NEXT B

proee

BatinnGeript 3 Advanced ActionScript 3with Design Patterns, 1/e
By Joey Lott, Danny Patterson

Publisher: Adobe Press

Pub Date: November 02, 2006
Print ISBN-10: 0-321-42656-8
Print ISBN-13: 978-0-321-42656-7
Pages: 304

Table of Contents | Index
Overview

Today's ActionScript-based applications require increasingly sophisticated architectures and
code. This book aids intermediate and advanced ActionScript developers in learning how to
plan and build applications more effectively. You'll learn how to apply design patterns as
solutions to common programming scenarios. Beyond a reference, Advanced ActionScript with
Design Patterns is a practical guide complete with sample mini-applications illustrating each
design pattern. The accompanying CD includes a trial version of Flash 8 along with all the
lesson files needed to work with the text. Table of Contents: Part | - Successful Projects 1.
How to Design Applications 2. Programming to Interfaces Part Il - Patterns 3. MVC 4.
Singleton 5. Factory (Abstract Factory and Factory Method) 6. Proxy 7. Iterator 8.
Composite 9. Decorator 10. Command 11. Memento 12. State Part Il -
Advanced ActionScript Topics 13. Working with Events 14. Sending and Loading Data 15.
E4X (XML) 16. Regular Expressions

NEXT B

NEXT B

ActienSeript 3 Advanced ActionScript 3with Design Patterns, 1/e
Dietigi Pattains

— By Joey Lott, Danny Patterson

Publisher: Adobe Press

Pub Date: November 02, 2006
Print ISBN-10: 0-321-42656-8
Print ISBN-13: 978-0-321-42656-7
Pages: 304

Table of Contents | Index

Copyright

Acknowledgments
Introduction

About This Book
Part|: Successful Projects

Chapter 1. Designing Applications

The Analysis Phase

The Design Phase

The Implementation Phase

Testing

Summary
Chapter 2. Programmingto Interfaces
Defining Interfaces

Using Polymorphism

Summary

Partll: Patterns
Chapter 3. ModelView Controller Pattern

Understanding MVC Elements

Building a Simple Example
Enabling Multiple Views for One Model
Modifying Model Implementation

Adding A Controller
Summary
Chapter4. Singleton Pattern

Object Instantiation
Singleton Versus Static Members

Building a Simple Singleton

Building a Settings Framework

Summary
Chapter5. Factory and Template Method Patterns

Abstract Classes

Template Method
Factory Method
Summary

Chapter 6. Proxy Pattern

Virtual Proxy

Remote Proxy
Adapter and Facade Patterns

Summary
Chapter 7. Iterator Pattern
Understanding the Problems with Iteration

Understanding lterator Elements

Using Iterators
Using Null Iterators

Summary
Chapter 8. Composite Pattern

Understanding the Element Interface

Understanding Leaf Elements

Understanding Composite Elements

Building a File System Example

Summary
Chapter 9. Decorator Pattern

Understanding the Decorator Pattern

Building Reader Decorators

Building Visual and Commutative Decorators
Summary
Chapter 10. Command Pattern
Understanding the Command Pattern

Building a Simple Command Application

Making Commands Undoable and Keeping Command Histories
Building an Undoable Application

Building a Redoable Application

Using Commands to Build a Proximity Game

Summary
Chapter 11. Memento Pattern

Using Mementos to Make Actions Undoable in the Proximity Game
Using Mementos to Make Actions Redoable in the Proximity Game
Summary
Chapter 12. State Pattern

Simple State Example

Encapsulating the States

Using Abstract Classes

Transitions
Summary

Partlll: Advanced ActionScript Topics
Chapter 13. Working with Events
Understanding Events

Using Events
Creating Event Dispatchers

An Example Working with Events

Summary
Chapter 14. Sending and Loading Data

Loading Text

Sending and Loading Variables
Sending and Loading XML
Using Web Services

Using Flash Remoting

Optimizing Data Communication
Summary

Chapter 15. E4X (XML)
Creating XML Objects

Property Accessors

XML Filtering

Iterating Through an XMLList
Namespaces

Sending and Loading XML Data
Simple Soap Example

Summary
Chapter 16. Regular Expressions

Introducing the RegExp Class

Working with Regular Expressions

Using Regular Expression Flags

Understanding Metacharacters and Metasequences

Using Regular Expression Groups

Building a Mad Libs Application Using Regular Expressions

Summary
Index

e prcv NEXT

e rrcy NExT

Copyright

Advanced ActionScript 3 with Design Patterns
Joey Lott and Danny Patterson

Peachpit Press
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
800/283-9444
510/524-2221 (fax)

Find us on the World Wide Web at: www.peachpit.com

To report errors, please send a note to errata@peachpit.com

Peachpit Press is a division of Pearson Education
Copyright © 2007 by Joey Lott and Danny Patterson

Project Editor: Matt Purcell

Production Editor: Becky Winter

Development Editor: Alice Martina Smith

Copy Editor: Nancy Sixsmith

Tech Editor: Roger Braunstein and Paul Newman
Compositor: Danielle Foster

Indexer: Larry Sweazy

Cover design: Charlene Will

Notice of Rights

All rights reserved. No part of this book may be reproduced or transmitted in any form by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. For information on getting permission for reprints and excerpts,
contact permissions@peachpit.com.

Notice of Liability

The information in this book is distributed on an "As Is" basis without warranty. While every
precaution has been taken in the preparation of the book, neither the author nor Peachpit shall
have any liability to any person or entity with respect to any loss or damage caused or alleged
to be caused directly or indirectly by the instructions contained in this book or by the computer
software and hardware products described in it.

TradeMarks

ActionScript is a registered trademark of ActionScript, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and Peachpit was aware
of a trademark claim, the designations appear as requested by the owner of the trademark. All
other product names and services identified throughout this book are used in editorial fashion
only and for the benefit of such companies with no intention of infringement of the trademark.
No such use, or the use of any trade name, is intended to convey endorsement or other
affiliation with this book.

987654321

Printed and bound in the United States of America

Dedication

Joey:
To what is here, always in support.
Danny:

This book is dedicated to Melissa, Adia and Murphy. Thanks for inspiring me to be my best.

e prcv NEXT

e rrcy NExT

Acknowledgments

Both Joey and Danny would like to acknowledge the following people for their help
with this book:

We'd like to thank Matt Purcell for helping with all aspects of this book.

Thanks also go to Angela kozlowski for her initial work coordinating this book project. We wish
you the best in your new career.

We'd like to thank our copy editor, Nancy Sixsmith, and our development editor, Alice Martina
Smith.

Additionally, we'd like to thank our technical editors, Paul Newman and Roger Braunstein.
The Adobe Flash Player and Flex teams are always extremely helpful. Thank you.

And, of course, thanks to the Flash Platform community.

Joey would like to acknowledge the following people:

Thank you, Danny, for co-writing this book.

Thanks to my partner, my family, and my friends for your support, kindness, strength, and
encouragement.

Danny would like to acknowledge the following people:

My thanks goes out to Joey. you're an incredible programmer and author and I'm honored to
work with you on this book.

Thank you to all the programming influences in my life. There are far to many to list, but you
know who you are.

And finally, my wonderful wife. Thanks for all your support and patience.

@ prcy | NEXT

e rrcy NExT

Introduction

As the Flash platform has grown, the size and scope of Flashbased applications has increased.
That growth has called for an everincreasing maturity in ActionScript developers. Flash
applications have gained a new stature, and the increasing demand means that more
developers must step up to the plate to hone their craft and take steps to evolve their
understanding of and relationship with the code they write and the applications they build.
Design patterns are a resource to help with just that.

ActionScript itself is really quite simple. It involves memorization of a basic syntax, a good API
reference, and a decent IDE. What is challenging is not the ActionScript, but the architecture for
an application. The real challenge is in deciding what classes to write and what the APIs for
those classes should be. yet as you build more and more applications, you'll start to find that
there are patterns that emerge time and time again. There are certain ways to accomplish tasks
and solve common problems that occur frequently. These common solutions are the foundations
of design patterns. Many of these design patterns exist already. If you don't bother to recognize
them and apply them consciously, you will simply be writing applications the hard way. you
might still end up with good results, but you'll be reinventing the wheel each time. Learning the
design patterns helps you more quickly identify intelligent and effective ways to structure each
new application.

The design patterns discussed in this book are but a subset of the many patterns that
developers have created over the years. We've selected what we feel are some of the most
useful and applicable patterns to ActionScript application development. These patternsand what
we have to say about the patternsis not intended to be held as gospel. It is intended to serve as
a guide and an inspiration for your own application development. The patterns we discuss are
patterns that have been identified and recognized by programming experts over the years; by
studying them, you can stand on the shoulders of giants. however, it's important to understand
that these patterns are not rules. Just because an expert found something useful doesn't mean
you are obligated to do so. Read everything with an open and alert, yet critical, mind.

Design patterns run gambit from those that require strict adherence to a specific interface to
those that simply specify a generalized structure. Regardless of the ways in which specific
design patterns play out or look, the intention is always the same: to solve a design problem.
one example of a common design problem is that you need a way to create an object without
specifying the concrete type at compile time. For example, a graphing application might need to
be able to create and display a graph where the specific type (bar chart, line graph, and so on)
is decided at runtime. If you specify a concrete type at compile time (for example, create a new
Bar Chart object), then you are locked into a rigid structure, and you cannot easily change the
type or add new types later. Because this is a common problem in many applications,
developers have had to create solutions many times over the years. The solutions that have
proven to be most useful, most elegant, most flexible, and simple to implement have emerged
as design patterns that are learnable. one solution to the concrete type problem just described
is a pattern we call the Factory Method pattern (discussed in Chapter 5.)

One of the fortunate sideeffects of working with design patterns is that they help you build a
common vocabulary to effectively communicate with other developers. Imagine if you didn't
have the word "car" in your vocabulary. Every time you wanted to talk about a car, you'd have
to describe the object, perhaps saying "the object with wheels, an engine, and doors that
typically seats 2 to 5 people and allows one person to conduct it by way of a steering
mechanism." That would obviously make it rather difficult to have a quick and effective

conversation about anything involving a car. having a word for something makes
communication faster and more effective. For this reason, all the design patterns we talk about
in this book have names. Rather than talking about "the pattern that allows you to capture and
set state while maintaining good encapsulation,” you can simply say "the Memento pattern."

e prey

e rrcy NExT

About This Book

The title of this book says that it is about advanced ActionScript 3.0 with design patterns. It's
always a little misleading to call something advanced. What we mean when we say that this
book is about advanced ActionScript 3.0 is that it steps beyond the standard introductions and
API references to discuss topics not normally within the scope of those basic texts. As such, we
necessarily make some assumptions about you, the reader. We assume that you already
understand basic programming and ActionScript 3.0 principles, including, but not limited to,
variables, expressions, statements, objects, inheritance, and how to write basic classes.

In many ways, this book starts where most books leave off in regards to objectoriented Action
Script. Although many books might discuss how to write a class, this book talks about the
different ways you can design a class. This book talks about when, why, and how to use
composition and inheritance, and how classes relate to one another to form patterns.

This book is organized in the following way:

1. Introduction to application design principals
2. Design pattern descriptions
3. Advanced concepts
Throughout the book, we'll present lots of examples, and we encourage you to follow along.

You can find additional information and updates at the official Web site for this book:
http://www.rightactionscript.com/aas3wdp. This is also where you'll be able to find the
AAS3WDP class library which you can download. Several classes from this library are used in
various examples throughout the book, and you'll want to download the library if you want to
follow along with the examples.

e rrcy NExT

http://www.rightactionscript.com/aas3wdp

| 4 PREY | NEXT #

Part |. Successful Projects

Chapter 1 Designing Applications
Chapter 2 Programming to Interfaces

| 4 PREY NEXT

e rrcy NExT

Chapter 1. Designing Applications

In This Chapter

The Analysis Phase 4

The Design Phase 8

The Implementation Phase 14

Testing 25
Summary 32

One of the most frequent questions ActionScript developers ask is, "How do | know what
constitutes a class?" This question strikes at the heart of a larger dilemma, which is: What are
the steps for building a successful application from start to finishfrom concept to completion?
This is a big topic to tackle. Many people dedicate themselves to understanding and improving
methodologies to answer this question.

The difficulty with teaching someone how to design and build an application from start to finish
is that it requires elements that are difficult to talk about much less teach. It requires being able
and willing to look at the big picture as well as looking at things from many perspectives. It
requires creative thinking as well as abstraction. It requires practice and experience. But there
are steps you can follow to help with the learning process. There are technologies you can use
to assist you in developing your ActionScript classes. This chapter outlines some of the steps
and technologies that have proven useful for many ActionScript developers.

Some methodologies say there are five steps for building applications; other methodologies say
there are eight steps; still others can't decide how many steps it takes. In general, most
developers agree that there are at least three phases to building successful applications:

1. Analysis
2. Design
3. Implementation

In addition, most developers also agree that testing is a vital part of the application
development process. Although not always considered a core phase we'll also look at testing as
a fourth important phase.

As we look at each of these phases, remember that they are not necessarily linear. You can go
back to an earlier step at any point if necessary. During the design phase, for example, you
might realize that you forgot about an important use case for your application. At that point,
you can return to the analysis phase. However, you should be as thorough as possible at each

step. Don't jump to the design phase too early just because you can. The more thorough and
complete you are with each phase before moving to the next, the more successful your
application is likely to be. Additionally, thoroughness at each phase helps minimize the risk that
you'll have to make major architectural changes later on, which could severely impact schedules
and project success.

e prcy

e rrcy NExT

The Analysis Phase

The analysis phase is concerned exclusively with what the application is supposed to do. The
question of how the application will accomplish the goal is deferred to the design and
implementation phases. In many ways, the analysis phase can be the most challenging because
it requires that you take (often vague) ideas and translate them into specific functional
requirements. You must create a map of what the application looks like from a distance.
Although you can get away with a minimal analysis phase for a small project, the analysis
phase becomes increasingly important for a project's success as the project increases in size
and scope. Although you might be able to walk around your neighborhood without a map, if you
wanted to cross the country, you'll undoubtedly agree that you need a map. This is true of
application development as well.

All too often, the analysis phase is glanced over or deemphasized. Poor analysis leads to
frustration for all parties involved (the developers who have to constantly make guesses and
refector, the managers who have the responsibility to see the project through to a successful
completion, the client who wants the working application, customers that have to use the
application that may suffer from limited feature sets and bugs due to poor analysis, etc.). The
goal of analysis is to provide a clear specification that outlines the needs of the user. Unlike
later phases, the analysis phase should be as non-technical as possible.

The outcome of the analysis phase is generally a document that outlines the functional
requirements. However, it's important to understand that there are many ways to approach
gathering these requirements, and the resultant document has no one required format. What is
most important is that you, your team, and/or your company uses an approach and document
format that works best for you while still achieving the goal of clearly defining this map for the
application you want to build.

Although there's no one required approach or format, we'll present one common approach to
analysis using use cases. If you are new to the idea of doing formalized analysis then you may
find it useful to try using use cases. We also encourage you to research other techniques and
document formats to find what works best for you.

Introducing Use Cases

One way to define the functional requirements of an application is simply to list everything that
the application should be able to do. Although that approach is not necessarily wrong, it is narve
in that it fails to take into account the real-world use of the application. Applications don't exist
in isolation; they interface with all sorts of users. Therefore, it's much more realistic and useful
to approach the functional requirements from the standpoint of how the application is used. This
approach naturally leads to a kind of functional requirement called use cases.

Use cases present the application requirements by showing various ways in which users might
interact with the application. The following is an example of a simple use case:
¢ Generate Map: The user submits a form with a street address. The system displays a

physical map of the street address, with the map zoomed in at the default level.

Use cases can be formatted in many ways. Generally, use case experts talk about three basic

formats.

Brief: One paragraph outlining the main success scenario. The preceding example was in the
brief format.

Casual: Multiple paragraphs outlining not only the main success scenario, but also alternative
scenarios. The following is an example of a casual format use case:

o Generate Map

o Main success scenario: The user submits a form with a street address. The system
displays a physical map of the street address, with the map zoomed in at the default
level.

o Alternative scenarios: If the address is invalid, the address form is redisplayed with
an error message notifying the user why the operation failed.

If the default zoom level is unavailable for the requested address, display a map at
the greatest zoom level available for the location.

Formal: The most elaborate of the formats for a use case document. This format lists all the
steps for the use case as well as supporting data such as actors and conditions. The formal use
case is discussed in more detail in the next section.

Writing Formal Use Cases

Typically you'll want to create formal use cases for a functional requirements document. In this
section we'll look at how to create a formal use case. A formal use case can include the
following sections:

e Primary actor: A description of the user who drives the operations outlined by the use
case. The description of the primary actor can include things such as the role of the user
(e.g. anonymous, basic, administrator, etc.) as well as characteristics of the user that may
be relevant to how they interact with the application (e.g. age, disabilities, etc.)

e Preconditions: Those conditions that must be met for the use case to proceed.

¢ Main success scenario: A more granular, step-based description of the way the application
works than is given in the basic or casual formats.

e Alternative scenarios: More granular, step-based descriptions of the ways the application
will handle alternative uses than are given in the casual format.

e Special requirements: A list of requirements for the use case that don't fit as part of the
main or alternative scenarios.

e Open issues: A list of notes including questions that must be answered to fully implement
a solution for the use case.

The following is an example of a formal use case. Note that this example does not have any
open issues.

e Generate Map

Primary actor: Customer

Preconditions: Customer is already viewing the form that allows the user to specify an
address and click a button to submit the form.

e Main success scenario:

1. Customer fills out address form.

2. Customer submits address data.

3. System requests map data from mapping service.
4. System draws map at default zoom level.

e Alternative Scenarios:

3a. System detects invalid address format and redisplays form with error message.
3b. Mapping service is unavailable and system displays error message.

4a. Data is not available for default zoom level and system displays map at next highest
available zoom level.

¢ Special Requirements:
This portion of the application must be accessible (508 compliant).

Now that we've had a chance to see the structure of a formal use case, we'll next look at how to
start writing these use cases for an application.

Forming Use Cases

Now that you've seen how to write a use case, it follows that you'll want to know how to start
forming these use cases. For example, what level of granularity is appropriate? Should you have
ten uses cases or a hundred? The answer to these questions is subjective. There is no one
correct set of use cases for an application. However, you will likely find the following guidelines
to be helpful:

1. Determine the types of users. An application can have many types of users. Each user will
have different use cases. A simple example is one in which an application has a standard,
anonymous user type and an administrative user type. The administrative user typically
expects additional features that are not enabled for standard users. Your application might
have additional tiers of users as well. For example, in addition to standard and
administrative users, your application might have registered users who have access to
features not available to standard users.

2. Determine the basic goals each type of user can achieve. For example, all users might be
able to generate maps, but only registered users can save maps. Additionally, only
administrative users might be able to view the logs and analytics for the application.

3. Fill out each use case with the appropriate sections.

4. Evaluate the use cases. It's important that you take your time with the use cases to make
sure they are correct and appropriate before moving to the design phase. Getting the use
cases correct helps ensure the best possible result of the design and implementation
phases. It's much easier to make changes to the use cases before you've designed or
implemented the application than to revise them afterward and have to redesign and re-
implement the application.

Using UML in Analysis

UML (Unified Modeling Language) is a language in common use for modeling applications.
Although UML is perhaps most frequently used during the design phase (as we'll see in the next
section) it is not uncommon to use UML during analysis as well. One of the three parts of a
system model in UML is what's called the functional model. The functional model allows you to
create use case diagrams, which can be very helpful. UML use case diagrams generally are not
detailed enough to be used apart from written use cases. However, they are often a nice
addition to written use cases as they provide a visual representation of the uses cases, actors,
and systems. Figure 1.1 illustrates actors and uses cases for a common system, a store.

Figure 1.1. An example of use cases in UML.

Store

i
.-v-"";f
Payment System

Administrator
ancel/Change Order
iew Order Status

e prcv NEXT

e rrcy NExT

The Design Phase

After you've completed the analysis phase of an application, you have a map for what the
application is supposed to do. However, that map is at such a high level that you cannot use it
to begin writing code. The result of the analysis phase may be a map, but it doesn't tell you how
you're going to get from point a to point b. For example, are you going to walk, drive, fly, or
take the train? For that you need the next step, which we call the design phase.

In the design phase, you take the functional requirements documentation from the analysis
phase and start to look at it from an architectural standpointlooking to identify subsystems and
eventually classes. During the design phase you'll parse out the elements that should be written
as classes. Then you determine the responsibilities for those classes as well as the relationships
between the classes.

The goal of the design phase is to generate some sort of technical document that provides a
blueprint of the application you intend to build, including all the specific subsystems and classes
that you will use and the relationships between them. You should expect to use this technical
document to help you break up the application development into individual tasks. You should
also expect that the technical document clearly identifies dependencies and collaborations
between classes.

As with the analysis phase, the design phase has no rule dictating what techniques and tools
you must employ. There are many ways that different people approach the design phase, and
we encourage you to find the one that works best for you. However, we have found that class
responsibility and collaboration (CRC) cards are a technique that proves very helpful in the
design phase. In the next section we'll discuss CRC cards in more detail.

Introducing CRC Cards

CRC cards are a low-tech, yet very effective, way to determine exactly what classes you need to
write, what those classes need to be able to do, and how those classes relate.

Typically, you'll find that 3x5 or 4x6 lined index cards work best as CRC cards. At the top of the
index card, write the name of the class. On the left side of the index card, list the
responsibilities for the class. On the right side of the card, list the classes with which the class
needs to collaborate to accomplish those responsibilities. Figure 1.2 illustrates the format for a
CRC card.

Figure 1.2. The typical format for a CRC card.

Class

Responsibility Collaborator
Responsibility Collaborator
Responsibility
Responsibility

CRC cards are useful because you can draw them up quickly and make changes just as quickly.
Using CRC cards, you can rapidly map out the functionality of an application; when you decide
to split a single class into two classes, combine two classes, or change a class name, you can do
that with your CRC cards in a few seconds. You can also sit around a table with a team and
work together on the cards.

Now that you know the format of CRC cards, you'll undoubtedly have a few questions regarding
how to decide what constitutes a class, what responsibilities are, how to know what classes are
collaborators, and so forth. The next few sections address each of these questions.

Determining Classes

Deciding what constitutes a class is as much an art as it is a science. Just as every painter has
different ideas about composition, use of color, and so on, so too does every application
designer have different ideas about how to build an application. However, you'll likely find
certain guidelines helpful when you try to determine what classes your application needs.

It's often a good idea to look at your use cases to find classes. Classes are nouns. You can scan
use cases for all the significant nouns and use those as classes in your application. For example,
consider the Generate Map use case we described earlier in this chapter. From that use case we
can easily identify these relevant nouns which are natural candidates for classes: "address
form," "address data," "mapping service," "map data," and "map."

When you have selected all the candidates for classes, write them down on your CRC index
cards. The next step is to determine the responsibilities for each class.

Determining Class Responsibilities

After you've decided on the initial candidates for classes, you can assign responsibilities to those
classes. Assigning responsibilities is an important step because it helps you determine the
viability of the class candidate. If a class candidate doesn't have any responsibilities, it must be

unnecessary, and you can discard it. If the candidate seems to have too many responsibilities, it
probably needs to be divided into two or more classes. There are some schools of thought that
state that a class should have no more than one responsibility. While we respect that
standpoint, we find it to be severe. A general rule of thumb that we use is that a class should
have between one and three responsibilities.

It's important to understand what a responsibility is (and what it is not). A responsibility is
essentially what a class (or an instance of the class) should be able to do or facilitate. Although
there is a relationship between a class's methods and its responsibilities, they are not identical.
You should not think of a class's responsibilities in terms of methods or method names. A class
may require many methods to accomplish just one responsibility. At this point in the design, it's
too early to map out the actual methods. Responsibilities are higher-level abstractions than
methods.

A responsibility is usually something that can be written out in plain language in a few words.
The following are examples of possible class responsibilities:

Create user input form

Validate user input

Encapsulate data model for a map

Handle requests and responses to and from server-side service

Draw vector map from data model

As you work on determining the responsibilities for the classes in your application, you will most
likely drop classes, add classes, and change existing classes. These revisions are a desirable
part of the process, which result in a well-considered design.

Although you can go through each class candidate and try to think of the responsibilities each
class might have, that approach can be problematic. It encourages you to add responsibilities
based on what you think the class candidate ought to do rather than based on what the
application requires. A better approach is to scan the use cases for verbsboth explicit and
implicit verbs. Explicit verbs are obvious because they are written in the use case steps. Implicit
verbs are the verbs that are not written in the steps but are necessary for the successful
completion of a step.

Determining Collaborators

Many, if not most, classes cannot fulfill all their responsibilities on their own. They must rely on
other classes to assist them. The assisting classes are called collaborators. Collaborators
generally lend a hand either by providing data or by enabling the class to offload functionality.

After you have defined classes and class responsibilities, the next step in the design phase is to
determine what each class's collaborators are. This is extremely helpful in finding additional
classes that you hadn't previously thought of. For example, consider a Map class whose
responsibilities include drawing a vector map based on a data model. It might be immediately
obvious that in such a case a MapDat a class would be a collaborator since Map would want to
query MapDat a for the data needed to draw the map. Locating collaborators is useful for us in
terms of determining relationships between existing classes. In this case, because we likely
already have a CRC card for the MapDat a class derived from the "map data" noun we spotted in
the use cases this collaborator did not help us find a new class. However, when we think about
the Map class still more, we'll probably realize that drawing all the different types of elements on

a map would probably be far too much for the Map class itself to handle. Instead we can rely on
collaborators that draw the specific map elements, and we realize that these collaborators
become new classes we missed before: Street, Hi ghway, Ri ver, and Ci t yMar ker .

Elaborating on Relationships Between Classes

Classes have relationships with one another. When finding collaborating classes, you are finding
the classes that have relationships. However, it's possible and necessary to determine what type
of relationship these collaborating classes have. Although every relationship between classes
will be unique, it is possible to generalize those relationships into the following categories:

e Association
e Aggregation
e Inheritance

Association and aggregation are types of relationships that can more generally be called
composition. Later in this chapter (in the section titled, "Inheritance and Composition™), we'll
compare and contrast the generalized principals of composition and inheritance as they apply to
implementation.

The Association Relationship

Association is the weakest of these relationships. Association relationships are also sometimes
called dependency relationships. When two classes are related in this way, one of the classes
relies on its collaborator to help with one or more of its responsibilities.

An example of an association relationship is the relationship between a Map and a MapDat a class.
The Map class has a dependency on the MapDat a class. Without a MapDat a instance, a Map object
wouldn't be able to draw the map.

Associations are perhaps the most common sort of relationship between classes. You can think
of associations as "uses" relationships, meaning that Map "uses" MapDat a.

The Aggregation Relationship

Aggregation is a stronger form of composition relationship than the association relationship.
When classes are related by aggregation, the life cycles of the classes are linked. When classes
are related by association, one class instance can be created or destroyed without necessarily
affecting the other. However, when classes are related by aggregation, it implies that one class
is the owner of the collaborator class. If the owner class is destroyed, so too are the aggregate
collaborator classes.

An example of an aggregation relationship is that of the Map and St reet classes. You can think
of aggregations as "has a" relationships, meaning that Map "has a" St reet . That doesn't mean
that all Street objects are owned by Map objects. But this relationship does state that Map
objects can have Street objects, and when the Map object is destroyed, so too are the Street
objects it owns.

The Inheritance Relationship

Inheritance is the strongest sort of relationship between classes. When a class inherits from an
existing class, it initially looks exactly like the class from which it inherits. The entire interface
and implementation (more on these topics in the next chapter) of the existing class (what we
call the superclass or base class) are passed down to the new class (what we call the subclass.)
The relationship is so strong between superclasses and subclasses that subclass instances can
even stand in for superclass instances in many cases. Because of the strength of inheritance
relationships we say that inheritance defines an "is a" relationship such that the subclass "is a"
superclass.

Inheritance relationships allow you to create abstractions that are shared by many similar
classes. For example, Street, Hi ghway, Ri ver, and Ci t yMar ker are all types of map elements. If
all the classes share common interfaces and implementations, these classes might have a lot of
duplicate and redundant code. You can abstract that code by placing it into a new MapEl ement
class. Street, Hi ghway, Ri ver, and Ci t yMar ker can then all inherit from the MapEl enent class.
They will automatically inherit the interface and implementation from MapEl enent , which will
remove the need to repeat that code in each of the subclasses. It also means that you can begin
to use polymorphism. Although we'll talk about this topic in more detail in the next chapter, the
idea behind polymorphism is that a more specific type can substitute for a more general type.
In other words, the Map class can have an aggregation relationship with MapEl enent rather than
having aggregation relationships with Street, Hi ghway, Ri ver, and Ci t yMar ker . That distinction
is very important because if you later wanted to add a Bri dge class, you could simply define it
such that it inherits from MapEl enent , and the Map object would automatically work with Bri dge
objects without your having to rewrite any of the Map code.

Although inheritance relationships are very powerful, they also tend to create very rigid
relationships. Inheritance has its place and deserves credit for all that it can do. However, so
much emphasis has been placed on inheritance relationships in many programming
communities that it is often overused and misused. Inheritance relationships should generally
be the least frequent type of relationships in your applications. Inheritance enables
polymorphism, which is extremely valuable. However, inheritance is not the only way to enable
polymorphism, as you'll read in the next chapter. We'll compare and contrast inheritance with
composition relationships in the "Inheritance and Composition™ section later in this chapter.

Formalizing Public APIs

By this point, you've decided on the classes your application requires as well as the
responsibilities of each class, the class collaborators, and the relationships each class has with
those collaborators. Although you might be anxious to start coding right now, there are still
some steps to complete in the design phase.

The next step is to formalize the public APIs (Application Programming Interface, which means
the public methods) of the classes.

Formalizing the API for a class is a matter of translating the responsibilities into method
signatures. Not all responsibilities necessarily translate into public methods because some of
what a class is responsible for might be private. For example, the Addr essFor mclass might have
a responsibility to validate user input. That is probably not something that translates into a
public method. Rather, it is far more likely that this responsibility is handled internally by the
class when the user clicks a button. However, some class responsibilities might translate into
several public methods. For example, in the case of our map example, the responsibility "handle
request and responses to and from server-side service" might translate into the following
methods (depending on the application requirements):

function get MapDat aFor Addr ess(addr ess: Addr essDat a) : voi d;
function getSavedMapDat a(id: uint):void;

Note

In the preceding example, the two methods are purely based on speculation as to
what sorts of methods such an application might require for a server-side service
proxy (often called a remote proxy). Furthermore, both methods are declared with
void return types because the assumption is that the class is a proxy to a server-side
service that works asynchronously with Flash Player, and responses will be handled by
event listeners.

Using UML for Design

We first mentioned UML in relation to analysis. However, one of the most common uses of UML
is during the design phase because you can use UML class diagrams to visually represent all the
classes, their APls, and the relationships between the classes. UML class diagrams are really
useful because they allow you to look at all the classes and there relationships all at one time in
a relatively succinct format. Usually a UML class diagram doesn't replace the need for technical
documentation. However, UML class diagrams can often supplement technical documentation
and serve as a useful tool both during the design phase as well as during the implementation
phase when you must actually write all the classes shown in a UML class diagram. Figure 1.3
shows a very simple UML class diagram that shows two classes and an interface.

Figure 1.3. A simple UML class diagram.

T

i

narme: String

< iterator)teratar g T
< additemiin value: temvoid)
{} addtemAtlin value:tem, in inde:x:int) woid ET] HERCTHn g
¥ gethemiiin indexint):tem
< remaoveltem(in value: *)void I;teratur
{} remoyvetemAtin indesx:int) woid
< next(y?
¥ hashlexd() Boolesn
<&

reset);void

Note that this figure shows only public class members, yet you can also represent private and
protected members.

Not only does UML provide a nice way to visualize the classes used by an application, but it also
provides the possibility to export stub code for all the necessary classes and interfaces. At the
time of this writing there is no known ActionScript 3.0 stub code generator for UML. However,
since this is a common feature for many other languages (Java, C#, etc.) it is reasonable to
think that there will be an ActionScript 3.0 generator for UML in the near future.

@ prcy | NEXT

The Implementation Phase

Following the design phase is the implementation phase. In the implementation phase, you
actually write the code you have planned out. If you've had successful analysis and design
phases, the implementation of your application should be relatively straightforwardsimply a
matter of coloring in the lines, so to speak. By the time you get to the implementation phase,
you should already have decided on the classes, their relationships, their responsibilities, and
their APIs.

Much of the implementation phase simply involves writing ActionScript code, and as the one
step you can't skip, it is the phase with which everyone is familiar. As such, we're not going to
focus on the details of how to write classes. However, there are several topics that bear further
discussion, namely:

Coding conventions

Encapsulation

Composition and inheritance

Coupling

Coding Conventions

There are few rules for naming classes, packages, variables, functions, and interfaces in
ActionScript. In each case, you can use only letters, numbers, dollar signs ($), and underscores
() and the first character must not be a number. Although the rules are few, there are still
conventions for naming that you might find useful. At the very least, you will find it useful to
know what conventions we use in this book. You should know that the conventions we use
aren't the only conventions, and you aren't obligated to use them. We introduce this topic here
because consistent and conscious coding conventions are a boon to application development. By
applying conventions consistently you can expect to write code that is easily read by you and
anyone else during team development. Remember that classes can involve hundreds of lines of
code, and using consistent conventions helps you to more quickly identify parts of the code and
their purposes.

Variables and Functions

For variables, it is a convention to use initial lowercase letters. Consider this example:

var city: Map;

Generally, it is advisable to use as the name words and phrases that describe the variable. For
example, city is probably a much better name for a Map variable than mwould be. Often times,
it's possible to more accurately describe a variable using several words. In such cases, the
convention is to use a style called camel case (sometimes called inter caps) in which the first
letter of each word (except the first) is capitalized, as in this example:

var cityMap: Map;

Class properties are special sorts of variables, and as such they use the same naming
convention as variables. However, to better distinguish between local variables and class
properties, it is a convention to name all private properties with an initial underscore, as in this
example:

private var _cityMap: Map;

Note

The issue of underscores for private properties is a contentious one among developers.
It is our preference to use underscores as we feel they help clearly differentiate
between private properties and local variables. However, some developers will argue
vehemently against the use of underscores as they feel there is no significant benefit
in their use.

Functions (and methods) also follow the same naming conventions as variables. Function names
should start with lowercase letters and use camel case formatting when the function name
consists of more than one word. Consider this example:

public function getMapDataForAddress(address: AddressData): voi d;

Parameters are also special variables, and as such they use the same naming conventions as
variables, as you can see in the preceding example.

Unlike private properties it is not common to use underscores for private methods. The logic
behind this is that a method is not generally defined within another method as a local variable
might be defined within a method. Therefore, it's always clear that a method is a method
without having to use underscores.

Note

The variable and function/method naming conventions presented here are not
intended to be comprehensive of all possible naming conventions. Many developers
like to use additional conventions such as using variable prefixes to denote type. We
are presenting the conventions that we find useful and that we use in this book. You
are always welcome to use whatever conventions you find helpful.

Constants

Constants are special types of fields; you can define them with a value, but you cannot change
the value subsequently. You've likely seen many constants in the Flash Player events API such
as EVENT. COWPLETE and MOUSEEVENT. CLI CK . As you can see, constants use all uppercase

characters by convention. If a constant name uses more than one word, the words are delimited
by an underscore, as in MouseEvent . MOUSE_MOVE .

Note

Constants are a new feature in ActionScript 3.0.

Classes and Interfaces

By convention, class names always start with an uppercase character. Class names also use
camel case when necessary. In addition, class names should always be nouns.

Interfaces use the same naming conventions as classes except that they have one additional
convention: Interface names always start with the letter I (meaning interface.) Additionally,
interfaces do not always have to use nouns as names. Although it's not uncommon to name an
interface with a noun (e.g. I Col | ecti on) it's equally common to use an adjective ending in -
able. For example, the Flash Player API includes the following ActionScript 3.0 interfaces:

| Ext ernal i zabl e and | Bi t mapDr awabl e .

Packages

For the most part, package names follow the same conventions as variables: They start with
lowercase letters. There are two schools of thought regarding the use of camel case in package
names. One group uses camel case while the other group uses exclusively lowercase characters
in package names. In this book we do not employ camel case in package names.

There's yet another important convention when it comes to package names. One of the
functions of packages is to ensure that classes exist within unique namespaces. For example,
two classes called Exanpl e cannot be created in the same package, but may exist in two
separate packages. When you decide on package names, try to ensure that the package name
guarantees uniqueness. That way, if you happen to use your Exanpl e class in a project with an
Exanpl e class from an existing library, the two classes can coexist.

By convention, package names can guarantee uniqueness by using subpackages in order of
descending order of specificity. When a class is part of a library belonging to a company or
organization, the convention is to name the packages starting with the organization's domain
name in reverse order. The first part of most package names is the top-level domain such as
comor org . The second part of most package names is the domain such as googl e or amazon . If
the classes are specific to a project, the project name follows the company's domain name. The
classes themselves are generally placed in subpackages that group them by classification. For
example, utility classes might go in a utils subpackage and service proxy classes might go in a
servi ces package. As an example, imagine that you're writing a class called Loggi ngSer vi ce
that is specific to a project with a code name of JediKnight for your company called
ExampleCompany (with a domain name of examplecompany.com.) You might place that class
in the following package:

com exanpl econpany. j edi kni ght . servi ces

Encapsulation

One of the rules of good object-oriented design is that all classes should be black boxes: you
can put things in and take things out, but you can't determine how it operates. In other words,
the only way to interact with a class instance is to use its public methods. You should never be
able to look into an object or change the object's state except by asking the object to tell you
about itself or to change its own state. The object must always maintain sovereignty. The
minute an object is no longer in charge of its own internal world, the entire object-oriented
universe starts to crumble and fall apart into an unmanageable train wreck.

This idea of classes being black boxes is a fundamental principle of object-oriented design called
encapsulation. Encapsulation is absolutely necessary for an object-oriented design to succeed
because it enables objects to interact with one another in known and well-defined ways. This
approach models the world in which we live in many ways. Every object in the physical world
has boundaries that define it and its interface with the world around it. Your body interacts with
the air by way of respiration, for example. Without these well-defined interfaces there would be
chaos, and it would be impossible to interact with anything in a useful or meaningful way.

Implementing classes so that they adhere to the principle of encapsulation is quite simple. To
achieve this goal, there are just two basic rules:

1. Don't use any public properties.

2. Don't reference objects outside the class unless the reference was passed to the class as a
parameter.

Public Properties

Properties store an object's state. As we've already said, an object must be in control of its own
state. Public properties allow other objects to directly change an object's state without the
object being in control. The implications of this can be far-reaching, but we can see the problem
with a simple example. Consider a St udent class that models a student at a school. One of the
fields that comprise a St udent object's state is the GPA (grade point average). It might seem
like a good idea to simply define the class with a public gpa property. However, consider that
GPAs are generally constrained to a specific range of values (O to 4, for example). With a public
property, there's no way for the application to guarantee that a student's GPA will always be in
the valid range. If the property is public, you can simply set the value to any numeric value
regardless of whether or not it is within the valid range, as this example does:

student.gpa = 400;

As if that wasn't bad enough, there are further ramifications. What if there are other
collaborating objects that must be updated with a student's GPA changes? For example, a
School Recor d object might need to know when a GPA changes in general, and a Par ent object
might need to know when the GPA drops below or raises above a certain level. If the St udent
object doesn't even know when its own state changes, it can not very well notify other objects
when its state changes.

The solution to public properties is to use private properties with accessor methods. In
ActionScript, we call the accessor methods getter and setter methods, and ActionScript enables
two types of getters and setters: explicit and implicit. An explicit getter or setter is a normal
method, typically using the word get or set in the name of the method. For example, rather
than declaring a public gpa property, you can declare a private _gpa property and then use
methods called get GPA() and set GPA() . Consider this example:

public function get GPA(): Nunber ({
return _gpa;

}
public function setGPA(val ue: Nunmber):void {

if(value > 4) {

_gpa = 4;

}

else if(value < 0) {
_gpa = 0;

}

el se {
_gpa = val ue;

}

di spat chEvent (new Event (Event. CHANGE)) ;

Notice that the setter method uses boundary testing to verify that the value is always in the
valid range between O and 4. This example simply corrects values outside the valid range, but
another implementation might throw an error. The method also dispatches an event that can
notify listeners (such as a School Record or Parent object). When you want to set the GPA for a
student, you can simply call the set GPA() method and pass it the value, as shown here:

st udent . set GPA(4) ;

When you want to retrieve the value you can call get GPA() , as in this example:

textfield.text = "GPA: " + student.get GPA();

Implicit getters and setters are similar to explicit getters and setters. In fact, the
implementation of implicit methods can look almost identical to that for explicit getters and
setters. The difference is that implicit getters and setters are defined as methods, but they look
like properties when used. The syntax for implicit getters and setters uses the keywords get and
set after the function keyword. The following example rewrites the preceding explicit methods
as implicit methods:

public function get gpa(): Nunmber {
return _gpa;

}

public function set gpa(val ue: Nunber):void {
i f(value > 4) {

_gpa = 4;

}

else if(value < 0) {
_gpa = 0;

}

el se {
_gpa = val ue;

}

di spat chEvent (new Event (Event. CHANGE)) ;

When you want to call the implicit setter method, you use it as part of an assignment

statement. The value you assign to the "property" is passed to the setter method, like this:

student.gpa = 4;

You can call the getter method when you reference the "property" in a context that attempts to
read the value, as shown here:

textfield.text = "GPA: " + student. gpa;

External References

A class should never directly reference any object that is outside of itself unless it obtains that
reference through its public interface. A class can declare private properties and local variables
and can reference those objects internally because they exist within the class. A class can also
reference an outside object if the reference was passed into it via a public method. For example,
a Student class might define a method called at t endCl ass() that accepts an Acadeni cCl ass
parameter. The St udent object can then reference that object because it was passed in as part
of a method call.

public class Student {
public function _classes: Array;

public function Student() {
_classes = new Array();

}

public function attendC ass(cl ass: Acadeni cCl ass):void {
_cl asses. push(cl ass);
/1 Now that the class was passed in as a paraneter the
/1 Student instance can store that reference in the array
/1 and use it later. This doesn't break encapsul ation
/'l because the reference was passed in via the public API.

/'l Remai nder of inplnentation.

Designing for Encapsulation

Encapsulation is an extremely important principle, and it can have far-reaching consequences.
Consider a School class that has a private property called _students, an array of all the
students who attend the school. If you need to make the students available to collaborators with
the School object (for example, a School Di strict class might need to know about all the
students at all the schools in the district), you can make the array accessible using a getter
method, as shown here:

public function get students():Array {
return _students;

}

Even though you aren't using a public property, the design in this example breaks the principle
of encapsulation. Consider what happens when you retrieve the _st udents array and make
changes to it directly:

school . students. splice(10, 5);

The preceding code removes five students from a school, but the school never receives
notification about the removal of the students. That is obviously not the behavior you would
want (a school should always know when students have been removed). You can address this
issue in several ways. One way is to simply return a copy rather than a reference, as shown
here:

public function get students():Array {
return _students.concat();

}

Another solution is to employ the Iterator pattern (described in Chapter 7 , "lterator Pattern").
Regardless of which solution you use, you are solving the design flaw that broke the principle of
encapsulation.

Most design patterns are solutions to problems relating to encapsulation. In many cases,
encapsulation might appear to be in direct opposition to other important design principles. For
example, many applications need to have globally accessible objects of specific types. An
application might need a globally accessible User object that represents the current user of the
application. As we've already discussed, it would break encapsulation if all the other classes in
the application had hard-coded references to that one specific User object. However, using the
Singleton pattern (described in Chapter 4), you can achieve the goal of a globally accessible
object without having to directly reference a specific object.

Inheritance and Composition

One class can leverage the functionality of another class in one of two basic ways: inheritance
or composition. Both are powerful techniques. Inheritance allows you to define a new class so
that it automatically gets the interface and implementation of an existing class. The following
code declares a class called Enpl oyee :

public class Enployee {
public function Enployee() {}
public function work():void {

trace("working");

}

The new class, which we call the subclass, can build on the foundation of the existing class,
which we call the superclass or base class, without needing to rewrite the original code or write
any new code to use the superclass code. There are different types of employees, and we can
define different subtypes by inheriting from the Enpl oyee superclass. For example, the following
Executi ve class inherits from Enpl oyee by using the ext ends keyword:

public class Executive extends Enployee {
public function Executive() {}
public function attendMeeting():void {

trace("attendi ng neeting");

Furthermore, inheritance automatically enables polymorphism because the subclass inherits the
interface of the superclass. That means that an Executi ve object is also an Enpl oyee ...just a
more specific type. An Executi ve object can be used any time an Enpl oyee object is expected
although the reverse is not true:an Enpl oyee object cannot stand in for an Executi ve object.
Note that the Executi ve class defines another method called at t endMeeti ng() . Because

Execut i ve objects inherit from the Enpl oyee superclass, you can call the wor k() method for an
Executi ve and you can also call the attendMeeti ng() method which is specific to Executi ve .

In contrast with inheritance, composition allows you to write a new class (a front-end class)
that has an instance of an existing class (the back-end class). Every time you define a class with
a property whose type is another class, you are using composition in some sense. The following
example is a rewrite of the Executi ve class example just shown so that it uses composition
rather than inheritance:

public class Executive {

private var _enpl oyee: Enpl oyee;

public function Executive() {}

public function attendMeeting():void {
trace("attend neeting");

}

public function work():void {
_enpl oyee. wor k() ;

}

When you use composition, the new (front-end) class does not automatically inherit the
interface of the existing (back-end) class. The front-end class can use the back-end class
instance only by way of its public interface. If the front-end class needs to have part or all of the
same interface as the back-end class, you must write code that defines the interface as well as
its implementation. That is the reason that this rewrite of the Executi ve class has to define a
wor k() method. Unlike the example that used inheritance, the composition version of the
Executi ve class does not inherit the wor k() method. If you want the wor k() method to be part of
the Executi ve interface, you must define it. The preceding example uses a technique called
delegation to pass along the method call to the composed object.

Because a class that composes an instance of another class does not automatically inherit the
object's interface, composition does not automatically enable polymorphism. In other words,
using composition, an Executi ve object is not an Enpl oyee , and it cannot stand in for an

Enpl oyee . (The solution to this issue is to use interface constructs as discussed earlier in this
chapter.)

In reading the preceding paragraphs, you might think that inheritance sounds like a much
better technique for reusing existing functionality. It sounds like composition requires much

more work with little or no advantage. Yet both inheritance and composition have their
advantages and disadvantages.

Advantages and Disadvantages of Inheritance

As you've seen already, inheritance has the following advantages:

e Simplicity of use: Inheritance is a concept built into the language. All you have to do is use
the ext ends keyword in order to define one class so that it inherits both the interface and
the implementation of an existing class.

e Ability to change inherited implementation: By using the overri des keyword, you can
change the implementation inherited for a particular method.

Yet inheritance also has its disadvantages:

¢ Implementations are fixed at compile-time: For example, if a Chart 3D class inherits from
the Bar Chart class, then it's impossible at runtime to apply the 3D functionality to a
Li neG aph object.

e Supports weak encapsulation and fragile structures: Subclasses have privileged access to
a superclass's implementation. Anything that is marked as public, internal, or protected is
accessible to a subclass. This means that encapsulation is weak in inheritance
relationships. Because of this, it's possible that a change to a superclass implementation
could break subclasses even if the public interface does not change.

e Superclass interface changes necessarily change subclasses: If you change the signature of
a superclass method the change will ripple to all subclasses.

e ActionScript allows a class to inherit directly from just one class (as opposed to multiple
inheritance, a concept utilized by very few languages): Suppose that all Executi ve objects
share the functionality of both Enpl oyee and Deci si onMaker classes. ActionScript allows
Execut i ve to inherit from just one of those classes, not both.

Advantages and Disadvantages of Composition

Although we haven't yet mentioned the advantages of composition, they are numerous. Some of
the most prominent advantages are as follows:

¢ Implementations are configurable at runtime: For example, if a Chart 3D class operates on
an object typed as Chart (of which there are many subtypes such as Bar Chart and
Li neGraph), the Chart 3D class can operate on any of those subtypes. The specific subtype
can be set at runtime.

e Supports good encapsulation and adaptable structures: Classes that use composition are
forced to go through the back-end class public interfaces. That means that they enforce
good encapsulation. That also means that changes in implementation of the back-end
classes are less likely to break classes that use them. As long as the interface remains the
same, the front-end classes won't break.

¢ Interface changes have limited ripple effect: When the interface of a back-end class
changes, it will break front-end classes that rely on the old version of the interface.
However, the damage is contained and generally fairly trivial to correct. Because interfaces
are not inherited when using composition, the changes affect only the front-end class, but
not classes that in turn compose instances of the front-end class. In other words, if
Executi ve is a front-end class for Enpl oyee and the interface for Enpl oyee changes, you will
most likely have to make changes to Executi ve . However, the interface for Executi ve does
not change. That means that if a Conpany class composes an Execut i ve object, the Conpany
class does not have to change.

¢ Composition allows a front-end class to have relationships with many back-end classes:

Using composition, an Executi ve class can have both an Enpl oyee and a Deci si onMaker
property.

Yet composition is not without its disadvantages:

e Frequently requires more code than inheritance: If a front-end class needs to use some or
all of a back-end class's interface, it must re-create it.

¢ Often more difficult to read than inheritance: Inheritance establishes a very
straightforward relationship. Composition is often less direct and presents a trail that's
more difficult to follow if you're not familiar with the code.

Which to Use: Inheritance or Composition

Generally, the rule of thumb is to favor object composition over inheritance. The advantages of
object composition outnumber the disadvantages. Furthermore, the disadvantages of
composition are not obstacles as much as they are simply inconveniences. Because inheritance
is so much more straightforward, it's a lot easier to teach and learn in many cases, and it tends
to be overemphasized and overused by many people in the ActionScript development
community. For this reason, it's often beneficial for ActionScript developers to determine
whether composition is the best option for establishing a relationship between classes.

With that said, it's also worth noting that with the surge of interest in object-oriented design
and design patterns in the ActionScript community, inheritance has been maligned in many
circles. It's important to understand several things about this conflict:

¢ Inheritance is not wrong: Just because you should favor composition does not mean that
inheritance is never appropriate. Inheritance is a better solution in some cases. It's difficult
to make rules that tell you when to use inheritance and when to use composition.
However, as a general guideline, it's advisable to use inheritance in the following
situations: When a new class really does define a subtype of an existing class, when the
new class is not likely to have subclasses itself (limiting inheritance chains keeps some of
the disadvantages of inheritance at bay), when the new class would benefit greatly by
inheriting part of the existing class's implementation that is hidden from the public, and
when the new class does not have special requirements (for example, it needs to be
adaptable to significant changes at runtime).

¢ Inheritance and composition are not competitors: Although it is true that in almost all
cases two classes will be related by either inheritance or composition (and not both), that
does not mean that these two types of relationships can not work together. In fact, most
classes that use inheritance also use composition.

Conventional teaching says that to determine whether two classes should be related by
inheritance or composition, you should use the "is a/has a" test. The "is a/has a" test says that
you should answer the following question: Is (new class) a (existing class) or does (new class)
have a (existing class)? If the new class is a more specific version of the existing class, the
relationship is inheritance. If the new class simply has an instance of the existing class as a
property, the relationship is composition. Although that guideline can be useful, it is not
definitive. Consider an example using an existing class called St udent and a new class called
School . If we ask whether School is a St udent , the answer is obvious: a School is not a

St udent . Therefore, the relationship must be composition, not inheritance. Yet just because we
can answer that a new class is a more specific version of an existing class doesn't mean that the
relationship should necessarily be inheritance. For example, consider the relationship between a
Hi ghSchool class and a School class. If you use only the "is a/has a" test, you might determine

that a Hi ghSchool is a School and therefore the relationship is inheritance. Yet consider what
happens if you need to have a Hi ghSchool object that uses experimental administration
structure and teaching techniques. We can assume that the implementation for School deals
with traditional school systems and infrastructure and would not meet the needs of an
experimental school. An inheritance relationship between School and Hi ghSchool is rigid. If you
use composition to define the relationship, it's possible to create an experimental high school
type at compile type by substituting an Experi nment al School instance for the School property of
a Hi ghSchool object.

Coupling

Coupling refers to the degree to which two objects must know about one another. When the
objects have to know a great deal about one another to work, we call that tight coupling; when
they have to know little to nothing about one another, we call that loose coupling. In object-
oriented design, we generally strive to have loose coupling among the objects in the system.
Loose coupling creates flexible and adaptable systems. If objects are tightly coupled, the system
is rigidone change in one object can cascade and break the entire system. If objects are loosely
coupled, changes are much less likely to break things, and even when changes do cause
malfunctions, the malfunctions are generally contained.

Many design patterns aim to create loosely coupled systems. For example, if an object needs to
ask another object to run a behavior, the traditional way to accomplish this goal is for the
object to have a reference to the collaborator and to call a method of that collaborator. That
way of structuring an application uses tight coupling because the calling object has to have a
reference to the collaborator and it has to know the signature of the method it wants to call. It's
difficult to make changes to that structure. The Command pattern described in Chapter 10
addresses this issue by completely decoupling the objects. The Command pattern adds an
intermediary layer that parameterizes the behavior and allows the calling object to simply have
a reference to the intermediary object and know about a standard interface. This is just one
example of how design patterns can promote loose coupling or decoupling, and you'll see many
more examples throughout the book as you read about each of the patterns.

Testing

Once you've completed the implementation phase the next important phase you need to
consider is the testing phase. Generally testing involves a quality assurance (QA) group that
runs test cases to determine that the application behaves as expected and to try to catch any
bugs. This testing phase is iterative. When QA returns a list of bugs the development team must
work to fix any issues. However, when fixings bugs it's possible to introduce new bugs. If you
have architected the application well, favoring composition over inheritance for building flexible
structures, then the risk of introducing new bugs during this phase is minimized. However, it's
is almost inevitable that some new bugs will be introduced during bug fixing and old fixed bugs
will re-emerge. Because of the possibility of this introduction and re-introduction of bugs testing
generally involves something called regression testingwhich basically means all tests that
previously passed must be run again to ensure that changes didn't cause any of those tests to
suddenly fail.

As you might imagine the introduction and re-introduction of bugs can be quite expensive
during the testing phase if they go uncaught until the build is regression tested by a QA team. If
a bug isn't caught until QA runs a regression test then it means that the development team
must fix the bugs again and send yet another build to QA for regression testing.

If possible it's always best for developers to try to find new bugs and regressions before sending
the build to QA. The difficulty with that strategy is that it requires the development team to be
responsible for testing the application. If developers could handle testing in addition to
development and bug fixes then there wouldn't be a need for a QA team in the first place, so it
might almost seem ridiculous to suggest that developers should have to test an application.
However, if developers can run automated tests that verify that an application continues to
work correctly from a programmatic standpoint then that doesn't require a great deal more
work on the part of the developer, and it enables developers to quickly identify errors before
sending a build to QA. These programmatic tests are can be formalized into what is called a unit
test .

Unit testing allows the developer to create programmatic tests that ensure that parts of the
application behave in an expected way. For example, if you have a method that's supposed to
convert a parameter value from radians to degrees and return that value then you want to
make sure that if you pass it a value of Mat h. PI it returns 180 every time. Using this basic
concept you can create a series of tests where you ensure that results of operations are as
expected (i.e. Mat h. PI radians is always converted correctly to 180 degrees).

You can create unit tests without a formal unit test framework. However, using a formal
framework for unit testing has several advantages. Specifically:

¢ When you use an existing framework you don't have to reinvent the wheel, saving you
time

¢ An existing framework is likely to be tested so that bugs in the unit testing framework
won't cause your tests to fail to work (which would negate the value of running unit tests
in the first place.)

Although there may be additional unit testing frameworks for ActionScript 3.0 subsequent to the
writing of this book the one existing unit testing framework we know of at this point is called

FlexUnit. As the name implies, you can use FlexUnit for unit testing Flex applications. However,
that doesn't mean that FlexUint is limited to unit testing applications that use the Flex
framework. Even if you are working on a purely ActionScript 3.0 project you can use FlexUnit.

At the time of this writing FlexUnit is available for download at
http://labs.adobe.com/wiki/index.php/ActionScript_3:resources:apis:libraries . If that URL
changes you may not be able to find the downloads there. In such a case you can look to
www.rightactionscript.com/aas3wdp for an updated URL.

Once you've located the correct URL you should download the archive containing the .swc file
which contains the necessary FlexUnit framework libraries. You will want to extract the .swc file
from the archive and then make sure that the .swc is included in the library path for your
project for which you want to use unit tests.

If you want to write custom unit tests that don't rely on FlexUnit then you are welcome to do so.
However, for the remainder of this section on unit testing we will be giving specific instructions
for running unit tests using FlexUnit.

Creating Basic Unit Tests

In FlexUnit basic unit tests require the following elements:

e Classes you want to test. These are the classes that comprise your application.

e Test cases. Test cases are special classes that you write just for the purposes of unit
testing.

e Test runner. A test runner is a class (or MXML file) that actually runs all the test cases and
reports the results.

The first category of elements isn't specific to unit tests. That category is simply comprised of
the classes you've already written. They are part of unit testing because you are testing that
they actually work the way you expect. For the basic test cases we’ll test the following class.

package exanple {
public class SinpleConverter {

public function SinpleConverter() {}

public function convertToRadi ans(degrees: Nunber): Nunber {
return (degrees / 180) * Math.Pl;

}

public function convertToDegrees(radi ans: Number) : Nunber {
return (radians / Math.Pl) * 180;

Test cases and test runners, on the other hand, are unique to unit testing. Since test cases and
test runners are likely new to you we'll look at how to create them in the next sections.

Writing Test Cases

A FlexUnit test case is an instance of a class that extends f| exuni t. f ranmewor k. Test Case . The
test case class constructor should always accept a string parameter and then call the super
constructor, passing it the parameter value.

http://labs.adobe.com/wiki/index.php/ActionScript_3:resources:apis:libraries

package tests {
import flexunit.framework. Test Case;
public class SinpleTest extends TestCase {

}
}

public function SinpleTest(nethod: String) ({
super (net hod) ;

}

The class should then define one or more methods that run a test. Each test should result in an
assertion. An assertion is what actually determines the success of the test. You can run an
assertion using any of the assert methods inherited by the Assert class which is the superclass
of Test Case :

assert Equal s() : Tests if all the parameters are equal (equivalent to an == operation)

assert StrictlyEqual s() : Tests if all the parameters are strictly equal (equivalent to an
=== operation)

assert True() : Test if the parameter is true
assert Fal se() : Test if the parameter is false (passes test if the parameter is false)

assert Undefined() : Test if the parameter is undefined (passes test if the parameter is
undefined)

assertNul | () : Test if the parameter is null (passes test if the parameter is null)
assert Not Nul | () : Test if the parameter is not null

fail () : Though technically not an assertion, the fail() method explicitly causes the test to
fail, which can be useful when you need to test for a failure.

The following update to Si npl eTest defines two test methods to test the conversions to and
from degrees and radians.

package tests {
import flexunit.framework. Test Case;
i nport exanpl e. Si npl e;
public class SinpleTest extends TestCase {

public function SinpleTest(nethod: String) {
super (et hod) ;

}

public function testConvertOToDegrees():void {
var sinple: Sinmpl eConverter = new SinpleConverter();
var degrees: Nunmber = sinple.convertToDegrees(0);
assert Equal s(degrees, 0);

}

public function testConvertPl ToDegrees():void {
var sinpl e: Si npl eConverter = new SinpleConverter();
var degrees: Nunber = sinple.convertToDegrees(0);
assert Equal s(degrees, 180);

}
public function testConvertOToRadi ans():void {

var sinple: SinpleConverter = new SinpleConverter();
var radi ans: Nunber = sinple.convertToRadi ans(0);
assert Equal s(radi ans, 0);

}

public function testConvert180ToRadi ans():void {
var sinpl e: Si npl eConverter = new SinpleConverter();
var radi ans: Nunmber = sinple.convertToRadi ans(180);
assert Equal s(radi ans, WMath.Pl);

}

Once you've created one or more test cases you next to create a test runner to run the tests and
view the results.

Writing a Test Runner

Assuming you're using Flex you can use the FlexUnit test runner to run a suite of unit tests.
First, you must create a runnable MXML document that does the following:

e Add the flexunit.flexui.* namespace
e Add an instance of Test Runner Base , an MXML component
e Create a flexunit.franmework. Test Suite instance, and add all the test cases to it.
e Assign the Test Sui t e instance to the test property of the Test Runner Base instance.
Call the start Test () method of the Test Runner Base instance.
The following example MXML document runs all the tests from Si npl eTest .

[View full w dth]<?xm version="1.0" encodi ng="utf-8"?>

<l-- Notice that the Application tag adds the flexui nanespace prefix and naps it

to flexunit.flexui.*. Also notice that it registers initializeHandl er() as an event

handler for the initialize event.-->

<nx: Application xmns:nx="http://ww. adobe. conf 2006/ nxm " xm ns: fl exui ="fl exunit.fl
initialize="initializeHandl er(event)">

<nx: Scri pt >
<!'[CDATA[
i mport flexunit.framework. Test Suite;
i nport tests.SinpleTest;

private function initializeHandl er(event: Event):void {
/1l Create a new TestSuite object.
var suite:TestSuite = new TestSuite();

/1l Use the addTest() nethod to add each of
/1 the four test cases to the suite.
sui te. addTest (new Si npl eTest ("t est Convert O0ToDegrees"));
sui te. addTest (new Si npl eTest ("t est Convert Pl ToDegrees"));
suite.addTest (new Si npl eTest ("t est Convert OToRadi ans"));
sui te. addTest (new Si npl eTest ("t est Convert 180ToRadi ans"));

test Runner.test = suite;
test Runner.start Test ();

}
11>
</ nx: Scri pt >
<fl exui : Test Runner Base id="testRunner" w dth="100% hei ght="100% />
</ nx: Application>

Notice that each test case is an instance of Si npl eTest with one of the test method names
passed to the constructor. When you run the preceding test runner it should show all the tests
as passing. If you make the following change to Si npl eConverter you'll see that one of the tests
fails.

package exanple {
public class SinpleConverter {
public function SinpleConverter() {}
public function convertToRadi ans(degrees: Nunber): Nunber {
return (degrees / 180) * Math.Pl;
}
public function convert ToDegrees(radi ans: Nunber): Nunmber {
return O;

}

Note that since convert ToDegrees() always returns O the t est Convert Pl ToDegr ees test will fail.
Since the specific test fails you immediately know where the error is occurring, and you can fix
the bug.

Another thing that can be useful when creating test cases is to add a static method to each
Test Case subclass that returns a Test Sui t e of all the tests for that class. This allows you to
simplify the test runner. The following is an example of such a method you could add to

Si npl eConverter .

public static function suite(): TestSuite {
var suite: TestSuite = new TestSuite();
sui te.addTest (new Sinpl eTest ("test ConvertOToDegrees"));
Sui te. addTest (new Sinpl eTest ("testConvert Pl ToDegrees"));
sui te. addTest (new Si npl eTest ("t est Convert OToRadi ans"));
sui te. addTest (new Sinpl eTest ("test Convert 180ToRadi ans"));
return suite;

The test runnerinitial i zeHandl er () method would then simplify to the following:

private function initializeHandl er(event: Event):void {
test Runner.test = SinpleTest.suite();
test Runner.start Test();

Creating Asynchronous Unit Tests

Many unit tests are synchronousmeaning that you can immediately determine if a test has
passed or failed. For example, the Si npl eConverter test in the preceding section passed or
failed a test immediately. However, it's possible that some tests may depend on asynchronous
operations. For example, a class may need to make a request and wait for a response from a
service method before a test can be verified properly. In such cases it's important to be able to
run tests asynchronously. For an example consider the following class which loads data from a
text file when calling the get dat a() method.

package exanple {
import flash.events. Event Di spat cher;
i mport flash. net. URLLoader;
i mport flash.events. Event;
i nport flash. net. URLRequest;

public class AsynchronousExanpl e extends EventD spatcher {
private var _|oader: URLLoader;

public function get data():String {
return _| oader. data;

}

public function AsynchronousExanpl e() {
_l oader = new URLLoader ();
| oader . addEvent Li st ener (Event . COMPLETE, onDat a);

}

public function getData():void {
_l oader. | oad(new URLRequest ("data.txt"));

}

private function onData(event: Event):void {
di spat chEvent (new Event (Event. COWPLETE)) ;

With a few simple changes it's possible to run FlexUnit tests asynchronously so you can test
operations like getdat a() . Asynchronous operations should use events to notify listeners when
the operation has completed. Typically when you register a listener for a particular event you
use the addEvent Li st ener () method, and you pass it a reference to the listener method. When
writing test cases for asynchronous operations you should register a listener method to handle
the event that signals a completed operation. However, rather than registering the listener
directly, you should use an inherited Test Case method called addAsync() . The addAsync()
method allows you to specify a listener method along with a time out in milliseconds. This
allows you to specify what method should handle the event, but if the event doesn't occur within
the timeout window then the test will fail. The event listener method should run the assertion.
The following example uses these techniques. You'll see that the class extends Test Case just like
a basic unit test. Furthermore, this test case class also accepts a method name as a parameter
for the constructor, and it passes the parameter to the super constructor. What differs is that
the test method registers a listener using addAsync() and defers the assertion to onDat a() . This

example times out after 2000 milliseconds. That means that if the data loads in 2000
milliseconds or less then the assertion will run. However, if the data doesn't load in time then
the test case assumes that it was due to a failure and the test fails.

package tests {
i mport flexunit.framework. Test Case;
i nport exanpl e. Asynchr onousExanpl e;
i mport flash.events. Event;
i mport flexunit.framework. Test Suite;

public class AsynchronousTest extends TestCase {

public function AsynchronousTest (nmethod: String):void {
super (et hod) ;

public function testGetData():void {
var asynchronous: AsynchronousExanpl e = new AsynchronousExanpl e();
asynchr onous. addEvent Li st ener (Event . COWPLETE, addAsync(onData, 2000));
asynchr onous. get Dat a() ;

private function onData(event: Event):void {
assert Not Nul | (event.target. data);

public static function suite(): TestSuite {
var suite:TestSuite = new TestSuite();
sui te. addTest (new AsynchronousTest ("test GetData"));
return suite;

The following test runner will run both the simple tests and the asynchronous test.

[View full wdth]<?xm version="1.0" encoding="utf-8"?7>

<nx: Application xmns:nx="http://ww. adobe. conf 2006/ nxm " xm ns: flexui ="fl exunit.fl
initialize="initializeHandl er(event)">

<nx: Scri pt >
<!'[CDATA[
i mport flexunit.framework. Test Suite;
i nport tests. SinpleTest;
i mport tests. AsynchronousTest;

private function initializeHandl er(event: Event):void {
var suite:TestSuite = new TestSuite();
sui te.addTest (Si npl eTest. suite());
suite. addTest (AsynchronousTest. suite());
test Runner.test = suite;
test Runner.start Test ();

</ mx: Scri pt>
<fl exui : Test Runner Base id="test Runner" w dth="100% hei ght="100% />
</ mx: Appl i cati on>

e rrcy NExT

Summary

Although many people think of building applications as exclusively writing the code, in this
chapter we have seen that writing code is just one of the phases of building successful
applications. We've seen that one of the biggest challenges is knowing what to write, and the
analysis and design phases of a project are the time to determine the answer to that question.
The third phase, implementation, is the time to actually write the code. Following

implementation is the testing phase which allows developers to use unit testing to ensure fewer
regressions

e rrcv NEXT

e rrcy NExT

Chapter 2. Programming to Interfaces

In This Chapter

Defining Interfaces 34

Using Polymorphism 38

Summary 42

Learning and mastering the fundamentals of object-oriented design and application
development is no small feat, and you should undoubtedly congratulate yourself for all your
accomplishments so far. And as you know, with every step taken yet another step presents
itself. Our next step involves understanding interfaces in the context of good application design
and pattern-based development. Although mastering basic object-oriented concepts enables an
evolution in how you build applications, understanding interfaces can rapidly push your coding
to take another evolutionary leap. After you've learned about using interfaces, the code you
write may hardly resemble the code you used to write.

It may surprise you to learn that lurking within every class are at least two distinct layers which
we call the interface and the implementation. Early on when you're learning how to write
classes, it can be difficult to distinguish between the two layers. However, as you become more
adept at writing good classes, it becomes easy to differentiate between the interface and the
implementation.

Classes consist of methods and properties. As explained in the previous chapter, properties
should never be defined as public. Properties are used by a class to store its state, and good
encapsulation dictates that an instance of a class should always be responsible for managing its
own state. As such, the only public interface that most classes define is comprised of methods.
Looking at a class from the outside, you could describe it by its public methods and their
signatures. In fact, you could even say that two classes look identical from the outside if they
have the same method names and method signatures. In contrast, those two classes with the
same method names and signatures could have vastly different implementations for those
methods. This is the basic idea that enables something called polymorphism. Polymorphism is
the idea that if you program to an interface rather than an implementation, the resultant code is
much more flexible because any instance of any class that uses that interface can stand in for
any other object that uses the same interfaceeven if the implementations are totally different.

We'll talk much more about interfaces, implementation, polymorphism, and all sorts of related
topics throughout this chapter.

e Py

e rrcy NExT

Defining Interfaces

As mentioned in the introduction to this chapter, classes have both an interface and an
implementation. The interface is the way in which the outside world can communicate with an
object. The interface simply says what methods are publicly available, what parameters those
methods accept, and what, if any, types are returned by methods. The interface does not say
anything at all about what a method does or how it does it. For example, the

fl ash. net. Local Connecti on and fl ash. net. Net Connect i on classes both define methods called
connect () with identical signatures:

connect (val ue: String):void

However, notice that although that portion of the interface for both classes is identical, the
actual implementations are quite different. Local Connect i on objects listen for requests over a
specified channel while Net Connecti on objects either make a connection to an RTMP server (if
the parameter uses the RTMP protocol) or simply stores the parameter value for subsequent
requests.

The class implementation is hidden from public view. When you call a method, you always call it
by way of the interface, but the implementation is what runs. The implementation consists of
the actual code that defines the internals of the method.

When you write code you can reference a class by typing variables and properties as the class.
While that is not necessarily wrong, it does limit flexibility because it ties the code to a specific
implementationthe concrete class. However, you can create more flexible code if you reference
the interface instead. When you reference an interface rather than the implementation you don't
lock the code into just one implementation. We'll talk more about this later in the chapter. For
now what's important is to know that referencing interfaces rather than implementation is often
a good strategy for creating flexible code, and we call this technique programming to interfaces.

When you program to an interface, you must write your classes so that they implement a
formalized interface (more on what this means in a moment). This is essential for something
called polymorphism, which we'll discuss shortly. To understand what a formal interface is, we
can first look at what it is not. Just a moment ago, we mentioned that the Local Connecti on and
Net Connecti on classes have a common interface with the connect () method. However, that
similarity is not part of a formalized interface. You can't declare a variable with an interface
type that is generic enough to work for either Local Connecti on or Net Connecti on. Rather, you
must declare a variable as exactly Local Connecti on or exactly Net Connecti on. This is an
important distinction to make. Up to now we've said that all classes have both an interface and
an implementation, and we've said that it's useful to be able to program to the interface rather
than the implementation. However, unless we take steps to formalize an interface we cannot
share that interface between more than class, which means we cannot polymorphically
substitute one class for another in those cases. What we need to look at next is how to create a
formal interface that is distinct from the implementation.

There are two ways to define formal interfaces: through inheritance and through explicit

interface constructs. When you define an interface by either of these techniques, you can then
define classes that implement the interface. This is an important concept that enables many of
the design patterns discussed throughout this book. When you define a class that implements
an interface, you can then declare variables of the interface type and assign to them instances

of the implementing type. We'll be looking at this in much greater detail later in this chapter.
First we'll look at how to define interfaces.

Interfaces Defined by Interface Constructs

ActionScript defines a formal interface construct that you can use to define interfaces. The
syntax for defining an interface is very similar to that for defining a class, but it is simplified
because it does not require (nor allow) you to provide any implementation. An interface
construct defines only the interface. An interface consists of methods, including getters and
setters. The basic syntax is as follows:

package package {
public interface Interface {
function met hod(paraneter: Type): ReturnType;
function get property():ReturnType;
function set property(val ue: Type):void;

The major differences between the syntax for a class and the syntax for an interface are that an
interface uses the i nterface keyword rather than the cl ass keyword and a semicolon appears
after the return type for each method, instead of a code block defining the function body.
Additionally, interfaces can describe only the public methods for implementing classes. That
means that there is no need for a public/private/protected/internal modifier, and interfaces do
not allow those modifiers.

Note

By convention, interface names start with I. For example | Exanpl e indicates that the
type is an interface.

The following is an example of an interface called | Exanpl e:

package {
public interface |Exanple {
function sanpl eMet hod(paraneterl: String,
par anet er 2: ui nt) : voi d;

When you want to define a class that implements the interface, you use the i npl enent s keyword
following the name of the class. For example, the following defines class A as implementing an
interface called | Exanpl e:

public class A inplenments |Exanple {

If the class extends a superclass, then the i npl enent s keyword follows the name of the

superclass:

public class A extends SuperC ass inplenents |Exanple ({

When a class implements an interface, it essentially signs a contract that it will implement the
methods defined in the interface. If the implementing class does not define the necessary
methods with exactly the same signatures as described in the interface, the compiler throws an
error. For example, the following class says it implements | Exanpl e, but it does not declare the
necessary method sanpl eMet hod() :

package {
public class A inplenents |Exanmple {
public function A() {}

}

Because A does not correctly define the necessary method, the compiler will throw an error.
Also, if A is defined as follows, the compiler will still throw an error because although A defines
sanpl eMet hod() , it does not use the correct signature:

package {
public class A inplenments |Exanple {
public function A() {}
public function sanpl eMet hod(paraneterl: String):void {
trace("sanpl eMet hod") ;

The compiler will approve the class only when the class correctly adheres to the contract and
defines all the necessary methods with the correct signatures, as it does in this example:

package {
public class A inplements | Exanple {
public function A() {}
public function sanpl eMet hod(paraneterl: String,
paraneter2:uint):void {
trace("sanpl eMet hod");

It's also important to note that, unlike inheritance, you can implement more than one interface
per class. To implement more than one interface, simply use a comma-delimited list. For
example, the following code defines A so that it implements | Exanpl e and | Sanpl e:

public class A inplenents |Exanple, |Sanple {

Note that a class signs a contract for each interface it implements. It must implement all the
methods for all the interfaces it implements.

Interfaces Defined by Inheritance

As we've already discussed, the basic definition of an interface is the set of public methods
(including getters and setter) for a class minus the actual implementation. All classes have
interfaces (though by default the interfaces are tied together with the implementation), and if
you define a subclass, it automatically inherits the interface of the superclass (as well as the
superclass's implementation). This means that you can use inheritance to define interfaces.

Although all classes define interfaces (and can be used as interfaces), when we talk about
explicitly defining interfaces using classes, we generally use a specific type of class called an
abstract class. An abstract class is one that is not intended for instantiation. For example, if
Exanpl e is an abstract class, you would never instantiate an Exanpl e object as follows:

var exanpl e: Exanpl e = new Exanpl e();

Rather, abstract classes are designed strictly to be subclassed and to define an interface that is
shared among all the subclasses. Classes that subclass abstract classes and fill in their
implementations are called concrete classes.

Abstract classes generally have little implementation. They defer the majority of implementation
to subclasses. However, if you don't intend to add any implementation whatsoever, it is
advisable that you use an interface construct as discussed in the previous section, "Interfaces
Defined by Interface Constructs." Abstract classes in ActionScript 3.0 are typically most
appropriate when you want to define a class that formalizes an interface for a set of subclasses,
but also define a minimal amount of implementation.

Some programming languages define ways in which you declare abstract classes in an explicit
fashion. When you define an abstract class with those languages, safeguards prevent you from
accidentally instantiating an abstract class (generally, an exception is thrown). However,
ActionScript 3.0 does not have a formal abstract class concept. Rather, the responsibility falls
on the developer not to attempt to instantiate a class that is conceptually abstract.

There is nothing syntactically unique to abstract classes that sets them apart from standard
classes. That is good news in that you don't have to learn anything new in terms of syntax.

When you want to define a class that implements the interface, you simply subclass the abstract
class or a concrete class that extends the abstract class. Again, this technique of defining
interfaces doesn't require any new syntax. You can simply use standard inheritance.

Deciding How to Define an Interface

How do you decide whether to define an interface through inheritance or through an interface
construct? Generally you should always start with an interface construct. By using an interface
construct you create the greatest degree of flexibility. If you then decide that you need an
abstract class (because you want concrete classes to be able to inherit basic implementation)
you should create an abstract class that implements the interface. This way you can always
program to the interface construct, and if you later need to add more classes that implement
the interface but don't inherit from the abstract class you can do that.

e rrcy NExT

e rrcy NExT

Using Polymorphism

Polymorphism is a complex-sounding word. However, the concept it represents is not very
complex now that you understand what an interface is. The basic idea of polymorphism is that
any class that implements an interface looks a lot like any other class that implements that
same interface; any object that implements an interface can stand in when that interface is
expected.

If you haven't used interfaces up to now, chances are you haven't leveraged the power of
polymorphism yet. However, once you understand polymorphism, you'll quickly see how flexible
it makes your code. Here's an example. First the interface is defined as follows:

package {
public interface |Searchable {
function search(searchTerm String): Array;

}

Next we can define a class called Library which implements ISearchable:

package {
public class Library inplenents |Searchable {
private var _books: Array;
public function Library(books: Array) {
_books = books;
}
public function search(searchTerm String):Array {
var results: Array = new Array();
for(var i:int = 0; i < _books.length; i++) {
i f(_books[i].title.indexOf(searchTerm != - 1) {
/1l Assunme that each itemin the array
/1 is a custom Book type that has a
/1 clone() method.
results. push(_books[i].clone());
}
}

return results;

We can also define a Help class that implements the ISearchable interface as well.

package {
public class Help inplenents |Searchable {
private var _hel pl ndex: Qbj ect;
public function Help() {
/'l Assunme the _hel pl ndex is popul ated by data | oaded
/1 froman XML file, and that each itemin

/1 _helplndex is an array where the key is
/] a search term

}
public function search(searchTerm String):Array {
i f(_hel pl ndex[searchTern] != null) {
return _hel pl ndex[searchTerni;
}
el se {
return new Array();
}
}

Now, even though Library and Help are different classes with different implementations, either
can be used any time ISearchable is expected. For example, the following assigns a new Library
instance to searchCollection.

var searchCol | ection: | Searchable = new Library(books);

However, note that you can also substitute a Help instance. And furthermore, you can make
that substitution at runtime.

searchCol |l ection = new Hel p();

We'll next take a look at this concept in more detail.

Differentiating Between Type and Class

When you've declared a variable in the past, you most likely declared the variable so that the
type was identical to the class for which you planned to instantiate an object to assign to the
variable. For example, if you wanted to declare a variable to which you could assign an instance
of class Veget abl e, you probably declared the variable in the following fashion:

var item Vegetabl e;

Although there's nothing inherently wrong with the preceding code, there is an inherent
inflexibility in that way of declaring a variable. Because you've declared i t emas type Veget abl e,
you can assign to it only those objects that are instances of class Veget abl e or its subclasses.
Even if class Frui t has the exact same interface as class Vegt abl e, you cannot assign an
instance of class Fruit toitemwhen you declareitemas in the preceding example.

To write more flexible code, you have to differentiate between class and type. In the preceding
example, Veget abl e is both a class and the type. However, there's a correspondence between a
type and an interface and between a (concrete) class and an implementation. Although a
concrete class defines both an interface and implementation, an interface defines just the
interface. Likewise, a class is also a type, but a type does not have to be a class. Types can also
be interfaces. By declaring variables with interface types, you create greater flexibility in your
code. Consider the following example:

var item | Produce;

Now that i t emis declared as type | Produce, we can assign to i t emany instance of any class that
implements | Produce. We're no longer locked into one specific class. If both Fruit and

Veget abl e implement | Produce then you can assign an instance of either class to item now that
it's typed as | Produce.

Making Runtime Decisions

When you declare a variable with a type of a concrete class, you generally are making a
compile-time decision as to which implementation to use. That is okay when you know
absolutely that you want to use only that one implementation. However, consider an example in
which an application uses a fallback plan for network communications. According to the
business rules for the application, it must first attempt to communicate using Flash
Remoting/AMF. If that does not work, the application next must attempt the communication
using an HTTP request that sends and retrieves XML data. And if that does not work, the
application next must attempt to make a binary socket connection to a server. In this case, you
cannot know at compile time which protocol the application will use for network
communications. If everything works correctly, the application will use Flash Remoting/AMF, but
if that doesn't work, the application will have to fall back on one of the alternatives. This
situation presents a dilemma if you're not programming to interfaces, but it accepts a fairly
trivial solution if you are.

In order to solve the dilemma presented by this hypothetical network protocol selection issue
you can write three classes (one for each protocol) that implement the same interface that we'll
call I Net wor kPr ot ocol . You can then program to that interface rather than to any one of the
specific classes. Doing so allows you to plug in an instance of any of the implementing classes.
Even though the implementations are all different, they use the same interface and therefore
appear the same from the outside. That allows you to change which protocol you use at
runtime.

In order to better understand this concept let's look at some sample code. We'll solve the
network protocol issue by creating an interface. Note that this example shows an interface that
extends an existing interface (I Event Di spat cher). That means that the implementing classes
must implement both the | Net wor kPr ot ocol and the | Event Di spat cher methods.

package {
import flash.events. | Event D spat cher;
i mport flash. net. URLRequest ;
public interface |NetworkProtocol extends |EventD spatcher ({
function setService(service: String):void;
function sendRequest (request: URLRequest) : voi d;
function testConnection():void;

For this example we'll also assume that the following class defines constants we'll use for event
names.

package {
import flash.events. Event;
public class NetworkEvent extends Event {
public static const CONNECT: String = "connect";

public static const FAILED: String = "failed";
public static const RESULT: String = "result";
public static const ERROR String = "error";

Now that we've defined | Net wor kPr ot ocol , we can define AMFSer vi ce, XM_Ser vi ce, and

Bi nar ySocket Servi ce so that they each implement the interface. For the sake of brevity we'll
omit the actual class definitions here. What's important is not the implementation in this case,
but the fact that they each implement the same interface. The code that decides which protocol
to use might look like the following:

package {
i nport flash. events. Event Di spat cher;
public class Service extends EventDi spatcher {
private var _serviceURL: String;
private var _service: | NetworkProtocol;
private var _services: Array;
private var _hasValidServi ce: Bool ean;
public function Service(serviceNane: String) {
_services = new Array(new AMFService(),
new XM.Service(), new BinarySocket Service());
_serviceURL = serviceNang;
tryNext Servi ce();

}
private function tryNextService():void {
_service = _services.shift();
_service. addEvent Li st ener (Net wor kEvent . CONNECT,
onConnect);
_service. addEvent Li st ener (Net wor KEvent . FAI LED,
onFai | ed) ;
_service.setService(_serviceURL);
_service.test Connection();
}

private function onConnect(event: Event):void {

_hasVal i dService = true;

_service. addEvent Li st ener (Net wor kEvent . RESULT,
onResul t);

_service. addEvent Li st ener (Net wor KEvent . ERROR,
onError);

}
private function onFail ed(event: Event):void {
if(_services.length > 0) {
t ryNext Servi ce();

}

}

private function onResult(event: Event):void {
di spat chEvent (event);

}

private function onError(event: Event):void {
di spat chEvent (event);

}

public function sendRequest (request: URLRequest):void ({
_service. sendRequest (request);

This example is not intended to show a fully-functional, bullet-proof network communication
mechanism. What it is intended to demonstrate is how programming to interfaces enables
polymorphism. In this case _servi ce is typed as | Net wor kPr ot ocol . Since AMFSer vi ce,

XM.Ser vi ce, and Bi nar ySocket Servi ce all implement | Net wor kPr ot ocol , it's possible to assign
instance of any of those classes to _servi ce.

e rrcv NEXT

e rrcy NExT

Summary

Interfaces are the backbone of good application design. Interfaces emphasize type rather than
implementation. By programming to interfaces rather than to concrete implementations, you
increase the flexibility in your applications. This flexibility comes about because of the reduction
of dependency on implementation. When you program to interfaces, you can change the
implementation of a class as long as you don't change the interface. That means that you can
make significant changes without breaking your application, and even if you introduce an error,
the error is generally isolated instead of cascading to other structures in the program. This
emphasis on programming to interfaces is seen throughout the rest of the book.

e rrcy NExT

e rrcy NExT

Part |l Patterns

Chapter 3 Model View Controller Pattern

Chapter 4 Singleton Pattern

Chapter 5 Factory and Template Method Patterns
Chapter 6 Proxy Pattern

Chapter 7 Iterator Pattern

Chapter 8 Composite Pattern

Chapter 9 Decorator Pattern

Chapter 10 Command Pattern

Chapter 11 Memento Pattern

Chapter 12 State Pattern

=2

e rrcy NExT

Chapter 3. Model View Controller Pattern

In This Chapter

Understanding MVC Elements 46

Building a Simple Example 48

Enabling Multiple Views for one Model 56

Modifying Model Implementation 57

Adding A Controller 59

Summary 63

There was a time when computer programs had very limited user and client interfaces. In 1975,
a computer program might interact with a user through a command line. Programs built today
often have rich graphical user interfaces that make use of windows, mouse, and keyboard
interaction, and that permit the moving and changing of elements. The increased richness of the
user interface presents new challenges, and the Model View Controller (or MVC) pattern
addresses those challenges to help create more flexible applications.

Applications consist of user interfaces, business logic, and data models. For example, standard
Ul components such as lists and combo boxes have user interface elements (clickable regions,
scrollable regions, and so on), logic that knows how to respond to user input, and data models
(the data that populates the component). Although these are three distinct elements, many
developers write code that combines all the elements into one object rather than several objects
working in combination. When the interface and the data are collapsed into just one object in
rich user interfaces, it can lead to some of the following dilemmas:

e It is difficult to use the data outside that object. For example, if an object defines a user
input form and also saves the user input within the object, then it is difficult to send the
data to a server. The options in that case are to place the responsibility of client-server
communication in the same class or to define an interface in the object that allows access
to the data and provides the only means by which to access the data. Either option creates
fragile and rigid structures.

e You cannot easily change the user interface while keeping the same data. If the user
interface and the data are locked in the same object, to use a new user interface you'd
have to create not only the new user interface, but also transfer all the data from the old
user interface to the new one. Changing the user interface is not an uncommon
requirement. Consider an application in which you want to chart a data set using different
types of graphs. The data remains the same in each case, but the graph style changes
(line, bar, and so on). If each graph is locked up with the data set, it's difficult to change
graph styles.

e Multiple simultaneous views of the same data are difficult. For example, you might want to
display two or more graph styles of the same data set at the same time. If the data is
locked into the user interface, you have to replicate the data for each chart.

¢ Synchronized views are difficult. This is an extension of the previous issue. For example, if
you not only want to display two or more different graph styles for the same data set at
the same time, but you also want to update those graphs over time as the data changes,
then you have to update each data set stored in each user interface.

All the preceding issues are problematic because the data and the user interface are locked into
one object. The MVC pattern presents a manner in which you can create two or more objects
that work together. This approach enables you to create more flexible applications with more

reusable parts.

Note

Some people argue that MVC is not a design pattern, but rather an architectural
pattern. Although there may be merit to that argument, we still feel that MVC is an
important pattern (design or architectural) and we feel that it is extremely useful to
ActionScript developers. For that reason, we present the pattern here in this book.

=2

e rrcy NExT

Understanding MVC Elements

The MVC pattern is composed of three subsystems as indicated by the name: the model, the
view, and the controller. In the next few sections, we'll look at each of these elements. Then
we'll look at how they work together. When referring to the use of a model, a view, and a
controller together, we call this grouping the MVC triad.

The Model

The model is the element that stores the data that is used in the MVC triad. The model can be
as simple as storing one primitive value such as a string, yet it can also store extremely
complex structures of data. The defining aspects of the model are that it acts as a storehouse
for data and that it exists independently of the view and the controller. The model should never
have a reference to the view or the controller. This is absolutely essential to the functioning of
the MVC pattern because the model's independence is what creates the flexibility in the MVC
pattern. If a model has a reference to a view or controller then it is tightly coupled, and it is
specific to a particular type of controller and/or view. However, if the model communicates
without having to have references to specific types of controllers or views then it can be used
with many different types of controllers and views. We'll see how a model can interact within
the MVC triad in "The Relationships Between Subsystems" section, later in this chapter.

The View

The view is the visual display portion of the user interface subsystem. The view uses the data
from the model to draw itself. A view can consist of an animation, a user input form, a chart,
buttons, an audio player, or any sort of user interface elements you might need in your
application.

The key to understanding the view is to understand that it consists only of the visual elements
and the logic necessary to read the model data and use it as required by the user interface.

The Controller

The controller is the subsystem that is responsible for taking input (user input, for example) and
updating the model and view as necessary. For example, if the model needs to update data, the
controller is responsible for that action.

The Relationships between Elements

Each of the elements has a specific type of relationship with the other elements. The model
element must always remain independent of the view and the controller. This means that the
model cannot know about any other element. This does not mean that the model does not
communicate with the other elements. A model can broadcast messages when the data
changes. However, what's important is that the model merely broadcasts the message without

having to know who is listening. This use of events allows the model to be decoupled from the
other subsystems, allowing for greater flexibility.

The view always knows about the model. The view interacts with the model in two ways: It
listens for update messages, and it reads from the model. The view never writes to the model.
Every view keeps a reference to its model. Because a view knows about its model but a model
doesn't know about a view, a single model can act as the model for many views.

The controller also knows about the model. The controller is responsible for updating the model
when necessary based on user input or system events.

The relationship between the controller and the view is very tightly coupled. Although it is
possible to have a controller that uses several views, it is far more common that the relationship
between view and controller is one-to-one. The view contains all the user interface elements
through which the user interacts. Yet the controller is the element that responds to user input.
In many, if not most, ActionScript applications, the view and the controller are one class. This
variation of the MVC pattern is often called a Document View implementation of MVC.

The most important key to the MVC pattern is that the model must be an independent object
that does not have a reference to the view or controller. The view updates and redraws itself
based on changes to the model.

e rrcy NExT

e rrcy NExT

Building a Simple Example

In this example, we'll build a clock model with two viewsanalog and digital. We'll start by
building the clock model, which we'll call Cl ockDat a. Then we'll build the Anal ogCl ock view. After
the analog clock view works in conjunction with the data model, we can build a second view to
see how simple it is to use the same model for two or more views. And, to prove how simple it
is to change the model without affecting the views (so long as the model interface remains the
same), we will update d ockDat a to handle additional responsibilities.

Clock Data Model

The d ockDat a class stores essentially one piece of datathe time. To store the time, we'll
construct a simple building-block class called Ti me which has the accessor getter and setter
methods for hour, minute, and second properties. We can define the Ti ne class as follows:

package com peachpit.aas3wdp. mvcexanpl e.data
public class Tinme {

private var _hour: uint;
private var _mnute:uint;
private var _second: uint;

public function get hour():uint {
return _hour;

}

public function set hour(value:uint):void {
_hour = val ue;

}

public function get mnute():uint {
return _mnute;

}

public function set mnute(value:uint):void {
_mnute = val ue;

}

public function get second():uint {
return _second;

}

public function set second(value:uint):void {
_second = val ue;

public function Tine(hour:uint, mnute:uint, second:uint) {
_hour = hour;

m nut e;
second;

_mnute
_second

}

public function clone(): Tine {
return new Tine(_hour, _nminute, _second);

}

Note that the Ti ne class also defines a cl one() method that returns a new Ti ne object with the
same time value as the original. The cl one() method is important so that we can assign clones
of Ti ne objects rather than references to the original.

Next we want to define the C ockDat a class. We'll modify the Cl ockDat a class later so that it is
more robust and takes on more responsibilities. However, to start, the C ockDat a class will
simply act as a wrapper for a Ti me object. The following is the definition for Cl ockDat a:

package com peachpit.aas3wdp. mvcexanpl e.data ({

import flash.events. Event;
i nport flash. events. Event Di spat cher;
i nport com peachpit.aas3wdp. nvcexanpl e. dat a. Ti ne;

public class C ockData extends EventDi spatcher {
private var _tine:Tine;

public function get time():Tinme {
if(_time == null) {
var date:Date = new Date();
return new Ti ne(date. hours, date.n nutes,
dat e. seconds) ;

}
el se {

return _tine.clone();
}

public function set tine(value: Tinme):void {
_time = value.clone();
di spat chEvent (new Event (Event. CHANGE)) ;

public function C ockData() {
}

As you can see in this Cl ockDat a class, there is one getter/setter accessor method pair called
time. The ti ne setter simply allows you to assign a clone of a Ti ne object to the _ti ne property.
The getter method returns a clone of the Ti ne object if it's defined. If not, it returns a new Ti ne

object with the current client clock time retrieved from a Dat e object.

In both cases where the C ockDat a class uses the cl one() method of Ti e objects, it does so to
protect encapsulation. It's important to understand that you don't always have to protect
encapsulation at this level, but we demonstrate this concept here to point out the implications of
using clones of objects rather than references. In this case, if the setter method assigned a
reference rather than a clone of the parameter, then any change to the original object used as
the parameter would also affect the data model. Likewise, and perhaps more importantly, the
getter method also calls cl one() to return a clone of the Ti ne object. If it didn't call cl one(),
but returned a reference to the object, then any changes to that object outside the data model
would also affect the data model. Consider the following example:

var data: d ockData = new O ockData();
var tinme:Tinme = new Tine(12, 0, 0);
data.time = tine,;

time. hour = 14;

trace(data.tine. hour);

In this example, the TRace() statement would output 12, which is what we would probably
expect. But if the setter assigned a reference rather than a clone to the _ti ne property of the
Cl ockDat a object, then the trace() statement would output 14. The same is true for the getter,
as shown here:

var data: C ockData = new C ockData();
var time:Time = new Tine(12, 0, 0);
data.tinme = tine;

var tineValue: Tinme = data.tine;

ti meVal ue. hour = 20;

trace(data.tine. hour);

In this example, if the getter returns a clone, then the trace() statement will output 12. If the
getter returns a reference, then the trace() statement would output 20.

Analog Clock View

Now that we've built the model, we can build one of the viewsthe analog clock view. Because we
know ahead of time that we're going to build more than one clock view, it makes sense to first
determine whether there is any common functionality we can place in an abstract base class.
Doing so provides two benefits: It results in less redundant code among clock view classes
inheriting from the abstract base class, and it enables polymorphism whereby we can type
variables as the abstract base class so that any of the concrete types can be substituted.

We'll call the abstract base class Cl ock, and this class constructor will require one parameter
specifying the model (a C ockDat a object) to use. It will store that model in a protected instance
property, and it will register to listen for change events. Here's the code for the base class called
AbstractC ockVi ew:

package com peachpit.aas3wdp. mvcexanpl e.cl ock {
i mport flash.display. Sprite;
i mport com peachpit.aas3wdp. mvcexanpl e. dat a. Cl ockDat a;
inmport flash.events. Event;

public class AbstractC ockView extends Sprite {

protected var _data: G ockDat a;
public function C ock(data: C ockData) {
_data = data;
_dat a. addEvent Li st ener (Event . CHANGE, draw) ;

protected function drawevent: Event):void {

Notice that _dat a is declared as protected so that it is accessible to all subclasses. Also note that
because the constructor adds a listener to the C ockDat a object, the class must declare the
listener method, draw() . The draw() method is declared as protected as well because subclasses
must be able to override the method to define the specific implementation.

Next we can define Anal ogCl ock, a concrete subclass of Abstract Cl ockVi ew. The analog clock
view consists of a clock face as well as the hour hand, minute hand, and second hand. The

Anal ogCl ock class is defined as follows:

package com peachpit.aas3wdp. mvcexanpl e.cl ock {

i mport

i mport com peachpit.aas3wdp. mvcexanpl e. dat a. Ti ne;
i nport flash.display.Sprite;
import flash. events. Event;

public class Anal ogd ock extends AbstractCd ockView {

private var _face: Sprite;
private var _hourHand: Sprite;
private var _mnuteHand: Sprite;
private var _secondHand: Sprite;

public function Anal ogd ock(data: Cl ockData) {

/1 Call the super constructor, passing it the
/1 nmodel paramneter.
super (dat a) ;

/'l Create the clock face, and draw a circle.
_face = new Sprite();
_face.graphics.lineStyle(0, 0x000000, 1);
_face. graphics.drawCircle(0, 0, 100);

addChi | d(_face);

/'l Create the hands.

_hourHand = new Sprite();

_hour Hand. graphi cs. lineStyl e(5, 0x000000, 1);
_hour Hand. graphi cs. i neTo(0, -50);

addChi | d(_hour Hand) ;

_mnuteHand = new Sprite();

com peachpi t. aas3wdp. mvcexanpl e. dat a. Cl ockDat a;

_m nut eHand. graphi cs. i neStyl e(2, 0x000000, 1);

_m nut eHand. gr aphi cs. | i neTo(0, -80);

addChi | d(_m nut eHand) ;

_secondHand = new Sprite();

_secondHand. graphi cs. i neStyl e(0, 0x000000, 1);
_secondHand. graphi ¢cs. | i neTo(0, -80);

addChi | d(_secondHand) ;

/1 Call the draw() nethod to draw the initial view
draw();
}

/'l Override the drawm) method. This nmethod gets called once

/'l when the object is constructed, and then it gets called

/1 every tine the nodel dispatches a change event.

override protected function drawevent: Event = null):void {
var tinme: Tine = _data.tineg;

/1l Set the rotation of the hands based on the tine
/1 val ues.

_hourHand.rotation = 30 * tine.hour + 30 *
tinme.mnute / 60;

_mnuteHand.rotation = 6 * tine.nmnute + 6 *

ti nme.second / 60;
_secondHand. rot ati on

6 * tine.second;

Testing the Analog Clock

The remaining step in the first part of this exercise is to see whether the analog clock really
works. For this purpose, we'll create a simple main class that creates an instance of the model
and an instance of the view that uses the model:

package {

i nport flash.display. Sprite;

i mport flash.display. StageAlign;

i nport flash. display. StageScal eMbde;

i mport com peachpit.aas3wdp. mvcexanpl e. dat a. Cl ockDat a;
i mport com peachpit.aas3wdp. nvcexanpl e. cl ock. Abstract C ockVi ew;
i mport com peachpit.aas3wdp. mvcexanpl e. cl ock. Anal ogd ock;

public class C ockTest extends Sprite {
private var _cl ockDat a: C ockDat a;
public function C ockTest() {

stage.align = StageAlign. TOP_LEFT;
st age. scal eMode = StageScal eMode. NO_SCALE;

_clockbata = new Cl ockDat a();

var clock: Abstract Cl ockVi ew = new
Anal ogCd ock(_cl ockDat a) ;

clock.x = 100;

clock.y = 100;

addChi I d(cl ock);

When you test this application, you'll see an analog clock appear displaying the current time.

Now let's modify the main class slightly so that it uses a timer to update the time property of
the model after 2 seconds. Updating the model value will cause it to dispatch a change event
which will, in turn, cause the view to redraw. The following code initially displays the clock with
the current time, and then 2 seconds later it will display 5 o'clock:

package {

inport flash.display. Sprite;

i mport flash.display. StageAlign;

i mport flash. display. StageScal eMode;

i mport com peachpit.aas3wdp. mvcexanpl e. dat a. Cl ockDat a;

i nport com peachpit.aas3wdp. nvcexanpl e. cl ock. Abstract C ockVi ew;
i mport com peachpit.aas3wdp. micexanpl e. cl ock. Anal ogCd ock;

i nport com peachpit.aas3wdp. nvcexanpl e. dat a. Ti ne;

import flash.utils.Tiner;

i mport flash.events. Ti ner Event;

public class C ockTest extends Sprite {
private var _cl ockDat a: G ockDat a;
public function C ockTest() {

stage.align = StageAlign. TOP_LEFT;
st age. scal eMbde = St ageScal eMbde. NO_SCALE;

_clockbata = new Cl ockDat a();

var cl ock: Abstract C ockView = new
Anal ogd ock(_cl ockDat a) ;

clock.x = 100;

clock.y = 100;

addChi | d(cl ock) ;

var tinmer:Tiner = new Tiner (2000, 1);
timer.addEvent Li st ener (Ti mer Event. TI MER, onTi ner);
timer.start();

private function onTinmer(event: Ti nerEvent):void {
_clockbData.time = new Tine(5, 0, 0);

Digital Clock View

Now that the analog clock view works, the next step is to build a digital clock view. The
Di gi t al Cl ock class, like the Anal ogCl ock class, is a subclass of Abst ract Cl ockVi ew. Define the
class as follows:

package com peachpit.aas3wdp. mvcexanpl e.cl ock {

i mport com peachpit.aas3wdp. mvcexanpl e. dat a. Cl ockDat a;
i nport com peachpit.aas3wdp. nvcexanpl e. dat a. Ti ne;

i nport flash.display. Sprite;

i mport flash.events. Event;

inport flash.text. TextField,;

import flash.text. Text Fi el dAut oSi ze;

public class Digital Cock extends AbstractC ockView {

private var _frane: Sprite;
private var _display: TextFi el d;

public function Digital O ock(data: C ockData) ({

/1 Call the super constructor, passing it the
/1l data paraneter.
super (dat a) ;

/1 Draw a 200 by 50 pixel rectangular frane.
_franme = new Sprite();

_frane. graphics.lineStyle(0, 0x000000, 1);
_frane. graphi cs. drawRect (0, 0, 200, 50);
addChi | d(_frane);

/1 Add a text field.

_display = new TextField();

_display.wi dth = 200;

_di splay. hei ght = 50;

_di splay. autoSi ze = TextFi el dAut 0Si ze. Rl GHT;
_display.x = 195;

_display.y = 5;

addChi | d(_di spl ay) ;

/1 Call draw() when the object is constructed.
draw();
}

/1 Override the draw() nethod.
override protected function drawevent: Event = null):void {
var tinme: Tine = _data.tineg;

/1 Display the hour, nminute, and second in the
/1 text field. Use the zeroFill() nethod to ensure

/1 that the minute and second val ues are al ways
/1l two digits (e.g. 1 displays as 01.)

_display. htm Text = "<font face='"_typewiter'
size="40">" + tinme.hour + ":" +
zeroFill(tinme.mnute) + ":" + zeroFill(tine.second)

+ "";
}
private function zeroFill (val ue: Nunber): String {
if(value > 9) {
return value.toString();

}
el se {

return "0" + val ue;
}

You'll probably notice that Di gi t al Cl ock is very similar to Anal ogCl ock. The only difference is
that it displays the value using a text field rather than a group of hands. Because Di gi t al Cl ock

extends Abst ract Cl ockVi ew, it too automatically receives event notifications when the model
changes.

Testing the Digital Clock

Because polymorphism is enabled for Anal ogCl ock and Di gi t al Cl ock on account of their
common, inherited interface, you can substitute a Di gi t al Cl ock for an Anal ogCl ock very easily.
To test the digital clock view, modify the main class by importing the Di gi t al Cl ock class and
using a Di gi t al C ock constructor rather than an Anal ogCl ock constructor, as shown here:

package {

inport flash.display. Sprite;

i mport flash.display. StageAlign;

i mport flash. display. StageScal eMode;

i mport com peachpit.aas3wdp. mvcexanpl e. dat a. Cl ockDat a;

i nport com peachpit.aas3wdp. nvcexanpl e. cl ock. Abstract C ockVi ew,
i mport com peachpit.aas3wdp. mvcexanpl e. cl ock. Anal ogCd ock;

i mport com peachpi t.aas3wdp. mvcexanpl e. cl ock. Di gi t al ock;

i mport com peachpit.aas3wdp. mvcexanpl e. dat a. Ti ne;

i nport
i nmport

public

flash.utils. Tiner;
flash. events. Ti mer Event ;

class Cl ockTest extends Sprite {

private var _cl ockDat a: Cl ockDat a;

publ

ic function C ockTest() {

stage.align = StageAlign. TOP_LEFT,;
st age. scal eMode = St ageScal eMode. NO_SCALE;

_clockbata = new Cl ockDat a();
var cl ock: Abstract G ockVi ew =
new Di gital O ock(_cl ockData);
clock.x = 100;
clock.y = 100;
addChi | d(cl ock) ;
var tiner:Timer = new Tinmer (2000, 1);
ti mer.addEvent Li st ener (Ti ner Event. TI MER, onTi ner);
timer.start();

private function onTinmer(event: Ti merEvent):void {
_clockData.tinme = new Tine(5, 0, 0);

e rrcy NExT

e rrcy NExT

Enabling Multiple Views for One Model

In this example, we have two views that we can use with one model type. We have
demonstrated that we can use each view type with the same model, one at a time. Now we'll
test that we can use both views simultaneously with the same model instance. To accomplish
this goal, we'll modify the main class to create two clock viewsone Anal ogCl ock and one

Di gi t al Cl ock. Each will use the same Cl ockDat a object. This change requires just four new lines
of code in the main class:

package {

i mport flash.display.Sprite;
i mport flash.display. StageAlign;
i mport flash. display. StageScal eMode;
i mport com peachpit.aas3wdp. nvcexanpl e. dat a. C ockDat a;
i nport com peachpit.aas3wdp. nvcexanpl e. cl ock. Abstract C ockVi ew,
i nport com peachpit.aas3wdp. micexanpl e. cl ock. Anal ogC ock;
i mport com peachpit.aas3wdp. mvcexanpl e. cl ock. Di gi t al d ock;
i mport com peachpit.aas3wdp. mvcexanpl e. dat a. Ti ne;
inmport flash.utils.Tinmer;
i mport flash.events. Ti ner Event;

public class C ockTest extends Sprite {
private var _cl ockDat a: C ockDat a;
public function C ockTest() {

stage. align = StageAlign. TOP_LEFT;
st age. scal eMode = StageScal eMode. NO_SCALE;

_clockData = new O ockDat a();

var cl ock: Abstract C ockVi ew =
new Di gi tal O ock(_cl ockDat a) ;

cl ock.x = 100;

clock.y = 100;

addChi I d(cl ock) ;

var clock2: Abstract C ockVi ew = new
Anal ogC ock(_cl ockDat a) ;

cl ock2.x = 200;

cl ock2.y = 300;

addChi I d(cl ock2);

var tiner:Timer = new Tinmer (2000, 1);

timer.addEvent Li st ener (Ti ner Event. TI MER, onTi ner);
timer.start();

private function onTiner(event: Ti nmer Event):void {

_clockData.tinme = new Tine(5, 0, 0);

Because both clock views use the same data model, they update at the same time.

=2

e rrcy NExT

Modifying Model Implementation

Because the view and the model use good encapsulation, we can modify the model
implementation without breaking anything. To prove this, we'll make the following change to
the Cl ockDat a class: enable a real-time feature whereby the model dispatches a change event
every second.

The new Cl ockDat a class looks like this:

package com peachpit.aas3wdp. mvcexanpl e.data ({

i mport flash.events. Event Di spat cher;

i nport com peachpit.aas3wdp. mvcexanpl e. dat a. Ti ne;
import flash.utils.Tiner;

i mport flash.events. Ti ner Event;

inmport flash.events. Event;

inmport flash.utils.getTiner;

public class C ockData extends EventDi spatcher ({

private var
private var
private var
private var

_time: Tine;
_tinmer:Tiner;
_real Ti ne: Bool ean;
_startTime: uint;

public function get tinme(): Tinme {

/'l Test if the _realTime property is true as well as
[l if the _tine property is null.
if(_realTine || _time == null) {
var date: Date;
/1 Only use a new Date object representing
/1 the current tinme and date if the _tine
/1 property is null. Gtherwi se create a Date
/'l object using the _tinme values and then
/] add to that the nunmber of mlliseconds
/'l since the nodel was created.
if(_time == null) {
date = new Date();
}
el se {
date = new Date(null, null, null,
_tinme.hour, _tine.nnute,
_tinme.second);
date.m | liseconds = getTimer()
_startTine;
}

return new Tine(date. hours, date.mn nutes,

dat e. seconds) ;

}

el se {

return _tinme.clone();

public function set tine(value:Tine):void {
_time = value.clone();

di spat chEvent (new Event (Event. CHANGE)) ;
}

/]l Setting real Tine starts and stops a tiner that
/1 second intervals indefinitely.

public function set real Ti ne(val ue: Bool ean):void {
_real Tine = val ue;

i f(value) {
if(_tinmer == null) {
_timer = new Tiner (1000, 0);
_tinmer.addEvent Li st ener (Ti mer Event. TI MER, onTi ner);

runs at 1

}
i f(!_timer.running) {
_timer.start();

}
}
el se {
if(_timer.running) {
_timer.stop();
}
}

}

public function C ockData() {
_startTinme = getTiner();
}

private function onTimer(event: Ti nmer Event):void {
di spat chEvent (new Event (Event. CHANGE)) ;

With these changes, you can now run the main class and you'll see exactly the same behavior
as before. When you've verified that the application works as it did before, even with the
changes to the model's implementation, you can now use the new functionality with a few
changes to the main class. In this example, we’ll delete the timer code from the main class

(Cl ockTest), and we'll set the real Ti me property of the Cl ockDat a object so that the clocks
display the current time as it updates in real time.

package {

inport flash.display. Sprite;

i mport flash.display. StageAlign;

i mport flash. display. StageScal eMode;

i mport com peachpit.aas3wdp. mvcexanpl e. dat a. Cl ockDat a;

i nport com peachpit.aas3wdp. nvcexanpl e. cl ock. Abst ract C ockVi ew;
i mport com peachpit.aas3wdp. mvcexanpl e. cl ock. Anal ogC ock;

i mport com peachpit.aas3wdp. micexanpl e. cl ock. Di gi tal Cl ock;
i mport com peachpit.aas3wdp. nvcexanpl e. dat a. Ti ne;

public class C ockTest extends Sprite {
private var _cl ockData: Cl ockDat a
public function C ockTest() {

stage.align = StageAlign. TOP_LEFT;
st age. scal eMode = StageScal evbde. NO SCALE

_clockData = new O ockDat a();
_clockData.real Tine = true

var clock: Abstract C ockVi ew = new
Di gital G ock(_cl ockDat a) ;

clock.x = 100;

clock.y = 100;

addChi I d(cl ock);

var clock2: Abstract C ockVi ew = new
Anal ogCd ock(_cl ockDat a) ;

cl ock2.x = 200;

clock2.y = 300;

addChi I d(cl ock2);

e rrcy NExT

Adding A Controller

Up to this point we've only really seen models and views, but no controllers. Next we'll look at
how to add a controller. A controller should be the way in which the system or user can change
the view or model.

In our clock example we now have two views and one model. If we want to be able to control
the views (toggle between views, for instance) or the model (setting the value) then we need to
add a controller. In our example we'll create a controller called Clock. The Clock controller
allows us to specify a model and one or more views. It then adds user interface controls that
allow the user to set the model value and toggle between the views. The Clock class is written
as follows:

package com peachpit.aas3wdp. mvcexanpl e.controllers {

inport flash.display. Sprite;

inmport flash.text. TextField;

i mport flash.text. TextFi el dType;

i nport flash. events. MouseEvent;

inmport flash.events. Event;

i mport com peachpit.aas3wdp. mvcexanpl e. dat a. Ti ne;

i mport com peachpit.aas3wdp. mvcexanpl e. dat a. Cl ockDat a;

i nport com peachpit.aas3wdp. nvcexanpl e. cl ock. Abstract C ockVi ew;

/1 Note that you'll need to include the AAS3WDP |ibrary to your
/1 project's source path for this class.
i mport com peachpit.aas3wdp. control s. Basi cButton;

public class C ock extends Sprite {
private var _hours: TextFiel d;
private var _mnutes: TextField;
private var _seconds: Text Fi el d;
private var _cl ockData: C ockDat a;
private var _view ndex:int;
private var _views:Array;
private var _toggl eVi ew Basi cButton;

/1l The controller has one nodel. It listens for updates to
/'l the nodel .
public function set data(val ue: Cl ockData):void {
_clockData = val ue;
_cl ockDat a. addEvent Li st ener (Event . CHANGE,
onModel Updat e) ;
onModel Updat e() ;

}

public function C ock() {

/1 The controller can store references to one or
/] nore views.
_views = new Array();

/1l Create three input text fields.
_hours = createFiel d();
createField();
createField();

_mnutes =
_seconds =
_mnutes. x
_seconds. x

45;
90;

/] Create a button that will allow the user to
/1 toggle between views.

_toggl eView = new Basi cButton("Toggle View');
_toggl eVi ew. addEvent Li st ener (MouseEvent . CLI CK,
t oggl eVi ew) ;
addChi | d(_t oggl eVi ew) ;
_toggleView. x = 135;

}

/1 Add AbstractC ockView instances to the _views array.
public function addVi ew(view AbstractC ockView):void {
_views. push(view);

I/l If this is the first view added then add it to
/1 the display list by default.
if(_views.length == 1) {

addChi I d(vi ew) ;

_view ndex = 0;

}

/'l Make sure the view appears just bel ow the input
Il text fields.

view y = 40vi ew. get Bounds(vi ew). t op;

view. x = -view getBounds(view).left;

private function createField(): TextField {
var field: TextField = new TextField();

field.wdth = 40;

field. height = 22;

field. border = true;

field. background = true;
field.restrict = "0-9"

field.type = TextFiel dType. | NPUT;

/1 Listen for focusQut events on each text field.

fi el d. addEvent Li st ener (FocusEvent . FOCUS OUT
onFocusChange) ;

addChil d(field);

return field;

}

/1 \When the focus changes for a text field update the node
/'l to correspond to the user input.
private function onFocusChange(event: FocusEvent):void {
if(event.target.length < 1) {
event.target.text = 0;

}

var time: Time = new Tinme(uint(_hours.text),
ui nt (_seconds.text));

_clockData.tine = tine;
}

uint(_m nutes.text),

/! Renmpve the current view, and add the next view in the
/] array.

private function toggl eView event: MouseEvent):void {
removeChi | d(_vi ews[_vi ewl ndex]);
_Vviewl ndex++;
i f(_viewlndex >= _views.length) {
_view ndex = 0;
}

addChi | d(_vi ews[_vi ewl ndex]);
}

/1 When the nodel changes update the text field val ues.
private function onMdel Update(event: Event = null):void {
/'l Use if statenments so that the text values don't

/1 change if the user is currently changing the
Il value in a text field.

if(stage !'= null) {

i f(stage.focus !'= _hours) {
_hours.text = _clockData.tine.hour.toString();
}
if(stage.focus !'= mnutes) {
_mnutes.text = clockData.tinme.mnute.toString();
}
i f(stage.focus != _seconds) {
_seconds.text = _clockData.tinme.second.toString();
}
} }

Now you can use a Cl ock instance as follows.

package ({

inport flash.display. Sprite;

i mport flash.display. StageAlign;

i mport flash. display. StageScal eMode;

i mport com peachpit.aas3wdp. mvcexanpl e. dat a. Cl ockDat a;

i mport com peachpit.aas3wdp. nvcexanpl e. cl ock. Abstract Cl ockVi ew,
i nport com peachpit.aas3wdp. mvcexanpl e. cl ock. Anal ogC ock;

i mport com peachpit.aas3wdp. mvcexanpl e. cl ock. Di gi t al d ock;

i mport com peachpit.aas3wdp. micexanpl e. control |l ers. d ock;

public class C ockTest extends Sprite {
private var _cl ockDat a: Cl ockDat a;

public function C ockTest() {

stage. align = StageAlign. TOP_LEFT,;
st age. scal eMode = StageScal eMode. NO_SCALE;

_clockbata = new C ockDat a();
_clockbData.real Time = true;

var clock: C ock = new O ock();
clock.data = _cl ockDat a;
addcChi I d(cl ock);

var view Abstract C ockVi ew = new
Di gital G ock(_cl ockDat a) ;
cl ock. addVi ew(vi ew) ;

vi ew = new Anal ogd ock(_cl ockDat a) ;
cl ock. addVi ew(vi ew) ;

In this version the Cl ock instance is the controller by which the user can toggle between views
and adjust the value of the model.

NEXT B

e rrcy NExT

Summary

In this chapter, you've had an opportunity to learn about the basic concepts of the Model View
Controller pattern .The basic principle of this pattern is to distinguish between the data and the
presentation of that data. This approach enables greater flexibility and adaptability in a quite a
few ways which were discussed throughout the chapter.

e prcy

e rrcy NExT

Chapter 4. Singleton Pattern

In This Chapter

object Instantiation 66

Singleton Versus Static Members 69

Building a Simple Singleton 69

Building a Settings Framework 71

Summary 74

The Singleton design pattern is used to limit a class to one instance and provide global access to
that instance. In many cases, you need to limit a class to only one instance. Common examples
include classes that manage resources that are intrinsically singular such as selection focus,
navigation history, and window depth. Consider the case of a class that manages the state of
the user's cursor. Because there is only ever one cursor, you shouldn't have more than one
instance of that class. Another example is a class that loads application settings from an XML
file and provides access to those settings. You wouldn't want to waste resources by having two
instances of that class or by loading the XML file more than once.

The dilemma in such cases is how to ensure that only one instance of a class exists and how to
make that one instance globally accessible. The Singleton design pattern is a time-tested
solution to this problem.

Essentially, three features make up a Singleton class:

e A private static property that holds the single instance of the class.

¢ A public static method that provides access to the single instance if it's created and creates
the single instance if it hasn't been created yet.

e A way of restricting access to instantiating the class. This is usually achieved by making
the constructor private. However, ActionScript 3.0 doesn't have private constructors. Later
in this chapter, we'll examine an alternative way of restricting instantiation in ActionScript
3.0.

=2

e rrcy NExT

Object Instantiation

To create a new instance of a class, you use the new keyword followed by the class name. This
statement calls the constructor of the class and returns a new instance, as in this example:

var nyQbject: MyC ass = new MyC ass();

This approach is almost undoubtedly a concept with which you are already familiar, but if our
class uses this type of instantiation, we have no way of controlling its creation. For us to control
the instantiation, we're going to use a static method called get | nst ance() . Because it is static, it
can be invoked before an instance of the class exists. The following is an example of a class that
uses this method:

public class Mydass {
public function Mydass() {}

public static function getlnstance(): MyC ass {
return new MyCl ass();

}

Now we can create our instances of the class by using the static method, like this:

var nyQbject: MyC ass = MO ass. getlnstance();

Restricting Instantiation

As long as the instance is always accessed via the static get | nst ance() method, everything
works according to plan. However, notice that there is nothing to prevent someone from
constructing a second instance using the new keyword. In other languages this problem would
be solved by making the constructor private, but private constructors aren't supported in
ActionScript 3.0.

We could just leave the constructor public and put a big comment up at the top of the class
telling other developers that this class should be instantiated only once. However, one of our
goals in object-oriented programming should be to create a class that cannot be broken by
improper implementation. We'll talk more about convention, as opposed to rules, later in this
chapter.

So, we have a few other options at our disposal that allow us to limit instantiation. One feature
of ActionScript 3.0 is that all parameters of a method are now required unless a default value is
provided. This feature includes the constructor. Therefore, you can add a parameter to the

constructor that is required and type it to something that is available only from inside the class.

Note

This is not an absolute restriction since someone can get around this by passing null
into the constructor. However, it is the best we can do without a true private
constructor.

A second new feature of ActionScript 3.0 is the ability to add multiple class definitions to one
file. You can access only one of the classes from outside the ActionScript file, and that is the
classinside the package definitionwith the same name as the file name. But you can put other
classes outside the package in the same file, and those classes are available only to the primary
class. We'll use this feature to create a "private" class and make it our constructor parameter's
type. It's actually easier than it sounds:

package {
public class Myd ass {
public function M/C ass(enforcer: SingletonEnforcer) {}

public static function getlnstance(): Md ass {
return new MyCl ass(new Singl etonEnforcer());

}

class Singl etonEnforcer {}

You can now create an instance of MyClass using the following code:

var nylnstance: MyC ass = M ass. getlnstance();

Note that our current implementation doesn't yet enforce a single instance of the class. Each
time we call get I nst ance() our class will return a new instance. In the next section we'll look at
how to ensure that there's only ever one instance.

Single Instance and Global Access

What can we do to enforce that the class is instantiated only once? Right now, the

get | nstance() method can be called multiple times just like a normal public constructor; and
we also need to provide global access to this one instance. By modifying the get | nst ance()
method slightly and adding a static property to hold our single instance, we'll knock out both of
these requirements at once.

First let's add a private static property to the class that will hold our single instance. We need to
make the property static so that it is available to our get I nst ance() method. Now when the
static get | nst ance() method is called it creates an instance and stores it in the private static
_instance property before returning the newly created instance. Here is how our class looks
now:

package {
public class MO ass {
private static var _instance: M/Cl ass;
public function M/C ass(enforcer: SingletonEnforcer) {}
public static function getlnstance(): Md ass {

MyCl ass. _instance = new Myd ass(new Singl et onEnforcer());
return Myd ass. instance;

}

class SingletonEnforcer {}

Next, we're going to modify the get | nst ance() method so that it checks whether this single
instance has already been created. If it has, then it returns that instance without calling the
constructor again. Check out this modification:

package {
public class MO ass {
private static var _instance: M/Cl ass;
public function M/C ass(enforcer: SingletonEnforcer) {}
public static function getlnstance(): Md ass {
i f(Myd ass. _instance == null) {

Myd ass. _instance = new Myd ass(new Si ngl et onEnforcer());

}

return Myd ass. instance;

}

class Singl etonEnforcer {}

convention versus rules

If you're new to design patterns, at first glance the Singleton pattern seems a bit

like over engineering. You might be saying to yourself, "If | want only one instance
of a class, then I'll create only one instance; if | need global access, then I'll stick it
in some global variable." Although you could certainly do those two thingsand they

would probably workthey ‘could pose problems in a team development environment.

'You may also have trouble with this approach if you're creating multiple versions of
the application.

This underscores the importance of following structural rules rather than simple
conventions. The idea of encapsulation in object-oriented programming is that a
class should be self-contained. It should have well-documented inputs in the form of
public methods and setters and outputs in the form of events. These inputs and
outputs are commonly known as the APl (Application Programming Interface). As
we mentioned earlier, classes should function like a black box: nothing exposed in
the API should permit improper implementation to "break it." In the case of our
Singleton class, we should not allow another object to create more than one
instance of the class. (See Chapter 1, "Designing Applications.")

e rrcy NExT

Singleton Versus Static Members

After examining the structure of a Singleton class, you might ask the question, "Why not just
make all the properties and methods of the class static? Why do we need to have an instance at
all?" There are a few reasons why a Singleton is the better approach.

The first reason is inheritance. In ActionScript 3.0, you cannot inherit static properties or
methods. Therefore, if all your class's functionality is in static methods, you cannot subclass it.

The second reason to use a Singleton pattern is so that you can refactor the class to allow more
than one instance. A lesser-known design pattern called the Multiton is similar to the Singleton
but allows for a managed number of instances. If you write your original class as a Singleton,
you can refactor it to be a Multiton easily. For example, let's say version 1.0 of your application
had a connection manager that managed a single connection to the server; but for version 2.0,
it has been determined that you need to manage a pool of 10 connections to the server. This is
where a Multiton could be used.

The third reason is that it can be a waste of resources to have all this logic initialized right
away. Singletons use the concept of "lazy" instantiation, because the object is created only
when the first call to get I nst ance() is made. Classes that use all static members do what is
called "eager" instantiation. This is usually a waste of resources and can slow down the startup
of your application.

Lastly, objects are just easier to manage. By using static methods instead of a single object
your code is not created at a specific point in your application. This can cause some strange
initialization issues that are difficult to debug. This is especially true if your Singleton class has
a dependency on other objects in the application that might not be initialized. For this reason,
consider using static members only if your class is 100% self-contained, with no dependencies
on outside objects. Even then, your class is locked into this "self-contained" mode and isn't
scalable anymore.

e rrcy NExT

e rrcy NExT

Building a Simple Singleton

Often a good example will go a long way when learning a design pattern. In the next few
sections we'll look at an example using the Singleton pattern.” In the first example, we simply
create a generic Singleton and invoke it.

Creating the Singleton

We first need to create the Si ngl et on class. Create it in the
com peachpi t. aas3wdp. si ngl et onexanpl e package and name it Si ngl et on. Notice that this class
has all the standard elements of an ActionScript 3.0 Singleton class:

e A private static property, _i nst ance, to hold the single instance of the class.

e A constructor with a parameter typed to a class, Si ngl et onEnf or cer, that is available only
to the Si ngl et on class. The Si ngl et onEnf or cer class definition is also required.

¢ A public static method, get | nst ance() , that provides access to the single instance and
creates it if it does not exist.

The following code shows an example of standard singleton class. We'll us this to demonstrate
how to build a singleton class.

package com peachpit.aas3wdp. singl et onexanple {
public class Singleton {
static private var _instance: Singleton;
public function Singleton(singletonEnforcer:SingletonEnforcer) {}
public static function getlnstance(): Singleton {
i f(Singleton._instance == null) {

Si ngl eton. _instance = new Singl eton(new Singl etonEnforcer());

}

return Singleton. _instance;

}

public function doSonething():void {
trace(" SOVETH NG ") ;

}

}

class SingletonEnforcer {}

As you can see, the doSonet hi ng() method is a public method that simply traces the text

"SOMETHING!" to the console. While this example is very simple, it demonstrates the required
elements of a class that follows the Singleton design pattern in ActionScript. The code in the

next section demonstrates how to invoke a Singleton class.

Note

In order for trace statements to output information to the console you must debug the
application rather than just run it.

Invoking the Singleton

Inside the main class, we're going to get the instance of the Singleton class and call a method
on that object. We start by importing the Singleton class. Then inside the constructor, we call
the Singleton's static get I nst ance() method and immediately call the doSonet hi ng() method on
the returned instance. The doSonet hi ng() method simply traces "SOMETHING!" to the console.
package {

i mport com peachpit.aas3wdp. si ngl et onexanpl e. Si ngl et on;

inport flash.display. Sprite;

public class SinpleSingletonExanple extends Sprite {

public function SingletonExanple() {
Si ngl et on. get I nstance() . doSonet hi ng() ;

}

=2

Building a Settings Framework

In this next example we'll build a simple application that uses a Singleton class called Setti ngs
to hold global values.

The Settings class loads data from an XML file at runtime and provides access to its values. It's
a simple concept, but it's very useful to be able to change these settings without recompiling

the application.

Creating the XML Document

The XML document for this framework is simple. We have a setti ngs root node that contains
multiple property nodes. Each property node has ani d and a val ue attribute. The Setti ngs
class does a lookup on the i d attribute and returns the val ue attribute. The following is the XML
document, titled config.xml, which we'll use in this example:

<?xm version="1.0" encodi ng="UTF-8"7?>

<cs:settings xmns:cs="http://ww. dannypatterson. conf 2006/ Confi gSetti ngs">
<cs:property id="testOne" value="This is the first test value." />
<cs:property id="test Two" value="This is the second test value." />

</cs:settings>

Note that we added a namespace to this document to demonstrate how simple namespaces are
to use inside E4X. For more information on XML namespaces, see Chapter 15, "E4X (XML)."

Creating the Settings Class

Now you'll need to create a new ActionScript class named Setti ngs and put it in the
com peachpi t . aas3wdp. si ngl et onexanpl e package. It has three main responsibilities:

¢ It follows the Singleton design pattern; therefore, it manages its creation and access the
same way as the previous example.

e The Settings class also provides access to the values in the XML file through simple
property access, like this:

var nyString:String = Settings.getlnstance().testOne;

e Because testOne isn't a property of the Settings class, we have to allow the request to
come in and capture it. To enable this functionality we need to make the class dynamic so
that other classes can call undefined properties. To capture these undefined requests, we'll
subclass the built-in flash.utils.Proxy class and override the getProperty() method.

Extending Proxy

To gain the Proxy functionality we must subclass it and override the get Property()
method. This is a little tricky because the Proxy class' get Property() method exists inside
the fl ash_proxy namespace. For more on using the Proxy class, check out Chapter 6 ,
"Proxy Pattern."

e Because this class loads an external XML file, it must have a method for loading that file
and an event that is dispatched when the file has loaded successfully. To enable the class
to dispatch events, we will use the built-in EventDispatcher class.

Adding Eventdispatcher Functionality Through Composition

Because we have to subclass Proxy to use its functionality, and because ActionScript allows only
for single inheritance, we must add the Event di spat cher functionality through composition by
implementing the | Event Di spat cher interface. For more on Event di spat cher and

| Event Di spat cher , see Chapter 13, "Working with Events."

[View full w dth] package com peachpit.aas3wdp. singl etonexanple ({

inmport flash.events. Event;

i mport flash.events. Event Di spat cher;
i nport flash. events. | Event Di spat cher;
i nport flash. net. URLLoader;

i mport flash. net. URLRequest ;

import flash.utils.Proxy;

import flash.utils.flash_proxy;

dynam c public class Settings extends Proxy inplenments
| Event Di spat cher {

static private var _instance: Settings;
private var _eventDi spat cher: Event Di spat cher;
private var _data: XM

private var _islLoaded: Bool ean;

private var _url Loader: URLLoader;

static public const INT:String = "init";

public function get isLoaded(): Boolean {
return _islLoaded;

public function Settings(enforcer: SingletonEnforcer) ({
_event Di spatcher = new Event Di spat cher();
_isLoaded = fal se;

private function onXM.Dat aLoaded(event: Event):void {
_data = XM.(_url Loader. data);
_isLoaded = true;
di spat chEvent (new Event (Settings.INIT, true, true));

public static function getlnstance(): Settings ({

if(Settings._instance == null) {
Settings._instance = new Settings(new

Si ngl et onEnforcer());

}
return Settings. instance;

flash_proxy override function getProperty(nane:*):* {
var c¢s: Nanespace = _data. nanespace("cs");
String(nane);

var gnanme: String =
return _data.cs::property.(@d

== gnane) . @al ue;

public function |oadSettings(url:String):void {
url Request : URLRequest = new URLRequest (url);

var
_url Loader = new URLLoader();
_url Loader . addEvent Li st ener (Event . COVPLETE,

onXM.Dat aLoaded) ;
_url Loader. | oad(url Request);

}
public function addEventListener(type:String, |istener
: Function, useCapture:
Bool ean = false, priority:int = 0, weakRef: Boolean = false):void {
_event Di spat cher . addEvent Li stener (type, |istener,
useCapture, priority, weakRef);
}

public function dispatchEvent(event: Event): Bool ean {
return _event Di spatcher. di spat chEvent (event);

public function hasEventListener(type: String): Bool ean {
return _event Di spat cher. hasEvent Li stener (type);

public function renoveEventListener(type:String, |istener
useCapt ure:
l'i stener,

: Functi on,
Bool ean = false):void {
_event Di spat cher. renoveEvent Li st ener (type,

useCapture);
}

public function w |l Trigger(type: String): Bool ean {
return _eventDispatcher.w || Trigger(type);

}

cl ass Singl et onEnforcer

{}

XML Usage (E4X)

Inside the get Property() method, we used the new E4X functionality to pull the data out of the
XML object based on the name of the requested property. For more on E4X, check out Chapter
15, "E4X (XML)."

Invoking the Settings Class

Next, we'll need a main class for the application in order to utilize the Settings class. We'll call
the main class Setti ngsExanpl e , and define it as follows:

package {

i mport com peachpit.aas3wdp. si ngl et onexanpl e. Setti ngs;
import flash.events. Event;
inport flash.display. Sprite;

public class SettingsExanple extends Sprite {

public function SettingsExanple() {
Settings.getlnstance().| oadSettings("config.xm");
Settings. getlnstance().addEventLi stener(Settings.INIT, onSettingslinit);

private function onSettingslnit(event:Event):void {
trace(Settings.getlnstance().testOne);
trace(Settings.getlnstance().testTwo);

This class is the start of the project. It retrieves the singleton instance of Setti ngs , then it
displays the values from the dynamic properties. In the constructor, we first get a reference to
the single instance using the static get | nst ance() method. Then we call the | oadSet ti ngs()
method and add the Settings. | NI T event listener.

Inside the onSettingslnit() event handler, we trace the value of t est One and t est Two from the
Set ti ngs instance. These variables are not actually properties of the Setti ngs class. You'll see
later in this example that the Setti ngs class uses a new feature of ActionScript 3.0 called Pr oxy
to handle this request and return the value from the XML document.

Now you can debug the project. You should see the values of properties t est One and t est Two
being displayed in the trace console.

e rrcy NExT

Summary

The Singleton design pattern is a simple yet effective solution for restricting a class to one
instance and providing a global access point to it. In this chapter, you learned how to
implement this design pattern using ActionScript 3.0. You also learned the importance of the
Singleton pattern over simply using static members.

e prcy

e rrcy NExT

Chapter 5. Factory and Template Method
Patterns

In This Chapter

Abstract Classes 75

Template Method 76

Factory Method 78

Summary 81

When creating groups of related classes, it's important to maintain those relationships during
object creation. One way to do this is with the Factory Method design pattern. The Factory
Method pattern is a creational pattern and solves the problem of creating objects without
specifying a concrete type. This is most often used in abstract classes that define a method for
object creation. Subclasses can then override this method to define the specific object to be
created.

The Factory Method is most often used in conjunction with another pattern called the Template
Method. To better understand the Factory Method and provide more context for this solution,
we'll also look at the Template Method in this chapter. Because the Factory Method uses and
then builds on many of the same concepts, we'll look at the Template Method first.

=2

e rrcy NExT

Abstract Classes

Abstract classes play a major role in the Factory and Template Method patterns. Although
ActionScript 3.0 doesn't natively support them, we can still use the concept of abstract classes
and abstract methods. An abstract class is a class that is always extended and never
instantiated directly. Its use is similar to that of an interface, but there is one major difference:
An interface defines only the public method signatures, but an abstract class defines both the
interface and the implementation.

An abstract class uses something called an abstract method, which has no functionality but
serves only as a placeholder. In other languages such as C# and Java, you can define these
abstract methods using the abstract keyword that tells subclasses they must override this
method. Because ActionScript 3.0 does not have an abstract keyword, you might consider the
convention of throwing an exception inside the abstract methods. Such an approach won't throw
an error during compilation, but it will during runtime. The bottom line is that there is no sure
way to enforce abstract methods in ActionScript 3.0.

You must know about two specific keywords when you're working with abstract classes in
ActionScript 3.0. The first is the overri de keyword. Subclasses must use this keyword to
override an abstract method defined in a base class. The method signature must also match
exactly.

The other keyword is fi nal . This term can be used by abstract classes that define methods its

subclasses cannot override. We'll use the fi nal keyword when we define Template Method
patterns.

e rrcy NExT

e rrcy NExT

Template Method

A Template Method is defined in an abstract class that sets a general algorithm made up (at
least partially) of abstract methods. The steps of that algorithm are defined when subclasses
override the abstract methods. The structure of the algorithm is maintained in the Template
Method.

Consider the following example in which we have an abstract class that defines the way games
are initialized:

package com peachpit.aas3wdp.factoryexanple {
public class Abstract Gane {

[l Tenpl ate Method
public final function initialize():void {
createFiel d();
creat eTeam("red");
creat eTean("bl ue");
start Gane() ;

}

public function createField():void {
throw new Error("Abstract Method!");

public function createTeam nanme: String):void {
throw new Error("Abstract Method!");

}

public function startGne():void {
t hrow new Error("Abstract Method!");

}

The initialize() method in the preceding example is the Template Method. It defines how the
game is initialized by first calling the cr eat eFi el d() method, then creating the teams with the
creat eTeam() method calls, and finally calling the st art Gane() method. However, the methods it
calls are not functional in this class. It's the responsibility of the subclass to define exactly how
the field and teams are created and how the game is started.

Now we will create a Foot bal | Gane class that extends our Abstract Gane class. This subclass
overrides the abstract methods that are called from the initialize() Template Method in the
abstract base class.

package com peachpit.aas3wdp. factoryexanple {

public class Football Gane extends AbstractGne {

public override function createField():void {
trace("Create Football Field");

public override function createTean(name: String):void {
trace("Create Football Team Naned " + nane);

public override function startGne():void {
trace("Start Football Gane");

As you can see, our Foot bal | Gane class overrides the creat eFiel d(), createTeam'), and

start Gane() methods to make them specific to football. However, the initialization algorithm is
maintained. You can see how this same technique could also be used to build a Basebal | Game or
a Bast ket bal | Gare class. We can run the example using the following client code:

package com peachpit.aas3wdp. factoryexanple {

i mport com peachpit.aas3wdp. f act or yexanpl e. Foot bal | Gane;
inport flash.display. Sprite;

public class FactoryExanple extends Sprite {

public function FactoryExanple() {
/1l Create an instance of Football Gane
var gane: Foot bal | Ganre = new Foot bal | Gane() ;
/1 Call the tenplate nethod defined in AbstractGane
gane.initialize();

The following shows the output from the preceding example. As you can see, the overridden
methods in the subclass were called by the Template Method. The algorithm was maintained in
the Template Method while the details were deferred to subclass methods.

Create Football Field

Create Football Team Naned red
Create Football Team Naned bl ue
Start Football Gane

e prcv NEXT

e rrcy NExT

Factory Method

Without too much effort, we can now turn the preceding Template Method example into a
Factory Method example. It's very common to implement Factory Methods in a Template
Method.

In the preceding Template Method example, our creat eFi el d() method doesn't return
anything; it just traces out the phrase "Create Football Field." Let's update this so it creates and
returns a field object. Because different games have different field types, we'll create an
interface called | Fi el d that all the field classes will implement. Our interface will define a single
method called dr awFi el d() :

package com peachpit.aas3wdp.factory {
public interface IField {

function drawFi el d():void;

Now we'll build a Foot bal | Fi el d class that implements the | Fi el d interface. To keep our
example focused, we won't actually draw a football field to the stage, but you can fill in the
blanks. Here's the basic Foot bal | Fi el d class definition:

package com peachpit.aas3wdp. factoryexanple {
i mport com peachpit.aas3wdp. fact oryexanpl e. | Fi el d;
public class FootballField inplenments IField {

public function drawField():void {
trace("Drawi ng the Football Field");

}

The purpose of the Factory Method is to link up two or more separate but related class
hierarchies. The first hierarchy is the Abstract Gane class and its subclasses: Foot bal | Gane,
Basebal | Gane, and Bast ket bal | Gane. Our second class hierarchy is now the | Fi el d interface and
the classes that implement it: Foot bal | Fi el d, Basebal | Fi el d, and Basket bal | Fi el d. The
Abstract Ganme and | Fi el d objects are related, but the specific creation of these objects is
determined by the game subclasses. Figure 5.1 shows how our class hierarchies match up.

Figure 5.1. The hierarchy of classes in the Factory Method example.

[Viewfull size image]
AbstractGame

sinitialize()
+orenteField|): IField
+greateToma|)
+atartGase |

FootballGame BaseballGame BasketballGame

verpateField(): IFisld +oreatafield]jr IFisald woraataFiald]): IFSeld

i]]
Y ¥ y

FoothalliField BaseballField BasketbaliField

+drawtield() +drawF Leld]] +drawFiold()

|Field

sdrawField()

Now we can refactor the createFiel d() andinitialize() methods of our Abstract Gane class to
reflect the existence of an | Fi el d object. Our creat eFi el d() method is now a Factory Method
that returns an object that implements the I Field interface. Theinitialize() method can
now go one step further and call the drawFi el d() method on the | Fi el d object, as shown here:

package com peachpit.aas3wdp. factoryexanple {
i mport com peachpit.aas3wdp. fact oryexanpl e. | Fi el d;
public class Abstract Gane {

/1 Tenpl ate Method

public final function initialize():void {
var field:IField = createField();
field. drawri el d();
creat eTeanm("red");
creat eTeanm(" bl ue");
start Ganme();

}

/1 Factory Method
public function createField():!IField{
t hrow new Error (" Abstract Method!");

}

public function createTeam nanme: String):void {
throw new Error("Abstract Method!");

}

public function startGne():void {
throw new Error("Abstract Method!");

}

This abstract class and template algorithm are still completely anonymous and the specific
objects created are in the hands of the subclass. Let's refactor the Foot bal | Gane class now to
create and return a Foot bal | Fi el d object:

package com peachpit.aas3wdp.factory {

i mport com peachpit.aas3wdp. factory. Foot bal | Fi el d;
i mport com peachpit.aas3wdp.factory.|Field;

public class Football Gane extends AbstractGne {

public override function createField():I1Field {
return new Footbal |l Field();

public override function createTean(name: String):void {
trace("Create Football Team Naned " + nane);

public override function startGne():void {
trace("Start Football Gane");

If we run this example, we'll get the following output:

Drawi ng the Football Field
Create Football Team Naned red
Create Football Team Naned bl ue
Start Football Gane

A Simple Factory

The Factory Method is often misunderstood. It's not uncommon to hear people
mistakenly referring to their code as following the Factory Method pattern; after
examining the code, we discover that the code isn't actually a Factory Method. Early
in our careers, we'd make the same mistake: we'd write classes suc as the following
and think it was a Factory Method:

package com peachpit.aas3wdp. factoryexanple {

public class GanmeFactory {
public static function createGane(ganeType: String):|Ganme {
swi t ch(ganeType) {

case "football":
return new Foot bal | Game();

case "basebal | ":
return new Basebal | Gane();

case "basketball":

def aul t:
return new Basket bal | Gane();

If you think this is a Factory Method, purge that bit of information from your head and keep
reading because the Factory Method is much more. In fact, the preceding example isn't even a
design pattern at all. It's commonly referred to as a Simple Factory or a Parameterized Factory
Method. Not to say that it isn't useful; in fact, we use this technique in Chapter 12, "State
Pattern”, to set the state based on a name.

e rrcv NEXT

Py NEXT

Summary

Abstract classes are a very important tool in object-oriented design. They are most commonly
used in class libraries and frameworks because they are a solid way to factor out common
behavior across subclasses.

The Template and Factory Method design patterns are handy when you're working with abstract
classes. The Template Method allows you to create a common algorithm defined generally
whose specific steps will later get defined by concrete subclasses. And the Factory Method
allows you to trigger the creation of objects in an abstract class, but to defer the specific type to
the subclass.

e prey NEXT

e rrcy NExT

Chapter 6. Proxy Pattern

In This Chapter

Virtual Proxy 83

Remote Proxy 89

Adapter and Facade Patterns 94

Summary 94

The Proxy pattern gives us a solution to a very common programming task. A proxy is a class
that stands in for and provides access to another object. This other object isn't always an
ActionScript object. It could be an image file, an XML file, a Flash Remoting service, or a Web
service.

There are many reasons for wanting to use a proxy object, and each reason has its own type of
proxy. One reason you might want to control access to an object is because it is a remote
resource; in such a case, the proxy object can manage the communication to and from that
object. This is called a Remote Proxy, and we'll discuss it later in this chapter. Another reason to
use a proxy is to defer the full cost of the object's creation. This could be because the object
takes a long time to create or because the object uses a lot of resources once its been created.
This type of proxy is knows as a Virtual Proxy, and we'll discuss it in the next section.

There are many types of Proxy classes; however, the Remote and Virtual proxies are the two
most common, and the two we will cover in this chapter.

The Proxy pattern is often confused with a couple other patterns that are very similar in
functionality. Those patterns are the Adapter and Facade patterns. The main distinction of a
Proxy pattern is that is has the exact same API or interface as the object it is standing in for
while both the Facade and Adapter patterns modify the API. We'll briefly touch on these two
related patterns towards the end of the chapter.

e prcv NEXT

Virtual Proxy

The Virtual Proxy is used to proxy objects that are expensive to create or that aren't available
for use right away. The Virtual Proxy can defer the creation or initialization of its subject until it
is needed. Before and while the subject is being created, the Virtual Proxy stands in its place.
After the creation is complete, it delegates requests directly to the subject.

Image Loader Example

One common example of a Virtual Proxy is an image loader. An image loader is an object that
stands in for an external image while it's being loaded. It's important that this proxy object
have the same API as the image object itself. This enables us to set the image's position and
add effects to the image before it has completely loaded.

Flash Player 9 has a great example of an image loader Virtual Proxy built right into the player.
It's called Loader, and it's found in the f1 ash. di spl ay package. This class extends

Di spl ayObj ect Cont ai ner , so it has all the properties and methods necessary to add it to a
display list, change its position, and even add effects.

In the following example, we'll use the Loader class to load an external image.

First create a new ActionScript project called ImageProxyExample .
Loading the Image

Inside the main class for this project, we will create and load the image. In the constructor of
the | magePr oxyExanpl e class, we create the Loader object and load the remote image. Without
waiting for the image to load, we add the Loader instance to the display list. We're able to do

this because the Loader class is acting as a proxy to the real image.

package {

inport flash.display. Sprite;
i mport flash. di splay. Loader;
i nport flash. net. URLRequest;

[SWF(backgr oundCol or =" #FFFFFF", wi dt h=640, hei ght=480)]
public class |mageProxyExanpl e extends Sprite {

public function |InageProxyExanple () {
var image: Loader = new Loader ();
i mage. | oad(new URLRequest ("http://ww. conmuni t ynx. coni bl og/ i mages/ dannyp. ¢
addChi | d(i mage) ;

Note

The SWF metatag allows us to set the background color, width, and height or the SWF
in an ActionScript project. I'm using that in this example to better see the image
placed on the display list.

Modifying the Image Before It's Loaded

If the Loader class weren't a proxy, we would have had to wait for the image to load before we
could add it to the display list because only display objects can be added to the display list. In
the next example, we modify the | magePr oxyExanpl e class by changing the image's position and
adding effects, all before the real image ever loads:

package {

i nport flash.display. Sprite;
i nport flash. display. Loader;
i mport flash. net. URLRequest ;
inmport flash.filters.dowrilter;
import flash.filters.BlurFilter;

[SWF(backgr oundCol or =" #FFFFFF", wi dt h=640, hei ght =480)]
public class |nmageProxyExanpl e extends Sprite {

public function |ImageProxylmp() {
var image: Loader = new Loader ();
i mage. | oad(new URLRequest ("http://ww. conmmuni tynmx. conl bl og/i mages/ dannyp. ¢
addChi | d(i mage) ;
var glow G owilter = new Aowrilter(Oxffooff, 2, 6, 6, 2, 1);
var blur:BlurFilter = new BlurFilter(4, 4, 1);
var filters:Array = new Array();
filters. push(gl ow);
filters. push(blur);

image.filters = filters;
i mge. x = 10;
i mge.y = 10;

As you can see, a Virtual Proxy can make your code much easier to work with. Without the
Loader acting as a proxy to the image, we would have to wait for the image to be successfully
loaded before we could add it to the display list and add effects.

It's important to note here that although the Loader class does stand in for the loaded image,
its not a pure form of a virtual proxy. The Loader class doesn't actually proxy modifications to

the image, but instead applies the modifications to itself. The image gets those modifications
because it is a child of the Loader class. In the next example, we'll show a true proxy that
passes its requests directly to the subject.

Lazy Serialization Example

The other use of a Virtual Proxy is to stand in place of an object that is expensive to create. A
great example of an expensive operation is serialization. Consider an object that models an XML
element; we have two options for serialization. First, we could pass the data into the
constructor of the model object and parse the values right away into the properties of the
object.

This approach is known as "eager" serialization and with large, complex objects it can be very
expensive. Our second option is called "lazy" serialization, in which we serialize the properties
of the object on demand. This second option eliminates unnecessary serialization to unused
properties and it spreads the serialization process out instead of doing it all up front. Figure
6.1 illustrates this process.

Figure 6.1. An example of lazy serialization.

[Viewfull sizeimage]

«interfacesIProduct
+gatDescription() - String
+gatiName() : String
+getPrice() : Number
+setDescription(in description : String)
+safName(in name : String)
+gatPrice{in price : Number)

;J R\
/)
’ \
i S
F hS
s .

XMLProductProxy Product
+getDescription() : String +getDescription() : String
+getName() : Siring +getName() : String
+getPrice{) : Numiber +getPrice() : Number
+galDescription{in description : String) [_ ____________ x/+setDescriplion{in description : String)
+geiName(in name : String) +getName{in name : String)
+getPrice(in price : Mumber) +zetPrice(in price : Mumber)

To get started, create a new ActionScript project called SerializationProxyExample .

Creating the Product Interface

For this example, both our "real" Product class and our "proxy" Product class implement the
same interface. This interface defines the methods that both classes need to implement and
allows us to treat the two classes the same. The interface is named | Product and defines the
getTitle() ,getPrice() ,setTitle(), andsetPrice() methods:

package com peachpit.aas3wdp. proxyexanple {

public interface |Product ({

function getPrice(): Nunber;
function getTitle(): String;
function setPrice(price: Nunber): voi d;

function setTitle(title:String):void,

Creating the Product Class

The Product class is the "real" class behind our proxy. This class simply holds the values for the
product’s title and price properties and has methods for getting and setting those values:

package com peachpit.aas3wdp. proxyexanple {
i mport com peachpit.aas3wdp. proxyexanpl e. | Product;
public class Product inplenents |Product {

private var _price: Nunber;
private var _title:String;

public function Product() {}

public function getPrice(): Nunber {
return _price;

}

public function getTitle():String {
return title;
}

public function setPrice(_price:Nunber):void {
this. price = _price;
}

public function setTitle(_title:String):void {
this. title = title;

Creating the Product Proxy Class

The XMLPr oduct Proxy class stands in for the Product class to manage the serialization on
demand. The proxy uses composition to inherit all the methods of the Product class. When a
request is made to get Price() , for example, the proxy first checks to see whether its instance

of the Product class has a value for price . If it does, that value is returned; if not, the proxy
grabs the data out of the XML object and sets the value on the "real" product, pbject. This is
how serialization occurs only when a method is invoked. Then the correct value is returned. By
deferring the serialization to the request, we minimize the amount of serialization that happens
up front.

package com peachpit.aas3wdp. proxyexanple {

i mport com peachpit.aas3wdp. proxyexanpl e. | Product ;
i mport com peachpit.aas3wdp. proxyexanpl e. Product ;

public class XM.ProductProxy inplenments |Product ({
private var _data: XM;
private var _product: Product;

public function XM.Product Proxy(_data: XM.) {
this. data = _data;
product = new Product();

}

public function getPrice(): Nunber {
i f(isNaN(_product.getPrice())) {
_product.setPrice(Nunber(_data.price.toString()));
}

return _product.getPrice();

}

public function getTitle():String {
i f(_product.getTitle() == null) {
_product.setTitle(_data.title.toString());

}
return _product.getTitle();

public function setPrice(price:Nunber):void {
_data.price = price;
_product.setPrice(price);

public function setTitle(title:String):void {
_data.title =title;
_product.setTitle(title);

Using the Proxy

Using the proxy we just created is simple. First we create a sample XML object structured to
work with our proxy class. Then we create a new instance of the XM_Pr oduct Pr oxy class and pass
the sample XML object to the constructor. Now, when we call the get Titl e() or get Price()
method on the proxy, it returns the value from the XML object. Subsequent calls to those same
methods will return the values from the product object and no serialization is required.

package {

i mport com peachpit.aas3wdp. proxypattern.|Product;
i mport com peachpit.aas3wdp. proxypattern. XM_.Product Proxy;
inport flash.display. Sprite;

public class SerializationProxyExanple extends Sprite {
public function SerializationProxyExanple () {
var data: XML = <product >
<title>Wdget</title>
<price>19. 95</ price>
</ pr oduct >;

var product:|Product = new XM.Product Proxy(data);
trace(product.getTitle() + " -- $" + product.getPrice());

Even though this is a simple example, the advantages of lazy serialization become clear when
you introduce a complex data structure with multiple levels of objects. In such a case, lazy
serialization can help make your application run smoother by reducing the amount of
serialization that happens up front in an application and by eliminating serialization for items
that are never requested.

Remote Proxy

The Remote Proxy also stands in for an object, but in this case the subject is remote. This could
be a separate SWF file, an XML file, a Flash Remoting service, a SOAP or REST service, or any
number of other type of services. The Remote Proxy acts as a local representative to this remote
object. It has the same public methods as the remote resource and delegates requests to that
resource. It also handles the communication with the remote resource.

Flickr Search Proxy Example

Flickr (www.flickr.com) is a popular online photo-sharing site. In this example, we're going to
write a simple Remote Proxy to Flickr's search API. The proxy will implement a search method
and handle the communication with the Flickr API. It will then broadcast an Event. COVPLETE or
an Error Event. ERROR event with the result.

Note

The Flickr examples in this chapter require that you apply for a key to access the Flickr
API. In the examples, you'll need to replace the text <ADD_YOUR_KEY_HERE=> with
your Flickr API key. You can apply for anAPI key at the following URL:
http://www.flickr.com/services/api/misc.api_keys.html .

First, create a new ActionScript project called RemoteProxyExample .

Creating the Search Proxy

The Phot oSear chPr oxy class takes local requests using its search method and relays them to the
remote Flickr API. Flickr offers a few different flavors of its APIl. For our example, we're using
the REST API. This API is just a simple HTTP GET request that returns an XML result. The
parameters are sent in the query string of the request.

package com peachpit.aas3wdp. proxypattern {

i mport flash. events. Dat aEvent;

i mport flash.events. Event;

i nport flash. events. Event Di spat cher;
i mport flash. net.URLLoader;

i mport flash. net. URLRequest ;

public class PhotoSearchProxy extends EventDi spatcher {

private static const API_KEY: String = "<ADD_YOUR KEY_HERE>";
private static const FLICKR URL: String = " http://api.flickr.conlservices/res

http://www.flickr.com/services/api/misc.api_keys.html

public function PhotoSearchProxy() {}

private function onConpl ete(event: Event):void {
di spat chEvent (new Dat aEvent (Event. COVPLETE, fal se, fal se,
XM_(event.target.data));

public function search(userld: String, tags:String):void {
var | oader: URLLoader = new URLLoader ();
var request: URLRequest = new URLRequest (Phot oSear chProxy. FLI CKR_URL +

"?met hod=fli ckr. phot 0s. search&user _id=" + userld + "& ags=" + tags +
" &api _key=" + Phot oSear chProxy. APl _KEY);

| oader. addEvent Li st ener (Event . COWPLETE, onConpl ete);

| oader. | oad(request);

Using the Search Proxy

To test the remote search proxy, we just create a new instance of the proxy (Phot oSear chPr oxy
). register the complete and error events, and make a call to the search() method, like this:

package {

i nport com peachpit.aas3wdp. proxypattern. PhotoSearchProxy;
inport flash.display. Sprite;

i mport flash. events. Dat aEvent;

import flash.events. Event;

public class RenoteProxyExanple extends Sprite {

public function RenoteProxyEmaple() {
var flickr: PhotoSearchProxy = new PhotoSear chProxy();
flickr.addEventLi stener(Event. COWLETE, onConpl ete);
flickr.search("", "yellow');

}

private function onConpl ete(event: DataEvent):void {
trace(event. data);

When you debug this example in Flex Builder, you'll see the XML result from the Flickr REST
request output to the debug console.

Theflash.utils.Proxy

In ActionScript 1 and 2, there was a method in the built-in Obj ect class called __resol ve . By
overriding this method, you could capture any call made on that object that was undefined,

including both properties and methods. The most common implementation of this feature was
the Remoting and Web Service frameworks that used __resol ve to proxy operations on remote
methods.

This feature has grown up a bit in ActionScript 3.0 and is how encapsulated in the

flash.utils. Proxy class. This class is never used directly, but is instead extended and its
methods overridden. In Chapter 4 , "Singleton Pattern," we used the Proxy class to capture calls
to undefined properties and instead return a value from an XML configuration file. This was
achieved by overriding the get Property() method. To capture calls to undefined methods, we
need to override the cal | Property() method. In the next example, we will capture the calls to
undefined methods to proxy those calls to the remote Flickr API. This will allow us to create a
more flexible proxy.

Note

This chapter isn't a reference about the built-in Proxy class. This example illustrates
the relationship of the Proxy class and the Proxy pattern, not a comprehensive
description of how to use the Proxy class.

We just created a remote proxy example that calls a remote search method in the Flickr API,
but what if we want to implement all the photo operations available in the Flickr AP1? We could
systematically add each method to the Phot oSear chProxy class. This would be perfectly
acceptable. But if we didn't know all the remote operations, or Flickr was continuously adding
new operations, the Phot oSear chPr oxy class would fall short The solution is to use the built-in
flash.utils. Proxy class.

Creating the Remote Photo Proxy

By extending the built-in Proxy class, we can catch calls to undefined methods and relay them
to the remote Flickr API. This is a fairly simple process:

1. We must make our class dynamic so that a call to an undefined method is allowed.

2. The class needs to extend fl ash. utils. Proxy and override the cal | Property() method.

Each time a call to an undefined method is made on our class, we can catch it in
cal | Property().

3. We must implement the | Event Di spat cher interface and add the EvenTDi spat cher
functionality through composition. In our first Remote Proxy example, we extended
Event di spat cher , but we can't do that this time because we're extending Pr oxy and
multiple inheritance is not permitted in ActionScript 3.0.

There is one minor catch: The call to Flickr requires us to format the method parameters in a
query string with name/value pairs. However, ActionScript doesn't have named parameters at
runtime, so we need to find out what every parameter's name is. Fortunately, the Flickr APl has
a reflection method flickr.refl ection. get Met hodl nf o that allows us to get all the parameters
for a given method in the API. So when a call to an undefined method is made, we can save the
parameters and extract the method name. Then we can make a reflection call based on the
method name. When the reflection call is returned, we can match the saved parameters with
their names from the reflection result to generate the query string needed to make the original

operation. Here's how that logic works:

package com peachpit.aas3wdp. proxypattern {

i mport flash. events. Dat aEvent;

i mport flash.events. Event;

i mport flash.events. Event Di spat cher;
import flash.events. | Event D spat cher;
i nport flash. net.URLLoader;

i nport flash. net. URLRequest;

import flash.utils.flash_proxy;

i mport flash.utils.Proxy;

dynami ¢ public class PhotoProxy extends Proxy inplenments |EventDi spatcher {

private static const API_KEY:String = "<ADD_YOUR KEY_HERE>";

private static const FLICKR URL: String = " http://api.flickr.conlfservices/res
private var eventDi spatcher: Event Di spat cher;

private var pendi ngArgs: Array;

public function PhotoProxy() {
event Di spat cher = new Event Di spat cher ();

}

/1 The follow ng event handler is called when the
/'l reflection call is made to the Flickr API. The results
/1 of this call tell us what to nane the original request's
/1 paraneters and allows us to build a query string with
/'l name/val ue pairs
private function onReflectionConplete(event: Event):void {
var queryString:String = "";
var reflection: XML = XM.(event.target.data);
var et hodArgunents: XMLLi st = reflection.argunents. argunent;
for(var i:Nunmber = 0; i < pendingArgs.length; i++) {
i f(pendingArgs[i] !'= null) {
queryString += "&" + nethodArgunents[i]. @ane.toString() + "=" +
pendi ngArgs[i];
}
}

var | oader: URLLoader = new URLLoader();

var request: URLRequest = new URLRequest (Phot oProxy. FLICKR_ URL + "?net hod="
refl ection. nethod. @ane.toString() + queryString);

| oader . addEvent Li st ener (Event . COWPLETE, onConpl ete);

| oader. | oad(request);

}

/1 This event handler is called when the real result is
/'l received fromthe Flickr API. It sinply broadcasts this
/1 data as a DataEvent event.
private function onConpl ete(event: Event):void {
di spat chEvent (new Dat aEvent (Event . COVPLETE, fal se, fal se,
XM_(event.target.data)));

}

/1 This is the nethod that captures the request. It is a
/'l part of the flash.utils.Proxy class.

flash_proxy override function callProperty(nmethodNane:*, ...args):* {

pendi ngArgs = args;

pendi ngAr gs. unshi ft (Phot oPr oxy. APl _KEY) ;

var | oader: URLLoader = new URLLoader ();

var request: URLRequest = new URLRequest (Phot oProxy. FLI CKR_ URL +
"?met hod=fli ckr.refl ection.get Met hodl nf o&et hod_nane=fli ckr.photos." -
met hodNane. toString() + "&api _key=" + Phot oProxy. APl _KEY);

| oader . addEvent Li st ener (Event . COVPLETE, onRefl ecti onConpl ete);

| oader . | oad(request);

return methodNane.toString();

}
public function addEventListener(type: String, |istener:Function,
useCapture: Bool ean = false, priority:int = 0, weakRef: Bool ean = fal se):voi
event Di spat cher. addEvent Li stener (type, listener, useCapture, priority, we:
}

public function dispatchEvent(event: Event): Bool ean {
return event D spatcher. di spat chEvent (event);

public function hasEventListener(type: String): Bool ean {
return event Di spat cher. hasEvent Li stener(type);

}
public function renoveEventListener(type:String, |istener:Function,
useCapt ure: Bool ean = false):void {
event Di spat cher.renoveEvent Li stener (type, listener, useCapture);
}

public function w |l Trigger(type: String): Bool ean {
return eventDi spatcher.wi |l Trigger(type);

Using the Photo Proxy

To use this photo proxy, we need to slightly modify the main class from the first remote proxy
example. The only change is the reference to the Phot oPr oxy class in place of the

Phot oSear chPr oxy class. Also, to show that all the photo operations are now available through
this proxy, we will now call the getRecent() operation.

package {

i mport com peachpit.aas3wdp. proxypattern. FlickrResul t Event;
i mport com peachpit.aas3wdp. proxypattern. Phot oPr oxy;
i mport flash.display. Sprite;
inport flash. events. Event;
i mport flash. events. Dat aEvent;

public class RenoteProxyExanpl e extends Sprite {

public function RenoteProxyExanmple() {
var flickr:PhotoProxy = new PhotoProxy();
flickr.addEventLi stener(Event. COWLETE, onConpl ete);
flickr.getRecent();

private function onConpl ete(event: DataEvent):void {
trace(event. data);

e rrcy NExT

Adapter and Facade Patterns

The Adapter and Facade patterns are very similar to the Proxy pattern. The main difference is
that a Proxy class has the same public methods (usually by implementing the same interface)
as the object it represents. The Adapter and Facade patterns don't necessarily have the same
methods as the object (or objects) they represent. Although the Adapter and Facade patterns
are almost identical, the difference is that an Adapter's purpose is to convert an object's API,

whereas the Facade's purpose is to simplify.

e prey

e rrcy NExT

Summary

In this chapter, we examined the Proxy pattern and its many uses. The two flavors of Proxy
pattern we looked at are the Virtual and Remote Proxy patterns. We also went through several
examples to fully understand the Proxy pattern:

¢ We used the built-in f1 ash. di spl ay. Loader class to proxy the loading of an image.

e We created a Virtual Proxy to defer serialization of XML to a model object.

¢ We built a simple Remote Proxy for handling Flickr searches.

e Py NExXT

e rrcy NExT

Chapter 7. Iterator Pattern

In This Chapter

Understanding the Problems with lteration 95

Understanding lIterator Elements 97

Using lterators 101

Using Null Iterators 102

Summary 102

Nearly every application uses collections. A collection is simply a group of organized data.
ActionScript has lots of collections including standard types such as arrays and associative
arrays as well as more sophisticated collections such as multidimensional arrays and custom
collection data types. When working with collections, you will naturally need to access the
elements of that collection. The Iterator pattern described in this chapter does all that while
avoiding some of the pitfalls that other approaches to data access might present.

e rrcy NExT

e rrcy NExT

Understanding the Problems with Iteration

For the purposes of this early discussion of iterating over collection data, we'll use the following
class to illustrate points. The customized Ul nt Col | ecti on class is essentially a glorified array.
However, although an array can store any sort of data, the Ul nt Col | ecti on stores only data of
type uint .

package com peachpit.aas3wdp.collections {
public class U ntCollection {
private var _data: Array;

public function UntCollection() {
_data = new Array();

}

public function addEl enent (val ue:uint):void {
_dat a. push(val ue);

Iterating over collection data presents several common dilemmas. One dilemma deals with how
an object allows access to the collection. One option is to simply expose the collection.

For example, if a class has an array property, it can expose the array using a getter method.
Adding the following getter method to the Ul nt Col | ecti on class does just that:

public function get data():Array {
return _data;

}

The preceding solution enables you to iterate through the collection using a f or statement, as
follows:

var collection:UntCollection = new U ntCollection ();
col | ection. addEl ement (1) ;
col | ecti on. addEl ement (2);
var i:uint;
for(i = 0; i < collection.data.length; i++) {
/1l Code that uses collection data.
trace(collection.data[i]);

There are two major related flaws with the preceding solution. The first is that exposing the
array directly breaks encapsulation in a fundamental way. The intention of exposing the
collection by way of a getter method is to enable iteration over the collection elements.
However, as a consequence, it's also possible to alter the collection without the object knowing

anything about it. For example, consider the following:

var collection:UntCollection = new U ntCollection ();

collection.data[0] = "one";

In this example, you can see that a value is assigned to the data collection without the object
being notified. Furthermore, the example assigns a string value to the collection element even
though the Ul nt Col | ecti on class expects that the data collection contains only unsigned
integers.

Note

ActionScript does not currently support typed arrays, which is why the preceding
example allows us to assign a string to an element of the array. In a language with
typed arrays, you would have to declare an array of a particular type (for example,
uint).

The second flaw in the preceding solution is that it exposes not only the data, but also the
structure of the data. If you want to iterate over the elements of a collection, there's no reason
you have to know the structure of the collection to accomplish that. In fact, having to know the
structure is a hindrance because it requires different ways to iterate over different structures.

A second dilemma with iterating over collection data deals with the interface. In the preceding
example, we noted that exposing collection data directly is not a good idea because it could
have unexpected consequences. As a solution, it might seem like a good idea to define an API
for the collection class that enables you to iterate over the collection data. For example, the
following addition to the Ul nt Col | ecti on class enables you to loop through the elements of the
collection while maintaining good encapsulation:

package com peachpit.aas3wdp. collections {
public class U ntCollection {
private var _data: Array;
private var _index:uint;

public function UntCollection() {
_data = new Array();
_index = 0;

public function addEl enent (val ue:uint):void {
_dat a. push(val ue);

}

public function reset():void {
_index = 0;
}

public function hasNext(): Bool ean {
return _index < _data.length;

}

public function next():uint ({
return uint(_data[_index++]);

}

The downside with the preceding API is that it makes the collection responsible for iterating
over the data. There are at least two major flaws with that: One flaw is that each collection
object maintains its own cursor (_i ndex) so that you cannot iterate over the collection object's
data more than once simultaneously. The second flaw is that the collection class has to define
every possible way to iterate over the data. The preceding example assumes that you always
want to iterate over the data in a forward direction, one element at a time, in the order that
elements appear in the array. If you want to add methods for iterating over the collection in
ascending value order or skipping every other element, you must add a lot of responsibilities to
the collection class itself.

e prcy

e rrcy NExT

Understanding Iterator Elements

The Iterator pattern is a solution that enables you to iterate over a collection's elements while
maintaining good encapsulation and not having to expose the structure of the data. The Iterator
pattern offloads the iteration responsibilities to a new object, and as a consequence, the
collection class remains simple, and you can iterate over the collection more than once
simultaneously.

The Iterator pattern consists of the following elements:

Iterator interface: The interface for iterating over the collection data

Concrete iterator: The implementation of the iterator interface

Collection interface: The interface that defines how to retrieve an iterator

Concrete collection: The implementation of the collection interface

The Iterator Interface

To define an iterator interface, you have to determine how much you want the iterator to be
able to do. Initially it may seem important to define an interface that allows for moving forward
or backward through the collection data. However, in practice, you generally don't need the
ability to move both forward and backward through the collection data. Rather, you generally
want to move through the data in only one direction, one element at a time. The ability to reset
an iterator back to the start is also useful. The following interface accomplishes these goals, and
it is the one that we use throughout this book.

package com peachpit.aas3wdp.iterators {
public interface Ilterator {

function reset():void;
function next(): Qoject;
function hasNext (): Bool ean;

The preceding interface allows you to iterate over a collection, one element at a time. The

reset () method simply moves the cursor back to the start of the collection data. The next ()
method returns the next element and advances the cursor. The hasNext () method returns true if
there is a next element and false if there is no next element. And the current () method returns
the current element without advancing the cursor.

Note

It's important to understand that the llterator interface is merely an interface. It does
not dictate implementation. Although we might be accustomed to thinking of the word
next as meaning moving forward, the next() method of an implementing class can just
as easily move backward through a collection. For that matter an implementing class
could skip every other element or even return random elements. The interface simply
specifies what methods an implementing class must define.

The Concrete Iterator

The interface simply determines what methods the concrete iterator must implement. The
concrete iterator defines the actual functionality. Perhaps one of the most common types of
iterators for ActionScript is an iterator that can iterate over an array one element at a time
starting with index 0. The following Arrayl t er at or definition accomplishes just that:

package com peachpit.aas3wdp.iterators {
public class Arraylterator inplenents Ilterator {

private var _index:uint = O;
private var _collection: Array;

public function Arraylterator(collection:Array) {
_collection = collection;
_index = 0;

public function hasNext():Bool ean {
return _index < _collection.length;

}

public function next(): Qbject {
return _collection[_index++];

}

public function reset():void {
_index = 0;

}

Of course, you can define many types of iterators depending on the collection data structures
and the way in which you want to iterate over the data. The preceding example iterates over an
array one element at a time with increasing indices. You could also define an iterator that
returns the elements in reverse order, like this:

package com peachpit.aas3wdp.iterators {
public class ArrayReverselterator inplements Ilterator {

private var _index:uint = 0;
private var _collection: Array;

public function Arraylterator(collection:Array) {

_collection = coll ection;
_index = _collection.length - 1;

public function hasNext(): Bool ean {
return _index >= 0;

}

public function next(): Qbject {
return _collection[_index--];

}

public function reset():void {
_index = _collection.length - 1;

}

Obviously, these are just two of the many types of iterators. Every iterator can define its own
unique implementation. What is critical is that every iterator implements the same interface.
The different implementations of the llterator interface might allow access to different types of
collections (associative arrays, for example). However, even if the collections are different, the
iterator interface is the same, meaning you can access the data in the same way.

The Collection Interface

The collection interface defines the way in which you can access the iterator for a collection. The
simplest interface is as follows:

package com peachpit.aas3wdp.collections {
public interface |Collection {
unction iterator():Illterator;

}

However, consider that you might want to enable many types of iterators for a collection. For
example, you might want to allow a collection to return an iterator that advances one element
at a time forward through the collection, or you might want to return an iterator that skips
every other element in ascending order. For that reason, it is advantageous to define the
interface as follows:

package com peachpit.aas3wdp.collections {
public interface ICollection {
function iterator(type:String = null):Illterator;

}

The implementing collection class can then return a different iterator type depending on the
parameter passed to the method. The UlntCollection example in the next section illustrates this.

The Concrete Collection

The concrete collection class implements the collection interface. The following example rewrites
the Ul nt Col | ecti on class so that it implements | Col | ecti on:

package com peachpit.aas3wdp.collections {
i nport com peachpit.aas3wdp.|lterator;
i mport com peachpit.aas3wdp. Arraylterator;
public class UntCollection inplenents |Collection {
private var _data: Array;

public function UntCollection() {
_data = new Array();

}

public function addEl enent (val ue:uint):void {
_dat a. push(val ue);

public function iterator(type:String = null):Illterator {
return new Arraylterator(_data);

The preceding implementation returns only one type of iterator. However, if appropriate, you
could enable several types of iterators, and the iterator that is returned would depend on the
parameter value, as in the following example:

public function iterator(type:String = null):Ilterator {
if(type == "ArrayReverselterator") {
return new ArrayReverselterator(_data);
}
el se {
new Arraylterator(_data);
}

In this example the user can create one Ul nt Col | ecti on object, and from the same interface she
can request several different types of iterators.

var collection:UntCollection = new U ntCollection();

col | ection. addEl enment (1) ;

col | ecti on. addEl enent (20) ;

col | ection. addEl ement (5);

col | ecti on. addEl enent (15);

var iteratorAscending:llterator = collection.iterator();

var iteratorDescending:llterator = collection.iterator("ArrayReverselterator");

e rrcy NExT

e rrcy NExT

Using lterators

After you've defined iterators and collections, you can use the iterators as in the following
example, which adds four elements to a UlntCollection object and then uses an iterator to
access that data:

var collection:UntCollection = new UntCollection();
col |l ection. addEl ement (1) ;
col | ection. addEl ement (20);
col | ection. addEl enent (5) ;
col | ecti on. addEl enent (15);
var iterator:llterator = collection.iterator();
whil e(iterator.hasNext()) {
trace(iterator.next());

}

The preceding example uses the iterator to loop through each of the elements of the collection
and write it to the debug console. Notice that because the iterator interface is identical for all
iterator types, it doesn't matter what concrete type the iterator() method returns. For
example, the preceding code would continue to function correctly if you specified
ArrayReversel terator as the parameter foriterator(), thus returning an

ArrayReversel terator instead of an Arrayl terator. The only difference would be the
outputwhich would return the collection values in reverse order.

Consider how different this approach is from using the array directly. When you allow direct
access to the array, not only do you break encapsulation, you also create code that is specific to
the implementation. For example, if you wanted to use a f or statement to loop through the
elements of an array directly, you would have to change the f or statement expressions when
you wanted to change how you loop through the array. But when you use the iterators, you
don't have to make such changes because the implementation is within the iterator itself.

e rrcy NExT

e rrcy NExT

Using Null Iterators

One special iterator type is the null iterator. The null iterator enables you to build classes that
adhere to an interface (they are iterable) but that don't actually have any collection data. The
classic case for null iterators is the leaf element of a composite object (as discussed in Chapter
8, "Composite Pattern™). In such cases, it's necessary that the leaf elements (those containing
no collection data) and the composite elements (those that do contain collection data)
implement the same interface and be treated in the same way. For recursive traversal purposes,
it's necessary that the interface provide access to an iterator for both composite and leaf
elements. One option is to return null for the leaf element iterator. However, doing so presents
a special case that you must detectnamely, you must add i f statements to test whether the
iterator is null or not before calling the methods such as hasNext () and next (). A more elegant
solution is to use a special type of iterator that always returns false for hasNext () and returns
nul | for next (). That special-case iterator is a null iterator as defined in the following code:

package com peachpit.aas3wdp.iterators {
public class Nulllterator inplements Ilterator ({

public function Nulllterator() {}
public function hasNext():Bool ean {
return fal se;

}

public function next(): Qbject {
return null;

}

public function reset():void {

}

We'll see an example of how to use this iterator type in the next chapter.

e rrcy NExT

Py NEXT

Summary

The lterator pattern enables client code to read a collection's data without exposing the
structure of the data or making the data inadvertently writable. The lterator pattern is a
common pattern that provides a standard interface for reading collection data.

Although the Iterator pattern is simple, it is very useful. In fact, it is the pattern’'s simplicity that
makes it so useful. Because the pattern standardizes the way to access data from collections, it
allows you to create interfaces that interact with the llterator interface rather than with any
specific implementation. That means that your code is more flexible and adaptable.

e prey NEXT

e rrcy NExT

Chapter 8. Composite Pattern

In This Chapter

Understanding the Element Interface 103

Understanding Leaf Elements 106

Understanding Composite Elements 107

Building a File System Example 108

Summary 112

The Composite pattern enables you to elegantly deal with recursive or hierarchical data
structures. There are many examples of hierarchical data structures, making the Composite
pattern very useful. A common example of such a data structure is one that you encounter
every time you use a computer: the file system. The file system consists of directories and files.
Every directory potentially has contents. The contents of a directory might be files, but they also
might be directories. In this way, the file system of a computer is organized in a recursive
structure. If you want to represent such a data structure programmatically, you can use the
Composite pattern.

The Composite pattern has the following elements:

¢ Element interface: An interface for all participating elements.

e Leaf: A class representing terminating elements in the data structure. In the file system
example, files are leaf elements because they don't have child elements. Leaf classes must
implement the element interface.

¢ Composite: A class for the collections in the data structure. In the file system example,
directories are composite elements. Composite classes must implement the element
interface.

e prcy

e rrcy NExT

Understanding the Element Interface

All elements within the Composite pattern, whether leaves or composites, should be essentially
interchangeable. This means that they must all implement a common interface. It's impossible
to determine what the exact interface ought to look like for every use of the Composite pattern.
However, at a minimum, it will likely look much like a collection. The following is an example of
what a basic element interface might look like:

package {
public interface |El enment {
function iterator():Ilterator;
function addlten(item |Elenent):void;
function renoveltenm(item |Elenent):void;
function getParent():1El enment;
function setParent(parent: |Elenent):void;

Note

The preceding interface uses the llterator interface as discussed in Chapter 7,
"Iterator Pattern." This chapter makes use of the Iterator pattern; if you have not yet

read Chapter 7, you might want to consider reading that chapter before continuing
with this one.

Note that this basic element interface example specifies | El enent as the type for the addl ten(),
renovel tem(), and set Par ent () methods. In theory, this means that any class that implements
the | El enent interface can be added to any other object that implements the same interface.
This is what enables all elements in the Composite pattern to look identical. Of course, the
implementation will be different for leaf and composite elements. A leaf element cannot actually
contain other elements, but it must implement the same interface for the pattern to work.

In a practical example, the element interface will probably have more methods than are
included in the | El enent example. Throughout this chapter, we'll be looking at a file system
example. The following | Fi | eSyst em t eminterface is the element interface we will use for the file
system example:

package com peachpit.aas3wdp. conpositeexanpl e.data {
/'l You'll need to ensure that Ilterator from Chapter 7 is in your
/'l cl asspat h.
i mport com peachpit.aas3wdp.iterators.|lterator;

public interface IFileSystemtem {
function iterator():Illterator;
function addlten(item | FileSystemten):void,
function renoveltenm(item | FileSystemtem: void;

function getName(): String;

function setNane(nane: String):void;

function getParent():1FileSystemtem

function setParent(parent:|FileSystemten):void;

For this example, it's also useful to create a simple implementation in the form of an abstract
class we'll call Fi | eSyst enl tem Although an abstract class is not a requirement in this case,
we're using one because that way each of the concrete classes can inherit a common
implementation rather than having redundant code in each of the classes. All our code still
references the interface rather than the abstract class to maintain maximum adaptability. The
abstract class looks like the following:

package com peachpit.aas3wdp. conpositeexanple.data {
i mport com peachpit.aas3wdp.iterators.|Iterator;

public class FileSystemtem inplenments |FileSystemtem {
protected var _parent:|FileSystemtem
protected var _nane: String;

public function FileSystemten() {
}

public function
return null;

public function

public function

}

public function
return _naneg;

iterator():Ilterator {

addlten{item | Fil eSystemten):void {

renovelten(item | Fil eSystenmten):void {

get Nane():String {

}

public function
_nane = nane;

set Nane(nane: String):void {

public function getParent():I1FileSystemtem {
return _parent;

public function setParent(parent:|FileSystemtem:void {
_parent = parent;

In this case, we're using an abstract class (Fi | eSyst enl t em) because it provides some basic
implementation that concrete leaf and composite subclasses can inherit. This way the, Fil e and
Di rect ory subclasses don't have to each implement get Nane(), set Nane(), get Parent (), and
setParent ().

Note

The preceding interface and abstract class might seem strange because they require
all concrete classes to implement methods that may or may not appear directly
related to all types. For example, leaf elements might not appear to need addl ten(),
renovel tem(), and iterator() methods. Although it's true that, in most cases, it is
inadvisable for an interface to require a concrete type to implement methods that
don't apply to all types, in the case of the Composite pattern it is essential to the
pattern that composite and leaf elements appear to be identical. Therefore the leaf
elements must implement addl ten(), renoveltem(), anditerator().

e prcy

e rrcy NExT

Understanding Leaf Elements

Leaf elements are the terminating elements in the Composite pattern. Leaf elements can be

placed in composite elements, but composite elements cannot be placed in leaf elements. In
terms of our file system example, files are leaf elementsyou can place files in directories, but
you cannot place directories in files.

Leaf elements must implement the same interface as composite elements for the pattern to
work. This approach might seem odd at first because the element interface always allows for
adding and removing elements, yet a leaf element cannot contain elements. In the Composite
pattern, the leaf element does include the methods to add, remove, and access elements to
satisfy the requirements of the interface, yet the implementation does not allow you to actually
add, remove, or access elements. The following is the implementation for a Fi | e class as part of
our file system example. Notice that it inherits from the abstract Fi | eSyst em t emclass so that it
doesn't need to implement most of the required methods (it inherits the implementations from
its superclass). In particular, it doesn't have to override addlten{) or renovel ten() because the
superclass implementations do nothing, which is exactly what we want the leaf class
implementation to do. Although the Fi | e class does not need to override i terat or (), to simplify
working with Fi | e objects in the Composite pattern, we'll override i terator () so that it returns
aNull I terator instance, as shown here:

package com peachpit.aas3wdp. conpositeexanple.data {
i mport com peachpit.aas3wdp.iterators.|Iterator;
i nport com peachpit.aas3wdp.iterators.Nulllterator;

public class File extends FileSystemtem {

public function File() {

}

override public function iterator():llterator {
return new Nulllterator();

We talked about the Nul | I t er at or type in Chapter 7. Although the Fi | e implementation of
iterator() could simply return nul | , it's slightly more elegant to return a Nul | I t er at or object.
The reason is that if i terat or () returns nul |, you might have to test for nul | values when using
Fi | e objects. Yet if the method returns a Nul | I t er at or object, you can use the return value
interchangeably with the return value from a composite object. Because a Nul | | t er at or object
always returns false for hasNext (), it should allow a leaf object to work just like a composite
object without ever actually iterating over child elements.

e rrcv NEXT

e rrcy NExT

Understanding Composite Elements

Composite elements also implement the element interface, but unlike leaf elements, you can
add child elements to composites. In our file system example, directories are composite

elements.

The following is a Di rect ory class that represents a file system directory in our file system
example. Notice that the class extends the abstract Fi | eSyst enl t emclass. Because the abstract
class defers the implementation of i terator (), addlten(), and renovel t em() to subclasses, the
Di rect ory class must override these methods.

package com peachpit.aas3wdp. conpositeexanple.data {
i mport com peachpit.aas3wdp.iterators.|lterator;
i mport com peachpit.aas3wdp.iterators. Arraylterator;

public class Directory extends FileSystemtem {

/1 The array of child el enents
private var _itens: Array;

public function Directory() {
_itenms = new Array();

}

override public function addltem(item|FileSystemtem:void {
_itenms. push(item;

}
override public function renmovelten(item|FileSystemtem:void {
var i:uint;
/1 Loop through all the child el enents.
for(i = 0; i < _itenms.length; i++) {
/1 1f one of the elenents matches the
/1l paraneter renove it fromthe array.
if(_itenms[i] == item {
_itens.splice(i, 1);
br eak;
}
}
}

override public function iterator():llterator {
/Il See the "lterator Pattern" chapter for details on // Arraylterator

return new Arraylterator(_itens);

The Directory class implementation is fairly simple. It must override addl tem() to append the
element to the _i tens array. The class overrides renovel t en() to remove the specified item by
looping through all the elements of the _i t ens array until it finds the matching element. And the

class overridesiterator() to return an Arrayl terator instance.

Py NEXT

Building a File System Example

The Composite pattern is simple in terms of its implementation, but its usage might be a little
unclear as of yet. We've already discussed the details of how it works, but an example usually
helps illustrate the concepts. In this example, we'll build a simple application that uses the file-
system metaphor to show how the Composite pattern works.

This example uses the | Fi | eSyst e t eminterface as well as the Fil eSystemtem, File , and

Di rect ory classes discussed earlier in this chapter. In addition, we'll create a

Fi l eSystem t enVi ew class and a main class (Conposi t eExanpl e). The application will load data
from an XML file and use that data to allow the user to browse a graphical representation of a
file system. The directories are represented by folder icons, and files are represented by white
rectangles. The user can click a directory to browse the contents of the directory.

For the purposes of this example, we'll read the data from an XML file called fi |l eSyst em xm
with the following content:

<fil eSystenr
<fileSystemtem type="Directory" name="Program Files" bytes="1024">
<fileSystemtem type="Directory" nanme="Adobe Illustrator">
<fileSystemtem type="File" nane="II|lustrator.exe" />
</fileSystenltenp
</fileSystenltenr
<fileSystemtem type="Directory” name="My Docunents">
<fileSystemtem type="File" nane="Docunent.txt" />
<fileSystemtem type="File" name="Inmage.jpg" />
</fileSystenltenr
</fil eSysten>

You can see that the root node is <fi | eSyst en> , and contained within that are nested
<fileSystem tem> tags. Each <fil eSystem tenr tag is of type Directory or File . Directory
nodes can contain nested elements whereas Fi | e nodes cannot. Each element has a nane
attribute as well. We'll load this XML file into the application and parse it into our composite
structure.

Next we'll need a class that is a view for the Fil e and Di rect ory classes. The

Fi |l eSyst em t enVi ew constructor accepts a parameter of type | Fi | eSystem t emand then draws
the correct icon and adds a label. Note that Fi | eSyst end t enmVi ew extends Sprit e because it
needs to be a display object.

package com peachpit.aas3wdp. conpositeexanple.views {
i nport flash.display. Sprite;
i mport flash.text. TextField;
import flash.text. TextFi el dAut oSi ze;
import flash.filters.Bevel Filter;
i nport com peachpit.aas3wdp. conposi t eexanpl e. data. Di rectory;
i nport com peachpit.aas3wdp. conpositeexanpl e.data. | FileSystemtem

public class FileSystemtenVi ew extends Sprite {

/1 The file or

private var

/1l The icon for
/'l a folder
private var _icon: Sprite;

// The nane of the item

directory to display.
_itemIFileSystemtem

i con

the item -

ei t her

private var _|abel: TextField;

/!l Return a reference to the file or
public function get

}

}

/1 This nmethod allows you to override the | abe
cases such as parent

return _item

item=item

_icon =
/'l Test

new Sprite();
if the itemis a Directory or

directory

data():IFileSystemtem {

File.

/1l appropriate icon for the itemtype

if(itemis Directory) {
graphics.lineStyle();
gr aphi cs. begi nFi | | (OxFFFFOO) ;
gr aphi cs. dr awRect (O,
graphics.endFi Il ();
gr aphi cs. begi nFi | | (OXFFFFOO) ;

gr aphi cs. drawRoundRect (0, 0, 25,
graphics.endFill();
filters = [new Bevel Filter()];

_icon.
_icon.
_icon.
_icon.
_icon.
_icon.
_icon.
_icon.

}

el se {
_icon.
_icon.
_icon.

_icon.graphics.endFill();

}

addChi I d(_i con);

/1 Add a | abe

_label =

text field
new TextFi el d();

_label.text = _item getNane();

_l abel . aut 0Si ze =

_label . x

50;

addChi | d(_I abel) ;

/'l value for

/'l where you want
/1 the name of the item

public function overrideLabel (I abel: String):void {
_label . text =

speci al

| abel ;

10, 50,

30);

graphics.lineStyle(0, 0x000000, 1);
gr aphi cs. begi nFi | | (OXFFFFFF) ;
graphi cs. drawRect (0, 0, 40, 50);

Text Fi el dAut 0Si ze. LEFT,;

to display a specific |abel

a white rectangle or

public function FileSystemtenViewitemI|FileSystemtem ({

Draw t he

t ext

directories

rat her

15, 5, 5);

t han

Next we need to define a main class. In this example, the main class is called Conposi t eExanpl e
. The main class loads the XML file, parses it into the composite structure, and displays the
contents of the top-level directory. When the user clicks a directory, the main class dispatches
an event that updates the view.

package {
i mport flash.display. Sprite;
i mport flash. net. URLLoader;
i mport flash. net. URLRequest ;
inmport flash.events. Event;
i mport flash.events. MouseEvent;
i nport com peachpit.aas3wdp. conposi t eexanpl e. data. Di rectory;
i nport com peachpi t.aas3wdp. conposi t eexanpl e. data. Fi | e;
i mport com peachpit.aas3wdp. conposit eexanpl e. data. Fil eSystenltem
i mport com peachpit.aas3wdp.iterators.|Iterator;
i nport com peachpit.aas3wdp. conpositeexanpl e.vi ews. Fi | eSystem t enVi ew,
i mport com peachpit.aas3wdp. conposi teexanpl e.data. | FileSystemtem

public class ConpositeExanple extends Sprite {

/1 The top-level directory which contains all the
/1 child elements
private var _fileSystemDirectory;

/1 An array of all the views currently displayed
private var _itenVi ews: Array;

public function ConpositeExanple() {

/'l Load the XM

var | oader: URLLoader = new URLLoader ();
| oader . addEvent Li st ener (Event . COWPLETE, onLoadXM.);
| oader .| oad(new URLRequest ("fileSystem xm "));

/1 Construct the top-level directory. Set the nane,
/'l and set the parent to null. Setting the parent to
/1 null will indicate that there are no parent

/1 conposite objects for this directory.

_fileSystem = new Directory();

_fileSystem set Name("File Systeni);

_fileSystem setParent (null);

_itenViews = new Array();

}

/1 When the XML | oads parse the XML into the conposite
/'l structure. The parseXn ToFil eSystem() nmethod accepts an
/1 XML.List paraneter and a Directory paraneter. |t parses
/1 all the XM.List children into elenments within the
/1 directory.
private function onLoadXM.(event: Event):void {

XML. i gnor eWhi t espace = true;

var xm : XM. = new XM.(event.target.data);

parseXm ToFi | eSystem(xm . children(), _fileSystem;

/1 Display the contents of the top-level directory
updateView(_fil eSysten);
}

private function updateViewdirectory:Directory):void {

var i:uint;

/1 Loop through all the currently-displayed item

/1l views, and renove them

for(i = 0; i < _itenViews.length; i++) {
renoveChild(_itenViews[i]);
delete _itenViews[i];

}

_itemViews = new Array();

/'l Retrieve the iterator for the current directory
var iterator:llterator = directory.iterator();

var itenmY: Nunber = O;

var item | FileSystenmtem

var view Fil eSystenltenView,

/1 1f the directory has a parent, then add a view for
/1l the parent directory and override the |abel so
/1 it sinmply says Parent Directory. Add a click
/1l event listener so when the user clicks, it changes
/1l to the parent directory
if(directory.getParent() '= null) {
view = new Fil eSystenltenVi ew(directory.getParent());
vi ew. overri deLabel ("Parent Directory");
vi ew. addEvent Li st ener (MbuseEvent . CLI CK, ond i ck);
addChi | d(vi ew) ;
_itenVi ews. push(view);
iten¥ += view height + 5;

/1 Loop through all the itens in the directory. Add
/1l a view for each item If the itemis a directory,
/1 add a click event |istener.
whil e(iterator. hasNext()) {

item= IFileSystemtenm(iterator.next());

view = new Fil eSystemtenViewiten);

viewy = iteny,

item¥Y += view height + 5;

if(itemis Directory) {

vi ew. addEvent Li st ener (MouseEvent . CLI CK, ond i ck);

}

addChi l d(vi ew) ;

_itenVi ews. push(view);

private function parseXm ToFil eSysten(xm : XMLLi st, directory:Directory):va
var i:uint;
var itemFileSystenltem
/1 Loop through all the children of the XM.List.
/1 If the itemis a directory, then nake a new

/1l directory and call parseXm ToFil eSystem()
/'l recursively to populate the directory. O herw se
/'l construct a file.
for(i = 0; i <xm.length(); i++) {
if(xm[i]. @ype == "Directory") {
item= new Directory();
par seXm ToFi | eSystem(xm [i].children(), Directory(item);

}
el se {

item= new File();
}

item setParent (directory);
itemset Nane(xm [i]. @ane);
directory.addltem(item;

}

/1 When the user clicks an item view, update the view to the
/1 contents of the directory that the user clicked.
private function ondick(event: MouseEvent):void {

updat eVi ewm(Di rect ory(event. current Target. data));

When you run the application, you ought to see two folders initially: ProgranfFi | es and
MyDocunent s . If you click one of the folders, the view updates to display the contents of the
directory as well as a folder icon with a Parent Di rect ory label. An example of the application is
shown in Figure 8.1 .

Figure 8.1. The sample application.

e rrcy NExT

Summary

The Composite pattern is an important pattern for creating hierarchical structures in which you
want to be able to treat all the elements in the same way. This chapter uses a file system
example composed of files and directories to illustrate one case in which the Composite pattern
can be useful. In this example, files and directories implement the same interface, which is a
key feature of the Composite pattern. By implementing the same interface, you can treat files
and directories in exactly the same way, and you can store either a file or a directory as a child
of a directory.

e rrcv NEXT

e rrcy NExT

Chapter 9. Decorator Pattern

In This Chapter

Understanding the Decorator Pattern 114

Building Reader Decorators 117

Building Visual and Commutative Decorators 128

Summary 136

The Decorator pattern enables you to apply new behavior to an object at runtime. Traditionally,
many developers learn to add behavior by using inheritance rather than composition. This
means that if you want to add a nove() method to an existing W dget class, you'd extend W dget
to define a new Movabl eW dget class. Or, if you want to redefine the nove() method of

Movabl eW dget so that it moves only until its fuel is used up, you could extend Movabl eW dget to
define Fuel abl eMbvabl eW dget .

However, inheritance has two major drawbacks in such cases:

e You cannot change an object's behavior at runtime. For example, a W dget is always a
W dget . It isn't possible to convert a W dget to a Movabl eW dget or a
Fuel abl eMovabl eW dget when traditional inheritance is used.

¢ As more permutations become available, the number of classes required becomes
unwieldy. For example, if you want to extend a W dget class so that it is scalable, you
might define a Scal abl eW dget subclass. If you want to extend the class so that it is
rotatable, you might define a Rot at abl eW dget subclass. To make a movable widget, you
might define a Movabl eW dget subclass. However, what if you want to combine some of the
behaviors? Using inheritance, you'd have to define Scal abl eRot at abl eW dget ,
Scal abl eMovabl eW dget , Rot at abl eMovabl eW dget , and Scal abl eRot at abl eMovabl eW dget .
Each new behavior increases the number of required classes in a factorial fashion such that
after just a few behaviors, the number of classes is unmanageable.

The solution to these inheritance drawbacks is the Decorator pattern. The Decorator pattern
uses composition rather than inheritance to add new behavior to an object. This means that it's
possible to add behavior and change behavior at runtime. Additionally, because the Decorator
pattern uses composition, it's often possible to chain together several new behaviors in a
manageable fashion.

It is often useful to visualize how a pattern works. Imagine that the Decorator pattern is like a
set of Russian dolisthe type of dolls that stack inside one another. Obviously, this analogy is
limited, but it does illustrate the basic nesting relationship between decorator and decorated
objects. The Decorator pattern starts with a base object that can be decorated. This decorated
object is analogous to the innermost Russian doll. The decorator objects use composition to add
behavior to the decorated object. The decorator objects are analogous to the larger Russian

dolls within which you place the smaller dolls. After you stack a Russian doll in the next larger
doll, you can then stack that doll in the next larger doll. So too with the Decorator pattern; you
can often use a decorator to add yet more behavior to another decoratorthus treating the
decorator like a decorated object. We'll look at these types and their relationships in more detalil

throughout the chapter.

=2

e rrcy NExT

Understanding the Decorator Pattern

The basic idea of the Decorator pattern is that new types of objects (decorators) can add new
behavior or change existing behavior of a decorated object. The decorators and the decorated
object must implement the same interface. That way, the decorator and decorated objects can
be used interchangeably.

The Decorator pattern consists of the following elements:

Decorator/decorated interface

Concrete decorated class

Abstract decorator class

Concrete decorator class(s)

The following sections look at these elements in more detail.

Decorator/Decorated Interface

Everything about the Decorator pattern hinges on the decorator objects and the decorated
objects implementing the same interface. This way, they can be treated in exactly the same way
and used interchangeably. The exact interface depends entirely on the required behavior of the
objects. There is no universal interface for all decorator and decorated objects. For the purpose
of a simple example, consider the following interface. In the next few sections, we'll show how
to implement this interface using the Decorator pattern.

package com peachpit.aas3wdp. decorator {
public interface | Wdget ({
function getDescription(): String;
function run():void;

Tip

The distinction between decorator and decorated objects might not be immediately
clear. Decorators are objects that use composition to add to or modify the behavior of
another object at runtime. The object to which the behavior is added or modified is
the decorated object. Because decorator objects themselves can be decorated by other
decorators, it's essential that both types of objects implement the same interface.

Concrete Decorated Class

The concrete decorated class is the basic type that implements the interface. Continuing the
example from the preceding section, the following W dget class implements | W dget as the basic
decorated type:

package com peachpit.aas3wdp. decorator {
public class Wdget inplenents |Wdget {
public function Wdget() {}

public function getDescription():String {
return "Wdget";
}

public function run():void {
trace("runni ng");

}

This simple decorated type is the basis of the pattern (like the innermost Russian doll). The
base decorated type is the foundation on which all other decorators are applied. This example is
purposefully simple. It merely implements the two methods required by the interface (I W dget).

Abstract Decorator Class

Technically, all that is required of a decorator is that it implements the same interface as the
decorated type. However, practically speaking, most decorators inherit from an abstract
decorator class that implements some of the basic functionality such as compositing the
decorated object and passing through the method calls. The following example illustrates a
basic abstract decorator class for the widget example:

package com peachpit.aas3wdp. decorator {
public class Abstract WdgetDecorator inplements |Wdget {

protected var decorated: | Wdget;
public function Abstract W dget Decor at or (decor at edW dget : | Wdget) {

decorated = decorat edW dget;

public function getDescription():String {
return _decorated. getDescription();

}

public function run():void {
_decorated. run();
}

The AbstractW dget Decor at or class must implement the | W dget interface because it is the same

interface implemented by the decorated type (W dget). This is the basis of the Decorator
patternthat both the decorator and the decorated types implement the same interface.

Note that the constructor accepts a parameter of type | W dget . This parameter is the object that
the decorator will decorate. Although there's no requirement that you pass the decorated object
through the constructor (you could use a different method to accomplish this), it is the
convention. It's important that the decorated type is set to the interface rather than a concrete
(or abstract) type in order to fully support polymorphism. This approach allows the decorator to
decorate not only a concrete decorated type, but also other decorators.

It's also important to note that in this example the decor at ed property is set as protected. By
setting the property as protected, it is accessible to subclasses of Abstract W dget Decor at or .

The actual implementation of the methods may vary in every case. In this particular example,
each of the methods simply passes through the request to the decorated object. However, it is
useful to have an abstract class in many cases to ensure that the core, common behavior is
inheritable.

Concrete Decorator Class(es)

The concrete decorator(s) must implement the same interface as the decorated object type.
Normally, this is accomplished by extending the abstract decorator class. The decorator class
can do the following.

¢ Modify existing behavior. Decorators often proxy requests to decorated methods. Although
it's possible for a decorator to simply pass through requests to the decorated object
exactly as they were made, a decorator can also pre-process or post-process. Decorators
can also handle the entire request at the decorator level without ever forwarding the
request to the decorated object.

e Add new behavior. Decorators must implement the interface, but they can also add new
methods. This is an option and not a requirement. Adding new behavior can be
advantageous because you can add functionality to an object at runtime. However, adding
methods means that you cannot effectively chain decorators as is discussed later in this
chapter.

The following code illustrates a concrete decorator for the widget example:

package com peachpit.aas3wdp. decorator {
public class Digital Wdget extends AbstractW dget Decorator ({
public function Digital Wdget (decorated: | Wdget) {
super (decor at ed) ;

override public function getDescription():String {
var description: String = _decorated. getDescription();
return "digital " + description;

This example declares Di gi t al W dget to extend Abt r act W dget Decor at or. Note that the
constructor accepts a parameter of type | W dget, meaning that it could be either a concrete

decorated type (W dget) or another decorator type. The constructor in this example simply
passes along the parameter to the constructor of the superclass.

This example inherits the default implementation for the run() method, but it overrides

getdescription(). The getdescription() method returns the description from the decorated
object prepended with the word di gi t al .

@ prcy | NEXT

Building Reader Decorators

So far, you've had the chance to read about the theory of the Decorator pattern with an
extremely simple example. In this section, you'll have the chance to see a slightly more
sophisticated and practical example that makes use of the Decorator pattern. We'll build a
group of classes that work together for reading text data in many different ways.

The reader example starts with a concrete decorated type that takes a string value and reads it
one character at a time. Then, we'll add decorators that can read from the string by the word
and by the line. We'll then add additional decorated and decorator types to demonstrate how
they can be used interchangeably.

Creating the Decorator/Decorated Interface

To implement the Decorator pattern, we first need an interface. For this example, we'll define
an interface called com peachpi t. aas3wdp. decor at or exanpl e. i 0. | Reader . All reader decorated
and decorator classes must implement this interface. For our example, we'll require that all
reader types should be capable of dispatching events. For this reason | Reader extends

flash. events. | Event Di spat cher .

Here's our interface:

package com peachpit.aas3wdp. decoratorexanple.io {

import flash.events. | Event D spat cher;
public interface | Reader extends |EventDi spatcher {

function read(): String;

function readArray(offset:uint = 0, length:uint = 0):Array;
function readString(): String;

function hasNext (): Bool ean;

function isReady(): Bool ean;

function reset():void;

As we've already mentioned, our | Reader interface extends | Event Di spat cher , which means
any implementing class must implement all of the | Event Di spat cher methods in addition to the
methods required by | Reader . The | Event Di spat cher interface requires the following methods:
addEvent Li stener () , renoveEvent Li st ener () , di spat chEvent () , hasEventLi stener() , and

wi || Trigger() . As you'll see in the next section, the simplest way to implement the interface in
most cases is simply to extend EvenTDi spat cher .

The | Reader interface also requires a handful of methods. The read() , readArray() , and
readStri ng() methods each provide a mechanism for accessing an element or elements of text.
The actual implementations will differ in concrete classes, but the idea remains the same:
read() returns the next element in much the same way an iterator returns the next element.
The readArray() method returns an array of elements. The readSt ri ng() method returns the

original value. The i sReady() method returns a Boolean indicating whether or not the reader is
ready for reading. The hasNext () method returns a Boolean indicating whether or not there are
additional elements. The reset () method resets the reader to the first element.

Defining an Abstract Reader Class

As we've already seen, all implementing classes of | Reader must implement quite a few
methodsboth those from | Event Di spat cher and from | Reader . In many of the reader classes,
the implemented methods look very similar. For that reason, we can simplify those classes by
first defining an abstract class. In this case, we'll define

com peachpi t. aas3wdp. decor at or exanpl e. i 0. Abstract Reader as an abstract class implementing
the | Reader interface. Because the | Reader interface extends | Event Di spat cher , you can either
implement all the required methods or extend a class that already implements those methods.
In this case, Reader extends Event di spat cher , a class that is part of the Flash Player API.

package com peachpit.aas3wdp. decoratorexanple.io {

inport flash.events. Event;
i mport flash. events. Event Di spat cher;

public class Abstract Reader extends EventDi spatcher inplenents |Reader ({
protected var index:uint = 0;

public function Reader() {

}

public function hasNext():Bool ean {
return fal se;

}

public function reset():void {
i ndex = 0;

}

public function isReady(): Bool ean {
return true;

}

public function read():String {
return null;

}

public function readArray(offset:uint = 0, length:uint = 0): Array {
return null;

public function readString():String {
return null;

The preceding code is fairly basic. Most of the methods simply return default values. The only

actual implementation is the declaration of i ndex and the definition of the reset () method.

Defining the Concrete Decorated Class

In this example, we'll build two concrete decorated types. The first St ri ngReader , is the first
concrete decorated class and is the simpler of the two.

[View full w dth] package com peachpit.aas3wdp. decoratorexanple.io {
public class StringReader extends AbstractReader ({

private var _content: String;
pL
function StringReader(content: String) {
_content = content;

}

/1 The read() nethod uses the String class nethod charAt ()
/'l to return one character at a time, increnenting _index
/'l each time the nethod is called.
override public function read(): String {

return _content.charAt (_i ndex++);
}

override public function readArray(offset:uint = 0, length:uint = 0):Array {
/1 1f length is null then use the length of the

/'l string.
if(length == 0) {

length = content.length - offset;
}

var array:Array = new Array();

/1 Add one character at a tine to the array.
for(var i:uint = offset; i < length; i++) {
array. push(_content.charAt(i));
}

return array;

}

override public function readString():String {
return _content;

}

override public function hasNext(): Bool ean {
return _index < _content.|ength;

}

The Stri ngReader class accepts one parameter in the constructor. It stores that value in a
private property. It then defines the read() and readArray() methods to return one character at
a time from that value. Here's a simple example of how you could use the St ri ngReader :

var reader:|Reader = new StringReader("abcdefg");
whi | e(reader. hasNext ()) {
trace(reader.read());

}

This example writes the charactersa , b ,c,d, e, f, and g one at a time to the console.

Creating the Abstract Decorator Class

Now that we've defined a concrete decorated type, we can look at creating decorators for it. To
simplify the decorators, we'll create an abstract decorator called

com peachpit. aas3wdp. decor at or exanpl e. i 0. Abst r act Reader Decor ator . The

Abst ract Reader Decor at or class extends Abstract Reader just like the Stri ngReader class does
(all the decorated and decorator classes must implement the same interface). Note that we
need to override several of the methods so that they delegate requests to the decorated
instance, content .

package com peachpit.aas3wdp. decoratorexanple.io {

i mport com peachpit.aas3wdp. decor at or exanpl e. i 0. | Reader;
i nport com peachpit.aas3wdp. decor at or exanpl e. i 0. Reader;

public class AbstractReaderDecorator extends AbstractReader {
private var _content: | Reader;

/1l The constructor accepts a paraneter of type |Reader

/1 that will be the decorated object.

public function ReaderDecorator(reader:| Reader) {
_content = reader;

}

override public function read():String {
return _content.read();

}

override public function readArray(offset:uint = 0, length:uint = 0):Array {
return _content.readArray(offset, length);
}

override public function readString():String {
return _content.readString();

}

The abstract decorator class is quite simple. It just delegates requests. Next we'll look at
creating concrete decorators.

Defining the First Concrete Decorator Class

Next, we define the first of the concrete decorator classes, Wr dReader . Notice that this class
extends the abstract decorator class, Abstract Reader Decor at or .

package com peachpit.aas3wdp. decoratorexanple.io {

i mport com peachpit.aas3wdp. decor at or exanpl e. i 0. | Reader;
i nport com peachpit.aas3wdp. decor at or exanpl e. i 0. Reader Decor at or;

public class WrdReader extends ReaderDecorator ({
private var _words: Array;

public function WrdReader (reader:| Reader) {
/1 Call the superclass constructor, passing the
/'l parameter along so that the _content property is
/'l set.
super (reader) ;

/1 Define a regular expression to find words.
var expression: RegExp = /[a-z]+/ig;

/'l Retrieve all the words fromthe decorated content
/1 by calling readString() and using the match()

/1 method with the regul ar expression. Note that

/1l readString() is inplenented in the abstract

/'l Reader Decor ator class.

_words = readString().match(expression);

}

/1 Override read() so it returns the next word fromthe
/1l _words array.
override public function read():String {

var word: String = _words[_i ndex++];

return word;

}

/1 Override readArray() so it returns a new array

/1 containing part of the _words array.

override public function readArray(offset:uint = 0, length:uint = 0):Array {
return _words.slice(offset, |ength);

}

override public function hasNext(): Bool ean {
return _index < _words.|ength;

}

This decorator allows you to wrap any other object that implements the | Reader interface, and it
changes the functionality while keeping the same interface. For example, the following code
illustrates this operation:

var reader:| Reader = new StringReader("one two three four");
/1 First display each character one at a tine.

whi | e(reader. hasNext()) {
trace(reader.read());

}

reader = new WyrdReader (reader);

/'l Next display one word at a tine.

whi | e(reader. hasNext ()) {
trace(reader.read());

}

Testing the Decorator

Next, we'll define a main class to test the example.

package {
inport flash.display. Sprite;

i mport com peachpit.aas3wdp. decor at or exanpl e. i 0. | Reader;
i nport com peachpit.aas3wdp. decor at or exanpl e.i 0. Stri ngReader ;
i nport com peachpit.aas3wdp. decor at or exanpl e. i 0. Wr dReader ;

public class ReaderDecorator Exanpl e extends Sprite {

public function Reader Decorator Exanpl e() {

var stringReader: StringReader =

new StringReader ("Lorem i psum ndol or

var wor dReader: Wr dReader = new Wor dReader (st ri ngReader);

traceReader (stri ngReader);
traceReader (wor dReader) ;

}

public function traceReader (reader:|
whi | e(reader. hasNext ()) {
trace(reader.read());

}

Debug the application, and you'll see that the first

Reader):voi d {

call to traceReader () displays each of the

sit

characters of the string from the Stri ngReader object. The second call to t raceReader () displays
each word using the Wr dReader object. Because t raceReader () is defined to accept an | Reader

parameter, either Stri ngReader (decorated) or Wor dReader (decorator) will work. Each object

implements the same interface, but they have different behaviors.

Defining an Additional Concrete Decorator Class

One of the advantages of the Decorator pattern is

Because each decorator can decorate any other decorator, there is no real limit to how many

decorators you can use. To illustrate this truth, we

that you can create many decorators.

Il next add a new decorator class called

com peachpit. aas3wdp. decor at or exanpl e. i 0. Li neReader . As the name implies, Li neReader

reads the content one line at a time.

package com peachpit.aas3wdp. decoratorexanple.io {

4

i mport com peachpit.aas3wdp. decor at or exanpl e. i 0. | Reader;
i nport com peachpit.aas3wdp. decor at or exanpl e. i 0. Reader Decor at or;

public class LineReader extends Abstract ReaderDecorator {
private var _lines:Array;

public function LineReader(reader:|Reader) {
super (reader) ;
var expression: RegExp = /[\n\r\f]/g;
_lines = readString().split(expression);

override public function read():String {
var line:String = _lines[_index++];
return |line;

override public function readArray(offset:uint = 0, length:uint = 0):Array {
return _lines.concat();

override public function hasNext(): Bool ean {
return _index < _lines.length;

The Li neReader class inherits from Abst r act Reader Decor at or . It accepts any reader type as a
parameter to the constructor, and it uses that parameter as the content which it then parses
into an array of lines.

With the addition of the Li ner Reader , we can next verify that it works by making a few edits to
the main class as follows:

package {
i nport flash.display. Sprite;
i mport com peachpit.aas3wdp. decor at or exanpl e. i 0. | Reader;
i nport com peachpit. aas3wdp. decor at or exanpl e. i 0. St ri ngReader ;
i mport com peachpit.aas3wdp. decor at or exanpl e. i 0. Wor dReader ;
i mport com peachpi t. aas3wdp. decor at or exanpl e. i 0. Li neReader;

public class ReaderDecorator Exanpl e extends Sprite {

public function DecoratorExanmpl e() {

var stringReader: StringReader = new StringReader ("Lorem ipsum ndolor sit ¢
var wor dReader: Wr dReader = new Wr dReader (stri ngReader);
var |ineReader: Li neReader = new LineReader(stringReader);

traceReader (stri ngReader);
traceReader (wor dReader) ;
traceReader (| i neReader) ;

public function traceReader(reader:|Reader):void ({
whi | e(reader. hasNext ()) {
trace(reader.read());

}

When you debug the application, you'll see that this time the third call to traceReader () outputs
each line of text. Because the original text has a newline character (\n), the output displays on
two lines.

Defining a New Decorated Type

Now that we have a decorated type in place, we've already seen that we can add as many
decorators as we want. However, we can also add more decorated types. All that's required is
that the new decorated type implements the same interface as all the existing decorated types
and decorators. To illustrate this point, we'll next define a new decorated type,

com peachpi t. aas3wdp. decor at or exanpl e. i 0. Fi | eReader . The Fi | eReader class allows you to
load the contents of a file. By default, it reads one character at a time similar to the
StringReader .

package com peachpit.aas3wdp. decoratorexanple.io {

i mport flash. net. URLLoader;
i mport flash. net. URLRequest ;
i mport flash.events. Event;

public class FileReader extends AbstractReader ({

private var _content: String;
private var _file: URLLoader;
private var _canRead: Bool ean = fal se;

public function FileReader(file:String) ({
/'l Use a URLLoader object to load the text froma
/1 file specified by the paraneter.
_file = new URLLoader ();
var request: URLRequest = new URLRequest (file);
_file.load(request);

/1 Call onData() when the content | oads.
_file.addEvent Li st ener (Event. COVPLETE, onDat a);
private function onData(event: Event):void {

/1l Set the content to the data | oaded fromthe file.
_content = String(_file.data);

/1l The object is read for reading.
_canRead = true;

/1 Dispatch an event notifying listeners that the
/1 object is ready.
di spat chEvent (new Event (Event. COWLETE)) ;

override public function isReady():Bool ean {
return _canRead;

}

override public function read():String {
return _content.char At (_i ndex++);

}

override public function readString():String {
return _content;

override public function hasNext(): Bool ean {
return _index < _content.length;

This class loads text from a URL. Because the data loads asynchronously, the i sReady() method
returns false until the data has been loaded. Otherwise, it functions very similarly to the
St ri ngReader class.

With the addition of this new decorated type, we can test it by redefining the main class to use
a Fi | eReader instance instead of a Stri ngReader instance. Because Fi | eReader is asynchronous,
we'll listen for a COWLETE event, decorate the object with a Wor dReader object, and then call

traceReader () .

Note

For this example to work, you'll need a text file called data.txt. You can save a text file
in the same directory to which you deploy the .swf from this example. In the text file,
you can add text such as the string passed to the StringReader constructor in the
earlier example.

package ({

inport flash.display. Sprite;

i mport com peachpit.aas3wdp. decor at or exanpl e. i 0. | Reader;

i mport com peachpit.aas3wdp. decor at or exanpl e. i o. Fi | eReader;
i mport com peachpit.aas3wdp. decor at or exanpl e. i 0. Wr dReader ;
inmport flash.events. Event;

public class ReaderDecoratorExanple extends Sprite {

public function ReaderDecorator Exanpl e() {

var fil eReader: FileReader = new Fil eReader("data.txt");
fil eReader. addEvent Li st ener (Event . COVWPLETE, onFil e);

private function onFile(event: Event):void {
var wor dReader: Wr dReader = new Wr dReader (Fi | eReader (event.target));
traceReader (wor dReader) ;

public function traceReader(reader:|Reader):void {
whi | e(reader. hasNext ()) {
trace(reader.read());

}

This code illustrates that the same decorator we used in conjunction with a St ri ngReader object
can be used with a FileReader object as well.

Decorating Decorators

To illustrate that decorators can potentially decorate decorators, we'll define a new decorator
class called com peachpit. aas3wdp. decor at or exanpl e. i 0. Sort edReader . Sort edReader allows
you to access the contents of a decorated reader in a sorted order.

package com peachpit.aas3wdp. decoratorexanple.io {

public class SortedReader extends AbstractReaderDecorator ({
private var _content: Array;

public function SortedReader(reader:| Reader) {
super (reader) ;

/1l Read all the content from the decorated reader as
/1l an array. Then sort that content.

_content = reader.readArray().concat();
_content.sort();

}

override public function read():String {
return _content[_index++];

}

override public function readArray(offset:uint = 0, length:uint = 0):Array {
var data:Array = new Array();
for(var i:uint = offset; i < length; i++) {
dat a. push(_content[i]);

}

return data;

override public function hasNext(): Bool ean {
return _index < _content.|ength;

We can see how this new decorator works by editing the main class as follows:
package {

inport flash.display. Sprite;

i nport com peachpit.aas3wdp. decor at or exanpl e. i 0. | Reader;

i mport com peachpit.aas3wdp. decor at or exanpl e. i o. Fi | eReader;

i mport com peachpit.aas3wdp. decor at or exanpl e. i 0. Wor dReader ;
i mport com peachpit.aas3wdp. decor at or exanpl e. i 0. Sort edReader ;
inmport flash.events. Event;

public class ReaderDecoratorExanple extends Sprite {

public function Decorator Exanpl e2() {
var fileReader: Fil eReader = new Fil eReader("data.txt");
fil eReader. addEvent Li st ener (Event. COVWPLETE, onFil e);

private function onFile(event: Event):void {
var wor dReader: Wr dReader = new Wr dReader (Fi | eReader (event.target));
var sortedReader: Sort edReader = new SortedReader (wor dReader);
traceReader (sort edReader);

public function traceReader(reader:|Reader):void {
whi | e(reader. hasNext ()) {
trace(reader.read());

}

When you test the application this time, all the words are traced in alphabetical order.

The Sort edReader decorator can decorate any object that implements the | Reader interface.
That means you can use a Sort edReader instance to decorate a Wor dReader instance as was
done in this example, but you can also use it to decorate a Li neReader or any other object that
implements | Reader .

MNEXT B+

Building Visual and Commutative Decorators

The preceding example gave you a chance to use the Decorator pattern in a fairly simple
example. For the most part, the decorators in the preceding example were not chainable; that
is, you couldn't meaningfully composite a Wr dReader within a Li neReader object. Although the
Sort edReader object does enable you to chain decorators, you must apply the Sort edReader as a
decorator last in the chain, which means that the decorators are not commutative. Decorators
are commutative if the following code yields effectively the same behavior, where A and B are
both decorators and decor at ed is the decorated object:

var a: A = new A(decorated);
var b:B = new B(a);
b. met hod();

var b:B = new B(decorated);
var a:A = new A(b);
a. net hod();

You can see that Sort edReader is not commutative because it matters what order it is applied in
the chain. For example, if you apply a Wor dReader as a decorator to a Sort edReader object, you
will get different results than if you apply a Sort edReader to a Wor dReader . This doesn't make
the preceding example bad or impractical. It simply illustrates that the Decorator pattern is
flexible enough to allow for chainable and non-chainable as well as commutative and non-
commutative decorators.

In this next example, you'll have a chance to see how to build visual decorators that are
chainable and commutative. This example decorates shapes (circles and rectangles) by making
them draggable and by adding bevels to them.

Defining the Common Interface

Define com peachpi t . aas3wdp. shapes. Abst r act Basi cShape as an abstract class that serves as
the common interface. In this example, we're using an abstract class with no implementation
rather than an interface because we want all the shapes (decorated and decorator) to be a
subtype of Sprite so that all the shapes can rely on the Sprite interface. There is no built-in
interface for Sprite or any sort of display object. Normally, it is best to use an actual interface
construct. However, in this case, we're going to use an abstract class in place of an interface for
two reasons:

1. The required interface is really long. Although this wouldn't excuse not using a proper
interface in a typical scenario, we want to simplify things here rather than occupying
several printed pages with the interface code.

2. All the concrete classes would have to extend Sprite in order to inherit the critical display
object behavior.

For our purposes, we want to create a unique type that implements the entire Sprite interface.

Therefore, the simplest thing to do is to create an abstract class that merely inherits from
Sprite . It doesn't require any further implementation. Again, we're making a minor exception

to our rule that all abstract classes must have some sort of implementation for this example
because of the special case it presents.

package com peachpit.aas3wdp. shapes {
inport flash.display. Sprite;
public class AbstractBasi cShape extends Sprite {

public function AbstractBasi cShape() {
}

Defining Concrete Decorated Classes

Next, we're going to create a few concrete decorated types. First we'll create a Circl e class.
Define com peachpi t. aas3wdp. shapes. Ci rcl e as a class that draws a circle.

package com peachpit.aas3wdp. shapes {

i mport com peachpit.aas3wdp. shapes. Abstract Basi cShape;
inport flash.display. Sprite;

public class Circle extends AbstractBasi cShape {

public function Circle(radius: Nunmber) {
var shape: Sprite = new Sprite();
addChi | d(shape) ;
shape. graphics.lineStyle(0, 0, 0);
shape. gr aphi cs. begi nFi | | (OXFFFFFF) ;
shape. graphi cs. drawGCi rcl e(radi us, radius,

radi us);
shape. graphics.endFi Il ();

The second decorated type is the Rect angl e class. Define
com peachpit. aas3wdp. decor at or exanpl e. shapes. Rect angl e as a class that draws a rectangle.

package com peachpit.aas3wdp. shapes {

i mport com peachpit.aas3wdp. shapes. Abstract Basi cShape;
inport flash.display. Sprite;

public class Rectangl e extends AbstractBasi cShape {

public function Rectangl e(shapeW dt h: Nunber, shapeHei ght: Nunber,
center:Bool ean = false) {

var shape: Sprite = new Sprite();
addChi | d(shape) ;

shape. graphi cs.lineStyle(0, 0, 0);
shape. gr aphi cs. begi nFi | | (OXFFFFFF) ;

shape. graphi cs. drawRect (center ? -shapeWdth / 2 : 0, center ? -shapeHeigt

/ 2 : 0, shapeWdth, shapeHeight);
shape. graphics.endFi Il ();

Both of these decorated types are fairly straightforward. They are basic shape types we can
decorate with the decorators we're about to create. Apart from the fact that each of these types
implement the same interface (which they inherit from Abst r act Basi cShape), there is nothing
about these classes that is unique to the Decorator pattern.

Defining Decorator Classes

Now we can create the decorator classes. Define

com peachpi t. aas3wdp. decor at or exanpl e. shapes. Dr aggabl eShape as a decorator class that
wraps a Abst ract Basi cShape object and makes it draggable.

package com peachpit.aas3wdp. shapes {

i mport com peachpit. aas3wdp. shapes. Abstract Basi cShape;
i mport flash. events. MouseEvent;
i nport flash.display. Sprite;

public class Draggabl eShape extends AbstractBasi cShape ({
private var _decorated: Abstract Basi cShape;

public function Draggabl eShape(Abstract Basi cShape: Abstract Basi cShape) {
_decorated = AbstractBasi cShape;
addChi | d(_decor at ed) ;
addEvent Li st ener (MouseEvent . MOUSE_DOMN, onMuseDown) ;
addEvent Li st ener (MobuseEvent . MOUSE _UP, onMuselp);

private function onMuseDown(event: MouseEvent):void {
startDrag();

private function onMuseUp(event: MouseEvent):void {
stopDrag();

The constructor for this class accepts an instance of a concrete basic shape and then acts as a
container for that object. By acting as a container, the drag behaviors added to the

Dr aggabl eShape object make the child (the decorated object) draggable by proxy.

Note

The DraggableShape implementation is purposefully simple. It does not take into
account the possibility that the user could move the mouse outside of the object while
dragging it. In such a case, the user could inadvertently cause the object to continue
to follow the mouse even after releasing the mouse button. We've opted not to show
the code to solve that issue because we want to keep this example as focused as
possible in demonstrating the Decorator pattern.

Next we'll create a second decorator. Our next decorator class is Bevel Shape , which adds a
bevel to the object. Define com peachpi t. aas3wdp. decor at or exanpl e. shapes. Bevel Shape as a
class that wraps a Abst r act Basi cShape object and applies a bevel filter.

package com peachpit.aas3wdp. shapes {
inmport flash.filters.Bevel Filter;

public class Bevel Shape extends AbstractBasi cShape {

public function Bevel Shape(shape: Abstract Basi cShape) ({
var filters: Array = shape.filters;
filters.push(new Bevel Filter());
shape.filters = filters;
addChi | d(shape) ;

Now we can test that the decorators are commutable and chainable. Define a main class that
adds and decorates shapes.

package {

i nport flash.display. Sprite;
i nport flash. display. Stage;

i nport flash. display. St ageScal eMbde;

i mport flash.display. StageAlign;

i mport com peachpit.aas3wdp. shapes. Abstract Basi cShape;
i mport com peachpit. aas3wdp. shapes. Circl e;

i nport com peachpit.aas3wdp. shapes. Rect angl e;

i mport com peachpit.aas3wdp. shapes. Dr aggabl eShape;

i nport com peachpit.aas3wdp. shapes. Bevel Shape;

public class ShapeDecorator Exanpl e extends Sprite {
public function DecoratorExanmpl e() {

st age. scal eMode = St ageScal eMode. NO_SCALE;
stage.align = StageAlign. TOP_LEFT;

var shape: Abst ract Basi cShape;

/'l Create a rectangle. Make it draggable first, then
/1 add a bevel .

shape = new Rectangl e(200, 200);
shape = new Draggabl eShape(shape);
shape = new Bevel Shape(shape);

shape. x = 200;
shape.y = 200;
addChi | d(shape) ;

/Il Create a circle. Apply the bevel, then make it
/1 draggabl e.

shape = new Circl e(100);

shape new Bevel Shape(shape);

shape new Dr aggabl eShape(shape);

addChi | d(shape) ;

Notice that, in the preceding example, it makes no difference if you apply the bevel first or
make the object draggable first. Both ways work equally well.

Adding Non-Commutative Decorators

Next, we'll add two non-commutative decorators to see the contrast with the first two
decorators. The first non-commutative decorator is Col or abl eShape . Define
com peachpi t.aas3wdp.

shapes. Col or abl eShape as follows.

package com peachpit.aas3wdp. shapes {
i mport flash. geom Col or Transform

public class Col orabl eShape extends AbstractBasi cShape {

public function Col orabl eShape(shape: Abst ract Basi cShape, red: Nunber,
green: Nunber, bl ue: Nunber) {
shape. transform col or Transform = new Col or Transforn{red, green, blue);
addChi | d(shape) ;

The second non-commutative decorator is Resi zabl eShape , which adds a resize handler to the
shape. The resize handler allows the user to click and drag to change the width and height of
the shape. Define com peachpi t. aas3wdp. shapes. Resi zabl eShape as follows.

package com peachpit.aas3wdp. shapes {

i mport com peachpit.aas3wdp. shapes. Abstract Basi cShape;
i mport com peachpit.aas3wdp. shapes. Col or abl eShape;
inmport flash.display.Sprite

i mport flash. events. MouseEvent;

inport flash.events. Event;

public class Resizabl eShape extends AbstractBasi cShape ({

private var _isResizing: Bool ean;
private var _resizer: AbstractBasi cShape;
private var _decorated: Abstract Basi cShape;

/1l Override the width and height setters so when you
/] attenpt to set the width and height you set the width
/1 and hei ght of the decorated object and nove the resizer
/1 handl e appropriately.
override public function set w dth(val ue: Nunber):void {
_decorated.wi dth = val ue
_resizer.x = val ue;

override public function set height(val ue: Nunber):void {
_decor at ed. hei ght = val ue;
_resizer.y = val ue;

public function Resizabl eShape(Abstract Basi cShape: Abstract Basi cShape) ({
_decorated = Abstract Basi cShape;
addChi | d(_decorat ed) ;

/'l Create a new rectangle that is centered to serve
/'l as the resize handle. Use Col orabl eShape to make
/'l the rectangle gray. Then nove the rectangle to

/1 the lower-right corner of the decorated shape
_resizer = new Rectangl e(10, 10, true);

_resizer = new Col orabl eShape(_resizer, .8, .8, .8);
_resizer.x = _decorated.w dth;

_resizer.y = _decorated. hei ght;

addChi | d(_resi zer);
_resizer.addEvent Li st ener (MouseEvent . MOUSE_DOWN, onMouseDown) ;

_resizer. addEvent Li st ener (MouseEvent . MOUSE_UP, onMouselUp);
}
/1 When the user clicks on the resize handle, make it
/1 draggable, start listening for enterFrane events.
private function onMuseDown(event: MouseEvent):void {
addEvent Li st ener (Event. ENTER FRAME, onEnter Frane);
_resizer.startDrag(true);
event . st opl medi at ePr opagati on();

}

/1 \When the user releases the nouse click, stop naking
/1 the resize handle draggable, and stop listening for
/1l enterFrane events.

private function onMuseUp(event: MouseEvent):void {

_resizer.stopDrag();
renoveEvent Li st ener (Event. ENTER _FRAME, onEnt er Frane);

private function onEnterFrane(event: Event):void {
/1 Don't allow the user to nove the resize
/1 handl e in negative directions.
if(_resizer.x < 0)
_resizer.x = 0;
}

if(_resizer.y < 0) {
_resizer.y = 0;
}

/1 Change the wi dth and height of the decorated
/1 object to correspond to the resize handle x
/1 and y coordi nate val ues.

_decorated.width = resizer.x;

_decorated. height = resizer.y;

The Resi zabl eShape object wraps decorated objects much like the other decorators we've seen
so far in this example. However, it also draws a resize handle within itself. As the user moves

the resize handle, the Resi zabl eShape instance adjusts the width and height of the decorated
object.

Now that we've created two additional decorators, let's modify the main class so that it uses the
two new decorators:

package {

inport flash.display. Sprite;

i mport flash. display. Stage;

i mport flash. display. StageScal eMode;

i mport flash. display. StageAlign;

i mport com peachpit.aas3wdp. shapes. Abstract Basi cShape;
i mport com peachpit.aas3wdp. shapes. Circl e;

i nport com peachpit.aas3wdp. shapes. Rect angl e;

i mport com peachpit.aas3wdp. shapes. Dr aggabl eShape;
i mport com peachpit.aas3wdp. shapes. Bevel Shape;

i mport com peachpit.aas3wdp. shapes. Col or abl eShape;
i mport com peachpit.aas3wdp. shapes. Resi zabl eShape;

public class ShapeDecorator Exanpl e extends Sprite {
public function DecoratorExanpl e() {

st age. scal eMbde = StageScal eMbde. NO_SCALE;
stage.align = StageAlign. TOP_LEFT;

var shape: Abst r act Basi cShape;
shape = new Rectangl e(200, 200);
shape = new Draggabl eShape(shape);

shape = new Bevel Shape(shape);

shape = new Col or abl eShape(shape, 0, 0, 0);
shape. x = 200;

shape.y = 200;

addChi | d(shape) ;

shape = new Circl e(100);

shape = new Bevel Shape(shape);
shape = new Draggabl eShape(shape);
shape = new Resi zabl eShape(shape);

addChi | d(shape) ;

When you test this version of the application, you'll notice that although the rectangle is blackas
you'd expect because of the Col or abl eShape decoratorit no longer displays the bevel because

the color t

ransform was applied after the bevel. Secondly, you'll notice that as you drag the

circle, the resize handle does not move with it. That is because the Resi zabl eShape decorator
was applied aft er the Dr aggabl eShape decorator.

Next, we can change the order in which the new decorators are applied to illustrate that the
order affects the behavior:

package ({

i nport
i mport

flash. display. Sprite;
fl ash. di spl ay. St age;

i mport flash. display. StageScal eMode;

i mport

fl ash. di spl ay. St ageAl i gn;

i mport com peachpit.aas3wdp. shapes. Abstract Basi cShape;
i mport com peachpit.aas3wdp. shapes. Circl e;

i nport com peachpit.aas3wdp. shapes. Rect angl e;

i mport com peachpit.aas3wdp. shapes. Draggabl eShape;

i mport com peachpit.aas3wdp. shapes. Bevel Shape;

i mport com peachpit.aas3wdp. shapes. Col or abl eShape;

i mport

public
pub

com peachpi t. aas3wdp. shapes. Resi zabl eShape;

cl ass Decor at or Exanpl e extends Sprite {
lic function DecoratorExanpl e() {

st age. scal eMbde = StageScal eMbde. NO_SCALE;
stage.align = StageAlign. TOP_LEFT;

var shape: Abst ract Basi cShape;

shape = new Rectangl e(200, 200);

shape = new Draggabl eShape(shape);
shape = new Col or abl eShape(shape, 0, 0, 0);
shape = new Bevel Shape(shape);

shape. x = 200;
shape.y = 200;
addChi | d(shape) ;

shape new Circl e(100);

shape new Bevel Shape(shape);
shape = new Resi zabl eShape(shape);
shape = new Draggabl eShape(shape);
addChi | d(shape) ;

This time, when you test the application, you'll see that the bevel is preserved and that the
resize handle moves with the shape. This is because the decorators have been applied in the

correct order. The Col or abl eShape and Resi zabl eShape decorators are perfectly valid, but they
are non-commutative.

MNEXT B

e rrcy NExT

Summary

The Decorator pattern allows you to add and modify behavior using composition rather than
inheritance. The key advantages of Decorator patterns are that you can add and change
behavior at runtime, and you can potentially chain together behaviors without having to write
new subclasses for each permutation.

e prcy

e rrcy NExT

Chapter 10. Command Pattern

In This Chapter

Understanding the Command Pattern 137

Building a Simple Command Application 139

Making Commands Undoable and keeping Command histories 146

Building an Undoable Application 148

Building a Redoable Application 153

Using Commands to Build a Proximity game 154

Summary 168

The Command pattern encapsulates functionality into a class. Although the pattern might
appear simplistic, don't let its simplicity deceive you. The Command pattern is a powerful way
for enabling a range of features that would be difficult to implement using a different approach.
Here are some of the most common uses of the Command pattern:

e Building highly reusable components. The Command pattern decouples the functionality
from the initiator. Components that use Command pattern objects are highly extensible
because they can employ any object that implements the correct interface.

e Queuing requests. When operations must occur in sequence, they must be queued.
Because the Command pattern encapsulates the request into an object, it's possible to
queue the requests by placing them in an array or similar collection.

e Supporting undo and redo. Because Command pattern objects can be stored in memory,
it's possible to keep a history of which operations have occurred. By implementing an
undo() and/or redo() method, it's possible to add undo and redo features to an application
without difficulty.

¢ Making transactional or "wizard" operations. An operation often consists of many steps. If
any step fails or if the user cancels at any point, it is necessary to roll back any changes
that have occurred. The Command pattern enables you to defer execution or to roll back
operations by calling the undo() method of a succession of objects.

e prcy

e rrcy NExT

Understanding the Command Pattern

In its purest form, the Command pattern consists of six elements.

e Command interface
e Concrete command
e Receiver

e Client

e Invoker

The following sections look at these elements in detail.

The Interface

In the simplest form, the command interface defines just one method, often called execute() by
convention. The execut e() method is responsible for running the requested operation. That
means that in the simplest form, the interface looks like this:

package com peachpit.aas3wdp. conmands {
public interface | Comuand {
function execute():void;

}

The command interface is essential to the Command pattern because it allows all implementing
command types to use the same interface even though they have different implementations.
That way, commands can be called without the calling code having to know much (if anything)
about the specific command. Just like you can flip a switch to turn on and off an electrical device
without having to know the details of how the particular electrical device operates, the
command interface provides a consistent way to operate programmatic objects that might have
disparate modes of operation behind the scenes.

This | Conmand interface is all that is necessary for a basic command. However, sometimes we
want command classes to support the possibility of undoable and redoable commands. For that
reason, we can define two subtypes called | Undoabl eConmand and | Redoabl eConmand. Here's

I Undoabl eConmand.

package com peachpit.aas3wdp. commands {
public interface | Undoabl eCormand extends | Conmand {
function undo(): void;

}

And now here's the | Redoabl eCommand interface:

package com peachpit.aas3wdp. commands {
public interface | Redoabl eCormand extends | Conmand {
function redo():void;

}

You'll notice that both of these interfaces extend | Command, meaning that all | Undoabl eConmmand
and | Redoabl eCommand implementing classes also pass the test as implementing | Command.

We'll start by looking at examples that implement just the | Command interface. Later in the
chapter, we'll look at a sample application that uses | Undoabl eCommand and | Redoabl eConmand.

The Concrete Command and Receiver

The concrete command is the class that implements the interface in a useful way by defining the
execut e() method so that it actually runs an operation.

The concrete command usually requires a receiver, which is the object that is the target of the
operation. Although it's never strictly necessary, in many cases, the receiver reference is passed
to the concrete command constructor. The following is an example of a concrete command that
rotates a display object clockwise. In this case, the display object is the receiver.

package com peachpit.aas3wdp. conmandexanple {
i mport com peachpit.aas3wdp. conmands. | Cormand;
public class RotateC ockwi seCommand i npl enents | Comand {
private var _reveiver: D splaybject;

public function RotateC ockwi seConmand(receiver: Di spl ayChject) ({
_receiver = receiver;

}

public function execute():void {
_receiver.rotation += 20;

}

The Client and Invoker

The client is the object that instantiates the command object, and the invoker is the object that
calls the execut e() method of the command object. The client might be the main class of an
application, and the invoker might be a button. There are many possible scenarios, and as you'll
see throughout the examples in this chapter, there are no definitive rules for what types of
objects can be clients and invokers. In fact, in some cases the client and invoker might be the
same object.

MEXT B

Building a Simple Command Application

Now that you've had a chance to read the theory behind the Command pattern, let's take a look
at a sample application that uses the pattern.

In the sample application in this chapter, you'll use four commands to scale and rotate a display
object. Each of the commands is then associated with a draggable display object. By dragging
the display objects and dropping them on a button, you'll effectively re-wire the button to apply
the new commands associated with the draggable display objects, illustrating the extensibility
and interoperability of commands.

This application uses an interface and classes from the AAS3WDP library. Specifically, the
application uses the | Conmand , | Undoabl eConmand , and | Redoabl eConmand interfaces as well as
the Basi cBut t on class, which are defined in the AAS3WDP library. You'll want to add the
AAS3WDP library to the classpath for the project you configure for this example application.

Creating the Commands

First we'll create the command classes this application uses. The first of these commands is the
Rot at eCl ockwi seConmand class. Define the
com peachpi t. aas3wdp. conmandexanpl e. conmands. Rot at eCl ockwi seCommand class as follows:

package com peachpit.aas3wdp. conmandexanpl e. commands {

i nport com peachpit.aas3wdp. conmands. | Cormand;
i mport flash.display. D splayQbj ect;

public class RotateC ockwi seConmand i npl enents | Command{
private var _receiver: D splayQoject;

public function RotateC ockwi seConmand(receiver: Di spl ayCbj ect) {
_receiver = receiver;

}

public function execute():void {
_receiver.rotation += 20;

}

In this command, the execut e() method increments the rot ati on property of the receiver object
by 20, effectively rotating the object clockwise.

Next, we'll create a command to rotate the object counterclockwise. Define the
com peachpi t . aas3wdp. conmandexanpl e. conmands. Rot at eCount er cl ockwi seConmand class as

follows:

package com peachpit.aas3wdp. conmmandexanpl e. commands {

i mport com peachpit.aas3wdp. conmands. | Cormand;
i nport flash. display. D splayObj ect;

public class RotateCounterclockwi seCommand inplenents | Conmand {
private var _receiver: D splayObject;

public function RotateCounterclockwi seComand(receiver: D splayObj ect) {
_receiver = receiver;

}

public function execute():void {
_receiver.rotation -= 20;

}

You'll notice that the Rot at eCount er cl ockwi seConmand class looks almost identical to the
Rot at eCl ockwi seConmand class except that it decrements the receiver object's r ot ati on property
by 20 rather than incrementing it.

Now we'll create a command class for scaling the receiver object up. Define the
com peachpit. aas3wdp. commandexanpl e. commands. Scal eUpCommand class as follows:

package com peachpit.aas3wdp. conmrandexanpl e. commands {

i mport com peachpit.aas3wdp. conmands. | Cormand;
i mport flash.display. D splayQbj ect;

public class Scal eUpComand i nplenents | Command {
private var _receiver: D splayQoject;

public function Scal eUpComrand(receiver: Di spl ayObject) {
_receiver = receiver;

}

public function execute():void {
_receiver.scaleX += .1;
_receiver.scaleY += .1;

In this class, the execut e() method increments the scal eX and scal eY properties of the receiver
object by .1, causing the object to scale up.

And now we'll define a command class that scales the object down. Define the
com peachpi t . aas3wdp. conmandexanpl e. conmands. Scal eDownConmand class as follows:

package com peachpit.aas3wdp. conmrandexanpl e. commands {

i mport com peachpit.aas3wdp. conmrands. | Cormand;
i mport flash.display. D splayQbj ect;

public class Scal eDownComrand i npl enents | Command {
private var _receiver: D splayQoject;

public function Scal eDownComrand(receiver: Di spl aybj ect) {
_receiver = receiver;

}

public function execute():void {

_receiver.scalexX -= .1;
_receiver.scaleY -= .1;

This command works just like the Scal eUpConmand except that it decrements the scal eX and
scal eY properties.

Creating a Receiver Type

The commands we defined in the preceding section require a receiver object. We'll now create a
class whose instances we can use as receiver objects for the commands. The receiver objects
must be of type Di spl ayObj ect , so our receiver type subclasses f | ash. di spl ay. Shape . We'll
define com peachpi t. aas3wdp. cormandexanpl e. shapes. Rect angl e , so that it draws a rectangle
you can use as the receiver for the commands.

package com peachpit.aas3wdp. commandexanpl e. shapes {
i nport flash. di spl ay. Shape;
public class Rectangl e extends Shape {
public function Rectangl e(col or:uint, side:Nunber) {
graphics.lineStyle();
graphi cs. beginFill (color, 1);

graphics.drawRect (-side / 2, -side / 2, side, side);
graphics.endFill ();

Creating a Button

Our application requires a button that we can wire up with a command. In order to accomplish

this we'll use a subclass of Basi cButt on from the AAS3WDP library.

Here we define a new subclass of Basi cButton called
com peachpi t. aas3wdp. commandexanpl e. control s. CormandBut t on . This class accepts a command
and calls the execut e() method when clicked.

package com peachpit.aas3wdp. conmandexanpl e.controls {

i mport com peachpit.aas3wdp. control s. Basi cButton;
i mport com peachpit.aas3wdp. conmmands. | Cormand;
i mport flash.events. MouseEvent;

public class CommandButton extends BasicButton {
private var _conmand: | Conrmand;

public function set command(val ue: | Command): void {
_command = val ue;

public function ComrandButton(label: String) {
super (| abel) ;
addEvent Li st ener (MbuseEvent . CLI CK, ond i ck);

private function ondick(event: MouseEvent):void {
if(_command !'= null) {
_comand. execut e() ;

}

The ConmmandBut t on constructor accepts a label parameter just like Basi cButton , and it passes
that along to the super constructor. It also automatically listens for mouse clicks. When the user
clicks the button, it attempts to call the execut e() method of a command object that was
passed to it with a setter method. This means that we can assign different command objects to
the button, and because the button is programmed to an interface (I Cormand) rather than a
specific implementation, the interface can run the commands successfully even if they have very
different implementations.

Creating the Command Containers

For this application, we're going to associate instances of each command type with a draggable
display object, which we'll call a command container. For this purpose, we'll define a class
called com peachpi t. aas3wdp. conmandcont ai ner s. ConmandCont ai ner . This class is a drag-and-
drop Sprite subclass that has a command object and applies it to a CormandBut t on instance if it
is dropped over the button.

package com peachpit.aas3wdp. commandexanpl e. conmandcont ai ners {

inport flash.display. Sprite;
i mport flash. events. MouseEvent;

i mport flash.text. TextField;
i mport flash. display. D splayObj ect;
i mport com peachpit.aas3wdp. conmands. | Cormand;
i mport com peachpit.aas3wdp. commandexanpl e. control s. ConmandBut t on;

public class CommandCont ai ner extends flash.display.Sprite {

private var _conmmand: | Conmrand;
private var _x: Nunber;
private var _y: Nunber;

public function ComandCont ai ner (comrand: | Command, | abel Text: String,
xVal ue: Nunber, yVal ue: Nunber) {

/Il Store a reference to the command object.
_command = comand;

/'l Draw a rectangl e.
graphics.lineStyle();

gr aphi cs. begi nFi I | (OXxFFFFFF, 1);
graphi cs. drawRect (0, 0, 50, 50);
graphics.endFill ();

/[l Create a text field to use as the | abel.
var | abel: TextField = new TextField();

| abel .wi dth = 50;

| abel . hei ght = 50;

| abel .multiline = true;

| abel . wordWap = true;

| abel . text = | abel Text;

| abel . sel ectabl e = fal se;

addChi I d(I abel) ;

/1l Listen for nouse events to enable the

/'l drag-and-drop behavior.

addEvent Li st ener (MobuseEvent . MOUSE_DOWN, onMouseDown) ;
addEvent Li st ener (MobuseEvent . MOUSE _UP, onMuselUp);

X = xVal ue;

_y = yVal ue;
X = _X;
y = _Y;

private function onMouseDown(event: MouseEvent):void {
startDrag();

private function onMuseUp(event: MouseEvent):void {
stopDrag();
X = _X;
y = _Y;

/1l CGet the current drop target using the inherited
/1 dropTarget property. (See ActionScript 3.0

/' docunentation for details on the property.)
var target: D splayoject = dropTarget;

/1 The drop target can sonetinmes be an object within

/1 the object for which you want to test. For

/1l the target in this case could be a | abel inside

/1 a conmand button rather than the command button

/1l itself. Use a while statenent to get the parent

/1 and assign it to the target variable in those

/'l cases.

while(target '= null && !(target is CommandButton) && target != root) {
target = target.parent;

}

/1 1f the target is a conmand button then set the

/1 command of the button to the command obj ect

/] associated with this container.

if(target is ComuandButton) {
CommandBut t on(target). comand = _comand;

}

The container constructor requires that you associate the container with a command object. The
container is draggable. When the user drops the container on a command button, it then sets
the command property of the button to the associated command object.

Testing the Application

Finally, we'll define the main class such that it adds an instance of Rect angl e and ConmandBut t on
as well as four instances of CormandCont ai ner , each with one of the command objects.

package {

inport flash.display. Sprite;

i mport com peachpit.aas3wdp. conmandexanpl e. conmandcont ai ner s. ConmandCont ai ner ;

i mport com peachpit.aas3wdp. commandexanpl e. shapes. Rect angl e;

i mport com peachpit.aas3wdp. conmandexanpl e. conmands. Rot at eCl ockwi seCommand,;

i mport com peachpit.aas3wdp. commandexanpl e. conmands. Rot at eCount er cl ockwi seCommar
i mport com peachpit.aas3wdp. commandexanpl e. commands. Scal eUpConmand,;

i mport com peachpit.aas3wdp. conmandexanpl e. commands. Scal eDownConmrand;

i nport com peachpit.aas3wdp. cormandexanpl e. control s. ConmandBut t on;

public class CommandExanpl e extends Sprite {
public function CommandExanple() {
var rectangl e: Rectangl e = new Rect angl e(OxFFFFFF, 50);

rectangl e.x = 200;
rectangle.y = 200;

addChi | d(rectangl e);

var button: ConmandButton = new ConmandButton("apply conmand");
addChi | d(button);
button.y = 250;

var cont ai ner: CommandCont ai ner = new CommandCont ai ner (new
Rot at el ockwi seCommand(rectangle), "rotate clockw se", 0, 0);
addChi | d(cont ai ner);
cont ai ner = new CommandCont ai ner (new Rot at eCount er cl ockwi seConmand
(rectangle), "rotate counter-clockw se", 0, 55);
addChi | d(cont ai ner);

contai ner = new CommandCont ai ner (new Scal eUpConmand(r ect angl e), "scal e up"
0, 110);

addChi | d(cont ai ner);

cont ai ner = new CommandCont ai ner (new Scal eDownCommrand(r ect angl e),

"scal e down", 0, 165);
addChi | d(cont ai ner);

When you test the sample application, you can drag and drop one of the command containers
on the command button instance. That action wires the command button with the corresponding
command object. Clicking the button then runs the command. For example, if you drag and
drop the rotate clockwise container over the command button and then click the button, the
rectangle will rotate clockwise.

MNEXT B

e rrcy NExT

Making Commands Undoable and Keeping Command
Histories

One of the optional yet powerful features of a command object is that it can enable undoable
actions. You'll remember that we've defined the | Undoabl eConmand interface with an undo()
method earlier in this chapter If we have our command classes implement | Undoabl eConmand,
we can define an undo() method.

The undo() method can be simple or complex, depending on the complexity of the operation in
the execut e() method and the amount of state (how many properties) that must be
remembered. Consider the simplest case in which the operation can be undone by simply
negating the statement in the execut e() method. For example, the execut e() method of the

Rot at eCl ockwi seCommand class from the previous section increments the rotation property of the
receiver object by 20. Therefore, the undo() method ought to decrement the rotation property
by 20. The following code defines the undo() method for an undoable version of the

Rot at eCl ockwi seConmand class:

public function undo():void {
_receiver.rotation -= 20;

}

The Rot at eCl ockwi seConmand example is fairly straightforward. If the object was rotated 20
degrees clockwise, the operation is clearly undone by rotating the object counterclockwise by 20
degrees. There is no additional state that the command class has to track. However, consider an
example with more complex state options. For example, a RandomvbveConmmand class can move an
object to random coordinates. (For simplicity, we'll define the class so it always selects
coordinates within the range defined by a 400-by-400 rectangle with the upper-left corner at
0,0.)

public class RandomvbveConmand inplenents | Command {
private var _receiver:D splayject;

public function RandomVbveCommand(recei ver: Di spl ayObject) {
_receiver = receiver;

}

public function execute():void {
var X: Nunber = Math.random() * 400;
var y: Nunber = Math.random() * 400;
_receiver.x X;
_receiver.y y;

In the RandomvbveCommand example, the command object needs to track the previous x and y

coordinates of the object in order to implement an undo() method. The following code shows
how to implement an undoable version of the Random\vbveConmand class:

public class RandoniMoveConmand inpl enents | Undoabl eConmand {

private var _receiver: D splayoject;
private var _x: Numnber;
private var _y: Nunber;

public function RandomVbveComand(recei ver: Di splayObject) {
_receiver = receiver;

}

public function execute():void {
_X = _object.x;
_y = _object.y;
var x:Nunber = Math.random() * 400;
var y: Nunber = Math.random() * 400;
_receiver.x = Xx;
_receiver.y =vy;

}

public function undo():void {
_receiver.x = _X;
_receiver.y = y;

Of course, by itself, an undoable command isn't of much use. You can always store a reference
to the most recent command, and that way you can add one level of undo to an application.
However, most frequently you'll want to have more than one level of undo in an application. To
accomplish that, you'll need to keep track of the command history.

Keeping track of command history isn't difficult. It requires an array and a cursor you can move
to point to a specific command in the history. For that purpose, it's useful to define a

CommandSt ack class. For the CormandSt ack class, we'll assume that you always want to keep track
of command history globally within an application, and we'll therefore write the class as a
Singleton class (described in Chapter 4, "Singleton Pattern™). If you wanted to keep track of
command histories within unique areas of an application, you could change the implementation
of the CommandSt ack class slightly. The following is the CommandSt ack class defined in the

com peachpi t. aas3wdp. conmands package:

package com peachpit.aas3wdp. conmands {
i mport com peachpit.aas3wdp. conmands. | Cormand;
public class ConmandStack {
private static var _instance: CommandSt ack;
private var _conmands: Array;

private var _index: uint;

public function CommandSt ack(paraneter: Singl etonEnforcer) {

_conmands = new Array();
_index = 0;

public static function getlnstance(): CormandSt ack {
if(_instance == null) {
_instance = new CommandSt ack(new Singl et onEnforcer());

}
return _instance;
}
public function putComrmand(comuand: | Command): voi d {
_comands[_i ndex++] = conmand;
_commands. splice(_index, _commands.length - _index);

}

public function previous():I|Comand {
return _commands[--_index];

}

public function next():1Comuand {
return _conmands|[i ndex++];

}

public function hasPrevi ousCommands(): Bool ean {
return _index > O;

public function hasNext Commands(): Bool ean {
return _index < _commands. | engt h;

}

class Singl etonEnforcer {}

Building an Undoable Application

In this exercise, we'll update the previous sample application so that all the commands are
undoable. This requires the following changes:

e Edit each of the command classes so that they implement | Undoabl eConmand .

¢ Edit the command button so that it adds executed commands to a command stack.

e Add an undo button to the main class.

Making Undoable Commands

First, all the command classes must now implement | Undoabl eCommand . We'll start with
Rot at eCl ockwi seCommand :

package com peachpit.aas3wdp. conmandexanpl e. commands {

i nport com peachpit.aas3wdp. conmmands. | Undoabl eCommand,;
import flash.display.D splayQbj ect;

public class RotateC ockwi seCommand i npl enents | Undoabl eConmand{
private var _receiver: D splayQject;

public function RotateC ockwi seCommand(receiver:Di splayCbject) ({
_receiver = receiver;

}

public function execute():void {
_receiver.rotation += 20;

}

public function undo():void {
_receiver.rotation -= 20;

}

Next we'll make a similar edit to Rot at eCount er cl ockwi seConmand :

package com peachpit.aas3wdp. conmandexanpl e. commands {

i mport com peachpit. aas3wdp. commands. | Undoabl eCommand
i mport flash.display. D splayQbj ect;

public class RotateCounterclockw seConmand i npl enments | Undoabl eCommand {

private var _receiver: D splayObject;

public function RotateCounterclockw seConmand(recei ver: D splayhject) {
_receiver = receiver;
}

public function execute():void {
_receiver.rotation -= 20;
}

public function undo():void {
_receiver.rotation += 20;
}

Likewise we'll edit Scal eUpConmand :
package com peachpit.aas3wdp. conmandexanpl e. commands {

i mport com peachpit.aas3wdp. conmands. | Undoabl eCommrand;
i mport flash.display. D splayQbj ect;

public class Scal eUpCommand i npl ements | Undoabl eConmand {
private var _receiver: D splayQbject;

public function Scal eUpComrand(receiver: Di spl ayObject) {
_receiver = receiver;
}

public function execute():void {
_receiver.scal eX += . 1;
_receiver.scaleY += .1;

}

public function undo():void {
_receiver.scaleX -= .1;
_receiver.scaleY -= .1;

And then we'll edit Scal eDownConmand :
package com peachpit.aas3wdp. conmandexanpl e. commands {

i nport com peachpit. aas3wdp. commands. | Undoabl eConmmand,;
i nport flash. display. D splayObj ect;

public class Scal eDownConmand i npl enents | Undoabl eConmand {

private var _receiver: D splayject;

public function Scal eDownConmmrand(receiver: Di spl ayObj ect) {
_receiver = receiver;

}

public function execute():void {
_receiver.scaleX -= .1;
_receiver.scaleY -= .1;

}

public function undo():void {
_receiver.scaleX += .1;
_receiver.scaleY += .1;

Each of the changes in the command classes amounts to the same thing: implement
| Undoabl eConmand rather than | Command , and add the undo() method so that it reverses the
effect of the execut e() method.

Recording Command History

We can next modify the command button so that it records the command history. We'll
accomplish this by using ConrmandSt ack . Each time the command button calls the execut e()
method of a command object, it will also add the command object to the stack.

package com peachpit.aas3wdp. conmandexanpl e.controls {
i mport com peachpit.aas3wdp. control s. Basi cButton;
i nport com peachpit.aas3wdp. conmands. | Conmand;
i mport flash. events. MouseEvent;
i mport com peachpit.aas3wdp. commands. CommandSt ack;
public class CommuandButton extends BasicButton {
private var _conmmand: | Conmrand;
public function set comrand(val ue: | Command): void {

_command = val ue;

public function CommandButton(label:String) {
super (| abel);
addEvent Li st ener (MouseEvent . CLI CK, onC i ck);

private function ondick(event: MouseEvent):void {

if(_command != null) {
_comand. execut e() ;

CommandSt ack. get I nst ance() . put Command(_conmand) ;

With this change, we now have a history of the commands that have been executed.

Adding an Undo Button

Next we add an undo button to the main class. The undo button-click event handler retrieves
the last-run command. It then tests to see whether it is an undoable command. If so, it calls
undo() .

package {

i nport flash.display. Sprite;
i mport com peachpit.aas3wdp. commandexanpl e. commandcont ai ner s. CommandCont ai ner ;
i nport com peachpit. aas3wdp. commandexanpl e. shapes. Rect angl e;
i mport com peachpit.aas3wdp. commandexanpl e. commands. Rot at eCl ockwi seConmrand,;
i mport com peachpit. aas3wdp. commandexanpl e. conmands. Rot at eCount er cl ockwi seConmar
i mport com peachpit.aas3wdp. conmandexanpl e. commands. Scal eUpConmand;
i mport com peachpit.aas3wdp. conmandexanpl e. control s. ConmandBut t on;
i mport com peachpit.aas3wdp. control s. Basi cButton;
i mport com peachpit.aas3wdp. commandexanpl e. conmands. Scal eDownCommrand;
i mport flash. events. MbuseEvent;
i mport com peachpit.aas3wdp. commands. CommandSt ack;
i mport com peachpit.aas3wdp. commands. | Command;
i mport com peachpit.aas3wdp. commands. | Undoabl eConmand;

public class CommandExanpl e extends Sprite {

public function CommandExanpl e() {

var rectangl e: Rectangl e = new Rect angl e(OXFFFFFF, 50);
rectangl e.x = 200;

rectangle.y = 200;

addChi | d(rectangl e);

var button: ConmandButton = new ConmandButton("apply conmmand");
addChi | d(button);
button.y = 250;

var contai ner: CommandCont ai ner = new ComandCont ai ner (new
Rot at el ockwi seComrmand(rectangle), "rotate clockw se", 0, 0);
addChi | d(cont ai ner);
contai ner = new ConmandCont ai ner (new Rot at eCount er cl ockwi seComand
(rectangle), "rotate counter-clockw se", 0, 55);
addChi | d(cont ai ner);
contai ner = new ConmmandCont ai ner (new Scal eUpCommand(rectangle), "scale up"
0, 110);
addChi | d(cont ai ner);
contai ner = new ConmandCont ai ner (new Scal eDownConmand(r ect angl e),

"scal e down", 0, 165);
addChi | d(cont ai ner);

var undoButton: Basi cButton = new BasicButton("undo");
addChi | d(undoBut t on) ;

undoButton.y = 280;

undoBut t on. addEvent Li st ener (MouseEvent . CLI CK, onUndo) ;

}

private function onUndo(event: MuseEvent):void {
var stack: ConmandStack = CommandSt ack. getlnstance();
i f(stack. hasPrevi ousCommands()) {
var comand: | Command = stack. previous();
i f(command is | Undoabl eCommand) {

| Undoabl eCommand(command) . undo() ;
}

With this revision, you can now test the application. As you run commands, you can also undo
them by clicking the undo button.

MNEXT B+

Building a Redoable Application

As is true with making commands undoable, making commands redoable is a matter of
implementing the | Redoabl eConmand interface. Next we'll make the commands in our example
application redoable. Remember that the redo() method effectively redoes whatever was
undone by the undo() method. In the simplest cases, the redo() method can simply call the
execut e() method. For more complex operations, calling the execut e() method won't work
correctly. In those cases, it is necessary to work out what steps are necessary to redo the state
changes and then implement the redo() method accordingly.

To modify our application to support redoable commands, we'll do the following:

e Modify the command classes so they implement the | Redoabl eConmand .

e Add a redo button to the main class.

Implementing IRedoableCommand

First we'll implement | Redoabl eConmand in all the command classes. So that all our commands
are both redoable and undoable, the commands must implement both | Undoabl eConmand and
| Redoabl eCommrand . Here's Rot at eCl ockwi seCommand :

package com peachpit.aas3wdp. conmandexanpl e. commands {

i mport com peachpit.aas3wdp. commands. | Undoabl eConmraind,;
i mport com peachpit.aas3wdp. commands. | Redoabl eConmand;
i mport flash. display. D splayObj ect;

public class RotateC ockwi seCommand i npl ements | Undoabl eComrand, | Redoabl eConr
private var _receiver: D splayObject;

public function RotateC ockwi seCommand(receiver: D splayObject) {
_receiver = receiver;

}

public function execute():void {
_receiver.rotation += 20;

}

public function undo():void {
_receiver.rotation -= 20;

}

public function redo():void {
execute();

}

The remaining command classes follow suit. In each case, we import | Redoabl eConmand , add it
to the implements list, and define a redo() method that simply calls execute() .

Adding the Redo Button

Next we'll add a redo button to the main class. We do this by first adding the following code to
the constructor:

var redoButton: BasicButton = new BasicButton("redo");
addChi | d(redoButton);

redoButton.y = 310;

redoBut t on. addEvent Li st ener (MouseEvent . CLI CK, onRedo) ;

This code adds the redo button. We still have to define the onRedo() method to handle the click
event. This is our onRedo() method:

private function onRedo(event:MuseEvent):void {

var stack: CommandSt ack = ConmandSt ack. get | nstance();
i f (stack. hasNext Conmands()) {
var command: | Command = stack. next();
i f(command is | Redoabl eCommand) {
| Redoabl eCommand(commrand) . r edo() ;

}

This code is almost identical to t he onUndo() method except that it tests that the class passes
the | Redoabl eConmand test. Then it calls the redo() method.

With those few edits, the application now implements redoable commands. Clicking the redo
button will re-apply the next command in the command stack.

MNEXT B

Using Commands to Build a Proximity Game

The following sample application uses the Command pattern to build a game called Proximity.
The game consists of a grid of hexagonal pieces arranged so that each piece is adjacent to 6
pieces (unless the piece is on the edge). The game generally requires two or more players. The
game play is as follows.

5.

. A new game piece is displayed for a game player. The game piece has a numeric value

ranging from 2 to 20.

. The game player clicks on an unoccupied grid space to apply the game piece settings. That

grid space then belongs to the game player, and the numeric value is applied to that
space.

If any of the adjacent grid spaces already belongs to a different player, then a comparison
is run between the newly occupied grid space and the adjacent spaces belonging to
different players. If the newly occupied space has a higher numeric value than an adjacent
space, the owner of the newly occupied space takes ownership of the adjacent space.

If any of the adjacent spaces belongs to the same game player as the newly occupied
space, those spaces are fortified by adding 1 to their numeric values.

Steps 1 through 4 repeat until all grid spaces are occupied.

The application requires a fair number of classes, which we'll build in the following sections.

Defining the Player Data Class

Every game has two or more players. Therefore, we'll first define the class that will serve as the
data model for each game player. The GanePl ayer class basically just stores the color for the
player (each game player must be represented with a unique color on the board).

package com peachpit.aas3wdp.proximty.data {

public class GanePl ayer {

private var _col or:uint;

public function set color(value:uint):void {
_color = val ue;

}

public function get color():uint {
return _color;

}

public function GanePl ayer () {
_col or = OXEEEEEE;

In addition to the standard game player type, we'll also define a null player using Nul | Pl ayer .
The Nul | Pl ayer class extends GanePl ayer so that it looks just like a standard player. However, it
is a special case we can use in place of an actual player.

package com peachpit.aas3wdp.proximty.data {

public class Null Owmer extends GanePl ayer {

}

We'll use Nul | Pl ayer objects as the default owners for all pieces on the board until another
game player takes ownership.

Defining a Collection Class for the Game Players

Every game has a collection of players. To keep track of the game players we'll build a new
collection class called GanePl ayers . The following code defines a Singleton class called
com peachpi t. aas3wdp. proxi ni ty. dat a. GanePl ayer s to serve as this collection:

package com peachpit.aas3wdp. proximty.data {

i mport com peachpit.aas3wdp. proxi mty. data. GanePl ayers;
i mport com peachpit.aas3wdp. proxi mty. data. GanePl ayer;

i mport com peachpit.aas3wdp.iterators.||terator;

i mport com peachpit.aas3wdp.iterators. Arraylterator;

public class GanePl ayers {

private var _data: Array;
private static var _instance: GanePl ayers;
private static const COLORS: Array = [OxFFCCCC, OxCCFFCC, OxCCCCFF, OxFFFFCC,

OxXCCFFFF, OxFFCCFF];

public function GanePl ayers(paraneter: Singl etonEnforcer) {
_data = new Array();

}
public static function getlnstance(): GanePl ayers {
if(_instance == null) {
_instance = new GanePl| ayers(new Si ngl etonEnforcer());
}
return _instance;
}

public function addGanePl ayer (ganePl ayer: GanePl ayer) :voi d {
ganePl ayer. col or = COLORS[_data. |l ength];
_dat a. push(ganePl ayer) ;

public function iterator():Illterator {
return new Arraylterator(_data);

}

class SingletonEnforcer {}

Note that this class has just two instance methods: addGanePl ayer () to add game player
instances and iterator() to retrieve an iterator to access the collection.

Defining Game Pieces

Now that we've defined the game player classes and created a collection for them, we next need
to define another basic building block of the game: the game pieces. The

com peachpit. aas3wdp. proxi m ty. dat a. Pi eceDat a class serves as the data model for game
pieces and grid spaces.

package com peachpit.aas3wdp. proximty.data {

i mport flash.events. Event Di spat cher;

i mport flash.events. Event;
i mport com peachpit.aas3wdp. proxi mty. data. GanePl ayer;
i mport com peachpit.aas3wdp. proxi m ty. data. Nul | Omer;

public class PieceData extends EventDi spatcher {
protected var _row. int;
protected var _colum:int;
protected var _count: uint;
protected var _owner: GanePl ayer;
protected var _radi us: Nunber;

/'l Keep track of the radius to use for the gane piece
/1 when it is displayed.

public function set radius(val ue: Nunber):void {
_radius = val ue;
di spat chEvent (new Event (Event. CHANGE)) ;

}

public function get radius(): Nunber {
return _radius;

}

/'l Keep track of the count (the value) for the ganme piece.
public function set count(value:uint):void {

_count = val ue;

di spat chEvent (new Event (Event. CHANGE)) ;

}

public function get count():uint {

return _count;

}

/'l Every gane piece belongs to a ganme player.
public function set owner(val ue: GanePl ayer):void {
_owner = val ue;
di spat chEvent (new Event (Event. CHANGE)) ;
}

public function get owner(): GanePl ayer {
return _owner;
}

/1 Which row is the gane piece in?

public function set row(value:int):void {
_row = val ue;

}

public function get row):int {
return _row,

}

/1 Which colum is the gane piece in?
public function set colum(value:int):void {
_colum = val ue;

}

public function get colum():int {
return _col um;
}

/1l Use the constructor to set default property val ues.
public function PieceData() {

_row = -1,

_colum = -1;

_count = 0;

/1 Use a Null Omer by default.
_owner = new Nul | Omer();

This class is yet another basic data model class. This time, however, it's important to note that
Pi eceDat a inherits from EvenTDi spat cher; when the values change, it dispatches events
notifying listeners that the data model has changed.

Defining the Game Board Data Class

The game needs a game board. Our game board data model keeps track of all the pieces,
placing them in rows and columns. Because there can be only one game board per game, the
game board data model class is defined as a Singleton class.

package com peachpit.aas3wdp. proximty.data {

i mport com peachpit.aas3wdp. proximty. data. Pi eceDat a;
i mport com peachpit.aas3wdp. proxi mty. dat a. Ganeboar dDat a;
i mport com peachpit.aas3wdp.iterators.|Ilterator;
i mport flash.events. Event Di spat cher;
inport flash.events. Event;
i mport com peachpit.aas3wdp.iterators. Arraylterator;

public class GaneboardData extends EventDi spatcher {

private var _pieces: Array;

private var _rows:uint;

private var _colums: uint;

private var _newGanePi ece: Pi eceDat a;
private var _iterator:llterator;

private static var _instance: Ganeboar dDat a;

/'l Set the nunmber of rows in the game board.
public function set rows(value:uint):void {
_rows = val ue;
updat e();

/1 Set the nunber of columms in the garne board.
public function set columms(value:uint):void {
_colums = val ue;
updat e();
}

/'l Request a new gane piece. The ganme board is responsible
/1l for returning the next gane piece to play.
public function get newGanePi ece(): PieceData {
return _newGnePi ece;
}

/1l Set defaults for all the properties.
public function Ganeboar dDat a(paraneter: Si ngl et onEnforcer) {
_rows = 10;
_colums = 10;
_newGanePi ece = new Pi eceData();
_newGnePi ece. radi us = 40;

_iterator = GanePl ayers.getlnstance().iterator();
updat e() ;

public static function getlnstance(): GaneboardData {
if(_instance == null) {

_instance = new Ganeboar dDat a(new Si ngl et onEnforcer());
}

return _instance;

}

/'l Re-add the ganme pieces. This nethod is called every tine

/1l one of the properties changes (colums, rows, etc.) This
/'l code then creates all the gane pieces, sets the rows and
/1 colums, and adds the pieces to the pieces array.

public function update():void {
var i:uint;
var j:uint;
var piece: Pi eceDat a;
_pieces = new Array();

for(i =0; i < _rows; i++) {
for(j =0; j < _columms; j++) {
pi ece = new Pi eceData();
piece.row = i;

pi ece.colum = j;
pi ece.radi us = 20;
addPi ece(pi ece) ;
}
}
di spat chEvent (new Event (Event. CHANGE)) ;
}

private function addPi ece(piece: PieceData):void {
i f(_pieces[piece.row] == null) {
_pieces[piece.row] = new Array();
}

_pieces|[piece.row[piece.colum] = piece;

}

/1 Return an iterator that allows access to each gane
/'l piece.
public function iterator():Illterator ({
var pieces:Array = new Array();
var i:uint;
var j:uint;
for(i =0; i < _rows; i++) {
for(j =0; j < _colums; j++) {
pi eces. push(_pieces[i][j]);
}
}
return new Arraylterator(pieces);

}

/1 Calculate all the pieces that are adjacent to a given
/1l piece, and return an iterator that allows access to
/'l those pieces.
public function getProximtyPieces(piece:PieceData):|lterator ({
var pieces:Array = new Array();
var row uint = piece.row,
var colum: uint = piece.colum,;
if(piece.row > 0) {
pi eces. push(_pi eces[row - 1][colum]);
if(row %2 == 0 & colum > 0) {
pi eces. push(_pi eces[row - 1][colum - 1]);

}

else if(row %2 !'= 0 &% colum < _pieces[row - 1].length - 1)

pi eces. push(_pi eces[row - 1][colum + 1]);
}
}

i f(piece.colum > 0) {
pi eces. push(_pi eces[row][colum - 1]);
}
if(colum < _pieces[row].length - 1) {
pi eces. push(_pi eces[row] [colum + 1]);
}
if(row < _pieces.length - 1) {
pi eces. push(_pi eces[row + 1][colum]);
if(row %2 == 0 & colum > 0) {
pi eces. push(_pi eces[row + 1][colum - 1]);
}
else if(row %2 != 0 &% columm < _pieces[row + 1].length - 1) {
pi eces. push(_pi eces[row + 1][colum + 1]);
}
}
return new Arraylterator(pieces);
}
/1 Advance to the next gane piece to play.
public function next GanePi ece():void {
if(! _iterator.hasNext()) {
_iterator.reset();
}
_newGanePi ece. count Mat h. r ound(Mat h. randon() * 18) + 2;
_newGanePi ece. owner GanePl ayer (_iterator.next());
if(! _iterator.hasNext()) {
_iterator.reset();
}

}

class Singl etonEnforcer {}

The Ganeboar dDat a class is responsible for several things. First, it is responsible for keeping
track of all the game pieces. Additionally, it is responsible for determining what game pieces are
adjacent to other game pieces. And it is also responsible for keeping track of the game piece
that can next be played. The next GanePi ece() method accomplishes this task by retrieving the
next item from the game player iterator and generating a random number from 2 to 20,
assigning those values to the _newGanePi ece instance.

Defining the Game Play Command Class

Now that we've defined all the data model classes, we'll next create the command class used for
game play. The com peachpit. aas3wdp. proxi m ty. conmands. GanePl ayConmmand class encapsulates
the command for game play.

package com peachpit.aas3wdp. proxi mty. comrmands {

i mport com peachpit.aas3wdp. proxi mty. dat a. Pi eceDat a;
i mport com peachpit.aas3wdp. proxi mty. dat a. GanePl ayer;

i nport com peachpit.aas3wdp. proxi mty. data. GanePl ayer s;

i mport com peachpit.aas3wdp. proxi m ty. data. Ganeboar dDat a;
i mport com peachpit.aas3wdp. proxi mty. data. Nul | Omer;

i mport com peachpit.aas3wdp. conmands. | Command;

i mport com peachpit.aas3wdp.iterators.|lterator

public class GanePl ayCommand i npl ements | Command {
protected var _piece: Pi eceDat a;

public function GanePl ayConmand(pi ece: Pi eceData) ({
_piece = piece;

}

public function execute():void {
var ganmeboar d: Ganeboar dDat a = Ganeboar dDat a. get | nst ance() ;
var newGanePi ece: Pi eceDat a = ganeboar d. newGanePi ece
var current GamePl ayer: GanePl ayer = newGanePi ece. owner ;
/1 1f the gane piece's owner is a Null Omer (and
/1 only if) then it's a valid click, so apply the
/I command.
i f(_piece.owner is NullOmer) {

_pi ece.owner = current GnePl ayer;
_piece.count = newGanePi ece. count;

/'l Retrieve all adjacent pieces
var iterator:llterator = ganeboard. getProxi mtyPi eces(_piece);
var piece: Pi eceDat a;
whil e(iterator. hasNext()) {
piece = iterator.next() as PieceData;

/1 1f the game piece has the sane
/1 owner as the clicked gane piece,
/'l increment the count. If they have
/1 different owners (and the owner
/1 isn't Null Omer) then test if the
/'l clicked gane piece has a higher
/1 count. |If so, nmake it the new
/'l owner.
i f(piece.owner == _piece.owner) {
pi ece. count ++;
}
else if(!(piece.owner is NullOmer)) {
i f(piece.count < _piece.count) {
pi ece. owner = current GanePl ayer;

}
}

/1 Get the next gane piece.
Ganeboar dDat a. get | nst ance() . next GanePi ece() ;

In this command type, the game piece is the receiver. When the user triggers the execut e()
method, the method requests the new game piece from the game board and applies it to the
receiver. The method also requests all the adjacent pieces and uses game play rules to
determine how and if to change those values.

Defining the Game Factory Class

In the next chapter, we'll update the application by adding undo and redo functionality in the
context of a our discussion of the Memento pattern. To minimize the impact of those future
changes to the code we're creating now, we'll use a factory (see Chapter 5, "Factory Method
Pattern™) to make the command objects. Define

com peachpit. aas3wdp. proxi mity. conmands. CormandFact ory as follows:

package com peachpit.aas3wdp. proxinmty.conmands {
i nport com peachpit.aas3wdp. conmands. | Conmand;
i nport com peachpit.aas3wdp. proxi nity. conmands. GanePl ay Conmand;
i mport com peachpit.aas3wdp. proxi m ty. dat a. Pi eceDat a;
public class ConmandFactory {
private static var _type:String = NORVAL;
public static const NORMAL: String = "normal";

public static const UNDOABLE: Stri ng "“undoabl e";
public static const REDOABLE: String = "redoabl e";

public static function set type(value: String):void {
_type = val ue;

public static function getGanePl ayCommand(dat a: Pi eceDat a) : | Conmrand {
if(_type == NORMAL) {
return new GanePl ayCommand(dat a) ;

}

return null;

This class allows us to globally set the type of commands it should create. Then we can use
get GanePl ayConmand() to request the command for a specific receiver. Currently, we're only ever
returning one type, but subsequently, we'll enable undoable and redoable versions.

Defining the Game Piece View and Controller Class

The com peachpi t. aas3wdp. proxi nity. vi ews. Pi ece class is the view (and controller) for the
game pieces/grid spaces. The Pi ece class uses a Pi eceDat a object as its data model, and it
draws itself based on the data model values. It also stores a command object that it executes
when the user clicks the object.

package com peachpit.aas3wdp. proximty.views {

inport flash.display. Sprite;

inport flash.text. TextField;

import flash.events. Event;

i mport flash. events. MouseEvent;

inport flash.text. Text Format;

import flash.text. Text Fi el dAut oSi ze;

i mport com peachpit.aas3wdp. proximty. data. Pi eceDat a;

i mport com peachpit.aas3wdp. proxi mty. comuands. CommandFact ory;
i mport com peachpit.aas3wdp. conmands. | Cormand;

public class Piece extends Sprite {

private var _background: Sprite;
private var _|abel: TextField;
private var _data: Pi eceDat a;
private var _conmmand: | Conmand;

public function set data(val ue: PieceData):void {
_data = val ue;
_dat a. addEvent Li st ener (Event. CHANGE, draw);

/'l Retrieve the command from the factory.
_command = CommandFact ory. get GanePl ayComand(_dat a) ;

draw() ;
}

public function get data():PieceData {
return _data;

}

public function Piece() {
/1l Listen for nouse events.
addEvent Li st ener (MouseEvent . MOUSE_OVER, onMuseOQOver);
addEvent Li st ener (MobuseEvent . MOUSE_OUT, onMouseCut);
addEvent Li st ener (MouseEvent . CLI CK, onC i ck);

/1l Create the background into which to draw the
/'l hexagon.

_background = new Sprite();

addChi | d(_background) ;

/'l Create the text field into which to display the
/1 count.

_label = new TextField();

addChi | d(_I abel);

_label.selectable = fal se;

_label . aut 0Si ze = Text Fi el dAut 0Si ze. LEFT;

}

/1l Draw the gane piece based on the data nodel.

public function draw(event: Event = null):void {
var color:uint = _data.owner.color;

var newX: Nunber;
var newY: Nunber ;

var angl e: Nunber = -Math.Pl / 6;
var angl eDel ta: Nunmber = Math. Pl / 3;
_background. graphics. clear();
_background. graphics.lineStyle(0, 0, 0);
_background. graphi cs. beginFill (color, 1);
newX = Math.cos(angle) * _data.radius;
newY = Math.sin(angle) * _data.radius;
_background. graphi cs. noveTo(hewX, newyY);
for(var i:uint = 0; i < 6; i++) {
angl e += angl eDel t a;
newX = Math.cos(angle) * _data.radius;
newY = Math.sin(angle) * _data.radius;
_background. graphics. i neTo(newX, newY);

}

_background. graphi cs.endFi Il ();

if(_data.row !'= -1) {
X = (_data.row %2 == 0 ? 0 : _data.radius) + _data.colum * _data.re¢
y = _data.row * _data.radius * 2;

}

_label.text = String(_data.count);

_label.x = - _label . width / 2;

_label.y = - _label.height / 2;

private function onMuseOver (event: MouseEvent):void {
_background. al pha = . 1;

private function onMouseQut (event: MouseEvent):void {
_background. al pha = 1;
}

/1 When the user clicks on the gane piece, call the

/1 command' s execute() nethod

private function onCick(event: MouseEvent):void {
_comand. execut e() ;

The key thing about this class is that it uses a command object to neatly encapsulate its
behavior. When the user clicks the piece, it executes the command. However, the exact
command implementation might change because we can simply change what is getting returned
by the factory (as we'll see in subsequent versions of this application).

Defining the Game Board View and Controller

The game board also requires a view and controller, for which we'll define

com peachpit.aas3wdp. proxi mty. Ganeboard . The Ganeboar d class uses a Ganeboar dDat a object
as its data model.

package com peachpit.aas3wdp. proximty.views {

i mport flash.display. Sprite;

i nport com peachpit.aas3wdp. proxi m ty. dat a. Ganeboar dDat a;
i nport com peachpit.aas3wdp.iterators.|lterator;

i mport com peachpit.aas3wdp. proximty. data. Pi eceDat a;
inmport flash.events. Event;

public class Ganeboard extends flash.display.Sprite {

private var _data: Ganeboar dDat a;
private var _newGanePi ece: Pi ece;

public function set data(val ue: GaneboardData): void {
_data = val ue;
onUpdat e() ;
/1 Redraw the ganeboard every tinme the data nodel
/'l changes.
_dat a. addEvent Li st ener (Event . CHANGE, onUpdat e) ;

}

public function Ganeboard() {
}

private function onUpdate(event: Event = null):void {
_pieces = new Sprite();
addChi | d(_pi eces);
var iterator:llterator = data.iterator();
var piece: Pi ece;
whil e(iterator. hasNext()) {
pi ece = new Piece();
pi ece.data = PieceData(iterator.next());
_pi eces. addChi | d(pi ece);

}

i f(_newGanePiece == null) {
/1 The new gane piece shows what piece can
/'l next be played.
_newGanePi ece = new Piece();
_newGanePi ece. data = _dat a. newGanePi ece;
_newGanePi ece. dat a. radi us = 40;
addChi | d(_newGanePi ece) ;
}
_newGanePi ece.x = _pieces.width / 2;
_newGanePi ece.y = _pieces.height + pieces.y + 40;

Because most of the work is already handled in the data model classes and in the game piece
view/controller, the implementation for Ganeboard is relatively simple. All it has to do is add the
game pieces based on the data model, and it has to display the new game piece as well.

Defining the Main Class

Next we have to create a main class to put the application together and test it. The main class
for the application is called Proxi nity and is defined as follows:

package {

i nport flash.display. Sprite;

i mport flash. display. StageScal eMode;

i nport flash.display. StageAlign;

i mport flash. events. MouseEvent;

i mport com peachpit.aas3wdp. conmands. | CommandSt ack;

i mport com peachpit.aas3wdp. proximty. vi ews. Pi ece;

i mport com peachpit.aas3wdp. proxi mty. dat a. Ganeboar dDat a;
i nport com peachpit.aas3wdp. proxi mty. dat a. Pi eceDat a;

i mport com peachpit.aas3wdp. proxi mty. data. GanePl ayer ;

i mport com peachpit.aas3wdp. proxi mty. data. GanePl ayers;

i mport com peachpit.aas3wdp. proxi mty. data. Nul | Owner;

i nport com peachpit.aas3wdp. proxi nmty. conmands. ConmandFact ory;
i mport com peachpit.aas3wdp.iterators.|Iterator;

i mport com peachpit.aas3wdp.iterators.Nulllterator;

i mport com peachpit.aas3wdp. conmands. | Cormand;

i mport com peachpit.aas3wdp. proxi mty. vi ews. Ganeboar d;

public class Proxinmty extends Sprite {
private var _newGanePi ece: Pi ece;

public function Proximty() {
/'l Set the conmmand type. The valid types are NORVAL,
/1 UNDOABLE, and REDOABLE. This determ nes
/1l what sort of commands the factory returns.
CommandFact ory. type = CommandFact ory. NORNVAL;

/1l Set the stage scal eMbde and align properties.

st age. scal eMode = StageScal eMode. NO_SCALE;

stage.align = StageAlign. TOP_LEFT;

/1l Add a new ganeboard and its datanodel .

var ganeboard: Ganeboard = new Ganeboard();

var ganeboar dDat a: Ganeboar dDat a = Ganeboar dDat a. get | nst ance() ;

/1l Set the nunber of columms for the ganeboard to 20
/'l (the default is 10).

ganeboar dDat a. col ums = 20;

ganeboard. data = ganeboar dDat a;

addChi | d(ganmeboard) ;

ganeboard. x 20;

ganmeboard. y 20;

/1 Add gane players.

var gamePl ayers: GanePl ayers = GanePl ayers. getlnstance();
gamePl ayer s. addGanePl ayer (new GanePl ayer());

ganmePl ayer s. addGanePl ayer (new GanePl ayer());

Ganeboar dDat a. get | nst ance() . next GanePi ece() ;

When you test the application, you will see an image like the one shown in Figure 10.1 .
Clicking a grid space applies the game piece settings (the player who owns the piece and the

value of the piece) by calling the command object's execut e() method. The execut e() method
also advances the game play to the next player.

Figure 10.1. The Proximity gameboard with 10 rows and 20 columns.

e rrcy NExT

Summary

This chapter discusses the Command pattern, which is a way of encapsulating an action and its
parameters. The Command pattern is useful as a solution to a variety of scenarios such as the
need for transactional behavior or undoable actions. Regardless of the way in which a command
is used, it always implements a known interface that has, at a minimum, a method (execute())
that runs the action. In most cases, the command also has a receiver of the action, a client that
instantiates the command, and an invoker that calls the method that runs the action. As shown
by the examples in this chapter, the receiver, client, and invoker for a command change based
on the way in which the command is used. In some cases, the client and invoker are the same
object.

In the next chapter, we'll look at the Memento pattern, which is often used in conjunction with
the Command pattern. In fact, in the next chapter we'll continue building the Proximity game
application to use the Memento pattern.

=2

Chapter 11. Memento Pattern

In This Chapter

Using Mementos to Make Actions Undoable in the Proximity game 173
Using Mementos to Make Actions Redoable in the Proximity game 177

Summary 180

The Memento pattern is a way of recording an object's current state without breaking the rules
of encapsulation. The rules of encapsulation say that an object should manage its own state,
and that it should allow external objects to influence its state only through a well-defined API.
For example, it is perfectly acceptable for a class to define a setter method that changes the
value of a private property. However, it would be bad design to use public properties that can
be set without going through a method of the class. Public properties allow external objects to
change the object's state without the object knowing what has occurred.

There are many reasons you might want to record an object's state at a point in time.
Frequently you want to record an object's state so that you can return to that point if necessary.
For example, an application with panel sets might enable the user to configure the panels by
moving them and resizing them. You might then want to record the configuration so that the
user can make changes but be able to return to the saved configuration. The difficulty is in how
to record the state without breaking encapsulation. One option that might jump out
immediately is to add methods that return each of the required values. For example, if you want
to record a panel's state, you might want to record the x and y coordinates as well as the width
and height. That might seem simple enough. However, consider that an object's internal state
might be complex, and it might well be inappropriate to expose certain elements of the internal
state in that way.

The Memento pattern elegantly solves this dilemma. The Memento pattern consists of three
basic elements called the memento, the originator, and the caretaker. The originator is the class
that needs to record a snapshot of its state. It accomplishes that by way of an instance of a
memento class. The caretaker is the object that stores the memento until which time it needs to
restore it to the originator. The originator class has an API that allows a caretaker class to
request a memento object. The caretaker class stores the memento, and it then passes it back
to the originator if requested.

The Memento pattern does not impose a very precise APl that must be followed. However, the
Memento pattern generally uses at least three classes for a basic implementation: the
originator, the memento, and the caretaker.

The originator can be any sort of class for which you need to record the state at a point in time.
The originator class must define methods to get and set the memento, which is used to save
and restore state. The memento is usually tightly coupled with the originator. Because a
memento records state for an originator, the memento must know about the type of state that
the originator maintains. At this point, a very simple example will be helpful.

Consider the case of a Circl e class like the following:

package ({
i nport flash.display.Sprite;
public class Circle extends Sprite {
private var _radius: Nunmber;
private var _col or: Nunber;

public function set radius(val ue: Nunber):void {
_radius = val ue;

draw() ;

public function set col or(val ue: Nunber):void {
_color = val ue;

draw() ;

public function Circle(radiusVal ue: Nunber, col orVal ue: Nunber) {
_radius = radiusVal ue;
_col or = col orVal ue;
draw() ;
}

private function draw():void {
graphics.clear();
graphics.lineStyle(1, _color, 1);
graphi cs. beginFi |l | (_col or, 1)
graphics.drawCircl e(0, 0, _radius);
graphics.endFill ();

This example is purposefully simple. This Ci rcl e class simply draws a circle. The only state it
needs to maintain is the radius and the color with which to draw the circle. Here's an example of
code that creates a new Circl e and adds it to the display list:

var circle:Crcle = new G rcle(10, OxFFFFFF);
addChild(circle);

That code creates a white circle with a radius of 10. If you want, you can change the color to
red and the radius to 20, like this:

circle.color = OxFFO00O;
circle.radius = 20;

But what happens if you then want to return to the previous state with the white color and the
radius of 10? Clearly you must record the state before changing it so that you can restore it at a
later time. The Memento pattern says that in order to record the state for the Circl e class, we
must create a memento type that we will call Circl eMenento . The Ci rcl eMenent o is capable of

storing the radius and color values.

package {
public class CircleMenento {
private var _radius: Nunber;
private var _col or: Nunber;

public function get radius():Nunber {
return _radius;
}

public function get color(): Nunmber {
return _color;
}

public function CircleMenento(radi usVal ue: Nunber, col orVal ue: Nunber) {
_radius = radiusVal ue;

_col or = col orVal ue;

The memento class is a data-only class that simply stores all the values for the state that you

want to record for a particular type. In the case of Ci rcl eMenent o we want to record the radius
and color values for a Ci r cl e instance.

Next, we need a way for the originator (Circl e) to be responsible for saving and restoring its
state. For that purpose, we add get Menent o() and set Mement o() methods toCircle .

package {
i mport flash.display.Sprite;
public class Circle extends Sprite {
private var _radius: Nunber;
private var _col or: Nunber;

public function set radius(val ue: Nunber):void {
_radius = val ue;

draw();

public function set color(val ue: Nunber):void {
_col or = val ue;

draw() ;

public function Circle(radiusVal ue: Nunber, col orVal ue: Nunber) {
_radi us = radi usVal ue;
_col or = col orVal ue;
draw() ;
}

private function draw():void {
graphics. clear();
graphics.lineStyle(l, _color, 1);
graphics. beginFill(_color, 1)
graphics.drawCircl e(0, 0, _radius);

graphics.endFill ();
}

public function getMenmento():CircleMenento (
return new CircleMenento(_radius, _color);

}

public function setMenento(nenento: CrcleMenento):void {

_radius = nenento.radi us;
_color = nenento. col or;
draw() ;

You can see that the get Menent o() method constructs and returns a new Ci r cl eMenent o object
that stores the current state. The set Menent o() method accepts a Ci rcl eMenent o parameter and
then restores the Ci r cl e object's state to the state values from the memento.

The only object we haven't yet looked at is the caretaker. The caretaker is the object that calls
get Menent o() to retrieve and store the current memento, and it then can pass that memento
back to the object using set Menent o() . In this case, the caretaker is whatever object is
constructing the Circl e instance. Here's an example that creates a Ci rcl e instance: Every time
the user clicks the circle, it changes the state randomly. The caretaker also records the current
state by retrieving a memento from the Circl e instance. Then the user can use the right and

left keys on the keyboard to move backward and forward through the sequence of state
changes.

package {
i nport flash.display. Sprite;
i mport flash. events. Keyboar dEvent ;
i mport flash. events. MouseEvent;
i mport flash. ui.Keyboard,;

public class Menent oExanpl e extends Sprite {

private var _circle:Circle;
private var _previousMenentos: Array;
private var _next Menentos: Array;

public function Menent oExanpl e() {

/'l Create arrays to store the next and previous states.
_previoushMenentos = new Array();

_next Menentos = new Array();

// Create a circle.

_circle = new CGrcle(10, OxFFFFFF);
addChil d(_circle);

// Listen for click events on the circle. Listen for

/1 keyboard events gl obally.
_circle.addEvent Li st ener (MouseEvent. CLI CK, ond i ck);
st age. addEvent Li st ener (Keyboar dEvent . KEY_UP, onKey);

}

/1 When thye user clicks on the circle retrieve the current
/1 memento fromthe circle, and store it in the _previ ousMenent os
/1 array. Then set the state of the circle to random val ues.
private function onCick(event: MouseEvent):void {

_next Menentos = new Array();

_previousMenent os. push(_circle.get Menento());

_circle.radius = Math.randonm() * 40 + 10;

_circle.color = Math.randon{) * (255 * 255 * 255);

}

/'l When the user presses the right and left keys restore the
/1l state of the circle by retrieving a nenento fromthe appropriate
/1 array and passing it to the setMenento() nethod of the circle.
private function onKey(event: KeyboardEvent):void {
var nenento: G rcl eMenent o;
i f(event. keyCode == Keyboard. LEFT) {
i f(_previousMenentos.length > 0) {
menento = _previ ousMenent os. pop();
_next Menent os. push(nmenent o) ;
_circle.set Menent o(nenent o) ;
}
}
el se if(event. keyCode == Keyboard. RI GHT) {
i f(_nextMenentos.length > 0) {
nmement o = _next Menent os. pop();
_previ ousMenent os. push(nenent o) ;
_circle.set Menent o(nrenent o) ;

}
}

—

This should give you a basic idea of the structure of a relatively simple Memento pattern
implementation. Throughout the chapter, we'll look at additional examples.

Using Mementos to Make Actions Undoable in the
Proximity Game

Often, mementos are used in conjunction with commands in order to implement complex
undoable and redoable commands. The following application applies mementos to the Proximity
game application you created in the previous chapter, "Command Pattern"; the mementos will
make the commands undoable in the Proximity game.

Defining the Memento Type

The first thing we'll do is define a memento class. The class
com peachpi t. aas3wdp. proxi m ty. mnenent os. GanePi eceMenent o serves as the memento type used
to store game piece state.

package com peachpit.aas3wdp. proxi mty. nenentos {
i nport com peachpit.aas3wdp. proxi mty. data. GanePl ayer;
public class GanePi eceMenento {

private var _count: uint;
private var _owner: GanePl ayer;

public function get count():uint {
return _count;

}

public function get owner(): GanePl ayer {
return _owner;

public function GanePi eceMenento(count: uint, owner: GanmePl ayer) {
_count = count;
_owner = owner;

You can see that the memento in this case stores values for count and owner . These values
represent state for a Pi eceDat a object.

Creating the Originator

In the Proximity game, the mementos we want to store are for Pi eceDat a objects. Therefore,
we'll need to make the Pi eceDat a class an originator by adding get Mement o() and set Menent o()

methods. Here's Pi eceDat a with the new methods (we've omitted some of the code here just for
the purposes of saving printed space):

package com peachpit.aas3wdp. proxinity.data {

i mport flash. events. Event Di spat cher;
i mport flash.events. Event;
i mport com peachpit.aas3wdp. proxi mty. dat a. GanePl ayer;
i nport com peachpit.aas3wdp. proxi m ty. data. Nul | Oaner;
i mport com peachpi t. aas3wdp. proxi m ty. nenent os. GanePi eceMenent o;

public class PieceData extends EventD spatcher ({
/'l Existing code goes here.

public function getMenento(): GanePi eceMenento {
return new GanePi eceMenento(_count, _owner);
}
public function setMenento(nenmento: GanePi eceMenento):void {
_count = nenmento.count;
_owner = nemento.owner;
di spat chEvent (new Event (Event. CHANGE)) ;

You can see that the get Menent o() method simply constructs and returns a new

GanePi eceMenent o object. The set Menent o() method takes a GanePi eceMenent o instance, restores
the Pi eceDat a state, and dispatches an event to notify listeners that the data model has
changed.

Defining the Undoable Command Type

Next we'll define an undoable command type. The undoable command should inherit from the
standard command type (GanePl ayConmand). In addition, the command needs to implement the
| Undoabl eCommand interface. The class,

com peachpi t. aas3wdp. proxi m ty. conmands. Undoabl eGanePl ayCommand is as follows:

package com peachpit.aas3wdp. proxi mty.commands {

i mport com peachpit.aas3wdp. proxi nmity. data. Pi eceDat a;

i nport com peachpit.aas3wdp. proxi mty. dat a. GanePl ayer;

i nport com peachpit.aas3wdp. proxi nity. dat a. GanePl ayers;

i mport com peachpit.aas3wdp. proxi mty. dat a. Ganeboar dDat a;

i mport com peachpit.aas3wdp. proxi mty. commands. GanePl ay Comrand;
i nport com peachpit.aas3wdp.iterators.|lterator;

i mport com peachpit.aas3wdp. proxi nity. menent os. GanePi eceMenent o;
i mport com peachpit.aas3wdp. proxi m ty. dat a. Ganeboar dDat a;

i nport com peachpit.aas3wdp. proxi nmty. data. Nul | Owner;

i nport com peachpit.aas3wdp. proxi nmty. data. Pi eceDat a;

i mport com peachpit.aas3wdp. conmands. ConmandSt ack;

i nport com peachpi t. aas3wdp. conmands. | Undoabl eConmand,;

public class Undoabl eGanePl ayCommand extends GanePl ayComand i npl enments
| Undoabl eConmand {

protected var _ganePi eceMenent os: Array;
protected var _ganeboar dvenent o: GanePi eceMenent o;

public function Undoabl eGanePl ayCommand(pi ece: Pi eceData) ({
super (pi ece);
_ganePi eceMenentos = new Array();

override public function execute():void {
var ganeboar d: Ganeboar dDat a = Ganeboar dDat a. get | nst ance() ;
i f(_piece.owner is NullOwer) {

/'l Get the nenento for the clicked gane piece.
_ganePi eceMenent os. push({obj ect:
_piece, nemento: _piece.getMenento()});
var iterator:llterator = ganmeboard. get Proxi nmtyPi eces(_piece);
var piece: Pi eceDat a;
whil e(iterator.hasNext()) {
pi ece = PieceData(iterator.next());

/1 Add a nenento for the adjacent
/1 game piece.
_ganePi eceMenent os. push({obj ect: piece, nenmento: piece.getMner

}

/1 Add a nenmento for the new gane piece and for the ganeboard.
_ganmeboar dMenent o = ganeboar d. get Menent o() ;

}

super. execute();
CommandSt ack. get | nst ance() . put Conmand(t hi s);
}

public function undo():void {
for(var i:uint = 0; i < _ganePieceMenentos.length; i++) {
_ganmePi eceMenent os[i]. obj ect. set Menent o(_ganePi eceMenent os[i]. mener

}

Ganeboar dDat a. get | nst ance() . set Menent o(_ganeboar dvenent o) ;

This class overrides the execut e() method so that it can retrieve all the mementos for the
affected game pieces before changing their state. Then the undo() method loops through all the
mementos and restores the originator state for each affected game piece.

Updating the Command Factory

Next we want to edit ConmandFact ory so that it returns a Undoabl eGanePl ayConmand instance
when the option is set correctly. Here's the updated get GanePl ayConmand() method:

public static function getGanePl ayConmand(dat a: Pi eceDat a) : | Conmand {
if(_type == NORMAL) {
return new GanePl ayConmand(dat a) ;

}
else if(_type == UNDOABLE) ({

return new Undoabl eGanePl ayCommand(dat a) ;

}

return null;

Updating the Main Class

Next we can edit the main class to enable undoable commands in the game. The behavior we
are striving for is to undo commands when the user presses the left-arrow key.

The first thing we need to do in the main class is edit the constructor and assign UNDOABLE rather
than NORMAL to the ConmmandFact ory. t ype property:

CommandFact ory. type = ComandFact ory. UNDOABLE

Next we'll add keyboard control. To do this the class must import the Keyboard and
Keyboar dEvent classes:

i mport flash. events. Keyboar dEvent;
i nport flash. ui.Keyboard;

Then we'll add the following line of code to the main class constructor to listen for keyboard
events:

st age. addEvent Li st ener (Keyboar dEvent . KEY_DOAN, onKeyboard);

Add an onKeyboard() method to the main class. Define the method as follows:

private function onKeyboard(event: KeyboardEvent):void {
var stack: ConmandSt ack = CommandSt ack. get | nstance();
var command: | Cormand,;

/1 1f the user pressed the left arrow and there are
/1 previous commands in the stack
/1 and if the command is undoable, call undo().
i f(event. keyCode == Keyboard. LEFT && stack. hasPrevi ousCommands()) {
command = stack. previous();
i f(command is | Undoabl eConmand) {
| Undoabl eCommand(comrand) . undo() ;
}
el se {
stack. next ();

}

Those few changes make the game's play actions undoable. When you test the Proximity
application now, you can use the left-arrow key to undo the actions you have applied.

NEXT B

Using Mementos to Make Actions Redoable in the
Proximity Game

Now that we have added an undo feature to the Proximity game, we'll complete our
modifications to the game by adding code that redoes actions we have just undone.

Defining the Redoable Command

The first step in making the commands redoable is to create a redoable command class. Define
a class, com peachpi t. aas3wdp. proxi ni ty. commands. Redoabl eGanePl ayConmand , that extends
Undoabl eGamePl ayConmand and adds redo functionality by implementing | Redoabl eCommand .

package com peachpit.aas3wdp. proxi mty.commands {

i mport com peachpit.aas3wdp. proxi nmty. data. Pi eceDat a;
i nport com peachpit.aas3wdp. proxi m ty. dat a. GanePl ayer;
i mport com peachpit.aas3wdp. proxi mty. data. GanePl ayers;
i mport com peachpit.aas3wdp. proxi m ty. dat a. Ganeboar dDat a;
i mport com peachpit.aas3wdp. proxi m ty. comrands. Undoabl eGanePl ay Cormand,;
i nport com peachpit.aas3wdp.iterators.|Ilterator;
i mport com peachpit.aas3wdp. proxi nity. menent os. GanePi eceMenent o;
i nport com peachpit.aas3wdp. conmands. | Redoabl eConmmrand;
i mport com peachpit.aas3wdp. proxi nmty. data. Nul | Owner;

public class Redoabl eGanePl ayCommand ext ends Undoabl eGanePl ayCommrand i npl er
| Redoabl eCommand {

private var _next GanePi eceMenent o: GanePi eceMenent o;

public function Redoabl eGanePl ayCommand(pi ece: Pi eceDat a) {
super (pi ece);
}

override public function undo():void {
_next GanePi eceMenent o = Ganeboar dDat a. get | nst ance() . newGanePi ece. get |
super. undo();

}

public function redo():void {
var ganeboar d: Ganeboar dDat a = Ganeboar dDat a. get | nst ance() ;
var newGanePi ece: Pi eceDat a = ganeboar d. newGanePi ece;
var current GanePl ayer: GanePl ayer = newGanePi ece. owner ;
_piece.owner = current GanePl ayer;
_piece.count = newGanePi ece. count;

/'l Retrieve all adjacent pieces.
var iterator:llterator = ganeboard. get ProximtyPi eces(_piece);
var piece: Pi eceDat a;

whil e(iterator. hasNext()) {

pi ece = PieceData(iterator.next());
/1 1f the game piece has the sane owner as
/1 the clicked gane piece, increment the
/1l count. If they have different owners (and
/1 the owner isn't Null Omer) then test if
/1 the clicked game piece has a higher
/1 count. |If so, make it the new owner
i f(piece.ower == _piece.owner) {

pi ece. count ++;
}
else if(!(piece.owner is NullOmer)) {

i f(piece.count < _piece.count) {

pi ece. owner = current GanePl ayer;

}
}
}

Ganeboar dDat a. get | nst ance() . set Menment o(_next GanePi eceMenent o) ;

The redoable command redoes a command by essentially replaying based on the new game
piece. It then uses a memento to restore the next new game piece state.

Editing the Factory Class

Next we'll edit the ConmandFact ory class so that it returns a Redoabl eGanePl ayConmand object
when the t ype property is set to REDOABLE . Here's the updated get GanePl ayConmand() method:

public static function getGnePl ayCommand(dat a: Pi eceDat a) : | Cormand {
if(_type == NORMAL) {
return new GanePl ayComrand(dat a) ;

}
el se if(_type == UNDOABLE) {
return new Undoabl eGanePl ayConmand(dat a) ;

}
else if(_type == REDOABLE) {
return new Redoabl eGanePl ayConmand(data) ;

}

return nul | ;

Editing the Main Class

Now we can edit the main class by assigning a value of REDOABLE rather than UNDOABLE to the
CommandFactory.type property .

CommandFact ory. type = CommandFact ory. REDOABLE;

Add ani f clause to the onKeyboar d() method so that it calls the redo() method of the next
command object in the stack when the user presses the right-arrow key:

private function onKeyboard(event: KeyboardEvent):void {
var stack: ConmandSt ack = CommandSt ack. get | nstance();
var command: | Comand,;

i f(event. keyCode == Keyboard. LEFT && stack. hasPrevi ousConmands()) {
command = stack. previous();
i f(command is | Undoabl eConmand) {
| Undoabl eCommand(comrand) . undo() ;
}
el se {
stack. next () ;
}
}

/1l I'f the user pressed the right arrow key and there are next
/1 comands in the stack, and if the command is redoable, call

/'l redo().
i f(event. keyCode == Keyboard. RIGHT && stack.hasNext Commands()) {
command = stack. next();

i f(command is | Redoabl eCommand) {
| Redoabl eCommand(command) . redo() ;

}
el se {

st ack. previous();
}

When you test the application now, you can press the right-arrow key to redo any action that
you've previously undone.

e rrcy NExT

Summary

This chapter discusses the Memento pattern, which provides an elegant way to store an object's
state while at the same time breaking no rules of encapsulation. An object for which you need to
record state is called the originator. The originator is responsible for returning a memento
object that stores the object's current state, and the originator is also responsible to managing
its own state by applying a stored state from a memento. The memento objects can be stored
by a caretaker object until they are reapplied to the originator.

e prey

e rrcy NExT

Chapter 12. State Pattern

In This Chapter

Simple State Example 181

Encapsulating the States 184

Using Abstract Classes 188

Transitions 193

Summary 198

The State pattern is a valuable pattern in ActionScript development. It allows an object to
change its behavior when its internal state changes. Take a toggle button as an example. The
toggle button must maintain two separate states: one for selected and one for unselected. The
two states share the same structure, but they have very different functionality. In addition to
the visual display being different, they most likely handle a click event differently, too. This is
where the State pattern becomes valuable. The State pattern defines a standard methodology
for handling encapsulated states.

There are many ways to implement the State pattern, but they all come to the same result: The
object's class appears to change. Obviously, we aren't talking about changing the object's type
at runtime, but we are talking about changing nearly every operation in a class based on its
internal state.

The best way to demonstrate the State pattern is with an example. Therefore, we're going to
build a basketball shooter. Our example will build a shooter object with three different states:
lay up, free throw, and three-pointer. Each of these states has characteristics such as accuracy
and point value. We'll use this shooter object in the context of a basketball game. When we tell
the shooter to shoot the ball, we can calculate whether the shot was made and for how many
points based on the internal state of the shooter object.

e prcv NEXT

e rrcy NExT

Simple State Example

Our first attempt at representing the basketball shooter and its various states is very simple. In
fact, you've probably built classes just like this before. This shooter class meets all the criteria
of the State pattern but is a naive and inelegant solution that presents further problems. We'll
look at this example first to understand how we can later improve on this.

Create the Si npl e Shoot er Class

The Si npl eShoot er class holds all the shooter functionality for each state. The state is set in the
set St at e() method. This method takes a st at eNane as the parameter. The value of this
parameter is saved in a class property called st at eNane.

There are three constants defined in this class that represent the thr