRDSzlDsi*DVR

This entire process shows the power of the provider model used in conjunction with ActiveDirectory​
MembershipProvider and the various Login controls. Although the initial schema edits in the direc-
tory are a bit of a hassle, after those are completed you can see that with some edits to web.config to
configure the Membership provider and the mail server, the self-service password reset process is pretty
much automated. Attempting to hand-code a similar solution yourself, especially using Active Direc-
tory (or ADLDS for that matter) as the backing store, would be substantially more complex than the
process you just walked through.

Note that I intentionally used the admin provider because that provider was running with security cre-
dentials in the directory necessary to allow it to reset the password of any user in the UserPopulation_A
OU. Clearly, running with the other named provider (readonlyprovider) won’t work for resetting
passwords because the Authenticated Users group doesn’t have the privileges necessary to reset arbi-
trary user passwords.

Within the ActiveDirectoryMembershipProvider, methods like ValidateUser, ChangePassword,
ChangePasswordQuestionAndAnswer and GetUser will be able to read the new password answer
tracking fields to determine whether the user is considered locked out. This holds true for the special
administrative account that was created earlier, as well the NETWORK SERVICE account that is being
used by the default provider. This behavior is okay because you want the failed-password-answer-
tracking information to be readable by these methods.

There is a subtle requirement, though, for the ValidateUser and ChangePassword methods. Both of
these methods will reset the password-answer-tracking information if the following conditions are met:

The user supplies the correct password.❑❑

The password-answer-tracking information contains nondefault values due to previously ❑❑

logged bad password answer attempts.

If both of these conditions are met, then the provider will reset the password answer tracking coun-
ters inside of ValidateUser and ChangePassword. For this reason, if you setup a nonadministrative
account to handle user logins, make sure to grant this account write access to the three bad-password-
answer-tracking attributes.

However, if you feel uncomfortable with running a nonadministrative provider under the default privi-
leges of Authenticated Users, you can lock things further. For example, to prevent a nonadministrative
provider from ever being able to read the encrypted password answer, you can go through the follow-
ing steps to lock down access.

	 1.	 Create a read-only account that will be used by the nonadministrative provider to access the OU.

79301c13.indd 674 10/6/08 12:16:35 PM

675

Chapter 13: ActiveDirectoryMembershipProvider

	 2.	 Configure a nonadministrative provider instance to run with the read-only user account, just as
was done for the administrative provider that we have been using.

	 3.	 In the Active Directory Users and Computers MMC, configure the read-only account by deny-
ing specific granular user object property rights.

Figure 13-9 shows a special read-only user account being configured.

Notice how the ability to read and write the encrypted password answer field is being revoked from
the userpopareader account. The password answer field needs to be readable only for accounts that
fetch the answer from the directory for comparison with the answer typed in by a user. For Active​
Directory​MembershipProvider, this only occurs when calling ResetPassword, so only the admin-
istrative account that was configured earlier needs read access on this attribute. Write access to the
password answer attribute is only necessary for methods that the update this information. The only
methods on ActiveDirectoryMembershipProvider where these updates occur are CreateUser
(where the question and answer are initially created) and ChangePasswordQuestionAndAnswer
(where the question and answer are updated). For this reason, it makes sense to have a separate pro-
vider instance (like the administrative provider used in the examples in this chapter) configured for
creating users, updating questions and answers and carrying out password resets.

Figure 13-9

Using ADLDS
From the ActiveDirectoryMembershipProvider’s perspective, using ADLDS as a backing store
is pretty much the same as using Active Directory as the backing store. ADLDS’s schema supports
the user class, and just as with Active Directory, you can extend the schema in ADLDS if you choose

79301c13.indd 675 10/6/08 12:16:35 PM

676

Chapter 13: ActiveDirectoryMembershipProvider

to enable self-service password resets. In terms of directory structure, you can use the same general
approaches for both AD and ADLDS: using a single container for storing users, or separate user con-
tainers for different applications. The behavior around user creation/deletion as opposed to other
operations works the same way in ADLDS as well (that is, creation and deletion always occur in the
container pointed at by the connection string, whereas searches and operations that bind to a user start
at the root of the specified container and then wend their way down through the container hierarchy
looking for a match). If you are wondering, ADLDS encompasses the same functionality of the ADAM
that was available for Windows Server 2003 and Windows XP.

The differences you will encounter when using ADLDS as a directory store with the provider are:

You can choose to run ADLDS on a machine that is not joined to a domain. This will probably ❑❑

not be common for folks that run a lot of Windows Server machines, but it would be familiar to
UNIX shops that just need to talk to an LDAP server and do not need the security mechanisms
supported by an AD domain infrastructure.

ADLDS can be installed multiple times on a single machine, with separate ADLDS installations ❑❑

running on different ports. Unlike AD, this means you can install ADLDS to listen on something
other than port 389 (if using non-SSL connections) or port 636 (if using SSL connections).

For an ADLDS server that is part of a domain, you can connect to the ADLDS instance using ❑❑

either a domain principal or an ADLDS principal. An ADLDS principal is simply a user account
that only exists inside of the ADLDS instance and is unknown in the general AD directory.

You need to manually set up ADLDS properly to store the data needed by the provider. With ❑❑

that said, you can go through the GUI installer for ADLDS and have it perform 95% of the setup
work for you. If you do not get the GUI portion of the install correct, though, you have to use
the dsmgmt.exe command-line tool that comes with ADLDS to manually create an application
partition for use by your application.

Quite honestly, security management of ADLDS is either much simpler or much more compli-❑❑

cated depending on which approach you take to securing your application data. You can take the
simple approach where you use the application identity of your worker process (or application
impersonation identity if you choose) and make it an administrator in an ADLDS partition. This
gives your web servers easy access to read and write data via ActiveDirectoryMembership​
Provider. On the other hand, you can follow the lockdown approaches described in the previ-
ous section on Active Directory where you grant specific rights to specific accounts (for exam-
ple, admin accounts versus read-only accounts) and then use different provider instances for
different operations. The snag with this approach is that the administrative tool for modifying
ADLDS ACLs is quite simply abominable for anyone who is not directory savvy (and I defi-
nitely do not fall in the directory guru camp!). You have to use the command-line dsacls.exe
tool that comes with ADLDS to manually ACL your application containers. This same process
with Active Directory can be a little intimidating, but the MMC management tools for AD help
you through the process. No such GUI tool support currently exists for ADLDS. With that said,
if you feel comfortable manually ACL’ing containers in ADLDS, you can definitely use that
approach to narrow the privileges granted to different accounts.

Connectivity to the ADLDS instance is either in the clear or over an SSL connection. ❑❑ Active​
DirectoryMembershipProvider does not support any type of connection security other than
SSL. Of course, you can always use lower-level security measures such as IPsec, but that level
of network security functions at a lower level and is transparent to both the provider and the
LDAP networking stack.

79301c13.indd 676 10/6/08 12:16:35 PM

677

Chapter 13: ActiveDirectoryMembershipProvider

Because using ADLDS has a bit of a different flavor from using Active Directory, you will see some
common steps described in this section so that you get an idea of how to get an application partition
installed properly. After you see how to get to that point, you will look at connecting to the ADLDS
store and carrying out basic provider operations against the directory store.

Installing ADLDS with an Application Partition
The first thing you need to accomplish is the installation of an ADLDS instance that the provider can
connect to. Unlike Active Directory, where you already have a server running with the default Users con-
tainer, with ADLDS you are starting from scratch. The first step is to add the Active Directory Lightweight
Directory Services role on Windows Server 2008. Once the role is added, you will notice a new snap-in
in the Administrative Tools named Active Directory Lightweight Directory Services Setup Wizard.
This is the setup you will use to install the ADLDS on the machine. The installer walks you through a
number of wizard steps for setting up an ADLDS instance. The first important step in the installation
process is the naming the ADLDS instance. This is important when you work with ADLDS through a
tool like the services control panel, but the service name itself has no impact when using the provider.
Figure 13-10 shows the wizard step where you name the ADLDS instance.

Figure 13-10

One of the next wizard steps lets you choose the port numbers for SSL and non-SSL communications.
If this is the only ADLDS instance that will be running on the server, and the server is also not an AD
domain controller (in which case AD already owns ports 389 and 636), you can just leave the default
port selections as is.

Later on in the wizard, there is a step where you create an application partition. This is important
because it determines the first part of the distinguished name that you will use in the connection string.
Because ADLDS directories are their own little world, you can use any type of distinguished name that
makes sense. However, if you plan to create organizational units within this application partition, you
are limited to specific types of objects in the distinguished name that you choose. In Figure 13-11, you
can see that I chose a distinguished name that ends in an organization because organizations in
ADLDS can contain OUs.

79301c13.indd 677 10/6/08 12:16:35 PM

678

Chapter 13: ActiveDirectoryMembershipProvider

Figure 13-11

One of the steps in the wizard is to select the service account that ADLDS will use to perform opera-
tions. By default it uses the default Windows service account. For this installation, I will be satisfied
with the default account, as shown in Figure 13-12.

Figure 13-12

As you progress through the wizard, one of the next steps is choosing an administrative user for the
application partition. This user account will by default be able to use command-line and GUI tools to con-
figure ADLDS further. In Figure 13-13, I left the wizard with the default of the currently logged-on user.

79301c13.indd 678 10/6/08 12:16:35 PM

679

Chapter 13: ActiveDirectoryMembershipProvider

Figure 13-13

One of the last major steps in the wizard that you definitely want to take advantage of is the option to
import an LDIF file. LDIF files are conceptually the same as running .sql files against SQL Server to
install schema elements. In Figure 13-14, I selected the MS-User.ldf file to import because it contains
the definition of the user class that is required by the provider. If you forget to choose anything in this
step, then you have to import the LDIF file from the command line using a tool like ldifde.exe.

Figure 13-14

With these steps completed, you can finish the wizard, and after a brief pause you will have an ADLDS
directory server running and available for use by the provider. To connect to the ADLDS instance and the
application partition that you just created, you can use the adsiedit MMC tool, which is automatically
installed with ADLDS on your machine. You will need to set up the connection settings by choosing Con-
nect To from the ADLDS ADSI Edit node in the MMC. You can see how to set up the connection settings
in Figure 13-15.

79301c13.indd 679 10/6/08 12:16:35 PM

680

Chapter 13: ActiveDirectoryMembershipProvider

Figure 13-15

In this case, I have pointed the MMC at my local machine’s ADLDS instance listening on port 50000. The
connection settings also point at the application partition O=MyOrganization,DC=bhaidar,DC=net that
was created with the ADLDS install wizard. Because you probably do not want user objects to be stored
directly at the root of the application partition, you should create a container to store your application’s
user objects. In my case, I created an OU by right-clicking the partition node and choosing New ➪ Object.
In the dialog box that pops up after this selection, I chose an object of type organizationalUnit and then
named it ApplicationUsers. Note that if you do not see the object type organizationalUnit in the selection
list box, it is probably because your application partition used a container type that cannot be a parent of
OU objects.

The last step at this point is to configure a domain account with administrative rights in the partition so
that all of the methods on ActiveDirectoryMembershipProvider will work. Unlike AD where a famil-
iar security UI is used, in ADLDS you have to go through a somewhat awkward configuration process.
Using the adsiedit MMC tool, click the CN=Roles node. This displays all of the ADLDS groups (not
Active Directory domain groups) that currently exist in the ADLDS application partition. In the right-
hand side of the MMC, right-click the CN=Administrators entry and select Properties. This pulls up a
list of all the attributes on the Administrators object. You need to scroll through this list and find the
member attribute. Highlight that attribute and click the Edit button. This pulls up the clearly named
Multi-valued Distinguished Name With Security Principal Editor dialog box. In this box, there are two
buttons: Add Windows Account and Add DN.

This dialog box allows you to add either domain principals (such as domain users, as well as well-known
accounts like the NETWORK SERVICE account) or ADLDS user principals into the Administrators group.
For now, I just added the web server’s NETWORK SERVICE account to the group. You can see what this
all looks like in Figure 13-16.

79301c13.indd 680 10/6/08 12:16:36 PM

681

Chapter 13: ActiveDirectoryMembershipProvider

If you do not plan on setting up SSL for your ADLDS instance, then you will need to add some other
account aside from NETWORK SERVICE to the Administrators group. Remember that you can only
connect to ADLDS with the ActiveDirectoryMembershipProvider in one of two ways: over SSL or in
the clear. The provider is not able to connect to ADLDS over non-SSL connections using either the default
process credentials or explicit domain account credentials. Instead, you always need an ADLDS user
principal that can be used as the explicit username configured for the provider.

Because the demo code in the next section uses an ADLDS instance that is not configured to use SSL,
you need to add some other security principal to the Administrators group. I created another OU in
the application partition called PartitionUserAccounts, and I added a user to it called Application​
UsersAdministrator. The full distinguished name for this new account is:

 CN=ApplicationUsersAdministrator,
 OU=PartitionUserAccounts,
 O=MyOrganization,
 DC=bhaidar,
 DC=net

You can add this account to the Administrators group using the same process described earlier, though
you will want to click the Add DN (Distinguished Name) button for this case. Make sure that you have
the distinguished name of the administrators account handy because you will not get any nice GUI for
selecting ADLDS principals; instead, you have to type the full distinguished name. Figure 13-17 shows
the end result of adding the ADLDS user principal to the Administrators group. Notice the highlighted
account in the security principal dialog box.

Figure 13-16

79301c13.indd 681 10/6/08 12:16:36 PM

682

Chapter 13: ActiveDirectoryMembershipProvider

Figure 13-17

One thing to warn you about: even though you now have an ADLDS user principal, it is very likely that
you still can’t use it at this point. Unfortunately, the errors you will get back from the provider or from
other tools like ldp.exe will not tell you the problem. There are two more things you need to do to get
the ADLDS user principal working:

	 1	 You need to explicitly set a password on it. You might have noticed that when you created the
ADLDS user principal, at no point were you prompted for a password.

	 2	 You need to enable the user account. By default newly created ADLDS user principals are cre-
ated in a disabled state when running on Windows Server 2008 machines that have any type
of password restrictions in effect. As a result, you need to enable the account after you set the
password.

You can easily set the password for the ADLDS user principal by right-clicking the user object in the
adsiedit tool and choosing Reset Password. After you have set the password for the account, right-
click the user object again and choose Properties. Scroll down the list of properties until you find the
property called msDS-UserAccountDisabled. Notice that it is currently set to true. Double-click it,
and set the property to false. With these two steps the ADLDS user principal has a password and the
account is now enabled so that you can actually use it for authentication purposes.

At this point you have an ADLDS instance, an application partition with an OU for storing users, and
administrative security privileges on the application partition with an ADLDS user principal so that the
ActiveDirectoryMembershipProvider can be configured with explicit connection credentials. So
now you are at a point where you can hook up an ASP.NET application to the ADLDS instance and
start making use of it.

Using the Application Partition
As with using Active Directory, the first step to getting ActiveDirectoryMembershipProvider
to work is getting the connection string set up properly. Unlike connecting to Active Directory, for

79301c13.indd 682 10/6/08 12:16:36 PM

683

Chapter 13: ActiveDirectoryMembershipProvider

ADLDS you must supply a container in the connection string. By now, this restriction should make
sense because in ADLDS you saw that you always work in the context of an application partition, so at
the very least you will be creating users starting in this partition. In this case, though, because there is
also a user OU, you use a connection string that points at the OU:

<connectionStrings>
 <add
 name=”adldsConnection”
 connectionString=”LDAP://localhost:50000/OU=ApplicationUsers,O=MyOrganization,D
C=bhaidar,DC=net”
 />
</connectionStrings>

In this case, I explicitly specified a port number as well. Because the ADLDS instance on my machine is
running on the default 389 port, the number is not really required. But if you installed ADLDS in a non-
default port as in the case here, the syntax shown above is what you would use.

Because the sample application will be connecting over a non-SSL connection, the provider configura-
tion needs to use an explicit set of credentials. In the configuration that follows, the provider is config-
ured to use the ADLDS user principal that was just created.

 <membership defaultProvider=”adldsprovider”>
 <providers>
 <clear/>
 <add
 name=”adldsprovider”
 type=”System.Web.Security.ActiveDirectoryMembershipProvider…”
 connectionProtection=”None”
 connectionUsername=”CN=ApplicationUsersAdministrator,OU=PartitionUserAccoun
ts,O=MyOrganization,DC=bhaidar,DC=net”
 connectionPassword=“pass!word1“
 connectionStringName=”adldsConnection”
 />
 </providers>
 </membership>

As noted earlier, for a production environment you should use protected configuration so that the cre-
dentials are not visible in cleartext. Because the ADLDS instance does not support SSL, the connection​
Protection attribute is set to None. This causes the provider to skip looking for an SSL connection to the
directory instance. For the explicit username, the full distinguished name of the user account is needed.
This is one visible case where configuring the provider for ADLDS differs from AD. Unlike AD, ADLDS
does not really have the concept of binding to a user object by way of a user principal name that is indexed
in a global catalog. Instead, when you connect to ADLDS with an ADLDS user principal you need to
supply the distinguished name so that ADLDS can actually find the user object in the directory.

Because the provider is configured to use a non-SSL connection, one last piece of ADLDS configuration
is necessary. For security reasons, ADLDS does not allow passwords to be set or changed over non-SSL
connections. You can change this behavior by using the dsmgmt.exe tool included with the ADLDS
installation. The following output shows the command-line conversation with dsmgmt that re-enables
the ability to set passwords over non-SSL connections:

 C:\Windows\system32\dsmgmt.exe:
 ds behavior

79301c13.indd 683 10/6/08 12:16:36 PM

684

Chapter 13: ActiveDirectoryMembershipProvider

 AD DS/LDS behavior:
 connections
 server connections:
 connect to server localhost:50000
 Binding to localhost:
 50000 …
 Connected to localhost:
 50000 using credentials of locally logged on user.
 server connections:
 quit
 AD DS/LDS behavior:
 allow passwd op on unsecured connection
 Successfully modified AD DS/LDS Behavior
 to reset password over unsecured network.
 AD DS/LDS behavior:
 quit
 C:\Windows\system32\dsmgmt.exe:
 quit

This type of configuration is acceptable for a development environment or a test-bed environment.
However, I would not recommend doing this for a production environment unless you are securing
the network traffic with some other mechanism such as IPsec. Although it requires more hoops to jump
through (you need to obtain the SSL certificate and then follow the ADLDS help topics for installing
the certificate on the ADLDS server and on all of the clients that will communicate with it), securing
ADLDS traffic with SSL in your production environments is definitely the right thing to do.

By this point, I really promise that all of the mucking around with ADLDS configuration magic is done.
To test things, you can drop a CreateUserWizard on a page and create a new user account. I created a
new account called testuser@bhaidar.net. If you look in the adsiedit tool after running the test
page (make sure to refresh the ApplicationUsers OU so that the tool will see the new user), you will
see that a new user object with common name CN=testuser@bhaidar.net has been created in the OU.
A few things to note about this user object:

Although I typed in ❑❑ testuser@bhaidar.net for the username in the wizard, the provider
automatically set the common name to testuser@bhaidar.net as well. If you look at the
properties for the user object, both the “common name” (aka CN) and the userPrincipalName
have been set to the same value. As a developer using the provider you do not ever deal with
the common name, but other applications that are more LDAP-aware will depend on the CN as
opposed to the userPrincipalName because in the world of LDAP you constantly reference
objects using their distinguished name. The CN attribute is part of an object’s distinguished name.
So in the case of testuser, its distinguished name is now CN=testuser@bhaidar.net,​
OU=ApplicationUsers,O=MyOrganization,DC=bhaidar,DC=net.

Unlike the ❑❑ adsiedit tool, the provider automatically set the msDS-UserAccountDisabled
attribute to false for you. Of course, if you call CreateUser with the isApproved parameter
set to false, then the msDS-UserAccountDisabled field will be set to true by the provider.

With the new user created, you can now try logging in using the Login control. Just type in the user-
name testuser@bhaidar.net, and you will be logged in successfully. At this point, you can call any
of the other methods on ActiveDirectoryMembershipProvider. Fetching the MembershipUser
object and displaying its information works as expected. If you enable searching you can call the search
related methods as well. If you extend the schema in ADLDS with the five attributes necessary for self-
service password resets, you can use the ResetPassword method. Overall, you will see that after you

79301c13.indd 684 10/6/08 12:16:36 PM

685

Chapter 13: ActiveDirectoryMembershipProvider

get past the ADLDS-specific configuration work and unique aspects of connecting to ADLDS, Active​
Directory​MembershipProvider works the same way against ADLDS as it does against AD. There is
no difference in terms of supported provider functionality between the two directory stores.

Using the Provider in Partial Trust
All the examples shown so far for Active Directory and for ADLDS have been running in full trust.
However, if you attempt to use the provider directly in a partial trust environment it will fail. Within
the provider’s Initialize method, an explicit check is made for Low trust. The provider itself is attrib-
uted with a link demand for System.DirectoryServices.DirectoryServicesPermission. Also,
each of its public methods is attributed with a full demand for the same permission.

C#
[DirectoryServicesPermission(SecurityAction.LinkDemand, Unrestricted=true)]
[DirectoryServicesPermission(SecurityAction.InheritanceDemand, Unrestricted=true)]
public class ActiveDirectoryMembershipProvider : MembershipProvider
{
…
[DirectoryServicesPermission(SecurityAction.Assert, Unrestricted=true)]
[DirectoryServicesPermission(SecurityAction.Demand, Unrestricted=true)]
[DirectoryServicesPermission(SecurityAction.InheritanceDemand, Unrestricted=true)]
 public override string ResetPassword(string username, string passwordAnswer)
…
}

VB.NET
 <DirectoryServicesPermission(_
 SecurityAction.LinkDemand, _
 Unrestricted:=True), _
 DirectoryServicesPermission(_
 SecurityAction.InheritanceDemand, _
 Unrestricted:=True)> _
 Public Class ActiveDirectoryMembershipProvider
 Inherits MembershipProvider
 …
 <DirectoryServicesPermission(_
 SecurityAction.InheritanceDemand, _
 Unrestricted:=True), _
 DirectoryServicesPermission(_
 SecurityAction.Assert, _
 Unrestricted:=True), _
 DirectoryServicesPermission(_
 SecurityAction.Demand,
 Unrestricted:=True)> _
 Public Overrides Function ResetPassword(_
 ByVal username As String, _
 ByVal passwordAnswer As String) As String

In the case of individual public methods, the provider actually asserts DirectoryServicesPermission
at the same time it demands it. This cuts down on the overhead of walking the stack each time code in

79301c13.indd 685 10/6/08 12:16:36 PM

686

Chapter 13: ActiveDirectoryMembershipProvider

System.DirectoryServices or System.DirectoryServices.Protocols makes a demand. Because
the declarative demand will already have verified that all of its callers have the necessary privileges,
there is no reason to rerun the stack walk when the provider makes calls into classes from these
namespaces.

If you drop the trust level of an ASP.NET application down to High trust, any of the previous examples
will immediately fail with an error like the following:

Request for the permission of type ‘System.DirectoryServices.
DirectoryServicesPermission, System.DirectoryServices, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a’ failed.

Thankfully, this error is at least clear enough to give you an idea of the problem, as well as a possible
workaround. There are actually two approaches to getting the provider working again in partial trust:

Add ❑❑ DirectoryServicesPermission to the appropriate ASP.NET trust policy file (or create a
custom trust policy with the permission).

Wrap all calls to the provider in a GAC’d assembly that asserts ❑❑ DirectoryServicesPermission.

The first approach is definitely the easiest to implement, but it is also less secure. Broadly granting
DirectoryServicesPermission to a partially trusted application means that anyone can write code
to start accessing your directory servers. In essence, it takes away the layer of protection on the web
server and means that you are depending on whatever ACLs you set on your directory servers to pro-
tect against a malicious developer trolling through your data.

If you are running in the High trust bucket-though, this is effectively a trust bucket meant to be very
much like Full trust, but without unmanaged code permissions. So, it isn’t unreasonable for a High
trust application to use the first approach. You can modify the High trust policy file with the following:

<SecurityClass
 Name=”DirectoryServicesPermission”
 Description=”System.DirectoryServices.DirectoryServicesPermission, … “ />
…

 <IPermission
 class=”DirectoryServicesPermission”
 version=”1”
 Unrestricted=”true” />

By now, these types of changes should be pretty familiar. Register DirectoryServicesPermission
with a <SecurityClass /> entry in the <SecurityClasses /> element. Then inside of the XML ele-
ment defining the ASP.NET named permission set, add the <IPermission /> element. With these two
changes, your partial trust ASP.NET application will start working again when using
ActiveDirectoryMembershipProvider.

Using a wrapper assembly involves a little more work, but it is actually pretty simple to accomplish.
Create a new class library project in Visual Studio, making sure to reference the following assemblies:

System.Configuration❑❑ : Needed because the project will be creating a new provider.

79301c13.indd 686 10/6/08 12:16:36 PM

687

Chapter 13: ActiveDirectoryMembershipProvider

System.Web❑❑ : Because the custom provider will be deriving from ActiveDirectory​
MembershipProvider

System.DirectoryServices❑❑ : This assembly contains the DirectoryServicesPermission.

You will need to generate a key file and enable strong naming for the project. Because the intent of the
wrapper assembly is to assert DirectoryServicesPermission on behalf of partially trusted applica-
tions, you also need to add the APTCA attribute to AssemblyInfo.cs:

C#
using System.Security;
…
[assembly: AllowPartiallyTrustedCallers()]

VB.NET
Imports System.Security
<Assembly: AllowPartiallyTrustedCallers()>

With these basic tasks completed, you can now “write” the wrapper provider. In reality, the wrap-
per provider is nothing more than a class definition where DirectoryServicesPermission can be
asserted along with overrides for each of the methods you want available to partial trust applications.

C#
using System;
using System.Configuration.Provider;
using System.Security.Permissions;
using System.Web.Security;
using System.DirectoryServices;

namespace ADProviderWrapper
{
 [DirectoryServicesPermission(SecurityAction.Assert, Unrestricted=true)]
 public class ADProviderWrapper : ActiveDirectoryMembershipProvider
 {
 //You must always override Initialize
 public override void Initialize(string name,
 System.Collections.Specialized.NameValueCollection config)
 {
 base.Initialize(name, config);
 }

 public override bool ChangePassword(string username,
 string oldPassword, string newPassword)
 {
 return base.ChangePassword(username, oldPassword, newPassword);
 }

 public override bool ChangePasswordQuestionAndAnswer(string username,
 string password, string newPasswordQuestion, string newPasswordAnswer)
 {
 return base.ChangePasswordQuestionAndAnswer(username, password,
 newPasswordQuestion, newPasswordAnswer);

79301c13.indd 687 10/6/08 12:16:36 PM

688

Chapter 13: ActiveDirectoryMembershipProvider

 }

 //Additional overrides for methods you want available in partial trust
 }
}

VB.NET
Imports Microsoft.VisualBasic
Imports System
Imports System.Configuration.Provider
Imports System.Security.Permissions
Imports System.Web.Security
Imports System.DirectoryServices

Namespace ADProviderWrapper
 <DirectoryServicesPermission(SecurityAction.Assert, Unrestricted:=True)> _
 Public Class ADProviderWrapper
 Inherits ActiveDirectoryMembershipProvider
 Public Overrides Sub Initialize(_
 ByVal name As String, _
 ByVal config As System.Collections.Specialized.NameValueCollection)

 Public Overrides Function ChangePassword(_
 ByVal username As String, _
 ByVal oldPassword As String, _
 ByVal newPassword As String) As Boolean

 Public Overrides Function CreateUser(_
 ByVal username As String, _
 ByVal password As String, _
 ByVal email As String, _
 ByVal passwordQuestion As String, _
 ByVal passwordAnswer As String, _
 ByVal isApproved As Boolean, _
 ByVal providerUserKey As Object, _
 <System.Runtime.InteropServices.Out()> ByRef status As _
 MembershipCreateStatus) As MembershipUser

Return MyBase.CreateUser(username, password, _
 email, passwordQuestion, _
 passwordAnswer, isApproved, _
 providerUserKey, status)
End Function
 Public Overrides Function ChangePasswordQuestionAndAnswer(_
 ByVal username As String, _
 ByVal password As String, _
 ByVal newPasswordQuestion As String, _
 ByVal newPasswordAnswer As String) As Boolean

 Return MyBase.ChangePasswordQuestionAndAnswer(_
 username, password, _

79301c13.indd 688 10/6/08 12:16:37 PM

689

Chapter 13: ActiveDirectoryMembershipProvider

 newPasswordQuestion, newPasswordAnswer)
 End Function

Code-wise, there isn’t anything complex going on here. You start out referencing all of the related
namespaces, derive from ActiveDirectoryMembershipProvider and then override the methods that
you care about. The declarative assertion on the class means the common language runtime (CLR) will
automatically assert this permission for any method that the class implements. The only method that
you are required to override is the Initialize method. Because Initialize is always called when
the Membership feature is instantiating providers based on configuration, you have to make sure the
custom provider’s implementation is called first in order to get the permission assertion onto the stack.

Other than the Initialize method, you can override whichever methods you care about exposing to
partial trust applications. If your intent is to use all of the functionality of ActiveDirectoryMembership​
Provider from partial trust, then you would override all of the public methods on the provider. You
might think that just adding the assertion for DirectoryServicesPermission would be sufficient and
that you could avoid overriding any individual methods. Because the ActiveDirectoryMembership​
Provider has a class level link demand. though, any method that is not overridden means that the
Framework will evaluate the link demand against the code that is directly calling it. Of course, for par-
tial trust applications, this means that your partially trusted page code will be the immediate caller,
and hence without an intervening override from the custom provider sitting on the call stack, the link
demand will fail.

After you compile the custom provider and install it in the GAC, you can modify your partial trust
application to use it:

<trust level=”High” />

<compilation>
 <assemblies>
 <add
 assembly=”ADProviderWrapper, Version=1.0.0.0, Culture=neutral, Publi
cKeyToken=b95a0989e24f0920”
 />
 </assemblies>
</compilation>

<membership defaultProvider=”gacdprovider”>
 <providers>
 <clear/>
 <add
 name=”gacdprovider”
 type=”ADProviderWrapper.ADProviderWrapper,ADProviderWrapper,
 Version=1.0.0.0, Culture=neutral, PublicKeyToken=b95a0989e24f0920”
 enableSearchMethods=”true”
 connectionStringName=”directoryconnection”
 />
 </providers>
</membership>

The <assemblies /> directive makes the ASP.NET application aware of the custom provider sitting in
the GAC. The <membership /> section adds the GAC’d provider and indicates that it should be used as
the default provider for the Membership feature. At this point, you can run your partial trust application
and make use of the functionality in ActiveDirectoryMembershipProvider without running into any

79301c13.indd 689 10/6/08 12:16:37 PM

690

Chapter 13: ActiveDirectoryMembershipProvider

security exceptions. From the point of view of the application developer, using the GAC’d provider is no
different than using the base provider. The nice thing about using the GAC’d provider is that you have
the ability to customize the subset of functionality on ActiveDirectory​MembershipProvider that you
want to make available in your partial trust applications. For example, you could create a custom pro-
vider that only asserts permissions for read-oriented methods like ValidateUser, while choosing not to
override more sensitive methods like ChangePassword or ResetPassword.

Summary
ActiveDirectoryMembershipProvider works with both AD and ADLDS directory stores. The provider
implements all of the functionality of the Membership API with the following two exceptions: the pro-
vider does not keep track of users that are online, and the provider does not support password retrieval.
You should probably invest some time planning for deploying and using the provider, especially in com-
plex domain environments. When running against AD ActiveDirectoryMembershipProvider works
in the scope of either a single domain, or a container within a domain. You can still leverage the provider in
multidomain scenarios, but you will need to configure at least one provider instance per domain that you
need to work with. Within the scope of a single domain, you can choose to point the provider at the root of
the domain (that is, the default naming context), or at a specific container within the domain. In the case of
ADLDS, though, you always have an application partition, so for ADLDS the provider will at least always
be working in the context of the application partition (which itself is a container). As with AD, you can also
configure containers in ADLDS and have the provider work within the context of these containers.

After you have settled on which domain and/or container you are working with, the next major decision
is the type of username you plan to support. For ADLDS, the username in the Membership feature will
always map to the userPrincipalName attribute in the directory. For Active Directory, you can choose
to use either the userPrincipalName or the sAMAccountName attribute. Applications using older direc-
tories that were upgraded from NT4 will likely need to switch the provider to use sAMAccountName. The
provider automatically maps other directory attributes to the various properties on a MembershipUser
instance. A small subset of the MembershipUser properties can have these attribute mappings changed
from their defaults. If you choose to enable password resets for the provider (not enabled by default),
then you will need to edit the directory schema in order to store the question and answer as well as the
bad password answer tracking information.

Although securing AD and ADLDS is an entire topic in and of itself, there are two main security deci-
sions to keep in mind when using ActiveDirectoryMembershipProvider. By default, the provider
attempts to establish a secure connection with AD or ADLDS. In the case of AD, this will normally “just
work.” For ADLDS, though, you need to explicitly configure SSL support on the ADLDS server and on
the web servers for the provider to be able to securely connect to the directory. The other aspect of secu-
rity to consider is locking down read and write access to user objects in the directory. If at all possible,
you should plan on storing different user populations in different OUs in your directory, and you should
also delegate control over those OUs to specific accounts. You can then configure different provider
instances using different sets of explicit credentials that only have selected rights in a specific OU.

Although ActiveDirectoryMembershipProvider ships as part of ASP.NET, it has been tested and
is supported for use in non-ASP.NET environments as well. For both ASP.NET and non-ASP.NET envi-
ronments, though, the provider will only work in full trust by default. In partial trust ASP.NET envi-
ronments, you do have the option of adding the DirectoryServices permission to a trust policy file.
However, the more secure approach for any partial trust environment is to wrap access to the provider
inside of a GAC’d assembly.

79301c13.indd 690 10/6/08 12:16:37 PM

14
Role Manager

Role Manager is a feature that was added in ASP.NET 2.0 and fully supported in ASP.NET 3.5 that
provides the basic functionality necessary to create an IPrincipal-based object associated with
roles. The motivation for the Role Manager feature is to make it easy for developers to associate
users with roles and then perform role checks both declaratively and in code. The Role Manager
feature is sometimes referred to as a companion feature to Membership because Role Manager
can be used to provide authorization for users that have been authenticated using Membership.
However, Role Manager can also be used as a standalone feature that integrates with other
authentication mechanisms, including Windows authentication.

As with the Membership feature, Role Manager can be used in non-ASP.NET environments such
as the Windows Forms application and console applications, thus making it easier for developers
to share a common set of authenticated users and role information across different client applica-
tions. This chapter will cover:

The ❑❑ Role class

The ❑❑ RolePrincipal class

The ❑❑ RoleManager model

RoleProvider❑❑

WindowsTokenRoleProvider❑❑

79301c14.indd 691 10/6/08 12:16:58 PM

692

Chapter 14: Role Manager

The Roles Class
As with the Membership feature, the Role Manager feature has a static class that can be used as an easy
way to access the functionality of the feature. The Roles class has methods and properties that cover
the following areas:

Public properties that primarily expose the Role Manager data from configuration.❑❑

Public methods that act as façades on top of the default Role Manager provider.❑❑

A single utility method that you can use for clearing the Role Manager cookie.❑❑

Because most ASP.NET provider-based features follow the same general design, I won’t rehash how
default providers work or the concept of façade methods mapping to the default provider. These areas
work the same way in Role Manager as was described earlier in Chapter 11, which discussed Membership.

Regardless of where Role Manager is used, the feature always requires at least Low trust to work. This
means that either an ASP.NET application must run in Low trust or higher to use the feature or, for a
non-ASP.NET application, the AspNetHostingPermission must be granted to the calling code with a
level of Low or higher.

The public properties on the Roles class for the most part just mirror the configuration settings from
configuration. Some of the properties should be familiar to you because they work the exact same way
on the static Membership class. Properties that are provider-specific or that involve unique behavior to
the Role Manager features are described below.

Provider❑❑ : Returns a RoleProvider reference to the provider defined by the defaultProvider
attribute on the <roleManager /> configuration element.

Providers❑❑ : Returns a RoleProviderCollection containing one reference to each provider
defined within the <providers /> element contained within a <roleManager /> element.

ApplicationName❑❑ : Returns the value of the applicationName provider configuration attri-
bute for the default provider.

Enabled❑❑ : Returns true if the Role Manager feature is enabled. The concept of being “enabled”
though is based upon two different factors: the “enabled” attribute from the <roleManager />
configuration element and the current trust level. Unlike Membership, you can go into configura-
tion and explicitly disable the Role Manager feature (effectively, the Membership feature is
always “on”). In fact, the default configuration of the Role Manager feature is disabled; you
won’t see this in machine.config, but the hard-coded value for the “enabled” attribute in the
RoleManagerSection class is false. Because machine.config does not redefine this attri-
bute, Role Manager is turned off by default on all machines. Assuming that you explicitly
enable the Role Manager feature by setting the “enabled” attribute to true, you still need to be
running in Low trust or higher. If you are running in Minimal trust, Roles.Enabled will always
return false, regardless of the setting in configuration. This is done because Role Manager
(and for that matter Membership) is not intended for use in Minimal trust applications.

CacheRolesInCookie❑❑ : By default, this value is set to false. If it is set to true, the Role​Manager​
Module attempts to improve the performance of the Role Manager feature by caching the roles for
a user within a cookie and using the cookie during subsequent page hits. Cookie caching is covered
in detail in the section on the RoleManagerModule.

79301c14.indd 692 10/6/08 12:16:58 PM

693

Chapter 14: Role Manager

MaxCachedResults❑❑ : The maximum number of roles that the RoleManagerModule will attempt
to stuff into a cookie, assuming that CacheRolesInCookie is set to true. Because cookies are
usually limited in size to around 4KB, you can use this setting to proactively hint the module so
that it doesn’t waste time attempting to pack enormous numbers of roles into a cookie.

There are seven more public properties on the Roles class, but I won’t list them here because these addi-
tional properties all deal with the roles cookie. The corresponding configuration attributes are covered a
little later in the section on role cache cookie settings. If you are familiar with the cookie options for forms
authentication in ASP.NET 2.0 and ASP.NET 3.5, then the cookie settings available from the Roles class
will make sense. For the most part, they control the same set of functionality (that is, cookie name, path,
protection, and so on) as forms authentication. The one minor difference is that, unlike forms authentica-
tion, the Role Manager feature only supports the use of cookies for caching roles. There is no such thing as
caching a user’s roles in a cookieless value on the URL. The effective 4KB upper limit is already constrain-
ing for some Role Manager scenarios; attempting to cram cached roles into a path segment with an upper
limit of 255 characters just wouldn’t work.

Aside from the façade methods that provide easy-to-use method overloads for the default RoleProvider,
there is one other method of interest on the Roles class: DeleteCookie. As the method name suggests,
after you call this method the Roles class sends a clear cookie back to the browser that forces the Role
Manager cookie in the browser to be deleted. Of course, if you never use cookie caching with Role Man-
ager, you will never have a reason to call this method. However, if you create a logout page for your
users, you should call Roles.DeleteCookie after clearing the authentication information as well:

C#
//Logout page logic
FormsAuthentication.SignOut();
Roles.DeleteCookie();

//Additional logic to prevent forms cookie re-use – see Chapter 6

VB.NET
‘Logout page logic
FormsAuthentication.SignOut()
Roles.DeleteCookie()

‘Additional logic to prevent forms cookie re-use – see Chapter 6

If you forget to call Roles.DeleteCookie from your logout page, it isn’t the end of the world. The
RoleManagerModule responsible for handling the cookie is smart enough to ignore and clear any role
cookies sent by anonymous users. So if you have a role cookie lying around in the browser after a log-
out, the next time a user hits your site the RoleManagerModule will automatically call DeleteCookie.

One thing that developers sometimes look for when they start working with the Role Manager feature
and the Roles class is some kind of role object. For ASP.NET 2.0 or ASP.NET 3.5, a role is just a string
value; there is no rich object model for representing a role or manipulating a role. As a result, when you
use the Roles class, you can see that most of the method parameters are just strings. You associate users
(represented as a string username and an implicit application name) with role names. If ASP.NET ever cre-
ates a rich role object in a future release, it will probably require a substantial overhaul to the Role Man-
ager feature because the current implementation is so tightly tied to the basic concept of a role as a string.

79301c14.indd 693 10/6/08 12:16:58 PM

694

Chapter 14: Role Manager

The façade methods include some extra logic for the case that the Roles class is called when the cur-
rent user is represented by a RolePrincipal, and the method calls on the Roles class potentially affect
that user. This allows the Roles class to take advantage of the caching behavior in the RolePrincipal
class. For web applications, the current user is determined by looking at HttpContext.Current.User.
Because the Role Manager feature is also supported for non-ASP.NET applications, the Roles class will
look for the current user object in Thread.CurrentPrincipal for non-web applications.

This means that if you want the full functionality of the Role Manager feature to work consistently
outside of ASP.NET, you should write some code that initializes Thread.CurrentPrincipal with a
RolePrincipal for the current user of your application. As is described in the next section on Role​
Principal, you can create a RolePrincipal that wraps a WindowsIdentity. This means that you
can have a fat-client application that requires a logged in Windows user but that fetches application-
specific role information using the Role Manager feature.

The interaction between Roles and RolePrincipal is described here for each of the relevant façade
methods:

IsUserInRole❑❑ : If the current user is a RolePrincipal, and the username parameter to this
method matches the username (that is, IIdentity.Name) for the RolePrincipal, and the name
of the provider associated with this RolePrincipal matches the name of the default Role Manager
provider, the façade method instead calls RolePrincipal.IsInRole. The string comparison for
username is a case-insensitive ordinal-based comparison. However, if the username or provider
name of the RolePrincipal doesn’t match the username parameter to the method or the name of
the default provider, Roles.IsUserInRole calls the default RoleProvider instead. Note that for
the parameterless IsUserInRole overload, the username is taken from HttpContext.Current​
.User. So if a RolePrincipal is attached to the context for this case, the parameterless IsUser​
InRole overload usually results in a call to RolePrincipal.IsInRole instead.

GetRolesForUser❑❑ : This method has the same behavior as IsUserInRole. If the current user is
a RolePrincipal, and all of the other data matches, then the Roles class calls RolePrincipal​
.GetRoles. Otherwise, the Roles class calls the GetRolesForUser method on the default
provider.

DeleteRole❑❑ : This method checks to see whether the current user is a RolePrincipal and if the
RolePrincipal object uses the default provider. If both of these conditions are met, and if the
RolePrincipal instance has cached role information within itself, the method checks to see
whether the user represented by the principal belongs to the role that is being deleted. If this is the
case, the method invalidates the RolePrincipal cache by calling RolePrincipal.SetDirty.
Normally, you see this behavior only if you are in a management application and you change the
role membership for the user that you are currently logged in as.

AddUserToRole❑❑ , AddUsersToRoles, AddUserToRoles, AddUsersToRole: All of these methods
have logic similar to DeleteRole. If necessary, the current user represented by a RolePrincipal
has its internal cache flushed if that user was added to a role using any of these methods. As with
DeleteRole, you will probably only see this behavior when you are changing user-to-role
assignments for yourself, and you are logged in to an administrative application as yourself.

RemoveUserFromRole❑❑ , RemoveUsersFromRoles, RemoveUserFromRoles, RemoveUsers-
FromRole: These methods follow the same logic as described in the last two bullet points. In
this case, the RolePrincipal cache is flushed if the current user has been removed from a role
using any of these methods.

79301c14.indd 694 10/6/08 12:16:58 PM

695

Chapter 14: Role Manager

Just like the Membership feature, the Role Manager feature also has the concept of a primary key. The
username and the application name from a provider’s configuration are combined and used as the “pri-
mary key” when working with users and roles. See the section “The Primary Key for Membership” in
Chapter 10 for a detailed discussion of how the username and application name are used to reference
users. The only difference between Membership and Role Manager in this respect is that only the Mem-
bership feature went so far as to expose data-store-specific primary keys in its public APIs. The Role
Manager feature doesn’t do this—instead both the Roles class and the RoleProvider base class refer-
ence users with just a string username and roles with just a string role name. (The application name is
implicitly used as well because it is obtained from a provider’s configuration.)

The RolePrincipal Class
Because the Role Manager feature’s main purpose is to supply an IPrincipal based object, it includes
an implementation of this interface with the RolePrincipal class. The RolePrincipal is intended for
use anywhere a Framework application (ASP.NET or non-ASP.NET) expects to find an IPrincipal for
IsInRole calls. RolePrincipal also exposes some additional methods for retrieving all of a user’s
roles as well as for handling some of the work necessary when using cookie caching.

C#
public sealed class RolePrincipal : IPrincipal, ISerializable
{
 //Constructors
 public RolePrincipal(IIdentity identity, string encryptedTicket)
 public RolePrincipal(IIdentity identity)
 public RolePrincipal(string providerName, IIdentity identity)
 public RolePrincipal(string providerName, IIdentity identity,
 string encryptedTicket)

 //Cookie caching related methods
 public string ToEncryptedTicket()

 //Role Manager and IPrincipal related functionality
 public string[] GetRoles()
 public bool IsInRole(string role)
 public void SetDirty()

 //Public properties not related to cookie caching
 public int Version { get; }
 public IIdentity Identity { get; }
 public string ProviderName { get }
 public bool IsRoleListCached { get; }

 //Public properties related to cookie caching
 public DateTime ExpireDate { get; }
 public DateTime IssueDate { get; }
 public bool Expired {get; }
 public String CookiePath { get; }
 public bool CachedListChanged { get; }
}

79301c14.indd 695 10/6/08 12:16:58 PM

696

Chapter 14: Role Manager

VB.NET
<Serializable(), AspNetHostingPermission(_
 SecurityAction.LinkDemand, _
 Level:=AspNetHostingPermissionLevel.Minimal)> _
Public NotInheritable Class RolePrincipal
 Implements IPrincipal, ISerializable

 ‘Constructors
 Public Sub New(ByVal identity As IIdentity)
 Public Sub New(ByVal identity As IIdentity, ByVal encryptedTicket As String)
 Public Sub New(ByVal providerName As String, ByVal identity As IIdentity)
 Public Sub New(ByVal providerName As String, _
 ByVal identity As IIdentity, _
 ByVal encryptedTicket As String)

 ‘Cookie caching related methods
 Public Function ToEncryptedTicket() As String

 ‘Role Manager and IPrincipal related functionality
 Public Function GetRoles() As String()
 Public Function IsInRole(ByVal role As String) As Boolean
 Public Sub SetDirty()

 ‘Public properties not related to cookie caching
 Public ReadOnly Property Identity As IIdentity
 Public ReadOnly Property IsRoleListCached As Boolean
 Public ReadOnly Property ProviderName As String
 Public ReadOnly Property Version As Integer

 ‘Public properties related to cookie caching
 Public ReadOnly Property ExpireDate As DateTime
 Public ReadOnly Property IssueDate As DateTime
 Public ReadOnly Property CookiePath As String
 Public ReadOnly Property Expired As Boolean
 Public ReadOnly Property CachedListChanged As Boolean

End Class

The first thing that may leap out at you is that RolePrincipal is sealed! This has important implica-
tions for more complex scenarios such as handling multiple RoleProviders in an application with
cookie caching turned on. It also means that if you want to extend the principal to include custom
functionality, you can’t. Hopefully, in a future release the RolePrincipal class will be unsealed.

As you can see, although the RolePrincipal class implements the IPrincipal interface, it provides
quite a bit more functionality beyond just a simple role check. Take a look at the portion of RolePrinci-
pal that deals strictly with role information. There are two constructor overloads that can be used to cre-
ate a RolePrincipal when you aren’t using cookie caching. One constructor overload takes a single
IIdentity parameter, while the second overload accepts both an IIdentity and the name of a provider.

The IIdentity reference is needed because any class that implements IPrincipal needs to be able
to return the authenticated identity (that is, an IIdentity reference) associated with that principal.
You can see from the constructor signature that the RolePrincipal is not hard-coded to any specific

79301c14.indd 696 10/6/08 12:16:58 PM

697

Chapter 14: Role Manager

implementation of an IIdentity. That is why you can enable the Role Manager feature with any type
of authentication mechanism available in ASP.NET. Forms authentication creates a FormsIdentity,
Windows authentication results in a WindowsIdentity, and your own custom authentication mecha-
nisms may use GenericIdentity. For all of these cases, the RolePrincipal is unaware of the under-
lying authentication implementation that generates an IIdentity reference.

One reason that you might use the less-than-obvious combination of Windows authentication and
Role Manager is that you may not want to clutter your Active Directory with application-specific roles.
It may be a somewhat laborious process to register application-specific groups in your directory if the
directory is tightly managed by a central IT group. For this reason, storing application-specific roles
off to the side using Role Manager can be very convenient. Also, if you develop “quick-hit” web appli-
cations that exist for only a few weeks or months, it’s very easy to stuff application roles into a Role
Manager database that can be deleted when the application has outlived its usefulness.

With that said (and before the Active Directory team comes after me!) with the introduction of Active
Directory Lightweight Directory Services (aka ADLDS), application developers also have the option of
storing user-to-group assignments in application-specific ADLDS instances. You can take this approach
even further using the Authorization Manager (aka AzMan) feature of Windows Server 2003 and Win-
dows Server 2008 by deploying an AzMan policy store in an application-specific ADLDS instance. These
types of architectural decisions are beyond the scope of this book, but you should look into them espe-
cially for intranet web applications where you may be considering using Role Manager to get around
operational or administrative hassles of a centrally managed Active Directory.

You now know that all of the ASP.NET-based features key their user records off of a combination of user-
name and an application name usually found in a provider’s configuration. In the case of the Role​
Principal, when you use the constructors the RolePrincipal “knows” how to look up user infor-
mation from the default provider based on the following information:

The username comes from ❑❑ IIdentity.Name.

For the constructor with just a single ❑❑ IIdentity parameter, the application name is the one
used by the default RoleProvider as defined in configuration.

For the constructor that takes an additional ❑❑ providerName parameter, the application name is
the one associated with Roles.Providers[providerName].

In this way, the RolePrincipal can take an arbitrary string representation of a username, and it can
associate the username with role data maintained by any of the configured providers.

Most of the methods on RolePrincipal that are not directly associated with cookie caching are pretty
self-explanatory:

IsInRole❑❑ : Based on IIdentity.Name and the application name of the associated provider, the
RolePrincipal indicates whether or not IIdentity.Name belongs to the specified role. If the
RolePrincipal has not previously cached role information for the user, then the associated
provider is called to get all of the user’s roles. If this method is called for an IIdentity of an
unauthenticated user (that is, IIdentity.IsAuthenticated returns false), then this method
always returns false. This is because the Role Manager feature is only intended for use with
authenticated users. Because many sites have public and secured pages, the Role Manager fea-
ture can silently run without error for unauthenticated users; it’s just that methods like IsInRole
will always return false.

79301c14.indd 697 10/6/08 12:16:58 PM

698

Chapter 14: Role Manager

GetRoles❑❑ : The RolePrincipal returns a string array containing all of the roles that IIdentity​
.Name belongs to. If the RolePrincipal has not previously cached role information for the user,
then the associated provider is called to get all of the user’s roles. As with IsInRole, this method
has special behavior for unauthenticated users. For an unauthenticated user, this method always
returns an empty string array (that is, string[0]).

SetDirty❑❑ : Tells the RolePrincipal object that it should invalidate any internally cached data.
As a result, the next call to IsInRole or GetRoles will always result in a round trip to the asso-
ciated provider.

The noncookie caching properties and their behavior are listed here:

Identity❑❑ : This property returns the IIdentity that was originally used when the
RolePrincipal was constructed.

ProviderName❑❑ : The name of the provider associated with the RolePrincipal. This will return
the name of the default provider (if you used the constructor that only accepts an IIdentity)
or it will return the name of one of the providers configured for use with Role Manager. This
property is a string parameter because the RolePrincipal is itself serializable. By storing the
associated provider as a string name, RoleProviders don’t themselves need to be serializable.
Note that if your application does something funky like serializing a principal in one app-domain
and deserializing it in another app-domain, you need to make sure that ProviderName is avail-
able in the Role Manager’s provider collection for the app-domain where deserialization occurs.

IsRoleListCached❑❑ : This property returns true if RolePrincipal is currently caching the
user’s roles internally. This internal cache is discussed in the next few paragraphs.

Version❑❑ : Currently, this property will always return 1 for the 2.0 Framework. In future versions
if the internal format or the public functionality of the RolePrincipal changes, the Version
property will be changed as well.

Both the IsInRole and GetRoles methods rely on the RoleProvider associated with the Role​
Principal to carry out their work. It turns out that the internal implementation of IsInRole results in
a call to RoleProvider.GetRolesForUser as opposed to RoleProvider.IsUserInRole. The rea-
son for this behavior is that even if you have cookie caching turned off, the RolePrincipal still
attempts to optimize performance of the IsInRole method.

Immediately after you new() up a RolePrincipal there is an empty internal dictionary that is ready and
waiting to cache role information. The first call after object construction to either IsInRole or GetRoles
causes the RolePrincipal to get a reference to its associated provider and retrieve a string array of the
roles associated with the user. This array is then cached within the principal’s internal role dictionary. Code
can verify this is the case because after the role information is cached RolePrincipal.IsRoleListCached
returns true. Now on subsequent calls to IsInRole, RolePrincipal recognizes that this dictionary
contains data. So, instead of making a round trip to the provider again, the principal just looks for the
requested role inside of the dictionary of cached role information. GetRoles has similar behavior, although
in its case the method just returns the internal dictionary as an array because there is no need to search for
a specific role.

Of course, at some point you may want to invalidate the cached role information. For example, after 15
minutes have passed, you may want to force the RolePrincipal to “forget” its current role informa-
tion and refresh it from the provider. When you call the SetDirty method, it flips the value of Role​
Principal.IsRoleListCached to false. The next time either IsInRole or GetRoles is called,

79301c14.indd 698 10/6/08 12:16:58 PM

699

Chapter 14: Role Manager

RolePrincipal sees that the role information is now considered stale, and so it queries the provider
again for all of the user’s role data. This caching behavior has a few implications that you need to be
aware of.

Because GetRolesForUser is called on the provider, users associated with large numbers of roles
(that is, hundreds of roles) will find the RolePrincipal to be slow the first time either IsInRole or
GetRolesForUser is called. In fact, for websites or other applications that need to support hundreds
of roles per user, you should carefully assess the performance of retrieving all of a user’s roles for these
methods. To cut down on the number of round trips made to the back-end data store, you may find
that you need to implement a custom RoleProvider that internally caches a user’s role information.

The second issue is that the IsInRole method compares the role parameter against values in the
internal dictionary with a case-insensitive comparison, using the casing rules for the invariant culture.
If you happen to use a back end like SQL Server and you are running a case-insensitive sort order with
the Latin collation order, the behavior of the RolePrincipal comparison won’t matter to you. The stan-
dard Latin collation order is roughly equivalent to the Framework’s invariant culture. But if you happen
to use a non-Latin character set, you may run into issues where the casing rules in the database don’t
match the casing rules for RolePrincipal. Remember from Chapter 11, on SqlMembershipProvider,
that all of the SQL based ASP.NET providers work in a case-insensitive manner. The SqlRoleProvider
also works in a case-insensitive manner. However, even though the providers for Role Manager work in
a case-insensitive manner, casing rules are still partially determined by the culture as well.

The casing rules for the invariant culture are not the same as the casing rules for Cryllic (as an exam-
ple). As a result, you can end up in some edge scenarios where you create role names in your data store
that are considered unique because the data store is using culture-specific casing rules. But when you
attempt to use RolePrincipal it throws an exception because from a culture-invariant standpoint it
thinks two role names are actually the same value. The array of strings returned from RoleProvider​
.GetRolesForUser could contain two strings that are considered the same value in the invariant cul-
ture. When the RolePrincipal attempts to add the strings to its internal dictionary (which is an
instance of a HybridDictionary), the dictionary can throw an ArgumentException because it
detects duplicate string values.

Another issue can arise where the result of RolePrincipal.IsInRole does not match the result from
RoleProvider.IsUserInRole. The classic “Turkish I” problem is an example where a mismatch can
occur for role comparisons. In the Turkish character set a capital “I” and a small “i” are actually associ-
ated with two completely different characters. Lowering “I” in Turkish will result in a completely dif-
ferent character than the English “i.” This can cause a problem when RolePrincipal.IsInRole is
called by URL authorization because if role names from the database differ only on characters like “I,”
then RolePrincipal.IsInRole may consider a user to belong to more roles than they really do. For
example, from an invariant culture perspective a user may be considered to belong to both “ThIs role”
and “This role.” So if you had a URL authorization rule like <add roles=”ThIs role” />, and the
role in a database with the Turkish collation was “This role,” the RolePrincipal object would return
true from IsInRole. However, the same comparison made using RoleProvider.IsUserInRole
against the database would treat these two roles as completely different and unique strings. A role
check using the provider directly would succeed only for “This role.” It would fail for the other role
because in Turkish the capital “I” is from a different character pair.

Now granted that this discussion can be a bit mind-numbing, and when the ASP.NET team attempted
to protect against this, the cure was worse than the problem. The main thing to remember is that if
you use Role Manager with data stores that aren’t running in the invariant culture (for example, the

79301c14.indd 699 10/6/08 12:16:59 PM

700

Chapter 14: Role Manager

Latin1_General collation is a close enough approximation in SQL Server), make sure that the role names
you choose result in consistent string comparisons in your data store and on servers where you will be
calling RolePrincipal.IsInRole.

At this point, take a look at a simple example of a console application that demonstrates how the
internal caching behavior of RolePrincipal works. Just as Membership works in non-ASP.NET envi-
ronments, Role Manager can be used outside of ASP.NET. The sample console application references
System.Web.dll and includes configuration settings in its app.config file to enable the Role Man-
ager feature:

<roleManager enabled=”true”
 defaultProvider=”roleprincipalcaching”>
 <providers>
 <add name=”roleprincipalcaching”
 etc… />
 </providers>
</roleManager>

The console application performs some initial setup for the example and then exercises the internal
cache logic in RolePrincipal by calling GetRoles after the role assignments have been changed:

C#
using System.Security;
using System.Web.Security;
…
static void Main(string[] args)
{
 //initial setup code – snipped for brevity…

 GenericIdentity gi = new GenericIdentity(“testuser_rp”);
 RolePrincipal rp = new RolePrincipal(gi);

 string[] currentRoles = rp.GetRoles();
 foreach (string r in currentRoles)
 Console.WriteLine(r);

 //Now change the user’s role assignments
 Roles.AddUserToRole(“testuser_rp”, “role_2”);
 Roles.RemoveUserFromRole(“testuser_rp”, “role_3”);

 //The RolePrincipal’s roles will not have changed at this point
 //Note that the sample code never sets Thread.CurrentPrincipal so
 //the RolePrincipal has not been invalidated at this point
 currentRoles = rp.GetRoles();
 foreach (string r in currentRoles)
 Console.WriteLine(r);

 //Force the RolePrincipal to flush its internal cache
 rp.SetDirty();

 //Now the RolePrincipal will reflect the changes
 currentRoles = rp.GetRoles();

79301c14.indd 700 10/6/08 12:16:59 PM

701

Chapter 14: Role Manager

 foreach (string r in currentRoles)
 Console.WriteLine(r);
}

VB.NET
Imports Microsoft.VisualBasic
Imports System.Security
Imports System.Web.Security

…

Shared Sub Main(ByVal args() As String)
 ‘initial setup code – snipped for brevity…

 Dim gi As New GenericIdentity(“testuser_rp”)
 Dim rp As New RolePrincipal(gi)

 Dim currentRoles() As String = rp.GetRoles()
 For Each r As String In currentRoles
 Console.WriteLine(r)
 Next r

 ‘Serialize the RolePrincipal
 Dim stringRP As String = rp.ToEncryptedTicket()
 Console.WriteLine(“The length of the encrypted ticket is: “ & stringRP.Length)

 ‘Now change the user’s role assignments
 Roles.AddUserToRole(“testuser_rp”, “role_2”)
 Roles.RemoveUserFromRole(“testuser_rp”, “role_3”)

 ‘The RolePrincipal’s roles will not have changed at this point
 currentRoles = rp.GetRoles()
 For Each r As String In currentRoles
 Console.WriteLine(r)
 Next r

 ‘Force the RolePrincipal to flush its internal cache
 rp.SetDirty()

 ‘Now the RolePrincipal will reflect the changes
 currentRoles = rp.GetRoles()
 For Each r As String In currentRoles
 Console.WriteLine(r)
 Next r

End Sub

A GenericIdentity is constructed with a username that has already been associated with three roles
using the default provider. The first call to GetRoles causes this information to be loaded from the
provider:

role_1
role_3
role_5

79301c14.indd 701 10/6/08 12:16:59 PM

702

Chapter 14: Role Manager

After dumping out this information, the test application changes the user’s role assignments by adding
the user to a new role, as well as removing the user from an existing role. However, because the first
call to GetRoles caused the RolePrincipal to cache the role information internally, the next call to
GetRoles still uses the cached information.

role_1
role_3
role_5

The RolePrincipal doesn’t reflect the changes to the user’s role assignments at this point. The test appli-
cation then forces the RolePrincipal instance to flush the cached information with a call to SetDirty.
Now when the test application calls GetRoles again, the principal goes back to the provider to reload the
role data, and as a result the output reflects the changes that were made.

role_1
role_2
role_5

Keep this behavior in mind if you happen to be working with an administrative application where you
change user-to-role assignments. If you Alt-Tab off to another browser window running as the user you
just edited, and you are wondering why no changes are showing up, it is probably the caching behavior
in RolePrincipal that is preventing your changes from taking effect.

Now that you have an understanding of how the internal cache within RolePrincipal works, you can
explore how cookie caching is supported as an additional caching layer. The Role Manager feature has
the ability to take the internal role cache within a RolePrincipal and store this information inside of a
cookie. The RoleManagerModule is responsible for managing this process, but it is the RolePrincipal
that supports the core functionality that makes this all work.

The method that makes this work is the ToEncryptedTicket method on the principal. This method seri-
alizes a RolePrincipal instance into a string. Internally, the method first runs RolePrincipal through
the binary formatter. Because RolePrincipal implements ISerializable, some custom serialization
logic runs at this point to handle the serialization of the principal’s IIdentity. Role​Principal doesn’t
serialize its associated IIdentity when serialization occurs as a result of a call to the ToEncrypted​
Ticket method. Note that if you just write some serialization code using the Framework’s Binary​
Formatter directly, then the IIdentity reference will be serialized.

Because the intent of ToEncryptedTicket is to convert the RolePrincipal into a payload suitable for
a cookie, it intentionally skips serializing the IIdentity reference. There is no need for it when recon-
stituting a RolePrincipal from a cookie because the constructor overloads that accept the stringized
RolePrincipal also require an IIdentity reference. As a side note, RolePrincipal in the RTM ver-
sion of the Framework uses binary serialization because theoretically this should make it easier in future
versions to be able to run web farms with different versions of the Framework issuing different serial-
ized versions of RolePrincipal. Both up-level and down-level versions of the Framework should be
able to work with a serialized RolePrincipal without blowing up due to deserialization exceptions.

After ToEncryptedTicket gets back a byte array representation of the RolePrincipal, it converts
the byte array into a string that can be safely stored in a cookie without triggering ASP.NET request
validation. As part of this conversion, RolePrincipal secures the string using the settings from the

79301c14.indd 702 10/6/08 12:16:59 PM

703

Chapter 14: Role Manager

cookieProtection attribute in the <roleManager /> configuration element. By default, the string is
encrypted using AES and signed with HMACSHA1. The algorithms used and the key values used are all
determined from the <machineKey /> section. If you want to change any of this information, you can
change the configuration attributes on <machineKey /> just as you would for controlling the encryption
and signing information for forms authentication. Also, as with forms authentication, you can change the
cookieProtection attribute on <roleManager /> to None, All, Encryption, or Validation.

At this point, the work of ToEncryptedTicket is done; it doesn’t actually validate if the resulting pay-
load is too large for storage in a cookie. Furthermore, there isn’t any functionality inside ToEncrypt-
edTicket specific to ASP.NET. You can literally serialize RolePrincipal into a string, store the string
somewhere (on a disk, in a database table, and so on), and then reconstitute the RolePrincipal from
the string at a later point in time.

C#
//Serialize the RolePrincipal
string stringRP = rp.ToEncryptedTicket();

//Do some other work here…

//Reconstitute the RolePrincipal
RolePrincipal anotherRP = new RolePrincipal(gi, stringRP);
Console.WriteLine(“User is in role_1: “ + anotherRP.IsInRole(“role_1”));
Console.WriteLine(“User is in role_3: “ + anotherRP.IsInRole(“role_3”));
Console.WriteLine(“User is in role_5: “ + anotherRP.IsInRole(“role_5”));

VB.NET
 ‘Serialize the RolePrincipal
 Dim stringRP As String = rp.ToEncryptedTicket()

 ‘Do some other work here…

 ‘Reconstitute the RolePrincipal
 Dim anotherRP As New RolePrincipal(gi, stringRP)
 Console.WriteLine(“User is in role_1: “ & anotherRP.IsInRole(“role_1”))
 Console.WriteLine(“User is in role_3: “ & anotherRP.IsInRole(“role_3”))
 Console.WriteLine(“User is in role_5: “ & anotherRP.IsInRole(“role_5”))

The output from this sample code is:

User is in role_1: True
User is in role_3: True
User is in role_5: True

Using the sample console application from earlier, you can extend it by serializing the RolePrincipal
prior to changing the user’s role assignments (remember the user was removed from role 3 and added
to role 2). If you add this code to the sample application, after creating a new RolePrincipal using the
output from ToEncryptedTicket, the original role information is cached internally by the new Role​
Principal instance.

79301c14.indd 703 10/6/08 12:16:59 PM

704

Chapter 14: Role Manager

What is interesting, though, is if you take the new RolePrincipal and call GetRoles on it:

C#
currentRoles = anotherRP.GetRoles();
foreach (string r in currentRoles)
 Console.WriteLine(r);

VB.NET
 currentRoles = anotherRP.GetRoles()
 For Each r As String In currentRoles
 Console.WriteLine(r)
 Next r

when you dump out the results you will see what might look like a discrepancy:

role_1
role_2
role_5

What happened here? For a second there it looked like the output of ToEncrypedTicket preserved
the set of role assignments at the time serialization occurred. The previous code snippet with a series
of IsInRole checks definitely confirms this behavior. The reason for this apparent schizophrenia of
the RolePrincipal is that the principal handles the internal cache differently when a new Role​
Principal is initialized from the string output of ToEncryptedTicket.

After you call either of the two constructors that have an encryptedTicket parameter (the two con-
structor overloads are the companions to the two constructor overloads discussed earlier with the one
difference being the extra string parameter for the encrypted ticket), RolePrincipal does a few spe-
cial things with the extra string data:

	 1.	 The encryptedTicket parameter is decoded back into a byte array, and that array is then
deserialized with the BinaryFormatter.

	 2.	 The RolePrincipal makes two sanity checks with the resulting data. It confirms that the
username that was previously encoded into the encryptedTicket matches the username on
the IIdentity that was passed to the constructor. Then RolePrincipal confirms that the
provider name encoded in the encryptedTicket matches the name of the provider associated
with the current RolePrincipal instance. Both of these comparisons are case-insensitive ordi-
nal comparisons. If either of these checks fails, the ticket is discarded and the RolePrincipal
instance functions as if it were constructed without the encrypted ticket.

	 3.	 If the expiration date contained in the deserialized ticket indicates that the information has
expired, the ticket is discarded and the RolePrincipal instance functions as if it were con-
structed without the encrypted ticket.

	 4.	 RolePrincipal looks at IssueDate and ExpireDate that were extracted from the encrypted​
Ticket. If you have configured Role Manager to support sliding cookie expirations (that is, the
cookieSlidingExpiration configuration attribute on the <roleManager /> configuration
element has been set to true), and if more than 50% of the encrypted ticket’s lifetime has passed,
the principal resets IssueDate to the current date-time and updates ExpireDate accordingly.
As a side effect of this, the state of the principal is considered to have changed so the principal
also marks itself for reserialization when RoleManagerModule runs at the end of a page request.

79301c14.indd 704 10/6/08 12:16:59 PM

705

Chapter 14: Role Manager

These validations ensure that the string-encoded version of the RolePrincipal is not spuriously used
with a different user. It also ensures that whatever machine is responsible for decoding the encrypted
string actually has a named RoleProvider matching the one defined within the encryptedTicket
parameter. These checks imply a few things you need to do if you want cookie caching to work prop-
erly across multiple machines in a web farm.

First, you need to ensure that all of the providers are configured the same way across all of the
machines. This means the same provider names need to be present for the encrypted string representa-
tion of a principal to work. It also implicitly means that providers with the same name in a web farm
should be configured the same way. For example, the RolePrincipal is not going to validate that the
application name for a provider called “foo” on one machine is actually the same application name as
the provider “foo” that was associated with RolePrincipal when it was originally serialized on a dif-
ferent machine. If for some reason you use the same provider names across a web farm but with differ-
ent application names, then it is likely you will end up with inconsistent role information depending on
what machine servers up any given request.

The second assumption is that if a user is initially authenticated as foo when a RolePrincipal is
serialized, then on another machine when a RolePrincipal is being deserialized the same user will
be known as foo. Typically, for custom authentication schemes, or for forms authentication, the string
value of the authenticated username is fixed after login. For example, the string used at login time
against a site using forms authentication is encoded into the forms authentication cookie, and hence
will remain the same for the duration of the login session.

Back to the original problem where the sample code appeared to lose the cached role information
passed via encryptedTicket. Assuming that none of the validations just described failed, you have a
Role​Principal with its internal dictionary containing all of the roles from encryptedTicket. When
this initialization occurs though, RolePrincipal “remembers” that it was initialized from an encrypted
string, and not from a call to RoleProvider.GetRolesForUser. As long as your code just calls IsIn​
Role, RolePrincipal will continue to fulfill this request using the internal dictionary of roles.

However, after you call GetRoles as shown in the earlier code snippet, RolePrincipal decides that
the role information from the encrypted string is not sufficiently authoritative to fulfill the request. So
instead, the RolePrincipal flushes its internal cache and then calls GetRolesForUser on the pro-
vider. After GetRolesForUser is called, the RolePrincipal ends up with the latest role information
for the user, which is why in the sample the dump of the user’s roles after the call to GetRolesForUser
was different from the results of the successive IsInRole checks. After GetRolesForUser has been
called on the provider, the RolePrincipal remembers that this has occurred, and now all subsequent
calls to either IsInRole or GetRoles will be served from the principal’s internal cache.

Part of the reason for this discrepancy in behavior is that cookie caching is meant to be used only to
speed up calls to IPrincipal.IsInRole. Hence, the reason for storing the encryptedTicket in a
cookie is only to fulfill role checks. The general idea behind calling GetRoles is that the caller wants
to have a reasonably up-to-date representation of that user’s roles. Even though calling GetRoles more
than once results in the use of cached data, in the normal use of a RolePrincipal on an ASP.NET page
request, the page is running for only a few seconds. So, having GetRoles call the provider the first time
ensures that for the duration of the page request your code has a very up-to-date array of the user’s
roles. The subsequent caching in this case is a minor optimization to ensure that if the page code con-
tinues to call GetRoles that the page doesn’t end up thrashing the underlying data store. If your code
actually requires different GetRoles calls to return different data, you can always manually force the
principal to flush its internal cache through a call to SetDirty.

79301c14.indd 705 10/6/08 12:16:59 PM

706

Chapter 14: Role Manager

Aside from the extra constructor overloads and the ToEncryptedTicket method, there are a few prop-
erties on RolePrincipal that deal with cookie caching. These are briefly described in the following list:

CachedListChanged❑❑ : If the principal calls GetRolesForUser on its associated provider, if
SetDirty is called, or if the RolePrincipal renewed the IssueDate and ExpireDate due
to sliding expirations, the value of this property is set to true. However, if the principal is ini-
tialized from an encrypted ticket, the issue and expiration dates were not refreshed, and only
IsInRole is called on the principal, this property returns false. This property is used by the
RoleManagerModule to determine whether it needs to reissue the role cache cookie. If the state
of the principle’s internal cache initialized from an encrypted ticket has not changed and the
date information also has not changed, then the RoleManagerModule can avoid the expensive
overhead of reserializing the RolePrincipal and encrypting the results.

IssueDate❑❑ : Returns the machine local date-time the cached information in an encrypted​
Ticket was originally created. If the RolePrincipal was not initialized from an encrypted​
Ticket, this property always returns the current local date-time. Note that internally this data is
stored as a UTC date-time, and the “UTCness” of this value is preserved when a RolePrincipal
is serialized by ToEncryptedTicket.

ExpireDate❑❑ : Returns the machine local date-time that the cached information in an
encrypted​Ticket is no longer considered valid. If the RolePrincipal was not initialized
from an encrypted​Ticket (for example, the first time a RolePrincipal for a user is ever
created), this value is set to the current local date-time plus the value of the cookieTimeout
configuration attribute on the <roleManager /> configuration element. As with IssueDate,
internally this value is maintained as a UTC date-time.

Expired❑❑ : This property compares the private UTC value of ExpireDate against the current UTC
date-time. If ExpireDate is less than the current UTC date-time, then the property returns true.
This property is checked when the RolePrincipal is deserialized from an encryptedTicket to
determine whether the encrypted information is stale. Note that you can end up in an edge case
where the deserialization check succeeds, but then one millisecond later the encrypted informa-
tion expires. In this case, for the duration of the lifetime of the RolePrincipal, the cached infor-
mation from the encryptedTicket will still be used. This behavior is OK for a page request,
because a page request is normally completed in a few seconds. However, if you are using the
string ticket to initialize a RolePrincipal inside an application like a Winforms application,
where a RolePrincipal instance may live for a very long time, then you should ensure that
you have code in your application that periodically checks the Expired property on the princi-
pal and generates a new instance if the current RolePrincipal is expired.

CookiePath❑❑ : This property simply returns the value of Roles.CookiePath, which in turn comes
from the cookiePath configuration attribute on the <roleManager /> configuration element.
At one point, the path information for a RolePrincipal was actually stored in the encrypted
Ticket. However, the path is no longer stored in the serialized string because you could end up
bloating the size of the serialized string for applications that had lengthy URLs. Note that in a web
farm environment all machines must be configured to use the same cookiePath for Role Man-
ager. Otherwise, the role cache cookie issued by one web server may never be sent back to other
servers in the farm.

In the next section, you will see how the RoleManagerModule works with the RolePrincipal to issue
a cookie that contains the encryptedTicket. Keep in mind ahead of time that it’s possible to create an
encryptedTicket that is too large for the RoleManagerModule to store in a cookie. Because serializing
a RolePrincipal and then encrypting and hashing the result is an expensive operation, you should

79301c14.indd 706 10/6/08 12:16:59 PM

707

Chapter 14: Role Manager

test the size of the return value from the ToEncryptedTicket method for users with a large number of
roles. If the resulting string is longer that 4096 characters, then the RoleManagerModule is never going
to issue a roles cookie, and hence you should probably turn off cookie caching.

Because the RolePrincipal uses binary serialization, this adds a few hundred characters of over-
head to the size of the role cache cookie. Roughly speaking, there is about an additional 350-character
overhead due to using binary serialization as opposed to some type of custom serialization mecha-
nism. This overhead is on top of the bloat caused by encoding the role information for storage in the
cookie. For the earlier sample where the user belonged to just three roles, the encryptedTicket was
492 characters long, even though the length of the three role names was just 18 characters. Remember
though that this cookie stores not only each role name, but also issue/expiry dates, a version number,
the user’s username, the provider name and a few pieces of internal tracking information. As a result,
there is always some additional character overhead from storing all of this information. From testing
the cookie caching feature with various numbers of roles, the ASP.NET team has been able to success-
fully store 300 roles (each role name was around seven characters long) in a role cache cookie with a
cookie protection setting of “All.”

The RoleManagerModule
The RoleManagerModule is an HttpModule that is responsible for two main tasks:

Early during the request lifecycle, it places a ❑❑ RolePrincipal instance on HttpContext​.Current​
.User if the Role Manager feature is enabled. This work occurs during the PostAuthenticate​
Request event.

At the end of a request, the module serializes the ❑❑ RolePrincipal into a cookie if cookie cach-
ing has been enabled for Role Manager. The module does this during the EndRequest event.

The RoleManagerModule also exposes an extensibility point with the GetRoles event. If you want, you
can hook this event and add your own IPrincipal implementation to the context. This event is fired
just before the module performs its regular processing during PostAuthenticateRequest.

PostAuthenticateRequest
The RoleManagerModule subscribes to the PostAuthenticateRequest pipeline event because it
needs to set up a principal after an authenticated identity has been established but before any authori-
zation occurs. In earlier versions of ASP.NET, doing this was a bit tricky because there were no Post*
events. However, ASP.NET 2.0 introduced a set of Post* events for every major pipeline event, and this
made it very easy for functionality like Role Manager to inject itself at precisely the right time during
the authentication and authorization process in the HTTP pipeline.

If the Role Manager feature is not enabled, the module immediately exits. This is important because if
you look at the default HttpModule configuration in the root web.config, you will see that the Role​
ManagerModule is always registered.

<httpModules>
 <add name=”WindowsAuthentication” …. />
 <add name=”FormsAuthentication” … />
 <add name=”RoleManager” type=”System.Web.Security.RoleManagerModule” />

79301c14.indd 707 10/6/08 12:16:59 PM

708

Chapter 14: Role Manager

 <!--- other modules --->
 <add name=”UrlAuthorization” … />
 <add name=”FileAuthorization” … />
 <!--- other modules --->
</httpModules>

So, the module registration is basically a no-op in the case that the Role Manager feature is disabled.
Assuming that the Role Manager feature is enabled though, the first thing the module does is fire the
GetRoles event. The event argument for this event can be used by a custom event handler to commu-
nicate back to the module as to whether the event handler attached a user principal to the context. The
framework’s definition of the event argument is:

C#
public sealed class RoleManagerEventArgs : EventArgs {
 //Constructor
 public RoleManagerEventArgs(HttpContext context)
 //Properties
 public bool RolesPopulated { get; set; }
 public HttpContext Context { get; }
}

VB.NET
Public NotInheritable Class RoleManagerEventArgs
 Inherits EventArgs
 ‘Constructor
 Public Sub New(ByVal context As HttpContext)

 ‘ Properties
 Public ReadOnly Property Context As HttpContext
 Public Property RolesPopulated As Boolean

End Class

When an event handler needs to attach a user to the context, it can use the Context property from the
event argument as a convenient way to reference it. Now if an event handler does attach a user to the
context, it needs to indicate that this has occurred by setting the RolesPopulated property of the event
argument to true. When the RoleManagerModule sees that RolesPopulated has been set to true, it
will immediately exit from the PostAuthenticateRequest event. This is an important point because
the normal behavior of the RoleManagerModule is to extract an IIdentity from whatever principal is
on the context and then rewrap this IIdentity inside of a RolePrincipal. As a result, just setting a
principal on the context from inside of the GetRoles event handler is not sufficient if your intent is to
stop the RoleManagerModule from any further processing.

One question you may have is why would you hook the GetRoles event? Although you could certainly
use the RolesPopulated event as a way to add your own custom principal to the HttpContext, the
“correct” way to accomplish this is by writing code in global.asax that hooks AuthenticateRequest
or PostAuthenticateRequest. Enabling the Role Manager feature just to hook the GetRoles event is
complete overkill for this scenario. If the RolePrincipal class was not sealed, then GetRoles would
have been a logical place to add a custom RolePrincipal-derived class to the context. But of course
because RolePrincipal is sealed in ASP.NET 2.0 and ASP.NET 3.5, you can’t do this either.

79301c14.indd 708 10/6/08 12:17:00 PM

709

Chapter 14: Role Manager

Probably the main use for the GetRoles event in ASP.NET 2.0 and ASP.NET 3.5 is for developers that
configure multiple providers for use with the Role Manager feature. Unless you write extra code,
the RoleManagerModule only works with the default provider. If you look at the Role Manager API,
nowhere will you find a way to configure the RoleManagerModule to automatically choose a nonde-
fault provider when it creates a RolePrincipal. The GetRoles event is the hook you need to be able to
create a RolePrincipal that works with a nondefault RoleProvider. With some extra code, you can
include extra logic that on a per-user basis selects the appropriate RoleProvider when new()’ing up a
RolePrincipal. This technique is shown a bit later in the chapter.

Assuming that you don’t hook the GetRoles event, the module performs the following:

For anonymous users, any role cache cookie is ignored. In fact for anonymous users, if a role ❑❑

cache cookie is found, a clear cookie header is sent back to the browser to delete it. Remember
that for anonymous users the RoleManagerModule just creates a RolePrincipal that always
returns false from IsInRole and an empty array from GetRoles.

For authenticated users if the request does not have a role cache cookie, the module creates a ❑❑

RolePrincipal that is based on the current IIdentity reference that can be extracted from
HttpContext.User.Context. This means that for forms authentication a RolePrincipal that
wraps a FormsIdentity is created. For sites using Windows authentication, a RolePrincipal
that wraps a WindowsIdentity is created. The main idea here is that the current IIdentity of
the authenticated user is preserved, while the outer IPrincipal based object is thrown away
and replaced by a RolePrincipal. As part of this work, the RolePrincipal created is associ-
ated with the default Role Manager provider. As noted earlier, if you want to use a nondefault
provider you must use the GetRoles event and write your own logic for creating a
RolePrincipal.

For authenticated requests that include a role cache cookie, the module creates a ❑❑ Role
Principal based on the current IIdentity and the encoded role information stored in the
role cache cookie. This means a RolePrincipal is initialized using the constructor overload
that accepts an IIdentity and a string value for the serialized representation of the Role​
Principal’s role information. This logic process is similar to that in the previous bullet point,
with the one exception being that now the RolePrincipal has its internal role cache initial-
ized based on the information from the role cache cookie. This also means that the default
processing in the module associates the RolePrincipal with the Role Manager’s default pro-
vider as well.

There are a few sanity checks that RoleManagerModule will follow when it finds a role cache cookie:

If a role cache cookie is sent in the request, but cookie-based caching is not enabled (that is, the ❑❑

cacheRolesInCookie configuration attribute is set to false), then the cookie is ignored. In this
case, the RolePrincipal is initialized with just the current IIdentity and the default provider.

For anonymous users, the cookie is always ignored and cleared as mentioned earlier.❑❑

If the ❑❑ cookieRequiresSSL attribute is set to true in configuration, and the current connec-
tion is not an SSL connection, the cookie is ignored and a clear cookie header is sent back to
the browser. This check is intended to handle the case where a user agent does not honor the
secure bit on the cookie, and the agent sends the cookie over an unsecured connection. In this
case, the RoleManagerModule does not “trust” the cookie contents, and so it just drops the
cookie and initializes the RolePrincipal using only the current IIdentity and the default
RoleProvider.

79301c14.indd 709 10/6/08 12:17:00 PM

710

Chapter 14: Role Manager

So, one way or another RoleManagerModule eventually ends up with a RolePrincipal (potentially
initialized from the cookie). As a last processing step during PostAuthenticateRequest, the module
sets the RolePrincipal as the new value of HttpContext.Current.User, and it also sets the Role​
Principal on Thread.CurrentPrincipal.

Explicitly synchronizing HttpContext and Thread with the same principal is necessary because
DefaultAuthenticationModule, discussed in Chapter 3, runs after the AuthenticateRequest
pipeline processing is done. However, the PostAuthenticateRequest event runs after Authenticate​
Request, as well as after the hidden DefaultAuthenticationModule. If RoleManagerModule did
not explicitly synchronize the principal across both HttpContext and the current Thread, then any
authorization logic that used the Thread.CurrentPrincipal property would result in different results
than authorization logic using HttpContext.Current.User. An example of this is declarative role
authorizations; the System.Security.Permissions.PrincipalPermission attribute makes
checks using Thread.CurrentPrincipal.

For example, if you had a method in a web page that should only be callable by members of the Admin-
istrators role, you could enforce this one of two ways. The imperative approach would be to write a line
of code like the following:

C#
public void DoSomethingPrivileged()
{
 if (User.IsInRole(“Adminstrators”))
 { //do some privileged work }
}

VB.NET
Public Sub DoSomethingPrivileged()
 If User.IsInRole(“Adminstrators”) Then
 ‘do some privileged work
 End If

However, because RoleManagerModule does the right thing and synchronizes values appropriately,
you can use a declarative approach to security instead:

C#
[PrincipalPermission(SecurityAction.Demand, Role=”Administrators”)]
public void DoSomethingPrivileged()
{ //do something privileged here }

VB.NET
<PrincipalPermission(SecurityAction.Demand, Role:=”Administrators”)> _
Public Sub DoSomethingPrivileged()
 ‘do some privileged work
End Sub

Supporting declarative security with Role Manager also works in non-ASP.NET scenarios, though in
non-ASP.NET hosts the RoleManagerModule never runs. If you want RolePrincipal to work in non-

79301c14.indd 710 10/6/08 12:17:00 PM

711

Chapter 14: Role Manager

ASP.NET applications with declarative security demands, you can write code during application initial-
ization that sets the RolePrincipal onto the appropriate thread using Thread.CurrentPrincipal.
With all of this said though, you will most likely use imperative (that is, write code) based authoriza-
tion logic because it is substantially easier to write code that strings together complex rules involving
OR logic (that is, if a user belongs to role_A or (role_B and role_C), then carry out some custom logic).

EndRequest
RoleManagerModule also runs during the EndRequest event of the pipeline. The only work the mod-
ule performs during this event is to send the role cache cookie. If caching role information in a cookie
is not enabled, then the module doesn’t perform any work during EndRequest. Assuming that the role
caching is enabled though, the module goes through the following steps to send a role cache cookie.

If the current user is anonymous, the module never sends a role cache cookie. Instead, it just ❑❑

exits from EndRequest.

If the ❑❑ cookieRequiresSSL attribute is set to true, the current user is authenticated, but the
current connection is not secured with SSL, the module does not send a role cache cookie. In
this way, RoleManagerModule is honoring the intent of the cookieRequiresSSL attribute; not
only should browser agents not send the role cache cookie over unsecured connections, but the
module itself should never be issuing the cookie in first place over non-SSL connections.

If the user is authenticated, and there are no problems with the SSL state of the connection, then ❑❑

RoleManagerModule checks to see whether a role cache cookie needs to be issued. It does this
by looking at the value of RolePrincipal.CachedListChanged. This property will always
be set to true after a call to RolePrincipal.GetRoles (remember that for a “fresh” Role​
Principal the first call to IsInRole triggers a call to the GetRoles method). The property
can also be set to true if the current RolePrincipal was previously initialized from a role
cache cookie, and the principal determined that less than 50% of the cookie’s TTL remains. In
this case, the RolePrincipal internally refreshes the issue date and expiration date values for
the RolePrincipal if the cookieSlidingExpiration configuration attribute is set to true.
The principal then indicates that these changes have occurred by setting CachedListChanged
to true. If sliding cookie expiration is not enabled though, this auto-refresh of the date infor-
mation will never occur. The only things that change for the date-refresh case are the issu-
ance and expiration dates; the internal role cache at this point has not changed. Regardless
of what ultimately caused CachedListChanged to be set to true, the RoleManagerModule
converts the current RolePrincipal into an encrypted ticket with a call to RolePrincipal​
.ToEncryptedTicket.

If ❑❑ RolePrincipal.CachedListChanged is false, then the module exits because there is no
need to update the role cache cookie.

If the resulting string from ❑❑ ToEncryptedTicket is longer than 4096 characters, then the Role​
ManagerModule ignores the serialized value and does not send the cookie with the serialized
role information. Instead, the module sends a clear cookie back to the browser. From testing
both Internet Explorer and Mozilla, a role manager cookie with a value that is 4096 characters
in length works with Role Manager. However, as you get above this limit, different versions of
these browsers start exhibiting different behavior around accepting long cookies and sending
such long cookies. For this reason, 4096 characters was chosen as a safe and reasonable upper
limit for the maximum length of the value of the role cache cookie.

79301c14.indd 711 10/6/08 12:17:00 PM

712

Chapter 14: Role Manager

If the result of serializing ❑❑ RolePrincipal’s role information is a null, then the module instead
sends a clear cookie back to the browser. This normally will only occur if the current user belongs
to more roles than specified in the maxCachedResults attribute. The reason that Role​Manager​
Module sends a clear cookie in this case is to handle the scenario where a user once belonged to
one or more roles and had a role cache cookie issued. Then at a later point in time the user
belonged to a larger number of roles, and the cached role information expired and was subse-
quently refreshed from a provider. In this case, the role cache cookie needs to be reissued, but
because there are now more roles than can be safely cached in the role cookie, a clear cookie is
sent as the “new” role cache cookie.

If the processing logic makes it past the previous security and length checks, then ❑❑ RoleManager​
Module creates a new HttpCookie, sets the various cookie properties based on the settings in
the <roleManager /> configuration element, and sends it back in the Response.

Role Cache Cookie Settings and Behavior
The previous discussions have alluded to a number of different configuration attributes on
<roleManager /> used to configure caching behavior with Role Manager. The following list sum-
marizes the available settings and the effect they have on role cache cookies.

cacheRolesInCookie❑❑ : The default value in configuration is false. You need to explicitly con-
figure <roleManager cacheRolesInCookie=”true” /> in your configuration to enable the
cookie caching behavior of the RoleManagerModule.

createPersistentCookie❑❑ : By default, if role cache cookies are issued, they are sent as
session-based cookies. This means no explicit expiration date is set on the cookie, and instead
the cookie expires when the browser closes. Note though that even for persistent cookies, the
validity of the information in the role cache cookie is determined by the issuance and expira-
tion date values that are encoded within the serialized role information. The Role Manager fea-
ture never relies on the browser behavior as a determinant of the “freshness” of the role cache
cookie. For performance reasons, you can set this configuration attribute to true, in which case
an explicit expiration date is set on the cookie, which causes the cookie to be persisted to disk by
most browsers. This gives you some capability for cross-browser-session persistence of cached
role information. You should only enable persistent cookies though for sites where security is
not terribly important. A persistent cookie is potentially available to be hijacked and moved to
another machine. It also can result in stale role information being associated with a user even
though an administrator has changed the user-to-role associations in the back-end data store.

cookieTimeout❑❑ : By default this is set to 30 minutes. This value really drives the expiration
date for the cached role information that you get from calling RolePrincipal.ToEncrypted​
Ticket. If a RolePrincipal is initialized from an encrypted string, and if after deserialization
the role information indicates that it has expired based on the current time and the expiration
date that was determined from cookieTimeout, then RolePrincipal ignores the encrypted
ticket and instead will fetch fresh role information from its associated provider. Because the
most likely use of the ticket is as the value for the role cache cookie, the TTL for the serialized
role information is configured with the cookieTimeout setting even though the setting really
applies to the behavior of the RolePrincipal constructors that accept an encrypted ticket. If
persistent cookies are used, then the timeout setting is also used to set the expiration date for
the persistent role cache cookie sent to the browser.

79301c14.indd 712 10/6/08 12:17:00 PM

713

Chapter 14: Role Manager

cookieRequiresSSL❑❑ : By default, this attribute it set to false. If it set to true then any role
cache cookies are issued with an additional setting indicating that the cookie should only be send
back over SSL connections. This means compliant browser agents should not send the role cache
cookie over non-SSL connections. The RoleManagerModule also enforces additional security
measures by rejecting role cache cookies sent over non-SSL connections. The module will also not
issue a role cache cookie over a non-SSL connection in the event that this attribute is set to true.

cookieSlidingExpiration❑❑ : Defaults to true, which means that whenever a RolePrincipal
is initialized from an encrypted ticket, it checks the issuance and expiration date values that are
also encoded in the ticket. If the data is still considered valid, but more than 50% of the TTL for
the data has passed, then the RolePrincipal will update its IssueDate to the current UTC
time and the ExpiresDate to the current UTC time plus the value from cookieTimeout. The
next time that RolePrincipal is serialized back into an encrypted ticket, the new date infor-
mation will also be serialized into the ticket. If sliding expirations are disabled though, Role​
Principal never updates it issuance and expiration dates, which means that after cookie​
Timeout minutes, the encrypted ticket sent in the role cache cookie will no longer be consid-
ered valid. Disabling sliding expirations is a good way to ensure that every cookieTimeout
minutes the role information for users gets refreshed from a provider.

cookieProtection❑❑ : By default, the serialized representation of the role information returned by
ToEncryptedTicket is digitally signed with an HMACSHA1 hash and the hash and principal’s
serialized data is then encrypted using AES. You can change the hash and encryption algorithms
as well as the key material that is used by configuring the <machineKey /> element. The cook-
ieProtection attribute has the same options as the protection attribute on the <forms />
configuration element, and the hashing/encryption behavior is the same as it is for forms authen-
tication (remember the issue with synchronizing keys in a web farm!). Note that although this
attribute is named cookieProtection, it really applies to the security of the serialized role infor-
mation returned from ToEncryptedTicket. Because the most likely use of this information is in
a cookie, the configuration setting is called cookieProtection as opposed to something else.

maxCachedResults❑❑ : The default value is 25. When ToEncryptedTicket is called, if the num-
ber of roles the user belongs to exceeds 25, then ToEncryptedTicket just returns a null value
instead. If your users belong to a large number of roles or if the role names are very long, you
will need to experiment and determine the best setting of maxCachedResults that results in
serialized role representations being less than 4096 characters in length. Alternatively, your
users may regularly belong to more than 25 roles, but the role names may be very short and
thus the role information may still fit within the 4096 character limit; in this case, you will
need to increase the value of maxCachedResults. Of course, if most users belong to so many
roles that their serialized representation cannot fit within a cookie, then you might as well
turn off cookie caching because it won’t accomplish anything for you.

There are a few other cookie configuration options that aren’t listed previously: cookieName, cookie​
Path, and domain. These attributes all work the same way as the similarly named attributes used by
forms authentication.

One last note on the role cache cookie: as with forms authentication, RoleManagerModule always sets the
HttpOnly property on the role cache cookie to true. This is not something that you can turn off or ever
change. As a result, if you attempt to access the role cache cookie from a browser using JavaScript, even if
the intent is to only replay the cookie on another request programmatically, you will not be able to access

79301c14.indd 713 10/6/08 12:17:00 PM

714

Chapter 14: Role Manager

the role cache cookie. As with forms authentication, the intent of turning on HttpOnly is to minimize the
likelihood of a cross-site scripting attack easily hijacking the role cache cookie. You can review the sec-
tion on HttpOnly cookies back in Chapter 6 for more details on how HttpOnly cookies work.

Working with Multiple Providers during GetRoles
If you write complex applications that require the support of multiple Role Manager providers, then
you will also need to write code that works with RoleManagerModule. As mentioned earlier, Role​
ManagerModule knows how to initialize a RolePrincipal on your behalf only if the user on the con-
text should be associated with roles from the default RoleProvider. However, if your application allows
logins against multiple back-end stores (perhaps you have multiple Membership providers configured
as well), then chances are that users will need to be associated with roles from different back-end data
stores as well. The extensibility hook you use to deal with this scenario is the GetRoles event raised by
the RoleMangerModule.

Writing the code to handle this scenario properly though can be a bit tricky. The problem is that it is
basically up to you to mirror RoleManagerModule’s behavior in PostAuthenticateRequest. There
are a number of security checks and other work that the module is doing, and you need to faithfully
clone this behavior in a custom GetRoles event handler.

To demonstrate how you can use RoleManagerModule with multiple providers, set up a sample appli-
cation that uses two RoleProviders:

<roleManager enabled=”true” defaultProvider=”roleStore_A”
 cacheRolesInCookie=”true”>
 <providers>
 <clear/>
 <add name=”roleStore_A”
 applicationName=”RoleStoreA”
 connectionStringName=”LocalSqlServer”
 type=”System.Web.Security.SqlRoleProvider, …”/>
 <add name=”roleStore_B”
 applicationName=”RoleStoreB”
 connectionStringName=”LocalSqlServer”
 type=”System.Web.Security.SqlRoleProvider, …”/>
 </providers>
</roleManager>

<authentication mode=”Forms”/>
<authorization>
 <deny users=”?”/>
</authorization>

This configuration defines two providers, roleStore_A and roleStore_B, by using two SqlRolePro-
vider instances but with each provider using a different value for applicationName. The net result
is that both providers work with the same database and same set of database tables, but they partition
their data based on the application name. To set up some test data for this application, you can use the
Web Administration Tool inside of Visual Studio to create a default user account. The following page
then sets up some basic roles with each of the two role providers.

79301c14.indd 714 10/6/08 12:17:00 PM

715

Chapter 14: Role Manager

C#
//Create a role with the “A” provider
RoleProvider rpA = Roles.Providers[“roleStore_A”];
if (!rpA.RoleExists(“Administrators in store A”))
 rpA.CreateRole(“Administrators in store A”);

//Add the test user account to a role in “A” provider’s data store
if (!rpA.IsUserInRole(“testuser”, “Administrators in store A”))
 rpA.AddUsersToRoles(
 new string[] { “testuser” },
 new string[] { “Administrators in store A” });

//Create a role with the “B” provider
RoleProvider rpB = Roles.Providers[“roleStore_B”];
if (!rpB.RoleExists(“Administrators in store B”))
 rpB.CreateRole(“Administrators in store B”);

//Add the test user account to a role in “B” provider’s data store
if (!rpB.IsUserInRole(“testuser”, “Administrators in store B”))
 rpB.AddUsersToRoles(
 new string[] { “testuser” },
 new string[] { “Administrators in store B” });

VB.NET
‘Create a role with the “A” provider
 Dim rpA As RoleProvider = _
 Roles.Providers(“roleStore_A”)
If (Not rpA.RoleExists(“Administrators in store A”)) Then
 rpA.CreateRole(“Administrators in store A”)
End If

‘Add the test user account to a role in “A” provider’s data store
If (Not rpA.IsUserInRole(“testuser”, “Administrators in store A”)) Then
 rpA.AddUsersToRoles(New String() {“testuser”}, _
 New String() {“Administrators in store A”})
 End If

‘Create a role with the “B” provider
Dim rpB As RoleProvider = Roles.Providers(“roleStore_B”)
If (Not rpB.RoleExists(“Administrators in store B”)) Then
 rpB.CreateRole(“Administrators in store B”)
End If

‘Add the test user account to a role in “B” provider’s data store
If (Not rpB.IsUserInRole(“testuser”, “Administrators in store B”)) Then
 rpB.AddUsersToRoles(New String() {“testuser”}, _
 New String() {“Administrators in store B”})
 End If

Now you have a test user account that belongs to two roles: one role managed by the first SqlRole​
Provider and one role managed by the second SqlRoleProvider. In production use, though, you

79301c14.indd 715 10/6/08 12:17:00 PM

716

Chapter 14: Role Manager

would probably have different users associated with different authentication stores (for example,
maybe different SqlMembershipProvider instances), and you would want to align these users with
their corresponding RoleProvider instances. For this application, though, I am just using a single user
account for demonstration purposes.

The sample application hooks up an event subscription for GetRoles in global.asax:

C#
void RoleManager_GetRoles(object sender, RoleManagerEventArgs re)
{
 HandlingMultipleRoleProviders.CreatePrincipal(re);
}

VB.NET
Sub RoleManager_GetRoles(ByVal sender As Object, ByVal re As RoleManagerEventArgs)
 HandlingMultipleRoleProviders.CreatePrincipal(re)
End Sub

This code takes advantage of ASP.NET’s behavior for hooking up event handlers to events exposed
on modules. Internally, the ASP.NET runtime interprets the method signature above to mean: find an
event called GetRoles on the HttpModule called RoleManager or RoleManagerModule and subscribe
the RoleManager_GetRoles method in global.asax to the GetRoles event exposed by the module. I
have the event subscription forward the call to a static method on a class that will do the real work dur-
ing this event.

C#
public class HandlingMultipleRoleProviders
{
 public static void CreatePrincipal(RoleManagerEventArgs re)
 {
 //logic goes here
 }
}

VB.NET
Public Class HandlingMultipleRoleProviders
 Public Shared Sub CreatePrincipal(ByVal re As RoleManagerEventArgs)
 ‘logic goes here
 End Sub
End Class

Because there are a number of different conditions the module needs to handle, the code inside of
CreatePrincipal first determines whether it should just immediately return and defer processing
to the RoleManagerModule instead.

79301c14.indd 716 10/6/08 12:17:00 PM

717

Chapter 14: Role Manager

C#
 HttpContext c = re.Context;

 //Logic to determine if the second provider is used
 string flag = c.Request.QueryString[“usenondefault”];
 if (String.IsNullOrEmpty(flag) || flag != “true”)
 return;

 //Use default RoleManagerModule logic for anonymous users
 if (!c.User.Identity.IsAuthenticated)
 return;

VB.NET
 Dim c As HttpContext = re.Context

 ‘Logic to determine if the second provider is used
 Dim flag As String = c.Request.QueryString(“usenondefault”)
 If String.IsNullOrEmpty(flag) OrElse flag <> “true” Then
 Return
 End If

 ‘Use default RoleManagerModule logic for anonymous users
 If (Not c.User.Identity.IsAuthenticated) Then
 Return
 End If

In the sample application, the code decides to use a nondefault provider if a query-string variable
called “usenondefault” exists, and the variable is set to the string “true”. In a production applica-
tion, you would instead need a way to look at a logged-in user’s username and determine the correct
RoleProvider to select for that user. You could encode some extra information into the username
(that is, set the username to “username + provider_name”). You could use another approach such
as issuing a cookie at login time that indicates the appropriate RoleProvider to use for the logged in
user. In the chapter on forms authentication, you also saw examples of using the UserData property
from FormsIdentity.Ticket when running in cookied mode; you could use this approach as well
to store information that allows you to figure out the correct RoleProvider for the user.

Regardless of the approach you choose, the main thing is that if a GetRoles event subscription deter-
mines that the default provider should be used, it can just exit and leave RoleManagerModule to do
the processing for the request. The preceding sample code also checks to see if the user for the current
request is authenticated; if the user is anonymous the method also immediately returns. Because Role
Manager doesn’t support the concept of associating roles to an anonymous user, there is no need for
any custom processing.

At this point, there are two general scenarios the custom GetRoles event handler needs to deal with:

Creating a ❑❑ RolePrincipal when cookie caching is in effect.

Creating a ❑❑ RolePrincipal when cookie caching is not enabled.

79301c14.indd 717 10/6/08 12:17:00 PM

718

Chapter 14: Role Manager

If cookie caching is being used, the event handler mirrors the same security checks and behavior as the
RoleManagerModule.

C#
 if (Roles.CacheRolesInCookie)
 {
 if ((!Roles.CookieRequireSSL || c.Request.IsSecureConnection))
 {
 //more custom logic here to create a RolePrincipal
 }
 else
 {
 if (c.Request.Cookies[Roles.CookieName] != null)
 Roles.DeleteCookie();
 }
 }

VB.NET
If Roles.CacheRolesInCookie Then
 If ((Not Roles.CookieRequireSSL) OrElse c.Request.IsSecureConnection) Then
 ‘more custom logic here to create a RolePrincipal
 Else
 If c.Request.Cookies(Roles.CookieName) IsNot Nothing Then
 Roles.DeleteCookie()
 End If
 End If
End If

For an authenticated user, the custom event handler will carry out the necessary work to extract the
encrypted role cache information from the cookie. However, if there is a mismatch between the cookie​
RequireSSL configuration attribute, and the current SSL state of the connection, then the custom event
handler instead sets a clear cookie header. This behavior matches what RoleManagerModule does when
it receives a role cache cookie in the clear, but the application configuration indicates that the role cache
cookie should be issued and accepted only over SSL connections.

The logic for handling the encrypted role cache cookie is shown here:

C#
 try
 {
 HttpCookie cookie = c.Request.Cookies[Roles.CookieName];
 if (cookie != null)
 {
 string cookieValue = cookie.Value;
 if (cookieValue != null && cookieValue.Length > 4096)
 Roles.DeleteCookie();
 else
 {
 //ensure proper casing on some cookie properties
 if (!String.IsNullOrEmpty(Roles.CookiePath) &&

79301c14.indd 718 10/6/08 12:17:01 PM

719

Chapter 14: Role Manager

 Roles.CookiePath != “/”)
 cookie.Path = Roles.CookiePath;
 cookie.Domain = Roles.Domain;

 //create a new principal
 c.User = new RolePrincipal(“roleStore_B”,
 c.User.Identity,
 cookieValue);
 }
 }
 }
 catch { /*ignore errors*/ }

VB.NET
Try
 Dim cookie As HttpCookie = c.Request.Cookies(Roles.CookieName)
 If cookie IsNot Nothing Then
 Dim cookieValue As String = cookie.Value
 If cookieValue IsNot Nothing AndAlso cookieValue.Length > 4096 Then
 Roles.DeleteCookie()
 Else
 ‘ensure proper casing
 If (Not String.IsNullOrEmpty(Roles.CookiePath)) _
 AndAlso Roles.CookiePath <> “/” Then
 cookie.Path = Roles.CookiePath
 End If

 cookie.Domain = Roles.Domain

 ‘create a new principal
 c.User = New RolePrincipal(“roleStore_B”, _
 c.User.Identity, _
 cookieValue)
 End If
 End If
 Catch ‘ ignore errors
End Try

The event handler gets a reference to the role cache cookie (Roles.CookieName makes it easy to get to
the correct cookie). It then extracts the cookie’s value because this is the encrypted representation of the
user’s role information. Just as with RoleManagerModule, the custom code makes a quick sanity check
to ensure that it hasn’t been sent an excessively long value. Because you know that RoleManagerModule
will never issue a cookie during EndRequest where the value is longer than 4096 characters, you know
that any inbound cookie with an excessively long value is bogus and, thus, should be ignored. If an
excessively long cookie value is present, the custom code also sends back a clear cookie header to pre-
vent the browser from continuing to send a bogus cookie.

The code just preceding the constructor call is boilerplate code from the ASP.NET RoleManagerModule.
ASP.NET uses this code to ensure that if the casing of any of the cookie settings is wrong that the role
cache cookie has these values reset with the correctly cased values. At one point, ASP.NET code would
read these values back out of the request cookie, hence the logic for ensuring proper casing. Assuming
that the cookie value’s length is acceptable, the custom code creates a new RolePrincipal. Note that in

79301c14.indd 719 10/6/08 12:17:01 PM

720

Chapter 14: Role Manager

the preceding custom code, it uses a constructor overload that accepts a provider name as the first
parameter. This ensures that RolePrincipal internally will use the correct provider reference if it ever
needs to call GetRolesForUser on the provider. For a production application the actual provider name
would be selected (as opposed to being hard-coded) using some algorithm that tells you the correct
RoleProvider to choose based on the username. The newly created RolePrincipal is also set on the
HttpContext.

The custom code next has to handle the case where a RolePrincipal has not been created yet. For the
custom code shown so far, this will occur either for authenticated users hitting the application for the
first time (so no role cache cookie exists yet) or for authenticated users running over non-SSL connec-
tions where the role cache cookie was sent but the application’s configuration only allows the role cache
cookie to be processed when sent over an SSL connection.

C#
 //Either no role cache cookie, or the cookie was invalid
 if (!(c.User is RolePrincipal))
 c.User = new RolePrincipal(“roleStore_B”,c.User.Identity);

VB.NET
 ‘Either no role cache cookie, or the cookie was invalid
 If Not(TypeOf c.User Is RolePrincipal) Then
 c.User = New RolePrincipal(“roleStore_B”,c.User.Identity)
 End If

This code ensures that if a RolePrincipal doesn’t exist yet on the context, that one gets created. The
constructor overload in this case also accepts a provider name, but no encrypted ticket is passed to the
constructor. This means the first time the RolePrincipal is used, it will need to call GetRoles​
ForUser on the nondefault provider whose name was passed to the constructor.

The only tasks left at this point are to synchronize the principal on the context with the thread object,
and telling RoleManagerModule that it should skip further processing in its PostAuthenticate​
Request handler.

C#
 //Sync principal to Thread as well
 Thread.CurrentPrincipal = c.User;

 //Notify RoleManagerModule to skip its processing
 re.RolesPopulated = true;

VB.NET
 ‘Sync principal to Thread as well
 Thread.CurrentPrincipal = c.User

 ‘Notify RoleManagerModule to skip its processing
 re.RolesPopulated = True

79301c14.indd 720 10/6/08 12:17:01 PM

721

Chapter 14: Role Manager

Remember that if you write your own code to handle the GetRoles event, you must set the Roles
Populated property on the event argument to true. If you forget to do this, RoleManagerModule will
still carry out its default processing and promptly overwrite any principal you created in a custom
event handler.

Now that the sample application has the necessary custom logic to switch between the default provider
and the nondefault RoleProvider, you can try out the custom behavior with a simple page. The test
page allows you to flip between the two different providers by using two different URLs:

 <form id=”form1” runat=”server”>
 <div>
 Click to use second provider

 Click to use default provider
 </div>
 </form>

When the page runs, it lists the roles that the current user belongs to:

C#
protected void Page_Load(object sender, EventArgs e)
{
 foreach (string role in ((RolePrincipal)User).GetRoles())
 Response.Write(“Belongs to: ” + role + “
”);
}

VB.NET
 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As EventArgs) Handles Me.Load()
 For Each role As String In (CType(User, RolePrincipal)).GetRoles()
 Response.Write(“Belongs to: ” & role & “
”)
 Next role
 End Sub

If you log in to the sample application initially, the test page lists:

Belongs to: Administrators in store A

If you then click the link that includes the query-string variable with a value of “true,” the custom event
handler creates a RolePrincipal that uses the second configured provider. As a result, the test page
displays:

Belongs to: Administrators in store B

You can seamlessly flip back and forth between using a default provider (and hence the default Role​
Manager​Module logic) and the second nondefault provider by clicking on the two links. Aside from the
simple logic in the custom event handler for determining which provider to use, the rest of the code
shown in this section is exactly what you need to effectively use multiple Role Manager providers in
an application.

79301c14.indd 721 10/6/08 12:17:01 PM

722

Chapter 14: Role Manager

Because the code manipulates both Thread.CurrentPrincipal and HttpContext.Current.User, the
code must be running in Medium trust or higher. The policy files for Medium trust and above include
the necessary permission to change the principal object. Alternatively, you can factor out the event han-
dler code into a GAC’d assembly where you can create SecurityPermission(SecurityPermission​
Flag.ControlPrincipal)and then assert it. If you attempt to run the sample code in Low or Minimal
trust, it will instead fail with a SecurityException because these trust levels do not allow user code
to manipulate the principal on either context or the thread.

RoleProvider
As with the Membership feature, Role Manager depends heavily on providers. In fact, the major pieces
of functionality within the Role Manager feature are effectively implemented in RoleManagerModule,
RolePrincipal and concrete implementations of the RoleProvider base class. Because Role Manager
does not have an object model for a role, the RoleProvider definition is pretty simple. Roles are just
strings, and the users associated with those roles are also just strings. As a result, the RoleProvider
base class is just an abstract class definition. Unlike MembershipProvider, RoleProvider does not
have any helper methods or private methods implementing base portions of the Role Manager feature.

C#
public abstract class RoleProvider : ProviderBase
{
 //Properties
 public abstract string ApplicationName { get; set; }

 //Authorization related methods
 public abstract bool IsUserInRole(string username, string roleName);

 //Methods that deal with fetching a user’s role information
 public abstract string[] GetRolesForUser(string username);

 //Methods for creating, deleting and managing roles
 public abstract void CreateRole(string roleName);
 public abstract bool DeleteRole(string roleName, bool throwOnPopulatedRole);
 public abstract bool RoleExists(string roleName);
 public abstract void AddUsersToRoles(string[] usernames, string[] roleNames);
 public abstract void RemoveUsersFromRoles(string[] usernames,
 string[] roleNames);
 public abstract string[] GetUsersInRole(string roleName);
 public abstract string[] GetAllRoles();
 public abstract string[] FindUsersInRole(string roleName,
 string usernameToMatch);
}

VB.NET
Public MustInherit Class RoleProvider
 Inherits ProviderBase

 ‘Properties

79301c14.indd 722 10/6/08 12:17:01 PM

723

Chapter 14: Role Manager

 Public MustOverride Property ApplicationName As String

 ‘Authorization related methods
 Public MustOverride Function IsUserInRole(ByVal username As String, _
 ByVal roleName As String) _
 As Boolean

 ‘Methods that deal with fetching a user’s role information
 Public MustOverride Function GetRolesForUser(ByVal username As String) _
 As String()

 ‘ Methods for creating, deleting and managing roles
 Protected Sub New()
 Public MustOverride Sub CreateRole(ByVal roleName As String)
 Public MustOverride Function DeleteRole(ByVal roleName As String, _
 ByVal throwOnPopulatedRole As Boolean) _
 As Boolean
 Public MustOverride Function RoleExists(ByVal roleName As String) As Boolean
 Public MustOverride Sub AddUsersToRoles(ByVal usernames As String(), _
 ByVal roleNames As String())
 Public MustOverride Sub RemoveUsersFromRoles(ByVal usernames As String(), _
 ByVal roleNames As String())
 Public MustOverride Function GetUsersInRole(ByVal roleName As String) _
 As String()
 Public MustOverride Function GetAllRoles() As String()
 Public MustOverride Function FindUsersInRole(ByVal roleName As String, _
 ByVal usernameToMatch As String) _
 As String()

End Class

Because the RoleProvider treats a role as a string, and some of the providers internally convert array
parameters into comma-delimited strings, roles normally are not allowed to have a comma character.
For example, if you attempt to create a role called “this,is,a,role”, both the Roles class and most of the
default providers will throw an ArgumentException. The reason for this restriction is that not all data
stores can accept an array type. Methods like AddUsersToRoles that accept string arrays may have
these arrays converted into a comma-delimited string of roles that is then passed down to a database
for subsequent parsing and processing. To prevent confusion over whether a comma is a delimiter as
opposed to part of a role name, the Roles class and all of the default role providers, except for Windows​
TokenRoleProvider, disallow the use of a comma when creating roles.

One thing to keep in mind if you are thinking about implementing a custom provider is the relative
simplicity of the Role Manager feature. For custom providers implemented against relational data
stores, it is a pretty trivial exercise to write a basic RoleProvider implementation. The core portion
of RoleProvider is the GetRolesForUser method; if a custom provider does not implement this
method, then the RolePrincipal class will not work properly. And of course without the RolePrin-
cipal class there isn’t much point to using Role Manager. The IsUserInRole method is a logical
adjunct to GetRolesForUser. At one point, providers also needed to implement IsUserInRole for the
RolePrincipal to work properly, but with some of the later changes to the way the role cache cookie
works, it turns out that RolePrinicpal no longer calls IsUserInRole. However, given the nature of
authorization checks, it is reasonable to expect a minimal RoleProvider implementation to also imple-
ment IsUserInRole (if your data store supports getting all roles for a user, then it implicitly supports
role checks like IsUserInRole).

79301c14.indd 723 10/6/08 12:17:01 PM

724

Chapter 14: Role Manager

The remainder of the methods on the provider base class are optional from a runtime perspective. If
you already create roles and associate users to roles using some other management tool or interface,
then you can stub out the rest of the methods on a custom RoleProvider and just throw a NotSup-
portedException from them instead.

Note that the RoleProvider definition does not really expose the concept of nesting roles within roles.
The administrative portion of RoleProvider does not have methods like AddRoleToRole or Remove​
RoleFromRole. If you have a custom data store that supports the nesting of roles, you can still expose
most of this functionality from methods like IsUserInRole. There is nothing wrong with a custom pro-
vider that internally has the logic to recurse through a nested hierarchy of roles to perform authorization
checks or to determine membership in a role. If necessary, a custom provider can add a few methods to
its implementation to support the necessary administrative methods for nesting roles within roles.

The AuthorizationStoreRoleProvider discussed in Chapter 15 is an example of a RoleProvider
that works against a data store that supports role nesting. Because the AuthorizationStoreRole​
Provider uses the Authorization Manager (aka AzMan) functionality that was first available as part
of Windows Server 2003, when you call IsUserInRole on this provider it will properly handle group
nesting. However, this provider does not expose any special methods to administer nested roles; instead,
the expectation is that developers and administrators will use the MMC or management API available
for AzMan policy stores.

Basic Configuration
Just like MembershipProvider, a RoleProvider can partition its data based on an application name
from configuration.

ApplicationName❑❑ : Custom providers should at least implement the getter for this property.
The concept of separating data by application name is so common to many of the provider-based
features in ASP.NET 2.0 or ASP.NET 3.5, that the getter should always be implemented. If it
turns out that you are mapping role data to a data store that doesn’t really have the concept of
an “application,” you can have the setter throw a NotSupportedException. In this case, your
custom provider can just ignore the application name that it loaded from configuration.

Authorization Methods
A basic provider implementation should always implement the following two methods:

GetRolesForUser❑❑ : As mentioned earlier, RolePrincipal always calls this method on a provider
at least once prior to making an authorization check inside RolePrincipal.IsInRole. If the
username parameter doesn’t exist, the usual convention is to return an empty string array.
Similarly, if the user exists in the data store but doesn’t belong to any roles, a provider should
return an empty string array as well.

IsUserInRole❑❑ : Developers may call this method directly on a provider as opposed to calling
IsInRole on RolePrincipal. For users who belong to a large number of roles where Get​
RolesForUser may take an excessive amount of time to run, it will be faster (up to a point) to
call IsUserInRole on a provider. There is a bit of a trade-off when developers need to balance
the up-front cost of making a single round trip to the data store that returns a large result set
when calling GetRolesForUser, versus calling the data store multiple times with IsUse​InRole,

79301c14.indd 724 10/6/08 12:17:01 PM

725

Chapter 14: Role Manager

in which case each individual query in the data store is much faster. For this reason, custom pro-
vider implementers should implement IsUserInRole and GetRolesForUser; furthermore, the
implementation of IsUserInRole should ideally be faster than the implementation of Get-
RolesForUser (technically, a custom provider could implement IsUserInRole in terms of
GetRolesForUser, but then there is no performance gain for single authorization checks when
calling IsUserInRole). If the user specified by the username parameter doesn’t exist in the data
store or if the role specified by the roleName parameter doesn’t exist, a custom provider should
return false. Developers normally would not expect an authorization check to throw an excep-
tion for these cases.

Managing Roles and Role Associations
The remaining methods on RoleProvider are primarily used by administrative tools like the Web
Administration Tool (WAT) available inside of Visual Studio. If you already have other management tools
for your custom role stores, you can stub out these methods and throw a NotSupportedException. If
your intent, though, is for your provider to be useable from administrative tools like the WAT, then you
should implement the following methods.

CreateRole❑❑ : Creates a new role in the data store. Providers should throw a Provider
Exception if an attempt is made to create a role, and the role already exists.

DeleteRole❑❑ : Removes a role from the data store. If the parameter throwOnPopulatedRole is
set to true, the provider should throw a ProviderException if an attempt is made to delete a
role and the role still has users associated with it. If throwOnPopulatedRole is set to false, this
is an indication that the caller is all right with deleting the role, and any remaining user-to-role
associations. If an attempt is made to delete a role that doesn’t exist in the data store, a custom
provider should just return false from this method rather than throw an exception. If the role
is found, and the deletion is successful, then a custom provider should return true.

RoleExists❑❑ : A provider returns true if the roleName exists in the data store; otherwise, a pro-
vider should return false.

AddUsersToRoles❑❑ : This method allows a developer to add one or more users to each of the roles
specified in the roleNames parameter. A provider should check to see that each user specified in
the usernames parameter exists and that each role specified in the roleNames parameter exists.
If either of these checks fails, the provider should throw ProviderException. Also, if any user in
the usernames parameter already belongs to one of the roles specified in the roleNames param-
eter, the provider should throw ProviderException. It is up to custom provider implementers
to determine how the transactional semantics of adding multiple users to roles are handled. For
example, the SqlRoleProvider performs all of the adds in a single transaction, or else it fails the
entire chunk of work. However, not all authorization data stores will be able to use transactions.

RemoveUsersFromRoles❑❑ : This companion method to AddUsersToRoles enables a developer
to remove each user specified in the usernames parameter from each role specified in the
roleNames parameter. The validation checks noted earlier for AddUsersToRoles should also
be implemented by custom providers for this method. Although in the case of removal, if an
attempt is made to remove a user from a role and the user does not already belong to that role,
a ProviderException should be thrown. (This is the reverse case of the validation that provid-
ers should implement in AddUsersToRoles.) It is also up to a custom provider implementer as
to whether any transactional semantics are enforced. For example, the SqlRoleProvider will
either successfully perform all requested removals, or it will roll the entire chunk of work back.

79301c14.indd 725 10/6/08 12:17:01 PM

726

Chapter 14: Role Manager

GetUsersInRole❑❑ : Returns a string array containing the names of all of the users that are cur-
rently members of the role specified by the roleName parameter. If the role is empty, the pro-
vider should just return an empty string. However, if a request if made to get the users for a
nonexistent role then a ProviderException should be thrown.

GetAllRoles❑❑ : Returns a string array containing a list of all of the roles currently defined in the
data store. If no roles currently exist, then a provider should return an empty string instead.

FindUsersInRole❑❑ : Returns a string array containing all of the users whose names match the
search parameter specified by usernameToMatch that are members of the role specified by the
roleName parameter. If no user matches are found, a custom provider should return an empty
string array. However, if an attempt is made to search for users in a nonexistent role, a provider
should throw a ProviderException. If the underlying data store supports wildcard characters
for searches, a custom provider should allow these wildcard characters in the usernameToMatch
parameter and pass the wildcard characters to the data store for further processing.

WindowsTokenRoleProvider
Although we will cover the SQL and AzMan providers in their Chapters 15 and 16, respectively,
WindowsTokenRoleProvider has very limited functionality, so one section should suffice for explain-
ing how it works. As the name suggests, the provider works with a Windows security token. Although
the provider can theoretically run in any trust level (IsUserInRole will work in Minimal trust), it is
intended for use at Low trust or above. Unlike other providers, WindowsTokenRoleProvider does not
internally check the trust level during initialization. The reason for this is that if the runtime environ-
ment can get a Windows security token for a user, the provider will work. If the runtime environment
cannot get a token, then the provider fails. So, explicitly checking trust levels at initialization time is not
necessary for this provider.

The token the provider uses is the value from the Token property on a WindowsIdentity object.
In an ASP.NET environment, the provider gets a WindowsIdentity from the User property on the
HttpContext when using Windows authentication. In non-ASP.NET environments, the provider will
get the token from Thread.CurrentPrincipal. For both runtime environments, these are the only two
places the provider will look; there is no facility for passing an arbitrary token to the provider. In other
words, WindowsTokenRoleProvider works only with the credentials of the currently executing user.

The provider supports only the following two methods defined on RoleProvider:

IsUserInRole❑❑ :There are two overloads for this method:the overload that is defined by the
RoleProvider base class, as well as a special overload that accepts a System.Security​
.Principal.WindowsBuildInRole value. Both overloads carry out an access check against
the current WindowsIdentity. There is also no trust level restriction on this method—it will
work in any of the ASP.NET trust levels.

GetRolesForUser❑❑ : Note that inside of this method, the provider makes an explicit check for
Low trust. Unlike IsUserInRole, if you new() up the provider and manually initialize it in
Minimal trust, GetRolesForUser will still fail. Calling IsUserInRole, however, will succeed
in Minimal trust because there is no explicit trust level check in that method.

79301c14.indd 726 10/6/08 12:17:01 PM

727

Chapter 14: Role Manager

The additional overload for IsUserInRole was added to the provider as a convenience. Internally, the
additional overload just takes the current user’s WindowsIdentity, wraps it in a WindowsPrincipal,
and then calls the IsInRole overload on WindowsPrincipal that accepts a WindowsBuiltInRole
parameter. These steps are necessary because when you use WindowsTokenRoleProvider with Role-
Manager in ASP.NET, the principal object on the context is a RolePrincipal wrapping a Windows
Identity (as opposed to a Windows​Principal wrapping a WindowsIdentity which is what happens
when you use Windows authentication with an application and you have not enabled Role Manager).

There are two reasons why you might use WindowsTokenRoleProvider during development:

You may need to start developing an application that will use Role Manager with a different ❑❑

provider, but you currently are only running Windows authentication in your development
environment. Because Role Manager is provider-based, you can start writing code while using
the WindowsTokenRoleProvider and then later point swap in the provider that will be used
in production.

Your application depends on fetching the group names for each authenticated user and then ❑❑

performing custom authorization checks and business logic against this set of group names.
The WindowsTokenRoleProvider’s GetRolesForUser method already does this for you, so
you can make use of the provider to easily retrieve a string array of a user’s group member-
ship. The Framework’s WindowsPrincipal object doesn’t provide this functionality.

If you use WindowsTokenRoleProvider on a site where the current user is considered anonymous
(for example, a dummy WindowsPrincipal and WindowsIdentity were initially placed on the
HttpContext), then IsUserInRole will always return false and GetRolesForUser will always
return an empty string array. This behavior is consistent with the same values returned from Role-
Principal for anonymous users. The extra IsUserInRole overload will also return false because
the WindowsIdentity that ASP.NET sets on the context for anonymous users is just a dummy Windows​
Identity that doesn’t belong to any built-in roles.

The internal logic of WindowsTokenRoleProvider compares the username parameter for IsUser​
InRole and GetRolesForUser to the string username of the current WindowsIdentity. This check is
necessary because at the provider level there are no overloads that implicitly work with the current user.
So, there is nothing preventing a developer from calling the provider’s methods passing in arbitrary
usernames in a domain. However, because the purpose of WindowsTokenRoleProvider is to work with
the credentials of only the currently authenticated user, the provider makes a quick sanity check to
ensure that the username parameter passed to it actually matches the username associated with the cur-
rently authenticated user. If a mismatch exists, IsUserInRole will always return false, and GetRoles​
ForUser always returns an empty string (that is, the same behavior as the anonymous user case).

Assuming that the current user is authenticated, and no mismatch occurs, the provider uses the secu-
rity token of the user to carry out its work. For IsUserInRole, the provider converts the roleName
parameter to a group security identifier (SID) and then checks the user’s security token to see if that
group SID exists. Depending on the value of the roleName parameter (that is, a Windows group name),
translating from a string to a SID with a call to LookupAccountName may be an expensive operation.
The GetRolesForUser method can be even more expensive because, internally, it must perform a
SID-to-name translation on each of the group SIDs contained in the user’s security token. This is a very
important point to keep in mind because it means in complex domain environments a great deal of

79301c14.indd 727 10/6/08 12:17:01 PM

728

Chapter 14: Role Manager

network traffic may be generated attempting to convert each user’s group SID into a name. If some of
the groups a user belongs to sit in remote domains, GetRolesForUser can be a very long call.

For this reason, you should experiment with using cookie caching in conjunction with WindowsToken​
RoleProvider because after the role information is retrieved with a call to GetRolesForUser, cookie
caching can prevent you from having to resolve groups SIDs to names for the duration of a user’s browser
session. If it turns out that your users belong to so many groups that you can’t fit them into a cookie,
you could disable cookie caching but still increase the maxCachedResult limit so that you can call
ToEncryptedTicket and get back a non-null value. Instead of storing the encrypted string in a cookie
you can use an alternative data store like a database. Although the earlier code sample for RoleManager​
Module showed you how to use the GetRoles event to handle multiple providers, you could use the
same approach to retrieve large encrypted tickets from a database and automatically reconstruct a
RolePrincipal on each request during the GetRoles event.

When you call IsUserInRole, the value of the roleName you pass in must include the appropriate
“domain” value of the role (that is, group) you are checking against. If the role is a well-known group
(that is, a built in group or NT AUTHORITY-based group), then the roleName parameter may need to
include NT AUTHORITY\\ or BUILTIN\\ before the group name. Note that the extra backslash is neces-
sary for escaping this character in C#. If you leave out these specifiers, the IsUserInRole check will
sometimes fail depending on the group you are checking. Always prepending either NT AUTHORITY\\
or BUILTIN\\ to the group name prevents any random problems. For domain groups, you always use
the familiar syntax of “DOMAIN\\GROUPNAME”. If you are calling IsUserInRole for a local machine
group though, you can use either the syntax “MACHINENAME\\GROUPNAME” or just “GROUPNAME”. Either
syntax is interpreted as referencing a group in the local machine’s SAM database.

As an example of this, the following code dumps the group membership for a user:

C#
WindowsTokenRoleProvider wp =
(WindowsTokenRoleProvider)Roles.Providers[“AspNetWindowsTokenRoleProvider”];

 string[] roles = wp.GetRolesForUser(User.Identity.Name);
 foreach (string r in roles)
 Response.Write(“You belong to: “ + r + “
”);

VB.NET
Dim wp As WindowsTokenRoleProvider = CType(_
 System.Web.Security.Roles.Providers(“AspNetWindowsTokenRoleProvider”), _
 WindowsTokenRoleProvider)

Dim roles() As String = wp.GetRolesForUser(User.Identity.Name)
For Each r As String In roles
 Response.Write(“You belong to: “ & r & “
”)
Next r

Aside from enabling Role Manager in configuration and disallowing anonymous access to the test site,
this code is all that is needed to start using a WindowsTokenRoleProvider. The reason is that a pro-
vider named AspNetWindowsTokenRoleProvider is defined by default in the machine.config file.

79301c14.indd 728 10/6/08 12:17:02 PM

729

Chapter 14: Role Manager

As a result every application, ASP.NET and non-ASP.NET, has access to this provider instance assum-
ing that the Role Manager feature has been enabled. Running this code results in the following output
when I am logged in:

You belong to: None
You belong to: Everyone
You belong to: TestLocalMachineGroup
You belong to: BUILTIN\Administrators
You belong to: BUILTIN\Users
You belong to: NT AUTHORITY\NETWORK
You belong to: NT AUTHORITY\Authenticated Users
You belong to: NT AUTHORITY\This Organization
You belong to: NT AUTHORITY\NTLM Authentication

You can see that on my test machine I belong to a variety of groups: one that is clearly a local machine
group (the TestLocalMachineGroup), and a number of other default and built-in groups. One thing to
note about this output is that when the provider’s GetRolesForUser method returns the string names
of groups located on the local machine, it always strips off the machine name. That is why the local
machine group is shown as TestLocalMachineGroup instead of MACHINE\TestLocalMachineGroup.

Remember that the return value from GetRolesForUser can be cached internally by a RolePrincipal
and that the internally cached set of roles in a RolePrincipal is used whenever you call IsInRole
against the principal. From a completeness perspective, it would have been nice to store local machine
groups that a user belongs to in both MACHINENAME\\GROUPNAME and GROUPNAME format. From a Win-
dows API perspective both of these syntaxes are valid. However, if the provider did so, developers who
depended on the count of roles returned from RolePrincipal.GetRoles would end up with twice the
number of local machine groups because they would be stored twice.

As a compromise, the WindowsTokenRoleProvider strips the machine name off the local machine
groups before returning the groups’ names from GetRolesForUser. The local machine names are not
left prepended to group names because if you need to deploy an application across different staging
and production environments, and you are using Role Manager (and potentially URL authorization),
you probably do not want to be incessantly changing the machine name string used in all of your
authorization checks. So, it made more sense to strip off the machine name, thus making it easier to
write applications that use local machine groups without needing to reconfigure group names each
time the code is moved to a different machine.

You will not encounter this behavior if you make authorization checks by calling IsUserInRole
directly on the provider; when calling the provider’s IsUserInRole method directly you can use either
syntax for local machine groups. However, if you depend on RolePrincipal.IsInRole for authoriza-
tion checks you may run into this behavior and it may cause some unexpected problems. For example,
using the TestLocalMachineGroup shown in the earlier results, the following URL authorization
check when using Role Manager will fail:

<authorization>
 <allow roles=”bhaidar-PC\TestLocalMachineGroup”/>
 <deny users=”*”/>
</authorization>

79301c14.indd 729 10/6/08 12:17:02 PM

730

Chapter 14: Role Manager

This exact same check will succeed if you turn off Role Manager and just use Windows authentication
instead. The WindowsPrincipal class never has to return roles as a string array, so when Windows​
Principal.IsInRole is called, internally, it can test local machine groups using alternative syntaxes.
The reason that the preceding check fails when using Role Manager is that RolePrincipal internally
caches the string array returned by WindowsTokenRoleProvider.GetRolesForUser. And this array
has only a string entry of TestLocalMachineGroup, so the string comparison against bhaidar-PC\
TestLocalMachineGroup fails. The following configuration though will succeed:

<authorization>
 <allow roles=”TestLocalMachineGroup”/>
 <deny users=”*”/>
</authorization>

Now that the machine name is no longer part of the role name, the URL authorization check against
RolePrincipal succeeds because there is a string match on just TestLocalMachineGroup. If you hap-
pen to be developing an application and authorization checks against local machine groups suddenly
fail when you switch from using only Windows authentication to using Windows authentication and
Role Manager with the WindowsTokenRoleProvider, the likely culprits are the group names in your
<authorization /> configuration element.

You can write some sample code that tries different ways of making role checks against the group
names shown earlier that were returned from GetRolesForUser:

C#
Response.Write(“This Organization: “ +
 wp.IsUserInRole(User.Identity.Name, “This Organization”));
Response.Write(“This Organization: “ +
 wp.IsUserInRole(User.Identity.Name, “NT AUTHORITY\\This Organization”));

VB.NET
Response.Write(“This Organization: “ & _
 wp.IsUserInRole(_
 User.Identity.Name, _
 “This Organization”) & _
 “
”)

RResponse.Write(“This Organization: “ & _
 wp.IsUserInRole(_
 User.Identity.Name, _
 “NT AUTHORITY\This Organization”) & _
 “
”)

This code performs an authorization check against the “This Organization” default group. The first
check does not include “NT AUTHORITY\\” in the roleName parameter, while the second role check
does include it. This code results in the following output:

This Organization: False
This Organization: True

79301c14.indd 730 10/6/08 12:17:02 PM

731

Chapter 14: Role Manager

Now clearly the user account belongs to this group, but in the first case, without “NT AUTHORITY\\”
prepended to the roleName parameter, the group name was interpreted as a local machine group and
thus the check failed. If you use a different well-known group that has been around for a while, you get
different behavior:

C#
Response.Write(“Local administrators: “ +
 wp.IsUserInRole(User.Identity.Name, “Administrators”) + “
”);
Response.Write(“Local administrators: “ +
 wp.IsUserInRole(User.Identity.Name, “BUILTIN\\Administrators”) + “
”);

VB.NET
Response.Write(“Local administrators: “ & _
 wp.IsUserInRole(_
 User.Identity.Name, _
 “Administrators”) & _
 “
”)

Response.Write(“Local administrators: “ & _
 wp.IsUserInRole(_
 User.Identity.Name, _
 “BUILTIN\Administrators”) & _
 “
”)

This code uses two different variations for checking to see if the current user belongs to the local
Administrators group. As you can see in the following output, both coding styles result in the same
results:

Local administrators: True
Local administrators: True

Because of the subtle differences in behavior when performing authorization checks with special group
names, it is easier to always prepend either “NT AUTHORITY\\” or “BUILTIN\\”. It is important to note
that if the above two lines of code were to be run on a machine running Windows Vista with the user
logged in is a standard user and User Account Control (UAC) is turned on, the result would be a value of
False for both lines. The discussion will not go into the details of UAC, but the standard user would be
limited in privileges and hence not able to retrieve such information that requires elevation of privileges.

For local machine groups, it is always recommended to prepend the machine name to get exact results
when calling IsUserInRole, as the following code snippet demonstrates:

C#
Response.Write(“A local machine group: “ +
 wp.IsUserInRole(User.Identity.Name, “TestLocalMachineGroup”));
Response.Write(“A local machine group: “ +
 wp.IsUserInRole(User.Identity.Name, “bhaidar-PC\\TestLocalMachineGroup”));

79301c14.indd 731 10/6/08 12:17:02 PM

732

Chapter 14: Role Manager

VB.NET
Response.Write(“A local machine group: “ & _
 wp.IsUserInRole(_
 User.Identity.Name, _
 “TestLocalMachineGroup”) & _
 “
”)

Response.Write(“A local machine group: “ & _
 wp.IsUserInRole(_
 User.Identity.Name, _
 “bhaidar-PC\TestLocalMachineGroup”) & _
 “
”)

The first line of code results in a value of False because the machine name was not prepended to the
group under question. The second line of code succeeds due to the fact that the machine name was
prepended to the group against which the code is doing the checking:

A local machine group: False
A local machine group: True

With either syntax for the roleName parameter, the provider interprets the roleName as a local
machine group. For groups that you create in a domain, though, you must always prepend the group
name with the domain name as the next sample demonstrates:

C#
Response.Write(“The domain Users group: “ +
 wp.IsUserInRole(User.Identity.Name, “AnyDomain\\Domain Users”));
Response.Write(“The domain Users group: “ +
 wp.IsUserInRole(User.Identity.Name, “Domain Users”));

VB.NET
Response.Write(“The domain Users group: “ & _
 wp.IsUserInRole(_
 User.Identity.Name, _
 “bhaidar-PC\Domain Users”) & _
 “
”)

Response.Write(“The domain Users group: “ & _
 wp.IsUserInRole(_
 User.Identity.Name, _
 “Domain Users”) & _
 “
”)

The first call will succeed because the provider can successfully resolve this to the default “Domain
Users” group that is present in every domain. However, the second check fails because the provider is
looking for a group called “Domain Users” on the local machine.

The domain Users group: True
The domain Users group: False

79301c14.indd 732 10/6/08 12:17:02 PM

733

Chapter 14: Role Manager

To summarize all of this, keep the following rules in mind when calling the provider’s IsUserInRole
method:

Always prepend ❑❑ “NT AUTHORITY\\” or “BUILTIN\\” when working with these types of
groups.

Always prepend ❑❑ “DOMAINNAME\\” when working with nonlocal groups located somewhere in
a domain.

Always prepend ❑❑ “MACHINENAME\\” when working with local groups.

Summary
The Role Manager feature gives you an easy way to create roles, assign users to roles, and then carry
out various authorization checks based on these associations. As with the Membership feature, the Role
Manager feature can be used to make authorization checks in both ASP.NET and non-ASP.NET environ-
ments. The static Roles class is used for performing authorization checks if your application only has a
single default provider, though for more complex sites you will probably end up getting references to
specific RoleProvider instances directly instead. If your site uses multiple providers, you will prob-
ably also need to hook the GetRoles event on RoleManagerModule so that your RolePrincipal
instances are associated with the proper provider.

RoleManagerModule is the “magic” that exposes the user-to-role associations stored by providers as a
RolePrincipal instance available from HttpContext.Current.User. You have to explicitly enable
the Role Manager feature (it is off by default in machine.config), but after you enable the feature,
RoleManagerModule automatically handles looking at the current user, and constructing a Role​
Principal that represents the current user. RolePrincipal can be used for declarative authoriza-
tion checks such as URL authorization as well as code-based authorization checks using IPrincipal​
.IsInRole. Because Role Manager has no hard-coded dependencies on a specific type of authenticated
identity, the RolePrincipal can wrap authenticated identities obtained from Windows authentication,
forms authentication, or any custom authentication mechanism you may author.

For performance reasons, RolePrincipal will fetch all of a user’s roles the first time the roles are needed,
and it will then cache that information internally for the duration of a page request. You can optionally
enable caching this information in a cookie so that on subsequent page requests RolePrincipal will ini-
tialize its cached role information from the cookie as opposed to calling the provider. The maxCached​
Results configuration setting partially determines how many roles RolePrincipal is willing to stuff
into a cookie. RoleManagerModule also enforces a maximum 4096 character limit on the size of a role
cache cookie, so you will need to experiment with cookie caching in your applications to see if you can
use it effectively.

One of the default providers supplied with the Framework is WindowsTokenRoleProvider. This
provider is very basic because it only implements the IsUserInRole and GetRolesForUser methods,
and these methods only work with the currently authenticated user. However, the GetRolesForUser
method can be very handy for developers who want to get all of the roles that a domain user belongs to.

79301c14.indd 733 10/6/08 12:17:02 PM

79301c14.indd 734 10/6/08 12:17:02 PM

15
SqlRoleProvider

Role Manager ships with a number of different providers in the .NET 2.0 and 3.5 Frameworks:
WindowsTokenRoleProvider, which was covered at the end of the previous chapter;
SqlRoleProvider, which is the topic of this chapter; and AuthorizationStoreRoleProvider,
which is discussed in the next chapter. SqlRoleProvider is already confi gured in machine.config
as the default provider for the Role Manager feature. As with SqlMembershipProvider,
SqlRoleProvider is the reference provider for the feature because it implements all of the
functionality defi ned on the RoleProvider base class.

This chapter will cover the following areas of the SqlRoleProvider:

The database schema used by the ❑❑ SqlRoleProvider.

Database security and trust level requirements for the provider, including how to confi g-❑❑

ure the provider for use in partially trusted non-ASP.NET environments.

Using the ❑❑ SqlRoleProvider with Windows-authenticated websites.

Extending the provider to support “run-with-limited-roles” scenarios.❑❑

Leveraging role data for authorization checks in the data layer.❑❑

Supporting multiple applications with a single provider.❑❑

Managing an application’s roles through IIS 7.0.❑❑

SqlRoleProvider Database Schema
The database schema contains tables, views, and stored procedures used by the provider. As with
the Membership feature, SqlRoleProvider’s schema integrates with the common set of tables
covered in Chapter 12. This allows you to use SqlMembershipProvider for authentication and

79301c15.indd 735 10/6/08 12:17:22 PM

736

Chapter 15: SqlRoleProvider

then use SqlRoleProvider to associate one or more roles with the users already registered in the
Membership feature. Keying off of the common tables also allows SqlRoleProvider to be used in conjunc-
tion with the other SQL-based providers (SqlProfileProvider and SqlPersonalizationProvider)
supplied by ASP.NET. However, there is no requirement that SqlRoleProvider be used in conjunction
with the Membership feature. The integration with the common provider schema is nice if you want
to leverage it, but you can also use Role Manager and SqlRoleProvider as a standalone authorization
feature. You will actually see how this works later on in the chapter, where using SqlRoleProvider
with Windows authentication is described.

Because the concept of a role in Role Manager is very simple, and because Role Manager also does not
support the concept of nested roles, the database tables for the SqlRoleProvider are also very simple.
The first table in the database schema is the aspnet_Roles table shown in the following code:

CREATE TABLE dbo.aspnet_Roles (
 ApplicationId uniqueidentifier NOT NULL
 FOREIGN KEY REFERENCES dbo.aspnet_Applications(ApplicationId),
 RoleId uniqueidentifier PRIMARY KEY
 NONCLUSTERED DEFAULT NEWID(),
 RoleName nvarchar(256) NOT NULL,
 LoweredRoleName nvarchar(256) NOT NULL,
 Description nvarchar(256)
)

Each of the table’s rows is described here:

ApplicationId❑❑ : Because multiple provider instances can be configured to point at the same
database, you can horizontally partition each application’s role data using the applicationName
configuration attribute supported in the provider’s configuration. In the database schema,
this attribute’s value is translated to the GUID application ID that is stored in the common
aspnet_Applications table. Whenever a SqlRoleProvider needs to look up role informa-
tion, it always does so within the context of a specific application, and thus the provider always
includes the ApplicationId column in the various stored procedures used by the provider.

RoleId❑❑ : The primary key for the table. Each role created using SqlRoleProvider is uniquely
identified by its RoleId. Although the stored procedures perform most of their work using the
RoleId, the public Role Manager API has no way to expose this value. As a result, the provider
always starts its work with a role name.

RoleName❑❑ : For all practical purposes, this is the role “object” in the Role Manager feature. This
is the value that you supply when creating new roles, and it is the value that you use when per-
forming authorization checks with a RolePrincipal.

LoweredRoleName❑❑ : The case-insensitive representation of the RoleName column. Although you
write code using the value stored in the RoleName column, internally the SqlRoleProvider
enforces the uniqueness of role names by first lowering the role string and then attempting to
store it in this column. The combination of this column, and the ApplicationId column, acts
as an alternate primary key for the table. Also, whenever you call the IsUserInRole method
on the provider, the provider looks at the value in this column as part of determining whether a
specific user is associated with a role. In this way, the provider is able to enforce case-insensitive
string comparisons on role names when performing role checks in the database. Note though
that the culture setting (that is, collation order) of the underlying database still has an effect
when the stored procedures are performing string comparisons. In the previous chapter, the
potential mismatch between case-insensitive invariant-culture comparisons and case-insensitive

79301c15.indd 736 10/6/08 12:17:22 PM

737

Chapter 15: SqlRoleProvider

culture-specific comparisons was discussed. You can always deploy the SqlRoleProvider
schema in a database using the Latin1_General collation to roughly mirror the string compari-
son functionality used inside of RolePrincipal.

Description❑❑ : This is an orphan column because it is never used by the SqlRoleProvider.
At one point, there were plans to make a full-fledged role object, but that work could not be fit
into the ASP.NET 2.0 development schedule and nothing has been introduced in ASP.NET 3.5
on this issue. Because ASP.NET may introduce a role object sometime in the future, the column
was left in the schema for future use. You should basically ignore the existence of the column,
and you should not store anything in it.

The second table in the SqlRoleProvider database schema stores the mapping of users to roles:

CREATE TABLE dbo.aspnet_UsersInRoles (
 UserId uniqueidentifier NOT NULL PRIMARY KEY(UserId, RoleId)
 FOREIGN KEY REFERENCES dbo.aspnet_Users (UserId),
 RoleId uniqueidentifier NOT NULL
 FOREIGN KEY REFERENCES dbo.aspnet_Roles (RoleId)
)

The aspnet_UsersInRoles table is ultimately used by various stored procedures to determine which
users belong to which roles. The table works in a self-explanatory way; however, a brief description of
each rows is provided here.

UserId❑❑ : This is the user identifier from the common aspnet_Users table. For SqlRoleProvider
to perform an authorization check, it must convert a string user name along with the application
name specified on a provider, into a UserId value. Remember that the aspnet_Users table and
aspnet_Applications tables together are used to accomplish this.

RoleId❑❑ : The role identifier from the aspnet_Roles table. During a database lookup, the string
role name and the application name specified on a provider are converted into a RoleId. With
the UserId and RoleId in hand, a stored procedure can perform a lookup in this table.

In addition to the database tables, two views are supplied with the schema: vw_aspnet_Roles and
vw_aspnet_UsersInRoles. Both of these views map all of the columns in the corresponding tables.
Later on in this chapter, you will see how you can use these views to perform authorization checks
inside of your own stored procedures. Also note that, as with the Membership feature, the views are
intended only for use with read-only queries. Although nothing technically prevents you from writing
data through the views, the intent is that all data modifications flow through the provider API.

SQL Server-Specific Provider Configuration Options
Because the SqlRoleProvider connects to SQL Server, it supports two SQL Server-specific configura-
tion attributes on the provider definition:

connectionStringName❑❑ : As you would expect, the provider needs to know what database and
server to connect to. The value of this attribute must point at a named connection string defined
up in the <connectionStrings /> section.

commandTimeout❑❑ : As you work with larger databases, you may find that the default ADO.NET
SqlCommand timeout of 30 seconds is too short for certain operations. For SqlRoleProvider,
the AddUsersToRoles and RemoveUsersFromRoles methods are especially prone to timing

79301c15.indd 737 10/6/08 12:17:22 PM

738

Chapter 15: SqlRoleProvider

out when working with large sets of role information (for example, the aspnet_UsersInRoles
table contains 100K or more rows). If you run into timeout problems with either of these
methods, you can boost the value of the commandTimeout configuration attribute to give the
database server more time to complete its work. Alternatively, you can reduce the number of
user-to-role associations being modified in a single method call and simply call these methods
in a loop with only a chunk of user and role data being changed in a single iteration.

Transaction Behavior
Not all of the data modification work performed in the provider can be accomplished with single INSERT
or UPDATE commands. The SqlRoleProvider methods AddUsersToRoles and RemoveUsersFromRoles
both explicitly manage transactions within the provider’s code. If you look inside of the stored proce-
dures used by SqlRoleProvider, you will see that for operations like deleting or creating a role, all the
work is encapsulated within a transaction managed within a stored procedure.

However, the AddUsersToRoles and RemoveUsersFromRoles methods can affect many rows of user-
to-role associations. As a result of limitations in passing parameter data down to a stored procedure,
there is not a great way to get all of the parameter data from these methods (an array of users and an
array of roles) passed down to SQL Server. The most elegant approach would have been to use the XML
capability in SQL Server 2000, but this approach would have required forking the code to support SQL
Server 7.0. There are also edge cases where errors can occur in stored procedures without being able to
properly clear up XML documents that have been parsed on the server.

So, the solution to the overall problem was to have SqlRoleProvider explicitly begin a transaction
in the provider code. Then the provider passes chunks of user and role data down to SQL Server,
potentially calling the underlying stored procedures multiple times. When all the parameter data has
been chunked and passed to SQL Server, the provider issues an explicit COMMIT TRANSACTION to SQL
Server. If anything fails along the way, all of the work is rolled back by the provider when it issues an
explicit ROLLBACK TRANSACTION.

You should keep this transaction behavior in mind when calling AddUsersToRoles and
RemoveUsersFromRoles. If you pass a large number of users and roles these two methods can take
quite a while to run, and there is the possibility of a failure occurring along the way thus causing a
rollback (just 100 users and 100 roles will result in 10K rows being inserted or deleted, so it does not
take much to trigger large numbers of inserts or deletes). If you want to smooth out the load on your
SQL Server while performing large numbers of adds or removes, you should call these methods itera-
tively, passing only a small number of roles and users on each iteration. In this way, you eliminate the
possibility of SQL Server locking large portions of the aspnet_UsersInRoles table while it grinds
through large data modifications.

The product team has successfully tested performing 100K and 250K inserts and deletes using these
methods. However, the purpose of these tests was to exercise the commandTimeout provider configura-
tion attribute. Issuing such a huge number of changes in a single transaction ends up locking most of
the aspnet_UsersInRoles table. In a production application, this type of change could fail if the sys-
tem was under load with other connections simultaneously attempting to get roles data from the same
table. For this reason, limiting the number of associations being changed in any one method call to a
small number makes sense for cases where the database needs to remain responsive to other applica-
tions using the same set of Role Manager data.

79301c15.indd 738 10/6/08 12:17:22 PM

739

Chapter 15: SqlRoleProvider

Provider Security
There are two levels of security enforced by SqlRoleProvider: trust-level checks and database-level
security requirements. You influence the trust-level check by setting the appropriate trust level for your
web application and optionally making other adjustments to the CAS policy on your machine. Database-
level security requirements are managed through the use of SQL Server roles.

Trust-Level Requirements and Configuration
Inside of the provider’s Initialize method, a check is made for Low trust. If the current application
is running at Low trust or higher, then the provider will initialize itself. Otherwise, if the application is
running in Minimal trust, the initialization process will fail. Outside of ASP.NET, local applications like
console applications or Windows Forms application implicitly run in Full trust, so the trust level check
in the Initialize method always succeeds.

For an ASP.NET application running in Low trust, the provider may still fail when you attempt to call
any of its methods because the default Low trust policy file does not include SqlClientPermission. In
this case, the Initialize method completes successfully because the Low trust-level check succeeds.
But then when an individual method attempts to access SQL Server, the System.Data.SqlClient
classes throw a security exception because the web application does not have SqlClientPermission.
If you want to enable the provider for use in Low trust, you should do two things:

	 1.	 Create a custom trust policy file for the Low trust bucket, and add SqlClientPermission to
the custom trust policy file.

	 2.	 Configure the database security for your application using one of the provider’s SQL Server
roles. Because, conceptually, Low trust applications are not supposed to be modifying sensitive
data, the aspnet_Roles_BasicAccess role makes sense for use with the SqlRoleProvider in
a Low trust environment.

Using Providers in Partially Trusted Non-ASP.NET Applications
If you happen to run partially trusted non-ASP.NET applications, you do not have the convenience of
using the <trust /> configuration element. For example, if you run an application off of a UNC share
and you want that application to work with SqlRoleProvider (or for that matter, any other provider-
based feature in ASP.NET, including the Membership and Profile features), you will initially end up
with a rather obscure security exception.

For example, you can create a basic console application that triggers initialization of the feature and the
SqlRoleProvider with the following code:

C#
using System;
using System.Web.Security;

namespace PartialTrustRoleManager
{
 class Program

79301c15.indd 739 10/6/08 12:17:22 PM

740

Chapter 15: SqlRoleProvider

 {
 static void Main(string[] args)
 {
 Console.WriteLine(Roles.Provider.ApplicationName);

 if (Roles.RoleExists(“some random role name”))
 Console.WriteLine(“The random role exists.”);
 else
 Console.WriteLine(“The random role does not exist”);
 }
 }
}

VB.NET
Imports Microsoft.VisualBasic
Imports System
Imports System.Web.Security

Namespace PartialTrustRoleManager
 Friend Class Program
 Shared Sub Main(ByVal args() As String)
 Console.WriteLine(Roles.Provider.ApplicationName)

 If Roles.RoleExists(“some random role name”) Then
 Console.WriteLine(“The random role exists.”)
 Else
 Console.WriteLine(“The random role does not exist”)
 End If

 Console.Read()
 End Sub
 End Class
End Namespace

Because Role Manager is not enabled by default, the sample application also explicitly enables it in the
application configuration file.

<configuration>
 <system.web>
 <roleManager enabled=”true” />
 </system.web>
</configuration>

If you compile this on your local machine and run it, everything works. However, if you take the com-
piled executable and the configuration file, move them onto a remote UNC share, and then run the
executable, you get the following exception.

Unhandled Exception: System.Security.SecurityException: Request for the permission
of type ‘System.Web.AspNetHostingPermission, ...’ failed.
<snipped for brevity>
 at PartialTrustRoleManager.Program.Main(String[] args)

79301c15.indd 740 10/6/08 12:17:22 PM

741

Chapter 15: SqlRoleProvider

The action that failed was:
LinkDemand
The type of the first permission that failed was:
System.Web.AspNetHostingPermission
The first permission that failed was:
<IPermission class=”System.Web.AspNetHostingPermission, …”
 version=”1”
 Level=”Minimal”/>

Although the exception dump is a bit intimidating, parts of it should look familiar to you from Chap-
ter 4 on trust levels. In this situation, the executable is on a UNC share; it runs with a permission set
defined by both the .NET 2.0 and 3.5 Frameworks for applications running in LocalIntranet_Zone.
You can see the zone membership and the permissions associated with it using the Microsoft .NET
Framework 2.0 Configuration MMC, which is still being used in the .NET 3.5 Framework. The permis-
sion set associated with LocalIntranet_Zone is called LocalIntranet, and it includes only basic
permissions like access to isolated storage, the use of default printers on the machine, and so forth.

The LocalIntranet permission set lacks AspNetHostingPermission. It also lacks SqlClientPermission,
although the previous exception dump doesn’t show this. The reason that the application immediately
fails when run from a UNC share is that both the static Roles class and the SqlRoleProvider class are
attributed with the following:

C#
[AspNetHostingPermission(SecurityAction.LinkDemand,
 Level=AspNetHostingPermissionLevel.Minimal)]

VB.NET
<AspNetHostingPermission(_
 SecurityAction.LinkDemand, _
 Level:=AspNetHostingPermissionLevel.Minimal)>

When the console application attempts to call into the Roles class, the declarative link demand
immediately causes a SecurityException because UNC-based applications lack any kind of
AspNetHostingPermission.

Because a fair amount of work was invested in making the Membership, Role Manager and Profile
features ASP.NET-agnostic, it would be unfortunate if these features were limited to only fully trusted
non-ASP.NET applications. Luckily, this is not the case, although, as you will see, it does require configu-
ration work on your part to get things working. Because there is no convenient code access security (CAS)
abstraction like trust levels outside of ASP.NET, you need to configure either the .NET 2.0 or 3.5 Frame-
work’s CAS system directly. The logical starting point is to add both AspNetHostingPermission and
SqlClientPermission to the LocalIntranet permission set.

Because there is a convenient MMC tool that theoretically allows you to do this, you would probably think
of using the tool first. Unfortunately, due to some bugs in the MMC you cannot add the System.Web.dll
assembly as a policy assembly (that is, an assembly that can be used as a source of permission classes such
as AspNetHostingPermission). So instead, you have to drop down to using the tool caspol.exe, which
is located in the framework’s installation directory.

79301c15.indd 741 10/6/08 12:17:22 PM

742

Chapter 15: SqlRoleProvider

There are a number of things you need to accomplish with caspol:

Add the ❑❑ AspNetHostingPermission to a named permission set. You need to get it into a named
permission set with the Level attribute set to at least “Low.” Even though the link demand is for
Minimal trust, the Roles class will trigger a demand for Low trust while loading the
SqlRoleProvider.

Add the ❑❑ SqlClientPermission to the named permission set because SqlRoleProvider will
trigger a demand for this when it calls into ADO.NET.

It is not immediately obvious, but because Role Manager and its providers internally depend on ❑❑

ASP.NET’s HttpRuntime object, you also need to grant file I/O read and path discovery permis-
sions to the installation directory for the framework. The HttpRuntime object depends on load-
ing DLLs that exist in this directory, and without the correct FileIOPermission on the machine,
it will fail to initialize.

One of the not-so-nice things about mucking with the Framework’s CAS policy information directly is
that the XML format for a named permission set is not easily discoverable. With a little enterprising hack-
ing around, you can eventually stitch together the correct representation of a named permission set that is
consumable by the caspol.exe tool. For the demo application, I simply looked for the named permission
set called LocalIntranet inside of the file security.config, which is located in the CONFIG subdirec-
tory underneath the framework’s install directory. You can copy the <PermissionSet /> element for
LocalIntranet and all of its nested <IPermission /> elements from this file and paste them into a
separate file.

At this point, I admit that I could never get caspol.exe to properly recognize the class names used for
the individual <IPermission /> elements. Luckily, though, you can always use the fully qualified strong
name in its place (the ASP.NET trust policy files use a short name that references <SecurityClass />
elements at the top of the trust file). (The same approach seems to cause obscure errors in caspol.exe
though.) The last step is to pop in the three additional <IPermission /> elements for the three permis-
sions that were discussed previously. The result is a file called CustomSecurity.config with the follow-
ing XML definition (note that the strong names have been trimmed down for brevity):

<PermissionSet class=”NamedPermissionSet”
 version=”1”
 Name=”LocalIntranet_MODIFIED“
 Description=”Modified local intranet permissions”>
 <IPermission
 class=”System.Web.AspNetHostingPermission, System, …”
 version=”1”
 Level=”Low” />
 <IPermission
 class=”System.Security.Permissions.FileIOPermission, mscorlib, …”
 version=”1”
 Read=”C:\Windows\Microsoft.NET\Framework\v2.0.50727\”
 PathDiscovery=”C:\Windows\Microsoft.NET\Framework\v2.0.50727\” />
 <IPermission class=”System.Security.Permissions.EnvironmentPermission, mscorlib…”
 version=”1”
 Read=”USERNAME”/>
 <IPermission class=”System.Security.Permissions.FileDialogPermission, mscorlib…”

79301c15.indd 742 10/6/08 12:17:22 PM

743

Chapter 15: SqlRoleProvider

 version=”1”
 Unrestricted=”true”/>
 <IPermission class=”System.Security.Permissions.IsolatedStorageFilePermission…”
 version=”1”
 Allowed=”AssemblyIsolationByUser”
 UserQuota=”9223372036854775807”
 Expiry=”9223372036854775807”
 Permanent=”True”/>
 <IPermission class=”System.Security.Permissions.ReflectionPermission, mscorlib…”
 version=”1”
 Flags=”ReflectionEmit”/>
 <IPermission class=”System.Security.Permissions.SecurityPermission, mscorlib…”
 version=”1”
 Flags=”Assertion, Execution, BindingRedirects”/>
 <IPermission class=”System.Security.Permissions.UIPermission, mscorlib…”
 version=”1”
 Unrestricted=”true”/>
 <IPermission class=”System.Net.DnsPermission, System…”
 version=”1”
 Unrestricted=”true”/>
 <IPermission class=”System.Drawing.Printing.PrintingPermission, System.Drawing…”
 version=”1”
 Level=”DefaultPrinting”/>
 <IPermission
 class=”System.Data.SqlClient.SqlClientPermission, System.Data…”
 version=”1”
 Unrestricted=”true” />
</PermissionSet>

The three bolded portions of the file indicate the new permissions that you need to add that are above and
beyond the default set of permissions normally granted to applications running in the LocalIntranet
zone. The FileIOPermission includes read and path discovery access for the framework install direc-
tory on the machine that will be running the application. You will need to tweak the physical file path to
match the appropriate location on your machine.

With these changes made, you can now import the custom permission set (which is called
LocalIntranet_Modified) using the following command line:

 ..\caspol.exe -m -ap CustomSecurity.config

In my case, I saved the preceding XML file into a file called CustomSecurity.config located in the
CONFIG subdirectory of the framework install directory. Because the command line was running from
the CONFIG subdirectory, the command uses ..\caspol.exe to reference the utility. The -m command
line option tells caspol.exe that the named permission set in the file should be imported into the local
machine’s set of security informationas opposed to the enterprise- or user-specific security policies.
The -ap switch tells caspol.exe that the file CustomSecurity.config contains a definition of a new
named permission set.

After you run caspol.exe, you can open the Framework’s MMC configuration tool. Expand the
machine policy node so that you can see both configured security zones on the machine as well as the
named permission sets that are available. You can see what this looks like in Figure 15-1.

79301c15.indd 743 10/6/08 12:17:23 PM

744

Chapter 15: SqlRoleProvider

Figure 15-1

Notice that underneath the Permission Sets node the new custom permission set appears. At this point, you
can right-click the LocalIntranet_Zone node that is underneath the Code Groups node and select Proper-
ties. In the resulting dialog box, switch to the Permission Set tab and select LocalIntranet_MODIFIED from
the drop-down list. You can see what this all looks like in Figure 15-2.

Figure 15-2

79301c15.indd 744 10/6/08 12:17:23 PM

745

Chapter 15: SqlRoleProvider

After you click the OK button, the Framework will consider all applications running in the LocalIntranet
zone to be associated with the set of custom permissions listed in the XML file. Because applications
running off of UNC shares are considered part of the local intranet zone, when you run the sample
application for a second time from a remote UNC share all of the calls into Role Manager and the
SqlRoleProvider succeed. Note that if you try this on your machine and the console application still fails,
the definition for the Local Intranet zone in Internet Explorer may not include your remote machine. If you
modify the Local Intranet zone definition in Internet Explorer to include a file://your_remote_machine
URL, then the Framework will consider applications running remotely from that machine to be in the
Local Intranet zone.

So, although this is a somewhat painful process, the end result is that you can absolutely use Role
Manager inside of a partially trusted non-ASP.NET application. This means that you do not have to
drop back to granting unmanaged code rights to your non-ASP.NET applications just because of the
use of AspNetHostingPermission and other permissions like SqlClientPermission. After you cre-
ate a custom named permission set and associate it with the local intranet zone, you will also be able
to use the two other ASP.NET features that have been tweaked to work in non-ASP.NET environments:
the Membership and the Profile features. Last, note that although this sample cloned the local intranet
zone’s permissions, you can be more creative with your customizations. For example, you could strip
some of the extraneous permissions from the custom permission set (for example, maybe you do not
need printer access or the ability to display file selection dialog boxes). You could also create custom
code groups with more granular membership conditions than what is defined for the local intranet zone.

Database Security
Chapter 12 discussed the general database security requirements that are common to all of the SQL-
based providers. Assuming that you have followed those steps, and you have a login created or mapped
on your SQL Server machine, there are three database roles that you can use with SqlRoleProvider:

aspnet_Roles_BasicAccess:❑❑ This role only allows you to call the following methods on
SqlRoleProvider: IsUserInRole and GetRolesForUser. These two methods represent
the bare minimum needed to support the RolePrincipal object and authorization checks
made directly against the provider.

aspnet_Roles_ReportingAccess: ❑❑ This role allows you to call IsUserInRole, GetRolesForUser,
RoleExists, GetUsersInRole, FindUsersInRole, and GetAllRoles. Members of this role can
also issue select statements against the database views.

aspnet_Roles_FullAccess:❑❑ This role can call any of the methods defined on SqlRoleProvider
as well as query any of the database views. In other words, a SQL Server login added to this
role has the additionally ability to change the role data stored in the database.

As with the SqlMembershipProvider, the simplest way to use these roles is to add the appropriate SQL
Server login account to the aspnet_Roles_FullAccess role. This gives you the full functionality of the fea-
ture without requiring you to run with DBO privileges in the database. The other two SQL Server roles
allow for more granular allocation of security permissions. For example, you might run administrative
tools in one web application (which would use aspnet_Roles_FullAccess), while only performing autho-
rization checks in your production application (which would only need aspnet_Roles_BasicAccess).

79301c15.indd 745 10/6/08 12:17:23 PM

746

Chapter 15: SqlRoleProvider

Working with Windows Authentication
Although the most likely scenario that folks think of for SqlRoleProvider is to use it in applications with
forms authentication, SqlRoleProvider and the Role Manager feature work perfectly fine in applications
using Windows authentication. Typically, you would use NT groups or more advanced authorization stores
such as Authorization Manager for many intranet production applications. However, it is not uncommon
for developers to create intranet applications in which they do not want or need the overhead of setting up
and maintaining group information in a directory store. This can be the case for specialized applications
that have only a small number of users, and it can also be the case for “throw-away” intranet applications.

Although I would not advocate using SqlRoleProvider for long-lived internal applications or for complex
line-of-business applications, knowing that you can use Role Manager for intranet applications adds another
option to your toolbox for quickly building internal websites with reasonable authorization requirements.
In the case of a web application using Windows authentication, SqlRoleProvider will automatically cre-
ate a row in the common aspnet_Users table the very first time a Windows user is associated with a role.
The important thing is to use the correct format for the username when adding users to roles or removing
users from roles. The username that is available from HttpContext.Current.User.Identity.Name is
the string that should be used when modifying a user’s role associations. For example, the following code
snippet shows how to add a domain user to two roles stored in a SQL database with the SqlRoleProvider:

C#
 if (!Roles.IsUserInRole(“bhaidar-PC\\bhaidar”, “Application Role A”))
 Roles.AddUserToRole(“bhaidar-PC\\bhaidar”, “Application Role A”);

 if (!Roles.IsUserInRole(“bhaidar-PC\\bhaidar”, “Application Role C”))
 Roles.AddUserToRole(“bhaidar-PC\\bhaidar”, “Application Role C”);

VB.NET
 If (Not Roles.IsUserInRole(“bhaidar-PC\bhaidar”, “Application Role A”)) Then
 Roles.AddUserToRole(“bhaidar-PC\bhaidar”, “Application Role A”)
 End If

 If (Not Roles.IsUserInRole(“bhaidar-PC\bhaidar”, “Application Role C”)) Then
 Roles.AddUserToRole(“bhaidar-PC\bhaidar”, “Application Role C”)
 End If

Note how the username is supplied using the familiar DOMAIN\USERNAME format. When you use
Windows authentication in ASP.NET, the WindowsIdentity that is placed on the context will return
the Name property using this format. If your web application is configured to use Windows authenti-
cation, when you enable the Role Manager feature, RoleManagerModule will automatically use the
default provider to fetch the roles associated with the Windows authenticated user. The following
configuration snippets show the required configuration to make this work:

<! connection string config and other config here >

<authentication mode=”Windows”/>
<authorization>
 <deny users=”?”/>
</authorization>

79301c15.indd 746 10/6/08 12:17:23 PM

747

Chapter 15: SqlRoleProvider

<roleManager enabled=”true”>
 <providers>
 <clear/>
 <add name=”AspNetSqlRoleProvider”
 type=”System.Web.Security.SqlRoleProvider, System.Web… “
 connectionStringName=”LocalSqlServer”
 applicationName=”WindowsAuthenticationDemo”/>
 </providers>
</roleManager>

Now, if you access a Windows authenticated web application as a user who has already been mapped to
one or more roles, the RolePrincipal placed on the context will contain the expected role information.

C#
foreach (string s in ((RolePrincipal)User).GetRoles())
 Response.Write(User.Identity.Name + “ belongs to ” + s + “
”);

VB.NET
For Each s As String In (CType(User, RolePrincipal)).GetRoles()
 Response.Write(User.Identity.Name & “ belongs to ” & s & “
”)
Next s

Running this code sample while logged in as the sample user that was configured earlier results in the
following output:

bhaidar-PC\bhaidar belongs to Application Role A
bhaidar-PC\bhaidar belongs to Application Role C

The only minor shortcoming that you will encounter getting this to work is that you will have to pro-
grammatically associate Windows users to roles. Although the Web Administration Tool inside of Visual
Studio allows you to create and delete roles, you will not be able to leverage the tool for managing specific
Windows users. Instead, you will need to use code like the sample shown earlier to add users to roles as
well as removing users from roles.

One other concern you may have is keeping the format of the username stable over time. For the 2.0
and 3.5 versions of the Framework, the WindowsIdentity class will always return the value from the
Name property using the DOMAIN\USERNAME format. Even if someone accesses your application
with a different username format (for example, your application is configured to use Basic authentica-
tion in IIS and someone logs in using a UPN formatted username), WindowsIdentity always uses the
older NT4-style username. As a result, you do not need to worry about accruing large amounts of user-
to-role associations in a database only to find out that the username returned from WindowsIdentity
suddenly changes on you.

For example, if you are running in a domain environment on Windows Server 2003 (that is, your
domain controllers are Windows Server 2003 machines), you can run the following code sample:

C#
 WindowsIdentity wi = new WindowsIdentity(“bhaidar@bhaidar-PC “);
 Response.Write(wi.Name);

79301c15.indd 747 10/6/08 12:17:23 PM

748

Chapter 15: SqlRoleProvider

VB.NET
 Dim wi As New WindowsIdentity(“bhaidar@bhaidar-PC”)
 Response.Write(wi.Name)

Even though the WindowsIdentity is constructed with a user principal name (UPN) format, the value
returned by the Name property is still bhaidar-PC\bhaidar.

Running with a Limited Set of Roles
Typically, most of the users on a website are associated with a set of roles that make sense for their given
purpose on the site. A limited number of website users, though, may have super privileges or the ability
to act as an administrator on the site. Sometimes, it is desirable for this type of user to be able to limit the
roles that he or she a part of while performing the normal daily routine on a site. For example, a business
user may also have administrative privileges on a site. During the normal workday, though, he or she
really does not need to have these privileges available and would rather perform most of the work as a
normal user.

Because RolePrincipal depends on a provider for its role information, you can swap in a custom pro-
vider that supports the concept of a limited subset of roles being active at any given time for a specific
user. As an example, you can create a derived version of SqlRoleProvider that is aware of role restric-
tions stored in the database. For convenience, I chose to store the set of role restrictions in the Comments
property associated with a MembershipUser. You could certainly choose to store this type of role restric-
tion in a different location, but because Membership is already available and has a convenient storage
location for this type of information, the sample provider makes use of it. Because a RolePrincipal
works exclusively with information returned from GetRolesForUser, the custom provider must over-
ride this method. Because a custom role provider should ideally also support at least IsUserInRole, the
custom provider also provides the limited role functionality in an override of this method as well.

C#
public class CustomRoleProvider : SqlRoleProvider
{
 public CustomRoleProvider() {}

 //overrides of GetRolesForUser and IsUserInRole
}

VB.NET
Public Class CustomRoleProvider
 Inherits SqlRoleProvider

 Public Sub New()
 End Sub

 ‘ overrides of GetRolesForUser and IsUserInRole

End Class

79301c15.indd 748 10/6/08 12:17:23 PM

749

Chapter 15: SqlRoleProvider

The custom provider works by looking at the set of restricted roles stored in MembershipUser.Comment.
The string stored in this property is formatted as follows:

first restricted role;second restricted role; etc..

The custom provider converts this string into a string array by splitting the value on the semicolon charac-
ter. For protection though, the custom provider always double-checks with SqlRoleProvider to ensure
that the information stored in the Comments property is still considered a valid set of role associations by
the provider. This prevents the problem where a set of restricted roles is stored in the MembershipUser,
but later the user no longer belongs to some of those roles.

C#
public override string[] GetRolesForUser(string username)
{
 MembershipUser mu = Membership.GetUser(username);

 //Anonymous user case
 if (mu == null)
 return new string[0];

 if (mu.Comment != null)
 {
 //Make sure user still belongs to the selected roles
 string[] currentRoleMembership = base.GetRolesForUser(username);
 string[] restrictedRoles = mu.Comment.Split(“;”.ToCharArray());

 List<string> confirmedRoles = new List<string>();
 foreach (string role in restrictedRoles)
 {
 if (Array.IndexOf(currentRoleMembership, role) != -1)
 confirmedRoles.Add(role);
 }

 return confirmedRoles.ToArray();
 }
 else
 {
 return base.GetRolesForUser(username);
 }
}

VB.NET
Public Overrides Function GetRolesForUser(ByVal username As String) As String()
 Dim mu As MembershipUser = Membership.GetUser(username)

 ‘Anonymous user case
 If mu Is Nothing Then
 Return New String(){}
 End If

 If mu.Comment IsNot Nothing Then

79301c15.indd 749 10/6/08 12:17:23 PM

750

Chapter 15: SqlRoleProvider

 ‘Make sure user still belongs to the selected role
 Dim currentRoleMembership() As String = _
 MyBase.GetRolesForUser(username)
 Dim restrictedRoles() As String = _
 mu.Comment.Split(“;”.ToCharArray())

 Dim confirmedRoles As List(Of String) = New List(Of String)()
 For Each role As String In restrictedRoles
 If Array.IndexOf(currentRoleMembership, role) <> -1 Then
 confirmedRoles.Add(role)
 End If
 Next role

 Return confirmedRoles.ToArray()
 Else
 Return MyBase.GetRolesForUser(username)
 End If
End Function

Just as with the SqlRoleProvider, the custom provider first checks to see if the user is anonymous.
Assuming that you have never stored a MembershipUser object in the database for the username, the
call to GetUser always returns null for anonymous users. If the user is authenticated, and if there is a
set of restricted roles stored in the Comment property, then the custom provider parses the information
from the property. Most of the work is just double-checking with the base provider that the set of roles
the user currently belongs to still grants access to the roles listed in the Comment field. The end result of
this processing is the subset of restricted roles that still apply to the user. Of course, if no restricted role
information is stored in the Comment property, the custom provider defers to the base provider.

C#
public override bool IsUserInRole(string username, string roleName)
{
 MembershipUser mu = Membership.GetUser(username);

 //Anonymous user case
 if (mu == null)
 return false;

 if (mu.Comment != null)
 {
 string[] restrictedRoles = mu.Comment.Split(“;”.ToCharArray());

 if ((Array.IndexOf(restrictedRoles, roleName) != -1)
 && (base.IsUserInRole(username, roleName)))
 return true;
 else
 return false;
 }
 else
 {
 //No restriction is in effect
 return base.IsUserInRole(username, roleName);
 }
}

79301c15.indd 750 10/6/08 12:17:23 PM

751

Chapter 15: SqlRoleProvider

VB.NET
Public Overrides Function IsUserInRole(_
 ByVal username As String, _
 ByVal roleName As String) As Boolean
 Dim mu As MembershipUser = Membership.GetUser(username)
 ‘Anonymous user case
 If mu Is Nothing Then
 Return False
 End If
 If mu.Comment IsNot Nothing Then
 Dim restrictedRoles() As String = _
 mu.Comment.Split(“;”.ToCharArray())
 If (Array.IndexOf(restrictedRoles, roleName) <> -1) _
 AndAlso (MyBase.IsUserInRole(username, roleName)) Then
 Return True
 Else
 Return False
 End If
 Else
 ‘No restriction is in effect
 Return MyBase.IsUserInRole(username, roleName)
 End If
End Function

The IsUserInRole override follows the same general pattern as GetUserInRole. The only difference
is that in this case only a single role (the roleName parameter) is checked. As with GetUserInRole the
roleName parameter must be found both in the restricted set of roles for the user, as well as in the set of
roles currently associated with the user in the database.

Now that you have a customized version of the SqlRoleProvider, you can try it out in a sample
application. The configuration for the sample application requires authorization for all pages. It also
enables Role Manager and enables cookie caching as well. When you first try to access the test page in
the sample application, you will be redirected to a login page. After you are logged in, and thus have
a RolePrincipal attached to the context, the test page allows a user to restrict itself to a subset of the
current role membership.

…
<asp:ListBox ID=”lbxUserInRoles” runat=”server” SelectionMode=”Multiple” />
…
<asp:Button ID=”btnRestrictRole” Runat=”server” Text=”Restrict Role”
 OnClick=”btnRestrictRole_Click” />
…
<asp:Button ID=”btnUndoRestriction” Runat=”server” Text=”Undo Role Restriction”
 OnClick=”btnUndoRestriction_Click” />
…
<asp:Label ID=”lblStatus” Runat=”server” Text=”“ />
…
<asp:Literal ID=”litIsInRoleTests” runat=”server” />
…

A list box is displayed that contains the current set of roles associated with the user. Two buttons are
available: one to restrict the user to the subset of roles that you can choose from the list box and a one
that allows you to undo the role restrictions. Toward the bottom of the page is a literal control that con-
tains the results of multiple calls to RolePrincipal.IsInRole.

79301c15.indd 751 10/6/08 12:17:23 PM

752

Chapter 15: SqlRoleProvider

Displaying the set of roles for the current user is accomplished by calling the Roles class. Remember
that the parameterless version of Roles.GetRolesForUser actually results in a call to the GetRoles
method on the RolePrincipal attached to the context. This means the list of information reflects the
set of role information that RolePrincipal has fetched from the custom provider.

C#
lbxUserInRoles.DataSource = Roles.GetRolesForUser();
lbxUserInRoles.DataBind();

VB.NET
lbxUserInRoles.DataSource = Roles.GetRolesForUser()
lbxUserInRoles.DataBind()

To demonstrate the effect of the overridden IsUserInRole method, the page also dumps the result of
making various authorization checks directly against the provider.

C#
StringBuilder sb = new StringBuilder();

if (Roles.Provider.IsUserInRole(User.Identity.Name,”Role A”))
 sb.Append(“User is in Role A
”);

if (Roles.Provider.IsUserInRole(User.Identity.Name,”Role B”))
 sb.Append(“User is in Role B
”);

if (Roles.Provider.IsUserInRole(User.Identity.Name,”Role C”))
 sb.Append(“User is in Role C
”);

litIsInRoleTests.Text = sb.ToString();

VB.NET
 Dim sb As New StringBuilder()
 If Roles.Provider.IsUserInRole(User.Identity.Name, “Role A”) Then
 sb.Append(“User is in Role A
”)
 End If
 If Roles.Provider.IsUserInRole(User.Identity.Name, “Role B”) Then
 sb.Append(“User is in Role B
”)
 End If
 If Roles.Provider.IsUserInRole(User.Identity.Name, “Role C”) Then
 sb.Append(“User is in Role C
”)
 End If
 litIsInRoleTests.Text = sb.ToString()

Restricting a user to a subset of his or her available roles occurs when you click the role restriction button.

C#
protected void btnRestrictRole_Click(object sender, EventArgs e)
{
 string restriction = String.Empty;

79301c15.indd 752 10/6/08 12:17:24 PM

753

Chapter 15: SqlRoleProvider

 foreach (ListItem li in lbxUserInRoles.Items)
 {
 if (li.Selected == true)
 restriction += li.Value + “;”;
 }

 if (!String.IsNullOrEmpty(restriction))
 restriction = restriction.Substring(0, restriction.Length - 1);
 else
 restriction = null;

 MembershipUser mu = Membership.GetUser();
 mu.Comment = restriction;
 Membership.UpdateUser(mu);

 ((RolePrincipal)User).SetDirty();

 Response.Redirect(“~/default.aspx”);
}

VB.NET
 Protected Sub btnRestrictRole_Click(_
 ByVal sender As Object, _
 ByVal e As EventArgs) Handles btnRestrictRole.Click
 Dim restriction As String = String.Empty
 For Each li As ListItem In lbxUserInRoles.Items
 If li.Selected = True Then
 restriction &= li.Value & “;”
 End If
 Next li

 If (Not String.IsNullOrEmpty(restriction)) Then
 restriction = restriction.Substring(0, restriction.Length - 1)
 Else
 restriction = Nothing
 End If

 Dim mu As MembershipUser = Membership.GetUser()
 mu.Comment = restriction
 Membership.UpdateUser(mu)

 CType(User, RolePrincipal).SetDirty()

 Response.Redirect(“~/default.aspx”)
 End Sub

Because the list box allows for multiple selections, you can choose one or more roles from the set of
roles currently associated with the user. The code bundles up the selected items into a semicolon
delimited string and then stores this information in MembershipUser.Comment. Note that the page
code then calls SetDirty on the current RolePrincipal. Because the restricted roles have been set,
it is necessary to tell the RolePrincipal that it should ignore any currently cached information, and
that instead it should refresh this information from the provider. The final redirect forces the page to
be re-requested by the browser so that you can see the effect of restricting the roles.

79301c15.indd 753 10/6/08 12:17:24 PM

754

Chapter 15: SqlRoleProvider

You can undo the role restriction by clicking the second button:

C#
protected void btnUndoRestriction_Click(object sender, EventArgs e)
{
 MembershipUser mu = Membership.GetUser();
 mu.Comment = null;
 Membership.UpdateUser(mu);

 ((RolePrincipal)User).SetDirty();

 Response.Redirect(“~/default.aspx”);
}

VB.NET
 Protected Sub btnUndoRestriction_Click(_
 ByVal sender As Object, _
 ByVal e As EventArgs) Handles btnUndoRestriction.Click
 Dim mu As MembershipUser = Membership.GetUser()
 mu.Comment = Nothing
 Membership.UpdateUser(mu)

 CType(User, RolePrincipal).SetDirty()

 Response.Redirect(“~/default.aspx”)
 End Sub

The page code simply nulls the information in MembershipUser.Comment. Because the role information
for the user has changed, this code also tells the RolePrincipal to invalidate its cached information.
After the redirect occurs, you will see that the user has reverted to the original set of role assignments.

If you use the Web Administration Tool (WAT) from Visual Studio, you can configure a test user and set
up some role associations. For example, I created an account called “testuser” that belonged to three dif-
ferent roles. After you log in, the information displayed on the page looks like:

Listbox contains:
 Role A
 Role B
 Role C

IsUserInRole checks:
 User is in Role A
 User is in Role B
 User is in Role C

So far so good: The user belongs to all of the roles that you would expect, and currently the custom pro-
vider is just delegating the method calls to the base SqlRoleProvider. If you choose a subset of roles
(choose only Role A and Role C), when the page refreshes, it reflects the restricted set of roles that the
user belongs to.

79301c15.indd 754 10/6/08 12:17:24 PM

755

Chapter 15: SqlRoleProvider

Listbox contains:
 Role A
 Role C

IsUserInRole checks:
 User is in Role A
 User is in Role C

Now the user can only accomplish tasks on the site allowed to Role A and Role C. Even though in the
database the user is also associated with Role B, from the point of view of the website the user no longer
belongs to that role. You can see how with just the added logic in the derived version of SqlRoleProvider,
the rest of the authorization code in a site is oblivious to the fact that a set of restricted roles is being
enforced. If you click the button to undo the role restrictions, you will see that you return to belong-
ing to all of the original roles.

Although the sample just demonstrates the effect of role restrictions when calling RolePrincipal
.GetRoles and Roles.GetRolesForUser, with the changes made in the custom provider any type
of website authorization mechanism that depends on HttpContext.Current.User will be affected. For
example, any URL authorization checks will be transparently made against the restricted set of roles
because URL authorization calls IsInRole on the principal object attached to the context. Similarly, if
you had a site that made calls to IPrincipal.IsInRole, these authorization checks would automati-
cally work with the restricted role functionality of the custom provider.

Authorizing with Roles in the Data Layer
Because all of the user-to-role associations are stored in the database, and the SqlRoleProvider data-
base schema includes SQL views that map to these tables, you can perform authorization checks in the
database using this information. Depending on how your application is structured, you may find it to
be more efficient to make a series of authorization checks in the database, as opposed to pulling infor-
mation back up to the middle tier and then making a series of authorization checks using Role Man-
ager. Older applications that have large amounts of their business logic still in stored procedures may
need to keep their authorization logic in the database as well because it may be technically impossible
to factor out the authorization checks to a middle tier.

As with the Membership feature, the first step you need to accomplish is the conversion of a (username,
application name) pair to the GUID user identifier used in the database tables. You will want to store the
result of converting an application name to a GUID identifier because you also need to convert a role
name to its GUID identifier. Because role names are segmented by applications, just as usernames are
partitioned by application, you will always be performing authorization checks in the context of a spe-
cific application name.

SQL Server 2000 conveniently supports user defined functions, so you can encapsulate all of this logic
inside of a custom user-defined function.

create function IsUserInRole (
@pApplicationName nvarchar(256),
@pUsername nvarchar(256),

79301c15.indd 755 10/6/08 12:17:24 PM

756

Chapter 15: SqlRoleProvider

@pRolename nvarchar(256))
returns bit
as
begin

 declare @retval bit

 if exists (
 select 1
 from dbo.vw_aspnet_Users u,
 dbo.vw_aspnet_Applications a,
 dbo.vw_aspnet_Roles r,
 dbo.vw_aspnet_UsersInRoles uir
 where a.LoweredApplicationName = LOWER(@pApplicationName)
 and u.LoweredUserName = LOWER(@pUsername)
 and u.ApplicationId = a.ApplicationId
 and r.ApplicationId = a.ApplicationId
 and r.LoweredRoleName = LOWER(@pRolename)
 and r.RoleId = uir.RoleId
 and u.UserId = uir.UserId
)
 set @retval = 1
 else
 set @retval = 0

 return @retval
end
go

Much of the code in this function is the same as shown earlier in Chapter 12 in the getUserId stored
procedures. The additional logic joins the @pApplicationName and @pRolename variables into the
vw_aspnet_Roles view to convert from a string role name into the GUID identifier for the role. With
the resulting role identifier, the select query looks in vw_aspnet_UsersInRoles for a row matching
the GUID identifiers that correspond to the user and role name in the requested application. If a row is
found, the function returns a bit value of 1 (that is, true); otherwise, it returns a bit value of 0 (that is,
false).

With this function, it is trivial to perform authorization checks in the data layer. The following code
snippet makes an authorization check based on the user and role data created for the earlier sample on
restricting a user’s roles:

declare @result bit
select @result = dbo.IsUserInRole(‘LimitingRoles’,’testuser’,’Role B’)

if @result = 1
 print ‘User is in Role A’

Although performing authorization checks in the database is probably a rare occurrence given the types
of application architectures in use today, it is still a handy tool to have available if you ever find that you
need to authorize users from inside your stored procedures.

79301c15.indd 756 10/6/08 12:17:24 PM

757

Chapter 15: SqlRoleProvider

Supporting Dynamic Applications
The RoleProvider base class defines the abstract property ApplicationName. As a result, you can use
the same approach for supporting multiple applications on-the-fly with SqlRoleProvider as was shown
earlier for SqlMembershipProvider. After you have a way to set the application name dynamically on a
per-request basis, you can write a custom version of SqlRoleProvider that reads the application name
from a special location. Remember that in Chapter 12 an HttpModule was used that looked on the query-
string for a variable called appname. Depending on the existence of that variable as well as its value, the
module would store the appropriate application name in HttpContext.Items[“ApplicationName”].
You can use the same module with a custom version of the SqlRoleProvider.

C#
using System;
using System.Web;
using System.Web.Security;

public class CustomRoleProvider : SqlRoleProvider
{
 public override string ApplicationName
 {
 get
 {
 string appNameFromContext =
 (string)HttpContext.Current.Items[“ApplicationName”];
 if (appNameFromContext != “NOTSET”)
 return appNameFromContext;
 else
 return base.ApplicationName;
 }
 }
}

VB.NET
Imports Microsoft.VisualBasic
Imports System
Imports System.Web
Imports System.Web.Security

Public Class CustomRoleProvider
 Inherits SqlRoleProvider
 Public Overrides Property ApplicationName() As String
 Get
 Dim appNameFromContext As String = _
 CStr(HttpContext.Current.Items(“ApplicationName”))
 If appNameFromContext <> “NOTSET” Then
 Return appNameFromContext
 Else
 Return MyBase.ApplicationName
 End If
 End Get

79301c15.indd 757 10/6/08 12:17:24 PM

758

Chapter 15: SqlRoleProvider

 Set(ByVal value As String)
 Throw New NotSupportedException()
 End Set
 End Property
End Class

The code for handling the application name in the custom role provider is exactly the same as was used
for writing a custom Membership provider. With this simple change, you can now create roles in differ-
ent applications and work with user-to-role associations in different applications simply by changing
the value of the appname query-string variable. This behavior is also completely transparent to the Role
Manager API and the RolePrincipal object. As with Membership, though, if you write applications that
depend on dynamically changing application name, you need to prevent accidentally associating authori-
zation information for a user in one application with a similarly named user in a different application.

Managing an Application’s Roles Through IIS 7.0
Chapter 12 demonstrates how to manage an application’s users, providers, and connection strings using
the new IIS 7.0 applets that are added to IIS as part of the deep integration between IIS 7.0 and ASP.NET.

I will continue to demonstrate the new features inside IIS 7.0 that make the developer’s and administrator’s
life much easier by utilizing a set of UI applets away from all the error-pruning configuration file edits.

When you are inside the IIS 7.0 Manager tool, specifically looking inside the ASP.NET category, you will
notice the .NET Roles applet. Figure 15-3 shows the applet when opened inside the IIS 7.0 Manager tool.

Figure 15-3

79301c15.indd 758 10/6/08 12:17:24 PM

759

Chapter 15: SqlRoleProvider

Inside the .NET Roles applet you can see a listing of all the roles that have been added to the application
previously. Figure 15-4 shows the main view of the .NET Roles applet.

Figure 15-4

The available roles in the application are listed in the middle grid with the following two columns:

Name❑❑

Users❑❑

The Name column represents the name of the role, and the Users column indicates the number of users
that are part of the role in the same row.

Similar to the other applets that were discussed in Chapter 12, you have a rich Action pane that contains
a set of useful and handy options.

For example, you can add a new role into the application by simply clicking the Add menu. A tiny Win-
dows form pops up that allows you to enter the name of the new role.

Moreover, you can set the role provider for the current application by clicking on the Set Default Pro-
vider menu. You also can disable the Role Management feature by clicking on the Disable menu on the
Action pane.

If you click on any of the roles listed in the middle grid shown above, you get to see a new set of menu
options inside the Action pane. Figure 15-5 shows the customized Action pane when a role is being
selected inside the middle grid.

79301c15.indd 759 10/6/08 12:17:24 PM

760

Chapter 15: SqlRoleProvider

Figure 15-5

When you click on View Users, the .NET Users applet opens and lists all the users present in the current
application that are part of the selected role. You can also rename the selected role and even remove it
from the application’s set of roles.

Summary
The SqlRoleProvider is a complete implementation of the RoleProvider base class with which you
can quickly and easily set up user-to-role associations. The simplicity of the provider should not fool
you though; the product team tested it regularly with 250,000 user-to-role associations and has stressed
the provider with as many as 20 million user-to-role associations. So, even for large sites the provider is
quite capable of scaling well with large numbers of users and roles. Note though that the provider does
not support one often-asked-for feature: role nesting. In large part, this is because the Role Manager
feature itself does not expose the concept of nesting roles within roles.

As with the Membership providers, you can use the SqlRoleProvider both inside of ASP.NET as well
as in non-ASP.NET applications. Within ASP.NET the provider needs to run in Low trust or higher. The
provider works equally well in partially trusted non-ASP.NET applications, although getting these types
of applications to work properly with the provider does require a bit of rather arcane configuration work
in the Framework’s CAS system. With that said though, you can definitely get this scenario to work,
and it is something that the ASP.NET team intentionally worked to enable in both the 2.0 and 3.5 .NET
Frameworks.

79301c15.indd 760 10/6/08 12:17:24 PM

761

Chapter 15: SqlRoleProvider

Although the SqlRoleProvider is a rather simple provider to implement, you can still use it in a number
of interesting ways. You can store authorization information in the database for Windows-authenticated
users, which makes the provider ideal for applications where you don’t need the extra time or hassle of
getting NT groups setup for application authorization purposes. Because the SqlRoleProvider is
unsealed, you can derive from it and add whatever custom authorization logic you want on top of it. In
this chapter, you saw how you could use this approach to easily give power users and administrators the
ability to restrict the set of roles that they act in while working on a site.

Because the provider’s schema exists in SQL Server, and there are supported SQL views for querying
this information, you can create your own custom data layer logic to perform authorization checks
using the role data stored in the database. And just as with the Membership providers, you can write a
simple derivation of SqlRoleProvider that can handle dynamically changing the application name on
a per-request basis for portal-style applications.

79301c15.indd 761 10/6/08 12:17:25 PM

79301c15.indd 762 10/6/08 12:17:25 PM

16
AuthorizationStoreRoleProvider

AuthorizationStoreRoleProvider maps the functionality of the Role Manager feature onto
the Authorization Manager (AzMan) authorization store that was fi rst released as part of Win-
dows Server 2003 and now is also part of Windows Server 2008 with several new enhancements.
The provider supports most of the RoleProvider functionality as well as a handful of AzMan
specifi c settings and behaviors. Although AzMan itself has the concept of more granular permis-
sion checks than just role checks, AuthorizationStoreRoleProvider only exposes the role-
based functionality of AzMan.

In this chapter, will you will learn about the following aspects of the AuthorizationStore​
RoleProvider:

How the provider interacts with AzMan.❑❑

Role Manager functionality supported by the provider.❑❑

Working with a fi le-based policy store.❑❑

Working with an Active Directory AzMan policy store.❑❑

Using the provider in partial trust.❑❑

Using the ❑❑ ActiveDirectoryMembershipProvider and
AuthorizationStoreRoleProvider together.

Provider Design
The AuthorizationStoreRoleProvider is a wrapper around a subset of the functionality
available in Authorization Manager. The provider is supported for use in ASP.NET applications
and non-ASP.NET applications. Although the provider depends on Authorization Manager, you
can use it with Windows-authenticated and forms-authenticated websites. All of the samples in

79301c16.indd 763 10/6/08 12:17:45 PM

764

Chapter 16: AuthorizationStoreRoleProvider

this chapter use forms authentication and ActiveDirectoryMembershipProvider in conjunction
with AuthorizationStoreRoleProvider.

Authorization Manager is a feature that was first shipped as part of Windows Server 2003, and it sup-
ports role-based and “operation-based” security, and also ships with Windows Server 2008 with several
new enhancements. There is also a runtime component that you can install that enables AzMan on Win-
dows 2000 and Windows XP. AzMan supports role-based security because that has been the most preva-
lent type of security used by developers. It also introduced the concepts of tasks and operations that can
be used to model more granular “things,” which themselves can be authorized. For example, with AzMan,
you could create an operation called UpdateAccountData, and then within your application you could
ask AzMan if the current user has rights to UpdateAccountData. This is an elegant approach to the
common authorization problem of separating authorization administration (adding users to roles,
assigning users rights to operations) from the security model of “things” that can be authorized. The fact
that you can model very granular operations makes AzMan a powerful authorization engine. Because
AuthorizationStoreRoleProvider is an implementation of RoleProvider, the provider only exposes
the subset of AzMan that deals specifically with associating users to roles and making checks to see if a
user belongs to a role. The provider does not expose the AzMan functionality for making operation- and
task-based access checks.

Throughout this chapter I will be focusing on AzMan running on top of Windows Server 2008. What-
ever applies to AzMan on Windows Server 2008 applies to AzMan on Windows Server 2003, except the
new improvements that have been added to AzMan on Windows Server 2008.

AzMan stores authorization information inside of a policy store. This policy store can be deployed in an
Active Directory server, in ADLDS, or in a plain XML file. If you place the policy store in a directory, you
can only use ADLDS or a Windows Server 2008 domain controller that has been upgraded to run at the
Windows Server 2008 functional level. Note, though, that with the downloadable AzMan runtime you
can still have web servers running Windows 2000 or Windows XP that make use of the policy store in a
Windows Server 2008 domain controller. In addition, one of the major improvements on AzMan in Win-
dows Server 2008 is the ability to store the authorization information in Microsoft SQL Server. Finally a
new group that has been added to AzMan is the BizRule that allows you to add users to a role based on
a script that you write and that runs at runtime to decide whether the user belongs to the group or not.

AuthorizationStoreRoleProvider works with AzMan through its COM primary interop assembly
(PIA), so from the provider’s standpoint the specific type of store is moot. Some partial trust issues arise
when using different stores, but in Full trust the different types of policy store locations are just different
connection string values to the provider. Back in the time of Windows Server 2003 SP1, AzMan did add
support for nondomain principals stored in ADAM. This allows developers to use completely stand-
alone ADAM instances and set up AzMan authorization information using ADAM principals. How-
ever, this AzMan functionality is not supported by AuthorizationStoreRoleProvider. Even
though you can place the policy store in any one of the four locations supported by AzMan, in all
cases the users and groups managed in the policy store must come from a domain.

The provider connects to the policy store specified in a connection string and then gets a reference to an
AzMan application with a call to IAzAuthorizationStore::OpenApplication. Because AzMan also
supports the concept of authorization scopes within an application, AuthorizationStoreRoleProvider
has a configuration option that allows you to point the provider at a scope as well. In this case, the pro-
vider will internally ensure that any provider methods occur within the desired scope, as opposed to
operating at the level of an AzMan application. Because AzMan itself can have multiple applications, as
well as multiple scopes within an application, you can use the provider’s ApplicationName and

79301c16.indd 764 10/6/08 12:17:45 PM

765

Chapter 16: AuthorizationStoreRoleProvider

ScopeName properties to point at any application or any scope within an AzMan application. In general,
though, a single configured instance of AuthorizationStoreRoleProvider works with only a single
AzMan application or a single scope in an AzMan application. If you need the provider to work with dif-
ferent AzMan applications or scopes, you should configure a separate provider instance for each AzMan
application or scope you need to work with.

The other aspect of the provider’s interaction with AzMan is how the provider gets a reference to a client
context that represents a specific user. In AzMan, access checks for operations as well as the information
needed for a role check all come from an application context represented as an IAzApplicationContext
interface. Because the provider supports the IsUserInRole and GetRolesForUser methods, the pro-
vider has a number of different approaches to getting the appropriate client context for a given user:

If an ASP.NET application is configured to use Windows authentication, and the username param-❑❑

eter to the provider exactly matches the username from HttpContext.Current.User​.Name,
then the provider initializes an AzMan client context using the token from the current principal’s
WindowsIdentity. This initialization approach is the fastest and most efficient way to get the correct
client context because it doesn’t incur extra round trips to a directory server. In the AzMan API, this
means the provider makes a call to IAzApplication::InitializeClientContextFromToken. If
you pass the value of HttpContext.Current.User.Identity.Name as the username parameter
to IsUserInRole or GetRolesForUser, you will be able to have the provider initialize the client
context from the Windows token.

For non-ASP.NET applications, the provider follows the same process, but it looks at ❑❑

Thread​.CurrentPrincipal. For non-ASP.NET applications, ensuring that the thread princi-
pal is set up with the correct WindowsPrincipal and WindowsIdentity is the most efficient
approach for using the provider.

If your application doesn’t have a ❑❑ WindowsIdentity available (in ASP.NET this would prob-
ably mean you are using forms authentication), then the provider falls back and initializes the
client context with a call to IAzApplization::InitializeClientContextFromName. This is
the AzMan method that allows Authorization Manager to take just a plain string representation
of a username (e.g. DOMAIN\USERNAME style or the user@domain.com UPN style) and look
up the expansion of that user’s group membership in Active Directory. Although this approach
gives you the flexibility to use forms authentication in your web applications, it is slower than the
token-based approach. Also note that for this approach to work the process identity or the appli-
cation impersonation identity needs read privileges on the tokenGroupsGlobalAndUniversal
attribute of any users that will be authorized in the application. By default, read access on this
attribute is granted to members of the built-in domain group Pre-Windows 2000 Compatible
Access. If this group has no members in your domain structure (for example, you may have
locked down your domain by emptying the membership for this group), then the provider
will return an access denied exception from the AzMan layer. You can fix this problem in a
number of ways. The easiest approach is to add the appropriate accounts to a different built-
in domain group called Windows Authorization Access Group. This group has read access to
the token​GroupsGlobalAndUniversal attribute for all users in the domain. You can also fol-
low a more granular security approach by granting read access on the attribute at the OU level.
This has the benefit of limiting the access granted to a process or application impersonation
account to only the users in a specific directory container.

After the provider has the user’s client context in hand, it can use it to get the role information needed
by IsUserInRole and GetRolesForUser.

79301c16.indd 765 10/6/08 12:17:45 PM

766

Chapter 16: AuthorizationStoreRoleProvider

Internally, the provider will call the store’s UpdateCache method to update its cached information after
60 or more minutes have passed. The duration between calls to UpdateCache is configurable, primar-
ily so you can tune the provider to be more or less sensitive to changes in the underlying policy store.
Because AzMan caches the authorization information it loads from the policy store, changes made to
previously loaded authorization information are not reflected until the next time the provider asks
AzMan to update its cached information.

In terms of unique AzMan functionality that does work with the provider, the following pieces of AzMan
functionality will affect the results returned by the provider:

AzMan supports nesting of Windows users and Windows groups in AzMan application groups, ❑❑

as well as nesting of AzMan application groups in other AzMan application groups. When you
call the provider’s GetRolesForUser or IsUserInRole methods, the results will reflect these
nesting relationships. As noted in Chapter 13, this is a perfect example of being able to support
nesting relationships for authorization checks even though the Role Manager feature doesn’t
explicitly support this kind of functionality.

AzMan supports groups that have dynamic group membership; these are called LDAP query ❑❑

groups. The provider is oblivious to LDAP query groups. You can’t create LDAP query groups
via the provider. However, if you have preconfigured LDAP query groups in an AzMan policy
store, the results returned from the provider will reflect a user’s membership (or nonmember-
ship) in the LDAP query groups.

Supported Functionality
AuthorizationStoreRoleProvider implements all of the methods defined on the base RoleProvider
class with the exception of the FindUsersInRole method. The provider throws a NotImplemented​
Exception from this method, which is a bit of a deviation from the normal practice of throwing a
NotSupportedException for such cases. Because the provider is basically a “shim” that maps
RoleProvider method calls to their equivalent for AzMan, and AzMan has no concept of searching
for users in a role, the FindUsersInRole method was not implemented.

If you have ever worked with the AzMan APIs directly, you are probably already getting an idea of how
the provider makes use of AzMan. Internally, each supported RoleProvider method maps directly to
a method call on an AzMan interface or object. The complete mapping is shown in the following list:

AddUsersToRoles❑❑ —IAzRole::AddMemberName

CreateRole❑❑ —Either IAzApplication::CreateRole or IAzScope::CreateRole

DeleteRole❑❑ —Either IAzApplication::DeleteRole or IAzScope::DeleteRole

FindUsersInRole❑❑ : Not implemented

GetAllRoles❑❑ : Iterates through the roles returned by either the IAzApplization::Roles
property or the IAzScope::Roles property

GetRolesForUser❑❑ : IAzClientContext::GetRoles

GetUsersInRole❑❑ : IAzRole::MembersName

IsUserInRole❑❑ : Retrieves roles from IAzClientContext::GetRoles and then performs a string
comparison between the requested role and the set of roles returned from the AzMan method. The

79301c16.indd 766 10/6/08 12:17:45 PM

767

Chapter 16: AuthorizationStoreRoleProvider

comparison is case-insensitive and uses ordinal comparisons (that is, a case-insensitive byte-by-
byte string comparison using the invariant culture).

RemoveUsersFromRoles❑❑ :IAzRole::DeleteMemberName

RoleExists❑❑ : Either IAzApplication::OpenRole or IAzScope::OpenRole

There aren’t any implemented methods that have special or unexpected functionality. Beyond the inter-
nal mappings noted in the preceding list, the AzMan-specific aspects of the provider are in the area of a
few properties and AzMan-specific handling of some configuration attributes.

The provider properties that directly affect how it works with AzMan are described in the following list:

ApplicationName❑❑ : AuthorizationStoreRoleProvider uses this attribute as the name of the
AzMan application in the policy store that the provider instance should work with. An impor-
tant difference from the SQL providers, though, is that the trick of overriding this property will
not work. Internally, the provider always looks at a private variable that stores the application
name; the provider doesn’t call the getter on the public property. The assumption was that
normally you would not have hundreds or thousands of AzMan applications in a policy store,
so supporting the dynamic switching of application context on a per-request basis didn’t really
make sense. Note that this property also has a setter. After changing the application name via a
call to the setter, the provider will reinitialize its reference to an AzMan application by calling
IAzAuthorizationStore::OpenApplication again. This can be useful for limited adminis-
trative applications, but because the setter is not thread-safe you need to carefully manage calls
to it. Otherwise two simultaneous requests attempting to set ApplicationName will interfere
with each other. For this reason, you should configure different provider instances for different
AzMan applications needed by your production applications.

ScopeName❑❑ : This is a custom provider property that allows you to get and set the AzMan
scope used by the provider. Normally, you configure the AzMan scope in configuration and
then the provider operates within the context of the scope for its entire lifetime. As with the
ApplicationName property, ScopeName has a setter that you can use. After calling it, the
provider will internally reinitialize its IAzApplization and IAzScope references. However,
the setter for ScopeName is also not thread-safe, and so it is really only useful for administra-
tive applications that implement some type of locking to ensure that competing threads don’t
tromp on each other’s scope settings. The general guidance is that you should configure sepa-
rate provider instances for each different AzMan application-scope combination needed by
your application.

The AzMan-specific configuration properties supported by the provider are:

applicationName❑❑ : This attribute determines the AzMan application used by the provider. You
must explicitly specify a value for this attribute if you want the provider to work. Although the
provider will use ASP.NET’s default logic for determining an application name if one is not
specified, chances are you do not have an AzMan application with the same name as your web
application’s virtual directory (or executable name in the case of a non-ASP.NET application).

scopeName❑❑ : This attribute determines the AzMan scope in the AzMan application that will be
used by the provider. If you specify the scopeName configuration attribute, be sure that the
scope really does exist in the AzMan application pointed at by the applicationName attribute.

cacheRefreshInterval❑❑ : This attribute controls the interval in minutes between calls to update
the cached representation of authorization information. If this attribute is not specified, the

79301c16.indd 767 10/6/08 12:17:45 PM

768

Chapter 16: AuthorizationStoreRoleProvider

provider will call UpdateCache on the policy store every 60 minutes. You can lower the value on
this setting if you have frequent changes occurring in your policy store, or you can increase it if
your policy store does not change much. Note, though, that this setting affects only cached infor-
mation derived from the AzMan policy store. For example, if you change the Windows groups
that a user belongs to, adjusting this cache interval will not help because the AzMan cache has
nothing to do with Windows group memberships that are cached in a user’s security token.

Using a File -Based Policy Store
You can configure AzMan’s authorization rules using an XML file as opposed to a directory or Micro-
soft SQL Server database (in this case, the XML file is the policy store. AzMan supports a file-specific
connection string format for connecting to an XML file). AuthorizationStoreRoleProvider is con-
figured with this connection string in the same way that you would configure a SQL-based provider
with an ADO.NET-compliant connection string. You add the connectionStringName attribute to your
provider definition and it references a connection string in the <connectionStrings /> section. For
example, the following connection string uses a combination of the AzMan connection string syntax
and a special syntax that is unique to AuthorizationStoreRoleProvider:

<add name=”FileBasedPolicyStore”
 connectionString=”msxml://~/App_Data/test.xml”/>

The bolded portion of the connection string uses the ASP.NET tilde shorthand. When the provider sees
that the connection string starts with msxml it knows that it will be working with a file-based policy
store. As a result, the provider makes an extra check for the tilde syntax. If it finds it, the provider gets
the physical file path to the root of the web application and prepends it to the remainder of the connec-
tion string. In the preceding sample syntax, this means you could also use a connection string such as:

<add
 name=”FileBasedPolicyStore”
 connectionString=”msxml://C:\inetpub\wwwroot\379301_code\379301 ch_16_code\ i
 cs\UsingAzMan\App_Data\test.xml”
/>

For web applications, it makes sense to use the ~/App_Data shorthand because you can just deploy the
web.config configuration file onto a web server without having to fix up the file path for the AzMan policy
store. If you use the provider in a non-ASP.NET application, you can actually use the same tilde syntax. In
this case the provider substitutes the file path to the current executable in place of the tilde character.

Using the provider with a file-based policy store is trivial after the authorization store has been set up and
configured. In Figure 16-1 I have added the demouser98@bhaidar.net account to a role called Normal
Users. There is also another role called Adminstrators defined in the application called UsingAzMan.

At this point, using the policy store is just an exercise in configuring Role Manager properly, and then
calling the APIs. The abbreviated configuration for a test application is:

<connectionStrings>
 <!--special file based syntax supported only by the provider-->
 <add

79301c16.indd 768 10/6/08 12:17:45 PM

769

Chapter 16: AuthorizationStoreRoleProvider

 name=”FileBasedPolicyStore”
 connectionString=”msxml://~/App_Data/test.xml”
 />
</connectionStrings>
…
<roleManager enabled=”true” defaultProvider=”fileProvider”>
 <providers>
 <clear />
 <add
 name=”fileProvider”
 type=”System.Web.Security.AuthorizationStoreRoleProvider,…”
 connectionStringName=”FileBasedPolicyStore”
 applicationName=”UsingAzMan”
 />
 </providers>
</roleManager>

Figure 16-1

The provider definition points at a connection string using the tilde shorthand. The applicationName
attribute on the provider definition corresponds to the AzMan application UsingAzMan that you can see
in the policy store from Figure 16-1.

With the configuration steps completed, you can create roles and associate users to roles. If you want to,
you can use the Web Administration Tool (WAT) to accomplish this. Because the WAT is oblivious to the
type of provider being used, it will allow you to carry out role management against AzMan via the pro-
vider. Because I used the ActiveDirectoryMembershipProvider for my sample application, the WAT
was able to find users and assign them to roles managed by the AuthorizationStoreRoleProvider.
After you have set up some roles and user-to-role assignments, you can dump out the roles that the user
belongs to.

79301c16.indd 769 10/6/08 12:17:45 PM

770

Chapter 16: AuthorizationStoreRoleProvider

C#
string[] roles = ((RolePrincipal)User).GetRoles();
foreach (string r in roles)
 Response.Write(User.Identity.Name + “ is in role “ + r + “
”);

VB.NET
Dim roles() As String = (CType(User, RolePrincipal)).GetRoles()
For Each r As String In roles
 Response.Write(User.Identity.Name & “ is in role “ & r & “
”)
Next r

This code snippet shows that the user account belongs to the Normal Users role:

demouser98@bhaidar.net is in role Normal Users

If you go back into the AzMan MMC and switch the account over to the Administrators role, you can
see the change in role assignment take effect. First, though, you will need to cycle the web application
(touch web.config or iisreset). This is because after browsing to the test page the first time, AzMan
will have cached the results of the policy lookup. Changing a user’s role membership in the MMC will
not be reflected in the AzMan runtime until the next cache refresh interval (remember that the provider
uses a 60 minute cache refresh interval by default). After you have cycled the web application, thus
dumping the cached AzMan authorization information, refreshing the page in the browser will show
the new role membership.

Note that from AzMan’s point of view, the file is just an XML file, which has security implications for
your web application. For web applications you should always place the XML file (or files if you are con-
figuring multiple provider instances) inside of the App_Data directory. This prevents malicious users
from downloading the policy store. If you were to place the XML file somewhere else in your directory
structure, browser users that guessed the name of it would be able to download your entire authoriza-
tion policy!

Of course, this raises the question of whether you should use file-based policy stores in production
applications. Personally, I would lean away from doing so and limit use of the file-based policy store
to development environments. Even though the policy store will be safe when it resides in App_Data,
it still seems risky to have your authorization policy sitting on your web server’s hard drive, available
for anyone with local server access to browse. Some folks though like to use file-based policy stores in
production because if the policy store is small (“small” is relative, but 1MB or smaller is a reasonable
“guesstimate”), using an XML-based store is much faster than using the directory based store. Another
argument, for using a file-based policy store is that in a web farm you now have the hassle of having to
push updates to your authorization policy across multiple machines. Determining whether all of your
servers have the same authorization rules can be a bit difficult. If you store the policy in a directory, you
know that every web server pointed at the directory server is seeing the same consistent set of authori-
zation information.

Because the policy store exists in a file, you can secure access to the store with NTFS file ACLs. Like
other ASP.NET providers, AuthorizationStoreRoleProvider internally runs with either the
process credentials or application impersonation credentials, assuming you have application imper-
sonation enabled. If these credentials only have read access to the policy store, only the read-oriented
methods on the provider will succeed. If the process or application impersonation credentials have
write access to the file as well, then write-oriented methods (for example, CreateRole) will also work.

79301c16.indd 770 10/6/08 12:17:46 PM

771

Chapter 16: AuthorizationStoreRoleProvider

The default App_Data credentials set by Visual Studio grant both read and write access to the pro-
cess account. As a result, for file-based policy stores, your web application will be able to modify the
information in the store by default. To restrict policy stores to read-only on your web servers, you can
simply revoke Write permission on the XML file from the process account or application impersonation
account.

Using a Directory-Based Policy Store
From a programming and configuration standpoint, using a directory-based policy store is no differ-
ent than using a file-based policy store, aside from the connection string. Instead of configuring the
connection string with an msxml moniker, you use an msldap moniker with a valid LDAP path. Setting
up an AzMan policy store basically involves choosing a location for the store in your directory. Instead
of storing the policy store in a file, the policy store is located in a container somewhere in your direc-
tory structure. I created a policy store in the directory structure that you saw used earlier in Chapter 13
when you learned about working with ActiveDirectoryMembershipProvider. Figure 16-2 shows a
policy store aptly named “Chapter16” that contains an application called UsingAzMan.

Figure 16-2

If you look at the containers underneath bhaidar.net, you will see that there is a container titled
Chapter16 that is of type msDS-AzAdminManager. This container is the root of the AzMan policy store
shown in Figure 16-2. Note that you will not see this container unless you enabled the advanced fea-
tures view in the Active Directory MMC. Normally though, you work with the AzMan policy store via
the AzMan MMC. Looking at the underlying container location is interesting in order to get an idea of
how the abstract concept of a policy store maps to a physical container within a directory.

79301c16.indd 771 10/6/08 12:17:46 PM

772

Chapter 16: AuthorizationStoreRoleProvider

With the policy store and AzMan application created, you can connect to it with the following connec-
tion string:

<add
 name=”DirectoryBasedPolicyStore”
 connectionString=”msldap://aspmvp.bhaidar.net/CN=Chapter16,DC=bhaidar,DC=net”
/>

Unlike ActiveDirectoryMembershipProvider, where you could also use just a domain name,
AzMan requires a server name and optional port name if you choose to supply this information. If you
want, though, you can skip the servername and port name, in which case AzMan will use the default
domain controller selected by the machine. The following connection string shows what this looks like:

<add
 name=”DirectoryBasedPolicyStore”
 connectionString=”msldap://CN=Chapter16,DC=bhaidar,DC=net”
/>

At this point, you might think you could take the sample code from the file-based policy example
shown earlier and just use one of these two connection strings. If you do this, your code will connect to
the policy store and then will promptly fail with an exception stating “Insufficient access rights to per-
form the operation.” This is because the identity of your web application does not have any privileges
to read or write information in the directory’s policy store. Unlike the file-based policy store where
NTFS ACLs control rights to the store, in a directory store you must explicitly setup the AzMan “roles”
that grant access to applications and scopes.

I put “roles” in quotes because it can quickly become confusing dealing with AzMan “roles” used for
connection access versus the real role information in the policy store. AzMan defines an Administrator
role and a Reader role that control the kinds of operations a security account can perform in a policy
store or application. As you would expect, a member of the Administrator role can do things like create
applications, scopes, and roles. A member of the Reader role can only query information in the policy
store; it cannot modify it.

Because I need to populate the store with some roles and set up a user-to-role mapping, I initially added
the web server’s machine account (which corresponds to NETWORK SERVICE) to the Administrator
role for the AzMan application called “UsingAzMan.” You can see what this looks like in Figure 16-3.

As you can see from the screenshot, the Administrators domain group and the Administrator domain
user are members of this role by default. For a development environment where you are just loading
test data, adding a server account to the Administrator role is acceptable. However, in a production
environment, you clearly should not have your process accounts or application impersonation accounts
in this role. At most you might have a machine off to the side running an administrative application,
where the process or application impersonation credentials for that application are in the Administra-
tor role.

Because the NETWORK SERVICE account was added to a management role associated with an AzMan
application, you also need to add the machine account to the Delegated User role at the store level. You
can see this in Figure 16-4.

79301c16.indd 772 10/6/08 12:17:46 PM

773

Chapter 16: AuthorizationStoreRoleProvider

Figure 16-3

Figure 16-4

79301c16.indd 773 10/6/08 12:17:46 PM

774

Chapter 16: AuthorizationStoreRoleProvider

This extra step is necessary if you plan to delegate control over different applications, or different
scopes within a single policy store. If you plan to store only a single web application’s authorization
information in a single policy store, then you can just grant rights at the store level (this would be a
model of one business application mapping to one AzMan policy store). On the other hand, if you plan
to store many different sets of authorization information within a single AzMan policy store, chances
are that you do not want different web applications accidentally making use of each others’ authoriza-
tion rules.

In this case, you may allocate an AzMan application for each of your business applications, or you may
allocate an AzMan scope for each business application. For these scenarios you need more granular
access control down to the level of an AzMan application or an AzMan scope. As a result, you start out
adding the appropriate accounts to the store level Delegated User group, and then add the appropriate
accounts (that is, delegate control) to the Administrator or Reader role on a specific application or scope.

With this extra set of security configuration completed, you can now run the sample code from the file-
based sample. The configuration looks almost exactly the same:

<connectionStrings>
 <add
 name=”DirectoryBasedPolicyStore”
 connectionString=”msldap://aspmvp.bhaidar.net/CN=Chapter15,DC=bhaidar,DC=net”/>

<connectionStrings>
 <add
 name=”DirectoryBasedPolicyStore”
 connectionString=”msldap://aspmvp.bhaidar.net/CN=Chapter16,DC=bhaidar,DC=net”
/>

<add
 name=”FileBasedPolicyStore”
 connectionString=”msxml://~/App_Data/test.xml”
/>
</connectionStrings>
…
<roleManager enabled=”true” defaultProvider=”directoryProvider”>
 <providers>
 <clear />
 <add
 name=”fileProvider”
 type=”System.Web.Security.AuthorizationStoreRoleProvider, …”
 connectionStringName=”FileBasedPolicyStore”
 applicationName=”UsingAzMan”/>
 <add
 name=”directoryProvider”
 type=”System.Web.Security.AuthorizationStoreRoleProvider, …”
 connectionStringName=”DirectoryBasedPolicyStore”
 applicationName=”UsingAzMan”/>
 </providers>
</roleManager>

79301c16.indd 774 10/6/08 12:17:46 PM

775

Chapter 16: AuthorizationStoreRoleProvider

A second provider instance using a directory-based policy store was added to the <roleManager />
definition and was made the default provider for the feature. At this point, you can start creating roles
and assigning users to roles. If you are running as an interactive user with privileges in the AzMan
policy store, you can use the WAT to accomplish this. Alternatively, now that the process account is part
of the application’s Administrator role you can use the standard Role Manager APIs in .aspx pages to
create roles and populate the roles with users.

Because most developers will probably work with prepopulated policy stores in their production envi-
ronments, you can change the rights that have been delegated to the process account or application
impersonation account. Although the account still needs to be in the Delegated User role at the store
level (assuming that you want to work with many applications in a single policy store), you can instead
add the account to the Reader role for the application. This will allow your application to read authori-
zation information, but it will not be able to modify it in any way.

As noted earlier, the provider also supports working within the context of an AzMan scope. You can
change the configuration for the provider to include a scope definition similar to the one that follows:

<add
 name=”directoryProvider”
 type=”System.Web.Security.AuthorizationStoreRoleProvider, …”
 connectionStringName=”DirectoryBasedPolicyStore”
 applicationName=”UsingAzMan”
 scopeName=”Scope_A”
/>

Now, if you create new roles and assign users to roles, all of the operations will be occurring within the
Scope_A scope nested within the UsingAzMan application. Figure 16-5 shows what this looks like:

Figure 16-5

79301c16.indd 775 10/6/08 12:17:46 PM

776

Chapter 16: AuthorizationStoreRoleProvider

The code to create the new roles and populate the roles consists of standard Role Manger API calls:

C#
if (Roles.RoleExists(“Administrators in Scope A”))
 Roles.DeleteRole(“Administrators in Scope A”, false);

if (Roles.RoleExists(“Normal Users in Scope A”))
 Roles.DeleteRole(“Normal Users in Scope A”, false);

Roles.CreateRole(“Administrators in Scope A”);
Roles.CreateRole(“Normal Users in Scope A”);

if (!Roles.IsUserInRole(“Administrators in Scope A”))
 Roles.AddUserToRole(User.Identity.Name, “Administrators in Scope A”);

VB.NET
If Roles.RoleExists(“Administrators in Scope A”) Then
 Roles.DeleteRole(“Administrators in Scope A”, False)
End If
If Roles.RoleExists(“Normal Users in Scope A”) Then
 Roles.DeleteRole(“Normal Users in Scope A”, False)
End If
Roles.CreateRole(“Administrators in Scope A”)
Roles.CreateRole(“Normal Users in Scope A”)

If (Not Roles.IsUserInRole(“Administrators in Scope A”)) Then
 Roles.AddUserToRole(User.Identity.Name, “Administrators in Scope A”)
End If

As you can see, from a programming perspective nothing changes. You continue to write Role Manager
code as you normally would, and the provider automatically takes care of working against the correct
application scope.

Another unique aspect of using the AzMan policy store is the ability to nest group memberships. There
are a variety of approaches to nesting:

Add Windows users and Windows groups directly to a role you create in AzMan.❑❑

Add Windows users and Windows groups to an AzMan application group. Then add the ❑❑

AzMan application group to a role you create in AzMan.

Add Windows users and Windows groups to an AzMan application group. Then add the ❑❑

AzMan application group to a different AzMan application group. Add this second group to a
role you create in AzMan.

So, you have quite a few different options that allow you to accomplish group nesting. Although
AuthorizationStoreRoleProvider can add Windows users only directly to an AzMan role, the
provider will properly handle the necessary group expansion computations when IsUserInRole or
GetRolesForUser is called (more precisely, AzMan does this for you).

79301c16.indd 776 10/6/08 12:17:47 PM

777

Chapter 16: AuthorizationStoreRoleProvider

To see how this works, you can set up some test AzMan application groups. Set up an application group
hierarchy like the following:

Application Group That Contains A
 |
 |
 ---> Application Group A
 |
 |
 ---> demouser98@bhaidar.net

You now have an example of a nesting relationship. The demouser98@bhaidar.net user account in
Active Directory indirectly belongs to the top-level AzMan application group called Application Group
That Contains A. You can add this application group to the Normal Users role that was created earlier,
as shown in Figure 16-6.

Figure 16-6

Now if you dump all the roles that demouser98@bhaidar.net belongs to with the following code:

C#
string[] roles = ((RolePrincipal)User).GetRoles();
foreach (string r in roles)
 Response.Write(User.Identity.Name + “ is in role “ + r + “
”);

79301c16.indd 777 10/6/08 12:17:47 PM

778

Chapter 16: AuthorizationStoreRoleProvider

VB.NET
Dim roles() As String = (CType(User, RolePrincipal)).GetRoles()
For Each r As String In roles
 Response.Write(User.Identity.Name & “ is in role “ & r & “
”)
Next r

you will see the following output:

demouser98@bhaidar.net is in role Administrators
demouser98@bhaidar.net is in role Normal Users

Even though the user belongs to Normal Users by way of two intervening application groups, the pro-
vider is properly returning the full expansion of the user’s role membership. If the underlying call to
the provider’s GetRolesForUser method did not properly expand all nested group relationships when
computing a user’s AzMan role memberships, the utility of the provider, and for that matter AzMan
itself, would be rather hobbled. Keep this behavior in mind if you plan on using Authorization​
StoreRoleProvider. Even though you will not get the benefit of the AzMan access checks with this
provider, the ability to use any type of group nesting in AzMan and still have role checks work prop-
erly gives you a powerful piece of role management that SqlRoleProvider lacks.

One other unique aspect of AzMan that you can leverage with the provider is LDAP query groups. The
AzMan application groups you just saw are called basic groups in AzMan terminology. The companion
group type in AzMan is an LDAP query group. As the name suggests, instead of statically defining the
users and groups that belong to the AzMan application group, membership is determined on the fly
based on an LDAP query. Depending upon what kind of user information you store in your directory,
you can create some very rich user-to-LDAP query group assignments (for example, users that belong
to the West coast region, users that have a specific area code, and so on).

Even though the concept of a MembershipUser in ASP.NET is very limited, this does not constrain the
kinds of LDAP queries you can use in AzMan. This means that if you have some way of populating
attributes for your user objects other than the Membership feature, you can create LDAP queries that
make use of this information. For example, if you set the zip code (that is, the postalCode attribute)
on a user object, you can then construct an LDAP query group that predicates its membership based
on this value. A simple example of such a query definition is shown in Figure 16-7.

You can then add the LDAP query group to one of the AzMan roles that created earlier. Figure 16-8
shows adding the query group to the role called wrong.

I edited the user object for the demouser98@bhaidar.net user by setting its zip code to 11072. Now if
you rerun the sample code that prints out a user’s roles, you can see that the provider returns the third
AzMan role as well.

demouser98@bhaidar.net is in role Administrators
demouser98@bhaidar.net is in role Normal Users
demouser98@bhaidar.net is in role This is a new role

Even though this kind of dynamic group functionality is not defined anywhere in the Role Manager
feature, you can still take advantage of it via AuthorizationStoreRoleProvider. As long as you
have set up user attributes and LDAP query groups through some other mechanism, you can take full

79301c16.indd 778 10/6/08 12:17:47 PM

779

Chapter 16: AuthorizationStoreRoleProvider

advantage of the dynamic membership of LDAP query groups with the provider. With some planning
around user attributes and LDAP queries, you can structure your AzMan authorization rules to auto-
matically adjust to the changing information stored for your users.

Figure 16-7

Figure 16-8

79301c16.indd 779 10/6/08 12:17:47 PM

780

Chapter 16: AuthorizationStoreRoleProvider

Using a Microsoft SQL Server
Database-Based Policy Store

Windows Server 2008 enriches the AzMan Authorization Manager with a new feature: the ability to
store the authorization information in a Microsoft SQL Server. The SQL Server can be a SQL Server
2000, SQL Server 2005, or SQL Server Express 2005. From a programming and configuration standpoint,
using a Microsoft SQL Server database-based policy store is no different from using a file-based policy
store or directory-based policy store, aside from the connection string. Instead of configuring the con-
nection string with an msxml or msldap moniker, you can use an mssql moniker with a valid Microsoft
SQL Server connection string. Setting up an AzMan policy store basically involves specifying a connec-
tion string that includes the database server, database name, and the Policy Store name at the very least.
To create a new AzMan policy store based on a Microsoft SQL Server, right-click on the Authorization
Manager node and select New Authorization Store. Figure 16-9 shows the GUI that pops up to help you
in configuring the SQL Server based AzMan policy store.

Figure 16-9

Notice in Figure 16-9 that a new authorization store type is now included as an option to select and use.
Once you select the Microsoft SQL option, you need also to specify the schema version, and finally
and most importantly the Store Name. If you are creating a Microsoft SQL policy store, the store name
represents a URL beginning with the protocol prefix of mssql. I have pasted the same Store Name in
the description area on the Form so that you can see the details of the how to specify a store name. The
URL should first of all specify a valid connection string (in this case the authorization store is connect-
ing to a SQL Server Express 2005 instance named “.\SQLExpress” where trusted connection is enabled),
a database name that will hold all the tables required for the SQL Server authorization store to function
properly, and finally the authorization store name to be listed as a subnode under the Authorization
Manager root node.

79301c16.indd 780 10/6/08 12:17:47 PM

781

Chapter 16: AuthorizationStoreRoleProvider

If you are using Microsoft SQL Server Express Edition and the database name you specified is not pre-
created, SQL Server automatically creates it once the authorization store is created. Figure 16-10 shows a
table listing of all the tables that constitute the AzManDb database.

Figure 16-10

The database tables are mainly used to store all the related information about the authorization store
and its authorization information. Any AzMan role, group, operations, tasks, and so on are stored in
the different tables listed. I will not go into the details of every table since this is beyond the scope of
this book, but the main idea is that any authorization information added to any authorization applica-
tion in the current authorization store will be stored in these tables.

With the policy store and AzMan application created, you can connect to it with the following connec-
tion string:

<add
 name=”SQLServerBasedPolicyStore”
 connectionString=”mssql://Driver={SQL Server};Server={.\SQLExpress};Trusted_
Connection={Yes};/AzManDb/AzManInSQLServer”
/>

The preceding connection string represents the same store name that was used to create the authori-
zation store. Now let us run the same application that we worked on in both the file-based policy store
and the directory-based policy store examples shown above and see what happens. If you do so, your
code will connect to the policy store and then will promptly fail with an exception stating “Access is
Denied.” This is because the identity of your web application does not have any privileges to access the
database that is used to store the authorization information.

79301c16.indd 781 10/6/08 12:17:47 PM

782

Chapter 16: AuthorizationStoreRoleProvider

When an ASP.NET application is connecting to a database which client and application impersonation
is disabled, the identity used to access the database is by default the identity that has been configured
for the application pool that the current application is configured to, as discussed in Chapter 3. In this
case, it is the NT AUTHORITY\NETWORK SERVICE account.

To be able to run the application without any exceptions, you need to add the web server’s machine
account (which corresponds to NT AUTHORITY\NETWORK SERVICE) to the Administrator role for the
AzMan application called “UsingAzMan.” You can see what this looks like in Figure 16-11.

Figure 16-11

Explained in the preceding directory-based policy store section, you also need to add the NETWORK
SERVICE account to the Delegated User role at the store level in case you plan to delegate control over
different applications, or different scopes within a single policy store.

Now that the NETWORK SERVICE account is added, you will notice that a new user has been added to
the list of users that are allowed to access the database. Figure 16-12 shows the list of users configured
to access the AzMan database including the NETWORK SERVICE account.

Now try running the same application again and you will notice that the application runs fine whether
you are listing the roles a user belongs to or creating new roles. I have already created a sample role
called “Sample Microsoft SQL Server Role” and added to it the famous demouser98@bhaidar.net that
is part of the AD defined earlier. When you run the Default.aspx page of the “UsingAzMan” applica-
tion and log in with the aforementioned user, you will see a listing of all the roles that the current user
belongs to.

demouser98@bhaidar.net is in role Sample Microsoft SQL Server Role

79301c16.indd 782 10/6/08 12:17:47 PM

783

Chapter 16: AuthorizationStoreRoleProvider

Figure 16-12

In this case, it is only a single role that I have previously added manually to the AzManInSQLServer
authorization store.

Working in Partial Trust
Because the provider works with file-based AzMan policy stores, directory-based AzMan policy stores,
and Microsoft SQL Server AzMan policy store, there are two different approaches to getting the provider
in a partially trusted application. Regardless of the policy store location, the provider always requires
AspNetHostingPermission with at least Low trust (see Chapter 15 on SqlRoleProvider to learn how
you can grant this permission in a non-ASP.NET application) during the initialization process.

The provider always checks for AspNetHostingPermission with a setting of Medium for any write-
oriented methods. Because Low trust is conceptually a read-only trust bucket, while Medium trust is
the conceptual read-write trust bucket, AuthorizationStoreRoleProvider only allows the following
methods to work when running in a web application at Medium trust or above:

CreateRole❑❑

DeleteRole❑❑

AddUsersToRoles❑❑

RemoveUsersFromRoles❑❑

You will see this behavior for ASP.NET applications. If you plan to use the provider outside of ASP.NET
in a partial trust application, you effectively need to run at full trust, as is discussed a bit later in this
section.

79301c16.indd 783 10/6/08 12:17:48 PM

784

Chapter 16: AuthorizationStoreRoleProvider

If the policy store is located in an XML file, and you are using the provider inside of an ASP.NET appli-
cation, then the provider will also partially rely on the application’s file I/O code access security (CAS)
permissions for read-oriented methods. The idea here is that if you are using a file-based policy store,
then the file I/O CAS permissions of the application are a good indicator of whether a partial trust web
application has rights to use the provider. When the provider is initializing itself, it will check to see if
the web application has read access to the XML file. This effectively means that in High trust you can
point the provider at a policy file that is located anywhere on the file system. In Medium and Low trust
though, due to the FileIOPermission(s) granted at these trust levels, the provider will only work
with a policy file located somewhere within the application’s directory structure. This kind of restric-
tion makes sense because you probably do not want a Medium or Low trust application to read policy
files located in other applications’ directory structures. Assuming that your application passes these
trust level checks, the provider internally asserts unrestricted security permissions so that it can call
into the AzMan PIA without triggering any security exceptions.

To demonstrate how all of this works, you can take a sample application like the one shown earlier for
the file-based policy store, and change the trust level setting. For example, if you drop the trust level
down to Low and then attempt to create or delete roles, you will get an error stating “This API is not
supported at this trust level.” If you bump the trust level up to Medium, though, role creation and dele-
tion will work again. However, if you reset the trust level to Low, you will still be able to use read-only
methods like GetRolesForUser. Also, in both Medium and Low trust, if you change the connection
string to point to a location outside of the web application’s directory structure, you will get an exception
like the following:

[HttpException (0x80004005): Access to path ‘test.xml’ was denied. The location
does not exist or is not accessible because of security settings.]
System.Web.HttpRuntime.CheckFilePermission(String path, Boolean writePermissions)
System.Web.Security.AuthorizationStoreRoleProvider.InitApp()
System.Web.Security.AuthorizationStoreRoleProvider.GetClientContext(String
userName)
System.Web.Security.AuthorizationStoreRoleProvider.GetRolesForUserCore(String
username)
System.Web.Security.AuthorizationStoreRoleProvider.GetRolesForUser(String username)
…

From the stack trace you can see that the provider is explicitly checking for FileIOPermission by way
of an internal HttpRuntime helper method and that this check causes the failure.

If you use the provider in a partial trust web application and your policy store is located in a directory
store, your code will simply not work regardless of the configuration steps you take. For example, if you
run an application in High trust and attempt to use the provider, you will instead get error information
like the following:

[SecurityException: Request for the permission of type ‘System.Security.
Permissions.SecurityPermission…’ failed.]
…
System.Activator.CreateInstance(Type type, Boolean nonPublic)
System.Activator.CreateInstance(Type type)
System.Web.Security.AuthorizationStoreRoleProvider.InitApp()
System.Web.Security.AuthorizationStoreRoleProvider.GetClientContext(String
userName)

79301c16.indd 784 10/6/08 12:17:48 PM

785

Chapter 16: AuthorizationStoreRoleProvider

System.Web.Security.AuthorizationStoreRoleProvider.GetRolesForUserCore(String
username)
System.Web.Security.AuthorizationStoreRoleProvider.GetRolesForUser(String username)
System.Web.Security.RolePrincipal.GetRoles() +248
…

In this case, when the provider attempts to open the policy store via the AzMan PIA, the call fails.
Like many CAS-related errors, the error information is less than enlightening, and you can’t tell what
the problem is. Furthermore, the stack trace shows the provider calling Activator.CreateInstance,
which probably seems a bit weird. Internally, the provider actually does not have any compile time
dependency on the AzMan PIA. Instead, the provider dynamically loads AzMan types through reflec-
tion and then invokes methods on the resulting runtime callable wrappers through reflection as well.
I intentionally chose High trust to demonstrate the error condition because High trust applications do
have full reflection permissions. So, clearly it is not a lack of reflection permissions that is causing the
security error.

The reason for the error is that the provider and the rest of the call stack require unmanaged code per-
missions to call into the COM PIA. There is no reasonable surrogate permission that can be used by the
provider in return for asserting unmanaged code permission (as is done in the case of a file-based pol-
icy store) when connecting to a directory-based policy store. Neither AspNetHostingPermission nor
FileIOPermission make sense to use as surrogate permissions. Theoretically, the development team
could have used DirectoryServicesPermission that you saw in Chapter 13 on ActiveDirectory​
MembershipProvider, but doing so would be a bit awkward. Granting DirectoryServices​
Permission just to get AuhtorizationStoreRoleProvider working would also mean that any
code in your web application could use the System.DirectoryServices class and start connecting
to arbitrary directory stores. That level of access was considered excessive just for enabling a single
provider.

Instead, if you want to use the provider in a partial trust web application with a directory-based policy
store, you will need to wrap the calls to the provider’s methods inside of a trusted GAC’d assembly.
The wrapper assembly will need to assert a SecurityPermission for unmanaged code permissions
prior to calling into the provider because internally the provider uses the AzMan PIA to talk to AzMan
through COM interop. Because COM classes are considered unmanaged classes, a wrapper assembly
must assert unmanaged code permissions. The same analysis also applies for the case when the AzMan
authorization store is using the Microsoft SQL Server. Either you set the application to run in the full
trust mode, or you use the aforementioned solution of wrapping the calls to the provider’s methods
inside of a trusted GAC’d assembly.

So far, I have discussed how to use the provider in partial trust web applications. For partial trust
non-ASP.NET applications, you always need unmanaged code permissions. This holds true even for
file-based policy stores. This means you need some kind of trusted code on the stack that calls into the
provider. As a result-using a GAC’d wrapper assembly that asserts unmanaged code permissions is the
correct approach for using the provider in partially trusted non-ASP.NET applications.

The reason that there is no special FileIOPermission behavior for partially trusted non-ASP.NET
applications is the base requirement for unmanaged code permissions. After an application or a piece
of code has that permission, checking the FileIOPermission is pointless. Unmanaged code permis-
sion means the application can just use Win32 or COM calls to directly manipulate the file system, so
checking for FileIOPermission would not prove anything about the trust level for the application.

79301c16.indd 785 10/6/08 12:17:48 PM

786

Chapter 16: AuthorizationStoreRoleProvider

Using Membership and Role Manager Together
The previous samples have been exclusively using a username in a UPN format:
demouser98@bhaidar.net. Even though the full configuration for the samples was not shown, they
were using the ActiveDirectoryMembershipProvider configuration shown in Chapter 13. This
allowed me to first log in with forms authentication against the directory, and then Authorization​
StoreRoleProvider initialized its client context with the same UPN. The nice thing about the UPN
format is that using both the Membership and Role Manager providers together works.

Logging in with a UPN places that value in the forms authentication ticket. When it comes time for
AuthorizationStoreRoleProvider to fetch role information for the user, it calls Initialize​
ClientContextFromName to set up the client context. This method accepts and parses usernames
following the same rules defined in the Win32 API method LookupAccountName. UPNs provide
unambiguous identification of a user account, which is why UPN style usernames work well with
both providers.

Problems can arise, though, if your Membership provider is configured to use the sAMAccountName
attribute. Because ActiveDirectoryMembershipProvider already knows the domain that it operates
in, the provider does not allow the username parameter to include the DOMAIN portion. As a result, if
you validate a forms authentication login with ActiveDirectoryMembershipProvider, the username
that ends up in FormsAuthenticationTicket will lack the domain name. When Authorization​
StoreRoleProvider subsequently attempts to initialize a context from that username, it goes through
a lengthier process trying to determine the correct user. The problem is that in even moderately com-
plex domain environments you can have duplicate sAMAccountName(s) in different domains. For that
matter, the same username can show up in a machine’s local account SAM and in the domain. These
cases can lead to ambiguity for AzMan and in the worst case can cause the wrong user account to be
selected and used for authorization purposes.

The solution to the SAM account name problem is to layer support for NT4 style account names on
top of ActiveDirectoryMembershipProvider. This allows users to log in with the older DOMAIN\
USERNAME syntax, which in turn means AuthorizationStoreRoleProvider will find the cor-
rect user when it looks for it in the directory. The inclusion of the DOMAIN portion of the username
means that in multidomain environments you will be able to use forms authentication with both
ActiveDirectoryMembershipProvider and AuthorizationStoreRoleProvider without having
to worry about duplicate usernames in different domains confusing AzMan.

You can use the familiar approach of just deriving from ActiveDirectoryMembershipProvider
to create a custom provider with the necessary functionality. The custom provider will add some
basic validation logic that ensures the username parameter supplied to any method has the correct
domain name. You set the domain name that the custom Membership provider expects in the
applicationName configuration attribute. Because this attribute is not used by
ActiveDirectoryMembershipProvider, it is a convenient place to store the expected
DOMAIN prefix for a username.

C#
public class NTUsernameProvider : ActiveDirectoryMembershipProvider
{

 private string StripOffDomainValue(string username)

79301c16.indd 786 10/6/08 12:17:48 PM

787

Chapter 16: AuthorizationStoreRoleProvider

 {
 string[] userParts = username.Split(new char[] {‘\\’});
 if (userParts.Length == 1)
 throw new ArgumentException(
 “You must supply a domain name in the form DOMAIN\\USERNAME.”);

 string domain = userParts[0];
 string user = userParts[1];

 if (String.Compare(domain,this.ApplicationName,
 StringComparison.OrdinalIgnoreCase) != 0)
 throw new
 ArgumentException(“The supplied username is in an incorrect format.”);

 return user;
 }

 public override bool ValidateUser(string username, string password)
 {
 string user;
 try
 {
 user = StripOffDomainValue(username);
 }
 catch (ArgumentException ae)
 {
 return false;
 }

 return base.ValidateUser(user, password);
 }

 public override MembershipUser GetUser(string username, bool userIsOnline)
 {
 string user = StripOffDomainValue(username);
 return base.GetUser(user, userIsOnline);
 }

 //Override additional methods as needed.
}

VB.NET
Public Class NTUsernameProvider
 Inherits ActiveDirectoryMembershipProvider

 Private Function StripOffDomainValue(ByVal username As String) As String
 Dim userParts() As String = username.Split(New Char() {“\”c})
 If userParts.Length = 1 Then
 Throw New ArgumentException(_
 “You must supply a domain name in the form DOMAIN\USERNAME.”)
 End If

 Dim domain As String = userParts(0)

79301c16.indd 787 10/6/08 12:17:48 PM

788

Chapter 16: AuthorizationStoreRoleProvider

 Dim user As String = userParts(1)

 If String.CompareOrdinal(domain,Me.ApplicationName) <> 0 Then
 Throw New ArgumentException(_
 “The supplied username is in an incorrect format.”)
 End If

 Return user

 End Function

 Public Overrides Function ValidateUser(ByVal username As String, _
 ByVal password As String) As Boolean
 Dim user As String
 Try
 user = StripOffDomainValue(username)
 Catch ae As ArgumentException
 Return False
 End Try

 Return MyBase.ValidateUser(user, password)
 End Function

 Public Overrides Overloads Function GetUser(ByVal username As String, _
 ByVal userIsOnline As Boolean) As MembershipUser
 Dim user As String = StripOffDomainValue(username)
 Return MyBase.GetUser(user, userIsOnline)
 End Function

 ‘Override additional methods as needed.

End Class

The code to accomplish this is pretty simple. The private helper method StripOffDomainValue splits
apart a username parameter into the domain name and the plain user name. It then verifies that the user-
name did contain a domain identifier and that the domain portion of the username matches the domain
name specified in the provider’s applicationName configuration attribute. If these validation checks
succeed, the helper method returns just the username portion of an NT4-style username.

The custom provider uses this helper method in its overrides of ActiveDirectoryMembershipProvider.
Prior to calling in to the base class, the custom provider strips the domain portion of the username. This
allows the underlying provider to function as it expects when usernames are mapped to the sAMAccount​
Name attribute. However, from an application perspective, a user is always known by a full NT4-style
username. To use the custom provider, you change the Membership configuration to point at it:

<add
 name=”appprovider”
 type=”NTUsernameProvider”
 attributeMapUsername=”sAMAccountName”
 connectionStringName=”DirectoryConnection”
 applicationName=”BHAIDAR”
/>

79301c16.indd 788 10/6/08 12:17:48 PM

789

Chapter 16: AuthorizationStoreRoleProvider

Notice how the applicationName attribute now contains the old NT4-style name of the domain. With
the Membership feature configured to use the custom provider, you can now log in using NT4-style
credentials like BHAIDAR\testuserpopa (this was an account created in Chapter 13). After logging
in with these credentials, you can then retrieve the role information for this user with the usual Role
Manager API calls. These calls will work because the username retrieved from User.Identity.Name
will always be BHAIDAR\testuserpopa. Because this username includes the domain of the user, when
AuthorizationStoreRoleProvider initializes a client context, AzMan has all of the information it
needs to correctly identify the domain and the specific user in that domain that it should work with.

Summary
AuthorizationStoreRoleProvider maps most RoleProvider functionality (with the exception of
the FindUsersInRole method) onto the Authorization Manager (AzMan) feature of Windows Server
2003 domains. The provider works with AzMan policy stores located in Active Directory, ADAM or
ADLDS (in Windows Server 2008), Microsoft SQL Server (Microsoft SQL Server 2000 and above), or
file-based policy stores. You can use the provider in both ASP.NET and non-ASP.NET applications. If
you want to use the provider in partially trusted applications, though, there are a number of restric-
tions around using file-based, directory-based, and Microsoft SQL Server database-based policy stores.

Using a directory-based, database-based, or file-based AzMan policy store with the provider is straight-
forward. After the AzMan policy store has been created and populated, you need to grant access to the
store. With the appropriate access rights (NTFS rights for the file-based policy store and AzMan-specific
roles for directory-based and database-based policy stores), AuthorizationStoreRoleProvider can
then connect to the AzMan policy store. The provider carries out its operations in the context of either a
specific AzMan application or in the context of an AzMan scope.

Even though the RoleProvider class does not expose the concept of role nesting, if you have structured
your AzMan policy store with any of its nesting features, the GetRolesForUser and IsUserInRole
methods will correctly reflect the results of any these relationships. The advanced LDAP query group
functionality also works with both of these methods. Remember that if you are working in a domain
environment that uses SAM account names for its users and your application is using forms authentica-
tion with ActiveDirectoryMembershipProvider, you will need to write a simple wrapper around
the Membership provider in order to accommodate NT4-style account names. When using SAM account
names, AuthorizationStoreRoleProvider will only work reliably if the full NT4-style username is
available from the HttpContext.

79301c16.indd 789 10/6/08 12:17:48 PM

79301c16.indd 790 10/6/08 12:17:48 PM

17
Membership and

Role Management in
ASP.NET AJAX 3.5

Membership and role management have been included since the days of ASP.NET 2.0. These
features, among others, are based on the ASP.NET provider model discussed in Chapter 10. The
ASP.NET membership feature enables you to manage users and validate their credentials against
a data store of your choice. The ASP.NET role management feature provides an easy way to imple-
ment role management in a web application to authorize users and manage their roles. As men-
tioned several times throughout this book, the ASP.NET 3.5 runtime is based in its core on the
ASP.NET 2.0 runtime and hence ASP.NET 3.5 inherits all the features included in the ASP.NET 2.0
and adds to them new features, modifi cations, and improvements, including ASP.NET AJAX.

ASP.NET AJAX that ships with the .NET Framework 3.5 contains web services that act as an inter-
face to the ASP.NET application services. These services have to be enabled in your application and
once enabled the authentication and role services will be accessible from the client-side (that is, the
browser side where JavaScript code is running).

This chapter covers the topics of membership and role management and their integration with
ASP.NET AJAX that ships as an integrated part of ASP.NET 3.5 and the .NET Framework 3.5.
After reading this chapter, you will have a good knowledge of the following:

How to enable membership management in a web application (Chapter 11 includes a ❑❑

detailed discussion on the ASP.NET membership feature).

How to enable role management in a web application (Chapter 14 includes a detailed dis-❑❑

cussion on ASP.NET role feature).

How to enable an existing ASP.NET application with ASP.NET AJAX 3.5.❑❑

How to enable client-side authentication and role services in an ASP.NET application.❑❑

Working in depth with the AJAX authentication service.❑❑

Working in depth with the AJAX role service.❑❑

79301c17.indd 791 10/6/08 12:18:10 PM

792

Chapter 17: Membership and Role Management in ASP.NET AJAX 3.5

ASP.NET Membership and Role Services Overview
Chapters 10 through 16 discuss in detail the provider model, membership, and role services, and their
different built-in provider implementations. This section recaps those features to make it easier to under-
stand the material presented later in the chapter on the integration between ASP.NET AJAX 3.5 and
ASP.NET membership and role services.

In ASP.NET 3.5 the same application services that were introduced in ASP.NET 2.0 are still available
and have not changed at all. This means all your code written for ASP.NET 2.0 to access the membership
and role services is still valid and runs perfectly under ASP.NET 3.5 once again due to the fact that
ASP.NET 3.5 runtime is solely based on the ASP.NET 2.0 runtime with additional features and
improvements.

ASP.NET Membership
The ASP.NET membership feature facilitates validating user credentials against a data source and
helps in managing and creating user accounts that belong to the membership system of a web appli-
cation. The membership feature is built on the provider model and hence it gives you the option to
interact with any data source of choice by simply creating a concrete provider implementation for
the data source.

By default, when you create a new ASP.NET website or application in Visual Studio 2005/2008, member-
ship will be enabled automatically. Thus, you can benefit from the implicit definition of the membership
feature inside the machine.config configuration file.

Membership is composed mainly of the Membership, MembershipProvider, and MembershipUser
classes. These classes encapsulate the functionality of the membership feature and hide all the nasty
coding details of connecting to the configured data source and converting the database user account
record into a strongly typed user object. The Membership class consists of a list of static methods that
act as an interface to most of the functions that can be called and executed against the data source
storing all the user-related information. For instance, there is a method to create a new user account, a
method to retrieve a user account record, a method to validate user credentials, and many more meth-
ods. The MembershipUser class represents a single user in the database and has some static methods
mainly to manage the password of the user. The MembershipProvider class is the base class for the
built-in provider implementations that have shipped with ASP.NET membership feature and can also
be used for developing your own custom membership providers.

There are two built-in providers that ship with the ASP.NET membership feature: SqlMembership​
Provider and ActiveDirectoryMembershipProvider. As you might have noticed from their names,
the former is used to enable membership with the Microsoft SQL Server as a backend data store, and
the latter is a read-only provider used to enable membership with the Windows Active Directory to
manage the users stored in the active directory.

By default, when you create a new ASP.NET website or application, the application will have the
SqlMembershipProvider configured automatically to run with the Microsoft SQL Server 2005 Express
edition. You can keep the same provider configuration or change its properties according to your pref-
erences. The following code snippet shows the complete membership provider configuration section

79301c17.indd 792 10/6/08 12:18:10 PM

793

Chapter 17: Membership and Role Management in ASP.NET AJAX 3.5

that is located in the machine.config configuration file and you are free to change its properties inside
the application’s web.config configuration file according to what your application requires:

 <membership>
 <providers>
 <add
 name=”AspNetSqlMembershipProvider”
 type=”System.Web.Security.SqlMembershipProvider, System.Web,
 Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”
 connectionStringName=”LocalSqlServer”
enablePasswordRetrieval=”false”
enablePasswordReset=”true”
requiresQuestionAndAnswer=”true”
applicationName=”/”
requiresUniqueEmail=”false”
passwordFormat=”Hashed”
maxInvalidPasswordAttempts=”5”
minRequiredPasswordLength=”7”
minRequiredNonalphanumericCharacters=”1”
passwordAttemptWindow=”10”
passwordStrengthRegularExpression=””/>
 </providers>
 </membership>

For more information on the preceding properties, refer to Chapters 11 and 12.

Now that the membership provider is configured, it is time to configure the web application to use an
authentication type (in this case, the forms authentication). This can be easily done by configuring the
<authentication> configuration section inside the application’s web.config configuration file to use
forms authentication as this example shows:

<authentication mode=”Forms”>
 <forms
 cookieless=”UseCookies”
 defaultUrl=”~/Default.aspx”
 loginUrl=”~/Login.aspx”
 name=”AUTHWEB”
 path=”/”
 protection=”All”
 />
 </authentication>

The application is now configured to use forms authentication and the membership provider is set cor-
rectly. Now you can create a login page that programmatically accesses the membership provider to
authenticate a user. The following shows the code for the login page:

C#
string username = Server.HtmlEncode(this.txtUsername.Text);
string passowrd = Server.HtmlEncode(this.txtPassword.Text);

if (Membership.ValidateUser(username, password))
{
 FormsAuthentication.RedirectFromLoginPage(username, true);
}

79301c17.indd 793 10/6/08 12:18:10 PM

794

Chapter 17: Membership and Role Management in ASP.NET AJAX 3.5

VB.NET
Dim username As String = Server.HtmlEncode(Me.txtUsername.Text)
Dim passowrd As String = Server.HtmlEncode(Me.txtPassword.Text)

If Membership.ValidateUser(username, password) Then
 FormsAuthentication.RedirectFromLoginPage(username, True)
End If

The membership feature not only provides an API for programmatic access but a collection of web
server security controls that you can use in your application and are bound internally to call methods
on the configured membership provider. One example of those controls is the Login control. The Login
control is used to provide the form that users use to enter their credentials for validation. It is internally
bound to call the membership provider ValidateUser() method. There are other server controls that
ship with the membership feature including the CreateUserWizard, PasswordRecovery, and so on.
You use these controls without having to write any single line of code since those controls embed the
required and necessary method calls on the configured membership provider.

In later sections, the ASP.NET membership feature integration with ASP.NET AJAX is discussed in
detail explaining all the needed methods and web services required to allow the client-side code
(JavaScript) to access the membership service on the server-side.

ASP.NET Role Management
ASP.NET provides a role management API to manage the application roles that you create to group the
application’s users. Using this API, you can create new roles, assign users to roles and check if a user
belongs to a certain role. Role management is also based on the provider model and hence, gives you
the chance to create your own custom role management provider to interact with any data source of
your choice. You can refer back to Chapters 14-16 for a thorough explanation on the Role Manager and
the two concrete provider implementations that ship with the ASP.NET role service.

Role management can be integrated with both forms and Windows authentication. However, it plays
only a small role with Windows authentication. For example, you cannot use the role management API
to create a new role or group when Windows authentication is configured for the application. The API
can be used as a read-only API to check if a user belongs to a specific role defined in the application.

To use the role service in an application, you need to enable it by adding the <roleManager> configura-
tion section group into the application’s web.config configuration file, as follows:

<roleManager enabled=”true” />

The Roles, RoleProvider, and RolePrincipal classes make up the core classes of the role manage-
ment feature in ASP.NET 2.0 and 3.5. The Roles class contains a list of static methods that provide all
of the functionality of the role management feature. For instance, there is a method to create new roles,
a method to add users to a role, a method to get roles of a user, and many more useful methods. The
RoleProvider class is the base class for the built-in role management providers and can be used as a base
class for any custom role management provider that you wish to develop. At run time, ASP.NET checks if
role management is enabled in the application. If so, the role management module gets a reference to the

79301c17.indd 794 10/6/08 12:18:10 PM

795

Chapter 17: Membership and Role Management in ASP.NET AJAX 3.5

identity of the logged-in user, if any, accessed using HttpContext.User and then creates a new instance
of the RolePrinciple class loaded with the roles of the currently logged in user and assigns it to the
User property of the HttpContext instance object.

There are basically two built-in role management providers that ship with ASP.NET: SqlRoleProvider
and AuthorizationStoreRole. The former is the default provider and is a read/write provider that
handles the management of roles in a Microsoft SQL Server data store. The latter is a read-only provider
that interacts with the Windows security built-in groups.

Now that the application is configured for role management, it is time to configure the authorization
policy of the application. You can do so by adding an <authorization> configuration section into the
application’s web.config configuration file, as follows:

<authorization>
 <allow roles=”Admin”/>
 <deny users=”*”/>
</authorization>

The application is now configured to allow access only to users that belong to the Admin role and deny
access to all other users. For more information on the ASP.NET role provider, see Chapter 14.

Creating a new role is easy:

C#
 Roles.CreateRole(“Admin”);

VB.NET
 Roles.CreateRole(“Admin”)

To check if a user belongs to the Admin role, you can do the following:

C#
 // Get the RolePrincipal object
 RolePrincipal rolePrincipal = (RolePrincipal)HttpContext.Current.User;

 if (rolePrincipal.IsInRole(“Admin”))
 Response.Write(“User is in Admin Role!”);

VB.NET
‘ Get the RolePrincipal object
Dim rolePrincipal As RolePrincipal = CType(HttpContext.Current.User, RolePrincipal)

If rolePrincipal.IsInRole(“Admin”) Then
 Response.Write(“User is in Admin Role!”)
End If

79301c17.indd 795 10/6/08 12:18:10 PM

796

Chapter 17: Membership and Role Management in ASP.NET AJAX 3.5

The above discussion aimed at refreshing your memory on the ASP.NET membership and role features
that you have read about throughout this book. The next sections will start dealing with the integration
between the membership and role management and ASP.NET AJAX. You will see how you can make
use of these features by writing client-side code and hence, provide a more responsive web application,
yet a secure one, based on features already existing in ASP.NET.

ASP.NET AJAX Application Services
The previous section served as an overview of the ASP.NET application services that were initially
introduced with ASP.NET 2.0 and still constitute a solid block in ASP.NET 3.5. The ASP.NET application
services are not only used by ASP.NET applications but also by several other clients like Windows and
AJAX client applications. This chapter focuses mainly on discussing how an AJAX client application
can make use of the ASP.NET application services from the client-side by writing client-side JavaScript
code to access the different functionalities of these services.

An AJAX client application is an ASP.NET application enabled with AJAX features so that it gives
its users a better user experience with higher response rate in processing requests. To create an
ASP.NET AJAX application, simply create a new ASP.NET application, configure the application’s
web.config configuration file with ASP.NET AJAX 3.5 configuration sections and finally, add a
reference to a Base Class Library (BCL) that encapsulates the AJAX functionality needed for the
application to function properly.

The ASP.NET AJAX library allows .aspx pages to call web service methods from the client-side using
JavaScript code. For security reasons, AJAX client applications exchange data with the server-side web
services, including the ASP.NET application services, over HTTP using POST requests. This behavior
can be overridden to use GET requests, but it is recommended to use POST requests as much as pos-
sible. The data being exchanged is usually packed with JavaScript and Object Notation (JSON) format,
which is a lighter format to use than XML, especially when it comes to processing the response data
on the client-side. In addition, AJAX client applications usually generate (on the server) client-side
JavaScript proxy classes that are later sent into the browser. These proxy classes are mainly used by
the AJAX applications on the client-side to communicate with the server and connect to web services,
.aspx pages, and ASP.NET application services to handle client-side requests that require access to
server-side resources. In the following sections, two of the major built-in client-side proxy classes are
discussed in detail.

Enabling ASP.NET Applications with ASP.NET AJAX 3.5
The first step in enabling ASP.NET application services in an ASP.NET AJAX client application is to make
sure the application itself is configured and enabled to run ASP.NET AJAX. If you are creating a new
ASP.NET application or website in Microsoft Visual Studio 2008 with the .NET Framework 3.5 option
selected, the application will be automatically enabled with ASP.NET AJAX since ASP.NET AJAX con-
stitutes a major part of the ASP.NET 3.5. An AJAX-enabled application means all the necessary configu-
ration sections in the application’s web.config configuration file are added together with the needed
libraries added as a reference into the solution.

However, if you are inheriting an ASP.NET application or website and you want to enable it with the
ASP.NET AJAX 3.5, you have to configure the application’s web.config configuration file with several
configuration sections.

79301c17.indd 796 10/6/08 12:18:10 PM

797

Chapter 17: Membership and Role Management in ASP.NET AJAX 3.5

<configSections> Configuration Section Group
To start, you have to create the configuration section element for the SystemWebExtensionsSection​
Group class inside the <configSections /> configuration section group. This configuration section
includes subsections whose properties are to be configured later on inside the application’s web.config
configuration file.

 <configSections>
 <sectionGroup
 name=”system.web.extensions”
 type=”System.Web.Configuration.SystemWebExtensionsSectionGroup, System.Web.
Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35”
 >
 <sectionGroup
 name=”scripting”
 type=”System.Web.Configuration.ScriptingSectionGroup, System.Web.Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35”
 >
 <section
 name=”scriptResourceHandler”
 type=”System.Web.Configuration.ScriptingScriptResourceHandlerSection,
System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD
364E35”
 requirePermission=”false”
 allowDefinition=”MachineToApplication”
 />
 <sectionGroup
 name=”webServices”
 type=”System.Web.Configuration.ScriptingWebServicesSectionGroup, System.
Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35”
 >
 <section
 name=”jsonSerialization”
 type=”System.Web.Configuration.ScriptingJsonSerializationSection,
System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD
364E35”
 requirePermission=”false”
 allowDefinition=”Everywhere”
 />
 <section
 name=”profileService”
 type=”System.Web.Configuration.ScriptingProfileServiceSection, System.
Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35”
 requirePermission=”false”
 allowDefinition=”MachineToApplication”
 />
 <section
 name=”authenticationService”
 type=”System.Web.Configuration.ScriptingAuthenticationServiceSection,
System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD
364E35”
 requirePermission=”false”
 allowDefinition=”MachineToApplication”
 />

79301c17.indd 797 10/6/08 12:18:10 PM

798

Chapter 17: Membership and Role Management in ASP.NET AJAX 3.5

 <section
 name=”roleService”
 type=”System.Web.Configuration.ScriptingRoleServiceSection, System.Web.
Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35”
 requirePermission=”false”
 allowDefinition=”MachineToApplication”
 />
 </sectionGroup>
 </sectionGroup>
 </sectionGroup>
 </configSections>

The main configuration section group is the <system.web.extensions /> that acts as a parent con-
figuration section group for all the configurations needed by ASP.NET AJAX 3.5. You will notice later
that this section will be used to configure the authentication and role services, in addition to many other
AJAX-related configurations. For instance, every section of the ASP.NET AJAX 3.5 has its own configu-
ration section: Sections to handle JSON serialization/deserialization, web services, and the rest of the
features inside the framework.

<assemblies> Configuration Section Group
You need to register the System.Web.Extensions assembly that contains all the classes and JavaScript
required by the ASP.NET AJAX 3.5 to function properly. To add the assembly, create a new entry for it
inside the <assemblies /> configuration section as follows:

 <assemblies>
 <add
 assembly=”System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyTo
ken=31BF3856AD364E35”
 />
 </assemblies>

The System.Web.Extensions assembly contains all the logic for the ASP.NET AJAX 3.5 from the dif-
ferent configuration sections, applications services, handlers, globalization, server controls, embedded
JavaScript code, and the rest of the components that constitute the framework.

<controls> Configuration Section Group
The <controls /> section usually maps tag prefixes for namespaces inside assemblies that contain
server controls so that you can reference those controls without having to type the complete namespace
name every time you want to add a server control onto an .aspx page.

<asp:Button ID=”btnAdd” runat=”server” Text=”Add” />

For instance, to declare an ASP.NET Button server control, you specify the tag prefix, which in this
case, is the asp followed by a colon and the Button class name. ASP.NET AJAX 3.5 includes several
server-side controls like the ScriptManager, UpdatePanel, etc. These controls are defined inside the
System.Web.UI namespace that is located in System.Web.Exensions assembly and, therefore, you
need to add a tag prefix mapping, so that you utilize these controls the same way you use the different
ASP.NET server controls.

79301c17.indd 798 10/6/08 12:18:10 PM

799

Chapter 17: Membership and Role Management in ASP.NET AJAX 3.5

<httpHandlers> Configuration Section Group
ASP.NET AJAX 3.5 requires special HTTP Handlers to handle special HTTP requests for scripts and
web service calls. Therefore, several handlers are to be added into the <httpHandlers /> configura-
tion section group so that the client script requests are handled and processed properly on the server-
side by the ASP.NET AJAX engine.

 <httpHandlers>
 <remove verb=”*” path=”*.asmx”/>
 <add
 verb=”*”
 path=”*.asmx”
 validate=”false”
 type=”System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35”
 />
 <add
 verb=”*”
 path=”*_AppService.axd”
 validate=”false” type=”System.Web.Script.Services.ScriptHandlerFactory,
System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD
364E35”
 />
 <add
 verb=”GET,HEAD”
 path=”ScriptResource.axd”
 type=”System.Web.Handlers.ScriptResourceHandler, System.Web.Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35”
 validate=”false”
 />
 </httpHandlers>

The System.Web.Script.Services.ScriptHandlerFactory class is the main handler for HTTP
requests that target web service calls. On the server-side it determines if the request is for a REST web
service that is an AJAX web service call ending with an .asmx/js extension and calls a special handler
to handle the REST request. If on the other hand, the call is for a normal web service, then it calls for the
original handler for web services in ASP.NET. In addition, a new resource handler is also added known
as the System.Web.Handlers.ScriptResourceHandler class. It provides an HTTP handler for pro-
cessing requests for the script files that are embedded as resources in the assembly.

<httpModules> Configuration Section Group
ASP.NET AJAX 3.5 requires a special HTTP module to subscribe to the HTTP request pipeline to per-
form special handling for the requests targeting REST web service calls. To register HTTP modules,
add the following element into the <httpModules /> configuration section group.

 <httpModules>
 <add
 name=”ScriptModule”
 type=”System.Web.Handlers.ScriptModule, System.Web.Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35”
 />
 </httpModules>

79301c17.indd 799 10/6/08 12:18:10 PM

800

Chapter 17: Membership and Role Management in ASP.NET AJAX 3.5

The new HttpModule is the System.Web.Handlers.ScriptModule class and it subscribes to several
HTTP request pipeline events to give special consideration for the REST web service calls coming from
AJAX clients’ requests.

<system.web.extensions> Configuration Section Group
This configuration section group has already been defined as a section group in the <configSections />
configuration section group above. This section is mainly used to configure the ASP.NET AJAX features
and set some properties on these features. For instance, you can enable/disable the authentication service
inside this configuration section.

<system.web.extensions>
 <scripting>
 <webServices>
 <!--
 <roleService enabled=”true” />
 -->
 <!--
 <jsonSerialization maxJsonLength=”500”>
 <converters>
 </converters>
 </jsonSerialization>
 -->
 <!--
 <authenticationService
 enabled=”true”
 requireSSL = “true|false”/>
 -->
 <!--
 <profileService
 enabled=”true”
 readAccessProperties=”propertyname1,propertyname2”
 writeAccessProperties=”propertyname1,propertyname2” />
 -->
 </webServices>
 <!--
 <scriptResourceHandler enableCompression=”true” nableCaching=”true” />
 -->
</scripting>

As you can see, the <system.web.extensions /> configuration section group allows you to configure
JSON serialization/deserialization, enable/disable authentication, profile, and role services and finally,
configure the script resource handler.

<system.webServer> Configuration Section Group
This is the final configuration section you need to worry about before you make sure that ASP.NET
AJAX 3.5 is configured into the existing ASP.NET application. This configuration section is essential if
the application is configured to run with the default application pool inside IIS 7.0, (i.e., the integrated
mode). As you know by now, all the HttpModules and HttpHandlers that were defined above in the
application’s web.config configuration file should be copied and added also to this section.

 <system.webServer>
 <validation validateIntegratedModeConfiguration=”false”/>

79301c17.indd 800 10/6/08 12:18:11 PM

801

Chapter 17: Membership and Role Management in ASP.NET AJAX 3.5

 <modules>
 <remove name=”ScriptModule” />
 <add name=”ScriptModule” preCondition=”managedHandler” type=”System.Web.
Handlers.ScriptModule, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, Pub
licKeyToken=31BF3856AD364E35”/>
 </modules>
 <handlers>
 <remove name=”WebServiceHandlerFactory-Integrated”/>
 <remove name=”ScriptHandlerFactory” />
 <remove name=”ScriptHandlerFactoryAppServices” />
 <remove name=”ScriptResource” />
 <add
 name=”ScriptHandlerFactory”
 verb=”*”
 path=”*.asmx”
 preCondition=”integratedMode”
 type=”System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35”
 />
 <add
 name=”ScriptHandlerFactoryAppServices”
 verb=”*”
 path=”*_AppService.axd”
 preCondition=”integratedMode”
 type=”System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35”
 />
 <add
 name=”ScriptResource”
 preCondition=”integratedMode”
 verb=”GET,HEAD”
 path=”ScriptResource.axd”
 type=”System.Web.Handlers.ScriptResourceHandler, System.Web.Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35”
 />
 </handlers>
 </system.webServer>

There is nothing special here, except removing existing handlers and modules and adding them again
so that the ASP.NET engine running in the integrated HTTP request pipeline can have access to those
modules and handlers. One very important entry you should notice is the removal of the WebService​
HandlerFactory-Integrated HTTP handler. This handler, by default, only handles HTTP requests
with an extension of .asmx. However, with ASP.NET AJAX 3.5 there is another web service extension
that will be used most often and is represented by .asmx/js. Therefore, the ASP.NET handler for web
services is to be removed and a new entry for the System.Web.Script.Services.ScriptHandler​
Factory is to be added. The aforementioned HTTP handler factory creates the correct handler for the
web service request. If the request is for a REST web service, then it uses a new handler to handle REST
requests and if the request is for a normal web service, it uses an ASP.NET handler to handle the web
service call.

Now it is time to see how to enable the authentication and role services in an ASP.NET AJAX client
application.

79301c17.indd 801 10/6/08 12:18:11 PM

802

Chapter 17: Membership and Role Management in ASP.NET AJAX 3.5

Enabling ASP.NET Application Services
Before you can make use of the ASP.NET application services in an AJAX client application, you need to
enable the application services as you need. For instance, to enable an application with the authentica-
tion and role services you need to make sure the following configuration elements are present inside
the <system.web.extensions /> configuration section group:

<system.web.extensions>
 <scripting>
 <webServices>
 <roleService enabled=”true” />
 <authenticationService enabled=”true” requireSSL = “false”/>
 </webServices>
 </scripting>
</system.web.extensions>

It is important to include both the <authenticationService /> and <roleService /> element hav-
ing the attribute enabled as true.

When an .aspx page, containing an instance of the ScriptManager control runs in the browser, all of
the ASP.NET AJAX 3.5 scripts get loaded with the help of the ScriptResource script handler that was
introduced in the previous section. Based on the ScriptMode property of the ScriptManager control,
the JavaScript files that get loaded are the following:

MicrosoftAjax.js❑❑ in the case where ScriptMode property is assigned the value of Release
or Inherit where the application is itself in the Release mode. When the ScriptMode property is
assigned the value of Debug or Inherit where the application is itself in the Debug mode, then
the ScriptManager control loads the MicrosoftAjax.debug.js JavaScript file name.

MicrosoftAjaxWebForms.js❑❑ in the case where ScriptMode property is assigned the value of
Release or Inherit where the application is itself in the Release mode. When the ScriptMode
property is assigned the value of Debug or Inherit where the application is itself in the Debug
mode, then the ScriptManager control loads the MicrosoftAjaxWebForms.debug.js
JavaScript file name.

The two preceding JavaScript files that constitute the ASP.NET AJAX 3.5 library contain all the client
namespaces and classes that form the AJAX library. The definitions of the AuthenticationService
and RoleService client classes are placed inside the MicrosoftAjax.js JavaScript file. For example,
the Sys.Services._AuthenticationService client proxy class is defined as follows:

Sys.Services._AuthenticationService =
function Sys$Services$_AuthenticationService() {
Sys.Services._AuthenticationService.initializeBase(this);
}
Sys.Services._AuthenticationService.DefaultWebServicePath = ‘’;
...

Sys.Services._AuthenticationService.prototype = {
_defaultLoginCompletedCallback: null,
_defaultLogoutCompletedCallback: null,
_path: ‘’,

79301c17.indd 802 10/6/08 12:18:11 PM

803

Chapter 17: Membership and Role Management in ASP.NET AJAX 3.5

_timeout: 0,
_authenticated: false,

get_defaultLoginCompletedCallback:
Sys$Services$_AuthenticationService$get_defaultLoginCompletedCallback,

set_defaultLoginCompletedCallback:
Sys$Services$_AuthenticationService$set_defaultLoginCompletedCallback,

get_defaultLogoutCompletedCallback:
Sys$Services$_AuthenticationService$get_defaultLogoutCompletedCallback,

set_defaultLogoutCompletedCallback:
Sys$Services$_AuthenticationService$set_defaultLogoutCompletedCallback,

get_isLoggedIn: Sys$Services$_AuthenticationService$get_isLoggedIn,
get_path: Sys$Services$_AuthenticationService$get_path,
login: Sys$Services$_AuthenticationService$login,
logout: Sys$Services$_AuthenticationService$logout
}

Sys.Services._AuthenticationService.registerClass(
 ‘Sys.Services._AuthenticationService’,
 Sys.Net.WebServiceProxy);
Sys.Services.AuthenticationService = new Sys.Services._AuthenticationService();

The preceding code is just an excerpt of the Sys.Services._AuthenticationService client-side
proxy class generated by the AJAX library. The client class contains several functions and properties
that are useful when dealing with authenticating a user. The above functions and properties are dis-
cussed in a later section.

One important line of code to notice is the following:

Sys.Services.AuthenticationService = new Sys.Services._AuthenticationService();

The Sys.Services._AuthentictionService registers itself with the ASP.NET AJAX 3.5 framework
as a client proxy class called Sys.Services._AuthenticationService that has a base class called
Sys.Net.WebServiceProxy. In other words, the authentication service is, after all, a web service client-
side proxy class for the authentication service defined on the server-side. Once the client-side proxy
class is registered with the framework, the code above creates a new instance of the Sys.Services​
._AuthenticationService client class and calls it Sys.Services.AuthenticationService without
an underscore “_”. This indicates that when you want to use the authentication service in your client-
side code you can simply refer to the Sys.Service.AuthenticationService instance without having
to create a new instance of the Sys.Services._AuthenticationService client proxy class.

The above discussion holds true for the Sys.Services._RoleService client proxy class. However, in
order not to fill this chapter with repetitive discussions, this section discusses only the Sys.Services​
.AuthenticationService client-side proxy class and the same ideas apply for the Sys.Services​
._RoleService client-side proxy class.

79301c17.indd 803 10/6/08 12:18:11 PM

804

Chapter 17: Membership and Role Management in ASP.NET AJAX 3.5

AuthenticationServiceManager and RoleServiceManager
Classes

The ScriptManager control has two public properties known as AuthenticationService and
RoleService. The AuthenticationService property is of type AuthenticationServiceManager
and the RoleService property is of type RoleServiceManager. The ScriptManager class subscribes
to the PreRenderComplete event to register the custom scripts and services that are added to the
ScriptManager control if any. At this stage, also the globalization scripts get loaded.

Internally the ScriptManager calls for the RegisterScripts() private method. It loops through all
the script references added to the ScriptManager, resolves their paths and removes all duplicate script
references. The final line of code inside the aforementioned method calls for another private method
called RegisterUniqueScripts(). The list of unique script references is passed into this method as
an input parameter The RegisterUniqueScripts() method loops through the unique custom scripts
and adds them into the rendered HTML markup. In addition, this method calls another internal method
called ConfigureApplicationServices() private method. This method is responsible for configur-
ing the authentication, role, and profile services.

The ConfigureApplicationServices()method calls on the ConfigureProfileService(),
ConfigureAuthenticationService(), and ConfigureRoleService() static methods that are part
of the ProfileServiceManager, AuthenticationServiceManager, and RoleServiceManager
classes, respectively. For the sake of this discussion the focus is on the AuthenticationService​
Manager.ConfigureAuthenticationService() method. The AuthenticationServiceManager
has a single public property called Path that has, by default, a value of an empty string. The Configure​
AuthenticationService() method starts by checking if the AuthenticationService public prop-
erty on the ScriptManager class has a custom value for the authentication service set by the devel-
oper. If there is a configured custom authentication service it determines its relative URL.

The method also loops through all the added instances of the ScriptManagerProxy class on the page
if any. Without going into the internals, it makes sure of the following:

If the developer did not set any custom authentication service URL and the ❑❑ first ScriptManager​
Proxy instance is using a custom authentication service URL, the relative URL of the authentica-
tion service will be the one that belongs to the first ScriptManagerProxy instance.

Then for the rest of ❑❑ ScriptManagerProxy instances, if any one of them sets a custom URL for
the authentication service and it happens that the URL is different from the one set by the first
ScriptManagerProxy control instance, an exception is thrown.

Finally, the ConfigureAuthenticationService() method calls for the last method: the Generate​
InitializationScript() method. This method has three main tasks:

If the authentication service is enabled, it injects into the HTML markup code the following ❑❑

JavaScript code:

Sys.Services._AuthenticationService.DefaultWebServicePath =
‘Authentication_JSON_AppService.axd’;

The ❑❑ DefaultWebServicePath is already defined on the Sys.Services._Authentication​
Service client-side proxy class to an empty string. However, when an .aspx page is running

79301c17.indd 804 10/6/08 12:18:11 PM

805

Chapter 17: Membership and Role Management in ASP.NET AJAX 3.5

that is enabled with ASP.NET AJAX 3.5, the value of the DefaultWebServicePath property is
set to Authentication_JSON_AppService.axd.

If a custom authentication service URL is set on the ❑❑ ScriptManager instance on the page, the
following line of JavaScript code is injected into the HTML markup:

Sys.Services.AuthenticationService.set_path(
 ‘/website1/CustomAuthenticationService.asmx’);

Notice how the custom authentication service path is set on the ❑❑ Sys.Services.Authentication​
Service instance class. If the developer did not specify a custom authentication service URL, the
default will be used to authenticate users on the client-side.

Finally, if the authentication service is enabled or the custom authentication service URL is not ❑❑

empty and the current HTTP request is authenticated, the following line of JavaScript code is
injected into the HTML markup:

Sys.Services.AuthenticationService._setAuthenticated(true);

The above line of code internally set the value of a private field, ❑❑ _authenticated, on the
Sys.Services._AuthenticationService client-side proxy class.

Later on, you will notice a function called get_isLoggedIn() on the Sys.Services._Authentication​
Service client-side proxy class. This function simply returns the value of the _authenticated private
field to indicate whether the user is currently authenticated.

The above discussion once again applies to the RoleServiceManager.ConfigureRoleService()
method with one difference: The method will inject into the HTML markup any roles assigned to the
currently logged in user.

Now that you know the details of generating the Sys.Services._AuthenticationService client-
side proxy class and what happens internally when the authentication or role services are enabled,
it’s time to go into the details of the authentication and role services client-side proxy and server-side
classes.

Authentication Service
The authentication service feature that ships with the ASP.NET AJAX 3.5 allows users to enter their
credentials and get validated and authenticated by the ASP.NET membership application service. At
this time, the ASP.NET AJAX authentication service is only enabled to integrate with ASP.NET forms
authentication; therefore, an application configured with any other type of authentication cannot make
use of the AJAX authentication service.

The AJAX authentication service consists of two main classes, the server-side System.Web.Application​
Services.AuthenticationService class and the client-side Sys.Services._Authentication​
Service proxy class. The general architecture of the interaction between those two classes is that client-
side proxy functions call asynchronously the methods defined on the server-side authentication service
class. In the next section, both classes are explained in detail.

79301c17.indd 805 10/6/08 12:18:11 PM

806

Chapter 17: Membership and Role Management in ASP.NET AJAX 3.5

System.Web.ApplicationServices.AuthenticationService Class
The server-side AuthenticationService class is part of the System.Web.ApplicationServices
namespace that is located inside the System.Web.Extensions assembly. The class contains the public
methods listed in the following table:

Method Name Description

Login The Login() method takes as input the username, password, a custom string
to include in the authentication process, and a Boolean specifying whether the
cookie to be created is persistent or not. The method checks the input creden-
tials against the configured ASP.NET membership service and issues a forms
authentication ticket in the case of valid credentials.

Logout The Logout() method clears the authentication ticket stored inside the authen-
tication cookie (if any) in the browser.

ValidateUser The ValidateUser() method takes as input the username, password serial, and
a custom value that can be used in the authentication process. This method vali-
dates the user credentials against the ASP.NET membership service without issu-
ing any authentication cookie. It simply returns a Boolean value of either true or
false meaning that the user credentials are successfully validated or not.

IsLoggedIn The IsLoggedIn() method takes no input parameter and returns a Boolean
specifying whether the current user is authenticated or not.

In addition, the server-side authentication service class contains two public events shown in the follow-
ing table that you can subscribe to perform some custom tasks:

Method Name Description

Authenticating The Authenticating event is fired just before the ASP.NET membership
service is contacted to validate the user credentials that were sent from the
client-side. You can subscribe to this event and perform some custom tasks like
logging the users trying to login to the application.

CreatingCookie The CreatingCookie event is fired just before generating and injecting an
authentication cookie into the current HTTP response. This event is fired only
when Login method, explained above, is called and not when the ValidateUser
method is called, because the ValidateUser method just authenticates the user
credentials and does not create any authentication cookie.

Sys.Services._AuthenticationService Client-Side Proxy Class
The server-side authentication service class alone is not enough for AJAX client applications to access
the server-side membership services from the client-side using JavaScript code. Those applications
need a client-side interface that allows them to perform asynchronous HTTP requests into the server
to validate user credentials and, later on, logout users from an application. Therefore, there is a need

79301c17.indd 806 10/6/08 12:18:11 PM

807

Chapter 17: Membership and Role Management in ASP.NET AJAX 3.5

for client-side proxy classes that can be used by the client-script developer to authenticate users by
executing client-side JavaScript calls into the server-side membership service.

The AJAX library contains a definition of the client-side proxy Sys.Services._Authentication​
Service class that belongs to the Sys.Services namespace located in the MicrosoftAjax.js
JavaScript file. The client class serves as a JavaScript class containing a set of functions that can be uti-
lized to authenticate users. The following table lists the public functions defined on the Sys.Services​
._AuthenticationService client-side proxy class:

Method Name Description

login The login() function takes three non-optional parameters mainly username,
password and isPersistent. The function internally invokes the server-
side Login method to authenticate a user. If the isPersistent input
parameter is true then a persistent authentication cookie is created as a per-
sistent cookie stored in the user browser, else a session-based cookie is cre-
ated. There are optional input parameters that you can specify such as
customInfo, redirectUrl, loginCompletedCallback, failedCallback
and userContext. If the redirectUrl is specified and the user was suc-
cessfully authenticated then they will be redirected to the specified URL in
the redirectUrl parameter. If developers want to execute some custom
code after the user has been successfully logged in, they can specify the
loginCompletedCallback function to execute after the user has been suc-
cessfully logged in. Moreover if the developers want to run some custom
code when the user fails to successfully login, they can specify the failed​
Callback function.

logout The logout() function can be called without providing any input param-
eter. The function internally invokes the Logout server-side method that
clears out the authentication cookie that was generated upon a successful
login of the user. The optional parameters include redirectUrl, logout​
CompletedCallback, failedCallback and userContext. If the user is
to be redirected to a specific URL after they have been logged out from the
application, the developer needs to specify a value for the redirectUrl
input parameter. If developers wants to run some custom code after the
user has successfully logged out, then they must specify a callback function
for the logoutCompletedCallback. In addition, if the developers want
to run some custom code for a non-successful logout operation, then they
must specify a callback function for the failedCallback.

get_ path The get_ path() function returns the path to the authentication service con-
figured on the server-side. When the Sys.Services._Authentication​
Service class is constructed, the default authentication service path is set to
an empty string. When the authentication service is enabled in an applica-
tion by default the authentication service path is ~/Authentication​
_JSON_AppService.axd.

79301c17.indd 807 10/6/08 12:18:11 PM

808

Chapter 17: Membership and Role Management in ASP.NET AJAX 3.5

Method Name Description

get_isLoggedIn The get_isLoggedIn()function returns a value of true or false based
on whether the current user is authenticated or not.

set_defaultLogin​
CompletedCallback

The set_defaultLoginCompletedCallback() function is used to set the
default callback function for the login function. When you set a default
login callback function, this means that you can run the custom login call-
back function, when login is successful, without passing the name of that
callback function to the login function. The authentication service will
figure out on its own that the default login callback has to be fired. Unless
you want to specify another login callback function instead of the default
one, you need to explicitly pass the name of the login callback function,
which at this time overrides the default one set previously, to the login
function when called.

get_defaultLogin​
CompletedCallback

The get_defaultLoginCompletedCallback() function is used to retrieve
a reference to the callback function configured as the login callback function.

set_defaultLogout​
CompletedCallback

The set_defaultLogoutCompletedCallback() function is used to set
the default callback function for the logout() function. When you set a
default logout callback function, this means that you can run the custom
logout callback function, when logout is successful, without passing the
name of that callback function to the logout() function. The authentica-
tion service will figure out on its own that the default logout callback has
to be fired. Unless you want to specify another logout callback function,
instead of the default one, then you need to explicitly pass the name of the
logout callback function, which at this time overrides the default one set
previously, to the logout() function when called.

get_defaultLogout​
CompletedCallback

The get_defaultLogoutCompletedCallback() function is used to
retrieve a reference to the callback function configured as the logout call-
back function.

As previously mentioned, the ASP.NET AJAX creates a static instance of the Sys.Services​
._AuthenticationService client-side proxy class called Sys.Service.AuthenticationService
excluding the underscore. You can always make use of the Sys.Services.AuthenticationService
instance class instead of creating an instance of the Sys.Services._AuthenticationService client-
side proxy class every time you need to contact the server-side membership service. Or another handy
solution would be to simply create a global instance of the Sys.Services._AuthenticationService
client-side proxy class and use it in case you are not happy with the static instance already created for you.

Now that you have a good knowledge of the server-side and client-side authentication service classes,
it is time to go through some sample code to show you how to authenticate users by making use of the
client-side proxy authentication service.

79301c17.indd 808 10/6/08 12:18:11 PM

809

Chapter 17: Membership and Role Management in ASP.NET AJAX 3.5

Login User
This section demonstrates how to use the AJAX authentication service to authenticate a user. The appli-
cation we will be working with currently contains a single .aspx page that has two main ASP.NET
panels. The HTML markup here shows the two mentioned panels:

 <asp:Panel ID=”pnlLogin” runat=”server”>
<h3>Login First!!</h3><hr/>
<asp:Login
 ID=”Login1”
 runat=”server”
 BackColor=”#F7F7DE”
 BorderColor=”#CCCC99”
 BorderStyle=”Solid”
 BorderWidth=”1px”
 Font-Names=”Verdana”
 Font-Size=”10pt”>

<TitleTextStyle
 BackColor=”#6B696B”
 Font-Bold=”True”
 ForeColor=”#FFFFFF” />
</asp:Login>

</asp:Panel>

<asp:Panel ID=”pnlPage” runat=”server”>
<h3>Normal Page!!</h3><hr/>
<p>If you can read this line, it means you are now authenticated!</p>
</asp:Panel>

The first panel contains an ASP.NET Login control that the user uses to enter his/her credentials. The
other panel contains the normal content of the page, in this case simply a line of text. When the user is
not authenticated, however, we want to show only the login panel so that they would enter their cre-
dentials to be authenticated using the AJAX authentication service. Once the user is authenticated asyn-
chronously, the login panel is to be hidden and the main content panel is shown instead. All of this will
be done from the client-side using the ASP.NET AJAX client library and authentication service.

To start, configure the application to use forms authentication and all anonymous users are prevented
to access the application and are redirected to the default.aspx page that contains the login panel to
allow them to enter their credentials and get authenticated.

<authentication mode=”Forms”>
 <forms loginUrl=”Default.aspx” />
</authentication>

<authorization>
 <deny users=”?”/>
</authorization>

Anonymous users are not allowed to access the application and are automatically redirected to the
Default.aspx page. Remember that the AJAX authentication service up to this moment works only

79301c17.indd 809 10/6/08 12:18:12 PM

810

Chapter 17: Membership and Role Management in ASP.NET AJAX 3.5

with ASP.NET forms authentication. For the sake of this example, the default ASP.NET membership
service will be used and hence, no additional configuration is needed in the application’s web.config
configuration file.

After that, you should enable the authentication service as you learned from the section above that dis-
cussed enabling the authentication service in the application’s web.config configuration file.

Once all the configuration settings are done, you need to add an instance of the ScriptManager control
onto the .aspx page before trying to access any AJAX feature on the client-side.

<asp:ScriptManager ID=”ScriptManager1” runat=”server” />

The preceding ScriptManager instance will use the default authentication service. If instead you
decided to use another authentication service, then you can specify it as follows:

 <asp:ScriptManager
 ID=”ScriptManager1”
 runat=”server”
 AuthenticationService-Path=”~/MyAuthenticationService.asmx”
/>

Notice the above attribute in bold that is called AuthenticationService-Path. This represents the
public property Path on the AuthenticationServiceManager class. Remember from previous sec-
tions that the ScriptManager class has a public property called AuthenticationService that is of
type AuthenticationServiceManager. In a later section, you will use this property to define a cus-
tom authentication service.

What is left now is to add the JavaScript code that will handle authenticating users asynchronously
using the AJAX authentication service. It is recommended to place all the JavaScript code for handling
authentication in a single JavaScript file.

var username;
var password;
var ltFailureText;
var btnLogin;
var rememberMe;
var loginPanel;
var pagePanel;

// Subscribe to the Init function on
// the client-side Application object
Sys.Application.add_init(pageInit);

function pageInit()
{
 // Get panels on page
 loginPanel = $get(“pnlLogin”);
 pagePanel = $get(“pnlPage”);

 // If the user is authenticated
 // hide the login panel

79301c17.indd 810 10/6/08 12:18:12 PM

811

Chapter 17: Membership and Role Management in ASP.NET AJAX 3.5

 if (Sys.Services.AuthenticationService.get_isLoggedIn())
 {
 AuthenticatedState();
 }
 else
 {
 loginPanel.style.visiblity = “visible”;
 pagePanel.style.visibility = “hidden”;
 }
}

The preceding code starts by defining variable objects that represent the different elements on the HTML
markup. For instance, the username, password, failure text label, remember me checkbox, login button,
login panel, and normal page panel are defined.

The code then subscribes to the Init event that is fired by the Sys.Application global object. The
Sys.Application object handles the client-side life-cycle of a request just as the server-side Page class
handles the request’s life-cycle on the server and fires several client-side events, among which are the
Init, Load, and Unload events.

The pageInit() function handles the Init event of the Sys.Application object and it shows/hides
the panels on the page according to the state of the user whether they are authenticated or not.

function pageLoad()
{
 // Get controls on page
 username = $get(“Login1_UserName”);
 password = $get(“Login1_Password”);
 ltFailureText = $get(“Login1_FailureText”);
 btnLogin = $get(“Login1_LoginButton”);
 rememberMe = $get(“Login1_RememberMe”);

 // Add handler for the Login button
 if (loginPanel != null)
 $addHandler($get(“Login1_LoginButton”), “click”, OnLogin);
}

The pageLoad() function is also controlled and fired by the Sys.Application object. Usually you
should stick to this method to carry on most of the tasks required by an AJAX developer on the client-
side. This function retrieves an instance to the previously defined global element variables and attaches
an event handler for the Click event on the login button. In this case, when the user clicks on the
login button, the client-side OnLogin() function is executed as you see here:

function OnLogin()
{
// Set the default LoginCompleted Callback function
Sys.Services.AuthenticationService.set_defaultLoginCompletedCallback(
 OnLoginCompleted);

 // Set the default Failed Callback function
 Sys.Services.AuthenticationService.set_defaultFailedCallback(OnFailed);

79301c17.indd 811 10/6/08 12:18:12 PM

812

Chapter 17: Membership and Role Management in ASP.NET AJAX 3.5

 // Login the user
 Sys.Services.AuthenticationService.login(
 username.value, //Username
 password.value, // Password
 rememberMe = “on” ? true : false, // Create a persistent cookie or not
 null, // Custom Info
 null, // Redirect URL
 null, // Login Completed Callback
 null, // Failed Callback
 null); // User Context

 return false;
}

The OnLogin() client-side function starts by setting the default LoginCompleted and Failed callback
functions on the Sys.Services.AuthenticationService instance class. This way you do not need
to specify those callbacks when you call the Sys.Services.AuthenticationService.login() func-
tion. The LoginCompleted callback is set to the OnLoginCompleted() function and the Failed call-
back is set to the OnFailed() function.

The Sys.Services.AuthenticationService.login() function is called passing to it the required
parameters. As you know by now, the function would internally invoke the server-side Login() method
on the server-side System.Web.ApplicationServices.AuthenticationService class. Finally, a
return false is issued so that the page does not post back to the server.

function OnLoginCompleted(validCredentials,
 userContext, methodName)
{
 // If the user is authenticated
 // successfully
 if (validCredentials == true)
 {
 AuthenticatedState();
 }
 else
 {
 ltFailureText.innerHTML = “Invalid credentials. Could not login”;
 }
}

The OnLoginCompleted() function takes three input parameters:

validCredentials❑❑ : This parameter holds a value of true when the user is successfully
authenticated, or a value of false when the user is not successfully authenticated.

userContext❑❑ : This parameter holds any value that is passed when the Sys.Services​
.AuthenticationService.login() function is called.

methodName❑❑ : This parameter contains a string that represents the name of the login() func-
tion as follows “Sys.Services.AuthenticationService.login”.

The function above checks if the user has been successfully authenticated or not and shows/hides the
panels on the page accordingly. The AuthenticatedState() helper client-side function shows/hides
the panels on the page and this logic has been encapsulated in a function so that the same code can be

79301c17.indd 812 10/6/08 12:18:12 PM

813

Chapter 17: Membership and Role Management in ASP.NET AJAX 3.5

used in several places in the same script file. If the user is not successfully authenticated, an error mes-
sage is displayed to inform the user that the credentials entered were invalid.

function OnFailed(error,
 userContext, methodName)
{
 alert(error.get_message());
}

Finally, the OnFailed() function is called when the Failed callback is fired due to an error or excep-
tion that occurred during the process of authenticating the user. The function simply alerts the user
with the exception generated.

Check If User Is Authenticated
To check from the client-side whether the current user is authenticated or not, simply issue a call to
the get_isLoggedIn() function on the Sys.Services.AuthenticationService instance class, as
follows:

if (Sys.Services.AuthenticationService.get_isLoggedIn())
{
 // user is authenticated
}

This is a very simple function call that you can embed in an if-statement to run on the client-side when
the user is currently authenticated.

Logout User
To allow users to log out from the application, simply add the following logout button inside the nor-
mal page pane as follows:

<button id=”btnLogout” name=”btnLogout”>Logout</button>

Next you need to attach a client-side handler for the logout Click event inside the JavaScript code, as
follows:

 // Add handler for the logout button
 $addHandler($get(“btnLogout”), “click”, OnLogout);

The above means that when the logout button is clicked, the OnLogout() function is fired on the client-side.

function OnLogout()
{
 // Clear the authentication cookie and log out the user
 Sys.Services.AuthenticationService.logout(
 null, // Redirect Url
 null, // LogoutCompleted callback
 null, // Failed callback
 null); // User context

 return false;
}

79301c17.indd 813 10/6/08 12:18:12 PM

814

Chapter 17: Membership and Role Management in ASP.NET AJAX 3.5

The OnLogout() function wraps a call for the Sys.Services.AuthenticationService.logout()
function passing null as a value for all the optional input parameters. That is all you need to do to
enable the logout feature on the .aspx page.

Custom Authentication Service
Sometimes you might need to work with a different authentication service than the one configured by
default with the ASP.NET AJAX authentication service. ASP.NET AJAX 3.5 gives you a straightforward
and easy way of configuring a custom authentication service. All you need to do is develop a web ser-
vice that includes at a minimum the Login() and Logout() methods. This is so that the client-side
proxy Sys.Services._AuthenticationService class continues to function properly by calling these
two main server-side methods and, of course, configures the ScriptManager control instance with the
new custom authentication service URL.

To start, create a new web service that will serve as the custom authentication service and contains the
following methods:

C#
[System.Web.Script.Services.ScriptService]
public class CustomAuthenticationService : System.Web.Services.WebService {

 public CustomAuthenticationService () {

 //Uncomment the following line if using designed components
 //InitializeComponent();
 }

 [WebMethod]
 public bool Login(
 string userName,
 string password,
 bool createPersistentCookie)
 {
 bool isValid = Membership.ValidateUser(userName, password);
 if (isValid)
 FormsAuthentication.SetAuthCookie(userName, createPersistentCookie);

 return isValid;
 }

 [WebMethod]
 public void Logout()
 {
 FormsAuthentication.SignOut();
 }

 [WebMethod]
 public bool IsLoggedIn()
 {
 return HttpContext.Current.User.Identity.IsAuthenticated;
 }
}

79301c17.indd 814 10/6/08 12:18:12 PM

815

Chapter 17: Membership and Role Management in ASP.NET AJAX 3.5

VB.NET
<WebService(Namespace:=”http://tempuri.org/”), _
WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1), _
System.Web.Script.Services.ScriptService()> _

Public Class CustomAuthenticationService
 Inherits System.Web.Services.WebService
 Public Sub New()
 ‘Uncomment the following line if using designed components
 ‘InitializeComponent();
 End Sub
 <WebMethod()> _
 Public Function Login(ByVal userName As String, _
 ByVal password As String, _
 ByVal createPersistentCookie As Boolean) _
 As Boolean
 Dim isValid As Boolean = Membership.ValidateUser(userName, password)
 If IsValid Then
 FormsAuthentication.SetAuthCookie(_
 userName, _
 createPersistentCookie)
 End If

 Return isValid
 End Function

 <WebMethod> _
 Public Sub Logout()
 FormsAuthentication.SignOut()
 End Sub

 <WebMethod> _
 Public Function IsLoggedIn() As Boolean
 Return HttpContext.Current.User.Identity.IsAuthenticated
 End Function
End Class

The above custom authentication web service is enough to make the AJAX authentication service func-
tion properly.

The first method included is the Login() method. This method should take the exact input parameter
names; otherwise, the authentication service will generate exceptions. The input parameters are userName,
password, and createPersistentCookie. You can choose the body of the method depending on the
authentication you are using. In this example, the code simply validates the user credentials against the
ASP.NET membership application service, creates the FormsAuthentication cookie accordingly, and
finally returns a Boolean value representing a successful or failure login.

The other method is the Logout() method that takes no input parameters and simply clears the Forms​
Authentication cookie that was created previously when the user was authenticated for the first time.

79301c17.indd 815 10/6/08 12:18:12 PM

816

Chapter 17: Membership and Role Management in ASP.NET AJAX 3.5

The third method is the IsLoggedIn() method that returns a Boolean value representing the state of
the current user, whether the user is authenticated or not.

Now that the custom authentication web service is finished, configure the ScriptManager control
instance with the path to the newly created authentication service, as follows:

 <asp:ScriptManager
 ID=”ScriptManager1”
 runat=”server”
 AuthenticationService-Path=”~/CustomAuthenticationService.asmx”
/>

That is all you need to do! Just run the application now and authenticate against the newly created cus-
tom authentication service.

It goes without saying that whatever applies to the ScriptManager control applies also to the
ScriptManagerProxy class in all the features that we have been discussing so far and coming later
in the next section.

Role Service
The role service feature that ships with the ASP.NET AJAX 3.5 allows a developer to retrieve a set of
roles the currently logged-in user belongs to by issuing asynchronous client-side calls into the server.
These calls would, in turn, query the server-side ASP.NET role service database to retrieve the user’s
information.

The AJAX role service consists of two main classes: the server-side System.Web.ApplicationServices​
.RoleService class and the client-side Sys.Services._RoleService proxy class. The general archi-
tecture of the interaction between those two classes is that client-side proxy functions asynchronously
call the methods defined on the server-side role service class.

System.Web.ApplicationServices.RoleService Class
The server-side RoleService class is part of the System.Web.ApplicationServices namespace
that is located inside the System.Web.Extensions assembly. The class contains the following public
methods:

Method Name Description

GetRolesForCurrentUser The GetRolesForCurrentUser() method takes no input param-
eters and returns an array of strings representing the roles of the
currently logged in user.

IsCurrentUserInRole The IsCurentUserInRole() method takes a single input param-
eter that represents the role used to check whether the currently
logged-in user belongs to it or not.

In addition, the server-side role service class contains a single public event that you can subscribe to set
and use a RoleProvider concrete object of your choice:

79301c17.indd 816 10/6/08 12:18:12 PM

817

Chapter 17: Membership and Role Management in ASP.NET AJAX 3.5

Method Name Description

SelectingProvider The SelectingProvider event is fired just before a RoleProvider
is selected inside the RoleService class to execute the preceding
two methods. You can subscribe to this event and make use of the
SelectingProviderEventArgs class to set its ProviderName pub-
lic property so that the RoleService class internally uses the one
set by you instead of the one already configured in the application’s
web.config configuration file.

Sys.Services._RoleService Client-Side Proxy Class
The server-side role service class alone is not enough for AJAX client applications to access the server-
side role service from the client-side using JavaScript code. These applications need a client-side interface
that allows them to perform asynchronous HTTP requests into the server to retrieve the currently logged
in user’s roles and to allow the client-side to check whether a user belongs to a specific role or not. There-
fore, there is a need for client-side proxy classes that can be used by the client-script developer to work
with the user’s roles by executing client-side JavaScript calls into the server-side role service.

The AJAX library contains a definition of the client-side proxy Sys.Services._RoleService class that
belongs to the Sys.Services namespace located in the MicrosoftAjax.js JavaScript file. The client class
serves as a JavaScript class containing a set of functions that can be utilized to work with user’s roles. The
following table lists the public functions defined on the Sys.Services._RoleService client-side proxy class:

Method Name Description

load The load() function takes as input three optional input parameters:
loadCompletedCallback, failedCallback and userContext. The
loadCompletedCallback input parameter, if passed in, references a call-
back function that is executed when loading the currently logged in user
roles into the client’s memory. Also, the failedCallback input parameter,
if passed in, references a callback function that is executed when the pro-
cess of loading the currently logged in user fails. Finally, the userContext
input parameter can be used to pass any custom data that can be retrieved
later on when the loadCompletedCallback function is executing. Again
it is important to mention that the callback functions are very helpful
when you want to execute some custom code after the user’s roles have
been loaded into the client’s memory or when an error occurs during the
retrieval process.

get_Roles The get_Roles() function takes no input parameters and returns an array
of the roles names that the currently logged in user belongs to. It is important
to know that you cannot call this function before calling the load() function
that was explained above. The load() function is responsible for loading the
user’s roles into the client’s memory and the get_Roles() function is based
on the roles that were previously loaded by the load() function, if any.

Continued

79301c17.indd 817 10/6/08 12:18:12 PM

818

Chapter 17: Membership and Role Management in ASP.NET AJAX 3.5

Method Name Description

isUserInRole The isUserInRole() function takes an input parameter of type String. The
input parameter represents the role name against which the method checks
if the currently logged in user belongs. Once again, this function cannot be
called without calling first the load() function, so that the currently logged
in user gets his/her roles loaded into the client’s memory.

get_ path The get_ path() function returns the path to the role service configured
on the server-side. When the Sys.Services._RoleService class is con-
structed, the default role service path is set to an empty string. When the
role service is enabled in an application by default the role service path is
~/Role_JSON_AppService.axd.

set_default​
LoadCompleted​
Callback

The set_defaultLoadCompletedCallback() function is used to set the
default callback function for the load() function explained above. When you
set a default load callback function, this means that you can run the custom
load callback function, when login is successful, without passing the name of
that callback function to the load() function. The role service will figure out
on its own that the default load callback has to be fired. Unless you want to
specify another load callback function instead of the default one. Then you
need to explicitly pass the name of the load callback function which overrides
the default one set previously, to the load() function when called.

get_default​
LoadCompleted​
Callback

The get_defaultLoadCompletedCallback() function is used to retrieve
a reference to the callback function configured as the default load callback
function.

ASP.NET AJAX creates a static instance of the Sys.Services._RoleService client-side proxy class
called Sys.Service.RoleService excluding the underscore. It represents a client-side singleton object
that you can always reference without initiating a new instance of the Sys.Services._RoleService
client-side proxy class. Or another handy solution would be to simply create a global instance of the
Sys.Services._RoleService client-side proxy class and use it in case you are not happy with the
singleton instance already created for you.

Now that you understand the server-side and client-side role service classes, it is time to go through
sample codes to show you how to retrieve a currently logged in user’s roles and to make sure the user
belongs to a specific role.

Retrieving User Roles
This section demonstrates how to use the AJAX role service to retrieve the assigned roles to a logged
in user that was previously authenticated using the AJAX authentication service. It is important to note
that before being able to access the role service from the client-side, you need to enable the ASP.NET
role service inside the application’s web.config configuration file, as follows:

<roleManager enabled=”true” />

79301c17.indd 818 10/6/08 12:18:12 PM

819

Chapter 17: Membership and Role Management in ASP.NET AJAX 3.5

The ASP.NET membership service is automatically enabled for you, so you need not enable it in your
application (in contrast to the role service, which you have to enable explicitly).

Use the same .aspx page that was used in a previous section and include an additional button to show
the roles attached to the user. The HTML markup below shows the added HTML button used to load
the user’s roles:

<button name=”btnLoadRoles” id=”btnLoadRoles”>Load My Roles</button>

Now attach a handler for this button so that it executes a JavaScript function when clicked:

 // Get the load-roles button
 btnRoles = $get(“btnLoadRoles”);
 $addHandler(btnRoles, “click”, OnLoadRoles);

The HTML button is retrieved, first of all, as an object, and then a handler is set for that button to be
executed when the Click event occurs.

function OnLoadRoles()
{
 // Load the user’s roles first
 Sys.Services.RoleService.load(OnRolesLoaded);
}

When the user clicks on the Load Roles button, the above function gets fired. The function simply issues
a call to the Sys.Services.RoleService.load() function specifying the loadCompletedCallback
function. As previously mentioned, you cannot have access into the user’s roles unless you first issue a
call to the load() function. Then to retrieve the user’s roles, you have to implement a loadCompleted​
Callback function where you will have safe access to the user’s roles.

function OnRolesLoaded(roles)
{
 if (roles)
 {
 // format the roles in a string
 var strRoles = “You belong to the following roles:\r\n”;
 for(var i=0; i<roles.length; i++)
 strRoles += “* “ + roles[i] + “\r\n”;

 alert(strRoles);
 }
}

This function starts by checking if there are roles returned for the currently logged in user and, accord-
ingly, starts looping through all the role names joining them in a simple string to be displayed for the
user, informing them of the set of roles they belong to.

It is only at this stage that you can safely access the Sys.Services.RoleService.get_roles()
function to retrieve the user’s roles. Before the OnRolesLoaded() function executes, calling the
Sys.Services.RoleService.get_roles() function would return null and fail. The next section
will show you how to check if a user belongs to a specific role.

79301c17.indd 819 10/6/08 12:18:12 PM

820

Chapter 17: Membership and Role Management in ASP.NET AJAX 3.5

Determining If User Belongs to a Specific Role
To find out whether the user belongs to a specific role, add two simple HTML buttons, as follows:

<button
 name=”btnIsUserInRole”
 id=”btnIsUserInRole”
 onclick=”IsUserInRole(‘Guest’); return false;”>
 Am I in ‘Guest’ Role?
</button>

<button
 name=”btnIsUserInRole”
 id=”Button1”
 onclick=”IsUserInRole(‘Administrator’); return false;”>
 Am I in ‘Administrator’ Role?
</button>

The first button checks whether the currently logged in user belongs to the Guest role. The second button
checks if the currently logged in user belongs to the Administrator role. Each button calls a JavaScript
function called IsUserInRole(), passing it the role name to check whether the user belongs.

The IsUserInRole() function is implemented as follows:

function IsUserInRole(roleName)
{
 // Check if the user belongs to a specific role
 var isUserInRole = Sys.Services.RoleService.isUserInRole(roleName);
 alert(isUserInRole);
}

The function takes as input a role name and issues an asynchronous call using the Sys.Services​
.RoleService.isUserInRole() client-side function that takes as input the role name that was origi-
nally passed into the parent function. The isUserInRole() function returns a Boolean value indicat-
ing whether the currently logged in user belongs to the role specified or not. Finally, the message alerts
the user whether the user belongs to the role specified. Once again, this client-side function is used to
handle the Click event of the above two HTML buttons.

Custom Role Service
Sometimes you might need to work with a different role service than the one configured by default
with the ASP.NET AJAX role service. ASP.NET AJAX 3.5 gives you a straightforward and easy way of
configuring a custom role service. You need to develop a web service that includes only the GetRoles​
ForCurrentUser() method, so that the client-side proxy Sys.Services._RoleService class con-
tinues to function properly by calling internally the server-side GetRolesForCurrentUser() method
when a call is issued to the client-side load() function.

To start, create a new web service that serves as the custom role service and contains the following method:

79301c17.indd 820 10/6/08 12:18:13 PM

821

Chapter 17: Membership and Role Management in ASP.NET AJAX 3.5

C#
[System.Web.Script.Services.ScriptService]
public class CustomRoleService : System.Web.Services.WebService {

 public CustomRoleService () {

 //Uncomment the following line if using designed components
 //InitializeComponent();
 }

 [WebMethod]
 public string[] GetRolesForCurrentUser()
 {
 return new string[] { “Guest”, “Administrator” };
 }
}

VB.NET
<WebService(Namespace:=”http://tempuri.org/”), _
WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1), _
System.Web.Script.Services.ScriptService()> _
Public Class CustomRoleService
 Inherits System.Web.Services.WebService

 Public Sub New()

 ‘Uncomment the following line if using designed components
 ‘InitializeComponent();
 End Sub

 <WebMethod> _
 Public Function GetRolesForCurrentUser() As String()
 Return New String() { “Guest”, “Administrator” }
 End Function
End Class

The implementation of the GetRolesForCurrentUser() method is simplistic and returns an array
of role names as an array of strings. In a real-life scenario, you might contact a database server and
retrieve the roles that the currently logged in user belongs to and return those roles as an array of
strings containing the role names as entries.

The above custom role web service is enough to make the AJAX role service function properly.

Now that the custom role web service is finished, configure the ScriptManager control instance with
the path to the newly created role service as follows:

<asp:ScriptManager
 ID=”ScriptManager1”
 runat=”server”
 RoleService-Path=”~/CustomRoleService.asmx”
/>

79301c17.indd 821 10/6/08 12:18:13 PM

822

Chapter 17: Membership and Role Management in ASP.NET AJAX 3.5

That is all what you need to do! Just run the application and process the currently logged in user’s roles
using the newly created custom role service.

Summary
The application services introduced with ASP.NET played a very helpful role in providing developers
with ready-made services that can they count on when developing small-scale web application. They
can even customize and extend when working on medium- to large-scale web applications.

The application services introduced with ASP.NET played a very helpful role in providing developers
with ready-made services that can be counted on when developing small-scale web application. These
services can even be customized and extended to satisfy requirements for medium- to large-scale web
applications.

Before using the authentication and role services, several steps have to be done beginning with enabling
the ASP.NET application with the ASP.NET AJAX 3.5. Once an application is enabled with the ASP.NET
AJAX, you need to enable the client-side authentication and role services by adding some configuration
sections into the application’s web.config configuration file.

The authentication services lets you authenticate users from the client-side JavaScript using the Sys​
.Services._AuthenticationService client-side proxy class that provides client-side functions that
can be utilized by AJAX developers, which internally performs asynchronous calls against the server-
side counterpart, the AuthenticationService class. The Sys.Services._AuthenticationService
client-side proxy allows the developer to authenticate a user, check if the user is currently authenticated,
logout a user by clearing their authentication cookie, and finally validate user credentials without creat-
ing any authentication cookie. The three major functions commonly used when developing the client-
side part of the application are the login(), logout() and get_isLoggedIn() client-side functions.

The role service, on the other hand, allows the AJAX developer to retrieve information about the cur-
rently logged in user’s roles. The ASP.NET AJAX 3.5 provides the Sys.Services._RoleService client-
side proxy class that contains two main client-side functions used most of the time and represented by
the load() and isUserInRole() functions. These functions are enough to gather information about
the currently logged in user’s roles. The counterpart class accompanying the client-side role service is
the server-side RoleService class. The client-side functions on the Sys.Services._RoleService
client-side proxy class functions internally issue asynchronous calls into the server-side class that takes
care of querying the ASP.NET role service database to retrieve the currently logged in user’s roles. One
note before making use of the client-side role service is that you must enable the ASP.NET role service
inside the application’s web.config configuration file before you are able to access the role service from
the client-side.

Finally, the ASP.NET AJAX authentication and role service do not limit you to use only the default
authentication and role services. Developers are given the chance to develop their own authentication
and role web services and configure the ScriptManager control instance on the .aspx page to use the
custom authentication and role services, as needed.

79301c17.indd 822 10/6/08 12:18:13 PM

18
Best Practices for Securing

ASP.NET Web Applications

Having reached the last chapter of this book, you are now aware of all the features and modules
provided by ASP.NET to help build secure web applications. All these features are out-of-the box
features that ASP.NET provides to make the developer’s life easy. However, a lot has to be done to
secure an ASP.NET web application during its interaction with client users. In this chapter, you
will be introduced to the best practices to secure an ASP.NET web application. The discussion is
in the form of a list of best practices that you can follow and apply in your web application. Each
recommended best practice is explained in detail with sample code, when possible.

In addition, the discussion introduces you to the vulnerabilities exposed by introducing AJAX
techniques into your applications, for smooth and interactive user experiences, and the possible
best practices in securing such applications.

In this chapter, will you will learn how to apply the following practices to secure your ASP.NET
web application:

How to trust your users.❑❑

How to run applications with least privileges.❑❑

How to validate user input properly.❑❑

How to properly secure an ❑❑ HttpCookie.

How to secure database access.❑❑

How to handle SQL injection attacks.❑❑

How to handle cross-site scripting attacks.❑❑

79301c18.indd 823 10/6/08 12:18:34 PM

824

Chapter 18: Best Practices for Securing ASP.NET Web Applications

How to handle cross-site request forgery attacks.❑❑

How to handle application/page exceptions properly.❑❑

How to guard against denial-of-service attacks.❑❑

How to secure data transmission across the wire.❑❑

How to handle information leakage introduced by AJAX-enabled web applications.❑❑

How to protect against JSON hijacking.❑❑

How to protect against amplified cross-site scripting.❑❑

Web Application Security Threats Overview
The focus throughout the previous chapters was how to best use and implement the different security
features provided by ASP.NET 3.5, with its core based on .NET 2.0, and Internet Information Services 7.0.
The major topics were as follows:

How ASP.NET can have control on a request from its early entrance into IIS 7.0 new inte-❑❑

grated mode

How to best use the Code Access Security modes to give or deny permissions from an executing ❑❑

application

How to protect sensitive sections of a ❑❑ web.config configuration file, how to use Forms and
Windows Authentication modules to authenticate users accessing your application

How to use URL authorization modules in ASP.NET and IIS to authorize users and make sure ❑❑

they can access resources that have permissions on them

Many other important security features to implement and follow to build a more secure web ❑❑

application.

The discussion has always been on how to use the out-of-the box security features in ASP.NET and
IIS 7.0 for a more secure and robust application. However, there are security threats and attacks that
have no direct corresponding modules to use in ASP.NET to protect against them. It is the role of the
developer to protect against the many threats using the ASP.NET 3.5 and .NET 3.5 Framework.

For instance, most of the important threats that an application might face is the improper input valida-
tion. Developers, who depend only on the client-side input validation through the use of ASP.NET vali-
dation controls, might face serious problems on the server due to the fact that not everything typed on
the client-side arrives the same on the server-side. In addition, sometimes on some browsers, JavaScript
is disabled by administrators and hence the ASP.NET validation controls will not even run! In other
cases, the validation controls provided by ASP.NET might not help at all.

Consider the following example where you have a Textbox on a page that is labeled with “Name” that
accepts input in the form of a string value representing the user’s name and that the ASP.NET Request
Validation is disabled. The user should type in their name in order to complete the registration form. The
ASP.NET validation controls helps in controlling that the user has typed in a value, but it cannot help in
the case where the user adds something like <script>alert(‘You’ve been hacked!!’);</script>
to the input. If at the server you did not provide any means of stripping out any character that you find

79301c18.indd 824 10/6/08 12:18:34 PM

825

Chapter 18: Best Practices for Securing ASP.NET Web Applications

illegal for the Name input Textbox, you will end up storing in your database an invalid name that will
pop-up a JavaScript alert message every time you display the user’s profile on the page. In the example
you have seen, it is the responsibility of the application developer to make sure the input entered by the
user on the client-side is valid and legal.

This example demonstrates a known threat which is the Cross Site Scripting (XSS) threat. There are
many more such threats that can break down the normal execution of a web application. Microsoft cat-
egorizes the different threats an application might face and uses the acronym STIDE to represent these
threat categories as follows:

Spoofing: ❑❑ This is an attempt to gain access to an application by using stolen identities or cre-
dentials. What happens is that a user steals a locally-stored cookie and is lucky enough that
the cookie contains the password in clear text. Or even worse is when a user is able to monitor
the packets being interchanged between the client and the server and no SSL is configured and
hence, in this case, the credentials exchanged might be easily retrieved and used to perform vari-
ous attacks on the application. Of course, preventing this threat can be done by using strong and
strict authentication; by not saving credentials in clear text inside cookies, and most importantly,
by configuring SSL for communication at least in stages where credentials are being exchanged.

Tampering: ❑❑ This is the process of modifying the data that is transmitted between network
locations in an unauthorized way. It also follows from the preceding threat that a user might
gain access to an application pretending they are someone else and start deleting or modifying
resources on the web server in an unauthorized way, in this case, modifying data and resources
in a hijacked way! Protecting against such a threat can be done by using data hashing and sign-
ing, digital signatures, and stronger authorization checking.

Information disclosure: ❑❑ This is the exposure of private information and data that is not meant
to be exposed for unwanted users. This type of security threat can take several forms. Hijack-
ing a user’s credentials and gaining access to an application is one form of this threat. The user
will then be able to browse private data that they originally were not allowed to see and check.
Spoofing data packets during their transmission from one place in the network to another is
another form of information disclosure. In this case, the user will be able to view and modify
data that they got control of in an illegal way. One more form of information disclosure is leav-
ing sensitive sections inside the web.config configuration file in clear text. One such example
is placing a database connection string in clear text without encrypting it. Leaving some sensi-
tive comments inside the HTML markup might help attackers gain access to information that
they should not have access to. Sometimes developers might be testing some sample code inside
the markup page and then they decide to comment it out to try something else. The application
goes into production and the comment lines show up when then page is requested and execut-
ing. Preventing such threats can be done through stronger authorization techniques, storing
sensitive data in cookies, encrypting application variables, session variables, and other contain-
ers, and making use of SSL to protect the data that is being moved from one location on the
network to another.

Denial of service: ❑❑ This type of threat is caused by attackers bombarding your application with so
many requests at the same time that it breaks your application and makes it unavailable for oth-
ers. One way to protect against this threat is to develop a module that can monitor the number of
requests coming from a single IP address in a certain amount of time and then accordingly deny
requests from IPs that are requesting more than the usual requests. Also, IIS 7.0 helps in throt-
tling an application by limiting the number of requests coming from a specific IP address.

79301c18.indd 825 10/6/08 12:18:35 PM

826

Chapter 18: Best Practices for Securing ASP.NET Web Applications

Elevation of privilege: ❑❑ It follows from the above threats that a user might be able to hijack the
credentials of another user and gain access to resources and areas in an application to which
they should not have access. Once an attacker enters the boundaries of an application with the
identity and privileges of another more privileged user, the attacker can elevate the privileges
already granted to their account. This gives the attacker access to more resources and secure
areas that they could not access before.

In addition, there is a threat known as repudiation—the act of users (legal/illegal, authenticated and
authorized) denying that they performed specific actions during their visit to an application. This can
easily happen and users get away with their acts if an application does not implement proper auditing.
In other words, logging auditing events in your application can help defend against such a threat.

Nowadays with the introduction of Web 2.0 and the demand for more responsive and interactive user
experiences in applications, the trend is to move to utilizing more of the AJAX techniques in web appli-
cations. It is true that AJAX can improve the usability and interactivity of an application, but at the same
time, it may open more areas for attackers to exploit an application if the AJAX-enabled application is
not developed and designed with security in mind. The following points sum up the major threats that
are caused with AJAX-enabled applications:

Increased Service Attack: ❑❑ In a traditional web application an attacker might be able to hijack
sensitive information to exploit an application, or if lucky enough to gain access to the web
server itself and hence, gain physical access to the web application files and resources. How-
ever, with an AJAX-enabled web application that spans both the client and the server, AJAX
continuously sends small web requests to the server, creating an increased service attack area
that attackers can take advantage of.

Exposing functions: ❑❑ An AJAX request usually gathers input from the elements located on the
page and then sends calls to functions defined on the server side. All these calls are sent in clear
text. Thus, the functions names, parameters, and data types are all exposed and any attackers
listening to the network can gain access to all these methods. This gives them an opportunity to
know more about the functions implemented on the server and hence, open an information leak
that malicious attackers can use.

Amplification of Attacks: ❑❑ Usually, an AJAX request is sent asynchronously in the background to
the server. The server cannot tell the difference between a request done through AJAX (JavaScript)
or upon the submission of a form. From the server-side point of view, the request is the same.
This opens a very wide door to amplify all of the above threats and make them more harmful.
The first effect you will notice is the amplification of the repudiation threat. AJAX will be send-
ing more and more requests in the background allowing different kinds of attack and every user
of the application will have the ability to deny their knowledge of such attacks. So many requests
can now be sent from the client-side in the background that this opens the way to receive more
response from the server; a response that might be full of scripts that are ready to be injected into
the client-side and amplifying the XSS threat. Another threat that may be amplified is the denial
of service attack. This kind of threat can be amplified easily without anyone noticing. Since the
client requests performing the denial of service are JavaScript requests sent in the background,
the user opening the page doesn’t notice it.

Throughout this chapter, you will be introduced to several techniques you can follow in order to pro-
tect your application from malicious attacks and help in developing secure and robust applications.

79301c18.indd 826 10/6/08 12:18:35 PM

827

Chapter 18: Best Practices for Securing ASP.NET Web Applications

Developers Beware
This section discusses a list of recommendations that you should follow to secure your ASP.NET web
application against malicious attacks. Several books could be written on this topic, however, this section
will cover as many recommendations as possible to give you an overview of some of the practices you
can follow to protect your application.

Know Your Users
Knowing your users takes the form of both authenticating and authorizing users accessing the web appli-
cation. Authenticating the user means making sure the user is a member of your user safe-list that can
access the application. On the other hand, authorizing a user means knowing what rights and privi-
leges the user has that allows them to access resources in the application.

Authenticate Users
ASP.NET 3.5 offers several options for authenticating users. As you have seen throughout the previous
chapters in the book, you can make use of Forms Authentication and Windows Authentication as out-
of-the-box authentication types offered by ASP.NET, or you can develop your own custom authentica-
tion mode. Forms authentication is mainly configured when the application is accessed online by users
that do not necessarily correspond to users present in the Active Directory (AD) of a domain controller.
It is best suited for web applications that store the users’ credentials in databases or any other suitable
and secure data store. On the other hand, Windows authentication best suits local intranets that allow
only domain users to have access to the application. The details of using both types of authentication
have been studied in detail previously, so you can refer to the corresponding chapters to read more on
the different options available to use when configuring the types of authentication.

For read-only applications, anonymous authentication is enough to allow users to access the applica-
tion. However, when private sections and resources exist in the application and need to be secured, it is
a necessity to enable authentication.

Regardless of the authentication type you have configured for the application, your concern is with
the identity of the user trying to access the application. In ASP.NET there are two main identities that
you should look for: Application identity that is used to access the Windows resources (aspx pages,
compiled assemblies, etc.) and the ASP.NET user identity that is used to identify the user to ASP.NET
(the user logged in either in Forms or Windows authentication). An application can run without the
ASP.NET user identity, which is the case when you offer your application as public, without securing
any areas or resources within the application. However, ASP.NET cannot function without the pres-
ence of the application identity.

As covered in Chapter 3, when an ASP.NET page is running it is being executed inside a process or
thread that is governed by a security context. This security identity or context is used to access all the
physical resources on the Windows operating system, including databases if they are configured with
integrated security through their connection strings. From the IIS 7.0 side, every application is running
inside an application pool. When an application is created initially it is configured with a security iden-
tity that resembles a Windows account. By default, the identity configured with the default application
pool in IIS 7.0 is the NT AUTHORITH\NETWORK SERVICE account that is present in Windows Server 2003

79301c18.indd 827 10/6/08 12:18:35 PM

828

Chapter 18: Best Practices for Securing ASP.NET Web Applications

and Windows Server 2008. This account is already configured with the least privileges to access the nec-
essary folders and files when an application is being executed. Therefore, by default, ASP.NET will have
the NETWORK SERVICE account as the application identity when running your applications. This,
however, is affected by a number of factors as mentioned in Chapter 3, including application and client
impersonation in addition to any configured UNC credentials. The NETWORK SERVICE identity is
already configured with the right ACLs to correctly run your applications without gaining any addi-
tional non-needed privileges that may be used to harm your application.

In case you want to configure another Windows account for the process identity, you should have a
look at the ASP.NET Required Access Control Lists (http://msdn.microsoft.com/en-us/library/
kwzs111e​.aspx) article on MSDN that tells you exactly what ACLs you should assign for the custom
user you want to configure as the process identity. For instance, the application’s pool identity should
have Read/Write access to the App_Data ASP.NET folder inside the application. The reason is that the
App_Data folder usually contains all the data files and databases that are used by the application. Thus,
ASP.NET needs to have read and write ACLs to be able to modify these resources. Granting your cus-
tom process identities additional privileges that are not used might reflect negatively on the safety of
the application.

On the other hand, the ASP.NET user identity is determined by the authentication type that you have
configured in the web.config application configuration file. Just as the ASP.NET application identity
determines the rights of an executing ASP.NET application to access Windows resources, the ASP.NET
user identity determines the ASP.NET resources and sections that users can access and view.

Authorize Users
In the preceding section, you were briefly introduced to authentication that takes places when an ASP.NET
application is executing. Authentication and determining the ASP.NET user identity are not enough, how-
ever, to secure your application. In some cases, you allow one group of users to access a certain section of
your application and another group to access other sections of your application. Authentication deter-
mines who can access the application, but authorization determines what every authenticated user can
access on the application. ASP.NET 3.5 provides two main authorization modules that you may use in
your applications: FileAuthorizationModule and URLAuthorizationModule. To get a detailed dis-
cussion on ASP.NET and IIS 7.0 authorization, it is recommended to refer back to Chapter 3.

The FileAuthorizationModule is mainly configured with intranet applications whose ASP.NET
authentication is usually set to Windows authentication. On the other hand, the URLAuthorization​
Module is commonly configured with applications that make use of Forms authentication or any other
custom form of authentication.

In addition, IIS 7.0 provides a new native authorization module that can be used by applications to autho-
rize any content type in your application. The new URLAuthorizationModule is a native module that
runs within the boundaries of IIS 7.0 and allows authorization rules the same as those used by ASP.NET
URLAuthorizationModule rules.

The general rule is to make use of ASP.NET authentication and authorization features to limit access to
your application when needed to protect the Windows and ASP.NET resources to the extent possible.
Moreover, when a custom identity is to be used for the application pool running and executing your
application, be sure to give the exact and necessary ACLs for that custom identity.

79301c18.indd 828 10/6/08 12:18:35 PM

829

Chapter 18: Best Practices for Securing ASP.NET Web Applications

Run Applications with Minimum Privileges
As previously mentioned, the ASP.NET application identity is configured by default to be NET-
WORK SERVICE identity and is affected by several previously mentioned factors. As you know, it is
the ASP.NET application identity that is used to access any Windows resource while the ASP.NET
is running and executing.

Usually administrators and developers create several application pools to categorize their applications
and assign a different Windows identity for each of the applications pools that they have created. You
should always make sure to give the custom Windows identity the least and most restrictive access control
lists taking into consideration the required set of ACLs for the ASP.NET application to function properly.
By configuring an application pool with an administrative identity you are exposing the application to a
threat that might have harmful consequences on the safety of the application. In other words, make sure
to always assign the custom Windows identity with the required set of permissions for your application to
run properly, and not give attackers a chance to gain more privileges to do more harm to your application.

Validate User Input
As a general rule, never trust any input data that you receive from users browsing your application.
Regardless of the source of the incoming data, always check for harmful and malicious information
that might be sent from the client-side.

Consider the case when you have a registration form with several fields that require the user to fill in
order for the user’s registration to be processed and stored in the database. Figure 18-1 shows the simple
registration form for users seeking access to profile themselves in your application.

Figure 18-1

79301c18.indd 829 10/6/08 12:18:35 PM

830

Chapter 18: Best Practices for Securing ASP.NET Web Applications

The registration form is very simple. The user has to provide input data for the first name, last name,
age, email address, and optional comments. The form also includes a set of ASP.NET validation controls
as follows:

RFVFirstName: ❑❑ This required field validator makes sure that the user enters a value into the
first name field, regardless if the data entered is valid or not.

RFVLastName: ❑❑ This required field validator makes sure that the user enters a value into the last
name field, regardless if the data entered is valid or not.

RFVAge: ❑❑ This required field validator makes sure that the user enters a value into the age field,
regardless if the data entered is valid or not.

RVAge: ❑❑ This range validator makes sure that the user enters an age value that is between 18
and 65 only.

RFVEmail: ❑❑ This required field validator makes sure that the user enters a value into the email
address field, regardless if the data entered is valid or not.

REVEmail: ❑❑ This regular expression validator makes sure that the user enters a valid email
address into the email field.

As the first layer of defense against malicious user input, you can make use of the ASP.NET validation
controls. There are a variety of validation controls including:

Controls to force the user to enter some input the fields.❑❑

Controls to compare fields to other fields on the page or some fixed text to compare against.❑❑

Controls to validate the format of the entered text using regular expressions.❑❑

Controls to validate the range of values that are acceptable for a field.❑❑

A custom validator control that you can write to validate the field the way you want.❑❑

ASP.NET validation controls have the ability to run on both the client-side and the server-side. This
is very helpful and harmful at the same time. It is important to run some validation on the client-side
before sending the data to the server-side; however, validating on the client-side is not enough. One
reason is that data might be scrambled before it reaches the server when coming from the client. For
instance, assume that the client-side validators ran successfully and, while sending the request to the
server, an attacker is there listening to the packets being sent from the client. The attacker is then able
to change the content of the text, which was originally validated successfully, into some sort of harm-
ful text. In this case, the client-side validation is not enough to make sure that the validate text on the
client-side is truly safe.

Another problem that ASP.NET validator controls might face on the client-side is that some administra-
tors in some organizations might have disabled JavaScript and hence, the validation controls will never
run on the client-side. This gives you another incentive to not count on the client-side validation pro-
vided by the ASP.NET validation controls.

Now if we go back to the example mentioned above, using a set of ASP.NET validation controls helps
in making sure the input fields will contain only validate data. Since it was mentioned above that the
client-side validation is not enough, you should make sure the ASP.NET validation controls runs again
on the server-side.

79301c18.indd 830 10/6/08 12:18:35 PM

831

Chapter 18: Best Practices for Securing ASP.NET Web Applications

C#
 // Validate the page
 Page.Validate();
 if (Page.IsValid)
 {
 // Process the input fields
 }

VB.NET
 ‘ Validate the page
 Page.Validate()
 If Page.IsValid Then
 ‘ Process the input fields
 End If

To make sure the validation controls are run again on the server-side when the page is being processed,
and to make sure no errors exist on the page before processing the input fields, it is always recommended
to call the Page.Validate() method which loops through all the validators placed on the page and
calls their corresponding Validate() server method.

The validate method of every ASP.NET validation control executes its functionality by first setting
the value of the IsValid public property on the validation controls to true. If the validation control is
enabled, then the EvaluateIsValid() method is executed. This method usually contains the logic to
execute for every validation control. The result of this method is set to the value of the IsValid public
property. Finally, the method checks to see if the IsValid property is false, the Page instance is not
null, and the validator control SetFocusOnError public property is set to true, it sets the focus to the
validating control on the page.

After issuing a call to the Page.Validate() method, you should check if the page executing is valid
with no errors. You call the page’s public property, IsValid, to make sure none of the validation con-
trols is invalid. The body of this property simply loops through all the validation controls and checks
the IsValid property on every control. If only one of these controls has the value for this property as
false, then the Page.IsValid property is set to false on the spot.

If the Page.IsValid property is true, then you are safe enough, according to the validation controls
that you have placed on the page, to process the input fields’ data and do whatever you want with them.

There are some cases where the ASP.NET validation controls do not help in validating the different
scenarios. For such cases, you have the option of developing a custom validation control and provide
functionality on both the client- and server-sides. Or you can live without such a custom validator and
do some additional steps to make sure the specific validation is met.

Encoding and Filtering
Suppose you want the user to enter some HTML tags into the “Comments” field. However, you do
not wish the user to enter harmful tags like a JavaScript <script> tag block. There are several steps
you can take on the server-side code to protect your application against malicious user input. One of

79301c18.indd 831 10/6/08 12:18:35 PM

832

Chapter 18: Best Practices for Securing ASP.NET Web Applications

the options is to encode the contents of the “Comments” field. Encoding text that contains HTML tags
means for instance the greater than “>” tag is converted to “>” representation. The same conversion
applies to any other HTML tag. In ASP.NET you can HTML encode data by writing the following:

C#
 string comments =
 System.Web.HttpUtility.HtmlEncode(this.txtComments.Text);

VB.NET
Dim comments As String = System.Web.HttpUtility.HtmlEncode(Me.txtComments.Text)

You make use of the HttpUtility class’s method, HtmlEncode(), to encode all the incoming text that
the user or some other third-party side has entered into the “Comments” field. HTML encoding means
that all the HTML or JavaScript tags entered are now converted to string literals which have no effect
when stored in the database or any other data store.

When it is time to display the comments on the page you should use the converse method, which is
the System.Web.HttpUtility.HtmlDecode() method that will switch back all the string literals into
their real form. Hence, all the “>” strings will be converted to “>” characters. For instance, suppose
that the user entered some text in the “Comments” field surrounded by the “” tag to make sure the
text entered is bolded. If you do not decode the text before displaying it, the text will not be shown as
bold text. It will be simply displayed as a string literal with no effect and cannot be interpreted by the
browser as bold text. A new problem arises here! What if the original text contained tags other than safe
and nice HTML tags? A malicious user might have entered some harmful or annoying JavaScript tags.
For instance, the text might contain a JavaScript function to alert some annoying text to pop up every
time the text is displayed on the page or even more harmful scripts.

From one side, you need to decode the text as explained above so that all the formatting HTML tags are
interpreted well by the browser. But if you were not lucky enough and some JavaScript tags were origi-
nally embedded within the entered text, then you will always get a well formatted text displayed on
the page with a little funny pop up message or some other form of harmful scripts! To get around this
problem you have the option of filtering out any JavaScript tags, before doing any encoding, to make
sure that it does not contain any harmful or annoying scripts. An example of a harmful script is one
that is embedded on the page and is capable of stealing some locally stored cookies!

Filtering out characters before encoding involves removing some harmful characters that you deem
harmful for your application. For instance, you decide to remove all JavaScript <script> tags from
the input text and keep all other HTML tags to preserve the formatting set by the user and get rid of
the harmful JavaScript scripts. Filtering out characters is also known as sanitization, where you remove
the harmful characters and keep the good and clean text. Going back to our example above, I would
consider any text entered into the “Comments” field valid unless it contained the JavaScript <script>
block(s) and hence the sanitization of data includes filtering out these tags.

C#
 // Validate the page
 Page.Validate();
 if (Page.IsValid)
 {

79301c18.indd 832 10/6/08 12:18:35 PM

833

Chapter 18: Best Practices for Securing ASP.NET Web Applications

 // Filter out what you think are harmful
 string comments = SanitizeData(this.txtComments.Text);

 // Process the input fields
 comments = System.Web.HttpUtility.HtmlEncode(comments);
 }
 private string SanitizeData(string input)
 {
 Regex badChars =
 new Regex(@”(\n?<script[^>]*?>.*?</script[^>]*?>)|(\n?<script[^>]*?/>)”);

 string goodChars = badChars.Replace(input, “”);
 return goodChars;
 }

VB.NET
 ‘ Validate the page
 Page.Validate()
 If Page.IsValid Then
 ‘ Filter out what you think are harmful
 comments = SanitizeData(comments)

 ‘ Process the input fields
 comments = Server.HtmlEncode(comments)

 End If

 Private Function SanitizeData(ByVal input As String) As String
 Dim badChars As New _
 Regex(“(\n?<script[^>]*?>.*?</script[^>]*?>)|(\n?<script[^>]*?/>)”)
rs As String = badChars.Replace(input, “”)
 Return goodChars
 End Function

The bold line above issues a call to a utility method that performs the sanitization of data by filtering
out the JavaScript <script> tag block(s). These blocks are being replaced with an empty string. The
SanitizeData() method makes use of a regular expression that simply locates the characters we think
are harmful. Once any harmful sequence of characters is located, it is replaced with an empty string.
Now if we encode the rest of the text and then decode it later when it is time to display it on the page,
only the good HTML tags will be executed on the browser without any harmful scripts.

The above form of filtering is usually referred to as blacklisting. With blacklisting you search for all possible
characters that you think are harmful for your application and filter them out. However, the blacklist you
specify might not cover all available harmful characters out there. The above sample code showed only fil-
tering out some of the characters that might be harmful for your application. If you want to filter out more
harmful characters, or tags, you have to prepare a list of all the characters that you think are harmful and
start replacing them with empty strings. However, with this technique there is a probability that you miss
some of those characters and end up having harmful characters and scripts embedded in your data.

Another way of filtering user input data is known as whitelisting. Whitelisting is the preferred type of
filtering and it is also called positive filtering. With whitelisting you accept only the data that you know
is good for your application. To validate with whitelisting, you need to prepare a regular expression

79301c18.indd 833 10/6/08 12:18:35 PM

834

Chapter 18: Best Practices for Securing ASP.NET Web Applications

that you validate against. The expression should state the acceptable characters that an input field
allows. This way, if there are any character sequences outside the regular expression, you will consider
that the input text is exploited and reject it.

C#
 // Validate the Email Address
 if (
 !Regex.Match(
 this.txtEmail.Text,
 @”\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*”,
 RegexOptions.None).Success)
 {
 // Invalid Email Address
 }

VB.NET
 ‘ Validate the Email Address
 If (Not Regex.Match(_
 Me.txtEmail.Text, _
 “\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*”, _
 RegexOptions.None).Success) Then
 ‘ Invalid Email Address
 End If

The above sample code validates an email address against a regular expression. If the entered email
address does not match the regular expression, then the entered email address is considered invalid.
The difference between whitelisting and blacklisting is that blacklisting tries to strip out all the charac-
ters you consider harmful, while whitelisting compares the input data into a predefined good-format and
rejects the entered text if there is no match with the good-format you have defined for your application.
This is a better approach, since you are not worried whether you filtered out all the harmful characters
or not. As long as the input text complies with a specific format and set of characters, the text is valid.

Now that the data is filtered out and you think it is now good and clean, the final step is to encode the
text before processing it either for storage or anything else.

C#
 // Process the input fields
 comments = System.Web.HttpUtility.HtmlEncode(comments);

VB.NET
 ‘ Process the input fields
 comments = Server.HtmlEncode(comments)

The above line of code simply HTML encodes the filtered data that might already contain some HTML
tags that are allowed by the user to enter just to format the text. When it is time to display the comments
on a page, you simply do the inverse by HTML decoding the already encoded text. This will make sure
that the browser will be able to interpret all the HTML tags and apply them on the text displayed. How-
ever, the encoding/decoding process is a safe process since you are sure by now that all the text being
processed is a safe text and contains no harmful or annoying scripts.

79301c18.indd 834 10/6/08 12:18:36 PM

835

Chapter 18: Best Practices for Securing ASP.NET Web Applications

Request Validation
The above example has been tested with the ValidateRequest property on the Page class set to false.
In Chapter 9 you were introduced to the Request Validation that has been added to ASP.NET since
.NET 2.0. As you have read, this property, when enabled on the page, checks for any harmful scripts
or characters in the forms variables, query strings, and cookie collections and, accordingly, it stops the
execution of the page and prevents the page from being posted back to the server. It is very helpful and
protects effectively against any harmful scripts that users try to submit to the server. In some cases you
would like to allow users to enter some HTML tags like the example given above with the “Comments”
field. If you want the above to work properly, you have to disable request validation on the page. This
means, at the expense of allowing users to enter such HTML tags, you are exposing your page to harm-
ful attacks by simply disabling that effective feature. So here you have a choice: either take the risk by
disabling that protective functionality in ASP.NET to allow your users to enter the HTML tags they
want, or come up with a solution that keeps the request validation enabled and allows user to enter the
HTML tags they want.

The proposed solution was already mentioned in Chapter 9. What you need to do is apply the follow-
ing steps:

	 1.	 Enable request validation in an ASP.NET page by setting the ValidationRequest=”true” on
the page directive.

	 2.	 Define a list of allowed HTML tags. For instance, , <i>, and <pre> tags are the only allowed
ones for the sake of explanation here. This way you have defined everything that is allowed.

	 3.	 Before the page submits back to the server, run a JavaScript function that replaces all instances
of the allowed list of HTML tags with customized tags. For instance replace every tag with
a [b] tag. Apply the same replacements on the rest of the pre-defined list you have.

	 4.	 If the user enters any scripts or harmful tags other than those defined in the list you have, the
ASP.NET request validation will prevent the user from submitting the page and present them
with an error page. If on the other hand the user entered only the allowed tags, the page posts
back to the server safely.

	 5.	 Before doing any processing or filtering on the entered text, you need to convert all the custom-
ized HTML tags back to the proper HTML format. In other words, you should convert all [b]
tags back to tags. Similar work should be done to all other HTML tags listed in the allowed
set of tags.

	 6.	 You are now sure the text you received from the client contains only the allowed list of HTML
tags with no harmful scripts or characters. HTML encoding in this case is enough without the
need to filter out any additional harmful or annoying scripts.

The above steps are implemented in the ValidaterUserInput sample application that is part of the
code that accompanies this chapter.

Verifying Data Input
You can always make use of the ASP.NET validation controls especially on the server side. There are
many flavors of these controls. Most important is the regular expression validator with which you can
specify a regular expression to force users to enter text into fields that are exactly what your applica-
tion’s business rules require. Whether you are counting on the validation controls or using usual if

79301c18.indd 835 10/6/08 12:18:36 PM

836

Chapter 18: Best Practices for Securing ASP.NET Web Applications

statements to validate your input data, you should always make sure to check for the type, format,
length, and range of the values according to predefined rules as follows:

Verify that the input entered can be successfully converted into the correct type you expect. ❑❑

In other words, if you are expecting an input of type Date in one of the fields, you should try
to convert the input data into the specified type. If the conversion fails, then you should either
throw an exception or stop processing and inform the user of the inconsistency:

C#
 // Check to make sure the value entered
 // in the Age field is an integer value
 int ageValue = -1;
 bool isAgeValid = Int32.TryParse(
 System.Web.HttpUtility.HtmlEncode(this.txtAge.Text),
 out ageValue);
 if (!isAgeValue)
 throw new ArgumentException
 (“The value entered in the ‘Age’ field is invalid.”);

VB.NET
 ‘ Check to make sure the value entered
 ‘ in the Age field is an integer value
 Dim ageValue As Integer = -1

 Dim isAgeValid As Boolean = _
 Int32.TryParse(_
 Server.HtmlEncode(Me.txtAge.Text), _
 ageValue)

 If (Not isAgeValid) Then
 Throw New ArgumentException(“The value entered “ & _
 “in the ‘Age’ field is invalid.”)
 End If

The code above tries to convert the value entered in the “Age” Textbox into an integer. If the con-❑❑

version is successful then the output parameter, the second parameter of the Int32.TryParse()
method, is set to true, else it is set to false. You can then check the value of the output param-
eter to see if the conversion was done successfully. If not, an exception is thrown to make sure
the processing is stopped and the user is notified. You could, on the other hand, process this
inconsistency in a friendlier way by checking all the other fields on the page and generate a
single statement that lists all the inconsistencies that were found in the input data.

You should validate the format of the text entered. For instance, if you want the user to enter ❑❑

their age in the form of two-digits you should construct a regular expression that accepts any
age value entered in the form of two-digits and rejects anything else:

C#
 // Validate the Age field
 // to make sure it is composed of
 // two digits
 if (
 !Regex.Match(

79301c18.indd 836 10/6/08 12:18:36 PM

837

Chapter 18: Best Practices for Securing ASP.NET Web Applications

 this.txtAge.Text,
 @”\d{2}”,
 RegexOptions.None).Success)
 {
 // Invalid Age value
 }

VB.NET
 ‘ Validate the Age field
 ‘ to make sure it is composed of
 ‘ two digits
 If (Not Regex.Match(_
 Me.txtAge.Text, _
 “\d{2}”, _
 RegexOptions.None).Success) Then
 ‘ Invalid Age value
 End If

The code above tries to match the value entered in the age field against an integer of two-digits. ❑❑

If the value entered passes the validation this means the format of the entered text is valid and
can be processed safely.

Once you are sure the input data is of the correct type and format, check the range of the entered ❑❑

values. For example, you might require that the user enters a value between 8 and 65 for the
“Age” field from the above example:

C#
 if ((ageValue < 8) && (ageValue > 65))
 throw new ArgumentException(“The value entered in “ +
 “the ‘Age’ field should be between 8 and 65 only.”);

VB.NET
 ‘ Make sure the Age value is within a valid
 ‘ range of values
 If (ageValue < 8) AndAlso (ageValue > 65) Then
 Throw New ArgumentException(“The value entered in “ & _
 “the ‘Age’ field should be between 8 and 65 only.”)
 End If

A simple ❑❑ if statement is used to make sure the value entered in the “Age” field falls within a
valid range of values. An exception is thrown in case the value entered is invalid.

Finally, you should check for the length of the entered input text. For instance, suppose there ❑❑

is an input field in which the user should enter a name. You have a requirement that the name
field should not include more than 40 characters. This kind of validation can be grouped
together with the format-checking mentioned above using a regular expression:

C#
 // Validate the Name input field to make
 // sure it is not greater than 40 characters
 // in length
 if (!Regex.IsMatch(this.txtName.Text, @”^[a-zA-Z\s]{1,40}$”))

79301c18.indd 837 10/6/08 12:18:36 PM

838

Chapter 18: Best Practices for Securing ASP.NET Web Applications

 {
 // Invalid Name
 }

VB.NET
 ‘ Validate the Name input field to make
 ‘ sure it is not greater than 40 characters
 ‘ in length
 If (Not Regex.IsMatch(Me.txtName.Text, “^[a-zA-Z\s]{1,40}$”)) Then
 ‘ Invalid Name
 End If

This example makes sure the value entered for the name field is no longer than 40 characters.❑❑

Validating user input does not only cover the Form’s input fields, but also any kind of input that an
application might receive including both cookies and query strings. When it comes to validating query
strings, you should make sure the following apply:

The number of query strings supplied for the page matches the number of query strings the ❑❑

page really requires—no more, no less!

Make sure the query string keys the page expects are all included within the collection of query ❑❑

string keys posted by the end user.

Validate the type of every value posted as a query string. For instance, if the page expects an ❑❑

integer value for a query string, make sure the value can be converted into an integer. If on the
other hand the page expects a value for a query string to be a string, make sure the length of the
value posted is within the range the page expects. You should validate all the data types the
page might use and require.

Dino Esposito has an important article on validating query strings that you can reach at: (http://msdn​
.microsoft.com/en-us/magazine/cc163462.aspx). In this article, Dino shows you how to build a
generic HTTP module to validate query strings.

You can see that whatever method you follow, either using ASP.NET validation controls or validating
with if statements and regular expressions, the goal is to validate the user input and make sure it is
valid according to the business rules your application employs.

Secure Cookies
Cookies are usually used to store small amounts of data locally on the client’s machine. When the user
visits the application again, it will retrieve the set of cookies previously issued and stored on the client’s
machine and use the data stored inside them.

A cookie is a knife with two edges! On one hand, cookies are useful to store some local data, like for
instance the preferred background color that the user selects for all the pages in the application. This
way when the user revisits the application again the preferred color will be retrieved from the locally
stored cookie and applied on all the pages. On the other hand, since the cookies are stored locally on
the machine, there is a possibility that an attacker who is able to gain access to them might exploit
them and inject harmful scripts.

79301c18.indd 838 10/6/08 12:18:36 PM

839

Chapter 18: Best Practices for Securing ASP.NET Web Applications

There are several steps you can take on the server-side to help protect and secure cookies. To start with,
do not store any sensitive information inside cookies. For example, do not store a user’s password inside
a cookie and send that cookie to the client’s machine. A more robust solution is to store only the location
on the server where the user’s information is stored. This way your application is aware of the location
of the user’s specific information without the need to store any sensitive data on the client’s machine.

Another security precaution you can take is to set the expiration date for the cookie to a short period of
time and try not to persist cookies locally for a long period of time:

C#
 // Create a new cookie
 HttpCookie cookie = new HttpCookie(“MyKey”, “MyValue”);

 // Set the expirtation on the cookie
 cookie.Expires = DateTime.Now.AddHours(1.0);

 // Add the cookie to the Response stream
 Response.Cookies.Add(cookie);

VB.NET
 ‘ Create a new cookie
 Dim cookie As New HttpCookie(“MyKey”, encryptedText)

 ‘ Set the expirtation on the cookie
 cookie.Expires = DateTime.Now.AddHours(1.0)

 ‘ Add the cookie to the Response stream
 Response.Cookies.Add(cookie)

In this example, you simply create a new HttpCookie instance and set its Expires public property to
the value you want. Make sure to choose a small value for the expiration property so that an attacker, if
any, has a smaller amount of time to break the locally-stored cookie.

ASP.NET provides you with two important properties on the HttpCookie class that you should make
use of. The first is the Secure public property, which is set by default to the value false. When the prop-
erty is set to true, the cookie will be transmitted only over HTTPS to the client’s machine. It goes with-
out saying that the page itself should be running over HTTPS. This property secures the transmission
of the cookie from the server-side to the client’s machine.

The second important property that was added to ASP.NET since the .NET 2.0 Framework is the
HttpOnly public property. This property was discussed in Chapter 6. When this property is set to the
value of true, no client-side code can ever read the contents of the cookie. The cookie can only be ready
on the server-side. If you refer to Chapter 6, you will see a detailed explanation of this property with
sample code. The following code snippet shows you how to enable both the Secure and HttpOnly
public properties on an HttpCookie instance:

C#
 // Create a new cookie
 HttpCookie cookie = new HttpCookie(“MyKey”, “MyValue”);

79301c18.indd 839 10/6/08 12:18:36 PM

840

Chapter 18: Best Practices for Securing ASP.NET Web Applications

 // Set the expirtation on the cookie
 cookie.Expires = DateTime.Now.AddHours(1.0);

 // Enable transmission of the cookie over HTTPS
 cookie.Secure = true;

 // Enable HttpOnly
 cookie.HttpOnly = true;

 // Add the cookie to the Response stream
 Response.Cookies.Add(cookie);

VB.NET
 ‘ Create a new cookie
 Dim cookie As New HttpCookie(“MyKey”, encryptedText)

 ‘ Set the expirtation on the cookie
 cookie.Expires = DateTime.Now.AddHours(1.0)

 ‘ Enable transmission of the cookie over HTTPS
 cookie.Secure = False

 ‘ Enable HttpOnly
 cookie.HttpOnly = True

 ‘ Add the cookie to the Response stream
 Response.Cookies.Add(cookie)

Finally, it is strongly recommended to encrypt the data before storing it inside an HttpCookie. This
is very effective and protects your cookies from malicious attacks while being stored on the client’s
machine.

I have included a simple utility class in the application ValidateUserInput, which is part of the source
code accompanying this chapter. It contains two methods to encrypt/decrypt text using the Rijndael
algorithm, as shown here:

C#
 // Encrypt the text
 string encryptedText =
 RijndaelHelper.Encrypt(“Data to Enrypt”);

 // Create a new cookie
 HttpCookie cookie = new HttpCookie(“MyKey”, encryptedText);

VB.NET
 ‘ Encrypt the text
 Dim encryptedText As String = RijndaelHelper.Encrypt(“Data to Enrypt”)

 ‘ Create a new cookie
 Dim cookie As New HttpCookie(“MyKey”, encryptedText)

79301c18.indd 840 10/6/08 12:18:36 PM

841

Chapter 18: Best Practices for Securing ASP.NET Web Applications

To encrypt the text before storing it in the cookie, simply call the RijndaelHelper.Encrypt() method
to encrypt the text and after that initialize a new HttpCookie by setting its value to the encrypted text:

C#
 // Read encrpted cookie
 string cookieValue =
 RijndaelHelper.Decrypt(
 ((HttpCookie)Request.Cookies[“MyKey”]).Value);

VB.NET
 ‘ Read encrpted cookie
 Dim cookieValue As String = _
 RijndaelHelper.Decrypt(_
 (CType(Request.Cookies(“MyKey”), _
 HttpCookie)).Value)

When it is time to process the encrypted data stored inside the cookie, call the RijndaelHelper​
.Decrypt() method passing it the cookie’s value and the encrypted text in order to decrypt it and
get it back into human-readable text.

Secure Database Access
When an application connects to the database store it usually uses a connection string. The connection
string contains the location of the database, the database name, the username and password credentials
required to access the database, the timeout used for the connection, and some other properties that are
less important. For example:

<connectionStrings>
<add
 name=”dbConnection”
 connectionString=”server=.\SQL2005;database=aspnetdb;Integrated Security=SSPI;”
/>
<add
 name=”anotherDbConnection”
 connectionString=”Server=.\SQL2005;Database=Northwind;
Uid=myUsername;Pwd=myPassword;”
/>
</connectionStrings>

The code snippet above shows the definition of two connection strings inside the web.config configu-
ration file in an application.

There are two ways of connecting to a database: either using Windows Authentication or using SQL
Server authentication (this is the case when the application is depending on Microsoft SQL Server as a
backend data store). The above code snippet gives an example for both techniques to connect to a data-
base. The first represented by the dbConnection connection string makes use of Windows authentica-
tion by specifying Integrated Security = SSPI or it could have used Trusted_Connection=Yes.
The second connection string represented by anotherDbConnection makes use of SQL Server authen-
tication by specifying a SQL Server username and password directly inside the connection string.

79301c18.indd 841 10/6/08 12:18:36 PM

842

Chapter 18: Best Practices for Securing ASP.NET Web Applications

Windows Authentication for Database Access
It is always recommended that you use Windows Authentication when connecting to the database server
over the use of SQL-based authentication. With Windows Authentication the username and password
credentials to access the database are not specifically embedded inside the web.config configuration
file. So anyone who gains access to the configuration file will not be able to see any embedded creden-
tials. Moreover, with Windows authentication you are relieved of the responsibility to manage the Win-
dows user account and password, whether it is locked or unlocked, and other user management tasks.
In addition you are not required to secure the network path between the application and the database
server since there are no credentials being passed over the wire.

When an ASP.NET web application is configured with Windows authentication, there are two options
the application can use to access the database server. If impersonation is enabled, then the ASP.NET
web application will use the credentials that were negotiated with the user and in this case the Win-
dows identity is used as the connection string credentials. On the other hand, if impersonation is dis-
abled, then the ASP.NET application’s process identity is used to connect to the database server. As you
know, by default, the application’s process identity is the NT AUTHORITY\NETWORK SERVICE and could
be any other identity configured as the service account. If you decide on disabling impersonation, then
make sure to create a SQL Server login and username for the NETWORK SERVICE account to have
access on the database your application is connecting to and then you can configure the correct and
required permissions you want on this account.

To begin, open the Microsoft SQL Server Management Studio and expand the Security node under the
database instance you are working with. Now right-click on the Logins node and select New Login.
Figure 18-2 shows the GUI that pops up to create the new login.

Figure 18-2

79301c18.indd 842 10/6/08 12:18:36 PM

843

Chapter 18: Best Practices for Securing ASP.NET Web Applications

For the login name you have to click on the Search button and then type NETWORK SERVICE. Before
creating the login make sure to select Windows Authentication since the NETWORK SERVICE account
is a Windows account and it is managed by the Windows operating system.

Once the NETWORK SERVICE login is created, you still need to create the NETWORK SERVICE user
that is specific to a database and configure the permissions on that username to decide what database
objects it can access. Locate the specific database you want your application to connect to, expand the
database node, after that expand the Security node, and finally right-click on the User node and select
New User. Figure 18-3 shows the GUI that pops up to configure the new user to be created.

Figure 18-3

First, type or select the NETWORK SERVICE login name that you created in the previous step. Then,
enter a username (in this case, “NETWORK SERVICE”). Then, select the database schema and roles that
you find suitable for the application and hit OK to create the new configured NETWORK SERVICE user.

SQL Server Authentication
When it is not applicable to use Windows authentication, then you should be very careful when creat-
ing a new SQL Server login account. You can follow the steps shown here to create a new Microsoft
SQL Server 2005 login user with the least permissions to access the database securely:

	 1.	 Expand the Security node on the database instance inside the Microsoft SQL Server Manage-
ment Studio and right-click the Logins node and select New Login. Figure 18-4 shows the GUI
that pops up to enter the information for the new SQL Server login.

The important thing is to select the SQL Server Authentication option since this is a new login
whose credentials are only present inside the Microsoft SQL Server.

79301c18.indd 843 10/6/08 12:18:37 PM

844

Chapter 18: Best Practices for Securing ASP.NET Web Applications

Figure 18-4

	 2.	 Now that the login name is created, you still need to give it the right access permissions on the
specific database you want to connect to. In other words you need to create a new Microsoft
SQL Server user that maps to the already created Microsoft SQL Server login. To do so, expand
the database tree you want to give access rights to, locate the Security node and expand it, and
finally right-click on the Users node and select New User. Figure 18-5 shows the GUI that pops
up to create a new SQL Server user.

Figure 18-5

79301c18.indd 844 10/6/08 12:18:37 PM

845

Chapter 18: Best Practices for Securing ASP.NET Web Applications

What you need to fill in mainly is the username and login name that you have already created. In addi-
tion, you need to specify the database schema and role that this new user will be part of. The database
role you assign to the new user depends on your requirements. But always make sure to assign the
least privileges to the user that is needed to access the database.

If you have decided to use SQL Server authentication that specifies the username and password cre-
dentials inside the web.config configuration file you should protect the connection strings’ section by
encrypting it and never leaving the credentials stored as clear text. It is true that in ASP.NET all HTTP
requests to the web.config file are blocked, but if an attacker was able to get access into the web server
by any chance, then they will be able to steal the configuration settings of the application, which might
contain sensitive information. Since ASP.NET 2.0 you can encrypt several sections inside the machine​
.config and web.config configuration files. You should be aware that encrypting these sensitive sec-
tions is safe and recommended, but at runtime, ASP.NET pages has to decrypt these sections on its own
to be able to access the settings in clear text. Thus, there is some overhead in decrypting these sections.
That is why you should only encrypt configuration sections that only contain sensitive information,
rather than encrypting all the configuration sections that ASP.NET allows you to encrypt.

Encrypt Your Data
You have two options when it comes to encrypting the connection strings’ configuration section and
other allowed sections: programmatically through code or using the aspnet_regiis.exe command-
line tool. The .NET Framework 2.0, which ASP.NET 2.0 depends on in its core engine, has added sup-
port to encrypting several configuration sections based on the provider model, which allows you to
develop your own providers to encrypt/decrypt the configuration sections. ASP.NET 3.5 ships with
two main concrete provider implementations:

The❑❑ Windows Data Protection API (DPAPI) Provider: This provider is based on the built-in
cryptography capabilities provided by Windows and is represented by the DataProtection​
ConfigurationProvider class. The provider can be configured to use either machine store or
user store to keep the keys used by the provider for encryption/decryption stored safely.

RSA Protected Configuration Provider: ❑❑ This is the default provider that uses RSA public key
encryption to encrypt/decrypt the configuration sections and is represented by the RSAProtected​
ConfigurationProivider class. This provider requires that you create key containers to hold
the public and private keys used for the encryption/decryption process.

This section shows you how you can encrypt/decrypt the connection strings’ configuration section,
but only the DPAPI provider is demonstrated. You can learn more on how to use the DPAPI provider
from MSDN at http://msdn.microsoft.com/en-us/library/ms998280.aspx. In addition, if you
require more reading on how to use the RSA provider to encrypt/decrypt configuration sections, you
can check the article at http://msdn.microsoft.com/en-us/library/ms998280.aspx. The infor-
mation in both articles applies both to ASP.NET 3.5 and ASP.NET 2.0.

With the DPAPI provider you have the choice of using either machine-level key storage or user-level key
storage. The machine-level storage is best used when you have a dedicated server hosting a single applica-
tion or you have multiple applications hosted on the same server and you want those applications to share
the same sensitive encrypted data. On the other hand, the user-level key storage is best suited for scenar-
ios where you run your application in a shared hosting environment and you want to make sure that the
application’s encrypted sensitive information are not accessible to other applications hosted on the same
server. This, of course, requires that every application runs in the context of its own security identity.

79301c18.indd 845 10/6/08 12:18:37 PM

846

Chapter 18: Best Practices for Securing ASP.NET Web Applications

As previously there are two options to encrypt/decrypt the connection strings’ configuration section: pro-
grammatically through code or using the aspnet_regiis.exe command-line tool. The first example cov-
ers encrypting/decrypting the connection strings’ configuration section using the aspnet_regiis.exe
command-line tool, which can be found in %WINDOWSDIR%\Microsoft.Net\Framework\version
directory.

The connection strings’ configuration section to encrypt is as follows:

<connectionStrings>
<add
 name=”aspnetdbConnectionString”
 connectionString=”DataSource=.\SQL2005;Initial Catalog=aspnetdb;Integrated
Security=True”
 providerName=”System.Data.SqlClient”
/>
</connectionStrings>

The above configuration section is stored as clear text inside the web.config configuration file. To
encrypt the above section, type the following on the command prompt:

aspnet_regiis.exe
 -pef “connectionStrings”
 “C:\inetpub\wwwroot\379301_code\379301ch_18_code\cs\SecureDataAccess”
 -prov “DataProtectionconfigurationProvider”

The –pef switch is used to specify which configuration section you want to encrypt. You should then
specify the physical path to the application to encrypt its configuration section. You could have speci-
fied the virtual path to the application, but then you would have used the –pe switch instead. Finally,
you need to specify the provider you want to use to encrypt the configuration section by using the
–prov switch.

After running the preceding command and opening the web.config configuration file, you will find
the connection strings’ configuration section encrypted as follows:

 <connectionStrings configProtectionProvider=”DataProtectionConfigurationProvid
er”>

 <EncryptedData>

 <CipherData>

<CipherValue>AQAAANCMnd8BFdERjHoAwE/Cl+sBAAAAdJbPl/G61UujsKYD/6KQEAQAAAACAAAAAAADZg
AAqAAAABAAAAA7zkWjDCLWe1ak33bIbX++A
AAAAASAAACgAAAAEAAAADZeRBFE7/O1BTpRrTJ4OUiwAQAA/o56qJKow745/
QfrQShyM1TNiL4Mz2nkhdWWc9EJO7i4L9uFR/TTljLdbvov4hGEdR7nqzk
ua9+g+hJpSmikQh7Q6J40c678sClIu15p0JbpxT9jrUl3jPQT8oQmqA3pR1GoNtXQcUgfWds081T5YxYHUw
V5lbX2djUG3Aj3F+V/6uQvZUV8KMZS/zahD
IignByfjGYD4z4eUxIa+tTJW0vxDWhQPKpfiUH77fqvVFpcO2O8Nk+kkxGC4QBviNH+unriwTLAlDw7BGEZ
haqp1jA6N14HZkTg+hJNubaHWyb5yI2jZs9
xmdNngIdioHVEma82gCeh9zUwa5GwRh2c/MwLUbEGsiZEK1tGjYNLiTmWAYtu1/Muj4Lb53AAq9n7+dSuId
tXcmCPSinprCKi1yvaMIpteFHrBzMj0bk1O
NnDH4rXGxYu9Ync0I30zi5/g5TQCg7Ib7OagDaSHGVsLDqSmXzYjPo6/4o/miIWcR/
vXORoPlpx8J2r5G5LKuCyyW1OJbXJdGydntmnFuMzQ7iBtSxC5B5
NgGLn3MVKycsFMCRIzrgd+isWRxP8yLCpFAAAACUqhqidrDUelY2c/+xYYNA+JEpW</CipherValue>

79301c18.indd 846 10/6/08 12:18:37 PM

847

Chapter 18: Best Practices for Securing ASP.NET Web Applications

 </CipherData>

 </EncryptedData>

 </connectionStrings>

As a developer, you do not need to do any decryption when it comes time to access and use the connec-
tion string inside your code. ASP.NET will automatically decrypt the connection string and uses it to
access the database.

You can also use the same command-line to decrypt the encrypted connection strings’ configuration
section as follows:

aspnet_regiis.exe -pdf “connectionStrings” “C:\inetpub\wwwroot\379301_code\379301
ch_18_code\cs\SecureDataAccess”

The –pdf switch is used to decrypt a configuration section when the physical path of the application
is specified. When you specify the virtual path for the application you should use the –pd switch to
decrypt the configuration section you previously encrypted.

The above example used the machine-level storage area to encrypt the connection strings’ configura-
tion, but you can also use a user-level storage store. The user-level storage procedure is not covered
here, so you can check it out in the article mentioned few paragraphs earlier.

As previously mentioned, you can do the same encryption programmatically with few lines of code:

C#
// Open the web.config file
Configuration config =
 WebConfigurationManager.OpenWebConfiguration(Request.ApplicationPath);

// Get the connectionStrings configuration section
ConfigurationSection section = config.GetSection(“connectionStrings”);

// If the section is present and not already protected
// encrypt it
if (section != null && !section.SectionInformation.IsProtected)
{
 section.SectionInformation.ProtectSection(“DataProtectionConfigurationProvider”);
 // Save the changes
 config.Save();
}

VB.NET
 ‘ Open the web.config file
Dim config As Configuration = _
 WebConfigurationManager.OpenWebConfiguration(Request.ApplicationPath)

 ‘ Get the connectionStrings configuration section
 Dim section As ConfigurationSection = config.GetSection(“connectionStrings”)

79301c18.indd 847 10/6/08 12:18:37 PM

848

Chapter 18: Best Practices for Securing ASP.NET Web Applications

 ‘ If the section is present and not already protected
 ‘ encrypt it
 If section IsNot Nothing _
 AndAlso (Not section.SectionInformation.IsProtected) Then
 section.SectionInformation. _
 ProtectSection(“DataProtectionConfigurationProvider(“)”)

 ‘ Save the changes
 config.Save()
 End If

The code above opens the application’s web.config configuration file and retrieves the <connection​
Strings> configuration section. It checks if the section is not null and it is not already protected, if both
conditions are true then the configuration section is encrypted using the ProtectSection() method
that is part of the SectrionInformation public property on the ConfigurationSection class.

To decrypt the encrypted connection strings’ configuration section above, you use similar code:

C#
 // Open the web.config file
 Configuration config =
 WebConfigurationManager.OpenWebConfiguration(Request.ApplicationPath);

 // Get the connectionStrings configuration section
 ConfigurationSection section = config.GetSection(sectionName);

 // If the section is present and already protected
 // decrypt it
 if (section != null && section.SectionInformation.IsProtected)
 {
 section.SectionInformation.UnprotectSection();
 // Save the changes
 config.Save();
 }

VB.NET
 ‘ Open the web.config file
 Dim config As Configuration = _
 WebConfigurationManager.OpenWebConfiguration(Request.ApplicationPath)

 ‘ Get the connectionStrings configuration section
 Dim section As ConfigurationSection = config.GetSection(sectionName)
 ‘ If the section is present and already protected
 ‘ decrypt it
 If section IsNot Nothing _
 AndAlso section.SectionInformation.IsProtected Then

 section.SectionInformation.UnprotectSection()
 ‘ Save the changes
 config.Save()
 End If

79301c18.indd 848 10/6/08 12:18:37 PM

849

Chapter 18: Best Practices for Securing ASP.NET Web Applications

The preceding code starts by opening the application’s web.config configuration file and retrieving
the connectionStrings configuration section. The code then checks if the configuration section is
not null and that is already protected or encrypted. If this is true, then the configuration section is
decrypted back to clear text.

Finally, you can configure the communication between the ASP.NET application and the Microsoft SQL
Server with a Socket Secure Layer (SSL). This provides an encrypted channel between the two parties
and makes sure the connection string’s credentials are passed as encrypted across the wire, which adds
another layer of safety and security for the credentials and database access. To learn more on installing
a certificate on a server that is running either Microsoft SQL Server 2000 or Microsoft SQL Server 2005
and how to enable SSL communication on a connection-string, see http://support.microsoft.com/
default.aspx?scid=kb;en-us;316898

SQL Injection Attacks
SQL injection is one of the popular attacks that might severely harm your application and in par-
ticular the backend database store. SQL injection occurs when an attacker succeeds in injecting SQL
commands into input fields and the application fails to correctly validate user input. It is mostly spread
among applications or pages that construct dynamic SQL queries and simply concatenates the user
input into the queries without having any (or poor) input validation.

This is a severe threat because an attacker is able with SQL injection to execute SQL commands on the
database server using the application’s login privileges. It gets worse when the application, by mistake,
is using a database user account that has high privileges, for example, the privilege to delete a database.
The common vulnerabilities that make SQL injection possible in your application are:

Improper❑❑ user input validation.

Constructing dynamic SQL queries using simple string concatenation.❑❑

Configuring an application with an over-privileged database login.❑❑

Assume that you have a database table called Employees, with EmployeeID, EmployeeName, and
EmployeeEmail as columns. An aspx page displays a simple form with a single textbox that users can
use to type in the Employee ID and accordingly check the details of the employee record. The code
behind the form constructs the query dynamically by concatenating the input coming from the user
input as follows:

SELECT
 EmployeeName AS [Name], EmployeeEmail AS Email
FROM
 Employees
WHERE
 EmployeeID = 1

An employee record is selected whose employee ID is “1”. Now suppose the user entered some other
type of input:

SELECT
 EmployeeName AS [Name], EmployeeEmail AS Email
FROM
 Employees

79301c18.indd 849 10/6/08 12:18:37 PM

850

Chapter 18: Best Practices for Securing ASP.NET Web Applications

WHERE
 EmployeeID = ‘’ OR ‘’=’’

In other words, the user entered two single quotes, followed by a space, an OR, followed by a space, two
single quotes, an equal symbol, and finally followed by two single quotes. The first two single quotes
check for an Employee ID that is empty. However, the presence of the OR makes the WHERE clause evalu-
ate the rest of the query after the OR. In this case, a single quote equals a single quote, so the above query
selects all records in the Employees table and not just a single record. This is a simple example that shows
how an attacker can exploit your database server and retrieve data that they are not entitled to access! A
more serious example is the following:

SELECT
 EmployeeName AS [Name], EmployeeEmail AS Email
FROM
 Employees
WHERE
 EmployeeID = ‘’; DROP TABLE Employees

The user has entered two single quotes, a semicolon telling the Microsoft SQL Server that the first
query ends and a new query is about to start, and finally a DROP statement to drop the Employees
table. The above query executes smoothly and then deletes the Employees data table.

The above are just examples of SQL injection. The attacks can go even further and be more dangerous. There
is an SQL Injection Cheat Sheet at http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/
that you might be interested in looking at that provides detail to many SQL injections in ASP.NET, Micro-
soft SQL Server, and even other platforms and technologies. The next few sections show you how to pro-
tect an application from SQL injection.

Constrain User Input
An earlier section was dedicated to validating user input. The first step in protecting against SQL injec-
tion is to validate user input and make sure the input is safe and correct. As mentioned earlier, you
need to validate the type, format, length, and range of the input data by using, for example ASP.NET
validation controls like RegularExpressionValidator and the RangeValidator. In addition, you
can use several techniques that were mentioned above, including the Regex class to validate against
regular expressions on the server-side code.

C#
<%@ Page language=”C#” %>
<form id=”form1” runat=”server”>
 <asp:TextBox ID=”txtEmployeeID” runat=”server”/>
 <asp:RegularExpressionValidator ID=”regexpEmployeeID” runat=”server”
 ErrorMessage=”Incorrect Employee ID”
 ControlToValidate=” txtEmployeeID “
 ValidationExpression=”^\d{2}$” />
</form>

VB.NET
<%@ Page language=”VB” %>
<form id=”form1” runat=”server”>
 <asp:TextBox ID=”txtEmployeeID” runat=”server”/>

79301c18.indd 850 10/6/08 12:18:37 PM

851

Chapter 18: Best Practices for Securing ASP.NET Web Applications

 <asp:RegularExpressionValidator ID=”regexpEmployeeID” runat=”server”
 ErrorMessage=”Incorrect Employee ID”
 ControlToValidate=” txtEmployeeID “
 ValidationExpression=”^\d{2}$” />
</form>

The preceding HTML markup use the RegularExpressionValidator control to validate the EmployeeID
textbox to make sure it only accepts integers with a maximum length of two. Hence, any attempt by the
attacker to inject SQL commands will fail. Again, remember that you should not count on client-side valida-
tion only. Follow the detailed steps above to make sure the validator controls run again on the server-side.

If, on the other hand, you are using HTML input controls and not ASP.NET server controls, or you
decided to validate with code, then you can use the Regex class to perform the validation as follows:

C#
if (Regex.IsMatch(this.txtEmployeeID, “^\d{2}$”))
 throw new FormatException(“Invalid Employee ID”);

// Data is safe!

VB.NET
If Regex.IsMatch(Me.txtEmployeeID, “^\d{2}$”) Then
 Throw New FormatException(“Invalid Employee ID”)
End If

‘ Data is safe!

The above code throws an exception if the entered input for the EmployeeID textbox is anything other
than two integers.

Use Parameters
When working with dynamic SQL queries and stored procedures, use parameters instead of directly
concatenating the user input inside the queries or stored procedure’s input parameters. Parameters con-
vert the input data into literal values and prevent the input data from being executed in case it contains
any SQL commands injected by the user.

Using stored procedures while accessing the database is strongly recommended and should be used
side-by-side with parameters to prevent SQL injection:

C#
 DataSet employeeDataset = new DataSet();
 SqlDataAdapter myCommand = new SqlDataAdapter(
 “GetEmployeeByIDStoredProcedure”, connection);
 myCommand.SelectCommand.CommandType = CommandType.StoredProcedure;
 myCommand.SelectCommand.Parameters.Add(“@EmployeeID”, SqlDbType.Int, 2);
 myCommand.SelectCommand.Parameters[“@EmployeeID”].Value =
 this.txtEmployeeID.Text;
 myCommand.Fill(employeeDataset);

79301c18.indd 851 10/6/08 12:18:38 PM

852

Chapter 18: Best Practices for Securing ASP.NET Web Applications

VB.NET
 Dim employeeDataset As New DataSet()

 Dim myCommand As New _
 SqlDataAdapter(“GetEmployeeByIDStoredProcedure”, connection)

 myCommand.SelectCommand.CommandType = CommandType.StoredProcedure
 myCommand.SelectCommand.Parameters.Add(“@EmployeeID”, SqlDbType.Int, 2)

 myCommand.SelectCommand.Parameters(“@EmployeeID”).Value =
 Me.txtEmployeeID.Text()

 myCommand.Fill(employeeDataset)

Assuming the stored procedure GetEmployeeByIDStoredProcedure is a stored procedure that accepts
as input a parameter called EmployeeID, the code above creates a new instance of the SqlDataAdapter,
then adds a SqlParameter instance into the collection of parameters on the SelectCommand of the
adapter. The parameter added maps the value entered into the EmployeeID textbox to the stored pro-
cedure parameter as a literal string. Using the parameter also gives you the chance to specify and
limit the type of the parameter to an integer having a length of two digits.

You can and should use parameters also when it comes to working with dynamic SQL queries. This
again provides a shield against SQL injection:

C#
DataSet employeeDataset = new DataSet();

SqlDataAdapter myCommand =
 new SqlDataAdapter(
 “SELECT EmployeeID, EmployeeName,
 EmployeeEmail FORM Employees WHERE EmployeeID = @EmployeeID”,
 connection);

myCommand.SelectCommand.Parameters.Add(“@EmployeeID”, SqlDbType.Int, 2);

myCommand.SelectCommand.Parameters[“@EmployeeID”].Value =
 this.txtEmployeeID.Text;

myCommand.Fill(employeeDataset);

VB.NET
 Dim employeeDataset As New DataSet()

 Dim myCommand As New SqlDataAdapter(_
 “SELECT EmployeeID, EmployeeName,EmployeeEmail FORM “ & _
 “Employees WHERE EmployeeID = @EmployeeID”, _
 connection)

 myCommand.SelectCommand.Parameters.Add(“@EmployeeID”, SqlDbType.Int, 2)

 myCommand.SelectCommand.Parameters(“@EmployeeID”).Value = _

79301c18.indd 852 10/6/08 12:18:38 PM

853

Chapter 18: Best Practices for Securing ASP.NET Web Applications

 Me.txtEmployeeID.Text()

 myCommand.Fill(employeeDataset)

The same code is used when dealing with dynamic queries with one difference, which is that the query
is constructed dynamically without a call to a stored procedure. The input data needed by the query is
added the same as above by adding a parameter into the collection of parameters of the SelectCom-
mand of the SqlDataAdapter instance.

Additional Steps
There are times when you want to use dynamic SQL queries, yet you cannot use parameterized SQL
queries. For such cases, you need to escape some characters that may be a serious threat on the SQL
engine that processes the queries, for instance, the single quote. As you have seen, using a single quote
can change the entire scope of the query and attackers can make use of a single quote to execute harm-
ful commands on the database server. One way to get around this limitation is to escape a single quote
with two single quotes. This way, even if the input text contained an injection using a single quote,
replacing the single quote with two single quotes gets rid of the harmful effects:

C#
string safeEmployeeID = this.txtEmployeeID.Text.Replace(“‘“, “‘’”);

VB.NET
Dim safeEmployeeID As String = Me.txtEmployeeID.Text.Replace(“‘“, “‘’”)

As previously explained, it is always important to run your application with a least-privileged database
login. For instance, say an attacker succeeds in their SQL injection and the SQL command injected is
something like dropping a database table, or even the database itself. With a limited database account,
such a query will not get executed and will be rejected by the SQL query engine. So, using a least-privi-
leged user account to access a database is recommended.

Finally, it is important not to display any database server specific errors to the user. Usually, when-
ever your code wants to issue a call to the database server, you should place the calling code in a try/
catch block. If any error occurs during the communication with or inside the database server, the catch
block will catch the errors. In such cases your code should log the error first of all and maybe notify
an administrator by email about the exception or error that has occurred. The application at that time
should display to the user a friendly message informing them about an error that has occurred while
processing their request. The user should not be able to see any details about the exception, nor any
information about the database server.

Cross-Site Scripting
Cross-site scripting, also known as XSS or CSS, is a direct result of not having proper user input valida-
tion and failing to encode output to be displayed. The consequences of having improper input valida-
tion have been mentioned explicitly in detail. XSS is no different!

For instance, a user enters a public Forum, adds a post to a current or new thread that includes mali-
cious script. The application, if there is improper user input validation and/or encoding for data embed-
ded in the response, takes the input as is and stores it in the database. Now, any user who accesses the

79301c18.indd 853 10/6/08 12:18:38 PM

854

Chapter 18: Best Practices for Securing ASP.NET Web Applications

same page would have the malicious script executed silently when the application fails to encode the
response. The browser is not able to distinguish between harmful and safe scripts. Whatever response
the browser receives from the server is simply executed on the client-side. The malicious script could be
an annoying one like displaying a pop-up message. Other malicious scripts might be more harmful and
could steal stored authentication cookies and send them silently to the attacker.

An attacker usually looks for web applications that redisplay the text that was typed in the input fields
via the query string, especially in the case of a search engine, or even a failed trial to validate creden-
tials on a login page.

To protect against XSS, you should consider all input as malicious that requires input validation, encod-
ing for all output, in case it contains HTML characters, regardless of the source for such data.

Validating input has been thoroughly discussed. Accordingly, the input data should be well-validated
by checking that the correct type is received, the format of the input data is correct, and that the length
and range of values are acceptable. ASP.NET validation controls like RegularExpressionValidator
and RangeValidator play an important role in addition to the Regex class in the .NET framework that
you can use to validate HTML input fields on the server-side. Programmatic checking for the type of
input text can also be accomplished using the type-checking methods in the .NET framework like the
Int32.TryParse() method.

As discussed previously, always encode whatever input text you receive from the client-side. The .NET
framework provides the System.Web.HttpUtility.HtmlEncode() method to properly encode text
before it is processed, whether for storage into the database or storage into files. Encoding text that
includes HTML tags converts some of the tags into a different form. For instance, the space character
is converted to and the “<” character gets converted to <. In addition, if you need to embed
URLs in the response on the server you can use the System.Web.HttpUtility.UrlEncode() method
to properly encode the URL. Encoding not only covers the input fields, but also cookies, session variables,
query strings, and database access methods. Any source of input data can be a source of harm to your
applications.

When talking about encoding output to be displayed on the client-side, it is important to limit the ways
in which data entered by end-users can be represented by the application on the server-side. Using
a limited character set prevents malicious users from using canonicalization and multi-byte escape
sequences to bypass the input validation routines on the server-side code. ASP.NET allows you to
specify the character set in three different areas:

<meta http-equiv=”Content Type” content=”text/html; charset=ISO-8859-1” />

The first option is to use the HTML meta tag in the <head> section of an .aspx page. The above markup
line sets the character set of the page to ISO Latin 1 (ISO-8859-1), which is the default character set for
early versions of HTML and HTTP. In fact, the ISO Latin 1 is limited but it is recommended to use in
your pages.

<% @ Page ResponseEncoding=”ISO-8859-1” RequestEncoding=”ISO-8859-1” %>

The second way to specify the character set is to set the ResponseEncoding and RequestEncoding
properties on the .aspx page directive, as follows:

<configuration>
 <system.web>

79301c18.indd 854 10/6/08 12:18:38 PM

855

Chapter 18: Best Practices for Securing ASP.NET Web Applications

 <globalization
 requestEncoding=”iso-8859-1”
 responseEncoding=”iso-8859-1”/>
 </system.web>
</configuration>

The third way is to make use of the <globalization> section in the web.config configuration file.

Protecting against harmful user input starts by enabling the ValidateRequest public property on the
Page class. By default, request validation is enabled in any ASP.NET application. This property insures
that no harmful scripts or HTML tags can ever be sent from the client-side to the server-side. However,
as mentioned above, in some cases, there is a need to allow users to enter HTML formatting tags, for
example, in a Rich Text Editor. As discussed earlier, you can do some character conversions on the client-
side and convert back to the original text on the server-side! Enabling/disabling request validation
takes two forms. The first is shown here:

C#
<%@ Page Language=”C#” ValidateRequest=”false” %>

VB.NET
<%@ Page Language=”Vb” ValidateRequest=”false” %>

You can configure this property on a page-level as the code snippet shows. The second form is as
follows:

<system.web>
 <pages validateRequest=”true” />
</system.web>

This way, you can configure validation at the application-level by configuring the <pages> configuration
sections inside the web.config configuration file. Figure 18-6 shows the page that ASP.NET generates
when request validation is enabled and a user enters some HTML tags or any other JavaScript scripts.

Figure 18-6

79301c18.indd 855 10/6/08 12:18:38 PM

856

Chapter 18: Best Practices for Securing ASP.NET Web Applications

The ASP.NET and Application Consulting & Engineering (ACE) teams at Microsoft provided the
Microsoft Anti-Cross Site Scripting Library V1.5 encoding library that is designed to help developers
protect their web applications from cross-site scripting attacks. This library differs from other encoding
libraries in that it uses the principle-of-inclusions technique. This technique is similar to the concept of
whitelisting and it works by defining a set of allowable or valid set of characters and encoding anything
outside this set:

C#
namespace Microsoft.Application.Security
{
 public class AntiXss {

 public static string HtmlEncode(string s);
 public static string HtmlAttributeEncode(string s);
 public static string JavaScriptEncode(string s);
 public static string UrlEncode(string s);
 public static string VisualBasicScriptEncode(string s);
 public static string XmlEncode(string s);
 public static string XmlAttributeEncode(string s);
 }
}

VB.NET
Namespace Microsoft.Application.Security
 Public Class AntiXss
 Public Shared Function HtmlAttributeEncode(ByVal s As String) As String
 Public Shared Function HtmlEncode(ByVal s As String) As String
 Public Shared Function JavaScriptEncode(ByVal s As String) As String
 Public Shared Function UrlEncode(ByVal s As String) As String
 Public Shared Function VisualBasicScriptEncode(ByVal s As String) As String
 Public Shared Function XmlAttributeEncode(ByVal s As String) As String
 Public Shared Function XmlEncode(ByVal s As String) As String
 End Class
End Namespace

This code shows the set of methods that are available by the library that you can use to protect against
the input you receive from end-users, and to properly send encoded data to the client-side.

The HtmlEncode() method is used to encode text that is to be displayed in the context of HTML. The
container that will hold the encoded text can be any ASP.NET server control that can display text:

C#
this.lblName.Text =
 Microsoft.Security.Application.AntiXss.HtmlEncode(
 this.txtName.Text);

VB.NET
 Me.lblName.Text = _
 Microsoft.Security.Application.AntiXss.HtmlEncode(_

79301c18.indd 856 10/6/08 12:18:38 PM

857

Chapter 18: Best Practices for Securing ASP.NET Web Applications

 Me.txtComments.Text)

The HtmlEncode() method can also be used when displaying text directly inside HTML tags using
<%= %> block:

<% = Microsoft.Security.Application.AntiXss.HtmlEncode(this.txtName.Text) %>

The HtmlAttributeEncode() method is used to encode attributes when embedding HTML elements
into the page and specifying its attributes that might be used by attackers to send malicious and harm-
ful scripts to the server:

C#
this.ltSeperator.Text =
 “<hr noshade size=” +
 Microsoft.Security.Application.AntiXss.HtmlAttributeEncode(
 this.txtSizeInPixels.Text)+
 ”>”;

VB.NET
Me.ltSeperator.Text = _
 “<hr noshade size=” & _
 Microsoft.Security.Application.AntiXss.HtmlAttributeEncode(_
 Me.txtSizeInPixels.Text) & _
 “>”

This example shows how to safely encode HTML attributes when embedding dynamic HTML elements
on the page.

The other methods available in the library are used in the same manner as the above sample methods.
You can read more about the Anti-Cross Site Scripting library by reading the article on MSDN at:
http://msdn.microsoft.com/en-us/library/aa973813.aspx.

Cross-Site Request Forgery
Cross-site request forgery, also known as CSRF or see surf, is an attack that exploits the trust between a
web application and an authenticated and trusted user. What happens is that the attacker makes use of
the trust between the user and the application and sends harmful HTTP requests through the trusted
user to the application. In other words, the trusted user, on behalf of the attacker, sends an HTTP request
to the server without knowing or noticing that they are sending a harmful request. The attacker in this
case is able to make use of the victim, the user, to send harmful requests to the server.

Most of the attacks caused by CSRF are caused by embedding the HTML image tag on a page and set-
ting its source to a page inside the application to perform or execute some code inside that page. Before
giving an example on a CSRF attack, it is important to mention few concepts about how a browser inter-
prets a response from the server.

When a browser receives a response from the server, it goes through the HTML and starts executing
every line. If there is an HTML image tag embedded in the response, the browser issues a GET request

79301c18.indd 857 10/6/08 12:18:38 PM

858

Chapter 18: Best Practices for Securing ASP.NET Web Applications

to retrieve the content of the image from the server and then continues interpreting and executing the
rest of the HTML content inside the original response.

For instance, when you want to embed an HTML image on a page you would add something like this:

As mentioned above, most of the CSRF attacks are done through HTML images by setting the source of
the image to something as in the following markup:

 <form id=”form1” runat=”server”>
 <div>

 <asp:Button ID=”btnSubmit” runat=”server” Text=”Submit” />
 </div>
 </form>

This markup is placed inside the CSRFPage.aspx page. As you can see, when you browse into this page,
the browser will send a GET request to the server to retrieve the content of the image placed in the HTML
and received from the server. The user (victim) using this page would not notice that they are doing
something harmful. In the above code, the request is sent to just another page. But imagine if the
request was for a page that executes some commands based on some query strings such as:

 <form id=”form1” runat=”server”>
 <div>
 <img
 src=”http://localhost:50814/CSRF/AccountManager.aspx?Acct=123289-212&Amount=1000”
 alt=””
/>

” runat=”server” Text=”Submit” />
 </div>
 </form>

If the AccountManager.aspx page is used to transfer money to other accounts in the bank based on
the query strings that include the account number to move the amount specified as a second query
string, then this would be very harmful. The user issuing this request is authenticated and authorized
from the application’s point of view and the application would not differentiate between a request sent
through accessing the page by typing the address on the browser or by an image requesting the page!

The way to “try” to get around the CSRF attack is to always use Request.Form[“key”]in C# or
Request.Form(“key”) in VB.NET instead of Request[“key”]in C# or Request(“key”) in VB.NET
when trying to access the Form fields. The Request[“key”]or Request(“key”) searches for keys in
both the GET and POST fields, whereas the Request.Form[“key”]or Request(“key”) searches only
among the POST fields (that is, fields inside the HTML form inside the current page). Even if the attacker
changes the form’s verb from POST to GET—thereby passing the form’s field to the server as a query
string—you will be on the safe side when accessing the form’s fields with the Request.Form[“key”]
or Request.Form(“key”).

Here is a sample code to show one of the solutions you can come up with to prevent CSRF attacks:

79301c18.indd 858 10/6/08 12:18:38 PM

859

Chapter 18: Best Practices for Securing ASP.NET Web Applications

C#
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!Page.IsPostBack)
 {
 ViewState[“token”] = new Guid();
 this.csrfToken.Value = ViewState[“token”].ToString();
 }
 else
 {
if (
 ((Request.Form[“csrfToken”] != null) &&
 (ViewState[“token”] !=null)) &&
 (Request.Form[“csrfToken”].ToString().Equals(ViewState[“token”].ToString()))
)
{
 // Valid Page
 Response.Write(“Safe Access”);
}
else
{
 Response.Write(“UnSafe Access”);
}
 }
 }

VB.NET
 Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs) _
 Handles Me.Load()

 If (Not Page.IsPostBack) Then
 ViewState(“token”) = Guid.NewGuid()
 Me.csrfToken.Value = ViewState(“token”).ToString()
 Else
 If ((Request.Form(“csrfToken”) IsNot Nothing) _
 AndAlso (ViewState(“token”) IsNot Nothing)) _
 AndAlso (Request.Form(“csrfToken”).ToString().Equals(_
 ViewState(“token”).ToString())) Then

 ‘ Valid Page
 Response.Write(“Safe Access”)
 ‘ Update the key for the new response
 ViewState(“token”) = Guid.NewGuid()
 Me.csrfToken.Value = ViewState(“token”).ToString()
 Else
 Response.Write(“UnSafe Access”)
 End If
 End If
 End Sub

The first important technique to follow is not to place any functional code inside the Page_Load()
method and to make sure to distinguish between a normal page request and a postback request. Every

79301c18.indd 859 10/6/08 12:18:38 PM

860

Chapter 18: Best Practices for Securing ASP.NET Web Applications

time an HTML image accesses the page (in the code shown above), the request will enter into the block
that says this is not a postback request. Thus, nothing serious will be done or executed except creating a
new GUID and setting the value of a hidden field on the page to this new GUID number as follows:

C#
 if (!Page.IsPostBack)
 {
 ViewState[“token”] = new Guid();
 this.csrfToken.Value = ViewState[“token”].ToString();
 }

VB.NET
 If (Not Page.IsPostBack) Then
 ViewState(“token”) = Guid.NewGuid()
 Me.csrfToken.Value = ViewState(“token”).ToString()
 End If

This postback check always makes sure that embedding the page’s URL into an HTML image will fail,
since the request will always be a normal request. Even if the ASP.NET Button control, that is shown on
CSRFPage.aspx, is clicked causing a postback request to the same page, when the browser renders the
result, the HTML image contacts the server again asking for the specified URL in its source. And once
again, it will not be handled as a postback to that URL, but as a normal request.

At this stage, making use of only the Request.Form[“key”]or Request.Form(“key”)indexer, as
shown in the following example, and checking for Page.IsPostBack are good methods for handling
CSRF attacks:

C#
 else
 {
if (
((Request.Form[“csrfToken”] != null) &&
 (ViewState[“token”] != null)) &&
(Request.Form[“csrfToken”].ToString().Equals(ViewState[“token”].ToString()))
)
 {
 // Valid Page
 Response.Write(“Safe Access”);
 }
 }

VB.NET
 Else
 If ((Request.Form(“csrfToken”) IsNot Nothing) _
 AndAlso (ViewState(“token”) IsNot Nothing)) _
 AndAlso (Request.Form(“csrfToken”).ToString().Equals(_
 ViewState(“token”).ToString())) Then
 ‘ Valid Page

79301c18.indd 860 10/6/08 12:18:38 PM

861

Chapter 18: Best Practices for Securing ASP.NET Web Applications

 Response.Write(“Safe Access”)
 End If

This code makes sure that the page handles any processing inside the block that says that this is a post-
back request. Hence, you are sure now that the page was displayed by the browser and that the user
clicked on one of the buttons on the page. A double check is done to make sure the token that was gen-
erated on the first request to the page is the same as the one stored inside the hidden field on the page.
This insures that the page is being accessed properly.

The important thing to remember here is to always make sure to process any command only when the
page posts back and not on the first access of the page. This prevents an attack that could be generated by
specifying some query strings where the page simply grabs the query strings and performs the action.
Also, checking for the token with the Request.Form[“csrfToken”]or Request.Form​(“csrfToken”)
indexer makes sure you are dealing with the fields populated out of a POST request. Although sending
silent POST requests might be possible with some sort of JavaScript and AJAX, following the whole pro-
cess discussed above might help in resolving CSRF attacks.

Finally, the end-users should also protect themselves by not allowing any web application to create a
persistent cookie when they log in to the application. When they are redirected to the login page they
should make sure not to select the Remember Me checkbox. If this checkbox is selected, this means a
persistent cookie has been created on the local machine. And this paves the way for CSRF attacks.

Handle Exceptions Properly
Exceptions and errors might happen anywhere in your application. Accessing a database, reading/writing
to the file system, processing input data, sending emails, and many other actions all may cause problems
at times. The first step in handling exceptions properly is to maintain a log of the problem that occurred
and, of course, informing the user that the action they were performing caused an error or exception in
the application. The important thing to keep in mind is to never send back to the client-side any details
about the exception that occurred. Showing details, such as the line of code that caused the error(s), the
database server name, or any other detail, could open your application up to potential attacks from
malicious users.

In ASP.NET 3.5 there are several ways to handle exceptions in an application. These are divided into three
categories as covered in the following sections.

<customErrors> Configuration Section
As you already know, the <customErrors /> configuration section is used by an application to either
display or hide details about the exceptions that occur inside it. The mode attribute of the <custom​
Errors /> configuration section determines how the application reacts to an exception. It can have
one of the following values:

On: ❑❑ With this option the application displays the default exception page that ASP.NET gener-
ates. Figure 18-7 shows the ASP.NET-generated error page that displays when the mode attri-
bute is set to On.

79301c18.indd 861 10/6/08 12:18:39 PM

862

Chapter 18: Best Practices for Securing ASP.NET Web Applications

Figure 18-7

The page, as you can see, tells you to set the value of the ❑❑ mode attribute to Off. Setting this
attribute to a value of Off allows the end-user to check the details about the exception using an
ASP.NET-generated error page. The value of On hides the details of the exception that occurred
locally and remotely. To configure an application with this mode, add the following configura-
tion section into the web.config configuration file:

 <customErrors mode=”On” />

Off: ❑❑ This value causes the ASP.NET application to generate a detailed exception page to inform
the only the local user about the exception that occurred in the application. In other words, with
this setting, only local users, i.e., you the developers, are able to see the details about the excep-
tion that occurred. Figure 18-8 shows a detailed error page that was generated by ASP.NET due
to an exception that occurred in the application.

As you can see from Figure 18-8, many details about the exception and the code-behind the ❑❑

page are shown and displayed, in addition to the call stack trace. An attacker could make harm-
ful use of such details to prepare a malicious attack on the application. That is why setting the
value of the mode attribute to Off allows only local developers to view such vital details on the
application and prevents remote users from viewing any of these details. To configure an appli-
cation with this mode add the following configuration section into the web.config configura-
tion file:

 <customErrors mode=”Off” />

RemoteOnly: ❑❑ With this value set, the detailed explanation on the errors and exceptions is dis-
played only for local users (i.e., you the developers). Remote users that are not viewing the
application on the same web server are not able to see the details of exceptions and errors. Only

79301c18.indd 862 10/6/08 12:18:39 PM

863

Chapter 18: Best Practices for Securing ASP.NET Web Applications

the ASP.NET default exception page is shown. To configure an application with this mode, add
the following configuration section into the web.config configuration file:

 <customErrors mode=”RemoteOnly” />

Figure 18-8

In addition the ❑❑ <customErrors /> configuration section has an optional attribute called
defaultRedirect that allows you to specify a custom error page to be displayed to users
instead of the default ASP.NET-generated page. To configure this attribute, add the following
into the web.config configuration file:

 <customErrors mode=”RemoteOnly” defaultRedirect=”GenericErrorPage.htm”>
</customErrors>

Furthermore, you can optionally specify error pages to display for specific error codes. For ❑❑

instance, you might want to show a customized error page when a resource inside the applica-
tion is not found, which causes the 404 error code. To configure such pages, you need to use the
<error> configuration section inside the <customErrors> configuration section as follows:

 <customErrors mode=”RemoteOnly” defaultRedirect=”GenericErrorPage.htm”>

 <error statusCode=”404” redirect=”FileNotFound.htm” /></customErrors>

You can add as many custom error pages as you want for specific error codes.❑❑

Try/Catch Blocks
In addition to using the <customErrors /> configuration section, you can make use of the Try/Catch
block that is offered by both the C# and VB.NET programming languages. The try/catch block can be
used effectively to handle exceptions in places that you think an exception might occur. This is different

79301c18.indd 863 10/6/08 12:18:39 PM

864

Chapter 18: Best Practices for Securing ASP.NET Web Applications

from the previously explained way of handling exceptions, where the <customErrors /> configuration
section is used to handle errors globally for both handled and unhandled exceptions. The try/catch block
is used to deal with handled exceptions.

For instance, any code written to access the database, file system, or any other source of data should be
placed inside a try/catch block. This way, if any error was generated during the operation, you would
be able to handle the exception and do whatever clean-up work is required. Here is an example of a
try/catch block:

C#
 try
 {
 FileStream fs = File.Open(“path-to-file”, FileMode.Open);
 }
 catch (ArgumentException argEcp)
 {
 // Log the exception
 }
 catch (IOException ioExp)
 {
 // Log the exception
 }
 catch (Exception ex)
 {
 // Log the exception
 }

VB.NET
 Try
 Dim fs As FileStream = File.Open(“path-to-file”, FileMode.Open)
 Catch argEcp As ArgumentException
 ‘ Log the exception
 Catch ioExp As IOException
 ‘ Log the exception
 Catch ex As Exception
 ‘ Log the exception
 End Try

This code tries to open a file located on the file system. This operation is risky and might produce several
exceptions that might result from a file not found or path not present on the current machine, in addition to
other exceptions that might occur while reading the file. Several catch statements are added starting from
the most specific exceptions that might occur down to the more general ones. This is the recommended
way of handling such exceptions. In every catch statement you need, first of all, to log the exception. After
that you might chose either to redirect the user to a custom error page located in your application or simply
re-throw the exception. Re-throwing the exception assumes that you have already setup the <custom​
Errors> configuration section, or you have implemented a global, programmatic way of dealing with
handled and unhandled exceptions in the application.

79301c18.indd 864 10/6/08 12:18:39 PM

865

Chapter 18: Best Practices for Securing ASP.NET Web Applications

Global Error Handling
ASP.NET offers another form of global error handling, side-by-side with the <customErrors /> config-
uration section. Global error handling can also be accomplished through code by using one of two major
events. The first event is the Application_Error event that is fired on the HttpApplication instance
whenever an error takes place within the application. As a developer, you can handle the implementa-
tion of the Application_Error event to deal with any exception. You can then log the exception, send
an email to the administrator informing them about the exception, and use any other techniques for
handling the exception.

You can implement the Application_Error event inside either the Global.asax file of the application
or by creating a new HttpModule and subscribing to the global Error event:

C#
 void Application_Error(object sender, EventArgs e)
 {
 // Get a reference to the source of the exception chain
 Exception exp = Server.GetLastError().GetBaseException();

 // Access all the details about the exception
 // and the page status when the error has occured
 string message = exp.Message;
 string source = exp.Source;
 string form = Request.Form.ToString();
 string queryString = Request.QueryString.ToString();
 string stackTrace = exp.StackTrace;

 // Optional: Add the exception details into the Event log

 // Optional: Send an email to the administrator with details
 // about the exception
 }

VB.NET
 Sub Application_Error(ByVal sender As Object, ByVal e As EventArgs)
 ‘ Get a reference to the source of the exception chain
 Dim exp As Exception = Server.GetLastError().GetBaseException()

 ‘ Access all the details about the exception
 ‘ and the page status when the error has occured
 Dim message As String = exp.Message
 Dim source As String = exp.Source
 Dim form As String = Request.Form.ToString()
 Dim queryString As String = Request.QueryString.ToString()
 Dim stackTrace As String = exp.StackTrace

 ‘ Optional: Add the exception details into the Event log

 ‘ Optional: Send an email to the administrator with details
 ‘ about the exception
 End Sub

79301c18.indd 865 10/6/08 12:18:39 PM

866

Chapter 18: Best Practices for Securing ASP.NET Web Applications

This implementation starts by collecting the exception that was raised in the application and then
extracting the details of the exception. Then you can handle these details the way you want by either
logging the exception into the Windows Event Log, send an email to the administrator, or any other
way you may see it fit in this context.

This explains how to handle errors and exceptions on the application level. ASP.NET also allows you to
handle exceptions and errors on the page-level. If you choose to handle exceptions on the page-level, then
you need to implement the Page_Error event that is fired as part of the page life-cycle events. In this
case, when an exception takes place, the ASP.NET runtime first checks to see if the page implements the
Page_Error event. If this event is implemented, then the event handler for this error is executed. It also
continues to check if the application global error event is also implemented and if so, executes it. You
should implement one of those two events and not both of them. Either you place the Page_Error
implementation in a base class that all pages inherit from, or you implement the Application_Error
event inside the Global.asax file or inside a custom HttpModule. The same code is used for both cases,
which makes it easier on you to decide on the way to handle global and page errors inside your
application.

Guard Against Denial-of-Service Threats
In a denial-of-service (DOS) attack, an attacker floods the web server, hosting the web application, with
a concentrated amount of requests causing the web server to reach its limit to serve any more requests.
Thus, the web server will break down and will not be able to serve any legitimate user.

For instance, say the attacker is using DOS to attack a portal webpage that requires a lot of resources to
be built on the server. And assume that the attacker is clearing out all the cookies that were generated
by the portal page (so that less work is required on next visits from the same user). Then the sever will
be using the same amount of resources in accessing the page, since requesting a portal page having
all the generated cookies on the client-side deleted, means the page will redo the same tasks on every
page request. Thus, the harm is doubled; because there is a limit that a web server can allow to accept
requests and, of course, there is heavy work being done by the web application for the same page with
multiple visits in a DOS attack.

It is very easy to simulate a DOS attack by executing the following piece of code:

C#
 while (true)
 {
 // WebClient used to send/receive
 // data from resources that are
 // identitifed by a URI
 System.Net.WebClient wb =
 new System.Net.WebClient();

 // Send request for DOS application
 wb.DownloadString(“http://localhost:63626/DOS/Default.aspx”);
 }

VB.NET
 Do
 ‘ WebClient used to send/receive

79301c18.indd 866 10/6/08 12:18:39 PM

867

Chapter 18: Best Practices for Securing ASP.NET Web Applications

 ‘ data from resources that are
 ‘ identitifed by a URI
 Dim wb As New System.Net.WebClient()

 ‘ Send request for DOS application
 wb.DownloadString(“http://localhost:63626/DOS/Default.aspx”)
 Loop

This code sends an infinite number of requests for the http://www.asp.net/ website. If the web
application being requested was not protected against DOS, at some point, the application will break
down and will not be able to handle any further requests.

One of the solutions or precautions that you can take to help in mitigating DOS attacks is by building a
solution based on the ASP.NET cache. What you need is a solution that keeps track of the number of hits
in a certain amount of time based on the client IP address:

C#
public static class DOSHelper
{
 #region Constants
 /// <summary>
 /// Duration used to reset the
 /// number hits by a client IP
 /// thus allwoing normal processing for the web application
 /// </summary>
 private const double DURATION = 1;

 /// <summary>
 /// Number of allowed hits by a specific
 /// client IP during a Duration.
 /// </summary>
 private const int ALLOWED_HITS = 10;
 #endregion

 #region Methods
 public static bool IsDOS()
 {
 // Get the HttpContext
 HttpContext context = HttpContext.Current;

 // Prepare the key for the cache
 string key = context.Request.UserHostAddress;

 // Get number of hits from the cahe
 int numberOfHits = 0;
 if (context.Cache[key] == null)
 numberOfHits++;
 else
 numberOfHits = int.Parse(context.Cache[key].ToString());

 // If the limit is exceeded
 if (numberOfHits > ALLOWED_HITS)
 return true;
 else

79301c18.indd 867 10/6/08 12:18:39 PM

868

Chapter 18: Best Practices for Securing ASP.NET Web Applications

 numberOfHits++;

 // First time visit, start tracking
 // the number of visits
 if (numberOfHits == 1)
 {
 context.Cache.Add(
 key,
 numberOfHits,
 null,
 DateTime.Now.AddMinutes(DURATION),
 System.Web.Caching.Cache.NoSlidingExpiration,
 System.Web.Caching.CacheItemPriority.Normal,
 null);
 }
 else
 {
 context.Cache[key] = numberOfHits.ToString();
 }

 return false;
 }
 #endregion
}

VB.NET
Public NotInheritable Class DOSHelper
 #Region “Constants”
 ‘’’ <summary>
 ‘’’ Duration used to reset the
 ‘’’ number hits by a client IP
 ‘’’ thus allwoing normal processing for the web application
 ‘’’ </summary>
 Private Const DURATION As Double = 1

 ‘’’ <summary>
 ‘’’ Number of allowed hits by a specific
 ‘’’ client IP during a Duration.
 ‘’’ </summary>
 Private Const ALLOWED_HITS As Integer = 10
 #End Region

 #Region “Methods”
 Private Sub New()
 End Sub
 Public Shared Function IsDOS() As Boolean
 ‘ Get the HttpContext
 Dim context As HttpContext = HttpContext.Current

 ‘ Prepare the key for the cache
 Dim key As String = context.Request.UserHostAddress

 ‘ Get number of hits from the cahe

79301c18.indd 868 10/6/08 12:18:39 PM

869

Chapter 18: Best Practices for Securing ASP.NET Web Applications

 Dim numberOfHits As Integer = 0
 If context.Cache(key) Is Nothing Then
 numberOfHits += 1
 Else
 numberOfHits = Integer.Parse(context.Cache(key).ToString())
 End If

 ‘ If the limit is exceeded
 If numberOfHits > ALLOWED_HITS Then
 Return True
 Else
 numberOfHits += 1
 End If

 ‘ First time visit, start tracking
 ‘ the number of visits
 If numberOfHits = 1 Then
 Context.Cache.Add(key, numberOfHits, Nothing, _
 DateTime.Now.AddMinutes(DURATION), _
 System.Web.Caching.Cache.NoSlidingExpiration, _
 System.Web.Caching.CacheItemPriority.Normal, _
 Nothing)
 Else
 context.Cache(key) = numberOfHits.ToString()
 End If

 Return False
 End Function
 #End Region
End Class

The DOSHelper class represents a utility class that contains a method to test against DOS attacks. The
class defines DURATION as a constant variable to hold the number of minutes used to cache consecutive
and repetitive requests from the same client IP. The other constant is the ALLOWED_HITS variable that
holds the number of maximum requests a client IP can perform during a certain duration of time.

The only method included in the class is IsDOS().

C#
 public static bool IsDOS()
 {
 // Get the HttpContext
 HttpContext context = HttpContext.Current;

 // Prepare the key for the cache
 string key = context.Request.UserHostAddress;

 // Get number of hits from the cahe
 int numberOfHits = 0;
 if (context.Cache[key] == null)
 numberOfHits++;
 else

79301c18.indd 869 10/6/08 12:18:39 PM

870

Chapter 18: Best Practices for Securing ASP.NET Web Applications

 numberOfHits = int.Parse(context.Cache[key].ToString());

 // If the limit is exceeded
 if (numberOfHits > ALLOWED_HITS)
 return true;
 else
 numberOfHits++;

 // First time visit, start tracking
 // the number of visits
 if (numberOfHits == 1)
 {
 context.Cache.Add(key, numberOfHits, null,
 DateTime.Now.AddMinutes(DURATION),
 System.Web.Caching.Cache.NoSlidingExpiration,
 System.Web.Caching.CacheItemPriority.Normal, null);
 }
 else
 {
 context.Cache[key] = numberOfHits.ToString();
 }

 return false;
 }

VB.NET
 Public Shared Function IsDOS() As Boolean
 ‘ Get the HttpContext
 Dim context As HttpContext = HttpContext.Current

 ‘ Prepare the key for the cache
 Dim key As String = context.Request.UserHostAddress

 ‘ Get number of hits from the cahe
 Dim numberOfHits As Integer = 0
 If context.Cache(key) Is Nothing Then
 numberOfHits += 1
 Else
 numberOfHits = Integer.Parse(context.Cache(key).ToString())
 End If

 ‘ If the limit is exceeded
 If numberOfHits > ALLOWED_HITS Then
 Return True
 Else
 numberOfHits += 1
 End If

 ‘ First time visit, start tracking
 ‘ the number of visits
 If numberOfHits = 1 Then
 Context.Cache.Add(key, numberOfHits, Nothing, _

79301c18.indd 870 10/6/08 12:18:40 PM

871

Chapter 18: Best Practices for Securing ASP.NET Web Applications

 DateTime.Now.AddMinutes(DURATION), _
 System.Web.Caching.Cache.NoSlidingExpiration, _
 System.Web.Caching.CacheItemPriority.Normal,
 Nothing)
 Else
 context.Cache(key) = numberOfHits.ToString()
 End If

 Return False
 End Function

The method starts by retrieving an instance of the HttpContext of the current request. After that, the
client IP address is stored in a local variable that is used later as the cache key to get the number of hits
from a client IP address in a specific duration of time.

The cache is checked to see if there is an existing record for the current IP accessing the application.
If not, this means that it is the first time the current IP is accessing the application. If there is a valid
record in the cache then it is retrieved and hence, the user has already visited the same application
during the DURATION time. A check is then performed to see if the number of hits is greater than the
allowed number, if so, then a false value is returned meaning that the user has reached the maxi-
mum allowed number of visits in a specific amount of time. If not, the method continues to execute
and checks if the number of hits is 1 and accordingly adds a new record into the cache, since this is
the first time the current client IP is accessing the application. Notice that the DURATION variable is
used as the absolute expiration of the cache record. Finally, if the number of hits is greater than 1 the
IP address record inside the cache is updated.

To check for DOS attacks, add the following checks into your page:

C#
 if (DOSHelper.IsDOS())
 {
 Response.Clear();
 Response.End();
 }

VB.NET
 If DOSHelper.IsDOS() Then
 Response.Clear()
 Response.End()
 End If

If the request is a DOS attack, clear the response and end it.

The idea here is that if the user exceeds the maximum allowed number of requests per a specific duration
of time, this is considered a DOS attack. As long as the specific duration of time has not expired yet, and
the user already exceeded the number of allowed requests, all requests performed by this specific user
are considered DOS attacks. Once the cache is expired, the same user can start again sending normal
requests to the application.

79301c18.indd 871 10/6/08 12:18:40 PM

872

Chapter 18: Best Practices for Securing ASP.NET Web Applications

Secure Data Transmission
The transmission of data between the client and server is done many times using plain text. This threat-
ens the data moved in and out to many threats across the network path. Attackers might be there sniff-
ing the data packets sent from client to server or vice versa to extract sensitive information that might
be used in a harmful and malicious way to attack the application.

For example, suppose you have a login page on your web application to authenticate users before access-
ing some parts of the application. In normal cases, the user will enter their credentials and submit the
form to the server for authentication. The credentials are sent across the wire as plain text. Therefore,
there is a possibility that the credentials may get stolen before they reach the server by attackers that
are sniffing the network.

To help protect sensitive data being interchanged between the client and server, use Secure Sockets
Layer (SSL). You can buy a legal certificate from many vendors online and install it on the server. Once
installed you force some of your sensitive .aspx forms to be accessed securely by using the https://
protocol when requesting any of them. Configuring sensitive pages within the application with SSL
makes sure that the data transmission between the client and server is done securely, and all data is
being encrypted properly so that no plain text is passed across the wire. This makes it nearly impos-
sible for any attacker to have access to the data being transmitted.

AJAX-Enabled Application Threats
The introduction of Web 2.0 and the need for AJAX techniques to improve responsiveness and user
experience have made the web application more vulnerable to attack. This section discusses some of the
threats that an AJAX-enabled application might face from attacks. The focus is on the ASP.NET AJAX
3.5 when discussing the different threats that an AJAX-enabled Web application faces.

Information Leakage
As you know, ASP.NET AJAX allows the client-side JavaScript code to call web methods that are located
in web services on the server-side. Hence, a JavaScript function on the browser can call asynchronously
a web service, as if the server-side method is on the client-side. When you add a reference to a web ser-
vice into the ScriptManager instance on the page, the ASP.NET AJAX engine creates a client-side proxy
class similar to the server-side proxy class. And your JavaScript code now has a client-side class that
acts as a proxy to the web service on the server-side.

The proxy class contains the methods that your client-side code can call from the browser using
JavaScript. To view the client-side proxy, run the web service in a browser and append the /js exten-
sion to the web service URL. This URL is the URL of the client-side proxy class. It lists all the meth-
ods of the web service in the form of JavaScript functions that you can call asynchronously from the
client-side. ASP.NET AJAX brought great flexibility to web applications, since more functionality is
now exposed to the client-side code. Thus, the pressure is getting lighter on the server-side and fewer
resources are needed to execute such calls, since there is no page life-cycle anymore to execute on the
server, when a web method is called by the client-side code.

However, nothing comes without a cost! By exposing more functionality in your application to the
client-side, you are potentially giving an attacker deep insight into your system’s functionality. The

79301c18.indd 872 10/6/08 12:18:40 PM

873

Chapter 18: Best Practices for Securing ASP.NET Web Applications

attacker now can check a complete list of the server-side methods available together with information
about the expected input parameters. This is really a problem. An attacker can now benefit from all the
threats discussed from the beginning of this chapter and send their malicious attacks using other tech-
niques than those that are available in a traditional web application.

The following JavaScript code represents the client-side proxy class for a web service called Web​
Service.asmx. The web service contains a single method called HelloWorld() and, as you can see,
the HelloWorld() method has been added as a JavaScript function inside the client-side proxy class.
JavaScript functions can now call the functions on the client-side proxy, which are internally submitted
as asynchronous calls to the web server.

var WebService=function() {
WebService.initializeBase(this);
this._timeout = 0;
this._userContext = null;
this._succeeded = null;
this._failed = null;
}
WebService.prototype={
HelloWorld:function(
 succeededCallback,
 failedCallback,
 userContext) {

 return this._invoke(
 this._get_path(),
 ‘HelloWorld’,
 false,
 {},
 succeededCallback,
 failedCallback,
 userContext);
 }
}
WebService.registerClass(‘WebService’,Sys.Net.WebServiceProxy);

In an attempt to get around this threat, you should always separate the web methods to be called by
AJAX from those that your application uses. In other words, place all the web methods that are to be
called from the client-side code into a separate class and keep the web methods called by your .aspx
pages separated in another class. This way, you can minimize the functionality that is exposed to the
client-side and that is not needed by AJAX.

In addition, you should turn off Web Services Description Language (WSDL) for the web services that
are to be called by AJAX. WSDL usually allows the developer to discover information about the available
web services. When working with AJAX there is no need for the client-side code to know such informa-
tion. The client-side code is required to call web methods that are located in internal web services only.
This is by default the nature of the XmlHttpRequest class that allows calls only to local URLs and this
is called same origin policy. Turning WSDL on can only help the attacker in discovering and revealing
the web services available in your application. The following configuration shows you how to turn off
WSDL by simply removing the element Documentation.

<configuration>
 <system.web>

79301c18.indd 873 10/6/08 12:18:40 PM

874

Chapter 18: Best Practices for Securing ASP.NET Web Applications

 <webServices>
 <protocols>
 <remove name=”Documentation”/>
 </protocols>
 </webServices>
 </system.web>
</configuration>

When working with AJAX, the developer now spends more time in writing JavaScript code. The
developer tends to add many comments while developing. Adding comments to the server-side is not
a problem at all and is recommended. However, when it comes to writing comments inside the HTML
markup, you should be careful. You have two choices for adding comments inside the HTML markup:
HTML comments or ASP.NET comments.

HTML comments are those comments that hide everything written inside them from showing and dis-
playing on the page however anyone who views the source of the page can still see those comments.

<!-- this is an HTML comment -->

Imagine that you are developing an .aspx page that connects to the database. For testing purposes
you are connecting to a test database server to test the functionality of the page. You add the connec-
tion string as an HTML comment so that you do not forget it later on. Or you might put a username
and password as an HTML comment so that you do not forget such credentials. You test the page and
release it, but you forgot to remove the HTML comments. What you have done by mistake is give an
attacker a present that they never dreamed of!

This is why, when it comes to adding comments into the HTML markup, it is always recommended to
add ASP.NET comments.

<%-- This is a comments --%>

An ASP.NET comment is never sent to the browser, hence protecting everything you place inside it.

When creating your own JavaScript files, any comment you place in the code is always sent down to the
client-side. Therefore, you should be aware when writing your JavaScript files to include only necessary
JavaScript comments, and not include any sensitive information, since there is no way around sending
the JavaScript comments to the client-side.

Finally, to protect your application that is AJAX-enabled, try to minimize the logic written on the client-​
side. Let the client-side code be a UI code that asks the server for data, receives the response, and updates
the UI. Keep all your logic stored on the server-side to protect it from allowing attackers to steal a look at it.

JSON Hijacking
Most of the popular AJAX libraries, including the ASP.NET AJAX library, use JavaScript and Object
Notation (JSON) as the main format to interchange data between the client-side and server-side. It is
recommended over XML because it is faster and easier to deal with. You can now say “AJAJ–enabled”
web applications because of the fact that most of the AJAX libraries use JSON to transfer data instead
of XML.

79301c18.indd 874 10/6/08 12:18:40 PM

875

Chapter 18: Best Practices for Securing ASP.NET Web Applications

The JSON hijacking threat is one of the browser exploits that is performed by making use of the
<script src=”” /> JavaScript tag inside the HTML markup of a web page to send HTTP GET requests
to web services that do not originate from the same domain from which the current page is coming.
Most of the major browsers only allow calls according to the same origin policy, and this applies on the
XmlHttpRequest class. Attackers try to hijack transmitted data by sending these HTTP GET requests.
Once they put their hands on the JSON payload, they can do anything they want with the data.

The ASP.NET team is aware of such attacks. That is why any web method that you add into a web ser-
vice that is to be called from the client-side code is enabled only for HTTP POST requests. How does this
help? Well, all HTTP requests that are fired from the <script src=”” /> JavaScript tag are done in the
form of HTTP GET requests and hence, by allowing only HTTP POST client-side requests to call ASP.NET
AJAX web service server-side methods, attackers will fail to hijack the JSON generated by these web
services. You can enable the web methods to be called by HTTP GET requests by adding the following
attribute:

C#
using System;
using System.Collections;
using System.Linq;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.Xml.Linq;

[WebService(Namespace = “http://tempuri.org/”)]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
[System.Web.Script.Services.ScriptService]
public class WebService : System.Web.Services.WebService {
 public WebService () { }

 [WebMethod]
 [System.Web.Script.Services.ScriptMethod(UseHttpGet=true)]
 public string HelloWorld() {
 return “Hello World”;
 }
}

VB.NET
Imports Microsoft.VisualBasic
Imports System
Imports System.Collections
Imports System.Linq
Imports System.Web
Imports System.Web.Services
Imports System.Web.Services.Protocols
Imports System.Xml.Linq

<WebService(Namespace:=”http://tempuri.org/”), _
WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1), _
System.Web.Script.Services.ScriptService()> _

Public Class WebService

79301c18.indd 875 10/6/08 12:18:40 PM

876

Chapter 18: Best Practices for Securing ASP.NET Web Applications

 Inherits System.Web.Services.WebService

Public Class WebService
 Inherits System.Web.Services.WebService
 Public Sub New()
 End Sub

 <WebMethod, System.Web.Script.Services.ScriptMethod(UseHttpGet:=True)> _
 Public Function HelloWorld() As String
 Return “Hello World”
 End Function

End Class

The bold statement in this example, above the HelloWorld() method, explicitly enables HTTP GET calls
for this method. This is not recommended, but in case there is no way around it, you can see how it can
be enabled.

Another protection against JSON hijacking that is provided by the ASP.NET engine is that ASP.NET
requires that any request for an ASP.NET AJAX web method, whether it is an HTTP GET or POST, should
always have the HTTP Content-Type header of the request set to the value of application/json. If this
Content-Type is not set to application/json, then the ASP.NET AJAX engine will reject the request.
This is a double-layer of protection that you will appreciate when you want to enable HTTP GET on a
Web method. Even if the Web method is enabled for HTTP GET requests, an attacker will fail to call
that method with the <script src=”” /> JavaScript tag, since there is no way for this tag to config-
ure the value of the HTTP Content-Type header to be application/json.

Amplified Cross-Site Scripting
Cross-Site Scripting has been explained in detail in an earlier section. XSS happens when a malicious
user is able to post some harmful scripts into the server and the server fails to validate the posted data
and processes the harmful input text normally. AJAX-enabled applications amplify the effect of cross-site
scripting by giving the attacker additional sets of tools to harm the server. In addition to all the JavaScript
code that the attacker already has to attack the server with XSS, AJAX gives the attacker the ability to
use the XmlHttpRequest class to perform asynchronous requests without having the application
notice anything except a normal request submitted to the server.

For instance, suppose there is a page in a web application called MyComments.aspx that allows the user
to enter some comments. The attacker can exploit such a page by sending their own type of comments:

<script language=”javascript” type=”text/javascript”>
 // Instantiate the WebRequest object.
 var wRequest = new Sys.Net.WebRequest();

 // Set the request Url.
 wRequest.set_url(“MyProfile.aspx”);

 // Set the request verb.
 wRequest.set_httpVerb(“POST”);

 var body = “Info=You’ve been Hacked!”
 wRequest.set_body(body);

79301c18.indd 876 10/6/08 12:18:40 PM

877

Chapter 18: Best Practices for Securing ASP.NET Web Applications

 wRequest.get_headers()[“Content-Length”] = body.length;

 // Execute the request.
 wRequest.invoke();
</script>

The attacker seems to be aware that there is already a page in the application called MyProfile.aspx
that accepts as input a field called Info that is part of the form’s variables. The attacker prepares a new
HTTP POST request, poisons the Info field with some text of their own, and sends the request:

C#
 protected void btnSubmit_Click(object sender, EventArgs e)
 {
 Session[“Comments”] = this.txtComments.Text;
Response.Write(
 “You have entered: “ +
 “
” +
 Session[“Comments”].ToString());

 }

VB.NET
 Protected Sub btnSubmit_Click(ByVal sender As Object, _
 ByVal e As EventArgs) _
 Handles btnSubmit.Click
 Session(“Comments”) = Me.txtComments.Text
 Response.Write(_
 “You have entered: “ & _
 “
” & _
 Session(“Comments”).ToString())
 End Sub

The event handler for the button clicked inside MyComments.aspx stores the posted data without any
input validation and writes back on the page whatever the user has entered from text. Once the input
script is written on the page, the browser executes it and hence, the MyProfile.aspx page is now
exploited with the attacker’s text.

Now it is time for the MyProfile.aspx page to run and execute, since an HTTP POST was sent out from
the attacker’s harmful comments:

C#
 protected void Page_Load(object sender, EventArgs e)
 {
 if (HttpContext.Current.Request.Form[“Info”] != null)
 Session[“Info”] = HttpContext.Current.Request.Form[“Info”].ToString();

 if (Session[“Info”] != null)
 this.lblInfo.Text = Session[“Info”].ToString();
 }

79301c18.indd 877 10/6/08 12:18:40 PM

878

Chapter 18: Best Practices for Securing ASP.NET Web Applications

VB.NET
 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As EventArgs) _
 Handles Me.Load()
 If HttpContext.Current.Request.Form(“Info”) IsNot Nothing Then
 Session(“Info”) = HttpContext.Current.Request.Form(“Info”).ToString()
 End If

 If Session(“Info”) IsNot Nothing Then
 Me.lblInfo.Text = Session(“Info”).ToString()
 End If
 End Sub

This code simply checks the Info field to see if it is null or not and accordingly stores the data inside a
Session variable and displays the text on the page.

This example is very simplistic, but the main idea is to show you how an attacker can now amplify the
effect of cross-site scripting by making use of the XmlHttpRequest class to send malicious attacks and
harm existing pages inside the application.

Summary
The first step in protecting an ASP.NET web application starts by knowing and trusting the users access-
ing your application and to decide whether they can access the private sections of the application. Once
the users are authenticated, the application should decide on what each user can access from resources in
the application and hence, authorize those users.

Once the end-user starts using the application and submitting data into the application, it is very
important to validate the user input and consider any input sent into the application as potentially
bad and malicious. Every input should be well-validated. Thoroughly validating user input helps pro-
tect the application from many threats, including Cross-Site scripting, SQL injection, Cross-Site Request
Forgery, and many other types of attacks. Validating user input primarily means validating the type,
format, length and range of the input data.

User input not only targets form fields, but also covers cookies and query strings. These should also
be validated as normal user input data. Moreover, cookies should be handled with special treatment,
which includes encrypting the data that you store in a cookie, setting a small expiration date on the
cookie, and finally, making use of the Secure and HttpOnly public properties to help better protect
the application’s cookies.

Finally, securing the communication between the web server and the different clients, and between the
web server and the database server using SSL, can help in securing the transmission of data. This is true
whether the data is interchanged between the web server and the browsers accessing the application, or
when interchanging the data between the application on the server-side and the database server.

79301c18.indd 878 10/6/08 12:18:40 PM

Index

A
Abandon method, session state, 422–423, 436, 447
access control lists. See ACLs (access control lists)
account lockouts, 617–621
ACE (ASP.NET and Application Consulting &

Engineering) teams, 855–856
ACLs (access control lists)
FileAuthorizationModule checking, 123–124
IUSR account, 80
managing Active Directory default, 667
reading local configuration, 247–249
SSE user instances, 578–579
writing local configuration, 249–251

AcquireRequestState event, 427–429, 435
Active Directory Lightweight Directory Services. See

ADLDS (Active Directory Lightweight Directory
Services)

Active Directory Lightweight Directory Services
Setup Wizard, 676–680

Active Directory Schema editor, 667–668
ActiveDirectoryMembershipProvider,

639–690
ActiveDirectoryMembershipUser, 654–657
configuration settings, 649–650
configuring ASP.NET membership, 792
connection settings, 642–645
containers, nesting, 660–662
containers, securing, 662–667
defined, 525
error-handling approaches, 550–551
of MembershipProvider class, 537
overview of, 639
in partial trust, 684–689
primary key, 552–553
schema mappings, 645–648
search settings, 648–649
self-service password reset, 667–675
summary review, 689–690
supported architectures, 640–642
unique functionality of, 651–654
UPNs and SAMAccountName, 659–660
using ADLDS. See ADLDS (Active Directory

Lightweight Directory Services)
UTC time, 536
working with, 657–659

ActiveDirectoryMembershipUser, 654–657

AddOnPostAuthenticateRequestAsync, 109
Add-Remove-Clear (ARC) collections, 230–232
AddUsersToRole method, 694, 766
AddUsersToRoles method
RolePrincipal/Roles classes, 694
RoleProvider, 725
SqlRoleProvider, 738

AddUserToRole method, 694
AddUserToRoles method, 694
ADLDS (Active Directory Lightweight Directory

Services), 675–684
connection settings, 642–645
enabling Role Manager, 697
installing with application partition, 676–682
overview of, 675–676
supported directory architectures, 640–642
using application partition, 682–684

administration, IIS 7.0 improvements, 6–9
Administration.config file, 3
ADODB, sandboxed access to, 208–209
adsiedit MMC tool, 679
Advanced Encryption Standard (AES), 299–301
AES (Advanced Encryption Standard), 299–301
AJAX 3.5, 791–821

ASP.NET membership, 792–794
ASP.NET role management, 794–796
authentication service, 804–814
AuthenticationServiceManager class,

801–803
enabling application services, 801–803
enabling ASP.NET applications, 796–801
overview of, 791
role service, 815–820
RoleServiceManager class, 803–804
summary review, 820–821

AJAX-enabled application threats, 871–877
amplified cross-site scripting, 875–877
information leakage, 871–874
JSON hijacking, 874–875
overview of, 826

allowOverride attribute, <location />
element, 226

configuring trust levels, 150–151
finding trust policy file, 155
overview of, 226
processRequestInApplicationTrust, 214, 221

79301bindex.indd 879 10/6/08 12:19:02 PM

880

AllowPartiallyTrustedCallersAttribute

AllowPartiallyTrustedCallersAttribute
(APTCA), 198–204

AllowRemoteConnection, OOP state server, 447
anonymous access

authentication best practices, 827
EndRequest, RoleManagerModule, 711
IIS 7.0 security improvements, 12
PostAuthenticateRequest,

RoleManagerModule, 709
as security option, 82–83

AnonymousAuthenticationModule
<authentication>, 38–39
ASP.NET Integrated mode advantages, 33
changing default identity of application pools, 93
hooking PostAuthenticateRequest, 120–122
impersonation token for, 93
security configuration, 83–84
understanding, 85–87

Anti-Cross Site Scripting Library, 855–857
API, IIS 7.0, 3
appcmd.exe, 8, 12
app.config file, 554–555
$AppDir$ string replacement token, 156, 160–161
$AppDirUrl$ string replacement token, 156
application domains

initiating per-request security, 82
working with trust levels, 163

application identity, authentication best
practices, 827

application partitions, ADLDS, 676–684
Application Pool Identity account, 86
application pools

changing default identity associated with, 92
Classic mode, 18–19
Integrated mode, 18
overview of, 17–18
removing and editing, 7

Application_Error event, global error
handling, 864

applicationHost.config file
<system.webServer />, 34–37
administration of, 6–7
authenticating classic ASP, 395
configuring AnonymousAuthenticationModule,

85–87
IIS 7.0 configuration based on, 3, 233–234
IIS 7.0 feature delegation, 238–243
managing output caching module, 236
Windows Process Activation Service and, 21

ApplicationId
aspnet_Membership table, 574
aspnet_Roles table, 736
common users table, 564
resolving application name to, 569–570

applicationName attribute

ActiveDirectoryMembershipProvider, 649
as Membership feature primary key, 552
MembershipProvider, 541
storing application name, 562–563
supporting dynamic applications, 626–632
using Membership outside of ASP.NET, 554–555
using Role Manager with membership, 786–788

ApplicationName property
ActiveDirectoryMembershipProvider, 654
AuthorizationStoreRoleProvider, 767
RoleProvider, 724
Roles class, 692
SqlRoleProvider, 757–758

APTCA (AllowPartiallyTrustedCallers
Attribute), 198–204

ARC (Add-Remove-Clear) collections, 230–232
ASP.NET

AJAX 3.5. See AJAX 3.5
application services, 801–803
authorizing classic ASP. See authorization, classic ASP

with ASP.NET
enabling applications with AJAX, 796–801
encryption, 299–303
IIS 7.0 configuration vs., 233–235
IIS request pipeline and. See IIS (Internet Information

Services) 7.0, Integrated mode
membership, 792–794
permission set. See permission sets
role management, 794–796
sharing tickets between versions, 324–325
using Membership feature outside of, 553–554

ASP.NET and Application Consulting & Engineering
(ACE) teams, 855–856

ASP.NET security, integrating with classic ASP,
373–415

authentication, 389–395
authorization, 396–414
DefaultHttpHandler, 383–384
IIS 5 ISAPI extensions, 374–375
IIS 7 wildcard mappings, 375–383
overview of, 373–374
serving classic ASP in IIS integrated mode, 387–388
using DefaultHttpHandler, 384–387

ASP.NET security, web application best practices,
823–878

AJAX-enabled application threats, 871–877
authenticate users, 827–828
authorize users, 828
cross-site request forgery, 857–861
cross-site scripting, 853–857
database access, encrypt data, 845–849
database access, overview, 841
database access, SQL Server, 843–845
database access, Windows authentication, 842–843
DOS threats, 865–871

79301bindex.indd 880 10/6/08 12:19:02 PM

881

<authentication> configuration section

exception handling, 861–865
minimizing privileges, 829
overview of, 823–824
secure cookies, 838–841
secure data transmission, 871
SQL injection attacks, 849–853
summary review, 877–878
threats, 824–826
validate user input, 829–838

aspnet_Applications table
aspnet_Users and, 564
linking custom features to user records, 570–572
querying with views, 568
storing application names, 563

aspnet_CheckSchemaVersion, 568
aspnet_compiler, 455
aspnet_Membership table, 573–576
aspnet_regiis tool

command-line options, 273–274
configuring keyContainerName, 270
configuring useMachineContainer, 272
protected configuration, 259–260
protected configuration providers, 264
remote editing permissions, 252–253
synchronizing key containers, 272–273
useMachineProtection and, 267

aspnet_regsql.exe tool, 446
aspnet_Roles, SqlRoleProvider, 736–737
aspnet_Roles_BasicAccess,

SqlRoleProvider, 745
aspnet_Roles_FullAccess,

SqlRoleProvider, 745
aspnet_Roles_ReportingAccess,

SqlRoleProvider, 745
aspnet_SchemaVersions table, 566–568
aspnet_Users table

linking custom features to user records, 570–572
overview of, 563–566
password history, 602–604
querying with views, 568
vw_aspnet_MembershipUsers view and, 576

aspnet_UsersInRoles table, SqlRoleProvider,
737–739

aspnetdb, SSE connection string, 584
AspNetHostingPermission class, 182–187
AuthorizationStoreRoleProvider, 783–785
outside ASP.NET, 185–186
overview of, 182
restricted by trust level, 184–185
SqlRoleProvider, 741–742, 745
trust level intent, 183–184
using in code, 186–187

aspnet-regsql tool, 584
ASPState, 445–446
.aspx login file, 394

assemblies, signing precompiled, 455–457
assemblies, strongly named

APTCA and, 200–204
sandboxing with, 204–208

<assemblies /> configuration section, AJAX, 798
Assert method, sandboxing, 208, 210–213
Assertion permission, 192–193
asynchronous execution, 137–143

overview of, 137–138
PreRender processing, 138–141
using PageAsyncTask, 141–143

asynchronous page tasks, 141–143
asynchronous pipeline events, 100–110
attributeMapUserName,

ActiveDirectoryMembershipProvider, 660
attributes, locking, 227–229
AUTH_TYPE, WindowsAuthenticationModule,

112–113
Authenticate event, 113–114, 115–116
Authenticated user, ASP.NET impersonation, 97
AuthenticateRequest event, 110–117

enforcing single logins, 363–365
forms authentication recap, 288
FormsAuthenticationModule, 115–117
forwarding request to EndRequest event, 143–144
overview of, 110–111
RoleManagerModule, 709–710
WindowsAuthenticationModule, 111–115

authentication
AnonymousAuthenticationModule, 85–87
ASP.NET membership, 793
AuthenticateRequest event, 110–117
best practices, 827–828
classic mode, 31–32, 389–395
cross-application sharing of ticket, 333–334
DefaultAuthentication and Thread.

CurrentPrincipal, 117–120
forms. See forms authentication
impersonation tokens, 93
Integrated mode, 32–33
Role Manager, 696–697
RoleManagerModule, 709
security, 81–84
Windows. See Windows authentication

authentication, AJAX 3.5, 804–814
check if user is authenticated, 812
custom authentication service, 812–814
login user, 808–811
logout user, 812
overview of, 804
Sys.Services_AuthenticationService class,

805–807
System.Web.ApplicationServices.

AuthenticationService class, 805
<authentication> configuration section

79301bindex.indd 881 10/6/08 12:19:02 PM

882

<authentication> configuration section (continued)

<authentication> configuration section (continued)
authenticating classic ASP, 394–395
configuring ASP.NET membership, 793
enabling ASP.NET application services, 801
HTTP request processing, 85
overview of, 38–40

AuthenticationService class, 804, 815
AuthenticationServiceManager class, 801–803
authorization

ASP.NET configuration section, 40–42
authentication vs., 828
configuring role management, 795
FileAuthorizationModule, 123–124
IIS 7.0 security improvements, 11
RoleProvider methods, 724–725
with roles in data layer, 755–757
security best practices, 828
UrlAuthorizationModule. See

UrlAuthorizationModule
authorization, classic ASP with ASP.NET, 396–410

full code listing of hash Helper, 406–410
overview of, 396
passing sensitive data to classic ASP, 398–406
passing user roles to classic ASP, 397–398

Authorization Manager. See AzMan (Authorization
Manager)

AuthorizationRules icon, 130
AuthorizationSection class,

UrlAuthorizationModule, 125, 127
AuthorizationStoreRoleProvider, 763–789

design, 763–766
functionality of, 766–768
overview of, 763
in partial trust, 783–785
role management, 795
role nesting, 724
summary review, 789
using directory-based policy store, 771–779
using file-based policy store, 768–771
using Membership with Role Manager, 786–789
using SQL Server database-based policy store,

780–783
AuthorizeRequest event, 122–135
EndRequest event, 143–144
FileAuthorizationModule, 123–124
forms authentication, 288
managed UrlAuthorizationModule, 124–129
native UrlAuthorizationModule, 129–135
operating system thread identity and, 100
overview of, 122–123
PostAuthorizeRequest, 135

AutoDetect, cookieless attribute
defined, 309
issuing cookieless session IDs, 424
overview of, 310–313

auto-generated keys, and encryption, 300–301
automatic unlocking, 621–626
autoUnlockTimeout, SqlMembershipProvider,

622–626
AzMan (Authorization Manager), 783–785
AuthorizationStoreRoleProvider using, 724,

764–768
enabling, 697
overview of, 764
in partial trust, 783–785
using directory-based policy store, 771–779
using file-based policy store, 768–771
using Membership with Role Manager, 785–789
using Microsoft SQL Server database-based policy

store, 780–783

B
backwards compatibility, 214–221
BasicAccess role, database, 585–586, 745
BasicAuthenticationModule
<authentication>, 38
<modules />, 35
impersonation token, 93–95

Begin event handler, 104, 138–141
BeginInvoke method, asynchronous pipeline events,

104–105
BeginProcessRequest, DefaultHttpHandler,

385–386
bin directory, 202–204
blocking requests, HTTP, 135–137
Boolean values, MembershipProvider, 551
browsers
AutoDetect, 310–313
cookieless tickets/other URLs in pages, 317–319
replay attacks, 315–316
UseDeviceProfile, 313–315

C
C#
ActiveDirectoryMembershipProvider, 658–

659, 684
ActiveDirectoryMembershipUser, 656
AJAX, 813, 819
AllowPartiallyTrustedCallersAttribute,

199, 201, 203
ASP.NET membership, 793
ASP.NET role management, 795
AspNetHostingPermission class, 185–187
asynchronous page tasks, 142
asynchronous pipeline events, 101–108
asynchronous PreRender processing, 138–141
authenticating classic ASP with ASP.NET, 390
authorizing classic ASP with ASP.NET, 397

79301bindex.indd 882 10/6/08 12:19:02 PM

883

CAS (Code Access Security)

building provider-based feature, 495–498, 500–502,
505–511, 515

clock resets and, 292–293
container nesting, 661
cookie settings, 304–305
cookie timeout, 290
cookie-based SSO-lite, 347, 349, 352–353
cookied cross-application behavior, 340–342
cookieless cross-application behavior, 335–338
cookieless forms authentication for classic ASP, 391
cross-site request forgery, 858–860
cross-site scripting protection, 855–857
cross-site scripting threat in AJAX, 876–877
custom Hash algorithms, 557–559
custom password encryption, 594–597
custom passwords, 591–594
customizing configuration providers, 279, 281–285
customizing OdbcPermission, 174–175
customizing OleDbPermission, 171–173
directory-based policy store, 776–777
DoS attack protection, 865–871
encrypting data, 847–848
enforcing logouts, 369–370
enforcing single logins, 360–361, 363–364, 366
Factory Method pattern, 477–479
filtering data before encoding, 832–834
fraudulent postbacks, 459
generating keys, 301–303
global error handling, 865
hash Helper, 407–408
JSON hijacking threat, 875
LinkDemand exception behavior, 195–197
LINQ trust levels, 180
local configuration, 250
locating identity for requests, 87–90
managed handlers, 50, 53–54, 56–65, 69–71
managed modules, 67–68, 73–76
Membership supported environments, 555
MembershipProvider class, 538–539
Microsoft.Web.Administration, 7
migrating ASP.NET applications, 43–44, 47
partial trust, 253
passing data to ASP from ASP.NET, 392–393
passing data to classic ASP, 399–406, 412
permission sets, 165–167
permissions in policy file, 168–171
persistent cookies, 289
PostAuthenticateRequest, 708, 710
preventing SQL injection, 850–853
processRequestInApplicationTrust, 215,

219–220
protected configuration in partial trust, 275–278
reading and writing configuration, 244–246
Role Manager with membership, 786–789
RoleManagerModule, 715–721

RolePrincipal class, 695, 700–704
RoleProvider class, 722
Roles.DeleteCookie, 693
sandboxed access to ADODB, 208–211
secure cookies, 839–841
securing containers, 667
self-service password resets, 673
serialization and, 442–444
session state in IIS 7 Integrated mode, 429–431
signed tickets, 296–297
site navigation security, 466
SqlMembershipProvider, automatic unlocking,

622–625
SqlMembershipProvider, dynamic applications,

626, 628–629
SqlMembershipProvider, password history,

605–617
SqlMembershipProvider, password strength,

599–601
SqlRoleProvider, dynamic applications, 757–758
SqlRoleProvider, limited set of roles, 748–754
SqlRoleProvider in partially trusted non-ASP.NET,

740–741
SqlRoleProvider in Windows authentication,

746–748
System.Configuration classes, 490, 493–494
System.Configuration.Provider classes, 484,

486–487, 489
System.Web.Configuration classes, 489
tracing system, 13–15
trust levels, 152–154
Try/Catch blocks, 863–864
UserData property, 329–332
validating user input, 831
verifying data input, 836–837
WebPermission, 177–179
wildcard mappings, 379, 381
WindowsTokenRoleProvider, 728, 730–732

CachedListChanged property, RolePrincipal
class, 706

cacheRefreshInterval attribute,
AuthorizationStoreRoleProvider, 767–768

cacheRolesInCookie attribute, role cache
cookies, 712

CacheRolesInCookie property, Roles class, 692
CAPI (Windows cryptographic API), 268
CAS (Code Access Security), .NET Framework

history of, 147
in partially trusted non-ASP.NET applications, 739,

741–742
provider security, 741–742
in session state mode, 441
with signing precompiled assemblies, 455
as trust levels. See trust levels
using ConfigurationPermission, 256

79301bindex.indd 883 10/6/08 12:19:02 PM

884

case-sensitivity

case-sensitivity
ASP.NET features, 572
RolePrincipal class, 699

caspol.exe tool, 742–744
certificate mapping, 93
ChangePassword method, 543, 651, 673
ChangePassword method,

SqlMembershipProvider
customizing password generation, 590
password history, 602, 605–606, 612, 615–617
password strength, 598–600

ChangePasswordQuestionAndAnswer method, 548,
651, 673

character sets, and URL authorization, 129
<CipherValue /> elements, 270
classic mode. See also ASP.NET security, integrating

with classic ASP
application pool, 18–19, 26
defined, 10
IIS 7.0 running in, 31

clientSearchTimeout attribute, 648–649
code evidence, 159
CodeAccessPermission class, 158–159
$CodeGen$ string replacement token, 156–157
<CodeGroup /> elements, 160–161
commandTimeout, SqlMembershipProvider, 577
commandTimeout, SqlRoleProvider, 737–739
Comment column, aspnet_Membership table, 576
Comment property, MembershipUser, 524, 530–533
Comments field, MembershipUser

AD/ADLDS directory schema mappings, 645, 647
encoding, 831–832
enforcing logouts, 369–371
enforcing single logins, 367–368

COMMIT TRANSACTION, SqlRoleProvider, 738
common users table, 563–566
compatibilityMode, <machineKey />, 454
compilation. See pages and compilation
components, IIS 7.0, 19–21
<configProtectedData /> section, 261, 264
<configSections /> configuration section, AJAX,

797–798
configuration, IIS 7.0, 4–6
configuration API, 259
configuration manager, Windows Process Activation

Service, 20–21
configuration system security, 223–285

feature delegation, 238–243
IIS 7.0 vs. ASP.NET, 233–235
with managed modules/handlers, 236
native vs. managed, 236–238
protected configuration. See protected configuration
reading and writing configuration, 244–253
using <location /> element, 223–226
using lock attributes, 227–233

ConfigurationErrorsException, 204
ConfigurationManager class

protected configuration providers in partial trust, 276
reading configuration, 244–247
reading local configuration, 247–249
writing local configuration, 250–251

ConfigurationPermission class, 254–257, 276
ConfigureApplicationService method,

ScriptManager, 803–804
connectionPassword attribute, 663
ConnectionProtection attribute, 643–645, 654
connectionStringName attribute
ActiveDirectoryMembershipProvider, 643
building provider-based feature, 510–515
Factory Method pattern, 479–480
redirecting configuration with custom provider,

280–283
SqlMembershipProvider, 576, 607
SqlRoleProvider, 737

<connectionStrings /> configuration element
ActiveDirectoryMembershipProvider,

642–645, 657–659
building provider-based feature, 510, 512–515
changing SSE connection string, 583–584
Factory Method pattern, 479
SqlMembershipProvider, 607
SSE user instancing, 577–582
using file-based policy store, 768–771

connectionUsername attribute, 663
containers

AD and ADLDS, 640–641
nesting, 660–662
securing, 662–667

content types, 30
context_BeginRequest method, managed

modules, 74
ControlPrincipal permission, 192–193
<controls /> configuration section, AJAX, 798
ControlThread permission, 192
ConvertByteArrayToString method, 403
ConvertStringKeyToByteArray method, 400, 403
cookie domain, 332–333
cookieless forms authentication, 308–323
AutoDetect, 310–313
for classic ASP, 391
cookieless attribute, 309
cookieless tickets/other URLs in pages, 317–319
cross-application behavior, 335–338
over non-SSL connections, 305
overview of, 308–310
payload size, 319–321
replay attack, 315–316
unexpected redirect behavior, 322–323
UseDeviceProfile, 313–315

cookieless sessions, 424–426

79301bindex.indd 884 10/6/08 12:19:02 PM

885

database-based policy store

CookiePath property, 355, 706
CookiePath variable, 345, 352
cookieProtection attribute, role cache cookies, 712
cookieRequiresSSL attribute, 711, 713
cookies, 861–865

cookie domain, 332–333
cross-application behavior, 339–342
EndRequest, RoleManagerModule, 711–712
persistent, 288–291
role cache settings, 712–714
RoleManagerModule checks, 709
security best practices, 838–841
session-based, 288, 421–424
setting security options, 303–308
SSO-lite. See SSO-lite, cookie-based
tracking logon status, 419
WindowsTokenRoleProvider and, 728

cookieSlidingExpiration attribute, 711, 712
cookieTimeout attribute, 712
CreateDate column, aspnet_Membership table, 575
createPersistentCookie attribute, 712
CreateUser method
ActiveDirectoryMembershipProvider, 651, 673
AuthorizationStoreRoleProvider, 766
overview of, 542–543
primary key and, 553
RoleProvider, 725
self-service password reset or retrieval, 548
SqlMembershipProvider, custom encryption, 596
SqlMembershipProvider, password history, 602,

605–606, 610–612, 617
SqlMembershipProvider, password strength,

598–600
tracking online users, 550

CreateUserwizard control
configuring self-service password resets, 672
SqlMembershipProvider, password history, 612
using application partition, 683–684

CreatingCookie event, 805
CreationDate property, MembershipUser

AD and ADLDS directory schema mappings, 645
defined, 524
updatability of, 524

credentials
AD and ADLDS connection settings, 645
designing Membership feature, 470
securing containers, 663–667
using application partition, 683
validating with MembershipProvider, 545–547

cross-application behavior
cookied, 339–342
cookieless, 335–338
redirects, 334–337
sharing of ticket, 333–334

cross-page postings, cookies, 340

cross-site request forgery (CSRF or surf), 857–861
cross-site scripting threat. See XSS (cross-site

scripting threat)
cryptographic API (CAPI), 268
cryptographic service providers (CSPs), 268
cryptography, using custom Hash algorithms,

558–559
<cryptographySettings /> configuration element,

261, 558–559
cspProviderName, 268
CSPs (cryptographic service providers), 268
CSRF (cross-site request forgery), 857–861
CSS. See XSS (cross-site scripting threat)
CurrentConnectionProtection property, 654
CurrentPrincipal, Thread class
DefaultAuthentication, 117–120
handling asynchronous pipeline events, 109–110
locating security identity for requests, 87–92
summary review, 144–145

custom authentication service, AJAX 3.5, 812–814
custom configuration classes, 257–258
custom role service, AJAX, 819
<customErrors> configuration section, exception

handling, 861–862
CustomNativeHandler, 434

D
data protection API provider. See

DPAPIProtectedConfigurationProvider
database access

encrypt data, 845–849
overview, 841
SQL Server, 843–845
Windows authentication, 842–843

database schema, 562–573
ActiveDirectoryMembershipProvider

mappings, 645–648
calling LOWER function, 572–573
common users table, 563–566
dbo user and, 586–588
installing with SQL Server Express. See SSE (SQL

Server Express)
linking custom features to user records, 569–572
Membership, 573–577
overview of, 562
querying common tables with views, 568
SqlRoleProvider, 735–739
storing application name, 562–563
versioning provider schemas, 566–568

database security
overview of, 584–586
for SQL, 445–446
SqlRoleProvider, 745

database-based policy store, SQL Server, 780–783

79301bindex.indd 885 10/6/08 12:19:03 PM

886

date-time

date-time
DateTime assumptions, MembershipUser, 536–537
issues with clock resets, 292–294
setting for ticket expiration, 291–292

dbo users, and database schemas, 586–588
DCOM, 251–253
Decrypt method,

ProtectedConfigurationProvider, 275–276
decryption attribute, 300
decryptionKey attribute

ASP.NET 2.0/3.5 encryption, 300
sharing tickets between ASP.NET versions, 324–325
SqlMembershipProvider, 589

DecryptPassword method, MembershipProvider,
594–595

default.asp, 389–390
DefaultAuthenticationModule, 117–120
DefaultHttpHandler

ASP.NET 3.5, 383–384
not using in integrated mode, 388
passing data from ASP.NET to classic ASP, 411, 413
using with ASP.NET and classic ASP, 384–387

defaultProvider attribute, Membership class,
520–521

DefaultProvider property, 498–499, 501–507, 515
Delegation of Control Wizard, 663–667
DeleteCookie method, Roles class, 693
DeleteRole method
AuthorizationStoreRoleProvider, 766
RolePrincipal/Roles classes, 694
RoleProvider, 725

DeleteUser method
ActiveDirectoryMembershipProvider, 652
MembershipProvider, 543, 565

deployment, IIS 7.0, 4–6
Description column, aspnet_Roles table, 736–737
deserialization, session state and, 441–444
Design Patterns: Elements of Reusable Object-Oriented

Software (Gamma, Helm, Johnson and
Vlissides), 472

design-time API, 258–259, 277–278
device profiles, 313–315
DigestAuthenticationModule, 93
directory-based policy store, AzMan, 771–779, 785
DirectorySearcher class, 648–649
DirectoryServicesPermission, 685–688, 690
DNS namespace, 334
DnsPermission class, 188
DOMAIN/MACHINENAMES$, 584–585
DOMAIN/USERNAME, security, 585
DOS (denial-of-service) attacks

guarding against, 865–871
overview of, 825
session ID, 437–439
SqlMembershipProvider causing, 621

DPAPIProtectedConfigurationProvider,
264–267

defining in machine.config, 264
encrypting data, 845–849
keyEntropy option, 264–265
overview of, 259–260
selecting, 261–264
useMachineProtection option, 265–267
using in partial trust, 274–278

dsacls.exe tool, 676
dsmgmt.exe tool, 676
DWORD registry, OOP state server, 447
dynamic applications
SqlMembershipProvider supporting, 626–632
SqlRoleProvider supporting, 757–758

E
e-commerce sites, cookieless session state and,

425–426
Edit Script Map dialog box, 377–378
elevation of privilege threat, 826
Email column, aspnet_Membership table, 575
Email property, MembershipUser

AD and ADLDS directory schema mappings, 646, 648
defined, 524
updatability of, 524

enableCrossAppRedirects, cookie-based
SSO-lite, 351

Enabled property, Roles class, 692
EnablePasswordReset property, 547, 650
EnablePasswordRetrieval property, 547, 654
enableSearchMethods attribute, 648, 654
EnableViewStateMac attribute, pages, 451
encoding

best practices, 832–834
protecting against cross-site scripting, 854–857

Encrypt method, UserData property, 331
<EncryptedData /> element, 260
encryptedTicket parameter, RolePrincipal

class, 704–705, 706–707
encryption, 592–594

ASP.NET 2.0 and 3.5, 299–303
customizing SqlMembershipProvider, 594–597
database access best practices, 845–849
determining viewstate, 452–453
secure database access using, 845–849
session state cookie and, 423
SqlMembershipProvider, 588–590

EncryptPassword method, MembershipProvider,
594–597

End event handler
asynchronous pipeline events, 101, 104–105, 107
asynchronous PreRender processing, 138–141

EndInvoke method, 104

79301bindex.indd 886 10/6/08 12:19:03 PM

887

forms authentication

EndProcessRequest, DefaultHttpHandler,
385–387

EndRequest
forms authentication, 288
HTTP request processing, 143–144
RoleManagerModule, 711–712

Enterprise level, CAS policies for, 162
EnvironmentPermission class, 188
EvaluateIsValid() method, 831
event validation, fraudulent postbacks, 460–462
evidence, code, 159
exception handling
<customErrors> configuration section, 861–862
global, 864–865
IIS 7.0 troubleshooting improvements, 13
MembershipProvider class, 550–551
MembershipUser class, 528
migrating ASP.NET applications, 49
Try/Catch blocks, 863–864

Execution permission, 192
-exp option, 272
expiration date, FormsAuthenticationTicket

cookie-based SSO-lite, 353–355
enforcing, 291–294
enforcing single logins, 359, 362, 365–368
leveraging UserData property, 331
overview of, 289–290
sliding expirations, 308

Expired property, RolePrincipal class, 706
expired sessions, 437–439
ExpireDate property, RolePrincipal class,

704, 706
extensions. See ISAPI extensions

F
Façade pattern, provider model, 482–483
Factory Method pattern, provider model, 474–481
Failed Request Tracing feature, 12–16
FailedPasswordAnswerAttemptCount column,

aspnet_Membership table, 576, 618
FailedPasswordAnswerAttemptWindowStart

column, aspnet_Membership table, 576, 618
FailedPasswordAttemptCount column,

aspnet_Membership table, 576, 618
FailedPasswordAttemptWindowStart column,

aspnet_Member, 576, 618
Feature Delegation applet, IIS 7.0, 239–243
features

linking to user records, 569–572
using aspnet_Users table, 565

FileAuthorizationModule
authorization best practices, 828
overview of, 123–124

FileIOPermission
AuthorizationStoreRoleProvider in partial

trust, 785
defining individual permissions, 154
design-time API and, 258–259
sandboxed access to ADODB using, 210–211
SqlRoleProvider in partial trust, 742–743
troubleshooting, 165–167
working with different trust levels, 153–154

FileIOPermission class, 189
filtering data, before encoding, 832–834
FindUsersByEmail method
ActiveDirectoryMembershipProvider, 648–

649, 652
MembershipProvider, 545

FindUsersByName method
ActiveDirectoryMembershipProvider,

648–649, 652
MembershipProvider, 545

FindUsersInRole method
AuthorizationStoreRoleProvider not

implementing, 766
RoleProvider, 726
SqlRoleProvider, 745

FindUsersInRoles method, RoleProvider, 726
forms authentication, 287–372

across different content types, 326–329
best practices, 827
for classic ASP with ASP.NET, 389–394
configuring in IIS 7.0, 323
enabling Role Manager with, 696
encryption in ASP.NET 2.0/3.5, 299–303
enforcing expiration, 291–294
enforcing logouts, 368–371
enforcing single logons, 358–368
leveraging UserData property, 329–332
overview of, 288
persistent tickets, 288–291
RoleManagerModule, 709
security of signed tickets, 295–299
session state security features vs., 419
setting cookie-specific security, 303–308
sharing tickets between 1.1 and 2.0/3.5, 324–325

forms authentication, cookieless, 308–323
AutoDetect, 310–313
cookieless tickets and other URLs in pages, 317–319
overview of, 308–310
payload size, 319–321
replay attack, 315–316
unexpected redirect behavior, 322–323
UseDeviceProfile, 313–315

forms authentication, passing tickets across
applications, 332–357

cookie domain, 332–333
cookie-based SSO-lite. See SSO-lite, cookie-based

79301bindex.indd 887 10/6/08 12:19:03 PM

888

forms authentication (continued)

forms authentication, passing tickets across
applications (continued)

cross-application sharing of ticket, 333–342
overview of, 332

FormsAuthenticationModule
<authentication>, 39–40
across different content types, 326–329
authenticating requests, 115–117
EndRequest, 144
enforcing expiration, 291–294
enforcing single logins, 363–365
forms authentication tasks, 288
native UrlAuthorizationModule with, 130

FormsAuthenticationTicket
cookie-based SSO-lite. See SSO-lite, cookie-based
enforcing expiration, 291–294
enforcing single logins, 362–363
leveraging UserData property, 329–332
native UrlAuthorizationModule with, 130
payload size with cookieless tickets, 319–321
security of signed tickets, 295–299
setting cookie timeout, 289–290
sharing tickets between ASP.NET versions, 324–325
unexpected redirect behavior, 322–323

FormsCookieName, 337
FormsIdentity, 696
401 status code, 144
framework thread pool thread, 100–101
fraudulent postbacks, 458–462
Full Control ACLs, 250–251, 666
Full trust

configuring, 150
defining, 148, 150
intent of, 183
working with, 151–153

FullAccess role, database, 585–586, 745
FullTrust permission set, 157–158, 161

G
GAC (Global Assembly Cache)
ActiveDirectoryMembershipProvider in partial

trust, 688–689
AllowPartiallyTrustedCallersAttribute,

200–202
AuthorizationStoreRoleProvider in partial

trust, 785
matching permission sets to code, 161
processRequestInApplicationTrust and,

217–221
sandboxing and, 204–211
session state and, 441–444
setting up configuration section for feature, 256
strongly named assemblies, APTCA and bin directory,

202–204

using Minimal trust, 149
gacutil tool, 200
GC (global catalog), AD, 640
GeneratePassword method
ActiveDirectoryMembershipProvider, 652
Membership class, 523
SqlMembershipProvider, 590–594

GenericPrincipal, 88–91, 115–117
get_defaultLoadCompletedCallback(),

AJAX, 816
get_defaultLoginCompletedCallback(),

AJAX, 807
get_defaultLogoutCompletedCallback(),

AJAX, 807
get_isLoggedIn(),AJAX, 804, 807, 812
get_path() function, AJAX, 806, 816
get_Roles() function, AJAX, 816, 818
GetAllRoles method, 726, 745
GetAllUsers method,

ActiveDirectoryMembershipProvider,
648–649, 652

GetAllUsers method, MembershipProvider, 545
GetNumberOfUsersOnline method, 549, 652
GetPassword method,

ActiveDirectoryMembershipProvider, 652
GetPassword method, MembershipProvider,

548, 551
GetRedirectUrl, cookie-based SSO-lite, 347–348
GetRedirectUrl, leveraging UserData property,

331, 332
GetRoles event, 708–709, 714–722
GetRoles method, RoleManagerModule, 711
GetRoles method, RolePrincipal class, 697–702,

704–705
GetRolesForCurrentUser method, AJAX, 815, 819
GetRolesForUser method
AuthorizationStoreRoleProvider, 766
RolePrincipal/Roles classes, 694
RoleProvider, 723, 724–725
SqlRoleProvider, 745, 749–750, 752, 754
WindowsTokenRoleProvider, 726–727, 729–730

GetSection method
protected configuration providers, 276, 278
reading and writing configuration, 244–245
reading local configuration, 247–249
run-time/design-time configuration APIs, 248

GetUser method, MembershipProvider
overview of, 544
primary key and, 553
tracking online users, 550

GetUser method MembershipUser, 529
getUserId stored procedures, 756
GetUserInRole method, SqlRoleProvider, 751
GetUserNameByEmail method, 544, 652
GetUsersInRole method, 766

79301bindex.indd 888 10/6/08 12:19:03 PM

889

IIS (Internet Information Services)

GetUsersInRoles method, 726
GetWebApplicationSection method, 248
Global Assembly Cache. See GAC (Global Assembly

Cache)
global catalog (GC), AD, 640
global error handling, 864–865
<globalModules /> configuration section, 34
Guid, 362–365
GUID identifier, 755–757

H
Handler Mappings applet, 376–377
Hash algorithms, 556–560
hashAlgorithmType, 556–560, 588
HashAlgorithmType property, Membership, 521
HashPasswordForStoringInConfigFile

method, 296
Health Monitoring feature, 474
Helper class, hash, 405–410
hidden segments, RequestFiltering module, 137
High trust, 149–150, 153, 183
history, implementing password, 602–617
HMACSHA1 algorithm

passing sensitive data to classic ASP, 400–401, 405
signed tickets, 295–299

HTML images, cross-site request forgery, 857–861
HtmlDecode method, HttpUtility class, 832
HtmlEncode method, HttpUtility class, 832, 854
HTTP request processing

asynchronous page execution, 137–143
AuthenticateRequest, 110–117
AuthorizeRequest, 122–135
blocking requests at IIS level, 135–137
built-in IUSR account/IIS_IUSRS group, 80–81
DefaultAuthentication and, 117–120
EndRequest, 143–144
integrated mode per-request security, 81–87
online resources, 98–100
OS thread identity, 92–98
overview of, 79
PostAuthenticateRequest, 120–122
PostAuthorizeRequest, 135
security identity, 87–92
session state in Integrated mode, 427–428
thread identity/asynchronous pipeline events,

100–110
Thread.CurrentPrincipal and, 117–120

HttpCachePolicy, 384
HttpContext.Current.User property, 111–117
<httpErrors /> configuration section, 237
HttpHandler. See also managed handlers

configuring identity, 48–49
extending IIS 7.0 with, 236
overview of, 45–48

passing data to ASP, 392–394
registering HTTP handlers in, 386–387
review, 78

<httpHandlers /> configuration section, AJAX,
798–799

HttpModule. See also managed modules
authenticating requests and, 110–117
configuring identity, 48–49
defined, 30
developing managed modules, 67–69
extending IIS 7.0 with, 236
Init method, 73–74
overview of, 43–45
review, 78
session state in Integrated mode, 427–434

<httpModules /> configuration section, AJAX, 799
HttpOnly cookies

overview of, 306–308
protecting session cookies, 423–424
role cache cookies, 713–714
security best practices, 839

HttpRuntime object, 742
HttpUtility class, 185
Hyper Text Protocol Stack, 19

I
IAsyncResult interface, 104–105
IAzApplicationContext interface, 764–765
identity. See also thread identity

asynchronous page execution, 137–143
authentication best practices, 827–828
configuring AnonymousAuthenticationModule,

85–86
<identity /> configuration section

database security, 584–586
establishing OS thread identity, 93–97
integrated mode per-request processing, 91
overview of, 48–49
thread identity/asynchronous pipeline events, 106
using stores depending on user identity, 263–264
WindowsAuthenticationModule and, 111

Identity property, RolePrincipal class, 698
IHttpHandler interface. See managed handlers
IHttpModule interface. See managed modules
IIdentity reference, 696–697, 709
IIS (Internet Information Services) 5.0, ISAPI in,

374–375
IIS (Internet Information Services) 7.0

application pools, 17–19
ASP.NET integration, 9–10
components, 19–21
configuring session state inside, 426–427
deployment and configuration management, 4–6
improved administration, 6–9

79301bindex.indd 889 10/6/08 12:19:03 PM

890

IIS (Internet Information Services) (continued)

IIS (Internet Information Services) 7.0 (continued)
managing application’s roles through, 758–760
managing ASP.NET configuration vs., 233–235
modular architecture, 2–3
modules, 22–26
security improvements, 11–12
summary review, 26–27
troubleshooting improvements, 12–17
wildcard mappings. See wildcard mappings, IIS 7

IIS (Internet Information Services) 7.0, Integrated
mode, 29–78

advantages of, 30–31
architecture overview, 31–34
authenticating classic ASP, 394–395
authorization configuration section, 40–42
authorizing classic ASP, 410–414
configuring session state, 427–435
improvements to, 9–10
managed handlers. See managed handlers
managed modules. See managed modules
migrating ASP.NET applications to, 42–49
security configuration section group, 38–40
serving classic ASP in, 387–388
system.webServer configuration section group,

34–37
IIS Manager

configuring impersonation, 95–98
default identity of application pools, 92
editing <forms /> authentication, 323
Failed Request Tracing, 12–13
installing managed handler, 67
installing managed module, 77
overview of, 6–8
security improvements, 12

IIS_IUSRS group, 12, 80–81
IIS_USR, 12
IIS_WPG group, 80
IisTraceListner class, 16–17
ildasm utility, 199–200
<IMembershipCondition /> element, 160
impersonation

configuring ASP.NET, 95–98
establishing OS thread identity, 92–95
WindowsAuthenticationModule, 114–115

information disclosure threat, 825
information leakage threat, AJAX-enabled, 871–874
Init method, IHttpModule, 68–69, 73–74
Initialize method
ActiveDirectoryMembershipProvider, 688
building provider-based feature, 499–504,

513–514, 517
ProviderBase, 485
Singleton pattern, 481–482
SqlMembershipProvider, 606–607, 622–623
SqlRoleProvider, 739

in-process session state, 420–421
input data, validating. See user input validation, best

practices
InsertHistoryRow method,

SqlMembershipProvider, 605–608, 610–611,
614–617

InstallCommon.sql file, 562
InstallMembership.sql, 573–576
InstantiateProviders, Factory Method pattern,

475–480
Integrated mode application pool, 18, 26
Integrated mode, ASP.NET, 10–11
Internet Explorer, 312–313
Internet Information Services. See IIS (Internet

Information Services) 7.0
<IPermission /> element

customizing OdbcPermission, 174
customizing OleDbPermission, 172–173
defining individual permissions, 159
enabling new permissions in policy file, 168–171
using WebPermission, 178

IPrincipal interface, 695–696, 709
IPSEC (IP Security), OOP server, 447
IRequestSessionState interface, 427–428
IsAccessibleToUser, SiteMapProvider,

463–464, 467
IsAnonymous column, aspnet_Users table, 566
ISAPI extensions

behavior in IIS 5, 374–375
configuring wildcard mapping, 377–380
new extensibility API vs., 3
overview of, 31–32

IsApproved column, aspnet_Membership
table, 575

IsApproved property,
ActiveDirectoryMembershipUser, 645, 655

IsApproved property, MembershipUser, 524
IsCurrentUserInRole method, RoleService, 815
IsCurrentVersion column, provider schemas,

567–568
ISerializable method, 442–444
IsInRole method, RolePrincipal class, 695,

697–700, 705
IsLockedOut column, aspnet_Membership

table, 575
IsLockedOut property,

ActiveDirectoryMembershipUser, 645,
655–656

IsLockedOut property, MembershipUser, 525, 535
IsLoggedIn method, AuthenticationService, 805
IsolatedStorageFilePermission class, 189–190
IsOnline property, MembershipUser, 524–525, 528
IsReusable method, IHttpHandler, 51, 60
IsReusable property, session state, 432
IsRoleListCached property, RolePrincipal, 698

79301bindex.indd 890 10/6/08 12:19:03 PM

891

LogRequest

IssueDate property, 331, 706
IsUserInRole() function, AJAX, 816, 818
IsUserInRole method
AuthorizationStoreRoleProvider, 766–767
RolePrincipal/Roles classes, 694
RoleProvider, 723, 724–725
SqlRoleProvider, 745, 749–754
WindowsTokenRoleProvider, 726–732

IsValid property, Page, 831
IUSR built-in account, 85–87
FileAuthorizationModule, 123–124
overview of, 80–81

J
JavaScript and Object Notation (JSON), 796, 874–875
JSON (JavaScript and Object Notation), 796, 874–875

K
keyContainerName

RSA provider, 268, 269–271
synchronizing key containers, 272–273

keyEntropy,
dpapiProtectedConfigurationProvider,
264–265

keys
encryption in ASP.NET 2.0 and 3.5, 299–301
generating programmatically, 301–303

L
Language Integrated Query (LINQ), 179–181
LastActivityDate column, aspnet_Users table,

565–566
LastActivityDate property, MembershipUser,

525, 549–550, 646, 654
LastLockOut property, MembershipUser, 646
LastLockoutDate column, aspnet_Membership

table, 575
LastLockoutDate property, MembershipUser,

525, 620
LastLoginDate column, aspnet_Membership

table, 575
LastLoginDate property, MembershipUser, 525,

646, 654
LastPasswordChangedDate column,

aspnet_Membership table, 575
LastPasswordChangedDate property,

MembershipUser, 525
LDAP (Lightweight Directory Access Protocol)
ActiveDirectoryMembershipProvider, 640,

642–645
AzMan support for query groups, 778–779

LDIF files, 678–679
Level property, AspNetHostingPermission, 182
LinkDemand exception behavior, 185, 195–198,

202–203
LINQ (Language Integrated Query), 179–181
listener adapters, 19–21
load() function, AJAX, 816–817
Load event, cookie-based SSO-lite, 354–355
Load Roles button, 817
loadCompletedCallback() function, AJAX, 817–818
LocalSqlServer, 583–584
<location /> configuration element
allowOverride attribute, 226
IIS 7.0 feature delegation, 240–243
locking provider definitions, 233
overview of, 223–225
path attribute, 225–226
UrlAuthorizationModule, 127–128

lock attributes, 227–233
finding available elements, 229
locking attributes, 227–229
locking elements, 229–231
locking provider definitions, 231–233
using, 227

lockAllAttributesExcept, 227–229
lockAllElementsExcept, 227, 229–231
lockAttributes, 227–229, 243
locked-down mode, IIS 7.0, 11
lockElements, 227, 229–231
locking attributes, 243
lockouts, account

implementing automatic unlocking, 621–626
overview of, 620
SqlMembershipProvider, 617–621

LoggedIn event, single logins, 360, 362, 367
LoggingIn event, single logins, 360, 362, 367–368
LoggingOut event, enforcing logouts, 369–371
login. See also SSO-lite, cookie-based

AJAX, 808–812
classic ASP authentication, 389–391
database security, 585
enforcing single, 358–368
MembershipProvider, 551
replay attacks and, 315–316
session state and, 417–420
Windows authentication, 112–113, 842–843

login() function, AuthenticationService, 806
Login method, AJAX, 805, 812–814
logout

AJAX, 812
enforcing, 358, 368–371

logout() function, AuthenticationService, 806
Logout method, AJAX, 805, 812–814
LogRequest, 100

79301bindex.indd 891 10/6/08 12:19:03 PM

892

Low trust

Low trust
defining, 149–150
enabling SqlRoleProvider in, 739
intent of, 183
Membership requirement, 553
working with, 154

LoweredEmail column, aspnet_Membership
table, 575

LoweredRoleName column, aspnet_Roles table,
736–737

LOWER()function, 572–573

M
Machine level, CAS policies, 162
machine.config file

IIS 7.0 configuration, 235
Membership class, 520
protected configuration providers, 264
requirePermission attribute, 256–257

<machineKey /> element
compatibilityMode attribute, 454
encryption in ASP.NET 2.0 and 3.5, 299–301
passing sensitive data to classic ASP, 399–400
sharing tickets, 324–325
signed tickets, 295–296
SqlMembershipProvider encryption, 588–590
viewstate protection, 451–454

Managed Engine, 387–388
managed handlers, 60–67

defined, 50
developing, 51–60
DisplayEmployee method, 63–67
extending IIS 7.0 with, 236
installing, 67
IsReusable method, 60
native configuration systems vs., 236–238
overview of, 50–51
ProcessRequest method, 60–63
summary review, 77–78

managed modules, 67–77
context_beginRequest method, 74–77
developing, 69–73
extending IIS 7.0 with, 236
forms authentication using, 326–329
Init method, 73–74
installing, 77
native configuration systems vs., 236–238
overview of, 25–26, 67–69
passing data from ASP.NET to classic ASP with,

411–414
summary review, 77–78
UrlAuthorizationModule, 124–129

ManagedHandler

applications running in session state, 432–435
authenticating classic ASP, 395
session state in IIS 7.0 Integrated mode, 432, 434

MapRequestHandler, 100, 428
MaxCachedResults property, 693, 712
maxInvalidPasswordAttempts attribute, 546,

618–620
.mdf file, 582–583
Medium trust

defining, 149–150
finding policy file, 155–156
intent of, 183
LINQ in applications of, 179–181
restrictions of, 184

membership, ASP.NET, 792–794
Membership class, 520–523, 792
membership condition, defined, 159
Membership feature, 519–560. See also AJAX 3.5
ActiveDirectoryMembershipProvider,

649–650
authenticating classic ASP with ASP.NET, 389
custom Hash algorithms with, 556–560
database schema, 573–577
database security, 586
designing for credentials, 470–472
enforcing single logins, 359–368
Façade pattern, 482–483
Factory Method pattern, 475–480
Membership class, 520–523
MembershipProvider.

See MembershipProvider class
MembershipUser. See MembershipUser class
overview of, 358–359, 519
primary key for, 552–553
Role Manager with, 786–789
Strategy pattern, 473
summary review, 560
supported environments, 553–556
updating LastActivityDate, 565

MembershipPasswordException type, 551
MembershipProvider class, 537–551

ASP.NET membership, 792
custom password encryption, 594–597
error-handling, 550–551
overview of, 537–541
retrieving data for single/multiple users, 544–545
self-service password reset/retrieval, 547–549
tracking online users, 549–550
user creation/updates, 541–544
validating user credentials, 545–547

MembershipUser class, 523–537
ActiveDirectoryMembershipUser, 654–657
AD and ADLDS directory schema mappings, 645–648
ASP.NET membership, 792
DateTime assumptions, 536–537

79301bindex.indd 892 10/6/08 12:19:03 PM

893

OnLogin

enforcing single logins, 359–363, 367–369
extending, 525–529
overview of, 523–525
updates and, 529–535

methods
ActiveDirectoryMembershipProvider, 651–654
AuthorizationStoreRoleProvider, 766–767
Membership class, 521–523
MembershipProvider, 542–543
RolePrincipal class, 697–698
RoleProvider, 724–726
Roles class, 693–694
self-service password reset or retrieval, 548–549
System.Web.ApplicationServices​

.AuthenticationService class, 805
System.Web.ApplicationServices​

.AuthenticationServices.RoleService
class, 815

validating user passwords, 546–547
Microsoft Mobile Internet Toolkit (MMIT), 303
MicrosoftAjax.js, 801–802
MicrosoftAjaxWebForms.js, 801
Microsoft.Web.Administration API, 7–8
migrating, ASP.NET to Integrated mode, 42–49
Minimal trust

defined, 149–150
intent of, 184
working with, 154–155

minRequiredNonAlphanumericCharacters
property

ActiveDirectoryMembershipProvider, 650
MembershipProvider, 541–542
SqlMembershipProvider, 590–591, 598–617

minRequiredPasswordLength property
ActiveDirectoryMembershipProvider, 650
MembershipProvider, 541
SqlMembershipProvider, 591, 598–617

Mirosoft Anti-Cross Site Scripting Library, 855–857
MMIT (Microsoft Mobile Internet Toolkit), 303
mobile users, cookieless session state for, 425–426
MobileAlias column, aspnet_Users table, 566
MobilePIN column, aspnet_Membership table, 574
modular architecture, IIS 7.0, 2–3
modules

architecture, 2–3
ASP.NET Integrated mode and, 30
developing, 3
managed, 25–26
overview of, 22
unmanaged, 22–25

<modules> configuration section
ASP.NET Integrated mode architecture, 35–37
installing managed modules with, 77
passing data from ASP.NET to classic ASP, 411

N
name attribute, <modules /> configuration section, 35
native modules

managed configuration systems vs., 236–238
UrlAuthorizationModule, 129–135
using forms authentication, 326–329

nesting, supported by AzMan, 776–778
nesting containers, 660–662
.NET Framework Configuration MMC, 456–457
.NET Roles applet, 758–760
.NET Users applet, 632–636
NETWORK SERVICE account

authentication best practices, 827–828
database security and, 584–586
installing ADLDS with application partitions, 679
securing containers, 662–667
SQL Server Express, 578, 580–583
Windows authentication, 843

no-compile pages, 215–217
Nothing permission set, 158, 160
NotSupportedException, MembershipProvider,

550
NTFS ACLs, 578–579

O
OAEP (Optional Asymmetric Encryption and

Padding), 268
OdbcPermission, customizing, 173–176
oidgen.exe, 668
OleDbPermission

customizing, 171–173
enabling new permissions in policy file, 169–170
reducing security by allowing, 175–176

OnExecuteUrlPreconditionFailure,
DefaultHttpHandler, 385

OnFailed() function, AJAX, 811
online resources

Anti-Cross Site Scripting Library, 857
ApplicationHost.config file, 6
DPAPI provider, 845
extending Membership provider model, 523–524
IIS 7.0 modules and features, 3
Microsoft.Web.Administration API, 8
migrating ASP.NET applications, 49
RequestFiltering, 12, 137
Required Access Control Lists, 828
RSA provider, 845
SQL Injection Cheat Sheet, 850
tracing system, 17
validating query strings, 838
WCF listener adapters/hosting WCF in IIS 7.0, 21

online users, tracking, 549–550
OnLogin() function, AJAX, 810

79301bindex.indd 893 10/6/08 12:19:04 PM

894

OnLoginCompleted() function

OnLoginCompleted() function, AJAX, 811
OnLogout() function, AJAX, 812
OnRolesLoaded() function, AJAX, 818
OOP (out-of-process) state server

securing, 447
session data partitioning and, 420–421
session ID DoS attacks and, 437–438

Open* methods, 248, 249
OpenWebConfiguration method, 249
operating system, establishing thread identity,

92–98, 117
Optional Asymmetric Encryption and Padding (OAEP),

268
$OriginHost$ string replacement token, 157, 176
out parameter, MembershipProvider, 550
OutputCacheModule, 237
OverrideExecuteUrlPath, DefaultHttpHandler,

385–387
overrides, MembershipUser, 528

P
-pa switch, 270–271, 273
Page_Error event, global error handling, 865
PageAsyncTask, 141–143
pageLoad() function, AJAX, 810
pages and compilation, 448–468

fraudulent postback problem, 458–462
page compilation, 454–457
request validation, 450–451
site navigation security, 462–467
summary review, 468
viewstate protection, 451–454

Page.Validate method, user input, 831
parameters, preventing SQL injection, 851–852
partial trust

APTCA requirements, 198–204
AuthorizationStoreRoleProvider in, 783–785
configuration, 253–259
defining, 148–149
exception behavior in Link demands, 195–198
LINQ applications in, 179–181
protected configuration, 275–277
sandboxing access to security sensitive code,

204–211
SqlRoleProvider in non-ASP.NET, 739–745
using ActiveDirectoryMembershipProvider in,

684–689
working with

processRequestInApplicationTrust,
214–221

partitioning, session data, 420–421
PassingDataToClassicASP, 411–414
Password column, aspnet_Membership table,

574, 576

password salts, 602
PasswordAnswer property, 575, 648
passwordAnswerAttemptLockoutDuration

attribute, 650, 654
passwordAttemptWindow attribute
ActiveDirectoryMembershipProvider, 650
MembershipProvider, 546
SqlMembershipProvider, 618–619

passwordFormat attribute
ActiveDirectoryMembershipProvider, 654
MembershipProvider, 548
SqlMembershipProvider, 589

PasswordFormat column, aspnet_Membership
table, 574

PasswordHistory table, 602–604, 612–613,
616–617

PasswordQuestion column, aspnet_Membership
table, 575

PasswordQuestion property, MembershipUser
AD and ADLDS directory schema mappings, 646, 648
defined, 525
MembershipUser state after updates, 529–530
updatability of, 535

PasswordRecovery control, 626, 672
passwords,

ActiveDirectoryMembershipProvider,
645–648, 667–675

passwords, MembershipProvider
creating/updates for, 541–544
supporting self-service reset or retrieval, 547–549
validating user, 545–547

passwords, SqlMembershipProvider
changing formats, 588–590
customizing generation of, 590–594
enforcing custom strength rules, 598–617

PasswordSalt column, aspnet_Membership table,
574, 576

passwordStrengthRegularExpression attribute
ActiveDirectoryMembershipProvider, 650
MembershipProvider, 542
SqlMembershipProvider, 598–617

PasswordUsedBefore method,
SqlMembershipProvider, 612–615

path attribute, <location /> element
IIS 7.0 feature delegation, 241
overview of, 225–226
payload size with cookieless tickets, 320–321

path credentials, security configuration, 82–83
patterns, provider model, 472–483

Façade pattern, 482–483
Factory Method pattern, 474–481
Singleton pattern, 481–482
Strategy pattern, 472–474

payload size, cookieless tickets, 319–321
PerformCentralLogin method, cookie-based

SSO-lite, 348–351

79301bindex.indd 894 10/6/08 12:19:04 PM

895

properties

permission sets
creating custom trust levels, 168–171
customizing OdbcPermission, 173–175
customizing OleDbPermission, 171–173
defining individual permissions, 158–159
matching to code, 159–161
overview of, 157–158
sandboxed access to ADODB, 209–211
sandboxed assemblies asserting, 206–208
SqlRoleProvider in partially trusted non-ASP.NET,

742–744
troubleshooting complex, 165–167
using WebPermission, 176–179

permissions
configuring partial trust, 253–259
database security, 585
reading local configuration, 247–249
remote editing, 251–253
running applications with minimum, 829
securing containers, 663–667
trust levels and session state, 439–441
writing local configuration, 249–251

permissions, default security, 181–195
AspNetHostingPermission, 182–187
DnsPermission class, 188
EnvironmentPermission class, 188
FileIOPermission class, 189
IsolatedStorageFilePermission class,

189–190
PrintingPermission class, 190
ReflectionPermission class, 190–191
SecurityPermission class, 192–193
SmtpPermission class, 193
SocketPermission class, 193–194
WebPermission class, 194
ZqlClientPermission class, 194

PermitOnly method
demanding permissions from configuration class,

257–258
processRequestInApplicationTrust, 217, 221
session state, 441, 444

per-request security, Integrated mode, 81–87
persistent cookies, 712
persistent tickets, 288–291
personalization

Façade pattern, 483
Strategy pattern, 473–474

phishing attacks, 358
Physical Path Credentials field, IIS Manager, 82–83
-pi command, 273
poisoning, 437
policy files

creating for custom trust level, 167
finding, 155–156
permission sets, 157–161

string replacements, 156–157
working with, 162–165

policy store, AzMan
deploying, 764–765
directory-based, 771–779
file-based, 768–771
SQL Server database-based, 780–783

ports, OOP state server, 447
POST requests, ASP.NET AJAX 3.5, 796
PostAcquireRequestState event, 429, 432–434
PostAuthenticateRequest event

asynchronous pipeline events, 101–109
HTTP request processing, 120–122
passing data from ASP.NET to classic ASP, 414
RoleManagerModule, 120–122, 707–711
setting cookie timeout, 290

PostAuthorizeRequest event
HTTP request processing, 135
passing data from ASP.NET to classic ASP, 414
using PreRequestHandlerExecute, 135

postbacks, fraudulent, 458–462
PostDeserialize method, 257–258
PostLogRequest, 100
PostMapRequestHandler, 428–429, 432–433
precompilation, 454–457
precondition attribute, 35, 395
PreRender processing, asynchronous, 138–141
PreRequestHandlerExecute, 135
-pri option, 272
PrintingPermission class, 190
privileges

best practices, 829
elevation of privilege threat, 826

process manager, Windows Process Activation
Service, 20–21

<processModel /> element, 261, 263–264
ProcessRequest method, IHttpHandler, 51,

60–63
processRequestInApplicationTrust,

214–221, 441
Professional IIS 7 and ASP.NET Integrated

Programming (Wrox), 8, 67
Profile

Façade pattern, 483
Strategy pattern, 473
updating LastActivityDate, 565–566

properties
AuthorizationStoreRoleProvider, 767
Membership class, 521
MembershipProvider, 541–542
MembershipUser class, 524
RolePrincipal class, 698, 706
Roles class, 692–693
self-service password reset or retrieval, 547–548
validating user passwords, 546

79301bindex.indd 895 10/6/08 12:19:04 PM

896

protected configuration

protected configuration
defined, 259
DPAPI provider, 264–267
overview of, 259–260
providers, 264
redirecting with custom provider, 278–285
RSA provider. See rsaProtectedConfigurationProvider
selecting provider, 260–264
using in partial trust, 275–277
what you cannot protect, 260

protocol listeners, 19
provider definitions, locking, 231–233
provider model, 469–517

building provider-based feature, 495–517
extending Membership, 523–524
Façade pattern, 482–483
Factory Method pattern, 474–481
reasons for, 469–472
Singleton pattern, 481–482
Strategy pattern, 472–474
summary review, 517
System.Configuration classes, 490–494
System.Configuration.Provider classes, 484–489
System.Web.Configuration classes, 489

ProviderBase class, 484–485
ProviderCollection class, 486–488
ProviderException class, 485–486, 551
ProviderName property, 524, 528, 698
providers, Membership class, 520–521
providers, Role Manager
AuthorizationStoreRoleProvider. See

AuthorizationStoreRoleProvider
SqlRoleProvider. See SqlRoleProvider
WindowsTokenRoleProvider. See

WindowsTokenRoleProvider
ProviderSettings class, 490–492
ProviderSettingsCollection class, 492–494
ProvidersHelper class, 475–476, 489, 504
Provider(s)property, 506–507, 521, 692
ProviderUserKey property, MembershipUser
ActiveDirectoryMembershipUser, 655–656
AD and ADLDS directory schema mappings, 645
creating/retrieving users, 553
defined, 524
linking custom features to user records, 569
updatability of, 524, 534

Publish Website, 454–455

R
reading configuration, 244–253

overview of, 244–247
permissions for local, 247–249
permissions for remote editing, 251–253

read-only validation, ProviderCollection, 488
read-only web servers, 149
Read/Write delegation, features, 240
RedirectFromLoginPage, forms authentication

AutoDetect?cookieless option, 312
cross-application redirects, 334–335
HttpOnly cookies, 306
leveraging UserData property, 331
persistent tickets, 289–290
setting cookies, 304–305

redirects
cookieless forms authentication, 322–323
cross-application, 334–335

Reflection namespace, LinkDemand, 198
ReflectionPermission class, 181, 190–191
regenerateExpiredSessionId attribute, 436
RegisterAsyncTask method, 142
RegisterRequiresViewStateEncryption method,

Page class, 453
RegisterScripts method, ScriptManager, 803
RegisterUniqueScripts method,

ScriptManager, 803
RegistryPermission class, 191
remote connections, using IIS Manager, 12
remote editing, permissions for, 251–253
RemotingConfiguration permission, 192
RemoveUserFromRole method, 694
RemoveUserFromRoles method, 694
RemoveUsersFromRole method, 694
RemoveUsersFromRoles method
AuthorizationStoreRoleProvider, 767
RolePrincipal/Roles classes, 694
RoleProvider, 725
SqlRoleProvider, 738

replay attacks
with cookieless tickets, 315–316
preventing during logout, 369

ReportingAccess role, database, 585–586, 745
repudiation threat, 826
request validation, 450–451, 835
RequestFiltering module, 11–12, 135–137
Request.Form (“key”), cross-site request forgery,

858–860
requests per second (RPS), and DOS attacks, 439
Required Access Control Lists, 828
requirePermission attribute, 255–257
RequiresQuestionAndAnswer attribute, 547, 650
requireSSL attribute, forms authentication

cookieless cross-application behavior, 338
cookieless tickets and, 317
tickets issued in cookies, 303–305

requireUniqueEmail attribute, 542, 649
ResetPassword method
ActiveDirectoryMembershipProvider, 653, 673
MembershipProvider, 549, 551

79301bindex.indd 896 10/6/08 12:19:04 PM

897

Secure property

SqlMembershipProvider, 598–600, 605–606,
617, 625–626

resourceType, wildcard mappings, 382–383
Response.Redirect call, 331
RestrictedMemberAccess permission, LINQ,

179–181
ReturnUrl variable, cookie-based SSO-lite, 352,

355–356
reuse, session ID, 435–436
RevertAssert method, CodeAccessPermission,

210–213
Rijndael algorithm, 840–841
RijndealManaged class, AES, 300
role cache, RoleManagerModule, 712–714
Role Manager, 691–733
AuthorizationStoreRoleProvider. See

AuthorizationStoreRoleProvider
authorizing classic ASP with ASP.NET, 396
Façade pattern, 483
overview of, 691
passing user roles to classic ASP, 397–398
RoleManagerModule. See RoleManagerModule
RolePrincipal class, 695–707
RoleProvider class, 722–726
Roles class, 692–695
SqlRoleProvider. See SqlRoleProvider
Strategy pattern, 473
summary review, 732
using Membership together with, 786–789
WindowsTokenRoleProvider, 726–732

RoleExists method
AuthorizationStoreRoleProvider, 767
RoleProvider, 725
SqlRoleProvider, 745

<roleManager> configuration section group, 794
RoleManagerModule, 707–722
EndRequest, 711–712
multiple providers during GetRoles, 714–722
overview of, 707
PostAuthenticateRequest, 120–122, 707–711
role cache cookie settings and behavior, 712–714
SqlRoleProvider in Windows authentication,

746–747
summary review, 732–733

RolePrincipal class
ASP.NET role management, 794–795
multiple providers during GetRoles, 717–720
overview of, 695–707
RoleManagerModule, 709, 711–712
Roles class interacting with, 694
SqlRoleProvider in Windows authentication, 747
summary review, 732–733

RoleProvider class
ASP.NET role management, 794–795
overview of, 722–726

SqlRoleProvider. See SqlRoleProvider
WindowsTokenRoleProvider. See

WindowsTokenRoleProvider
roles. See also Role Manager

configuring native UrlAuthorizationModule, 131
database security using, 585–586
managing AJAX. See AJAX 3.5
managing in ASP.NET, 794–796
nesting, 724
site navigation security, 463–465

Roles class, 692–695, 794
RoleService class, 815–816
RoleServiceManager class, 803–804
RPS (requests per second), and DOS attacks, 439
RsaProtectedConfigurationProvider, 267–273
aspnet_regiis options, 273–274
defining in machine.config, 264
encrypting data, 845–849
keyContainerName, 269–271
overview of, 259–260
in partial trust, 274–278
selecting, 261–264
synchronizing key containers across machines,

272–273
useMachineContainer, 271–272

RSCA (Runtime Status and Control) API, 17
runtime, no protected configuration for, 261
Runtime Status and Control (RSCA) API, 17

S
SAMAccountName attribute
ActiveDirectoryMembershipProvider,

659–660, 689
using Role Manager with membership, 786, 788

sandboxing, 3–4
sandboxing, with strongly named assemblies

access to ADODB, 208–211
access to SqlClientPermission, 212–214
access to System.Data.SqlClient, 212–214
overview of, 204–208

sanitization, 832–833
SanitizeData method, 833
schema. See database schema
ScopeName property,

AuthorizationStoreRoleProvider, 767
ScriptManager control, 801, 803–804
SDDL (Security Descriptor Definition Language), 656
search settings
ActiveDirectoryMembershipProvider,

648–649
retrieving data for multiple users, 544–545
retrieving data for single user, 544

Secure property, secure cookies, 839

79301bindex.indd 897 10/6/08 12:19:04 PM

898

Secure Socket Layer

Secure Socket Layer. See SSL (Secure Socket Layer)
security. See also identity; thread identity

container, 662–667
database, 584–588
default permissions. See permissions, default security
HTTP requests, 87–92
IIS 7.0 improvements to, 11–12
Integrated mode, per-request, 81–87
long-lived form authentication tickets, 289
partial trust and no-compile pages, 215–217
reducing using ODBC and OLEDB, 175–176
RequestFiltering and, 137
signed tickets, 295–299
SqlRoleProvider, 739–745
SSO-lite solution, 358
trust levels. See trust levels
web application. See ASP.NET security, web

application best practices
<security /> configuration section group

<authentication> configuration section, 38–40
<authorization> configuration section, 40–42

Security Descriptor Definition Language (SDDL), 656
security identifiers (SIDs),

WindowsTokenRoleProvider, 727–728
security trimming, SiteMapProvider, 462–464
<SecurityClass /> element

registering DirectoryServicesPermission, 206
registering OleDbPermission, 169–170, 173
registering permission classes, 206

SecurityIdentifier class, 654–657
SecurityPermission class, 192–193, 210–211
securityTrimmingEnabled attribute, 462–464
SelectingProvider event, 815
self-service password resets, 667–675
sensitive data, safely passing to classic ASP, 398–

406
serialization
RolePrincipal using binary, 707
session state and, 441–444

ServerManager .NET class, 7
serverSearchTimeout attribute,

ActiveDirectoryMembershipProvider,
648–649

session data partitioning, 420–421
session identifiers, logon

enforcing single logons, 359, 363, 367
session state vs. logon session, 418

session IDs
cookie-based, 421–424
DoS attacks and, 437–439
regenerating, 424–426
reuse and expired sessions, 435–436

session state, 417–448
configuring inside IIS 7.0, 426–427

cookie-based session IDs, 421–424
cookieless sessions, 424–426
database security for SQL Server, 445–446
Façade pattern, 483
Integrated mode and, 427–435
logon sessions vs., 417–420
protection from DoS attacks, 437–439
security for OOP state server, 447
session data partitioning, 420–421
session ID reuse and expired sessions, 435–436
Strategy pattern, 474
summary review, 447–448
trust level restrictions for, 439–444

session-based cookies, 288
<sessionstate> configuration section, 426–427
set_defaultLoadCompletedCallback()

function, 816
set_defaultLoginCompletedCallback()

function, 807
set_defaultLogoutCompletedCallback()

function, 807
SetAuthCookie, FormsAuthentication
AutoDetect cookieless option, 312
cookie-based SSO-lite, 352, 354
HttpOnly cookies, 306

Set-Cookie command, 303–305
SetDirty method
RolePrincipal class, 698, 705
SqlRoleProvider, 754

SetReadOnly, ProviderCollection, 488
SHA1 algorithm

encryption in ASP.NET 2.0/3.5, 300
security of signed tickets, 295–299
SqlMembershipProvider, 588

SIDs (security identifiers),
WindowsTokenRoleProvider, 727–728

signed tickets, 295–299
signing, precompiled assemblies, 455–457
Singleton pattern, provider model, 481–482
site navigation, 462–467

Façade pattern, 483
security, 462–467
Strategy pattern, 474

SiteMapNode, site navigation, 462–467
SiteMapProvider(s), site navigation, 462–463
SkipAuthorization property
FormsAuthenticationModule, 116–117
UrlAuthorizationModule, 125

Sleep class, 102–104, 107–108
sliding expirations, forms authentication

cookie-based SSO-lite, 346, 351, 357
EndRequest, RoleManagerModule, 711
never using with cookieless tickets, 316
overview of, 308

79301bindex.indd 898 10/6/08 12:19:04 PM

899

System.Configuration.Provider classes

SmtpPermission class, 193
SocketPermission class, 193–194
Specific user, ASP.NET impersonation, 97
spoofing threats, 825
SQL injection attacks, 849–853
SQL Server

database security, 445–446, 843–845
session ID DoS threats, 437–438
SqlMembershipProvider configuration, 576–577
SqlRoleProvider configuration, 737–738
using database-based policy store, 780–783

SQL Server Express. See SSE (SQL Server Express)
SqlClientMembershipProvider, 550–551,

552–553
SqlClientPermission

sandboxed access to ADODB, 209
sandboxed access to SqlClient, 212–214
serialization, 443–444
SqlRoleProvider in Low trust, 739
SqlRoleProvider in partially trusted non-ASP.NET,

742, 745
working with trust levels, 164–165

SQLEXPRESS, 577
SqlMembershipProvider, 561–637

account lockouts, 617–621
changing password formats, 588–590
common database schema, 562–573
configuring ASP.NET membership, 792–793
custom password generation, 590–594
database schemas and dbo user, 586–588
database security, 584–586
date-time values in, 536–537
enforcing password history, 602–617
enforcing password strength, 598–600
hooking ValidatingPassword event, 600–601
implementing automatic unlocking, 621–626
implementing custom encryption, 594–597
managing an application’s users through IIS 7.0,

632–636
Membership database schema, 573–577
of MembershipProvider base class, 537
overview of, 561
SQL Server configuration, 576–577
summary review, 637
supporting dynamic applications, 626–632
working with SQL Server Express, 577–584

SqlRoleProvider, 735–760
ASP.NET role management, 795
authorizing with roles in data layer, 755–757
database schema, 735–739
database security, 745
with limited set of roles, 748–755
managing roles through IIS 7, 758–760
overview of, 735
summary review, 760–761

supporting dynamic applications, 757–758
trust-level checks, 739–745
in Windows authentication, 746–748

SSE (SQL Server Express), 577–584
connection string, 584–585
issues with sharing, 582–583
overview of, 577–582

SSL (Secure Socket Layer)
cookieless identifiers and, 425–426
encrypting data using, 848
EndRequest, RoleManagerModule, 711
implementing automatic unlocking, 621
installing ADLDS, 643–644, 675–676
installing ADLDS with application partition, 677, 680,

683, 689–690
protecting sensitive data exchanges, 871
tracking logon status, 419–420

SSO (single sign on)
cross-application redirects, 334–335
cross-application sharing of ticket, 333–334

SSO-lite, cookie-based, 342–358
central login application, 351–355
examples of using, 356–357
final leg of login, 355–356
overview of, 342–346
sample application, 346–351
summary review, 357–358

stack frames, 159–160, 164
StaticFileHandler, 384
StatusCode property, DefaultAuthentication,

118–119
STIDE acronym, 825–826
stored procedures, password history, 603–604
storing application name, database schema, 562–563
Strategy pattern, provider model, 472–474
string replacements, policy file, 156–157
strongly named assemblies

APTCA and, 200–202
APTCA and bin directory, 202–204
sandboxing with, 204–208

strongly typed configuration API, 244, 254–255
surf (cross-site request forgery), 857–861
synchronization, of key containers across machines,

272–274
Sys.Service.RoleService class, 817
Sys.Services._AuthenticationService class,

802, 804–807
Sys.Services._RoleService class, 802–803
Sys.Services_RoleService class, 815–816
<system.applicationHost /> section group
ApplicationHost.config file, 3–4
IIS 7.0 configuration, 234
IIS 7.0 feature delegation, 238–243

System.Configuration classes, 490–494
System.Configuration.Provider classes, 484–489

79301bindex.indd 899 10/6/08 12:19:04 PM

900

System.Web.ApplicationServices.AuthenticationService class

System.Web.ApplicationServices​
.AuthenticationService class, 804, 805

System.Web.ApplicationServices.
AuthenticationServices.RoleService
class, 815

System.Web.Configuration classes, 489
<system.web.extensions /> configuration

section, 799–800
System.Web.IisTraceListner class, 16–17
<system.webServer /> configuration section

group
<globalModules>, 34–35
<modules>, 35–37
ApplicationHost.config file, 4–6
authenticating classic ASP, 395
configuring AnonymousAuthenticationModule,

85–87
defined, 34
enabling ASP.NET applications with AJAX, 800–801
feature delegation, 238–243
IIS 7.0 configuration, 234–235
managed modules/handlers, 67, 77, 236

T
tampering threats, 825
tempdb, 445–446
thread identity

asynchronous pipeline events and, 100–110
establishing for OS, 92–98
forms authentication and OS, 117
locating for requests, 87–92

threats. See ASP.NET security, web application best
practices

3DES encryption. See also
RsaProtectedConfigurationProvider

ASP.NET 1.0 and 1.1, 299
ASP.NET 2.0 and 3.5, 300
sharing tickets between ASP.NET versions, 324–325

tickets
cookieless. See cookieless forms authentication
passing across applications. See forms

authentication, passing tickets across
applications

persistent, 288–291
security of signed, 295–299
sharing between versions, 324–325

tilde syntax, file-based policy stores, 768
timeouts
commandTimeout, SqlRoleProvider, 737
cookie-based SSO-lite, 351
cookieless tickets, 317
enforcing forms authentication expiration, 291–294
setting cookie, 289–290

ToEncryptedTicket method
RoleManagerModule, 711
RolePrincipal class, 702–703, 707

tracing system, 12–17
tracking online users, MembershipProvider,

549–550
transaction behavior, SqlRoleProvider, 738–739
TransactionScope class, ADO.NET 2.0, 617
transmission, security of data, 871
troubleshooting

complex permission sets, 165–167
with Failed Request Tracing feature, 12–16
with Runtime Status and Control API, 17
with System.Web.IisTraceListner class, 17

<trust /> element
choosing permissions using, 221
configuring trust levels, 150–151, 221–222
finding trust policy file, 155–156
processRequestInApplicationTrust, 150–151
trust levels and session state, 439–441
using WebPermission with, 176–177

trust levels, 147–221
in action, 162–165
AllowPartiallyTrustedCallersAttribute,

198–204
ASP.NET functionality and, 184–185
configuring, 150–151
cookie-based SSO-lite, 358
defining ASP.NET, 148–150
defining CAS, 162
DnsPermission class, 188
EnvironmentPermission class, 188
FileIOPermission, 189
finding policy files, 155–156
intent of, 183–184
IsolatedStorageFilePermission class, 190
LinkDemand exception behavior, 195–198
LINQ, 179–181
overview of, 147
partial trust. See partial trust
permission sets, 157–158
permission sets, matching to code, 159–161
permissions, default. See permissions, default security
permissions, individual, 158–159
permissions, troubleshooting complex, 165–167
PrintingPermission class, 190
processRequestInApplicationTrust, 214–221
ReflectionPermission class, 191
RegistryPermission class, 191
sandboxing with strongly named assemblies, 204–214
SecurityPermission class, 192–193
session state and, 439–444
SmtpPermission class, 193
SocketPermission class, 194
SqlClientPermission class, 194

79301bindex.indd 900 10/6/08 12:19:04 PM

901

usernames

SqlRoleProvider, 739–745
string replacements in policy files, 156–157
WebPermission class, 194–195
working with different, 151–155

trust levels, customizing, 167–179
OdbcPermission, 173–176
OleDbPermission, 171–173
overview of, 167–171
using WebPermission, 176–179

Try/Catch blocks, 863–864
type attribute, 35
TypeInitializationException, 504

U
UI (user interface), 6, 360
UNC (Universal Naming Convention) shares
AspNetHostingPermission outside of ASP.NET,

185
configuring ASP.NET impersonation, 97–98
FileAuthorizationModule, 123
security choices, 81
WindowsAuthenticationModule, 114–115

unified processing pipeline
AuthenticateRequest, 110–117
AuthorizeRequest, 122–135
blocking requests at IIS level, 135–137
DefaultAuthentication and Thread.

CurrentPrincipal, 117–120
EndRequest, 143–144
IIS 7.0 running in Classic mode, 31–32
Integrated mode and, 30, 32–33
Integrated mode, per-request security, 81–87
PostAuthenticateRequest, 120–122
PostAuthorizeRequest, 135
synchronous events and stages in, 99–100
thread identity and asynchronous pipeline events,

100–110
Universal Coordinate Time. See UTC (Universal

Coordinate Time)
Universal Naming Convention. See UNC (Universal

Naming Convention) shares
unlocking, automatic,, 621–626
UnlockUser method
ActiveDirectoryMembershipProvider, 653
MembershipProvider, 546
SqlMembershipProvider, 620, 623–624

unmanaged (native) modules, 22–25
UpdateCache method, AzMan, 766
updates

of LastActivityDate column, 565–566
Membership state after, 529–534
why only certain properties are updatable, 534–535

UpdateUser method
ActiveDirectoryMembershipProvider, 653

tracking online users, 550
user creation and user, 541–543

UPNs, 659–660, 786
UrlAuthorizationModule

configuring, 40–42
forms authentication tasks, 288
managed, 124–129
managed vs. native, 134–135
managed vs. native configuration, 237–238
native, 129–135
overview of, 11
using forms authentication across different content

types, 328
URLs

cookie-based SSO-lite and. See SSO-lite, cookie-based
cookieless forms authentication for classic ASP,

391–392
cookieless tickets and, 315–321
session ID reuse and expired sessions, 435–436

URLScan security add-on, 11, 135
UseCookies, cookieless attribute, 309
UseDeviceProfile
cookieless attribute, 309
cookieless forms authentication, 313–315
issuing cookieless session IDs, 424

useMachineContainer, RSA provider, 268, 271–272
useMachineProtection, DPAPI provider, 265–267
useOAEP, RSA provider, 268
user input validation, best practices, 829–838

ASP.NET validation controls, 829–831
encoding and filtering, 831–834
protecting against cross-site scripting, 854
protecting against SQL injection, 850–851
request validation, 835
verifying data input, 835–838

user instances, SSE, 577–581
user interface (UI), 6, 360
User level, CAS policies for, 162
UserData property, 329–332
UserId column, 574, 737
UserIsOnlineTimeWindow property, Membership

class, 521
UserIsOnlineTimeWindow property,

MembershipProvider, 549
UserName property, MembershipUser

AD and ADLDS directory schema mappings, 646–647
defined, 524
updatability of, 524, 534

usernames
AD and ADLDS connection settings, 645
affecting URL authorization, 129
database security, 585
passing to ASP, 394
payload size with cookieless tickets and, 320
primary key for, 552–553

79301bindex.indd 901 10/6/08 12:19:05 PM

902

userPrincipalName attribute

userPrincipalName attribute, ADLDS, 689
users

authentication best practices, 827–828
authorization best practices, 828
common table for, 563–566
configuring in native

UrlAuthorizationModule, 131
creating and deleting AD and ADLDS, 641–642
cross-application sharing of tickets, 333–334
database schemas and dbo, 586–588
linking custom features to records of, 569–572
managing with .NET Users applet, 632–636
passing roles to classic ASP, 397–398

users, MembershipProvider class
creating and updating, 541
managing SqlMembershipProvider, 632–636
retrieving and searching for multiple, 544–545
retrieving data for single, 544
supporting self-service password reset or retrieval,

547–549
tracking online, 549–550
validating credentials, 545–547

UseUri, cookieless attribute, 309
UTC (Universal Coordinate Time)

account lockouts, 617–620
enforcing in Membership, 536–537
ticket expiration, 291–292

V
Validate method, Page, 831
ValidateRequest property, Page class, 835,

854–857
ValidateUser method
ActiveDirectoryMembershipProvider,

653, 673
AuthenticationService class, 805
MembershipProvider, 546, 549
SqlMembershipProvider, 624–626

ValidatingPassword event
MembershipProvider, 542–544
SqlMembershipProvider, 598, 600–601

validation. See also user input validation, best
practices

credentials, MembershipProvider class, 545–547
fraudulent postbacks, 460–462
ProviderCollection read-only, 488
request, 450–451
RolePrincipal class, 704–705

validation attribute, viewstate protection, 451–453
validationkey attribute

encryption in ASP.NET 2.0 and 3.5, 300
overview of, 295–296
sharing tickets between versions, 324

ValOnValidatingPassword method,
MembershipProvider, 544

VB.NET
ActiveDirectoryMembershipProvider, 658–659
ActiveDirectoryMembershipProvider in partial

trust, 685–687
ActiveDirectoryMembershipUser, 656
AJAX custom authentication service, 813–814
AJAX custom role service, 819
AllowPartiallyTrustedCallersAttribute,

199, 201, 203
ASP.NET membership, 794
ASP.NET role management, 795
AspNetHostingPermission class, 185–187
asynchronous page tasks, 143
asynchronous pipeline events, 102–106, 108
asynchronous PreRender processing, 138–141
authenticating classic ASP with ASP.NET, 390
authorizing classic ASP with ASP.NET, 397–398
building provider-based feature, 496–-503, 506–509,

511–512, 515–516
clock resets and, 293
container nesting, 661–662
cookie settings, 304–305
cookie timeout, 290
cookie-based SSO-lite, 347–350, 352–354
cookied cross-application behavior, 341–342
cookieless cross-application behavior, 335, 337–338
cookieless forms authentication for classic ASP, 391
cross-site request forgery, 858–860
cross-site scripting threat in AJAX, 876–877
custom Hash algorithms, 558–559
custom password encryption, 594–597
custom passwords, 592–594
customizing configuration providers, 279, 282–285
customizing OdbcPermission, 174–175
customizing OleDbPermission, 172–173
directory-based policy store, 776, 778
encrypting data, 847–848
enforcing logouts, 369–371
enforcing single logins, 362–367
Factory Method pattern, 477–479
filtering data before encoding, 833–834
fraudulent postbacks, 459
generating keys, 302–303
global error handling, 864–865
hash Helper, 408–410
IIS 7 wildcard mappings, 379, 381
JSON hijacking threat, 874–875
LinkDemand exception behavior, 195–197
LINQ trust levels, 180
local configuration, 251
locating identity for requests, 88, 90–91
managed handlers, 50–51, 55–56, 58–63, 65–66,

71–75

79301bindex.indd 902 10/6/08 12:19:05 PM

903

Windows authentication

managed modules, 68
Membership supported environments, 556
MembershipProvider class, 539–540
Microsoft.Web.Administration, 7–8
migrating ASP.NET, 44, 47–48
partial trust, 253
passing data to ASP from ASP.NET, 392–393
passing data to classic ASP, 399–406, 412–413
permission sets, 165–167
persistent cookies, 289
policy file permissions, 168–171
PostAuthenticateRequest, 708, 710
preventing SQL injection, 850–853
processRequestInApplicationTrust, 216,

219–220
protected configuration in partial trust, 276–278
protecting against cross-site scripting, 855–857
reading and writing configuration, 244–247
Role Manager with membership, 786–789
RoleManagerModule, 719–721
RolePrincipal class, 696, 701, 703–704
RoleProvider class, 722–723
Roles.DeleteCookie, 693
sandboxed access to ADODB, 209–211
secure cookies, 839–841
securing containers, 667
self-service password resets, 673
serialization and, 442–444
session state in Integrated mode, 430–432
signed tickets, 297–298
simulating DOS attack, 866–871
site navigation security, 467
SqlMembershipProvider, automatic unlocking,

622–625
SqlMembershipProvider, dynamic applications,

627, 629–630
SqlMembershipProvider, password history,

606–617
SqlMembershipProvider, password strength,

599–601
SqlRoleProvider, dynamic applications, 757–758
SqlRoleProvider, limited set of roles, 748–754
SqlRoleProvider in partially trust non-ASP.NET,

740–741
SqlRoleProvider in Windows authentication,

746–748
System.Configuration classes, 490, 493–494
System.Configuration.Provider classes, 484,

486–487, 489
System.Web.Configuration classes, 489
tracing system, 15–16
trust levels, 152–154
Try/Catch blocks, 864
UserData property, 330–332

validating user input, 831
verifying data input, 836–838
WebPermission, 177–179
WindowsTokenRoleProvider, 728, 730–732

verifying data input, 836
Version property, RolePrincipal class, 698
versioning provider schemas, 566–568
views

Membership database schema, 576
querying common tables with, 568

viewstate protection, 451–454
vw_aspnet_Applications view, 568
vw_aspnet_MembershipUsers view, 576
vw_aspnet_Users view, 568

W
WAS (Windows Process Activation Service), 20, 27
WAT (Web Administration Tool), 582–583,

754–755, 769
Web Administration Tool (WAT), 582–583,

754–755, 769
Web Parts Personalization

Façade pattern, 483
Strategy pattern, 473–474
updating LastActivityDate, 565–566

Web Services Description Language (WSDL), 871
web.config file

configuring
ActiveDirectoryMembershipProvider,
657–659

configuring trust levels, 150–151
installing managed handler, 67, 77

WebConfigurationManager class
reading and writing configuration, 245–247
reading local configuration, 247–249
using protected configuration providers in partial

trust, 276
writing local configuration, 250–251

WebPermission, 176–179
WebPermission class, 194
whitelisting, 833–834
wildcard mappings, classic ASP with ASP.NET, 396
wildcard mappings, IIS 7, 375–383

configuring, 376–382
overview of, 375–376
resourceType setting, 382–383

Windows authentication. See also
WindowsAuthenticationModule

best practices, 827
database security, 446, 584, 842–843
IIS Manager feature and, 12
reading local configuration, 247–248
Role Manager integration with, 553, 565, 697, 709,

794–796

79301bindex.indd 903 10/6/08 12:19:05 PM

904

Windows authentication (continued)

Windows authentication (continued)
site navigation security, 464
SqlRoleProvider and, 746–748
using AuthorizationStoreRoleProvider, 765
using FileAuthorizationModule, 123
using native AnonymousAuthenticationModule,

86, 112–114, 120
using SqlRoleProvider, 746–748
using UrlAuthorizationModule, 124
using WindowsTokenRoleProvider, 726–732
writing local configuration, 250–251

Windows Process Activation Service (WAS), 20, 27
WindowsAuthenticationModule

authenticating requests, 111–115
impersonation token for, 93
security configuration, 83–84

WindowsIdentity
enabling Role Manager, 697
FileAuthorizationModule requiring, 123–124
WindowsAuthenticationModule, 113–115

WindowsPrincipal
locating security identity for requests, 91–92
security choices, 81
security configuration, 84
WindowsAuthenticationModule, 111–112
WindowsTokenRoleProvider, 727

WindowsTokenRoleProvider, 726–732, 733

worker processes, per-request security, 82
writing configuration, 244–253

overview of, 244–247
permissions for local, 249–251
permissions for remote editing, 251–253

WSDL (Web Services Description Language), 871
WSS_Minimal, 149
WWW publishing service, 19–20

X
XML files

IIS 7.0 configuration based on, 3, 233
using file-based policy store, 768–771
working in partial trust, 784

XmlSiteMapProvider, 462–463
XSS (cross-site scripting threat)

AJAX-enabled, 875–877
amplified in AJAX-enabled applications, 875–877
example of, 824–825
guarding against, 853–857
overview of, 853

Z
ZqlClientPermission class, 194

79301bindex.indd 904 10/6/08 12:19:05 PM

79301badvert.indd 905 10/7/08 1:17:29 PM

79301badvert.indd 906 10/7/08 1:17:33 PM

Professional
ASP.NET 3.5 Security, Membership, and
Role Management
with C# and VB

 Enhance Your Knowledge
Advance Your Career

Professional ASP.NET 3.5 Security, Membership, and
Role Management
978-0-470-37930-1
As the first book to address ASP.NET 3.5, AJAX, and IIS 7.0 security from
the developer’s point of view, this book begins with a look at the new
features of IIS 7.0 and then goes on to focus on IIS 7.0 and ASP.NET 3.5
integration. You’ll walk through a detailed explanation of the request
life cycle for an ASP.NET application running on IIS 7.0 under the classic
mode, from the moment it enters IIS 7.0 until ASP.NET generates a corre-
sponding response.

Professional ASP.NET 3.5 MVC
978-0-470-38461-9
The ASP.NET 3.5 MVC Framework enables Microsoft developers to
create dynamic data-driven web sites. Packed with real-world examples,
this authoritative guide is written by the Microsoft team behind the
technology and uses a real-world sample application using MVC in order
to explain the tools and technologies that compliment MVC, such as
SubSonic, LINQ, jQuery, and REST.

Professional ASP.NET 3.5 AJAX
978-0-470-39217-1
The ASP.NET AJAX toolkit is an excellent way to immediately start using
AJAX features in applications in that it offers both excitement and enter-
prise appeal to developers. Professional ASP.NET 3.5 AJAX explains how
you can use these features to build amazing Web sites. Coverage of the
client library, the ScriptManager server control, ASP.NET AJAX applica-
tion services and networking, databases and Web services, testing and
debugging, and deploying applications demonstrates how the client and
server need to interact in order to produce a better Web application.

Professional ASP.NET 3.5
978-0-470-18757-9
Professional ASP.NET 3.5 helps the experienced programmer put the latest ASP.NET technologies into action. Greatly expanded
from the original best-selling Professional ASP.NET 2.0, Professional ASP.NET 3.5 covers all the key technologies retained from
2.0 in new depth alongside the hundreds of pages of coverage of the important new 3.5 features. Written by 3 of the most well-
known and influential ASP.NET developers, Professional ASP.NET 3.5 is the book you’ll learn the language from and turn to day
after day as you write Web applications. And as always, Professional ASP.NET 3.5 features language examples in the book and
in the code download in both C# and VB.

Beginning ASP.NET 3.5
978-0-470-18759-3
Imar Spaanjaar’s book for programmers new to ASP.NET 3.5 has been widely praised as a well-organized tome of information
written by a Web developer for Web developers. Throughout the book the author works through the steps of creating an actual,
fully-functional ASP.NET 3.5 Web site. Each chapter builds on skills learned in the previous sections of the book, allowing the
reader to gain confidence working with ASP.NET 3.5 as they progress through the book.

Get more out of
WROX.com

Programmer to Programmer™

Interact
Take an active role online by participating in
our P2P forums

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and
code to keep you up to date and out of
trouble!

Chapters on Demand
Purchase individual book chapters in pdf
format

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
 We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

spine=1.872"

Professional
ASP.NET 3.5 Security, Membership, and
Role Management
with C# and VB

www.wrox.com

$59.99 USA
$65.99 CAN

Wrox Professional guides are planned and written by working programmers to meet the real-world needs of programmers,
developers, and IT professionals. Focused and relevant, they address the issues technology professionals face every day.
They provide examples, practical solutions, and expert education in new technologies, all designed to help programmers
do a better job.

Recommended
Computer Book

Categories

Web Development

ASP.NET

ISBN: 978-0-470-37930-1

ASP.NET security covers concepts such as Web security, developing in partial
trust, forms authentication, and securing configuration—just to name a
few—all integral components to helping developers ensure reliable security.
Addressing the ASP.NET developer’s security view, this book offers detailed
information on every major area of ASP.NET security that you'll encounter
when developing Web applications. The book covers security in ASP.NET in
general and includes the new additions and changes in ASP.NET 3.5.

Microsoft MVP Bilal Haidar covers the security highlights and new features
of Internet Information Services (IIS) 7.0, and offers a detailed look at the
request lifecycle, as well as clear explanations of AJAX authentication and
authorization. You'll explore ASP.NET Session State, Membership, and Role
Management so you will have a solid ability to develop secure and robust
Web sites with ASP.NET 3.5 in VB or C# code.

What you will learn from this book
● Best practices for developing secure ASP.NET Web applications, including

protecting against AJAX threats
● How to securely access ASP.NET configuration files for reading and editing

purposes
● Techniques for integrating security between ASP.NET and classic ASP
● Various ASP.NET trust levels in both development and hosting stages
● The security context associated with the processing of the request by the

different modules of ASP.NET
● The security features for forms authentication and session state
● How to use Active Directory with the Membership and Role Manager features

Who this book is for

 Enhance Your Knowledge
Advance Your Career

This book is for ASP.NET developers who have experience with developing ASP.NET Web applications in either VB or C#.

A
S

P.N
ET 3.5 S

ecurity, M
e
m

bership,
and R

ole M
anagem

e
nt

w
ith C

and V
B

Haidar

Professional

subtitle

spine=1.872"

Updates, source code, and Wrox technical support at www.wrox.com

Professional

ASP.NET 3.5 Security,
Membership, and
Role Management
with C# and VB
Bilal Haidar

Wrox Programmer to Programmer TMWrox Programmer to Programmer TM

	ASP.NET 3.5 Security, Membership, and Role Management with C# and VB
	Cover

	About the Author
	About the Previous Author
	Credits
	Acknowledgments
	Contents
	Introduction
	Who This Book Is For
	What This Book Covers
	What You Need to Use This Book
	Conventions
	Source Code
	Errata
	p2p. wrox. com

	Chapter 1: Introducing IIS 7.0
	Overview of IIS 7.0
	Application Pools
	IIS 7.0 Components
	IIS 7.0 Modules
	Summary

	Chapter 2: IIS 7.0 and ASP.NET Integrated Mode
	Advantages of IIS 7.0 and ASP.NET Integrated Mode
	IIS 7.0 Integrated Mode Architecture
	Summary

	Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model
	Built-in IUSR Account and IIS_ IUSRS Group
	Integrated Mode Per-Request Security
	The Unified Processing Pipeline
	Summary

	Chapter 4: A Matter of Trust
	What Is an ASP.NET Trust Level?
	Summary

	Chapter 5: Configuration System Security
	Using the <location /> Element
	Using the lockAttributes
	Managing IIS 7.0 Configuration versus ASP.NET Configuration
	Extending IIS 7.0 with Managed Modules and Handlers
	Managing the Native versus Managed Configuration Systems
	IIS 7.0 Feature Delegation
	Reading and Writing Configuration
	Using Configuration in Partial Trust
	Protected Configuration
	Summary

	Chapter 6: Forms Authentication
	A Quick Recap of Forms Authentication
	Understanding Persistent Tickets
	Securing the Ticket on the Wire
	Setting Cookie-Specific Security Options
	Using Cookieless Forms Authentication
	Configuring Forms Authentication Inside IIS 7.0
	Sharing Tickets between 1.1 and 2.0/3.5
	Using Forms Authentication Across Different Content Types
	Leveraging the UserData Property
	Passing Tickets Across Applications
	Enforcing Single Logons and Logouts
	Summary

	Chapter 7: Integrating ASP.NET Security with Classic ASP
	IIS 5 ISAPI Extension Behavior
	IIS 7.0 Wildcard Mappings
	DefaultHttpHandler
	Using the DefaultHttpHandler
	Serving Classic ASP in IIS 7.0 Integration Mode
	Authenticating Classic ASP with ASP.NET
	Authenticating Classic ASP with IIS 7.0 Integrated Mode
	Authorizing Classic ASP with ASP.NET
	Authorizing Classic ASP with IIS 7.0 Integrated Mode
	Summary

	Chapter 8: Session State
	Does Session State Equal Logon Session?
	Session Data Partitioning
	Cookie-Based Sessions
	Cookieless Sessions
	Configuring Session State Inside IIS 7.0
	Session State for Applications Running in IIS 7.0 Integrated Mode
	Session ID Reuse and Expired Sessions
	Session ID Denial-of-Service Attacks
	Trust Levels and Session State
	Database Security for SQL Session State
	Security Options for the OOP State Server
	Summary

	Chapter 9: Security for Pages and Compilation
	Request Validation and Viewstate Protection
	Page Compilation
	Fraudulent Postbacks
	Site Navigation Security
	Summary

	Chapter 10: The Provider Model
	Why Have Providers?
	Patterns Found in the Provider Model
	Core Provider Classes
	Building a Provider-Based Feature
	Summary

	Chapter 11: Membership
	The Membership Class
	The MembershipUser Class
	The MembershipProvider Base Class
	The “Primary Key” for Membership
	Supported Environments
	Using Custom Hash Algorithms
	Summary

	Chapter 12: SqlMembershipProvider
	Understanding the Common Database Schema
	The Membership Database Schema
	Working with SQL Server Express
	Database Security
	Database Schemas and the DBO User
	Changing Password Formats
	Custom Password Generation
	Implementing Custom Encryption
	Enforcing Custom Password Strength Rules
	Account Lockouts
	Implementing Automatic Unlocking
	Supporting Dynamic Applications
	Managing an Application’s Users Through IIS 7.0
	Summary

	Chapter 13: ActiveDirectoryMembership Provider
	Supported Directory Architectures
	Provider Configuration
	Unique Aspects of Provider Functionality
	ActiveDirectoryMembershipUser
	Working with Active Directory
	Using ADLDS
	Using the Provider in Partial Trust
	Summary

	Chapter 14: Role Manager
	The Roles Class
	The RolePrincipal Class
	The RoleManagerModule
	RoleProvider
	WindowsTokenRoleProvider
	Summary

	Chapter 15: SqlRoleProvider
	SqlRoleProvider Database Schema
	Provider Security
	Working with Windows Authentication
	Running with a Limited Set of Roles
	Authorizing with Roles in the Data Layer
	Supporting Dynamic Applications
	Managing an Application’s Roles Through IIS 7.0
	Summary

	Chapter 16: AuthorizationStoreRoleProvider
	Provider Design
	Supported Functionality
	Using a File-Based Policy Store
	Using a Directory-Based Policy Store
	Using a Microsoft SQL Server Database-Based Policy Store
	Working in Partial Trust
	Using Membership and Role Manager Together
	Summary

	Chapter 17 :Membership and Role Management in ASP.NET AJAX 3.5
	ASP.NET Membership and Role Services Overview
	ASP.NET AJAX Application Services
	Summary

	Chapter 18: Best Practices for Securing ASP.NET Web Applications
	Web Application Security Threats Overview
	Developers Beware
	AJAX-Enabled Application Threats
	Summary

	Index

