Professional

ASP.NET 3.5 Security,
- Membership, and

- Role Management
with C# and VB

."h:.': I LIILI’

Professional

ASP.NET 3.5 Security, Membership, and
Role Management
with C# and VB

Professional ASP.NET 3.5 Security, Membership, and
Role Management
978-0-470-37930-1
e = _ - As the first book to address ASP.NET 3.5, AJAX, and IIS 7.0 security from
g.:‘.’:’df.;u.‘i.:%‘:" ASP.NET 3.5 MVC AS . the developer’s point of view, this book begins with a look at the new
ot features of IIS 7.0 and then goes on to focus on IIS 7.0 and ASP.NET 3.5
] = integration. You'll walk through a detailed explanation of the request
life cycle for an ASP.NET application running on IIS 7.0 under the classic
mode, from the moment it enters IIS 7.0 until ASP.NET generates a corre
sponding response.

Professional ASP.NET 3.5 MVC
978-0-470-38461-9

vweel The ASP.NET 3.5 MVC Framework enables Microsoft developers to
;"SP“"'NET 25 create dynamic data-driven web sites. Packed with real-world examples,
In C# and VB this authoritative guide is written by the Microsoft team behind the
technology and uses a real-world sample application using MVC in order
to explain the tools and technologies that compliment MVC, such as

SubSonic, LINQ, jQuery, and REST.

Professional ASP.NET 3.5 AJAX

978-0-470-39217-1

The ASP.NET AJAX toolkit is an excellent way to immediately start using
AJAX features in applications in that it offers both excitement and enter-
prise appeal to developers. Professional ASP.NET 3.5 AJAX explains how
you can use these features to build amazing Web sites. Coverage of the
client library, the ScriptManager server control, ASP.NET AJAX applica-
tion services and networking, databases and Web services, testing and
debugging, and deploying applications demonstrates how the client and
server need to interact in order to produce a better Web application.

Enhance Your Knowledge
Advance Your Career

Professional ASP.NET 3.5

978-0-470-18757-9

Professional ASP.NET 3.5 helps the experienced programmer put the latest ASP.NET technologies into action. Greatly expanded
from the original best-selling Professional ASP.NET 2.0, Professional ASP.NET 3.5 covers all the key technologies retained from
2.0 in new depth alongside the hundreds of pages of coverage of the important new 3.5 features. Written by 3 of the most well-
known and influential ASP.NET developers, Professional ASP.NET 3.5 is the book you'll learn the language from and turn to day
after day as you write Web applications. And as always, Professional ASP.NET 3.5 features language examples in the book and
in the code download in both C# and VB.

Beginning ASP.NET 3.5
978-0-470-18759-3

Imar Spaanjaar’s book for programmers new to ASP.NET 3.5 has been widely praised as a well-organized tome of information
written by a Web developer for Web developers. Throughout the book the author works through the steps of creating an actual,
fully-functional ASP.NET 3.5 Web site. Each chapter builds on skills learned in the previous sections of the book, allowing the
reader to gain confidence working with ASP.NET 3.5 as they progress through the book.

Professional ASP.NET 3.5 Security, Membership,
and Role Management with C# and VB

Introductionttt i e XXiii
ChapterL:Introducing lIS 7.0ttt nnnceenrrnnnns 1
Chapter 2: 1IS 7.0 and ASP.NET Integrated Mode 29
Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model 79
Chapter4: AMatterof Trustttt nnnns 147
Chapter 5: Configuration System Security. 223
Chapter 6: Forms Authenticationt 287
Chapter 7: Integrating ASP.NET Security withClassic ASP 373
Chapter8:SessionState. ittt eannns 417
Chapter 9: Security for Pages and Compilation. 449
Chapter 10: The Provider Model. ittt etnnennnns 469
Chapter11l:Membership. it nnnns 519
Chapter 12: SqlMembershipProvider. i 561
Chapter 13: ActiveDirectoryMembership Provider 639
Chapter14: Role Manager. i it tinetnnnnrnnnnsnnnnsnns 691
Chapter 15: SqlRoleProvider nrrnnnnnnnnns 735
Chapter 16: AuthorizationStoreRoleProvider 763
Chapter 17: Membership and Role Management in ASP.NET AJAX 3.5..... 791
Chapter 18: Best Practices for Securing ASP.NET Web Applications 823

1 T = 879

Professional

ASP.NET 3.5 Security, Membership,
and Role Management with C# and VB

Professional

ASP.NET 3.5 Security, Membership,
and Role Management with C# and VB

Bilal Haidar
Stefan Schackow

WILEY
Wiley Publishing, Inc.

Professional ASP.NET 3.5 Security, Membership,
and Role Management with C# and VB

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256

www.wiley.com
Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

Portions based on the previous work Professional ASP.NET 2.0 Security, Membership, and Role Management, by Stefan Schackow,
copyright © 2006 Stefan Schackow, published by Wiley Publishing, Inc.

Published simultaneously in Canada

ISBN: 978-0-470-37930-1

Manufactured in the United States of America
10987654321

Library of Congress Cataloging-in-Publication Data

Haidar, Bilal.
Professional ASP.NET 3.5 security, membership, and role management with C# and VB / Bilal Haidar,
Stefan Schackow.
p.cm.
Includes index.
ISBN 978-0-470-37930-1 (paper/website)

1. Active server pages. 2. Microsoft NET. 3. Computer security. 4. Web site development.
1. Schackow, Stefan, 1970- II. Title.
QA76.9.A25H344 2008
005.8—dc22
2008036129

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, elec-
tronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976
United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of
the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc.,
10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at http: //www.wiley.com/go/
permissions.

Limit of Liability /Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to
the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation
warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The
advice and strategies contained herein may not be suitable for every situation. This work is sold with the understanding that the
publisher is not engaged in rendering legal, accounting, or other professional services. If professional assistance is required, the
services of a competent professional person should be sought. Neither the publisher nor the author shall be liable for damages
arising herefrom. The fact that an organization or Web site is referred to in this work as a citation and/or a potential source of
further information does not mean that the author or the publisher endorses the information the organization or Web site may
provide or recommendations it may make. Further, readers should be aware that Internet Web sites listed in this work may have
changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the United
States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may
not be used without written permission. All other trademarks are the property of their respective owners. Wiley Publishing, Inc.,
is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in elec-
tronic books.

www.wiley.com

About the Author

Bilal Haidar has a BE in Computer Engineering and a BS in Computer Science with a minor in Math-
ematics from the Lebanese American University (LAU). He has authored several online articles for
www.aspalliance.com, www.code-magazine.com, and www.aspnetpro.com, and is one of the top post-
ers at the ASPNET forums. Bilal has been a Microsoft MVP in ASP.NET since 2004, as well as a Microsoft
Certified Trainer, and currently works as a senior developer for Consolidated Contractors Company (CCC),
a multinational company whose headquarters are based in Athens, Greece (www . ccc . gr). Bilal runs his
own blog, where he shares his technical experience and can be reached at http: //www.bhaidar.net.

About the Previous Author

Stefan Schackow is a Program Manager on the Web Platform and Tools Team at Microsoft. During
the Visual Studio 2005 cycle, he worked on the new application services stack in Visual Studio 2005
and owned the Membership, Role Manager, Profile, Personalization and Site Navigation features in
ASPNET 2.0. He also worked on features for Microsoft’s ASP.NET hosting solution. Currently, Stefan
is working and speaking on Silverlight for Microsoft. He is a frequent speaker at Microsoft developer
conferences. Prior to joining the ASP.NET team, Stefan worked as an application development consul-
tant in Microsoft Consulting Services (MCS) with enterprise customers.

Acquisitions Director
Jim Minatel

Development Editors
John Sleeva
Gus Miklos

Technical Editor
Alexei Gorkov

Production Editor
Kathleen Wisor

Copy Editor
Christopher M. Jones

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Credits

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator, Cover
Lynsey Stanford

Compositor
James D. Kramer, Happenstance Type-O-Rama

Proofreader
Publication Services, Inc.

Indexer
Jack Lewis

Acknowledgments

The idea of working on this book started when Jim Minatel, Acquisitions Director at Wrox, emailed me
about updating the previous version of this book. Despite the fact that I have been publishing articles
for magazines and online websites for the past few years, I felt the experience of working on such a
book would be really interesting and unique. Only the days later proved me right and made me proud
that I accepted Jim's offer.

I spent many hours researching new features and upgrades, writing down everything I learned so

that I could share it with you. Many people supported me and provided me with valuable information,
including Scott Guthrie, Billy Hoffman, Mike Volodarsky, Steve Scofield, and Anil Ruia. (I apologize if I
forgot anyone!)

I want to thank the Wiley publishing family, including Jim Minatel, John Sleeva, Gus Miklos, Carol
Kessel, Katie Wisor, and Ashley Zurcher, as well as technical editor Alexei Gorkov.

I cannot forget the support and flexibility that my company, CCC, represented by my managers and col-
leagues, showed me during all the stages of writing this book. Your support and understanding gave
me enough strength to carry on and finish this book.

Finally, a special thanks to my parents and brother and sister, who followed up with me from the begin-
ning of this work and were even more excited about this book than I myself was.

Contents

Introduction xxiii
Chapter 1: Introducing IIS 7.0 1
Overview of IIS 7.0 2
Modular Architecture 2
Deployment and Configuration Management 4
Improved Administration 6
ASP.NET Integration 9
Security Improvements 11
Troubleshooting Improvements 12
Application Pools 17
Integrated Mode 18
Classic Mode 18

11IS 7.0 Components 19
Protocol Listeners 19
World Wide Web Publishing Service 19
Windows Process Activation Service 20

I1S 7.0 Modules 22
Unmanaged Modules 22
Managed Modules 25
Summary 26
Chapter 2: IS 7.0 and ASP.NET Integrated Mode 29
Advantages of IIS 7.0 and ASP.NET Integrated Mode 30
I1S 7.0 Integrated Mode Architecture 31
system.webServer Configuration Section Group 34
Migrating ASP.NET Applications to Integrated Mode 42
Extending IIS 7.0 with Managed Handlers and Modules 49
Summary 77
Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model 79
Built-in IUSR Account and 1IS_IUSRS Group 80

Contents

Integrated Mode Per-Request Security 81
Where Is the Security Identity for a Request? 87
Establishing the Operating System Thread Identity 92

The Unified Processing Pipeline 98
Thread Identity and Asynchronous Pipeline Events 100
AuthenticateRequest 110
DefaultAuthentication and Thread.CurrentPrincipal 117
PostAuthenticateRequest 120
AuthorizeRequest 122
PostAuthorizeRequest Through PreRequestHandlerExecute 135
Blocking Requests at the IS Level 135
Identity during Asynchronous Page Execution 137
EndRequest 143

Summary 144

Chapter 4: A Matter of Trust 147

What Is an ASP.NET Trust Level? 148
Configuring Trust Levels 150
Anatomy of a Trust Level 155
A Second Look at a Trust Level in Action 162
Creating a Custom Trust Level 167
Additional Trust Level Customizations 171
LINQ in Medium/Partial Trust ASP.NET Applications 179
The Default Security Permissions Defined by ASP.NET 181
Advanced Topics on Partial Trust 195

Summary 221

Chapter 5: Configuration System Security 223

Using the <location /> Element 223
The Path Attribute 225
The allowOverride Attribute 226

Using the lockAttributes 227
Locking Attributes 227
Locking Elements 229
Locking Provider Definitions 231

Managing IIS 7.0 Configuration versus ASP.NET Configuration 233

Extending IIS 7.0 with Managed Modules and Handlers 236

Managing the Native versus Managed Configuration Systems 236

IS 7.0 Feature Delegation 238

Xiv

Contents

Reading and Writing Configuration 244
Permissions Required for Reading Local Configuration 247
Permissions Required for Writing Local Configuration 249
Permissions Required for Remote Editing 251

Using Configuration in Partial Trust 253
The requirePermission Attribute 255
Demanding Permissions from a Configuration Class 257
FilelOPermission and the Design-Time API 258

Protected Configuration 259
What Can’t You Protect? 260
Selecting a Protected Configuration Provider 261
Defining Protected Configuration Providers 264
DpapiProtectedConfigurationProvider 265
RsaProtectedConfigurationProvider 267
aspnet_regiis Options 273
Using Protected Configuration Providers in Partial Trust 274
Redirecting Configuration with a Custom Provider 278

Summary 285

Chapter 6: Forms Authentication 287

A Quick Recap of Forms Authentication 288

Understanding Persistent Tickets 288
How Forms Authentication Enforces Expiration 291

Securing the Ticket on the Wire 295
How Secure Are Signed Tickets? 295
Encryption Options in ASP.NET 2.0 and 3.5 299

Setting Cookie-Specific Security Options 303
requireSSL 303
HttpOnly Cookies 306
slidingExpiration 308

Using Cookieless Forms Authentication 308
Cookieless Options 310
Replay Attacks with Cookieless Tickets 315
The Cookieless Ticket and Other URLs in Pages 317
Payload Size with Cookieless Tickets 319
Unexpected Redirect Behavior 322

Configuring Forms Authentication Inside 1IS 7.0 323

Sharing Tickets between 1.1 and 2.0/3.5 324

Using Forms Authentication Across Different Content Types 326

Leveraging the UserData Property 329

XV

Contents

Passing Tickets Across Applications 332
Cookie Domain 332
Cross-Application Sharing of Ticket 333

Enforcing Single Logons and Logouts 358
Enforcing a Single Logon 359
Enforcing a Logout 368

Summary 372

Chapter 7: Integrating ASP.NET Security with Classic ASP 373

IS 5 ISAPI Extension Behavior 374

1S 7.0 Wildcard Mappings 375
Configuring a Wildcard Mapping 376
The Resource Type Setting 382

DefaultHttpHandler 383

Using the DefaultHttpHandler 384

Serving Classic ASP in IIS 7.0 Integration Mode 387

Authenticating Classic ASP with ASP.NET 389
Will Cookieless Forms Authentication Work? 391
Passing Data to ASP from ASP.NET 392
Passing Username to ASP 394

Authenticating Classic ASP with 1IS 7.0 Integrated Mode 394

Authorizing Classic ASP with ASP.NET 396
Passing User Roles to Classic ASP 397
Safely Passing Sensitive Data to Classic ASP 398
Full Code Listing of the Hash Helper 407

Authorizing Classic ASP with lIS 7.0 Integrated Mode 410
Passing Data from ASP.NET to Classic ASP in IIS 7.0 Integrated Mode 411

Summary 414

Chapter 8: Session State 417

Does Session State Equal Logon Session? 417

Session Data Partitioning 420

Cookie-Based Sessions 421
Sharing Cookies Across Applications 422
Protecting Session Cookies 423
Session ID Reuse 424

Cookieless Sessions 424

Configuring Session State Inside IIS 7.0 426

Session State for Applications Running in IIS 7.0 Integrated Mode 427

Session ID Reuse and Expired Sessions 435

Session ID Denial-of-Service Attacks 437

Xvi

Contents

Trust Levels and Session State 439
Serialization and Deserialization Requirements 441
Database Security for SQL Session State 445
Security Options for the OOP State Server 447
Summary 447
Chapter 9: Security for Pages and Compilation 449
Request Validation and Viewstate Protection 449
Request Validation 450
Securing viewstate 451
Page Compilation 454
Fraudulent Postbacks 458
Site Navigation Security 462
Summary 468
Chapter 10: The Provider Model 469
Why Have Providers? 469
Patterns Found in the Provider Model 472
The Strategy Pattern 472
Factory Method 474
The Singleton Pattern 481
Facade 482
Core Provider Classes 484
System.Configuration.Provider Classes 484
System.Web.Configuration Classes 489
System.Configuration Classes 490
Building a Provider-Based Feature 495
Summary 518
Chapter 11: Membership 519
The Membership Class 520
The MembershipUser Class 523
Extending MembershipUser 526
MembershipUser State After Updates 529
Why Are Only Certain Properties Updatable? 534
DateTime Assumptions 536
The MembershipProvider Base Class 537
Basic Configuration 541
User Creation and User Updates 541
Retrieving Data for a Single User 544

XVii

Contents

Retrieving and Searching for Multiple Users 545
Validating User Credentials 545
Supporting Self-Service Password Reset or Retrieval 547
Tracking Online Users 549
General Error-Handling Approaches 550
The “Primary Key” for Membership 552
Supported Environments 554
Using Custom Hash Algorithms 557
Summary 560
Chapter 12: SglMembershipProvider 561
Understanding the Common Database Schema 562
Storing Application Name 562
The Common Users Table 563
Versioning Provider Schemas 566
Querying Common Tables with Views 568
Linking Custom Features to User Records 569
Why Are There Calls to the LOWER Function? 572
The Membership Database Schema 573
SQL Server-Specific Provider Configuration Options 576
Working with SQL Server Express 577
Sharing Issues with SSE 582
Changing the SSE Connection String 583
Database Security 584
Database Schemas and the DBO User 586
Changing Password Formats 588
Custom Password Generation 590
Implementing Custom Encryption 594
Enforcing Custom Password Strength Rules 598
Hooking the ValidatePassword Event 600
Implementing Password History 602
Account Lockouts 618
Implementing Automatic Unlocking 621
Supporting Dynamic Applications 626
Managing an Application’s Users Through IIS 7.0 632
Summary 637
Chapter 13: ActiveDirectoryMembershipProvider 639
Supported Directory Architectures 640

Xviii

Contents

Provider Configuration 642
Directory Connection Settings 642
Directory Schema Mappings 645
Provider Settings for Search 648
MembershipProvider Settings 649

Unique Aspects of Provider Functionality 651

ActiveDirectoryMembershipUser 654
IsApproved and IsLockedOut 655
Using the ProviderUserKey Property 655

Working with Active Directory 657
UPNs and SAM Account Names 659
Container Nesting 660
Securing Containers 662
Configuring Self-Service Password Reset 667

Using ADLDS 675
Installing ADLDS with an Application Partition 677
Using the Application Partition 682

Using the Provider in Partial Trust 685

Summary 690

Chapter 14: Role Manager 691

The Roles Class 692

The RolePrincipal Class 695

The RoleManagerModule 707
PostAuthenticateRequest 707
EndRequest 711
Role Cache Cookie Settings and Behavior 712
Working with Multiple Providers during GetRoles 714

RoleProvider 722
Basic Configuration 724
Authorization Methods 724
Managing Roles and Role Associations 725

WindowsTokenRoleProvider 726

Summary 733

Chapter 15: SqglRoleProvider 735

SqlRoleProvider Database Schema 735
SQL Server-Specific Provider Configuration Options 737
Transaction Behavior 738

Xix

Contents

Provider Security 739
Trust-Level Requirements and Configuration 739
Database Security 745

Working with Windows Authentication 746

Running with a Limited Set of Roles 748

Authorizing with Roles in the Data Layer 755

Supporting Dynamic Applications 757

Managing an Application’s Roles Through IIS 7.0 758

Summary 760

Chapter 16: AuthorizationStoreRoleProvider 763

Provider Design 763

Supported Functionality 766

Using a File-Based Policy Store 768

Using a Directory-Based Policy Store 771

Using a Microsoft SQL Server Database-Based Policy Store 780

Working in Partial Trust 783

Using Membership and Role Manager Together 786

Summary 789

Chapter 17: Membership and Role Management in ASP.NET AJAX 3.5 791

ASP.NET Membership and Role Services Overview 792
ASP.NET Membership 792
ASP.NET Role Management 794

ASP.NET AJAX Application Services 796
Enabling ASP.NET Applications with ASP.NET AJAX 3.5 796
Enabling ASP.NET Application Services 801
AuthenticationServiceManager and RoleServiceManager Classes 803
Authentication Service 804
Role Service 816

Summary 822

Chapter 18: Best Practices for Securing ASP.NET Web Applications 823

Web Application Security Threats Overview 824

Developers Beware 827
Know Your Users 827
Run Applications with Minimum Privileges 829
Validate User Input 829
Secure Cookies 838

XX

Contents

Secure Database Access 841
SQL Injection Attacks 849
Cross-Site Scripting 853
Cross-Site Request Forgery 857
Handle Exceptions Properly 861
Guard Against Denial-of-Service Threats 866
Secure Data Transmission 872
AJAX-Enabled Application Threats 872
Information Leakage 872
JSON Hijacking 874
Amplified Cross-Site Scripting 876
Summary 878
Index 879

Introduction

This book covers security topics on a wide range of areas in ASPNET 2.0 and ASP.NET 3.5. It starts with
an introduction to Internet Information Services 7.0 (IIS 7.0) and then explains in detail the new IIS 7.0 Inte-
grated mode of execution. Next is detailed coverage of how security is applied when an ASP.NET appli-
cation starts up and when a request is processed in the newly introduced integrated request-processing
pipeline. The book then branches out to cover security information for features such as trust levels, forms
authentication, session state, page security, and configuration system security. You will also see how you
can benefit from the IIS 7.0 Integrated mode to make use of ASPNET features to handle non-managed or
native requests such as classic ASP due to the fact that ASPNET and IIS 7.0 join efforts to form an inte-
grated request-processing pipeline to handle requests. Over the course of these topics, you will gain a
solid understanding of many of the less publicized security features in ASPNET 2.0 and ASPNET 3.5.

The book switches gears in Chapter 10 to address two security services in ASPNET 2.0 and ASPNET 3.5:
Membership and Role Manager. You start out learning about the provider model that underlies both

of these features. Then you get a detailed look at the internals of both features, as well as the SQL- and
Active Directory-based providers included with them. After reading through these topics, you will have
a thorough background on how you can work with those providers and how you can extend them in
your applications. The discussion about the ASP.NET features continues, with Chapter 17 dedicated to
the ASPNET AJAX 3.5 security integration with ASPNET 3.5, showing how to authenticate/authorize
users with JavaScript code written on the client-side.

Finally, the book closes with a chapter on the best practices ASPNET developers should follow to pro-
tect their ASPNET applications from malicious attacks.

Who This Book Is For

This book is intended for developers who already have a solid understanding of ASP.NET 1.1 and
ASPNET 2.0 security concepts in the area of forms authentication, page security, and website autho-
rization. Where the book addresses functionality such as Membership and Role Manager, it assumes
that you have already used these features and have a good understanding of the general functionality
provided by both of them. It is also assumed that you have already worked with ASP.NET AJAX 3.5.
This book does not rehash widely available public information on various features or API reference
documentation.

Instead, you will find that the book has been written to “peel back the covers” of various ASPNET
security features so that you can gain a much deeper understanding of the security options available to
you. The book focuses on explaining the new IIS 7.0 and its Integrated mode of execution, showing the
importance of this new mode and how ASP.NET applications benefit from it. The book also addresses
lesser known security functionality such as ASP.NET trust levels so that you can take advantage of
these approaches in your own applications.

If you are looking for an overview on IIS 7.0 and its unified/integrated request-processing pipeline, you
will find Chapters 1 and 2 useful. If you are seeking a deep dive on general ASPNET 2.0 and ASP.NET 3.5

Introduction

security, you will find Chapters 2-9 useful. If your initial focus is on the Membership and Role Manager
features, Chapters 10-15 will be immediately useful to you. Chapter 17 focuses on explaining the authen-
tication/authorization features in ASPNET AJAX 3.5 to show you how to benefit from some of ASPNET
security features from the client-side JavaScript code, thereby developing more responsive but more
secure applications without reinventing the wheel. Finally, Chapter 18 covers a number of threats and
attacks that ASP.NET applications might face and provides solutions and on how to handle such threats.

After you have read through these topics, you will have a thorough understanding of why ASPNET
security works the way it does, and you will have insights into just how far you can “stretch” ASPNET 2.0
and ASP.NET 3.5 to match your application’s security requirements.

What This Book Covers

The subject of ASP.NET security can refer to a lot of different concepts: security features, best coding
practices, lockdown procedures, and so on. This book addresses ASP.NET security features from the
developer’s point of view. It gives you detailed information on every major area of ASP.NET security
you will encounter while developing web applications. And it shows you how you can extend or mod-
ify these features.

Q Chapter 1, “Introducing IIS 7.0,” starts by refreshing the ideas on application pools and worker
processes before diving into explaining the major components that constitute IIS 7.0. The new
modular architecture in IIS 7.0 is explained and a list of both native and managed modules is
provided. At the end of the chapter you will learn about the two modes of processing inside
IIS 7.0: Integrated and Classic.

Q Chapter 2, “IIS 7.0 and ASP.NET Integrated Mode,” starts by introducing the advantages of
using the IIS 7.0 and ASP.NET integrated mode. The discussion expands into exploring the
internals and architecture of the new integrated mode of execution. In addition, the chapter
highlights the migration problems that a developer or administrator faces when upgrading an
application to run inside IIS 7.0 under the integrated mode. The chapter ends with a section on
extending the IIS 7.0 infrastructure by developing managed Ht tpHandlers and Ht tpModules
and installing these features from inside the application’s web. config configuration file with-
out the need to have access to the IIS 7.0 Manager tool.

Q Chapter 3, “HTTP Request Processing in IIS 7.0 Integrate Model,” starts by introducing the
new built-in IUSR account and IIS_IUSRS group inside IIS 7.0. It then gives you a detailed
walkthrough of the security processing that both IIS 7.0 and ASP.NET perform in the inte-
grated /unified request-processing pipeline. The unified processing pipeline and all its events
and stages are introduced with a detailed focus on some of the important stages. You will
also see how the default authentication and authorization modules work, as well as the new
techniques at the IIS 7.0 level to block access to content based on new IIS 7.0 configuration set-
tings. A section is dedicated to the new native UrlAuthorizationModule that ships as part
of the native modules in IIS 7.0. This chapter also describes subtleties in how request identity
works with ASP.NET 2.0’s and ASP.NET 3.5’s asynchronous pipeline events and asynchro-
nous page model.

Q Chapter 4, “A Matter of Trust,” describes what an ASP.NET trust level is, and how ASP.NET
trust levels work to provide more secure environments for running web applications. The chap-
ter goes into detail on how you can customize trust levels and how to write privileged code that
works in partial trust applications.

XXiv

Introduction

Chapter 5, “Configuration System Security,” covers the security features in the 2.0 and 3.5
Frameworks’ configuration systems. It discusses the configuration options for locking down
configuration sections as well as protecting configuration sections from prying eyes. The chapter
discusses managing the IIS 7.0 configuration system versus the ASP.NET configuration system,
and introduces IIS 7.0 feature delegation, which enables administrators to specify which IIS 7.0
configuration sections ASP.NET applications can change and modify. It also discusses how
ASP.NET trust levels and configuration system security work together.

Chapter 6, “Forms Authentication,” explains ASP.NET 2.0 and ASP.NET 3.5 features for forms
authentication. You will learn about the integrated cookieless support and the support forms
authentication has for passing authentication tickets across web applications. The chapter also
presents an extensive example of implementing a lightweight single sign on solution using
forms authentication, as well as how to enforce a single login using a combination of forms
authentication and Membership.

Chapter 7, “Integrating ASP.NET Security with Classic ASP,” demonstrates using IIS 7.0 wild-
card mappings and ASP.NET 2.0’s and ASP.NET 3.5’s support for wildcard mappings to share
authentication and authorization information with Classic ASP applications when an ASP.NET
application is operating in the IIS 7.0 Classic mode. The chapter shows how easy it is to inte-
grate ASP.NET security with Classic ASP or any other non-managed content through the Inte-
grated mode of processing introduced with IIS 7.0. The chapter ends with a detailed discussion
on authenticating and authorizing classic ASP Content through ASP.NET Membership and Role
Manager in an application operating under the IIS 7.0 Integrated mode.

Chapter 8, “Session State,” covers security features and guidance for session state. Session state
security features in ASP.NET 2.0 and ASP.NET 3.5 are covered, as well as security options for
out-of-process state and the effect ASP.NET trust levels have on the session state feature. In
addition is a detailed discussion on how to enable session state for non-managed content
when ASP.NET applications are operating under the IIS 7.0 Integrated mode.

Chapter 9, “Security for Pages and Compilation,” describes some lesser known page security
features from ASP.NET 1.1. It also describes ASP.NET 2.0 and ASP.NET 3.5 options for securing
viewstate and postback events. Chapter 9 also covers how the dynamic compilation model in
ASP.NET 3.5, originally introduced with ASP.NET 2.0, can be used with code access security.

Chapter 10, “The Provider Model,” gives you an architectural overview of the provider model
in both ASP.NET 2.0 and ASP.NET 3.5. The chapter covers the various Framework classes that
are “the provider model,” along with sample code showing you how to write your own custom
provider-based features.

Chapter 11, “Membership,” talks about the Membership feature in ASP.NET 2.0 and ASP.NET 3.5.
The chapter goes into detail about the core classes of the Membership feature as well as how
you can extend the feature with custom hash algorithms.

Chapter 12, “SqlMembershipProvider,” delves into both the SqglMembershipProvider as well as
general database design assumptions that are baked into all of ASP.NET 2.0’s and ASP.NET 3.5’s
SQL-based features. You will learn how you can extend the provider to support automatically
unlocking user accounts. The sample code also covers custom password encryption, storing
password histories, and extending the provider to work in portal environments.

Chapter 13, “ActiveDirectoryMembershipProvider,” covers the other membership provider
that ships in ASP.NET 2.0 and ASP.NET 3.5 — ActiveDirectoryMembershipProvider. You
will learn about how this provider maps its functionality onto Active Directory, and you will
see how to set up both Active Directory and Active Directory Lightweight Directory Service
(introduced with Windows Server 2008) servers to work with the provider.

XXV

Introduction

a

Chapter 14, “Role Manager,” describes the Role Manager feature that provides built-in authori-
zation support for ASP.NET 2.0 and ASP.NET 3.5. You will learn about the core classes in Role
Manager. The chapter also details how the RoleManagerModule is able to automatically set

up a principal for downstream authorization and how the module and Role Manager’s caching
work hand in hand. Chapter 14 also covers the WindowsTokenRoleProvider, one of the pro-
viders that ships with Role Manager.

Chapter 15, “SqlRoleProvider,” discusses the Sqg1RoleProvider and its underlying SQL
schema. You will learn about using the provider in conjunction with Windows authentication,
extending the provider to support custom authorization logic, and how you can use its database
schema for data layer authorization logic. Although not specific to just SglRoleProvider, the
chapter covers how to get the provider working in a partial trust non-ASP.NET environment.

Chapter 16, “AuthorizationStoreRoleProvider,” covers the AuthorizationStoreRoleProvider,
a provider that maps Role Manager functionality to the Authorization Manager feature that first
shipped in Windows Server 2003 and is now part of Windows Server 2008. You will learn how
to set up and use both file-based and directory-based policy stores with the provider. The chap-
ter covers special Authorization Manager functionality that is supported by the provider, as
well as how to use both the ActiveDirectoryMembershipProvider and Authorization
StoreRoleProvider to provide Active Directory-based authentication and authorization in
your web applications.

Chapter 17, “Membership and Role Management in ASP.NET AJAX 3.5,” discusses how
ASP.NET AJAX 3.5 integrates with ASP.NET 3.5 Membership and Role management features
through newly introduced web services that act as an interface to the ASP.NET application
services. The chapter starts by recapping the Membership and Role Management features in
ASP.NET 2.0 and ASP.NET 3.5. The discussion then moves to the steps required to enable exist-
ing ASP.NET applications with ASP.NET AJAX 3.5 and then how to enable client-side authenti-
cation and role services in the application. Chapter 17 ends by dissecting the authentication and
role services in ASP.NET AJAX by detailing all the server-side and client-side classes that make
the ASP.NET AJAX 3.5 integration with the ASP.NET application services possible.

Chapter 18, “Best Practices for Securing ASP.NET Web Applications,” covers the best practices
that can be followed to secure ASP.NET applications. The discussion takes the form of a list of
best practices that you can follow and apply in your web application. Each recommended best
practice is explained in detail, with a sample code included when possible. The chapter ends by
introducing you to the vulnerabilities exposed by introducing AJAX techniques into your appli-
cations, and the possible best practices in securing such applications.

What You Need to Use This Book

This book was written using the .NET 3.5 Framework together with .NET 3.5 Framework SP1 on both
Windows Server 2008 and Windows Vista. The sample code in the book has been verified to work with
NET 3.5 Framework and .NET 3.5 Framework SP1 on Windows Vista. To run all of the samples in the
book, you will need the following:

XXVi

H]
a

Windows Server 2008 or Windows Vista

Internet Information Services 7.0 (IIS 7.0)

Introduction

Q Visual Studio 2008 RTM
Q Either SQL Server 2000 or SQL Server 2005

0 A Windows Server 2008 domain running at Windows Server 2008 functional level

Most of the samples should also work when using Windows Server 2008, as Windows Server 2008 and
Windows Vista both share the same IIS 7.0. Note that the information in most of the book refers to secu-
rity credential configuration using IIS 7.0 application pools.

Note that all of the book’s chapters require you to have IIS 7.0 installed.

Chapters 12 and 15 use the SQL-based providers. You should have either SQL Server 2000 or SQL Server
2005 setup to use these samples. Scattered throughout the book are other samples that rely on the Mem-
bership feature. These samples also require either SQL Server 2000 or SQL Server 2005.

To run the samples in Chapter 13, you will need either a Windows Server 2008 domain controller or
a machine running Active Directory Lightweight Directory Service (ADLDS) or Application Mode
(ADAM). Chapter 13 addresses using the ActiveDirectoryMembershipProvider in both Active
Directory and ADLDS environments.

The sample code in Chapter 16 uses the Authorization Manager functionality in Windows Server 2008
(both setting up policies and consuming them). As a result, to run most of the samples, you will need

a Windows Server 2008 domain controller that has been set up to work with Authorization Manager.
For file-based policy stores, you do not need your own domain controller if you just want to try out file-
based policy stores with the AuthorizationStoreRoleProvider. In addition, Windows Server 2008
enriches the Authorization Manager with the ability to store the authorization information in a Micro-
soft SQL Server. Therefore, either SQL Server 2000 or SQL Server 2005 is required to show how this new
feature works on Windows Server 2008.

Conventions

To help you get the most from the text and keep track of what’s happening, we've used a number of
conventions throughout the book.

Boxes like this one hold important, not-to-be forgotten information that is directly rel-
evant to the surrounding text.

Notes, tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.
As for styles in the text:

Q We highlight new terms and important words when we introduce them.

O We show keyboard strokes like this: Ctrl+A.

XXVii

Introduction

0 We show file names, URLs, and code within the text like so: persistence.properties.
0 We present code in two different ways:

We use a monofont type with no highlighting for most code examples.

We use gray highlighting to emphasize code that's particularly important
in the present context.

Source Code

As you work through the examples in this book, you may choose either to type in all the code manu-
ally or to use the source code files that accompany the book. All of the source code used in this book is
available for download at http: //www.wrox.com. Once at the site, simply locate the book’s title (either
by using the Search box or by using one of the title lists) and click the Download Code link on the
book’s detail page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
978-0-470-37930-1.

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at http: //www.wrox.com/dynamic/books/download.
aspx to see the code available for this book and all other Wrox books.

Errata

We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration and at the same time you will be helping us provide even higher quality
information.

To find the errata page for this book, go to http: //www.wrox.com and locate the title using the Search
box or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you can
view all errata that has been submitted for this book and posted by Wrox editors. A complete book list
including links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don't spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

Xxviii

Introduction

p2p.wrox.com

For author and peer discussion, join the P2P forums at p2p . wrox. com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics of
interest of your choosing when new posts are made to the forums. Wrox authors, editors, other industry
experts, and your fellow readers are present on these forums.

Athttp://p2p.wrox.comyou will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:
1. Gotop2p.wrox.comand click the Register link.
2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-

tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

XXiX

Introducing 1IS 7.0

Microsoft Internet Information Services (IIS) version 7.0 was introduced with the Windows Vista
operating system as the main Windows web server. The same web server is going to be utilized by
Windows Server 2008 with the same features, which means developing with Windows Vista IIS 7.0
will cost nothing when it is time to deploy on Windows Server 2008 IIS 7.0.

IIS 7.0 is a revolution in terms of web application processing and handling. It has been re-architected
to provide a more robust, extensible, componentized web server that gives developers a better
opportunity to integrate more into its features.

This chapter starts with an overview of new IIS 7.0 features. Application pools and worker pro-
cesses are reviewed before diving into more advanced topics. The discussion goes deeper to cover
the major components inside IIS 7.0. IIS 7.0 introduces the concept of modules as a new architec-
tural design. Both native and managed modules are covered, with a brief description of each. The
chapter ends by giving an overview on the request processing in IIS 7.0 and the new application
pool modes: Integrated and Classic.

By the end of this chapter, you will have a good knowledge of the following:

Q

I T TR N

IIS 7.0 features overview

Application pool and worker processes

IIS 7.0 components

Managed and native modules inside IIS 7.0
IIS 7.0 request processing pipeline

Integrated and Classic mode application pools

Chapter 1: Introducing IIS 7.0

Overview of IIS 7.0

1IS 7.0 is the new web server that ships with Windows Vista and Windows Server 2008. Similar to

the previous versions of IIS, this new version will continue to handle and process web requests that
arrive at the Windows machine. The most mature version of IIS before the current one is IIS 6.0 which
ships with Windows Server 2003. IIS 6.0 is very robust in terms of security, speed, process manage-
ment, and reliability. IIS 7.0 builds its core engine on its predecessor and improves several areas. In
addition, many new features have been added, making it extensible and manageable, thus leveraging

IIS 7.0 to be a web server platform powerful enough to handle the challenges of present and future web
applications.

The new IIS 7.0 features and characteristics are briefly summarized and presented in the next few sec-
tions to give a high-level overview of what has been done to improve the web server.

Modular Architecture

As mentioned above, IIS 7.0 bases its core engine on the best features of IIS 6.0 and adds to them the
extensibility and accessibility for developers through its modular core engine. IIS 7.0 is based on a plug-
in architecture that allows developers to have a hand in the processing of web requests. IIS 7.0 provides
extensibility through its runtime pipeline, configuration management, and operational features to have
a customizable web server for varying needs and requirements.

Making IIS 7.0 modular gives you the chance to customize it according to personal preferences and
needs. Contrary to how the IIS 6.0 was configured, IIS 7.0 has most of its modules available but not
installed. An administrator or developer can choose what modules or features to install and activate
and what modules to deactivate. This provides both administrators and developers with a robust and
reliable capability to configure the web server as needed. Figure 1-1 shows the new IIS 7.0 Manager list-
ing the 40 available managed and native modules or features that ship with a full installation.

T Tnimrmat infarmaiian Sarviens 5] Hanager ey ot
GO (% vwome » B e

[T
Connection |

0'.' Modules
| BHATDAR.PC [Bhasiar POt |

his
Wb server,

Gioup by No Grouping

Mame Code

SeraseMedan I TR AT T
Cnaputiache
»

Resebanager
Untauthnicatisn
Filehulbesizalmon

Praie SpterWeb Frolile PeolileMo... Managed
Unlagsregibhosute SyalemWeb WeilappingsMad.. Managed Log

HiEpCatreModule WwindingSyitm3Tnetivica., Natwe Lag
DefputDasumentiassule NindinySyitem3Zunetivide.. Natwe Loe
DirestontistingModule SwindiruSyemaTunetiAdl. Natwe Log
ProtaceisuppanModule Sinding Syem3Zunetiipr.. Natwe Lo
windirs 7 Hative Loc

Matwe Loc

2 Mative Loc

windir Syrtemd Tunet; Hazive Loc

Swindir 1 Mative Loc

Isagef imerszdule HwindickiSyitemdZunetidfil. Native Lag
Maive Log

Twindirs Mate Lag

dnetiniau.. Native Lag

[Features View || Content view

Tesamnost

Figure 1-1

Chapter 1: Introducing IIS 7.0

All modules are not installed by default, unless specified. Any module can be uninstalled and removed
from the runtime pipeline processing, giving a flexible and dynamic experience in terms of choosing
what to configure from built-in modules or even adding new modules and features. From the security
point of view, an administrator or developer can choose what modules to include in the processing,
hence affecting the overall performance of loading the configured modules to handle requests. This
modular architecture helps reduce surface attacks by having the freedom to choose the modules to
include and provides better performance by having the administrator or developer install only the
required set of modules or features. IIS 7.0 managed and unmanaged modules are covered in detail
later in this chapter.

Web server features or modules are configured through XML configuration files. The configuration
files (discussed in a later section) are built into a hierarchy where at every level modules or features are
configurable.

A Microsoft TechNet resource is available online that lists all the modules and features contained in
IIS 7.0 and shows which modules are installed by default and which can be added later:
http://technet2.microsoft.com/WindowsServer2008/en/library/
0d35e92b-ddb7-4423-b1e5-df550e25713b1033 .mspx

Developing Modules and Features

The modular architecture introduced above discusses the ability to customize the modules installed
on the web server whether by adding new ones or uninstalling existing ones. Adding new modules is
easier with the new extensibility API for developing modules to integrate into IIS.

All of the native modules installed or shipped with IIS are developed on top of this extensibility API
and this API is public, which means any developer can take that API and either redevelop an existing
module or develop a new module as required.

The new extensibility API is built with C++ and it fully represents the new web server object model.
The set of classes allows the developer to develop modules that can participate in request processing

on IIS. This model is a replacement of the ISAPI extensibility model and is much easier to develop with
since the new model includes a type-safe and well-encapsulated object model. Every needed web server
object has a corresponding specialized object interface in the new API For example, the THt tpRequest
interface allows custom modules developed on top of the new extensibility API to access all the infor-
mation related to the request under processing. The IHttpResponse interface allows custom modules
to interact with the response generated for a request processed by IIS 7.0.

The new extensibility API even excels in terms of memory allocation and state management over ISAPI.
In the days of ISAPI extensions, the developer had to take care of allocating and unallocating memory
as required. The new extensibility API and most of the new IIS 7.0 APIs allocate server-managed mem-
ory for the data processed, which is different from the days of ISAPI extensions where developers had
to take care of all the mess.

Finally, the new extensibility API allows modules to access features that were impossible to access before,
such as request buffering and other IIS request processing tasks.

What about ASPNET developers who are not ready to learn C++ to develop new modules for IIS? IIS 7.0
allows ASPNET developers to utilize their existing ASPNET module or create new ones using both the
.NET 2.0 and 3.5 Frameworks and plug them automatically into the IIS request pipeline. In a later sec-
tion, the ASP.NET integration process is explained in more depth.

Chapter 1: Introducing IIS 7.0

Deployment and Configuration Management

IIS 7.0 uses a new configuration system that is conceptually much different from the IIS 6.0 centralized
metabase configuration system. The new configuration system borrows many ideas from the current
NET 2.0 and 3.5 Frameworks configuration system, which is based on section groups and sections.

IIS 7.0 configuration system is based on XML configuration files mainly the ApplicationHost.config
and Administration.config configuration files. Both of these files get deployed on the machine
when IIS 7.0 is installed The configuration file of concern for most of the tasks related to IIS 7.0 is the
ApplicationHost.config configuration file that contains all the new web server meta-data.

This configuration file contains global- and application-specific configuration sections. It resembles the
NET Frameworks configuration files: machine.configand the root web.config configuration files. The
web server configuration file can be reached by browsing to the $WINDIR%/System32/inetsrv/config
folder. Figure 1-2 shows the two main sections of the ApplicationHost.config configuration file.

applicationPooIs
—»| System.applicationHost I|stene[Adapters
0g
Sites
webLimits

Y

ApplicationHost.config J_|

Asp
Ly System.webServer Cagg;ng
defaultDocument
directoryBrowsing
globalModules
Handlers
httpCompression
httpErrors
httpLogging
httpProtocol
httpRedirect
httpTracing
isaoiFilters
Modules
odbcLogging
Security
serverRuntime
serverSidelnclude
staticContent
Tracing
urlCompression
validation

Y

Figure 1-2

The two main section groups are the <system.applicationHost> and the <system.webServer>
section groups. The <system.applicationHost> section group contains all the global settings for the
web server, including the sites, applicationPools, listenerAdapaters, and so forth. This section is locked
down and cannot be extended by any application hosted insidellS.

Chapter 1: Introducing IIS 7.0

<sites>
<site name="Default Web Site" id="1" serverAutoStart="true">
<application path="/">
<virtualDirectory path="/" physicalPath="%SystemDrive%\inetpub\
wwwroot" />
</application>
<application path="/MyApp">
<virtualDirectory path="/" physicalPath="%SystemDrive%\inetpub\
wwwroot \MyApp" />
</application>
<bindings>
<binding protocol="http" bindingInformation="+*:80:" />
</bindings>
</site>

The <sites> section defines all the configuration information on all sites hosted by the web server.
At the root node there is the Default Web Site that points to the site located at $SystemDrive%\
inetpub\wwwroot. To add a new website to IIS 7.0, simply add a new application node specifying
the virtual path attributes together with a virtualDirectory sub-node setting the path and
physicalPath attributes. With the above configuration, a new website has been added to IIS and
can be accessed by http://localhost/MyApp.

The other section group, <system.webServer>, holds all the configurable sections for an application.
For instance, this section contains configuration information about all the modules installed on the
web server, a configuration section for directory browsing, and all the rest of the sections shown in
Figure 1-2.

Note that with the new configuration system introduced by IIS 7.0, an administrator can configure the
<system.applicationHost> and then select which section groups and sections from the <system
.webServer> can be changed and edited by the application’s web.config configuration file. This
eliminates the need for a site owner to contact the administrator to change any settings in IIS, which
was always happening before the release of IIS 7.0. This makes deployment with IIS 7.0 much easier. A
developer can configure the <system.webServer> configuration section group during the develop-
ment stage and then once the application is deployed, all the settings that were applied locally on IIS 7.0
would have the same effect on the hosting server given the fact that the administrator on the hosting
server has already unlocked most of the configurable sections within the <system.webServer>. For
instance, a developer can override the default web server settings for the default document for an
application and set it to a customized page name.

<system.webServer>
<defaultDocument>
<files>
<clear />
<add value="MyPage.aspx" />
</files>
</defaultDocument>
</system.webServer>

The <system.webServer> configuration section group is the only section group in the Application
Host.config configuration file that can be extended and configured in the web. config configuration
file of an application. The default documents configured on the web server are cleared out and a new
customized default document for the current application is set to point to MyPage . aspx.

Chapter 1: Introducing IIS 7.0

In regard to security, administrators are allowed to select which sections of the <system.webServer>
to allow for editing and which are locked. For instance, an administrator can unlock many sections that
do not pose any threat to the security of the web server as a whole and leave open all the sections that
site owners usually require to change per application.

When a request reaches IIS for a resource, the different configuration files are joined together in a hier-
archy to form single, unified configuration settings that apply to the current request. Figure 1-3 shows
the process of how the different configuration files are grouped together to form a final web.config
configuration file.

Machine.config web.config (root)
ApplicationHost.config web.config N web.config
(%SystemDrive%/inetpub/ (%SystemDrive%/inetpub/
wwwroot) wwwroot/MyApp)
Y

web.config

(sub applications)
Figure 1-3

The machine.config file is merged with the web. config configuration file located in the root folder
of the .NET 2.0 Framework, which is a shared folder used by both ASPNET 2.0 and ASP.NET 3.5. The
ApplicationHost.config configuration file is added to the result of the above grouping, and then the
combined configuration settings are grouped with the web. config configuration file in the root web-
site of the web server. The final result is added to the grouped configuration settings of the web.config
configuration file of the executing application with its sub-applications’ web. config configuration files.

An IIS resource is available online that gives a detailed overview of the ApplicationHost.config con-
figuration file: http://learn.iis.net/page.aspx/124/introduction-to-applicationhostconfig/

Improved Administration

The IIS 7.0 Manager has been developed from scratch to replace the previous version. The difference is
evident through the new Ul experience and quick availability for any section to check and configure.

The IIS 7.0 Manager provides the Ul interface experience for administrators and developers to configure
the ApplicationHost.config configuration file without touching any physical resources. For instance,
Figure 1-4 lists the available application pools in the ApplicationHost.config configuration file.

The Manager is just a UI representation to whatever is stored in the ApplicationHost.config con-
figuration file. Using the manager to configure IIS 7.0 helps to prevent imposing possible wrong XML
tag placement.

Chapter 1: Introducing IIS 7.0

@{) A v BUAUDAREC b Applicatian Pool e

Bl Yiew Welp
0'.' Application Poals

Connection. |
et e T PP —

PR Ty e
FIP . the& WKI worker Hatﬂﬂk eantain one ae more applicatisad, snd B-'n-‘ﬂ! ivelation Between
ot ante

Al Web Sites

nnnnnnnn

Fifles; - Bl Ge - G Showll | Grews by o Grouping

MET Frame.. Managed Ppsl. Identiy Appucat
w20

Figure 1-4

<applicationPools>
<add name="DefaultAppPool" />
<add name="Classic .NET AppPool" managedPipelineMode="Classic" />
<applicationPoolDefaults>
<processModel identityType="NetworkService" />
</applicationPoolDefaults>
</applicationPools>

Application pools can be removed and edited, and new ones can be added. The result is stored in the
ApplicationPool configuration section group inside the ApplicationHost.config configuration file.

The IIS 7.0 Manager inherits the idea of extensibility from IIS 7.0 and provides an extensible API that
can be used to extend its Ul features, hence extending the UI experience with much more features as
required. In addition, the Manager allows management delegation that helps in administrating remote
websites. For example, administrators in hosting companies can configure IIS 7.0 with the major and
most secure configurations and allow the sites” owners to configure their sites remotely through their
version of IIS 7.0 Manager. This does away with the need for special control panels for site owners to
log into and configure their websites.

Moreover, the IIS 7.0 team thought of providing developers with a managed API to allow them to con-
figure the IIS 7.0 configuration settings programmatically. The new APl is called the Microsoft.wWeb
.Adminisration APIL Before this API can be used in Visual Studio, a reference has to be added to the
Microsoft.Web.Administration.dll found at $SystemDrive%: \Windows\System32\inetsrv.
The main class in this new APl is the ServerManager .NET class. This class contains properties for
the sites, applications, virtual directories, application pools, and worker processes.

Chapter 1: Introducing IIS 7.0

C#

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using Microsoft.Web.Administration;

namespace Microsoft.Web.Administration
{
public class Program
{
static void Main(string[] args)
{
// Get a reference to the factory object
// ServerManager
var manager = new ServerManager () ;

// Define a new website

manager.Sites.Add (
"ProgrammaticSite",
@"D:\ProgrammaticSite\",
8080) ;

// Commit changes to the ApplicationHost.config
manager . CommitChanges () ;

VB.NET

Imports System

Imports System.Collections.Generic
Imports System.Ling

Imports System.Text

Imports Microsoft.Web.Administration

Namespace Microsoft.Web.Administration
Public Class Program
Shared Sub Main(ByVal args() As String)
' Get a reference to the factory object
' ServerManager
Dim manager = New ServerManager ()

' Define a new website
manager.Sites.Add ("ProgrammaticSite", "D:\ProgrammaticSite\",_
8080)

' Commit changes to the ApplicationHost.config
manager .CommitChanges ()
End Sub
End Class
End Namespace

Chapter 1: Introducing IIS 7.0

The preceding code creates a new instance of the ServerManager factory object. Then it adds a new site
by accessing the Sites property and specifying the site name, physical path, and the port, and finally,

a call to the CommitChanges method to reflect the changes in the ApplicationHost.config configu-
ration file. The result of executing the preceding code can be checked in the <sites> configuration
section:

<site name="ProgrammaticSite" id="20">
<application path="/">
<virtualDirectory path="/" physicalPath="D:\ProgrammaticSite\" />
</application>
<bindings>
<binding protocol="http" bindingInformation="*:8080:" />
</bindings>
</site>

A new site entry is created within the <sites> configuration section group. The new site specifies the
application’s physical path, virtualDirectory's physicalPath, and the protocol binding

Moreover, IIS 7.0 provides an additional tool called appcmd. exe that allows administrators and devel-
opers to configure the web server from the command prompt to create and configure sites, applica-
tions, virtual directories, start and stop application pools, recycle application pools, and much more.
The utility is very rich in options and even presents a deeper configuration interface than that of I1IS
7.0 Manager.

The book titled Professional 11S 7 and ASP.NET Integrated Programming (Wrox) explains in detail the IIS 7.0
Manager and the new Administration API In addition, it includes informative chapters on the new IIS
7.0 configuration system and many more topics. An IIS resource is available online that gives a detailed
overview of the Microsoft. Web.Administration API: http://learn.iis.net/page.aspx/165/
how-to-use-microsoftwebadministration/

ASP.NET Integration

ASP.NET, since its release, has been used for several years to provide high level and powerful web
applications developed purely within the context of the .NET Framework. A revolutionary stage has
been introduced with the release of ASP.NET 2.0 that introduced new concepts and services to web
development in ASPNET. ASPNET 3.5 continues to use the ASPNET 2.0 at its core and adds to it addi-
tional new features and improvements to help developers build better and robust Web solutions.

So far, ASPNET has been used only as a framework for developing dynamic web applications. IIS 7.0
leverages ASP.NET 2.0 and ASP.NET 3.5 to extensibility frameworks to extend the new web server.

IIS 6.0 handles requests for ASP.NET pages through ISAPI filters and extensions. Request handling

is delegated to the ASPNET ISAPI extension, the ASPNET pipeline is triggered to handle the new
request, and a response is generated and finally handed back to the IIS to deliver it to the requesting
client. APS.NET has no control over what is being sent to its engine, since it is solely controlled by the
IIS core engine. Only requests defined by the ASP.NET engine can be passed and processed, but what
about other content? For instance, what if an ASPNET application wants to secure access to some old
Classic ASP pages using the same FormsAuthenticationModule used to protect ASPNET resources?
Before IIS 7.0, that was hard to do, if not impossible. If you are in a hurry to learn how to control and
process non-ASP.NET content and resources through the ASP.NET pipeline, you can jump directly to

Chapter 1: Introducing IIS 7.0

Chapter 7 for a detailed discussion on how to integrate ASP.NET security with Classic ASP
pages. Note that whatever applies to Classic ASP applies also to any other non-ASP.NET resource
including .php, .3jpg, .htm, and so on.

In IIS 7.0, ASPNET 2.0 and 3.5 can run in two different modes: Classic and Integrated. The Classic mode
resembles the same model as that of IIS 6.0 and ASPNET. ASPNET 1.1 applications running inside IIS
7.0 can only be run using the Classic mode. When an ASP.NET 2.0 or 3.5 application is running in the
Integrated mode, however, the ASP.NET engine gets unified with the IIS 7.0 engine, hence they share
the same request pipeline. IIS’s native C++ modules and ASPNET HttpModules work together on pro-
cessing a request. A request is processed by the configured native modules and any module registered
with ASPNET. One of the clear and shining results of this unified integration is that ASPNET can
now have a say when processing any content resource (and not only ASP.NET resources), a feature not
present before the days of IIS 7.0. Figure 1-5 shows the unified request pipeline in processing a request
in IIS 7.0.

Authentication F—

_>| Page

S
2 Execute Handler ,I Webservice
E
T _>| Trace
L]
L]
L]
_>| Compression
Send Response f |
_>| Logging
Figure 1-5

When it is time for IIS to authenticate a request, it executes all the configured native and managed
authentication modules at the same time. The same applies for any stage inside IIS 7.0. This signifies
again the power of having both ASPNET modules and native modules execute side by side in han-
dling a request.

More on ASP.NET integration with IIS 7.0 is covered in detail in Chapter 2.

10

Chapter 1: Introducing IIS 7.0

Security Improvements

IIS 7.0 security is based on the robustness of 1IS 6.0’s security. By default, when IIS 6.0 is installed, it is
installed in a locked-down mode, meaning that only handling of static files and the World Wide Web
Publishing Service (WWW Service) are installed and enabled. The rest of services that operate on top
of IIS 6.0 (including ASP, ASP.NET, and so forth) are disabled and can be added and enabled at any
time by the administrator.

IIS 7.0 takes the locked-down strategy of IIS 6.0 one step further and follows the same locked-down pat-
tern by installing fewer services at installation time. Having fewer features installed and enabled mini-
mizes the risk of attack on the web server and minimizes the work done by the administrator to keep
updating with patches and service packs on the different services installed, whether enabled or not. By
making use of the modular architecture, an administrator can easily, at any time, install a new module
or feature required by applications hosted by the web server.

Enabling the unified request pipeline in IIS 7 by configuring applications with the Integrated mode,
the web server gains a more secure environment through the use of ASPNET security modules. These
modules include the FormsAuthenticationModule and the Membership and Role management ser-
vices introduced early in ASP.NET 2.0 that still constitute a major feature in ASPNET 3.5. Not only can
ASP.NET benefit from these modules, but IIS 7.0 also gets better protection by utilizing these modules
to protect the resources hosted in its environment.

In addition, IIS 7.0 introduces URL Authorization, which is inspired (more or less) by the architecture of
the ASPNET URL Authorization. The new authorization system allows administrators to add declara-
tive access control rules for the hosted applications to protect their resources. This new feature inte-
grates well with the ASPNET Membership and Role management services. A more detailed discussion
on URL Authorization is given in Chapter 3 of this book.

Moreover, the IIS 7.0 team replaced the old URL Scan security tool with a new RequestFilteringModule
that gives administrators finer control on what to allow and disallow in a request targeting the web server.
The RequestFilteringModule, as shown in the following code, can be configured through the <sys-
tem.webServer> configuration section group either in the ApplicationHost.config configuration
file or through the application’s web. config configuration file.

<configuration>
<system.webServer>
<security>
<requestFiltering>
<fileExtensions allowUnlisted="false" >
<add fileExtension=".aspx" allowed="true"/>
</fileExtensions>
</requestFiltering>
</security>
</system.webServer>
</configuration>

For instance, to configure IIS 7.0 to process ASPNET web pages only, the RequestFilteringModule

is configured to allow only ASPNET web pages and prevent all other file extensions from being served
and processed.

11

Chapter 1: Introducing IIS 7.0

For further details, an IIS resource is available online that gives a wider overview of the new Request
FilteringModule: http://learn.iis.net/page.aspx/143/how-to-use-request-filtering/

Another security feature in which IIS 7.0 excels is the IIS Manager. As mentioned above, when appli-
cations are hosted locally, the site owner can configure IIS 7.0 settings by either direct access to the
ApplicationHost.config configuration file, or through the appcmd. exe command-line utility, or
programmatically by utilizing the Microsoft.Web.Adminsitration APL. When configuring remote
applications, IIS Manager provides remote connections to site owners through their local instance of
the manager through firewall-friendly HTTPs connections. Based on the restrictions set by the remote
administrator, a site owner connects to the remote web server through the local instance of the man-
ager. The user gets authenticated on the remote server either by Windows authentication, if the user
has a Windows account on the remote server, or by custom authentication of the ASPNET Membership
services. Once authenticated, the site owner can now configure the web server’s settings under the limi-
tations set by the remote administrator.

Not only does IIS Manager allow remote connections; it also allows administrators to configure the IIS
Manager Ul to select the features to show for remote connections. This is yet another security protec-
tion on the hosting web server.

Finally, IIS 7.0 introduces a new IIS anonymous account, the I15_USR. This built-in account has no
expiration date, nor does it need any password synchronization among different machines. Also, a new
group is IIS_IUSRS that replaces the old 11S_wpG group. This group injects itself into the identity of the
Worker process automatically at runtime. This makes the process of specifying another custom account
for the Worker process identity easier without having to worry about adding this custom account to the
IIS_TIUSRS group. Since the IIS_TIUSR and IIS_IUSRS are built-in, any Windows access control lists
(ACLs) that an administrator or developer assigns on one machine can be copied to another machine,
for instance, from the development machine to the testing and deployment machine, without any fur-
ther worries, making the deployment process easier and more flexible.

Troubleshooting Improvements

12

IIS modular architecture not only introduces flexibility and robustness in configuring the web server,
but it also adds more complexities when it comes to debugging or tracing requests when a problem
occurs while a resource is being executed by the web server. Therefore, several new troubleshooting
improvements have been added to allow administrators and developers to better detect what is going
wrong with their applications.

A new, improved tracing system is added to the IIS infrastructure that is capable of capturing all related
information for a request being processed by the web server. This way, an administrator can refer back
at any time to check the status of requests being served by IIS. The trace information generated by the
web server can be monitored and listened to by a new feature, the Failed Request Tracing feature. This
new feature is basically configured to listen only to failure requests and logs them to the hard-disk. Before
using this feature, it must be enabled in the IIS Manager tool. Figure 1-6 shows how to open up the Failure
Request Tracing form to enable/disable the feature and to specify the path where to log the trace data.

By default, the Failure Request Tracing feature passes all successful requests and logs only the failed
ones, as mentioned above. In addition, an administrator can define Failure Request Tracing Rules to
specify what trace information to listen to in the web server tracing system. To define these rules, the
Failing Request Tracing Rules feature can be configured inside the IIS Manager tool reached by select-
ing Server Name = Web Sites &> Default Web Site = Failed Request Tracing Rules under the IIS section.

Chapter 1: Introducing IIS 7.0

W Tiwrat Inlarmatian Sariicns (5] Manaqer STETE
GE (O pwowmec 1 wesie » cemawensne » B Se-

Fie View Melp

B : ! Default Web Site H -
= | 0 efault Web Site Home = =
a3 BAAIDARIC (b FE BN - 2 antan
7 Applicabion Poois St s " . A
FIF ey A5 NET o
G - ste
o (] web Sites 3 r -
@ Detauit Web St A2 L I 2D 3
= 2 D¢,
it it NETProlile NETHolet NETTrat NETUien Appbiation
Compilitien Clezalization Levels Settings
b
Connaation
strings ¥ Enable
Dectos
3 > =
Wy netEut o grs sl eeRealoghae sl s
(-] &
> Masimum rumber of trace fles L |
e 0 bnee Fages
m ok | [canenr |
Faitra
Request .. VIEEERE
] Features view |() coment view
Fiendy b

Figure 1-6

In addition, IIS provides new error information pages when errors are detected in the resources being
processed. These error pages are similar in concept to the error pages generated by ASPNET when an
exception or error occurs in the application while a request is being made to any of its resources. The IIS
error information pages give details about the problem that occurred, what module caused the problem,
if any, where to find more tracing information about the specific failure of the request, and even more
information that helps the administrator or developer to locate the problem quickly. The detailed error
pages are configured for local access only by default and can be localized for any culture of preference.

To better benefit from the unified integration model between IIS and ASP.NET, the new web server’s
tracing system exposes its functionality to the modules created by the managed code in ASP.NET. The
new tracing system is extensible enough to allow the managed modules registered in IIS to make use of
the tracing information and to emit tracing data to the IIS tracing system. ASPNET 2.0 and ASPNET 3.5
contain the System.Diagnostics.TraceSource class that makes the developer’s life easier in handling
tracing events, data, and information (shown in the following code). The tracing system present in IIS 7.0
integrates with the tracing system in ASPNET 2.0 and 3.5, thus allowing tracing information generated
by ASP.NET to flow to the IIS 7.0 tracing system.

C#

using System;
using System.Diagnostics;
using System.Web;

public class CustomTracing : IHttpModule

{
// Private member to hold a reference to the
// TraceSource class
private TraceSource tsTracing;

13

Chapter 1: Introducing IIS 7.0

/// <summary>

/// Initialize event in the HttpModule

/// </summary>

/// <param name="application"></param>
public void Init (HttpApplication application)

{
// Attach to the EndRequest event
application.EndRequest += new EventHandler (application_EndRequest) ;
// Define the trace source
tsTracing = new TraceSource ("tsTracing") ;
}

/// <summary>
/// Handles the end request event
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
void application_EndRequest (object sender, EventArgs e)
{
// Write a message to the configured trace listeners mentioning the start of
// a logical operation or event, which is in this case beginning of the
// EndRequest method.
this.tsTracing.TraceEvent (
TraceEventType.Start,
0,
"[CustomTracing MODULE] START EndRequest") ;

// Get a reference to the HttpContext
var app = (HttpApplication)sender;
var context = app.Context;

// Write some text to the response stream
context.Response.Write (
"Testing Tracing from ASP.NET and integrating into IIS 7.0");

this.tsTracing.TraceEvent (

TraceEventType.Verbose,

0,

"A debugging trace message to the trace listener!");
this.tsTracing.TraceEvent (

TraceEventType.Critical,

0,

"A fatal error or crash message to the trace listener!");
this.tsTracing.TraceEvent (

TraceEventType.Error,

0,

"A recoverable error message to the trace listener!");
this.tsTracing.TraceEvent (

TraceEventType.Information,

0,

"An informational message to the trace listener!");

// Write a message to the configured trace listeners mentioning the end of a

// logical operation or event, which is in this case end of the EndRequest
// method

14

Chapter 1: Introducing IIS 7.0

this.tsTracing.TraceEvent (
TraceEventType.Stop,
0,
"[CustomTracing MODULE] STOP EndRequest") ;

#region IHttpModule Members

public void Dispose()
{

throw new NotImplementedException() ;
}

#endregion

VB.NET

Imports System
Imports System.Diagnostics
Imports System.Web

Namespace CustomTracingModule
Public Class CustomTracing
Implements IHttpModule
' Private member to hold a reference to the
' TraceSource class
Private tsTracing As TraceSource

'Y <summary>
'''" Initialize event in the HttpModule
'Y < /summary>
''' <param name="application"></param>
Public Sub Init(ByVal application As HttpApplication) Implements_
IHttpModule.Init
' Attach to the EndRequest event
AddHandler application.EndRequest, AddressOf application_EndRequest

' Define the trace source
tsTracing = New TraceSource ("tsTracing")
End Sub

' <summary>
''' Handles the end request event
' </summary>
''' <param name="sender"></param>
"' <param name="e"></param>
Private Sub application_EndRequest (ByVal sender As Object, _
ByVal e As EventArgs)
' Write a message to the configured trace listeners
' mentioning the start of a logical operation
' or event, which is in this case beginning of the EndRequest method.
Me.tsTracing.TraceEvent (TraceEventType.Start, _
0,_
"[CustomTracing MODULE] START EndRequest")

15

Chapter 1: Introducing IIS 7.0

Get a reference to the HttpContext
Dim app = CType (sender, HttpApplication)
Dim context = app.Context

' Write some text to the response stream
context.Response.Write("Testing Tracing from ASP.NET and integrating into IIS 7.0")

Me.tsTracing.TraceEvent (TraceEventType.Verbose,

0,_

"A debugging trace message to the trace listener!")
Me.tsTracing.TraceEvent (TraceEventType.Critical,

0,_

"A fatal error or crash message to the trace listener!")
Me.tsTracing.TraceEvent (TraceEventType.Error, _

0, =

"A recoverable error message to the trace listener!")
Me.tsTracing.TraceEvent (TraceEventType.Information,

0,_

"An informational message to the trace listener!")

' Write a message to the configured trace listeners
' mentioning the end of a logical operation
' or event, which is in this case end of the EndRequest method
Me.tsTracing.TraceEvent (TraceEventType.Stop, _
0,
"[CustomTracing MODULE] STOP EndRequest")
End Sub

#Region "IHttpModule Members"

Public Sub Dispose() Implements IHttpModule.Dispose
Throw New NotImplementedException ()
End Sub
#End Region
End Class
End Namespace

The preceding code defines a local instance of the TraceSource class to hold all the tracing information
by the managed ASPNET module. The name of the TraceSource is important, as it will be referenced
later as a source for the IIS trace listener. The Ht tpModule subscribes to the EndrRequest event of the
module and writes some dummy text into the response stream. Several trace messages have been written
to the ASPNET tracing system using the TraceSource object. Several methods are available in the afore-
mentioned object, one of which is the TraceEvent method that takes as one of the inputs a value from
the TraceEventType enumeration that defines the purpose of the trace message and another input, the
trace message to be sent to the trace listener. There are several values in the TraceEventType enumera-
tion that defines the different contexts in which a trace message might be present.

NET 3.5 Framework ships with the System.Web. IisTraceListner class, which is used to route tracing
information from ASP.NET tracing system to the IIS tracing infrastructure. To define the trace listener
and attach it as a listener to the TraceSource, the <system.diagnostics> configuration section in the
web . config configuration file is used.

16

Chapter 1: Introducing IIS 7.0

<system.diagnostics>
<sharedListeners>
<add name="IisTraceListener" type="System.Web.IisTraceListener, System.Web,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7fl11d50a3a" />
</sharedListeners>

<switches>
<add name="DefaultSwitch" value="All" />
</switches>
<sources>
<source name="tsTracing" switchName="DefaultSwitch">
<listeners>

<add name="IisTraceListener" type="System.Web.IisTraceListener, System.
Web, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7fl1ld50a3a" />
</listeners>
</source>
</sources>
</system.diagnostics>

The preceding configuration section defines the new IIS trace listener with a switch to capture all tracing
information. In addition, the tracing source, which is in this case the TraceSource instance defined pre-
viously in the custom tracing managed module, is added and configured with the IISTraceListener.
The preceding configuration section makes sure all the tracing information from ASP.NET is routed cor-
rectly to the IIS tracing system. The Failed Request Tracing feature can then be used, either through the
default behavior to capture only failure trace information for failing requests or by adding custom rules
to capture specific tracing information descending from the ASPNET tracing system.

Finally, native developers can now troubleshoot the state of the IIS web server through the new Run-
time Status and Control (RSCA) API known as “reeska.” This new API allows native developers, mainly
C++ developers, to examine the real-time status of the server by checking the active states of the sites
and application pools, the running worker processes, and even to check current requests that are being
processed. Developers can check the normal flow of page execution on the server and identify bottle-
necks, while the different modules take their part in the request processing in the IIS pipeline. In addi-
tion, RSCA provides a means to control the state of the web server by stopping and starting the service,
recycling application pools, starting and stopping sites, etc. These features are similar to the appcmd. exe
command-line tool mentioned previously in this chapter.

An IIS resource is available online that gives an overview on developing managed tracing modules and
routing the ASP.NET trace information to the IIS 7.0 tracing system: http://learn.iis.net/page
.aspx/171/how-to-add-tracing-to-iis-7-managed-modules/

Application Pools

IIS 6.0 introduced the concept of application pools when operating in the worker process isolation-mode
compared to working in the IIS 5 mode. An application pool by definition is a unit of separation, at the
web server level, that is used to logically group applications into different boundaries, hence provid-
ing an isolation of execution from one application to another. If an application in one of the application
pools on the web server crashes, not all the applications on the web server will be crashed too. This is
because if each application is assigned to a separate application pool, then only this specific application

17

Chapter 1: Introducing IIS 7.0

pool will recycle and all applications assigned to the same application pool will also crash. Other appli-
cations assigned to other application pools continue to function properly as if nothing happened on
the web server. Therefore, application pools provide isolation of execution under the boundaries of the
server resources allocated to every application pool, which are allocated differently from one applica-
tion pool to another.

In the previous release of IIS, the web server was configured to either run in the worker process isola-
tion mode or in the IIS 5.0 mode. However, in IIS 7.0, an application pool is created and its managed
pipeline mode property is either set to Integrated mode or Classic mode. This means that the managed pipe-
line mode is not configured on the web server as a whole. On the contrary, several application pools can
be created on IIS 7.0 with different managed pipeline modes, and applications can be assigned to any of
those application pools, hence it is possible to run applications on the same web server with different
modes of execution. Figure 1-7 shows the basic settings window for any application created inside IIS 7.0.

EAERpplicaton Poar [EA

Name

DefaultAppPool
NET Framewark version:

[.NET Framework v2.0.50727 -

Managed pipeline mode:

Integrated
[[inmedistely

Figure 1-7

By opening the IIS manager tool, on the Actions tab on the right of the manager, there is a link to view
application pools. All of the application pools created on the web server are listed. Right-clicking any of
the application pools and selecting basic settings yields the screen shown in Figure 1-7. There is nothing
special about it, but the managed pipeline mode combo box that allows you to choose either the Inte-
grated or Classic mode.

Integrated Mode

When an ASPNET 2.0 or 3.5 application is assigned to an application pool running in the Integrated mode,
the application will benefit from the IIS and ASPNET unified request processing pipeline. This means the
request is processed by both the native and managed installed modules and ASPNET will have the ability
to process all types of content within that specific application. This mode is recommended when there is a
need to execute an application in the Integrated mode, and it is the preferred mode to configure the appli-
cation pools. Several additional and advanced settings can be set by right-clicking on the specific applica-
tion pool and selecting Advanced Settings.

Classic Mode

The Classic mode resembles an IIS 6.0 application pool when the web server is running in a worker
process isolation-mode. In IIS 7.0, applications are still given the opportunity to function as if they are
being served by IIS 6.0. When an application is assigned to an application pool configured to run in the
Classic mode, IIS 7.0 handles the execution of the application in the same way as IIS 6.0. For instance, if

18

Chapter 1: Introducing IIS 7.0

an ASP.NET application is assigned to function under an application pool configured with Classic mode,
the default and only available option for ASPNET 1.1 application, when a request reaches IIS for that
application, only the native modules will be executed on the request, then IIS 7.0 hands the request to the
aspnet_isapi.dll extension to be processed by the ASPNET runtime. Hence, IIS is able to process the
request with all the installed native modules and ASP.NET will have another round in executing its man-
aged modules; the same old-fashioned way of executing applications under IIS 6.0 when configured to
run in the worker process isolation mode. If any ASPNET application for some reason cannot run inside
the application pool Integrated mode, it is recommended to keep it configured with the Classic mode
under IIS 7.0. It will be executed and processed as if it is hosted in an IIS 6.0 environment.

11S 7.0 Components

1IS 7.0 is made up of several components that form the web server internal core engine. These compo-
nents include protocol listeners, services such as the w3svc service and the WAS service, protocol adapt-
ers, and many more core components. This section will present an overview of some of the protocols
and services that handle request processing inside IIS 7.0.

Protocol Listeners

Protocol listeners are services in which each service is configured to listen and process a specific
protocol request coming from the network on which the machine hosting the web server resides. For
instance, one of the listeners installed on a Windows machine keeps on waiting and listening for any
web request arriving on the machine. There are additional listeners also present to listen to other, dif-
ferent protocols. When a request is received by a listener, it forwards it to IIS 7.0 to be processed. Once a
request is processed by IIS 7.0, the response generated is sent back to the protocol listener that originally
sent the request. Finally, the response is handed back to the requestor.

An example of a protocol listener is the HTTP listener called Hyper Text Protocol Stack. This is the main
protocol listener for all HTTP requests arriving on a Windows machine. When an HTTP request is first
received by Windows Vista or Windows Server 2008, the initial handling is actually performed by the
kernel-mode HTTP driver: http. sys.

World Wide Web Publishing Service

In IIS 6.0 the WWW service was responsible for several tasks at once. These tasks included HTTP
administration and configuration, process management, and performance monitoring. In IIS 7.0, this
has changed and the WWW Service now acts as a listener adapter for http.sys. A listener adapter is
responsible for configuring the http. sys protocol listener with the IIS 7.0 configuration information
stored in the ApplicationHost.config configuration file. It then waits for changes in the configura-
tion information to reflect them into the http. sys, and finally notifies the Windows Process Activa-
tion Service (WAS) when a new HTTP request enters the local queue.

WWW Service functionality has been split into other services. It has preserved its role as a listener

adapter, however, the rest of its responsibilities have been passed into another service called the Win-
dows Process Activation Service.

19

Chapter 1: Introducing IIS 7.0

Windows Process Activation Service

20

In IIS 7.0, the WAS is the second half of the WWW service that was present in the IIS 6.0 days. The WAS
is a new service that has three main parts. Figure 1-8 shows the architecture and main components of
the WAS.

Windows Process Activation Service

Process Configuration
Manager Manager

Listener Adapter Interface

Figure 1-8

The configuration manager is responsible for reading the configuration information from the
ApplicationHost.config configuration file. This manager reads global configuration information
and protocol configuration information for both HTTP and non-HTTP protocols in order to be able
to configure all protocol listeners installed on the web sever machine. It also reads application pool
configuration information to know what application pools are present when processing requests on
the server. It reads site configuration information, including the different applications included in each
site together with the bindings defined on each application, and finally, reads the application pool each
application belongs to. Such information helps the WAS when processing a request to know which
site and application the request belongs to so that it gets handled by the right application pool.

In addition, the configuration manager gets a notification when the ApplicationHost.config con-
figuration file changes so that it updates its data with the new ones and reflects this on the available
protocol listeners.

The process manager is responsible for managing the application pools and worker processes for both
HTTP and non-HTTP requests. It manages the state of the application pool by stopping, starting, and
recycling it. In addition, when WAS receives a new request from one of the configured protocol listen-
ers, it determines to which application the request belongs. It then checks with the configuration man-
ager for the application pool of the application that the current request belongs to. Once the application
pool is determined, it checks to see if there is any worker process currently active. If it finds one, it sends
the request to the application pool to be processed by the worker process. If there is no worker process
active inside the application pool, WAS instantiates a new one to process the current and upcoming
requests.

The last component of the WAS is the unmanaged listener adapter interface. This layer inside the WAS
defines how the external listeners communicate the requests they receive into the WAS in order to pro-
cess them by the web server.

Chapter 1: Introducing IIS 7.0

On startup of IIS 7.0, WAS gets initiated and performs several tasks. Figure 1-9 shows the flow of inter-
action when WAS first configures the protocol listener adapters.

ApplicationHost.config

I
1

|

Windows Process Activation Service

Process Configuration — 2 —> WWW Service

Manager Manager

— 2 —>»{ NetTcpActivator

Listener Adapter Interface

1 |

3 3
I I
HTTP.sys NetTcpActivator oo
Figure 1-9

When WAS is instantiated, it first reads the configuration data from the ApplicationHost.config con-
figuration file. Once the configuration information is read, it interacts with the configured protocol listener
adapters to pass to them the needed configuration information. Protocol listener adapters function as the
glue between the WAS and the protocol listeners. For instance, the WAS passes the configuration informa-
tion into the WWW Service, the http. sys protocol listener adapter, which in turn configures http. sys
to start listening for HTTP requests.

Once a new request comes in, the specific protocol listener communicates the request to the WAS through
the listener adapter interface, so that the request gets processed. Once a response is ready for the request,
WAS passes the response back to the protocol listener responsible for delivering the response back to the
client. Again, WAS uses the listener adapter interface for the incoming and outgoing communication with
the protocol listeners.

As shown in Figure 1-9, NetTcpActivator is the protocol listener and adapter for handling WCF
requests. This indicates that WAS can process HTTP and non-HTTP requests; that means WAS can
function properly without the need for the WWW Service by serving only non-HTTP requests. A good
MSDN resource on the WCF listener adapters and hosting WCF applications inside IIS 7.0 is available
online at http://msdn2.microsoft.com/en-us/library/ms730158.aspx

21

Chapter 1: Introducing IIS 7.0

11S 7.0 Modules

The modular architecture of IIS 7.0 has been discussed thoroughly at the beginning of this chapter. It is
the new architecture that characterizes the web server core engine. Modules or features can be thought
of as classes or objects embedding certain functionality that get executed whenever a new request is
being processed by the IIS pipeline. Every installed module gets its turn in processing every request
entering the IIS 7.0 pipeline.

This modular architecture has several goals, but above all it protects the web server from security
attacks. When a small number of modules are installed on the web server, this means there is a lower
probability for a security attack on the server, hence lowering the surface attack to hackers. In addi-
tion, when a small number of modules are installed, this means less security patches and updates are
required for the administrator to maintain. Moreover, being able to customize the web server to this
extent gives the administrator the chance of deciding on the role of the web server by installing and
uninstalling modules in the way best suited for the role intended for the web server.

IIS 7.0 ships with a set of unmanaged or native modules that are all installed in case of a full installation
of the web server. In addition, IIS 7.0 allows you to extend its functionality with managed modules.
Each of these modules is discussed in detail.

Unmanaged Modules

22

The native modules are grouped by functionality. There are HTTP-related modules that perform tasks
specific to HTTP; another set of modules perform tasks related to security; and anther set of modules
perform tasks related to content (static files, directory browsing, and so on). There are a set of modules
responsible for compression, modules concerned with caching, modules responsible for logging and
diagnostics, and modules that help in integrating managed modules. All of these modules are fired and
executed during the request-processing pipeline. The available native modules at the time of this writ-
ing together with a description are listed in the following table.

Module Name Description
HTTP Modules
CustomErrorModule Sends default and configured HTTP error

messages when an error status code is set
on a response.

HttpRedirectionModule Supports configurable redirection for HTTP
requests.
OptionsVerbModule Provides information about allowed verbs

in response to OPTIONS verb requests.

ProtocolSupportModule Performs protocol-related actions, such as
setting response headers and redirecting
headers based on configuration.

RequestForwarderModule Forwards requests to external HTTP servers
and captures responses.

Chapter 1: Introducing IIS 7.0

Module Name Description

TraceVerbModule Returns request headers in response to
TRACE verb requests

Security Modules

AnonymousAuthModule

BasicAuthModule

CertificateMappingAuthenticationModule

DigestAuthModule

IISCertificateMappingAuthenticationModule

RequestFilteringModule

UrlAuthorizationModule
WindowsAuthModule
Content Modules

CgiModule

DavFSModule

DefaultDocumentModule

DirectoryListingModule
IsapiModule
IsapiFilterModule
ServerSideIncludeModule
StaticFileModule

FastCgiModule

Performs Anonymous authentication when
no other authentication method succeeds.

Performs Basic authentication.

Performs Certificate Mapping authentica-
tion using Active Directory.

Performs Digest authentication.

Performs Certificate Mapping authentica-
tion using IIS certificate configuration.

Performs URLScan tasks, such as configur-
ing allowed verbs and file extensions, set-
ting limits, and scanning for bad character
sequences.

Performs URL authorization.

Performs NTLM integrated authentication.

Executes CGI processes to build response
output.

Sets the handler for Distributed Authoring
and Versioning (DAV) requests to the DAV
handler.

Attempts to return the default document
for requests made to the parent directory.

Lists the contents of a directory.
Hosts ISAPI extension DLLs.
Supports ISAPI filter DLLs.
Processes server-side includes code.
Serves static files.

Supports FastCGI, which provides a high-
performance alternative to CGI.

Continued

23

Chapter 1: Introducing IIS 7.0

Module Name

Description

Compression Modules

DynamicCompressionModule

StaticCompressionModule
Caching Modules

FileCacheModule

HTTPCacheModule

SiteCacheModule

TokenCacheModule

UriCacheModule

Logging and Diagnostics Modules
CustomLoggingModule
FailedRequestsTracingModule

HttpLoggingModule

RequestMonitorModule

TracingModule

Managed Support Modules

ManagedEngine

ConfigurationvalidationModule

Compresses responses, and applies Gzip
compression transfer coding to responses.

Performs precompression of static content.

Provides user-mode caching for files and
file handles.

Provides kernel-mode and user-mode cach-
ing in http.sys.

Provides user-mode caching of site
information.

Provides user-mode caching of user name
and token pairs for modules that produce
Windows user principals.

Provides user mode caching of URL
information.

Loads custom logging modules.
Supports the Failed Request Tracing feature.

Passes information and processing status to
http.sys for logging.

Tracks requests currently executing in
worker processes, and reports information
with Runtime Status and Control Applica-
tion (RSCA) Programming Interface.

Reports events to Microsoft Event Tracing
for Windows (ETW).

Provides integration of managed code mod-
ules in the IIS request-processing pipeline.

Validates configuration issues, such as
when an application is running in Inte-
grated mode but has handlers or modules
declared in the system.web section.

24

Chapter 1: Introducing IIS 7.0

The preceding modules are all installed

with a full installation of IIS 7.0. However, if I1IS 7.0 is installed

with the default configuration and modules, a subset of those modules are installed. The modules

installed by default are listed as follows.

Q HTTP modules

0 CustomErrorModule

a ProtoclSupportModule

0 Security modules

1 RequestFilteringModule

U AnonymousAuthenticationModule

4 Content modules

U DefaultDocumentModule

1 DirectoryListingModule

0 StaticFileModule

4 Content modules

a StaticCompressionModule

O Logging and diagnostics modules

U HTTPLoggingModule

U RequestMonitorModule

QO Caching modules

1 HttpCacheModule

Managed Modules

IIS 7.0 infrastructure allows the installation of .NET managed modules to participate in the request-

processing pipeline. Allowing managed

modules to function properly depends mostly on the Managed

EngineModule mentioned above. Managed modules are ASPNET 2.0 and 3.5 HttpModules that a .NET

developer has always been used to writi

ng, however with IIS 7.0, these modules will get the chance to

work upon requests during the request-processing pipeline managed by the web server itself.

The existing managed modules that can

be configured with IIS 7.0 are listed in the following table.

Module Name

Description

AnonymousIdentification

DefaultAuthentication

FileAuthorization

Manages anonymous identifiers, which are used by features
that support anonymous identification such as ASP.NET pro-
file engine.

Ensures that an authentication object is present in the context.

Verifies that a user has permission to access the requested file.

Continued

25

Chapter 1: Introducing IIS 7.0

Module Name Description
FormsAuthentication Supports authentication by using Forms authentication.
OutputCache Supports output caching
Profile Manages user profiles by using ASP.NET profile, which stores
and retrieves user settings in a data source such as a database.
RoleManager Manages a RolePrincipal instance for the current user.
Session Supports maintaining session state, which enables storage
of data specific to a single client within an application on the
server.
UrlAuthorization Determines whether the current user is permitted access to the

requested URL, based on the user name or the list of roles that
a user is member of.

UrlMappingsModule Supports mapping a real URL to a more user-friendly URL.

WindowsAuthentication Sets the identity of the user for an ASP.NET application when
Windows authentication is enabled.

This managed modules’ information has been gathered from the official ASP.NET 2.0/3.5 documentation on MSDN.

Summary

In this chapter you were introduced to the new web server engine by Microsoft, IIS 7.0. IIS 7.0 ships with
a new architecture that is more modular and allows administrators and developers to configure it the
way they want.

The main point to keep in mind about the new web server is its modular architecture. IIS 7.0 is installed
with minimal modules or features. Additional modules can be installed whenever they are needed. In
addition, IIS 7.0 allows developing both native and managed modules using C++ and .NET, respectively.

A lot of improvements have been introduced to IIS 7.0, including security, administration and configu-
ration, and troubleshooting improvements. New APIs are now ready for use by native and managed
developers to extend the functionality of the web server.

IIS 7.0 now integrates well with ASPNET infrastructure for request processing; hence, applications now
can run either in the Integrated mode or in the Classic mode application pool.

Q Integrated mode: When running under the Integrated mode, the ASP.NET 2.0 or 3.5 applica-
tion can take benefit from the integration between IIS 7.0 and ASP.NET so that a single unified
pipeline is present where both IIS native modules and configured ASP.NET modules have a say
while processing a specific request.

Q Classic mode: With the Classic mode, an application will have the same environment as it had
once under IIS 6.0, where the IIS 7.0 request-processing pipeline happens separately from the
ASP.NET request-processing pipeline.

26

Chapter 1: Introducing IIS 7.0

In addition, IIS 7.0 components have been enhanced and a new major component that has been added
is the Windows Process Activation Service (WAS). This service is the brain of the web server that inter-
acts with the web server configuration system and configures protocol listener adapters that in turn
configure their corresponding protocol listeners. This new service handles both HTTP and non-HTTP
requests, and this gives IIS a broader field to handle so many requests from different sources. Also, this
service is responsible for the process management including application pool states, stopping, starting,
recycling them, and creating new worker process instances.

The next chapter continues this discussion with a look at the new IIS 7.0 and ASP.NET Integrated

mode. The discussion includes a thorough examination of the Integrated mode architecture as well as
developing new modules and handlers in ASPNET and integrating them with IIS 7.0 infrastructure. In
addition, a study on handling migration errors is given to help in migrating an existing ASPNET appli-
cation to run under the IIS 7.0 and ASPNET Integrated mode.

27

11S 7.0 and ASP.NET
Integrated Mode

Internet Information Services (IIS) version 7.0 introduces two modes of processing: Classic and
Integrated mode. The Classic mode resembles the same mode of execution as that of IIS 6.0. What
is new is the Integrated mode, which unifies the request-processing pipeline between the IIS
infrastructure and the ASPNET runtime.

One of the striking advantages of this new mode of execution is that ASPNET runtime is now
capable of processing all types of content files including ASPNET, HTML, ASP, PHP, and many
other web resources. This is by far an improvement that makes all ASPNET services including
forms authentication, membership, role management, and many others available to different
kinds of content file types in an application.

This chapter starts by introducing the advantages of using the IIS 7.0 and ASPNET Integrated
mode. The discussion expands into exploring the internals and architecture of the new Integrated
mode of execution. In addition, the chapter highlights the migration problems that a developer

or administrator faces when upgrading an application to run inside IIS 7.0 under the Integrated
mode. The chapter ends with a section on extending the IIS 7.0 infrastructure by developing man-
aged HttpHandlers and HttpModules and installing these features from inside the application’s
web. config configuration file without the need to have access to the IIS 7.0 Manager tool.

When you finish reading this chapter, you will be armed with a good knowledge in:

0 Advantages of using IIS 7.0 and ASP.NET Integrated mode.

Q IIS7.0 and ASP.NET Integrated mode architecture.

0 Handling migration errors for applications to run under IIS 7.0 Integrated mode.
a

Extending IIS 7.0 with managed HttpModules and HttpHandlers.

Chapter 2: IS 7.0 and ASP.NET Integrated Mode

Advantages of IIS 7.0 and
ASP.NET Integrated Mode

30

IIS 7.0 introduces a new era of web development with a solid integration with ASP.NET 3.5. Web
development witnessed a huge change and improvement with the release of ASP.NET 1.x, and with
ASP.NET 2.0. In ASPNET 3.5 many services were added. There is more control over the ASPNET
request-processing pipeline, new APIs were developed to make development tasks easier, in addi-
tion to many other improvements. IIS 7.0 goes far beyond and leverages ASP.NET 3.5 from being just
a technology or framework to develop dynamic web applications to a framework to extend its core
engine.

IIS 7.0 gives the developer the choice to either continue working with the Classic mode, i.e., the IIS 6.0
mode, or enhance the development and move to the Integrated mode. Integrated mode means the inte-
gration between IIS 7.0 and ASPNET working together, joining their efforts for a better web develop-
ment experience. The benefits of such an Integrated mode can be summarized as follows:

Q ASP.NET 3.5 services can now be used for all content types: In previous releases of IIS, ASP.NET
did not have a say when it comes to content file types that are not registered with ASP.NET run-
time. For example, when processing an ASP classic page, ASP.NET runtime could not perform
any processing on that specific file type. This is due to the fact that IIS used to map several file
types, including .aspx, .ascx, etc., to the ASP.NET ISAPI extension, while other file types,
including .ASP, and so on, were mapped to another ISAPI extension different from that of the
ASP.NET. However, with the new Integrated mode offered by IIS 7.0, ASP.NET can operate on
any file type regardless of its extension and this is because when an ASP.NET application is exe-
cuting under the new IIS 7.0 Integrated mode, it gets the chance to process any request, that IIS
7.0 accepts, regardless of its type. As an example, ASP.NET FormsAuthenticationModule can
now be used to authenticate non-ASP.NET pages similar to the way used to authenticate ASP.
NET resources. In addition, all the ASP.NET 3.5 services, including Membership, Role, and Pro-
file management services, can be used not only with ASP.NET resources, but also with any
other resource.

0 Extend IIS 7.0 with ASP.NET: Previously, to extend IIS, developers had to develop native mod-
ules using both the ISAPI API and C++. Such a task was not easy at all and this forced develop-
ers who are developing in .NET, the managed code, to learn other languages like C++ to be able
to develop and extend the web server core engine. In the Integrated mode, ASP.NET developers
can extend the web server core engine by developing ASP.NET HttpModules. Once a module
is developed, it can be registered inside IIS 7.0 modules so that it can operate during the IIS
request-processing pipeline. Later in the chapter, a section is dedicated to developing a new
ASP.NET module and registering it with IIS 7.0.

Q Unified processing pipeline: IIS 7.0 integrates its own request-processing pipeline with
ASP.NET. For instance, you can disable all native authentication modules and enable the
FormsAuthenticationModule through IIS. When the authentication event fires, IIS 7.0 runs
all configured authentication modules registered in an application. When it detects that forms
authentication is enabled, it hands off the request to the ASP.NET module to process the request.
What happens, in fact, is that the IIS 7.0 engine uses the native ManagedEngineModule to instan-
tiate a new AppDomain instance. Inside the new AppDomain, the Common Language Runtime
(CLR) is first instantiated, and after that the needed module is loaded, hence giving it the chance
to operate on the request instead of a native module inside IIS. It can be seen how the native and
managed modules can be used interchangeably as though they are both of the same type of mod-
ules, which they are not, but the Integrated mode gives that impression.

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

This was a brief summary on the advantages of the new Integrated mode. In the coming sections, the
IIS 7.0 Integrated mode architecture and an example of developing an ASPNET module and integrating
it with IIS is shown in detail.

IS 7.0 Integrated Mode Architecture

The initial processing of an HTTP request on IIS 7.0 running in the Classic mode, resembling the same
IIS 6.0 functionality, occurs within both IIS and a supporting protocol driver. As a result, depending
on the configuration for IIS, a request may never make it far enough to be processed by ASP.NET. Fig-
ure 2-1 shows the salient portions of IIS 7.0 running in the Classic mode and Windows Server 2008 or
Windows Vista/2003 that participate in request processing.

Worker process
W3wp.exe

Static content Aspnet_isapi.dll Asp.dll

Aspenet_filter.dll

ISAPI filters
Request for = Http.sys
default.aspx ”
Figure 2-1

A request must first pass the restrictions enforced by the kernel mode HTTP driver: http. sys. The
request is handed off to a worker process, where it then flows through a combination of the internal
request processing provided by IIS and several ISAPI filters and extensions. Ultimately, the request is
routed to the appropriate content handler, which for ASPNET pages is the ASPNET runtime’s ISAPI
extension.

The ASPNET ISAPI extension contains the ASPNET runtime request-processing pipeline. It can be easily
concluded how the request first passes through the IIS request-processing pipeline for authentication,
authorization, and all other modules. When it is time to determine the handler for the request based on
the request’s file extension, in case of an ASPNET page, IIS passes the request to the ASP.NET ISAPI
extension. Once the extension is activated, the ASPNET request-processing pipeline is fired. Figure 2-2
shows a basic sketch of what goes on inside the ASP.NET request-processing pipeline.

31

Chapter 2: IS 7.0 and ASP.NET Integrated Mode

32

ASP.NET ISAPI Extension

Begin Request

—{==
Authentication

— =0
Handler
]

EndRequest

Figure 2-2

Once the request enters the ASPNET request-processing pipeline, the different registered events start to
execute. The first event is the BeginRequest event. Following is a set of events each linked to execute
a specific feature until the authentication stage is reached. Based on which authentication type the
application is configured with, the corresponding module executes: FormsAuthenticationModule
or WindowsAuthenticationModule. Later on, the stage is reached where a handler should be selected
to handle the execution of the current request according to the file extension of the request resource.
Finally, the EndrRequest event is fired and the response of executing the request is handed off to the
IIS request-processing pipeline so that a response is generated for the client that issued the request.

In IIS 7.0, the story is different. The unified request-processing pipeline that was explained earlier takes
control over the execution inside IIS 7.0 when running in the Integrated mode. Unified pipeline means
that both the IIS 7.0 and ASPNET request-processing pipeline unite and execute as though they were the
same pipeline of execution. This means that ASP.NET is given the privilege to have access to any IIS 7.0
intrinsic object and being able to have a hand at every stage of execution. For instance, an ASPNET
authentication module can be used to substitute any authentication native module used by IIS 7.0.

With the Integrated mode enabled, ASPNET modules become first-class citizens. They can operate

on the request before any IIS module operates on it, which means ASP.NET can, for example, change
the request headers before any other native module gets access to it. In addition, ASPNET modules can
operate on requests even after IIS modules finish processing the request and even sometimes, ASP.NET
modules can replace existing IIS modules. Figure 2-3 shows the unified request-processing pipeline
inside IIS 7.0 when operating in the Integrated mode.

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

Anonymous

Y

Basic

Y

Authentication _—

Windows

Y

Forms

Y

Y

Page

Execute Handler Webservice

Y

HTTP Request

Trace

Y

Compression

Y

Send Response B—

Logging

Y

Figure 2-3

When a request reaches IIS 7.0 to be processed, the different stages inside the request-processing pipe-
line start to execute. For instance, once the AuthenticateRequest event fires, IIS 7.0 checks to see what
authentication modules are configured inside the <system.webServer /> configuration section group
and accordingly it executes the right module(s) in the order specified in the <modules> configuration
section. At this stage, an ASPNET module that attaches to the authentication event and provides the
logic to authenticate users can be added in the application’s web . config configuration file, thus remov-
ing all other native modules registered by IIS for the authentication stage. There is one exception in that,
at minimum, the native AnonymousAuthenticationModule should be enabled when no other native
authentication module is enabled.

This unified Integrated mode allows ASP.NET modules to execute as though they were part of the

IIS 7.0 infrastructure. The question that arises now is how an application interacts with the IIS engine to
decide what module to run; is it the native one or the managed one? Going back to Chapter 1 when
the ApplicationHost.config configuration file was introduced, it was clear that IIS infrastructure
and every ASP.NET application can share the same <system.webServer /> configuration sec-

tion group. The ApplicationHost.config configuration file fills the aforementioned section with
global configurations and leaves it to each specific application to decide whether to use the defaults

33

Chapter 2: IS 7.0 and ASP.NET Integrated Mode

set globally by the web server or to update the section with specific information targeting the specific
application. An important discussion to have at this stage is how IIS installs and registers the native
and managed modules and who decides on which module to use.

system.webServer Configuration Section Group

The <system.webServer /> configuration section group located inside the ApplicationHost.config
configuration file contains dedicated sections to list the native and managed modules installed on the
web server. The native modules usually require not only installation but also registration, while the
managed modules need only to be registered. The first section inside the <system.webServer />
that is discussed is the <globalModules /> configuration section.

The globalModules Configuration Section

The <globalModules /> configuration section installs all the native modules listed. In the Application
Host.config configuration file the <globalModules /> configuration section usually contains the fol-
lowing native modules.

<globalModules>
<add name="UriCacheModule"
image="%windir%\System32\inetsrv\cachuri.dll" />
<add name="FileCacheModule"
image="%windir%\System32\inetsrv\cachfile.dll" />
<add name="TokenCacheModule"
image="%windir%\System32\inetsrv\cachtokn.dll" />
<add name="HttpCacheModule"
image="%windir%\System32\inetsrv\cachhttp.dll" />
<add name="StaticCompressionModule"
image="%windir%\System32\inetsrv\compstat.dll" />
<add name="DefaultDocumentModule"
image="%windir%\System32\inetsrv\defdoc.dll" />
<add name="DirectoryListingModule"
image="%windir%\System32\inetsrv\dirlist.dll" />
<add name="ProtocolSupportModule"
image="%windir%\System32\inetsrv\protsup.dll" />
<add name="StaticFileModule"
image="%windir%\System32\inetsrv\static.dll" />
<add name="AnonymousAuthenticationModule"
image="%windir%\System32\inetsrv\authanon.dll" />
<add name="RequestFilteringModule"
image="%windir%\System32\inetsrv\modrqgflt.dll" />
<add name="CustomErrorModule"
image="%windir%\System32\inetsrv\custerr.dll" />
<add name="HttpLoggingModule"
image="%windir%\System32\inetsrv\loghttp.dll" />
<add name="RequestMonitorModule"
image="%windir%\System32\inetsrv\iisregs.dll" />
<add name="IsapiModule"
image="%windir%\System32\inetsrv\isapi.dll" />
<add name="IsapiFilterModule"
image="%windir%\System32\inetsrv\filter.dll" />

34

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

<add name="ConfigurationValidationModule"

image="%windir%\System32\inetsrv\validcfg.dll" />

<add name="ManagedEngine"

image="%windir%\Microsoft .NET\Framework\v2.0.50727\webengine.dll"
preCondition="integratedMode, runtimeVersionv2.0,bitness32" />

<add name="BasicAuthenticationModule"

image="%windir%\System32\inetsrv\authbas.dll" />

</globalModules>

Depending on which native modules have been installed on the web server, they will be shown in the
<globalModules /> configuration section. Before being able to use any native module it should be
installed and this is exactly what the <globalModules /> configuration section does. It installs every
module listed inside so that it can be used later by any IIS feature. Every module is listed by specifying
the (friendly) name of the module name and the image where the module is located. All the above native
modules are C++ modules and each module is located within its own assembly.

Now that the modules are installed, they need to be registered so that they attach to the request-
processing pipeline. The <modules /> configuration section is the one that registers both native and

managed modules.

The modules Configuration Section

The <modules /> configuration section is the place where both native and managed modules get

registered by the web server so that they can participate in the processing of requests inside the uni-
fied request-processing pipeline. Native modules registered in this section should have already been
installed as mentioned in the previous section.

<location path="" overrideMode="Allow">
<gsystem.webServer>

<modules>

<add
<add
<add
<add
<add
<add
<add
<add
<add
<add
<add
<add
<add
<add
<add
<add

<add

name="HttpCacheModule" />
name="StaticCompressionModule" />
name="DefaultDocumentModule" />
name="DirectoryListingModule" />
name="ProtocolSupportModule" />
name="StaticFileModule" />
name="AnonymousAuthenticationModule"
name="RequestFilteringModule" />
name="CustomErrorModule" />
name="IsapiModule" />
name="BasicAuthenticationModule" />
name="HttpLoggingModule" />
name="RequestMonitorModule" />
name="IsapiFilterModule" />
name="ConfigurationValidationModule"
name="0OutputCache"

/>

/>

type="System.Web.Caching.OutputCacheModule"

preCondition="managedHandler" />
name="Session"

type="System.Web.SessionState.SessionStateModule"

preCondition="managedHandler" />

35

Chapter 2: IS 7.0 and ASP.NET Integrated Mode

<add name="WindowsAuthentication"
type="System.Web.Security.WindowsAuthenticationModule"
preCondition="managedHandler" />

<add name="FormsAuthentication"
type="System.Web.Security.FormsAuthenticationModule"
preCondition="managedHandler" />

<add name="DefaultAuthentication"
type="System.Web.Security.DefaultAuthenticationModule"
preCondition="managedHandler" />

<add name="RoleManager"
type="System.Web.Security.RoleManagerModule"
preCondition="managedHandler" />

<add name="UrlAuthorization"
type="System.Web.Security.UrlAuthorizationModule"
preCondition="managedHandler" />

<add name="FileAuthorization"
type="System.Web.Security.FileAuthorizationModule"
preCondition="managedHandler" />

<add name="AnonymousIdentification"
type="System.Web.Security.AnonymousIdentificationModule"
preCondition="managedHandler" />

<add name="Profile"
type="System.Web.Profile.ProfileModule"
preCondition="managedHandler" />

<add name="UrlMappingsModule"
type="System.Web.UrlMappingsModule"
preCondition="managedHandler" />

</modules>
</system.webServer>
</location>

Every module, whether it is a native or managed one, is added to the <modules> configuration section
by the add element.

0 name: The name attribute specifies a friendly and human readable name of the registered mod-
ule. If the module registered is a native one, the name should match the same name used when
the module was installed in the <globalModules /> configuration section. In case of a man-
aged module, any friendly and expressive name can be used.

Q type: This attribute contains the value of the fully qualified namespace of the managed module
registered. It applies only to managed modules.

Q precondition: This attribute specifies whether the module should be loaded for all requests
or only managed requests, that is, request for ASP.NET resources. If you want to enable a
module to run for every request, whether it is an ASP.NET or not, simply clear this attribute
in the ApplicationHost.config configuration file. In most cases, when hosting a website on
a remote server you will not get the chance to play around with this file. A better solution is to
configure the module through the web. config configuration file as will be shown soon.

The modules defined at this level are defined globally at the web server’s level, which means all the

lower-level sites, applications, and virtual directories inherit all these modules. This means all the
registered modules will process any request that is part of your site, application, or virtual directory.

36

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

To prevent this from happening, you can add a web. config configuration file into the application and
remove any module that you do not want to take part in the processing of requests that belong to the
application.

<configuration>
<gystem.webServer>
<modules>
<remove name="BasicAuthenticationModule"/>
</modules>
</system.webServer>
</configuration>

The preceding configuration can be placed inside the application’s web . config configuration file. What
the above configuration settings do is remove the installed and registered BasicAuthenticationMod-
ule. Now, regardless whether the BasicAuthenticationModule is enabled or not for the application,
requests belonging to the application will not be processed by the native BasicAuthenticationModule.

<configuration>
<system.webServer>
<modules>
<remove name="BasicAuthenticationModule"/>
<add name="MyBasicAuthenticationModule" />
</modules>
</system.webServer>
</configuration>

If, on the other hand, you want to replace an existing module with a custom module, you can simply
remove the module in question and then add your own module by specifying its name. It goes without
saying that the new module should be listed in the <globalModules /> configuration section of the
ApplicationHost.config configuration file. In other words, the module must be installed inside IIS
7.0 before being able to use it in your applications.

It is important to know the order in which the above registered modules get executed by the IIS runtime.
As previously mentioned, the <modules> configuration section registers both the native and managed
modules. Every module registers itself to a specific event in the request-processing pipeline. When an
event fires in the pipeline, IIS 7.0 looks at the registered modules and decides on which modules should
be run (remember again, modules can be both native and managed modules). Once the selection is made,
IIS then looks to see the order they are registered with in the <modules /> configuration section. The
order decides which module would run before another module. So it is very possible that a managed
module might be placed before a native module, both registered for the same event. Therefore, the man-
aged module will be executed first by ASPNET runtime and then followed by the native module that
will be executed within the context of IIS runtime.

It is important to remember that native and managed modules are executed according to their order
of appearance in the <modules /> configuration section. In addition, the order can be set program-
matically. However, this is available only for native modules, as you will see later on with the native
AnonymousAuthenticationModule.

37

Chapter 2: IS 7.0 and ASP.NET Integrated Mode

The security Configuration Section Group

The <security /> configuration section group is the place where you specify security options for
your application. It contains two major sections, as described next.

The authentication Configuration Section

In the <globalModules /> configuration section, several authentication modules were installed and
then later on were registered in the <modules> configuration section. Which of these modules does
IIS 7.0 use for authentication? The answer lies in the <authentication> configuration section that
enables/disables modules as required. Looking at the <authentication> configuration section in the
ApplicationHost.config configuration file yields the configuration section shown here.

<authentication>
<anonymousAuthentication enabled="true" userName="IUSR" />
<basicAuthentication enabled="false" />
<clientCertificateMappingAuthentication />
<digestAuthentication />

<iisClientCertificateMappingAuthentication>
</iisClientCertificateMappingAuthentication>

<windowsAuthentication>
</windowsAuthentication>

</authentication>

The installed and registered modules in the <globalModules /> and <modules /> configuration sec-
tions are shown in the <authentication /> configuration section above with configuration attributes.

For instance, the BasicAuthenticationModule shown above with an attribute of enabled="false"
was already installed and registered in the <globalModules /> and <modules /> configuration sec-
tions. The other modules without any configurable attributes were neither installed nor registered, hence
the fact that only registered and installed native modules show up in the authentication section with
configurable attributes. In other words, the IIS 7.0 <modules /> configuration section determines
whether or not a module (authentication or any other module) will even run. The <authentication />
configuration section configures the behavior of each authentication type. However, the settings in the
<authentication /> configuration section will not take effect unless the associated module has
already been configured to run in the first place.

The AnonymousAuthenticationModule shown previously has a set of important attributes that are
worth discussing, especially from the security context. This module is usually installed as part of the
default installation of IIS 7.0. For a list of the modules installed with a default installation of IIS, refer
back to Chapter 1.

38

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

This module is enabled by default and hence it applies to all requests that belong to all sites config-
ured under the IIS 7.0 web server. The <anonymousAuthentication /> element defines userName
and password attributes that are used together to specify the identity or Windows account that

IIS uses when an anonymous user accesses an application when no other authentication module is
enabled. By default, IIS 7.0 sets the userName attribute to the built-in account TUSR that replaces the
old TUSR_MachineName account in IIS 6.0 and has minimum and limited privileges. The new TUSR
built-in user account and the I1S_IUSRS built-in group are discussed in detail in Chapter 3.

Moreover, you can configure IIS 7.0 to use the application pool or worker process identity as the
username and password for the AnonymousAuthenticationModule. This can be configured by
setting an empty string for the value of userName attribute. An empty string can be represented by
double quotes as follows:

<anonymousAuthentication enabled="true" userName=""/>

In case you want to disable any of the registered native modules, you can do so from inside the applica-
tion’s web . config configuration file using the enabled attribute as shown here.

<system.webServer>
<security>
<authentication>
<anonymousAuthentication enabled="true"/>
<basicAuthentication enabled="false"/>
<clientCertificateMappingAuthentication enabled="false"/>
<digestAuthentication enabled="false"/>
<iisClientCertificateMappingAuthentication enabled="false"/>
<windowsAuthentication enabled="false"/>
</authentication>
</security>
</system.webServer>

By specifying enabled="false" you simply disabled the module from having any role in processing a
request that belongs to the current application.

Another important trick to mention here is: What if you want to enable, for example, Forms
AuthenticationModule to handle all content file types and not only ASP.NET resource files? In
other words, what if you want to remove the preCondition attribute set for each managed module in
the <modules /> configuration section in the ApplicationHost.config configuration file? This can
be easily done by removing the module element then adding it again without specifying a value for the
preCondition attribute.

<gsystem.webServer>
<modules>
<!-- Allow the FormsAuthentication module to run for all requests -->
<remove name="FormsAuthentication"/>
<add name="FormsAuthentication" type="System.Web.Security.
FormsAuthenticationModule" />
</modules>
</system.webServer>

39

Chapter 2: IS 7.0 and ASP.NET Integrated Mode

As the preceding listing shows, the FormsAuthenticationModule element has been removed and
another element has been added, setting the name attribute to Formsauthentication. It is very
important to use the same friendly name used by IIS in the ApplicationHost.config configuration
file and set the type attribute to the full namespace of the FormsAuthenticationModule defined in
the NET Framework base class library.

To enable all managed modules to run for all request types, you set the value of the runAl1lManaged
ModulesForAllRequests attribute to true.

<system.webServer>
<modules runAllManagedModulesForAllRequests="true"></modules>
</system.webServer>

The attribute is added to the <modules /> configuration section in the <system.webServer /> con-
figuration section group inside the application’s web. config configuration file.

Note, though, that when IIS 7.0 finds out that a managed module has to be run and executed, a switch
happens from a native mode to the managed mode for the managed module to be run within the ASP
NET runtime in the CLR. In general, it is recommended not to automatically run all managed modules
for all requests. This incurs an overhead and low performance in throughput because of the switch of
context. What you can do is selectively choose the managed modules that make sense for non-ASP.NET
content and enable only those modules for all requests, managed and native.

To decide on what authentication type to use in an application, the same old way of specifying the
authentication in an ASPNET application still works. To configure what authentication type the applica-
tion should use, add an <authentication /> configuration section inside the <system.web /> con-
figuration section group of the application’s web. config configuration file.

<system.web>
<authentication mode="Forms" />
</system.web>

The preceding listing configures an application to use forms authentication. However, if you want an
application to be configured with Windows authentication, change the mode attribute value from Forms
to a value of windows and make sure the managed WindowsAuthenticationModule is registered cor-
rectly with IIS 7.0.

Authorization Configuration Section

40

When installing IIS 7.0, you get the chance to install a new native UrlAuthorizationModule that has
been introduced to the IIS 7.0 runtime. Once this native module is installed, it shows up in both the
<globalModules /> and <modules> configuration sections of the <system.webServer /> configura-
tion section group.

<globalModules>
<add name="ManagedEngine"
image="%windir%\Microsoft.NET\Framework\v2.0.50727\webengine.dll"
preCondition="integratedMode, runtimeVersionv2.0,bitness32" />
<add name="BasicAuthenticationModule"
image="%windir%\System32\inetsrv\authbas.dll" />

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

<add name="UrlAuthorizationModule"
image="%windir%\System32\inetsrv\urlauthz.dll" />
</globalModules>

Once the native Urlauthorization feature is installed, IIS 7.0 configures the ApplicationHost.config
configuration file and adds an entry inside the <globalModules /> configuration section.

<modules>
<add name="UrlMappingsModule"
type="System.Web.UrlMappingsModule"
preCondition="managedHandler" />
<add name="UrlAuthorizationModule" />
</modules>

In addition, the module gets registered by having a new entry in the <modules /> configuration sec-
tion. If you would like to disable this module for your application, you can easily do so by removing
it from the <modules /> configuration section of the <system.webServer /> configuration section
group inside the application’s web. config configuration file.

<system.webServer>
<modules>
<remove name="UrlAuthorizationModule"/>
</modules>
</system.webServer>

The native UrlauthorizationModule uses authorization rules that determine whether the user access-
ing the application is authorized to access specific parts of the application or specific page URLs. These
authorization rules are configured by adding some declarative rules into the <authorization /> con-
figuration section inside the <security /> section group of the application’s web. config configura-
tion file.

<system.webServer>
<security>
<authorization>
<add accessType="Deny" users="?"/>
<add accessType="Allow" users="bhaidar"/>
</authorization>
</security>
</system.webServer>

This can be achieved by adding sub-elements inside the <authorization /> configuration section
specifying the accessType, whether to allow or deny, the users to whom you want to grant access
and finally, the verbs attribute.

Moreover, when ASPNET is installed on IIS 7.0, it registers with the ApplicationHost.config con-
figuration file a managed UrlAuthorizationModule that is configured to run for ASP.NET resources
processed by the application.

<modules>

<add name="AnonymousIdentification"
type="System.Web.Security.AnonymousIdentificationModule"

41

Chapter 2: IS 7.0 and ASP.NET Integrated Mode

preCondition="managedHandler" />

<add name="Profile"
type="System.Web.Profile.ProfileModule"
preCondition="managedHandler" />

<add name="UrlAuthorization"
type="System.Web.Security. UrlAuthorizationModule"
preCondition="managedHandler" />

<add name="UrlAuthorizationModule" />

</modules>

Once again notice the preCondition attribute set to managediandler, which means that this module
will be invoked only for managed resources. To activate this module for all types of requests, simply
use the web. config configuration file in your application to remove the module and add it again with-
out specifying a value for the preCondition attribute.

<gystem.webServer>
<modules>
<remove name="UrlAuthorization"/>
<add name="UrlAuthorization" type="System.Web.Security.
UrlAuthorizationModule" />
</modules>
</system.webServer>

The code in the listing above removes the managed UrlAuthorizationModule element and then adds
it again so that it functions against all requests processed by the IIS runtime.

The managed UrlAauthorizationModule uses authorization rules that determine whether the user
accessing the application is authorized to access specific parts of the application or not. These authoriza-
tion rules are defined in the <authorization> configuration section inside the <system.web /> con-
figuration section group of the application’s web . config configuration file. There is nothing different
here from what has always been used to configure ASPNET authorization before the days of IIS 7.0.

<gystem.web>
<authorization>
<deny users="?"/>
</authorization>
</system.web>

The preceding configuration settings prevent anonymous users from accessing the website.

Migrating ASP.NET Applications to Integrated Mode

42

When a new ASP.NET application is created using Visual Studio 2008 under IIS 7.0, it is by default config-
ured to run under the Integrated mode application pool. However, having ASPNET running for several
years, there is a huge number of applications that need to be migrated in order to function properly under
IIS 7.0 Integrated mode. If, however, you decide to keep your applications the same without introducing any
changes to them, then simply add the application to IIS and assign it to the Classic mode application pool.
With this configuration, you are sure the application will run properly the same as it did under IIS 6.0.

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

When you consider migrating old applications into the Integrated mode, you should be looking at three
important sections within the web. config configuration file: <ht tpModules />, <httpHandlers />,
and the <identity /> configuration sections.

httpModules Configuration Section

When an ASP.NET application wants to register an Ht tpModule it usually adds an entry inside the
<httpModules /> configuration section inside the <system.web> configuration section group of the
application’s web . config configuration file. Now to make the application run properly under IIS 7.0
Integrated mode, simply copy all the registered modules inside the <httpModules /> configuration
section into the <modules> configuration section inside the <system.webServer /> configuration
section group. Not all modules registered within the <httpModules /> configuration section will
take effect when the application is running in the Integrated mode. Only those registered within the
<modules /> configuration section of the <system.webServer /> configuration section group will
run and execute. If any new module is to be registered in an application, it is best to place it inside the
<modules /> configuration section of the <system.webServer /> configuration section group.

C#

public class BasicHttpModule : IHttpModule
{

public BasicHttpModule ()

{

}

public void Dispose()
{

// Leave it blank since we will not add any code
}

/// <summary>

/// This method is used to register for events in the

/// request-processing pipeline stages

/// </summary>

/// <param name="context"></param>

public void Init (HttpApplication context)

{
// Register for the BeginRequest event
context.BeginRequest += new EventHandler (BeginRequest) ;

}

static void BeginRequest (object sender, EventArgs e)
{
HttpContext context=
HttpContext.Current;
context.Write("<h3 align='center'>
Welcome message from the Basic Http Module !</h3>");

43

Chapter 2: IS 7.0 and ASP.NET Integrated Mode

VB.NET

Imports System
Imports System.Web

'Y <summary>
"' Summary description for BasicHttpModule
' </summary>
Public Class BasicHttpModule
Implements IHttpModule
Public Sub New()

' TODO: Add constructor logic here

End Sub
#Region "IHttpModule Members"

Public Sub Dispose() Implements IHttpModule.Dispose
' Leave it blank since we will not add any code
End Sub

' <summary>

'"''" This method is used to register for events in the

'''" request-processing pipeline stages

'Y </summary>

''' <param name="context"></param>

Public Sub Init(ByVal context As HttpApplication) Implements IHttpModule.Init
' Register for the BeginRequest event
AddHandler context.BeginRequest, AddressOf BeginRequest

End Sub

Private Shared Sub BeginRequest (ByVal sender As Object, ByVal e As EventArgs)
HttpContext context=
HttpContext.Current;
context.Write("<h3 align='center'>
Welcome message from the Basic Http Module !</h3>");
End Sub

#End Region
End Class

The preceding listing shows a simple Ht tpModule that registers the BeginRequest event of the unified
request-processing pipeline to display a message on the user’s screen.

To register this module in the application’s web. config configuration file, simply add the following:

<gystem.webServer>

<modules>

<!-- Register the BasicHttpModule -->

<add name="BasicHttpModule" type="BasicHttpModule" />
</modules>

</system.webServer>

44

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

When registering an Ht tpModule located in the App_Code system folder of an ASP.NET application,
simply add the module by specifying a friendly name for the module and by setting the module name
as a value for the type attribute.

When any ASPNET page is requested by the application, the following message is attached as the first
thing to display on the page:

Welcome message from the Basic Http Module!

The module gets executed during the BeginRequest event during the unified request-processing
pipeline.

Moreover, if you move the registered module into the <modules /> configuration section and keep the
<httpModules /> section inside the application’s web. config configuration file, you should turn off
validation done by IIS, to ensure that the web. config configuration is valid, so that IIS does not gener-
ated migration error messages. Turning off validation simply suppresses the error messages generated.
This also applies for the <httpHandlers /> configuration section and enabling impersonation as you
will see in the next two sections.

httpHandlers Configuration Section

When an ASP.NET application wants to register an Ht tpHandler to process a specific content file type,
usually a custom one, it adds an entry into the <httpHandlers /> configuration section inside the
<system.web /> configuration section group in the application’s web. config configuration file. Now
to make the application run properly under IIS 7.0 Integrated mode, simply copy all the registered han-
dlers from inside the <httpHandlers /> configuration section into the <handlers /> configuration
section inside the <system.webServer /> configuration section group. The <handlers /> configura-
tion section is originally defined inside the ApplicationHost.config configuration file. It lists all the
mappings between content file extensions and their corresponding handlers.

<location path="" overrideMode="Allow">
<system.webServer>
<handlers accessPolicy="Script, Read">

<add name="TraceHandler-Integrated"
path="trace.axd"
verb="GET, HEAD, POST, DEBUG"
type="System.Web.Handlers.TraceHandler"
preCondition="integratedMode" />

<add name="WebAdminHandler-Integrated"
path="WebAdmin.axd"
verb="GET, DEBUG"
type="System.Web.Handlers.WebAdminHandler"
preCondition="integratedMode" />

<add name="PageHandlerFactory-Integrated"
path="*.aspx"
verb="GET, HEAD, POST, DEBUG"
type="System.Web.UI.PageHandlerFactory"
preCondition="integratedMode" />

<add name="SimpleHandlerFactory-Integrated"
path="*_.ashx"
verb="GET, HEAD, POST, DEBUG"

45

Chapter 2: IS 7.0 and ASP.NET Integrated Mode

46

<add

<add

<add

type="System.Web.UI.SimpleHandlerFactory"

preCondition="integratedMode" />

name="WebServiceHandlerFactory-Integrated"

path="*.asmx"

verb="GET, HEAD, POST, DEBUG"

type="System.Web.Services.Protocols.WebServiceHandlerFactory,
System.Web.Services, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a"

preCondition="integratedMode" />

name="PageHandlerFactory-ISAPI-2.0"

path="*.aspx"

verb="GET, HEAD, POST, DEBUG"

modules="IsapiModule" scriptProcessor="%windir%\Microsoft.NET\
Framework\v2.0.50727\aspnet_isapi.dll"

preCondition="classicMode, runtimeVersionv2.0,bitness32"
responseBufferLimit="0" />

name="StaticFile" path="*"

verb="*"

modules="StaticFileModule, DefaultDocumentModule,
DirectoryListingModule" resourceType="Either"
requireAccess="Read" />

</handlers>
</system.webServer>

</location>

The preceding listing shows a subset of the handlers defined in the ApplicationHost.config configu-
ration file. For instance, the PageHandlerFactory-Integrated handler maps all . aspx pages into the
System.Web.UI.PageHandlerFactory class. This handler is used when an application is running in
the Integrated mode. There is also a counterpart handler that runs when the application is configured
in the Classic mode application pool; the handler name is PageHandlerFactory-ISAPI-2.0.

Adding a custom HttpHandler for new content file types was not an easy task in IIS 6.0, and sometimes
it was impossible when the IIS 6.0 server was running remotely in a hosting company. Making use of the
IIS 7.0 Integrated mode processing, it is now considered a piece of cake to add a new handler for any con-
tent file type you want by simply adding a new entry into the <handlers /> configuration section of the
<system.webServer /> configuration section group located in the application’s web . config configura-

tion file.

<system.webServer>
<handlers>

<add name="BasicHttpHandler"
preCondition="integratedMode"
path="*.info"
type="BasicHttpHandler"

verb="GET,

</handlers>
</system.webServer>

pPOST" " />

The preceding configuration settings add a registration entry into the <handlers /> configuration
section. The handler entry should specify at a minimum the name of the Ht tpHandler; in this case, it is
BasicHttpHandler. Also specified is the path attribute for which the handler will be triggered; in this

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

case, all requests to content files with an extension of . info. And finally, the verb attribute is specified;
in this case, the handler will accept requests with GET and POST verbs.

C#

using System;

using System.Web;

using System.Web.Security;
using System.Web.UI;

public class BasicHttpHandler : IHttpHandler
{

public BasicHttpHandler ()

{

}

#region IHttpHandler Members

public bool IsReusable
{

get { return true;}

public void ProcessRequest (HttpContext context)
{
HttpResponse objResponse = context.Response;
objResponse.Write ("<html><body><hl>Thank you for visiting our info page!!");
objResponse.Write ("</body></html>") ;

#endregion

VB.NET

Imports System

Imports System.Data

Imports System.Configuration
Imports System.Ling

Imports System.Web

Imports System.Web.Security
Imports System.Web.UI

Imports System.Web.UI.HtmlControls
Imports System.Web.UI.WebControls
Imports System.Web.UI.WebControls.WebParts
Imports System.Xml.Ling

'Y <summary>
"' Summary description for BasicHttpHandler
' </summary>
Public Class BasicHttpHandler
Implements IHttpHandler

47

Chapter 2: IS 7.0 and ASP.NET Integrated Mode

Public Sub New ()

' TODO: Add constructor logic here

End Sub
#Region "IHttpHandler Members"

Public ReadOnly Property IsReusable() As Boolean Implements _
IHttpHandler.IsReusable
Get
Return True
End Get
End Property

Public Sub ProcessRequest (ByVal context As HttpContext) Implements _
THttpHandler.ProcessRequest ()
Dim objResponse As HttpResponse = context.Response
objResponse.Write ("<html><body><hl>Thank you for visiting our info page!!")
objResponse.Write ("</body></html>")
End Sub

#End Region
End Class

The preceding BasicHttpHandler code defines the HTML markup to show when a request for a page
with an extension of . info is request by the client.

Identity Configuration Section

If the application you are migrating to work under IIS 7.0 is configured with client impersonation in the
<identity /> configuration section, it is recommended to disable impersonation, since the application
might not behave correctly. This is especially true in that client impersonation is not available in early
ASP.NET request processing stages. Alternatively, you can assign the application configured with client
impersonation to an application pool with Classic mode.

Figure 2-4 shows the error page when you try to run an application that enables client impersonation
that is configured with an application pool set to run in the Integrated mode.

When you create a new application to run under IIS 7.0, you will notice the following inside the
<system.webServer /> configuration section group:

<gystem.webServer>
<validation validateIntegratedModeConfiguration="false"/>
</system.webServer>

The validation configuration section determines whether the IIS 7.0 runtime shall display error mes-
sages to help in upgrading the application to fit the IIS 7.0 Integrated mode. As mentioned above, if
you keep the <httpModules /> and <httpHandlers /> configuration sections’ entries outside the
<system.webServer /> configuration section group, they will not take effect in the unified request
processing. In addition, keeping the aforementioned configuration sections inside the <system.web />
configuration section group does not show any error message by IIS 7.0 notifying you that there are

48

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

errors with running the application in the Integrated mode due to the presence of undesirable sections
in the application’s web . config configuration file. This is because the validateIntegratedMode
Configuration attribute of the <validation /> configuration section is set to a value of false.
Changing this attribute to true will cause IIS 7.0 to show detailed error messages about the migration
problems of the running application and what is recommended to fix the upgrading problems. The
screen shown in Figure 2-4 would not have been displayed unless the aforementioned attribute was set
to true. In other words, you can keep the <httpModules />, <httpHandlers />,and <identity />
configuration sections in their place, while setting the validateIntegratedModeConfiguration attri-
bute to false, or simply remove the three sections from inside the <system.web /> configuration sec-
tion group and leave the validation attribute either true or false.

P~

- FEE
il - B nmiocansimarissosue Drt it aun = |43 | K |} Live Search

WF | 8 T570 Detailed Ece - $00.0 - Internal Server Emor fioo= E) = #h =0 age = Ghioah =

Server Error in Application "Default Web Site/BasicHttpModule”

HTTP Error 500.0 - Internal Server Error

Dese rlﬂ“un. This. nmil atian is running in an application pos! thal uses the Tnlegrated NET mode, This is the preferred mode lor ramning ASPNET
appibicat rront and futurs version of 115,

In thes mode, wlmmnn using cliant impersonatian with <identity rue” [may not behave correctly, Chien
..... labie i Sarhy RSPHET caduesl procersing stades and may lead rodulcs i those stopes 1o txccute with frocees Wentity

e Ihe following options:

instend. You
1) Disable client impersonation.

 yoor sppécation design siows I, yOu Cn daable Chent IMpErsOnation by sefing <dentty mpersonates"fase" f» i your web config fie This will make your appication code execute with e process
ey

METE: This optian may rgquins permissions on your application’s files and data 1o be changed 1o sliow accomss 1o the process identity.,

2) Disable this error.

m s 3 ASPRET pipeine stages, 3¢ e for fat exde or erity,
o “labse” fo in you Bguration. Do his enly it teal o s compatble wih
Fagratag MET reude, el form o473 s vadkuion for the sppécsson

3) Move this application to an application pool using the Classic .NET mode (PREFERRED).

eu can sarve Bhe agphcation 1 an appbcation poci thal wees the Classc NET mode by using the fokrming from & command line winder (Ihe window musl be rusreg 3 Admnairaler}

LEXE sl app “Defaull Wab Site/ RasicHtipModule” [applicationBool " Classic NET Appoool™

Adernatively, you yir aystersthalin 5 1 the Classe: MET mode Vou can e ansthet sppkcaten
oot

1t is preferred that you move this application to the Classic .NET mode by using option 3 to insure that your application continues to work if you are

ansure of or anable 1o use the first e apticns. =

Done o & Wtenel | Proleched Mede O How -

Figure 2-4

This section covered the migration configuration errors that you may receive when you migrate an
application to run under IIS 7.0 Integrated mode. For a more detailed discussion on the different errors
you may face when migrating your application, see: http://mvolo.com/blogs/serverside/
archive/2007/12/08/11S-7.0-Breaking-Changes-ASP.NET-2.0-applications-
Integrated-mode.aspx

Extending IIS 7.0 with Managed Handlers and Modules

Throughout this book, it has been mentioned several times that the new IIS 7.0 architecture is extensible.
It allows developers to extend its core functionality by developing modules or features in two flavors:

Q Native code modules

0O Managed code modules

49

Chapter 2: IS 7.0 and ASP.NET Integrated Mode

Developing native modules requires working with the C++ API On the other hand, managed modules
take advantage of the NET framework and allow developers to use their existing ASPNET Ht tpModules
or develop new ones to integrate with the IIS 7.0 infrastructure and benefit from the IIS 7.0 and ASPNET
Integrated mode of execution.

Managed Handlers

50

A managed handler is an ASPNET object that is responsible for the processing handling of an ASPNET
resource that has a specific file extension. In other words, a managed handler is linked to a particular
file extension that is configured inside the <httpHandlers /> configuration section of the application’s
web. config configuration file. HttpHandlers do not require operating on physically available content
files. The resources might be virtual ones that do not exist physically in the application.

C#

public class SampleHttpHandler : IHttpHandler
{

public SampleHttpHandler ()

{

}

public bool IsReusable
{
get { throw new NotImplementedException(); }

}

public void ProcessRequest (HttpContext context)
{

throw new NotImplementedException() ;
}

VB.NET

Imports System

Imports System.Data

Imports System.Configuration
Imports System.Ling

Imports System.Web

Imports System.Web.Security
Imports System.Web.UI

Imports System.Web.UI.HtmlControls
Imports System.Web.UI.WebControls
Imports System.Web.UI.WebControls.WebParts
Imports System.Xml.Ling

'Y <summary>
''' Summary description for SampleHttpHandler
' </summary>
Public Class SampleHttpHandler
Implements IHttpHandler
Public Sub New ()

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

' TODO: Add constructor logic here

End Sub
#Region "IHttpHandler Members"

Public ReadOnly Property IsReusable() As Boolean Implements _
IHttpHandler.IsReusable
Get
Throw New NotImplementedException ()
End Get
End Property

Public Sub ProcessRequest (ByVal context As HttpContext) Implements _
IHttpHandler.ProcessRequest
Throw New NotImplementedException ()

End Sub

#End Region
End Class

The code in the preceding listing shows the skeleton of an Ht tpHandler. You create a new handler by
implementing the THttpHandler interface. This interface has two main methods to implement:

0 ProcessRequest: This method is the brain of an Ht tpHandler. It is the method that gets executed
when the handler is activated. It is responsible for handling the specific request execution and
generation of the correct markup text that will be sent back to the requestor as a response. The
nature of the markup text generated depends on the type of the request. For example, if the
request is for an ASP.NET page, then the ProcessRequest method generates HTML markup
text to be sent back to the requestor. If on the other hand the handler is configured to process
and handle .xml content file extensions, then the response shall be XML markup text. This
method accepts as an input parameter an instance of type HttpContext. This parameter con-
tains the context in which the request is being processed and handled. Usually when a new
request comes in, ASP.NET runtime creates a new Ht tpContext object. This object can store
request-specific information and is disposed when the request is sent back to the requestor.

Q IsReusable: This is a read-only property that returns a value of type Boolean and specifies
whether the current handler can be used to process different requests for the configured resource.
If the handler has some state that is expensive to initialize, and that is invariant from request to
request, it should return a value of true so that ASP.NET has the opportunity to cache it. Oth-
erwise, if the handler has nothing in common for different requests, then it is recommended to
return a value of false.

Developing a Managed Handler

In this section, a custom managed handler is to be developed to handle displaying employees’ profile
pages in an application that manages employees’ information in a department, company, you name
it! The name of the handler is EmployeeHandler and will process requests for resources that have a
.info extension.

51

Chapter 2: IS 7.0 and ASP.NET Integrated Mode

52

Displaying employees’ profile information can be easily done by developing an ASPNET UserControl
that serves as a template to show information about an employee. However, using a page to hold this
template is a waste of resources and more processing is done with no extra benefit. For instance, when
an employee’s profile page is requested, the ASPNET runtime handles the request and fires all the events
during the page’s life cycle. None of the events are of interest in this specific case and hence more pro-
cessing is done with no extra benefit. In that case, to get rid of all the extra non-useful steps, an
HttpHandler is recommended.

The EmployeeHandler handles requests targeting specific employee as follows:
http://localhost/Employees/1234.info

What the handler does is extract the employee number from the URL, access the Employees data table

inside the database, and if the employee is present in the database, an employee profile page is dis-

played with all the details from the database.

The Employees data table used in this example is a simple data table used to collect information about
an employee. Figure 2-5 shows the Employees data table structure.

= |
-l] &] - 0= b | Deoug
ali-snaam.
5 e T —— P Rl * [
'i' b Column Hame Data Type Mg Nuls 3
8 | [Solution 375301 chd2_code’ W pinject) v | Employesin | imt
R L — s sechurtS)
§ = I ity Nocahost Tmployeetandier LastName Mo charsa)
2 [hop. Code [feasenamcn) ¥
2 App.tuts
g & (3 Controls
B [Defaull.aips
verdwebinta
B web cemnig

e
- W s Gans e cumyldenties
g

Column Properties
0
F iGenerall
Diamel [

ot Type i
Detaast Value or Binding
) atte Do

Figure 2-5

The Employees data table contains the EmployeeID, FirstName, LastName, and Email data columns.
This is just an example of simple collected information. In a production environment, this would be
much more serious and according to the context of the application.

For the sake of this example, a new LINQ DataContext class is added to the application to represent
the Employees data table in an object-like fashion, which makes querying the database an easy task.
Figure 2-6 shows the new . dbml LINQ object in the solution.

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

File Fot Veew Webiite Buid Dwbug Dafa Tes! Tooh Analie Window Help
NEEPY R
App.

\ithionbalAnn Comd . | LA

4
Salution TN T02_coat H projesti) | | ?

= (P hitplocumcatLmployeet andier/
& App Code
& (£ Emplopes. i Ll
3 [mployeetiandier.cs
] Empleyestianageren & Propeiey
4 Aop. buks 13 empizyeeD |
#- [Cantrols = Rntame
g P e & Lasthame
= e

e
i |
i

& G g acaiha e
4w

Figure 2-6

C#

[Table (Name="dbo.Employees")]
public partial class Employee : INotifyPropertyChanging, INotifyPropertyChanged
{

private int _EmployeeID;

private string _FirstName;
private string _LastName;
private string _Email;
public Employee ()
{
}
[Column (Storage="_EmployeeID", DbType="Int NOT NULL", IsPrimaryKey=true)]
public int EmployeeID
{
get
{
return this._ EmployeelD;

set

if ((this._EmployeeID != value))
{

53

Chapter 2: IS 7.0 and ASP.NET Integrated Mode

54

this._ EmployeeID = value;

}

[Column (Storage="_FirstName",

public string FirstName
{

return this._ FirstName;

if ((this._FirstName

1= value))

this. FirstName = value;

get

{

}

set

{
{
}

}

[Column (Storage="_LastName",

public string LastName
{
get
{

DbType="NVarChar (50)

return this._LastName;

if ((this._LastName

1= value))

this._LastName = value;

}

[Column (Storage="_Email",
public string Email

{

DbType="NVarChar (100) ")]

return this._Email;

= value))

this._ Email = value;

get

{

}

set

{
if ((this._Email
{
}

}

DbType="NVarChar (50)

NOT NULL",

NOT NULL",

CanBeNull=false)]

CanBeNull=false)]

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

VB.NET

<Table (Name:="dbo.Employees")>
Partial Public Class Employee Implements INotifyPropertyChanging,

INotifyPropertyChanged

Private Shared emptyChangingEventArgs As _
PropertyChangingEventArgs = New PropertyChangingEventArgs (String.Empty)

Private _EmployeeID As Integer
Private _FirstName As String
Private _LastName As String
Private _Email As String

Public Sub New()
MyBase .New
OnCreated

End Sub

<Column (Storage:="_EmployeeID", DbType:="Int NOT NULL", IsPrimaryKey:=true)> _
Public Property EmployeeID() As Integer
Get
Return Me._EmployeeID
End Get
Set
If ((Me._EmployeeID = value)
= false) Then
Me.OnEmployeeIDChanging (value)
Me . SendPropertyChanging
Me._EmployeeID = value
Me. SendPropertyChanged ("EmployeeID")
Me.OnEmployeeIDChanged
End If
End Set
End Property

<Column (Storage:="_FirstName",
DbType:="NVarChar (50) NOT NULL",
CanBeNull:=false)> _
Public Property FirstName() As String
Get
Return Me._FirstName
End Get

Set
If (String.Equals (Me._FirstName, value) = false) Then

Me.OnFirstNameChanging (value)
Me.SendPropertyChanging
Me._ FirstName = value
Me.SendPropertyChanged ("FirstName")
Me.OnFirstNameChanged
End If
End Set

55

Chapter 2: IS 7.0 and ASP.NET Integrated Mode

End Property

<Column (Storage:="_LastName", _
DbType:="NVarChar (50) NOT NULL", _
CanBeNull:=false)>
Public Property LastName() As String
Get
Return Me._LastName
End Get

Set
If (String.Equals (Me._LastName, value) = false) Then

Me.OnLastNameChanging (value)
Me. SendPropertyChanging
Me._LastName = value
Me.SendPropertyChanged ("LastName")
Me.OnLastNameChanged
End If
End Set
End Property

<Column (Storage:="_FEmail", DbType:="NVarChar (100)")>
Public Property Email () As String

Get
Return Me._Email
End Get
Set
If (String.Equals(Me._Email, value) = false) Then
Me.OnEmailChanging (value)
Me. SendPropertyChanging
Me. Email = value
Me.SendPropertyChanged ("Email™")
Me.OnEmailChanged
End If
End Set

End Property
End Class

This code shows the Employee object automatically generated by the LINQ DataContext object once the
Employees data table is added to it. Additional generated events and properties are removed because
they are not of concern when it is all about using the object to hold single employee information. This

object will be used in the application to represent a single employee.

The EmployeeHandler developed for this example is shown in the following code.

C#
public class EmployeeHandler : IHttpHandler

{
public EmployeeHandler ()

{
}

#region IHttpHandler Members

56

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

public bool IsReusable
{

get { return false; }

public void ProcessRequest (HttpContext context)
{
// Determine the employee's ID
string empID = Path.GetFileNameWithoutExtension (
context.Request.PhysicalPath) ;

// Try to parse the employee's ID
int id = -1;
if (!int.TryParse (empID, out id))
{
context.Response.Write ("Employee ID is invalid or doesn't exist in the database!!");
return;

// Get the employee from the database
var employee = EmployeeManager .GetEmployeeByID(id) ;

// Make sure there is an employee in
// the database with the requested number
if (employee == null)
{
// Write out an error message
context.Response.Write ("Employee ID is invalid or doesn't exist in the database!!");
return;

// Add the employee information to the Items
// collection of the context
context.Items|["Employee"] = employee;

// Display the employee info
DisplayEmployee (context, employee) ;

#endregion

#region Utils
private void DisplayEmployee (HttpContext context, Employee employee)
{

// Create a new page instance

Page page = new Page();

// Load the employee profile usercontrol dynamically
UserControl employeeCtrl =

(UserControl)page.LoadControl ("~/Controls/EmployeeProfile.ascx") ;

// Add the control to the page instance
page.Controls.Add (employeeCtrl) ;

// Execute the page containing the usercontrol

57

Chapter 2: IS 7.0 and ASP.NET Integrated Mode

58

StringWriter writer = new StringWriter();

// Add the HTML header to the page

writer.WriteLine (

string.Format ("<html><head><title>Employee {0} Profile</title></head>",
employee.EmployeelID)) ;

writer.WriteLine ("<body>") ;

HttpContext.Current.Server.Execute (page, writer, false);

// Add the HTML footer
writer.WriteLine ("</body>") ;
writer.WriteLine("</html>");

// Write the response out to the screen
context.Response.Write(writer.ToString()) ;
} #endregion

VB.NET

Imports System
Imports System.Data
Imports System.Configuration
Imports System.IO
Imports System.Web
Imports System.Web.Security
Imports System.Web.UI
Imports System.Web.UI.HtmlControls
Imports System.Web.UI.WebControls
Imports System.Web.UI.WebControls.WebParts
'Y <summary>
"' Summary description for EmployeeHandler
'Y < /summary>
Public Class EmployeeHandler
Implements IHttpHandler
Public Sub New ()

' TODO: Add constructor logic here

End Sub
#Region "IHttpHandler Members"

Public ReadOnly Property IsReusable() As Boolean Implements _
THttpHandler.IsReusable
Get
Return False
End Get
End Property

' <summary>
This method handles the processing of .info requests

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

Gets the specific employee from the database based on the
employee id specified before the .info extension and
fills in an employee record inside the context's

items collection

</summary>

<param name="context"></param>

Public Sub ProcessRequest (ByVal context As HttpContext)

Implements IHttpHandler.ProcessRequest

' Determine the employee's ID

Dim empID As String = _

Path.GetFileNameWithoutExtension (context.Request.PhysicalPath)

' Try to parse the employee's ID

Dim id As Integer = -1

If (Not Integer.TryParse(empID, id)) Then
context.Response.Write("Employee ID is invalid" & _
"or doesn't exist in the database!!")
Return

End If

' Get the employee from the database
Dim employee = EmployeeManager.GetEmployeeByID (id)

' Make sure there is an employee in
' the database with the requested number
If employee Is Nothing Then
' Write out an error message
context.Response.Write ("Employee ID is invalid" & _
"or doesn't exist in the database!!")
Return
End If

' Add the employee information to the Items
' collection of the context
context.Items ("Employee") = employee

' Display the employee info
DisplayEmployee (context, employee)

End Sub

#End Region

#Region "Utils"
Private Sub DisplayEmployee (ByVal context As HttpContext,

ByVal employee As Employee)
' Create a new page instance
Dim page As Page = New Page ()

' Load the employee profile usercontrol dynamically
Dim employeeCtrl As UserControl = _
CType (page.LoadControl ("~/Controls/EmployeeProfile.ascx"), UserControl)

' Add the control to the page instance
page.Controls.Add (employeeCtrl)

59

Chapter 2: IS 7.0 and ASP.NET Integrated Mode

' Execute the page containing the usercontrol
Dim writer As StringWriter = New StringWriter ()

' Add the HTML header to the page

writer.WriteLine (

String.Format ("<html><head><title>Employee {0} Profile</title></head>", _
employee.EmployeelID))

writer.WriteLine ("<body>")

HttpContext.Current.Server.Execute (page, writer, False)

' Add the HTML footer
writer.WriteLine ("</body>")
writer.WriteLine("</html>")

' Write the response out to the screen
context.Response.Write (writer.ToString())
End Sub
#End Region
End Class

This code shows the implementation of the EmployeeHandler. Each of the methods used inside the
handler is explained in detail in the next few sections.

IsReusable

This method is inherited from the IHttpHandler interface and has been explained in detail above.

C#

public bool IsReusable
{

get { return false; }

VB.NET

Public ReadOnly Property IsReusable() As Boolean Implements _
THttpHandler.IsReusable
Get
Return False
End Get
End Property

In the preceding code, it returns a value of false, which means the handler instance will not process
several requests of the same extension. Every request will generate a new instance of the handler.

ProcessRequest

The processRequest method is the bulk of the EmployeeHandler and every developed handler. This
method is responsible for processing a request. For instance, when the ProcessRequest method of the
.aspx handler executes, it processes the page by starting the page life cycle events. Every event will add

60

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

some bits into the response and the end response is ready to be sent back to the requestor. The same is
followed in the ProcessRequest method of the EmployeeHandler.

C#

context.

VB.NET

context.

// Determine the employee's ID
string empID = Path.GetFileNameWithoutExtension (
context.Request.PhysicalPath) ;

// try to parse the employee id

int id = -1;

if (!int.TryParse (empID, out id))

{

Response.Write ("Employee ID is invalid or doesn't exist in the database!!");
return;

}

' Determine the employee's ID
Dim empID As String = Path.GetFileNameWithoutExtension (
context.Request.PhysicalPath)

' try to parse the employee id

Dim id As Integer = -1

If (Not Integer.TryParse(empID, id)) Then

Response.Write("Employee ID is invalid or doesn't exist in the database!!")
Return

End If

The method starts by extracting the page requested without an extension. The usual URL requested to
display an employee’s profile is as follows:

http://localhost/Employees/1234.1info

What the preceding code will do is extract the EmployeeID, which is in this case “1234”. Once the
EmployeelD is extracted, it is validated to make sure the client did not request a non-integer EmployeelD.

C#

context.

// Get the employee from the database
var employee = EmployeeManager .GetEmployeeByID(id) ;

// Make sure there is an employee in

// the database with the requested number

if (employee == null)

{
// Write out an error message

Response.Write("Employee ID is invalid or doesn't exist in the database!!");
return;

}

61

Chapter 2: IS 7.0 and ASP.NET Integrated Mode

VB.NET

' Get the employee from the database
Dim employee = EmployeeManager.GetEmployeeByID(id)

' Make sure there is an employee in
' the database with the requested number
If employee Is Nothing Then
' Write out an error message
context.Response.Write ("Employee ID is invalid or doesn't exist in the database!!")

Return
End If

After the EmployeeID is extracted and validated, a call to the EmployeeManager.GetEmployeeByID is
issued.

C#
public static Employee GetEmployeeByID(int empID)
{

// Get a new instance of the DataContext
EmployeeDataContext context = new EmployeeDataContext();

// Query the database to get the employee

var query = (from e in context.Employees
where e.EmployeeID == empID
select e).Single();

return query;

VB.NET

Public Shared Function GetEmployeeByID(ByVal empID As Integer) As Employee
' Get a new instance of the DataContext
Dim context As EmployeeDataContext = New EmployeeDataContext ()

' Query the database to get the employee
Dim query = (From e In context.Employees Where _
e.EmployeeID = empID Select e).SingleOrDefault ()

Return query
End Function

The GetEmployeeByID method instantiates a new LINQ DataContext; in this case it is the Employee
DataContext that was added before. Then a LINQ query is defined to select the employee record that
has an EmployeeID matching that present in the requested URL. Finally, the employee record repre-
sented as Employee object is returned out of the method.

Once the GetEmployeeByID method is called inside the ProcessRequest method, the returned
Employee object is validated to make sure there is an employee with the requested EmployeeID in the
database. If there is one, then the employee’s record is added to the Items collection of the HttpContext
object. As previously explained, the Ht tpContext object is created at the beginning of the request

62

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

processing and it stays valid until the response is returned back to the requestor. In this sense, the code
is making use of the Items collection to store the employee’s record so that it is retrieved later on to dis-
play the details of the employee. Once the employee record is stored in the context of the request, the
employee’s profile is displayed on the screen by calling the DisplayEmployee method.

DisplayEmployee

This method is responsible for generating the HTML markup text and sending it back to the client that
initiated the request. Before diving into the details of the implementation of this method, however, let’s
review the EmployeeProfile user control.

C#

<%@ Control Language="C#" AutoEventWireup="true"
CodeFile="EmployeeProfile.ascx.cs" Inherits="Controls_EmployeeProfile" %>

<hl align="center">Employee Profile</hl>

<asp:Label ID="Labell" runat="server" Font-Bold="True" Text="Employee ID">

</asp:Label>

<asp:Label ID="lblEmployeeID" runat="server"></asp:Label>

<p></p>

<asp:Label ID="Label3" runat="server" Font-Bold="True" Text="First Name">

</asp:Label>

<asp:Label ID="1blFirstName" runat="server"></asp:Label>

<p></p>

<asp:Label ID="Label4" runat="server" Text="Last Name" Font-Bold="True">

</asp:Label>

<asp:Label ID="1lblLastName" runat="server"></asp:Label>

<p></p>

<asp:Label ID="Label5" runat="server" Font-Bold="True" Text="Email"></asp:Label>

<asp:Label ID="1blEmail" runat="server"></asp:Label>

VB.NET

<%@ Control Language="VB" AutoEventWireup="false"
CodeFile="EmployeeProfile.ascx.vb" Inherits="Controls_EmployeeProfile" %>

<hl align="center">Employee Profile</hl>

<asp:Label ID="Labell" runat="server" Font-Bold="True" Text="Employee ID">

</asp:Label>

<asp:Label ID="1lblEmployeeID" runat="server"></asp:Label>

<p></p>

<asp:Label ID="Label3" runat="server" Font-Bold="True" Text="First Name">

</asp:Label>

<asp:Label ID="1blFirstName" runat="server"></asp:Label>

<p></p>

<asp:Label ID="Label4" runat="server" Text="Last Name" Font-Bold="True">

</asp:Label>

<asp:Label ID="lblLastName" runat="server"></asp:Label>

63

Chapter 2: IS 7.0 and ASP.NET Integrated Mode

<p></p>

<asp:Label ID="Label5" runat="server" Font-Bold="True" Text="Email"></asp:Label>

<asp:Label ID="1blEmail" runat="server"></asp:Label>

The HTML part of the user control is very simple. It displays a few labels that display the details of the
employee such as the EmployeeID, FirstName, LastName, and Email properties.

C#

public partial class Controls_EmployeeProfile : System.Web.UI.UserControl
{

protected void Page_Load(object sender, EventArgs e)

{
// Get the Employee info from the HttpContext
Employee emp =
(Employee)HttpContext.Current.Items["Employee"];
// Bind the values on the screen
if (emp == null) return;
this.lblEmployeeID.Text = emp.EmployeeID.ToString() ;
this.lblFirstName.Text = emp.FirstName;
this.lblLastName.Text = emp.LastName;
this.lblEmail.Text = emp.Email;
}
}
VB.NET

Partial Public Class Controls_EmployeeProfile
Inherits System.Web.UI.UserControl

Protected Sub Page_lLoad(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load
' Get the Employee info from the HttpContext
Dim emp As Employee = CType (HttpContext.Current.Items ("Employee"),
Employee)

' Bind the values on the screen
If emp Is Nothing Then

Return
End If

Me.lblEmployeeID.Text = emp.EmployeeID.ToString ()
Me.lblFirstName.Text = emp.FirstName
Me.lblLastName.Text = emp.LastName
Me.lblEmail.Text = emp.Email
End Sub
End Class

The code underlying usercontrol extracts the employee’s record from the same Ht tpContext object
instance that had its Items collection filled during the ProcessRequest method, casts the data into a

64

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

strongly typed Employee object, and finally binds each label on the usercontrol to the data retrieved

from the request’s context.

C#

private void DisplayEmployee (HttpContext context, Employee employee)
{

// Create a new page instance

Page page = new Page();

// Load the employee profile usercontrol dynamically UserControl

employeeCtrl =
(UserControl)page.LoadControl ("~/Controls/EmployeeProfile.ascx") ;

// Add the control to the page instance
page.Controls.Add (employeeCtrl) ;

// Execute the page containing the usercontrol
StringWriter writer = new StringWriter();

// Add the HTML header to the page
writer.WriteLine (

string.Format ("<html><head><title>Employee {0} Profile</title></head>",

employee.EmployeelD)) ;
writer.WriteLine ("<body>") ;

HttpContext.Current.Server.Execute (page, writer, false);

// Add the HTML footer
writer.WriteLine ("</body>") ;
writer.WriteLine("</html>") ;

// Write the response out to the screen
context.Response.Write(writer.ToString()) ;
} #endregion

VB.NET

Private Sub DisplayEmployee (ByVal context As HttpContext,
ByVal employee As Employee)
' Create a new page instance
Dim page As Page = New Page()

' Load the employee profile usercontrol dynamically
Dim employeeCtrl As UserControl = _

CType (page.LoadControl ("~/Controls/EmployeeProfile.ascx"), UserControl)

' Add the control to the page instance
page.Controls.Add (employeeCtrl)

' Execute the page containing the usercontrol
Dim writer As StringWriter = New StringWriter ()

65

Chapter 2:

IS 7.0 and ASP.NET Integrated Mode

End

Going back to the DisplayEmployee method, it starts by creating a new instance of the Page class.
This page object will be used as a place holder to load the EmployeeProfile usercontrol inside it.
After that, the EmployeeProfile usercontrol is dynamically loaded and then added as the first and only
control inside the page object. Once the usercontrol is initialized and added to the page, a new instance
of the stringWriter is created to hold the HTML markup text generated by executing the page object.
The page is executed by issuing a call to the HttpContext .Current . Server.Execute method. Finally,
the generated HTML markup text is added to the context’s response to be sent back to the requestor.

' Add the HTML header to the page
writer.WriteLine (

String.Format ("<html><head><title>Employee {0} Profile</title></head>", _

employee.EmployeelID))

writer.WriteLine ("<body>")
HttpContext.Current.Server.Execute (page, writer, False)
' Add the HTML footer

writer.WriteLine ("</body>")
writer.WriteLine ("</html>")

' Write the response out to the screen
context.Response.Write (writer.ToString())
Sub

Figure 2-7 shows the employee’s profile when employee data is requested.

If you notice the URL, the requested page is 5262 . info, which does not exist physically inside the appli-
cation. However, the EmployeeHandler intercepts the request and processes it as though it were a real
page. The result shows the employee’s profile displayed on the screen without having the request go
through all the page life cycle events that add nothing to the task of showing an employee’s profile from

the database.

66

8 Emplayea 5262 Pr SIEEs
O - [c T v ¥y | 3¢ 1 Live Seareh 8>
| Employes 5262 Profie f o+ B) - i v Pege @ Tach +
Employee Profile
Emplovee 1D
5261
First Name
Lam
Last Name
Keyrom:
Fmail
laea i seeneemud eom
Done @ & nbemel | Protectd Mode: OF LY
Figure 2-7

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

Installing a Managed Handler

Now that the handler is developed, there are two ways of installing it. One way is for the administrator
or developer to use the IIS 7.0 Manager tool and add a handler mapping similar to the way it was done in
the days of IIS 6.0. However, the power of developing managed handlers and deploying them in IIS 7.0
eliminates the need to access the IIS 7.0 Manager tool! This is done by simply adding the following to the
application’s web . config configuration file.

<system.webServer>
<handlers>
<!-- Add the EmployeeHandler here -->
<add name="EmployeeHandler" type="EmployeeHandler" verb="*"
path="*_info" />
</handlers>
</system.webServer>

The new managed handler is configured by adding an entry into the handler section of the <system
.webServer> section group located in the application’s web. config configuration file.

However, if the handler is to be used among several applications, then it should be installed at the IIS
7.0 web server level. The details of installing it on the web server level is out of the scope of this chap-
ter because it is more related to IIS 7.0 administration and configuration, but you can find good walk-
throughs on this topic in the book Professional IIS 7.0 and ASP.NET Integrated Programming (Wrox). The
book is a complete reference on all the details about the IIS 7.0 and ASPNET Integrated model.

Managed Modules

A managed module is an ASP.NET object that inherits from the IHt tpModule interface. A module is
used to handle the pre-processing and post-processing of a request. This means a module can register
itself to process a request before it is being handed off to the managed handler for execution, and then
once the request is processed by the handler, the module can again register itself to handle the request
after it has been processed by the handler. The one thing to notice here is that a module does not pro-
cess the request; it just registers itself to operate on the request before and after it has been operated on
by the managed handler.

C#

public class SampleHttpModule : IHttpModule
{
public SampleHttpModule ()
{
}

#region IHttpModule Members
public void Dispose()
{
throw new NotImplementedException() ;

}

public void Init (HttpApplication context)

67

Ch

apter 2: 1IS 7.0 and ASP.NET Integrated Mode

68

context.AuthenticateRequest +=
new EventHandler (context_AuthenticateRequest) ;

}

void context_AuthenticateRequest (object sender, EventArgs e)

{

throw new NotImplementedException() ;

}

#endregion

VB.NET

Public Class SampleHttpModule
Implements IHttpModule
Public Sub New()

End Sub

#Region "IHttpModule Members"

Public Sub Dispose() Implements IHttpModule.Dispose
Throw New NotImplementedException ()
End Sub

Public Sub Init(ByVal context As HttpApplication) Implements IHttpModule.Init
AddHandler context.AuthenticateRequest, AddressOf context _
AuthenticateRequest

End Sub

Private Sub context_AuthenticateRequest (ByVal sender As Object, _
ByVal e As EventArgs)
Throw New NotImplementedException ()
End Sub

#End Region
End Class

This code shows the skeleton of an HttpModule. You create a new module by implementing the
IHttpModule interface. This interface has one main method, Init, to implement.

When the ASP.NET runtime is processing a request, several events are fired throughout the request-
processing pipeline. Every event handles a specific task within the life cycle of the request processing.
For example, there is an event to handle the authentication of the request. Based on what the application
specifies for the authentication type, a specific NET module will subscribe to the authentication event
and execute its codes to authenticate the request. Because of the extensible nature of the .NET runtime,
developers are allowed to build their own modules that attach to the list of events fired by the pipeline.
To register any of those events, you need to create a new module and utilize the Init method to sub-
scribe to the specific event.

When an ASPNET request is to be processed by the ASPNET runtime, it is usually handled inside an
instance of the Ht tpApplication object. When the runtime starts processing an ASPNET request, it
checks to see if there is a live instance of the Ht tpApplication object inside a pool that it maintains for all

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

HttpApplication instances that the request belongs to. If there is no instance, a new HttpApplication
instance is created, used by the runtime to process the request, and finally added to the pool. On the other
hand, if an instance was found, it is used by the runtime to process the request.

During the processing of the request, the Ht tpApplication instance fires a set of events such as
BeginRequest, AuthenticateRequest, and so forth. Each of these events plays a role in the request-
processing pipeline. This explains why the Init method accepts as input a parameter of type Http
Application. The custom module can use this parameter to subscribe to the events that are exposed
by the Ht tpApplication object. As is the case in the previous code listing, the Init method subscribes
to the AuthenticateRequest event to execute some custom code. More on the Ht tpApplication
events and request-processing pipeline is discussed in later sections.

What has been said above is an old story about Ht tpModules. In the IIS 7.0 infrastructure, the managed
HttpModule does not fire only for managed resources. On the contrary, when an application is running
inside an application pool configured with the Integrated mode, all the Ht tpApplication events fire
while processing any request, whether the request is a managed request or a native request. This has
been mentioned several times and once again shows how powerful the new integration architecture is
between IIS 7.0 and ASP.NET.

Developing a Managed Module

In this section, a custom managed module is to be developed to handle displaying formatted code,
whether it is VB or C# code. Usually IIS 7.0 is configured to disable accessing a code file through a
browser for security and safety reasons. However, there are times when you want to present the code
files online for an article that you have posted on your blog or for some other reason. The name of the
module is CodeFormatterModule and it will process requests that include the Code/CodeFileName
segment in the URL.

The CodeFormatterModule handles requests targeting specific code file names as follows:
http://localhost/Code/Default.aspx.cs/

Notice the / at the end of the URL. Without it the RequestFilteringModule will show a 404.7 Not
Found Error since accessing code files by a browser is disabled for security concerns.

What the module does is extract the code file name from the URL for all requests that include the Code/
segment, and then the code file is read as a normal text file and sent back as a response to the requestor
embedded in a pre tag. The formatting can be done in a better way with colorful code lines. However,
for the sake of this sample, the pre tag is more than enough to clarify the idea of developing a managed
module and running it under IIS 7.0.

The CodeFormatterModule developed for this example is shown in the following code listing.

C#

public class CodeFormatterModule : IHttpModule
{

public CodeFormatterModule ()

{

}

#region IHttpModule Members

69

Chapter 2: IS 7.0 and ASP.NET Integrated Mode

70

public void Dispose ()

{
}

public void Init (HttpApplication context)

{

context.BeginRequest +=

new EventHandler (context_BeginRequest) ;

void context_BeginRequest (object sender, EventArgs e)

{

//

Get an instance of the HttpApplication

HttpApplication application = (HttpApplication)sender;

//

Get an instance of the HttpContext

HttpContext context = application.Context;

//
//
//
//
//
//
//
//

Find if the current request ends with

Code/ClassName so that to show the class's code

formatted on the screen.

The url to access the formatter should be something

as: http://localhost/Code/Default.aspx.cs/

The "/" at the end is very important because without

it the RequestFiltering module installed on IIS will prevent the
the access to a .cs or .vb file.

Regex regEx = new Regex(@"Code/(.*)", RegexOptions.IgnoreCase) ;
Match match = regEx.Match(context.Request.Path);

/1
//
if
{

there is a match, this means
the request is for code formatting
(match.Success)

// Code file holds the code file name
string codeFile = "";

// Split the path based on the /
string[] tokens = context.Request.Path.Split(new char[] {'/'});
if (tokens.Length <= 0)

return;

// Grab the code file name which should be
// the item before the last one
codeFile = tokens[tokens.Length-2];

// Get the physical path to the code file
string pathtoCodeFile =
context.Request.PhysicalPath.Replace(@"Code\", "");

// Remove the \ from the end of the file name
pathtoCodeFile =
pathtoCodeFile.Substring (0, pathtoCodeFile.Length - 1);

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

// If the file exists, read it and display it

if (!File.Exists(pathtoCodeFile))
{

// inform the user that the file doesn't exist
context.Response.Write("File doesn't exist!");

// End the request
context.Response.End() ;

// read the contents of the file

string fileContent = File.ReadAllText (pathtoCodeFile) ;

// Set the response to

context.Response.ContentType = "text/html";

// Write the formatted code
context.Response.Write ("<pre>") ;
context.Response.Write (fileContent) ;
context.Response.Write("</pre>") ;

// End the request
context.Response.End() ;

#endregion

VB.NET

Imports System

Imports System.Data

Imports System.Configuration

Imports System.Ling

Imports System.IO

Imports System.Text

Imports System.Text.RegularExpressions
Imports System.Web

Imports System.Web.Security

Imports System.Web.UI

Imports System.Web.UI.HtmlControls
Imports System.Web.UI.WebControls
Imports System.Web.UI.WebControls.WebParts
Imports System.Xml.Ling

'Y <summary>
"' Summary description for CodeFormatterModule
' </summary>
Public Class CodeFormatterModule
Implements IHttpModule
Public Sub New/()

71

Chapter 2: IS 7.0 and ASP.NET Integrated Mode

' TODO: Add constructor logic here

End Sub
#Region "IHttpModule Members"

Public Sub Dispose() Implements IHttpModule.Dispose
End Sub

' Subscribe to the BeginRequest to process

' a request to the code formatter so that

if the request was to show formatted code,

' the rest of the HttpApplication events get

' ignored, hence improving performance.

Public Sub Init(ByVal context As HttpApplication) Implements IHttpModule.Init
AddHandler context.BeginRequest, AddressOf context_BeginRequest

End Sub

Private Sub context_EndRequest (ByVal sender As Object, ByVal e As EventArgs)
End Sub

Private Sub context_BeginRequest (ByVal sender As Object, ByVal e As EventArgs)
' Get an instance of the HttpApplication
Dim application As HttpApplication = CType (sender, HttpApplication)
' Get an instance of the HttpContext

Dim context As HttpContext = application.Context

Find if the current request ends with

' Code/ClassName so that to show the class's code

formatted on the screen.

The url to access the formatter should be something

' as: http://localhost/Code/Default.aspx.cs/

' The "/" at the end is very important because without

' it the RequestFiltering module installed on IIS will prevent the

' the access to a .cs or .vb file.

Dim regEx As Regex = New Regex("Code/(.*)", RegexOptions.IgnoreCase)
Dim match As Match = regEx.Match(context.Request.Path)

There is a match, which means

' the request is for code formatting
If match.Success Then

' Code file holds the code file name
Dim codeFile As String = ""

' Split the path based on the /

Dim tokens As String() = context.Request.Path.Split(New Char() {"/"c})
If tokens.Length <= 0 Then

Return
End If

' Grab the code file name which should be
' the item before the last one

72

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

codeFile = tokens(tokens.Length - 2)

' Get the physical path to the code file
Dim pathtoCodeFile As String = _
context.Request.PhysicalPath.Replace("Code\", "")

' Remove the \ from the end of the file name
pathtoCodeFile = pathtoCodeFile.Substring(0, pathtoCodeFile.Length - 1)

' If the file exists, read it and display it

If (Not File.Exists(pathtoCodeFile)) Then
' Inform the user that the file doesn't exist
context.Response.Write("File doesn't exist!")

' End the request
context.Response.End ()
End If

' Read the contents of the file
Dim fileContent As String = File.ReadAllText (pathtoCodeFile)

' Set the response to
context.Response.ContentType = "text/html"

' Write the formatted code
context.Response.Write ("<pre>")
context.Response.Write (fileContent)
context.Response.Write("</pre>")

' End the request
context.Response.End()
End If
End Sub

#End Region
End Class

This code shows the implementation of the CodeFormatterModule. Each of the methods used inside
the module is explained in detail in the next few sections.

Init
The Init method is the core of the HttpModule. It is the best place inside the Ht tpModule to subscribe
to the HttpApplication’s events. The module above subscribes to the BeginRequest event.

C#

public void Init (HttpApplication context)
{

context.BeginRequest +=
new EventHandler (context_BeginRequest) ;

73

Chapter 2: IS 7.0 and ASP.NET Integrated Mode

VB.NET

Public Sub Init(ByVal context As HttpApplication) Implements IHttpModule.Init
AddHandler context.BeginRequest, AddressOf context_BeginRequest
End Sub

Subscribing to an event is done the usual way in the .NET framework. The context_BeginRequest
method is the method to be called when the Ht tpApplication’s BeginRequest event fires.

Context_BeginRequest

The context_BeginRequest method does the bulk of the processing by extracting the code file name
and displaying the code inside it as formatted code.

C#
// Get an instance of the HttpApplication
HttpApplication application = (HttpApplication)sender;
// Get an instance of the HttpContext
HttpContext context = application.Context;

VB.NET

' Get an instance of the HttpApplication
Dim application As HttpApplication = CType (sender, HttpApplication)

' Get an instance of the HttpContext
Dim context As HttpContext = application.Context

The method starts by getting a reference to the Ht tpApplication and the HttpContext objects.

C#
Regex regEx = new Regex(@"Code/(.*)", RegexOptions.IgnoreCase) ;
Match match = regEx.Match(context.Request.Path) ;
// There is a match, which means
// the request is for code formatting
if (match.Success)
{
VB.NET

Dim regEx As Regex = New Regex("Code/(.*)", RegexOptions.IgnoreCase)
Dim match As Match = regEx.Match (context.Request.Path)

' There is a match, which means

' the request is for code formatting
If match.Success Then

Then the URL of the current request is matched against a pattern that contains the code/ segment. If
the URL has such a token, this means that the requestor is trying to access a code file.

74

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

C#

VB.NET

// Code file holds the code file name
string codeFile = "";

// Split the path based on the /
string[] tokens = context.Request.Path.Split(new char([] {'/'});
if (tokens.Length <= 0)

return;

// Grab the code file name which should be
// the item before the last one
codeFile = tokens[tokens.Length-2];

// Get the physical path to the code file
string pathtoCodeFile =
context.Request.PhysicalPath.Replace (@"Code\", "");

// Remove the \ from the end of the file name
pathtoCodeFile =
pathtoCodeFile.Substring (0, pathtoCodeFile.Length - 1);

' Code file holds the code file name
Dim codeFile As String = ""

' Split the path based on the /
Dim tokens As String() = context.Request.Path.Split(New Char() {"/"c})
If tokens.Length <= 0 Then

Return
End If

' Grab the code file name which should be
' the item before the last one
codeFile = tokens(tokens.Length - 2)

' Get the physical path to the code file
Dim pathtoCodeFile As String = _
context.Request.PhysicalPath.Replace("Code\", "")

' Remove the \ from the end of the file name
pathtoCodeFile = pathtoCodeFile.Substring (0, pathtoCodeFile.Length - 1)

The code file name is extracted from the URL, and the Code/ segment is removed from the URL, since
this is a virtual token and does not exist in the application. It is only used to distinguish requests for
normal resources and requests for code files. After that, the physical path of the code file is retrieved.

C#

// If the file exists, read it and display it
if (!File.Exists(pathtoCodeFile))

{

// Inform the user that the file doesn't exist

75

Chapter 2: IS 7.0 and ASP.NET Integrated Mode

context.Response.Write("File doesn't exist!");

// End the request
context.Response.End() ;

// Read the contents of the file
string fileContent = File.ReadAllText (pathtoCodeFile) ;

// Set the response to
context.Response.ContentType = "text/html";

// Write the formatted code
context.Response.Write ("<pre>") ;
context.Response.Write (fileContent) ;
context.Response.Write("</pre>");

// End the request
context.Response.End() ;

VB.NET

' If the file exists, read it and display it

If (Not File.Exists(pathtoCodeFile)) Then
' Inform the user that the file doesn't exist
context.Response.Write("File doesn't exist!")

' End the request
context .Response.End ()
End If

' Read the contents of the file
Dim fileContent As String = File.ReadAllText (pathtoCodeFile)

' Set the response to
context.Response.ContentType = "text/html"

' Wite the formatted code
context.Response.Write("<pre>")
context.Response.Write (fileContent)
context.Response.Write("</pre>")

' End the request
context.Response.End()

If the file exists, the content of the file is read into a string, the response’s content type is set to text/html,
and then a pre tag is inserted into the response stream, followed by the content of the code file, and

finally a closing pre tag.

Figure 2-8 shows the result of accessing a code file in an application.

76

Chapter 2: IIS 7.0 and ASP.NET Integrated Mode

B hat B - e e [—
@O + |] mipcsocaingst Coder crmatterModule Code Default.avp c1f +[49] % [tive Searnch B~
& . odul:. | fis B - o leee s Bigeh e

Done S @ Inbemel | Prolectad Mode. OF Rwoes -

Figure 2-8

Figure 2-8 shows the content of the Default.aspx.cs code file displayed as normal text.

Installing a Managed Module

Now that the module is developed, there are two ways of installing it. One of the ways is to go to the
IIS 7.0 Manager tool and install the module as a managed one that can be applied to any application
hosted on the web server. The other way is to just add an entry to the <modules> section of the <system
.webServer> configuration section group inside the application’s web . config configuration file.

<system.webServer>

<modules>

<!-- Add the CodeFormatterModule -->

<add name="CodeFormatterModule" type="CodeFormatterModule" />
</modules>

</system.webServer>

As mentioned previously, if the module is to be executed for any application hosted on the IIS 7.0 web
server, it is recommended to install it at the web server level. The details of installing it at the web server
level are out of the scope of this chapter. (See the reference to the book mentioned earlier for details
about IIS 7.0 and ASP.NET Integrated mode.)

Summary

In this chapter you were introduced to the new IIS 7.0 Integrated mode of execution. The new mode
unifies the request-processing pipeline between IIS 7.0 infrastructure and ASPNET runtime, thus lever-
aging ASP.NET from a framework to develop web applications to a framework to extend IIS 7.0 runtime.

7

Chapter 2: IS 7.0 and ASP.NET Integrated Mode

78

While upgrading an ASPNET application from previous versions of IIS to host it under IIS 7.0 Integrated
mode, it is essential to consider several sections within the application’s web . config configuration file to
get rid of the inconsistencies and abide by the new rules. Some of the new rules are as follows:

1 httpModules section: It is recommended to remove this section from the <system.web />
configuration section group file of the application’s web. config configuration file and place its
entries inside the <modules /> configuration section of the <system.webServer /> configu-
ration section group. Only modules defined inside the <modules> section will take effect and
execute. Every managed module defined can be configured to run for either all resources or
just ASP.NET resources.

O httpHandlers section: The httpHandlers section should also be removed from the <system
.web /> configuration section group of the application’s web. config configuration file, with its
entries placed inside the <modules /> configuration section inside the <system.webServer />
configuration section group. What is important about configuring a handler is that there is no
need to use the IIS 7.0 Manager tool to map a content file extension to a specific handler in an
application; only a single configuration entry is required and that’s it!

0 identity section: Impersonation is not allowed during the early stages of a request processing
and that is why an application should either turn off impersonation or upgrade the application
and make it run under the Classic mode. Impersonation could be kept on and at the same time
set the value of the validateIntegratedModeConfiguration attribute on the validation sec-
tion to false that is located inside the <modules /> configuration section inside the <system
.webServer /> configuration section group.

The main point to keep in mind about the new Integrated mode is the extensibility IIS 7.0 offers for
ASP.NET developers. IIS 7.0 HTTP request processing integrates itself with ASPNET to form a unified
request-processing pipeline. Both IIS 7.0 and ASP.NET respond to the same events at the same time and
IIS decides on the native and managed modules to run and execute.

The unified request-processing pipeline gives ASPNET services and modules the ability to handle and
process any resource and not just ASPNET resources. You can now enable FormsAuthentication mod-
ule to protect images, . php, .html, .asp resources, etc. in an application without having to do any work-
around to make this happen. Moreover, you can now develop ASPNET Ht tpModules and Ht tpHandlers,
configure them through the application’s web . config configuration file, and let them take part of the
request processing without having to do any configuration settings using the IIS 7.0 Manager tool.

The next chapter continues this discussion to explore the security context of a request when it is pro-
cessed inside the unified IIS 7.0 Integrated mode. The discussion is focused on the authentication and
authorization events that get fired through the life cycle of the unified request-processing pipeline. In
addition, the new IUSR built-in user and IIS_IUSRS built-in group will be explained in detail, showing
their advantages and portability when deploying applications.

HTTP Request Processing in
11S 7.0 Integrated Model

The previous chapter discussed the architecture of the new IIS 7.0 integrated mode in detail. This
chapter starts by introducing the advantages, the new TUSR built-in account and 1IS_IUSRS built-in
group, replacing the old TUSR_MACHINENAME user account and IIS_WPG group. The chapter contin-
ues to describe security-related processing that occurs each time the unified request-processing pipe-
line processes a request. A combination of the application’s configuration in IIS and the ASP.NET
configuration for the application determines the security context that is initialized for each request.

Once a request enters IIS 7.0, the first defense gate takes control to validate the request before
starting the unified request-processing pipeline. Once accepted, the unified pipeline starts pro-
cessing and handling the request. The added value of the new IIS 7.0 integrated mode is that IIS
and ASP.NET both subscribe to the same events fired during the processing of the request.

After a request is running through the unified pipeline, the authentication and authorization
options that have been configured for the application take affect. If a request passes authentica-
tion and authorization checks, there is still one last hurdle to clear; the Ht tpHandler that is
assigned to process the request, in case the request is an ASPNET resource.

In this chapter, you will learn about:

The new IUSR built-in account and I1S_IUSRS built-in group.

How the security identity of a request is constructed during the unified processing.
Security issues around the ASP.NET asynchronous programming model.
Authentication steps that occur in the HTTP pipeline.

Authorization processing in the HTTP pipeline.

U U UJ0o0o

How the new IIS native filtering module controls access to files.

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

80

uilt-in IUSR Account and IIS_IUSRS Group

Before going on to start analyzing the security context of requests while they take the journey through
the IIS 7.0 and ASP.NET unified request-processing pipeline, it is important to give an overview on the
new IUSR account and IIS_USRS group.

IIS 7.0 introduces a new built-in account TUSR and a built-in group I1S_IUSRS. The IUSR account
replaces the old TUSR_MachineName account that was used previously by the IIS 6.0 web server. The new
account is a built-in account, which means its password never expires and hence this improves deploy-
ment by not having to worry about password differences between the local 1I5_TUSR MachineName
account and the remote user account.

Another benefit of the new TUSR account is when you set access control lists (ACLs) for the TUSR account
folders inside your application, there is no need to worry about copying these ACLs from your local
machine to the remote web server machine. The reason lies behind the fact that the operating system
creates unique security identifiers (SIDs) for every account created in Windows, and ACLs are applied
on the SID of the account and not anything else. This means when you apply ACLs locally on the TUSrR
for a folder in your application, those ACLs will be copied with the folder when moved from the local
server to the remote web server and the same ACLs will take effect, since all Windows machines that
have IIS 7.0, whether the client IIS 7.0 or server IIS 7.0, share the same SID for the TUSR account.

An important feature to mention about the new TUSR account is that it acts anonymously on the net-
work. This means when you try to access resources located somewhere on the network from inside your
application, you need to impersonate some other account that the network recognizes as a machine user
account that can authenticate against it. One could use the NT AUTHORITY\NETWORK SERVICE account
that acts as a machine account and can be authenticated. This limitation on the TUSR account has been
done as a security precaution so as not to elevate the privileges of the TUSR account.

On the other hand, the 115_IUSRS group replaces the old 115_wpG group. This group has been granted
the necessary permissions on all necessary files and resources so that when an account is attached to
this group, it can act as a normal application pool worker process identity without the need for any
additional action.

Whatever applies on the TUSR account regarding setting of the ACL applies also to the IIS_IUSRS
group. If you apply ACLs to this group on your files and folders and then move your application from
your local web server to the remote one, the same ACLs are also copied. This is due to the fact that Win-
dows operating system applies ACLs based on the SID of the group or user account.

Moreover, when IIS 7.0 starts a new worker process, it usually passes a token that is going to be used as
the identity of the worker process.

<applicationPools>
<applicationPoolDefaults>
<processModel identityType="NetworkService" />
</applicationPoolDefaults>
</applicationPools>

In IIS 7.0, the default identity that the application pool uses is the NT AUTHORITY\NETWORK SERVICE
and this has been configured in the <applicationPools /> section group inside the ApplicationHost
.config configuration file.

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

The good news is that if you configure the application pool to run with a custom user account, no mat-
ter what the account is, IIS 7.0 infrastructure automatically adds at run time the worker process token
or identity, no matter what the account is, to the I1S_I1USRS group and hence there is no need to worry
about giving the worker process identity account the necessary privileges to function properly.

Integrated Mode Per-Request Security

It has been previously mentioned how the request-processing pipeline gets unified when an ASPNET
application is running in the IIS 7.0 integrated mode. It is clear how the duplication of effort has been
eliminated since both ASP.NET and IIS 7.0 now share the same request-processing pipeline.

The unified pipeline indicates that at every stage in the pipeline, IIS and ASPNET modules subscribe

to the same event and hence they run side by side. IIS runtime will check the configured modules and
executes them according to their order of listing inside the <modules /> configuration section with
some exceptions. The native modules have the capability to change the order programmatically, which
is the case with the native AnonymousAuthenticationModule. This module always runs at the end of
the authentication event fired by the pipeline no matter what other authentication modules are enabled.
As you will see later, this proves why the managed WindowsAuthenticationModule does not fire its
Authenticate event since AnonymousAuthenticationModule, when enabled, fires after the managed
WindowsAuthenticationModule.

The configured modules for a specific pipeline event could include both native and managed modules.
For instance, the FormsAuthenticationModule has been integrated into the authentication modules
in IIS. This allows you now to enable this module for your application from inside the IIS Manager tool.
When the managed FormsAuthenticationModule is enabled, no other native authentication module
can be enabled at the same time except that of the AnonymousAuthenticationModule. Therefore,
while an application is running in the integrated mode, IIS can execute only a single authentication
module at once with the exception of the AnonymousAuthenticationModule that gets executed after
all configured authentication modules have been executed.

This is quite different from what has been happening in the pre-releases of IIS 7.0. In IIS 6.0, for exam-
ple, the request has to pass first through the IIS request-processing pipeline. After it has been handed
off to the ASPNET ISAPI extension, another processing pipeline starts, this time in the boundaries of
the .NET Framework.

From an ASP.NET perspective, the security choices in IIS boil down to the following:
QO Does the ASP.NET application require a windowsPrincipal for each user that authenticates

with the website?

0 Will ASP.NET handle authentication using forms-based authentication, or some other custom
authentication strategy?

0 Will the ASP.NET site run from a remote file share, that is, a share defined with a Universal
Naming Convention (UNC) name? This question is related to the previous two considerations
because using a UNC share is primarily a deployment decision, but one that does have ramifica-
tions for security.

81

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

From a technical perspective, when IIS 7.0 starts a new worker process to initiate the execution of the
request, it passes a token to the worker process. Usually, it is the NT AUTHORITY\NETWORK SERVICE
token that is configured in the ApplicationHost.config configuration file as mentioned previously.
Once the worker process is initiated, if the application is an ASPNET application, a list of Application
Domains called the application domain pool is checked to see if the application targeted has an active
application domain to load. If there is no active application domain for the current application, a new
application domain is created and then the CLR is loaded inside the new application domain. After that
the unified request-processing pipeline starts execution, the different events start firing, and the differ-
ent modules start executing according to the events they have already been registered for. Both IIS 7.0
and ASP.NET subscribe to the same events and hence IIS 7.0 and ASPNET processing for the same
event happens at the same time.

In IIS 7.0, the following directory security options are available:

0 Authenticated access using Windows Security (either NTLM- or Kerberos-based), Basic Authen-
tication, Digest Authentication

Q Authenticated access using certificate mapping

0 Anonymous access

The first two security configurations result in a security token that represents a specific user from either
the local machine’s security database or a domain. The token returned varies from request to request,
depending on which user is currently making a request to IIS. The last option also results in a security
token representing a specific user; however, on every request made to IIS, the same security token is
returned because IIS uses a fixed identity to represent an anonymous user, which is the TUSR account by
default. However, it can be any other user account or even the account configured on the worker process.

When a new request enters the unified request-processing pipeline and the stage where authentication
should take place is reached, a check is done on both the authentication type the application is config-
ured to run with (Forms, Windows, and None) and the authentication modules enabled on IIS.

In determining the authenticated identity of a request, IIS takes the following considerations:

Q If a username/password is configured at the application or virtual directory level, it is used
as the identity of the current request, which is the impersonation token. To configure a fixed
account on an application or virtual directory, do the following:

1. Open theIIS 7.0 Manager tool.

2. Select the specific application or virtual directory.
3. Click on Advanced Settings.

4. Edit the Physical Path Credentials field.

Q Figure 3-1 shows the window used to configure a fixed user for the anonymous identity on an
application or virtual directory.

Q The figure shows the window that is used to configure a specific user account on the application
or virtual directory. On the other hand, you can select not to impersonate the access to the appli-
cation or virtual directory to any user account, instead using the impersonation token generated
later on by the IIS runtime.

82

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

Advanced Settings 7=
= (General)
Physical Path CAinetpubywwwroot\379301_code\379301 ch03_cod
Physical Path Credentials
Physical Path Credentials Logon Type ClearText
Virtual Path /Securityldentities
= Behavior
Application Pool DefaultAppPool
 Connect As 7S
Path credentials:
() Specific user
| N Set,
L] S
@ Application user (pass-through authentication)
Physical Path Credentials
[username, password] Credentials for the user identity that should be impersonated when accessing
the physical path for the virtual directory.
Figure 3-1

If the application or virtual directory is not configured with fixed user credentials, IIS checks
the type of authentication enabled on the application, whether it is Windows, Basic, Digest, or
anonymous authentication. If the AnonymousAuthenticationModule is enabled, it will auto-
matically rule over all the other enabled native authentication modules and no negotiation hap-
pens between IIS and the user. The issue is different when authorization rules are set on the
application. At this time, IIS postpones the execution of the AnonymousAuthenticationModule
to the end of the authentication stage of the unified request-processing pipeline. However, if the
AnonymousAuthenticationModule is disabled and any other native authentication module is
enabled, IIS would request a username/password to authenticate the request. If the request is
authenticated successfully, an impersonation token is generated and stored by IIS to be accessed
later by the managed WindowsAuthenticationModule, in the case that the ASP.NET applica-
tion is running in the IIS 7.0 classic mode. However, if the application is running in IIS 7.0 inte-
grated mode and a user has been authenticated, the native authentication module sets the value
of the native User principal, and then the integrated request processing pipeline proxies that
native User principal to managed code automatically. In other words, if a native authentication
module sets the value of the native User principal, it gets brought over to ASP.NET as the
HttpContext.Current.User. In addition, IIS sets the value of the server variable LOGON_USER
to the username that was used in the authentication process. This is done for both modes of
processing in IIS 7.0: Classic and Integrated.

However, if IIS finds out that all the native authentication modules are disabled, not mentioning
the AnonymousaAuthenticationModule, the impersonation token generated is that of the default
identity assigned for the native AnonymousAuthenticationModule or any custom identity, and
there will be no value set for the managed Ht tpContext.Current.User property when the

83

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

application is running in the IIS 7.0 Integrated mode. This implies that the managed windows
AuthenticationModule will not fire its Authenticate event. You will see why in much more
detail when you reach the section on the managed windowsAuthenticationModule later in the
chapter.

Q On the other hand, if an impersonation token is generated by IIS runtime and the ASP.NET appli-
cation is configured to run under IIS 7.0 classic mode, the managed WindowsAuthentication
Module grabs the impersonation token from IIS and generates the WindowsPrincipal object and
sets the value of the User property on the Ht tpContext class, all based on the received imperson-
ation token. Finally it triggers its Authenticate event. In the case of an application running in
IIS 7.0 Integrated mode, the managed WindowsAuthenticationModule ignores the imperson-
ation token set by IIS 7.0 and simply extracts a WindowsPrincipal instance from the Http
Context.Current.User and creates a new instance of the WindowsIdentity class based on the
Identity property located at the WindowsPrincipal class extracted from the HttpContext
.Current.User property. The module then decides if there is a valid WwindowsIdentity
instance (i.e. the request is not anonymous and authentication took place inside a native mod-
ule), and triggers its Authenticate event; otherwise, the Authenticate event will not get a
chance to be fired. As mentioned above, when IIS 7.0 detects that the ASP.NET application is run-
ning in IIS 7.0 Integrated mode, the integrated request-processing pipeline automatically maps the
authenticated user represented by a native User principal, if any, to the Ht tpContext .Current
.User property to be accessible by the managed WindowsAuthenticationModule. Thus, you
can conclude that you can simply remove the managed WwindowsAuthenticationModule and
the Ht tpContext . Current . User will always be set in case authentication took place inside
IIS 7.0’s native authentication modules.

Q At this stage, if the AnonymousAuthenticationModule is enabled, it executes. After its
execution, the impersonation token is generated based on the identity set on the Anonymous
AuthenticationModule. In addition, if the application is running inside IIS 7.0 Integrated
mode, the Ht tpContext.Current.User’s value is set to a dummy instance of the Windows
Principal class with its Identity.Name property set to an empty string.

Q At the end of the authentication stage, IIS gets the value of the impersonation token generated
by either a native authentication module, in case the AnonymousAuthenticationModule is
disabled, or by the AnonymousAuthenticationModule in case it is enabled. The value of the
impersonation token is stored by IIS so that it can be accessed later. Moreover, if the application
is running under the IIS 7.0 Integrated mode, at the end of the authentication stage, the Http
Context.Current.User’s value would also have been set to a complete WindowsPrincipal
instance if the native AnonymousAuthenticationModule was disabled, and it gets set to a
dummy instance of the WindowsPrincipal class with its Identity.Name property set to an
empty string if the native AnonymousAuthenticationModule was enabled and got executed.

Q If there is no authenticated user, this is the case when the native AnonymousAuthentication-
Module is enabled with or without the managed FormsAuthenticationModule. ASP.NET auto-
matically handles the authentication of the request with the managed Formsauthentication
Module if enabled. Regardless of the user account configured for the AnonymousAuthentication
Module, IIS will use the identity of the worker process as the impersonation token, which is by
default the NT AUTHORITY\NETWORK SERVICE. If the request is successfully authenticated, IIS
stores the username used in the authentication process into the server variable LOGON_USER.

Usually, the enabled configured native module executes within the boundaries of the web server core

engine, and any enabled managed authentication module is handed off to ASPNET runtime to process.
Just because an impersonation token might be generated by IIS 7.0 or the Ht tpContext .Current .User’s

84

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

value might be set by the integrated-request processing pipeline and is available to ASP.NET does not
mean that the same security credentials will be used by ASP.NET. Instead, the security context for each
request is dependent on the following settings and information:

The identity of the operating system thread

The request authenticated identity from IIS

The value of the impersonate attribute in the <identity /> configuration element

The value of the username and password attributes in the <identity /> configuration element

U U0 0o

Whether the mode attribute of the <authentication /> configuration element has been set to
Windows

Before diving into how these settings interact with each other, an understanding of the Anonymousau-
thenticationModule is required, as well as a review of where security information can be stored.

O Native AnonymousAuthentication Module

This module is configured with the new built-in TUSR account. This can be configured in both the
ApplicationHost.config configuration file and the <system.webServer /> configuration section
group of the application’s web. config configuration file.

<anonymousAuthentication enabled="true" userName="IUSR" />

You are given the choice to set the anonymous user account to the same identity used by the worker
process inside an application pool that is the NT AUTHORITY\NETWORK SERVICE account. To change
the default user, right-click the Anonymous Authentication method listed in the Authentication section.
Figure 3-2 shows the window that you can use to edit the identity assigned to the module.

[Thtnmmet NIGrmaLoh Services (1G] MARAGe! TS
G0 (7 numar « wetan » DledWibSae b Sekdmitn § W

Fie Virw Heg

1 -
‘) Authentication

a g0 Delaull Web Silr
] ¥L_tade
1 apet,_cilent
b Amne Necuntylaentitiel
¥ dmnc_Securityidentities ve
3 daynePages

Group by He Graugng 2] —

Resgonie Trpe

D Aememager o

¥ anmeragetasia

¥ anmePagelaiks e
¥ Bauchitpmodule
& £

F Umployeerandier b
¥ FomesiwinFermy

¥ Foicestwiskarm vt AnGIymGus uses dentity.
¥ msmg
*3 o i Spectic user:
P MatmeUtauthoration = o —
¥ Natwelriatharaation vt s T

¥ Pontautmentesteneguest
B rousimentxnekeqon b
¥ ReportiisQLios
¥ NeportSerneriSOLI0es
¥ Requestiinenngsangle
¥ RequestFinenngsample v
P LamplelSma T AL N L
¥ SampleMiadieTurlisingAsphlettiotin

Application past idsntay

3 tuatienen
¥ Tiatlereh vl
3 Uautnsization

& vy sation N
Lalutgion & Features Virm | (.5 Canbent View

c “Detauit Web e config a5

Figure 3-2

85

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

86

You can assign the Application Pool Identity as the identity of the anonymous user. In addition, you can
click the Set... button and a small window pops up allowing you to specify a Windows account of your
choice to use as the anonymous user identity.

When the Application Pool Identity account is selected, you will notice the following change in the
application’s web. config configuration file:

<anonymousAuthentication enabled="true" userName="" />

However, if you have chosen to set the anonymous user identity to another Windows account of choice,
the following would appear in the application’s web . config configuration file:

<anonymousAuthentication enabled="true" userName="test" password="test" />

As you can see, both the userName and password attributes have been set to the custom user account
that you have specified.

It is important to mention that the native AnonymousAuthenticationModule runs during the authen-
tication stage of the unified request-processing pipeline, and it is the last module to run in this stage.
This is the programmatic reordering that was mentioned before when it comes to running different
modules, managed and native, at the same stage of the pipeline. It is true that IIS runs the modules
according to the order of appearance in the <modules /> section with the exception of programmatic
ordering that only native modules have the right to make use of. In addition, if the AnonymousAuthen-
ticationModule is enabled, regardless of the other native authentication modules, the request will be
considered anonymous and none of the native authentication modules would run.

Remember that the AnonymousAuthenticationModule is executed by the IIS core engine at the end
of the authentication stage after all other authentication modules, native or managed, have executed.

Here are some scenarios on how the native AnonymousAuthenticationModule works:

Q When the native AnonymousAuthenticationModule is enabled, it rules over all other native
authentication modules. For this scenario, assume the managed FormsAuthenticationModule
is disabled, the ASP.NET application is configured with Windows authentication, and all other
native authentication modules are disabled. Hence, an impersonation token is generated based
on the user identity assigned for the AnonymousAuthenticationModule, which is by default
the TUSR account. In addition, if IIS 7.0 detects that the application is running under the Inte-
grated mode, the HttpContext.Current.User property is set to a dummy instance of the
WindowsPrincipal class.

Q If the native AnonymousAuthenticationModule is enabled and any other native authentica-
tion is also enabled, such as the Basic or Windows authentication modules, nothing changed to
what has been mentioned above. IIS 7.0 knows that the native AnonymousAuthentication-
Module is enabled and does not request any username/password from the user.

Q In this last case, if the native AnonymousAuthenticationModule is enabled and the managed
FormsAuthenticationModule is also enabled, the FormsAuthenticationModule will check
if there is a valid user on the HttpContext .Current.User property. If not, it creates a new
GenericPrincipal instance and assigns it to the HttpContext.Current.User property, along

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

with other tasks you will learn more about in Chapter 6, “Forms Authentication.” The native
AnonymousAuthenticationModule would still generate the impersonation token based on the
default identity assigned for the module itself or any other custom identity.

Where Is the Security Identity for a Request?

In reality, no single location in ASPNET defines the identity for a request. This is a case where the dif-
ferences between the older Win32-oriented programming model and the managed world sort of collide.

Before the .NET Framework was implemented, the question of security identity always rested with

the currently executing operating system thread. An operating system thread always has a security
token associated with it representing either a local (potentially a built-in identity) or a domain account.
Win32 programmers have always had the ability to create new security tokens and use these to change
the security context of an operating system thread. This behavior includes reverting the identity of a
thread and explicitly impersonating a security identity.

With the introduction of the NET Framework, a managed representation of a thread is available from
the System.Threading. Thread class. The Thread class has a CurrentPrincipal property that repre-
sents the security identity of the managed thread. It is entirely possible for the security identity of the
operating system thread (obtainable by calling System.Security.Principal.WindowsIdentity
.GetCurrent ()) to differ in type and in value from the managed Iprincipal reference available
from an instance of Thread.CurrentPrincipal.

As if that was not complicated enough, ASPNET introduced the concept of an Ht tpContext associ-
ated with each request flowing through ASP.NET. The HttpContext instance for a request has a User
property that also contains a reference to an Iprincipal implementation. This additional reference to
a security identity opened up the possibility of having a third set of security credentials available to a
developer that differed from the information associated with the operating system thread and the man-
aged thread.

To demonstrate, the following example is a simple application that displays three different identities.
The sample code stores the operating system’s security identity and the managed thread identity as
they exist during the Application_BeginRequest event, and when a page is running. The value for
the User property on the Ht tpContext is also stored.

The initial identity information is collected in a managed SecurityIdentitiesModule developed for
the sake of this demonstration:

C#

void context_BeginRequest (object sender, EventArgs e)
{
HttpContext current = HttpContext.Current;

current.Items["OperatingSystem ThreadIdentity_BeginRequest"] =
WindowsIdentity.GetCurrent () .Name;

87

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

if (String.IsNullOrEmpty (Thread.CurrentPrincipal.Identity.Name))

{
current.Items["ManagedThread_ThreadIdentity BeginRequest"] =
"[null or empty]";
current.Items["ManagedThread_IsGenericPrincipal"] =
(Thread.CurrentPrincipal is GenericPrincipal) ;
}
else
current.Items["ManagedThread_ThreadIdentity BeginRequest"] =
Thread.CurrentPrincipal.Identity.Name;
if (current.User == null)
current.Items["HttpContext_User_ BeginRequest"] = "[null]";
else

current.Items["HttpContext_User_ BeginRequest"] =
current .User.Identity.Name;

VB.NET

Private Sub context_BeginRequest (ByVal sender As Object, ByVal e As EventArgs)
Dim current As HttpContext = HttpContext.Current
current.Items ("OperatingSystem_ThreadIdentity BeginRequest")
= WindowsIdentity.GetCurrent () .Name ()

If String.IsNullOrEmpty (Thread.CurrentPrincipal.Identity.Name) Then
current.Items ("ManagedThread_ThreadIdentity BeginRequest")
= "[null or empty]"

current.Items ("ManagedThread_IsGenericPrincipal") = _
(TypeOf Thread.CurrentPrincipal Is GenericPrincipal)
Else
current.Items ("ManagedThread_ThreadIdentity_ BeginRequest")
Thread.CurrentPrincipal.Identity.Name ()

End If

If current.User Is Nothing Then
current.Items ("HttpContext_User_ BeginRequest") = "[null]"
Else
current.Items ("HttpContext_User_ BeginRequest")
current .User.Identity.Name ()
End If
End Sub

This code contains checks for null or empty strings because Application_BeginRequest occurs as
the first event in the integrated unified request-processing pipeline. As a result, neither IIS nor ASP.
NET has configured any security context for the current request. From the ASP.NET point of view, it has
not attempted to associate an IPrincipal with the current HttpContext. Additionally, ASP.NET has
not synchronized user information on the HttpContext to the current managed thread. The managed
thread principal is instead associated with an instance of a System.Security.Principal.Generic
Principal with a username set to the empty string. The value of the User property on the Ht tpContext
though is not even initialized, and returns a null value instead.

88

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

The values for this information are displayed in a page load event using the following code:

C#

using System;
using System.Security.Principal;
using System.Threading;

public partial class _Default : System.Web.UI.Page
{
protected void Page_Load(object sender, EventArgs e)
{
Response.Write("The OS thread identity during BeginRequest is: " +
Context.Items["OperatingSystem ThreadIdentity_BeginRequest"] + "
");

Response.Write ("The managed thread identity during BeginRequest is: " +
Context.Items["ManagedThread_ThreadIdentity BeginRequest"] + "
");

Response.Write("The managed thread identity during BeginRequest is " +
"a GenericPrincipal: " +
Context.Items["ManagedThread_IsGenericPrincipal"] + "
");

Response.Write("The user on the HttpContext during BeginRequest is: " +
Context.Items|["HttpContext User BeginRequest"] + "
");

Response.Write("<hr />");

Response.Write("The OS thread identity when the page executes is: " +
WindowsIdentity.GetCurrent () .Name + "
");

if (String.IsNullOrEmpty (Thread.CurrentPrincipal.Identity.Name))
Response.Write("The managed thread identity when" +
"the page executes is: " + "[null or empty]" + "
");
else
Response.Write ("The managed thread identity when the " +
"page executes is: " +
Thread.CurrentPrincipal.Identity.Name + "
");
Response.Write ("The managed thread identity is of type: " +
Thread.CurrentPrincipal .ToString () + "
");

if (String.IsNullOrEmpty (User.Identity.Name))
Response.Write("The user on the HttpContext when " +
"the page executes is: " + "[null or empty]" + "
");
else
Response.Write("The user on the HttpContext when the " +
"page executes is:" + User.Identity.Name + "
");

Response.Write("The user on the HttpContext is of type: " +
User.ToString() + "
");

Response.Write("The user on the HttpContext and the " +
"thread principal point at the same object: " +

89

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

20

(Thread.CurrentPrincipal == User) + "
");
Response.Write("The impersonation token set by IIS is: " +
Request.LogonUserIdentity.Name + "
");
}
}
VB.NET

Imports System
Imports System.Security.Principal
Imports System.Threading

Partial Public Class _Default
Inherits System.Web.UI.Page
Protected Sub Page_Load(ByVal sender As Object, _
ByVal e As System.EventArgs)
Handles Me.Load

Response.Write("The OS thread identity during BeginRequest is:
Context.Items ("OperatingSystem_ThreadIdentity BeginRequest")

"
")

Response.Write("The managed thread identity during BeginRequest is:
Context.Items ("ManagedThread_ ThreadIdentity BeginRequest")

"
")

&

Response.Write("The managed thread identity during BeginRequest is " & _

"a GenericPrincipal: " & _
Context.Items ("ManagedThread_IsGenericPrincipal") & _
"
")

Response.Write("The user on the HttpContext during BeginRequest is:

Context.Items ("HttpContext_ User_ BeginRequest") &
"
||)
Response.Write("<hr />")

Response.Write("The OS thread identity when the page executes is:

WindowsIdentity.GetCurrent () .Name & _
"
||)

If String.IsNullOrEmpty (Thread.CurrentPrincipal.Identity.Name) Then

Response.Write("The managed thread identity when the " &
"page executes is:" & "[null or empty]" &
"
")
Else
Response.Write("The managed thread identity when " & _
"the page executes is:" & _
Thread.CurrentPrincipal.Identity.Name & "
")
End If
Response.Write("The managed thread identity is of type: " &

If String.IsNullOrEmpty (User.Identity.Name) Then
Response.Write("The user on the HttpContext when " & _

Thread.CurrentPrincipal .ToString() & "
")

&

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

"the page executes is:" & "[null or empty]" & "
")

Else
Response.Write("The user on the HttpContext when the " & _
"page executes is: " & User.Identity.Name & "
")
End If
Response.Write("The user on the HttpContext is of type: " & _

CType (User,Object) .ToString() & "
")

Response.Write("The user on the HttpContext and the " & _
"thread principalpoint at the same object: " &
(Thread.CurrentPrincipal Is User) & "
")

Response.Write("The impersonation token set by IIS is: " & _
Request.LogonUserIdentity.Name & "
")

End Sub

End Class

The information is displayed running on an ASP.NET 3.5 application with the following characteristics:

Q The site is running locally on the web server (that is, not on a UNC share).

Q IIS has Anonymous Authentication and Windows Authentication modules enabled.
QO ASP.NET is using the default mode of windows for authentication.
Q

The <identity /> element’s impersonate attribute is set to false.
The page output is shown here:

The 0S thread identity during BeginRequest is: NT AUTHORITY\NETWORK SERVICE
The managed thread identity during BeginRequest is: [null or empty]

The managed thread identity during BeginRequest is a GenericPrincipal: True
The user on the HttpContext during BeginRequest is: [null]

The 0S thread identity when the page executes is: NT AUTHORITY\NETWORK SERVICE

The managed thread identity when the page executes is: [null or empty]

The managed thread identity is of type: System.Security.Principal.WindowsPrincipal
The user on the HttpContext when the page executes is: [null or empty]

The user on the HttpContext is of type: System.Security.Principal.WindowsPrincipal
The user on the HttpContext and the thread principal point at the same object: True

The operating system thread identity makes sense because this is the identity of the underlying IIS 7.0
worker process. The ASPNET runtime is not impersonating any identity, so the security context of the
thread is not reset by ASPNET. As mentioned earlier, during BeginRequest neither the HttpContext
nor the Thread object have had any security information explicitly set by ASP.NET.

The security information during page execution is a bit more interesting. The operating system

thread identity has not changed. However, the ITPrincipal associated with the current thread, and

the IPrincipal associated with Ht tpContext is a reference to a WindowsPrincipal. Furthermore,
the managed thread and HttpContext are referencing the same object instance. Clearly something
occurred after Application_BeginRequest that caused a WindowsPrincipal to come into the picture.
“Going back to the conditions under which the above code is running, it explains clearly what have been
mentioned before that in the case of an application running under the IIS 7.0 Integrated mode, the native

91

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

AnonymousAuthenticationModule is enabled, WindowsAuthenticationModule is enabled, and the
ASPNET application is configured to run with Windows authentication, the Ht tpContext . Current
.User 's value will be set to a dummy instance of a WindowsPrincipal class having its Identity.Name
property set to an empty string.”

At this point, the important thing to keep in mind is that before the AuthenticateRequest event in
the integrated request-processing pipeline occurs, neither the thread principal nor the User property of
HttpContext should be relied on for identifying the security identity for the current request. The oper-
ating system identity, though, has been established. However, this identity can be affected by a number
of factors, as you will see in the next section.

Establishing the Operating System Thread Identity

92

Both ASP.NET and IIS have a say in the identity of the underlying operating system thread that is used
for request processing. By default, the identity is set to that of the IIS 7.0 worker process: NT AUTHORITY\
NETWORK SERVICE. However, developers and administrators have the option to change the default
identity of the application pool by several ways, two of which follow:

Q The default identity of the application pool is set in the ApplicationHost.config configura-
tion file of the web server.

<applicationPools>
<applicationPoolDefaults>
<processModel identityType="NetworkService" />
</applicationPoolDefaults>
</applicationPools>

Q A developer or administrator can open the ApplicationHost.config configuration file, find
the <applicationPoolDefaults /> configuration section located inside the <application
Pools /> configuration section group and then change the identityType attribute of the
<processModel /> element.

0 Another way of changing the default identity associated with the application pool is by visiting
the IIS 7.0 Manager tool, clicking on the View Application Pools on the Actions menu on the
right, selecting the application pool you want to change its identity, and finally clicking on the
Advanced Settings. Figure 3-3 shows the Advanced Settings window used to configure
advanced options for an application pool.

In earlier versions of ASP.NET, determining the actual impersonation token set by the IIS core engine
was difficult because the technique involved some rather esoteric code. However, it is easy to get a ref-
erence to it in ASPNET 2.0 and 3.5. The following line of code gets a reference to the identity deter-
mined by IIS for the current request by its core engine:

WindowsIdentity wi = Request.LogonUserIdentity;

With this information, it is much simpler to see the IIS impersonation without the sometimes confus-
ing effects of other authentication and configuration settings. For example, with the sample application
used in the previous section (anonymous access allowed in IIS, Windows authentication enabled in
ASP.NET, no impersonation), some of the security information for a page request is:

The 0S thread identity during BeginRequest is: NT AUTHORITY\NETWORK SERVICE
The 0S thread identity when the page executes is: NT AUTHORITY\NETWORK SERVICE
The impersonation token set by IIS is: NT AUTHORITY\IUSR

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

Advanced Settings =
= (General) -
MET Framework Version v2.0 N
Enable 32-Bit Applications False
Managed Pipeline Mode Integrated
Name DefaultAppPoal
Queue Length 1000 =
Start Automatically True
= CPU
Limit o
Limit Action MoAcdtion .
Limit Interval (minutes) 5
Processor Affinity Enabled False
Processor Affinity Mask 4794967295
[Process Model
T ctvorkserce =
Identity SpecificUser Credentials
Idle Timeout [minutes) 20
Maximum Worker Processes 1
Ping Enabled True
Ping Maximum Response Time (se 90 i}
Identity
[identityType] Configures the application pool to run as a built-in account,
i.e. Network Service [recommended], Local System, Local Service, or as a
specific user identity.

Figure 3-3

As you can see, the authenticated identity determined by IIS for the current request is the default identity
of the anonymous authentication module. Recall that this application is running with the Anonymous
AuthenticationModule enabled, the default identity of the aforementioned module was not changed
and left with its default value. In addition, the application was not configured with a username or pass-
word hence the identity of the anonymous authentication module was used as the authenticated iden-
tity of the current request. Also notice that, even though the native windowsAuthenticationModule
was enabled, the AnonymousAuthenticationModule takes control over any other enabled native
authentication module.

The following table shows the various IIS security options and the resulting request authenticated iden-
tity set by IIS that can be accessed by ASPNET:

IIS Authentication Type Impersonation Token Generated

Windows, Basic, Digest, or Token corresponding to the authenticated (or mapped) browser user.

Certificate Mapping

Anonymous The default identity configured in IIS for anonymous authentication
module. If not changed, it is by default IUSR built-in.

Running on a UNC share The configured UNC identity. This identity is used regardless of the

with explicit credentials 1IS authentication type.

During the early stages of the request, enabling impersonation in an application running in the inte-
grated mode has no real effect up until the request is authenticated by both IIS and ASP.NET. The setting
of the impersonate attribute on the <identity /> element will affect the operating system thread

93

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

identity. Once the authentication stage is over and the page starts execution, ASP.NET will initialize the
identity of the operating system thread based on a combination of the settings in the <identity />
attribute and the request authenticated identity set by IIS core engine.

When an ASPNET application is configured to impersonate the authenticated user for the current
request, the impersonation usually has an effect through all the stages of the request-processing pipeline,
starting from the BeginRequest stage. However, with the IIS 7.0 Integrated mode, ASPNET modules can
now execute at early stages of the integrated request-processing pipeline. Therefore, impersonation is not
available for ASPNET applications running in the Integrated mode, only after the Authenticate
Request stage. If your ASPNET application makes use of impersonation in early stages of the request-
processing pipeline, the IIS team at Microsoft recommends moving the application into the IIS 7.0 Classic
mode. On the other hand, if you are not concerned with enabling impersonation for your application in
the early stages of the request-processing pipeline, then the application operates according to the rules
set by the IIS 7.0 Integrated mode. If the impersonate attribute of the <identity /> element is set to
true, then ASPNET will change the operating system thread’s identity using the request authenticated
identity set by IIS. However, if ASPNET does not explicitly set the thread token, the operating system
thread will run with the credentials configured for the worker process in IIS.

Continuing with previous sample, if the following configuration change is made to the application,
ASPNET explicitly impersonates using the IIS impersonation token:

<identity impersonate="true" />

The security information for the request changes to reflect the identity value of the impersonation token
set by IIS. (At this point the sample application is not requiring IIS to authenticate the browser user):

The 0S thread identity during BeginRequest is: NT AUTHORITY\NETWORK SERVICE
The OS thread identity when the page executes is: NT AUTHORITY\IUSR
The impersonation token set by IIS is: NT AUTHORITY\IUSR

An mentioned above, ASPNET impersonation does not have a real effect on the identity of the operating
system in the early stages of the integrated request processing pipeline; this is clear from the operating
system thread identity inside the BeginRequest event. However, once the authentication stage is over,
the impersonation effect is clear. ASP.NET sets the identity of the operating system thread to the imper-
sonation token set by IIS core engine.

Changing the settings in IIS to instead allow only native BasicAuthenticationModule causes IIS to
set the impersonation token to the identity of the authenticated user. Again, if you look back at the sec-
tion that talks about how IIS 7.0 determines the identity of the request, you will notice that the exact
same thing is happening. Because ASPNET impersonates this identity, the thread identity will reflect
the impersonation token:

The 0S thread identity during BeginRequest is: NT AUTHORITY\NETWORK SERVICE

The OS thread identity when the page executes is: bhaidar-PC\test
The impersonation token set by IIS is: bhaidar-PC\test

If the configuration for <identity /> includes an explicit value for the username and password attri-
butes then ASP.NET ignores the impersonation token set by IIS native modules, and ASP.NET instead

94

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

explicitly sets the operating system’s thread token based on the credentials in the <identity /> ele-
ment. For example, if the sample application is switched back to allow Anonymous access in IIS and
the configuration is changed to use the following:

<identity impersonate="true" userName="test" password="test"/>
Then the security information reflects the application impersonation identity:

The 0S thread identity during BeginRequest is: NT AUTHORITY\NETWORK SERVICE
The 0OS thread identity when the page executes is: bhaidar-PC\test
The impersonation token set by IIS is: bhaidar-PC\bhaidar

Notice that since Basic Authentication module is still the only native module configured in IIS, the
user gets authenticated with basic authentication and IIS generates the impersonation token based on the
username and password supplied by the user for the basic authentication. But since, ASPNET applica-
tion impersonates to a Windows account, it is clear that the operating system thread’s identity is set to
the same username configured for the <identity /> configuration section, inside the application’s
web . config configuration file, when the impersonation is enabled.

Prior to IIS 7.0, configuring application impersonation required that you manually edit the <identity />
section in the application’s web. config configuration file. However, with IIS 7.0 you have a visual inter-
face that allows you to edit the application impersonation, which is now known as ASP.NET imperson-
ation, from inside the IIS 7.0 Manager tool. To use IIS 7.0 Manager to configure ASPNET impersonation,
locate the ASP.NET application in the list of hosted sites inside IIS 7.0. Figure 3-4 shows the IIS 7.0 Man-
ager tool with an ASP.NET application selected.

@é [TF v BHAIDARPC » WrbSAr » Defaut Web Sr » Secukidenily &

G jsecurityldentity Home

T olltcemamth b - - E-

¥ Pagesecuity getnbm, Arce
¥ Pagesecuny o AR NET
¥ Pavmorarernat v 3 . — -
! \ e
i Porthuthenticatefequest te 0 I =) "v.: l
O T ney WET WETRofile NETRolei NETTont NETUsers e
¥ Repominglioon Compiistion Glabalzation Lewels. Edit Appleation
% ResorsenerssqLI0os [H sasic settings
S nequestfieringlampie — y = % -
¥ Requestfineringsample_ve =] i —s by Yl
¥ RequeeiSi Applcation Connetion Pegeiand Prowmders Sevdion Sate SAKTP Emal
O Requinis v Settings Strings Controk
5 satetronsessages
5 sampie s
B SancielmetiansingAiaNetl & | 2 =
B SamplelbaseTierUsingasphiets o= i] m L] (S
¥ Secuntytentities v A nenticng aumonsanen €6l Ovtwr Duectony
5% Secuntyisentity R] Document Browaing
_-: srastylrmming .
seteptnmning vb &l T - "ﬂ
¥ SensionstateForiatweRequets L E & e +
» 4 Sesnenueerornovehequeti (I | | Broefogts Fatd ongw dETiper sodue SILSMImES
4 ¥ Sessionitatelrust FequenTi. Mageing

SessionStateTrunt v
¥ smol emalamgle
¥ tmgsFemiEangie
b MERRing
¥ sstusinglts o
¥ trtem WebTern
3 Spstemwansener.
] teset
] testng
F Tnatleven
B Tsitenets b
B cagn
& uncton v

Figure 3-4

95

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

Double-click the selected Authentication icon and you will get a list of all authentication modules reg-
istered and installed by IIS 7.0. Figure 3-5 shows the available authentication modules for the ASPNET
application under study:

T =T
@ ©) [BHADARRC » WenSAe » Defedt Web S » Secubidemily & e
fle Yow Heo

| q Authentication

T alifermsdn < | =

¥ Fagesecuity Seeunhe) Ho Grovping

o Pagesecunny o Hame 3 Satus [——

* s Anorgmens dahertiabon Biabied
thuthenbeatedequts

L T e e —— ASAAT Impetiontlivn, i

- Svimnegorn R Autrntsc Onabiea WITR 403 Chasenge

- n»ammu;sqms [ngeut Authentication Dicatied HIT® 401 Chatienge

B nequeittinesingsampir Formt uthenteation Ditabled WFTP 307 LaginRediect

¥ Aequestfineringsanple e Winciewt Authericatasn Enassed TP 401 Cratengs

¥ Requinisss

S Nequisitt

4 ¥ safetmoressages
¥ sampie
¥ SanplebameTiensinghsphietss
¥ CampieLbsseTienUsingAsphetss
B Grcuntyisentitin e
b % Secuntyisentity
¥ seastyiimning
F secumyinmning v
¥ SessionStateForatweRequets
¥ SessnitatebortiateReguents |
F Sersionstatelnost
¥ SexsionStateTnat v
¥ smoel emalamgle
¥ SimpleFoimaEnangie v
b WERmingmi
¥ sstusinglts st
¥ trtem WebSerny
F sptemwinsaner e
] teset
] teitng
B Tnatleven
B Tsibenets b

Figure 3-5

In Figure 3-5 the ASPNET Impersonation icon is selected. This icon has been added to allow developers
and administrators to configure the <identity /> configuration section through the IIS 7.0 Manager tool
and is located explicitly within the authentication applet in IIS 7.0 Manager. Keep the ASPNET Imperson-
ation icon selected and click the Edit link from the Actions pane on the right-hand side. Figure 3-6 shows
the dialog box that pops up when you click this link.

Identity to impersonate:

@ Specific user:

test Set..,

() Authenticated user

Figure 3-6

This small dialog box is all you need to use to configure the ASPNET impersonation, whether you want
to configure client impersonation or application impersonation. As you can see, there are two main
radio buttons: Specific user and Authenticated user.

96

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

The Specific user option resembles what you already know as application impersonation. It is here that
you can explicitly specify a username and password to impersonate the authentication identity of the
request. Simply click on the Set button. Another dialog box appears that lets you enter a username,
password, and confirmation password.

On the other hand, the Authenticated user option simply impersonates the authentication identity of
the request to the impersonation token set by IIS 7.0. This option resembles client impersonation.

Throughout the previous samples, the sample application was running locally on the web server. If
instead the sample application is placed on a UNC share configured with explicit UNC credentials,
the only security identities used for the operating system thread are either the UNC credentials or the
application impersonation credentials. This is due in part because IIS always set the impersonation
token to the explicit UNC identity, regardless of whether or not the application in IIS is configured to
require some type of authentication with the browser.

When running the sample application on a UNC share without impersonation enabled, the security
information looks like:

The 0OS thread identity during BeginRequest is: bhaidar-PC\uncidentity
The 0S thread identity when the page executes is: bhaidar-PC\uncidentity
The impersonation token set by IIS is: bhaidar-PC\uncidentity

This highlights an important piece of ASP.NET security behavior. ASP.NET always ignores the true/
false state of the impersonate attribute when running on a UNC share. Instead, ASPNET will imper-
sonate the UNC identity. Running on a UNC share with client impersonation enabled (<identity
impersonate="true" />), the security information is exactly the same because of this behavior:

The 0S thread identity during BeginRequest is: bhaidar-PC\uncidentity
The 0S thread identity when the page executes is: bhaidar-PC\uncidentity
The impersonation token set by IIS is: bhaidar-PC\uncidentity

However, if application impersonation is configured for an application (that is, the username and
password attributes of the <identity /> element are set), then ASP.NET will ignore the imperson-
ation token set by IIS and will instead set the operating system thread identity to the values specified
in the <identity /> element. Notice in the following output that the UNC identity is only available
from the impersonation token set by IIS:

The OS thread identity during BeginRequest is: bhaidar-PC\test
The 0S thread identity when the page executes is: bhaidar-PC\test
The impersonation token set by IIS is: bhaidar-PC\uncidentity

To summarize all this information, the following table lists the combinations of the imperson-

ation token from IIS and operating system thread identities based on various configuration settings
when running on IIS 7.0 integrated mode. Remember that client impersonation means <identity
impersonate="true" />, whereas application impersonation means an explicit username and pass-
word were configured in the <identity /> element. In the following table, when running on a UNC
share is yes, this means that the application in IIS has an explicit set of UNC credentials configured for
accessing the share. As noted earlier, “officially” ASP.NET 3.5 is not supported running on a UNC share
that uses pass-through authentication.

97

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

On UNC IIS ASP.NET OS Thread IIS Impersonation
Share Authentication Impersonation Identity Token
No Anonymous None NETWORK IUSR
allowed SERVICE
No Anonymous Client TUSR IUSR
allowed
No Anonymous Application The application TUSR
allowed impersonation
credentials
No Authenticated None NETWORK The credentials of the
access required SERVICE browser user
No Authenticated Client The credentials of ~ The credentials of the
access required the browser user browser user
No Authenticated Application The application The credentials of the
access required impersonation browser user
credentials
Yes Anonymous None The configured The configured UNC
allowed UNC identity identity
Yes Anonymous Client The configured The configured UNC
allowed UNC identity identity
Yes Anonymous Application The application The configured UNC
allowed impersonation identity
credentials
Yes Authenticated None The configured The configured UNC
access required UNC identity identity
Yes Authenticated Client The configured The configured UNC
access required UNC identity identity
Yes Authenticated Application The application The configured UNC
access required impersonation identity
credentials

The Unified Processing Pipeline

In the new unified integrated mode of execution, both native and managed modules get the chance to
subscribe to the same events during the request-processing pipeline. The different stages of execution
are exposed to all the managed modules and hence, the new integrated mode can make heavy use of
the modules developed by ASPNET.

98

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

A request in IIS 7.0 integrated mode passes through the same set of events as that of the ASPNET pipe-
line events. As you know, the new integrated mode leverages ASP.NET to a framework to extend IIS 7.0
and hence, the ASP.NET pipeline will play a very important role from now on. Requests would pass
through the same old ASP.NET pipeline events, both native and managed modules would subscribe to
these events and hence, the expanded use of ASP.NET powers.

And now for a brief interlude to review the processing pipeline in ASP.NET 3.5: A basic understanding
of the pipeline is useful for knowing when authentication and authorization occur within the lifecycle
of the integrated request-processing pipeline.

Developers who have worked with the ASP.NET pipeline are usually familiar with the synchronous
events that can be hooked. ASP.NET 3.5 expands on the original pipeline provided by ASP.NET 2.0 by

adding three new events, which will be discussed shortly.

The current ASPNET 3.5 synchronous pipeline events are listed in the order that they occur as follows:

1. BeginRequest

2. AuthenticateRequest

3. PostAuthenticateRequest

4. AuthorizeRequest

5. PostAuthorizeRequest

6. ResolveRequestCache

7. PostResolveRequestCache

8. MapRequestHandler

o. PostMapRequestHandler
10. AcquireRequestState
11. PostAcquireRequestState
12 PreRequestHandlerExecute

At this stage, the selected handler executes the current request. The most familiar handler is the
Page handler.

13. PostRequestHandlerExecute
14. ReleaseRequestState

15. postReleaseRequestState
16. UpdateRequestCache

17. PostUpdateRequestCache
18. rogRequest

19. rpostLogRequest

20. EndRequest

99

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

ASPNET 3.5 adds three new stages to the unified integrated request-processing pipeline. These events
are only used when the integrated mode is configured:

1. MapRequestHandler : At this stage a handler is selected based on the content file type exten-
sion that is requested. Either a native module such as the StaticFileModule handler or a
managed module such as PageHandlerFactory can be selected

2. LogRequest: Fires just after the PostUpdateRequestCache event. Even if an error occurs in
the request processing, this even still fires. Both native and managed modules can subscribe to
this event.

3. PostLogRequest: This event fires just after LogRequest event fires.

The discussion will drill down to explain what happens during AuthenticateRequest,
PostAuthenticateRequest, and AuthorizeRequest in more detail shortly. Suffice it to say that
prior to the completion of AuthenticateRequest and PostAuthenticateRequest, only the operat-
ing system thread identity should be used. Other identities have not been completely initialized until
these two events complete.

For most developers, the operating system thread identity that is established prior to BeginRequest
remains stable for the duration of the entire pipeline. Similarly, after authentication has occurred during
AuthenticateRequest and PostAuthenticateRequest, the values of HttpContext .Current.User
as well as Thread.CurrentPrincipal remain constant for the remainder of the pipeline.

ASP.NET continues to support the ASPNET 2.0’s asynchronous processing in the pipeline as well.
After all, the core runtime of ASP.NET 3.5 is no different from ASP.NET 2.0, with some additional inte-
grated features such as ASPNET AJAX. For example, each of the synchronous events in the previous
list also has a corresponding asynchronous event that developers can hook. Asynchronous pipeline
processing makes it possible for developers to author long-running tasks without tying up ASPNET
worker threads. Instead, in ASPNET 3.5 developers can start long running tasks in a way that quickly
returns control to the current ASPNET 3.5 worker thread. Then at a later point the ASPNET runtime
will be notified of the completion of the asynchronous work, and a worker thread is scheduled to con-
tinue running the pipeline again.

Thread Identity and Asynchronous Pipeline Events

Because of the support for asynchronous processing in ASPNET 3.5, developers need to be cognizant of
the security values available at different phases of asynchronous processing. In general, asynchronous
pipeline events are handled in the following manner:

1. The developer subscribes to an asynchronous pipeline event in global . asax or with an
HttpModule. Subscribing involves supplying a Begin and an End event handler for the asyn-
chronous pipeline event.

2. ASP.NET runs the Begin event handler. The developer’s code within the Begin event handler
kicks off an asynchronous task and returns the TAsyncResult handle to ASP.NET.

3. The asynchronous work actually occurs on a framework thread pool thread. This is a critical
distinction, because when the actual work occurs, ASP.NET is not involved. No security infor-
mation from the ASP.NET world will be auto-magically initialized. As a result, it is the respon-
sibility of the developer to ensure that any required security identity information is explicitly
passed to the asynchronous task. Furthermore, if the asynchronous task expects to be running

100

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

under a specific identity, the task is responsible for impersonating prior to performing any work
as well as reverting impersonation when the work is completed.

4. Once the asynchronous work is done, the thread pool thread will call back to ASP.NET to notify
it that the work has completed.

5. Aspart of the callback processing, ASP.NET will call the developer’s End event handler. Nor-
mally in the End event handler, the developer uses the IAsyncResult handle from step 2 to
call EndInvoke and process the results.

6. ASP.NET starts up processing the page request again using a different ASP.NET worker thread.
Before ASP.NET resumes running the request, it reinitializes the ASP.NET worker thread to
ensure that the correct security context and security identities are being used.

To make this a bit clearer, let’s walk through a variation of the identity sample used earlier. The asyn-
chronous sample hooks the asynchronous version of PostauthenticateRequest with an HttpModule.
The reason behind subscribing to the PostAuthenticateRequest event is due to the breaking changes
introduced by IIS 7.0 regarding impersonation. If you had to subscribe to the BeginRequest event, you
would not have been able to see the effect of impersonation on the asynchronous pipeline events.

The module is registered as follows:

<modules>
<add name="AsyncEventModule" type="AsyncEventsModule" />
</modules>

The module’s Init method is where the asynchronous event registration actually occurs. Notice that
both a Begin and an End event handler are registered.

C#

using System;

using System.Collections;

using System.Data;

using System.Configuration;
using System.Security.Principal;
using System.Threading;

using System.Web;

using System.Web.Security;

public class AsyncEventsModule : IHttpModule

{
public AsyncEventsModule ()

{
}

#region IHttpModule Members
public void Dispose()
{
throw new Exception("The method or operation is not implemented.");

}

public void Init (HttpApplication context)
{

101

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

context.AddOnPostAuthenticateRequestAsync (

new BeginEventHandler (this.PostAuthenticateRequest_BeginEventHandler),

new EndEventHandler (this. PostAuthenticateRequest_EndEventHandler)
) B

#endregion

//Implementations of being and end event handlers shown later

VB.NET

Imports System

Imports System.Collections

Imports System.Data

Imports System.Configuration
Imports System.Security.Principal
Imports System.Threading

Imports System.Web

Imports System.Web.Security
Imports System.Web.UI

Imports System.Web.UI.WebControls
Imports System.Web.UI.WebControls.WebParts
Imports System.Web.UI.HtmlControls

Public Class AsyncEventsModule
Implements IHttpModule
Public Sub New()

End Sub

#Region "IHttpModule Members"

Public Sub Dispose() Implements IHttpModule.Dispose
End Sub

Public Sub Init(ByVal context As HttpApplication) Implements IHttpModule.Init

context .AddOnPostAuthenticateRequestAsync(_
New BeginEventHandler (_
AddressOf Me.PostAuthenticateRequest_BeginEventHandler),
New EndEventHandler (_
AddressOf Me.PostAuthenticateRequest_EndEventHandler))
End Sub

#End Region
'Implementations of being and end event handlers shown later

End Class

Within the same ASPNET application, there is a class called Sleep that will sleep for one second when
one of its methods is called. The s1leep class simulates a class that would perform some type of lengthy
work that is best executed in the background. The constructor for the sleep class accepts a reference to
an IDictionary. This will be used to initialize the S1leep class with a reference to the HttpContext’s
Items collection. Using the Items collection, an instance of the Sleep class can log the operating system
thread identity, both during asynchronous execution and after completion of asynchronous processing.

102

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

C#

using System.Collections;
using System.Security.Principal;
using System.Threading;

public class Sleep
{
private IDictionary state;

public Sleep(IDictionary appState)
{
state = appState;

public void DoWork ()
{
state["AsyncWorkerClass_OperatingSystemThreadIdentity"] =
WindowsIdentity.GetCurrent () .Name;
Thread.Sleep(1000) ;

public void StoreAsyncEndID()
{
state["AsyncWorkerClass_EndEvent_OperatingSystemThreadIdentity"] =
WindowsIdentity.GetCurrent () .Name;

VB.NET

Imports System

Imports System.Collections
Imports System.Security.Principal
Imports System.Threading

Public Class Sleep
Private state As IDictionary
Private aspnetThreadToken As IntPtr

Public Sub New(ByVal appState As IDictionary, ByVal token As IntPtr)
state = appState
End Sub
Public Sub DoWork ()
state ("AsyncWorkerClass_OperatingSystemThreadIdentity") =
WindowsIdentity.GetCurrent () .Name
Thread.Sleep(1000)
End Sub

Public Sub StoreAsyncEndID()

state ("AsyncWorkerClass_EndEvent_OperatingSystemThreadIdentity")
= WindowsIdentity.GetCurrent () .Name
End Sub

End Class

103

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

The Begin event handler for PostAuthenticateRequest will use a delegate to trigger an asyn-
chronous call to the Dowork method. The module defines a delegate that is used to wrap the Dowork
method on the Sleep class as follows:

C#

public delegate void AsyncSleepDelegate() ;

VB.NET
Public Delegate Sub AsyncSleepDelegate ()

For simplicity, the Begin and End pipeline event handlers are also implemented as part of the same
HttpModule. The Begin event handler (which follows), first obtains a reference to the Ht tpContext asso-
ciated with the current request by casting the sender parameter to an instance of Ht tpApplication. Using
the context, the module stores the operating system thread identity. Then the module creates an instance
of the class that will perform the actual asynchronous work. After wrapping the DoWork method with an
AsyncSleepDelegate, the module calls BeginInvoke. The code passes the AsyncCallback reference
supplied by ASPNET as one of the parameters to BeginInvoke. This is necessary because it is the ASPNET
runtime that is called back by the .NET Framework thread pool thread carrying out the asynchronous
work. Without hooking up the callback, there would be no way for the flow of execution to return back to
ASPNET after an asynchronous piece of work was completed. The second parameter passed to BeginIn-
voke is a reference to the very AsyncSleepDelegate being called. As a result, the delegate reference will
be available when asynchronous processing is completed and EndInvoke is called on the delegate.

The return value from any call made to a BeginInvoke method is a reference to an TAsyncResult.
The BeginInvoke method is auto-generated by the NET Framework to support asynchronous method
calls without developers needing to explicitly author asynchronous class definitions. Returning an
IasyncResult allows ASPNET to pass the reference back to the developer’s End event later on when
asynchronous processing is complete.

C#

private IAsyncResult PostAuthenticateRequest_BeginEventHandler (
object sender, EventArgs e, AsyncCallback cb, object extraData)
{
HttpApplication a = (HttpApplication)sender;
a.Context.Items["PostAuthenticateRequestAsync_OperatingSystemThreadID"] =
WindowsIdentity.GetCurrent () .Name;

Sleep s = new Sleep(a.Context.Items);
AsyncSleepDelegate asd = new AsyncSleepDelegate (s.DoWork) ;
IAsyncResult ar = asd.BeginInvoke (cb, asd);

return ar;

VB.NET

Private Function PostAuthenticateRequest_BeginEventHandler (_
ByVal sender As Object, _
ByVal e As EventArgs, _
ByVal cb As AsyncCallback, _

104

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

ByVal extraData As Object) As IAsyncResult

Dim a As HttpApplication = CType(sender, HttpApplication)
a.Context.Items ("PostAuthenticateRequestAsync_OperatingSystemThreadID") _
= WindowsIdentity.GetCurrent () .Name

'the Sleep class is now constructed with:
Dim s As New Sleep(a.Context.Items, WindowsIdentity.GetCurrent () .Token)

Dim asd As New AsyncSleepDelegate (AddressOf s.DoWork)
Dim ar As IAsyncResult = asd.BeginInvoke(cb, asd)

Return ar
End Function

When asynchronous work has completed, the NET Framework calls back to ASP.NET using the call-
back reference that was supplied earlier to the BeginInvoke call. As part of the callback processing,
ASP.NET calls the End event (which follows) that was registered, passing it the IasyncResult that was
returned from the BeginInvoke call. This allows the End event to cast the AsyncState property avail-
able from IAsyncResult back to a reference to the AsyncSleepbDelegate. The End event can now call
EndInvoke against the AsyncSleepDelegate to gather the results of the asynchronous processing. In
the sample application, there is no return value, but in practice any asynchronous processing would
probably return a reference to a query or some other set of results.

Because the End event now has a reference to the AsyncSleepbelegate, it can use the Target property
of the delegate to get back to the original instance of Sleep that was used. The End event then logs the
current operating system thread identity as it exists during the End event using the StoreAsyncEndID
method on the S1eep instance. At this point, having the Sleep instance log the thread identity is accept-
able because this method call is synchronous and thus executes on the same thread running the End
event handler.

C#

private void PostAuthenticateRequest_EndEventHandler (IAsyncResult ar)
{
AsyncSleepDelegate asd = (AsyncSleepDelegate)ar.AsyncState;
asd.EndInvoke (ar) ;

Sleep s = (Sleep)asd.Target;
s.StoreAsyncEndID() ;

VB.NET

Private Sub PostAuthenticateRequest_EndEventHandler (ByVal ar As IAsyncResult)
Dim asd As AsyncSleepDelegate = CType(ar.AsyncState, AsyncSleepDelegate)
asd.EndInvoke (ar)

Dim s As Sleep = CType(asd.Target, Sleep)
s.StoreAsyncEndID()

End Sub

105

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

You can run the sample with a variety of different settings for <identity /> inthe web.config con-
figuration file, as well as the directory security settings in IIS. Using the sample code earlier, the follow-
ing extra lines of code show the asynchronous identity information.

C#

Response.Write("The OS thread identity during " +
"PostAuthenticateRequest_BeginEventHandler is: " +
Context.Items|["PostAuthenticateRequestAsync_OperatingSystemThreadID"] +

"
");

Response.Write("The 0S thread identity during " +

"the actual async work is: " +
Context.Items["AsyncWorkerClass_OperatingSystemThreadIdentity"] +
"
");

Response.Write("The 0S thread identity during " +

"PostAuthenticateRequest_EndEventHandler is: " +
Context.Items["AsyncWorkerClass_EndEvent_OperatingSystemThreadIdentity"] +
|l
I|) ,,
VB.NET
Response.Write("The OS thread identity during " & _
"PostAuthenticateRequest_BeginEventHandler is: " & _
Context.Items ("PostAuthenticateAsync_OperatingSystemThreadID") & _
"
")

Response.Write("The OS thread identity during " &

"the actual async work is: " & _
Context.Items ("AsyncWorkerClass_OperatingSystemThreadIdentity") & _
"
n)

Response.Write("The 0S thread identity during " &

"PostAuthenticateRequest_EndEventHandler is: " & _
Context.Items ("AsyncWorkerClass_EndEvent_OperatingSystemThreadIdentity") & _
"
")

The following results show the identity information with Anonymous access allowed in IIS and the
<identity /> configured for application impersonation:

The 0S thread identity during BeginRequest is: NT AUTHORITY\NETWORK SERVICE
The 0S thread identity during PostAuthenticateRequest_BeginEventHandler is:
bhaidar-PC\test

The OS thread identity during the actual async work is: NT AUTHORITY\NETWORK
SERVICE

The OS thread identity during PostAuthenticateRequest_EndEventHandler is: NT
AUTHORITY\NETWORK SERVICE

The 0S thread identity when the page executes is: bhaidar-PC\test
The impersonation token from IIS is: NT AUTHORITY\IUSR

As you can see, the Begin event handler uses the default application pool identity NT AUTHORITY\
NETWORK SERVICE instead of the application impersonation account. As previously mentioned above,

106

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

when an ASP.NET application is running inside the IIS 7.0 Integrated mode, the application imperson-
ation has no effect before the AuthenticateRequest stage, where the request would have been authen-
ticated by both IIS 7.0 and ASPNET. However, remember from above that the code subscribed to the
PostAuthenticateRequest. At this stage the ASPNET application impersonation has an effect on the
operating system thread, which is clear from the output above where the operating system thread in the
PostAuthenticateRequest represents that of the ASPNET application impersonation.

However, during the asynchronous work in the sleep instance, a thread from the NET Framework
thread pool was used. Because the application is running in an IIS 7.0 worker process, the default identity
for any operating system threads is the identity of the worker process. In this case, the worker process is
using the default identity of NT AUTHORITY\NETWORK SERVICE. You can clearly see that the application
impersonation has no effect at all here and is regardless of the fact that the request is operating in the
PostAuthenticateRequest stage (Where application impersonation takes effect).

The End event handler also executes on a thread pool thread. As a result, the operating system thread
identity is also NT AUTHORITY\NETWORK SERVICE. Do notbe mixed up with the fact that the Begin
and End events were registered during the PostAuthenticateRequest stage. The asynchronous work
is done on a separate thread that the NET Framework has chosen from the thread pool, and hence the
application authentication has no effect on those threads located in the thread pool.

Because the work that occurs in the End event handler is usually limited to just retrieving the results
from the asynchronous call, the identity of the thread at this point should not be an issue. Note that just
from an architectural perspective, you should not be performing any “heavy” processing at this point.
The general assumption is that the End event handler is used for any last pieces of work after asynchro-
nous processing is completed.

This highlights the fact that if a developer depends on the thread identity during asynchronous work
(for example, a call is made to SQL Server using integrated security), the developer is responsible for
impersonating and reverting identities during the asynchronous call, regardless of whether the asyn-
chronous work is performed before or after PostAuthenticateRequest event and whether application
impersonation is enabled or not. Because you own the work of safely manipulating the thread identity
at this point, you may need to carefully wrap all work in a try/finally block to ensure that the thread
pool’s thread identity is always reset to its original state. Although some tricks can be used to marshal
an appropriate security token over to an asynchronous worker class, performing work that requires
specific credentials will always be a bit complicated.

For example, the sample intentionally used application impersonation to show that the application
impersonation identity is not available during asynchronous processing. If an application required this
identity to perform a piece of asynchronous work, you would need to first get a copy of the operating
system thread token in the Begin event (there is a Token property on WindowsIdentity), and then
pass the token to the asynchronous worker class. If the Sleep class is modified to accept a token in its
constructor, it can impersonate the necessary identity in the Dowork method when asynchronous work
is performed:

C#
//the Sleep class is now constructed with:

Sleep s = new Sleep(a.Context.Items,WindowsIdentity.GetCurrent () .Token) ;

public class Sleep
{

private IDictionary state;

107

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

private IntPtr aspnetThreadToken;

public Sleep(IDictionary appState, IntPtr token)
{

state = appState;

aspnetThreadToken = token;

public void DoWork ()
{

WindowsIdentity wi = new WindowsIdentity (aspnetThreadToken) ;
WindowsImpersonationContext wic = null;

try

{

wic = wi.Impersonate();

state["AsyncWorkerClass_OperatingSystemThreadIdentity"] =
WindowsIdentity.GetCurrent () .Name;
Thread.Sleep(1000) ;
}
finally
{
if (wic != null)
wic.Undo () ;

//StoreAsyncEndID snipped for brevity

VB.NET

'the Sleep class is now constructed with:
Dim s As New Sleep(a.Context.Items, WindowsIdentity.GetCurrent () .Token)

Public Class Sleep
Private state As IDictionary
Private aspnetThreadToken As IntPtr

Public Sub New(ByVal appState As IDictionary, ByVal token As IntPtr)
state = appState

aspnetThreadToken = token
End Sub

Public Sub DoWork ()
Dim wi As WindowsIdentity = Nothing
If aspnetThreadToken <> IntPtr.Zero Then

wi = New WindowsIdentity (aspnetThreadToken)
End If

Dim wic As WindowsImpersonationContext = Nothing
Try

108

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

If aspnetThreadToken <> IntPtr.Zero Then
wic = wi.Impersonate ()
End If

state ("AsyncWorkerClass_OperatingSystemThreadIdentity") _
= WindowsIdentity.GetCurrent () .Name

Thread.Sleep(1000)

Finally
If wic IsNot Nothing Then
wic.Undo ()
End If
End Try
End Sub

'StoreAsyncEndID snipped for brevity

End Class

The result of impersonating the identity during the asynchronous work shows that now the application
impersonation identity is available:

The 0S thread identity during BeginRequest_BeginEventHandler is: NT AUTHORITY\IUSR
The OS thread identity during the actual async work is: bhaidar-PC\testThe 0S
thread identity during BeginRequest_EndEventHandler is: NT AUTHORITY\NETWORK
SERVICE

Once again it is important to mention that the AsyncEventsModule has been updated to register for the
AddOnPostAuthenticateRequestAsync since only at this event can you see the effect of impersonat-
ing an ASP.NET application. Before the AuthenticateRegesut event occurs, the impersonation will
have no effect on the operating system thread. Moreover, if you plan to see the effect of the ASPNET
application impersonation during the processing and execution of asynchronous work, you should also
impersonate to retrieve the operating system thread identity, which in this case is also an impersonated
identity due to application impersonation and the location where the asynchronous work is registered
(the PostAuthenticateRequest stage).

Overall, the moral of the story here is that when planning for asynchronous pipeline events, the ques-
tion of the identity needed to carry out the background work needs to be considered early on. If using
the worker process identity is not an option, for simplicity using a fixed set of identity information that
can be loaded from configuration or encapsulated in a worker class may be a better choice than try-
ing to “hop” the ASPNET thread’s security identity over the wall to the asynchronous worker class.
Although the modifications shown earlier were pretty simple, the actual identity that is used will vary
depending on IIS and ASP.NET security settings. Trying to debug why a background task is failing
will be much more difficult if the task depends on an identity that can be easily changed with a few
misconfigurations.

Although it is not shown here, if the security information required by your asynchronous task is instead
justtheIPrincipalfronleﬁherHttpContext.Current.UserorThread.CurrentPrincipal,you
can pass the IPrincipal reference to your asynchronous worker class. In the case of Ht tpContext
.Current.User, it is even easier because you can just pass an Ht tpContext reference to your worker
class (the sample passed the Items collection from the current HttpContext). You may need the
IPrincipal, for example, if you pass user information to your middle tier for authorization or
auditing purposes.

109

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

Also, note that in some cases the value of Thread.CurrentPrincipal may appear to be retained
across the main ASP.NET request, and your asynchronous task. However, this behavior should not be
relied on, because it is entirely dependent on which managed thread is selected from the framework’s
thread pool to execute asynchronous tasks.

One last piece of information about managing security for asynchronous tasks is in order. The sample
you looked at used a separate class to carry out the asynchronous work. However, a number of NET
Framework classes provide methods that return an IAsyncResult reference. For example, both the
System.IO.FileStreamand the System.Data.SqglClient.SqglCommand classes support asynchro-
nous reads. As another example, the System.Net .HttpWebRequest class also supports making asyn-
chronous requests to HTTP endpoints. In cases like these, you need to look at the class signatures and
determine if they have any built-in support for passing a security identity along to their asynchronous
processing. In the case of System.Net .Ht tpWebRequest, there is a Credentials property that you can
explicitly set. When the Ht tpWebRequest class asynchronously makes a request, it will use the security
information that you set in the Credentials property. A similar ability to automatically pass along the
correct credentials exists when using the SglCommand and SglConnection classes.

AuthenticateRequest

The AuthenticateRequest event is the point in the unified HTTP pipeline where both IIS and ASPNET
participate in authenticating the request. It is at this stage the IIS 7.0 core engine detects the configured
authentication modules and executes them.

The process that IIS follows to authenticate a request has been discussed in details above. Therefore the
focus here will be on the managed authentication side of the authentication process done by ASP.NET. It
is this one that gives developers the opportunity to write code to examine the current security informa-
tion for a request and based upon it, create an IPrincipal implementation and attach it to the current
ASP.NET request. The end result of AuthenticateRequest is that both the managed thread’s identity
(available from Thread.CurrentPrincipal) and the User property of the current Ht tpContext will
be initialized to an IPrincipal that can be used by downstream code.

Be default, ASP.NET ships with a number of Ht tpModules that hook the AuthenticateRequest event.
You can see this list (and modify it) in the root web. config configuration file that is available in the
following location:

gwindir%\Microsoft.NET\Framework\v2.0.50727\CONFIG

The web. config configuration file in the framework’s CONFIG directory is a concept that was intro-
duced with ASPNET 2.0. The development teams at Microsoft decided to separate web-specific configu-
ration out of the machine. config configuration file to speed up load times for non-web applications.
As a result, non-ASP.NET applications do not have to chug through configuration sections for features
unsupported outside of a web environment.

Looking at the <httpModules /> configuration element in the root web. config configuration file, the
following entries are for modules that hook AuthenticateRequest:

<add name="WindowsAuthentication"

type="System.Web.Security.WindowsAuthenticationModule" />
<add name="FormsAuthentication"

110

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

type="System.Web. Security.FormsAuthenticationModule" />
<add name="PassportAuthentication"
type="System.Web.Security.PassportAuthenticationModule" />

Of the three default modules, we will only take a closer look at the WindowsAuthenticationModule
and FormsAuthenticationModule. The PassportAuthentication is not supported anymore on
Windows Vista and Windows Server 2008.

WindowsAuthenticationModule

When the ASP.NET application is running under IIS 7.0 classic mode, the managed windows
AuthenticationModule is the only authentication module that depends on impersonation token set
by IIS. Its purpose is to construct a WindowsPrincipal based on the authenticated identity set by IIS
when a web. config configuration file contains the setting <authentication mode="Windows"/>.
The resultant windowsPrincipal is set as the value of the User property for the current HttpContext.
If a different authentication mode has been configured, the windowsAuthenticationModule imme-
diately returns whenever it is called during the AuthenticateRequest event. Note that the module
does not look at or use the security identity of the underlying operating system thread when creating a
WindowsPrincipal. As a result, the settings in the <identity /> element have no effect on the output
from the WindowsAuthenticationModule.

On the other hand, when the ASPNET application is running under IIS 7.0 integrated mode, the managed
WindowsAuthenticationModule behaves differently. It simply disregards the impersonation token set
by IIS 7.0 and focuses on the Ht tpContext .Current.User property. In case a native authentication mod-
ule was executed and successful, this means there is a valid and authenticated user. As mentioned above,
there is an integrated request processing pipeline mechanism that sets the HttpContext .Current .User
property to the value of the native User principal. The managed WindowsAuthenticationModule simply
casts the value in the Ht tpContext . Current . User property into a valid WindowsPrincipal instance.
However, if the native AnonymousAuthenticationModule is enabled, the HttpContext .Current.User
property will be null and not set by the integrated request processing pipeline, since the native Anonymous
AuthenticationModule runs after all the authentication modules configured in IIS 7.0. Therefore, if the
native AnonymousAuthenticationModule is enabled and the application is running under the IIS 7.0
integrated mode, the managed WindowsAuthenticationModule has no use and can be easily removed
without causing any problem to the application.

The name of the module WindowsAuthenticationModule is a little misleading because in reality this
module does not actually authenticate a user. Authentication usually implies some kind of challenge
(username and password), a response and a resultant representation of the success or failure of the
challenge/response. However, this module is not involved in any challenge/response sequence.

Instead, all this occurs up front in IIS. If IIS is configured to require some type of authenticated access
to an application (Windows using NTLM or Kerberos, Basic, Digest, or Certificate Mapping), then it

is IIS that challenges the browser for credentials according to the enabled authentication types. If the
response succeeds (and in some cases the response involves multiple network round trips to complete
all of the security negotiations), then it is IIS that creates the data that represents a successfully authen-
ticated user by doing all of the following;:

0 Generating the impersonation token that represents the authenticated user and making this
identity available to ASP.NET.

111

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

Q Setting the values of the LOGON_USER and AUTH_TYPE server variables to reflect the authenti-
cated user and the authentication type that was used.

Q If the ASP.NET application is running under the IIS 7.0 integrated mode and a native authenti-
cation module like Basic or Windows authentication is enabled, the integrated request process-
ing pipeline uses a mechanism to set the HttpContext.Current.User property to the value of
the native User principal.

In IIS 7.0 classic mode, WindowsAuthenticationModule just consumes the results of the security
negotiations with IIS and makes the results of these negotiations available as a WindowsPrincipal.
When the LOGON_USER and AUTH_TYPE server variables are empty (that is, no authentication challenge
took place at the IIS 7.0 native authentication modules (the managed WindowsAuthenticationModule
initializes the HttpContext.Current.User property to an anonymous identity that is the value of
WindowsIdentity.GetAnonymous ().

This anonymous identity has the following characteristics:

Q The value of Name is the empty string.

Q Thevalue of AuthenticationType is the empty string.
U IsAnonymous is set to true.
Q

IsAuthenticatedis set to false.

In other words, the managed WindowsAuthenticationModule inspects the LOGON_USER and AUTH_TYPE
server variables for the current request. If those variables are empty, no authentication challenge took
place at the IIS 7.0 level. Consequently, it constructs a WindowsPrincipal containing an anonymous
WindowsIdentity, which determines that no browser user was authenticated for the current request
and simply ignores the impersonation token set by IIS. If the server variables were not empty, the man-
aged WindowsAuthenticationModule constructs a new WindowsPrincipal instance and assigns it to
the HttpContext.Current.User property based on the server variables mentioned at the beginning of
this paragraph. In addition, the Identity property on the User property is initialized to a new instance
of the windowsIdentity class.

On the other hand, when an application is running in the IIS 7.0 integrated mode, the managed windows
AuthenticationModule has a minimal job to do. It simply does some internal initialization based on
the HttpContext .Current.User property’s value that was originally passed a WindowsPrincipal
instance by an integrated request processing pipeline mechanism based on the native User principal.

It was mentioned above that when the native AnonymousAuthenticationModule is enabled and the
application is configured for Windows authentication and running under the integrated mode, the man-
aged WindowsAuthenticationModule will not fire its Authenticate event and will perform only inter-
nal tasks. The reason behind this is that when the native AnonymousAuthenticationModule is enabled,
regardless of the native authentication module configured, no authentication process takes place and
hence regardless what native authentication modules have been configured, the Ht tpContext .Current
.User property is empty. Internally the managed windowsAuthenticationModule checks if the Iden-
tity property on the Ht tpContext.Current.User is null in C# or Nothing in VB.NET the Authenti-
cate event never fires.

112

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

To illustrate how the HttpContext .Current . User property is determined when the native Anony-
mousAuthenticationModule is enabled, let’s go back and check the output log that was generated by
the previous sample code shown above:

The managed thread identity when the page executes is: [null or empty]
The managed thread identity is of type: System.Security.Principal.WindowsPrincipal
The user on the HttpContext when the page executes is: [null or empty]
The user on the HttpContext is of type: System.Security.Principal.WindowsPrincipal
The user on the HttpContext and the thread principal point at the same object: True

Now you know why the IPrincipal attached to both the context and the thread is a WindowsPrincipal
with a username of empty string. The native AnonymousAuthenticationModule is enabled, meaning
that no authentication challenge takes place and hence the integrated request processing pipeline does
not set any value to the HttpContext.Curent.User property. The application is configured by default
with Windows authentication and since the native AnonymousAuthenticationModule runs as the last
authentication module at the AuthenticateRequest stage, it finds out that the User property is still invalid,
and it informs the integrated request processing pipeline to instantiate the Ht tpContext.Current.User
property to an anonymous WindowsPrincipal instance that has an anonymous Identity property of
type WwindowsIdentity.

On the other hand, if an authenticated browser user is detected (i.e., LOGON_USER and AUTH_TYPE are not
empty strings) and the application runs under the IIS 7.0 classic mode, WindowsAuthenticationModule
looks at the impersonation token set by IIS and creates a windowsIdentity with the token.

Regardless of whether the application is running in either the integrated or classic mode, after the mod-
ule creates a WindowsIdentity (either an authenticated identity in both classic and integrated mode or
an anonymous identity in the classic mode), it raises the Authenticate event. If the event is fired, a
developer can choose to hook the authenticate event from WindowsAuthenticationModule. The
WindowsIdentity that the module created is passed as part of the event argument of type Windows
AuthenticationEventArgs. A developer can choose to create a custom principal in their event han-
dler by setting the User property on the WindowsAuthenticationEventArgs event argument. The
thing that is a little weird about this event is that a developer can actually do some pretty strange
things with it. For example:

Q A developer could technically ignore the windowsIdentity supplied by the module and create
a custom ITdentity wrapped in a custom IPrincipal implementation and then set this cus-
tom IPrincipal on the WindowsAuthenticationEventArgs User property.

Q Alternatively, a developer could obtain a completely different windowsIdentity (in essence
ignoring the request authenticated identity set by IIS) and then wrap it in a WindowsPrincipal
and set it on the event argument’s User property.

In general, though, there is not a compelling usage of the Authenticate event for most applications. The
Authenticate event was originally placed on this module (and others) to make it easier for developers
to figure out how to attach custom IPrincipal implementations to an Ht tpContext without needing
to create an HttpModule or hook events in global.asax. Architecturally, though, it makes more sense
to just let windowsAuthenticationModule carry out its work, and not hook the Authenticate event.
If a web application needs to implement a custom authentication mechanism, it should use a custom
HttpModule that itself hooks the AuthenticateRequest pipeline event. Both ASPNET 2.0 and

113

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

ASP.NET 3.5 make this approach even easier because you can author the module with a class file
inside of the App_Code directory and just reference the type (without all of the other assembly identifi-
cation information) inside of the <httpModules /> configuration section of the web.config configu-
ration file when the application is running under IIS 7.0 Classic mode, or inside of the <modules />
configuration section of the web. config configuration file when the application is running under

1IS 7.0 Integrated mode.

Once the Authenticate event returns, WindowsAuthenticationModule looks at the User property on
the windowsAuthenticationEventArgs that was passed to the event. If an IPrincipal was set, the
module sets the value of Ht tpContext .Current . User to the IPrincipal reference. If the User prop-
erty on the event argument is null, though (the normal case), the module wraps the WindowsIdentity
it determined earlier (either an anonymous WindowsIdentity, or a WindowsIdentity correspond-
ing to the IIS impersonation token) in a windowsPrincipal, and sets this principal on HttpContext
.Current.User.

Using the sample application shown earlier in the chapter, look at a few variations of IIS security set-
tings and UNC locations while using Windows authentication. Earlier, you saw the results of running
with AnonymousAuthenticationModule enabled in IIS for a local web application. If instead, some
type of authenticated access is required in IIS (Windows, Digest, Basic, or Certificate Mapping), the
output changes to reflect the authenticated browser user.

The 0S thread identity when the page executes is: bhaidar-PC\test

The managed thread identity when the page executes is: bhaidar-PC\bhaidar

The managed thread identity is of type: System.Security.Principal.WindowsPrincipal
The user on the HttpContext when the page executes is: bhaidar-PC\bhaidar

The user on the HttpContext is of type: System.Security.Principal.WindowsPrincipal

Regardless of whether impersonation is in effect (in this case, I enabled application impersonation),
the value of Thread.CurrentPrincipal and HttpContext.Current .User will always reflect the
authenticated browser user (and hence the request authenticated identity set by IIS) when some type
of browser authentication is required.

If the application is running on a UNC share using explicit UNC credentials, continues to function prop-
erly with an exception, which is that when authentication is enabled for an application, it will ignore the
impersonation token generated by IIS that is based on the UNC share credentials and simply uses the cre-
dentials of the authenticated user. Remember that in earlier UNC examples you saw that the imperson-
ation token from IIS always reflected the explicit UNC credentials. Because WindowsAuthentication
Module creates a WindowsPrincipal that is either an anonymous identity, or an identity matching the
impersonation token from IIS, this means that even in the UNC case there will only ever be one of two
possible WindowsPrincipal objects attached to the thread and the context: an anonymous windows
Identity, or an identity matching the authenticated credentials negotiated by the IIS when authenti-
cation was performed.

The following output is for the same application using application impersonation and running on a UNC
share with anonymous access allowed:

The 0S thread identity when the page executes is: bhaidar-PC\test

The managed thread identity when the page executes is: [null or empty]

The managed thread identity is of type: System.Security.Principal.WindowsPrincipal
The user on the HttpContext when the page executes is: [null or empty]

The user on the HttpContext is of type: System.Security.Principal.WindowsPrincipal

114

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

When authenticated access to the application is required, the UNC identity will not have any effect on the
thread and the context identities. Instead, the application impersonation identity will take control. The
account bhaidar-pPC\test was used as the application impersonation account throughout this chapter.

The 0S thread identity when the page executes is: bhaidar-PC\test

The managed thread identity when the page executes is: bhaidar-PC\bhaidar

The managed thread identity is of type: System.Security.Principal.WindowsPrincipal
The user on the HttpContext when the page executes is: bhaidar-PC\bhaidar

The user on the HttpContext is of type: System.Security.Principal.WindowsPrincipal

The following table summarizes the type of windowsIdentity thatis set on the HttpContext for vari-
ous settings:

Runningona Authenticated Access
UNC Share? Required in IIS? WindowslIdentity Set on the HttpContext

No No A WindowsIdentity corresponding to an anonymous
user. WindowsIdentity.GetAnonymous ()

No Yes A wWindowsIdentity corresponding to the authenticated
browser user

Yes No The value of WindowsIdentity.GetAnonymous ()

Yes Yes A WindowsIdentity corresponding to the authenticated
browser user

FormsAuthenticationModule

To start with, FormsAuthenticationModule is now registered on IIS 7.0 once the ASP.NET feature is
enabled on the web server. Hence, this module can now be enabled for an application from the IIS 7.0
Manager tool and of course from inside the <system.webServer /> configuration section group of the
application’s web. config configuration file. In addition, taking advantage of the IIS 7.0 and ASPNET
integrated mode of execution, FormsAuthenticationModule can be used to authenticate requests for
non-ASP.NET resources. This is because when it is time to authenticate a request, IIS 7.0 and ASPNET
would be executing the enabled native and managed authentication modules at the same authentica-
tion stage in the unified request-processing pipeline.

FormsAuthenticationModule inspects the cookies and the URL of the incoming request, looking for a
forms authentication ticket (an encrypted representation of a FormsAuthenticationTicket instance).
If the authentication mode is set to forms <authentication mode="Forms" />, the module will use

a valid ticket to create a GenericPrincipal containing a FormsIdentity, and set the principal on
HttpContext.Current.User. If a different authentication mode has been configured, then the mod-
ule immediately exits during the AuthenticateRequest event.

Before the module attempts to extract a forms authentication ticket, it raises an Authenticate event.
This event is similar in behavior to the Authenticate event raised by WindowsAuthenticationModule.
Developers can choose to hook the Authenticate event on the FormsAuthenticationModule and sup-
ply a custom IPrincipal implementation by setting the User property on the FormsAuthentication
EventArgs parameter that is passed to the event. After the event fires, if an IPrincipal was set on the
event argument, FormsAuthenticationModule sets the value of HttpContext .Current.User to the
same value, and then exits.

115

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

In forms authentication, the Authenticate event is a bit more useful, because conceptually “forms”
authentication implies some type of logon form that gathers credentials from a user. Hooking the
Authenticate event can be useful if developers programmatically create a FormsAuthentication
Ticket, but then need to manage how the ticket is issued and processed on each subsequent request.
As with the WindowsAuthenticationModule, the Authenticate event can be used as just a conve-
nient way to author a completely custom authentication scheme without needing to author and then
register an HttpModule.

If you do not hook the event, the normal processing of FormsAuthenticationModule occurs. In
Chapter 6, on forms authentication, you learn more about the options available for handling forms
authentication tickets. Briefly though, the sequence of steps the module goes through to arrive at a
FormsIdentity are:

1. The module first gets the encrypted ticket that may have been sent as part of the request. The
ticket could be in a cookie, in a custom HTTP header, in a query-string variable, or in a posted
form variable.

2. After the module has the ticket, it attempts to decrypt it. If decryption succeeds, the module
now has a reference to an instance of FormAuthenticationTicket. Some other validations
occur, including confirming that the ticket has not expired, and that if SSL is required for
cookie-based tickets that the current request is running under SSL.

3. Ifdecryption or any of the subsequent validations fail, then the ticket is invalid and the Forms
AuthenticationModule explicitly clears the ticket by either issuing an outdated cookie or
clearing the cookieless representation from the HTTP_ASPFILTERSESSIONID header. At this
point the module exits, which means no IPrincipal is created or attached to the context.

4. Ifavalid ticket was found but the ticket was in a query-string variable or was part of a posted
form variable, the module will transfer the ticket into either a cookie or the cookieless represen-
tation of a forms authentication ticket. A side effect of this is that the module will trigger a redi-
rect if transferring the ticket to a cookieless representation.

B. The module then creates an instance of a GenericPrincipal. Because forms authentication
has no concept of roles and requires no custom properties or methods on the principal, it uses a
GenericPrincipal. The custom representation for forms authentication is the FormsIdentity
class. By this point, the module has a reference to a FormsAuthenticationTicket instance as
a side effect of the earlier decryption step. It constructs a FormsIdentity, passing in the Forms
AuthenticationTicket reference to the constructor. The FormsIdentity instance is then
used to construct a GenericPrincipal.

6. GenericPrincipal is set as the value of the User property on the current Ht tpContext .

7. The module may update the expiration date for the ticket if sliding expirations have been
enabled for forms authentication. As with step 4, when working with cookieless tickets, auto-
matically updating the expiration date will trigger a redirect.

8. FormsAuthenticationModule sets the public SkipAuthorization property on the cur-
rent HttpContext. Note that even though the module sets this property, it does not actually
use it. Instead downstream managed authorization modules can inspect this property when
authorizing a request. The module will set the property to true if either the configured forms
authentication login page is being requested (it would not make any sense to deny access to

116

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

the application’s login page), or if the current request is for the ASP.NET assembly resource
handler (AssemblyResourceLoader-Integrated), which is configured in the <handlers />
configuration section of the ApplicationHost.config configuration file. The reason for the
extra check for webresource. axd is that it is possible to remove the handler definition from
configuration, in which case ASP.NET no longer considers webresource.axd to be a special
request that should skip authorization.

Unlike windowsAuthenticationModule, FormsAuthenticationModule sets up security information
that is divorced from any information about the operating system thread identity. In some ways, forms
authentication is a much easier authentication model to use because developers do not have to wrestle
with the intricacies of IIS native authentication modules, UNC shares and ASP.NET’s impersonation
settings.

Tweaking some of the earlier samples to require forms authentication, the following output shows the
results of running an application with the native AnonymousAuthenticationModule enabled in IIS
and application impersonation enabled in ASP.NET.

The 0OS thread identity when the page executes is: bhaidar-PC\test

The managed thread identity when the page executes is: testuser

The managed thread identity is of type: System.Security.Principal.GenericPrincipal
The user on the HttpContext when the page executes is: testuser

The user on the HttpContext is of type: System.Security.Principal.GenericPrincipal
The request authenticated identity set by IIS is: NT AUTHORITY\NETWORK SERVICE

As you can see, Ht tpContext and the current thread reflect the GenericPrincipal that is created by
FormsAuthenticationModule. The fact that application impersonation is being used is ignored, as is
the value of the impersonation token set by IIS. Also notice here that, since there is no native authen-
tication module enabled on IIS 7.0 other than the AnonymousAuthenticationModule and the man-
aged FormsAuthenticationModule, the impersonation token generated by IIS defaults to the identity
currently configured for the worker process, in this case it is the NT AUTHORITY\NETWORK SERVICE
identity.

When developing with forms authentication, you probably should still be aware of the operating system
thread identity because it is this identity that will be used when using some type of integrated security
with back-end resources such as SQL Server. However, from a downstream authorization perspective,
using forms authentication means that only the GenericpPrincipal (and the contained FormsIdentity)
are relevant when making authorization decisions.

DefaultAuthentication and Thread.CurrentPrincipal

Most of the sample output has included information about the identity of Thread.CurrentPrincipal
and the identity on HttpContext.Current.User. However, in the previous discussions on Wwindows
AuthenticationModule and FormsAuthenticationModule, you saw that these modules only set the
value of the User property for the current context.

How then did the same IPrincipal reference make it onto the CurrentPrincipal property of the

current thread? The answer lies within the ASPNET runtime. Since ASP.NET 1.0, there has been a
“hidden” pipeline event called DefaultAuthentication. This event is not publicly exposed, so as

117

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

a module author you cannot directly hook the event. However, there is an ASP.NET authentication
module that runs during the DefaultAuthentication event called DefaultAuthentication mod-
ule. As a developer, you never explicitly configure this module. Instead when the ASPNET runtime is
initializing an application and is hooking up all of the HttpModules it also automatically registers the
DefaultAuthenticationModule. As a result, this module is always running in every ASPNET appli-
cation. There is no way to “turn off” or unregister the DefaultAuthenticationModule.

This module provides a number of services for an ASP.NET application:

1. TItexposes a public Authenticate event (like the other authentication modules) that a devel-
oper can hook. When running an application in the IIS integrated mode, this event is not fired.
It is required to register for the AuthenticateRequest event instead. Subscribing to the
Authenticate event would throw a Plat formNotSupportedException

2. It provides a default behavior for failed authentication attempts.

3. The module ensures that if the User property has not been set yet, a GenericPrincipal is cre-
ated and set on the current context’s User property.

4. The module explicitly sets the CurrentPrincipal property of the current thread to the same
value as the current context’s User property.

Initially, Defaul tAuthenticationModule looks at the value of Response. StatusCode, and if the status
code is set to a value greater than 200, then the module routes the current request directly to the End
Request pipeline event. Normally, unless a piece of code explicitly changes the value of Response
.StatusCode, it defaults to 200 when the Response object is initially created. As a side effect of Default
AuthenticationModule checking the StatusCode, if DefaultAuthenticationModule detects that
Response.StatusCode was set to 401 (indicating an Access Denied error has occurred), the module
writes out a custom 401 error message to Response prior to handing off the request to the Endrequest
event.

Note that neither windowsAuthenticationModule nor FormsAuthenticationModule sets the
StatusCode property. So, the behavior in DefaultAuthenticationModule around status codes is
only useful for developers who write custom authentication mechanisms that explicitly set the
StatusCode for failed authentication attempts.

To see this behavior, look at a simple application with an Ht tpModule that hooks the Authenticate
Request event. The module just sets the StatusCode property on the response to 401. The application
has only the native AnonymousAuthenticationModule enabled in IIS (this prevents an IIS credentials
prompt from occurring in the sample). In ASP.NET, the application has its authentication mode set to
None, because the normal scenario for depending on the 401 behavior of DefaultAuthentication
Module makes sense only when you write a custom authentication mechanism:

<!-- registering the HttpModule in web.config -->
<modules>
<add name="Fake401l" type="ModuleThatForces401"/>
</modules>

<!-- Authentication mode in web.config is set to None --->
<authentication mode="None"/>

118

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

C#

public class ModuleThatForces40l : IHttpModule
{

//Default implementation details left out..

private void FakeA401l (Object source, EventArgs e)
{

HttpContext.Current.Response.StatusCode = 401;
}

public void Init (HttpApplication context)
{

context.AuthenticateRequest += new EventHandler (this.FakeA401);

VB.NET

Public Class ModuleThatForces401
Implements IHttpModule
' Default implementation details left out..

Private Sub FakeA401l (ByVal source As Object, ByVal e As EventArgs)
HttpContext.Current.Response.StatusCode = 401
End Sub

#Region "IHttpModule Members"

Public Sub Dispose() Implements IHttpModule.Dispose
Throw New Exception("The method or operation is not implemented.")
End Sub

Public Sub Init (ByVal context As HttpApplication) Implements IHttpModule.Init
AddHandler context.AuthenticateRequest, AddressOf FakeA401
End Sub

#End Region
End Class

Running a website with this module results in a custom error page containing an “Access is denied”
error message generated by DefaultAuthenticationModule.

The DefaultAuthenticationModule does not fire the Authenticate event when an application is
running in the new IIS integrated mode. Therefore, if you want to provide custom authentication, you
should develop an HttpModule and hook into the AuthenticateRequest event. Custom authentica-
tion code running in this event should create an IPrincipal and set it on the current context’s User
property if the custom authentication succeeds. Optionally, you can set StatusCode to 401 (or some
other error code depending on the type of failure). After the managed authentication module finishes
executing, DefaultAuthenticationModule runs and looks at the StatusCode of the current authen-
ticated request and will output custom error information if a 401 is in the StatusCode. Also, any
StatusCode greater than 200 will cause the module to short-circuit the request and reroute it to the
EndRequest pipeline event.

119

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

If statusCode is still set to 200 or lower and any custom authentication in the AuthenticateRequest
event succeeds, the DefaultAuthenticationModule checks the current context’s User property. If
the User property is still null (remember that the property defaults to null back when BeginRequest
occurs), the module constructs a GenericPrincipal containing a GenericIdentity with the follow-
ing characteristics:

Q The username is set to the empty string.

Q The authentication type is set to the empty string.

Q A zero-length string array is assigned as the set of roles associated with the principal.
Q

The IsAuthenticated property in the identity returns false.

The reason the module creates the GenericPrincipal is that most downstream authorization code
expects some kind of IPrincipal to exist on the current Ht tpContext. If the module did not place
at least a default IPrincipal implementation on the User property, developers would probably be
plagued with null reference exceptions when various pieces of authorization code attempted to per-
form IsInRole checks.

After ensuring that default principal exists, the module sets Thread.CurrentPrincipal to the
same value as HttpContext.Current.User. It is this behavior that automatically ensures the thread
principal and the context’s principal are properly synchronized. The fact that ASP.NET has an Http
Context with a property for holding an IPrincipal creates the potential for an identity mismatch
with the .NET Framework’s convention of storing an IPrincipal on the current thread. Having the
DefaultAuthenticationModule synchronize the two values ensures that developers can use either
the ASP.NET coding convention (HttpContext.Current.User) or the NET Framework’s coding
convention (Thread.CurrentPrinicpal) for referencing the current IPrincipal, and both coding
styles will reference the same identity and result in the same security decisions. Another nice side effect
of this synchronization is that developers using the declarative syntax for making access checks
([PrincipalPermission(SecurityAction.Demand, Role="Administrators"]) willalso get
the same behavior because PrincipalPermission internally performs an access check against
Thread.CurrentPrincipal (not HttpContext.Current.User).

However, when an application is running in integrated mode, things are much different. Given the
native AnonymousAuthenticationModule is enabled, native WindowsAuthenticationModule is
enabled, ASP.NET application is configured with Windows authentication, this means Anonymous
AuthenticationModule takes control all over the authentication. It has been mentioned above that
the native AnonymousAuthenticationModule when it finds that there is no native User principal set
yet, it creates a new Windows anonymous principal and through an integrated request processing
pipeline mechanism, the value is passed to the Ht tpContext.Current.User property. Therefore,
when the DefaultAuthenticationModule runs, it will find out that the HttpContext .Current
.User property already assigned a value (either an authenticated or anonymous WindowsPrincipal
instance) and hence it does nothing and exits.

PostAuthenticateRequest

This event has already been added in ASP.NET 2.0, along with most of the other Post* events in the
pipeline. The two ASP.NET modules that hook this event are the managed AnonymousIdentifica-
tionModule and RoleManagerModule. Of the two, only RoleManagerModule is actually involved in
security-related work. The AnonymousIdentificationModule hooks PostAuthenticateRequest
because it is early enough in the pipeline for it to issue an anonymous identifier for use with the Profile

120

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

feature, but it is late enough in the pipeline that it can determine if the current user is authenticated,
and thus an anonymous identifier would not be needed in that case.

Because RoleManagerModule, and the Role Manager feature, is covered in much more detail later
in the book, I will simply say at this point that the purpose of the RoleManagerModule is to create
aRolePrincipal class and set it as the value for both Ht tpContext .Current .User and Thread
.CurrentPrincipal. The RolePrincipal class fulfills IsInRole access checks with user-to-role
mappings stored using the Role Manager feature.

It is important for developers to understand that because the PostAuthenticateRequest event
occurs after the DefaultAuthenticationModule has run, any changes made to either HttpContext
.Current.User or Thread.CurrentPrincipal will not be automatically synchronized. For example,
this is why RoleManagerModule has to set both the context and the thread’s principals. If the module
did not perform this extra work, developers would be left with two different principals and two differ-
ent sets of results from calling IPrincipal.IsInRole.

A simple application that hooks PostAuthenticateRequest illustrates this subtle problem. The
application uses forms authentication, which initially results in same GenericPrincipal on both
the context’s User property and the current principal of the thread. However, the sample application
changes the principal on Ht tpContext .Current.User toa completely different value during the
PostAuthenticateRequest event.

C#

//Hook PostAuthenticateRequest inside of global.asax
void Application_PostAuthenticateRequest (Object sender, EventArgs e)

{
IPrincipal p = HttpContext.Current.User;

//Only reset the principal after having logged in with
//forms authentication.
if (p.Identity.IsAuthenticated)
{
GenericIdentity gi =
new GenericIdentity("CompletelyDifferentUser", "");
string[] roles = new stringl[0];

HttpContext.Current.User =
new GenericPrincipal (gi, roles);

//0oops - forgot to sync up with Thread.CurrentPrincipal!!

VB.NET

Private Sub Application_PostAuthenticateRequest (ByVal sender As Object,
ByVal e As EventArgs)

Dim p As IPrincipal = HttpContext.Current.User

'Only reset the principal after having logged in with
'forms authentication.

121

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

If p.Identity.IsAuthenticated Then
Dim gi As New GenericIdentity("CompletelyDifferentUser", "")
Dim roles(-1) As String

HttpContext.Current.User = New GenericPrincipal (gi, roles)

'Ooops - forgot to sync up with Thread.CurrentPrincipal!!
End If

End Sub

The resulting output shows the mismatch between the thread principal and the context’s principal. The
testuser account is the identity that was logged in with forms authentication.

The managed thread identity when the page executes is: testuser

The managed thread identity is of type: System.Security.Principal.GenericPrincipal
The user on the HttpContext when the page executes is: CompletelyDifferentUser
The user on the HttpContext is of type: System.Security.Principal.GenericPrincipal
The user on the HttpContext and the thread principal point at the same object:
False

Now in practice you would not create a new identity during PostAuthenticateRequest. However,
you may have a custom mechanism for populating roles, much like the Role Manager feature, whereby
the roles for a user are established after an IIdentity implementation has been created for a user.
Hooking PostAuthenticateRequest is a logical choice because by this point you are guaranteed to
have some type of IIdentity implementation available off of the context. But as shown previously,

if you reset the principal during PostAuthenticateRequest, it is your responsibility to also set the
value on Thread.CurrentPrincipal to prevent mismatches later on in the pipeline.

AuthorizeRequest

Now you will turn your attention to the portion of the pipeline that authorizes users to content and
pages. As the name of the pipeline event implies, decisions on whether the current user is allowed to
continue are made during this pipeline event.

ASP.NET ships with two HttpModules configured in the <httpModules /> or <modules /> section
that enforce authorization:

a FileAuthorizationModule

a UrlAuthorizationModule
If you have configured the application to run in the unified integrated mode, the <modules /> sec-

tion entries will take effect, else if the application is operating in the classic mode, then the old usual
<httpModules /> section takes effect.

In addition, IIS adds a new native URLAuthorizationModule that you can enable to run for all content
file types. Configuring this module is similar to the way you configure URLAuthorizationModule in

ASP.NET. The module will be discussed shortly.

Developers can hook this event and provide their own custom authorization implementations as well,
whether it is through native or managed code. By the time the AuthorizeRequest event occurs, the

122

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

IPrincipal references for the current context and the current thread have been set and should be stable
for the remainder of the request. Although it is technically possible to change either of these identities
during this event (or any other event later in the pipeline), this is not a practice you want to adopt!

FileAuthorizationModule

FileAuthorizationModule authorizes access to content by checking the ACLs on the underlying
requested file and confirming that the current user has either read or read/write access (more on what
defines the “current user” in a bit). For HEAD, GET, and POST requests, the module checks for read access.
For all other verbs, the module checks for both read and write access.

Because ACL checks only make sense when working with a WwindowsIdentity, FileAuthorization
Module is really only useful if both of the following are true:

QO The ASP.NET application uses Windows authentication.
QO The ASP.NET application is not running on a UNC share.

If an ASP.NET application is running on a UNC share, FileAuthorizationModule does not attempt
any file ACL checks. Instead it just immediately exits. The module has this behavior because UNC based
ASPNET applications run with the explicit UNC credentials. If these credentials did not have access to
all of the files on the UNC share, the application would fail in IIS anyway. As a result, performing a file
ACL check is redundant (the app made it far enough to start running in ASPNET; therefore, the UNC
identity has access to the share). Although configuring FileAuthorizationModule in web.config
configuration file for these types of applications is innocuous, developers should probably remove File
AuthorizationModule from their configuration files because it serves no purpose in the UNC case.

Because FileAuthorizationModule performs file ACL checks, it requires that a WindowsIdentity be
available on HttpContext.Current.User. If some other type of IIdentity implementation is on the
User property, the module automatically grants access and immediately exits. This means file ACLs are
not checked when the authentication mode is set to Forms or None.

Assuming that you are using Windows authentication in ASP.NET, the question arises on how to use
file ACL checks when the AnonymousAuthenticationModule is enabled in IIS. If your site has a mix-
ture of public and private content, you can set more restrictive ACLs on the private content. If an unau-
thenticated browser user attempts to access the private content, then FileAuthorizationModule will
force the browser to authenticate itself (more on this later). If an authenticated user is allowed access to
the file, then he or she will be able to access the private content.

The user token that the FileAuthorizationModule uses for making the access check is the request
authenticated identity set by IIS. From earlier topics, you know that in non-UNC scenarios, the request
authenticated identity is either TUSR or the token associated with an authenticated browser user. This
means that if you want to grant access to anonymous users, what you really need to do is set the NTFS
ACLs on the filesystem to allow read (or read/write access depending the HTTP verbs being used) access
to the TUSR account. If you happened to change the default anonymous user account in the IIS 7.0 Man-
ager tool or through the <anonymousAuthentication /> section in the web.config configuration file,
you would grant access to whatever anonymous user account is currently configured for the application
in IIS.

You can see this behavior pretty easily by explicitly denying access for TUSR when you set up the ACLs
for a file. In IIS, set the application to only allow Anonymous access, i.e., enabling the native Anonymous

123

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

AuthenticationModule; this prevents IIS from attempting to negotiate an authenticated identity with
the browser. Now when you try to browse to the file, FileAuthorizationModule will return a 401 sta-
tus code and write out some custom error information stating that access is denied. If you then grant
access on the file to TUSR again, you will be able to successfully browse to the file.

Because it is the request authenticated identity set by IIS that is used for file ACL checks by the module,
other security identities are ignored by FileAuthorizationModule. For example, if you are using
application impersonation, the operating system thread identity will be running as the application
impersonation identity. Although technically nothing prevents you from using application imperson-
ation with file authorization, application impersonation does not affect the request authenticated iden-
tity set by IIS. Because FileAuthorizationModule does not use the operating system thread identity
for its access checks, it ignores the effects of application impersonation and instead the access checks
will always be made against the anonymous or authenticated user account from IIS.

The concept to always remember when using FileAuthorizationModule is that only the anonymous
user account from IIS or the authenticated browser user will be used for the access checks. This also
means that an application needs to run with client impersonation (that is, <identity impersonate
="true" /> for file authorization checks to really make any sense.

When FileAuthorizationModule determines that the identity represented by the IIS request authen-
ticated identity does not have read (or read/write access depending on the HTTP verb used), it sets
Response. StatusCode to 401, writes custom error information indicating that access is denied, and
reroutes the request to the EndRequest event in the pipeline.

If the application is configured in IIS to allow authenticated access as part of the security options,
when the 401 result is detected by IIS, it will attempt to negotiate an authenticated connection with the
browser after the 401 occurs. If this negotiation succeeds, the next request to ASPNET will be made as
an authenticated browser identity. Of course, if the authenticated browser identity also lacks the appro-
priate file access, the subsequent 401 error results in the custom error information from the ASPNET
module, and no additional authentication negotiation with the browser occurs.

Managed UrlAuthorizationModule

Because an authorization strategy tightly tied to Windows security identities is not always useful

for Internet-facing applications, a more generic authorization mechanism is implemented in Ur1l
AuthorizationModule. Based on the URL authorization rules defined in configuration, the module
uses the IPrincipal on the User property of the current context to compare against the users and
roles that are defined in the authorization rules. Because URL authorization works only against the
User property and the configuration-based authorization rules, it can be used with any type of authen-
tication that sets an IPrincipal on the current context’s User property. For example, if you use Win-
dows authentication with Ur1AuthorizationModule, the module uses the WindowsIdentity in the
context’s User property in a generic fashion. The module does not “know” the extra security semantics
available from Windows authenticated users. Instead, the module performs its access checks based
solely off of the value of the Name property on the associated IIdentity and the results of calling
IPrincipal.IsInRole.

As with file authorization, URL authorization also does not depend on the operating system thread
identity. However, URL authorization can be used in conjunction with file authorization. Remember
from previous topics though that the security identity represented by the IIS impersonation token
will not necessarily match the IPrincipal in the User property on the current context. In the case of

124

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

unauthenticated browser users and Windows authentication, the User property will contain a dummy
principal (username set to empty string) while the request authenticated identity represents the anony-
mous access account configured in IIS. Because of this, be careful when mixing file and URL authoriza-
tion, and keep in mind the different identities that each authorization module depends on.

Before attempting any type of authorization, UrlAuthorizationModule first checks to see if the value
of HttpContext.Current.SkipAuthorization is set to true. Authentication modules have the option
of setting this property to true as a hint to Ur1lAuthorizationModule. As mentioned earlier, one exam-
ple of this is FormsAuthenticationModule, which indicates that authorization should be skipped when
a user requests the forms authentication login page. If SkipAuthorization is set to true,
UrlAuthorizationModule immediately exits, and no further work is performed.

The module delegates the actual work of authorizing the current User to the AuthorizationSection
configuration class. This class is the root of the portion of the configuration hierarchy that defines the
<authorization /> configuration element and all of the nested authorization rules. Because
<authorization /> definitions can be made at the level of the machine, website, application or an
individual subdirectory, the AuthorizationSection class merges the rules from the hierarchy of appli-
cable configuration files to determine the set of rules that apply for the given page. Note that because of
the merge behavior, the authorization rules defined in configuration files at the most granular configu-
ration level take precedence. For example, this means authorization rules defined in a subdirectory are
evaluated before authorization rules defined at the application level.

The default authorization rules that ship with ASPNET are defined in the root web. config configura-
tion file located at:

$windir%\Microsoft .NET\Framework\v2.0.50727\CONFIG\web.config
The default rules just grant access to everyone:

<authorization>
<allow users="*" />
</authorization>

However, rules can either allow or deny access and can do so based on a combination of username,
roles, and HTTP verbs. For example:

<allow verbs="GET" users="John Doe", role="Browser Users" />
<deny verbs="POST" />

After the merged set of rules have been determined, each authorization rule (defined with <allow />
or <deny /> elements) is iterated over sequentially. The result from the first authorization rule that
matches either the name (User . Identity.Name) or one of the roles (User.IsInRole) is used as the
authorization decision. The sequential nature of the authorization processing has two implications:

1. TItis up to you to order the authorization rules in configuration so that they are evaluated in the
correct order. For example, having a rule that allows access to a user based on a role precede a
rule that denies access to the same user based on name results in the user always being granted
access. ASP.NET does not perform any automatic rule reordering.

2. A URL authorization check is a linear walk of all authorization rules. From a performance per-
spective, for a specific resource or directory you should place the most commonly applicable

125

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

rules at the top of the <authorization /> section. For example, if you need to deny access on
a resource for most users, but you allow access to only a small subset of these users, it makes
sense to put the <deny /> element first because that is the most common case.

Using a simple application with a few pages, subdirectories, and authorization rules, we can get a better
idea of the merge behavior and rule ordering behavior for URL authorization. The directory structure
for the sample application is shown in Figure 3-7.

T=Te e

e b
- O % a9 - -] b | Oebug | RF e BT
¢ | Sohction Explorer - Sonstion ST h0. ~ O % | webaanba|
B Eid T e T
(oA Solutson 73001 chad_code’ @ projects)

Build Debwp SR Cuts Ted Toow Anaipie Window Help

ot :u.?fe;__-!] I:f.

= Heb.Handler =

less
e="SCriprModule” Type==System.Web.Mandlers.ScriptMocdule, Syscem

#- @ hiap:
W P hpeamen gty
- g he

—
1
i
3
=i
2
2
2
H
£
)

TR By S

i nitputeatho A smplel armilaanple!
i hapyecainestUnAuthorzation)

the roles never gec evaloaced ==>

3 [Dhedary,B *DirectoryMlaes® />
#-] Oectory®_Webt armaaps
W coetig ak
a-] Duectana_wisFam g
| Web.contig bak
3 2 Defait aspe
= 7 Lognagx
) Lepranpn
B Wbitonng
i

Veraiones.

Ln 115 Col 1 chi NS

Figure 3-7

There is an . aspx page located in the application root, as well as in each of the two subdirectories.
The application uses forms authentication, with three fixed users defined in the configuration:

<authentication mode="Forms" >
<forms>
<credentials passwordFormat="Clear">
<user name="Admin" password="password"/>
<user name="DirectoryAUser" password="password"/>
<user name="DirectoryBUser" password="password"/>
</credentials>
</forms>
</authentication>

The web. config configuration file located in the root of the application initially defines authorization

rules as:
<authorization>
<allow users="Admin"/>
<deny users="*" />
</authorization>

126

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

When attempting to browse to any page in the application, you must log in as the Admin user to suc-
cessfully reach the page. However, you can add a web. config configuration file into Directory A with
the following authorization rule:

<authorization>
<allow users="DirectoryAUser" />
</authorization>

Now both the Admin user and the DirectoryAUser can access the web page located in Directory A.
The reason for this is that, as mentioned earlier, AuthorizationSection merges authorization rules
from the bottom up. The result of defining rules in a web. config configuration file located in a subdi-
rectory as well as in the application’s web . config configuration file is the following evaluation order:

1. First, rules from Directory A are evaluated.

2. If no match is found based on the combination of verbs, users and roles, then the rules from the
application’s web. config configuration file are evaluated.

3. If no match was found using the application’s web. config configuration file, then the root
web. config configuration file located in the framework CONFIG directory is evaluated.
Remember that the default authorization configuration grants access to all users.

With this evaluation order, DirectoryaAUser matches the rule defined in the web. config configura-
tion file located in Directory A. However, for the Admin user, no rules matched, so instead the rules in
the application’s web. config configuration file are consulted.

Now add a third web. config configuration file, this time dropping it into Directory B. This configura-
tion file defines the following authorization rule:

<authorization>
<allow users="DirectoryBUser" />
</authorization>

Because the evaluation order for accessing pages in Directory B will first reference the web.config
configuration file from Directory B, the DirectoryBUser has access to files in the directory. If you log
in though with DirectoryAUser, you will find that you can still access the files in Directory B. The
reason is that when there is a rule evaluation miss from the web . config configuration file in Directory
B, ASPNET moves up the configuration hierarchy to next available web. config configuration file—in
this case, the one located in Directory A. Because that web. config configuration file grants access to
DirectoryAUser, that user can also access all resources in Directory B. The same effect of hierarchal
configuration evaluation allows the Admin user access to the all resources in Directory B because the
application’s web . config configuration file grants access to Admin.

You can also get the same effect, and still centralize authorization rules in a single configuration file, by
using <location /> configuration elements. Using <location /> tags, the authorization rules for the
subdirectories are instead defined in the application’s main web. config configuration file:

<system.web>
<authorization>
<allow users="Admin"/>
<deny users="*" />
</authorization>
</system.web>

127

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

<location path="Directory_ A">
<system.web>
<authorization>
<allow users="DirectoryAUser" />
</authorization>
</system.web>
</location>

<location path="Directory A/Directory_ B">
<system.web>
<authorization>
<allow users="DirectoryBUser" />
</authorization>
</system.web>
</location>

You will have the exact the same login behavior as described earlier when using separate web. config
configuration files. The configuration system treats each <location /> tag as a logically separate
“configuration” file. The end result is that even though the authorization rules are defined in the same
physical web. config configuration file, the <location /> tags preserve the hierarchal nature of the
configuration definitions.

Developers sometimes want to control configuration in a central configuration file for an entire web
server but are unsure of the value to use for the path attribute when referencing individual web appli-
cations. For example, if you want to centrally define configuration for an application called “Test”
located in the Default Web Site in IIS, you can use the following <location /> definition:

<location path="Default Web Site/Test" />

So far, the sample application has demonstrated the hierarchal merge behavior of different configura-
tion files and different <location /> elements. If the authorization rule for the Admin user is reversed
with the deny rule:

<authorization>
<deny users="*" />
<allow users="Admin"/>
</authorization>

the Admin user can no longer access any of the pages. The behavior for DirectoryBUser and Directorya
User remains the same because the other <location /> elements grant these users access. But when the
last set of authorization rules are evaluated, the blanket <deny /> is evaluated first. As a result, any autho-

rization evaluation that reaches this <authorization /> element always results in access being denied.

Note that even though the previous samples relied on authorizing based on the user’s name; the same
logic applies when authorizing based on verb or based on a set of one or more roles.

Of course, what cannot be shown here (but you will see the behavior if you download and try out the
sample) is the behavior when UrlAuthorizationModule denies access to a user. When the module
denies access, it sets Response. StatusCode to 401, writes out some custom error text in the response,
and then short circuits the request by rerouting it to the Endrequest event (basically, the same behavior
as the FileAuthorizationModule). However, for those of you that have used URL authorization before,

128

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

you know that typically you do not see an access denied error page. Instead, in the case of forms authen-
tication, the browser user is redirected to the login page configured for forms authentication. If an appli-
cation is using Windows authentication and configured to run in the Classic mode, the 401 is a signal to
IIS to attempt to negotiate credentials with the browser based on the application’s security settings in IIS.
If, however, the application is configured to run in the new Intgrated mode and Windows authentication
is enabled, the user will get the chance to see the error text on the screen. Again this is because the appli-
cation is running in the unified processing pipeline. When the AuthorizeRegesut event fires IIS run-
time checks the configured authorization modules. If a native authorization module is enabled, IIS core
engine starts executing it and if there is a managed authorization module enabled, ASPNET will take
care of processing the authorization process, let it be file or URL authorization

How Character Sets Affect URL Authorization

The character set used to populate the ITPrincipal on the context’s User property plays an important
role when authorizing access with UrlAuthorizationModule. When performing an access check based
on the users attribute defined for an authorization rule, Ur1AuthorizationModule performs a case-
insensitive string comparison with the value from HttpContext.Current.User.Name. Furthermore,
the comparison is made using the casing rules for the invariant culture and ordering rules based on
ordinal sort ordering.

Because of this, there may be subtle mismatches in character comparisons due to a different character
set being used for the value of a username. For example, the Membership feature in ASPNET 3.5 stores
usernames in a SQL Server database by default. If a website selects a different collation order than the
default Latin collation, the character comparison rules that are applied at user creation time will not be
the same as the comparison rules Ur1AuthorizationModule applies when comparing usernames.

Overall though, there are two simple approaches to avoid any problems caused by using different char-
acter sets for user creation and user authorization:

0 Do not authorize based on usernames. Instead, only authorize based on roles because the likeli-
hood of any organization creating two role names that differ only in characters with culture-
specific semantics is extremely low.

0 Use a character set/collation order in your back-end user store that is a close match with the
invariant culture. For SQL Server, the default Latin collation is a pretty close approximation
of the invariant culture. If you are authorizing against windowsIdentity instances, then you
won’t encounter a problem because usernames in Active Directory are just plain Unicode
strings without culture-specific character handling.

Native UrlAuthorizationModule

IIS 7.0 introduces a new native URLAuthorizationModule that allows administrators or developers to
configure URL authorization for an entire application or for a single page within the application. It is a
much advanced and improved module over the previous authorization modules that used to ship with
previous releases of IIS. Before the days of IIS 7.0, authorization was based on ACLs and Windows
accounts only. This means that when you want to set authorization rules for Windows users or groups
on resources in an application, you would configure ACLs for specific files or folders located in an
application. Depending on ACLs only, limits the authorization to files and folder only, without being
able to use this feature for real URLs. In addition, in previous releases of IIS, only Windows accounts or
groups can be used for file or folder authorization.

129

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

The new native URLAuthorizationModule introduced by IIS 7.0 has many features:

Q It can be used to enable authorization for all content types served by IIS. This means, you can
enable the new module to authorize access for an entire application regardless of the content file
types included inside it.

Q It enables authorization rules for both Windows and non-Windows user accounts. Non-Win-
dows user accounts can be users configured with the application’s ASP.NET Membership and
Role management services.

Q It can be used to enable authorization for an entire application or for a specific page URL within
an application.

Q It has the ability to function properly when the managed FormsAuthenticationModule is
enabled. The native URLAuthorizationModule can detect and parse FormsAuthenticion
Tickets, hence being able to retrieve the authenticated username of the current request and
execute the authorization rules to authorize the currently authenticated user.

IIS 7.0 supports the new native module by shipping a new authorization rules Ul interface. Selecting an
application in the Features View of IIS, you will notice a new icon called Authorization Rules. Figure 3-8
shows the new Ul displayed when the Authorization Rules icon is double-clicked.

Add Allow Authorization Rule [7 &=
Allowr access to this Web content to:
() All Users
(21 All Anonymous Users

(") Specified roles or user groups:

Example: Admin, Guest

() Specified users:

Example: Userl, User2

E‘ Apply this rule to specific verbs:

Example: GET, POST

Figure 3-8

On the Actions menu you see two links to configure the authorization rules for an application. The
Add Allow Rule... is used to add a new Allow authorization rule to allow a user or group to access the
application. On the other hand, the Add Deny Rule... is used to provide a Deny rule to prevent a user or
group from accessing the application.

Both links have a similar Ul window. The only difference is that one will add an 211ow rule and the
other will add a Deny rule.

Figure 3-9 shows the UI window that ships with IIS 7.0 to configure URL authorization rules.

130

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

=T e

!@ C) [0 BHADaRDc » WesSae o Defaut Web St 5 Ulduthorizatien WS e-

|[Bie] oew e

| ‘) Authorization Rules

W5 EHANARPE Pohaiciar PO Bhaldar)
3 Mpphcation Pooli
%g I Sl Mode e Rates Werbs Erry
) wen Site
@ Defauit Web Site

U £ Peature 10 speofy rules Tar aUIRITDRG 1er 1 Broess applicatiear

Deny admin Lo

390, ode
1 mpart_dient
i aspne_Secuntyigentities
ampnerages
¥ Baucttizpmodule
B BaiHitsModule vb
3 Cosebsemstientanuis
¥ coceroomattetmodule v
B Empleyeetuandiee
¥ Umplopeerandier v
¥ ForesiwinFermy
B wimag
(¥ Pomautnenticatenecuest
¥ ReportissgLms
¥ ReportienrisQLan
¥ secunitisentities
¥ secuntytsentities ve
3 smosefomatamgie
F Lidauthesisation

Figure 3-9

You can add URL authorization rules based on the following criteria:

Q To allow all users to access the application
QO To allow only anonymous users to access the application

0 To allow specific role(s) or group(s) to access the application. You can specify multiple roles
or users separated by a comma (,) and can be mixed between Windows groups and ASP.NET
roles.

0 To allow specific users to access the application. You can specify multiple users separated by a
comma (,) and can be mixed between Windows users and ASP.NET Membership users.

You can also apply the rule you add to a specific verb by setting the value of the last textbox on the Ul
window.

If you look back at Figure 3-9, you will notice two handy links to add ASP.NET users and roles. If you
have already enabled membership and role management services in an application, you will be able to
view the list of all users and roles that are stored in the database of the application. Figure 3-10 shows a
listing of users that are configured in the application.

These steps show you how to configure URL authorization for an entire application. What if you want
to configure URL authorization for a single page? This task has been made easy with the new native
authorization module. Click the application name on the tree of applications in the IIS 7.0 Manager tool,
and then click the Content View tab. A list of all the resources inside the application is listed. Right-click
the specific resource and choose Switch to Features View. You will see a new node with the resource
name selected underneath the application on the tree of applications. Clicking this new node enables

131

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

you to configure different features per resource in IIS 7.0. You can now follow the same steps taken
above to add authorization rules for the specific resource in the application.

g‘ﬁ [BHADSRAC + Wik SAes » Defalt Wb S ¢ UrlAuthorication b

~ g NET Users po
- EHAIDARPC [ohaida PO Ehaida)

i Acpleatian Posts Théa e BIOWS FOU 13 iew AN manage 1he RSt of uier IderdRies defined in the asdliciis
s anpicaten The i s b 4 et wd
FIPsnes e securtyreiated opesstien
& wen sne - Frovden
@ Default Web Site e <~ Blio - Emewan | Grove by] wo
'8 :':“::“I"; nane Lmail Agdres Createa ustioon || @

- —— [baal _bhassargmad com L] L
v ¥ aunchages
Davstitpbiodule
BaiiHitgModule_sb
b ¥ ConebcematisMoauis
L ‘:‘ CodelormatterModule v
Emplapetiandicr
L *5 Lmpleyestandies v
[‘b Fettesol WithFarms

b g

L ‘:‘ PortauthentateRequest

b ¥ Repordi35013005
Reportiererss QLTS

L ‘% Secuntybsentitie;
Secuntyisentie

b Q SimgseFomstampie
Uilhulhaeization

15 Festures Vorw |12 Content Varm:

on: Diefait Wels SteUrdutharization’ web.sonfiy

Figure 3-10

Figure 3-11 shows the Features view for a specific selected resource.

G'ﬁ [E3s BHAIDARPC » WebSder » Defaslt WebSar » Uilduthorization b Delsullaip

Filr | view Hew

2!‘+| = i Defaultaspx Home ! —
BHAARPC [ohaidar PO Bhaide) = mﬁ......
o Apphiatian Posti Greup e Aies - E-

FIPSHes e L
&G wen sne I

2 Ele B & @ &

b 3o, cade | W | M METRote NFTTunt Appkoion Connrstion
B mphet gt | Compiation | Globakzstion Levels Settings Stings
F anme Seruntyidentites

b ¥ amnerages D I ‘)

b Daushtpsduie = :| L E,

1 2P BaiHitsModule vb Pagrsand Promders Sevion Sate STP Email
CodebeematieModule ‘Contrody

i ‘2‘ CodelormatterModule v
Emplayeetandier |3

» 5 Lmpleyeetandies v

S S e & B[@ o &

3 A saihentiest. Authoniben COJ wat mestory
% 4 FomtAutnenticateRecuest Fey Document Ssowaing
b ¥ RrpomiS5QL005
+ ¥ Repertsentrisalaoes % 3 ; .i.l a
+ 3 secuntdenttier @ m JF hal
O Seuntgientities e ErceBages Faded andier MIMETyper Medute $L Setlings
i L —— FequentTe_ Mapeings
o 2 Uilauthasisation
©-L Aee_Data
b] Duegtory A

Figure 3-11

132

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

The new native URLAuthorization module can also be configured using the web. config configura-
tion file of an application. The <authorization /> section located inside the <security /> section
group in the <system.webServer /> section group is used to configure URL authorization for an
application or a single page inside the web. config configuration file.

Figure 3-12 shows the hierarchy of a sample application that is used to demonstrate configuring native
URL authorization through configuration settings.

=T s

= fhio Events)
Autok

s

reup~~csue CodeFile=*Directoryh_befauic.as_|

nmidenenizs/

' 1C *-//HIC//DTD XMTML 1.0 Transiticoal//EH" "RiSe://wew.w:
Vikiyee, Seityldentin WIT//DTD XMTML 1.0 Transiticnal//m

| o
i O Loginmen

L webicontig
i

i v
G Design | O Spbt | & Sowre |

Figure 3-12

The application assumes the following settings:

0 AnonymousAuthenticationModule is enabled on IIS.

0 BasicAuthenticationModule is enabled on IIS.

In addition, two new Windows accounts have been created: bhaidar and test. These accounts will

be used with the basic authentication. The plan is to allow bhaidar to access the entire application and
deny access to the test account. In addition, the DirectoryA_Default.aspx page should allow access
to the test user account only.

To add the configuration settings, you can either use the IIS Manager tool or add the configuration set-
tings yourself into the web. config configuration file. We will select the second option for demonstra-

tion purposes.

First of all make sure the native URLAuthorizationModule is installed. Go to the application’s web
.config configuration file and locate the <system.webServer /> section group. You will need to add

133

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

a sub-section group called the <security /> section group. To enable URL authorization, you will
need to add the rules inside the <authorization /> section.

<system.webServer>

<security>
<authorization>
<remove users="*" roles="" verbs="" />

<add accessType="Allow" users="bhaidar" />
<add accessType="Deny" users="test" />
</authorization>
</security>
</system.webServer>

First of all, the default URL authorization rule added by IIS 7.0 is removed. To remove the default rule
completely, make sure to empty the roles and verbs attributes, and set * as the value for the users
attribute. Removing the authorization rule allows all users to access the application.

A new authorization rule is added to allow access to the Windows user account bhaidar. The access
Type attribute is an enumeration that can take as a value either A11ow or Deny. Another authorization
rule is added that denies the user test.

Inside the Directory_a, add a new web. config configuration file to configure the authorization rules
for the only . aspx page included inside it.

<location path="DirectoryA_Default.aspx">
<gystem.webServer>
<security>
<authorization>
<remove users="bhaidar" roles="" verbs="" />
<remove users="test" roles="" verbs="" />
<add accessType="Allow" users="test" />
</authorization>
</security>
</system.webServer>
</location>

A new location element is created to configure the authorization settings for a single . aspx page.
Going back to the requirements, only the test user account should be allowed access to this . aspx
page. Therefore, two new authorization rules are added to remove the propagating effect of the autho-
rization rule that was set at the application level and that grants access to the bhaidar user account. In
addition, you should also remove the propagation effect of the authorization rule that denies access to
the test account set on the application level. Finally, add a new authorization rule that allows access to
the test user account on the . aspx page.

A major difference between the managed URL authorization and the native URL authorization can be
summarized in the following:

QO Managed URL authorization is configured by default to serve only managed resources,
whereas the native URL authorization is enabled to serve all content types. This can be solved
by removing the managed URLAuthorizationModule entry and adding it once again by skip-
ping out the preCondition attribute or setting its value to an empty string (double quotes).

134

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

0 Managed URL authorization starts calculating the authorization rules following the Bottom-
up strategy that has been previously explained. On the other hand, the native URL authoriza-
tion calculates the authorization rules following the top-down strategy meaning that authorization
rules at the parent will be evaluated first. In addition, the native URLAuthorizationModule
evaluates Deny rules before evaluating the A11ow rules.

IIS will execute the enabled modules according to their order of appearance when they were regis-
tered in the <module /> configuration section with the exception of programmatic ordering that only
native modules can do. The same rule applies on the managed and native URLAuthorizationModules.
Depending on the order of appearance, those modules would execute. The important thing to remem-
ber here is that no matter who runs and executes first, any of the aforementioned modules, if the autho-
rization process fails, the SkipAuthorization property on the HttpContext class will be set to true.
For instance, if the native module runs first and the authorization process fails, when it is time for the
managed module to run, it will check the skipAuthorization property. If the value is true, then the
managed module will not run, else it will run and authorize the request.

PostAuthorizeRequest Through
PreRequestHandlerExecute

After the AuthorizeRequest event, developers can hook the PostAuthorizeRequest event if there is
custom authorization work that needs to be performed. ASPNET does not ship with any HttpModules
that hook this event. After PostAuthorizeRequest, there are no other pipeline events intended for
authentication- or authorization-related processing. Although many of the subsequent pipeline events
may use the identity of the current user, the pipeline events up through PreRequestHandlerExecute
are intended for setting up and initializing other information, such as session state data or cached
information used by output and fragment caching.

Technically, you could manipulate the operating system thread identity, the current thread principal, or
the current context’s User property during any subsequent pipeline event. However, there is an implicit
assumption that after PostAuthenticateRequest the security information for the request is stable,
and that after PostAuthorizeRequest no additional authorization is necessary. Because the pipeline
events after PostAuthorizeRequest are involved in retrieving data tied to a user identity (state and
cached data), it is important that any custom authentication or authorization mechanism honors these
assumptions.

Blocking Requests at the IIS Level

IIS 7.0 replaces the old URLScan security add-on with a new native module, RequestFiltering mod-
ule. The new module is configurable through the configuration settings just like any other native mod-
ule configured in the ApplicationHost.config configuration file. The module includes all the core
features of the URLScan add-on and adds a new feature called Hidden Segments.

If you open the ApplicationHost .config configuration file, you will notice the <requestFiltering />
configuration section group:

<security>

<requestFiltering>
<fileExtensions allowUnlisted="true">

135

Chapter 3: HTTP Request Processing in IIS 7.0 Integrated Model

<add fileExtension=".asax" allowed="false" />
<add fileExtension=".ascx" allowed="false" />
<add fileExtension=".master" allowed="false" />

<add fileExtension=".cs" allowed="false" />
<add fileExtension=".vsdisco" allowed="false" />
</fileExtensions>
<verbs allowUnlisted="true" />
<hiddenSegments>
<add segment="web.config" />
<add segment="bin" />
<add segment="App_code" />
<add segment="App_GlobalResources" />
<add segment="App_LocalResources" />
<add segment="App_WebReferences" />
<add segment="App_Data" />
<add segment="App_Browsers" />
</hiddenSegments>
</requestFiltering>
</security>

The <fileExtensions /> configuration section lists all the file extensions that are not allowed to be
accessed directly by users. For instance, you may notice an entry for the . ascx extension, which repre-
sents the extension for ASPNET UserControls.

In addition, the allowUnlisted attribute is a Boolean value, which takes either false or true. By
default, it has the value of true. This means the <fileExtensions /> configuration section allows
requests to all the file types except those listed inside it.

The RequestFiltering module runs before any request-processing pipeline happens inside the IIS
engine. That is why ASPNET now delegates preventing access to sensitive file type extensions to this
native module. This is done by listing all the file type extensions for which ASP.NET has configured
HttpHandlers to prevent access.

As with other configuration sections, you can configure the file extensions from inside the application’s
web. config configuration file. For instance, to prevent access to content file types with an extension of
.asp, you add the following to the configuration file:

<gystem.webServer>
<security>
<requestFiltering>
<fileExtensions allowUnlisted="true">
<add allowed="false" fileExtension=".asp"/>
</fileExtensions>
</requestFiltering>
</security>
</system.webServer>

When a resource with an extension of . asp is requested through the browser, an error page prepared
by the IIS engine is displayed to the user, as shown in Figure 3-13.

136

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

T=Tw

<] % || cove Seamen B

ettt enngample ot Allowed. Page acp

| hr | 8 IS 70 Detaded Ervnr - 304.7 . Nt Found Bt v B v v ik e v i Tosin

Server Error in Application "Default Web Site/RequestFilteringSample"”

HTTP Error 404.7 - Not Found

Description: The recuest Mering module i configured io deny the fle exterain
Error Cote: 000000090
Mot atiom: Bagriingies
Module: RecuestfRarnghiodue
URL: b Sawed-Page. oo
Physical Path: Cunstutivwwins T8 _cde 37001 603, codics FauestF lermgTangiiol Aswed: Bage aaj

Logon User: Hio: yet Setermined
Logon Hetlvud: it yel Setsrmmned
Hoarullme: ASPCRALe

Most likely couses:

= Begwest Bisiing i combgured for an the e wrtemaen
What you can try:

® Verify fhe confguraonysiem webServer! % seftings i t weh confg

Hors Informalion,., Tha a.s scuy frstre: D nel change this leaburs sriess the scepe of e chasge i fuly inderalzod 8 lhs e extensins fot Ihe rerurat sheskd be alowed remerve e
arumed Tie axtarmis fraem

Serwer Versson Dnformation: bisost nfomeios Seess 70

Daong (5 € wasemal | Protscied Moda: OF Hiow -

Figure 3-13

You have full control over the allowed and prevented extensions in an application. But remember that
the <requestFilering /> configuration section group is locked down by default and to be able to edit
its sections in the application’s web. config configuration file, the module’s overrideModeDefault
attribute should be set to A11ow in the ApplicationHost.config configuration file.

<section name="requestFiltering" overrideModeDefault="Allow" />

Another important configuration section inside the <requestFiltering /> configuration section
group is the <hiddenSegments /> section. You can use this section to reject URLs that contain
certain segments. For instance, if you try to access a URL such as http://localhost/Request
FilteringSample/bin/, you will get an error page prepared by IIS that mentions the existence of
a hiddenSegment that denies access to URLs containing the bin segment. In addition, all ASP.NET
system folders are added to this section and considered to be sensitive segments that no URL should
have direct access to. You can also add any segment you want to the default list found in the
ApplicationHost.config configuration file. IIS makes sure to reject any direct access to

the hidden segments specified.

The RequestFiltering module has several important security features that are worth looking at. You
can read more on this new native module by checking the online resource at http://learn.iis.net/
page.aspx/143/how-to-use-request-filtering/.

Identity during Asynchronous Page Execution

Earlier in the chapter, I discussed issues with flowing security identities through asynchronous pipe-
line event handlers. The Page handler in ASP.NET 3.5 also supports the concept of asynchronous execu-
tion, and as a result, developers using this functionality should be aware of the security identities for
this case.

137

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

Things can be a little confusing with asynchronous pages because the page class supports two different
patterns for carrying out asynchronous tasks. Both approaches, along with the flow of security informa-
tion, are discussed in the next two sections.

Asynchronous PreRender Processing

A developer can request asynchronous support in a page by including the Async attribute in the page
directive:

C#

<%@ Page Language="C#" Async="true" %>

VB.NET

<%@ Page Language="VB" Async="true" %>

To leverage this asynchronous page model, you need to register begin and end event handlers for your
asynchronous task. This approach is exactly the same model as discussed earlier for asynchronous
pipeline events. You typically hook up the async begin and end event handlers inside of a page or con-
trol event where a long-running task would normally occur. For example, instead of making a call to a
high-latency Web Service from inside of a button click event handler, you would instead register your
asynchronous event handlers in the click event handler. Furthermore, you can hook up multiple begin
and end event handlers, and ASPNET will call each pair of asynchronous event handlers in sequence.

ASPNET calls into your async begin event handler after the PreRender phase of the page life cycle.
The idea is that high-latency work can be safely deferred until the PrerRender phase because the results
of any processing are not needed until the subsequent Render phase of a Page. Inside of your async
begin event handler, you collect whatever data you need to pass to your asynchronous task (page vari-
ables, context data, and so on), and then you invoke the asynchronous task. As with asynchronous pipe-
line events, the asynchronous task that is called during asynchronous page processing runs on a .NET
thread-pool thread. This means it is your responsibility to gather any necessary security information
and “throw it over the wall” to the asynchronous task.

After some indeterminate amount of time has passed, the asynchronous task completes and the ASPNET
runtime is signaled via a callback. Just as you saw with asynchronous pipeline events, the async end
event for pages executes on a thread-pool thread. The operating system thread identity at this point
will not reflect the security settings you have set in IIS and ASP.NET. Note though that if you imple-
ment your async begin and end event handlers as part of the page’s code-behind class, you can always
get back to the Ht tpContext associated with the page (that is, this.Context is available). This at least
gives you access to the IPrincipal associated with the request from inside of both the async begin
and end event handlers.

After the end event handler runs, ASPNET reschedules the page for execution, at which point ASPNET
reinitializes the operating system thread identity, managed thread identity, and the HttpContext
(including its associated IPrincipal) for the current managed thread.

To demonstrate the security identity handling during asynchronous page execution, you can create an
application with a single asynchronous page that registers for asynchronous preRender handling. The
page has a single button on it, and the application registers the async begin and end event handlers in
its click event.

138

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

C#

protected void Buttonl_Click(object sender, EventArgs e)

{
//Hook up the async begin and end events
BeginEventHandler bh = new BeginEventHandler (this.BeginAsyncPageProcessing) ;
EndEventHandler eh = new EndEventHandler (this.EndAsyncPageProcessing) ;

AddOnPreRenderCompleteAsync (bh, eh);

VB.NET

Protected Sub Buttonl_Click(ByVal sender As Object, ByVal e As EventArgs)
'Hook up the async begin and end events
Dim bh As New BeginEventHandler (AddressOf Me.BeginAsyncPageProcessing)
Dim eh As New EndEventHandler (AddressOf Me.EndAsyncPageProcessing)

AddOnPreRenderCompleteAsync (bh, eh)
End Sub

Notice that the event handler delegates are of the exact same type used with asynchronous pipeline
events. The async begin handler is responsible for triggering the asynchronous work and returns the
IAsyncResult reference to ASP.NET.

C#

// Defined as part of the page class
public delegate void AsyncSleepDelegate() ;

private IAsyncResult BeginAsyncPageProcessing (
object sender, EventArgs e, AsyncCallback cb, object extraData)

//Output the security information
//.. code snipped out for brevity ..

//Do the actual asynchronous work

Sleep s = new Sleep(this.Context.Items) ;
AsyncSleepDelegate asd = new AsyncSleepDelegate (s.DoWork) ;
return asd.BeginInvoke(cb, asd);

VB.NET

Defined as part of the page class
Public Delegate Sub AsyncSleepDelegate ()

Private Function BeginAsyncPageProcessing(ByVal sender As Object,
ByVal e As EventArgs,
ByVal cb As AsyncCallback,
ByVal extraData As Object)
As IAsyncResult

'Output the security information

139

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

As with the asynchronous pipeline event sample, the asynchronous page uses a simple class that sleeps
for one second to simulate a long-running task. A reference to the current HttpContext is passed in the

The async end event handler in the sample application just outputs more security identity information.
In a real application, you would gather the results of the asynchronous work and probably set the val-

code snipped out for brevity ..

'Do the actual asynchronous work
Dim s As New Sleep (Me.Context.Items)
Dim asd As New AsyncSleepDelegate (AddressOf s.DoWork)
Return asd.BeginInvoke(cb, asd)
End Function

ues of various controls on the page or perhaps data-bind the results to one of the data controls.

C#

private void EndAsyncPageProcessing (IAsyncResult ar)

{

//Normally you would harvest the results of async processing here

AsyncSleepDelegate asd = (AsyncSleepDelegate)ar.AsyncState;
asd.EndInvoke (ar) ;

//Output security information
//.. code snipped out for brevity ..

VB.NET

Private Sub EndAsyncPageProcessing(ByVal ar As IAsyncResult)
'Normally you would harvest the results of async processing here

Dim asd As AsyncSleepDelegate = CType (ar.AsyncState, AsyncSleepDelegate)
asd.EndInvoke (ar)

'Output the security information
! code snipped out for brevity ..

End Sub

constructor so that the class can log the operating system thread identity.

140

C#

public class Sleep

{

private IDictionary state;

public Sleep(IDictionary appState)
{
state = appState;

public void DoWork ()
{

state["AsyncWorkerClass_OperatingSystemThreadIdentity"] =

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

WindowsIdentity.GetCurrent () .Name;
Thread.Sleep(1000) ;

VB.NET

Public Class Sleep
Private state As IDictionary

Public Sub New(ByVal appState As IDictionary)
state = appState
End Sub

Public Sub DoWork ()
state ("AsyncWorkerClass_OperatingSystemThreadIdentity") =
WindowsIdentity.GetCurrent () .Name ()
Thread.Sleep(1000)
End Sub

End Class
I'ran the sample application with the following IIS and ASP.NET configuration settings:

1. The application ran locally on the web server.
2. Authenticated access was required in IIS.

3. Anexplicit application impersonation identity was used for ASP.NET.
The results of running the application with this configuration are shown here:

The 0S thread identity during the beginning of page async processing is:
bhaidar-PC\test

The 0S thread identity in the async worker class is: NT AUTHORITY\NETWORK SERVICE
The 0OS thread identity during the end of page async processing is: NT AUTHORITY\
NETWORK SERVICE

The 0S thread identity in Render is: bhaidar-PC\test

You can see that the background worker and the end event run with the default credentials of the
process, despite the fact that the ASPNET application is configured with application impersonation.
Once the page starts running again in the Render event, though, ASPNET has reinitialized all of the
security information, and the application impersonation identity is once again used for the operating
system thread identity. The exact same approaches for flowing credentials discussed earlier in the sec-
tion “Thread Identity and Asynchronous Pipeline Events” also apply to the asynchronous PrerRender
processing.

Asynchronous Page Using PageAsyncTask

An alternative approach to attributing a page as being is the concept of asynchronous page tasks. This
second approach has many similarities to the previous discussion. As a developer, you still need to del-
egate your high-latency work as a piece of asynchronous processing. Additionally, you hook into the
PageAsyncTask-based processing with a pair of begin and end event handlers.

141

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

However, there are some important differences in the PageAsyncTask approach. You can create one or
more asynchronous units of work, wrap each piece of work with individual PageAsyncTask instances,
and then hand all of the work off as a single “package” to the page. With the PreRender-based approach,
handling multiple asynchronous tasks is a little more awkward because you either have to coalesce all
of the work yourself inside of a custom class, or you have to carefully hook up a chain of begin and end
event handlers.

Also, when you are wrapping your asynchronous work, you can pass a timeout handler to the
PageAsyncTask that will execute if your asynchronous work takes too long. The actual timeout that

is honored for each piece of asynchronous work defaults to 45 seconds, though this can be changed

by setting the AsyncTimeout property on the page, or by setting an application-wide default in the
<pages /> configuration section. There is also an option to allow all or some of the asynchronous work
to execute in parallel. For example, if a web page required three lengthy web service calls to fetch data,
you could indicate to ASP.NET that all three asynchronous tasks should be kicked off in parallel on
separate worker threads.

Once you have wrapped your asynchronous task with one or more instances of PageAsyncTask, you
register the instances with the Page using the RegisteraAsyncTask method. At this point, you have
one of two options: you can do nothing else, in which case ASP.NET will call your asynchronous work
immediately after the PreRender event. You can also take control of exactly when you want the page
to stop normal processing by explicitly calling the ExecuteRegisteredAsyncTasks method. Person-
ally, I think it is more intuitive to explicitly trigger asynchronous processing in a click event handler, as
opposed to waiting for the default PreRender processing,.

Up to this point, the differences between PageAsycTask-based processing and the default PreRender
processing have all been in the area of programmability and flexibility. The interesting security behav-
ior around PageAsyncTask-based processing is that ASP.NET will actually reinitialize the operating
system thread identity, managed thread identity, and HttpContext for the end event handler. Note that
you are still responsible for flowing security information to your asynchronous work, but now ASPNET
at least ensures a balanced set of security information in both the begin and end event handlers.

To highlight this behavior, modify the PreRender example to instead use a PageAsyncTask. The only
difference is that the button click handler has been modified:

C#

protected void Buttonl_Click(object sender, EventArgs e)
{
//Hook up the async begin and end events
//using the PageAsyncTask pattern
BeginEventHandler bh =
new BeginEventHandler (this.BeginAsyncPageProcessing) ;
EndEventHandler eh =
new EndEventHandler (this.EndAsyncPageProcessing) ;

Object someState = new Object();
PageAsyncTask pt = new PageAsyncTask(bh, eh, null, someState);

this.RegisterAsyncTask (pt) ;

//Explicitly trigger the async page task at this point

142

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

//rather than waiting for PreRender to occur
this.ExecuteRegisteredAsyncTasks () ;

VB.NET

Protected Sub Buttonl_Click(ByVal sender As Object, ByVal e As EventArgs)
'Hook up the async begin and end events
'using the PageAsyncTask pattern
Dim bh As New BeginEventHandler (AddressOf Me.BeginAsyncPageProcessing)
Dim eh As New EndEventHandler (AddressOf Me.EndAsyncPageProcessing)

Dim someState As New Object ()
Dim pt As New PageAsyncTask(bh, eh, Nothing, someState)

Me.RegisterAsyncTask (pt)

'Explicitly trigger the async page task at this point
'rather than waiting for PreRender to occur
Me.ExecuteRegisteredAsyncTasks ()

End Sub

Notice that the begin and end event handlers use the same definitions. However, instead of calling
AddonPreRenderCompleteAsync, the page wraps the event handlers in an instance of PageAsyncTask
(in this case, no timeout event handler is registered) and registers the asynchronous task with the page.
Last, the button click event handler explicitly triggers the execution of the asynchronous work.

Everything else in the sample application remains the same. Running with the same IIS and ASP.NET
configuration as before (local application, application impersonation enabled, authenticated access
required in IIS), the output looks like this:

The 0S thread identity during the beginning of page async processing is:
bhaidar-PC\test

The OS thread identity in the async worker class is: NT AUTHORITY\NETWORK SERVICE
The 0S thread identity during the end of page async processing is: bhaidar-PC\test
The 0S thread identity in Render is: bhaidar-PC\test

As you can see, the third line of output with the operating system thread identity shows that ASPNET
has restored the application impersonation identity on the thread. Although it is not shown in the out-
put, the IPrincipal available from both Thread.CurrentPrincipal and the context’s User property
correctly reflect the authenticated user in both the begin and end event handlers. Remember, though,
that you cannot rely on the value of Thread.CurrentPrincipal in the asynchronous work itself for
the reasons discussed earlier in the asynchronous pipeline section.

EndRequest

The Endrequest event is the last event in the unified request-processing pipeline. Once a request
starts running in the pipeline, situations can occur that result in termination of the request. As a result,
EndRequest is the only pipeline event that is guaranteed to occur after BeginRequest. Terminating a
request usually results in bypassing all remaining pipeline events and going directly to EndRequest,
with the exception introduced in ASPNET 3.5, which is the LogRequest event that will also get fired
even if an error occurred in the processing of the current request.

143

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

If you remember the discussion of the AuthenticateRequest and AuthorizeRequest events,
DefaultAuthenticationModule, FileAuthorizationModule, and UrlAuthorizationModule all
have the capability to forward a request directly to the EndRequest event.

Because EndRequest is guaranteed to always run, it is a convenient place in the pipeline to perform
cleanup tasks or final processing that absolutely must run at the completion of a request. Aside from
security-related processing, Endrequest is also used by other ASP.NET code such as the Session
StateModule to ensure that session teardown and persistence always occur.

For security purposes, the event is used by FormsAuthenticationModule to carry out custom actions
when an unauthenticated user attempts to access a protected resource. The FormsAuthentication
Module relies on the value of Response. StatusCode to determine whether any special end request
processing is necessary. Because forms authentication is the most common authentication mode used
for Internet-facing ASP.NET sites, we will concentrate on what the FormsAuthenticationModule
does during this event.

During AuthenticateRequest, the FormsAuthenticationModule is only concerned with verifying
the forms authentication ticket and attaching a FormsIdentity to the current HttpContext. However,
you know that the forms authentication feature supports the ability to automatically redirect unauthen-
ticated users to a login page. FormsAuthenticationModule supports this functionality by checking
the Response. StatusCode property for each request during EndRequest. If it sees that StatusCode
is set to 401 (and, of course, if the authentication mode is set to forms), then the module fetches the cur-
rently configured redirect URL for logins and appends to it a query-string variable called Returnurl.
This query-string variable is assigned the value of the currently requested path plus any query string
variables associated with the current request. Then FormsAuthenticationModule issues a redirect to
the browser telling it to navigate to the redirect URL.

Although FormsauthenticationModule itself never sets a 401 status code, you saw earlier that both
FileAuthorizationModule and UrlAuthorizationModule will set a 401 status code if either module
determines that the user for the current request does not have access to the requested resource.

As an extremely simple example, if you author a page on a site that is configured with forms authentica-
tion and put the following code in the Load event:

Response.StatusCode = 401;

After the page completes, the browser is redirected to the forms authentication login page because of
the 401. In a production application though you would use a custom HTTP module or hook one of the
Authenticate events and set the StatusCode there instead.

Summary

On each ASP.NET request, there are four different security identities to be aware of:

Q The operating system thread identity.

Q The request authenticated identity set by IIS.

Q The IPrincipal available on Thread.CurrentPrincipal.
Q

The IPrincipal available from HttpContext.Current .User

144

Chapter 3: HTTP Request Processing in IS 7.0 Integrated Model

If you are using Windows authentication in your ASPNET application, then the impersonation token from
IIS is used to create a WindowsIdentity for both the current thread and the current context. If the cur-
rent request is an anonymous user, then the windowsIdentity is just the value of windowsIdentity
.GetAnonymous. For authenticated users, the WindowsIdentity represents the authenticated user cre-
dentials from the IIS impersonation token. For applications running on a UNC share, the Windows
Identity that is created represents either the anonymous user account configured in IIS or the cre-
dentials that were used to authenticate the user.

If you are using forms authentication, though, the impersonation token set by IIS has no bearing

on the security information set on the thread and the context. Instead, for authenticated users, the
FormsAuthenticationModule will create a GenericPrincipal containing a FormsIdentity and
set this value on the current context’s User property.

If no authentication module sets an IPrincipal on the current context’s user property, the hidden
DefaultAuthenticationModule will create a GenericPrincipal with a username set to the empty
string and set this value on the current context’s User property. This module is also responsible for syn-
chronizing the value of the User property with Thread.CurrentPrincipal.

The operating system thread identity starts out as the identity of the IIS6 worker process. However, if
the ASP.NET application is running locally and is using client impersonation, then ASP.NET uses the
IIS impersonation token to switch the operating system thread identity. If the application is running
on a UNC share though, then the operating system thread identity is that of the explicit UNC creden-
tials configured in IIS. If application impersonation is used (regardless of running on a UNC share),
ASPNET switches the operating system thread identity to match the credentials of the application
impersonation account.

After all of the security identity information is established, developers still need to be careful when
dealing with asynchronous pipeline events and asynchronous page handling. The main thing to
remember is that you need to pass any required security information over to the asynchronous tasks.
Neither ASPNET nor the .NET Framework will automatically propagate security identities to asynchro-
nous tasks, though there are some .NET Framework classes that make it pretty easy to accomplish this.

Furthermore, a new native module has been introduced in IIS 7.0 named RequestFiltering module
that allows administrators and developers, at the IIS level, to block access to requests based on the file
type extensions. The extensions can be existing ones like .asp, .aspx, .xml, and so forth, or new cus-
tomized file extensions. It can be configured through the application’s web. config configuration file.
In addition, this module gives a variety of handy features to manage the security of a request including
a special section to define hidden segments, in such a way that if any of the listed hidden segments is
found in the URL of a request, the request is automatically rejected by IIS runtime.

145

A Matter of Trust

The topics discussed so far have centered on various pieces of security information: encryption
key material, security identities, authentication and authorization, and so on. They dealt with secu-
rity decisions that were tied to some concept of identity. The security identity may have been that
of the browser user, or it may have been the identity of the running process.

A different aspect of ASPNET security uses the .NET Framework code access security (CAS) func-
tionality to secure the code that runs in an ASP.NET site. Although the concept of code having its

own set of rights has been around since the first version of the NET Framework, more often than not
the actual use of CAS by developers has been limited. In large part, this has been due to the complex-
ities of understanding just what CAS is as well as how to effectively use CAS with your code.

ASP.NET 1.1 substantially reduced the learning curve with CAS by introducing the concept of
ASPNET trust levels. In essence, an ASP.NET trust level defines the set of rights that you are will-
ing to grant to an application’s code. This chapter thoroughly reviews the concept of ASPNET
trust levels, as well as new features in ASP.NET 3.5 around enforcement of trust levels that have
not changed since ASP.NET 2.0

You will learn about the following areas of ASPNET trust levels:

0 Configuring and working with ASP.NET trust levels.

What an ASP.NET trust level looks like.

How a trust level definition actually works.

Creating your own custom trust levels.

Details on frequently asked questions for trust level customizations.

A review of all the permissions defined in ASP.NET trust policy files.

L R T I I

Advanced topics on writing code for partial trust environments.

Chapter 4: A Matter of Trust

What Is an ASP.NET Trust Level?

ASPNET 1.1, ASP.NET 2.0, and ASPNET 3.5 have the concept of trust levels. In a nutshell, a trust level
is a declarative representation of security rules that defines the set of NET Framework classes your
ASPNET code can call as well as a set of NET Framework features that your ASP.NET code can use.
The declarative representation of this information is called a trust policy file. Because a trust level is

a declarative representation, you can view the definitions of trust levels by looking at the trust policy
files on disk, and you can edit these files to suit your needs. When you configure an ASPNET site with a
specific trust level, the application is said to be running in XYZ trust (where XYZ is specific trust level).
Much of the code that runs in an ASP.NET application and certainly all of the code you write in code-
behind files is restricted by the rules defined for the current trust level. Note that ASPNET trust levels
apply to only ASPNET applications. Console applications, NT services, Winforms, and other applica-
tions still rely on a developer understanding the NET Framework CAS features. Currently, no other
execution environments provide a developer-friendly CAS abstraction like ASP.NET trust levels do.

The specific trust levels that ship with ASPNET 1.1, ASPNET 2.0, and ASP.NET 3.5 (no new trust levels
were added in ASP.NET 3.5) are listed here from the most permissive to the most restrictive trust level:

d Full trust
High trust
Medium trust

Q
a
U Low trust
Q

Minimal trust

When trust levels were introduced in ASP.NET 1.1, the decision was made to default all ASPNET
applications to Full trust. Because many ASP.NET sites were already written with the 1.0 version of
the framework, it was considered too much of a breaking change to default ASP.NET applications to a
more restrictive trust level. In ASPNET 3.5 this is also the case, with all ASP.NET 3.5 applications also
defaulting to Full trust.

As the name implies, Full trust code can use any class in the .NET Framework and perform any privi-
leged operation available to managed code. However, I admit that this is a pretty theoretical descrip-
tion of Full trust. A much simpler way to think of Full trust is that your code can call any arbitrary
Win32 API. For most IT developer shops this may not be a particularly big deal, especially because
you could already call any Win32 API back in ASP days. However, the NET Framework was supposed
to bring a security sandbox to managed code developers, and arguably being able to call interesting
Win32 APIs that do things like reformat disk drives does not seem like much of a security sandbox.
The .NET Framework did introduce a very robust code access security framework that allowed develop-
ers to prevent managed code from doing things like reformatting hard drives; there was just the “minor”
problem that you needed to get a PhD in what is definitely one of the more esoteric (though incredibly
powerful) areas of the framework. As a result, ASPNET 1.0 development left CAS usage up to the indi-
vidual developer, with the result being that future versions of ASP.NET allow Full trust by default.

’

Running an ASP.NET application in anything other than Full trust means that the application is running
in partial trust, which simply means any piece of managed code (not just ASPNET code) that has one or

148

Chapter 4: A Matter of Trust

more CAS restrictions being enforced on it. In the case of ASP.NET, because all trust levels below Full
trust enforce varying degrees of CAS restrictions, running applications in less than Full trust means
these applications are partially trusted by the NET Framework. As you will see throughout this chapter,
partial trust applications are blocked from certain features of the .NET Framework.

Moving an application from Full trust to High trust is actually a pretty big security move, because run-
ning High trust restricts an ASP.NET application to only the set of rights defined in the High trust policy
file. The specifics of what is allowed for each trust level will be reviewed in detail in the next few sec-
tions, but for now an easy way to think of High trust is that it prevents your ASPNET code from calling
unmanaged Win32 APIs. If you are unable to apply any of the other information covered in this chapter,
at least try to switch your Internet-facing ASPNET applications from running in Full trust to running in
High trust. Turning off access to unmanaged Win32 APIs reduces the potential for mischief and unex-
pected consequences in your applications.

The next restrictive trust level is Medium trust. Think of Medium trust as the trust level that a shared
hosting company would want to use. The ASP.NET team attempted to model the set of permissions in
Medium trust to match the set of restrictions that an Internet hosting company would probably want
enforced for each of their customers. In addition to the previous restriction on calling Win32 APIs, the
Medium trust level restricts file I/O access for an ASP.NET application to only the files and folders that
are located within the application’s directory structure. In a shared hosting environment with many
customers, each of whom does not trust any of the other customers, the restrictions in Medium trust
prevent a malicious user from attempting to surf around the host machine’s local hard drive.

Low trust is appropriate for a read-only web server and for web servers running specialized no-code or
low-code applications. The default set of permissions in Low trust allow only read access to the appli-
cation’s directory structure. In addition, Low trust does not allow ASP.NET code to reach out across
the network. For example, in Low trust an ASPNET application cannot call a SQL Server or use the
System.Net .Ht tpWlebRequest class to make HTTP calls to other web servers. Overall, Low trust is
appropriate for web servers with applications that can effectively run in a standalone mode without
relying on any other external servers. It is also the recommended trust level for developers that imple-
ment no-code or low-code execution environments. For example, SharePoint is an example of an applica-
tion environment that requires no . aspx pages or very few .aspx pages on the web server’s file system.
Developers usually work within the SharePoint environment (which is effectively its own sandbox) and
typically do not need to place many . aspx files directly onto the file system. SharePoint developers also
work within the coding guidelines and restrictions enforced by the SharePoint runtime, which in turn
sits on top of the ASP.NET runtime.

SharePoint v3 (the current version) actually uses a modified variation of ASP.NET’s Minimal trust
level known as WSS_Minimal. The WSS_Minimal is an ASP.NET custom trust level.

The last ASP.NET trust level is Minimal trust. As its name implies, this trust level allows only the most
minimal capabilities for an ASPNET application. Other than running innocuous code (for example, a
web-based calculator or basic . aspx pages), ASP.NET code running in Minimal trust cannot call into
classes or attempt operations that could cause any type of security risk. This trust level is suitable for
highly secure applications where 99 percent of any complex logic lives within compiled binaries that
are deployed in the Global Assembly Cache (GAC). Because deploying a binary in the GAC requires
administrative privileges, locking an ASP.NET web server down to Minimal trust effectively requires
administrator intervention to deploy any code of consequence onto a web server.

149

Chapter 4: A Matter of Trust

To summarize at a high level, the following table shows the ASP.NET trust levels and the general con-
cept behind each trust level:

Trust Level Used For

Full Any and all code is allowed to run. Mainly intended for backwards compatibility
with ASP.NET 1.0 and 1.1 applications that were not aware of how to use CAS or
how to work with ASP.NET trust levels.

High Among other restrictions, ASP.NET code cannot call into unmanaged Win32 APIs.
A good first step for securing Internet-facing ASP.NET applications.

Medium Intended as the default trust level for shared hosting environments where multiple
untrusted customers use the same machine. Also recommended for any Internet-
facing production applications.

Low A set of permissions suitable for applications such as SharePoint that provide their
own sandboxed execution environment. Also useful for read-only applications that
don’t require network access to other backend servers.

Minimal Locked down web servers that allow only the barebones minimum in your ASP.NET
code. You will be able to add two numbers together and write out the results to a web
page, but not much else.

Configuring Trust Levels

Now that you have a general idea of the target audience for each trust level, you need to know how to
configure a trust level for your ASPNET applications. The default of Full trust is defined in the root
web. config file located in the CONFIG subdirectory of the framework installation directory:

$windir$\Microsoft .NET\Framework\v2.0.50727\CONFIG\web.config
At the top of the root web. config file is a location tag with a trust level definition that looks as follows:
<location allowOverride="true" >
<system.web>
<!-- security policies snipped for brevity -->

<trust level="Full" originUrl="" />

</system.web>
</location>

Changing the <trust /> configuration element in the root web. config file affects all ASPNET applica-
tions running on the machine. The <trust /> element is conveniently located inside of a <location />
element to make it even easier for you to set the trust level for an entire machine, and then prevent anyone
from changing the trust level on other web. config files. For example, if you make the following change
to the location tag:

<location allowOverride="false">

150

Chapter 4: A Matter of Trust

then the individual applications that attempt to redefine the <trust /> configuration element in
their web. config files will end up with an exception. Because all configuration files located in the
CONFIG directory are ACLd to only allow the local Adminstrators group and SYSTEM write access, a
malicious developer cannot use an ASPNET application to make changes to machine.config or the
root web. config file. Chapter 5 goes into more detail about how the configuration system in ASPNET
3.5 can be used to prevent websites and web applications from changing machine wide settings.

Although making changes to the root web . config file gives a machine administrator a great deal of
leverage over the trust level setting for all applications on the machine, it is also likely that on some
machines you will not be able to enforce a single trust level for all applications.

The <trust /> configuration element can also be defined in the web. config file for individual appli-
cations. This gives you the flexibility to pick and choose the appropriate trust level for different appli-
cations. However, allowing individual applications to change the trust level in their web. config files
may not be something you want to allow for security reasons. As an alternative, you can define multiple
<location /> tagsin the rootweb.config using the syntax shown earlier, but with the addition of a
path attribute that indicates which application the settings apply to. For example, the following configu-
ration element defines the Medium trust level, but the setting applies only to a specific application, as
opposed to all applications on the web server:

<location path="Default Web Site/sampleapp" allowOverride="false" >
<system.web>

<trust level="Medium" originUrl="" />

</system.web>
</location>

Working with Different Trust Levels

To give you a better idea of how trust levels affect an application, let’s use a sample application that
attempts the following operations:

QO Create an ADO (not ADO.NET) recordset using the primary interop assembly (PIA) that ships
for ADO.

Open Notepad. exe for read access. This file is located in the Windows directory.

Connect to the Pubs database running on a local SQL Server.

Open the application’s local web . config file for reading.

U U 00

Add two numbers together and output the results using a label control.

The first operation is interesting because it uses the ADODB primary interop assembly (PIA) that
provides a managed type wrapper around the older COM ADO objects. Calling into a PIA (or any
managed code wrapper for a COM object) involves calling unmanaged code. As a result, running the
following code will only work in Full trust.

151

Chapter 4: A Matter of Trust

C#

using ADODB;

private void CreateRecordset ()

{
RecordsetClass rc = new RecordsetClass() ;
int fieldCount = rc.Fields.Count;
}
protected void btnFull_Click(object sender, EventArgs e)
{
try
{
//Need to call a separate method so that the exception
//occurs there, and can then be trapped from the click event.
this.CreateRecordset () ;
1blResults.Text =
"Successfully created an ADO recordset using the ADO PIA.";
}
catch (Exception ex)
{
1blResults.Text = ex.Message + "
" +
Server.HtmlEncode (ex.StackTrace) ;
}
}
VB.NET

Imports ADODB

Private Sub CreateRecordset ()

Dim rc As New RecordsetClass/()

Dim fieldCount As Integer = rc.Fields.Count
End Sub

Protected Sub btnFull_ Click(_
ByVal sender As Object, _
ByVal e As System.EventArgs) Handles btnFull.Click
Try
'Need to call a separate method so that the exception
'occurs there, and can then be trapped from the click event.
Me.CreateRecordset ()

1blResults.Text = "Successfully created an ADO recordset using the ADO PIA."
Catch ex As Exception
1blResults.Text = ex.Message & "
" & _
Server.HtmlEncode (ex.StackTrace)
End Try
End Sub

152

Chapter 4: A Matter of Trust

This sample code also requires that the website reference the ADO PIA from web.config, as follows:

<compilation debug="false">
<assemblies>
<add assembly="ADODB, Version=7.0.3300.0,
Culture=neutral, PublicKeyToken=B03F5F7F11D50A3A"/>
</assemblies>
</compilation>

If you attempt to create an ADO object in less then Full trust, you receive an error message saying,
“assembly does not allow partially trusted callers.” This is .NET Framework shorthand for saying that
the application is running in something other than Full trust, and thus does not have rights to make
calls into the ADO PIA.

You should keep this scenario in mind if you migrate an ASP application to ASPNET and then attempt
to run the migrated ASPNET application in anything other than Full trust. Older ASP applications usu-
ally depend on all sorts of COM objects, with ADO just being one of the most prevalent COM objects.
Because calling COM objects from managed code always requires a managed-to-unmanaged code tran-
sition, migrated ASP applications can be a bit problematic to get running in partial trust. Although I
discuss strategies that allow partially trusted applications to call into unmanaged code, migrated ASP
applications are typically so dependent on COM objects that it can be expensive for developers to go
through a converted application and implement workarounds just so the COM interop wrappers can
be used in partial trust.

The second piece of code attempts to open Notepad. exe for read access. Because Notepad. exe is
located in the Windows directory, it clearly lies outside of the file and directory structure of the ASPNET
application.

C#

string filePath = "c:\\windows\\notepad.exe";
FileStream fs = File.OpenRead (filePath) ;
fs.Close() ;

VB.NET

Dim filePath As String = "c:\windows\notepad.exe"
Dim fs As FileStream = File.OpenRead (filePath)
fs.Close()

This code will successfully run in Full and High trust, but at any other trust level it will result in a
SecurityException, indicating that the request for a FileIOPermission failed. If you have applica-
tions that read and write data files located outside the directory structure of an ASP.NET application,
High trust is realistically as low as you can go in terms of tightening trust levels without using the
sandboxing approach described later in the chapter. You would need to move this type of code to a sepa-
rate assembly and assert the necessary permissions in order to be able to read and write files outside the
application’s directory structure in Medium or lower trust levels.

153

Chapter 4: A Matter of Trust

The next piece of code uses System.Data.SglClient to connect to a local database.

C#

string connString =

@"server=.\SQL2005;database=pubs; Integrated Security=True;";
sglConn =

new SglConnection (connString) ;
sglConn.Open () ;

VB.NET

Dim connString As String = _
"server=.\SQL2005;database=pubs; Integrated Security=True;"

sglConn = New SglConnection (connString)

sglConn.Open ()

At Medium trust or above, the code runs without a problem. However, Low and Minimal trust do not
grant the necessary permissions to application code. As a result, Low or Minimal trust will result in a
SecurityException, indicating that the request for a SqglClientPermission failed. The ability to
connect to SQL Server is allowed in Medium trust because it is the trust level recommended for shared
hosting machines. Because customers at Internet hosters usually want some type of database access,
SglClientPermission made sense to add to the Medium trust policy file.

Opening files located within an application’s directory structure in read-only mode is allowed at Low
trust or above.

C#

string filePath = Server.MapPath("~") + "\\web.config";
FileStream fs = File.OpenRead (filePath) ;

fs.Close() ;

VB.NET

Dim filePath As String = Server.MapPath("~") & "\web.config"
Dim fs As FileStream = File.OpenRead (filePath)

fs.Close ()

However, if you lower the trust level to Minimal trust, this code fails with a SecurityException
indicating that the request for a FileIOPermission failed. Although these types of exceptions seem
a bit unclear, it is intentional that the exception information and messages do not expose additional
information. It can be a bit of a pain as a developer to track down what is happening, but the tradeoff
is that additional information, such as specific file paths, or requested access modes, is not accidentally
exposed in an error message that my be rendered in the browser.

I will not show the last piece of sample code, because it is not terribly interesting to add two numbers
together and output the results on a page. The point of the last sample code, though, is to prove that in
Minimal trust you still have the ability to write some code in your ASP.NET pages. Basically, Minimal
trust allows you to write code that depends only on the object instances available on the page and .NET
Framework classes that operate entirely against data located in the application’s memory. However, any

154

Chapter 4: A Matter of Trust

attempt to use .NET Framework classes that read and write files, communicate with databases and direc-
tory stores, reach out across the network, and so on results in some type of SecurityException.

Anatomy of a Trust Level

You have seen the general idea of how a trust level works. In the following sections, you get a better idea
of how a trust level is defined, as well as the meaning of various security restrictions. The intent of the
next few sections is to give you the information you need to be able to interpret the trust level policy files
that ship with ASPNET 3.5. Note, though, that the discussion intentionally tries to avoid diving too deep
into the esoteric nature of how .NET Framework CAS works. Thankfully, the information you need to
effectively use trust levels is much smaller than the knowledge required to become a CAS guru!

Finding the Trust Policy File

Medium trust is the default level recommended for hosters supporting untrusted customers. If you con-
figure your server or application to run in Medium trust, ASPNET must first determine just where the
rules for Medium trust are located. Earlier you saw the configuration example for selecting a trust level,
but some other configuration information was removed. The configuration that follows is what actually
ships with the .Net Framework:

<location allowOverride="true">
<system.web>
<securityPolicy>
<trustLevel name="Full" policyFile="internal" />
<trustLevel name="High" policyFile="web_hightrust.config" />
<trustLevel name="Medium" policyFile="web_mediumtrust.config" />
<trustLevel name="Low" policyFile="web_lowtrust.config" />
<trustLevel name="Minimal" policyFile="web_minimaltrust.config" />

<!-- the following is not in the default web.config
<trustLevel name="CustomLevel" policyFile="mycustomlevel.config" />
-—>

</securityPolicy>
<trust level="Full" originUrl="" />
</system.web>
</location>

The <securityPolicy /> element contains the information ASPNET needs to map a trust level name
to a specific policy file location on disk. Furthermore, you have the option to define additional trust level
names (in essence, additional trust levels) by adding your own <trustLevel /> configuration elements
within the <securityPolicy /> section. Any trust level defined in this section can be used as a value
for the “level” attribute in the <trust /> element.

All locations defined in the preceding policyFile attributes are assumed to be relative to the follow-
ing location:

$windir$\Microsoft .NET\Framework\v2.0.50727\CONFIG

If you create a custom trust level, the associated policy file must be placed in the CONFIG directory for
ASPNET to be able to use it. When you look in the CONFIG directory, you will actually see two copies of

155

Chapter 4: A Matter of Trust

every policy file. For example, the medium trust policy file is defined in web_mediumtrust.config;a
backup copy of the original medium trust policy file is defined in web_mediumtrust.config.default.
Because you can edit the . config files to customize an individual trust policy, and because most of us
will probably also do something wrong the first few times, the . default files are a handy way to get
back to the original policy definitions. Needless to say, don’t edit the .default files, or at the very least,
make a copy of them in a safe place!

String Replacements in Policy Files

After ASPNET locates the appropriate policy file, it loads it into memory and performs some basic
string replacements inside of it. If you open the medium trust policy file (web_mediumtrust.config)
in a text editor, you will see the following string replacement tokens:

a $AppDirs

a $AppDirUrls
] $CodeGen$
Q

$OriginHost$

These replacement tokens exist primarily because the dynamic nature of ASPNET applications makes it
difficult to statically define all of the security information required to effectively use CAS.

As you can probably infer from the first two string replacement tokens, because ASP.NET applications
can be located anywhere on disk, ASPNET needs a way to define permissions such that physical file
paths can be flexibly defined. Both $AppDir$ and $AppDirUrls$ are representations of the physical file
path for the application root. For example, if you create an application called MyApplication located
within your wwwroot directory, and you are running off of the C drive, the string replacement tokens
will have values of:

a SAppDir$ = c:\inetpub\wwwroot\MyApplication

a SAppDirUrls$ = file:///c:/inetpub/wwwroot/MyApplication

Because different permission classes require different path representations, ASPNET supports these
two representations.

The next replacement token, $CodeGens, is used to represent the physical location on disk where all
compiled code used by ASP.NET is located. As a side note, the term codegen is also shorthand in the
ASP.NET world for any kind of auto-generated code artifacts that ASPNET emits while running your
application. Using the MyApplication example again, ASPNET will create a directory structure that
looks something like the following;:

$windir$\Microsoft .NET\Framework\v2.0.50727\Temporary ASP.NET Files\MyApplication \
€63333Db8

This entire path, including the random hash value at the end (and there may actually be a few levels
of these strange looking hash values) is used to create the value for $CodeGens. The actual $CodeGens
valueis a file:/// URL-style representation of this physical path (just like the $AppDirUrl$ used
previously).

156

Chapter 4: A Matter of Trust

This location is important from a .NET Framework perspective because most of the executable assem-
blies for an ASPNET application (both the assemblies you drop into the /bin directory and the ones
ASP.NET auto-generates for pages, controls, and so on) are located somewhere within the directory tree
represented by $CodeGen$. This set of code represents user code—the code that you, as a developer,
have written. When running with any trust level other than Full trust, it is primarily user code that is
restricted based on the security settings in the policy file. $CodeGen$ is the way ASPNET can tell the
NET Framework where this user code exists.

The last string replacement token, $0riginHosts$, does not deal with file locations, but instead is used
to allow developers to define either a specific URL or a URL pattern to be used with classes such as
System.Net .Ht tpWlebRequest. Some of the System.Net classes support CAS restrictions that allow
you to define the set of URL endpoints that can be connected to using these classes. You can supply the
value for $0riginHosts$ by putting a value in the originurl attribute of the <trust /> element, as
shown here:

<trust level="Medium" originUrl="http://www.internalwebserviceendpoint.contoso
.com/" />

Defining Sets of Permissions

A central concept to .NET Framework CAS is the idea of a permission set. Because code access secu-
rity is all about applying a set of restrictions to one or more pieces of code, a permission set is a conve-
nient way of grouping multiple restrictions into one logical definition—for example, a permission set.
Because effective CAS usage typically requires varying levels of software restrictions within a single
application, the .NET Framework supports the idea of naming individual permission sets so that devel-
opers can keep track of the intended use of the permission sets.

Inside of the Medium trust policy file, ASP.NET defines the following named permission sets.

O FullTrust
0 Nothing
Q ASP.Net

As the first named permission set implies, it defines a CAS policy that allows any kind of code or
behavior in the NET Framework. The definition for FullTrust in the policy file looks like:

<PermissionSet
class="NamedPermissionSet"
version="1"
Unrestricted="true"
Name="FullTrust"
Description="Allows full access to all resources"
/>

<PermissionSet /> elements can contain child elements defining specific permissions. However, the
FullTrust permission set clearly has no child elements. The reason this permission set allows managed
code to pretty much do anything is because of the attribute definition: Unrestricted="true". This
syntax indicates that any code that is granted the FullTrust permission set has unrestricted access to all
functionality (including calling Win32 APIs and native code) in the .NET Framework.

157

Chapter 4: A Matter of Trust

The next permission set, called Nothing, defines absolutely zero permissions, which, given the name, is
what you would expect. The definition for Nothing in the policy file looks like this:

<PermissionSet
class="NamedPermissionSet"
version="1"
Name="Nothing"
Description="Denies all resources, including the right to execute"
/>

Because the Nothing named permission set has no child elements, and no other attribute values of note,
the permission set effectively defines an empty set of permissions.

The last permission set is the most interesting one, because it is the ASP.NET named permission set
that differs across the various policy files. The FullTrust and Nothing permission set definitions are the
same in all of the policy files. However, it is the varying definitions of the ASPNET permission set that
gives each trust level its unique behavior. The partial definition for the ASPNET named permission set
is shown here:

<PermissionSet

class="NamedPermissionSet"
version="1"
Name="ASP.Net">

<!-- multiple child permissions that will be discussed shortly -->

</PermissionSet>

Because the ASPNET permission set would be pretty useless without a set of defined permissions, it is
the only named permission set with child elements defining a number of specific security rights for code.

Defining Individual Permissions

An individual permission in a policy file is defined with an <IPermission /> element. The in-memory
representation of many interesting .NET Framework CAS permissions are classes that derive from a
class called CodeAccessPermission. Because the CodeAccessPermission class happens to imple-
ment the ITPermission interface, the declarative representation of a CodeAccessPermissionisan
<IPermission /> element.

For example, the Medium trust policy file allows user code to make use of the System.Data.SqglClient
classes. The definition of this permission looks like this:

<IPermission
class="SglClientPermission"
version="1"
Unrestricted="true"
/>

Because the System.Data.SqglClient classes do not support more granular permission definitions, the
System.Data.SglClient.SglClientPermission is used to allow all access to the main functionality
in the namespace, or deny access to this functionality. The previous definition sets the Unrestricted
attribute to true, which indicates that user code in the ASPNET application can use any functionality in
System.Data.SglClient that may demand this permission.

158

Chapter 4: A Matter of Trust

Some permissions, though, have more complex representations. Usually, the permissions you will find
in the ASPNET policy files will support multiple attributes on an <IPermission /> element, with the
attributes corresponding to specific aspects of a customizable permission. For example, remember the ear-
lier section describing string replacement tokens in policy files. The System.Security.Permissions
.FileIOPermission is defined in the Medium trust policy file as follows:

<IPermission
class="FileIOPermission"
version="1"
Read="$AppDirs"
Write="S$AppDirS$"
Append="$AppDirs"
PathDiscovery="SAppDir$"
/>

This permission supports a more extensive set of attributes for customizing security behavior. In this
definition, the policy file is stating that user code in an ASP.NET application has rights to read and write
files located within the application’s directory structure. Furthermore, user code in an ASPNET applica-
tion has rights to modify files (the Append attribute) and retrieve path information within the applica-
tion’s directory structure. When ASP.NET first parses the policy file, it replaces $AppDir$ with the
correct rooted path for the application. That way when the <IPermission /> is deserialized by the
.NET Framework into an actual instance of a FileIOPermission, the correct path information is used
to initialize the permission class.

Later in this chapter in the section titled “The Default Security Permissions Defined by ASP.NET,” you
walk through the individual permissions that are used throughout the various policy files so that you
get a better idea of the default CAS permissions.

How Permission Sets Are Matched to Code

At this point, you have a general understanding of permission sets and the individual permissions that
make up a permission set. The next part of a policy file defines the rules that the .NET Framework uses
to determine which permission sets apply to specific pieces of code. Clearly, CAS wouldn’t be very use-
ful if, for example, all of the assemblies in the GAC were accidentally assigned the named permission set
Nothing. So, there must be some way that the framework can associate the correct code with the correct
set of permissions.

The first piece of the puzzle involves the concept of code evidence, information about a piece of running
code that meets the following criteria:

QO The .NET Framework can discover, either by inferring it or by having the evidence explicitly
associated with the code. Evidence includes things such as where an assembly is located and the
digital signature (if any) of the assembly.

QO The .NET Framework can interpret evidence and use it when making decisions about assigning
a set of CAS restrictions to a piece of code. This type of logic is called a membership condition and
is represented declaratively with the <IMembershipCondition /> element.

The unit of work that the NET Framework initially uses as the basis for identifying code is the current
stack frame. Essentially, each method that you write has a stack frame when the code actually runs
(ignore compiler optimizations and such). At runtime, when a security demand occurs and the frame-
work needs to determine the correct set of permissions to check against, the framework looks at

159

Chapter 4: A Matter of Trust

the current stack frame. Based on the stack frame, the framework can backtrack and determine which
assembly actually contains the code for that stack frame. And then backtracking farther, the framework
can look at that assembly and start inferring various pieces of evidence about that assembly.

Looking through the policy file, you will see a number of <CodeGroup /> elements that make use of
evidence. The <CodeGroup /> elements are declarative representations of evidence-based comparisons
used to associate security restrictions to code. I won’t delve into the inner workings of specific code
group classes, because that is a topic suitable to an entire book devoted only to code access security.
Generally speaking, though, a code group is associated with two concepts:

Q A code group is always associated with a named permission set. Thus, the code group defini-
tions in the ASP.NET policy files are each associated with one of the following named permis-
sion sets discussed earlier: ASP.Net, FullTrust, or Nothing.

0 A code group defines a set of one or more conditions that must be met for the framework to con-
sider a piece of code as being restricted to the named permission set associated with the code
group. This is why <IMembershipCondition /> elements are nested within <CodeGroup />
elements. The definitions of membership conditions rely on the evidence that the framework
determines about an assembly.

The ASP.NET policy files define several <CodeGroup /> elements, with some code groups nested inside
of others. If you scan down the elements, though, a few specific definitions stand out. The very first
definition is shown here:

<CodeGroup
class="FirstMatchCodeGroup"
version="1"
PermissionSetName="Nothing">
<IMembershipCondition
class="AllMembershipCondition"
version="1"
/>

This definition effectively states the following: if no other code group definitions in the policy file hap-
pen to match the currently running code, then associate the code with the named permission set called
“Nothing.” In other words, if some piece of unrecognized code attempts to run, it will fail because the
“Nothing” permission set is empty.

Continuing down the policy file, the next two code group definitions are very important.

<CodeGroup
class="UnionCodeGroup"
version="1"
PermissionSetName="ASP.Net">
<IMembershipCondition
class="UrlMembershipCondition"
version="1"
Url="$AppDirUrls/*"
/>
</CodeGroup>
<CodeGroup
class="UnionCodeGroup"

160

Chapter 4: A Matter of Trust

version="1"
PermissionSetName="ASP.Net">
<IMembershipCondition
class="UrlMembershipCondition"
version="1"
Url="$CodeGen$/*"
/>
</CodeGroup>

These two definitions are where the proverbial rubber hits the road when it comes to the ASPNET trust
feature. The $AppDirUrls$ token in the first membership condition indicates that any code loaded from
the file directory structure of the current ASP.NET application should be restricted to the permissions
defined in the ASPNET named permission set. Also notice that the “Ur1” attribute ends with a / *, which
ensures that any code loaded at or below the root of the ASPNET application will be restricted by the
ASPNET permission set.

Similarly, the second code group definition restricts any code loaded from the code generation directory
for the ASP.NET application to the permissions defined in the ASP.NET named permission set. As with
the first code group, the membership condition also ends in a /* to ensure that all assemblies loaded
from anywhere within the temporary directory structure used for the application’s codegen will be
restricted to the ASPNET permission set.

It is this pair of <CodeGroup /> definitions that associates the ASPNET named permission set to all
the code that you author in your ASPNET applications. The pair of definitions also restricts any of the
code you drop into the /bin directory because of course that lies within the directory structure of an
ASPNET application. These two definitions are also why trust-level customizations (discussed a little
later in this chapter) can be easily made to the ASPNET named permission set without you needing to
worry about any of the other esoteric details necessary to define and enforce CAS.

The remaining <CodeGroup /> elements in the policy files define a number of default rules, with the
most important one being the following definition:

<CodeGroup
class="UnionCodeGroup"
version="1"
PermissionSetName="FullTrust">
<IMembershipCondition
class="GacMembershipCondition"
version="1"
/>
</CodeGroup>

This definition states that any code that is deployed in the GAC is assigned the FullTrust named per-
mission set. This permission set allows managed code to make use of all the features available in the
NET Framework. Because you can author code and deploy assemblies in the GAC, you have the ability
to create an ASP.NET application with two different levels of security restrictions. User code that lives
within the directory structure of the ASP.NET application will be subjected to the ASP.NET permission
set, but any code that you deploy in the GAC will have the freedom to do whatever it needs to. This con-
cept of full trust GAC assemblies will come up again in the section “Advanced Topics on Partial Trust”
where there is a discussion of strategies for sandboxing privileged code.

161

Chapter 4: A Matter of Trust

Other Places that Define Code Access Security

Although the previous topics focused on how ASPNET defines the permission set associations using
a trust policy file, the NET Framework defines a more extensive hierarchy of code access security set-
tings. Using the .NET Framework 2.0 Configuration MMC, you can create security policies for any of

the following:

O Enterprise
Q Machine
d User

This means that you can create declarative representations of permissions, permission sets, and code
groups beyond those defined in the ASPNET trust policy file.

If your organization defines security policies at any of these levels, it is possible that the permissions
defined in the ASPNET trust policy file may not exactly match the behavior exhibited by your applica-
tion. This occurs because each successive level of security policy (with the lowest level being the ASPNET
trust policy) acts sort of like a filter. Only security rights allowed across all of the levels will ultimately be
granted to your code.

With that said, though, in practice many organizations are either unaware of the security configuration
levels, or have considered them too complicated to deal with. That is why ASP.NET trust policies with
their relatively easy-to-understand representations are ideally suited for quickly and easily enforcing
CAS restrictions on all of your web applications.

By default, the NET Framework defines only restrictive CAS policies for the Machine level. The frame-
work defines a number of different code groups that divvy up code based on where the code was loaded
from. These code group definitions depend on the concept of security zones that you are probably famil-
iar with from Internet Explorer. You might wonder why ASP.NET needs to define its own concept of CAS
with trust levels when zone-based CAS restrictions are already defined and used by the Framework.

ASPNET cannot really depend on the default Machine level CAS definitions because, for all practical
purposes, ASPNET code always runs locally. The ASPNET pages exist on the local hard drive of the
web server, as does the Temporary ASPNET Files directory. Even in when running from a UNC share,
most of the actual compiled code in an application is either auto-generated by ASPNET or shadow cop-
ied into the local Temporary ASP.NET Files directory.

As a result, if ASPNET didn't use trust levels, all ASP.NET code that you write would fall into the code
group called My_Computer_zone. The membership condition for this code group is the My Computer
zone, which includes all code installed locally. Because the code group grants full trust to any assem-
blies that are installed locally, this means in the absence of ASP.NET trust levels, all ASP.NET code
runs at full trust. This is precisely the outcome in ASPNET 1.0, which predated the introduction of
ASP.NET trust levels.

A Second Look at a Trust Level in Action

Earlier you saw an example of using various pieces of code in different trust levels and the failures that
occurred. Now that you have a more complete picture of what exists inside of a trust policy file, reviewing
how trust levels and CAS all hang together is helpful. Figure 4-1 outlines a number of important steps.

162

Chapter 4: A Matter of Trust

(0) Application domain CAS
policy established when the
application domain started

T~

is thrown !

User code stack frame

SecurityException

Page code that uses System.Data.SqICIient|

<~
(4b) If Check fails

(3) Framework checks
" appdomain CAS policy

(2) Permission
demand

<0l S|[BD (1)

System.Data.SqlClient classes demand
SqlClientPermission

ADO.NET continues and runs
the requested method

Figure 4-1

Step 0: Application Domain Policy

As part of ASPNET'’s application domain initialization process, ASPNET reads configuration to determine
the appropriate trust policy that should be loaded from the CONFIG directory. When the file is loaded, and
the string replacement tokens are processed, ASPNET calls System.AppDomain. SetAppDomainPolicy
to indicate that permissions defined in the trust level’s policy file are the CAS rules for the application
domain. If your organization also defines CAS rules for the Enterprise, Machine, or User levels, then the
application domain policy is intersected with all of the other predefined CAS rules.

Step 1: User Code Calls into a Protected Framework Class

One of the pieces of code from the sample application shown in the beginning of the chapter attempted

to call into ADO.NET:

C#

string connString =

@"server=.\SQL2005; database=pubs; Integrated Security=True;";

sqglConn =
new SglConnection (connString) ;
sglConn.Open() ;

163

Chapter 4: A Matter of Trust

VB.NET

Dim connString As String = _

"server=.\SQL2005;database=pubs; Integrated Security=True;"
sglConn = New SglConnection (connString)
sglConn.Open ()

Attempting to open a connection or run a command using the System.Data.SglClient’s classes
results in a demand being made in ADO.NET for the SglclientPermission. ADO.NET makes the
demand by having the framework construct an instance of the SglClientPermission class and then
calling the Demand method on it.

Step 2: The Demand Flows up the Stack

The technical details of precisely how the Framework checks for a demanded permission are not some-
thing you need to delve into. Conceptually, though, demanding a permission causes the Framework to
look up the call stack at all of the code that was running up to the point that the permission demand
occurred. Underneath the hood, the Framework has a whole set of performance optimizations so that
in reality the code that enforces permission demands doesn’t have to riffle through every last byte in
what could potentially be a very lengthy call stack.

Ultimately, though, the Framework recognizes the user code from the sample page, and it decides to
check the set of permissions associated with the page.

Step 3: Checking the Current CAS Policy

This is where the effects of the ASP.NET trust policy come into play. Because ASPNET earlier initialized
a set of permissions (code groups and membership conditions for the application domain) the Framework
now has a set of rules that it can reference. If the user code sits on an ASPNET page, the Framework uses
the Ur1lMembershipCondition definitions defined earlier in the trust policy file to determine the per-
missions associated with the page code. The page code at this point has actually been compiled into a
page assembly (either automatically or from an earlier precompilation), and this assembly is sitting
somewhere in the Temporary ASP.NET Files directory structure for the current application. Because the
permissions for files located in the codegen directory are the ones from the ASPNET named permission
set, the Framework looks for the existence of SqglClientPermission in that permission set.

Step 4: The Results of the Check

If the ASP.NET application is running at Medium trust or above, the Framework will find the
SglClientPermission in the permission set associated with user code. In this case, the Framework
determines that the user code passes the security check, and as a result the original ADO.NET call is
allowed to proceed. What isn’t shown in Figure 4-1 is the extended call stack that sits on top of the code
sitting in the . aspx page. When the Framework determines that the user code has the necessary per-
missions, it continues up the call stack, checking every assembly that is participating on the current
thread. In the case of ASP.NET, though, all code prior to the button click event handler calling ADO.
NET is code that exists in System.Web.d11 or some other .NET Framework assembly. Because all
these assemblies exists in the GAC, and GAC’d assemblies have full trust, all of the other code on the
class stack is considered to implicitly have all possible permissions.

On the other hand, if the ASPNET application is running in Low or Minimal trust, the NET Framework

will not find a SglClientPermission for the page’s code, and the permission demand fails with a stack
that looks roughly like:

164

Chapter 4: A Matter of Trust

Request for the permission of type 'System.Data.SglClient.SglClientPermission,
System.Data, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
failed.

at System.Security.CodeAccessSecurityEngine.Check (Object demand, StackCrawlMarké&
stackMark, Boolean isPermSet) at System.Security.PermissionSet.Demand() at

The downside of CAS is that when a security exception occurs, it usually results in semi-intelligible
results like those shown previously.

However, when you encounter a security exception (and it is usually an instance of System. Security.
SecurityException thatis thrown), with a little probing you can usually pick apart the call stack to
get some idea of what happened. For the previous example, you can see that the bottom of the call stack is
the button click handler; that immediately tells you the user code triggered the call that eventually failed.
Moving up the call stack a bit, System.Data.SglClient.SglConnection.PermissionDemand () gives
you an idea of which System.Data.SglClient class your code is calling.

Moving up the stack a bit more, you see various calls into System. Security.CodeAccessSecurity
Engine. This class is part of the internal guts of the CAS enforcement capability in the NET Framework.
Finally, at the top of the stack trace is the information pertaining to the specific permission request that
failed, which in this case is SglClientPermission. In this example, the SqlClientPermission is

a very simple permission class that represents a binary condition: either code has rights to call into
System.Data.SglClient, or it doesn’t. As a result, you don’t need additional information to investi-
gate the problem.

So, troubleshooting this problem boils down to figuring out why the code in the button click event
doesn’t have rights to call into various ADO.NET classes. With an understanding of ASPNET trust
levels in mind, the first thing you would do is determine the current trust level. In this case, I set the
application to run in Minimal trust. In the policy file for Minimal trust, Sqg1ClientPermission has
not been granted to ASP.NET code.

Troubleshooting More Complex Permissions

Although troubleshooting SglClientPermission is pretty simple, other more complex permission
types are not so easy. For example, the System.Security.Permissions.FileIOPermission class
supports much more granular permission definitions. As you saw earlier in some snippets from the
ASP.NET trust policy files, you can selectively grant access to read files, create files, modify existing
files, and so on. Using the sample application from the beginning of the chapter again, you can attempt
to read a file running in Minimal trust:

C#

string filePath = Server.MapPath("~") + "\\web.config";
FileStream fs = File.OpenRead (filePath) ;

fs.Close() ;

VB.NET

Dim filePath As String = Server.MapPath("~") & "\web.config"
Dim fs As FileStream = File.OpenRead (filePath)

fs.Close()

165

Chapter 4: A Matter of Trust

This code results in the following stack trace:

Request for the permission of type 'System.Security.Permissions.FileIOPermission,
mscorlib, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"'
failed.

at System.Security.CodeAccessSecurityEngine.Check (Object demand, StackCrawlMarké&
stackMark, Boolean isPermSet) at

System. Security.CodeAccessPermission.Demand () at

System.Web.HttpRequest.MapPath (VirtualPath virtualPath, VirtualPath baseVirtualDir,
Boolean allowCrossAppMapping) at

System.Web.HttpServerUtility.MapPath(String path) at _Default.btnLow_Click(Object
sender, EventArgs e)

Unfortunately, from this stack trace, you can glean only that some piece of user code (the click event
handler at the bottom of the trace) triggered a call to System.Web.HttpRequest .MapPath and that this
call eventually resulted in a SecurityException because the check for FileIOPermission failed. The
information about the FileIOPermission failure, though, says absolutely nothing about why it failed.
At this point, about the only thing you can do is sleuth around the rest of the stack trace and attempt to
infer what kind of FileIOPermission check failed. Was it read access, write access, or what?

In this case, the call to MapPath gives you a clue because ASP.NET has a MapPath method on the
HttpServerUtility class. Because the purpose of MapPath is to return the physical file path represen-
tation for a given virtual path, you have a clue that suggests something went wrong when attempting to
discover the physical file path.

Because the application is running at Minimal trust, you know that there are no FileIOPermission
definitions inside of the Minimal trust policy file. With the information about MapPath, you can make
a reasonable guess that if you wanted the code in the click event handler to succeed, you would at least
need to create a declarative <IPermission /> fora FileIOPermission that granted PathDiscovery
to the application’s physical directory structure.

One of the other samples attempts to open a file outside of the directory structure of the application
while running in Medium trust. Doing so still fails with a SecurityException complaining about the
lack of a FileIOPermission. However, this time the stack trace includes the following snippet:

Snip..

at System.Security.CodeAccessPermission.Demand ()

at System.IO.FileStream.Init (String path, FileMode mode, FileAccess access, Int32
rights, Boolean useRights, FileShare share, Int32 bufferSize, FileOptions options,
SECURITY_ATTRIBUTES secAttrs, String msgPath, Boolean bFromProxy)

at System.IO.FileStream..ctor (String path, FileMode mode, FileAccess access,
FileShare share)

Snip..

Now the stack trace looks a bit more interesting. The snippet shows that one type of file I/O operation
was attempted and during initialization of the FileStream, a demand occurred. Because the failure
involved FileIOPermission, you have enough information in the stack trace to realize that you need
to look at the code that opened the file stream. Depending on the location of the requested file, as well
as the type of access requested, you can look in the trust policy file (Medium trust in this case) and see
which file permissions are granted by default. In this case, because only file I/O permissions within the

166

Chapter 4: A Matter of Trust

scope of the application’s directory structure are granted, and the code is attempting to open a file in
the %windir% directory, you need to grant extra permissions.

Adding the following permission element allows the application to open notepad.exe even though the
application is running in Medium trust:

<IPermission
class="FileIOPermission"
version="1"
Read="c:\\windows\\notepad.exe"
PathDiscovery="c:\\windows\\notepad.exe"
/>

Troubleshooting permission failures and the need to edit policy files to fix the failures leads us to the
next topic.

Creating a Custom Trust Level

At some point, you may need to edit the permissions in a trust policy file and create a custom trust
level. Creating a custom trust level involves the following tasks:

1. Creating a policy file containing your updated permission definitions
2. Determining the declarative representation of the new permissions

3. Applying the new trust level to your application

Creating a Policy File

Although you can edit the existing policy files located in the CONFIG directory, unless you are making
minor edits for an existing trust level, you should create a separate policy file that represents the new
custom set of permissions you are defining. Start with the policy file that has the closest set of permis-
sions to those you want to define. This discussion starts with the Medium trust policy file. I made a
copy of the Medium trust policy file and called it web_mediumtrust_custom.config.

After you have a separate copy of the policy file, you need to edit some configuration settings so that a
trust level is associated with the policy file. Hooking up the policy file up so that it is available for use
requires editing the root web. config file located in the framework’s CONFIG subdirectory. Remember
earlier that you looked at the <securityPolicy /> configuration element. Creating the following
entry inside of the <securityPolicy /> element makes the custom policy file available for use as a
custom trust level:

<securityPolicy>
<!-- default trust levels -->
<trustLevel name="Medium_Custom"

policyFile="web_mediumtrust_custom.config" />

</securityPolicy>

Now ASPNET applications that need the set of permissions defined inside of web_mediumtrust_custom
.config can simply reference the Medium_Custom trust level.

167

Chapter 4: A Matter of Trust

Determining Declarative Permission Representations

So far you have been looking at preexisting permission definitions. However, these declarative repre-
sentations must have come from somewhere and must follow some type of expected schema; otherwise,
it would be a free-for-all when class implementers tried to determine the correct <IPermission />
definitions for a permission.

Two pieces of information are necessary for enabling new permissions in a policy file:

Q The class information for the security permission class

Q The declarative XML representation of the permission

Determining the class information for a new permission is pretty simple. Usually you know what piece
of code you are attempting to enable in a partial trust application, so you know the calls that are being
made and that are failing.

The first example of creating a new custom permission attempts to enable OleDb for use in Medium
trust. You can determine the permission that is necessary to enable usage of the classes in System
.Data.0OleDb by first attempting to run a page that uses OleDb in Medium trust and looking at the fail-
ure information. The following code initially does not work in Medium trust because the policy file for
Medium trust only grants the SqglClientPermission:

C#
OleDbConnection oc =
new OleDbConnection ("Provider=SQLOLEDB;" +
@"Data Source=.\SQL2005;Initial Catalog=pubs;" +
"Integrated Security=True;Connect Timeout=30");
oc.Open() ;
OleDbCommand ocmd = new OleDbCommand("select * from authors", oc);
OleDbDataReader or = ocmd.ExecuteReader() ;
VB.NET

Dim oc As New OleDbConnection ("Provider=SQLOLEDB;" & _
ControlChars.CrLf & _
"Data Source=.\SQL2005;Initial Catalog=Pubs;" _
& ControlChars.CrLf & "Integrated Security=SSPI;")
oc.Open ()
Dim ocmd As New OleDbCommand ("select * from authors", oc)
Dim orr As OleDbDataReader = ocmd.ExecuteReader ()

Running the code results in the following exception information:

[SecurityException: Request for the permission of type 'System.Data.OleDb.
OleDbPermission, System.Data, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a
5c¢561934e089' failed.]

How convenient! The first piece of information is right there in the exception information. Using
<IPermission /> elements in a trust policy file requires that you first register the type of the per-
mission class that you are defining. This is necessary because the IPermission interface is a generic
representation of a code-access permission, but you are attempting to define very specific permissions,

168

Chapter 4: A Matter of Trust

sometimes with additional attributes or nested permissions that are unique to the specific class of per-
mission you are working with.

You can register the 0OleDbPermission type in your custom policy file by copying the information out
of the exception dump, and into a <SecurityClass /> element, as shown here:

<SecurityClasses>
<!-- pre-defined security classes snipped for brevity -->

<SecurityClass
Name="0OleDbPermission"
Description="System.Data.0leDb.0OleDbPermission, System.Data,
Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" />

</SecurityClasses>

The Name attribute can actually be set to any string value because it is used by individual <1Permis-
sion /> elements to reference the correct permission type. However, you would normally use the class
name without other type or namespace information as the value for the Name attribute. The Descrip-
tion attribute is set to a type string that the .NET Framework uses to resolve the correct permission
type at runtime. In the previous example, the Descrption attribute has been set to the strong type defi-
nition that is conveniently available from the exception text.

Now that the permission class information has been entered into the policy file, the next step is to
determine the declarative representation of an 0leDbPermission. The easiest way to do this in the
absence of any documentation for a XML representation as follows:

C#

using System.Data.OleDb;
using System.Security;
using System.Security.Permissions;

protected void Page_Load(object sender, EventArgs e)

{
OleDbPermission odp =
new OleDbPermission(PermissionState.Unrestricted);
SecurityElement se = odp.ToXml () ;
Response.Write (Server.HtmlEncode (se.ToString())) ;
}
VB.NET

Imports System.Data.OleDb

Imports System.Configuration

Imports System.Collections

Imports System.Security

Imports System.Security.Permissions

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load

169

Chapter 4: A Matter of Trust

Dim odp As New OleDbPermission(PermissionState.Unrestricted)
Dim se As SecurityElement = odp.ToXml ()

Response.Write (Server.HtmlEncode (se.ToString()))
End Sub

The sample code constructs an instance of the permission class, passing it a value from the system
.Security.Permissions.PermissionState enumeration. The sample code essentially creates a
permission that grants unrestricted permission to the full functionality of the System.Data.0leDb
namespace. The XML representation of the permission is created by calling ToXML () on the permis-
sion, which results in an instance of a System. Security.SecurityElement. A SecurityElement is
the programmatic representation of the XML for a permission. You can get the string representation of
the XML by calling ToString () on the SecurityElement. The end result of running this code is the
declarative representation of an 0leDbPermission instance:

<IPermission

class="System.Data.0leDb.0OleDbPermission, System.Data, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089"

version="1"

Unrestricted="true"
/>

This representation is almost exactly what you need to drop into your custom policy file, with one
minor change. Because you already defined a <securityClass /> earlier for the 0leDbPermission
type, the lengthy type definition isn’t required. Instead, you want to enter the following XML into your
custom policy file:

<IPermission
class="0leDbPermission"
version="1"
Unrestricted="true"

/>

The class attribute will be interpreted as a reference to a permission class that is keyed by the name
OleDbPermission. Because you created a <SecurityClass /> earlier named OleDbPermission,
at runtime the Framework will correctly infer that the <IPermission /> definition here is for an
instance of the type defined by the 0leDbPermission security class.

You can place the <IPermission /> declaration anywhere within the list of <IPermission /> ele-
ments that are nested underneath the <PermissionSet /> element for the ASPNET named permis-
sion set. The following XML shows where to place the 01eDbPermission declaration:

<PermissionSet
class="NamedPermissionSet"
version="1"
Name="ASP.Net">

<!-- other default IPermission definitions -->
<IPermission

class="0leDbPermission"

version="1"

Unrestricted="true"

170

Chapter 4: A Matter of Trust

/>

</PermissionSet>

At this point, the edits to the policy file are complete, and the only task left is to associate the sample
application with the custom trust level defined by this policy file.

Applying the New Trust Level
Earlier, you defined a new trust level called Medium_Custom for the modified policy file. The sample
ASP.NET application can use this trust level by redefining the trust level in its web. config:

<trust level="Medium_Custom" />

With the creation of the custom trust policy file and the use of the custom trust level, when you run
the sample code shown earlier, the application is able to open an OleDb connection and make a query
against the pubs database.

Additional Trust Level Customizations

You have seen how to enable unrestricted OleDb permissions for an ASPNET application. However,
permission classes sometimes allow for more extensive customizations. In this section, you will take a
look at a few of the more common (or more confusing!) permissions classes you may encounter

Customizing OleDbPermission

The 0leDbPermission class allows more than just a simple binary decision on class usage. For exam-
ple, hosters frequently want to enable Access (aka Jet) databases for their customers, but at the same
time they don’t want to throw the doors wide open to any kind of OleDb drivers being used.

For example, let’s say you wanted to allow use of only the System.Data.0leDb classes with the follow-
ing restrictions:

QO Only Access could be used through OleDb. Any other data provider, including OleDb-based
SQL Server access, is disallowed.
Q To prevent any type of extended information from being passed on the connection string, you

allow only customers to set the database location, username, and password.

You can model this set of restrictions in code using the 0leDbPermission class, as shown here:

C#

OleDbPermission odp =
new OleDbPermission (PermissionState.None) ;

odp.Add ("Provider=Microsoft.Jet.OLEDB.4.0",
"data source=;user id=;password=;",
KeyRestrictionBehavior.AllowOnly) ;

SecurityElement se = odp.ToXml () ;
Response.Write (Server.HtmlEncode (se.ToString())) ;

171

Chapter 4: A Matter of Trust

VB.NET

Dim odp As New OleDbPermission(PermissionState.Unrestricted)

odp.Add ("Provider=Microsoft.Jet.OLEDB.4.0", _
"data source=;user id=;password=;", _
KeyRestrictionBehavior.AllowOnly)

Dim se As SecurityElement = odp.ToXml ()
Response.Write (Server.HtmlEncode (se.ToString()))

Unlike the first example of using 0leDbPermission, this code uses the Add method to selectively add
the set of allowed connection strings that can be used with System.Data.0leDb. The Add method in
the previous code says that connection strings that reference the Jet provider are allowed. Allowable
connection strings can be further modified with the data source, user id, and password attributes.
Attempts to create an 0leDbConnection with a connection string that does not follow these constraints
will result in a SecurityException

Writing out the XML representation of the permission, and modifying the class attribute as mentioned
earlier results in the following declarative syntax that can be placed in a custom policy file:

<IPermission class="OleDbPermission" version="1" >

<add ConnectionString="Provider=Microsoft.Jet.OLEDB.4.0"
KeyRestrictions="data source=;user id=;password=;"
KeyRestrictionBehavior="AllowOnly"

/>

</IPermission>

Notice how you now have a <IPermission /> element that itself contains nested security information.
Permission classes are free to define whatever XML representation they require and this additional
information can be nested within <IPermission />.This allows permission classes to manage col-
lections of security information, rather than being restricted to a single static definition of one security
rule. In the case of 01eDbPermission, this enables you to define as many connection string constraints
as you need, although this example defines only the single constraint.

If you run the sample code shown earlier that connects to SQL Server, a security exception is thrown.
However, if instead you attempt to connect to an MDB database, as the following example shows,
everything works:

C#

//Using a Sgl connection string at this point will result in a SecurityException
OleDbConnection oc = new OleDbConnection (
"Provider=Microsoft.Jet .OLEDB.4.0;" +
@"data source=C:\inetpub\wwwroot\379301_code\379301 +
@ch04_code\cs\TrustLevels\\ASPNetdb_Template.mdb; ") ;
oc.Open() ;

OleDbCommand ocmd = new OleDbCommand ("select * from aspnet_Applications", oc);
OleDbDataReader or = ocmd.ExecuteReader() ;

172

Chapter 4: A Matter of Trust

VB.NET

Dim oc As New OleDbConnection(_
"Provider=Microsoft.Jet.OLEDB.4.0;" & _

"data source=C:\inetpub\wwwroot\379301_code\379301 ch04_code\" & _
"cs\TrustLevels\\ASPNetdb_Template.mdb; ")

oc.Open ()

Dim ocmd As New OleDbCommand ("select * from aspnet_Applications", oc)
Dim orr As OleDbDataReader = ocmd.ExecuteReader ()

If a hoster provisioned only a specific database name (or names), you could even go one step further
and define the <IPermission /> in the custom policy file to restrict access to a predefined name:

<IPermission class="0OleDbPermission" version="1" >

<add ConnectionString="Provider=Microsoft.Jet.OLEDB.4.0;datasource=$AppDirs$\
ASPNetdb_Template.mdb"
KeyRestrictions="user id=;password=;"
KeyRestrictionBehavior="AllowOnly"
/>

</IPermission>

Notice how the ConnectionString attribute in the <add /> element now also includes the data source
definition. Furthermore, KeyRestrictions no longer allows you to specify a custom value for data
source. Because ASPNET performs a string search-and-replace for all tokens in a trust policy file, you
can use the replacement token $AppDir$ inside of the ConnectionString attribute. The previous defi-
nition has the net effect of restricting an ASP.NET application to using only an Access database called
ASPNetdb_Template.mdb located in the root of the application’s physical directory structure. Attempt-
ing to use any other Access MDB will result in a SecurityException.

Customizing OdbcPermission

Another data access technology that many folks use in ASP.NET is ODBC. Even though it probably
seems a bit old-fashioned to still be using ODBC (as I like to half-joke: every few years Microsoft needs
to release an entirely new data access technology due to our predilection for reorgs), it is still widely
used due to the prevalence of ODBC drivers that have been around for years. In many cases, database
back ends that are no longer actively supported are accessible only through proprietary APIs or custom
ODBC drivers. Another reason ODBC can be found on ASP.NET servers is that customers using the
open-source MySQL database used to need the MySQL ODBC driver, although recently a .NET driver
for MySQL was released.

If you want to enable ODBC for your ASP.NET applications, you can follow the same process shown
earlier for OleDb. A <SecurityClass /> element needs to be added to the custom policy file that reg-
isters the 0OdbcPermission class:

<SecurityClass Name="OdbcPermission"
Description="System.Data.Odbc.0dbcPermission, System.Data, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089"/>

173

Chapter 4: A Matter of Trust

Next, you need to determine what the declarative representation of an 0dbcPermission looks like.
Modifying the OleDb sample code used earlier, the following snippet outputs the XML representation
of a permission that allows only the use of the Access provider via the System.Data.0Odbc classes:

C#

OdbcPermission odp =
new OdbcPermission(PermissionState.None) ;

odp.Add ("Driver={Microsoft Access Driver (*.mdb)};",
"Dbg=;uid=;pwd=;",
KeyRestrictionBehavior.AllowOnly) ;

SecurityElement se = odp.ToXml () ;
Response.Write(Server.HtmlEncode (se.ToString())) ;

VB.NET

Dim odp As New OdbcPermission (PermissionState.None)

odp.Add ("Driver={Microsoft Access Driver (*.mdb)};", _
"Dbg=;uid=;pwd=;", KeyRestrictionBehavior.AllowOnly)

Dim se As SecurityElement = odp.ToXml ()

Response.Write (Server.HtmlEncode (se.ToString()))

The 0dbcPermission class actually has a programming model that is very similar to the 01eDb
pPermission class. You can add multiple connection string related permissions into a single instance
of 0dbcPermission. Running the previous code, and then tweaking the output to use the shorter refer-
ence in the class attribute, results in the following <IPermission /> declaration:

<IPermission class="OdbcPermission" version="1" >

<add ConnectionString="Driver={Microsoft Access Driver (*.mdb)};"
KeyRestrictions="Dbg=;uid=;pwd=;"
KeyRestrictionBehavior="AllowOnly"/>

</IPermission>

Although the syntax of the connection string text is a bit different to reflect the ODBC syntax, you can
see that the permission declaration mirrors what was shown earlier for OleDb.

With this permission added to the custom trust policy file, the code that uses Access will run without
triggering any security exceptions.

C#

//The following won't work when only Access connection strings are allowed in the
//trust policy file.

//0dbcConnection oc =

// new OdbcConnection ("Driver={SQL Server};" +

// "Server=foo;Database=pubs;Uid=sa;Pwd=blank;") ;

174

Chapter 4: A Matter of Trust

OdbcConnection oc = new OdbcConnection (
"Driver={Microsoft Access Driver (*.mdb)};" +
@"Dbg=C: \inetpub\wwwroot\379301_code\379301 ch04_code\cs\" +
@TrustLevels\\ASPNetdb_Template.mdb;") ;

oc.Open() ;

OdbcCommand ocmd = new OdbcCommand ("select * from aspnet_Applications",
OdbcDataReader or = ocmd.ExecuteReader () ;

VB.NET

'The following won't work when only Access

'conn strings are allowed for ODBC

'OdbcConnection oc =

! new OdbcConnection("Driver={SQL Server};Server=foo;
Database=pubs;Uid=sa; Pwd=blank;") ;

Dim oc As New OdbcConnection(_
"Driver={Microsoft Access Driver (*.mdb)};" & _
"Dbg=C: \inetpub\wwwroot\379301_code\379301 ch04_code\cs" & _
"\TrustLevels\\ASPNetdb_Template.mdb; ")

oc.Open ()

Dim ocmd As New OdbcCommand ("select * from aspnet_Applications", oc)

Dim orr As OdbcDataReader = ocmd.ExecuteReader ()

oc) ;

However, attempting to create an 0OdbcConnection with a SQL Server-style connection string results in
a SecurityException because it is disallowed by the permission definition in the trust policy file.

Allowing ODBC and OLEDB in ASP.NET

Now that you have seen how to enable ODBC and OleDb inside of partial trust ASP.
NET applications, you should be aware that running either of these technologies
reduces the security for your web applications. Many drivers written for ODBC and
OleDb predate ASPNET and for that matter predated widespread use of the Internet
in some cases. The designs for these drivers didn't take into account scenarios such as
shared hosters selling server space to customers on the Internet.

For example, the Jet provider for Access can be used to open Excel files and other

ing Access databases, support scripting languages like VBScript, it is entirely possible
for someone to use an Access database as a tunnel of sorts to the unmanaged code
world. If you lockdown an ASP.NET application to partial trust but still grant selective
access with the 01eDbPermission, developers can write code to open an arbitrary
Access database. After that happens, a developer can issue commands against the

of course when that happens, you are basically running the equivalent of an ASP page
with the capability to call arbitrary COM objects.

Office data formats in addition to regular MDB files. Because many Office files, includ-

database that in turn trigger calls into VBScript or to operating system commands and

Continued

175

Chapter 4: A Matter of Trust

Because the .NET Framework CAS system does not extend into the code that runs inside
of an Access database, after the 01eDbPermission demand occurs, the Framework is no
longer in the picture. In the case of Access, the Jet engine supports Registry settings that
enable a sandboxed mode of operation. The sandbox prevents arbitrary code from being
executed as the side effect from running a query. There may be additional avenues,
though, for running scripts in Access databases. (I admit to having little experience in
Access, which is probably a good thing!) Overall, the general advice is to thoroughly
research the vagaries of whatever ODBC or OleDb drivers you are supporting and as
much as possible, implement the mitigations suggested by the various vendors.

Using the WebPermision

One of the permissions defined in the Medium and High trust files is for the System.Net .wWeb
pPermission. This is probably one of the most confusing permissions for developers to use due to the
interaction between the <trust /> element and the settings for this permission. The default declara-
tion looks like this:

<IPermission
class="WebPermission"
version="1">
<ConnectAccess>
<URI uri="$OriginHost$"/>
</ConnectAccess>
</IPermission>

As with some of the other permissions you have looked at, the ebPermission supports multiple sets
of nested information. Although a webPermission can be used to define both outbound and inbound
connection permissions, normally, you use WebPermission to define one or more network endpoints
that your code can connect to. The default declaration shown previously defines a single connection
permission that allows partially trusted code the right to make a connection to the network address
defined by the <URI /> element.

However, the definition for this element has the string replacement token: $0riginHosts$. This defini-
tion is used conjunction with the <trust /> element, which includes an attribute called originHost
and its value is used as the replacement value for $0riginHost$. For example, if you define the follow-
ing <trust /> element:

<trust level="Medium_Custom" originUrl="http://www.microsoft.com/"/>

... when ASP.NET processes the trust policy file, it will result in a permission that grants connect
access to http://www.microsoft.com/. Although the attribute is called originurl, the reality is that
the value you put in this attribute does not have to be your web server’s domain name or host name.
You can set a value that corresponds to your web farm’s domain name if, for example, you make web
service calls to other machines in your environment. However, you can just as easily use a value that
points at any arbitrary network endpoint as was just shown. One subtle and extremely frustrating
behavior to note here is that you need to have a trailing / at the end of the network address defined in the
originUrl attribute. Also, when you write code that actually uses System.Net classes to connect to this
endpoint, you also need to remember to use a trailing / character.

176

Chapter 4: A Matter of Trust

With the <trust /> level setting shown previously, the following code allows you to make an HTTP
request to the Microsoft home page and process the response:

C#
HttpWebRequest wr = (HttpWebRequest)WebRequest.Create("http://www.microsoft.com/");
HttpWebResponse resp = (HttpWebResponse)wr.GetResponse() ;

Response.Write (resp.Headers.ToString());

VB.NET

Dim wr As HttpWebRequest = CType(_
WebRequest.Create ("http://www.microsoft.com/"),
HttpWebRequest)

Dim resp As HttpWebResponse = CType (wr.GetResponse (), HttpWebResponse)

Response.Write (resp.Headers.ToString())

Because the WebPermission class also supports regular expression based definitions of network end-
points, you can define originurl using a regular expression. The reason regular expression-based URLs
are useful is that the WwebPermission class is very precise in terms of what it allows. Defining a permis-
sion that allows access to only www.microsoft.com means that your code can access only that specific
URL. If you happened to be curious about new games coming out, and created an Ht tpWebRequest for
www.microsoft.com/games/default.aspx, then a SecurityException occurs.

You can rectify this by instead defining originuUrl to allow requests to any arbitrary page located
underneath www.microsoft.com.

<trust level="Medium_Custom" originUrl="http://www\.microsoft\.com/.*"/>

Notice the trailing . * at the end of the originurl attribute. Now the System.Net.WebPermis-

sion class will interpret the URL as a regular expression; the trailing .* allows any characters to occur
after the trailing slash. With that change, the following code will work without throwing any security
exceptions:

C#

HttpWebRequest wr =
(HttpWebRequest)WebRequest .Create ("http: //www.microsoft.com/games/default.aspx") ;

VB.NET

Dim wr As HttpWebRequest = CType(_
WebRequest.Create ("http://www.microsoft.com/games/default.aspx"),
HttpWebRequest)

Although the examples shown all exercise the HttpWebRequest class directly, the most likely use you
will find for a custom WebPermission is in partial trust ASPNET applications that call into web ser-
vices. Without defining one or more WebPermissions, your web service calls will fail with less than
enlightening security errors.

177

Chapter 4: A Matter of Trust

Because your web application may need to connect to multiple web service endpoints, potentially
located under different DNS namespaces, you need to define a <IPermission /> elementin your cus-
tom policy file with multiple nested <URI /> entries. As an example, the following code gives you the
correct XML representation for a set of two different endpoints:

C#

WebPermission wp = new WebPermission() ;

Regex r = new Regex(@"http://www\.microsoft\.com/.*");
wp .AddPermission (NetworkAccess.Connect, r) ;

r = new Regex(@"http://www\.google\.com/.*");
wp .AddPermission (NetworkAccess.Connect, r);

SecurityElement se = wp.ToXml () ;
Response.Write (Server.HtmlEncode (se.ToString())) ;

VB.NET
Dim wp As New WebPermission()

Dim r As New Regex ("http://www\.microsoft\.com/.*")
wp .AddPermission (NetworkAccess.Connect, r)

r = New Regex("http://www\.google\.com/.*")
wp .AddPermission (NetworkAccess.Connect, r)

Dim se As SecurityElement = wp.ToXml ()
Response.Write (Server.HtmlEncode (se.ToString()))

The resulting XML, adjusted again for the class attribute, looks like this:

<IPermission class="WebPermission" version="1">
<ConnectAccess>
<URI uri="http://www\.microsoft\.com/.*"/>
<URI uri="http://www\.google\.com/.*"/>
</ConnectAccess>
</IPermission>

The $0riginHost$ replacement token is no longer being used. Realistically, after you understand how to
define a WebPermission in your policy file, the originUrl attribute isn't really needed anymore. Instead,
you can just build up multiple <URI /> elements as needed inside of your policy file. With the previous
changes, you can now write code that connects to any page located underneath www.microsoft.comor
www .google.com.

178

C#

HttpWebRequest wr =
(HttpWebRequest) WebRequest .Create ("http://www.microsoft.com/games/default.aspx") ;
HttpWebResponse resp = (HttpWebResponse)wr.GetResponsel() ;

Chapter 4: A Matter of Trust

resp.Close();

wr = (HttpWebRequest)WebRequest.Create("http://www.google.com/microsoft");
resp = (HttpWebResponse)wr.GetResponse() ;

VB.NET

Dim wr As HttpWebRequest = CType(_

WebRequest.Create ("http://www.microsoft.com/games/default.aspx"),
HttpWebRequest)

Dim resp As HttpWebResponse = CType (wr.GetResponse (), HttpWebResponse)

resp.Close()

wr = CType(_

WebRequest.Create ("http://www.google.com/microsoft"), _
HttpWebRequest)

resp = CType(wr.GetResponse(), HttpWebResponse)

Although I won't cover it here, the companion classes to Ht tpiebRequest /HttpilebResponse are the
various System.Net . Socket* classes. As with the Http classes, the socket classes have their own per-
mission: SocketPermission. Just like WebPermission, SocketPermission allows the definition of
network endpoints for both socket connect and socket receive operations.

LINQ in Medium/Partial Trust ASP.NET Applications

Language Integrated Query (LINQ), introduced in the NET Framework 3.5, is a standard way of access-
ing data, whether the data is stored in databases, XML files, objects, or other data sources. The purpose
behind LINQ is to provide a standard set of query operators that the developer can make use of to query
against different data sources by utilizing the same queries with some or minor changes between a data
source and another.

By default, LINQ features, prior to the NET Framework 3.5 final release mainly in .NET Framework 3.5
Beta 2, cannot run in an ASP.NET application that is configured with medium or partial trust. As you
have learned above, the set of permissions granted to an ASPNET web application running in the medium
or partial trust is determined by a Code Access Security (CAS) policy file located on the web server. When
the NET Framework 3.5 Beta 2 is installed on the machine, the existing or new ASPNET web applications
or websites continue to use the same CAS policy files that were defined with the NET Framework 2.0.
However, this has been resolved with the final release of the NET Framework 3.5 in such a way that when
you install the NET Framework 3.5 on the machine, the CAS policy files get updated and modified to
reflect the permission changes required to make LINQ function properly in ASPNET applications run-
ning under the medium or partial trust levels. The following paragraphs describe a step-by-step process
to show you the permissions required by LINQ to function properly in web applications running in the
medium or partial trust, and how to configure them manually. Remember, the following configurations
are already done for you when you install the .NET Framework 3.5 final release on your machine.

LINQ features require the application running inside it to be granted the RestrictedMemberAccess
permission, which is not granted by default for ASPNET 2.0 running in medium or partial trust. The
RestrictedMemberAccess permission indicates whether the restricted invocation of non-public types
and members is allowed or not for partially trusted code. The restricted invocation means that for a par-
tially trusted code to access non-public types and members, the set of permissions granted to it must
contain all the permissions granted to the assembly that has the non-public types and members.

179

Chapter 4: A Matter of Trust

Before getting into how to enable an ASPNET application running in the medium or partial trust level
to function properly with LINQ, let’s look at a sample code that makes use of a LINQ to SQL query:

C#
PubsDataContext context = new PubsDataContext () ;
var query = from emp in context.employees
select emp;
foreach (employee empl in query)
{
Response.Write("Employee Name: " + empl.fname + "
");
}
VB.NET

Dim context As New PubsDataContext ()
Dim query = From emp In context.employees _
Select emp

For Each empl As employee In query
Response.Write("Employee Name: " & empl.fname & "
")
Next empl

The preceding code assumes that there is a PubsDataContext created in the application that points to
the famous Pubs database on Microsoft SQL Server 2000 or 2005. Without going into much detail on the
DataContext class, consider it as the gateway to access the data tables that were loaded from the data-
base and converted into .NET objects. The same above shows a simple query that retrieves all the employ-
ees’ records from the Employees data table. Once the data is retrieved, a foreach-loop goes through
every item returned and displays onscreen the first name of every employee in the result set of the query.

When you run the preceding code in an ASPNET application configured with a Medium trust level in
such a way the machine running the application is still using the unmodified .NET Framework 2.0 CAS
policy files, you will receive the following exception:

[SecurityException: Request for the permission of type 'System.Security.
Permissions.ReflectionPermission, mscorlib, Version=2.0.0.0, Culture=neutral, Publi
cKeyToken=b77a5c561934e089' failed.]

As you can see, a request for the permission of type ReflectionPermission is done to allow the
code to browse the members on the employee class above. Hence, the need for granting access for the
ReflectionPermission for the LINQ features to work properly in an ASP.NET web application run-
ning under the medium or partial trust level.

To allow ASPNET web applications running under the .NET Framework 3.5 to use the new LINQ fea-
tures, you need to modify the CAS policy file that corresponds to the trust level that is configured for
the applications, which is a task that has been already done for you when the .NET Framework 3.5 final
release was installed on your machine.

Assuming that you have installed .NET Framework 3.5 Beta 2 and your application is configured with the
medium trust level, the changes should target the web_mediumtrust.config configuration file. To start,

open the aforementioned configuration file, which located in the following directory on your machine:

$windir%\Microsoft.NET\Framework\v2.0.50727\CONFIG

180

Chapter 4: A Matter of Trust

Make sure to back up the CAS policy file you want to modify. This is recommended so that no harm
is generated on your existing ASPNET web applications in the event something wrong went on while
modifying the policy file.

Locate the <SecurityClasses> configuration section inside the web_mediumtrust.config file and check if
an entry is found for the ReflectionPermission class. If not, make sure to add the following entry:

<SecurityClass Name="ReflectionPermission" Description="System.Security.
Permissions.ReflectionPermission, mscorlib,Version=2.0.0.0, Culture=neutral, Public
KeyToken=b77a5c561934e089" />

The ReflectionPersmission class controls access to non-public types and members through the
System.Reflection classes with the help of the appropriate ReflectionPermissionFlag enumera-
tion. Once the preceding entry is added, you also need to add the following <IPermission> entry to
the <NamedPermissionSets>, as follows:

<IPermission
class="ReflectionPermission"
version="1"
Flags="RestrictedMemberAccess"/>
</PermissionSet>

For the LINQ features to function properly, the ReflectionPermission should be granted on the CAS
policy file with the ReflectionPermissionFlag set to RestrictedMemberAccess. That is everything
you need to do to make the LINQ features function properly in an application configured to run with
the medium trust level.

If you are using another trust level that already contains an entry for the ReflectionPersmission, make
sure that ReflectionPermissionFlag contains a value of RestrictedMemberAccess, as follows:

<IPermission
class="ReflectionPermission"
version="1"
Flags="ReflectionEmit, RestrictedMemberAccess"/>

Save the file and make sure to restart the IIS 7.0 web server. Now running the sample code above should
work smoothly without any exceptions.

Remember that the preceding changes and demonstration is required only on a machine that has .NET
Framework 3.5 Beta 2 installed and not the final release of the framework; as you know by now, .NET
Framework 3.5 final release modifies the CAS policy files on your behalf. However, the demonstration
was to show you in depth what LINQ features require to function properly in applications running
under .NET Framework 3.5 and configured with medium or partial trust levels.

The Default Security Permissions Defined by ASP.NET

ASP.NET ships with default trust policy files for High, Medium, Low, and Minimal trust. You have
already read about several different permissions that are configured in these files. This section covers
all the permissions that appear in the files in the ASPNET named permission set, along with informa-
tion on the different rights that are granted depending on the trust level.

181

Chapter 4: A Matter of Trust

AspNetHostingPermission

To support the trust level model, ASP.NET created a new permission class: System.Web.AspNet
HostingPermission. The permission class is used as the runtime representation of the application’s
configured trust level. Although you could programmatically determine the trust level of an applica-
tion by looking at the 1evel attribute of the <trust /> element, that programming approach isn’t
consistent with how you would normally use CAS permissions. Because AspNetHostingPermission
inherits CodeAccessPermission, code can instead demand an AspNetHostingPermission just like
any other permissions class. The Framework will perform its stack walk, ensuring that all code in the
current call stack has the demanded trust level. ASP.NET uses this capability extensively within its
runtime to protect access to pieces of functionality that are not intended for use at lower trust levels.

The permission class has a public property Level that indicates the trust level represented
by the permission instance. In the various trust policy files, there is always a definition of
AspNetHostingPermission.

<IPermission

class="AspNetHostingPermission"
version="1"
Level="High"

/>

The usual convention is to set the Level attribute in the <IPermission /> element to the effective
trust level represented by the policy file.

There is nothing to prevent you from setting the Level attribute to a value that is inconsistent with the
overall intent of the trust policy file. For example, you could declare an AspNetHostingPermission
with a Level of High inside of the minimal trust policy file. However, you should normally not do this,
because the value of the Level property is used by ASPNET to protect access to certain pieces of func-
tionality. Artificially increasing the trust level can result in ASPNET successfully checking for a specific
trust level and then failing with SecurityException when the runtime attempts a privileged opera-
tion that isn’t allowed based on the other permissions defined in the trust policy file.

The problem also exists with the reverse condition; you could define a lower trust level than what the
permissions in the trust policy file would normally imply. For example, you could copy the policy

file for High trust, and then change the AspNetHostingPermission definition’s Level attribute to
Medium. Even though ASPNET internally won't run into unexpected exceptions, you now have the
problem that ASPNET “thinks” it is running at Medium trust, but the permissions granted to the appli-
cation are actually more appropriate for a High trust application.

All this brings us to a very important point about the AspNetHostingPermission. The intent of the
Level property is to be a broad indicator of the level of trust that you are willing to associate with the
application. Although the <IPermission /> definitions in the rest of the policy file are a concrete rep-
resentation of the trust level, the Level property is used as a surrogate for making other trust-related
decisions in code. Whenever possible you should set the Level attribute appropriately based on the
level of trust you are willing to grant to the application. Internally ASP.NET needs to make a number of
security decisions based on an application’s trust level. Rather than creating concrete permissions for
each and every security decision (this would result in dozens of new permission classes at a bare mini-
mum), ASP.NET instead looks at the AspNetHostingPermission for an application and makes secu-
rity judgments based on it. This is the main reason why you should ensure that the “Level” attribute is
set appropriately for your application.

182

Chapter 4: A Matter of Trust

Trust Level Intent

So, what specifically are the implications behind each trust level? Full trust is easy to understand because
it dispenses with the need for a trust policy file and a definition of AspNetHostingPermission. The fol-
lowing table lists the conceptual intent behind the other trust levels.

Trust Level

Intent

Full
High

Medium

Low

The ASP.NET application can call anything it wants.

The ASP.NET application should be allowed to call most classes within the .NET
Framework without any restrictions. Although the High trust policy file does not
contain an exhaustive list of all possible Framework permissions (the file would be
huge if you attempted this), High trust implies that aside from calling into unman-
aged code (this is disallowed), it is acceptable to use most of the remainder of the
Framework’s functionality. Although sandboxing privileged operations in GAC’d
classes is preferred, adding new permissions directly to the High trust policy file
instead would not be considered “breaking the contract” of High trust.

The ASP.NET application is intended to be constrained in terms of the classes and
Framework functionality it is allowed to use. A Medium trust application isn’t
expected to be able to directly call dangerous or privileged pieces of code. However,
a Medium trust application is expected to be able to read and write information; it
is just that the reading and writing may be constrained, or require special permis-
sions before it is allowed. If problems arise because of a lack of permissions, you

try to avoid adding the requisite permission classes to the Medium trust policy file.
Instead, if privileged operations require special permissions, the code should be
placed in a separate assembly and installed in the GAC. Furthermore, if at all possi-
ble, this type of assembly should demand some kind of permission that you would
expect the Medium trust application to possess. For example you could demand the
AspNetHostingPermission at the Medium level to ensure that even less trusted
ASP.NET applications cannot call into your GAC’d assembly.

The ASP.NET application is running in an environment where user code should not
be trusted with any kind of potentially dangerous operations. Low trust applications
are frequently considered to be read-only applications; this would cover things like a
reporting application. Because this is such a “low” level of trust, you should question
any application running in this trust level that is allowed to reach out and modify
data. For example, in the physical world someone that you had a low level of trust
for is probably not an individual you would trust to make changes to your bank
account balance. As with Medium trust, you should use GAC’d assemblies to solve
permission problems, although you should look at the operations allowed in your
assemblies to see if they are really appropriate for a Low trust application. Note that
Low trust is also appropriate for web applications like SharePoint that provide their
own hosted environment and thus their own security model on top of ASP.NET.
Applications like SharePoint lock down the rights of pages that are just dropped on
the web server’s file system. Developers instead make use of privileged functionality
through the SharePoint APIs or by following SharePoint’s security model.

Continued

183

Chapter 4: A Matter of Trust

Trust Level Intent

Minimal A Minimal trust application means that you don’t trust the code in the application to

do much of anything. If permission problems arise, you should not work around the
issue with GAC’d assemblies. Instead, you should question why a minimally trusted
application needs to carry out a protected operation. Realistically, this means that a
Minimal trust application is almost akin to serving out static HTML files, with the
additional capability to use the ASP.NET page model for richer page development.

ASP.NET Functionality Restricted by Trust Level

ASP.NET makes a number of decisions internally based on the trust level defined by the AspNetHosting
permission. Because High and Full trust applications imply the ability to use most Framework func-
tionality, the allowed ASP.NET functionality at these levels isn't something you need to worry about.

However, the Medium trust level is the lowest level at which the following pieces of ASP.NET function-
ality are allowed. Below Medium trust, the following features and APIs are not allowed:

(]

I T T N I N e B E

Accessing asynchronous pages (the Async page attribute)
Accessing transacted pages (the Transaction page attribute)
Using the Culture page attribute

Setting debug=true for a page or the entire application
Sending mail with System.wWeb.Mail.SmtpMail

Calling Request . LogonUserIdentity

Calling Response . AppendToLog

Explicitly calling Ht tpRuntime . ProcessRequest

Retrieving the MachineName property from HttpServerUtility
Setting the ScriptTimeout property on HttpServerUtility
Using the System.Web.Compilation.BuildManager class

Displaying a source error and source file for a failing pages

At Low trust, there are a still a few pieces of ASPNET functionality available that are not allowed when
running at Minimal trust:

Qa

a
a
Q

184

Retrieving Request . Params.
Retrieving Request . ServerVariables.
Retrieving Ht tpRuntime. IsOnUNCShare.

Calling into the provider-based features: Membership, Role Manager, Profile, Web Parts Person-
alization, and Site Navigation. Note, though, that most of the providers for these features will
not work in Low trust because their underlying permissions are not in the Low trust policy file.

Chapter 4: A Matter of Trust

Implications of AspNetHostingPermission Outside of ASP.NET

As you may have inferred from the name of the permission, it is primarily intended for use with ASP.NET-
specific code. Most of the time, this means Framework code that has the AspNetHostingPermission
attribute or that internally demands this permission to be called from inside of ASPNET. In fully trusted
code-execution environments outside of ASPNET you may not realize this is happening. For example, the
following code runs without a problem in a console application.

C#

Console.WriteLine (HttpUtility.HtmlEncode ("
"));

VB.NET
Console.WriteLine (HttpUtility.HtmlEncode ("
"))

Notice that this code is using the System.Web.HttpUtility class. Running the console application from
the local hard drive works, even though the Ht tpUtility class has the following declarative LinkDemand:

C#

[AspNetHostingPermission (SecurityAction.LinkDemand,
Level=AspNetHostingPermissionLevel .Minimal]

VB.NET

<AspNetHostingPermission (SecurityAction.LinkDemand, _
Level : =AspNetHostingPermissionLevel .Minimal) >

This works by default because applications running from the local hard drive are considered by the
.NET Framework to be running in the My Computer security zone. Any code running from this zone is
fully trusted. As a result, when it evaluates the LinkDemand, the Framework the application is running
in full trust, and thus ignores any permission checks.

However, if you move the compiled executable to a universal naming convention (UNC) share and then
run it, you end up with a SecurityException and the following stack dump information:

System.Security.SecurityException: Request for the permission of type 'System.Web.
AspNetHostingPermission, System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b
77a5c561934e089"' failed.

The assembly or AppDomain that failed was:
UsingAspNetCodeOutsideofAspNet, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=null

The Zone of the assembly that failed was: Internet

The Url of the assembly that failed was: file://remoteserver/c$/
UsingAspNetCodeOutsideofAspNet .exe

Now the Framework considers the application to be running in partial trust. Because the executable
was moved to a UNC share, the Framework applied the security restrictions from the Internet zone.
When LinkDemand occurred for AspNetHostingPermission, the Framework looked for that permis-
sion in the named permission set that the Framework associates with the Internet zone. Of course, it
couldn’t find it because the AspNetHostingPermission is typically found only inside of the ASPNET
trust policy files.

185

Chapter 4: A Matter of Trust

I won’t cover how to fix this security problem in this chapter, because most of the ASP.NET classes are
not intended for use outside of a web application anyway. However, in Chapter 15, “SqlRoleProvider,” I
walk through an example of using a provider-based feature from inside of a partial trust non-ASP.NET
application. Both Membership and Role Manager are examples of ASPNET classes that were explicitly
tweaked to make them useable outside of a web application. However, the classes for these features
make extensive use of AspNetHostingPermission, so it is necessary to understand how to grant the
AspNetHostingPermission to partial trust non-ASP.NET applications that use these two features.

Using AspNetHostingPermission in Your Code

Because AspNetHostingPermission models the conceptual trust that you grant to an application, you
can make use of this permission as a surrogate for creating a permission class from scratch. In fact, one
of the reasons ASP.NET uses AspNetHostingPermission to protect certain features is to reduce the
class explosion that would occur if every protected feature had its own permission class. So, rather than
creating TransactedPagePermission, AsyncPagePermission, SetCultureAttributePermission,
and so on, ASP.NET groups functionality according to the trust level that is appropriate for the feature.

You can follow a similar approach with standalone assemblies that you author. This applies to custom
control assemblies as well as to assemblies that contain middle-tier code or other logic. For example,
you can create a standalone assembly that uses the permission with the following code:

C#

public class SampleBusinessObject

{
public SampleBusinessObject () { }

public string DoSomeWork ()
{

AspNetHostingPermission perm =
new AspNetHostingPermission (AspNetHostingPermissionLevel.Medium) ;

perm.Demand () ;

//At this point it is safe to perform privileged work
return "Successfully passed the permission check.";

VB.NET

Public Class SampleBusinessObject
Public Sub New()
End Sub
Public Function DoSomeWork () As String
Dim perm As New AspNetHostingPermission(_
AspNetHostingPermissionLevel .Medium)

perm.Demand ()

'At this point it is safe to perform privileged work

186

Chapter 4: A Matter of Trust

Return "Successfully passed the permission check."
End Function
End Class

Drop the compiled assembly into the /bin folder of an ASP.NET application. Because the assembly
demands Medium trust, the following simple page code in an ASPNET application works at Medium
trust or above.

C#

SampleBusinessObject obj = new SampleBusinessObject();
Response.Write (obj.DoSomeWork ()) ;

VB.NET

Dim obj As New SampleBusinessObject ()
Response.Write (obj.DoSomeWork ())

However, if you configure the ASPNET application to run at Low or Minimal trust, the previous code
will fail with a SecurityException stating that the request for the AspNetHostingPermission failed.
Unfortunately, though, the exception information will not be specific enough to indicate additional any
extra information; in this case, it would be helpful to know the level that was requested but failed.

In cases like this where you probably control or have access to the code in the standalone assemblies,
you can determine which security permissions are required by using the permcalc tool located in the
NET Framework’s SDK directory. (This directory is available underneath the Visual Studio install
directory if you chose to install the SDK as part the Visual Studio setup process.) I ran permcalc
against the sample assembly with the following command line:

"C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\Bin\permcalc"
SampleBusinessTier.dll

The tool outputs an XML file containing all declarative and code-based permission demands. Although
declarative permission requirements are the easiest to infer (remember there is also an AspNetHosting
Permission attribute that you can use to adorn a class or a method), the tool does a pretty good job

of inspecting the actual code and pulling out the code-based permission demands. In the case of the
sample assembly, it returned the following snippet of permission information:

<Method Sig="instance string DoSomeWork()">
- <Demand>
- <PermissionSet version="1" class="System.Security.PermissionSet">
<IPermission
Level="Medium"
version="1"
class="System.Web.AspNetHostingPermission, System,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
/>
</PermissionSet>
</Demand>

The <Demand /> element in the permcalc output shows that the tool determined that the Dosometork
method is demanding AspNetHostingPermission with the Level at Medium.

187

Chapter 4: A Matter of Trust

DnsPermission

As the name implies, the System.Net .DnsPermission class defines the ability of your code to perform
forward and reverse address lookups with the System.Net . Dns class. The permission is a binary per-
mission in that it either grants code the right call into the Dns class or it denies the ability to use the bns
class. An interesting side note is that if you do not add bnsPermission to a trust policy file, but you
have added WebPermission, you can still make use of the Ht tpWebRequest and related classes. Inter-
nally, System.Net assumes that if you have the necessary webPermission, it can perform any required
DNS lookups internally on your behalf.

The rights for bnsPermission at the various trust levels are shown in the following table:

Trust Level Granted Permission

Full Unrestricted

High Unrestricted

Medium Unrestricted

Low No rights to use the Dns class
Minimal No rights to use the Dns class

EnvironmentPermission

The System.Security.Permissions.EnvironmentPermission class defines the ability of user code
to access environment variables via the System. Environment class. If you drop to a command line and
run the SET command, all sorts of interesting information is available from the environment variables.
Because this could be used as a backdoor for gathering information about the web server, the ASPNET
trust policy files restrict access to only a few environment variables in the lower trust levels.

The EnvironmentPermission supports defining access levels on a more granular basis, even down
to the level of protecting individual environment variables. As a result, you can control the ability to
read and write individual environment variables. Each security attribute (All, Read, and Write) in the
declarative representation of an EnironmentPermission can contain a semicolon delimited list of
environment variables.

The rights for EnvironmentPermission at the various trust levels are shown in the following table:

Trust Level Granted Permission

Full Unrestricted

High Unrestricted

Medium Can only read the following environment variables: TEMP, TMP, USERNAME, OS,
COMPUTERNAME. No ability to set environment variables.

Low No rights to read or write any environment variables

Minimal No rights to read or write any environment variables

188

Chapter 4: A Matter of Trust

FilelOPermission

I have already covered most of the functionality for the System.Security.Permissions.File
IOPermission class in other sections. This permission also supports defining different permissions
for different directory and file paths. The thing that is a little odd about this permission class is that it
takes a somewhat nonoptimal approach to declaring multiple permissions. Unlike webPermission or
SocketPermission, FileIOPermission does not output nested elements within a <IPermission />
element. Instead, it has a fixed set of attributes, but each path-related attribute can contain a semicolon-
delimited list of multiple paths. For example, the declarative syntax of a FileIOPermission with dif-
ferent permissions for two different directory paths is shown here:

<IPermission
class="FileIOPermission"
version="1"
Read="d:\temp;d: \somedummylocation"
Write="d:\somedummylocation"
Append="d:\temp; d: \somedummylocation"
/>

This permission defines only allowable file I/O operations at the Framework level. This means the
permission class is only able to define the ability of user code to perform logical operations (read, write,
and so on based on a set of defined file paths. However, the FileIOPermission does not protect access
to files and directories based on NT file system (NTES) file ACLs. As a result, it is completely possible
that from a CAS perspective the Framework will allow your code to issue a file I/O operation, but from
an NTFS perspective, your code may not have the necessary security permissions. When performing
any type of file I/O, you also need to ensure that the identity of the operating system thread has been
granted the necessary rights on the file system.

The following table lists the default permissions for the different trust levels.

Trust Level Granted Permission

Full Unrestricted.

High Unrestricted: Remember, this means the ability to read and write files anywhere in
the file system.

Medium Read, write, append, and path discovery are all allowed for directories and paths
located within the directory structure of the web application. Operations outside of
the application’s directory structure are not allowed.

Low Only read and path discovery are all allowed for directories and paths located within
the directory structure of the web application. Write operations are not allowed
within the application’s directory structure. Also, operations outside of the applica-
tion’s directory structure are not allowed.

Minimal No file I/O rights.

IsolatedStorageFilePermission

The System.Security.Permissions.IsolatedStorageFilePermission class controls the allowable
file operations when using the System.I0.IsolatedStorage.IsolatedStorageFile class. I honestly

189

Chapter 4: A Matter of Trust

have never encountered any customers using isolated file storage in an ASP.NET application. Although
you could technically use isolated storage as a way to store information locally on the web server for each
website user, there are probably not any web applications that work this way: A database would be better
choice, especially in web farm environments. However, because IsolatedStoragePermission is also
defined by the Framework in the machine CAS policy, the permission is included in the ASP.NET trust
policy files to ensure that ASPNET has the final say on what is allowed when using isolated storage.

The following table lists the default permissions for the different trust levels.

Trust Level Granted Permission

Full Unrestricted.

High Unrestricted.

Medium Isolated storage is allowed, but the only storage mode that can be used isolates

data by user identity. The disk quota for each user is effectively set to infinite.

Low Isolated storage is allowed, but the only storage mode that can be used isolates
data by user identity. The disk quota for each user is set to 1MB.

Minimal Not allowed.

PrintingPermission

Before you double over laughing at why this permission exists in an ASPNET trust policy file, I'll state
that the reason is the same as mentioned earlier for the IsolatedStorageFilePermission. The default
machine CAS policy grants System.Drawing.Printing.PrintingPermission to code running in the
various predefined security zones. So, ASPNET also defines the PrintingPermission in its trust files
to ensure that it has a final say in the level of access granted to user code that works with printers.

The following table lists the default permissions for the different trust levels.

Trust Level Granted Permission

Full Unrestricted.

High User code can issue commands to print to the default printer attached to the web server.
Medium User code can issue commands to print to the default printer attached to the web server.
Low Not allowed.

Minimal Not allowed.

ReflectionPermission

The System.Security.Permissions.ReflectionPermission class defines the types of reflec-
tion operations you can perform with classes in the System.Reflection namespaces. This is a very
important permission for ensuring the safety of partial trust applications because reflecting against code

190

Chapter 4: A Matter of Trust

introduces the potential for calling private/internal methods, and inspecting private/internal variables.
As a result, in the default ASP.NET policy files only High trust code has rights to use some of the reflec-
tion APlIs. In practice, you should not grant reflection permission to partially trusted user code due to
the potential for malicious code to deconstruct the code that is running on your server.

The following table lists the default permissions for the different trust levels.

Trust Level Granted Permission
Full Unrestricted.
High User code can use only classes in the System.Reflection.Emit namespace. These

classes can be used to generate code programmatically as well as a compiled repre-
sentation of the generated code. This functionality can be useful for an application
that dynamically generates assemblies to disk and then references these classes
from page code.

Medium Not allowed.
Low Not allowed.
Minimal Not allowed.

RegistryPermission

The System. Security.Permissions.RegistryPermission defines permissions for creating, read-
ing, and writing Registry keys and values. Much as with FileIOPermission, you can use this permis-
sion class to define a set of permission rules that vary depending on the Registry path. The various
security attributes on the <IPermission /> element contain a semicolon delimited list of Registry
keys to protect. This permission is enforced whenever you use the Microsoft.Win32.RegistryKey
class to manipulate the registry. Because there usually isn’t a need to directly read and write Registry
data in web applications, ASPNET by default only defines a RegistryPermission for High trust. If
you need access to Registry information at lower trust levels, you should put Registry access code into
a separate GAC'd assembly that has the necessary permissions. Normally, though, the restrictions on
Registry access are not too onerous because in web applications you use configuration files as opposed
to Registry keys for storing application configuration data.

The following table lists the default permissions for the different trust levels.

Trust Level Granted Permission
Full Unrestricted
High Unrestricted
Medium Not allowed
Low Not allowed
Minimal Not allowed

191

Chapter 4: A Matter of Trust

SecurityPermission

TheSystem.Security.Permissions.SecurityPermission class is a proverbial jack-of-all-trades
permissions class. Instead of defining a narrow set of permissions used by a specific set of classes in
the framework, a SecurityPermission class can define around fifteen permissions that apply to dif-
ferent privileged operations in the framework. For example, these permissions define the ability to
call unmanaged code and the ability for code to execute. The list of possible permissions that can be
granted with a SecurityPermission can be found in the SecurityPermissionFlag enumeration.

In partial trust applications, ASP.NET allows a subset of the available permissions by defining progres-
sively more restrictive security permissions for the lower trust levels. The specific permissions that
ASPNET may grant are listed here:

Q

Assertion: This permission allows code to assert that it has the right to call into other code that
may demand certain permissions. The advanced topics sections of this chapter cover how to
write GAC’d assemblies that use this permission. In partially trusted applications, assertion is
usually not granted because code doesn’t have sufficient rights to assert other arbitrary permis-
sion defined in the Framework.

ControlPrincipal: Allows code to change the IPrincipal reference available from Thread
.CurrentPrincipal. ASP.NET also demands this right if you attempt to set the User prop-
erty on an Ht tpContext. Keep this permission in mind if you write custom authentication or
custom authorization modules. If your modules need to set the thread principal when running
in Low trust or below, you need to deploy your modules in the GAC and assert a Security
Permission with the ControlPrincipal right.

ControlThread: Grants code the right to perform privileged operations on an instance of System
.Threading.Thread. For example, with this permission code is allowed to call Thread.Abort,
Thread. Suspend, and Thread.Resume.

Execution: Allows .NET Framework code to run. If ASP.NET did not define this permission in
the various trust policy files, none of your code would ever be allowed to run. Removing this
permission from any of the ASP.NET trust policy files effectively disables the ability to run
.aspx pages.

RemotingConfiguration: Allows an application to configure and start up a remoting infrastruc-
ture. Many ASP.NET applications don’t need to expose or call into remotable objects. However, if
you want to run a partial trust ASP.NET application that consumes objects using .NET Remoting,
make sure this permission is defined in the trust policy file. Note that RemotingConfiguration
isn’t needed if your application calls Web Services.

The following table lists the security permissions granted at the different trust levels.

Trust Level Granted Permission

Full Unrestricted

High Assertion, Execution, ControlThread, ControlPrincipal, RemotingConfiguration
Medium Assertion, Execution, ControlThread, ControlPrincipal, RemotingConfiguration
Low Execution

Minimal Execution

192

Chapter 4: A Matter of Trust

As you can see from this list, at Low and Minimal trust user code has only the ability execute. Because
ASP.NET restricts the SecurityPermission at Low and Minimal trust, you need to deploy all sensi-
tive business or security logic in GAC'd assemblies.

Due to the sensitive nature of the Assertion and ControlPrincipal rights, you should look into remov-
ing these if you create a custom trust level. The Assertion right is really intended for trusted code that
can successfully assert some kind of underlying permission. However, partially trusted code by its
very nature lacks many permissions, and thus it is unlikely that user code in a code-behind page could
successfully assert a permission (if the code already had the necessary permission, it wouldn’t need to
assert anything in the first place).

The ControlPrincipal right is a security-sensitive right appropriate only for code that manipulates
identity information for a request. Although it is a little bit more difficult to write a standalone HTTP
authentication/authorization module and deploy it in the GAC, it is much more secure to do so and
then remove the ControlPrincipal right in a trust policy file. Doing so ensures that some random piece
of application code can't arbitrarily change the security information for a request, something especially
trivial to accomplish when using forms authentication.

SmtpPermission

In ASPNET 1.0 and 1.1, the closest thing to a managed mail class was found in System.Web.Mail
.SmtpMail. Internally, SmtpMail is just a wrapper around CDONTS, which itself is unmanaged code.
Because it would be excessive to grant unmanaged code permission to a partially trusted ASP.NET
application, ASPNET instead protects access to this mail class by using the AspNetHostingPermission
as surrogate permission. At Medium trust or above, you can use SmtpMail, whereas at lower trust lev-
els you cannot send mail.

Starting with the v2.0 of the Framework, though, the System.wWeb.Mail.SmtpMail class has been dep-
recated and is replaced by the classes in the System.Net .Mail namespace. These classes protect access
to mail operations using the System.Net.Mail.SmtpPermission class. To maintain parity with the
mail behavior of earlier ASPNET release, the trust policy files are defined to allow all mail operations at
Medium trust and above as shown in the following table.

Trust Level Granted Permission

Full Unrestricted

High Unrestricted

Medium Unrestricted

Low Not allowed

Minimal Not allowed
SocketPermission

System.Net.SocketPermission is the companion permission class to the System.Net .WebPermission
class discussed earlier. It supports defining connect and receive access in a granular fashion segmented
by different network endpoints. Because of the potential for mischief when using the socket classes,
ASP.NET grants access to only High trust applications. If you have web applications that need to make
outbound socket connections (receiving socket connections is unlikely in a web application), you can

193

Chapter 4: A Matter of Trust

use the same approach described earlier for the WebPermission class to determine the exact XML syn-
tax necessary to restrict socket connections to specific endpoints.

The following table lists the security permissions granted at the different trust levels.

Trust Level Granted Permission
Full Unrestricted
High Unrestricted
Medium Not allowed
Low Not allowed
Minimal Not allowed

SqliClientPermission

The System.Data.SglClient.SglClientPermission classis used to allow or disallow use of the
classes in the System.Data.SqglClient namespace. There is no support for granular permissions along
the lines of the SocketPermission or WebPermission classes. Because Medium trust is the recom-
mended default trust level for shared hosters, the permission is available at Medium trust and above.

The following table lists the security permissions granted at the different trust levels.

Trust Level Granted Permission

Full Unrestricted

High Unrestricted

Medium Unrestricted

Low Not allowed

Minimal Not allowed
WebPermission

System.Net .WebPermission is used to define a granular set of connection rules for making HTTP
requests to various network endpoints. Because it is a potentially complex permission with multiple
nested permission elements, you can use the techniques described in the section “Using the WebPer-
mission” to determine the correct XML.

The following table lists the security permissions granted at the different trust levels.

Trust Level Granted Permission
Full Unrestricted.
High Unrestricted.

194

Chapter 4: A Matter of Trust

Trust Level Granted Permission

Medium Only connect access is granted to a single network endpoint. This endpoint is
defined by the originUrl attribute in the <trust /> configuration element.

Low Not allowed.

Minimal Not allowed.

Advanced Topics on Partial Trust

There are a few advanced issues on partial trusts that you may encounter while developing your
application:

0 Exception behavior when dealing with Link demands

0O Requirements for using the “allow partially trusted callers attribute” (APTCA) when writing
trusted types for use by ASP.NET

0 Sandboxing access to security sensitive code with GAC’d assemblies

0 The processRequestInApplicationTrust attribute in the <trust /> element

LinkDemand Exception Behavior

All the sample code used so far to highlight exception behavior has involved full permission demands
made by different classes in the Framework. However, this type of permission demand can be expen-
sive because the Framework has to crawl up the current call stack each and every time a full permission
demand occurs. Even if the exact same code is executing on subsequent page requests, the Framework
still has to perform a fair amount of work to reevaluate the results of a demand.

To mitigate the performance hit of full demands, the Framework also includes the concept of a link
demand, also referred to as a LinkDemand. The idea behind a LinkDemand is that the Framework needs
to make a permission check only the first time code from one assembly attempts to call a piece of pro-
tected code in another assembly. After that check is made, the Framework does not perform any addi-
tional security evaluations on subsequent calls.

The issue you may run into when developing partial trust applications is that LinkDemands are evalu-
ated before your code even starts running. The reason for this is that a LinkDemand occurs when the
Framework is attempting to link the code that you wrote with the compiled code that exists in another
assembly. Establishing this link occurs before the first line of code in your method executes. As a result,
even though you may have try/catch blocks set up to explicitly catch SecurityExceptions, you still
end up with an unhandled exception. To highlight this behavior, let’s use one of the sample pieces of
code from the beginning of the chapter to make a call into the ADO PIA.

C#

try

{
//An unhandled exception due to LinkDemands will occur before this code runs
RecordsetClass rc = new RecordsetClass() ;

195

Chapter 4: A Matter of Trust

int fieldCount = rc.Fields.Count;

Response.Write("Successfully created an ADO recordset using the ADO PIA.");
}
catch (Exception ex)

{
Response.Write(ex.Message + "
" +
Server .HtmlEncode (ex.StackTrace)) ;

VB.NET

Try

'The next two lines of code result
'in an unhandled exception from the
LinkDemand ()

Dim rc As New RecordsetClass()

Dim fieldCount As Integer = rc.Fields.Count

Response.Write(_
"Successfully created an ADO " & _
"recordset using the ADO PIA.")
Catch ex As Exception
Response.Write(ex.Message & "
" & _
Server.HtmlEncode (ex.StackTrace))

End Try

Even though this code is catching almost every exception, when you attempt to run this code in a partial
trust ASPNET application (I used Medium trust for the test), the page fails with an unhandled exception.
Some of the abbreviated exception information is shown here:

[SecurityException: That assembly does not allow partially trusted callers.]

System.Security.CodeAccessSecurityEngine.ThrowSecurityException (Assembly

asm, PermissionSet granted, PermissionSet refused, RuntimeMethodHandle rmh,
SecurityAction action, Object demand, IPermission permThatFailed) at LinkDemand.
CreateRecordset () at LinkDemand.Buttonl_Click(Object sender, EventArgs e) in c:\
inetpub\wwwroot\379301_code\379301 ch04_code\cs\WorkingWithTrustLevels\LinkDemand.

aspx.cs:line 36

The call stack shows the code appears to have transitioned from the button click handler immediately
into the internals of the .NET Framework security system. The reason is that the ADO primary interop
assembly (PIA) is installed in the GAC, and thus the Framework requires that any calling code itself be
fully trusted. The security check immediately failed when it detected that the calling code was partially
trusted. In fact, one of the most common symptoms of a failed LinkDemand is the exception text stating

that some assembly doesn’t allow partially trusted callers.

The way around the unhandled exception problem is to place code that may encounter LinkDemand
failures inside of a separate method or function. Then have your main code path call the helper method,
wrapping the call in an exception handler. For example, you can change the sample code to use a pri-
vate method for calling ADO:

196

Chapter 4: A Matter of Trust

C#

private void CreateRecordset ()

{
//This code will never run due to a LinkDemand failure
RecordsetClass rc = new RecordsetClass() ;
int fleldCount = rc.Fields.Count;

protected void Buttonl_Click(object sender, EventArgs e)
{
try
{
//The LinkDemand failure from the private method will bubble up as a
//catch-able exception
this.CreateRecordset () ;

Response.Write("Successfully created an ADO recordset using the ADO PIA.");
}
catch (Exception ex)
{
Response.Write(ex.Message + "
" +
Server.HtmlEncode (ex.StackTrace)) ;

VB.NET

Private Sub CreateRecordset ()

Dim rc As New RecordsetClass ()

Dim fieldCount As Integer = rc.Fields.Count
End Sub

Protected Sub Buttonl Click(_

ByVal sender As Object,

ByVal e As System.EventArgs) Handles Buttonl.Click
Try

' The LinkDemand failure from the private method will bubble up as a
' catch-able exception

Me.CreateRecordset ()

Response.Write(_
"Successfully created an ADO " & _
"recordset using the ADO PIA.")

Catch ex As Exception
Response.Write (ex.Message & "
" & _
Server.HtmlEncode (ex.StackTrace))

End Try

End Sub

Now the LinkDemand failure occurs when the Framework attempts to link the code in CreateRecordset
to the code inside of the ADO PIA. The resulting SecurityException is successfully caught inside of
the button click handler, and you can react appropriately to the error.

197

Chapter 4: A Matter of Trust

Although this example demonstrates the problem with a LinkDemand requiring a full trust caller, any
LinkDemand-induced failure will exhibit this behavior. As a developer, you should be aware of this and
code defensively when you know you are using classes that implement LinkDemands.

LinkDemand Handling When Using Reflection

Because LinkDemands are intended to protect an assembly when another assembly links to it, there

is a potential problem when using reflection to call into a protected assembly. With reflection, the
immediate caller into a protected assembly is the NET Framework code for the System.Reflection
namespace. Because Framework code all lives in the GAC, any LinkDemand would appear to immedi-
ately pass the security checks. However, if this were really the case, any partial trust application with
the appropriate ReflectionPermission could subvert the intent of a LinkDemand.

To prevent this kind of “end run” around security, the Framework first checks the security of the frue
caller rather than the code running System.Reflection. Additionally, the Framework converts the
LinkDemand into a full demand. If the previous example used a GAC'd assembly to call the ADO PIA
via reflection on behalf of the ASPNET page, the following would occur:

1. The reflection code sees the LinkDemand for full trust.

2. The Framework enforces the IinkDemand against the assembly in the GAC because it is the
GAC’d assembly that is really making the method call.

3. The Framework converts the LinkDemand into a full demand because reflection is being used.

4. The Framework walks up the call stack, inspecting each assembly involved in the current call
stack to see if it is fully trusted.

5. When the stack crawl reaches the partial trust page code the security check fails and a Securi-
tyException is thrown.

Keep this behavior in mind if you write a GAC'd wrapper assembly that calls a protected assembly

on behalf of a partial trust ASP.NET application. The section on sandboxing titled “Sandboxing with
Strongly Named Assemblies” will cover how a GAC'd assembly can ensure that it always has the nec-
essary rights to call protected code, regardless of whether the call is made directly or via reflection.

Working with the AllowPartiallyTrustedCallers Attribute

You would be in a real quandary if there was no way to call protected code from a partial trust ASPNET
application. If you think about it, though, ASP.NET code is calling into what would technically be con-
sidered “protected code” all the time. Whenever you write a line of code that uses the Request or
Response objects, you are accessing classes that live inside of Systemiieb.d11, which itself is installed
in the GAC. However, in all the previous examples where sample code was writing information out
using Response, there weren't any unexpected security exceptions.

The reason for this behavior is the AllowPartiallyTrustedCallersAttribute class located in the
System. Security namespace. If an assembly author includes this attribute as part of the assembly’s
metadata, when the NET Framework sees a call being made from partially trusted code to the assembly,
it does not trigger a LinkDemand for full trust. The System.wWeb.d11 assembly uses AllowPartially
TrustedCallersAttribute to allow partial trust code to call into its classes. You can see this if you

198

Chapter 4: A Matter of Trust

run the ildasm utility (available in the SDK subdirectory inside of the Visual Studio install directory
if you chose to install the SDK) against the System.Web.d11 file located in the framework’s installa-
tion directory. You will see a line of metadata like the following if you look at the assembly’s manifest
inside of ildasm.

[mscorlib]System.Security.AllowPartiallyTrustedCallersAttribute::.ctor ()

If you are using assemblies that you don’t directly control or own, and you are wondering whether the
assemblies can even be used in a partially trusted web application, you should ildasmthem and look
for the AllowPartiallyTrustedCallersAttribute. If the assemblies lack the attribute, then without
additional work on your part (sandboxing the assemblies which is discussed later), you will not be able
to install the code in the GAC and consume it directly from a partially trusted ASP.NET application.

A few technical details about using AllowPartiallyTrustedCallersAttribute are listed here:

O Although you can add this attribute to any assembly, it makes sense to use it only with an
assembly that is strongly named.

0 Strongly named assemblies require a signing key and an extra step in the assembly’s build
process to create the digital signature for the assembly’s code. You can set this all up in Visual
Studio 2008 so that the work is done automatically for you.

QO In ASP.NET 3.5 you can deploy strongly named assemblies either in the GAC or in the /bin
directory of your application. Deploying a strongly named assembly in the /bin directory has
some extra implications in partial trust ASP.NET applications.

In the interest of brevity, folks frequently refer to the AllowPartiallyTrustedCallersAttribute
as APTCA, or “app-ka” when talking about it. Trust me; it’s a lot faster to talk about APTCA rather
than the full name of the attribute!

To demonstrate using the attribute, create a really basic standalone assembly that is strongly named.
The assembly exposes a dummy worker method just so there is something that you can call.

C#

public class SampleClass
{
public string DoSomething ()
{
return "I did something";

}

VB.NET

Public Class SampleClass
Public Function DoSomething() As String
Return "I did something"
End Function
End Class

199

Chapter 4: A Matter of Trust

Initially, the assembly will be strongly named, but won't have APTCA in its metadata. If you are won-
dering how to get Visual Studio to strongly name the assembly, just use the following steps:

1. Right-click the Project node in the Solution Explorer.

2 Select the Signing tab in the Property page that is displayed.

3. Check the Sign the assembly check box on the Signing property page.

4

If you are just creating a key file for a sample application like I am, choose New from the
Choose a strong name key file drop-down list. In a secure development environment, though,
you should delay sign the assembly and manage the private key information separately.

5. Type the key file name in the dialog box that pops up, and optionally choose to protect the file
with a username and password.

The end result is that when you build the standalone assembly, Visual Studio signs it for you. You can
confirm this by running ildasm against the assembly. You will see the public key token, albeit with a
different value, when you look at the assembly’s manifest:

.publickey = (00 24 00 00 04 80 00 00 94 00 00 00 06 02 00 00
)
Now you have a strongly named assembly and can start working with it from a partial trust ASPNET

application. First, install the assembly into the GAC using the gacutil tool: This tool is also available
from the SDK directory. Run the following command to install the assembly into the GAC:

"C:\..path..to..VS\SDK\v2.0\Bin\gacutil" -i SampleAPTCAAssembly.dll

Next, you can try instantiating and calling the assembly from ASP.NET. Because I keep the standalone
assembly in a separate project, I can’t use the project reference feature in Visual Studio. In a case like this,
you can manually hook up a reference to any assembly located in the GAC by doing the following;:

1. Navigate to $windir%\assembly to view the GAC.

2. Find your registered assembly in the list, and note the version number, culture, and public key
token information.

3. Using that information, manually register the GAC’d assembly using the <assemblies />
element in web.config.

For the sample application, I added the following GAC reference into web.config:

<compilation debug="true">
<assemblies>
<add assembly="SampleAPTCAAssembly, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=ffd374f464£42428" />
</assemblies>
</compilation>

With this reference in the configuration, the sample application can reference the namespace from the
assembly and use the sample class.

200

Chapter 4: A Matter of Trust

C#

using SampleAPTCAAssembly;

protected void Page_Load(object sender, EventArgs e)
{
SampleClass sc = new SampleClass();
Response.Write (sc.DoSomething()) ;

VB.NET
Imports SampleAPTCAAssembly_vb.SampleAPTCAAssembly vb

Protected Sub Page_Load(_

ByVal sender As Object, _

ByVal e As System.EventArgs) Handles Me.Load
Dim sc As New SampleClass()
Response.Write (sc.DoSomething())

End Sub

Because the sample web application is set to run at Medium trust, running the sample page results in
the following now familiar SecurityException:

System.Security.SecurityException: That assembly does not allow partially trusted
callers.

However, armed with the information that the standalone assembly requires APTCA to be success-
fully called, this problem can quickly be rectified. Going back to the standalone assembly project,

the ApTCA attribute is added to the assembly by placing the attribute definition inside of the project’s
AssemblyInfo.cs file. This file can be found by expanding the Properties node for the project inside
of Solution Explorer.

C#

using System.Security;

//Allow partially trusted callers
[assembly: AllowPartiallyTrustedCallers ()]

VB.NET

Imports System.Security

'Allow partially trusted callers
<Assembly: AllowPartiallyTrustedCallers()>

Recompiling the application and reinstalling the new assembly into the GAC gives you an assembly
that will now allow a partial trust web application to call into it. Running the sample’s ASPNET page
in Medium trust succeeds, and the text from the standalone assembly is written out without triggering
any exceptions.

201

Chapter 4: A Matter of Trust

Sometimes changing GAC'd assemblies doesn’t seem to always take immediate effect. If you are sure
that you have updated a GAC’d assembly with APTCA, and it still isn’t working, try closing down
Visual Studio and running iisreset.

Strong Named Assemblies, APTCA, and the Bin Directory

One variation on the issue with APTCA and partial trust callers deals with the issue of deploying
strongly named assemblies in /bin and then attempting to use them. You might think that you could
create a strong named assembly for versioning purposes but then deploy it into the /bin directory of a
web application for convenience. However, if you attempt to do this, the NET Framework still enforces
a LinkDemand when a partially trusted caller attempts to use a strong named assembly.

You can see this if you take the standalone assembly used earlier and recompile it without APTCA.
Drop it into the /bin directory of the web application (make sure to remove the old assembly from the
GAC) and remove the GAC reference from web. config. Now when you run the sample web page it
once again fails with a SecurityException.

This behavior may take you by surprise if you have ASPNET applications that formerly ran in full trust
and that you are now attempting to tweak to get running in High trust or lower. If you have strongly
named assemblies sitting in /bin (which admittedly in ASP.NET 1.1 you might have avoided because
there were problems with loading strong named assemblies from bin), and if those assemblies never
had APTCA applied to them, then your ASPNET application will suddenly start throwing the familiar
SecurityException complaining about partially trusted callers.

This boils down to a simple rule: If you are creating strongly named assemblies, you should make the
decision up front on whether the assemblies are intended to support partial trust environments like
ASP.NET. If so, you should review the code to ensure that partially trusted applications are not allowed
to call dangerous code (for example, a strong named assembly shouldn’t be just a proxy for directly call-
ing random Win32 APIs), and then add the APTCA attribute to the assembly. For some developers who
have large numbers of middle tier assemblies, quite a few assemblies may require this type of security
review and the application of APTCA prior to being useable in a partial trust application.

Another area where APTCA is enforced is for any type that ASPNET dynamically loads on your behalf.
Because you can create custom configuration section handlers, custom Ht tpModules, custom provid-
ers, and so on, ASP.NET is responsible for dynamically loading the assemblies that contain these cus-
tom extensions.

Consider the following scenario:

1. An ASP.NET application runs in Medium trust.

2. You write a custom Membership provider in a strongly named standalone assembly.

3. The assembly isn’t attributed with APTCA.

4. For ease of deployment, you place the assembly in /bin.
What happens? From a .NET Framework perspective, it triggers a LinkDemand for full trust when
ASP.NET attempts to load the custom provider. Because it is ASP.NET that is loading the provider, the

initial LinkDemand check succeeds. The provider loader code is buried somewhere in System.web.d11,
which itself sits in the GAC. So, from a .NET Framework perspective, everything is just fine with the

202

Chapter 4: A Matter of Trust

immediate caller. Because ASPNET dynamically loads providers with the System.Activator type,
though, the Framework will continue to demand Full trust from all other code sitting in the calls stack.

Because it is probably user code in a page that is making use of Membership in this scenario, the full
stack walk to check for Full trust will end up failing.

To give an example of this, you can use the standalone assembly from the earlier APTCA discussion,
and add a simple Membership provider to it.

C#

public class DummyMembershipProvider : SglMembershipProvider {}

VB.NET

Public Class DummyMembershipProvider Inherits SglMembershipProvider
End Class

The assembly is again deployed into the /bin directory of the ASP.NET application. Because this is a
Membership provider, the Membership feature must be configured to use the custom provider. A full
strong type definition isn’t necessary, because the containing assembly is in /bin:

<membership>
<providers>
<add name="DummyProvider"
type="SampleAPTCAAssembly.DummyMembershipProvider, SampleAPTCAAssembly" />
</providers>
</membership>

A sample page that forces the Membership feature to initialize, and thus load all configured providers,
is shown here:

C#
protected void Page_Load(object sender, EventArgs e)
{
Response.Write (Membership.ApplicationName) ;
}
VB.NET
Protected Sub Page_Load(_
ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Load
Response.Write (Membership.ApplicationName)
End Sub

Running this page at Medium trust results in a page failure:

Description: An error occurred during the processing of a configuration file
required to service this request. Please review the specific error details below
and modify your configuration file appropriately.

Parser Error Message: That assembly does not allow partially trusted callers.

203

Chapter 4: A Matter of Trust

Depending on which piece of ASPNET code is actually responsible for loading custom types, you
will get different error messages. In this case, because loading custom Membership providers is con-
sidered part of the configuration for Membership, the error information is returned as an instance
of System.Configuration.ConfigurationErrorsException. Again, this kind of failure can be
solved by attributing the assembly with APTCA. After the assembly is updated with APTCA and
redeployed to the /bin directory, the Medium trust application is able to load the custom provider.

Now say that you instead make use of the GAC for a custom provider. The scenario looks like:

1. An ASP.NET application runs in Medium trust.

2. You write a custom Membership provider in a strongly named standalone assembly.
3. The assembly is not attributed with APTCA.

4. You deploy the provider in the GAC.

In this case, ASPNET adds an extra layer of enforcement. Before even attempting to spin up the pro-
vider with System.Activator, ASPNET first checks to see of the provider’s assembly is attributed with
APTCA. If ASPNET cannot find the APTCA attribute, it immediately fails with a ConfigurationErrors
Exception (though in this case the text of the error will be a bit different because it is ASPNET’s APTCA
check that is failing as opposed to the Framework’s APTCA enforcement). Although the provider case
would still fail even if ASPNET did not make this check (the page code in a partial trust web application
would still be on the stack), there are other cases where ASPNET dynamically loads code (for example,
custom handlers and modules), and thus no user code exists on the stack. This is the main reason why
ASPNET adds its own additional APTCA check for dynamically loaded types that exist in GAC'd assem-
blies. All of this should serve to reinforce the fundamental tenet of strongly named assemblies: determine
whether the strongly named assembly is intended for use in any type of partial trust scenario, and if so
perform a security review and attribute with APTCA. Do not assume that you can “fake out” ASPNET
or the NET Framework by using some level of indirection to get a reference to a strongly named type.
Reflection will not help, because the Framework converts LinkDemands into full demands. In the case
of ASPNET, code that loads types from the GAC based on information in configuration explicitly looks
for APTCA on an assembly before loading it on behalf of a partially trusted ASPNET application.

Sandboxing with Strongly Named Assemblies

With an understanding of APTCA, the GAC, and partial trust callers under your belt, you can put the
pieces together for wrapping code in a sandbox of sorts such that partially trusted callers can use more
privileged code. The idea behind the sandbox is that a partial trust web application doesn’t require
access to every possible API in the NET Framework.

For example, if you are developing a Medium trust web application that communicates with a database,
chances are that the web application doesn’t really need to use every class in System.Data.SqglClient.
Furthermore, it is likely that the web application does not require the ability to issue any arbitrary query.
Instead, your web application probably has a very specific set of requirements—a specific set of tables
and stored procedures that it should interact with. As a result, you could encapsulate this restricted
functionality inside of an assembly (or assemblies) that exposes methods performing only the required
query operations. With such an approach you have effectively created a sandbox within which your
partial trust application can issue a limited set of SQL queries.

204

Chapter 4: A Matter of Trust

Creating a sandbox assembly for use by a partial trust application requires the following:

1. A clear understanding of the specific functionality that needs to be publicly available to the par-
tial trust application

2. Knowledge of the security expectations that the sandbox assembly can realistically demand
from the partial trust code

3. Knowledge of the security requirements of lower-level code that the sandboxed assembly itself
relies on

Of the these three items, you can pretty easily scope out the requirements for point 1 because you
would normally do this anyway in the course of designing and developing your web application.
However, point 2 is something that you may not have given consideration to before.

If you work on a development team where everyone knows who writes specific pieces of code, then
you may not need to give too much though to the security expectations the sandbox assembly demands.
You could instead author a sandbox assembly, install it on one or more web servers, and be done with it.
However, if you write a sandboxed assembly for use by anonymous or unknown customers, then you
should definitely enforce point 2.

If you think about it, System.Web.dl11 could be considered a really, really big sandbox assembly. On behalf
of millions of developers not personally known by the ASPNET development team, the ASPNET runtime
is allowing partial trust web applications to do all sorts of interesting things. AspNetHostingPermission,
which was covered earlier, is the programmatic representation of a security requirement that ASPNET
demands from all partial trust applications. In the absence of a “personal trust” relationship, ASPNET
instead uses the custom permission to establish an understanding of the level of trust granted to a web
application. As you saw, based upon that level of trust, ASPNET will turn on and off various features.

If you are planning on authoring a strongly named assembly, regardless of whether it goes in the GAC,
you need to consider what types of permissions you expect (. demand) from calling code. Of course,
another reason for doing this is that some code that calls into your assembly may be malicious code that
is attempting to use your sandboxed assembly to subvert other security restrictions on the web server.

In Figure 4-2, the general pattern of a sandboxed assembly requesting some type of permission from its
caller is shown.

For example, say that your strongly named assembly internally makes a request for a bank account bal-
ance lookup from some mainframe. The assembly exposes a public method for making this request that
hides all of the internals necessary for setting up a call to a mainframe, parsing the response, authenti-
cating the web server to the mainframe, and so on. In normal circumstances, your assembly is deployed
on a web server, probably in the GAC, and the following call flow occurs:

1. The partially trusted web application calls a public method on your assembly, requesting the
bank account balance lookup.

2. Rather than just blindly trusting the caller, your assembly requires that the web application has
a custom permission defined by your company. It makes this check by constructing an instance
of the custom permission and then programmatically demanding it.

3. Assuming that the web application has the required permission, your assembly makes the nec-
essary calls into other privileged code to retrieve the bank account balance.

205

Chapter 4: A Matter of Trust

Because of step 2, your sandboxed assembly is safer for use in partial trust applications and by any ran-
dom and anonymous set of developers. Because your assembly requires a custom permission, the logical
place to assign the permission to an ASP.NET application is in a custom trust policy file. Remember from
earlier all of the permission classes that were registered with <SecurityClass /> elementsin a trust
policy file? You could author your own permission that derives from System.Security.CodeAccess
Permission and then configure it in the trust policy file and grant it in with <IPermission /> element.

Partially trusted caller

—

=
= S
= o =
S
o = 2
3 8 D ~
= ==
=
S S o
[=] = =
o T o =
= = =
= w 2
[SE=]
i ~

Your strongly named assembly

papasdINs
(2) 1 Ajuo uonesado pabajiaiid e sjieg (g)

—

Some lower level privileged operation

Figure 4-2

Now a malicious user who obtains your sandboxed assembly and attempts to call it would need to
overcome the following hurdles:

Q They would need to obtain the assembly with the definition of the custom permission you are
demanding.

Q The custom permission would need to be installed in the GAC, but this requires machine
administrator privileges.

Q The trust policy file for the web application would need to be changed. Again, though, creating
or editing trust policy files requires machine administrator privileges.

206

Chapter 4: A Matter of Trust

Because the likelihood of compromising someone with machine administrator privileges is pretty low
(if someone with machine admin privileges on your Internet-facing web farms has malicious intent, it’s
all over!), any attempt by a partial trust web application to use your sandboxed assembly immediately
fails when your assembly demands a custom permission.

Always demand some kind of permission in your sandbox assemblies when you don’t know who is writ-
ing the partially trusted code that calls into your assembly.

The last point mentioned earlier (step 3) noted that you also have to have an understanding of the
security requirements of the code that your sandboxed assembly will call. This is necessary because it
is likely that some of the classes you call also have their own demands. For example, if you were wrap-
ping calls to System.Data.SglClient, you know that the various classes in that namespace will
demand sglclientPermission. Even though your assembly is strongly named, and may be in the
GAQC, it doesn't change the fact that the demand for SqliClientPermission will flow right up the
call stack, and when the demand hits a partially trusted web application, the demand will fail.

So, the third thing a sandboxed assembly may need to do is assert one or more permissions. When call-
ing System.Data.SglClient, your sandboxed assembly needs to assert SgliClientPermission.
Doing so has the effect of stopping the stack walk for SglclientPermission when your assembly is
reached. Figure 4-3 shows this.

Partially trusted caller

LI

K=]

—_ 5

= @

) IS
38 5 E
@ = 8=
= w» o=
S o 1)
g e
S = S c
= £

=3 e

=)

o (]

—

| =1

Your strongly named assembly
Asserts SqlClientPermission

uonasuu0g|bs sie9 (g)
(4) SglConnection demands
SqlClientPermission

«—— pUBLIAp 8} SalSIes Uassy ay (§) ——

System.Data.SqlClient

Figure 4-3
207

Chapter 4: A Matter of Trust

Walking through the steps that occur:

1. The partial trust web application calls into the sandboxed assembly.

2. The sandboxed assembly demands permission from the partial trust web application rather
than just immediately executing code on its behalf.

3. Assuming that the permission demand succeeds, the sandboxed assembly makes a call into
ADO.NET.

4, ADO.NET demands SglClientPermission, which starts a stack walk to check that all assem-
blies in the current call stack have this permission.

B. When the stack walk “sees” that the sandboxed assembly asserted SglClientPermission, the
stack walk stops.

6. Control returns back to ADO.NET, and the appropriate method is allowed to execute.

The need to demand some type of permission from the calling code is, hopefully, a little clearer now.
Because sandbox assemblies may very well assert one or more permissions, it makes good sense to
require some type of permission in return from the calling code. Think of this as the equivalent of giving
your car keys to your teenager on the weekend (you are effectively asserting that you trust he or she will
not do anything wrong with the car, but in return you expect your teenager to drive responsibly).

There is one thing to keep in mind with the concept of asserting permissions. Even though any code
can new () up a permission class and call the Assert method, this doesn’t necessarily mean that
Assert will succeed. The reason a sandboxed assembly in the GAC can successfully call Assert

for any permission class lies in the way the .NET Framework evaluates the Assert. When a piece of
code calls Assert, the Framework looks at the assembly that contains the code making the assertion.
Based on the evidence for that assembly (where is the assembly physically located, what is its digital
signature, and so on), the Framework matches the assembly to the appropriate portion of the security
policy currently in effect for that application domain. The Framework then looks for the asserted per-
mission in the security policy; if the permission is found, the assertion succeeds. If the assertion fails,
a SecurityException occurs.

When assemblies are deployed in the GAC, code always has full trust, which means that GAC'd code
can call any other code and use any of the functionality in the Framework. As a result, GAC'd code that
calls Assert always succeeds. I won't go into it here, but it is possible to structure the membership con-
ditions for the NET Framework’s security to allow code in other locations to also be assigned full trust.
For most folks, though, installation in the GAC is the most straightforward way of obtaining full trust
and, thus, being able to assert permissions.

Sandboxed Access to ADODB

Earlier in the section “Working with Different Trust Levels” a few samples attempted to use the old ADO
data access technology from a partial trust web application. In this scenario, you can move the ADO data
access code into its own sandbox assembly and then enable the assembly for use in partial trust.

208

Chapter 4: A Matter of Trust

The sandbox assembly contains code that attempts to create a new recordset:

C#

public int CreateRecordset ()
{
AspNetHostingPermission asp =

new AspNetHostingPermission (AspNetHostingPermissionLevel.Medium) ;
asp.Demand () ;

RecordsetClass rc = new RecordsetClass() ;
int fleldCount = rc.Fields.Count;
return fieldCount;

VB.NET

Public Function CreateRecordset () As Integer
Dim asp As New AspNetHostingPermission(_
AspNetHostingPermissionLevel .Medium)
asp.Demand ()

Dim rc As New RecordsetClass ()
Dim fieldCount As Integer = rc.Fields.Count
Return fieldCount

End Function

The assembly is attributed with APTCA to allow partially trusted callers. The class also demands
Medium trust from its callers. Because this method is working with ADO, which is effectively the precur-
sor to ADO.NET, and ASPNET grants SglClientPermission at Medium trust, the CreateRecordset
method works with ADO on behalf of any partially trusted caller running at Medium trust or higher.

After installing the assembly into the GAC, the web application is updated so that it has a reference to
the GAC'd assembly.

<add assembly="SampleAPTCAAssembly, Version=1.0.0.0, Culture=neutral, PublicKeyToke
n=ffd374£f46d4£42d28" />

The web page that uses the GAC’d assembly is shown here:

C#

using SampleAPTCAAssembly;

protected void Page_Load(object sender, EventArgs e)

{
ADODBWrapper wrapper = new ADODBWrapper () ;
Response.Write (wrapper.CreateRecordset () .ToString()) ;

209

Chapter 4: A Matter of Trust

VB.NET
Imports SampleAPTCAAssembly_ vb.SampleAPTCAAssembly vb

Protected Sub Page_Load(_
ByVal sender as Object,
ByVal e As System.EventArgs) Handles Me.Load
Dim wrapper As New ADODBWrapper ()
Response.Write (wrapper.CreateRecordset () .ToString())
End Sub

At this point the page still won't work, because the COM interop layer for ADO is demanding File-
I0Permission. However, because calling into a PIA means that you are calling into unmanaged code,
the sandbox assembly also needs SecurityPermission to grant unmanaged code assert permission. It
isn’t uncommon for sandbox assemblies to need to assert permissions to prevent demands in the under-
lying code from flowing up the call stack. To rectify the problem when calling the ADO PIA, the assem-
bly asserts file IO permission and unmanaged code permission as shown here:

C#

//1f we get this far, we trust the caller and are willing to assert
//permissions on its behalf.

PermissionSet ps = new PermissionSet (null);

try

{

FileIOPermission fp = new FileIOPermission (PermissionState.Unrestricted) ;
SecurityPermission sp =
new SecurityPermission (SecurityPermissionFlag.UnmanagedCode) ;

ps.AddPermission (fp) ;
ps.AddPermission (sp) ;

ps.Assert();

RecordsetClass rc = new RecordsetClass() ;
int fieldCount = rc.Fields.Count;
return fieldCount;

}

finally

{

CodeAccessPermission.RevertAssert () ;

VB.NET

'If we get this far, we trust the caller and are willing to assert
'permissions on its behalf.

Dim ps As New PermissionSet (PermissionState.Unrestricted)

Try

Dim fp As New FileIOPermission(_
PermissionState.Unrestricted)

Dim sp As New SecurityPermission(_
SecurityPermissionFlag.UnmanagedCode)

210

Chapter 4: A Matter of Trust

ps.AddPermission (fp)
ps.AddPermission (sp)

ps.Assert()

Dim rc As New RecordsetClass ()
Dim fieldCount As Integer = rc.Fields.Count
Return fieldCount
Finally
CodeAccessPermission.RevertAssert ()
End Try

In this example, two permissions were asserted: FileIOPermission and a SecurityPermission.
However, you cannot create individual permission classes and then call Assert on each instance.
When you call Assert, the Framework temporarily changes the security information associated with
the current stack frame. At that point, you cannot Assert a second permission unless you tear down
the first Assert. To get around this, use the class System.Security.PermissionSet to add one or
more permissions to a permission set. You can then call Assert on the Permissionset, and all the
individual permissions that were added to the set are associated with the current stack frame. In the
sample code, the PermissionSet allows the code to assert the file IO permission and the unmanaged
code permission.

When you need to assert permissions, you should try to assert only the specific permissions your
code needs. The sample asserts unrestricted FileIOPermission, which technically states that the
wrapper code may attempt any file IO operation anywhere on the file system. In this case, I don’t know
specifically what file path (or paths) the COM interop layer is looking at, so I used PermissionState
.Unrestricted. However, if the wrapper assembly is calling another piece of code that works with
only a specific file or directory, it would be a better to assert FileIOPermission for only the required
file or directory.

All the example code is wrapped in a try/finally exception block. I did this to demonstrate how to call
the static method CodeAccessPermission.Revertassert. This isn’t strictly necessary when your
code exits a method shortly after asserting permissions and doing some work (which is the case in the
sample). However, if you have methods that need to briefly assert one or more permissions to call some
other code, but your method then continues with other work, you should call RevertAssert to remove
the extra security rights from the current stack frame. This call ensures that the remainder of the code
in your method doesn’t inadvertently run with an elevated set of CAS permissions.

At this point, if you run the sample ASP.NET page, everything finally works. To summarize, the follow-
ing work is necessary to enable calling ADO from a Medium trust application:
1. Create a strongly named wrapper assembly.

2. Assign the APTCA attribute to the assembly to allow partial trust code like the web application
to call into it.

3. Install the assembly in the GAC, thus allowing the assembly to assert any permission that it
needs because GAC code is always fully trusted.

4. 1Inthe assembly, assert FileIOPermission and a SecurityPermission for unmanaged code
to prevent the underlying COM interop demands from flowing up the call stack.

211

Chapter 4: A Matter of Trust

Sandboxed Access to System.Data.SqlClient

Access to some type of relational database is a common requirement for web applications, so this section
describes what is involved in running queries against SQL Server for an application running in Low trust.
Remember that the default trust policy file for Low trust doesn’t include the SglclientPermission.

Here, I reuse the assembly from the ADODB example because it already gets installed in the GAC and
has the APTCA attribute applied to it. Because the new class in this assembly needs to prevent the
demand for SglClientPermission from making it to the user code running in the page, the new class
needs to assert SqglClientPermission. As a basic protection though, the wrapper class requires at
least Low trust from its callers. The code to do all this is:

C#

public class PubsDatabaseHelper
{
public DataSet RetrieveAuthorsTable ()
{
//This class is only intended for use at Low trust or above
(new AspNetHostingPermission (AspNetHostingPermissionLevel.Low)) .Demand() ;

try
{
//Prevent SglClientPermission demand from flowing up the call stack.
SglClientPermission scp =
new SglClientPermission (PermissionState.Unrestricted) ;
scp.Assert () ;
string connectionString =
@"server=.\SQL2005; integrated security=true;database=pubs";
using (SglConnection conn =
new SglConnection (connectionString))
{
SglCommand cmd
= new SglCommand("select * from authors", conn);
SglDataAdapter da = new SglDataAdapter (cmd) ;
DataSet ds = new DataSet ("authors");
da.Fill (ds) ;
return ds;
}
}
finally
{
CodeAccessPermission.RevertAssert () ;
}

212

Chapter 4: A Matter of Trust

VB.NET

Public Class PubsDatabaseHelper
Public Function RetrieveAuthorsTable() As DataSet
'This class is only intended for use at Low trust or above
CType (New AspNetHostingPermission (AspNetHostingPermissionLevel.Low),
AspNetHostingPermission) .Demand ()

Try
'Prevent SglClientPermission demand from flowing up the call stack.
Dim scp As New SglClientPermission (PermissionState.Unrestricted)
scp.Assert ()

Dim connectionString As String = "server=.\SQL2005;integrated
security=true;database=pubs"

Using conn As New SglConnection (connectionString)
Dim cmd As New SglCommand("select * from authors", conn)
Dim da As New SglDataAdapter (cmd)

Dim ds As New DataSet ("authors")
da.Fill (ds)

Return ds
End Using
Finally
CodeAccessPermission.RevertAssert ()
End Try
End Function
End Class

In the sample ASPNET application, the trust level is reduced to Low. The page that uses the PubsData-
baseHelper has a Gridview control on it, and some code in the page load event to programmatically
data-bind the dataset returned from the PubsDatabaseHelper

C#

using SampleAPTCAAssembly;
protected void Page_Load(object sender, EventArgs e)
{

PubsDatabaseHelper ph = new PubsDatabaseHelper () ;

grdView.DataSource = ph.RetrieveAuthorsTable() ;
grdvView.DataBind() ;

VB.NET

Imports SampleAPTCAAssembly_vb.SampleAPTCAAssembly vb

Public Sub Page_Load(_

213

Chapter 4: A Matter of Trust

ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Load
Dim ph As New PubsDatabaseHelper ()

grdView.DataSource = ph.RetrieveAuthorsTable ()
grdView.DataBind ()
End Sub
End Class

When you run the sample page, it successfully calls the GAC'd sandbox assembly and populates the
Gridview control with the returned DataSet.

This basic example of sandboxing ADO.NET access shows how the same techniques can be used for
any arbitrary middle tier. Sandboxed assemblies are yet another reason why an architecturally sound
middle tier is so important to web applications. Even if you are running all of your ASP.NET applica-
tions today in full trust, if you have a well-designed middle tier you've already taken the most impor-
tant step toward enabling your web application for partial trust. The extra steps of security review,
adding the APTCA attribute, and selectively asserting permissions are comparatively easy when there
is already a clean separation of presentation layer and business layer code.

ProcessRequestinApplicationTrust

The last advanced topic that I want to cover is a security feature that was introduced in ASPNET 2.0 and
still exists in ASPNET 3.5. There is a new attribute on the <trust /> element called processRequest
InApplicationTrust. By default, this attribute is set to true in the default trust level configuration:

<location allowOverride="true">
<gystem.web>
<!-- security policy definition snipped for brevity -->

<trust level="Medium" processRequestInApplicationTrust="true"
originUrl="" />
</system.web>
</location>

If you look at the root web. config file, you will not see the new attribute because the trust level configu-
ration class internally defaults the attribute’s value to true. Because this attribute deals with trust-related
security in ASP.NET, the attribute was added to the <trust /> element. So, along with the ability to
globally define the trust level for all applications on the machine, you can also globally control the value
of the new attribute. However, unlike trust levels where there are valid reasons why you would want
different trust levels for different applications, the setting for processRequestInaApplicationTrust
should be left alone at its default value of true.

The attribute was introduced primarily to handle backwards compatibility issues when moving from
ASPNET 1.1 to 2.0. Because ASPNET 2.0 tightens its enforcement of trust levels, some earlier applica-
tions and controls may fail with security exceptions when they run on ASPNET 2.0 or ASPNET 3.5. As
a result, set the new attribute to false only when you encounter this kind of problem and even then
after the applications or controls are tweaked to work in ASP.NET 2.0 and ASP.NET 3.5, you should
revert to the default value of true for the attribute.

214

Chapter 4: A Matter of Trust

The Interaction between Trust and ASP.NET Internal Code

To get a better understanding of what the processRequestInApplicationTrust attribute really
addresses, you need to understand a potential security issue for partial trust web applications. In sev-
eral scenarios in ASPNET, only trusted code is running on the stack. Probably the easiest example to
explain is the no-compile page that was introduced in ASPNET 2.0.

A no-compile page has no user code in a code-behind file. Instead, the only code is the declarative
markup in an . aspx. For example, the following page definition is an example of a no-compile page.

C#

<%@ Page Language="C#" CompilationMode="Never" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtmlll/
DTD/xhtml1ll.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head id="Headl" runat="server">
<title>Untitled Page</title>
</head>
<body>
<form id="forml" runat="server">
<div>
<asp:SglDataSource ID="SglDataSourcel" runat="server"
ConnectionString="<%$ ConnectionStrings: pubsConnectionString %>"
ProviderName="<%$ ConnectionStrings: pubsConnectionString.ProviderName %>"
SelectCommand="SELECT [au_id], [au_lname], [au_fname], [phone] FROM [authors]">
</asp:SglDataSource>

</div>
<asp:GridvView ID="GridvViewl" runat="server"
AutoGenerateColumns="False" DataKeyNames="au_id"
DataSourceID="SglDataSourcel">
<Columns>
<asp:BoundField DataField="au_id" HeaderText="au_id"
ReadOnly="True" SortExpression="au_id" />
<asp:BoundField DataField="au_lname" HeaderText="au_lname"
SortExpression="au_lname" />
<asp:BoundField DataField="au_fname" HeaderText="au_fname"
SortExpression="au_fname" />
<asp:BoundField DataField="phone" HeaderText="phone"
SortExpression="phone" />
</Columns>
</asp:Gridview>
</form>
</body>
</html>

215

Chapter 4: A Matter of Trust

VB.NET

<%@ Page Language="VB" CompilationMode="Never" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/
TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head runat="server">
<title>Untitled Page</title>
</head>
<body>
<form id="forml" runat="server">
<div>
<asp:SglDataSource ID="SglDataSourcel" runat="server" ConnectionString="<%$
ConnectionStrings:pubsConnectionString %$>" SelectCommand="SELECT [au_id], [au_
lname], [au_fname], [phone] FROM [authors]">
</asp:SglDataSource>

</div>
<asp:Gridview ID="GridViewl" runat="server" AutoGenerateColumns="False"
DataKeyNames="au_id"
DataSourceID="SglDataSourcel">
<Columns>
<asp:BoundField DataField="au_id" HeaderText="au_id"
ReadOnly="True" SortExpression="au_id" />
<asp:BoundField DataField="au_lname" HeaderText="au_lname"
SortExpression="au_lname" />
<asp:BoundField DataField="au_fname" HeaderText="au_fname"
SortExpression="au_fname" />
<asp:BoundField DataField="phone" HeaderText="phone"
SortExpression="phone" />
</Columns>
</asp:GridView>
</form>
</body>
</html>

The page contains only a declarative representation of a Gridview control bound to a SglDataSource
control. Furthermore, the page directive explicitly disallows compilation by specifying Compilation
Mode="'Never'.If you run this page and then look in the Temporary ASP.NET Files directory, you will
see that there is no auto-generated page assembly. When the page runs, ASP.NET effectively acts like a
parsing engine, using the control declarations to decide which ASP.NET control classes to instantiate
and then calling various methods on the instantiated controls.

There is a potential security issue here because the call stack at the time the Gridview is data-bound
contains only ASPNET code, and because all the ASP.NET code exists in the GAC, technically all of the
code is running in full trust. The rough call stack at the time DataBind is called is listed as follows.
Notice that every class involved in the call is fully trusted:

Q SqlDataSource: Located in System.wWeb.d11.

0 GridView: Located in System.Web.d11.

0 Page: Located in System.Web.dl1l.

216

Chapter 4: A Matter of Trust

HttpRuntime: Located in System.Web.dll.
HostingEnvironment: Located in System.wWeb.d11.

ISAPIRuntime: Located in System.Web.d11.

[S T |

Unmanaged code: Located in aspnet_isapi.dll.

Clearly, if the only security check for no-compile pages was the demand for sqglClientPermission
that comes from SglDataSource calling into ADO.NET, a no-compile page would always succeed in
calling into SQL Server. However, if you run the sample page in a Low trust application (because Low
trust doesn’t have SglClientPermission), you get a security-related exception.

You can’t take advantage of no-compile pages to call privileged code, because ASP.NET restricts the
page by forcing it to execute with the restrictions of the application’s current trust level. This is where
the phrase “process request in application trust” comes from. Internally, when ASP.NET runs a no-
compile page, it temporarily restricts the executing thread to the application’s trust level by calling
PermitOnly on the NamedPermissionSet that was declared for the ASPNET permission set in the
trust policy file. So, not only does the trust policy file result in an application domain security policy,
it also results in a reference to a NamedPermissionSet that ASPNET can use. Calling PermitOnly
tells the Framework that all subsequent method calls made on that thread should have CAS demands
evaluated against only the permissions defined by the named permission set. As a result, on no-compile
pages ASP.NET is effectively telling the Framework that ASPNET’s GAC’d code should be treated as if
it were regular user code that you wrote in a code-behind file.

This behavior is all well and good for no-compile pages, and in fact there is no way for you to turn this
behavior off for no-compile pages. Because no-compile pages are present since ASPNET 2.0, there can’t
be any backward-compatibility issues around trust level enforcement. However, in ASPNET 1.1 you can
write your own custom web controls, and if you choose you can sign them and deploy them in the GAC.
Even though an ASP.NET 1.1 page auto-generates an assembly that is restricted by the application’s trust
level, a GAC’d web control still has the freedom to run in full trust. That means in ASPNET 1.1 it is pos-
sible to author a web control that asserts permissions and then calls into other protected assemblies
despite the web control being placed on a page in a partially trusted web application. The reason for
this loophole is that there are places when a Page is running where only ASPNET code is on the stack,
even for pages with code-behind and auto-generated page assemblies. The various internal lifecycle
events (Init, Load, and so on) execute as part of the Page class, which is a GAC'd class. If the Page class
constructs or initializes a control that in turn exists in the GAC, you have the problem where only fully
trusted code sitting on the stack.

ASPNET 2.0, and consequently ASPNET 3.5, tightens enforcement of trust levels by calling Permitonly
on the trust level’s PermissionSet just prior to starting the page lifecycle. The net result is that all activi-
ties that occur as a consequence of running a page, including management of each individual control’s
lifecycle, are constrained to only those CAS permissions explicitly granted in the trust policy file. This
enforcement occurs because the processRequestInApplicationTrust attribute on the <trust />
configuration element is set to true by default. Hopefully, you now have a better understanding of why
this setting should normally not be changed.

However, if processRequestInApplicationTrust is set to false, then for compiled pages ASPNET 2.0
and ASPNET 3.5 will not call Permit0Only, and the loophole whereby GAC'd controls can avoid the appli-
cation trust level still exists. Figure 4-4 shows two different call paths involving a GAC'd web control: one
call path is the normal one; the other call path shows what occurs if “processRequestInApplication
Trust” is set to false.

217

Chapter 4: A Matter of Trust

4a.

4b.

4c.

218

(0) Assembles located in GAC
run at full trust.

(0) Application domain CAS

policy established when the
application domain started _

(50) Check.GAC_ ASP.NET pipeline code that
CAS policy runs before the Page handler SecurityException
-1 is thrown !
S
(2~
C? Z 3
A4S, o & o
U0 /s
=}
§ Internal Page class logic processes A /
§ controls in the declarative markup 0(\@‘\%0\@
2 7 PRIV
2 \? a0
S || NamedPermissionSet.PermitOnly occurs [~ 2%
'E if processPrequestinApplicationTrust = true
S A
o (4a)
= Permission demand
= “sees” the PermitOnly
Poligy, AS | Webcontrol that uses
System.Data.SqlClient /
' L) (—
(1) Calls+into (2) Permission demand (’%@5
| W
)
System.Data.SqlClient classes demand G\\QS}“
SqlClientPermission X
(5 o
I~ code) BAC 0
e alyg ADO.NET continues and runs
has trj/sst T the requested method
Figure 4-4

When the application domain is initialized, the permissions in the trust policy file are applied as
the application domain CAS policy.

A request for a page that contains a GAC’d web control occurs. When the web control’s Render
method is called, it internally calls into System.Data.SglClient classes.

This triggers a demand for SqlClientPermission.

The Framework first checks to see that the GAC’d web control has the necessary permission.
Because the control is in the GAC, and thus running in full trust, the check succeeds.

If processRequestInApplicationTrust is true, then when the permission demand flows
up the call stack, it encounters the security restriction put in place by the Page class’s call to
PermitOnly.

The Framework now checks the set of permissions that were defined in the trust policy file,
looking for SglClientPermission.

If the application is running in Medium or higher trust, the check succeeds, and the ADO.NET
call eventually continues.

Chapter 4: A Matter of Trust

4d.

Ba.

5b.

5c¢.

5d.

If the application is running in Low or Minimal trust, the check fails, and a SecurityExcep-
tion is thrown.

If processRequestInApplicationTrust is false, the permission demand continues to flow
up the call stack.

The demand passes through various internal Page methods involved in instantiating the web
control. Because the Page class is in the GAC, it runs at full trust and the demand succeeds.

The demand eventually makes it to the top of the managed call stack. All code at this level is
GAC’d ASP.NET code that was initially responsible for receiving the call from the ISAPI exten-
sion and starting up the HTTP pipeline. So again, the demand succeeds.

Because only fully trusted code is in the current call stack, the demand succeeds, and the ADO.
NET call eventually continues.

To demonstrate how this actually works in code, you can create a simple web control that retrieves data
from the pubs database in SQL Server and renders it on the page.

C#

public class MyCustomControl : WebControl
{
protected override void Render (System.Web.UI.HtmlTextWriter writer)

{

string connectionString = @"server=.\SQL2005;database=pubs;integrated security=true";

SglConnection conn = new SglConnection (connectionString) ;

SglCommand cmd = new SglCommand("select * from authors", conn);
DataSet ds = new DataSet ("foo");

SglDataAdapter da = new SglDataAdapter (cmd) ;

da.Fill(ds);

VB.NET

Public Class MyCustomControl
Inherits WebControl
Protected Overrides Sub Render(_
ByVal writer As System.Web.UI.HtmlTextWriter)
Dim connectionString As String = "server=.\SQL2005;database=pubs;" & _
"integrated security=true"
Dim conn As New SglConnection (connectionString)
Dim cmd As New SglCommand("select * from authors", conn)
Dim ds As New DataSet("foo")
Dim da As New SglDataAdapter (cmd)
da.Fill (ds)
End Sub
End Class

219

Chapter 4: A Matter of Trust

The assembly is attributed with APTCA, signed with a signing key, and then installed in the GAC. In
the web application, a reference is established to the GAC'd assembly.

<add assembly="GacdWebControl, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=8d9c3421c2f25£f££" />

Notice that this GACd class does not assert SqglClientPermission. A page is created that uses the
web control in the declarative markup of the page.

C#

<%@ Register
TagPrefix="GCW" Namespace="GacdWebControl" Assembly="GacdWebControl" %>

other HTML snipped ..

<form id="forml" runat="server">
<div>
<GCW:MyCustomControl runat="server" ID="customControl" />
</div>
</form>

VB.NET

<%@ Register Assembly="GacdWebControl_vb, Version=1.0.0.0, Culture=neutral, PublicK
eyToken=b2748bd5£288dfd2"
Namespace="GacdWebControl_vb.GacdWebControl_vb" TagPrefix="ccl" %>
other HTML snipped ..
<form id="forml" runat="server">
<div>
<GCW:MyCustomControl runat="server" ID="customControl" />
</div>
</form>

If you first run the page in Low trust, you receive a SecurityException due to the failed SglCclient
permission demand. The call stack that follows shows only trusted code on the stack because the code
in the GAC'd web control is called as part of the Render processing for a Page.

[SecurityException: Request failed.]
..snip..

System.Data.Common.DbConnectionOptions.DemandPermission ()

System.Data.Common.DbDataAdapter.Fill (DataSet dataSet)
GacdWebControl .MyCustomControl.Render (HtmlTextWriter writer)

System.Web.UI.Control.RenderControl (HtmlTextWriter writer)
System.Web.UI.Page.ProcessRequestMain (Boolean includeStagesBeforeAsyncPoint,

Boolean includeStagesAfterAsyncPoint)

System.Web.UI.Page.ProcessRequest (HttpContext context)

220

Chapter 4: A Matter of Trust

Because PermitOnly occurs inside of the initial call to Page . ProcessRequest, when the sglcli-
entPermission demand reaches that point in the call stack, it fails and the GAC’d web control is not
allowed to issue a command against SQL Server.

Now change the <trust /> level element, either in the root web.config or by overriding it in the
application’s web. config, to the following:

<trust level="Low" processRequestInApplicationTrust="false"/>

When you rerun the page, there is no longer a Permi tOnly call restricting the permissions on the pPage.
Instead the sqlclientPermission demand flows up a call stack that consists of nothing but trusted
code, and so the permission demand succeeds and the page successfully renders the dataset XML gen-
erated by the GAC'd web control.

The best advice for the processRequestInApplicationTrust attribute on <trust /> isto leave it
at its default setting of true, and if at all possible also set the allowOverride attribute on the enclos-
ing <location /> tagto false. This prevents enterprising developers from attempting an end run
around the application trust level by way of a GAC'd control. However, if you do encounter applica-
tions being moved from ASP.NET 1.1 that run into problems with the new trust level enforcement in
the Page class, you can temporarily set processRequestInApplicationTrust to false, but only
for the specific application that requires the workaround. You should never disable the Page’s trust
level enforcement for all applications on a machine, even though it is a little bit of a hassle, use appli-
cation-specific <location /> elements or the application’s web. config instead to tweak the behavior
for the offending applications. After you track down the problematic code and fix it (usually there are
a few asserts necessary and a quick security review to make sure the asserts are appropriate), you can
remove the <trust /> level workaround for the application and revert to the intended ASP.NET 2.0 or
ASP.NET 3.5 behavior.

Summary

In this chapter, you took a comprehensive look at the concept of code access security (CAS) in ASP.NET.
Although the .NET Framework has a rich set of classes and configuration information for enforcing
code access security, ASPNET simplifies CAS by introducing the concept of a trust level. A trust level
is represented as a piece of XML in a trust policy file that defines the set of .NET Framework permis-
sions granted to an ASPNET application. You can choose permissions for your application by using the
<trust /> configuration element and setting it to one of the following trust levels:

Q Full: The web application can call any code in the Framework as well as Win32 APIs.

QO High: The web application cannot call into Win32 APIs. Also, a default set of restricted permis-
sions is defined by ASP.NET that gives your web application access to a reasonably large set of
the Framework.

0O Medium: The recommended trust level for hosting machines. Also recommended for any
Internet-facing web server.

221

Chapter 4: A Matter of Trust

Q Low: This trust level has a very limited set of CAS permissions. It is appropriate for applications
that perform only local read-only operations. It is also used for applications that provide their
own sandboxed execution model on top of ASP.NET such as SharePoint.

Q Minimal: The lowest trust level available. It allows you to write only code that deals with in-
memory data. Your web application can’t touch the file system or the network.

Make your web applications more secure by at least moving from Full to High trust. Although doing

so will likely require a few tweaks in your web applications and your business tiers, changing your
applications so that they are only partially trusted is a major step in restricting the capabilities of mali-
cious code. You can choose to customize the default trust levels by editing the policy files that ship with
ASPNET 3.5, or creating new custom trust levels and registering them inside a <securityPolicy />
element.

If you are writing an application in which you want to strictly limit the kind of code that can be called
from the presentation layer, use a trust level (such as Low or Minimal) that grants very few permissions
to application code. You can instead deploy your business logic inside of sandboxed assemblies that are
deployed in the GAC and that expose only public APIs for a limited functionality set. Internally, your
sandboxed assemblies need to assert various CAS permissions when calling other protected assemblies.
Ideally, sandboxed assemblies should also demand some kind of permission from partially trusted
applications prior to calling privileged code on behalf of the web application.

222

Configuration
System Security

Many .NET Framework features depend on initialization information stored in various configu-
ration files. ASP.NET especially is heavily dependent on configuration sections for defining the
behavior of many aspects of the ASP.NET runtime. As a result the configuration information
frequently contains sensitive information (usernames, passwords, connections strings, and so
on). Configuration information can also directly affect the security settings enforced by certain
features. As a result, configuration security is an important aspect of ensuring that a web applica-
tion works as expected.

This chapter covers the following aspects of securing configuration information:

Q

L R I A

Using the <location /> element.

Implementing granular inheritance control using the new “lock” attributes.
Setting access rights to read and modify configuration.

Managing IIS 7.0 configuration versus ASP.NET configuration.

IIS 7.0 Feature Delegation.

Implementing partial trust restrictions when using configuration.

Using the new protected configuration feature.

Using the <location /> Element

The <location /> element has existed since ASPNET 1.0 as a convenient way to define con-
figuration inheritance without the need to create and deploy multiple separate configuration
files. Because web applications always have some type of hierarchy, and thus the concept of

Chapter 5: Configuration System Security

configuration inheritance, you commonly need to define configuration settings at different levels of the
ASP.NET inheritance hierarchy. The following list shows the ASP.NET 3.5 inheritance chain:

1. Settings defined in machine.config: In ASP.NET 2.0 many of the default ASP.NET settings
have been moved out of machine.config to minimize startup time of non-web applications.

2. Settings defined in the root web. config: This new configuration file exists in $windir%\
Microsoft.NET\Framework\v2.0.50727\CONFIG. Most of the ASP.NET-specific default
settings are now defined in the root web. config file.

3. Settings defined in the web.config file located in the root folder of a website: For the default
web site, this would be a folder resembling c: \ inetpub\wwwroot.

4. Settings defined in the root directory of the application: This is the web . config file that you
normally work with in your applications. If the application is the website (meaning the applica-
tion exists at “/”), the website configuration file and the application’s configuration file are one
and the same.

5. Settings defined in a configuration file located in a subdirectory of a web application: Settings
that can be changed on a per-directory basis can be placed in a web. config file in a directory.
For example, you can define <authorization /> elementsin web.config files that apply
only to a specific virtual directory.

Usually, you set some global defaults once in the mac