
Advanced ActionScript 3 with Design Patterns, 1/e

By Joey Lott, Danny Patterson

...

Publisher: Adobe Press

Pub Date: November 02, 2006

Print ISBN-10: 0-321-42656-8

Print ISBN-13: 978-0-321-42656-7

Pages: 304

Table of Contents | Index

Today's ActionScript-based applications require increasingly sophisticated architectures and
code. This book aids intermediate and advanced ActionScript developers in learning how to
plan and build applications more effectively. You'll learn how to apply design patterns as
solutions to common programming scenarios. Beyond a reference, Advanced ActionScript with
Design Patterns is a practical guide complete with sample mini-applications illustrating each
design pattern. The accompanying CD includes a trial version of Flash 8 along with all the
lesson files needed to work with the text. Table of Contents: Part I - Successful Projects 1.
How to Design Applications 2. Programming to Interfaces Part II - Patterns 3. MVC 4.
Singleton 5. Factory (Abstract Factory and Factory Method) 6. Proxy 7. Iterator 8.
Composite 9. Decorator 10. Command 11. Memento 12. State Part III -
Advanced ActionScript Topics 13. Working with Events 14. Sending and Loading Data 15.
E4X (XML) 16. Regular Expressions

Advanced ActionScript 3 with Design Patterns, 1/e

By Joey Lott, Danny Patterson

...

Publisher: Adobe Press

Pub Date: November 02, 2006

Print ISBN-10: 0-321-42656-8

Print ISBN-13: 978-0-321-42656-7

Pages: 304

Table of Contents | Index

Today's ActionScript-based applications require increasingly sophisticated architectures and
code. This book aids intermediate and advanced ActionScript developers in learning how to
plan and build applications more effectively. You'll learn how to apply design patterns as
solutions to common programming scenarios. Beyond a reference, Advanced ActionScript with
Design Patterns is a practical guide complete with sample mini-applications illustrating each
design pattern. The accompanying CD includes a trial version of Flash 8 along with all the
lesson files needed to work with the text. Table of Contents: Part I - Successful Projects 1.
How to Design Applications 2. Programming to Interfaces Part II - Patterns 3. MVC 4.
Singleton 5. Factory (Abstract Factory and Factory Method) 6. Proxy 7. Iterator 8.
Composite 9. Decorator 10. Command 11. Memento 12. State Part III -
Advanced ActionScript Topics 13. Working with Events 14. Sending and Loading Data 15.
E4X (XML) 16. Regular Expressions

Advanced ActionScript 3 with Design Patterns, 1/e

By Joey Lott, Danny Patterson

...

Publisher: Adobe Press

Pub Date: November 02, 2006

Print ISBN-10: 0-321-42656-8

Print ISBN-13: 978-0-321-42656-7

Pages: 304

Table of Contents | Index

 Copyright

 Acknowledgments

 Introduction

 About This Book

 Part I: Successful Projects

 Chapter 1. Designing Applications

 The Analysis Phase

 The Design Phase

 The Implementation Phase

 Testing

 Summary

 Chapter 2. Programming to Interfaces

 Defining Interfaces

 Using Polymorphism

 Summary

 Part II: Patterns

 Chapter 3. Model View Controller Pattern

 Understanding MVC Elements

 Building a Simple Example

 Enabling Multiple Views for One Model

 Modifying Model Implementation

 Adding A Controller

 Summary

 Chapter 4. Singleton Pattern

 Object Instantiation

 Singleton Versus Static Members

 Building a Simple Singleton

 Building a Settings Framework

 Summary

 Chapter 5. Factory and Template Method Patterns

 Abstract Classes

 Template Method

 Factory Method

 Summary

 Chapter 6. Proxy Pattern

 Virtual Proxy

 Remote Proxy

 Adapter and Façade Patterns

 Summary

 Chapter 7. Iterator Pattern

 Understanding the Problems with Iteration

 Understanding Iterator Elements

 Using Iterators

 Using Null Iterators

 Summary

 Chapter 8. Composite Pattern

 Understanding the Element Interface

 Understanding Leaf Elements

 Understanding Composite Elements

 Building a File System Example

 Summary

 Chapter 9. Decorator Pattern

 Understanding the Decorator Pattern

 Building Reader Decorators

 Building Visual and Commutative Decorators

 Summary

 Chapter 10. Command Pattern

 Understanding the Command Pattern

 Building a Simple Command Application

 Making Commands Undoable and Keeping Command Histories

 Building an Undoable Application

 Building a Redoable Application

 Using Commands to Build a Proximity Game

 Summary

 Chapter 11. Memento Pattern

 Using Mementos to Make Actions Undoable in the Proximity Game

 Using Mementos to Make Actions Redoable in the Proximity Game

 Summary

 Chapter 12. State Pattern

 Simple State Example

 Encapsulating the States

 Using Abstract Classes

 Transitions

 Summary

 Part III: Advanced ActionScript Topics

 Chapter 13. Working with Events

 Understanding Events

 Using Events

 Creating Event Dispatchers

 An Example Working with Events

 Summary

 Chapter 14. Sending and Loading Data

 Loading Text

 Sending and Loading Variables

 Sending and Loading XML

 Using Web Services

 Using Flash Remoting

 Optimizing Data Communication

 Summary

 Chapter 15. E4X (XML)

 Creating XML Objects

 Property Accessors

 XML Filtering

 Iterating Through an XMLList

 Namespaces

 Sending and Loading XML Data

 Simple Soap Example

 Summary

 Chapter 16. Regular Expressions

 Introducing the RegExp Class

 Working with Regular Expressions

 Using Regular Expression Flags

 Understanding Metacharacters and Metasequences

 Using Regular Expression Groups

 Building a Mad Libs Application Using Regular Expressions

 Summary

 Index

Copyright
Advanced ActionScript 3 with Design Patterns

Joey Lott and Danny Patterson

Peachpit Press
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
800/283-9444
510/524-2221 (fax)

Find us on the World Wide Web at: www.peachpit.com

To report errors, please send a note to errata@peachpit.com

Peachpit Press is a division of Pearson Education

Copyright © 2007 by Joey Lott and Danny Patterson

Project Editor: Matt Purcell
Production Editor: Becky Winter
Development Editor: Alice Martina Smith
Copy Editor: Nancy Sixsmith
Tech Editor: Roger Braunstein and Paul Newman
Compositor: Danielle Foster
Indexer: Larry Sweazy
Cover design: Charlene Will

Notice of Rights

All rights reserved. No part of this book may be reproduced or transmitted in any form by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. For information on getting permission for reprints and excerpts,
contact permissions@peachpit.com.

Notice of Liability

The information in this book is distributed on an "As Is" basis without warranty. While every
precaution has been taken in the preparation of the book, neither the author nor Peachpit shall
have any liability to any person or entity with respect to any loss or damage caused or alleged
to be caused directly or indirectly by the instructions contained in this book or by the computer
software and hardware products described in it.

TradeMarks

ActionScript is a registered trademark of ActionScript, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and Peachpit was aware
of a trademark claim, the designations appear as requested by the owner of the trademark. All
other product names and services identified throughout this book are used in editorial fashion
only and for the benefit of such companies with no intention of infringement of the trademark.
No such use, or the use of any trade name, is intended to convey endorsement or other
affiliation with this book.

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

Dedication

Joey:

To what is here, always in support.

Danny:

This book is dedicated to Melissa, Adia and Murphy. Thanks for inspiring me to be my best.

Acknowledgments
Both Joey and Danny would like to acknowledge the following people for their help
with this book:

We'd like to thank Matt Purcell for helping with all aspects of this book.

Thanks also go to Angela kozlowski for her initial work coordinating this book project. We wish
you the best in your new career.

We'd like to thank our copy editor, Nancy Sixsmith, and our development editor, Alice Martina
Smith.

Additionally, we'd like to thank our technical editors, Paul Newman and Roger Braunstein.

The Adobe Flash Player and Flex teams are always extremely helpful. Thank you.

And, of course, thanks to the Flash Platform community.

Joey would like to acknowledge the following people:

Thank you, Danny, for co-writing this book.

Thanks to my partner, my family, and my friends for your support, kindness, strength, and
encouragement.

Danny would like to acknowledge the following people:

My thanks goes out to Joey. you're an incredible programmer and author and I'm honored to
work with you on this book.

Thank you to all the programming influences in my life. There are far to many to list, but you
know who you are.

And finally, my wonderful wife. Thanks for all your support and patience.

Introduction
As the Flash platform has grown, the size and scope of Flashbased applications has increased.
That growth has called for an everincreasing maturity in ActionScript developers. Flash
applications have gained a new stature, and the increasing demand means that more
developers must step up to the plate to hone their craft and take steps to evolve their
understanding of and relationship with the code they write and the applications they build.
Design patterns are a resource to help with just that.

ActionScript itself is really quite simple. It involves memorization of a basic syntax, a good API
reference, and a decent IDE. What is challenging is not the ActionScript, but the architecture for
an application. The real challenge is in deciding what classes to write and what the APIs for
those classes should be. yet as you build more and more applications, you'll start to find that
there are patterns that emerge time and time again. There are certain ways to accomplish tasks
and solve common problems that occur frequently. These common solutions are the foundations
of design patterns. Many of these design patterns exist already. If you don't bother to recognize
them and apply them consciously, you will simply be writing applications the hard way. you
might still end up with good results, but you'll be reinventing the wheel each time. Learning the
design patterns helps you more quickly identify intelligent and effective ways to structure each
new application.

The design patterns discussed in this book are but a subset of the many patterns that
developers have created over the years. We've selected what we feel are some of the most
useful and applicable patterns to ActionScript application development. These patternsand what
we have to say about the patternsis not intended to be held as gospel. It is intended to serve as
a guide and an inspiration for your own application development. The patterns we discuss are
patterns that have been identified and recognized by programming experts over the years; by
studying them, you can stand on the shoulders of giants. however, it's important to understand
that these patterns are not rules. Just because an expert found something useful doesn't mean
you are obligated to do so. Read everything with an open and alert, yet critical, mind.

Design patterns run gambit from those that require strict adherence to a specific interface to
those that simply specify a generalized structure. Regardless of the ways in which specific
design patterns play out or look, the intention is always the same: to solve a design problem.
one example of a common design problem is that you need a way to create an object without
specifying the concrete type at compile time. For example, a graphing application might need to
be able to create and display a graph where the specific type (bar chart, line graph, and so on)
is decided at runtime. If you specify a concrete type at compile time (for example, create a new
BarChart object), then you are locked into a rigid structure, and you cannot easily change the
type or add new types later. Because this is a common problem in many applications,
developers have had to create solutions many times over the years. The solutions that have
proven to be most useful, most elegant, most flexible, and simple to implement have emerged
as design patterns that are learnable. one solution to the concrete type problem just described
is a pattern we call the Factory Method pattern (discussed in Chapter 5.)

One of the fortunate sideeffects of working with design patterns is that they help you build a
common vocabulary to effectively communicate with other developers. Imagine if you didn't
have the word "car" in your vocabulary. Every time you wanted to talk about a car, you'd have
to describe the object, perhaps saying "the object with wheels, an engine, and doors that
typically seats 2 to 5 people and allows one person to conduct it by way of a steering
mechanism." That would obviously make it rather difficult to have a quick and effective

conversation about anything involving a car. having a word for something makes
communication faster and more effective. For this reason, all the design patterns we talk about
in this book have names. Rather than talking about "the pattern that allows you to capture and
set state while maintaining good encapsulation," you can simply say "the Memento pattern."

About This Book

The title of this book says that it is about advanced ActionScript 3.0 with design patterns. It's
always a little misleading to call something advanced. What we mean when we say that this
book is about advanced ActionScript 3.0 is that it steps beyond the standard introductions and
API references to discuss topics not normally within the scope of those basic texts. As such, we
necessarily make some assumptions about you, the reader. We assume that you already
understand basic programming and ActionScript 3.0 principles, including, but not limited to,
variables, expressions, statements, objects, inheritance, and how to write basic classes.

In many ways, this book starts where most books leave off in regards to objectoriented Action
Script. Although many books might discuss how to write a class, this book talks about the
different ways you can design a class. This book talks about when, why, and how to use
composition and inheritance, and how classes relate to one another to form patterns.

This book is organized in the following way:

Introduction to application design principals1.

Design pattern descriptions2.

Advanced concepts3.

Throughout the book, we'll present lots of examples, and we encourage you to follow along.

You can find additional information and updates at the official Web site for this book:
http://www.rightactionscript.com/aas3wdp. This is also where you'll be able to find the
AAS3WDP class library which you can download. Several classes from this library are used in
various examples throughout the book, and you'll want to download the library if you want to
follow along with the examples.

http://www.rightactionscript.com/aas3wdp

Part I: Successful Projects

 Chapter 1 Designing Applications

 Chapter 2 Programming to Interfaces

Chapter 1. Designing Applications

In This Chapter

The Analysis Phase 4

The Design Phase 8

The Implementation Phase 14

Testing 25

Summary 32

One of the most frequent questions ActionScript developers ask is, "How do I know what
constitutes a class?" This question strikes at the heart of a larger dilemma, which is: What are
the steps for building a successful application from start to finishfrom concept to completion?
This is a big topic to tackle. Many people dedicate themselves to understanding and improving
methodologies to answer this question.

The difficulty with teaching someone how to design and build an application from start to finish
is that it requires elements that are difficult to talk about much less teach. It requires being able
and willing to look at the big picture as well as looking at things from many perspectives. It
requires creative thinking as well as abstraction. It requires practice and experience. But there
are steps you can follow to help with the learning process. There are technologies you can use
to assist you in developing your ActionScript classes. This chapter outlines some of the steps
and technologies that have proven useful for many ActionScript developers.

Some methodologies say there are five steps for building applications; other methodologies say
there are eight steps; still others can't decide how many steps it takes. In general, most
developers agree that there are at least three phases to building successful applications:

Analysis1.

Design2.

Implementation3.

In addition, most developers also agree that testing is a vital part of the application
development process. Although not always considered a core phase we'll also look at testing as
a fourth important phase.

As we look at each of these phases, remember that they are not necessarily linear. You can go
back to an earlier step at any point if necessary. During the design phase, for example, you
might realize that you forgot about an important use case for your application. At that point,
you can return to the analysis phase. However, you should be as thorough as possible at each

step. Don't jump to the design phase too early just because you can. The more thorough and
complete you are with each phase before moving to the next, the more successful your
application is likely to be. Additionally, thoroughness at each phase helps minimize the risk that
you'll have to make major architectural changes later on, which could severely impact schedules
and project success.

The Analysis Phase

The analysis phase is concerned exclusively with what the application is supposed to do. The
question of how the application will accomplish the goal is deferred to the design and
implementation phases. In many ways, the analysis phase can be the most challenging because
it requires that you take (often vague) ideas and translate them into specific functional
requirements. You must create a map of what the application looks like from a distance.
Although you can get away with a minimal analysis phase for a small project, the analysis
phase becomes increasingly important for a project's success as the project increases in size
and scope. Although you might be able to walk around your neighborhood without a map, if you
wanted to cross the country, you'll undoubtedly agree that you need a map. This is true of
application development as well.

All too often, the analysis phase is glanced over or deemphasized. Poor analysis leads to
frustration for all parties involved (the developers who have to constantly make guesses and
refector, the managers who have the responsibility to see the project through to a successful
completion, the client who wants the working application, customers that have to use the
application that may suffer from limited feature sets and bugs due to poor analysis, etc.). The
goal of analysis is to provide a clear specification that outlines the needs of the user. Unlike
later phases, the analysis phase should be as non-technical as possible.

The outcome of the analysis phase is generally a document that outlines the functional
requirements. However, it's important to understand that there are many ways to approach
gathering these requirements, and the resultant document has no one required format. What is
most important is that you, your team, and/or your company uses an approach and document
format that works best for you while still achieving the goal of clearly defining this map for the
application you want to build.

Although there's no one required approach or format, we'll present one common approach to
analysis using use cases. If you are new to the idea of doing formalized analysis then you may
find it useful to try using use cases. We also encourage you to research other techniques and
document formats to find what works best for you.

Introducing Use Cases

One way to define the functional requirements of an application is simply to list everything that
the application should be able to do. Although that approach is not necessarily wrong, it is naïve
in that it fails to take into account the real-world use of the application. Applications don't exist
in isolation; they interface with all sorts of users. Therefore, it's much more realistic and useful
to approach the functional requirements from the standpoint of how the application is used. This
approach naturally leads to a kind of functional requirement called use cases.

Use cases present the application requirements by showing various ways in which users might
interact with the application. The following is an example of a simple use case:

Generate Map: The user submits a form with a street address. The system displays a
physical map of the street address, with the map zoomed in at the default level.

Use cases can be formatted in many ways. Generally, use case experts talk about three basic

formats.

Brief: One paragraph outlining the main success scenario. The preceding example was in the
brief format.

Casual: Multiple paragraphs outlining not only the main success scenario, but also alternative
scenarios. The following is an example of a casual format use case:

Generate Map

Main success scenario: The user submits a form with a street address. The system
displays a physical map of the street address, with the map zoomed in at the default
level.

Alternative scenarios: If the address is invalid, the address form is redisplayed with
an error message notifying the user why the operation failed.

If the default zoom level is unavailable for the requested address, display a map at
the greatest zoom level available for the location.

Formal: The most elaborate of the formats for a use case document. This format lists all the
steps for the use case as well as supporting data such as actors and conditions. The formal use
case is discussed in more detail in the next section.

Writing Formal Use Cases

Typically you'll want to create formal use cases for a functional requirements document. In this
section we'll look at how to create a formal use case. A formal use case can include the
following sections:

Primary actor: A description of the user who drives the operations outlined by the use
case. The description of the primary actor can include things such as the role of the user
(e.g. anonymous, basic, administrator, etc.) as well as characteristics of the user that may
be relevant to how they interact with the application (e.g. age, disabilities, etc.)

Preconditions: Those conditions that must be met for the use case to proceed.

Main success scenario: A more granular, step-based description of the way the application
works than is given in the basic or casual formats.

Alternative scenarios: More granular, step-based descriptions of the ways the application
will handle alternative uses than are given in the casual format.

Special requirements: A list of requirements for the use case that don't fit as part of the
main or alternative scenarios.

Open issues: A list of notes including questions that must be answered to fully implement
a solution for the use case.

The following is an example of a formal use case. Note that this example does not have any
open issues.

Generate Map

Primary actor: Customer

Preconditions: Customer is already viewing the form that allows the user to specify an
address and click a button to submit the form.

Main success scenario:

Customer fills out address form.1.

Customer submits address data.2.

System requests map data from mapping service.3.

System draws map at default zoom level.4.

Alternative Scenarios:

3a. System detects invalid address format and redisplays form with error message.

3b. Mapping service is unavailable and system displays error message.

4a. Data is not available for default zoom level and system displays map at next highest
available zoom level.

Special Requirements:

This portion of the application must be accessible (508 compliant).

Now that we've had a chance to see the structure of a formal use case, we'll next look at how to
start writing these use cases for an application.

Forming Use Cases

Now that you've seen how to write a use case, it follows that you'll want to know how to start
forming these use cases. For example, what level of granularity is appropriate? Should you have
ten uses cases or a hundred? The answer to these questions is subjective. There is no one
correct set of use cases for an application. However, you will likely find the following guidelines
to be helpful:

Determine the types of users. An application can have many types of users. Each user will
have different use cases. A simple example is one in which an application has a standard,
anonymous user type and an administrative user type. The administrative user typically
expects additional features that are not enabled for standard users. Your application might
have additional tiers of users as well. For example, in addition to standard and
administrative users, your application might have registered users who have access to
features not available to standard users.

1.

Determine the basic goals each type of user can achieve. For example, all users might be
able to generate maps, but only registered users can save maps. Additionally, only
administrative users might be able to view the logs and analytics for the application.

2.

3.

4.

2.

Fill out each use case with the appropriate sections.3.

Evaluate the use cases. It's important that you take your time with the use cases to make
sure they are correct and appropriate before moving to the design phase. Getting the use
cases correct helps ensure the best possible result of the design and implementation
phases. It's much easier to make changes to the use cases before you've designed or
implemented the application than to revise them afterward and have to redesign and re-
implement the application.

4.

Using UML in Analysis

UML (Unified Modeling Language) is a language in common use for modeling applications.
Although UML is perhaps most frequently used during the design phase (as we'll see in the next
section) it is not uncommon to use UML during analysis as well. One of the three parts of a
system model in UML is what's called the functional model. The functional model allows you to
create use case diagrams, which can be very helpful. UML use case diagrams generally are not
detailed enough to be used apart from written use cases. However, they are often a nice
addition to written use cases as they provide a visual representation of the uses cases, actors,
and systems. Figure 1.1 illustrates actors and uses cases for a common system, a store.

Figure 1.1. An example of use cases in UML.

The Design Phase

After you've completed the analysis phase of an application, you have a map for what the
application is supposed to do. However, that map is at such a high level that you cannot use it
to begin writing code. The result of the analysis phase may be a map, but it doesn't tell you how
you're going to get from point a to point b. For example, are you going to walk, drive, fly, or
take the train? For that you need the next step, which we call the design phase.

In the design phase, you take the functional requirements documentation from the analysis
phase and start to look at it from an architectural standpointlooking to identify subsystems and
eventually classes. During the design phase you'll parse out the elements that should be written
as classes. Then you determine the responsibilities for those classes as well as the relationships
between the classes.

The goal of the design phase is to generate some sort of technical document that provides a
blueprint of the application you intend to build, including all the specific subsystems and classes
that you will use and the relationships between them. You should expect to use this technical
document to help you break up the application development into individual tasks. You should
also expect that the technical document clearly identifies dependencies and collaborations
between classes.

As with the analysis phase, the design phase has no rule dictating what techniques and tools
you must employ. There are many ways that different people approach the design phase, and
we encourage you to find the one that works best for you. However, we have found that class
responsibility and collaboration (CRC) cards are a technique that proves very helpful in the
design phase. In the next section we'll discuss CRC cards in more detail.

Introducing CRC Cards

CRC cards are a low-tech, yet very effective, way to determine exactly what classes you need to
write, what those classes need to be able to do, and how those classes relate.

Typically, you'll find that 3x5 or 4x6 lined index cards work best as CRC cards. At the top of the
index card, write the name of the class. On the left side of the index card, list the
responsibilities for the class. On the right side of the card, list the classes with which the class
needs to collaborate to accomplish those responsibilities. Figure 1.2 illustrates the format for a
CRC card.

Figure 1.2. The typical format for a CRC card.

CRC cards are useful because you can draw them up quickly and make changes just as quickly.
Using CRC cards, you can rapidly map out the functionality of an application; when you decide
to split a single class into two classes, combine two classes, or change a class name, you can do
that with your CRC cards in a few seconds. You can also sit around a table with a team and
work together on the cards.

Now that you know the format of CRC cards, you'll undoubtedly have a few questions regarding
how to decide what constitutes a class, what responsibilities are, how to know what classes are
collaborators, and so forth. The next few sections address each of these questions.

Determining Classes

Deciding what constitutes a class is as much an art as it is a science. Just as every painter has
different ideas about composition, use of color, and so on, so too does every application
designer have different ideas about how to build an application. However, you'll likely find
certain guidelines helpful when you try to determine what classes your application needs.

It's often a good idea to look at your use cases to find classes. Classes are nouns. You can scan
use cases for all the significant nouns and use those as classes in your application. For example,
consider the Generate Map use case we described earlier in this chapter. From that use case we
can easily identify these relevant nouns which are natural candidates for classes: "address
form," "address data," "mapping service," "map data," and "map."

When you have selected all the candidates for classes, write them down on your CRC index
cards. The next step is to determine the responsibilities for each class.

Determining Class Responsibilities

After you've decided on the initial candidates for classes, you can assign responsibilities to those
classes. Assigning responsibilities is an important step because it helps you determine the
viability of the class candidate. If a class candidate doesn't have any responsibilities, it must be

unnecessary, and you can discard it. If the candidate seems to have too many responsibilities, it
probably needs to be divided into two or more classes. There are some schools of thought that
state that a class should have no more than one responsibility. While we respect that
standpoint, we find it to be severe. A general rule of thumb that we use is that a class should
have between one and three responsibilities.

It's important to understand what a responsibility is (and what it is not). A responsibility is
essentially what a class (or an instance of the class) should be able to do or facilitate. Although
there is a relationship between a class's methods and its responsibilities, they are not identical.
You should not think of a class's responsibilities in terms of methods or method names. A class
may require many methods to accomplish just one responsibility. At this point in the design, it's
too early to map out the actual methods. Responsibilities are higher-level abstractions than
methods.

A responsibility is usually something that can be written out in plain language in a few words.
The following are examples of possible class responsibilities:

Create user input form

Validate user input

Encapsulate data model for a map

Handle requests and responses to and from server-side service

Draw vector map from data model

As you work on determining the responsibilities for the classes in your application, you will most
likely drop classes, add classes, and change existing classes. These revisions are a desirable
part of the process, which result in a well-considered design.

Although you can go through each class candidate and try to think of the responsibilities each
class might have, that approach can be problematic. It encourages you to add responsibilities
based on what you think the class candidate ought to do rather than based on what the
application requires. A better approach is to scan the use cases for verbsboth explicit and
implicit verbs. Explicit verbs are obvious because they are written in the use case steps. Implicit
verbs are the verbs that are not written in the steps but are necessary for the successful
completion of a step.

Determining Collaborators

Many, if not most, classes cannot fulfill all their responsibilities on their own. They must rely on
other classes to assist them. The assisting classes are called collaborators. Collaborators
generally lend a hand either by providing data or by enabling the class to offload functionality.

After you have defined classes and class responsibilities, the next step in the design phase is to
determine what each class's collaborators are. This is extremely helpful in finding additional
classes that you hadn't previously thought of. For example, consider a Map class whose
responsibilities include drawing a vector map based on a data model. It might be immediately
obvious that in such a case a MapData class would be a collaborator since Map would want to
query MapData for the data needed to draw the map. Locating collaborators is useful for us in
terms of determining relationships between existing classes. In this case, because we likely
already have a CRC card for the MapData class derived from the "map data" noun we spotted in
the use cases this collaborator did not help us find a new class. However, when we think about
the Map class still more, we'll probably realize that drawing all the different types of elements on

a map would probably be far too much for the Map class itself to handle. Instead we can rely on
collaborators that draw the specific map elements, and we realize that these collaborators
become new classes we missed before: Street, Highway, River, and CityMarker.

Elaborating on Relationships Between Classes

Classes have relationships with one another. When finding collaborating classes, you are finding
the classes that have relationships. However, it's possible and necessary to determine what type
of relationship these collaborating classes have. Although every relationship between classes
will be unique, it is possible to generalize those relationships into the following categories:

Association

Aggregation

Inheritance

Association and aggregation are types of relationships that can more generally be called
composition. Later in this chapter (in the section titled, "Inheritance and Composition"), we'll
compare and contrast the generalized principals of composition and inheritance as they apply to
implementation.

The Association Relationship

Association is the weakest of these relationships. Association relationships are also sometimes
called dependency relationships. When two classes are related in this way, one of the classes
relies on its collaborator to help with one or more of its responsibilities.

An example of an association relationship is the relationship between a Map and a MapData class.
The Map class has a dependency on the MapData class. Without a MapData instance, a Map object
wouldn't be able to draw the map.

Associations are perhaps the most common sort of relationship between classes. You can think
of associations as "uses" relationships, meaning that Map "uses" MapData.

The Aggregation Relationship

Aggregation is a stronger form of composition relationship than the association relationship.
When classes are related by aggregation, the life cycles of the classes are linked. When classes
are related by association, one class instance can be created or destroyed without necessarily
affecting the other. However, when classes are related by aggregation, it implies that one class
is the owner of the collaborator class. If the owner class is destroyed, so too are the aggregate
collaborator classes.

An example of an aggregation relationship is that of the Map and Street classes. You can think
of aggregations as "has a" relationships, meaning that Map "has a" Street. That doesn't mean
that all Street objects are owned by Map objects. But this relationship does state that Map
objects can have Street objects, and when the Map object is destroyed, so too are the Street
objects it owns.

The Inheritance Relationship

Inheritance is the strongest sort of relationship between classes. When a class inherits from an
existing class, it initially looks exactly like the class from which it inherits. The entire interface
and implementation (more on these topics in the next chapter) of the existing class (what we
call the superclass or base class) are passed down to the new class (what we call the subclass.)
The relationship is so strong between superclasses and subclasses that subclass instances can
even stand in for superclass instances in many cases. Because of the strength of inheritance
relationships we say that inheritance defines an "is a" relationship such that the subclass "is a"
superclass.

Inheritance relationships allow you to create abstractions that are shared by many similar
classes. For example, Street, Highway, River, and CityMarker are all types of map elements. If
all the classes share common interfaces and implementations, these classes might have a lot of
duplicate and redundant code. You can abstract that code by placing it into a new MapElement
class. Street, Highway, River, and CityMarker can then all inherit from the MapElement class.
They will automatically inherit the interface and implementation from MapElement, which will
remove the need to repeat that code in each of the subclasses. It also means that you can begin
to use polymorphism. Although we'll talk about this topic in more detail in the next chapter, the
idea behind polymorphism is that a more specific type can substitute for a more general type.
In other words, the Map class can have an aggregation relationship with MapElement rather than
having aggregation relationships with Street, Highway, River, and CityMarker. That distinction
is very important because if you later wanted to add a Bridge class, you could simply define it
such that it inherits from MapElement, and the Map object would automatically work with Bridge
objects without your having to rewrite any of the Map code.

Although inheritance relationships are very powerful, they also tend to create very rigid
relationships. Inheritance has its place and deserves credit for all that it can do. However, so
much emphasis has been placed on inheritance relationships in many programming
communities that it is often overused and misused. Inheritance relationships should generally
be the least frequent type of relationships in your applications. Inheritance enables
polymorphism, which is extremely valuable. However, inheritance is not the only way to enable
polymorphism, as you'll read in the next chapter. We'll compare and contrast inheritance with
composition relationships in the "Inheritance and Composition" section later in this chapter.

Formalizing Public APIs

By this point, you've decided on the classes your application requires as well as the
responsibilities of each class, the class collaborators, and the relationships each class has with
those collaborators. Although you might be anxious to start coding right now, there are still
some steps to complete in the design phase.

The next step is to formalize the public APIs (Application Programming Interface, which means
the public methods) of the classes.

Formalizing the API for a class is a matter of translating the responsibilities into method
signatures. Not all responsibilities necessarily translate into public methods because some of
what a class is responsible for might be private. For example, the AddressForm class might have
a responsibility to validate user input. That is probably not something that translates into a
public method. Rather, it is far more likely that this responsibility is handled internally by the
class when the user clicks a button. However, some class responsibilities might translate into
several public methods. For example, in the case of our map example, the responsibility "handle
request and responses to and from server-side service" might translate into the following
methods (depending on the application requirements):

function getMapDataForAddress(address:AddressData):void;
function getSavedMapData(id:uint):void;

Note

In the preceding example, the two methods are purely based on speculation as to
what sorts of methods such an application might require for a server-side service
proxy (often called a remote proxy). Furthermore, both methods are declared with
void return types because the assumption is that the class is a proxy to a server-side
service that works asynchronously with Flash Player, and responses will be handled by
event listeners.

Using UML for Design

We first mentioned UML in relation to analysis. However, one of the most common uses of UML
is during the design phase because you can use UML class diagrams to visually represent all the
classes, their APIs, and the relationships between the classes. UML class diagrams are really
useful because they allow you to look at all the classes and there relationships all at one time in
a relatively succinct format. Usually a UML class diagram doesn't replace the need for technical
documentation. However, UML class diagrams can often supplement technical documentation
and serve as a useful tool both during the design phase as well as during the implementation
phase when you must actually write all the classes shown in a UML class diagram. Figure 1.3
shows a very simple UML class diagram that shows two classes and an interface.

Figure 1.3. A simple UML class diagram.

Note that this figure shows only public class members, yet you can also represent private and
protected members.

Not only does UML provide a nice way to visualize the classes used by an application, but it also
provides the possibility to export stub code for all the necessary classes and interfaces. At the
time of this writing there is no known ActionScript 3.0 stub code generator for UML. However,
since this is a common feature for many other languages (Java, C#, etc.) it is reasonable to
think that there will be an ActionScript 3.0 generator for UML in the near future.

The Implementation Phase

Following the design phase is the implementation phase. In the implementation phase, you
actually write the code you have planned out. If you've had successful analysis and design
phases, the implementation of your application should be relatively straightforwardsimply a
matter of coloring in the lines, so to speak. By the time you get to the implementation phase,
you should already have decided on the classes, their relationships, their responsibilities, and
their APIs.

Much of the implementation phase simply involves writing ActionScript code, and as the one
step you can't skip, it is the phase with which everyone is familiar. As such, we're not going to
focus on the details of how to write classes. However, there are several topics that bear further
discussion, namely:

Coding conventions

Encapsulation

Composition and inheritance

Coupling

Coding Conventions

There are few rules for naming classes, packages, variables, functions, and interfaces in
ActionScript. In each case, you can use only letters, numbers, dollar signs ($), and underscores
(_) and the first character must not be a number. Although the rules are few, there are still
conventions for naming that you might find useful. At the very least, you will find it useful to
know what conventions we use in this book. You should know that the conventions we use
aren't the only conventions, and you aren't obligated to use them. We introduce this topic here
because consistent and conscious coding conventions are a boon to application development. By
applying conventions consistently you can expect to write code that is easily read by you and
anyone else during team development. Remember that classes can involve hundreds of lines of
code, and using consistent conventions helps you to more quickly identify parts of the code and
their purposes.

Variables and Functions

For variables, it is a convention to use initial lowercase letters. Consider this example:

var city:Map;

Generally, it is advisable to use as the name words and phrases that describe the variable. For
example, city is probably a much better name for a Map variable than m would be. Often times,
it's possible to more accurately describe a variable using several words. In such cases, the
convention is to use a style called camel case (sometimes called inter caps) in which the first
letter of each word (except the first) is capitalized, as in this example:

var cityMap:Map;

Class properties are special sorts of variables, and as such they use the same naming
convention as variables. However, to better distinguish between local variables and class
properties, it is a convention to name all private properties with an initial underscore, as in this
example:

private var _cityMap:Map;

Note

The issue of underscores for private properties is a contentious one among developers.
It is our preference to use underscores as we feel they help clearly differentiate
between private properties and local variables. However, some developers will argue
vehemently against the use of underscores as they feel there is no significant benefit
in their use.

Functions (and methods) also follow the same naming conventions as variables. Function names
should start with lowercase letters and use camel case formatting when the function name
consists of more than one word. Consider this example:

public function getMapDataForAddress(address:AddressData):void;

Parameters are also special variables, and as such they use the same naming conventions as
variables, as you can see in the preceding example.

Unlike private properties it is not common to use underscores for private methods. The logic
behind this is that a method is not generally defined within another method as a local variable
might be defined within a method. Therefore, it's always clear that a method is a method
without having to use underscores.

Note

The variable and function/method naming conventions presented here are not
intended to be comprehensive of all possible naming conventions. Many developers
like to use additional conventions such as using variable prefixes to denote type. We
are presenting the conventions that we find useful and that we use in this book. You
are always welcome to use whatever conventions you find helpful.

Constants

Constants are special types of fields; you can define them with a value, but you cannot change
the value subsequently. You've likely seen many constants in the Flash Player events API such
as EVENT.COMPLETE and MOUSEEVENT.CLICK . As you can see, constants use all uppercase

characters by convention. If a constant name uses more than one word, the words are delimited
by an underscore, as in MouseEvent.MOUSE_MOVE .

Note

Constants are a new feature in ActionScript 3.0.

Classes and Interfaces

By convention, class names always start with an uppercase character. Class names also use
camel case when necessary. In addition, class names should always be nouns.

Interfaces use the same naming conventions as classes except that they have one additional
convention: Interface names always start with the letter I (meaning interface.) Additionally,
interfaces do not always have to use nouns as names. Although it's not uncommon to name an
interface with a noun (e.g. ICollection) it's equally common to use an adjective ending in -
able. For example, the Flash Player API includes the following ActionScript 3.0 interfaces:
IExternalizable and IBitmapDrawable .

Packages

For the most part, package names follow the same conventions as variables: They start with
lowercase letters. There are two schools of thought regarding the use of camel case in package
names. One group uses camel case while the other group uses exclusively lowercase characters
in package names. In this book we do not employ camel case in package names.

There's yet another important convention when it comes to package names. One of the
functions of packages is to ensure that classes exist within unique namespaces. For example,
two classes called Example cannot be created in the same package, but may exist in two
separate packages. When you decide on package names, try to ensure that the package name
guarantees uniqueness. That way, if you happen to use your Example class in a project with an
Example class from an existing library, the two classes can coexist.

By convention, package names can guarantee uniqueness by using subpackages in order of
descending order of specificity. When a class is part of a library belonging to a company or
organization, the convention is to name the packages starting with the organization's domain
name in reverse order. The first part of most package names is the top-level domain such as
com or org . The second part of most package names is the domain such as google or amazon . If
the classes are specific to a project, the project name follows the company's domain name. The
classes themselves are generally placed in subpackages that group them by classification. For
example, utility classes might go in a utils subpackage and service proxy classes might go in a
services package. As an example, imagine that you're writing a class called LoggingService
that is specific to a project with a code name of JediKnight for your company called
ExampleCompany (with a domain name of examplecompany.com.) You might place that class
in the following package:

com.examplecompany.jediknight.services

Encapsulation

One of the rules of good object-oriented design is that all classes should be black boxes: you
can put things in and take things out, but you can't determine how it operates. In other words,
the only way to interact with a class instance is to use its public methods. You should never be
able to look into an object or change the object's state except by asking the object to tell you
about itself or to change its own state. The object must always maintain sovereignty. The
minute an object is no longer in charge of its own internal world, the entire object-oriented
universe starts to crumble and fall apart into an unmanageable train wreck.

This idea of classes being black boxes is a fundamental principle of object-oriented design called
encapsulation. Encapsulation is absolutely necessary for an object-oriented design to succeed
because it enables objects to interact with one another in known and well-defined ways. This
approach models the world in which we live in many ways. Every object in the physical world
has boundaries that define it and its interface with the world around it. Your body interacts with
the air by way of respiration, for example. Without these well-defined interfaces there would be
chaos, and it would be impossible to interact with anything in a useful or meaningful way.

Implementing classes so that they adhere to the principle of encapsulation is quite simple. To
achieve this goal, there are just two basic rules:

Don't use any public properties.1.

Don't reference objects outside the class unless the reference was passed to the class as a
parameter.

2.

Public Properties

Properties store an object's state. As we've already said, an object must be in control of its own
state. Public properties allow other objects to directly change an object's state without the
object being in control. The implications of this can be far-reaching, but we can see the problem
with a simple example. Consider a Student class that models a student at a school. One of the
fields that comprise a Student object's state is the GPA (grade point average). It might seem
like a good idea to simply define the class with a public gpa property. However, consider that
GPAs are generally constrained to a specific range of values (0 to 4, for example). With a public
property, there's no way for the application to guarantee that a student's GPA will always be in
the valid range. If the property is public, you can simply set the value to any numeric value
regardless of whether or not it is within the valid range, as this example does:

student.gpa = 400;

As if that wasn't bad enough, there are further ramifications. What if there are other
collaborating objects that must be updated with a student's GPA changes? For example, a
SchoolRecord object might need to know when a GPA changes in general, and a Parent object
might need to know when the GPA drops below or raises above a certain level. If the Student
object doesn't even know when its own state changes, it can not very well notify other objects
when its state changes.

The solution to public properties is to use private properties with accessor methods. In
ActionScript, we call the accessor methods getter and setter methods, and ActionScript enables
two types of getters and setters: explicit and implicit. An explicit getter or setter is a normal
method, typically using the word get or set in the name of the method. For example, rather
than declaring a public gpa property, you can declare a private _gpa property and then use
methods called getGPA() and setGPA() . Consider this example:

public function getGPA():Number {
 return _gpa;
}
public function setGPA(value:Number):void {
 if(value > 4) {
 _gpa = 4;
 }
 else if(value < 0) {
 _gpa = 0;
 }
 else {
 _gpa = value;
 }
 dispatchEvent(new Event(Event.CHANGE));
}

Notice that the setter method uses boundary testing to verify that the value is always in the
valid range between 0 and 4. This example simply corrects values outside the valid range, but
another implementation might throw an error. The method also dispatches an event that can
notify listeners (such as a SchoolRecord or Parent object). When you want to set the GPA for a
student, you can simply call the setGPA() method and pass it the value, as shown here:

student.setGPA(4);

When you want to retrieve the value you can call getGPA() , as in this example:

textfield.text = "GPA: " + student.getGPA();

Implicit getters and setters are similar to explicit getters and setters. In fact, the
implementation of implicit methods can look almost identical to that for explicit getters and
setters. The difference is that implicit getters and setters are defined as methods, but they look
like properties when used. The syntax for implicit getters and setters uses the keywords get and
set after the function keyword. The following example rewrites the preceding explicit methods
as implicit methods:

public function get gpa():Number {
 return _gpa;
}
public function set gpa(value:Number):void {
 if(value > 4) {
 _gpa = 4;
 }
 else if(value < 0) {
 _gpa = 0;
 }
 else {
 _gpa = value;
 }
 dispatchEvent(new Event(Event.CHANGE));
}

When you want to call the implicit setter method, you use it as part of an assignment

statement. The value you assign to the "property" is passed to the setter method, like this:

student.gpa = 4;

You can call the getter method when you reference the "property" in a context that attempts to
read the value, as shown here:

textfield.text = "GPA: " + student.gpa;

External References

A class should never directly reference any object that is outside of itself unless it obtains that
reference through its public interface. A class can declare private properties and local variables
and can reference those objects internally because they exist within the class. A class can also
reference an outside object if the reference was passed into it via a public method. For example,
a Student class might define a method called attendClass() that accepts an AcademicClass
parameter. The Student object can then reference that object because it was passed in as part
of a method call.

public class Student {

 public function _classes:Array;

 public function Student() {
 _classes = new Array();
 }

 public function attendClass(class:AcademicClass):void {
 _classes.push(class);
 // Now that the class was passed in as a parameter the
 // Student instance can store that reference in the array
 // and use it later. This doesn't break encapsulation
 // because the reference was passed in via the public API.
 }

 // Remainder of implmentation.

}

Designing for Encapsulation

Encapsulation is an extremely important principle, and it can have far-reaching consequences.
Consider a School class that has a private property called _students, an array of all the
students who attend the school. If you need to make the students available to collaborators with
the School object (for example, a SchoolDistrict class might need to know about all the
students at all the schools in the district), you can make the array accessible using a getter
method, as shown here:

public function get students():Array {
 return _students;
}

Even though you aren't using a public property, the design in this example breaks the principle
of encapsulation. Consider what happens when you retrieve the _students array and make
changes to it directly:

school.students.splice(10, 5);

The preceding code removes five students from a school, but the school never receives
notification about the removal of the students. That is obviously not the behavior you would
want (a school should always know when students have been removed). You can address this
issue in several ways. One way is to simply return a copy rather than a reference, as shown
here:

public function get students():Array {
 return _students.concat();
}

Another solution is to employ the Iterator pattern (described in Chapter 7 , "Iterator Pattern").
Regardless of which solution you use, you are solving the design flaw that broke the principle of
encapsulation.

Most design patterns are solutions to problems relating to encapsulation. In many cases,
encapsulation might appear to be in direct opposition to other important design principles. For
example, many applications need to have globally accessible objects of specific types. An
application might need a globally accessible User object that represents the current user of the
application. As we've already discussed, it would break encapsulation if all the other classes in
the application had hard-coded references to that one specific User object. However, using the
Singleton pattern (described in Chapter 4), you can achieve the goal of a globally accessible
object without having to directly reference a specific object.

Inheritance and Composition

One class can leverage the functionality of another class in one of two basic ways: inheritance
or composition. Both are powerful techniques. Inheritance allows you to define a new class so
that it automatically gets the interface and implementation of an existing class. The following
code declares a class called Employee :

public class Employee {
 public function Employee() {}
 public function work():void {
 trace("working");
 }
}

The new class, which we call the subclass, can build on the foundation of the existing class,
which we call the superclass or base class, without needing to rewrite the original code or write
any new code to use the superclass code. There are different types of employees, and we can
define different subtypes by inheriting from the Employee superclass. For example, the following
Executive class inherits from Employee by using the extends keyword:

public class Executive extends Employee {
 public function Executive() {}
 public function attendMeeting():void {

 trace("attending meeting");
 }
}

Furthermore, inheritance automatically enables polymorphism because the subclass inherits the
interface of the superclass. That means that an Executive object is also an Employee …just a
more specific type. An Executive object can be used any time an Employee object is expected
although the reverse is not true:an Employee object cannot stand in for an Executive object.
Note that the Executive class defines another method called attendMeeting() . Because
Executive objects inherit from the Employee superclass, you can call the work() method for an
Executive and you can also call the attendMeeting() method which is specific to Executive .

In contrast with inheritance, composition allows you to write a new class (a front-end class)
that has an instance of an existing class (the back-end class). Every time you define a class with
a property whose type is another class, you are using composition in some sense. The following
example is a rewrite of the Executive class example just shown so that it uses composition
rather than inheritance:

public class Executive {
 private var _employee:Employee;
 public function Executive() {}
 public function attendMeeting():void {
 trace("attend meeting");
 }
 public function work():void {
 _employee.work();
 }
}

When you use composition, the new (front-end) class does not automatically inherit the
interface of the existing (back-end) class. The front-end class can use the back-end class
instance only by way of its public interface. If the front-end class needs to have part or all of the
same interface as the back-end class, you must write code that defines the interface as well as
its implementation. That is the reason that this rewrite of the Executive class has to define a
work() method. Unlike the example that used inheritance, the composition version of the
Executive class does not inherit the work() method. If you want the work() method to be part of
the Executive interface, you must define it. The preceding example uses a technique called
delegation to pass along the method call to the composed object.

Because a class that composes an instance of another class does not automatically inherit the
object's interface, composition does not automatically enable polymorphism. In other words,
using composition, an Executive object is not an Employee , and it cannot stand in for an
Employee . (The solution to this issue is to use interface constructs as discussed earlier in this
chapter.)

In reading the preceding paragraphs, you might think that inheritance sounds like a much
better technique for reusing existing functionality. It sounds like composition requires much
more work with little or no advantage. Yet both inheritance and composition have their
advantages and disadvantages.

Advantages and Disadvantages of Inheritance

As you've seen already, inheritance has the following advantages:

Simplicity of use: Inheritance is a concept built into the language. All you have to do is use
the extends keyword in order to define one class so that it inherits both the interface and
the implementation of an existing class.

Ability to change inherited implementation: By using the overrides keyword, you can
change the implementation inherited for a particular method.

Yet inheritance also has its disadvantages:

Implementations are fixed at compile-time: For example, if a Chart3D class inherits from
the BarChart class, then it's impossible at runtime to apply the 3D functionality to a
LineGraph object.

Supports weak encapsulation and fragile structures: Subclasses have privileged access to
a superclass's implementation. Anything that is marked as public, internal, or protected is
accessible to a subclass. This means that encapsulation is weak in inheritance
relationships. Because of this, it's possible that a change to a superclass implementation
could break subclasses even if the public interface does not change.

Superclass interface changes necessarily change subclasses: If you change the signature of
a superclass method the change will ripple to all subclasses.

ActionScript allows a class to inherit directly from just one class (as opposed to multiple
inheritance, a concept utilized by very few languages): Suppose that all Executive objects
share the functionality of both Employee and DecisionMaker classes. ActionScript allows
Executive to inherit from just one of those classes, not both.

Advantages and Disadvantages of Composition

Although we haven't yet mentioned the advantages of composition, they are numerous. Some of
the most prominent advantages are as follows:

Implementations are configurable at runtime: For example, if a Chart3D class operates on
an object typed as Chart (of which there are many subtypes such as BarChart and
LineGraph), the Chart3D class can operate on any of those subtypes. The specific subtype
can be set at runtime.

Supports good encapsulation and adaptable structures: Classes that use composition are
forced to go through the back-end class public interfaces. That means that they enforce
good encapsulation. That also means that changes in implementation of the back-end
classes are less likely to break classes that use them. As long as the interface remains the
same, the front-end classes won't break.

Interface changes have limited ripple effect: When the interface of a back-end class
changes, it will break front-end classes that rely on the old version of the interface.
However, the damage is contained and generally fairly trivial to correct. Because interfaces
are not inherited when using composition, the changes affect only the front-end class, but
not classes that in turn compose instances of the front-end class. In other words, if
Executive is a front-end class for Employee and the interface for Employee changes, you will
most likely have to make changes to Executive . However, the interface for Executive does
not change. That means that if a Company class composes an Executive object, the Company
class does not have to change.

Composition allows a front-end class to have relationships with many back-end classes:

Using composition, an Executive class can have both an Employee and a DecisionMaker
property.

Yet composition is not without its disadvantages:

Frequently requires more code than inheritance: If a front-end class needs to use some or
all of a back-end class's interface, it must re-create it.

Often more difficult to read than inheritance: Inheritance establishes a very
straightforward relationship. Composition is often less direct and presents a trail that's
more difficult to follow if you're not familiar with the code.

Which to Use: Inheritance or Composition

Generally, the rule of thumb is to favor object composition over inheritance. The advantages of
object composition outnumber the disadvantages. Furthermore, the disadvantages of
composition are not obstacles as much as they are simply inconveniences. Because inheritance
is so much more straightforward, it's a lot easier to teach and learn in many cases, and it tends
to be overemphasized and overused by many people in the ActionScript development
community. For this reason, it's often beneficial for ActionScript developers to determine
whether composition is the best option for establishing a relationship between classes.

With that said, it's also worth noting that with the surge of interest in object-oriented design
and design patterns in the ActionScript community, inheritance has been maligned in many
circles. It's important to understand several things about this conflict:

Inheritance is not wrong: Just because you should favor composition does not mean that
inheritance is never appropriate. Inheritance is a better solution in some cases. It's difficult
to make rules that tell you when to use inheritance and when to use composition.
However, as a general guideline, it's advisable to use inheritance in the following
situations: When a new class really does define a subtype of an existing class, when the
new class is not likely to have subclasses itself (limiting inheritance chains keeps some of
the disadvantages of inheritance at bay), when the new class would benefit greatly by
inheriting part of the existing class's implementation that is hidden from the public, and
when the new class does not have special requirements (for example, it needs to be
adaptable to significant changes at runtime).

Inheritance and composition are not competitors: Although it is true that in almost all
cases two classes will be related by either inheritance or composition (and not both), that
does not mean that these two types of relationships can not work together. In fact, most
classes that use inheritance also use composition.

Conventional teaching says that to determine whether two classes should be related by
inheritance or composition, you should use the "is a/has a" test. The "is a/has a" test says that
you should answer the following question: Is (new class) a (existing class) or does (new class)
have a (existing class)? If the new class is a more specific version of the existing class, the
relationship is inheritance. If the new class simply has an instance of the existing class as a
property, the relationship is composition. Although that guideline can be useful, it is not
definitive. Consider an example using an existing class called Student and a new class called
School . If we ask whether School is a Student , the answer is obvious: a School is not a
Student . Therefore, the relationship must be composition, not inheritance. Yet just because we
can answer that a new class is a more specific version of an existing class doesn't mean that the
relationship should necessarily be inheritance. For example, consider the relationship between a
HighSchool class and a School class. If you use only the "is a/has a" test, you might determine

that a HighSchool is a School and therefore the relationship is inheritance. Yet consider what
happens if you need to have a HighSchool object that uses experimental administration
structure and teaching techniques. We can assume that the implementation for School deals
with traditional school systems and infrastructure and would not meet the needs of an
experimental school. An inheritance relationship between School and HighSchool is rigid. If you
use composition to define the relationship, it's possible to create an experimental high school
type at compile type by substituting an ExperimentalSchool instance for the School property of
a HighSchool object.

Coupling

Coupling refers to the degree to which two objects must know about one another. When the
objects have to know a great deal about one another to work, we call that tight coupling; when
they have to know little to nothing about one another, we call that loose coupling. In object-
oriented design, we generally strive to have loose coupling among the objects in the system.
Loose coupling creates flexible and adaptable systems. If objects are tightly coupled, the system
is rigidone change in one object can cascade and break the entire system. If objects are loosely
coupled, changes are much less likely to break things, and even when changes do cause
malfunctions, the malfunctions are generally contained.

Many design patterns aim to create loosely coupled systems. For example, if an object needs to
ask another object to run a behavior, the traditional way to accomplish this goal is for the
object to have a reference to the collaborator and to call a method of that collaborator. That
way of structuring an application uses tight coupling because the calling object has to have a
reference to the collaborator and it has to know the signature of the method it wants to call. It's
difficult to make changes to that structure. The Command pattern described in Chapter 10
addresses this issue by completely decoupling the objects. The Command pattern adds an
intermediary layer that parameterizes the behavior and allows the calling object to simply have
a reference to the intermediary object and know about a standard interface. This is just one
example of how design patterns can promote loose coupling or decoupling, and you'll see many
more examples throughout the book as you read about each of the patterns.

Testing

Once you've completed the implementation phase the next important phase you need to
consider is the testing phase. Generally testing involves a quality assurance (QA) group that
runs test cases to determine that the application behaves as expected and to try to catch any
bugs. This testing phase is iterative. When QA returns a list of bugs the development team must
work to fix any issues. However, when fixings bugs it's possible to introduce new bugs. If you
have architected the application well, favoring composition over inheritance for building flexible
structures, then the risk of introducing new bugs during this phase is minimized. However, it's
is almost inevitable that some new bugs will be introduced during bug fixing and old fixed bugs
will re-emerge. Because of the possibility of this introduction and re-introduction of bugs testing
generally involves something called regression testingwhich basically means all tests that
previously passed must be run again to ensure that changes didn't cause any of those tests to
suddenly fail.

As you might imagine the introduction and re-introduction of bugs can be quite expensive
during the testing phase if they go uncaught until the build is regression tested by a QA team. If
a bug isn't caught until QA runs a regression test then it means that the development team
must fix the bugs again and send yet another build to QA for regression testing.

If possible it's always best for developers to try to find new bugs and regressions before sending
the build to QA. The difficulty with that strategy is that it requires the development team to be
responsible for testing the application. If developers could handle testing in addition to
development and bug fixes then there wouldn't be a need for a QA team in the first place, so it
might almost seem ridiculous to suggest that developers should have to test an application.
However, if developers can run automated tests that verify that an application continues to
work correctly from a programmatic standpoint then that doesn't require a great deal more
work on the part of the developer, and it enables developers to quickly identify errors before
sending a build to QA. These programmatic tests are can be formalized into what is called a unit
test .

Unit testing allows the developer to create programmatic tests that ensure that parts of the
application behave in an expected way. For example, if you have a method that's supposed to
convert a parameter value from radians to degrees and return that value then you want to
make sure that if you pass it a value of Math.PI it returns 180 every time. Using this basic
concept you can create a series of tests where you ensure that results of operations are as
expected (i.e. Math.PI radians is always converted correctly to 180 degrees).

You can create unit tests without a formal unit test framework. However, using a formal
framework for unit testing has several advantages. Specifically:

When you use an existing framework you don't have to reinvent the wheel, saving you
time

An existing framework is likely to be tested so that bugs in the unit testing framework
won't cause your tests to fail to work (which would negate the value of running unit tests
in the first place.)

Although there may be additional unit testing frameworks for ActionScript 3.0 subsequent to the
writing of this book the one existing unit testing framework we know of at this point is called

FlexUnit. As the name implies, you can use FlexUnit for unit testing Flex applications. However,
that doesn't mean that FlexUint is limited to unit testing applications that use the Flex
framework. Even if you are working on a purely ActionScript 3.0 project you can use FlexUnit.

At the time of this writing FlexUnit is available for download at
http://labs.adobe.com/wiki/index.php/ActionScript_3:resources:apis:libraries . If that URL
changes you may not be able to find the downloads there. In such a case you can look to
www.rightactionscript.com/aas3wdp for an updated URL.

Once you've located the correct URL you should download the archive containing the .swc file
which contains the necessary FlexUnit framework libraries. You will want to extract the .swc file
from the archive and then make sure that the .swc is included in the library path for your
project for which you want to use unit tests.

If you want to write custom unit tests that don't rely on FlexUnit then you are welcome to do so.
However, for the remainder of this section on unit testing we will be giving specific instructions
for running unit tests using FlexUnit.

Creating Basic Unit Tests

In FlexUnit basic unit tests require the following elements:

Classes you want to test. These are the classes that comprise your application.

Test cases. Test cases are special classes that you write just for the purposes of unit
testing.

Test runner. A test runner is a class (or MXML file) that actually runs all the test cases and
reports the results.

The first category of elements isn't specific to unit tests. That category is simply comprised of
the classes you've already written. They are part of unit testing because you are testing that
they actually work the way you expect. For the basic test cases we'll test the following class.

package example {
 public class SimpleConverter {
 public function SimpleConverter() {}
 public function convertToRadians(degrees:Number):Number {
 return (degrees / 180) * Math.PI;
 }
 public function convertToDegrees(radians:Number):Number {
 return (radians / Math.PI) * 180;
 }
 }
}

Test cases and test runners, on the other hand, are unique to unit testing. Since test cases and
test runners are likely new to you we'll look at how to create them in the next sections.

Writing Test Cases

A FlexUnit test case is an instance of a class that extends flexunit.framework.TestCase . The
test case class constructor should always accept a string parameter and then call the super
constructor, passing it the parameter value.

http://labs.adobe.com/wiki/index.php/ActionScript_3:resources:apis:libraries

package tests {
 import flexunit.framework.TestCase;
 public class SimpleTest extends TestCase {
 public function SimpleTest(method:String) {
 super(method);
 }
 }
}

The class should then define one or more methods that run a test. Each test should result in an
assertion. An assertion is what actually determines the success of the test. You can run an
assertion using any of the assert methods inherited by the Assert class which is the superclass
of TestCase :

assertEquals() : Tests if all the parameters are equal (equivalent to an == operation)

assertStrictlyEquals() : Tests if all the parameters are strictly equal (equivalent to an
=== operation)

assertTrue() : Test if the parameter is true

assertFalse() : Test if the parameter is false (passes test if the parameter is false)

assertUndefined() : Test if the parameter is undefined (passes test if the parameter is
undefined)

assertNull() : Test if the parameter is null (passes test if the parameter is null)

assertNotNull() : Test if the parameter is not null

fail() : Though technically not an assertion, the fail() method explicitly causes the test to
fail, which can be useful when you need to test for a failure.

The following update to SimpleTest defines two test methods to test the conversions to and
from degrees and radians.

package tests {
 import flexunit.framework.TestCase;
 import example.Simple;
 public class SimpleTest extends TestCase {
 public function SimpleTest(method:String) {
 super(method);
 }
 public function testConvert0ToDegrees():void {
 var simple:SimpleConverter = new SimpleConverter();
 var degrees:Number = simple.convertToDegrees(0);
 assertEquals(degrees, 0);
 }
 public function testConvertPIToDegrees():void {
 var simple:SimpleConverter = new SimpleConverter();
 var degrees:Number = simple.convertToDegrees(0);
 assertEquals(degrees, 180);
 }
 public function testConvert0ToRadians():void {

 var simple:SimpleConverter = new SimpleConverter();
 var radians:Number = simple.convertToRadians(0);
 assertEquals(radians, 0);
 }
 public function testConvert180ToRadians():void {
 var simple:SimpleConverter = new SimpleConverter();
 var radians:Number = simple.convertToRadians(180);
 assertEquals(radians, Math.PI);
 }
 }
}

Once you've created one or more test cases you next to create a test runner to run the tests and
view the results.

Writing a Test Runner

Assuming you're using Flex you can use the FlexUnit test runner to run a suite of unit tests.
First, you must create a runnable MXML document that does the following:

Add the flexunit.flexui.* namespace

Add an instance of TestRunnerBase , an MXML component

Create a flexunit.framework.TestSuite instance, and add all the test cases to it.

Assign the TestSuite instance to the test property of the TestRunnerBase instance.

Call the startTest() method of the TestRunnerBase instance.

The following example MXML document runs all the tests from SimpleTest .

[View full width]<?xml version="1.0" encoding="utf-8"?>
<!-- Notice that the Application tag adds the flexui namespace prefix and maps it
to flexunit.flexui.*. Also notice that it registers initializeHandler() as an event
handler for the initialize event.-->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" xmlns:flexui="flexunit.flexui.*"
 initialize="initializeHandler(event)">

 <mx:Script>
 <![CDATA[
 import flexunit.framework.TestSuite;
 import tests.SimpleTest;

 private function initializeHandler(event:Event):void {
 // Create a new TestSuite object.
 var suite:TestSuite = new TestSuite();

 // Use the addTest() method to add each of
 // the four test cases to the suite.
 suite.addTest(new SimpleTest("testConvert0ToDegrees"));
 suite.addTest(new SimpleTest("testConvertPIToDegrees"));
 suite.addTest(new SimpleTest("testConvert0ToRadians"));
 suite.addTest(new SimpleTest("testConvert180ToRadians"));

 testRunner.test = suite;
 testRunner.startTest();
 }
]]>
 </mx:Script>
 <flexui:TestRunnerBase id="testRunner" width="100%" height="100%" />
</mx:Application>

Notice that each test case is an instance of SimpleTest with one of the test method names
passed to the constructor. When you run the preceding test runner it should show all the tests
as passing. If you make the following change to SimpleConverter you'll see that one of the tests
fails.

package example {
 public class SimpleConverter {
 public function SimpleConverter() {}
 public function convertToRadians(degrees:Number):Number {
 return (degrees / 180) * Math.PI;
 }
 public function convertToDegrees(radians:Number):Number {
 return 0;
 }
 }
}

Note that since convertToDegrees() always returns 0 the testConvertPIToDegrees test will fail.
Since the specific test fails you immediately know where the error is occurring, and you can fix
the bug.

Another thing that can be useful when creating test cases is to add a static method to each
TestCase subclass that returns a TestSuite of all the tests for that class. This allows you to
simplify the test runner. The following is an example of such a method you could add to
SimpleConverter .

public static function suite():TestSuite {
 var suite:TestSuite = new TestSuite();
 suite.addTest(new SimpleTest("testConvert0ToDegrees"));
 suite.addTest(new SimpleTest("testConvertPIToDegrees"));
 suite.addTest(new SimpleTest("testConvert0ToRadians"));
 suite.addTest(new SimpleTest("testConvert180ToRadians"));
 return suite;
}

The test runner initializeHandler() method would then simplify to the following:

private function initializeHandler(event:Event):void {
 testRunner.test = SimpleTest.suite();
 testRunner.startTest();
}

Creating Asynchronous Unit Tests

Many unit tests are synchronousmeaning that you can immediately determine if a test has
passed or failed. For example, the SimpleConverter test in the preceding section passed or
failed a test immediately. However, it's possible that some tests may depend on asynchronous
operations. For example, a class may need to make a request and wait for a response from a
service method before a test can be verified properly. In such cases it's important to be able to
run tests asynchronously. For an example consider the following class which loads data from a
text file when calling the getdata() method.

package example {
 import flash.events.EventDispatcher;
 import flash.net.URLLoader;
 import flash.events.Event;
 import flash.net.URLRequest;

 public class AsynchronousExample extends EventDispatcher {

 private var _loader:URLLoader;

 public function get data():String {
 return _loader.data;
 }

 public function AsynchronousExample() {
 _loader = new URLLoader();
 _loader.addEventListener(Event.COMPLETE, onData);
 }

 public function getData():void {
 _loader.load(new URLRequest("data.txt"));
 }

 private function onData(event:Event):void {
 dispatchEvent(new Event(Event.COMPLETE));
 }

 }
}

With a few simple changes it's possible to run FlexUnit tests asynchronously so you can test
operations like getdata() . Asynchronous operations should use events to notify listeners when
the operation has completed. Typically when you register a listener for a particular event you
use the addEventListener() method, and you pass it a reference to the listener method. When
writing test cases for asynchronous operations you should register a listener method to handle
the event that signals a completed operation. However, rather than registering the listener
directly, you should use an inherited TestCase method called addAsync() . The addAsync()
method allows you to specify a listener method along with a time out in milliseconds. This
allows you to specify what method should handle the event, but if the event doesn't occur within
the timeout window then the test will fail. The event listener method should run the assertion.
The following example uses these techniques. You'll see that the class extends TestCase just like
a basic unit test. Furthermore, this test case class also accepts a method name as a parameter
for the constructor, and it passes the parameter to the super constructor. What differs is that
the test method registers a listener using addAsync() and defers the assertion to onData() . This

example times out after 2000 milliseconds. That means that if the data loads in 2000
milliseconds or less then the assertion will run. However, if the data doesn't load in time then
the test case assumes that it was due to a failure and the test fails.

package tests {
 import flexunit.framework.TestCase;
 import example.AsynchronousExample;
 import flash.events.Event;
 import flexunit.framework.TestSuite;

 public class AsynchronousTest extends TestCase {

 public function AsynchronousTest(method:String):void {
 super(method);
 }

 public function testGetData():void {
 var asynchronous:AsynchronousExample = new AsynchronousExample();
 asynchronous.addEventListener(Event.COMPLETE, addAsync(onData, 2000));
 asynchronous.getData();
 }

 private function onData(event:Event):void {
 assertNotNull(event.target.data);
 }

 public static function suite():TestSuite {
 var suite:TestSuite = new TestSuite();
 suite.addTest(new AsynchronousTest("testGetData"));
 return suite;
 }

 }
}

The following test runner will run both the simple tests and the asynchronous test.

[View full width]<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" xmlns:flexui="flexunit.flexui.*"
 initialize="initializeHandler(event)">

 <mx:Script>
 <![CDATA[
 import flexunit.framework.TestSuite;
 import tests.SimpleTest;
 import tests.AsynchronousTest;

 private function initializeHandler(event:Event):void {
 var suite:TestSuite = new TestSuite();
 suite.addTest(SimpleTest.suite());
 suite.addTest(AsynchronousTest.suite());
 testRunner.test = suite;
 testRunner.startTest();
 }
]]>

 </mx:Script>
 <flexui:TestRunnerBase id="testRunner" width="100%" height="100%"/>
</mx:Application>

Summary

Although many people think of building applications as exclusively writing the code, in this
chapter we have seen that writing code is just one of the phases of building successful
applications. We've seen that one of the biggest challenges is knowing what to write, and the
analysis and design phases of a project are the time to determine the answer to that question.
The third phase, implementation, is the time to actually write the code. Following
implementation is the testing phase which allows developers to use unit testing to ensure fewer
regressions

Chapter 2. Programming to Interfaces

In This Chapter

Defining Interfaces 34

Using Polymorphism 38

Summary 42

Learning and mastering the fundamentals of object-oriented design and application
development is no small feat, and you should undoubtedly congratulate yourself for all your
accomplishments so far. And as you know, with every step taken yet another step presents
itself. Our next step involves understanding interfaces in the context of good application design
and pattern-based development. Although mastering basic object-oriented concepts enables an
evolution in how you build applications, understanding interfaces can rapidly push your coding
to take another evolutionary leap. After you've learned about using interfaces, the code you
write may hardly resemble the code you used to write.

It may surprise you to learn that lurking within every class are at least two distinct layers which
we call the interface and the implementation. Early on when you're learning how to write
classes, it can be difficult to distinguish between the two layers. However, as you become more
adept at writing good classes, it becomes easy to differentiate between the interface and the
implementation.

Classes consist of methods and properties. As explained in the previous chapter, properties
should never be defined as public. Properties are used by a class to store its state, and good
encapsulation dictates that an instance of a class should always be responsible for managing its
own state. As such, the only public interface that most classes define is comprised of methods.
Looking at a class from the outside, you could describe it by its public methods and their
signatures. In fact, you could even say that two classes look identical from the outside if they
have the same method names and method signatures. In contrast, those two classes with the
same method names and signatures could have vastly different implementations for those
methods. This is the basic idea that enables something called polymorphism. Polymorphism is
the idea that if you program to an interface rather than an implementation, the resultant code is
much more flexible because any instance of any class that uses that interface can stand in for
any other object that uses the same interfaceeven if the implementations are totally different.

We'll talk much more about interfaces, implementation, polymorphism, and all sorts of related
topics throughout this chapter.

Defining Interfaces

As mentioned in the introduction to this chapter, classes have both an interface and an
implementation. The interface is the way in which the outside world can communicate with an
object. The interface simply says what methods are publicly available, what parameters those
methods accept, and what, if any, types are returned by methods. The interface does not say
anything at all about what a method does or how it does it. For example, the
flash.net.LocalConnection and flash.net.NetConnection classes both define methods called
connect() with identical signatures:

connect(value:String):void

However, notice that although that portion of the interface for both classes is identical, the
actual implementations are quite different. LocalConnection objects listen for requests over a
specified channel while NetConnection objects either make a connection to an RTMP server (if
the parameter uses the RTMP protocol) or simply stores the parameter value for subsequent
requests.

The class implementation is hidden from public view. When you call a method, you always call it
by way of the interface, but the implementation is what runs. The implementation consists of
the actual code that defines the internals of the method.

When you write code you can reference a class by typing variables and properties as the class.
While that is not necessarily wrong, it does limit flexibility because it ties the code to a specific
implementationthe concrete class. However, you can create more flexible code if you reference
the interface instead. When you reference an interface rather than the implementation you don't
lock the code into just one implementation. We'll talk more about this later in the chapter. For
now what's important is to know that referencing interfaces rather than implementation is often
a good strategy for creating flexible code, and we call this technique programming to interfaces.

When you program to an interface, you must write your classes so that they implement a
formalized interface (more on what this means in a moment). This is essential for something
called polymorphism, which we'll discuss shortly. To understand what a formal interface is, we
can first look at what it is not. Just a moment ago, we mentioned that the LocalConnection and
NetConnection classes have a common interface with the connect() method. However, that
similarity is not part of a formalized interface. You can't declare a variable with an interface
type that is generic enough to work for either LocalConnection or NetConnection. Rather, you
must declare a variable as exactly LocalConnection or exactly NetConnection. This is an
important distinction to make. Up to now we've said that all classes have both an interface and
an implementation, and we've said that it's useful to be able to program to the interface rather
than the implementation. However, unless we take steps to formalize an interface we cannot
share that interface between more than class, which means we cannot polymorphically
substitute one class for another in those cases. What we need to look at next is how to create a
formal interface that is distinct from the implementation.

There are two ways to define formal interfaces: through inheritance and through explicit
interface constructs. When you define an interface by either of these techniques, you can then
define classes that implement the interface. This is an important concept that enables many of
the design patterns discussed throughout this book. When you define a class that implements
an interface, you can then declare variables of the interface type and assign to them instances

of the implementing type. We'll be looking at this in much greater detail later in this chapter.
First we'll look at how to define interfaces.

Interfaces Defined by Interface Constructs

ActionScript defines a formal interface construct that you can use to define interfaces. The
syntax for defining an interface is very similar to that for defining a class, but it is simplified
because it does not require (nor allow) you to provide any implementation. An interface
construct defines only the interface. An interface consists of methods, including getters and
setters. The basic syntax is as follows:

package package {
 public interface Interface {

 function method(parameter:Type):ReturnType;

 function get property():ReturnType;

 function set property(value:Type):void;
 }
}

The major differences between the syntax for a class and the syntax for an interface are that an
interface uses the interface keyword rather than the class keyword and a semicolon appears
after the return type for each method, instead of a code block defining the function body.
Additionally, interfaces can describe only the public methods for implementing classes. That
means that there is no need for a public/private/protected/internal modifier, and interfaces do
not allow those modifiers.

Note

By convention, interface names start with I. For example IExample indicates that the
type is an interface.

The following is an example of an interface called IExample:

package {
 public interface IExample {
 function sampleMethod(parameter1:String,
 parameter2:uint):void;
 }
}

When you want to define a class that implements the interface, you use the implements keyword
following the name of the class. For example, the following defines class A as implementing an
interface called IExample:

public class A implements IExample {

If the class extends a superclass, then the implements keyword follows the name of the

superclass:

public class A extends SuperClass implements IExample {

When a class implements an interface, it essentially signs a contract that it will implement the
methods defined in the interface. If the implementing class does not define the necessary
methods with exactly the same signatures as described in the interface, the compiler throws an
error. For example, the following class says it implements IExample, but it does not declare the
necessary method sampleMethod():

package {
 public class A implements IExample {
 public function A() {}
 }
}

Because A does not correctly define the necessary method, the compiler will throw an error.
Also, if A is defined as follows, the compiler will still throw an error because although A defines
sampleMethod(), it does not use the correct signature:

package {
 public class A implements IExample {
 public function A() {}
 public function sampleMethod(parameter1:String):void {
 trace("sampleMethod");
 }
 }
}

The compiler will approve the class only when the class correctly adheres to the contract and
defines all the necessary methods with the correct signatures, as it does in this example:

package {
 public class A implements IExample {
 public function A() {}
 public function sampleMethod(parameter1:String,
 parameter2:uint):void {
 trace("sampleMethod");
 }
 }
}

It's also important to note that, unlike inheritance, you can implement more than one interface
per class. To implement more than one interface, simply use a comma-delimited list. For
example, the following code defines A so that it implements IExample and ISample:

public class A implements IExample, ISample {

Note that a class signs a contract for each interface it implements. It must implement all the
methods for all the interfaces it implements.

Interfaces Defined by Inheritance

As we've already discussed, the basic definition of an interface is the set of public methods
(including getters and setter) for a class minus the actual implementation. All classes have
interfaces (though by default the interfaces are tied together with the implementation), and if
you define a subclass, it automatically inherits the interface of the superclass (as well as the
superclass's implementation). This means that you can use inheritance to define interfaces.

Although all classes define interfaces (and can be used as interfaces), when we talk about
explicitly defining interfaces using classes, we generally use a specific type of class called an
abstract class. An abstract class is one that is not intended for instantiation. For example, if
Example is an abstract class, you would never instantiate an Example object as follows:

var example:Example = new Example();

Rather, abstract classes are designed strictly to be subclassed and to define an interface that is
shared among all the subclasses. Classes that subclass abstract classes and fill in their
implementations are called concrete classes.

Abstract classes generally have little implementation. They defer the majority of implementation
to subclasses. However, if you don't intend to add any implementation whatsoever, it is
advisable that you use an interface construct as discussed in the previous section, "Interfaces
Defined by Interface Constructs." Abstract classes in ActionScript 3.0 are typically most
appropriate when you want to define a class that formalizes an interface for a set of subclasses,
but also define a minimal amount of implementation.

Some programming languages define ways in which you declare abstract classes in an explicit
fashion. When you define an abstract class with those languages, safeguards prevent you from
accidentally instantiating an abstract class (generally, an exception is thrown). However,
ActionScript 3.0 does not have a formal abstract class concept. Rather, the responsibility falls
on the developer not to attempt to instantiate a class that is conceptually abstract.

There is nothing syntactically unique to abstract classes that sets them apart from standard
classes. That is good news in that you don't have to learn anything new in terms of syntax.

When you want to define a class that implements the interface, you simply subclass the abstract
class or a concrete class that extends the abstract class. Again, this technique of defining
interfaces doesn't require any new syntax. You can simply use standard inheritance.

Deciding How to Define an Interface

How do you decide whether to define an interface through inheritance or through an interface
construct? Generally you should always start with an interface construct. By using an interface
construct you create the greatest degree of flexibility. If you then decide that you need an
abstract class (because you want concrete classes to be able to inherit basic implementation)
you should create an abstract class that implements the interface. This way you can always
program to the interface construct, and if you later need to add more classes that implement
the interface but don't inherit from the abstract class you can do that.

Using Polymorphism

Polymorphism is a complex-sounding word. However, the concept it represents is not very
complex now that you understand what an interface is. The basic idea of polymorphism is that
any class that implements an interface looks a lot like any other class that implements that
same interface; any object that implements an interface can stand in when that interface is
expected.

If you haven't used interfaces up to now, chances are you haven't leveraged the power of
polymorphism yet. However, once you understand polymorphism, you'll quickly see how flexible
it makes your code. Here's an example. First the interface is defined as follows:

package {
 public interface ISearchable {
 function search(searchTerm:String):Array;
 }
}

Next we can define a class called Library which implements ISearchable:

package {
 public class Library implements ISearchable {
 private var _books:Array;
 public function Library(books:Array) {
 _books = books;
 }
 public function search(searchTerm:String):Array {
 var results:Array = new Array();
 for(var i:int = 0; i < _books.length; i++) {
 if(_books[i].title.indexOf(searchTerm) != - 1) {
 // Assume that each item in the array
 // is a custom Book type that has a
 // clone() method.
 results.push(_books[i].clone());
 }
 }
 return results;
 }
 }
}

We can also define a Help class that implements the ISearchable interface as well.

package {
 public class Help implements ISearchable {
 private var _helpIndex:Object;
 public function Help() {
 // Assume the _helpIndex is populated by data loaded
 // from an XML file, and that each item in

 // _helpIndex is an array where the key is
 // a search term.
 }
 public function search(searchTerm:String):Array {
 if(_helpIndex[searchTerm] != null) {
 return _helpIndex[searchTerm];
 }
 else {
 return new Array();
 }
 }

 }
}

Now, even though Library and Help are different classes with different implementations, either
can be used any time ISearchable is expected. For example, the following assigns a new Library
instance to searchCollection.

var searchCollection:ISearchable = new Library(books);

However, note that you can also substitute a Help instance. And furthermore, you can make
that substitution at runtime.

searchCollection = new Help();

We'll next take a look at this concept in more detail.

Differentiating Between Type and Class

When you've declared a variable in the past, you most likely declared the variable so that the
type was identical to the class for which you planned to instantiate an object to assign to the
variable. For example, if you wanted to declare a variable to which you could assign an instance
of class Vegetable, you probably declared the variable in the following fashion:

var item:Vegetable;

Although there's nothing inherently wrong with the preceding code, there is an inherent
inflexibility in that way of declaring a variable. Because you've declared item as type Vegetable,
you can assign to it only those objects that are instances of class Vegetable or its subclasses.
Even if class Fruit has the exact same interface as class Vegtable, you cannot assign an
instance of class Fruit to item when you declare item as in the preceding example.

To write more flexible code, you have to differentiate between class and type. In the preceding
example, Vegetable is both a class and the type. However, there's a correspondence between a
type and an interface and between a (concrete) class and an implementation. Although a
concrete class defines both an interface and implementation, an interface defines just the
interface. Likewise, a class is also a type, but a type does not have to be a class. Types can also
be interfaces. By declaring variables with interface types, you create greater flexibility in your
code. Consider the following example:

var item:IProduce;

Now that item is declared as type IProduce, we can assign to item any instance of any class that
implements IProduce. We're no longer locked into one specific class. If both Fruit and
Vegetable implement IProduce then you can assign an instance of either class to item now that
it's typed as IProduce.

Making Runtime Decisions

When you declare a variable with a type of a concrete class, you generally are making a
compile-time decision as to which implementation to use. That is okay when you know
absolutely that you want to use only that one implementation. However, consider an example in
which an application uses a fallback plan for network communications. According to the
business rules for the application, it must first attempt to communicate using Flash
Remoting/AMF. If that does not work, the application next must attempt the communication
using an HTTP request that sends and retrieves XML data. And if that does not work, the
application next must attempt to make a binary socket connection to a server. In this case, you
cannot know at compile time which protocol the application will use for network
communications. If everything works correctly, the application will use Flash Remoting/AMF, but
if that doesn't work, the application will have to fall back on one of the alternatives. This
situation presents a dilemma if you're not programming to interfaces, but it accepts a fairly
trivial solution if you are.

In order to solve the dilemma presented by this hypothetical network protocol selection issue
you can write three classes (one for each protocol) that implement the same interface that we'll
call INetworkProtocol. You can then program to that interface rather than to any one of the
specific classes. Doing so allows you to plug in an instance of any of the implementing classes.
Even though the implementations are all different, they use the same interface and therefore
appear the same from the outside. That allows you to change which protocol you use at
runtime.

In order to better understand this concept let's look at some sample code. We'll solve the
network protocol issue by creating an interface. Note that this example shows an interface that
extends an existing interface (IEventDispatcher). That means that the implementing classes
must implement both the INetworkProtocol and the IEventDispatcher methods.

package {
 import flash.events.IEventDispatcher;
 import flash.net.URLRequest;
 public interface INetworkProtocol extends IEventDispatcher {
 function setService(service:String):void;
 function sendRequest(request:URLRequest):void;
 function testConnection():void;
 }
}

For this example we'll also assume that the following class defines constants we'll use for event
names.

package {
 import flash.events.Event;
 public class NetworkEvent extends Event {
 public static const CONNECT:String = "connect";

 public static const FAILED:String = "failed";
 public static const RESULT:String = "result";
 public static const ERROR:String = "error";
 }
}

Now that we've defined INetworkProtocol, we can define AMFService, XMLService, and
BinarySocketService so that they each implement the interface. For the sake of brevity we'll
omit the actual class definitions here. What's important is not the implementation in this case,
but the fact that they each implement the same interface. The code that decides which protocol
to use might look like the following:

package {
 import flash.events.EventDispatcher;
 public class Service extends EventDispatcher {
 private var _serviceURL:String;
 private var _service:INetworkProtocol;
 private var _services:Array;
 private var _hasValidService:Boolean;
 public function Service(serviceName:String) {
 _services = new Array(new AMFService(),
 new XMLService(), new BinarySocketService());
 _serviceURL = serviceName;
 tryNextService();
 }
 private function tryNextService():void {
 _service = _services.shift();
 _service.addEventListener(NetworkEvent.CONNECT,
 onConnect);
 _service.addEventListener(NetworkEvent.FAILED,
 onFailed);
 _service.setService(_serviceURL);
 _service.testConnection();
 }
 private function onConnect(event:Event):void {
 _hasValidService = true;
 _service.addEventListener(NetworkEvent.RESULT,
 onResult);
 _service.addEventListener(NetworkEvent.ERROR,
 onError);
 }
 private function onFailed(event:Event):void {
 if(_services.length > 0) {
 tryNextService();
 }
 }
 private function onResult(event:Event):void {
 dispatchEvent(event);
 }
 private function onError(event:Event):void {
 dispatchEvent(event);
 }
 public function sendRequest(request:URLRequest):void {
 _service.sendRequest(request);
 }

 }
}

This example is not intended to show a fully-functional, bullet-proof network communication
mechanism. What it is intended to demonstrate is how programming to interfaces enables
polymorphism. In this case _service is typed as INetworkProtocol. Since AMFService,
XMLService, and BinarySocketService all implement INetworkProtocol, it's possible to assign
instance of any of those classes to _service.

Summary

Interfaces are the backbone of good application design. Interfaces emphasize type rather than
implementation. By programming to interfaces rather than to concrete implementations, you
increase the flexibility in your applications. This flexibility comes about because of the reduction
of dependency on implementation. When you program to interfaces, you can change the
implementation of a class as long as you don't change the interface. That means that you can
make significant changes without breaking your application, and even if you introduce an error,
the error is generally isolated instead of cascading to other structures in the program. This
emphasis on programming to interfaces is seen throughout the rest of the book.

Part II: Patterns

 Chapter 3 Model View Controller Pattern

 Chapter 4 Singleton Pattern

 Chapter 5 Factory and Template Method Patterns

 Chapter 6 Proxy Pattern

 Chapter 7 Iterator Pattern

 Chapter 8 Composite Pattern

 Chapter 9 Decorator Pattern

 Chapter 10 Command Pattern

 Chapter 11 Memento Pattern

 Chapter 12 State Pattern

Chapter 3. Model View Controller Pattern

In This Chapter

Understanding MVC Elements 46

Building a Simple Example 48

Enabling Multiple Views for one Model 56

Modifying Model Implementation 57

Adding A Controller 59

Summary 63

There was a time when computer programs had very limited user and client interfaces. In 1975,
a computer program might interact with a user through a command line. Programs built today
often have rich graphical user interfaces that make use of windows, mouse, and keyboard
interaction, and that permit the moving and changing of elements. The increased richness of the
user interface presents new challenges, and the Model View Controller (or MVC) pattern
addresses those challenges to help create more flexible applications.

Applications consist of user interfaces, business logic, and data models. For example, standard
UI components such as lists and combo boxes have user interface elements (clickable regions,
scrollable regions, and so on), logic that knows how to respond to user input, and data models
(the data that populates the component). Although these are three distinct elements, many
developers write code that combines all the elements into one object rather than several objects
working in combination. When the interface and the data are collapsed into just one object in
rich user interfaces, it can lead to some of the following dilemmas:

It is difficult to use the data outside that object. For example, if an object defines a user
input form and also saves the user input within the object, then it is difficult to send the
data to a server. The options in that case are to place the responsibility of client-server
communication in the same class or to define an interface in the object that allows access
to the data and provides the only means by which to access the data. Either option creates
fragile and rigid structures.

You cannot easily change the user interface while keeping the same data. If the user
interface and the data are locked in the same object, to use a new user interface you'd
have to create not only the new user interface, but also transfer all the data from the old
user interface to the new one. Changing the user interface is not an uncommon
requirement. Consider an application in which you want to chart a data set using different
types of graphs. The data remains the same in each case, but the graph style changes
(line, bar, and so on). If each graph is locked up with the data set, it's difficult to change
graph styles.

Multiple simultaneous views of the same data are difficult. For example, you might want to
display two or more graph styles of the same data set at the same time. If the data is
locked into the user interface, you have to replicate the data for each chart.

Synchronized views are difficult. This is an extension of the previous issue. For example, if
you not only want to display two or more different graph styles for the same data set at
the same time, but you also want to update those graphs over time as the data changes,
then you have to update each data set stored in each user interface.

All the preceding issues are problematic because the data and the user interface are locked into
one object. The MVC pattern presents a manner in which you can create two or more objects
that work together. This approach enables you to create more flexible applications with more
reusable parts.

Note

Some people argue that MVC is not a design pattern, but rather an architectural
pattern. Although there may be merit to that argument, we still feel that MVC is an
important pattern (design or architectural) and we feel that it is extremely useful to
ActionScript developers. For that reason, we present the pattern here in this book.

Understanding MVC Elements

The MVC pattern is composed of three subsystems as indicated by the name: the model, the
view, and the controller. In the next few sections, we'll look at each of these elements. Then
we'll look at how they work together. When referring to the use of a model, a view, and a
controller together, we call this grouping the MVC triad.

The Model

The model is the element that stores the data that is used in the MVC triad. The model can be
as simple as storing one primitive value such as a string, yet it can also store extremely
complex structures of data. The defining aspects of the model are that it acts as a storehouse
for data and that it exists independently of the view and the controller. The model should never
have a reference to the view or the controller. This is absolutely essential to the functioning of
the MVC pattern because the model's independence is what creates the flexibility in the MVC
pattern. If a model has a reference to a view or controller then it is tightly coupled, and it is
specific to a particular type of controller and/or view. However, if the model communicates
without having to have references to specific types of controllers or views then it can be used
with many different types of controllers and views. We'll see how a model can interact within
the MVC triad in "The Relationships Between Subsystems" section, later in this chapter.

The View

The view is the visual display portion of the user interface subsystem. The view uses the data
from the model to draw itself. A view can consist of an animation, a user input form, a chart,
buttons, an audio player, or any sort of user interface elements you might need in your
application.

The key to understanding the view is to understand that it consists only of the visual elements
and the logic necessary to read the model data and use it as required by the user interface.

The Controller

The controller is the subsystem that is responsible for taking input (user input, for example) and
updating the model and view as necessary. For example, if the model needs to update data, the
controller is responsible for that action.

The Relationships between Elements

Each of the elements has a specific type of relationship with the other elements. The model
element must always remain independent of the view and the controller. This means that the
model cannot know about any other element. This does not mean that the model does not
communicate with the other elements. A model can broadcast messages when the data
changes. However, what's important is that the model merely broadcasts the message without

having to know who is listening. This use of events allows the model to be decoupled from the
other subsystems, allowing for greater flexibility.

The view always knows about the model. The view interacts with the model in two ways: It
listens for update messages, and it reads from the model. The view never writes to the model.
Every view keeps a reference to its model. Because a view knows about its model but a model
doesn't know about a view, a single model can act as the model for many views.

The controller also knows about the model. The controller is responsible for updating the model
when necessary based on user input or system events.

The relationship between the controller and the view is very tightly coupled. Although it is
possible to have a controller that uses several views, it is far more common that the relationship
between view and controller is one-to-one. The view contains all the user interface elements
through which the user interacts. Yet the controller is the element that responds to user input.
In many, if not most, ActionScript applications, the view and the controller are one class. This
variation of the MVC pattern is often called a Document View implementation of MVC.

The most important key to the MVC pattern is that the model must be an independent object
that does not have a reference to the view or controller. The view updates and redraws itself
based on changes to the model.

Building a Simple Example

In this example, we'll build a clock model with two viewsanalog and digital. We'll start by
building the clock model, which we'll call ClockData. Then we'll build the AnalogClock view. After
the analog clock view works in conjunction with the data model, we can build a second view to
see how simple it is to use the same model for two or more views. And, to prove how simple it
is to change the model without affecting the views (so long as the model interface remains the
same), we will update ClockData to handle additional responsibilities.

Clock Data Model

The ClockData class stores essentially one piece of datathe time. To store the time, we'll
construct a simple building-block class called Time which has the accessor getter and setter
methods for hour, minute, and second properties. We can define the Time class as follows:

package com.peachpit.aas3wdp.mvcexample.data {

 public class Time {

 private var _hour:uint;
 private var _minute:uint;
 private var _second:uint;

 public function get hour():uint {
 return _hour;
 }

 public function set hour(value:uint):void {
 _hour = value;
 }

 public function get minute():uint {
 return _minute;
 }

 public function set minute(value:uint):void {
 _minute = value;
 }

 public function get second():uint {
 return _second;
 }

 public function set second(value:uint):void {
 _second = value;
 }

 public function Time(hour:uint, minute:uint, second:uint) {
 _hour = hour;

 _minute = minute;
 _second = second;
 }

 public function clone():Time {
 return new Time(_hour, _minute, _second);
 }

 }
}

Note that the Time class also defines a clone() method that returns a new Time object with the
same time value as the original. The clone() method is important so that we can assign clones
of Time objects rather than references to the original.

Next we want to define the ClockData class. We'll modify the ClockData class later so that it is
more robust and takes on more responsibilities. However, to start, the ClockData class will
simply act as a wrapper for a Time object. The following is the definition for ClockData:

package com.peachpit.aas3wdp.mvcexample.data {

 import flash.events.Event;
 import flash.events.EventDispatcher;
 import com.peachpit.aas3wdp.mvcexample.data.Time;

 public class ClockData extends EventDispatcher {

 private var _time:Time;

 public function get time():Time {
 if(_time == null) {
 var date:Date = new Date();
 return new Time(date.hours, date.minutes,
 date.seconds);
 }
 else {
 return _time.clone();
 }
 }

 public function set time(value:Time):void {
 _time = value.clone();
 dispatchEvent(new Event(Event.CHANGE));
 }

 public function ClockData() {
 }

 }
}

As you can see in this ClockData class, there is one getter/setter accessor method pair called
time. The time setter simply allows you to assign a clone of a Time object to the _time property.
The getter method returns a clone of the Time object if it's defined. If not, it returns a new Time

object with the current client clock time retrieved from a Date object.

In both cases where the ClockData class uses the clone() method of Time objects, it does so to
protect encapsulation. It's important to understand that you don't always have to protect
encapsulation at this level, but we demonstrate this concept here to point out the implications of
using clones of objects rather than references. In this case, if the setter method assigned a
reference rather than a clone of the parameter, then any change to the original object used as
the parameter would also affect the data model. Likewise, and perhaps more importantly, the
getter method also calls clone() to return a clone of the Time object. If it didn't call clone(),
but returned a reference to the object, then any changes to that object outside the data model
would also affect the data model. Consider the following example:

var data:ClockData = new ClockData();
var time:Time = new Time(12, 0, 0);
data.time = time;
time.hour = 14;
trace(data.time.hour);

In this example, the TRace() statement would output 12, which is what we would probably
expect. But if the setter assigned a reference rather than a clone to the _time property of the
ClockData object, then the trace() statement would output 14. The same is true for the getter,
as shown here:

var data:ClockData = new ClockData();
var time:Time = new Time(12, 0, 0);
data.time = time;
var timeValue:Time = data.time;
timeValue.hour = 20;
trace(data.time.hour);

In this example, if the getter returns a clone, then the trace() statement will output 12. If the
getter returns a reference, then the trace() statement would output 20.

Analog Clock View

Now that we've built the model, we can build one of the viewsthe analog clock view. Because we
know ahead of time that we're going to build more than one clock view, it makes sense to first
determine whether there is any common functionality we can place in an abstract base class.
Doing so provides two benefits: It results in less redundant code among clock view classes
inheriting from the abstract base class, and it enables polymorphism whereby we can type
variables as the abstract base class so that any of the concrete types can be substituted.

We'll call the abstract base class Clock, and this class constructor will require one parameter
specifying the model (a ClockData object) to use. It will store that model in a protected instance
property, and it will register to listen for change events. Here's the code for the base class called
AbstractClockView:

package com.peachpit.aas3wdp.mvcexample.clock {
 import flash.display.Sprite;
 import com.peachpit.aas3wdp.mvcexample.data.ClockData;
 import flash.events.Event;

 public class AbstractClockView extends Sprite {

 protected var _data:ClockData;
 public function Clock(data:ClockData) {
 _data = data;
 _data.addEventListener(Event.CHANGE, draw);
 }

 protected function draw(event:Event):void {

 }

 }
}

Notice that _data is declared as protected so that it is accessible to all subclasses. Also note that
because the constructor adds a listener to the ClockData object, the class must declare the
listener method, draw(). The draw() method is declared as protected as well because subclasses
must be able to override the method to define the specific implementation.

Next we can define AnalogClock, a concrete subclass of AbstractClockView. The analog clock
view consists of a clock face as well as the hour hand, minute hand, and second hand. The
AnalogClock class is defined as follows:

package com.peachpit.aas3wdp.mvcexample.clock {
 import com.peachpit.aas3wdp.mvcexample.data.ClockData;
 import com.peachpit.aas3wdp.mvcexample.data.Time;
 import flash.display.Sprite;
 import flash.events.Event;

 public class AnalogClock extends AbstractClockView {

 private var _face:Sprite;
 private var _hourHand:Sprite;
 private var _minuteHand:Sprite;
 private var _secondHand:Sprite;

 public function AnalogClock(data:ClockData) {

 // Call the super constructor, passing it the
 // model parameter.
 super(data);

 // Create the clock face, and draw a circle.
 _face = new Sprite();
 _face.graphics.lineStyle(0, 0x000000, 1);
 _face.graphics.drawCircle(0, 0, 100);
 addChild(_face);

 // Create the hands.
 _hourHand = new Sprite();
 _hourHand.graphics.lineStyle(5, 0x000000, 1);
 _hourHand.graphics.lineTo(0, -50);
 addChild(_hourHand);
 _minuteHand = new Sprite();
 _minuteHand.graphics.lineStyle(2, 0x000000, 1);

 _minuteHand.graphics.lineTo(0, -80);
 addChild(_minuteHand);
 _secondHand = new Sprite();
 _secondHand.graphics.lineStyle(0, 0x000000, 1);
 _secondHand.graphics.lineTo(0, -80);
 addChild(_secondHand);

 // Call the draw() method to draw the initial view.
 draw();
 }

 // Override the draw() method. This method gets called once
 // when the object is constructed, and then it gets called
 // every time the model dispatches a change event.
 override protected function draw(event:Event = null):void {
 var time:Time = _data.time;

 // Set the rotation of the hands based on the time
 // values.
 _hourHand.rotation = 30 * time.hour + 30 *
 time.minute / 60;
 _minuteHand.rotation = 6 * time.minute + 6 *
 time.second / 60;
 _secondHand.rotation = 6 * time.second;
 }

 }
}

Testing the Analog Clock

The remaining step in the first part of this exercise is to see whether the analog clock really
works. For this purpose, we'll create a simple main class that creates an instance of the model
and an instance of the view that uses the model:

package {

 import flash.display.Sprite;
 import flash.display.StageAlign;
 import flash.display.StageScaleMode;
 import com.peachpit.aas3wdp.mvcexample.data.ClockData;
 import com.peachpit.aas3wdp.mvcexample.clock.AbstractClockView;
 import com.peachpit.aas3wdp.mvcexample.clock.AnalogClock;

 public class ClockTest extends Sprite {

 private var _clockData:ClockData;

 public function ClockTest() {

 stage.align = StageAlign.TOP_LEFT;
 stage.scaleMode = StageScaleMode.NO_SCALE;

 _clockData = new ClockData();
 var clock:AbstractClockView = new
 AnalogClock(_clockData);
 clock.x = 100;
 clock.y = 100;
 addChild(clock);
 }

 }
}

When you test this application, you'll see an analog clock appear displaying the current time.

Now let's modify the main class slightly so that it uses a timer to update the time property of
the model after 2 seconds. Updating the model value will cause it to dispatch a change event
which will, in turn, cause the view to redraw. The following code initially displays the clock with
the current time, and then 2 seconds later it will display 5 o'clock:

package {

 import flash.display.Sprite;
 import flash.display.StageAlign;
 import flash.display.StageScaleMode;
 import com.peachpit.aas3wdp.mvcexample.data.ClockData;
 import com.peachpit.aas3wdp.mvcexample.clock.AbstractClockView;
 import com.peachpit.aas3wdp.mvcexample.clock.AnalogClock;
 import com.peachpit.aas3wdp.mvcexample.data.Time;
 import flash.utils.Timer;
 import flash.events.TimerEvent;

 public class ClockTest extends Sprite {

 private var _clockData:ClockData;

 public function ClockTest() {

 stage.align = StageAlign.TOP_LEFT;
 stage.scaleMode = StageScaleMode.NO_SCALE;

 _clockData = new ClockData();
 var clock:AbstractClockView = new
 AnalogClock(_clockData);
 clock.x = 100;
 clock.y = 100;
 addChild(clock);

 var timer:Timer = new Timer(2000, 1);
 timer.addEventListener(TimerEvent.TIMER, onTimer);
 timer.start();

 }

 private function onTimer(event:TimerEvent):void {
 _clockData.time = new Time(5, 0, 0);
 }

 }
 }

Digital Clock View

Now that the analog clock view works, the next step is to build a digital clock view. The
DigitalClock class, like the AnalogClock class, is a subclass of AbstractClockView. Define the
class as follows:

package com.peachpit.aas3wdp.mvcexample.clock {

 import com.peachpit.aas3wdp.mvcexample.data.ClockData;
 import com.peachpit.aas3wdp.mvcexample.data.Time;
 import flash.display.Sprite;
 import flash.events.Event;
 import flash.text.TextField;
 import flash.text.TextFieldAutoSize;

 public class DigitalClock extends AbstractClockView {

 private var _frame:Sprite;
 private var _display:TextField;

 public function DigitalClock(data:ClockData) {

 // Call the super constructor, passing it the
 // data parameter.
 super(data);

 // Draw a 200 by 50 pixel rectangular frame.
 _frame = new Sprite();
 _frame.graphics.lineStyle(0, 0x000000, 1);
 _frame.graphics.drawRect(0, 0, 200, 50);
 addChild(_frame);

 // Add a text field.
 _display = new TextField();
 _display.width = 200;
 _display.height = 50;
 _display.autoSize = TextFieldAutoSize.RIGHT;
 _display.x = 195;
 _display.y = 5;
 addChild(_display);

 // Call draw() when the object is constructed.
 draw();
 }

 // Override the draw() method.
 override protected function draw(event:Event = null):void {
 var time:Time = _data.time;

 // Display the hour, minute, and second in the
 // text field. Use the zeroFill() method to ensure

 // that the minute and second values are always
 // two digits (e.g. 1 displays as 01.)
 _display.htmlText = "<font face='_typewriter'
 size='40'>" + time.hour + ":" +
 zeroFill(time.minute) + ":" + zeroFill(time.second)
 + "";
 }
 private function zeroFill(value:Number):String {
 if(value > 9) {
 return value.toString();
 }
 else {
 return "0" + value;
 }
 }

 }
}

You'll probably notice that DigitalClock is very similar to AnalogClock. The only difference is
that it displays the value using a text field rather than a group of hands. Because DigitalClock
extends AbstractClockView, it too automatically receives event notifications when the model
changes.

Testing the Digital Clock

Because polymorphism is enabled for AnalogClock and DigitalClock on account of their
common, inherited interface, you can substitute a DigitalClock for an AnalogClock very easily.
To test the digital clock view, modify the main class by importing the DigitalClock class and
using a DigitalClock constructor rather than an AnalogClock constructor, as shown here:

package {

 import flash.display.Sprite;
 import flash.display.StageAlign;
 import flash.display.StageScaleMode;
 import com.peachpit.aas3wdp.mvcexample.data.ClockData;
 import com.peachpit.aas3wdp.mvcexample.clock.AbstractClockView;
 import com.peachpit.aas3wdp.mvcexample.clock.AnalogClock;
 import com.peachpit.aas3wdp.mvcexample.clock.DigitalClock;
 import com.peachpit.aas3wdp.mvcexample.data.Time;
 import flash.utils.Timer;
 import flash.events.TimerEvent;

 public class ClockTest extends Sprite {

 private var _clockData:ClockData;

 public function ClockTest() {

 stage.align = StageAlign.TOP_LEFT;
 stage.scaleMode = StageScaleMode.NO_SCALE;

 _clockData = new ClockData();
 var clock:AbstractClockView =
 new DigitalClock(_clockData);
 clock.x = 100;
 clock.y = 100;
 addChild(clock);
 var timer:Timer = new Timer(2000, 1);
 timer.addEventListener(TimerEvent.TIMER, onTimer);
 timer.start();

 }

 private function onTimer(event:TimerEvent):void {
 _clockData.time = new Time(5, 0, 0);
 }

 }
}

Enabling Multiple Views for One Model

In this example, we have two views that we can use with one model type. We have
demonstrated that we can use each view type with the same model, one at a time. Now we'll
test that we can use both views simultaneously with the same model instance. To accomplish
this goal, we'll modify the main class to create two clock viewsone AnalogClock and one
DigitalClock. Each will use the same ClockData object. This change requires just four new lines
of code in the main class:

package {

 import flash.display.Sprite;
 import flash.display.StageAlign;
 import flash.display.StageScaleMode;
 import com.peachpit.aas3wdp.mvcexample.data.ClockData;
 import com.peachpit.aas3wdp.mvcexample.clock.AbstractClockView;
 import com.peachpit.aas3wdp.mvcexample.clock.AnalogClock;
 import com.peachpit.aas3wdp.mvcexample.clock.DigitalClock;
 import com.peachpit.aas3wdp.mvcexample.data.Time;
 import flash.utils.Timer;
 import flash.events.TimerEvent;

 public class ClockTest extends Sprite {

 private var _clockData:ClockData;

 public function ClockTest() {

 stage.align = StageAlign.TOP_LEFT;
 stage.scaleMode = StageScaleMode.NO_SCALE;

 _clockData = new ClockData();
 var clock:AbstractClockView =
 new DigitalClock(_clockData);
 clock.x = 100;
 clock.y = 100;
 addChild(clock);

 var clock2:AbstractClockView = new
 AnalogClock(_clockData);
 clock2.x = 200;
 clock2.y = 300;
 addChild(clock2);

 var timer:Timer = new Timer(2000, 1);
 timer.addEventListener(TimerEvent.TIMER, onTimer);
 timer.start();

 }

 private function onTimer(event:TimerEvent):void {

 _clockData.time = new Time(5, 0, 0);
 }

 }
}

Because both clock views use the same data model, they update at the same time.

Modifying Model Implementation

Because the view and the model use good encapsulation, we can modify the model
implementation without breaking anything. To prove this, we'll make the following change to
the ClockData class: enable a real-time feature whereby the model dispatches a change event
every second.

The new ClockData class looks like this:

package com.peachpit.aas3wdp.mvcexample.data {

 import flash.events.EventDispatcher;
 import com.peachpit.aas3wdp.mvcexample.data.Time;
 import flash.utils.Timer;
 import flash.events.TimerEvent;
 import flash.events.Event;
 import flash.utils.getTimer;

 public class ClockData extends EventDispatcher {

 private var _time:Time;
 private var _timer:Timer;
 private var _realTime:Boolean;
 private var _startTime:uint;

 public function get time():Time {
 // Test if the _realTime property is true as well as
 // if the _time property is null.
 if(_realTime || _time == null) {
 var date:Date;
 // Only use a new Date object representing
 // the current time and date if the _time
 // property is null. Otherwise create a Date
 // object using the _time values and then
 // add to that the number of milliseconds
 // since the model was created.
 if(_time == null) {
 date = new Date();
 }
 else {
 date = new Date(null, null, null,
 _time.hour, _time.minute,
 _time.second);
 date.milliseconds = getTimer()
 _startTime;
 }

 return new Time(date.hours, date.minutes,
 date.seconds);
 }
 else {

 return _time.clone();
 }
 }

 public function set time(value:Time):void {
 _time = value.clone();
 dispatchEvent(new Event(Event.CHANGE));
 }

 // Setting realTime starts and stops a timer that runs at 1
 // second intervals indefinitely.
 public function set realTime(value:Boolean):void {
 _realTime = value;
 if(value) {
 if(_timer == null) {
 _timer = new Timer(1000, 0);
 _timer.addEventListener(TimerEvent.TIMER, onTimer);
 }
 if(!_timer.running) {
 _timer.start();
 }
 }
 else {
 if(_timer.running) {
 _timer.stop();
 }
 }
 }

 public function ClockData() {
 _startTime = getTimer();
 }

 private function onTimer(event:TimerEvent):void {
 dispatchEvent(new Event(Event.CHANGE));
 }

 }
}

With these changes, you can now run the main class and you'll see exactly the same behavior
as before. When you've verified that the application works as it did before, even with the
changes to the model's implementation, you can now use the new functionality with a few
changes to the main class. In this example, we'll delete the timer code from the main class
(ClockTest), and we'll set the realTime property of the ClockData object so that the clocks
display the current time as it updates in real time.

package {

 import flash.display.Sprite;
 import flash.display.StageAlign;
 import flash.display.StageScaleMode;
 import com.peachpit.aas3wdp.mvcexample.data.ClockData;
 import com.peachpit.aas3wdp.mvcexample.clock.AbstractClockView;
 import com.peachpit.aas3wdp.mvcexample.clock.AnalogClock;

 import com.peachpit.aas3wdp.mvcexample.clock.DigitalClock;
 import com.peachpit.aas3wdp.mvcexample.data.Time;

 public class ClockTest extends Sprite {

 private var _clockData:ClockData;

 public function ClockTest() {

 stage.align = StageAlign.TOP_LEFT;
 stage.scaleMode = StageScaleMode.NO_SCALE;

 _clockData = new ClockData();
 _clockData.realTime = true;

 var clock:AbstractClockView = new
 DigitalClock(_clockData);
 clock.x = 100;
 clock.y = 100;
 addChild(clock);

 var clock2:AbstractClockView = new
 AnalogClock(_clockData);
 clock2.x = 200;
 clock2.y = 300;
 addChild(clock2);

 }

 }
}

Adding A Controller

Up to this point we've only really seen models and views, but no controllers. Next we'll look at
how to add a controller. A controller should be the way in which the system or user can change
the view or model.

In our clock example we now have two views and one model. If we want to be able to control
the views (toggle between views, for instance) or the model (setting the value) then we need to
add a controller. In our example we'll create a controller called Clock. The Clock controller
allows us to specify a model and one or more views. It then adds user interface controls that
allow the user to set the model value and toggle between the views. The Clock class is written
as follows:

package com.peachpit.aas3wdp.mvcexample.controllers {

 import flash.display.Sprite;
 import flash.text.TextField;
 import flash.text.TextFieldType;
 import flash.events.MouseEvent;
 import flash.events.Event;
 import com.peachpit.aas3wdp.mvcexample.data.Time;
 import com.peachpit.aas3wdp.mvcexample.data.ClockData;
 import com.peachpit.aas3wdp.mvcexample.clock.AbstractClockView;

 // Note that you'll need to include the AAS3WDP library to your
 // project's source path for this class.
 import com.peachpit.aas3wdp.controls.BasicButton;

 public class Clock extends Sprite {
 private var _hours:TextField;
 private var _minutes:TextField;
 private var _seconds:TextField;
 private var _clockData:ClockData;
 private var _viewIndex:int;
 private var _views:Array;
 private var _toggleView:BasicButton;

 // The controller has one model. It listens for updates to
 // the model.
 public function set data(value:ClockData):void {
 _clockData = value;
 _clockData.addEventListener(Event.CHANGE,
 onModelUpdate);
 onModelUpdate();
 }

 public function Clock() {

 // The controller can store references to one or
 // more views.
 _views = new Array();

 // Create three input text fields.
 _hours = createField();
 _minutes = createField();
 _seconds = createField();
 _minutes.x = 45;
 _seconds.x = 90;

 // Create a button that will allow the user to
 // toggle between views.
 _toggleView = new BasicButton("Toggle View");
 _toggleView.addEventListener(MouseEvent.CLICK,
 toggleView);
 addChild(_toggleView);
 _toggleView.x = 135;
 }

 // Add AbstractClockView instances to the _views array.
 public function addView(view:AbstractClockView):void {
 _views.push(view);

 // If this is the first view added then add it to
 // the display list by default.
 if(_views.length == 1) {
 addChild(view);
 _viewIndex = 0;
 }
 // Make sure the view appears just below the input
 // text fields.
 view.y = 40view.getBounds(view).top;
 view.x = -view.getBounds(view).left;
 }

 private function createField():TextField {
 var field:TextField = new TextField();
 field.width = 40;
 field.height = 22;
 field.border = true;
 field.background = true;
 field.restrict = "0-9";
 field.type = TextFieldType.INPUT;

 // Listen for focusOut events on each text field.
 field.addEventListener(FocusEvent.FOCUS_OUT,
 onFocusChange);
 addChild(field);
 return field;
 }

 // When the focus changes for a text field update the model
 // to correspond to the user input.
 private function onFocusChange(event:FocusEvent):void {
 if(event.target.length < 1) {
 event.target.text = 0;

 }

 var time:Time = new Time(uint(_hours.text), uint(_minutes.text),
 uint(_seconds.text));
 _clockData.time = time;
 }

 // Remove the current view, and add the next view in the
 // array.
 private function toggleView(event:MouseEvent):void {
 removeChild(_views[_viewIndex]);
 _viewIndex++;
 if(_viewIndex >= _views.length) {
 _viewIndex = 0;
 }
 addChild(_views[_viewIndex]);
 }

 // When the model changes update the text field values.
 private function onModelUpdate(event:Event = null):void {

 // Use if statements so that the text values don't
 // change if the user is currently changing the
 // value in a text field.
 if(stage != null) {
 if(stage.focus != _hours) {
 _hours.text = _clockData.time.hour.toString();
 }
 if(stage.focus != _minutes) {
 _minutes.text = _clockData.time.minute.toString();
 }
 if(stage.focus != _seconds) {
 _seconds.text = _clockData.time.second.toString();
 }
 } }

 }
}

Now you can use a Clock instance as follows.

package {

 import flash.display.Sprite;
 import flash.display.StageAlign;
 import flash.display.StageScaleMode;
 import com.peachpit.aas3wdp.mvcexample.data.ClockData;
 import com.peachpit.aas3wdp.mvcexample.clock.AbstractClockView;
 import com.peachpit.aas3wdp.mvcexample.clock.AnalogClock;
 import com.peachpit.aas3wdp.mvcexample.clock.DigitalClock;
 import com.peachpit.aas3wdp.mvcexample.controllers.Clock;

 public class ClockTest extends Sprite {

 private var _clockData:ClockData;

 public function ClockTest() {

 stage.align = StageAlign.TOP_LEFT;
 stage.scaleMode = StageScaleMode.NO_SCALE;

 _clockData = new ClockData();
 _clockData.realTime = true;

 var clock:Clock = new Clock();
 clock.data = _clockData;
 addChild(clock);

 var view:AbstractClockView = new
 DigitalClock(_clockData);
 clock.addView(view);

 view = new AnalogClock(_clockData);
 clock.addView(view);

 }

 }
}

In this version the Clock instance is the controller by which the user can toggle between views
and adjust the value of the model.

Summary

In this chapter, you've had an opportunity to learn about the basic concepts of the Model View
Controller pattern .The basic principle of this pattern is to distinguish between the data and the
presentation of that data. This approach enables greater flexibility and adaptability in a quite a
few ways which were discussed throughout the chapter.

Chapter 4. Singleton Pattern

In This Chapter

object Instantiation 66

Singleton Versus Static Members 69

Building a Simple Singleton 69

Building a Settings Framework 71

Summary 74

The Singleton design pattern is used to limit a class to one instance and provide global access to
that instance. In many cases, you need to limit a class to only one instance. Common examples
include classes that manage resources that are intrinsically singular such as selection focus,
navigation history, and window depth. Consider the case of a class that manages the state of
the user's cursor. Because there is only ever one cursor, you shouldn't have more than one
instance of that class. Another example is a class that loads application settings from an XML
file and provides access to those settings. You wouldn't want to waste resources by having two
instances of that class or by loading the XML file more than once.

The dilemma in such cases is how to ensure that only one instance of a class exists and how to
make that one instance globally accessible. The Singleton design pattern is a time-tested
solution to this problem.

Essentially, three features make up a Singleton class:

A private static property that holds the single instance of the class.

A public static method that provides access to the single instance if it's created and creates
the single instance if it hasn't been created yet.

A way of restricting access to instantiating the class. This is usually achieved by making
the constructor private. However, ActionScript 3.0 doesn't have private constructors. Later
in this chapter, we'll examine an alternative way of restricting instantiation in ActionScript
3.0.

Object Instantiation

To create a new instance of a class, you use the new keyword followed by the class name. This
statement calls the constructor of the class and returns a new instance, as in this example:

var myObject:MyClass = new MyClass();

This approach is almost undoubtedly a concept with which you are already familiar, but if our
class uses this type of instantiation, we have no way of controlling its creation. For us to control
the instantiation, we're going to use a static method called getInstance(). Because it is static, it
can be invoked before an instance of the class exists. The following is an example of a class that
uses this method:

public class MyClass {

 public function MyClass() {}

 public static function getInstance():MyClass {
 return new MyClass();
 }
}

Now we can create our instances of the class by using the static method, like this:

var myObject:MyClass = MyClass.getInstance();

Restricting Instantiation

As long as the instance is always accessed via the static getInstance() method, everything
works according to plan. However, notice that there is nothing to prevent someone from
constructing a second instance using the new keyword. In other languages this problem would
be solved by making the constructor private, but private constructors aren't supported in
ActionScript 3.0.

We could just leave the constructor public and put a big comment up at the top of the class
telling other developers that this class should be instantiated only once. However, one of our
goals in object-oriented programming should be to create a class that cannot be broken by
improper implementation. We'll talk more about convention, as opposed to rules, later in this
chapter.

So, we have a few other options at our disposal that allow us to limit instantiation. One feature
of ActionScript 3.0 is that all parameters of a method are now required unless a default value is
provided. This feature includes the constructor. Therefore, you can add a parameter to the
constructor that is required and type it to something that is available only from inside the class.

Note

This is not an absolute restriction since someone can get around this by passing null
into the constructor. However, it is the best we can do without a true private
constructor.

A second new feature of ActionScript 3.0 is the ability to add multiple class definitions to one
file. You can access only one of the classes from outside the ActionScript file, and that is the
classinside the package definitionwith the same name as the file name. But you can put other
classes outside the package in the same file, and those classes are available only to the primary
class. We'll use this feature to create a "private" class and make it our constructor parameter's
type. It's actually easier than it sounds:

package {

 public class MyClass {

 public function MyClass(enforcer:SingletonEnforcer) {}

 public static function getInstance():MyClass {
 return new MyClass(new SingletonEnforcer());
 }

 }

}

class SingletonEnforcer {}

You can now create an instance of MyClass using the following code:

var myInstance:MyClass = MyClass.getInstance();

Note that our current implementation doesn't yet enforce a single instance of the class. Each
time we call getInstance() our class will return a new instance. In the next section we'll look at
how to ensure that there's only ever one instance.

Single Instance and Global Access

What can we do to enforce that the class is instantiated only once? Right now, the
getInstance() method can be called multiple times just like a normal public constructor; and
we also need to provide global access to this one instance. By modifying the getInstance()
method slightly and adding a static property to hold our single instance, we'll knock out both of
these requirements at once.

First let's add a private static property to the class that will hold our single instance. We need to
make the property static so that it is available to our getInstance() method. Now when the
static getInstance() method is called it creates an instance and stores it in the private static
_instance property before returning the newly created instance. Here is how our class looks
now:

package {

 public class MyClass {

 private static var _instance:MyClass;

 public function MyClass(enforcer:SingletonEnforcer) {}

 public static function getInstance():MyClass {
 MyClass._instance = new MyClass(new SingletonEnforcer());
 return MyClass._instance;
 }

 }

}

class SingletonEnforcer {}

Next, we're going to modify the getInstance() method so that it checks whether this single
instance has already been created. If it has, then it returns that instance without calling the
constructor again. Check out this modification:

package {

 public class MyClass {

 private static var _instance:MyClass;

 public function MyClass(enforcer:SingletonEnforcer) {}

 public static function getInstance():MyClass {
 if(MyClass._instance == null) {
 MyClass._instance = new MyClass(new SingletonEnforcer());
 }
 return MyClass._instance;
 }

 }

}

class SingletonEnforcer {}

convention versus rules

If you're new to design patterns, at first glance the Singleton pattern seems a bit
like over engineering. You might be saying to yourself, "If I want only one instance
of a class, then I'll create only one instance; if I need global access, then I'll stick it
in some global variable." Although you could certainly do those two thingsand they
would probably workthey 'could pose problems in a team development environment.
'You may also have trouble with this approach if you're creating multiple versions of
the application.

This underscores the importance of following structural rules rather than simple
conventions. The idea of encapsulation in object-oriented programming is that a
class should be self-contained. It should have well-documented inputs in the form of
public methods and setters and outputs in the form of events. These inputs and
outputs are commonly known as the API (Application Programming Interface). As
we mentioned earlier, classes should function like a black box: nothing exposed in
the API should permit improper implementation to "break it." In the case of our
Singleton class, we should not allow another object to create more than one
instance of the class. (See Chapter 1, "Designing Applications.")

Singleton Versus Static Members

After examining the structure of a Singleton class, you might ask the question, "Why not just
make all the properties and methods of the class static? Why do we need to have an instance at
all?" There are a few reasons why a Singleton is the better approach.

The first reason is inheritance. In ActionScript 3.0, you cannot inherit static properties or
methods. Therefore, if all your class's functionality is in static methods, you cannot subclass it.

The second reason to use a Singleton pattern is so that you can refactor the class to allow more
than one instance. A lesser-known design pattern called the Multiton is similar to the Singleton
but allows for a managed number of instances. If you write your original class as a Singleton,
you can refactor it to be a Multiton easily. For example, let's say version 1.0 of your application
had a connection manager that managed a single connection to the server; but for version 2.0,
it has been determined that you need to manage a pool of 10 connections to the server. This is
where a Multiton could be used.

The third reason is that it can be a waste of resources to have all this logic initialized right
away. Singletons use the concept of "lazy" instantiation, because the object is created only
when the first call to getInstance() is made. Classes that use all static members do what is
called "eager" instantiation. This is usually a waste of resources and can slow down the startup
of your application.

Lastly, objects are just easier to manage. By using static methods instead of a single object
your code is not created at a specific point in your application. This can cause some strange
initialization issues that are difficult to debug. This is especially true if your Singleton class has
a dependency on other objects in the application that might not be initialized. For this reason,
consider using static members only if your class is 100% self-contained, with no dependencies
on outside objects. Even then, your class is locked into this "self-contained" mode and isn't
scalable anymore.

Building a Simple Singleton

Often a good example will go a long way when learning a design pattern. In the next few
sections we'll look at an example using the Singleton pattern.'' In the first example, we simply
create a generic Singleton and invoke it.

Creating the Singleton

We first need to create the Singleton class. Create it in the
com.peachpit.aas3wdp.singletonexample package and name it Singleton. Notice that this class
has all the standard elements of an ActionScript 3.0 Singleton class:

A private static property, _instance, to hold the single instance of the class.

A constructor with a parameter typed to a class, SingletonEnforcer, that is available only
to the Singleton class. The SingletonEnforcer class definition is also required.

A public static method, getInstance(), that provides access to the single instance and
creates it if it does not exist.

The following code shows an example of standard singleton class. We'll us this to demonstrate
how to build a singleton class.

package com.peachpit.aas3wdp.singletonexample {

 public class Singleton {

 static private var _instance:Singleton;

 public function Singleton(singletonEnforcer:SingletonEnforcer) {}

 public static function getInstance():Singleton {
 if(Singleton._instance == null) {
 Singleton._instance = new Singleton(new SingletonEnforcer());
 }
 return Singleton._instance;
 }

 public function doSomething():void {
 trace("SOMETHING!");
 }
 }

}

class SingletonEnforcer {}

As you can see, the doSomething() method is a public method that simply traces the text

"SOMETHING!" to the console. While this example is very simple, it demonstrates the required
elements of a class that follows the Singleton design pattern in ActionScript. The code in the
next section demonstrates how to invoke a Singleton class.

Note

In order for trace statements to output information to the console you must debug the
application rather than just run it.

Invoking the Singleton

Inside the main class, we're going to get the instance of the Singleton class and call a method
on that object. We start by importing the Singleton class. Then inside the constructor, we call
the Singleton's static getInstance() method and immediately call the doSomething() method on
the returned instance. The doSomething() method simply traces "SOMETHING!" to the console.

package {

 import com.peachpit.aas3wdp.singletonexample.Singleton;
 import flash.display.Sprite;

 public class SimpleSingletonExample extends Sprite {

 public function SingletonExample() {
 Singleton.getInstance().doSomething();
 }
 }

}

Building a Settings Framework

In this next example we'll build a simple application that uses a Singleton class called Settings
to hold global values.

The Settings class loads data from an XML file at runtime and provides access to its values. It's
a simple concept, but it's very useful to be able to change these settings without recompiling
the application.

Creating the XML Document

The XML document for this framework is simple. We have a settings root node that contains
multiple property nodes. Each property node has an id and a value attribute. The Settings
class does a lookup on the id attribute and returns the value attribute. The following is the XML
document, titled config.xml, which we'll use in this example:

<?xml version="1.0" encoding="UTF-8"?>
<cs:settings xmlns:cs="http://www.dannypatterson.com/2006/ConfigSettings">
 <cs:property id="testOne" value="This is the first test value." />
 <cs:property id="testTwo" value="This is the second test value." />
</cs:settings>

Note that we added a namespace to this document to demonstrate how simple namespaces are
to use inside E4X. For more information on XML namespaces, see Chapter 15 , "E4X (XML)."

Creating the Settings Class

Now you'll need to create a new ActionScript class named Settings and put it in the
com.peachpit.aas3wdp.singletonexample package. It has three main responsibilities:

It follows the Singleton design pattern; therefore, it manages its creation and access the
same way as the previous example.

The Settings class also provides access to the values in the XML file through simple
property access, like this:

var myString:String = Settings.getInstance().testOne;

Because testOne isn't a property of the Settings class, we have to allow the request to
come in and capture it. To enable this functionality we need to make the class dynamic so
that other classes can call undefined properties. To capture these undefined requests, we'll
subclass the built-in flash.utils.Proxy class and override the getProperty() method.

Extending Proxy

To gain the Proxy functionality we must subclass it and override the getProperty()
method. This is a little tricky because the Proxy class' getProperty() method exists inside
the flash_proxy namespace. For more on using the Proxy class, check out Chapter 6 ,
"Proxy Pattern."

Because this class loads an external XML file, it must have a method for loading that file
and an event that is dispatched when the file has loaded successfully. To enable the class
to dispatch events, we will use the built-in EventDispatcher class.

Adding Eventdispatcher Functionality Through Composition

Because we have to subclass Proxy to use its functionality, and because ActionScript allows only
for single inheritance, we must add the Eventdispatcher functionality through composition by
implementing the IEventDispatcher interface. For more on Eventdispatcher and
IEventDispatcher , see Chapter 13 , "Working with Events."

[View full width]package com.peachpit.aas3wdp.singletonexample {

 import flash.events.Event;
 import flash.events.EventDispatcher;
 import flash.events.IEventDispatcher;
 import flash.net.URLLoader;
 import flash.net.URLRequest;
 import flash.utils.Proxy;
 import flash.utils.flash_proxy;

 dynamic public class Settings extends Proxy implements
 IEventDispatcher {

 static private var _instance:Settings;
 private var _eventDispatcher:EventDispatcher;
 private var _data:XML;
 private var _isLoaded:Boolean;
 private var _urlLoader:URLLoader;
 static public const INIT:String = "init";

 public function get isLoaded():Boolean {
 return _isLoaded;
 }

 public function Settings(enforcer:SingletonEnforcer) {
 _eventDispatcher = new EventDispatcher();
 _isLoaded = false;
 }

 private function onXMLDataLoaded(event:Event):void {
 _data = XML(_urlLoader.data);
 _isLoaded = true;
 dispatchEvent(new Event(Settings.INIT, true, true));
 }

 public static function getInstance():Settings {
 if(Settings._instance == null) {
 Settings._instance = new Settings(new
 SingletonEnforcer());
 }
 return Settings._instance;
 }

 flash_proxy override function getProperty(name:*):* {
 var cs:Namespace = _data.namespace("cs");
 var qname:String = String(name);
 return _data.cs::property.(@id == qname).@value;
 }

 public function loadSettings(url:String):void {
 var urlRequest:URLRequest = new URLRequest(url);
 _urlLoader = new URLLoader();
 _urlLoader.addEventListener(Event.COMPLETE,
 onXMLDataLoaded);
 _urlLoader.load(urlRequest);
 }

 public function addEventListener(type:String, listener
:Function, useCapture:
Boolean = false, priority:int = 0, weakRef: Boolean = false):void {
 _eventDispatcher.addEventListener(type, listener,
 useCapture, priority, weakRef);
 }

 public function dispatchEvent(event:Event):Boolean {
 return _eventDispatcher.dispatchEvent(event);
 }

 public function hasEventListener(type:String):Boolean {
 return _eventDispatcher.hasEventListener(type);
 }

 public function removeEventListener(type:String, listener
:Function, useCapture:
Boolean = false):void {
 _eventDispatcher.removeEventListener(type, listener,
 useCapture);
 }

 public function willTrigger(type:String):Boolean {
 return _eventDispatcher.willTrigger(type);
 }
 }

}

class SingletonEnforcer {}

XML Usage (E4X)

Inside the getProperty() method, we used the new E4X functionality to pull the data out of the
XML object based on the name of the requested property. For more on E4X, check out Chapter
15 , "E4X (XML)."

Invoking the Settings Class

Next, we'll need a main class for the application in order to utilize the Settings class. We'll call
the main class SettingsExample , and define it as follows:

package {

 import com.peachpit.aas3wdp.singletonexample.Settings;
 import flash.events.Event;
 import flash.display.Sprite;

 public class SettingsExample extends Sprite {

 public function SettingsExample() {
 Settings.getInstance().loadSettings("config.xml");
 Settings.getInstance().addEventListener(Settings.INIT, onSettingsInit);
 }

 private function onSettingsInit(event:Event):void {
 trace(Settings.getInstance().testOne);
 trace(Settings.getInstance().testTwo);
 }

 }

}

This class is the start of the project. It retrieves the singleton instance of Settings , then it
displays the values from the dynamic properties. In the constructor, we first get a reference to
the single instance using the static getInstance() method. Then we call the loadSettings()
method and add the Settings.INIT event listener.

Inside the onSettingsInit() event handler, we trace the value of testOne and testTwo from the
Settings instance. These variables are not actually properties of the Settings class. You'll see
later in this example that the Settings class uses a new feature of ActionScript 3.0 called Proxy
to handle this request and return the value from the XML document.

Now you can debug the project. You should see the values of properties testOne and testTwo
being displayed in the trace console.

Summary

The Singleton design pattern is a simple yet effective solution for restricting a class to one
instance and providing a global access point to it. In this chapter, you learned how to
implement this design pattern using ActionScript 3.0. You also learned the importance of the
Singleton pattern over simply using static members.

Chapter 5. Factory and Template Method
Patterns

In This Chapter

Abstract Classes 75

Template Method 76

Factory Method 78

Summary 81

When creating groups of related classes, it's important to maintain those relationships during
object creation. One way to do this is with the Factory Method design pattern. The Factory
Method pattern is a creational pattern and solves the problem of creating objects without
specifying a concrete type. This is most often used in abstract classes that define a method for
object creation. Subclasses can then override this method to define the specific object to be
created.

The Factory Method is most often used in conjunction with another pattern called the Template
Method. To better understand the Factory Method and provide more context for this solution,
we'll also look at the Template Method in this chapter. Because the Factory Method uses and
then builds on many of the same concepts, we'll look at the Template Method first.

Abstract Classes

Abstract classes play a major role in the Factory and Template Method patterns. Although
ActionScript 3.0 doesn't natively support them, we can still use the concept of abstract classes
and abstract methods. An abstract class is a class that is always extended and never
instantiated directly. Its use is similar to that of an interface, but there is one major difference:
An interface defines only the public method signatures, but an abstract class defines both the
interface and the implementation.

An abstract class uses something called an abstract method, which has no functionality but
serves only as a placeholder. In other languages such as C# and Java, you can define these
abstract methods using the abstract keyword that tells subclasses they must override this
method. Because ActionScript 3.0 does not have an abstract keyword, you might consider the
convention of throwing an exception inside the abstract methods. Such an approach won't throw
an error during compilation, but it will during runtime. The bottom line is that there is no sure
way to enforce abstract methods in ActionScript 3.0.

You must know about two specific keywords when you're working with abstract classes in
ActionScript 3.0. The first is the override keyword. Subclasses must use this keyword to
override an abstract method defined in a base class. The method signature must also match
exactly.

The other keyword is final. This term can be used by abstract classes that define methods its
subclasses cannot override. We'll use the final keyword when we define Template Method
patterns.

Template Method

A Template Method is defined in an abstract class that sets a general algorithm made up (at
least partially) of abstract methods. The steps of that algorithm are defined when subclasses
override the abstract methods. The structure of the algorithm is maintained in the Template
Method.

Consider the following example in which we have an abstract class that defines the way games
are initialized:

package com.peachpit.aas3wdp.factoryexample {

 public class AbstractGame {

 // Template Method
 public final function initialize():void {
 createField();
 createTeam("red");
 createTeam("blue");
 startGame();
 }

 public function createField():void {
 throw new Error("Abstract Method!");
 }

 public function createTeam(name:String):void {
 throw new Error("Abstract Method!");
 }

 public function startGame():void {
 throw new Error("Abstract Method!");
 }
 }

}

The initialize() method in the preceding example is the Template Method. It defines how the
game is initialized by first calling the createField() method, then creating the teams with the
createTeam() method calls, and finally calling the startGame() method. However, the methods it
calls are not functional in this class. It's the responsibility of the subclass to define exactly how
the field and teams are created and how the game is started.

Now we will create a FootballGame class that extends our AbstractGame class. This subclass
overrides the abstract methods that are called from the initialize() Template Method in the
abstract base class.

package com.peachpit.aas3wdp.factoryexample {

 public class FootballGame extends AbstractGame {

 public override function createField():void {
 trace("Create Football Field");
 }

 public override function createTeam(name:String):void {
 trace("Create Football Team Named " + name);
 }

 public override function startGame():void {
 trace("Start Football Game");
 }

 }

}

As you can see, our FootballGame class overrides the createField(), createTeam(), and
startGame() methods to make them specific to football. However, the initialization algorithm is
maintained. You can see how this same technique could also be used to build a BaseballGame or
a BastketballGame class. We can run the example using the following client code:

package com.peachpit.aas3wdp.factoryexample {

 import com.peachpit.aas3wdp.factoryexample.FootballGame;
 import flash.display.Sprite;

 public class FactoryExample extends Sprite {

 public function FactoryExample() {
 // Create an instance of FootballGame
 var game:FootballGame = new FootballGame();
 // Call the template method defined in AbstractGame
 game.initialize();
 }

 }

}

The following shows the output from the preceding example. As you can see, the overridden
methods in the subclass were called by the Template Method. The algorithm was maintained in
the Template Method while the details were deferred to subclass methods.

Create Football Field
Create Football Team Named red
Create Football Team Named blue
Start Football Game

Factory Method

Without too much effort, we can now turn the preceding Template Method example into a
Factory Method example. It's very common to implement Factory Methods in a Template
Method.

In the preceding Template Method example, our createField() method doesn't return
anything; it just traces out the phrase "Create Football Field." Let's update this so it creates and
returns a field object. Because different games have different field types, we'll create an
interface called IField that all the field classes will implement. Our interface will define a single
method called drawField():

package com.peachpit.aas3wdp.factory {

 public interface IField {

 function drawField():void;

}

}

Now we'll build a FootballField class that implements the IField interface. To keep our
example focused, we won't actually draw a football field to the stage, but you can fill in the
blanks. Here's the basic FootballField class definition:

package com.peachpit.aas3wdp.factoryexample {

 import com.peachpit.aas3wdp.factoryexample.IField;

 public class FootballField implements IField {

 public function drawField():void {
 trace("Drawing the Football Field");
 }

 }

}

The purpose of the Factory Method is to link up two or more separate but related class
hierarchies. The first hierarchy is the AbstractGame class and its subclasses: FootballGame,
BaseballGame, and BastketballGame. Our second class hierarchy is now the IField interface and
the classes that implement it: FootballField, BaseballField, and BasketballField. The
AbstractGame and IField objects are related, but the specific creation of these objects is
determined by the game subclasses. Figure 5.1 shows how our class hierarchies match up.

Figure 5.1. The hierarchy of classes in the Factory Method example.

[View full size image]

Now we can refactor the createField() and initialize() methods of our AbstractGame class to
reflect the existence of an IField object. Our createField() method is now a Factory Method
that returns an object that implements the IField interface. The initialize() method can
now go one step further and call the drawField() method on the IField object, as shown here:

package com.peachpit.aas3wdp.factoryexample {

 import com.peachpit.aas3wdp.factoryexample.IField;

 public class AbstractGame {

 // Template Method
 public final function initialize():void {
 var field:IField = createField();
 field.drawField();
 createTeam("red");
 createTeam("blue");
 startGame();
 }

 // Factory Method
 public function createField():IField{
 throw new Error("Abstract Method!");
 }

 public function createTeam(name:String):void {
 throw new Error("Abstract Method!");
 }

 public function startGame():void {
 throw new Error("Abstract Method!");
 }

 }

}

This abstract class and template algorithm are still completely anonymous and the specific
objects created are in the hands of the subclass. Let's refactor the FootballGame class now to
create and return a FootballField object:

package com.peachpit.aas3wdp.factory {

 import com.peachpit.aas3wdp.factory.FootballField;
 import com.peachpit.aas3wdp.factory.IField;

 public class FootballGame extends AbstractGame {

 public override function createField():IField {
 return new FootballField();
 }

 public override function createTeam(name:String):void {
 trace("Create Football Team Named " + name);
 }

 public override function startGame():void {
 trace("Start Football Game");
 }

 }

}

If we run this example, we'll get the following output:

Drawing the Football Field
Create Football Team Named red
Create Football Team Named blue
Start Football Game

A Simple Factory

The Factory Method is often misunderstood. It's not uncommon to hear people
mistakenly referring to their code as following the Factory Method pattern; after
examining the code, we discover that the code isn't actually a Factory Method. Early
in our careers, we'd make the same mistake: we'd write classes suc as the following
and think it was a Factory Method:

package com.peachpit.aas3wdp.factoryexample {

 public class GameFactory {
 public static function createGame(gameType:String):IGame {
 switch(gameType){
 case "football":
 return new FootballGame();
 case "baseball":
 return new BaseballGame();
 case "basketball":
 default:
 return new BasketballGame();
 }
 }
 }
}

If you think this is a Factory Method, purge that bit of information from your head and keep
reading because the Factory Method is much more. In fact, the preceding example isn't even a
design pattern at all. It's commonly referred to as a Simple Factory or a Parameterized Factory
Method. Not to say that it isn't useful; in fact, we use this technique in Chapter 12, "State
Pattern", to set the state based on a name.

Summary

Abstract classes are a very important tool in object-oriented design. They are most commonly
used in class libraries and frameworks because they are a solid way to factor out common
behavior across subclasses.

The Template and Factory Method design patterns are handy when you're working with abstract
classes. The Template Method allows you to create a common algorithm defined generally
whose specific steps will later get defined by concrete subclasses. And the Factory Method
allows you to trigger the creation of objects in an abstract class, but to defer the specific type to
the subclass.

Chapter 6. Proxy Pattern

In This Chapter

Virtual Proxy 83

Remote Proxy 89

Adapter and Façade Patterns 94

Summary 94

The Proxy pattern gives us a solution to a very common programming task. A proxy is a class
that stands in for and provides access to another object. This other object isn't always an
ActionScript object. It could be an image file, an XML file, a Flash Remoting service, or a Web
service.

There are many reasons for wanting to use a proxy object, and each reason has its own type of
proxy. One reason you might want to control access to an object is because it is a remote
resource; in such a case, the proxy object can manage the communication to and from that
object. This is called a Remote Proxy, and we'll discuss it later in this chapter. Another reason to
use a proxy is to defer the full cost of the object's creation. This could be because the object
takes a long time to create or because the object uses a lot of resources once its been created.
This type of proxy is knows as a Virtual Proxy, and we'll discuss it in the next section.

There are many types of Proxy classes; however, the Remote and Virtual proxies are the two
most common, and the two we will cover in this chapter.

The Proxy pattern is often confused with a couple other patterns that are very similar in
functionality. Those patterns are the Adapter and Façade patterns. The main distinction of a
Proxy pattern is that is has the exact same API or interface as the object it is standing in for
while both the Façade and Adapter patterns modify the API. We'll briefly touch on these two
related patterns towards the end of the chapter.

Virtual Proxy

The Virtual Proxy is used to proxy objects that are expensive to create or that aren't available
for use right away. The Virtual Proxy can defer the creation or initialization of its subject until it
is needed. Before and while the subject is being created, the Virtual Proxy stands in its place.
After the creation is complete, it delegates requests directly to the subject.

Image Loader Example

One common example of a Virtual Proxy is an image loader. An image loader is an object that
stands in for an external image while it's being loaded. It's important that this proxy object
have the same API as the image object itself. This enables us to set the image's position and
add effects to the image before it has completely loaded.

Flash Player 9 has a great example of an image loader Virtual Proxy built right into the player.
It's called Loader, and it's found in the flash.display package. This class extends
DisplayObjectContainer , so it has all the properties and methods necessary to add it to a
display list, change its position, and even add effects.

In the following example, we'll use the Loader class to load an external image.

First create a new ActionScript project called ImageProxyExample .

Loading the Image

Inside the main class for this project, we will create and load the image. In the constructor of
the ImageProxyExample class, we create the Loader object and load the remote image. Without
waiting for the image to load, we add the Loader instance to the display list. We're able to do
this because the Loader class is acting as a proxy to the real image.

package {

 import flash.display.Sprite;
 import flash.display.Loader;
 import flash.net.URLRequest;

 [SWF(backgroundColor="#FFFFFF", width=640, height=480)]
 public class ImageProxyExample extends Sprite {

 public function ImageProxyExample () {
 var image:Loader = new Loader();
 image.load(new URLRequest("http://www.communitymx.com/blog/images/dannyp.gif"));
 addChild(image);
 }

 }

}

Note

The SWF metatag allows us to set the background color, width, and height or the SWF
in an ActionScript project. I'm using that in this example to better see the image
placed on the display list.

Modifying the Image Before It's Loaded

If the Loader class weren't a proxy, we would have had to wait for the image to load before we
could add it to the display list because only display objects can be added to the display list. In
the next example, we modify the ImageProxyExample class by changing the image's position and
adding effects, all before the real image ever loads:

package {

 import flash.display.Sprite;
 import flash.display.Loader;
 import flash.net.URLRequest;
 import flash.filters.GlowFilter;
 import flash.filters.BlurFilter;

 [SWF(backgroundColor="#FFFFFF", width=640, height=480)]
 public class ImageProxyExample extends Sprite {

 public function ImageProxyImp() {
 var image:Loader = new Loader();
 image.load(new URLRequest("http://www.communitymx.com/blog/images/dannyp.gif"));
 addChild(image);
 var glow:GlowFilter = new GlowFilter(0xff99ff, 2, 6, 6, 2, 1);
 var blur:BlurFilter = new BlurFilter(4, 4, 1);
 var filters:Array = new Array();
 filters.push(glow);
 filters.push(blur);
 image.filters = filters;
 image.x = 10;
 image.y = 10;
 }

 }

}

As you can see, a Virtual Proxy can make your code much easier to work with. Without the
Loader acting as a proxy to the image, we would have to wait for the image to be successfully
loaded before we could add it to the display list and add effects.

It's important to note here that although the Loader class does stand in for the loaded image,
its not a pure form of a virtual proxy. The Loader class doesn't actually proxy modifications to

the image, but instead applies the modifications to itself. The image gets those modifications
because it is a child of the Loader class. In the next example, we'll show a true proxy that
passes its requests directly to the subject.

Lazy Serialization Example

The other use of a Virtual Proxy is to stand in place of an object that is expensive to create. A
great example of an expensive operation is serialization. Consider an object that models an XML
element; we have two options for serialization. First, we could pass the data into the
constructor of the model object and parse the values right away into the properties of the
object.

This approach is known as "eager" serialization and with large, complex objects it can be very
expensive. Our second option is called "lazy" serialization, in which we serialize the properties
of the object on demand. This second option eliminates unnecessary serialization to unused
properties and it spreads the serialization process out instead of doing it all up front. Figure
6.1 illustrates this process.

Figure 6.1. An example of lazy serialization.

[View full size image]

To get started, create a new ActionScript project called SerializationProxyExample .

Creating the Product Interface

For this example, both our "real" Product class and our "proxy" Product class implement the
same interface. This interface defines the methods that both classes need to implement and
allows us to treat the two classes the same. The interface is named IProduct and defines the
getTitle() , getPrice() , setTitle(), and setPrice() methods:

package com.peachpit.aas3wdp.proxyexample {

 public interface IProduct {

 function getPrice():Number;

 function getTitle():String;

 function setPrice(price:Number):void;

 function setTitle(title:String):void;
 }

}

Creating the Product Class

The Product class is the "real" class behind our proxy. This class simply holds the values for the
product's title and price properties and has methods for getting and setting those values:

package com.peachpit.aas3wdp.proxyexample {

 import com.peachpit.aas3wdp.proxyexample.IProduct;

 public class Product implements IProduct {

 private var _price:Number;
 private var _title:String;

 public function Product() {}

 public function getPrice():Number {
 return _price;
 }

 public function getTitle():String {
 return title;
 }

 public function setPrice(_price:Number):void {
 this._price = _price;
 }

 public function setTitle(_title:String):void {
 this._title = _title;
 }

 }

}

Creating the Product Proxy Class

The XMLProductProxy class stands in for the Product class to manage the serialization on
demand. The proxy uses composition to inherit all the methods of the Product class. When a
request is made to getPrice() , for example, the proxy first checks to see whether its instance

of the Product class has a value for price . If it does, that value is returned; if not, the proxy
grabs the data out of the XML object and sets the value on the "real" product, pbject. This is
how serialization occurs only when a method is invoked. Then the correct value is returned. By
deferring the serialization to the request, we minimize the amount of serialization that happens
up front.

package com.peachpit.aas3wdp.proxyexample {

 import com.peachpit.aas3wdp.proxyexample.IProduct;
 import com.peachpit.aas3wdp.proxyexample.Product;

 public class XMLProductProxy implements IProduct {
 private var _data:XML;
 private var _product:Product;

 public function XMLProductProxy(_data:XML) {
 this._data = _data;
 product = new Product();
 }

 public function getPrice():Number {
 if(isNaN(_product.getPrice())) {
 _product.setPrice(Number(_data.price.toString()));
 }
 return _product.getPrice();
 }

 public function getTitle():String {
 if(_product.getTitle() == null) {
 _product.setTitle(_data.title.toString());
 }
 return _product.getTitle();
 }

 public function setPrice(price:Number):void {
 _data.price = price;
 _product.setPrice(price);
 }

 public function setTitle(title:String):void {
 _data.title = title;
 _product.setTitle(title);
 }

 }
}

Using the Proxy

Using the proxy we just created is simple. First we create a sample XML object structured to
work with our proxy class. Then we create a new instance of the XMLProductProxy class and pass
the sample XML object to the constructor. Now, when we call the getTitle() or getPrice()
method on the proxy, it returns the value from the XML object. Subsequent calls to those same
methods will return the values from the product object and no serialization is required.

package {

 import com.peachpit.aas3wdp.proxypattern.IProduct;
 import com.peachpit.aas3wdp.proxypattern.XMLProductProxy;
 import flash.display.Sprite;

 public class SerializationProxyExample extends Sprite {
 public function SerializationProxyExample () {
 var data:XML = <product>
 <title>Widget</title>
 <price>19.95</price>
 </product>;

 var product:IProduct = new XMLProductProxy(data);
 trace(product.getTitle() + " -- $" + product.getPrice());
 }
 }
}

Even though this is a simple example, the advantages of lazy serialization become clear when
you introduce a complex data structure with multiple levels of objects. In such a case, lazy
serialization can help make your application run smoother by reducing the amount of
serialization that happens up front in an application and by eliminating serialization for items
that are never requested.

Remote Proxy

The Remote Proxy also stands in for an object, but in this case the subject is remote. This could
be a separate SWF file, an XML file, a Flash Remoting service, a SOAP or REST service, or any
number of other type of services. The Remote Proxy acts as a local representative to this remote
object. It has the same public methods as the remote resource and delegates requests to that
resource. It also handles the communication with the remote resource.

Flickr Search Proxy Example

Flickr (www.flickr.com) is a popular online photo-sharing site. In this example, we're going to
write a simple Remote Proxy to Flickr's search API. The proxy will implement a search method
and handle the communication with the Flickr API. It will then broadcast an Event.COMPLETE or
an ErrorEvent.ERROR event with the result.

Note

The Flickr examples in this chapter require that you apply for a key to access the Flickr
API. In the examples, you'll need to replace the text <ADD_YOUR_KEY_HERE> with
your Flickr API key. You can apply for anAPI key at the following URL:
http://www.flickr.com/services/api/misc.api_keys.html .

First, create a new ActionScript project called RemoteProxyExample .

Creating the Search Proxy

The PhotoSearchProxy class takes local requests using its search method and relays them to the
remote Flickr API. Flickr offers a few different flavors of its API. For our example, we're using
the REST API. This API is just a simple HTTP GET request that returns an XML result. The
parameters are sent in the query string of the request.

package com.peachpit.aas3wdp.proxypattern {

 import flash.events.DataEvent;
 import flash.events.Event;
 import flash.events.EventDispatcher;
 import flash.net.URLLoader;
 import flash.net.URLRequest;

 public class PhotoSearchProxy extends EventDispatcher {

 private static const API_KEY:String = "<ADD_YOUR_KEY_HERE>";
 private static const FLICKR_URL:String = " http://api.flickr.com/services/rest/";

http://www.flickr.com/services/api/misc.api_keys.html

 public function PhotoSearchProxy() {}

 private function onComplete(event:Event):void {
 dispatchEvent(new DataEvent(Event.COMPLETE, false, false,
 XML(event.target.data));
 }

 public function search(userId:String, tags:String):void {
 var loader:URLLoader = new URLLoader();
 var request:URLRequest = new URLRequest(PhotoSearchProxy.FLICKR_URL +
 "?method=flickr.photos.search&user_id=" + userId + "&tags=" + tags +
 "&api_key=" + PhotoSearchProxy.API_KEY);
 loader.addEventListener(Event.COMPLETE, onComplete);
 loader.load(request);
 }

 }

}

Using the Search Proxy

To test the remote search proxy, we just create a new instance of the proxy (PhotoSearchProxy
), register the complete and error events, and make a call to the search() method, like this:

package {

 import com.peachpit.aas3wdp.proxypattern. PhotoSearchProxy;
 import flash.display.Sprite;
 import flash.events.DataEvent;
 import flash.events.Event;

 public class RemoteProxyExample extends Sprite {

 public function RemoteProxyEmaple() {
 var flickr:PhotoSearchProxy = new PhotoSearchProxy();
 flickr.addEventListener(Event.COMPLETE, onComplete);
 flickr.search("", "yellow");
 }
 private function onComplete(event:DataEvent):void {
 trace(event.data);
 }
 }
}

When you debug this example in Flex Builder, you'll see the XML result from the Flickr REST
request output to the debug console.

The flash.utils.Proxy

In ActionScript 1 and 2, there was a method in the built-in Object class called __resolve . By
overriding this method, you could capture any call made on that object that was undefined,

including both properties and methods. The most common implementation of this feature was
the Remoting and Web Service frameworks that used __resolve to proxy operations on remote
methods.

This feature has grown up a bit in ActionScript 3.0 and is now encapsulated in the
flash.utils.Proxy class. This class is never used directly, but is instead extended and its
methods overridden. In Chapter 4 , "Singleton Pattern," we used the Proxy class to capture calls
to undefined properties and instead return a value from an XML configuration file. This was
achieved by overriding the getProperty() method. To capture calls to undefined methods, we
need to override the callProperty() method. In the next example, we will capture the calls to
undefined methods to proxy those calls to the remote Flickr API. This will allow us to create a
more flexible proxy.

Note

This chapter isn't a reference about the built-in Proxy class. This example illustrates
the relationship of the Proxy class and the Proxy pattern, not a comprehensive
description of how to use the Proxy class.

We just created a remote proxy example that calls a remote search method in the Flickr API,
but what if we want to implement all the photo operations available in the Flickr API? We could
systematically add each method to the PhotoSearchProxy class. This would be perfectly
acceptable. But if we didn't know all the remote operations, or Flickr was continuously adding
new operations, the PhotoSearchProxy class would fall short The solution is to use the built-in
flash.utils.Proxy class.

Creating the Remote Photo Proxy

By extending the built-in Proxy class, we can catch calls to undefined methods and relay them
to the remote Flickr API. This is a fairly simple process:

We must make our class dynamic so that a call to an undefined method is allowed.1.

The class needs to extend flash.utils.Proxy and override the callProperty() method.
Each time a call to an undefined method is made on our class, we can catch it in
callProperty().

2.

We must implement the IEventDispatcher interface and add the EvenTDispatcher
functionality through composition. In our first Remote Proxy example, we extended
Eventdispatcher , but we can't do that this time because we're extending Proxy and
multiple inheritance is not permitted in ActionScript 3.0.

3.

There is one minor catch: The call to Flickr requires us to format the method parameters in a
query string with name/value pairs. However, ActionScript doesn't have named parameters at
runtime, so we need to find out what every parameter's name is. Fortunately, the Flickr API has
a reflection method flickr.reflection.getMethodInfo that allows us to get all the parameters
for a given method in the API. So when a call to an undefined method is made, we can save the
parameters and extract the method name. Then we can make a reflection call based on the
method name. When the reflection call is returned, we can match the saved parameters with
their names from the reflection result to generate the query string needed to make the original

operation. Here's how that logic works:

package com.peachpit.aas3wdp.proxypattern {

 import flash.events.DataEvent;
 import flash.events.Event;
 import flash.events.EventDispatcher;
 import flash.events.IEventDispatcher;
 import flash.net.URLLoader;
 import flash.net.URLRequest;
 import flash.utils.flash_proxy;
 import flash.utils.Proxy;

 dynamic public class PhotoProxy extends Proxy implements IEventDispatcher {

 private static const API_KEY:String = "<ADD_YOUR_KEY_HERE>";
 private static const FLICKR_URL:String = " http://api.flickr.com/services/rest/";
 private var eventDispatcher:EventDispatcher;
 private var pendingArgs:Array;

 public function PhotoProxy() {
 eventDispatcher = new EventDispatcher();
 }

 // The following event handler is called when the
 // reflection call is made to the Flickr API. The results
 // of this call tell us what to name the original request's
 // parameters and allows us to build a query string with
 // name/value pairs
 private function onReflectionComplete(event:Event):void {
 var queryString:String = "";
 var reflection:XML = XML(event.target.data);
 var methodArguments:XMLList = reflection.arguments.argument;
 for(var i:Number = 0; i < pendingArgs.length; i++) {
 if(pendingArgs[i] != null) {
 queryString += "&" + methodArguments[i].@name.toString() + "=" +
 pendingArgs[i];
 }
 }
 var loader:URLLoader = new URLLoader();
 var request:URLRequest = new URLRequest(PhotoProxy.FLICKR_URL + "?method=" +
 reflection.method.@name.toString() + queryString);
 loader.addEventListener(Event.COMPLETE, onComplete);
 loader.load(request);
 }

 // This event handler is called when the real result is
 // received from the Flickr API. It simply broadcasts this
 // data as a DataEvent event.
 private function onComplete(event:Event):void {
 dispatchEvent(new DataEvent(Event.COMPLETE, false, false,
 XML(event.target.data)));
 }

 // This is the method that captures the request. It is a
 // part of the flash.utils.Proxy class.

 flash_proxy override function callProperty(methodName:*, ...args):* {
 pendingArgs = args;
 pendingArgs.unshift(PhotoProxy.API_KEY);
 var loader:URLLoader = new URLLoader();
 var request:URLRequest = new URLRequest(PhotoProxy.FLICKR_URL +
 "?method=flickr.reflection.getMethodInfo&method_name=flickr.photos." +
 methodName.toString() + "&api_key=" + PhotoProxy.API_KEY);
 loader.addEventListener(Event.COMPLETE, onReflectionComplete);
 loader.load(request);
 return methodName.toString();
 }

 public function addEventListener(type:String, listener:Function,
 useCapture:Boolean = false, priority:int = 0, weakRef:Boolean = false):void {
 eventDispatcher.addEventListener(type, listener, useCapture, priority, weakRef);
 }

 public function dispatchEvent(event:Event):Boolean {
 return eventDispatcher.dispatchEvent(event);
 }

 public function hasEventListener(type:String):Boolean {
 return eventDispatcher.hasEventListener(type);
 }

 public function removeEventListener(type:String, listener:Function,
 useCapture:Boolean = false):void {
 eventDispatcher.removeEventListener(type, listener, useCapture);
 }

 public function willTrigger(type:String):Boolean {
 return eventDispatcher.willTrigger(type);
 }

 }

}

Using the Photo Proxy

To use this photo proxy, we need to slightly modify the main class from the first remote proxy
example. The only change is the reference to the PhotoProxy class in place of the
PhotoSearchProxy class. Also, to show that all the photo operations are now available through
this proxy, we will now call the getRecent() operation.

package {

 import com.peachpit.aas3wdp.proxypattern.FlickrResultEvent;
 import com.peachpit.aas3wdp.proxypattern.PhotoProxy;
 import flash.display.Sprite;
 import flash.events.Event;
 import flash.events.DataEvent;

 public class RemoteProxyExample extends Sprite {

 public function RemoteProxyExample() {
 var flickr:PhotoProxy = new PhotoProxy();
 flickr.addEventListener(Event.COMPLETE, onComplete);
 flickr.getRecent();
 }

 private function onComplete(event:DataEvent):void {
 trace(event.data);
 }
 }

}

Adapter and Façade Patterns

The Adapter and Façade patterns are very similar to the Proxy pattern. The main difference is
that a Proxy class has the same public methods (usually by implementing the same interface)
as the object it represents. The Adapter and Façade patterns don't necessarily have the same
methods as the object (or objects) they represent. Although the Adapter and Façade patterns
are almost identical, the difference is that an Adapter's purpose is to convert an object's API,
whereas the Façade's purpose is to simplify.

Summary

In this chapter, we examined the Proxy pattern and its many uses. The two flavors of Proxy
pattern we looked at are the Virtual and Remote Proxy patterns. We also went through several
examples to fully understand the Proxy pattern:

We used the built-in flash.display.Loader class to proxy the loading of an image.

We created a Virtual Proxy to defer serialization of XML to a model object.

We built a simple Remote Proxy for handling Flickr searches.

Chapter 7. Iterator Pattern

In This Chapter

Understanding the Problems with Iteration 95

Understanding Iterator Elements 97

Using Iterators 101

Using Null Iterators 102

Summary 102

Nearly every application uses collections. A collection is simply a group of organized data.
ActionScript has lots of collections including standard types such as arrays and associative
arrays as well as more sophisticated collections such as multidimensional arrays and custom
collection data types. When working with collections, you will naturally need to access the
elements of that collection. The Iterator pattern described in this chapter does all that while
avoiding some of the pitfalls that other approaches to data access might present.

Understanding the Problems with Iteration

For the purposes of this early discussion of iterating over collection data, we'll use the following
class to illustrate points. The customized UIntCollection class is essentially a glorified array.
However, although an array can store any sort of data, the UIntCollection stores only data of
type uint.

package com.peachpit.aas3wdp.collections {
 public class UIntCollection {
 private var _data:Array;

 public function UIntCollection() {
 _data = new Array();
 }

 public function addElement(value:uint):void {
 _data.push(value);
 }

 }
}

Iterating over collection data presents several common dilemmas. One dilemma deals with how
an object allows access to the collection. One option is to simply expose the collection.

For example, if a class has an array property, it can expose the array using a getter method.
Adding the following getter method to the UIntCollection class does just that:

public function get data():Array {
 return _data;
}

The preceding solution enables you to iterate through the collection using a for statement, as
follows:

var collection:UIntCollection = new UIntCollection ();
collection.addElement(1);
collection.addElement(2);
var i:uint;
for(i = 0; i < collection.data.length; i++) {
 // Code that uses collection data.
 trace(collection.data[i]);
}

There are two major related flaws with the preceding solution. The first is that exposing the
array directly breaks encapsulation in a fundamental way. The intention of exposing the
collection by way of a getter method is to enable iteration over the collection elements.
However, as a consequence, it's also possible to alter the collection without the object knowing

anything about it. For example, consider the following:

var collection:UIntCollection = new UIntCollection ();
collection.data[0] = "one";

In this example, you can see that a value is assigned to the data collection without the object
being notified. Furthermore, the example assigns a string value to the collection element even
though the UIntCollection class expects that the data collection contains only unsigned
integers.

Note

ActionScript does not currently support typed arrays, which is why the preceding
example allows us to assign a string to an element of the array. In a language with
typed arrays, you would have to declare an array of a particular type (for example,
uint).

The second flaw in the preceding solution is that it exposes not only the data, but also the
structure of the data. If you want to iterate over the elements of a collection, there's no reason
you have to know the structure of the collection to accomplish that. In fact, having to know the
structure is a hindrance because it requires different ways to iterate over different structures.

A second dilemma with iterating over collection data deals with the interface. In the preceding
example, we noted that exposing collection data directly is not a good idea because it could
have unexpected consequences. As a solution, it might seem like a good idea to define an API
for the collection class that enables you to iterate over the collection data. For example, the
following addition to the UIntCollection class enables you to loop through the elements of the
collection while maintaining good encapsulation:

package com.peachpit.aas3wdp.collections {
 public class UIntCollection {
 private var _data:Array;
 private var _index:uint;

 public function UIntCollection() {
 _data = new Array();
 _index = 0;
 }

 public function addElement(value:uint):void {
 _data.push(value);
 }

 public function reset():void {
 _index = 0;
 }

 public function hasNext():Boolean {
 return _index < _data.length;
 }

 public function next():uint {
 return uint(_data[_index++]);
 }

 }
}

The downside with the preceding API is that it makes the collection responsible for iterating
over the data. There are at least two major flaws with that: One flaw is that each collection
object maintains its own cursor (_index) so that you cannot iterate over the collection object's
data more than once simultaneously. The second flaw is that the collection class has to define
every possible way to iterate over the data. The preceding example assumes that you always
want to iterate over the data in a forward direction, one element at a time, in the order that
elements appear in the array. If you want to add methods for iterating over the collection in
ascending value order or skipping every other element, you must add a lot of responsibilities to
the collection class itself.

Understanding Iterator Elements

The Iterator pattern is a solution that enables you to iterate over a collection's elements while
maintaining good encapsulation and not having to expose the structure of the data. The Iterator
pattern offloads the iteration responsibilities to a new object, and as a consequence, the
collection class remains simple, and you can iterate over the collection more than once
simultaneously.

The Iterator pattern consists of the following elements:

Iterator interface: The interface for iterating over the collection data

Concrete iterator: The implementation of the iterator interface

Collection interface: The interface that defines how to retrieve an iterator

Concrete collection: The implementation of the collection interface

The Iterator Interface

To define an iterator interface, you have to determine how much you want the iterator to be
able to do. Initially it may seem important to define an interface that allows for moving forward
or backward through the collection data. However, in practice, you generally don't need the
ability to move both forward and backward through the collection data. Rather, you generally
want to move through the data in only one direction, one element at a time. The ability to reset
an iterator back to the start is also useful. The following interface accomplishes these goals, and
it is the one that we use throughout this book.

package com.peachpit.aas3wdp.iterators {
 public interface IIterator {

 function reset():void;
 function next():Object;
 function hasNext():Boolean;

 }
}

The preceding interface allows you to iterate over a collection, one element at a time. The
reset() method simply moves the cursor back to the start of the collection data. The next()
method returns the next element and advances the cursor. The hasNext() method returns true if
there is a next element and false if there is no next element. And the current() method returns
the current element without advancing the cursor.

Note

It's important to understand that the IIterator interface is merely an interface. It does
not dictate implementation. Although we might be accustomed to thinking of the word
next as meaning moving forward, the next() method of an implementing class can just
as easily move backward through a collection. For that matter an implementing class
could skip every other element or even return random elements. The interface simply
specifies what methods an implementing class must define.

The Concrete Iterator

The interface simply determines what methods the concrete iterator must implement. The
concrete iterator defines the actual functionality. Perhaps one of the most common types of
iterators for ActionScript is an iterator that can iterate over an array one element at a time
starting with index 0. The following ArrayIterator definition accomplishes just that:

package com.peachpit.aas3wdp.iterators {
 public class ArrayIterator implements IIterator {

 private var _index:uint = 0;
 private var _collection:Array;

 public function ArrayIterator(collection:Array) {
 _collection = collection;
 _index = 0;
 }

 public function hasNext():Boolean {
 return _index < _collection.length;
 }

 public function next():Object {
 return _collection[_index++];
 }

 public function reset():void {
 _index = 0;
 }

 }
}

Of course, you can define many types of iterators depending on the collection data structures
and the way in which you want to iterate over the data. The preceding example iterates over an
array one element at a time with increasing indices. You could also define an iterator that
returns the elements in reverse order, like this:

package com.peachpit.aas3wdp.iterators {
 public class ArrayReverseIterator implements IIterator {

 private var _index:uint = 0;
 private var _collection:Array;

 public function ArrayIterator(collection:Array) {

 _collection = collection;
 _index = _collection.length - 1;
 }

 public function hasNext():Boolean {
 return _index >= 0;
 }

 public function next():Object {
 return _collection[_index--];
 }

 public function reset():void {
 _index = _collection.length - 1;
 }

 }
}

Obviously, these are just two of the many types of iterators. Every iterator can define its own
unique implementation. What is critical is that every iterator implements the same interface.
The different implementations of the IIterator interface might allow access to different types of
collections (associative arrays, for example). However, even if the collections are different, the
iterator interface is the same, meaning you can access the data in the same way.

The Collection Interface

The collection interface defines the way in which you can access the iterator for a collection. The
simplest interface is as follows:

package com.peachpit.aas3wdp.collections {
 public interface ICollection {
 unction iterator():IIterator;
 }
}

However, consider that you might want to enable many types of iterators for a collection. For
example, you might want to allow a collection to return an iterator that advances one element
at a time forward through the collection, or you might want to return an iterator that skips
every other element in ascending order. For that reason, it is advantageous to define the
interface as follows:

package com.peachpit.aas3wdp.collections {
 public interface ICollection {
 function iterator(type:String = null):IIterator;
 }
}

The implementing collection class can then return a different iterator type depending on the
parameter passed to the method. The UIntCollection example in the next section illustrates this.

The Concrete Collection

The concrete collection class implements the collection interface. The following example rewrites
the UIntCollection class so that it implements ICollection:

package com.peachpit.aas3wdp.collections {
 import com.peachpit.aas3wdp.IIterator;
 import com.peachpit.aas3wdp.ArrayIterator;
 public class UIntCollection implements ICollection {
 private var _data:Array;

 public function UIntCollection() {
 _data = new Array();
 }

 public function addElement(value:uint):void {
 _data.push(value);
 }

 public function iterator(type:String = null):IIterator {
 return new ArrayIterator(_data);
 }

 }
}

The preceding implementation returns only one type of iterator. However, if appropriate, you
could enable several types of iterators, and the iterator that is returned would depend on the
parameter value, as in the following example:

public function iterator(type:String = null):IIterator {
 if(type == "ArrayReverseIterator") {
 return new ArrayReverseIterator(_data);
 }
 else {
 new ArrayIterator(_data);
 }
}

In this example the user can create one UIntCollection object, and from the same interface she
can request several different types of iterators.

var collection:UIntCollection = new UIntCollection();
collection.addElement(1);
collection.addElement(20);
collection.addElement(5);
collection.addElement(15);
var iteratorAscending:IIterator = collection.iterator();
var iteratorDescending:IIterator = collection.iterator("ArrayReverseIterator");

Using Iterators

After you've defined iterators and collections, you can use the iterators as in the following
example, which adds four elements to a UIntCollection object and then uses an iterator to
access that data:

var collection:UIntCollection = new UIntCollection();
collection.addElement(1);
collection.addElement(20);
collection.addElement(5);
collection.addElement(15);
var iterator:IIterator = collection.iterator();
while(iterator.hasNext()) {
 trace(iterator.next());
}

The preceding example uses the iterator to loop through each of the elements of the collection
and write it to the debug console. Notice that because the iterator interface is identical for all
iterator types, it doesn't matter what concrete type the iterator() method returns. For
example, the preceding code would continue to function correctly if you specified
ArrayReverseIterator as the parameter for iterator(), thus returning an
ArrayReverseIterator instead of an ArrayIterator. The only difference would be the
outputwhich would return the collection values in reverse order.

Consider how different this approach is from using the array directly. When you allow direct
access to the array, not only do you break encapsulation, you also create code that is specific to
the implementation. For example, if you wanted to use a for statement to loop through the
elements of an array directly, you would have to change the for statement expressions when
you wanted to change how you loop through the array. But when you use the iterators, you
don't have to make such changes because the implementation is within the iterator itself.

Using Null Iterators

One special iterator type is the null iterator. The null iterator enables you to build classes that
adhere to an interface (they are iterable) but that don't actually have any collection data. The
classic case for null iterators is the leaf element of a composite object (as discussed in Chapter
8, "Composite Pattern"). In such cases, it's necessary that the leaf elements (those containing
no collection data) and the composite elements (those that do contain collection data)
implement the same interface and be treated in the same way. For recursive traversal purposes,
it's necessary that the interface provide access to an iterator for both composite and leaf
elements. One option is to return null for the leaf element iterator. However, doing so presents
a special case that you must detectnamely, you must add if statements to test whether the
iterator is null or not before calling the methods such as hasNext() and next(). A more elegant
solution is to use a special type of iterator that always returns false for hasNext() and returns
null for next(). That special-case iterator is a null iterator as defined in the following code:

package com.peachpit.aas3wdp.iterators {
 public class NullIterator implements IIterator {

 public function NullIterator() {}
 public function hasNext():Boolean {
 return false;
 }

 public function next():Object {
 return null;
 }

 public function reset():void {
 }

 }
}

We'll see an example of how to use this iterator type in the next chapter.

Summary

The Iterator pattern enables client code to read a collection's data without exposing the
structure of the data or making the data inadvertently writable. The Iterator pattern is a
common pattern that provides a standard interface for reading collection data.

Although the Iterator pattern is simple, it is very useful. In fact, it is the pattern's simplicity that
makes it so useful. Because the pattern standardizes the way to access data from collections, it
allows you to create interfaces that interact with the IIterator interface rather than with any
specific implementation. That means that your code is more flexible and adaptable.

Chapter 8. Composite Pattern

In This Chapter

Understanding the Element Interface 103

Understanding Leaf Elements 106

Understanding Composite Elements 107

Building a File System Example 108

Summary 112

The Composite pattern enables you to elegantly deal with recursive or hierarchical data
structures. There are many examples of hierarchical data structures, making the Composite
pattern very useful. A common example of such a data structure is one that you encounter
every time you use a computer: the file system. The file system consists of directories and files.
Every directory potentially has contents. The contents of a directory might be files, but they also
might be directories. In this way, the file system of a computer is organized in a recursive
structure. If you want to represent such a data structure programmatically, you can use the
Composite pattern.

The Composite pattern has the following elements:

Element interface: An interface for all participating elements.

Leaf: A class representing terminating elements in the data structure. In the file system
example, files are leaf elements because they don't have child elements. Leaf classes must
implement the element interface.

Composite: A class for the collections in the data structure. In the file system example,
directories are composite elements. Composite classes must implement the element
interface.

Understanding the Element Interface

All elements within the Composite pattern, whether leaves or composites, should be essentially
interchangeable. This means that they must all implement a common interface. It's impossible
to determine what the exact interface ought to look like for every use of the Composite pattern.
However, at a minimum, it will likely look much like a collection. The following is an example of
what a basic element interface might look like:

package {
 public interface IElement {
 function iterator():IIterator;
 function addItem(item: IElement):void;
 function removeItem(item: IElement):void;
 function getParent():IElement;
 function setParent(parent: IElement):void;
 }
}

Note

The preceding interface uses the IIterator interface as discussed in Chapter 7,
"Iterator Pattern." This chapter makes use of the Iterator pattern; if you have not yet
read Chapter 7, you might want to consider reading that chapter before continuing
with this one.

Note that this basic element interface example specifies IElement as the type for the addItem(),
removeItem(), and setParent() methods. In theory, this means that any class that implements
the IElement interface can be added to any other object that implements the same interface.
This is what enables all elements in the Composite pattern to look identical. Of course, the
implementation will be different for leaf and composite elements. A leaf element cannot actually
contain other elements, but it must implement the same interface for the pattern to work.

In a practical example, the element interface will probably have more methods than are
included in the IElement example. Throughout this chapter, we'll be looking at a file system
example. The following IFileSystemItem interface is the element interface we will use for the file
system example:

package com.peachpit.aas3wdp.compositeexample.data {
 // You'll need to ensure that IIterator from Chapter 7 is in your
 // classpath.
 import com.peachpit.aas3wdp.iterators.IIterator;

public interface IFileSystemItem {
 function iterator():IIterator;
 function addItem(item:IFileSystemItem):void;
 function removeItem(item:IFileSystemItem):void;

 function getName():String;
 function setName(name:String):void;
 function getParent():IFileSystemItem;
 function setParent(parent:IFileSystemItem):void;
}
}

For this example, it's also useful to create a simple implementation in the form of an abstract
class we'll call FileSystemItem. Although an abstract class is not a requirement in this case,
we're using one because that way each of the concrete classes can inherit a common
implementation rather than having redundant code in each of the classes. All our code still
references the interface rather than the abstract class to maintain maximum adaptability. The
abstract class looks like the following:

package com.peachpit.aas3wdp.compositeexample.data {
 import com.peachpit.aas3wdp.iterators.IIterator;

 public class FileSystemItem implements IFileSystemItem {
 protected var _parent:IFileSystemItem;
 protected var _name:String;

 public function FileSystemItem() {
 }

 public function iterator():IIterator {
 return null;
 }

 public function addItem(item:IFileSystemItem):void {

 }

 public function removeItem(item:IFileSystemItem):void {

 }

 public function getName():String {
 return _name;
 }

 public function setName(name:String):void {
 _name = name;
 }

 public function getParent():IFileSystemItem {
 return _parent;
 }

 public function setParent(parent:IFileSystemItem):void {
 _parent = parent;
 }
 }
}

In this case, we're using an abstract class (FileSystemItem) because it provides some basic
implementation that concrete leaf and composite subclasses can inherit. This way the, File and
Directory subclasses don't have to each implement getName(),setName(), getParent(), and
setParent().

Note

The preceding interface and abstract class might seem strange because they require
all concrete classes to implement methods that may or may not appear directly
related to all types. For example, leaf elements might not appear to need addItem(),
removeItem(), and iterator() methods. Although it's true that, in most cases, it is

inadvisable for an interface to require a concrete type to implement methods that
don't apply to all types, in the case of the Composite pattern it is essential to the
pattern that composite and leaf elements appear to be identical. Therefore the leaf
elements must implement addItem(), removeItem(), and iterator().

Understanding Leaf Elements

Leaf elements are the terminating elements in the Composite pattern. Leaf elements can be
placed in composite elements, but composite elements cannot be placed in leaf elements. In
terms of our file system example, files are leaf elementsyou can place files in directories, but
you cannot place directories in files.

Leaf elements must implement the same interface as composite elements for the pattern to
work. This approach might seem odd at first because the element interface always allows for
adding and removing elements, yet a leaf element cannot contain elements. In the Composite
pattern, the leaf element does include the methods to add, remove, and access elements to
satisfy the requirements of the interface, yet the implementation does not allow you to actually
add, remove, or access elements. The following is the implementation for a File class as part of
our file system example. Notice that it inherits from the abstract FileSystemItem class so that it
doesn't need to implement most of the required methods (it inherits the implementations from
its superclass). In particular, it doesn't have to override addItem() or removeItem() because the
superclass implementations do nothing, which is exactly what we want the leaf class
implementation to do. Although the File class does not need to override iterator(), to simplify
working with File objects in the Composite pattern, we'll override iterator() so that it returns
a NullIterator instance, as shown here:

package com.peachpit.aas3wdp.compositeexample.data {
 import com.peachpit.aas3wdp.iterators.IIterator;
 import com.peachpit.aas3wdp.iterators.NullIterator;

 public class File extends FileSystemItem {

 public function File() {

 }

 override public function iterator():IIterator {
 return new NullIterator();
 }

 }
}

We talked about the NullIterator type in Chapter 7. Although the File implementation of
iterator() could simply return null, it's slightly more elegant to return a NullIterator object.
The reason is that if iterator() returns null, you might have to test for null values when using
File objects. Yet if the method returns a NullIterator object, you can use the return value
interchangeably with the return value from a composite object. Because a NullIterator object
always returns false for hasNext(), it should allow a leaf object to work just like a composite
object without ever actually iterating over child elements.

Understanding Composite Elements

Composite elements also implement the element interface, but unlike leaf elements, you can
add child elements to composites. In our file system example, directories are composite
elements.

The following is a Directory class that represents a file system directory in our file system
example. Notice that the class extends the abstract FileSystemItem class. Because the abstract
class defers the implementation of iterator(), addItem(), and removeItem() to subclasses, the
Directory class must override these methods.

package com.peachpit.aas3wdp.compositeexample.data {
 import com.peachpit.aas3wdp.iterators.IIterator;
 import com.peachpit.aas3wdp.iterators.ArrayIterator;

 public class Directory extends FileSystemItem {

 // The array of child elements
 private var _items:Array;

 public function Directory() {
 _items = new Array();
 }

 override public function addItem(item:IFileSystemItem):void {
 _items.push(item);
 }

 override public function removeItem(item:IFileSystemItem):void {
 var i:uint;
 // Loop through all the child elements.
 for(i = 0; i < _items.length; i++) {
 // If one of the elements matches the
 // parameter remove it from the array.
 if(_items[i] == item) {
 _items.splice(i, 1);
 break;
 }
 }
 }
 override public function iterator():IIterator {
 // See the "Iterator Pattern" chapter for details on // ArrayIterator
 return new ArrayIterator(_items);
 }
 }
}

The Directory class implementation is fairly simple. It must override addItem() to append the
element to the _items array. The class overrides removeItem() to remove the specified item by
looping through all the elements of the _items array until it finds the matching element. And the

class overrides iterator() to return an ArrayIterator instance.

Building a File System Example

The Composite pattern is simple in terms of its implementation, but its usage might be a little
unclear as of yet. We've already discussed the details of how it works, but an example usually
helps illustrate the concepts. In this example, we'll build a simple application that uses the file-
system metaphor to show how the Composite pattern works.

This example uses the IFileSystemItem interface as well as the FileSystemItem , File , and
Directory classes discussed earlier in this chapter. In addition, we'll create a
FileSystemItemView class and a main class (CompositeExample). The application will load data
from an XML file and use that data to allow the user to browse a graphical representation of a
file system. The directories are represented by folder icons, and files are represented by white
rectangles. The user can click a directory to browse the contents of the directory.

For the purposes of this example, we'll read the data from an XML file called fileSystem.xml
with the following content:

<fileSystem>
 <fileSystemItem type="Directory" name="Program Files" bytes="1024">
 <fileSystemItem type="Directory" name="Adobe Illustrator">
 <fileSystemItem type="File" name="Illustrator.exe" />
 </fileSystemItem>
 </fileSystemItem>
 <fileSystemItem type="Directory" name="My Documents">
 <fileSystemItem type="File" name="Document.txt" />
 <fileSystemItem type="File" name="Image.jpg" />
 </fileSystemItem>
</fileSystem>

You can see that the root node is <fileSystem> , and contained within that are nested
<fileSystemItem> tags. Each <fileSystemItem> tag is of type Directory or File . Directory
nodes can contain nested elements whereas File nodes cannot. Each element has a name
attribute as well. We'll load this XML file into the application and parse it into our composite
structure.

Next we'll need a class that is a view for the File and Directory classes. The
FileSystemItemView constructor accepts a parameter of type IFileSystemItem and then draws
the correct icon and adds a label. Note that FileSystemItemView extends Sprite because it
needs to be a display object.

package com.peachpit.aas3wdp.compositeexample.views {
 import flash.display.Sprite;
 import flash.text.TextField;
 import flash.text.TextFieldAutoSize;
 import flash.filters.BevelFilter;
 import com.peachpit.aas3wdp.compositeexample.data.Directory;
 import com.peachpit.aas3wdp.compositeexample.data.IFileSystemItem;

 public class FileSystemItemView extends Sprite {

 // The file or directory to display.
 private var _item:IFileSystemItem;

 // The icon for the item - either a white rectangle or
 // a folder icon
 private var _icon:Sprite;

 // The name of the item
 private var _label:TextField;

 // Return a reference to the file or directory
 public function get data():IFileSystemItem {
 return _item;
 }

 public function FileSystemItemView(item:IFileSystemItem) {
 _item = item;
 _icon = new Sprite();
 // Test if the item is a Directory or File. Draw the
 // appropriate icon for the item type
 if(item is Directory) {
 _icon.graphics.lineStyle();
 _icon.graphics.beginFill(0xFFFF00);
 _icon.graphics.drawRect(0, 10, 50, 30);
 _icon.graphics.endFill();
 _icon.graphics.beginFill(0xFFFF00);
 _icon.graphics.drawRoundRect(0, 0, 25, 15, 5, 5);
 _icon.graphics.endFill();
 _icon.filters = [new BevelFilter()];
 }
 else {
 _icon.graphics.lineStyle(0, 0x000000, 1);
 _icon.graphics.beginFill(0xFFFFFF);
 _icon.graphics.drawRect(0, 0, 40, 50);
 _icon.graphics.endFill();
 }
 addChild(_icon);

 // Add a label text field
 _label = new TextField();
 _label.text = _item.getName();
 _label.autoSize = TextFieldAutoSize.LEFT;
 _label.x = 50;
 addChild(_label);
 }

 // This method allows you to override the label text
 // value for special cases such as parent directories
 // where you want to display a specific label rather than
 // the name of the item
 public function overrideLabel(label:String):void {
 _label.text = label;
 }

 }
}

Next we need to define a main class. In this example, the main class is called CompositeExample
. The main class loads the XML file, parses it into the composite structure, and displays the
contents of the top-level directory. When the user clicks a directory, the main class dispatches
an event that updates the view.

package {
 import flash.display.Sprite;
 import flash.net.URLLoader;
 import flash.net.URLRequest;
 import flash.events.Event;
 import flash.events.MouseEvent;
 import com.peachpit.aas3wdp.compositeexample.data.Directory;
 import com.peachpit.aas3wdp.compositeexample.data.File;
 import com.peachpit.aas3wdp.compositeexample.data.FileSystemItem;
 import com.peachpit.aas3wdp.iterators.IIterator;
 import com.peachpit.aas3wdp.compositeexample.views.FileSystemItemView;
 import com.peachpit.aas3wdp.compositeexample.data.IFileSystemItem;

 public class CompositeExample extends Sprite {

 // The top-level directory which contains all the
 // child elements
 private var _fileSystem:Directory;

 // An array of all the views currently displayed
 private var _itemViews:Array;

 public function CompositeExample() {

 // Load the XML
 var loader:URLLoader = new URLLoader();
 loader.addEventListener(Event.COMPLETE, onLoadXML);
 loader.load(new URLRequest("fileSystem.xml"));

 // Construct the top-level directory. Set the name,
 // and set the parent to null. Setting the parent to
 // null will indicate that there are no parent
 // composite objects for this directory.
 _fileSystem = new Directory();
 _fileSystem.setName("File System");
 _fileSystem.setParent(null);

 _itemViews = new Array();
 }

 // When the XML loads parse the XML into the composite
 // structure. The parseXmlToFileSystem() method accepts an
 // XMLList parameter and a Directory parameter. It parses
 // all the XMLList children into elements within the
 // directory.
 private function onLoadXML(event:Event):void {
 XML.ignoreWhitespace = true;
 var xml:XML = new XML(event.target.data);
 parseXmlToFileSystem(xml.children(), _fileSystem);

 // Display the contents of the top-level directory
 updateView(_fileSystem);
 }

 private function updateView(directory:Directory):void {
 var i:uint;
 // Loop through all the currently-displayed item
 // views, and remove them.
 for(i = 0; i < _itemViews.length; i++) {
 removeChild(_itemViews[i]);
 delete _itemViews[i];
 }
 _itemViews = new Array();

 // Retrieve the iterator for the current directory
 var iterator:IIterator = directory.iterator();
 var itemY:Number = 0;
 var item:IFileSystemItem;
 var view:FileSystemItemView;

 // If the directory has a parent, then add a view for
 // the parent directory and override the label so
 // it simply says Parent Directory. Add a click
 // event listener so when the user clicks, it changes
 // to the parent directory
 if(directory.getParent() != null) {
 view = new FileSystemItemView(directory.getParent());
 view.overrideLabel("Parent Directory");
 view.addEventListener(MouseEvent.CLICK, onClick);
 addChild(view);
 _itemViews.push(view);
 itemY += view.height + 5;
 }

 // Loop through all the items in the directory. Add
 // a view for each item. If the item is a directory,
 // add a click event listener.
 while(iterator.hasNext()) {
 item = IFileSystemItem(iterator.next());
 view = new FileSystemItemView(item);
 view.y = itemY;
 itemY += view.height + 5;
 if(item is Directory) {
 view.addEventListener(MouseEvent.CLICK, onClick);
 }
 addChild(view);
 _itemViews.push(view);
 }
 }

 private function parseXmlToFileSystem(xml:XMLList, directory:Directory):void {
 var i:uint;
 var item:FileSystemItem;
 // Loop through all the children of the XMLList.
 // If the item is a directory, then make a new

 // directory and call parseXmlToFileSystem()
 // recursively to populate the directory. Otherwise
 // construct a file.
 for(i = 0; i < xml.length(); i++) {
 if(xml[i].@type == "Directory") {
 item = new Directory();
 parseXmlToFileSystem(xml[i].children(), Directory(item));
 }
 else {
 item = new File();
 }
 item.setParent(directory);
 item.setName(xml[i].@name);
 directory.addItem(item);
 }
 }

 // When the user clicks an item view, update the view to the
 // contents of the directory that the user clicked.
 private function onClick(event:MouseEvent):void {
 updateView(Directory(event.currentTarget.data));
 }
 }
}

When you run the application, you ought to see two folders initially: ProgramFiles and
MyDocuments . If you click one of the folders, the view updates to display the contents of the
directory as well as a folder icon with a ParentDirectory label. An example of the application is
shown in Figure 8.1 .

Figure 8.1. The sample application.

Summary

The Composite pattern is an important pattern for creating hierarchical structures in which you
want to be able to treat all the elements in the same way. This chapter uses a file system
example composed of files and directories to illustrate one case in which the Composite pattern
can be useful. In this example, files and directories implement the same interface, which is a
key feature of the Composite pattern. By implementing the same interface, you can treat files
and directories in exactly the same way, and you can store either a file or a directory as a child
of a directory.

Chapter 9. Decorator Pattern

In This Chapter

Understanding the Decorator Pattern 114

Building Reader Decorators 117

Building Visual and Commutative Decorators 128

Summary 136

The Decorator pattern enables you to apply new behavior to an object at runtime. Traditionally,
many developers learn to add behavior by using inheritance rather than composition. This
means that if you want to add a move() method to an existing Widget class, you'd extend Widget
to define a new MovableWidget class. Or, if you want to redefine the move() method of
MovableWidget so that it moves only until its fuel is used up, you could extend MovableWidget to
define FuelableMovableWidget.

However, inheritance has two major drawbacks in such cases:

You cannot change an object's behavior at runtime. For example, a Widget is always a
Widget. It isn't possible to convert a Widget to a MovableWidget or a
FuelableMovableWidget when traditional inheritance is used.

As more permutations become available, the number of classes required becomes
unwieldy. For example, if you want to extend a Widget class so that it is scalable, you
might define a ScalableWidget subclass. If you want to extend the class so that it is
rotatable, you might define a RotatableWidget subclass. To make a movable widget, you
might define a MovableWidget subclass. However, what if you want to combine some of the
behaviors? Using inheritance, you'd have to define ScalableRotatableWidget,
ScalableMovableWidget, RotatableMovableWidget, and ScalableRotatableMovableWidget.
Each new behavior increases the number of required classes in a factorial fashion such that
after just a few behaviors, the number of classes is unmanageable.

The solution to these inheritance drawbacks is the Decorator pattern. The Decorator pattern
uses composition rather than inheritance to add new behavior to an object. This means that it's
possible to add behavior and change behavior at runtime. Additionally, because the Decorator
pattern uses composition, it's often possible to chain together several new behaviors in a
manageable fashion.

It is often useful to visualize how a pattern works. Imagine that the Decorator pattern is like a
set of Russian dollsthe type of dolls that stack inside one another. Obviously, this analogy is
limited, but it does illustrate the basic nesting relationship between decorator and decorated
objects. The Decorator pattern starts with a base object that can be decorated. This decorated
object is analogous to the innermost Russian doll. The decorator objects use composition to add
behavior to the decorated object. The decorator objects are analogous to the larger Russian

dolls within which you place the smaller dolls. After you stack a Russian doll in the next larger
doll, you can then stack that doll in the next larger doll. So too with the Decorator pattern; you
can often use a decorator to add yet more behavior to another decoratorthus treating the
decorator like a decorated object. We'll look at these types and their relationships in more detail
throughout the chapter.

Understanding the Decorator Pattern

The basic idea of the Decorator pattern is that new types of objects (decorators) can add new
behavior or change existing behavior of a decorated object. The decorators and the decorated
object must implement the same interface. That way, the decorator and decorated objects can
be used interchangeably.

The Decorator pattern consists of the following elements:

Decorator/decorated interface

Concrete decorated class

Abstract decorator class

Concrete decorator class(s)

The following sections look at these elements in more detail.

Decorator/Decorated Interface

Everything about the Decorator pattern hinges on the decorator objects and the decorated
objects implementing the same interface. This way, they can be treated in exactly the same way
and used interchangeably. The exact interface depends entirely on the required behavior of the
objects. There is no universal interface for all decorator and decorated objects. For the purpose
of a simple example, consider the following interface. In the next few sections, we'll show how
to implement this interface using the Decorator pattern.

package com.peachpit.aas3wdp.decorator {
 public interface IWidget {
 function getDescription():String;
 function run():void;
 }
}

Tip

The distinction between decorator and decorated objects might not be immediately
clear. Decorators are objects that use composition to add to or modify the behavior of
another object at runtime. The object to which the behavior is added or modified is
the decorated object. Because decorator objects themselves can be decorated by other
decorators, it's essential that both types of objects implement the same interface.

Concrete Decorated Class

The concrete decorated class is the basic type that implements the interface. Continuing the
example from the preceding section, the following Widget class implements IWidget as the basic
decorated type:

package com.peachpit.aas3wdp.decorator {
 public class Widget implements IWidget {
 public function Widget() {}

 public function getDescription():String {
 return "Widget";
 }

 public function run():void {
 trace("running");
 }
 }
}

This simple decorated type is the basis of the pattern (like the innermost Russian doll). The
base decorated type is the foundation on which all other decorators are applied. This example is
purposefully simple. It merely implements the two methods required by the interface (IWidget).

Abstract Decorator Class

Technically, all that is required of a decorator is that it implements the same interface as the
decorated type. However, practically speaking, most decorators inherit from an abstract
decorator class that implements some of the basic functionality such as compositing the
decorated object and passing through the method calls. The following example illustrates a
basic abstract decorator class for the widget example:

package com.peachpit.aas3wdp.decorator {
 public class AbstractWidgetDecorator implements IWidget {

 protected var decorated:IWidget;

 public function AbstractWidgetDecorator(decoratedWidget:IWidget) {
 decorated = decoratedWidget;
 }

 public function getDescription():String {
 return _decorated.getDescription();
 }

 public function run():void {
 _decorated.run();
 }
 }
}

The AbstractWidgetDecorator class must implement the IWidget interface because it is the same

interface implemented by the decorated type (Widget). This is the basis of the Decorator
patternthat both the decorator and the decorated types implement the same interface.

Note that the constructor accepts a parameter of type IWidget. This parameter is the object that
the decorator will decorate. Although there's no requirement that you pass the decorated object
through the constructor (you could use a different method to accomplish this), it is the
convention. It's important that the decorated type is set to the interface rather than a concrete
(or abstract) type in order to fully support polymorphism. This approach allows the decorator to
decorate not only a concrete decorated type, but also other decorators.

It's also important to note that in this example the decorated property is set as protected. By
setting the property as protected, it is accessible to subclasses of AbstractWidgetDecorator.

The actual implementation of the methods may vary in every case. In this particular example,
each of the methods simply passes through the request to the decorated object. However, it is
useful to have an abstract class in many cases to ensure that the core, common behavior is
inheritable.

Concrete Decorator Class(es)

The concrete decorator(s) must implement the same interface as the decorated object type.
Normally, this is accomplished by extending the abstract decorator class. The decorator class
can do the following.

Modify existing behavior. Decorators often proxy requests to decorated methods. Although
it's possible for a decorator to simply pass through requests to the decorated object
exactly as they were made, a decorator can also pre-process or post-process. Decorators
can also handle the entire request at the decorator level without ever forwarding the
request to the decorated object.

Add new behavior. Decorators must implement the interface, but they can also add new
methods. This is an option and not a requirement. Adding new behavior can be
advantageous because you can add functionality to an object at runtime. However, adding
methods means that you cannot effectively chain decorators as is discussed later in this
chapter.

The following code illustrates a concrete decorator for the widget example:

package com.peachpit.aas3wdp.decorator {
 public class DigitalWidget extends AbstractWidgetDecorator {
 public function DigitalWidget(decorated:IWidget) {
 super(decorated);
 }

 override public function getDescription():String {
 var description:String = _decorated.getDescription();
 return "digital " + description;
 }
 }
}

This example declares DigitalWidget to extend AbtractWidgetDecorator. Note that the
constructor accepts a parameter of type IWidget, meaning that it could be either a concrete

decorated type (Widget) or another decorator type. The constructor in this example simply
passes along the parameter to the constructor of the superclass.

This example inherits the default implementation for the run() method, but it overrides
getdescription(). The getdescription() method returns the description from the decorated
object prepended with the word digital.

Building Reader Decorators

So far, you've had the chance to read about the theory of the Decorator pattern with an
extremely simple example. In this section, you'll have the chance to see a slightly more
sophisticated and practical example that makes use of the Decorator pattern. We'll build a
group of classes that work together for reading text data in many different ways.

The reader example starts with a concrete decorated type that takes a string value and reads it
one character at a time. Then, we'll add decorators that can read from the string by the word
and by the line. We'll then add additional decorated and decorator types to demonstrate how
they can be used interchangeably.

Creating the Decorator/Decorated Interface

To implement the Decorator pattern, we first need an interface. For this example, we'll define
an interface called com.peachpit.aas3wdp.decoratorexample.io.IReader . All reader decorated
and decorator classes must implement this interface. For our example, we'll require that all
reader types should be capable of dispatching events. For this reason IReader extends
flash.events.IEventDispatcher .

Here's our interface:

package com.peachpit.aas3wdp.decoratorexample.io {

 import flash.events.IEventDispatcher;
 public interface IReader extends IEventDispatcher {

 function read():String;
 function readArray(offset:uint = 0, length:uint = 0):Array;
 function readString():String;
 function hasNext():Boolean;
 function isReady():Boolean;
 function reset():void;
 }
}

As we've already mentioned, our IReader interface extends IEventDispatcher , which means
any implementing class must implement all of the IEventDispatcher methods in addition to the
methods required by IReader . The IEventDispatcher interface requires the following methods:
addEventListener() , removeEventListener() , dispatchEvent() , hasEventListener() , and
willTrigger() . As you'll see in the next section, the simplest way to implement the interface in
most cases is simply to extend EvenTDispatcher .

The IReader interface also requires a handful of methods. The read() , readArray() , and
readString() methods each provide a mechanism for accessing an element or elements of text.
The actual implementations will differ in concrete classes, but the idea remains the same:
read() returns the next element in much the same way an iterator returns the next element.
The readArray() method returns an array of elements. The readString() method returns the

original value. The isReady() method returns a Boolean indicating whether or not the reader is
ready for reading. The hasNext() method returns a Boolean indicating whether or not there are
additional elements. The reset() method resets the reader to the first element.

Defining an Abstract Reader Class

As we've already seen, all implementing classes of IReader must implement quite a few
methodsboth those from IEventDispatcher and from IReader . In many of the reader classes,
the implemented methods look very similar. For that reason, we can simplify those classes by
first defining an abstract class. In this case, we'll define
com.peachpit.aas3wdp.decoratorexample.io.AbstractReader as an abstract class implementing
the IReader interface. Because the IReader interface extends IEventDispatcher , you can either
implement all the required methods or extend a class that already implements those methods.
In this case, Reader extends Eventdispatcher , a class that is part of the Flash Player API.

package com.peachpit.aas3wdp.decoratorexample.io {

 import flash.events.Event;
 import flash.events.EventDispatcher;

 public class AbstractReader extends EventDispatcher implements IReader {

 protected var index:uint = 0;

 public function Reader() {
 }
 public function hasNext():Boolean {
 return false;
 }

 public function reset():void {
 index = 0;
 }

 public function isReady():Boolean {
 return true;
 }

 public function read():String {
 return null;
 }

 public function readArray(offset:uint = 0, length:uint = 0):Array {
 return null;
 }

 public function readString():String {
 return null;
 }

 }
}

The preceding code is fairly basic. Most of the methods simply return default values. The only

actual implementation is the declaration of index and the definition of the reset() method.

Defining the Concrete Decorated Class

In this example, we'll build two concrete decorated types. The first StringReader , is the first
concrete decorated class and is the simpler of the two.

[View full width]package com.peachpit.aas3wdp.decoratorexample.io {

 public class StringReader extends AbstractReader {

 private var _content:String;
 public
 function StringReader(content:String) {
 _content = content;
 }

 // The read() method uses the String class method charAt()
 // to return one character at a time, incrementing _index
 // each time the method is called.
 override public function read():String {
 return _content.charAt(_index++);
 }

 override public function readArray(offset:uint = 0, length:uint = 0):Array {
 // If length is null then use the length of the
 // string.
 if(length == 0) {
 length = _content.length - offset;
 }
 var array:Array = new Array();

 // Add one character at a time to the array.
 for(var i:uint = offset; i < length; i++) {
 array.push(_content.charAt(i));
 }
 return array;
 }

 override public function readString():String {
 return _content;
 }

 override public function hasNext():Boolean {
 return _index < _content.length;
 }

 }

 }

The StringReader class accepts one parameter in the constructor. It stores that value in a
private property. It then defines the read() and readArray() methods to return one character at
a time from that value. Here's a simple example of how you could use the StringReader:

var reader:IReader = new StringReader("abcdefg");
while(reader.hasNext()) {
 trace(reader.read());
}

This example writes the characters a , b , c , d , e , f , and g one at a time to the console.

Creating the Abstract Decorator Class

Now that we've defined a concrete decorated type, we can look at creating decorators for it. To
simplify the decorators, we'll create an abstract decorator called
com.peachpit.aas3wdp.decoratorexample.io.AbstractReaderDecorator . The
AbstractReaderDecorator class extends AbstractReader just like the StringReader class does
(all the decorated and decorator classes must implement the same interface). Note that we
need to override several of the methods so that they delegate requests to the decorated
instance, _content .

package com.peachpit.aas3wdp.decoratorexample.io {

 import com.peachpit.aas3wdp.decoratorexample.io.IReader;
 import com.peachpit.aas3wdp.decoratorexample.io.Reader;

 public class AbstractReaderDecorator extends AbstractReader {

 private var _content:IReader;

 // The constructor accepts a parameter of type IReader
 // that will be the decorated object.
 public function ReaderDecorator(reader:IReader) {
 _content = reader;
 }

 override public function read():String {
 return _content.read();
 }

 override public function readArray(offset:uint = 0, length:uint = 0):Array {
 return _content.readArray(offset, length);
 }

 override public function readString():String {
 return _content.readString();
 }

 }

}

The abstract decorator class is quite simple. It just delegates requests. Next we'll look at
creating concrete decorators.

Defining the First Concrete Decorator Class

Next, we define the first of the concrete decorator classes, WordReader . Notice that this class
extends the abstract decorator class, AbstractReaderDecorator .

package com.peachpit.aas3wdp.decoratorexample.io {

 import com.peachpit.aas3wdp.decoratorexample.io.IReader;
 import com.peachpit.aas3wdp.decoratorexample.io.ReaderDecorator;

 public class WordReader extends ReaderDecorator {

 private var _words:Array;

 public function WordReader(reader:IReader) {
 // Call the superclass constructor, passing the
 // parameter along so that the _content property is
 // set.
 super(reader);

 // Define a regular expression to find words.
 var expression:RegExp = /[a-z]+/ig;

 // Retrieve all the words from the decorated content
 // by calling readString() and using the match()
 // method with the regular expression. Note that
 // readString() is implemented in the abstract
 // ReaderDecorator class.
 _words = readString().match(expression);
 }

 // Override read() so it returns the next word from the
 // _words array.
 override public function read():String {
 var word:String = _words[_index++];
 return word;
 }

 // Override readArray() so it returns a new array
 // containing part of the _words array.
 override public function readArray(offset:uint = 0, length:uint = 0):Array {
 return _words.slice(offset, length);
 }

 override public function hasNext():Boolean {
 return _index < _words.length;
 }
 }

}

This decorator allows you to wrap any other object that implements the IReader interface, and it
changes the functionality while keeping the same interface. For example, the following code
illustrates this operation:

var reader:IReader = new StringReader("one two three four");
// First display each character one at a time.

while(reader.hasNext()) {
 trace(reader.read());
}
reader = new WordReader(reader);
// Next display one word at a time.
while(reader.hasNext()) {
 trace(reader.read());
}

Testing the Decorator

Next, we'll define a main class to test the example.

package {
 import flash.display.Sprite;
 import com.peachpit.aas3wdp.decoratorexample.io.IReader;
 import com.peachpit.aas3wdp.decoratorexample.io.StringReader;
 import com.peachpit.aas3wdp.decoratorexample.io.WordReader;

 public class ReaderDecoratorExample extends Sprite {

 public function ReaderDecoratorExample() {
 var stringReader:StringReader = new StringReader("Lorem ipsum\ndolor sit amet");
 var wordReader:WordReader = new WordReader(stringReader);
 traceReader(stringReader);
 traceReader(wordReader);
 }
 public function traceReader(reader:IReader):void {
 while(reader.hasNext()) {
 trace(reader.read());
 }
 }

 }
}

Debug the application, and you'll see that the first call to traceReader() displays each of the
characters of the string from the StringReader object. The second call to traceReader() displays
each word using the WordReader object. Because traceReader() is defined to accept an IReader
parameter, either StringReader (decorated) or WordReader (decorator) will work. Each object
implements the same interface, but they have different behaviors.

Defining an Additional Concrete Decorator Class

One of the advantages of the Decorator pattern is that you can create many decorators.
Because each decorator can decorate any other decorator, there is no real limit to how many
decorators you can use. To illustrate this truth, we'll next add a new decorator class called
com.peachpit.aas3wdp.decoratorexample.io.LineReader . As the name implies, LineReader
reads the content one line at a time.

package com.peachpit.aas3wdp.decoratorexample.io {

 import com.peachpit.aas3wdp.decoratorexample.io.IReader;
 import com.peachpit.aas3wdp.decoratorexample.io.ReaderDecorator;

 public class LineReader extends AbstractReaderDecorator {

 private var _lines:Array;

 public function LineReader(reader:IReader) {
 super(reader);
 var expression:RegExp = /[\n\r\f]/g;
 _lines = readString().split(expression);
 }

 override public function read():String {
 var line:String = _lines[_index++];
 return line;
 }

 override public function readArray(offset:uint = 0, length:uint = 0):Array {
 return _lines.concat();
 }

 override public function hasNext():Boolean {
 return _index < _lines.length;
 }

 }
}

The LineReader class inherits from AbstractReaderDecorator . It accepts any reader type as a
parameter to the constructor, and it uses that parameter as the content which it then parses
into an array of lines.

With the addition of the LinerReader , we can next verify that it works by making a few edits to
the main class as follows:

package {
 import flash.display.Sprite;
 import com.peachpit.aas3wdp.decoratorexample.io.IReader;
 import com.peachpit.aas3wdp.decoratorexample.io.StringReader;
 import com.peachpit.aas3wdp.decoratorexample.io.WordReader;
 import com.peachpit.aas3wdp.decoratorexample.io.LineReader;

 public class ReaderDecoratorExample extends Sprite {

 public function DecoratorExample() {
 var stringReader:StringReader = new StringReader("Lorem ipsum\ndolor sit amet");
 var wordReader:WordReader = new WordReader(stringReader);
 var lineReader:LineReader = new LineReader(stringReader);
 traceReader(stringReader);
 traceReader(wordReader);
 traceReader(lineReader);
 }

 public function traceReader(reader:IReader):void {
 while(reader.hasNext()) {
 trace(reader.read());
 }
 }

 }
}

When you debug the application, you'll see that this time the third call to traceReader() outputs
each line of text. Because the original text has a newline character (\n), the output displays on
two lines.

Defining a New Decorated Type

Now that we have a decorated type in place, we've already seen that we can add as many
decorators as we want. However, we can also add more decorated types. All that's required is
that the new decorated type implements the same interface as all the existing decorated types
and decorators. To illustrate this point, we'll next define a new decorated type,
com.peachpit.aas3wdp.decoratorexample.io.FileReader . The FileReader class allows you to
load the contents of a file. By default, it reads one character at a time similar to the
StringReader .

package com.peachpit.aas3wdp.decoratorexample.io {

 import flash.net.URLLoader;
 import flash.net.URLRequest;
 import flash.events.Event;

 public class FileReader extends AbstractReader {

 private var _content:String;
 private var _file:URLLoader;
 private var _canRead:Boolean = false;

 public function FileReader(file:String) {
 // Use a URLLoader object to load the text from a
 // file specified by the parameter.
 _file = new URLLoader();
 var request:URLRequest = new URLRequest(file);
 _file.load(request);

 // Call onData() when the content loads.
 _file.addEventListener(Event.COMPLETE, onData);
 }

 private function onData(event:Event):void {

 // Set the content to the data loaded from the file.
 _content = String(_file.data);

 // The object is read for reading.
 _canRead = true;

 // Dispatch an event notifying listeners that the
 // object is ready.
 dispatchEvent(new Event(Event.COMPLETE));
 }

 override public function isReady():Boolean {
 return _canRead;
 }

 override public function read():String {
 return _content.charAt(_index++);
 }

 override public function readString():String {
 return _content;
 }

 override public function hasNext():Boolean {
 return _index < _content.length;
 }

 }

}

This class loads text from a URL. Because the data loads asynchronously, the isReady() method
returns false until the data has been loaded. Otherwise, it functions very similarly to the
StringReader class.

With the addition of this new decorated type, we can test it by redefining the main class to use
a FileReader instance instead of a StringReader instance. Because FileReader is asynchronous,
we'll listen for a COMPLETE event, decorate the object with a WordReader object, and then call
traceReader() .

Note

For this example to work, you'll need a text file called data.txt. You can save a text file
in the same directory to which you deploy the .swf from this example. In the text file,
you can add text such as the string passed to the StringReader constructor in the
earlier example.

package {

 import flash.display.Sprite;
 import com.peachpit.aas3wdp.decoratorexample.io.IReader;
 import com.peachpit.aas3wdp.decoratorexample.io.FileReader;
 import com.peachpit.aas3wdp.decoratorexample.io.WordReader;
 import flash.events.Event;

 public class ReaderDecoratorExample extends Sprite {

 public function ReaderDecoratorExample() {

 var fileReader:FileReader = new FileReader("data.txt");
 fileReader.addEventListener(Event.COMPLETE, onFile);
 }

 private function onFile(event:Event):void {
 var wordReader:WordReader = new WordReader(FileReader(event.target));
 traceReader(wordReader);
 }

 public function traceReader(reader:IReader):void {
 while(reader.hasNext()) {
 trace(reader.read());
 }

 }

 }

}

This code illustrates that the same decorator we used in conjunction with a StringReader object
can be used with a FileReader object as well.

Decorating Decorators

To illustrate that decorators can potentially decorate decorators, we'll define a new decorator
class called com.peachpit.aas3wdp.decoratorexample.io.SortedReader . SortedReader allows
you to access the contents of a decorated reader in a sorted order.

package com.peachpit.aas3wdp.decoratorexample.io {

 public class SortedReader extends AbstractReaderDecorator {
 private var _content:Array;

 public function SortedReader(reader:IReader) {
 super(reader);

 // Read all the content from the decorated reader as
 // an array. Then sort that content.
 _content = reader.readArray().concat();
 _content.sort();
 }

 override public function read():String {
 return _content[_index++];
 }

 override public function readArray(offset:uint = 0, length:uint = 0):Array {
 var data:Array = new Array();
 for(var i:uint = offset; i < length; i++) {
 data.push(_content[i]);
 }
 return data;
 }

 override public function hasNext():Boolean {
 return _index < _content.length;
 }

 }
}

We can see how this new decorator works by editing the main class as follows:

package {

 import flash.display.Sprite;
 import com.peachpit.aas3wdp.decoratorexample.io.IReader;
 import com.peachpit.aas3wdp.decoratorexample.io.FileReader;
 import com.peachpit.aas3wdp.decoratorexample.io.WordReader;
 import com.peachpit.aas3wdp.decoratorexample.io.SortedReader;
 import flash.events.Event;

 public class ReaderDecoratorExample extends Sprite {

 public function DecoratorExample2() {
 var fileReader:FileReader = new FileReader("data.txt");
 fileReader.addEventListener(Event.COMPLETE, onFile);
 }

 private function onFile(event:Event):void {
 var wordReader:WordReader = new WordReader(FileReader(event.target));
 var sortedReader:SortedReader = new SortedReader(wordReader);
 traceReader(sortedReader);
 }

 public function traceReader(reader:IReader):void {
 while(reader.hasNext()) {
 trace(reader.read());
 }
 }

 }
}

When you test the application this time, all the words are traced in alphabetical order.

The SortedReader decorator can decorate any object that implements the IReader interface.
That means you can use a SortedReader instance to decorate a WordReader instance as was
done in this example, but you can also use it to decorate a LineReader or any other object that
implements IReader .

Building Visual and Commutative Decorators

The preceding example gave you a chance to use the Decorator pattern in a fairly simple
example. For the most part, the decorators in the preceding example were not chainable; that
is, you couldn't meaningfully composite a WordReader within a LineReader object. Although the
SortedReader object does enable you to chain decorators, you must apply the SortedReader as a
decorator last in the chain, which means that the decorators are not commutative. Decorators
are commutative if the following code yields effectively the same behavior, where A and B are
both decorators and decorated is the decorated object:

var a:A = new A(decorated);
var b:B = new B(a);
b.method();

var b:B = new B(decorated);
var a:A = new A(b);
a.method();

You can see that SortedReader is not commutative because it matters what order it is applied in
the chain. For example, if you apply a WordReader as a decorator to a SortedReader object, you
will get different results than if you apply a SortedReader to a WordReader . This doesn't make
the preceding example bad or impractical. It simply illustrates that the Decorator pattern is
flexible enough to allow for chainable and non-chainable as well as commutative and non-
commutative decorators.

In this next example, you'll have a chance to see how to build visual decorators that are
chainable and commutative. This example decorates shapes (circles and rectangles) by making
them draggable and by adding bevels to them.

Defining the Common Interface

Define com.peachpit.aas3wdp.shapes.AbstractBasicShape as an abstract class that serves as
the common interface. In this example, we're using an abstract class with no implementation
rather than an interface because we want all the shapes (decorated and decorator) to be a
subtype of Sprite so that all the shapes can rely on the Sprite interface. There is no built-in
interface for Sprite or any sort of display object. Normally, it is best to use an actual interface
construct. However, in this case, we're going to use an abstract class in place of an interface for
two reasons:

The required interface is really long. Although this wouldn't excuse not using a proper
interface in a typical scenario, we want to simplify things here rather than occupying
several printed pages with the interface code.

1.

All the concrete classes would have to extend Sprite in order to inherit the critical display
object behavior.

2.

For our purposes, we want to create a unique type that implements the entire Sprite interface.

2.

Therefore, the simplest thing to do is to create an abstract class that merely inherits from
Sprite . It doesn't require any further implementation. Again, we're making a minor exception
to our rule that all abstract classes must have some sort of implementation for this example
because of the special case it presents.

package com.peachpit.aas3wdp.shapes {

 import flash.display.Sprite;

 public class AbstractBasicShape extends Sprite {

 public function AbstractBasicShape() {
 }

 }
}

Defining Concrete Decorated Classes

Next, we're going to create a few concrete decorated types. First we'll create a Circle class.
Define com.peachpit.aas3wdp.shapes.Circle as a class that draws a circle.

package com.peachpit.aas3wdp.shapes {

 import com.peachpit.aas3wdp.shapes.AbstractBasicShape;
 import flash.display.Sprite;

 public class Circle extends AbstractBasicShape {

 public function Circle(radius:Number) {
 var shape:Sprite = new Sprite();
 addChild(shape);
 shape.graphics.lineStyle(0, 0, 0);
 shape.graphics.beginFill(0xFFFFFF);
 shape.graphics.drawCircle(radius, radius, radius);
 shape.graphics.endFill();
 }

 }
}

The second decorated type is the Rectangle class. Define
com.peachpit.aas3wdp.decoratorexample.shapes.Rectangle as a class that draws a rectangle.

package com.peachpit.aas3wdp.shapes {

 import com.peachpit.aas3wdp.shapes.AbstractBasicShape;
 import flash.display.Sprite;

 public class Rectangle extends AbstractBasicShape {

 public function Rectangle(shapeWidth:Number, shapeHeight:Number,
 center:Boolean = false) {

 var shape:Sprite = new Sprite();
 addChild(shape);
 shape.graphics.lineStyle(0, 0, 0);
 shape.graphics.beginFill(0xFFFFFF);
 shape.graphics.drawRect(center ? -shapeWidth / 2 : 0, center ? -shapeHeight
 / 2 : 0, shapeWidth, shapeHeight);
 shape.graphics.endFill();
 }

 }
}

Both of these decorated types are fairly straightforward. They are basic shape types we can
decorate with the decorators we're about to create. Apart from the fact that each of these types
implement the same interface (which they inherit from AbstractBasicShape), there is nothing
about these classes that is unique to the Decorator pattern.

Defining Decorator Classes

Now we can create the decorator classes. Define
com.peachpit.aas3wdp.decoratorexample.shapes.DraggableShape as a decorator class that
wraps a AbstractBasicShape object and makes it draggable.

package com.peachpit.aas3wdp.shapes {

 import com.peachpit.aas3wdp.shapes.AbstractBasicShape;
 import flash.events.MouseEvent;
 import flash.display.Sprite;

 public class DraggableShape extends AbstractBasicShape {

 private var _decorated:AbstractBasicShape;

 public function DraggableShape(AbstractBasicShape:AbstractBasicShape) {
 _decorated = AbstractBasicShape;
 addChild(_decorated);
 addEventListener(MouseEvent.MOUSE_DOWN, onMouseDown);
 addEventListener(MouseEvent.MOUSE_UP, onMouseUp);
 }

 private function onMouseDown(event:MouseEvent):void {
 startDrag();
 }

 private function onMouseUp(event:MouseEvent):void {
 stopDrag();
 }

 }
}

The constructor for this class accepts an instance of a concrete basic shape and then acts as a
container for that object. By acting as a container, the drag behaviors added to the

DraggableShape object make the child (the decorated object) draggable by proxy.

Note

The DraggableShape implementation is purposefully simple. It does not take into
account the possibility that the user could move the mouse outside of the object while
dragging it. In such a case, the user could inadvertently cause the object to continue
to follow the mouse even after releasing the mouse button. We've opted not to show
the code to solve that issue because we want to keep this example as focused as
possible in demonstrating the Decorator pattern.

Next we'll create a second decorator. Our next decorator class is BevelShape , which adds a
bevel to the object. Define com.peachpit.aas3wdp.decoratorexample.shapes.BevelShape as a
class that wraps a AbstractBasicShape object and applies a bevel filter.

package com.peachpit.aas3wdp.shapes {
 import flash.filters.BevelFilter;

 public class BevelShape extends AbstractBasicShape {

 public function BevelShape(shape:AbstractBasicShape) {
 var filters:Array = shape.filters;
 filters.push(new BevelFilter());
 shape.filters = filters;
 addChild(shape);
 }

 }
}

Now we can test that the decorators are commutable and chainable. Define a main class that
adds and decorates shapes.

package {

 import flash.display.Sprite;
 import flash.display.Stage;
 import flash.display.StageScaleMode;
 import flash.display.StageAlign;
 import com.peachpit.aas3wdp.shapes.AbstractBasicShape;
 import com.peachpit.aas3wdp.shapes.Circle;
 import com.peachpit.aas3wdp.shapes.Rectangle;
 import com.peachpit.aas3wdp.shapes.DraggableShape;
 import com.peachpit.aas3wdp.shapes.BevelShape;

 public class ShapeDecoratorExample extends Sprite {

 public function DecoratorExample() {

 stage.scaleMode = StageScaleMode.NO_SCALE;
 stage.align = StageAlign.TOP_LEFT;

 var shape:AbstractBasicShape;

 // Create a rectangle. Make it draggable first, then
 // add a bevel.
 shape = new Rectangle(200, 200);
 shape = new DraggableShape(shape);
 shape = new BevelShape(shape);
 shape.x = 200;
 shape.y = 200;
 addChild(shape);

 // Create a circle. Apply the bevel, then make it
 // draggable.
 shape = new Circle(100);
 shape = new BevelShape(shape);
 shape = new DraggableShape(shape);
 addChild(shape);

 }

 }

}

Notice that, in the preceding example, it makes no difference if you apply the bevel first or
make the object draggable first. Both ways work equally well.

Adding Non-Commutative Decorators

Next, we'll add two non-commutative decorators to see the contrast with the first two
decorators. The first non-commutative decorator is ColorableShape . Define
com.peachpit.aas3wdp.

shapes.ColorableShape as follows.

package com.peachpit.aas3wdp.shapes {
 import flash.geom.ColorTransform;

 public class ColorableShape extends AbstractBasicShape {

 public function ColorableShape(shape:AbstractBasicShape, red:Number,
 green:Number, blue:Number) {
 shape.transform.colorTransform = new ColorTransform(red, green, blue);
 addChild(shape);
 }

 }
}

The second non-commutative decorator is ResizableShape , which adds a resize handler to the
shape. The resize handler allows the user to click and drag to change the width and height of
the shape. Define com.peachpit.aas3wdp.shapes.ResizableShape as follows.

package com.peachpit.aas3wdp.shapes {

 import com.peachpit.aas3wdp.shapes.AbstractBasicShape;
 import com.peachpit.aas3wdp.shapes.ColorableShape;
 import flash.display.Sprite;
 import flash.events.MouseEvent;
 import flash.events.Event;

 public class ResizableShape extends AbstractBasicShape {

 private var _isResizing:Boolean;
 private var _resizer:AbstractBasicShape;
 private var _decorated:AbstractBasicShape;

 // Override the width and height setters so when you
 // attempt to set the width and height you set the width
 // and height of the decorated object and move the resizer
 // handle appropriately.
 override public function set width(value:Number):void {
 _decorated.width = value;
 _resizer.x = value;
 }

 override public function set height(value:Number):void {
 _decorated.height = value;
 _resizer.y = value;
 }

 public function ResizableShape(AbstractBasicShape:AbstractBasicShape) {
 _decorated = AbstractBasicShape;
 addChild(_decorated);

 // Create a new rectangle that is centered to serve
 // as the resize handle. Use ColorableShape to make
 // the rectangle gray. Then move the rectangle to
 // the lower-right corner of the decorated shape.
 _resizer = new Rectangle(10, 10, true);
 _resizer = new ColorableShape(_resizer, .8, .8, .8);
 _resizer.x = _decorated.width;
 _resizer.y = _decorated.height;
 addChild(_resizer);
 _resizer.addEventListener(MouseEvent.MOUSE_DOWN, onMouseDown);
 _resizer.addEventListener(MouseEvent.MOUSE_UP, onMouseUp);
 }
 // When the user clicks on the resize handle, make it
 // draggable, start listening for enterFrame events.
 private function onMouseDown(event:MouseEvent):void {
 addEventListener(Event.ENTER_FRAME, onEnterFrame);
 _resizer.startDrag(true);
 event.stopImmediatePropagation();
 }

 // When the user releases the mouse click, stop making
 // the resize handle draggable, and stop listening for
 // enterFrame events.
 private function onMouseUp(event:MouseEvent):void {

 _resizer.stopDrag();
 removeEventListener(Event.ENTER_FRAME, onEnterFrame);
 }

 private function onEnterFrame(event:Event):void {
 // Don't allow the user to move the resize
 // handle in negative directions.
 if(_resizer.x < 0) {
 _resizer.x = 0;
 }
 if(_resizer.y < 0) {
 _resizer.y = 0;
 }

 // Change the width and height of the decorated
 // object to correspond to the resize handle x
 // and y coordinate values.
 _decorated.width = _resizer.x;
 _decorated.height = _resizer.y;
 }
 }
}

The ResizableShape object wraps decorated objects much like the other decorators we've seen
so far in this example. However, it also draws a resize handle within itself. As the user moves
the resize handle, the ResizableShape instance adjusts the width and height of the decorated
object.

Now that we've created two additional decorators, let's modify the main class so that it uses the
two new decorators:

package {

 import flash.display.Sprite;
 import flash.display.Stage;
 import flash.display.StageScaleMode;
 import flash.display.StageAlign;
 import com.peachpit.aas3wdp.shapes.AbstractBasicShape;
 import com.peachpit.aas3wdp.shapes.Circle;
 import com.peachpit.aas3wdp.shapes.Rectangle;
 import com.peachpit.aas3wdp.shapes.DraggableShape;
 import com.peachpit.aas3wdp.shapes.BevelShape;
 import com.peachpit.aas3wdp.shapes.ColorableShape;
 import com.peachpit.aas3wdp.shapes.ResizableShape;

 public class ShapeDecoratorExample extends Sprite {

 public function DecoratorExample() {

 stage.scaleMode = StageScaleMode.NO_SCALE;
 stage.align = StageAlign.TOP_LEFT;

 var shape:AbstractBasicShape;
 shape = new Rectangle(200, 200);
 shape = new DraggableShape(shape);

 shape = new BevelShape(shape);
 shape = new ColorableShape(shape, 0, 0, 0);
 shape.x = 200;
 shape.y = 200;
 addChild(shape);

 shape = new Circle(100);
 shape = new BevelShape(shape);
 shape = new DraggableShape(shape);
 shape = new ResizableShape(shape);

 addChild(shape);

 }
 }
}

When you test this version of the application, you'll notice that although the rectangle is blackas
you'd expect because of the ColorableShape decoratorit no longer displays the bevel because
the color transform was applied after the bevel. Secondly, you'll notice that as you drag the
circle, the resize handle does not move with it. That is because the ResizableShape decorator
was applied after the DraggableShape decorator.

Next, we can change the order in which the new decorators are applied to illustrate that the
order affects the behavior:

package {

 import flash.display.Sprite;
 import flash.display.Stage;
 import flash.display.StageScaleMode;
 import flash.display.StageAlign;
 import com.peachpit.aas3wdp.shapes.AbstractBasicShape;
 import com.peachpit.aas3wdp.shapes.Circle;
 import com.peachpit.aas3wdp.shapes.Rectangle;
 import com.peachpit.aas3wdp.shapes.DraggableShape;
 import com.peachpit.aas3wdp.shapes.BevelShape;
 import com.peachpit.aas3wdp.shapes.ColorableShape;
 import com.peachpit.aas3wdp.shapes.ResizableShape;

 public class DecoratorExample extends Sprite {
 public function DecoratorExample() {

 stage.scaleMode = StageScaleMode.NO_SCALE;
 stage.align = StageAlign.TOP_LEFT;

 var shape:AbstractBasicShape;
 shape = new Rectangle(200, 200);
 shape = new DraggableShape(shape);
 shape = new ColorableShape(shape, 0, 0, 0);
 shape = new BevelShape(shape);
 shape.x = 200;
 shape.y = 200;
 addChild(shape);

 shape = new Circle(100);
 shape = new BevelShape(shape);
 shape = new ResizableShape(shape);
 shape = new DraggableShape(shape);
 addChild(shape);
 }
 }

This time, when you test the application, you'll see that the bevel is preserved and that the
resize handle moves with the shape. This is because the decorators have been applied in the
correct order. The ColorableShape and ResizableShape decorators are perfectly valid, but they
are non-commutative.

Summary

The Decorator pattern allows you to add and modify behavior using composition rather than
inheritance. The key advantages of Decorator patterns are that you can add and change
behavior at runtime, and you can potentially chain together behaviors without having to write
new subclasses for each permutation.

Chapter 10. Command Pattern

In This Chapter

Understanding the Command Pattern 137

Building a Simple Command Application 139

Making Commands Undoable and keeping Command histories 146

Building an Undoable Application 148

Building a Redoable Application 153

Using Commands to Build a Proximity game 154

Summary 168

The Command pattern encapsulates functionality into a class. Although the pattern might
appear simplistic, don't let its simplicity deceive you. The Command pattern is a powerful way
for enabling a range of features that would be difficult to implement using a different approach.
Here are some of the most common uses of the Command pattern:

Building highly reusable components. The Command pattern decouples the functionality
from the initiator. Components that use Command pattern objects are highly extensible
because they can employ any object that implements the correct interface.

Queuing requests. When operations must occur in sequence, they must be queued.
Because the Command pattern encapsulates the request into an object, it's possible to
queue the requests by placing them in an array or similar collection.

Supporting undo and redo. Because Command pattern objects can be stored in memory,
it's possible to keep a history of which operations have occurred. By implementing an
undo() and/or redo() method, it's possible to add undo and redo features to an application
without difficulty.

Making transactional or "wizard" operations. An operation often consists of many steps. If
any step fails or if the user cancels at any point, it is necessary to roll back any changes
that have occurred. The Command pattern enables you to defer execution or to roll back
operations by calling the undo() method of a succession of objects.

Understanding the Command Pattern

In its purest form, the Command pattern consists of six elements.

Command interface

Concrete command

Receiver

Client

Invoker

The following sections look at these elements in detail.

The Interface

In the simplest form, the command interface defines just one method, often called execute() by
convention. The execute() method is responsible for running the requested operation. That
means that in the simplest form, the interface looks like this:

package com.peachpit.aas3wdp.commands {
 public interface ICommand {
 function execute():void;
 }
}

The command interface is essential to the Command pattern because it allows all implementing
command types to use the same interface even though they have different implementations.
That way, commands can be called without the calling code having to know much (if anything)
about the specific command. Just like you can flip a switch to turn on and off an electrical device
without having to know the details of how the particular electrical device operates, the
command interface provides a consistent way to operate programmatic objects that might have
disparate modes of operation behind the scenes.

This ICommand interface is all that is necessary for a basic command. However, sometimes we
want command classes to support the possibility of undoable and redoable commands. For that
reason, we can define two subtypes called IUndoableCommand and IRedoableCommand. Here's
IUndoableCommand.

package com.peachpit.aas3wdp.commands {
 public interface IUndoableCommand extends ICommand {
 function undo():void;
 }
}

And now here's the IRedoableCommand interface:

package com.peachpit.aas3wdp.commands {
 public interface IRedoableCommand extends ICommand {
 function redo():void;
 }
}

You'll notice that both of these interfaces extend ICommand, meaning that all IUndoableCommand
and IRedoableCommand implementing classes also pass the test as implementing ICommand.

We'll start by looking at examples that implement just the ICommand interface. Later in the
chapter, we'll look at a sample application that uses IUndoableCommand and IRedoableCommand.

The Concrete Command and Receiver

The concrete command is the class that implements the interface in a useful way by defining the
execute() method so that it actually runs an operation.

The concrete command usually requires a receiver, which is the object that is the target of the
operation. Although it's never strictly necessary, in many cases, the receiver reference is passed
to the concrete command constructor. The following is an example of a concrete command that
rotates a display object clockwise. In this case, the display object is the receiver.

package com.peachpit.aas3wdp.commandexample {

 import com.peachpit.aas3wdp.commands.ICommand;

 public class RotateClockwiseCommand implements ICommand {

 private var _reveiver:DisplayObject;

 public function RotateClockwiseCommand(receiver:DisplayObject) {
 _receiver = receiver;
 }

 public function execute():void {
 _receiver.rotation += 20;
 }
 }
}

The Client and Invoker

The client is the object that instantiates the command object, and the invoker is the object that
calls the execute() method of the command object. The client might be the main class of an
application, and the invoker might be a button. There are many possible scenarios, and as you'll
see throughout the examples in this chapter, there are no definitive rules for what types of
objects can be clients and invokers. In fact, in some cases the client and invoker might be the
same object.

Building a Simple Command Application

Now that you've had a chance to read the theory behind the Command pattern, let's take a look
at a sample application that uses the pattern.

In the sample application in this chapter, you'll use four commands to scale and rotate a display
object. Each of the commands is then associated with a draggable display object. By dragging
the display objects and dropping them on a button, you'll effectively re-wire the button to apply
the new commands associated with the draggable display objects, illustrating the extensibility
and interoperability of commands.

This application uses an interface and classes from the AAS3WDP library. Specifically, the
application uses the ICommand , IUndoableCommand , and IRedoableCommand interfaces as well as
the BasicButton class, which are defined in the AAS3WDP library. You'll want to add the
AAS3WDP library to the classpath for the project you configure for this example application.

Creating the Commands

First we'll create the command classes this application uses. The first of these commands is the
RotateClockwiseCommand class. Define the
com.peachpit.aas3wdp.commandexample.commands.RotateClockwiseCommand class as follows:

package com.peachpit.aas3wdp.commandexample.commands {

 import com.peachpit.aas3wdp.commands.ICommand;
 import flash.display.DisplayObject;

 public class RotateClockwiseCommand implements ICommand{

 private var _receiver:DisplayObject;

 public function RotateClockwiseCommand(receiver:DisplayObject) {
 _receiver = receiver;
 }

 public function execute():void {
 _receiver.rotation += 20;
 }

 }

}

In this command, the execute() method increments the rotation property of the receiver object
by 20, effectively rotating the object clockwise.

Next, we'll create a command to rotate the object counterclockwise. Define the
com.peachpit.aas3wdp.commandexample.commands.RotateCounterclockwiseCommand class as

follows:

package com.peachpit.aas3wdp.commandexample.commands {

 import com.peachpit.aas3wdp.commands.ICommand;
 import flash.display.DisplayObject;

 public class RotateCounterclockwiseCommand implements ICommand {

 private var _receiver:DisplayObject;

 public function RotateCounterclockwiseCommand(receiver:DisplayObject) {
 _receiver = receiver;
 }

 public function execute():void {
 _receiver.rotation -= 20;
 }

 }
}

You'll notice that the RotateCounterclockwiseCommand class looks almost identical to the
RotateClockwiseCommand class except that it decrements the receiver object's rotation property
by 20 rather than incrementing it.

Now we'll create a command class for scaling the receiver object up. Define the
com.peachpit.aas3wdp.commandexample.commands.ScaleUpCommand class as follows:

package com.peachpit.aas3wdp.commandexample.commands {

 import com.peachpit.aas3wdp.commands.ICommand;
 import flash.display.DisplayObject;

 public class ScaleUpCommand implements ICommand {

 private var _receiver:DisplayObject;

 public function ScaleUpCommand(receiver:DisplayObject) {
 _receiver = receiver;
 }

 public function execute():void {
 _receiver.scaleX += .1;
 _receiver.scaleY += .1;
 }
 }
}

In this class, the execute() method increments the scaleX and scaleY properties of the receiver
object by .1, causing the object to scale up.

And now we'll define a command class that scales the object down. Define the
com.peachpit.aas3wdp.commandexample.commands.ScaleDownCommand class as follows:

package com.peachpit.aas3wdp.commandexample.commands {

 import com.peachpit.aas3wdp.commands.ICommand;
 import flash.display.DisplayObject;

 public class ScaleDownCommand implements ICommand {

 private var _receiver:DisplayObject;

 public function ScaleDownCommand(receiver:DisplayObject) {
 _receiver = receiver;
 }

 public function execute():void {

 _receiver.scaleX -= .1;
 _receiver.scaleY -= .1;
 }

 }
}

This command works just like the ScaleUpCommand except that it decrements the scaleX and
scaleY properties.

Creating a Receiver Type

The commands we defined in the preceding section require a receiver object. We'll now create a
class whose instances we can use as receiver objects for the commands. The receiver objects
must be of type DisplayObject , so our receiver type subclasses flash.display.Shape . We'll
define com.peachpit.aas3wdp.commandexample.shapes.Rectangle , so that it draws a rectangle
you can use as the receiver for the commands.

package com.peachpit.aas3wdp.commandexample.shapes {

 import flash.display.Shape;

 public class Rectangle extends Shape {

 public function Rectangle(color:uint, side:Number) {
 graphics.lineStyle();
 graphics.beginFill(color, 1);
 graphics.drawRect(-side / 2, -side / 2, side, side);
 graphics.endFill();
 }

 }
}

Creating a Button

Our application requires a button that we can wire up with a command. In order to accomplish

this we'll use a subclass of BasicButton from the AAS3WDP library.

Here we define a new subclass of BasicButton called
com.peachpit.aas3wdp.commandexample.controls.CommandButton . This class accepts a command
and calls the execute() method when clicked.

package com.peachpit.aas3wdp.commandexample.controls {

 import com.peachpit.aas3wdp.controls.BasicButton;
 import com.peachpit.aas3wdp.commands.ICommand;
 import flash.events.MouseEvent;

 public class CommandButton extends BasicButton {

 private var _command:ICommand;

 public function set command(value:ICommand):void {
 _command = value;
 }

 public function CommandButton(label:String) {
 super(label);
 addEventListener(MouseEvent.CLICK, onClick);
 }

 private function onClick(event:MouseEvent):void {
 if(_command != null) {
 _command.execute();
 }
 }

 }
}

The CommandButton constructor accepts a label parameter just like BasicButton , and it passes
that along to the super constructor. It also automatically listens for mouse clicks. When the user
clicks the button, it attempts to call the execute() method of a command object that was
passed to it with a setter method. This means that we can assign different command objects to
the button, and because the button is programmed to an interface (ICommand) rather than a
specific implementation, the interface can run the commands successfully even if they have very
different implementations.

Creating the Command Containers

For this application, we're going to associate instances of each command type with a draggable
display object, which we'll call a command container. For this purpose, we'll define a class
called com.peachpit.aas3wdp.commandcontainers.CommandContainer . This class is a drag-and-
drop Sprite subclass that has a command object and applies it to a CommandButton instance if it
is dropped over the button.

package com.peachpit.aas3wdp.commandexample.commandcontainers {

 import flash.display.Sprite;
 import flash.events.MouseEvent;

 import flash.text.TextField;
 import flash.display.DisplayObject;
 import com.peachpit.aas3wdp.commands.ICommand;
 import com.peachpit.aas3wdp.commandexample.controls.CommandButton;

 public class CommandContainer extends flash.display.Sprite {

 private var _command:ICommand;
 private var _x:Number;
 private var _y:Number;

 public function CommandContainer(command:ICommand, labelText:String,
 xValue:Number, yValue:Number) {

 // Store a reference to the command object.
 _command = command;

 // Draw a rectangle.
 graphics.lineStyle();
 graphics.beginFill(0xFFFFFF, 1);
 graphics.drawRect(0, 0, 50, 50);
 graphics.endFill();

 // Create a text field to use as the label.
 var label:TextField = new TextField();
 label.width = 50;
 label.height = 50;
 label.multiline = true;
 label.wordWrap = true;
 label.text = labelText;
 label.selectable = false;
 addChild(label);

 // Listen for mouse events to enable the
 // drag-and-drop behavior.
 addEventListener(MouseEvent.MOUSE_DOWN, onMouseDown);
 addEventListener(MouseEvent.MOUSE_UP, onMouseUp);

 _x = xValue;
 _y = yValue;
 x = _x;
 y = _y;
 }

 private function onMouseDown(event:MouseEvent):void {
 startDrag();
 }

 private function onMouseUp(event:MouseEvent):void {
 stopDrag();
 x = _x;
 y = _y;

 // Get the current drop target using the inherited
 // dropTarget property. (See ActionScript 3.0

 // documentation for details on the property.)
 var target:DisplayObject = dropTarget;

 // The drop target can sometimes be an object within
 // the object for which you want to test. For
 // the target in this case could be a label inside
 // a command button rather than the command button
 // itself. Use a while statement to get the parent
 // and assign it to the target variable in those
 // cases.
 while(target != null && !(target is CommandButton) && target != root) {
 target = target.parent;
 }

 // If the target is a command button then set the
 // command of the button to the command object
 // associated with this container.
 if(target is CommandButton) {
 CommandButton(target).command = _command;
 }

 }

 }
}

The container constructor requires that you associate the container with a command object. The
container is draggable. When the user drops the container on a command button, it then sets
the command property of the button to the associated command object.

Testing the Application

Finally, we'll define the main class such that it adds an instance of Rectangle and CommandButton
as well as four instances of CommandContainer , each with one of the command objects.

package {

 import flash.display.Sprite;
 import com.peachpit.aas3wdp.commandexample.commandcontainers.CommandContainer;
 import com.peachpit.aas3wdp.commandexample.shapes.Rectangle;
 import com.peachpit.aas3wdp.commandexample.commands.RotateClockwiseCommand;
 import com.peachpit.aas3wdp.commandexample.commands.RotateCounterclockwiseCommand;
 import com.peachpit.aas3wdp.commandexample.commands.ScaleUpCommand;
 import com.peachpit.aas3wdp.commandexample.commands.ScaleDownCommand;
 import com.peachpit.aas3wdp.commandexample.controls.CommandButton;

 public class CommandExample extends Sprite {

 public function CommandExample() {

 var rectangle:Rectangle = new Rectangle(0xFFFFFF, 50);
 rectangle.x = 200;
 rectangle.y = 200;

 addChild(rectangle);

 var button:CommandButton = new CommandButton("apply command");
 addChild(button);
 button.y = 250;

 var container:CommandContainer = new CommandContainer(new
 RotateClockwiseCommand(rectangle), "rotate clockwise", 0, 0);
 addChild(container);
 container = new CommandContainer(new RotateCounterclockwiseCommand
 (rectangle), "rotate counter-clockwise", 0, 55);
 addChild(container);
 container = new CommandContainer(new ScaleUpCommand(rectangle), "scale up",
 0, 110);
 addChild(container);
 container = new CommandContainer(new ScaleDownCommand(rectangle),
 "scale down", 0, 165);
 addChild(container);

 }
 }
}

When you test the sample application, you can drag and drop one of the command containers
on the command button instance. That action wires the command button with the corresponding
command object. Clicking the button then runs the command. For example, if you drag and
drop the rotate clockwise container over the command button and then click the button, the
rectangle will rotate clockwise.

Making Commands Undoable and Keeping Command

Histories

One of the optional yet powerful features of a command object is that it can enable undoable
actions. You'll remember that we've defined the IUndoableCommand interface with an undo()
method earlier in this chapter If we have our command classes implement IUndoableCommand,
we can define an undo() method.

The undo() method can be simple or complex, depending on the complexity of the operation in
the execute() method and the amount of state (how many properties) that must be
remembered. Consider the simplest case in which the operation can be undone by simply
negating the statement in the execute() method. For example, the execute() method of the
RotateClockwiseCommand class from the previous section increments the rotation property of the
receiver object by 20. Therefore, the undo() method ought to decrement the rotation property
by 20. The following code defines the undo() method for an undoable version of the
RotateClockwiseCommand class:

public function undo():void {
 _receiver.rotation -= 20;
}

The RotateClockwiseCommand example is fairly straightforward. If the object was rotated 20
degrees clockwise, the operation is clearly undone by rotating the object counterclockwise by 20
degrees. There is no additional state that the command class has to track. However, consider an
example with more complex state options. For example, a RandomMoveCommand class can move an
object to random coordinates. (For simplicity, we'll define the class so it always selects
coordinates within the range defined by a 400-by-400 rectangle with the upper-left corner at
0,0.)

public class RandomMoveCommand implements ICommand {

 private var _receiver:DisplayObject;

 public function RandomMoveCommand(receiver:DisplayObject) {
 _receiver = receiver;
 }

 public function execute():void {
 var x:Number = Math.random() * 400;
 var y:Number = Math.random() * 400;
 _receiver.x = x;
 _receiver.y = y;

 }

}

In the RandomMoveCommand example, the command object needs to track the previous x and y

coordinates of the object in order to implement an undo() method. The following code shows
how to implement an undoable version of the RandomMoveCommand class:

public class RandomMoveCommand implements IUndoableCommand {

 private var _receiver:DisplayObject;
 private var _x:Number;
 private var _y:Number;

 public function RandomMoveCommand(receiver:DisplayObject) {
 _receiver = receiver;
 }

 public function execute():void {
 _x = _object.x;
 _y = _object.y;
 var x:Number = Math.random() * 400;
 var y:Number = Math.random() * 400;
 _receiver.x = x;
 _receiver.y = y;
 }

 public function undo():void {
 _receiver.x = _x;
 _receiver.y = _y;

 }

}

Of course, by itself, an undoable command isn't of much use. You can always store a reference
to the most recent command, and that way you can add one level of undo to an application.
However, most frequently you'll want to have more than one level of undo in an application. To
accomplish that, you'll need to keep track of the command history.

Keeping track of command history isn't difficult. It requires an array and a cursor you can move
to point to a specific command in the history. For that purpose, it's useful to define a
CommandStack class. For the CommandStack class, we'll assume that you always want to keep track
of command history globally within an application, and we'll therefore write the class as a
Singleton class (described in Chapter 4, "Singleton Pattern"). If you wanted to keep track of
command histories within unique areas of an application, you could change the implementation
of the CommandStack class slightly. The following is the CommandStack class defined in the
com.peachpit.aas3wdp.commands package:

package com.peachpit.aas3wdp.commands {

 import com.peachpit.aas3wdp.commands.ICommand;

 public class CommandStack {

 private static var _instance:CommandStack;
 private var _commands:Array;
 private var _index:uint;

 public function CommandStack(parameter:SingletonEnforcer) {

 _commands = new Array();
 _index = 0;
 }

 public static function getInstance():CommandStack {
 if(_instance == null) {
 _instance = new CommandStack(new SingletonEnforcer());
 }
 return _instance;
 }

 public function putCommand(command:ICommand):void {
 _commands[_index++] = command;
 _commands.splice(_index, _commands.length - _index);
 }

 public function previous():ICommand {
 return _commands[--_index];
 }

 public function next():ICommand {
 return _commands[_index++];
 }

 public function hasPreviousCommands():Boolean {
 return _index > 0;
 }

 public function hasNextCommands():Boolean {
 return _index < _commands.length;
 }

 }
}

class SingletonEnforcer {}

Building an Undoable Application

In this exercise, we'll update the previous sample application so that all the commands are
undoable. This requires the following changes:

Edit each of the command classes so that they implement IUndoableCommand .

Edit the command button so that it adds executed commands to a command stack.

Add an undo button to the main class.

Making Undoable Commands

First, all the command classes must now implement IUndoableCommand . We'll start with
RotateClockwiseCommand :

package com.peachpit.aas3wdp.commandexample.commands {

 import com.peachpit.aas3wdp.commands.IUndoableCommand;
 import flash.display.DisplayObject;

 public class RotateClockwiseCommand implements IUndoableCommand{

 private var _receiver:DisplayObject;

 public function RotateClockwiseCommand(receiver:DisplayObject) {
 _receiver = receiver;
 }

 public function execute():void {
 _receiver.rotation += 20;
 }

 public function undo():void {
 _receiver.rotation -= 20;
 }

 }
}

Next we'll make a similar edit to RotateCounterclockwiseCommand :

package com.peachpit.aas3wdp.commandexample.commands {

 import com.peachpit.aas3wdp.commands.IUndoableCommand
 import flash.display.DisplayObject;

 public class RotateCounterclockwiseCommand implements IUndoableCommand {

 private var _receiver:DisplayObject;

 public function RotateCounterclockwiseCommand(receiver:DisplayObject) {
 _receiver = receiver;
 }

 public function execute():void {
 _receiver.rotation -= 20;
 }

 public function undo():void {
 _receiver.rotation += 20;
 }
 }
}

Likewise we'll edit ScaleUpCommand :

package com.peachpit.aas3wdp.commandexample.commands {

 import com.peachpit.aas3wdp.commands.IUndoableCommand;
 import flash.display.DisplayObject;

 public class ScaleUpCommand implements IUndoableCommand {

 private var _receiver:DisplayObject;

 public function ScaleUpCommand(receiver:DisplayObject) {
 _receiver = receiver;
 }

 public function execute():void {
 _receiver.scaleX += .1;
 _receiver.scaleY += .1;
 }

 public function undo():void {
 _receiver.scaleX -= .1;
 _receiver.scaleY -= .1;
 }

 }
}

And then we'll edit ScaleDownCommand :

package com.peachpit.aas3wdp.commandexample.commands {

 import com.peachpit.aas3wdp.commands.IUndoableCommand;
 import flash.display.DisplayObject;

 public class ScaleDownCommand implements IUndoableCommand {

 private var _receiver:DisplayObject;

 public function ScaleDownCommand(receiver:DisplayObject) {
 _receiver = receiver;
 }

 public function execute():void {
 _receiver.scaleX -= .1;
 _receiver.scaleY -= .1;
 }

 public function undo():void {
 _receiver.scaleX += .1;
 _receiver.scaleY += .1;
 }

 }
}

Each of the changes in the command classes amounts to the same thing: implement
IUndoableCommand rather than ICommand , and add the undo() method so that it reverses the
effect of the execute() method.

Recording Command History

We can next modify the command button so that it records the command history. We'll
accomplish this by using CommandStack . Each time the command button calls the execute()
method of a command object, it will also add the command object to the stack.

package com.peachpit.aas3wdp.commandexample.controls {

 import com.peachpit.aas3wdp.controls.BasicButton;
 import com.peachpit.aas3wdp.commands.ICommand;
 import flash.events.MouseEvent;
 import com.peachpit.aas3wdp.commands.CommandStack;

 public class CommandButton extends BasicButton {

 private var _command:ICommand;

 public function set command(value:ICommand):void {
 _command = value;
 }

 public function CommandButton(label:String) {
 super(label);
 addEventListener(MouseEvent.CLICK, onClick);

 }

 private function onClick(event:MouseEvent):void {

 if(_command != null) {
 _command.execute();

 CommandStack.getInstance().putCommand(_command);
 }
 }
 }
}

With this change, we now have a history of the commands that have been executed.

Adding an Undo Button

Next we add an undo button to the main class. The undo button-click event handler retrieves
the last-run command. It then tests to see whether it is an undoable command. If so, it calls
undo().

package {

 import flash.display.Sprite;
 import com.peachpit.aas3wdp.commandexample.commandcontainers.CommandContainer;
 import com.peachpit.aas3wdp.commandexample.shapes.Rectangle;
 import com.peachpit.aas3wdp.commandexample.commands.RotateClockwiseCommand;
 import com.peachpit.aas3wdp.commandexample.commands.RotateCounterclockwiseCommand
 import com.peachpit.aas3wdp.commandexample.commands.ScaleUpCommand;
 import com.peachpit.aas3wdp.commandexample.controls.CommandButton;
 import com.peachpit.aas3wdp.controls.BasicButton;
 import com.peachpit.aas3wdp.commandexample.commands.ScaleDownCommand;
 import flash.events.MouseEvent;
 import com.peachpit.aas3wdp.commands.CommandStack;
 import com.peachpit.aas3wdp.commands.ICommand;
 import com.peachpit.aas3wdp.commands.IUndoableCommand;

 public class CommandExample extends Sprite {

 public function CommandExample() {

 var rectangle:Rectangle = new Rectangle(0xFFFFFF, 50);
 rectangle.x = 200;
 rectangle.y = 200;
 addChild(rectangle);

 var button:CommandButton = new CommandButton("apply command");
 addChild(button);
 button.y = 250;

 var container:CommandContainer = new CommandContainer(new
 RotateClockwiseCommand(rectangle), "rotate clockwise", 0, 0);
 addChild(container);
 container = new CommandContainer(new RotateCounterclockwiseCommand
 (rectangle), "rotate counter-clockwise", 0, 55);
 addChild(container);
 container = new CommandContainer(new ScaleUpCommand(rectangle), "scale up",
 0, 110);
 addChild(container);
 container = new CommandContainer(new ScaleDownCommand(rectangle),

 "scale down", 0, 165);
 addChild(container);

 var undoButton:BasicButton = new BasicButton("undo");
 addChild(undoButton);
 undoButton.y = 280;
 undoButton.addEventListener(MouseEvent.CLICK, onUndo);

 }

 private function onUndo(event:MouseEvent):void {
 var stack:CommandStack = CommandStack.getInstance();
 if(stack.hasPreviousCommands()) {
 var command:ICommand = stack.previous();
 if(command is IUndoableCommand) {
 IUndoableCommand(command).undo();
 }
 }
 }
 }
}

With this revision, you can now test the application. As you run commands, you can also undo
them by clicking the undo button.

Building a Redoable Application

As is true with making commands undoable, making commands redoable is a matter of
implementing the IRedoableCommand interface. Next we'll make the commands in our example
application redoable. Remember that the redo() method effectively redoes whatever was
undone by the undo() method. In the simplest cases, the redo() method can simply call the
execute() method. For more complex operations, calling the execute() method won't work
correctly. In those cases, it is necessary to work out what steps are necessary to redo the state
changes and then implement the redo() method accordingly.

To modify our application to support redoable commands, we'll do the following:

Modify the command classes so they implement the IRedoableCommand .

Add a redo button to the main class.

Implementing IRedoableCommand

First we'll implement IRedoableCommand in all the command classes. So that all our commands
are both redoable and undoable, the commands must implement both IUndoableCommand and
IRedoableCommand . Here's RotateClockwiseCommand :

package com.peachpit.aas3wdp.commandexample.commands {

 import com.peachpit.aas3wdp.commands.IUndoableCommand;
 import com.peachpit.aas3wdp.commands.IRedoableCommand;
 import flash.display.DisplayObject;

 public class RotateClockwiseCommand implements IUndoableCommand, IRedoableCommand

 private var _receiver:DisplayObject;

 public function RotateClockwiseCommand(receiver:DisplayObject) {
 _receiver = receiver;
 }

 public function execute():void {
 _receiver.rotation += 20;
 }

 public function undo():void {
 _receiver.rotation -= 20;
 }

 public function redo():void {
 execute();
 }

 }
}

The remaining command classes follow suit. In each case, we import IRedoableCommand , add it
to the implements list, and define a redo() method that simply calls execute() .

Adding the Redo Button

Next we'll add a redo button to the main class. We do this by first adding the following code to
the constructor:

var redoButton:BasicButton = new BasicButton("redo");
addChild(redoButton);
redoButton.y = 310;
redoButton.addEventListener(MouseEvent.CLICK, onRedo);

This code adds the redo button. We still have to define the onRedo() method to handle the click
event. This is our onRedo() method:

private function onRedo(event:MouseEvent):void {

 var stack:CommandStack = CommandStack.getInstance();
 if(stack.hasNextCommands()) {
 var command:ICommand = stack.next();
 if(command is IRedoableCommand) {
 IRedoableCommand(command).redo();
 }

 }
}

This code is almost identical to the onUndo() method except that it tests that the class passes
the IRedoableCommand test. Then it calls the redo() method.

With those few edits, the application now implements redoable commands. Clicking the redo
button will re-apply the next command in the command stack.

Using Commands to Build a Proximity Game

The following sample application uses the Command pattern to build a game called Proximity.
The game consists of a grid of hexagonal pieces arranged so that each piece is adjacent to 6
pieces (unless the piece is on the edge). The game generally requires two or more players. The
game play is as follows.

A new game piece is displayed for a game player. The game piece has a numeric value
ranging from 2 to 20.

1.

The game player clicks on an unoccupied grid space to apply the game piece settings. That
grid space then belongs to the game player, and the numeric value is applied to that
space.

2.

If any of the adjacent grid spaces already belongs to a different player, then a comparison
is run between the newly occupied grid space and the adjacent spaces belonging to
different players. If the newly occupied space has a higher numeric value than an adjacent
space, the owner of the newly occupied space takes ownership of the adjacent space.

3.

If any of the adjacent spaces belongs to the same game player as the newly occupied
space, those spaces are fortified by adding 1 to their numeric values.

4.

Steps 1 through 4 repeat until all grid spaces are occupied.5.

The application requires a fair number of classes, which we'll build in the following sections.

Defining the Player Data Class

Every game has two or more players. Therefore, we'll first define the class that will serve as the
data model for each game player. The GamePlayer class basically just stores the color for the
player (each game player must be represented with a unique color on the board).

package com.peachpit.aas3wdp.proximity.data {

 public class GamePlayer {

 private var _color:uint;

 public function set color(value:uint):void {
 _color = value;
 }

 public function get color():uint {
 return _color;
 }

 public function GamePlayer() {
 _color = 0xEEEEEE;

 }

 }
}

In addition to the standard game player type, we'll also define a null player using NullPlayer .
The NullPlayer class extends GamePlayer so that it looks just like a standard player. However, it
is a special case we can use in place of an actual player.

package com.peachpit.aas3wdp.proximity.data {

 public class NullOwner extends GamePlayer {

 }
}

We'll use NullPlayer objects as the default owners for all pieces on the board until another
game player takes ownership.

Defining a Collection Class for the Game Players

Every game has a collection of players. To keep track of the game players we'll build a new
collection class called GamePlayers . The following code defines a Singleton class called
com.peachpit.aas3wdp.proximity.data.GamePlayers to serve as this collection:

package com.peachpit.aas3wdp.proximity.data {

 import com.peachpit.aas3wdp.proximity.data.GamePlayers;
 import com.peachpit.aas3wdp.proximity.data.GamePlayer;
 import com.peachpit.aas3wdp.iterators.IIterator;
 import com.peachpit.aas3wdp.iterators.ArrayIterator;

 public class GamePlayers {

 private var _data:Array;
 private static var _instance:GamePlayers;
 private static const COLORS:Array = [0xFFCCCC, 0xCCFFCC, 0xCCCCFF, 0xFFFFCC,
 0xCCFFFF, 0xFFCCFF];

 public function GamePlayers(parameter:SingletonEnforcer) {
 _data = new Array();
 }

 public static function getInstance():GamePlayers {
 if(_instance == null) {
 _instance = new GamePlayers(new SingletonEnforcer());
 }
 return _instance;
 }

 public function addGamePlayer(gamePlayer:GamePlayer):void {
 gamePlayer.color = COLORS[_data.length];
 _data.push(gamePlayer);

 }

 public function iterator():IIterator {
 return new ArrayIterator(_data);

 }
 }
}

class SingletonEnforcer {}

Note that this class has just two instance methods: addGamePlayer() to add game player
instances and iterator() to retrieve an iterator to access the collection.

Defining Game Pieces

Now that we've defined the game player classes and created a collection for them, we next need
to define another basic building block of the game: the game pieces. The
com.peachpit.aas3wdp.proximity.data.PieceData class serves as the data model for game
pieces and grid spaces.

package com.peachpit.aas3wdp.proximity.data {

 import flash.events.EventDispatcher;
 import flash.events.Event;
 import com.peachpit.aas3wdp.proximity.data.GamePlayer;
 import com.peachpit.aas3wdp.proximity.data.NullOwner;

 public class PieceData extends EventDispatcher {
 protected var _row:int;
 protected var _column:int;
 protected var _count:uint;
 protected var _owner:GamePlayer;
 protected var _radius:Number;

 // Keep track of the radius to use for the game piece
 // when it is displayed.

 public function set radius(value:Number):void {
 _radius = value;
 dispatchEvent(new Event(Event.CHANGE));
 }

 public function get radius():Number {
 return _radius;
 }

 // Keep track of the count (the value) for the game piece.
 public function set count(value:uint):void {
 _count = value;
 dispatchEvent(new Event(Event.CHANGE));
 }

 public function get count():uint {

 return _count;
 }

 // Every game piece belongs to a game player.
 public function set owner(value:GamePlayer):void {
 _owner = value;
 dispatchEvent(new Event(Event.CHANGE));
 }

 public function get owner():GamePlayer {
 return _owner;
 }

 // Which row is the game piece in?
 public function set row(value:int):void {
 _row = value;
 }

 public function get row():int {
 return _row;
 }

 // Which column is the game piece in?
 public function set column(value:int):void {
 _column = value;
 }

 public function get column():int {
 return _column;
 }

 // Use the constructor to set default property values.
 public function PieceData() {
 _row = -1;
 _column = -1;
 _count = 0;

 // Use a NullOwner by default.
 _owner = new NullOwner();
 }

 }
}

This class is yet another basic data model class. This time, however, it's important to note that
PieceData inherits from EvenTDispatcher; when the values change, it dispatches events
notifying listeners that the data model has changed.

Defining the Game Board Data Class

The game needs a game board. Our game board data model keeps track of all the pieces,
placing them in rows and columns. Because there can be only one game board per game, the
game board data model class is defined as a Singleton class.

package com.peachpit.aas3wdp.proximity.data {

 import com.peachpit.aas3wdp.proximity.data.PieceData;
 import com.peachpit.aas3wdp.proximity.data.GameboardData;
 import com.peachpit.aas3wdp.iterators.IIterator;
 import flash.events.EventDispatcher;
 import flash.events.Event;
 import com.peachpit.aas3wdp.iterators.ArrayIterator;

 public class GameboardData extends EventDispatcher {

 private var _pieces:Array;
 private var _rows:uint;
 private var _columns:uint;
 private var _newGamePiece:PieceData;
 private var _iterator:IIterator;

 private static var _instance:GameboardData;

 // Set the number of rows in the game board.
 public function set rows(value:uint):void {
 _rows = value;
 update();
 }

 // Set the number of columns in the garme board.
 public function set columns(value:uint):void {
 _columns = value;
 update();
 }

 // Request a new game piece. The game board is responsible
 // for returning the next game piece to play.
 public function get newGamePiece():PieceData {
 return _newGamePiece;
 }

 // Set defaults for all the properties.
 public function GameboardData(parameter:SingletonEnforcer) {
 _rows = 10;
 _columns = 10;
 _newGamePiece = new PieceData();
 _newGamePiece.radius = 40;
 _iterator = GamePlayers.getInstance().iterator();
 update();
 }

 public static function getInstance():GameboardData {
 if(_instance == null) {
 _instance = new GameboardData(new SingletonEnforcer());
 }
 return _instance;
 }

 // Re-add the game pieces. This method is called every time

 // one of the properties changes (columns, rows, etc.) This
 // code then creates all the game pieces, sets the rows and
 // columns, and adds the pieces to the pieces array.

 public function update():void {
 var i:uint;
 var j:uint;
 var piece:PieceData;
 _pieces = new Array();
 for(i = 0; i < _rows; i++) {
 for(j = 0; j < _columns; j++) {
 piece = new PieceData();
 piece.row = i;
 piece.column = j;
 piece.radius = 20;
 addPiece(piece);
 }
 }
 dispatchEvent(new Event(Event.CHANGE));
 }

 private function addPiece(piece:PieceData):void {
 if(_pieces[piece.row] == null) {
 _pieces[piece.row] = new Array();
 }
 _pieces[piece.row][piece.column] = piece;

 }

 // Return an iterator that allows access to each game
 // piece.
 public function iterator():IIterator {
 var pieces:Array = new Array();
 var i:uint;
 var j:uint;
 for(i = 0; i < _rows; i++) {
 for(j = 0; j < _columns; j++) {
 pieces.push(_pieces[i][j]);
 }
 }
 return new ArrayIterator(pieces);
 }

 // Calculate all the pieces that are adjacent to a given
 // piece, and return an iterator that allows access to
 // those pieces.
 public function getProximityPieces(piece:PieceData):IIterator {
 var pieces:Array = new Array();
 var row:uint = piece.row;
 var column:uint = piece.column;
 if(piece.row > 0) {
 pieces.push(_pieces[row - 1][column]);
 if(row % 2 == 0 && column > 0) {
 pieces.push(_pieces[row - 1][column - 1]);
 }
 else if(row % 2 != 0 && column < _pieces[row - 1].length - 1) {

 pieces.push(_pieces[row - 1][column + 1]);
 }
 }
 if(piece.column > 0) {
 pieces.push(_pieces[row][column - 1]);
 }
 if(column < _pieces[row].length - 1) {
 pieces.push(_pieces[row][column + 1]);
 }
 if(row < _pieces.length - 1) {
 pieces.push(_pieces[row + 1][column]);
 if(row % 2 == 0 && column > 0) {
 pieces.push(_pieces[row + 1][column - 1]);
 }
 else if(row % 2 != 0 && column < _pieces[row + 1].length - 1) {
 pieces.push(_pieces[row + 1][column + 1]);
 }
 }
 return new ArrayIterator(pieces);
 }
 // Advance to the next game piece to play.
 public function nextGamePiece():void {
 if(!_iterator.hasNext()) {
 _iterator.reset();
 }
 _newGamePiece.count = Math.round(Math.random() * 18) + 2;
 _newGamePiece.owner = GamePlayer(_iterator.next());
 if(!_iterator.hasNext()) {
 _iterator.reset();
 }
 }
 }

}

class SingletonEnforcer {}

The GameboardData class is responsible for several things. First, it is responsible for keeping
track of all the game pieces. Additionally, it is responsible for determining what game pieces are
adjacent to other game pieces. And it is also responsible for keeping track of the game piece
that can next be played. The nextGamePiece() method accomplishes this task by retrieving the
next item from the game player iterator and generating a random number from 2 to 20,
assigning those values to the _newGamePiece instance.

Defining the Game Play Command Class

Now that we've defined all the data model classes, we'll next create the command class used for
game play. The com.peachpit.aas3wdp.proximity.commands.GamePlayCommand class encapsulates
the command for game play.

package com.peachpit.aas3wdp.proximity.commands {

 import com.peachpit.aas3wdp.proximity.data.PieceData;
 import com.peachpit.aas3wdp.proximity.data.GamePlayer;

 import com.peachpit.aas3wdp.proximity.data.GamePlayers;
 import com.peachpit.aas3wdp.proximity.data.GameboardData;
 import com.peachpit.aas3wdp.proximity.data.NullOwner;
 import com.peachpit.aas3wdp.commands.ICommand;
 import com.peachpit.aas3wdp.iterators.IIterator;

 public class GamePlayCommand implements ICommand {

 protected var _piece:PieceData;

 public function GamePlayCommand(piece:PieceData) {
 _piece = piece;
 }

 public function execute():void {
 var gameboard:GameboardData = GameboardData.getInstance();
 var newGamePiece:PieceData = gameboard.newGamePiece;
 var currentGamePlayer:GamePlayer = newGamePiece.owner;
 // If the game piece's owner is a NullOwner (and
 // only if) then it's a valid click, so apply the
 //command.
 if(_piece.owner is NullOwner) {

 _piece.owner = currentGamePlayer;
 _piece.count = newGamePiece.count;

 // Retrieve all adjacent pieces.
 var iterator:IIterator = gameboard.getProximityPieces(_piece);
 var piece:PieceData;
 while(iterator.hasNext()) {
 piece = iterator.next() as PieceData;

 // If the game piece has the same
 // owner as the clicked game piece,
 // increment the count. If they have
 // different owners (and the owner
 // isn't NullOwner) then test if the
 // clicked game piece has a higher
 // count. If so, make it the new
 // owner.
 if(piece.owner == _piece.owner) {
 piece.count++;
 }
 else if(!(piece.owner is NullOwner)) {
 if(piece.count < _piece.count) {
 piece.owner = currentGamePlayer;
 }
 }
 }

 // Get the next game piece.
 GameboardData.getInstance().nextGamePiece();
 }
 }
 }
}

In this command type, the game piece is the receiver. When the user triggers the execute()
method, the method requests the new game piece from the game board and applies it to the
receiver. The method also requests all the adjacent pieces and uses game play rules to
determine how and if to change those values.

Defining the Game Factory Class

In the next chapter, we'll update the application by adding undo and redo functionality in the
context of a our discussion of the Memento pattern. To minimize the impact of those future
changes to the code we're creating now, we'll use a factory (see Chapter 5, "Factory Method
Pattern") to make the command objects. Define
com.peachpit.aas3wdp.proximity.commands.CommandFactory as follows:

package com.peachpit.aas3wdp.proximity.commands {

 import com.peachpit.aas3wdp.commands.ICommand;
 import com.peachpit.aas3wdp.proximity.commands.GamePlayCommand;
 import com.peachpit.aas3wdp.proximity.data.PieceData;

 public class CommandFactory {

 private static var _type:String = NORMAL;

 public static const NORMAL:String = "normal";
 public static const UNDOABLE:String = "undoable";
 public static const REDOABLE:String = "redoable";

 public static function set type(value:String):void {
 _type = value;
 }

 public static function getGamePlayCommand(data:PieceData):ICommand {
 if(_type == NORMAL) {
 return new GamePlayCommand(data);
 }
 return null;
 }
 }
}

This class allows us to globally set the type of commands it should create. Then we can use
getGamePlayCommand() to request the command for a specific receiver. Currently, we're only ever
returning one type, but subsequently, we'll enable undoable and redoable versions.

Defining the Game Piece View and Controller Class

The com.peachpit.aas3wdp.proximity.views.Piece class is the view (and controller) for the
game pieces/grid spaces. The Piece class uses a PieceData object as its data model, and it
draws itself based on the data model values. It also stores a command object that it executes
when the user clicks the object.

package com.peachpit.aas3wdp.proximity.views {

 import flash.display.Sprite;
 import flash.text.TextField;
 import flash.events.Event;
 import flash.events.MouseEvent;
 import flash.text.TextFormat;
 import flash.text.TextFieldAutoSize;
 import com.peachpit.aas3wdp.proximity.data.PieceData;
 import com.peachpit.aas3wdp.proximity.commands.CommandFactory;
 import com.peachpit.aas3wdp.commands.ICommand;

 public class Piece extends Sprite {

 private var _background:Sprite;
 private var _label:TextField;
 private var _data:PieceData;
 private var _command:ICommand;

 public function set data(value:PieceData):void {
 _data = value;
 _data.addEventListener(Event.CHANGE, draw);

 // Retrieve the command from the factory.
 _command = CommandFactory.getGamePlayCommand(_data);
 draw();
 }

 public function get data():PieceData {
 return _data;
 }

 public function Piece() {
 // Listen for mouse events.
 addEventListener(MouseEvent.MOUSE_OVER, onMouseOver);
 addEventListener(MouseEvent.MOUSE_OUT, onMouseOut);
 addEventListener(MouseEvent.CLICK, onClick);

 // Create the background into which to draw the
 // hexagon.
 _background = new Sprite();
 addChild(_background);

 // Create the text field into which to display the
 // count.
 _label = new TextField();
 addChild(_label);
 _label.selectable = false;
 _label.autoSize = TextFieldAutoSize.LEFT;
 }

 // Draw the game piece based on the data model.
 public function draw(event:Event = null):void {
 var color:uint = _data.owner.color;
 var newX:Number;
 var newY:Number;

 var angle:Number = -Math.PI / 6;
 var angleDelta:Number = Math.PI / 3;
 _background.graphics.clear();
 _background.graphics.lineStyle(0, 0, 0);
 _background.graphics.beginFill(color, 1);
 newX = Math.cos(angle) * _data.radius;
 newY = Math.sin(angle) * _data.radius;
 _background.graphics.moveTo(newX, newY);
 for(var i:uint = 0; i < 6; i++) {
 angle += angleDelta;
 newX = Math.cos(angle) * _data.radius;
 newY = Math.sin(angle) * _data.radius;
 _background.graphics.lineTo(newX, newY);
 }
 _background.graphics.endFill();
 if(_data.row != -1) {
 x = (_data.row % 2 == 0 ? 0 : _data.radius) + _data.column * _data.radius * 2;
 y = _data.row * _data.radius * 2;
 }
 _label.text = String(_data.count);
 _label.x = -_label.width / 2;
 _label.y = -_label.height / 2;
 }

 private function onMouseOver(event:MouseEvent):void {
 _background.alpha = .1;
 }

 private function onMouseOut(event:MouseEvent):void {
 _background.alpha = 1;
 }

 // When the user clicks on the game piece, call the
 // command's execute() method
 private function onClick(event:MouseEvent):void {
 _command.execute();
 }
 }
 }

The key thing about this class is that it uses a command object to neatly encapsulate its
behavior. When the user clicks the piece, it executes the command. However, the exact
command implementation might change because we can simply change what is getting returned
by the factory (as we'll see in subsequent versions of this application).

Defining the Game Board View and Controller

The game board also requires a view and controller, for which we'll define
com.peachpit.aas3wdp.proximity.Gameboard . The Gameboard class uses a GameboardData object
as its data model.

package com.peachpit.aas3wdp.proximity.views {

 import flash.display.Sprite;

 import com.peachpit.aas3wdp.proximity.data.GameboardData;
 import com.peachpit.aas3wdp.iterators.IIterator;
 import com.peachpit.aas3wdp.proximity.data.PieceData;
 import flash.events.Event;

 public class Gameboard extends flash.display.Sprite {

 private var _data:GameboardData;
 private var _newGamePiece:Piece;

 public function set data(value:GameboardData):void {
 _data = value;
 onUpdate();
 // Redraw the gameboard every time the data model
 // changes.
 _data.addEventListener(Event.CHANGE, onUpdate);
 }

 public function Gameboard() {
 }

 private function onUpdate(event:Event = null):void {
 _pieces = new Sprite();
 addChild(_pieces);
 var iterator:IIterator = _data.iterator();
 var piece:Piece;
 while(iterator.hasNext()) {
 piece = new Piece();
 piece.data = PieceData(iterator.next());
 _pieces.addChild(piece);
 }

 if(_newGamePiece == null) {
 // The new game piece shows what piece can
 // next be played.
 _newGamePiece = new Piece();
 _newGamePiece.data = _data.newGamePiece;
 _newGamePiece.data.radius = 40;
 addChild(_newGamePiece);
 }
 _newGamePiece.x = _pieces.width / 2;
 _newGamePiece.y = _pieces.height + _pieces.y + 40;
 }
 }
}

Because most of the work is already handled in the data model classes and in the game piece
view/controller, the implementation for Gameboard is relatively simple. All it has to do is add the
game pieces based on the data model, and it has to display the new game piece as well.

Defining the Main Class

Next we have to create a main class to put the application together and test it. The main class
for the application is called Proximity and is defined as follows:

package {

 import flash.display.Sprite;
 import flash.display.StageScaleMode;
 import flash.display.StageAlign;
 import flash.events.MouseEvent;
 import com.peachpit.aas3wdp.commands.ICommandStack;
 import com.peachpit.aas3wdp.proximity.views.Piece;
 import com.peachpit.aas3wdp.proximity.data.GameboardData;
 import com.peachpit.aas3wdp.proximity.data.PieceData;
 import com.peachpit.aas3wdp.proximity.data.GamePlayer;
 import com.peachpit.aas3wdp.proximity.data.GamePlayers;
 import com.peachpit.aas3wdp.proximity.data.NullOwner;
 import com.peachpit.aas3wdp.proximity.commands.CommandFactory;
 import com.peachpit.aas3wdp.iterators.IIterator;
 import com.peachpit.aas3wdp.iterators.NullIterator;
 import com.peachpit.aas3wdp.commands.ICommand;
 import com.peachpit.aas3wdp.proximity.views.Gameboard;

 public class Proximity extends Sprite {

 private var _newGamePiece:Piece;

 public function Proximity() {
 // Set the command type. The valid types are NORMAL,
 // UNDOABLE, and REDOABLE. This determines
 // what sort of commands the factory returns.
 CommandFactory.type = CommandFactory.NORMAL;

 // Set the stage scaleMode and align properties.
 stage.scaleMode = StageScaleMode.NO_SCALE;
 stage.align = StageAlign.TOP_LEFT;
 // Add a new gameboard and its datamodel.
 var gameboard:Gameboard = new Gameboard();
 var gameboardData:GameboardData = GameboardData.getInstance();

 // Set the number of columns for the gameboard to 20
 // (the default is 10).
 gameboardData.columns = 20;
 gameboard.data = gameboardData;
 addChild(gameboard);
 gameboard.x = 20;
 gameboard.y = 20;

 // Add game players.
 var gamePlayers:GamePlayers = GamePlayers.getInstance();
 gamePlayers.addGamePlayer(new GamePlayer());
 gamePlayers.addGamePlayer(new GamePlayer());

 GameboardData.getInstance().nextGamePiece();

 }

 }
}

When you test the application, you will see an image like the one shown in Figure 10.1 .

Clicking a grid space applies the game piece settings (the player who owns the piece and the
value of the piece) by calling the command object's execute() method. The execute() method
also advances the game play to the next player.

Figure 10.1. The Proximity gameboard with 10 rows and 20 columns.

Summary

This chapter discusses the Command pattern, which is a way of encapsulating an action and its
parameters. The Command pattern is useful as a solution to a variety of scenarios such as the
need for transactional behavior or undoable actions. Regardless of the way in which a command
is used, it always implements a known interface that has, at a minimum, a method (execute())
that runs the action. In most cases, the command also has a receiver of the action, a client that
instantiates the command, and an invoker that calls the method that runs the action. As shown
by the examples in this chapter, the receiver, client, and invoker for a command change based
on the way in which the command is used. In some cases, the client and invoker are the same
object.

In the next chapter, we'll look at the Memento pattern, which is often used in conjunction with
the Command pattern. In fact, in the next chapter we'll continue building the Proximity game
application to use the Memento pattern.

Chapter 11. Memento Pattern

In This Chapter

Using Mementos to Make Actions Undoable in the Proximity game 173

Using Mementos to Make Actions Redoable in the Proximity game 177

Summary 180

The Memento pattern is a way of recording an object's current state without breaking the rules
of encapsulation. The rules of encapsulation say that an object should manage its own state,
and that it should allow external objects to influence its state only through a well-defined API.
For example, it is perfectly acceptable for a class to define a setter method that changes the
value of a private property. However, it would be bad design to use public properties that can
be set without going through a method of the class. Public properties allow external objects to
change the object's state without the object knowing what has occurred.

There are many reasons you might want to record an object's state at a point in time.
Frequently you want to record an object's state so that you can return to that point if necessary.
For example, an application with panel sets might enable the user to configure the panels by
moving them and resizing them. You might then want to record the configuration so that the
user can make changes but be able to return to the saved configuration. The difficulty is in how
to record the state without breaking encapsulation. One option that might jump out
immediately is to add methods that return each of the required values. For example, if you want
to record a panel's state, you might want to record the x and y coordinates as well as the width
and height. That might seem simple enough. However, consider that an object's internal state
might be complex, and it might well be inappropriate to expose certain elements of the internal
state in that way.

The Memento pattern elegantly solves this dilemma. The Memento pattern consists of three
basic elements called the memento, the originator, and the caretaker. The originator is the class
that needs to record a snapshot of its state. It accomplishes that by way of an instance of a
memento class. The caretaker is the object that stores the memento until which time it needs to
restore it to the originator. The originator class has an API that allows a caretaker class to
request a memento object. The caretaker class stores the memento, and it then passes it back
to the originator if requested.

The Memento pattern does not impose a very precise API that must be followed. However, the
Memento pattern generally uses at least three classes for a basic implementation: the
originator, the memento, and the caretaker.

The originator can be any sort of class for which you need to record the state at a point in time.
The originator class must define methods to get and set the memento, which is used to save
and restore state. The memento is usually tightly coupled with the originator. Because a
memento records state for an originator, the memento must know about the type of state that
the originator maintains. At this point, a very simple example will be helpful.

Consider the case of a Circle class like the following:

 package {
 import flash.display.Sprite;
 public class Circle extends Sprite {
 private var _radius:Number;
 private var _color:Number;

 public function set radius(value:Number):void {
 _radius = value;
 draw();
 }

 public function set color(value:Number):void {
 _color = value;
 draw();
 }

 public function Circle(radiusValue:Number, colorValue:Number) {
 _radius = radiusValue;
 _color = colorValue;
 draw();
 }

 private function draw():void {
 graphics.clear();
 graphics.lineStyle(1, _color, 1);
 graphics.beginFill(_color, 1)
 graphics.drawCircle(0, 0, _radius);
 graphics.endFill();
 }

 }

 }

This example is purposefully simple. This Circle class simply draws a circle. The only state it
needs to maintain is the radius and the color with which to draw the circle. Here's an example of
code that creates a new Circle and adds it to the display list:

 var circle:Circle = new Circle(10, 0xFFFFFF);
 addChild(circle);

That code creates a white circle with a radius of 10. If you want, you can change the color to
red and the radius to 20, like this:

 circle.color = 0xFF0000;
 circle.radius = 20;

But what happens if you then want to return to the previous state with the white color and the
radius of 10? Clearly you must record the state before changing it so that you can restore it at a
later time. The Memento pattern says that in order to record the state for the Circle class, we
must create a memento type that we will call CircleMemento . The CircleMemento is capable of

storing the radius and color values.

 package {
 public class CircleMemento {
 private var _radius:Number;
 private var _color:Number;
 public function get radius():Number {
 return _radius;
 }
 public function get color():Number {
 return _color;
 }
 public function CircleMemento(radiusValue:Number, colorValue:Number) {
 _radius = radiusValue;
 _color = colorValue;
 }

 }

 }

The memento class is a data-only class that simply stores all the values for the state that you
want to record for a particular type. In the case of CircleMemento we want to record the radius
and color values for a Circle instance.

Next, we need a way for the originator (Circle) to be responsible for saving and restoring its
state. For that purpose, we add getMemento() and setMemento() methods to Circle .

 package {
 import flash.display.Sprite;
 public class Circle extends Sprite {
 private var _radius:Number;
 private var _color:Number;

 public function set radius(value:Number):void {
 _radius = value;
 draw();
 }

 public function set color(value:Number):void {
 _color = value;
 draw();
 }

 public function Circle(radiusValue:Number, colorValue:Number) {
 _radius = radiusValue;
 _color = colorValue;
 draw();
 }

 private function draw():void {
 graphics.clear();
 graphics.lineStyle(1, _color, 1);
 graphics.beginFill(_color, 1)
 graphics.drawCircle(0, 0, _radius);

 graphics.endFill();
 }

 public function getMemento():CircleMemento {
 return new CircleMemento(_radius, _color);

 }

 public function setMemento(memento:CircleMemento):void {

 _radius = memento.radius;
 _color = memento.color;
 draw();

 }

 }

 }

You can see that the getMemento() method constructs and returns a new CircleMemento object
that stores the current state. The setMemento() method accepts a CircleMemento parameter and
then restores the Circle object's state to the state values from the memento.

The only object we haven't yet looked at is the caretaker. The caretaker is the object that calls
getMemento() to retrieve and store the current memento, and it then can pass that memento
back to the object using setMemento() . In this case, the caretaker is whatever object is
constructing the Circle instance. Here's an example that creates a Circle instance: Every time
the user clicks the circle, it changes the state randomly. The caretaker also records the current
state by retrieving a memento from the Circle instance. Then the user can use the right and
left keys on the keyboard to move backward and forward through the sequence of state
changes.

 package {
 import flash.display.Sprite;
 import flash.events.KeyboardEvent;
 import flash.events.MouseEvent;
 import flash.ui.Keyboard;

 public class MementoExample extends Sprite {

 private var _circle:Circle;
 private var _previousMementos:Array;
 private var _nextMementos:Array;

 public function MementoExample() {
 // Create arrays to store the next and previous states.
 _previousMementos = new Array();
 _nextMementos = new Array();

 // Create a circle.
 _circle = new Circle(10, 0xFFFFFF);
 addChild(_circle);

 // Listen for click events on the circle. Listen for

 // keyboard events globally.
 _circle.addEventListener(MouseEvent.CLICK, onClick);
 stage.addEventListener(KeyboardEvent.KEY_UP, onKey);
 }

 // When thye user clicks on the circle retrieve the current
 // memento from the circle, and store it in the _previousMementos
 // array. Then set the state of the circle to random values.
 private function onClick(event:MouseEvent):void {
 _nextMementos = new Array();
 _previousMementos.push(_circle.getMemento());
 _circle.radius = Math.random() * 40 + 10;
 _circle.color = Math.random() * (255 * 255 * 255);
 }

 // When the user presses the right and left keys restore the
 // state of the circle by retrieving a memento from the appropriate
 // array and passing it to the setMemento() method of the circle.
 private function onKey(event:KeyboardEvent):void {
 var memento:CircleMemento;
 if(event.keyCode == Keyboard.LEFT) {
 if(_previousMementos.length > 0) {
 memento = _previousMementos.pop();
 _nextMementos.push(memento);
 _circle.setMemento(memento);
 }
 }
 else if(event.keyCode == Keyboard.RIGHT) {
 if(_nextMementos.length > 0) {
 memento = _nextMementos.pop();
 _previousMementos.push(memento);
 _circle.setMemento(memento);
 }
 }
 }
 }
 }

This should give you a basic idea of the structure of a relatively simple Memento pattern
implementation. Throughout the chapter, we'll look at additional examples.

Using Mementos to Make Actions Undoable in the

Proximity Game

Often, mementos are used in conjunction with commands in order to implement complex
undoable and redoable commands. The following application applies mementos to the Proximity
game application you created in the previous chapter, "Command Pattern"; the mementos will
make the commands undoable in the Proximity game.

Defining the Memento Type

The first thing we'll do is define a memento class. The class
com.peachpit.aas3wdp.proximity.mementos.GamePieceMemento serves as the memento type used
to store game piece state.

 package com.peachpit.aas3wdp.proximity.mementos {

 import com.peachpit.aas3wdp.proximity.data.GamePlayer;

 public class GamePieceMemento {

 private var _count:uint;
 private var _owner:GamePlayer;

 public function get count():uint {
 return _count;
 }

 public function get owner():GamePlayer {
 return _owner;
 }

 public function GamePieceMemento(count:uint, owner:GamePlayer) {
 _count = count;
 _owner = owner;
 }

 }
 }

You can see that the memento in this case stores values for count and owner . These values
represent state for a PieceData object.

Creating the Originator

In the Proximity game, the mementos we want to store are for PieceData objects. Therefore,
we'll need to make the PieceData class an originator by adding getMemento() and setMemento()

methods. Here's PieceData with the new methods (we've omitted some of the code here just for
the purposes of saving printed space):

 package com.peachpit.aas3wdp.proximity.data {

 import flash.events.EventDispatcher;
 import flash.events.Event;
 import com.peachpit.aas3wdp.proximity.data.GamePlayer;
 import com.peachpit.aas3wdp.proximity.data.NullOwner;
 import com.peachpit.aas3wdp.proximity.mementos.GamePieceMemento;

 public class PieceData extends EventDispatcher {

 // Existing code goes here.

 public function getMemento():GamePieceMemento {
 return new GamePieceMemento(_count, _owner);
 }
 public function setMemento(memento:GamePieceMemento):void {
 _count = memento.count;
 _owner = memento.owner;
 dispatchEvent(new Event(Event.CHANGE));
 }

 }
 }

You can see that the getMemento() method simply constructs and returns a new
GamePieceMemento object. The setMemento() method takes a GamePieceMemento instance, restores
the PieceData state, and dispatches an event to notify listeners that the data model has
changed.

Defining the Undoable Command Type

Next we'll define an undoable command type. The undoable command should inherit from the
standard command type (GamePlayCommand). In addition, the command needs to implement the
IUndoableCommand interface. The class,
com.peachpit.aas3wdp.proximity.commands.UndoableGamePlayCommand is as follows:

 package com.peachpit.aas3wdp.proximity.commands {

 import com.peachpit.aas3wdp.proximity.data.PieceData;
 import com.peachpit.aas3wdp.proximity.data.GamePlayer;
 import com.peachpit.aas3wdp.proximity.data.GamePlayers;
 import com.peachpit.aas3wdp.proximity.data.GameboardData;
 import com.peachpit.aas3wdp.proximity.commands.GamePlayCommand;
 import com.peachpit.aas3wdp.iterators.IIterator;
 import com.peachpit.aas3wdp.proximity.mementos.GamePieceMemento;
 import com.peachpit.aas3wdp.proximity.data.GameboardData;
 import com.peachpit.aas3wdp.proximity.data.NullOwner;
 import com.peachpit.aas3wdp.proximity.data.PieceData;
 import com.peachpit.aas3wdp.commands.CommandStack;
 import com.peachpit.aas3wdp.commands.IUndoableCommand;

 public class UndoableGamePlayCommand extends GamePlayCommand implements
 IUndoableCommand {

 protected var _gamePieceMementos:Array;
 protected var _gameboardMemento:GamePieceMemento;

 public function UndoableGamePlayCommand(piece:PieceData) {
 super(piece);
 _gamePieceMementos = new Array();
 }

 override public function execute():void {
 var gameboard:GameboardData = GameboardData.getInstance();
 if(_piece.owner is NullOwner) {

 // Get the memento for the clicked game piece.
 _gamePieceMementos.push({object:
 _piece, memento: _piece.getMemento()});
 var iterator:IIterator = gameboard.getProximityPieces(_piece);
 var piece:PieceData;
 while(iterator.hasNext()) {
 piece = PieceData(iterator.next());

 // Add a memento for the adjacent
 // game piece.
 _gamePieceMementos.push({object: piece, memento: piece.getMemento()});
 }

 // Add a memento for the new game piece and for the gameboard.
 _gameboardMemento = gameboard.getMemento();
 }
 super.execute();
 CommandStack.getInstance().putCommand(this);
 }

 public function undo():void {
 for(var i:uint = 0; i < _gamePieceMementos.length; i++) {
 _gamePieceMementos[i].object.setMemento(_gamePieceMementos[i].memento);
 }
 GameboardData.getInstance().setMemento(_gameboardMemento);
 }

 }
 }

This class overrides the execute() method so that it can retrieve all the mementos for the
affected game pieces before changing their state. Then the undo() method loops through all the
mementos and restores the originator state for each affected game piece.

Updating the Command Factory

Next we want to edit CommandFactory so that it returns a UndoableGamePlayCommand instance
when the option is set correctly. Here's the updated getGamePlayCommand() method:

 public static function getGamePlayCommand(data:PieceData):ICommand {
 if(_type == NORMAL) {
 return new GamePlayCommand(data);
 }
 else if(_type == UNDOABLE) {
 return new UndoableGamePlayCommand(data);
 }
 return null;
 }

Updating the Main Class

Next we can edit the main class to enable undoable commands in the game. The behavior we
are striving for is to undo commands when the user presses the left-arrow key.

The first thing we need to do in the main class is edit the constructor and assign UNDOABLE rather
than NORMAL to the CommandFactory.type property:

 CommandFactory.type = CommandFactory.UNDOABLE

Next we'll add keyboard control. To do this the class must import the Keyboard and
KeyboardEvent classes:

 import flash.events.KeyboardEvent;
 import flash.ui.Keyboard;

Then we'll add the following line of code to the main class constructor to listen for keyboard
events:

 stage.addEventListener(KeyboardEvent.KEY_DOWN, onKeyboard);

Add an onKeyboard() method to the main class. Define the method as follows:

 private function onKeyboard(event:KeyboardEvent):void {
 var stack:CommandStack = CommandStack.getInstance();
 var command:ICommand;

 // If the user pressed the left arrow and there are
 // previous commands in the stack,
 // and if the command is undoable, call undo().
 if(event.keyCode == Keyboard.LEFT && stack.hasPreviousCommands()) {
 command = stack.previous();
 if(command is IUndoableCommand) {
 IUndoableCommand(command).undo();
 }
 else {
 stack.next();
 }
 }
 }

Those few changes make the game's play actions undoable. When you test the Proximity
application now, you can use the left-arrow key to undo the actions you have applied.

Using Mementos to Make Actions Redoable in the

Proximity Game

Now that we have added an undo feature to the Proximity game, we'll complete our
modifications to the game by adding code that redoes actions we have just undone.

Defining the Redoable Command

The first step in making the commands redoable is to create a redoable command class. Define
a class, com.peachpit.aas3wdp.proximity.commands.RedoableGamePlayCommand , that extends
UndoableGamePlayCommand and adds redo functionality by implementing IRedoableCommand .

 package com.peachpit.aas3wdp.proximity.commands {

 import com.peachpit.aas3wdp.proximity.data.PieceData;
 import com.peachpit.aas3wdp.proximity.data.GamePlayer;
 import com.peachpit.aas3wdp.proximity.data.GamePlayers;
 import com.peachpit.aas3wdp.proximity.data.GameboardData;
 import com.peachpit.aas3wdp.proximity.commands.UndoableGamePlayCommand;
 import com.peachpit.aas3wdp.iterators.IIterator;
 import com.peachpit.aas3wdp.proximity.mementos.GamePieceMemento;
 import com.peachpit.aas3wdp.commands.IRedoableCommand;
 import com.peachpit.aas3wdp.proximity.data.NullOwner;

 public class RedoableGamePlayCommand extends UndoableGamePlayCommand implements
 IRedoableCommand {

 private var _nextGamePieceMemento:GamePieceMemento;

 public function RedoableGamePlayCommand(piece:PieceData) {
 super(piece);
 }

 override public function undo():void {
 _nextGamePieceMemento = GameboardData.getInstance().newGamePiece.getMemento();
 super.undo();
 }

 public function redo():void {
 var gameboard:GameboardData = GameboardData.getInstance();
 var newGamePiece:PieceData = gameboard.newGamePiece;
 var currentGamePlayer:GamePlayer = newGamePiece.owner;
 _piece.owner = currentGamePlayer;
 _piece.count = newGamePiece.count;

 // Retrieve all adjacent pieces.
 var iterator:IIterator = gameboard.getProximityPieces(_piece);
 var piece:PieceData;

 while(iterator.hasNext()) {
 piece = PieceData(iterator.next());
 // If the game piece has the same owner as
 // the clicked game piece, increment the
 // count. If they have different owners (and
 // the owner isn't NullOwner) then test if
 // the clicked game piece has a higher
 // count. If so, make it the new owner.
 if(piece.owner == _piece.owner) {
 piece.count++;
 }
 else if(!(piece.owner is NullOwner)) {
 if(piece.count < _piece.count) {
 piece.owner = currentGamePlayer;
 }
 }
 }
 GameboardData.getInstance().setMemento(_nextGamePieceMemento);
 }

 }
 }

The redoable command redoes a command by essentially replaying based on the new game
piece. It then uses a memento to restore the next new game piece state.

Editing the Factory Class

Next we'll edit the CommandFactory class so that it returns a RedoableGamePlayCommand object
when the type property is set to REDOABLE . Here's the updated getGamePlayCommand() method:

 public static function getGamePlayCommand(data:PieceData):ICommand {
 if(_type == NORMAL) {
 return new GamePlayCommand(data);
 }
 else if(_type == UNDOABLE) {
 return new UndoableGamePlayCommand(data);
 }
 else if(_type == REDOABLE) {
 return new RedoableGamePlayCommand(data);
 }
 return null;
 }

Editing the Main Class

Now we can edit the main class by assigning a value of REDOABLE rather than UNDOABLE to the
CommandFactory.type property .

 CommandFactory.type = CommandFactory.REDOABLE;

Add an if clause to the onKeyboard() method so that it calls the redo() method of the next
command object in the stack when the user presses the right-arrow key:

 private function onKeyboard(event:KeyboardEvent):void {
 var stack:CommandStack = CommandStack.getInstance();
 var command:ICommand;

 if(event.keyCode == Keyboard.LEFT && stack.hasPreviousCommands()) {
 command = stack.previous();
 if(command is IUndoableCommand) {
 IUndoableCommand(command).undo();
 }
 else {
 stack.next();
 }
 }

 // If the user pressed the right arrow key and there are next
 // commands in the stack, and if the command is redoable, call
 // redo().
 if(event.keyCode == Keyboard.RIGHT && stack.hasNextCommands()) {
 command = stack.next();
 if(command is IRedoableCommand) {
 IRedoableCommand(command).redo();
 }
 else {
 stack.previous();
 }
 }
 }

When you test the application now, you can press the right-arrow key to redo any action that
you've previously undone.

Summary

This chapter discusses the Memento pattern, which provides an elegant way to store an object's
state while at the same time breaking no rules of encapsulation. An object for which you need to
record state is called the originator. The originator is responsible for returning a memento
object that stores the object's current state, and the originator is also responsible to managing
its own state by applying a stored state from a memento. The memento objects can be stored
by a caretaker object until they are reapplied to the originator.

Chapter 12. State Pattern

In This Chapter

Simple State Example 181

Encapsulating the States 184

Using Abstract Classes 188

Transitions 193

Summary 198

The State pattern is a valuable pattern in ActionScript development. It allows an object to
change its behavior when its internal state changes. Take a toggle button as an example. The
toggle button must maintain two separate states: one for selected and one for unselected. The
two states share the same structure, but they have very different functionality. In addition to
the visual display being different, they most likely handle a click event differently, too. This is
where the State pattern becomes valuable. The State pattern defines a standard methodology
for handling encapsulated states.

There are many ways to implement the State pattern, but they all come to the same result: The
object's class appears to change. Obviously, we aren't talking about changing the object's type
at runtime, but we are talking about changing nearly every operation in a class based on its
internal state.

The best way to demonstrate the State pattern is with an example. Therefore, we're going to
build a basketball shooter. Our example will build a shooter object with three different states:
lay up, free throw, and three-pointer. Each of these states has characteristics such as accuracy
and point value. We'll use this shooter object in the context of a basketball game. When we tell
the shooter to shoot the ball, we can calculate whether the shot was made and for how many
points based on the internal state of the shooter object.

Simple State Example

Our first attempt at representing the basketball shooter and its various states is very simple. In
fact, you've probably built classes just like this before. This shooter class meets all the criteria
of the State pattern but is a naive and inelegant solution that presents further problems. We'll
look at this example first to understand how we can later improve on this.

Create the Simple Shooter Class

The SimpleShooter class holds all the shooter functionality for each state. The state is set in the
setState() method. This method takes a stateName as the parameter. The value of this
parameter is saved in a class property called stateName.

There are three constants defined in this class that represent the three state names:
LAY_UP_STATE, FREE_THROW_STATE, and ThrEE_POINTER_STATE. They should be used when calling
the setState() method to ensure accuracy.

The SimpleShooter class also has a getAccuracy() method to determine the percentage of shots
made from that state. And there is a getPointValue() method that returns the point value of a
made shot from that state. Each of these methods has a switch statement that determines the
state in which the object is.

package com.peachpit.aas3wdp.stateexample {

 public class SimpleShooter {

 private var stateName:String;
 public static const LAY_UP_STATE:String = "lay_up_state";
 public static const FREE_THROW_STATE:String = "free_throw_state";
 public static const THREE_POINTER_STATE:String = "three_pointer_state";

 public function SimpleShooter() {}

 // Returns the shot accuracy percent of the current state
 public function getAccuracy():Number {
 switch(stateName) {
 case LAY_UP_STATE:
 return 0.9;
 case FREE_THROW_STATE:
 return 0.7;
 case THREE_POINTER_STATE:
 return 0.4;
 default:
 return 0;
 }
 }

 // Returns the made shot point value of the current state
 public function getPointValue():Number {

 switch(stateName) {
 case LAY_UP_STATE:
 return 2;
 case FREE_THROW_STATE:
 return 1;
 case THREE_POINTER_STATE:
 return 3;
 default:
 return 0;
 }
 }

 // Sets the current state of the object
 public function setState(stateName:String):void {
 this.stateName = stateName;
 }
 }
}

Create the Main Example Class

We'll build a class called SimpleShooterExample, which serves as the starting point for this
example. This class creates the shooter object, sets the state, initiates ten shots at a constant
time interval, calculates the outcome (whether or not the ball went through the hoop) based on
the accuracy property, and keeps track of the points. After each shot, we output the outcome of
the shot. The outcome of the shot and the point value are determined by the internal state of
the shooter object. The following is the code for our implementation class:

package {

 import flash.display.Sprite;
 import flash.utils.Timer;
 import flash.events.TimerEvent;
 import com.peachpit.aas3wdp.stateexample.SimpleShooter;

 public class SimpleShooterExample extends Sprite {

 private var _points:Number;
 private var _shooter:SimpleShooter;

 public function SimpleShooterExample() {
 // Initially set the points to zero
 _points = 0;
 // Create the SimpleShooter instance and set its state
 _shooter = new SimpleShooter();
 _shooter.setState(SimpleShooter.THREE_POINTER_STATE);

 var shotInterval:Timer = new Timer(1000, 10);
 shotInterval.addEventListener(TimerEvent.TIMER, onShot);
 shotInterval.start();
 }

 private function calculateShot(accuracy:Number):Boolean {
 return Math.random() < accuracy;

 }

 private function onShot(event:TimerEvent):void {
 if(calculateShot(_shooter.getAccuracy())) {
 _points += _shooter.getPointValue();
 trace("Made the Shot! " + _points + " point(s)");
 }else {
 trace("Missed the Shot!")
 }
 }
 }
}

The SimpleShooterExample class has two properties: points and shooter. The points property
holds the running total of our points across all ten shots; the shooter property holds the
instance of the SimpleShooter object. Inside the constructor, we create that SimpleShooter
object and set the state of it.

The shot is calculated by grabbing the accuracy of the current shot. This is a percentage at
which shots from that state are typically made. We run that though a simple probability function
called calculateShot(). If the accuracy is 80%, the calculateShot() method returns true 80%
of the times it is called and false for the remaining 20%.

Problems with This Example

Although the example we just described works and is simple to understand, there are a couple
major problems with it.

The first problem is scalability. This solution simply will not scale well. Consider an option with
100 states and 20 methods per state. The resulting class would be huge. And each time you add
or remove a state, you'd have to modify every method.

This transitions us nicely to our second problem: maintainability. If we have to modify massive
amounts of code for each change request, we're opening ourselves up to having a lot of bugs.
To prevent this from happening, we should encapsulate each of the states in its own class and
close those states for modification. This makes the application easier to perform Quality
Assurance (QA) testing and debugging.

Encapsulating the States

Let's try this again. This time we're going to encapsulate each state into its own class so that
the code is easier to maintain and scales well. Figure 12.1 shows what our solution looks like.

Figure 12.1. Encapsulating the states.

[View full size image]

The Shooter State Interface

First, we create an interface that all of our state classes implement. All our state objects
implement the IShooterState interface, therefore, we can treat them interchangeably. This is
known as polymorphism. The IShooterState interface has two methods: getAccuracy() and
getPointValue(). Notice that we typed the state property in the ShooterStateMachine class to
IShooterState so that we can store an instance of any object that implements that interface.

package com.peachpit.aas3wdp.stateexample {

 public interface IShooterState {

 function getAccuracy():Number;

 function getPointValue():Number;

 }
}

State Objects

All our state objects are basically the same. They encapsulate the state-specific information for
our application. For example, the LayUpState defines an accuracy of 90% and a point value of 2.
By encapsulating all the state specific logic into objects, we make them easier to manage and
more flexible. They're easier to manage because modifications to one state don't affect the
other states. It's also easier to add new states.

package com.peachpit.aas3wdp.stateexample {

 import com.peachpit.aas3wdp.statepattern.IShooterState;

 internal class LayUpState implements IShooterState {

 public function getAccuracy():Number {
 return 0.9;
 }

 public function getPointValue():Number {
 return 2;
 }

 }

}

package com.peachpit.aas3wdp.stateexample {

 import com.peachpit.aas3wdp.statepattern.IShooterState;

 internal class FreeThrowState implements IShooterState {

 public function getAccuracy():Number {
 return 0.7;

 }

 public function getPointValue():Number {
 return 1;
 }

 }

}

package com.peachpit.aas3wdp.stateexample {

 import com.peachpit.aas3wdp.stateexample.IShooterState;

 internal class ThreePointerState implements IShooterState{

 public function getAccuracy():Number {
 return 0.4;
 }

 public function getPointValue():Number {
 return 3;
 }

 }

}

The Shooter State Machine Class

The ShooterStateMachine class serves as a proxy to our state objects. It implements the same
methods as our states and delegates the calls to the current state object. It is also responsible
for switching states.

Tip

State machines are also sometimes referred to as the context in the State pattern.

Much like the SimpleShooter class, ShooterStateMachine has three constants that represent the
three states. One of these three values should be used when calling the setState() method.

The setState() method has a little more functionally in this implementation of the basketball
application. Instead of putting switch statements in each method, we put it in only the
setState() method. The switch statement is responsible for creating the correct state object
based on the state name.

package com.peachpit.aas3wdp.stateexample {

 import com.peachpit.aas3wdp.stateexample.IShooterState;
 import com.peachpit.aas3wdp.stateexample.LayUpState;
 import com.peachpit.aas3wdp.stateexample.FreeThrowState;
 import com.peachpit.aas3wdp.stateexample.ThreePointerState;
 public class ShooterStateMachine {

 private var _state:IShooterState;
 public static const LAY_UP_STATE:String = "lay_up_state";
 public static const FREE_THROW_STATE:String = "free_throw_state";
 public static const THREE_POINTER_STATE:String = "three_pointer_state";

 public function ShooterStateMachine() {}

 public function getAccuracy():Number {
 return _state.getAccuracy();
 }

 public function getPointValue():Number {
 return _state.getPointValue();
 }

 public function setState(stateName:String):void {
 switch(stateName) {
 case LAY_UP_STATE:
 _state = new LayUpState();
 break;
 case FREE_THROW_STATE:
 __state = new FreeThrowState();
 break;
 case THREE_POINTER_STATE:
 _state = new ThreePointerState();

 break;
 default:
 _state = null;
 }
 }

 }

 }

The creation of state objects is done inside the setState() method. There are two options for
creating and destroying state objects: The first is what we did in the preceding code. This is
preferable because we create the states only when they are needed and we avoid creating
states that are never used.

The second option is to create all the state objects in the constructor and simply change the
reference to the current state. This second approach is valuable when you have to maintain
some data across state switches. In the preceding example, the LayUpState object is re-created
each time the state changes to LAY_UP_STATE. This is good for memory management, but what if
we wanted to count how many lay-ups were made? If we used the same object each time that
state was set, then a counter at the LayUpState level could persist across state changes. The
second approach can also be good if your application has a lot of rapid state changing and you
want to incur the performance hit of creating the objects only once.

Creating the Main Example Class

The main class for this implementation is nearly identical to the one for our first
implementation. We'll name this class ShooterImp; it will create an instance of
ShooterStateMachine instead of SimpleShooter.

package {

 import flash.display.Sprite;
 import flash.utils.Timer;
 import flash.events.TimerEvent;
 import com.peachpit.aas3wdp.stateexample.ShooterStateMachine;

 public class ShooterExample extends Sprite {

 private var _points:Number;
 private var _shooter:ShooterStateMachine;

 public function ShooterExampe() {
 _points = 0;
 _shooter = new ShooterStateMachine();
 _shooter.setState(ShooterStateMachine.LAY_UP_STATE);
 var shotInterval:Timer = new Timer(1000, 10);
 shotInterval.addEventListener(TimerEvent.TIMER, onShot);
 shotInterval.start();
 }

 private function calculateShot(accuracy:Number):Boolean {
 return Math.random() < accuracy;

 }

 private function onShot(event:TimerEvent):void {
 if(calculateShot(_shooter.getAccuracy())) {
 _points += _shooter.getPointValue()
 trace("Made the Shot! " + _points + " point(s)");
 }else {
 trace("Missed the Shot!")
 }
 }
 }

}

When you debug this implementation (ShooterExample), you'll see that the result is exactly the
same as SimpleShooterExample. However, we now have a design that is both scalable and easy
to maintain.

Using Abstract Classes

As mentioned earlier in this chapter, there are many ways to implement a State pattern. In the
previous example, we used an interface to define the methods that each state must implement.
But what if we wanted to share a common implementation? One option would be to copy the
implementation to each state class. This would work fine, but it would be difficult to manage as
the number of states grew and change requests came in. A better option would be to use an
abstract base class in addition to an interface. An abstract base class allows us to reuse a
common implementation and still define methods that need to be overridden by each state
class. In the next example, we're going to encapsulate the shooting functionality inside each
state as a shoot() method. The method is the same across all states; therefore, each state
object does not override it. Figure 12.2 shows how the design changes to work with an abstract
class in place of an interface.

Figure 12.2. Using abstract classes.

[View full size image]

The Abstract Shooter State

The biggest change between this example and the previous example is that we're now using an
abstract base class for all our state objects. We're going to name this class
AbstractShooterState .

Tip

It's common convention to start abstract class names with the word Abstract . The
naming convention is especially important for ActionScript classes because there is no
programmatic way to enforce an abstract class.

The abstract class implements the private calculateShot() method from our original
implementation class. This method is called from the shoot() method. The shoot() method uses
the getAccuracy() and getPointValue() methods to calculate whether the shot was made and
how many points the shot was worth. However, the getAccuracy() and getPointValue()

methods are overridden by the state objects.

Note

This is actually an example of the Template Method pattern described in Chapter 5 .

Notice that both the getAccuracy() and getPointValue() methods throw errors in this class (if
they are not overridden, and someone tries to call one of the methods). And because the
shoot() method depends on the results of getAccuray() and getPointValue() , the shoot()
method would also throw the error. When these abstract methods are overridden, the errors are
not thrown. This is a nice way to get around the fact that ActionScript 3.0 doesn't officially
support abstract classes.

Note

The state classes are made internal because they should be available only inside the
com.peachpit.aas3wdp.stateexample package.

package com.peachpit.aas3wdp.stateexample {

 internal class AbstractShooterState {

 private function calculateShot(accuracy:Number):Boolean {
 return Math.random() < accuracy;
 }

 public function getAccuracy():Number {
 throw new Error("AbstractShooterState.getAccuracy() is an Abstract method
 and must be overridden.");
 }

 public function getPointValue():Number {
 throw new Error("AbstractShooterState.getPointValue() is an Abstract method
 and must be overridden.");
 }

 public function shoot():Number {
 if(calculateShot(getAccuracy())) {
 trace("Made the Shot!");
 return getPointValue();
 }
 trace("Missed the Shot.");
 return 0;
 }

 }

}

State Objects

The state objects in this example vary only slightly from the original implementation. Instead of
implementing the IShooterState interface, now the state classes extend the
AbstractShooterState abstract class. Notice the use of the override keyword. It is necessary to
use this keyword to override the methods of the base class. The method signatures must also
match the base class's methods exactly.

package com.peachpit.aas3wdp.stateexample {

 import com.peachpit.aas3wdp.statepattern.AbstractShooterState;

 internal class LayUpState extends AbstractShooterState {

 public override function getAccuracy():Number {
 return 0.9;
 }

 public override function getPointValue():Number {
 return 2;
 }

 }

}

package com.peachpit.aas3wdp.stateexample {

 import com.peachpit.aas3wdp.statepattern.AbstractShooterState;

 internal class FreeThrowState extends AbstractShooterState {

 public override function getAccuracy():Number {
 return 0.7;
 }

 public override function getPointValue():Number {
 return 1;
 }

 }

}

package com.peachpit.aas3wdp.stateexample {

 import com.peachpit.aas3wdp.statepattern.AbstractShooterState;

 internal class ThreePointerState extends AbstractShooterState {

 public override function getAccuracy():Number {
 return 0.4;
 }

 public override function getPointValue():Number {

 return 3;
 }

 }

}

Although using an interface and an abstract class are both valid ways to implement the State
pattern, each has its own use case. As a rule, you should use interfaces; however, if you have
states that share an implementation, abstract classes are the better option.

The Shooter State Machine

The state machine changes only slightly for this example. We need to type the state property to
the AbstractStateShooter abstract class instead of to the IShooterState interface. And we also
need to implement a shoot() method that is delegated to the current state.

package com.peachpit.aas3wdp.stateexample {

 import com.peachpit.aas3wdp.stateexample.AbstractShooterState;
 import com.peachpit.aas3wdp.stateexample.LayUpState;
 import com.peachpit.aas3wdp.stateexample.FreeThrowState;
 import com.peachpit.aas3wdp.stateexample.ThreePointerState;

 public class ShooterStateMachine {

 private var state:AbstractShooterState;
 public static const LAY_UP_STATE:String = "lay_up_state";
 public static const FREE_THROW_STATE:String = "free_throw_state";
 public static const THREE_POINTER_STATE:String = "three_pointer_state";

 public function ShooterStateMachine() {}

 public function getAccuracy():Number {
 return state.getAccuracy();
 }

 public function getPointValue():Number {
 return state.getPointValue();
 }

 public function shoot():Number {
 return state.shoot();
 }

 public function setState(stateDesc:String):void {
 switch(stateDesc) {
 case LAY_UP_STATE:
 state = new LayUpState();
 break;
 case FREE_THROW_STATE:
 state = new FreeThrowState();
 break;
 case THREE_POINTER_STATE:

 state = new ThreePointerState();
 break;
 default:
 state = null;
 }
 }

 }

 }

Creating the Main Example Class

The main class changes for this implementation because we encapsulated the shoot logic into
the state objects. Therefore, we don't need to calculate whether a shot was madewe only need
to call the state object's shoot() method, and that method tells us the points for that shot (0 for
a missed shot and 1, 2, or 3 for a made shot).

package {

 import flash.display.Sprite;
 import flash.utils.Timer;
 import flash.events.TimerEvent;
 import com.peachpit.aas3wdp.stateexample.ShooterStateMachine;

 public class AbstractShooterExample extends Sprite {

 private var _points:Number;
 private var _shooter:ShooterStateMachine;

 public function AbstractShooterImp() {
 _points = 0;
 _shooter = new ShooterStateMachine();
 _shooter.setState(ShooterStateMachine.FREE_THROW_STATE);
 var shotInterval:Timer = new Timer(1000, 10);
 shotInterval.addEventListener(TimerEvent.TIMER, onShot);
 shotInterval.start();
 }

 private function onShot(event:TimerEvent):void {
 _points += _shooter.shoot();
 trace(_points);
 }

 }

}

Transitions

When Flash developers hear the word transistion, they first think of animations between screens
or view states. However, in the context of the State pattern, a transition is simply what triggers
our application to move from one state to another. This is not necessarily a visual thing, it's
simply how a state gets changed. You probably noticed in the previous examples that we had no
way to move from one state to the other. The state was defined in the main class. In this
section, we'll look at two ways to handle transitions within the abstract state example we just
completed.

Transitions Defined in the State Machine

The first implementation is the easiest. We set the current state in the state machine; therefore,
why not also manage when that state changes? In this example, we switch the state after each
shot. We do this by iterating through an array of the three state objects.

Our state machine is getting two new properties: _stateList and _index. The stateList
property is an array that holds all the state names available to our state machine, and it holds
them in the order in which they should be run. The index holds the current position of the state
machine in the stateList array.

Inside the constructor, set the index to 0 and populate the stateList with the state names.
Because we want the state machine to manage when the state is set, we're removing the
setState() call from our main class. Instead, we put the initial setState() call at the end of the
state machine's constructor.

The only other change is in the shoot() method. Now, instead of just returning the value of the
current state's shot, it also sets the next state.

package com.peachpit.aas3wdp.stateexample {

 import com.peachpit.aas3wdp.stateexample.AbstractShooterState;
 import com.peachpit.aas3wdp.stateexample.LayUpState;
 import com.peachpit.aas3wdp.stateexample.FreeThrowState;
 import com.peachpit.aas3wdp.stateexample.ThreePointerState;

 public class ShooterStateMachine {

 private var _state:AbstractShooterState;
 private var _stateList:Array;
 private var _index:Number;
 public static const LAY_UP_STATE:String = "lay_up_state";
 public static const FREE_THROW_STATE:String = "free_throw_state";
 public static const THREE_POINTER_STATE:String = "three_pointer_state";

 public function ShooterStateMachine() {
 _index = 0;
 _stateList = new Array();
 _stateList.push(ShooterStateMachine.LAY_UP_STATE);
 _stateList.push(ShooterStateMachine.FREE_THROW_STATE);

 _stateList.push(ShooterStateMachine.THREE_POINTER_STATE);
 setState(_stateList[_index]);
 }

 public function getAccuracy():Number {
 return _state.getAccuracy();
 }

 public function getPointValue():Number {
 return _state.getPointValue();
 }

 public function shoot():Number {
 var shotResult:Number = state.shoot();
 if(++_index >= _stateList.length) _index = 0;
 setState(_stateList[_index]);
 return shotResult;
 }

 public function setState(stateDesc:String):void {
 switch(stateDesc) {
 case LAY_UP_STATE:
 _state = new LayUpState();
 break;
 case FREE_THROW_STATE:
 _state = new FreeThrowState();
 break;
 case THREE_POINTER_STATE:
 _state = new ThreePointerState();
 break;
 default:
 _state = null;
 }
 }
 }
 }

Transitions Defined in the State Objects

The other option for where to put the transition logic is a little more involved because it requires
putting the transition logic inside the state objects. For this implementation, we'll revert back to
the state machine used in the original abstract state example, with two minor changes. We're
going to pass a reference to the state machine into each of the state objects' constructors, and
we're going to set the first state in the state machine's constructor.

package com.peachpit.aas3wdp.stateexample {

 import com.peachpit.aas3wdp.stateexample.AbstractShooterState;
 import com.peachpit.aas3wdp.stateexample.LayUpState;
 import com.peachpit.aas3wdp.stateexample.FreeThrowState;
 import com.peachpit.aas3wdp.stateexample.ThreePointerState;

 public class ShooterStateMachine {

 private var _state:AbstractShooterState;
 public static const LAY_UP_STATE:String = "lay_up_state";
 public static const FREE_THROW_STATE:String = "free_throw_state";
 public static const THREE_POINTER_STATE:String = "three_pointer_state";

 public function ShooterStateMachine() {
 setState(ShooterStateMachine.LAY_UP_STATE);
 }

 public function getAccuracy():Number {
 return _state.getAccuracy();
 }

 public function getPointValue():Number {
 return _state.getPointValue();
 }

 public function shoot():Number {
 return _state.shoot();
 }

 public function setState(stateDesc:String):void {
 switch(stateDesc) {
 case LAY_UP_STATE:
 _state = new LayUpState(this);
 break;
 case FREE_THROW_STATE:
 _state = new FreeThrowState(this);
 break;
 case THREE_POINTER_STATE:
 _state = new ThreePointerState(this);
 break;
 default:
 _state = null;
 }

 }
 }

}

The state objects do most of the work for us. Each stores a reference to the state machine and
calls its setState() method when the state object wants to move to the next state. We're still
triggering that move on the shoot() method call, so we need to override that method. We still
call the abstract state's shoot() method using the super keyword, but we need to override it so
that we can add the setState() call to it. The following are the new state objects with these
changes:

package com.peachpit.aas3wdp. stateexample {

 import com.peachpit.aas3wdp. stateexample.AbstractShooterState;

 internal class LayUpState extends AbstractShooterState {

 private var _stateMachine:ShooterStateMachine;

 public function LayUpState(_stateMachine:ShooterStateMachine) {
 this._stateMachine = _stateMachine;
 }

 public override function getAccuracy():Number {
 return 0.9;
 }

 public override function getPointValue():Number {
 return 2;

 }

 public override function shoot():Number {
 var pointValue:Number = super.shoot();
 _stateMachine.setState(ShooterStateMachine.FREE_THROW_STATE);
 return pointValue;
 }

 }

}

package com.peachpit.aas3wdp.stateexample {

 import com.peachpit.aas3wdp.stateexample.AbstractShooterState;
 import com.peachpit.aas3wdp.stateexample.ShooterStateMachine;

 internal class FreeThrowState extends AbstractShooterState {

 private var _stateMachine:ShooterStateMachine;

 public function FreeThrowState(_stateMachine:ShooterStateMachine) {
 this._stateMachine = _stateMachine;
 }

 public override function getAccuracy():Number {
 return 0.7;
 }

 public override function getPointValue():Number {
 return 1;
 }

 public override function shoot():Number {
 var pointValue:Number = super.shoot();
 _stateMachine.setState(ShooterStateMachine.THREE_POINTER_STATE);
 return pointValue;
 }

 }

}

package com.peachpit.aas3wdp.stateexample {

 import com.peachpit.aas3wdp.stateexample.AbstractShooterState;

 internal class ThreePointerState extends AbstractShooterState {

 private var _stateMachine:ShooterStateMachine;

 public function ThreePointerState(_stateMachine:ShooterStateMachine) {
 this._stateMachine = _stateMachine;
 }

 public override function getAccuracy():Number {
 return 0.4;

 }

 public override function getPointValue():Number {
 return 3;
 }

 public override function shoot():Number {
 var pointValue:Number = super.shoot();
 _stateMachine.setState(ShooterStateMachine.LAY_UP_STATE);
 return pointValue;
 }

 }

}

This logic could have gone into the abstract class, but it's left on the state subclasses because it
demonstrates the flexibility of defining the transitions this way. If you're going to treat all the
transitions the same, and you have a set methodology for how you trigger the transitions, then
the state machine should manage that. However, if each state has different criteria for
triggering a transition, defining the transition on the state object provides the most flexibility.

For example, maybe we want to change the way the LayUpState transitions. We'll require a
shooter to make a lay-up before we move on to the free throw. All we need to do is add a
condition to the shoot() method. The following code shows the simple change:

package com.peachpit.aas3wdp.stateexample {

 import com.peachpit.aas3wdp.stateexample.AbstractShooterState;

 internal class LayUpState extends AbstractShooterState {

 private var _stateMachine:ShooterStateMachine;

 public function LayUpState(stateMachine:ShooterStateMachine) {
 this._stateMachine = _stateMachine;
 }

 public override function getAccuracy():Number {
 return 0.9;
 }

 public override function getPointValue():Number {
 return 2;
 }

 public override function shoot():Number {
 var pointValue:Number = super.shoot();
 if(pointValue > 0) {
 _stateMachine.setState(ShooterStateMachine.FREE_THROW_STATE);
 }
 return pointValue;
 }

 }
}

Summary

The State pattern is a great way to manage states within your application. By encapsulating the
states into their own objects, we make the code more scalable and maintainable. There are
many ways to implement the State pattern. In this chapter, we looked at how to build states
using both an interface and an abstract class; and we discussed when to use each of these
approaches.

Transitions are the action of switching states. They can be defined in the context or inside the
state objects. Although defining transitions inside the state objects gives you more flexibility,
doing so can produce code that is difficult to maintain.

Part III: Advanced ActionScript Topics

 Chapter 13 Working with Events

 Chapter 14 Sending and Loading Data

 Chapter 15 E4X (XML)

 Chapter 16 Regular Expressions

Chapter 13. Working with Events

In This Chapter

Understanding Events 201

Using Events 203

Creating Event Dispatchers 210

An Example Working with Events 213

Summary 216

Events drive applications. Nearly everything that happens in an ActionScript 3.0 application is
triggered by events. There are two basic types of events: user and system. When a user clicks a
button or types on the keyboard events are fired. These are examples of user events.System
events are those which occur because of something based on time or asynchronous operations.
For example, loading an external resource might trigger a load complete or a load error event.

In this chapter, we'll look at what events are, what design problems they solve, how they
related to known design patterns, and how they are used in ActionScript 3.0.

Understanding Events

Traditional, non-event-driven applications are susceptible to problems that give rise to the
motivation for events and a unified event model. There are two primary problems with the
traditional approach:

Tight coupling: In a traditional approach, the object that initiates something and the
object that responds are tightly coupled, typically in a one-to-one relationship. For
example, in the traditional approach, when a user clicks a button, the button might trigger
the invocation of a callback method. Although this technique might work, it has significant
shortcomings. What happens when you want several objects to respond to a button click
rather than just one? What happens if you accidentally override the callback method?
These problems highlight some of the reasons we strive for loosely coupled objects when
designing applications.

Inconsistent manner of responding to operations: In a traditional approach to
application design, synchronous and asynchronous operations require different ways of
handling results. It's far more advantageous to use a single consistent way to handle
results. Events provide that.

Earlier versions of ActionScript use many different ways of responding to occurrences within the
application. However, ActionScript 3.0 has one unified event model used across the board. At
the core of this event model is the flash.events package of classesnamely the Event class and
the Eventdispatcher class.

The Eventdispatcher class provides all the functionality to allow objects to register for event
notifications. When an object registers with an event dispatcher for notifications for a particular
event, the event dispatcher adds that object to a queue. When the event occurs, the event
dispatcher notifies all the objects in the queue. The objects in the queue are called listeners, and
in ActionScript 3.0 all listeners are functions/methods. When a listener is notified, it gets called
and passed a parameter of type Event (or a subtype specific to the type of event). The event
parameter provides the context for the event, including the type of event and the object that
dispatched the event. This arrangement allows for the event dispatcher and the listener to know
virtually nothing about one another at compile time, but at runtime, the listener can obtain a
reference back to the dispatcher using the event parameter. This powerful design means that
the dispatchers and listeners are loosely coupled. It also means that many listeners can register
for notifications when an event occurs for just one dispatcher. Figure 13.1 illustrates this
concept.

Figure 13.1. An event is handled.

In ActionScript 3.0, the event model is closely related to a well-known design pattern called the
Observer pattern. Although the Observer pattern is an important pattern, we don't discuss it in
any detail in this book because the built-in event model in ActionScript 3.0 already solves all the
design patterns the Observer pattern is intended to solve.

Using Events

If you're reading this book, we assume that you already know the basics of working with events
because they are so fundamental to ActionScript. However, developers often know how to work
with events without really understanding how they work at a basic level. In this section, we'll
look at the mechanics of events in ActionScript 3.0.

Understanding Event Elements

There are at least three elements required when working with events: event objects, event
dispatchers, and event listeners. We've already talked about each of these briefly, but here we'll
discuss the mechanics of each.

All event objects are of type flash.events.Event or a subtype. Event subtypes are simply types
that are specific to a particular sort of behavior. For example, events raised by mouse behavior
are of type MouseEvent while events that occur because of a timer are of type TimerEvent.
Usually subtypes define additional properties that provide information about the type of event.
For example, MouseEvent defines a property called buttonDown, which indicates whether or not
the mouse button is down at the time the event occurs. This is information that is important for
events related to mouse behavior, but it wouldn't be important for an event that occurs when
data loads. Yet all event objects always have type and target properties that tell the listener
what type of event it is and what object dispatched the event.

The second element that is always required is an event dispatcher. An event dispatcher is
sometimes called a subject and sometimes called a target. The event dispatcher is the object
that broadcasts an event. In ActionScript 3.0, all event dispatchers are instances of
EvenTDispatcher, the built-in Flash Player class. Event dispatchers must allow listeners to
register for notifications for events. The Eventdispatcher API allows listeners to register. We'll
discuss this in more detail in the next section.

Event listeners in ActionScript 3.0 are always functions. You must register a listener with an
event dispatcher for a specific event. When that event occurs, the dispatcher notifies the
listener, and the listener gets called with an event parameter.

Registering Listeners

Listener objects register with the dispatcher object by calling the dispatcher's
addEventListener() method. At a minimum, the addEventListener() method requires two
parameters: the name of the event and the listener.

dispatcher.addEventListener(eventName, listener);

ActionScript 3.0 implements proper method closure, which means that functions and methods
always maintain their original scope. This is a significant change from previous versions of
ActionScript which required workarounds to ensure that a listener would be called within the
proper scope.

The following example creates a rectangular sprite, and it uses an event listener to move the
rectangle to a random location each time the user clicks on it.

package {
 import flash.display.Sprite;
 import flash.events.MouseEvent;
 import flash.display.StageScaleMode;
 import flash.display.StageAlign;

 public class Test extends Sprite {

 private var _rectangle:Sprite;

 public function Test() {

 stage.scaleMode = StageScaleMode.NO_SCALE;
 stage.align = StageAlign.TOP_LEFT;

 _rectangle = new Sprite();
 _rectangle.graphics.lineStyle(0, 0, 0);
 _rectangle.graphics.beginFill(0xFFFFFF, 1);
 _rectangle.graphics.drawRect(0, 0, 100, 50);
 _rectangle.graphics.endFill();
 addChild(_rectangle);

 _rectangle.addEventListener(MouseEvent.CLICK, onClick);
 }

 public function onClick(event:MouseEvent):void {
 event.target.x = Math.random() * 400;
 event.target.y = Math.random() * 400;
 }
 }
}

Because the event listener moves the event target to a random location, you can also use that
same listener for a different target. In this next example, two event dispatchers use the same
event listener. In this case, both the rectangle and the circle move to random locations when
clicked.

package {
 import flash.display.Sprite;
 import flash.events.MouseEvent;
 import flash.display.StageScaleMode;
 import flash.display.StageAlign;

 public class Test extends Sprite {

 private var _rectangle:Sprite;
 private var _circle:Sprite;

 public function Test() {

 stage.scaleMode = StageScaleMode.NO_SCALE;
 stage.align = StageAlign.TOP_LEFT;

 _rectangle = new Sprite();
 _rectangle.graphics.lineStyle(0, 0, 0);
 _rectangle.graphics.beginFill(0xFFFFFF, 1);
 _rectangle.graphics.drawRect(0, 0, 100, 50)
 _rectangle.graphics.endFill();
 addChild(_rectangle);

 _circle = new Sprite();
 _circle.graphics.lineStyle(0, 0, 0);
 _circle.graphics.beginFill(0xFFFFFF, 1);
 _circle.graphics.drawCircle(0, 0, 50);
 _circle.graphics.endFill();
 _circle.x = 100;
 _circle.y = 100;
 addChild(_circle);

 _rectangle.addEventListener(MouseEvent.CLICK, onClick);
 _circle.addEventListener(MouseEvent.CLICK, onClick);
 }

 public function onClick(event:MouseEvent):void {
 event.target.x = Math.random() * 400;
 event.target.y = Math.random() * 400;
 }
 }
}

Removing Event Listeners

On the flip side of adding event listeners is removing event listeners. Generally it's advisable to
remove event listeners whenever you no longer need to listen for a particular event. You can
achieve this by using the removeEventListener() method. The removeEventListener() method
accepts two parameters: the event name and the listener, and it removes the listener for the
particular event for the dispatcher from which you call the method. The following code removes
onClick() as an event listener for the click event.

_circle.removeEventListener(MouseEvent.CLICK, onClick);

Understanding Event Phases

There are two types of event dispatches: display objects on the display list and all other types.
When an object that is not on the display list dispatches an event, it notifies only those listeners
that are registered directly with the dispatcher. For example, when a URLLoader object
dispatches a complete event, the only listeners that receive the notification are those registered
directly with the URLLoader. However, when a display object on the display list dispatches
events, the event flow is triggered. The event flow consists of three phases: capture, target, and
bubble. We'll talk about each of these phases next.

The Capture Phase

The first phase of the event flow is called the capture phase. In this phase, Flash Player is
looking for the object that trigged the event. In doing so, it starts at the root display object and
uses a drill-down approach through the hierarchy of the display list until it finds the event's
target, meaning the object that actually dispatched the event.

By default, event listeners do not receive notifications during the capture phase. Instead, if you
want to register a listener for the capture phase, you must pass a value of true for the third
parameter of the addEventListener() method. Otherwise, if the parameter is omitted or false,
the listener only receives notifications during the target and bubble phases. Here is an example
that registers a listener for the capture phase:

object.addEventListener(MouseEvent.CLICK, onClick, true);

The capture phase may seem strange at first. And, in fact, it is not often used. However, it's an
important part of the event flow because it allows the application to trap events before they
reach child targets. When you want to trap events and stop them from propagating to child
elements, you must call the stopImmediatePropagation() method of the event object in the
event handler. Here's an example that adds to the previous examples by trapping click events
so that they are never handled by the listeners for child elements:

package {
 import flash.display.Sprite;
 import flash.events.MouseEvent;
 import flash.display.StageScaleMode;
 import flash.display.StageAlign;

 public class Test extends Sprite {

 private var _rectangle:Sprite;
 private var _circle:Sprite;
 private var _loader:Loader;

 public function Test() {

 stage.scaleMode = StageScaleMode.NO_SCALE;
 stage.align = StageAlign.TOP_LEFT;

 _rectangle = new Sprite();
 _rectangle.graphics.lineStyle(0, 0, 0);
 _rectangle.graphics.beginFill(0xFFFFFF, 1);
 _rectangle.graphics.drawRect(0, 0, 100, 50);
 _rectangle.graphics.endFill();
 addChild(_rectangle);

 _circle = new Sprite();
 _circle.graphics.lineStyle(0, 0, 0);
 _circle.graphics.beginFill(0xFFFFFF, 1);
 _circle.graphics.drawCircle(0, 0, 50);
 _circle.graphics.endFill();
 _circle.x = 100;
 _circle.y = 100;
 addChild(_circle);

 addEventListener(MouseEvent.CLICK, onStageClick, true);

 _rectangle.addEventListener(MouseEvent.CLICK, onClick);
 _circle.addEventListener(MouseEvent.CLICK, onClick);

 }

 public function onClick(event:MouseEvent):void {
 event.target.x = Math.random() * 400;
 event.target.y = Math.random() * 400;
 }

 public function onStageClick(event:MouseEvent):void {
 event.stopImmediatePropagation();
 }
 }
}

The Target Phase

After the capture phase is the target phase. The target phase occurs when the event target (the
event dispatcher responsible for the event) is reached in the event flow. This is probably the
most commonly used phase of the event flow because it is the phase during which listeners that
are registered directly with an event dispatcher are notified. This is the phase illustrated by
most of the examples throughout this chapter and this book.

The Bubble Phase

The last phase of the event flow is the bubble phase. It allows for events to bubble up the
display list. The bubble phase occurs in the reverse order of the capture phase: starting from
the target and moving upward to parent containers until the root is reached.

You don't need to do anything different for event bubbling to work. You can simply register a
listener to a container for any event that any child can dispatch, and the event listener will
receive the notification during the bubble phase. For example, the following code achieves the
same effect as an earlier example, but it registers the listener with the container rather than
with the children:

package {
 import flash.display.Sprite;
 import flash.events.MouseEvent;
 import flash.display.StageScaleMode;
 import flash.display.StageAlign;

 public class Test extends Sprite {

 private var _rectangle:Sprite;
 private var _circle:Sprite;
 public function Test() {

 stage.scaleMode = StageScaleMode.NO_SCALE;
 stage.align = StageAlign.TOP_LEFT;

 _rectangle = new Sprite();
 _rectangle.graphics.lineStyle(0, 0, 0);

 _rectangle.graphics.beginFill(0xFFFFFF, 1);
 _rectangle.graphics.drawRect(0, 0, 100, 50);
 _rectangle.graphics.endFill();
 addChild(_rectangle);

 _circle = new Sprite();
 _circle.graphics.lineStyle(0, 0, 0);
 _circle.graphics.beginFill(0xFFFFFF, 1);
 _circle.graphics.drawCircle(0, 0, 50);
 _circle.graphics.endFill();
 _circle.x = 100;
 _circle.y = 100;
 addChild(_circle);

 addEventListener(MouseEvent.CLICK, onClick);

 }

 public function onClick(event:MouseEvent):void {
 event.target.x = Math.random() * 400;
 event.target.y = Math.random() * 400;
 }
 }
}

Notice in this example that the event object parameter's target property still references the
actual target of the event (the circle or rectangle in this example) rather than the object for
which the listener is registered (the container). If you want to retrieve a reference to the object
to which the listener is registered, you can use the currentTarget property.

It's also important to note that not all event types can bubble. Only those events for which the
bubbles property is set to true can bubble.

Note

When you create a custom event, you can specify whether the event will bubble. The
default is true.

Event Priority

Event priority is a little-used concept, but it is important to understand what it can do. When
you add an event, you have the ability to set your listener's priority. The higher the priority
setting, the sooner your listener will get called. You can set the priority for a listener using the
fourth parameter of the addEventListener() method.

Two listeners with the same priority level are called in the order they were added. It's important
to note that priorities are relevant only within a phase (capture, target, or bubble). The order of
the phases of the event flow supersedes the priority level.

Weak References

The concept of weak references is particularly useful when adding listeners to objects. To
understand why weak references are so good, you first need to understand a little about
garbage collection. Garbage collection is how Flash Player cleans up memory that isn't needed
anymore; it's important because otherwise applications would use more and more RAM until
they required the system to restart. Flash Player 9 uses two systems called reference counting
and mark and sweep.

Reference counting is not new to Flash Player. It is the traditional way in which Flash Player has
run garbage collection. When you create an object in ActionScript, that object exists in memory.
However, the object is useful only as long as there are references (such as variables) to that
object. When no more references exist, it is safe to assume that the object is no longer used and
can be garbage collected. Although this system is efficient, it is not accurate because it is
possible, through circular references, to have references still in existence even though none of
the references is actually accessible. For example, two objects can have references to one
another. If the references to those objects are deleted, we would expect that the objects
themselves would be garbage collected. However, because they have references to one another,
they remain in memory.

The mark-and-sweep garbage collection system solves the circular reference problem by
traversing all active (accessible) nodes within an application. Any objects that exist outside of
the active nodes can be assumed to be no longer in use, and they can be garbage collected.

Although the two garbage collection systems work in conjunction to efficiently and effectively
manage memory usage, they do not compensate for incorrect programming. It's important that
you always remove event listeners when you no longer need to use them. If you register an
event listener using normal references, it will not get garbage collected even if you delete the
listener or the object containing the listener because the event dispatcher will still have a
reference to it. Removing the event listener using removeEventListener() ensures that the event
target no longer has a reference to the listener, and that action will allow it to be properly
garbage collected after you've deleted the listener.

However, sometimes we can't remove the listeners because our object is deleted elsewhere.
This is where weak references come in handy. They allow for normal event listening
functionality, but when the listener object is removed, the listener is removed from memory
properly because the reference is weak and not counted by the reference counting function of
the garbage collector.

You can specify that a listener should use a weak reference by registering it using a value of
true for the fifth parameter to the addEventListener() method.

target.addEventListener(MouseEvent.CLICK, onClick, false, 0, true);

Creating Event Dispatchers

Dispatchers (also known as subjects or targets) are the source of events. These are the objects
that fire events. Earlier in this chapter, you saw how to listen for events. Many classes are
already capable of dispatching events. However, now we'll look at how to create custom classes
that dispatch events.

Understanding Event Objects

All events use event objects. In the following sections, we'll look at how to dispatch events, but
first we need to look at how to create an event object.

All event objects must be instances of the flash.events.Event class (or one of its subclasses).
Event objects have properties that store information about the event and methods for
manipulating the event.

The simplest way to create an event object is to use the constructor of the Event class or one of
its subclasses in a new statement. The constructor requires that you pass it a string indicating
the event type. The following example creates a new event object for a change event:

var event:Event = new Event(Event.CHANGE);

Often it is easiest and most effective to use an existing event type (Event , MouseEvent , and so
on) when possible. However, when that's not possible, you can create a custom event type by
subclassing Event . The following is an example of a custom event that extends the Event class:

package {

 import flash.events.Event;

 public class CustomEvent extends Event {

 private var _customData:Object;

 public function customData(value:Object):void {
 _customData = value;
 }

 public function get customData():Object {
 return _customData;
 }

 public function CustomEvent(type:String, bubbles:Boolean = false,
 cancelable:Boolean = false) {
 super(type, bubbles, cancelable);
 }

 }

}

Understanding Event Target Properties

Events have both a target and a currentTarget property. This is relevant when an event is
being dispatched into the event flow. It tells us the difference between the object we registered
with and the object that dispatched the event. The target is the object that originates the
event, while the currentTarget is the object with which you registered the listener. During the
target phase, those two properties reference the same object. However, if you get an event
during the capture or bubble phase, the two properties are different.

Default Behavior of Events

When most events are fired, the responses to those events are defined in the listeners. But in
some cases, the responses are so common and predictable that there are default behaviors that
occur inside Flash Player. A good example of this is the use case of a user typing in a text field.
The default behavior is that the keystrokes fire events that populate the text field with the
corresponding characters. However, there may be times when you don't want this default
behavior to happen. To stop the default behavior, you simply call the preventDefault() method
of the event object. You can check the status of this behavior by calling the
isDefaultPrevented() method. Only events with the cancelable property set to true can be
canceled.

Stopping Propagation

In some cases, you might want to stop the event flow dead in its tracks. To accomplish this, you
use the stopPropagation() or stopImmediatePropogation() method of the event object. The
methods are nearly identical and differ only in regards to when the stop is executed. If you call
stopPropagation() , the event is not allowed to continue up the display list, but the
currentTarget is allowed to finish dispatching the event to its listeners. The
stopImmediatePropogation() method stops the event flow completely, and the currentTarget is
not allowed to finish.

Dispatching Events Through Inheritance

The flash.events.EventDispatcher class is at the heart of the event model in ActionScript 3.0.
All native Flash Player classes that dispatch events inherit from Eventdispatcher . This is the
simplest and most common way to add event dispatching functionality to a class. You can do
this directly by creating a class that extends Eventdispatcher . Optionally, because MovieClip ,
Sprite , and many other core classes already extend Eventdispatcher , you can inherit the
event functionality indirectly by extending those classes as well.

The Eventdispatcher class defines the behavior that adds, queues, and removes event listeners.
It also enables the dispatcher to actually dispatch the event to the listeners. We've already seen
the behavior for adding and removing events using addEventListener() and
removeEventListener() . Now we'll look at how to actually dispatch events.

The dispatchEvent() method is a method of EvenTDispatcher , and it is what triggers an event
to be broadcast. When you extend Eventdispatcher , you can call dispatchEvent() within the
class.

Caution

Although the dispatchEvent() method is public, it's a good idea to leave event

dispatching up to the subject objects. Objects triggering events to be dispatched from
other subject objects can lead to un-maintainable code that is difficult for other
developers to read. Subjects should always be responsible for dispatching their own
events.

The only parameter you need to pass into the dispatchEvent() method is an Event object. We'll
talk more about Event objects and their behavior later in this chapter. However, here is a basic
example:

dispatchEvent(new Event(Event.CHANGE));

This example dispatches a change event to all listeners that are currently registered to receive
notifications for change events for instances of the class within which the dispatchEvent()
method appears.

The IEventDispatcher Interface

ActionScript 3.0 supports only single inheritance. This means that if you're already extending a
class that doesn't itself extend the Eventdispatcher class, you must find another way to access
the event dispatching functionality. For this reason, Flash Player includes an IEventDispatcher
interface. By programming to this interface, you can get the EvenTDispatcher functionality into
your class through composition instead of through inheritance. The following is an example of
how you'd implement the IEventDispatcher interface:

package {

 import flash.events.Event;
 import flash.events.IEventDispatcher;
 import flash.events.EventDispatcher;

 public class Dispatcher implements IEventDispatcher {

 private var eventDispatcher:EventDispatcher;

 public function Dispatcher() {
 eventDispatcher = new EventDispatcher(this);
 }

 public function addEventListener(type:String, listener:Function,
 useCapture:Boolean=false, priority:int=0.0, useWeakReference:Boolean=false):void {
 eventDispatcher.addEventListener(type, listener, useCapture, priority,
 useWeakReference);
 }

 public function dispatchEvent(event:Event):Boolean {
 return eventDispatcher.dispatchEvent(event);
 }

 public function hasEventListener(type:String):Boolean {
 return eventDispatcher.hasEventListener(type);
 }
 public function removeEventListener(type:String, listener:Function, useCapture:
Boolean=false):void {
 eventDispatcher.removeEventListener(type, listener, useCapture);
 }

 public function willTrigger(type:String):Boolean {
 return eventDispatcher.willTrigger(type);
 }

 }

}

Passing a target reference into the Eventdispather constructor is necessary when using
composition. The reference tells the EvenTDispatcher which object to use as the target for
events dispatched by your class. This is not necessary for classes that extend Eventdispatcher .

An Example Working with Events

In this example, we're going to create and implement a custom icon button in order to better
understand events. The button has three elements: an icon, a text field, and a background.
Each of these elements triggers different events. We can examine these events to see exactly
how the event flow works.

Creating the IconButton Class

The first thing we need to do is create our IconButton class. We will generate all the elements
for this class inside its constructor. The background will be a Shape object. We'll simply draw a
gray rectangle on that shape. The next element is our icon. For our example, this icon is a
simple square, so we'll use a Sprite . Even though we're still just drawing a shape, we want to
use the Sprite class because it allows the icon to dispatch mouseOver and mouseOut events. The
last element is the label, which is a text field that will hold the button label text.

We'll also add a couple listeners to the icon Sprite so we can have a rollover on that item.
When the user rolls over the icon, we'll use a ColorTransform object to make the icon white.
When the user rolls off the icon, it will go back to grey.

package {

 import flash.display.Shape;
 import flash.display.Sprite;
 import flash.events.MouseEvent;
 import flash.geom.ColorTransform;
 import flash.text.TextField;
 import flash.text.TextFieldAutoSize;

 public class IconButton extends Sprite {
 public function IconButton(text:String) {

 // Create the button background, drawing a
 // rectangle.
 var background:Shape = new Shape();
 background.graphics.beginFill(0xEEEEEE, 1);
 background.graphics.drawRect(0, 0, 100, 20);
 background.graphics.endFill();
 addChild(background);

 // Create the icon, and also draw a rectangle
 // within the icon.
 var icon:Sprite = new Sprite();
 icon.graphics.beginFill(0xAAAAAA, 1);
 icon.graphics.drawRect(4, 4, 12, 12);
 icon.graphics.endFill();

 // Listen for mouse events on the icon.
 icon.addEventListener(MouseEvent.MOUSE_OVER, onIconMouseOver, false, 0, true);

 icon.addEventListener(MouseEvent.MOUSE_OUT, onIconMouseOut, false, 0, true);
 addChild(icon);

 // Create a text field to use as a label.
 var label:TextField = new TextField();
 label.height = 20;
 label.x = 22;
 label.text = text;
 label.selectable = false;
 label.autoSize = TextFieldAutoSize.LEFT;
 addChild(label);
 }

 private function onIconMouseOver(event:MouseEvent):void {
 var colorTransform:ColorTransform = new ColorTransform();
 colorTransform.color = 0xFFFFFF;
 (event.target as Sprite).transform.colorTransform = colorTransform;
 }

 private function onIconMouseOut(event:MouseEvent):void {
 var colorTransform:ColorTransform = new ColorTransform();
 colorTransform.color = 0xAAAAAA;
 (event.target as Sprite).transform.colorTransform = colorTransform;
 }

 }

}

The preceding code is fairly basic. When the user moves the mouse over the icon, the icon
changes color using events. Next we'll look at how to use this button.

Creating the Main Class

Now that we have our IconButton class, we need to create a simple main class that uses the
button We'll do this with a ButtonExample class that will serve as the main class for this project.
In the constructor, we create an instance of the IconButton class, add a couple event listeners,
and add the IconButton instance to our display list. Notice that we add two listeners that are
nearly the same. We're doing this to illustrate the useCapture functionality. The second listener
has the useCapture parameter set to true. Each of these listeners is treated separately, so our
class should get the MOUSE_UP event twice: once during the capture phase and the second during
either the target or bubble phase.

That last statement may seem a bit confusing. What determines whether the MOUSE_UP event will
be dispatched to our ButtonImp class during the target phase versus the bubble phase? Well, it
all comes down to which element inside our button is clicked on. If the user clicks on the icon
Sprite, then the icon is going to be the target of the event. Because our ButtonImp class
registered itself directly to the IconButton class, we wouldn't get that event during the target
phase. However, the MOUSE_OVER and MOUSE_OUT events inside the IconButton class would occur
in the target phase because the IconButton registered itself directly to the icon Sprite. The
same would be true if the user clicked on the TextField. Therefore, the ButtonImp gets those
events through bubbling.

Recall that we also have a third element in our button: the background Shape . If the user clicks

on it, the Shape does nothing because Shape doesn't dispatch a MOUSE_UP event. Therefore, the
IconButton would dispatch the event and our ButtonImp would get its event during the target
phase.

The following code is our ButtonImp class. Notice the trace statements in the listener function.
These trace statements allow you to see the event's phase and the difference between the
target and currentTarget properties for each event.

package {

 import flash.display.Sprite;
 import flash.events.MouseEvent;

 public class ButtonExample extends Sprite {

 public function ButtonExample() {
 var button:IconButton = new IconButton("Test");
 button.addEventListener(MouseEvent.MOUSE_UP, onMouseUp, false, 0, true);
 button.addEventListener(MouseEvent.MOUSE_UP, onMouseUp, true, 0, true);
 addChild(button);
 }

 private function onMouseUp(event:MouseEvent):void {
 trace("phase: " + event.eventPhase);
 trace("target: " + event.target);
 trace("currentTarget: " + event.currentTarget);
 }

 }

 }

Summary

The event framework in ActionScript 3.0 offers a solid and consistent way to handle events. It
improves on earlier versions of Flash by unifying all events under one standardized system. The
new event bubbling and weak reference features are also very valuable. Overall, the new event
framework is a great addition to ActionScript 3.0 and will surely play a major part in all your
ActionScript projects.

Chapter 14. Sending and Loading Data

In This Chapter

Loading Text 218

Sending and Loading Variables 222

Sending and Loading XML 226

Using Web Services 227

Using Flash Remoting 228

Optimizing Data Communication 231

Summary 235

Flash platform applications almost always use data in one form or another. Generally,
applications need to have some form of client-server data communication. In the simplest
example, an application might have to load plain text. For example, an application might have
one responsibility: displaying the day's news post. And some applications might have
significantly more complex data communication requirements. For example, a more
sophisticated version of the news application might need to retrieve an index of all the top news
stories, the contents of news stories, user comments for each news story, and it might even
incorporate live data that broadcasts the transcript of a live commentator.

There are many different types of data you can use with Flash Platform applications, including
these:

Text (including Unicode support)

XML

AMF (Action Message Format, a binary messaging format)

Binary data

In addition to the many types of data, there are many ways you can transmit that data,
including the following:

HTTP

RTMP

XML socket connection

Binary socket connection

In this chapter, we'll look at each of these topics with the exception of the socket connection
topics, which are outside the scope of this book. Then we'll look at relevant design patterns and
how they apply to sending and loading data.

Loading Text

One of the simplest ways to work with data is to load blocks of text either from a text file or
from an Internet resource. Although you can certainly embed text in an SWF file, loading text at
runtime has the following advantages:

You can manage when the text is loaded. When you embed text in an .SWF, the text loads
as part of the SWF file. However, when you load text at runtime, you can load the text only
when the application requires it. For large amounts of text, this can be a significant
advantage.

Editing text files is generally easier than assembling strings with ActionScript. This is
especially true when the text contains HTML elements or lots of non-standard Unicode
characters.

Loading text at runtime allows you to update the context without having to recompile and
redeploy a new .swf. This is especially true when the text is loaded from a dynamic
resource such as a ColdFusion page where the content is retrieved from a Web service, a
database, or some other source that is updated frequently.

Although you can load text with any of the techniques described in this chapter, this section
focuses on the simplest mechanism for loading blocks of text. Using the flash.net.URLLoader
class, you can load data from a URL. When you use URLLoader, you also must use the
flash.net.URLRequest class to specify the URL from which you want to load the content. The
following statement constructs a new URLRequest object that points to a text file called data.txt
that is stored in the same directory as the SWF file:

var request:URLRequest = new URLRequest("data.txt");

You must then create a URLLoader object before you can load data using the URLRequest object.
The URLLoader constructor does not require any parameters, as you can see here:

var loader:URLLoader = new URLLoader();

Note

Although it is not required, you can optionally pass a URLRequest object to a URLLoader

constructor to begin a data request immediately.

URLLoader objects dispatch complete events when the data loads. For that reason, you'll almost
always want to register a listener for the complete event:

loader.addEventListener(Event.COMPLETE, onData);

You can then use the load() method to load the data. The load() method requires that you pass
it a URLRequest object specifying the URL of the data to load, like this:

loader.load(request);

The load() method initiates the request for the data and works asynchronously. Flash Player
does not wait for the response before continuing to execute the code. It simply makes the
request; when the data loads, the URLLoader object dispatches events, including the complete
event when the data has completely loaded.

When the complete event occurs, the URLLoader object notifies all listeners. The listeners receive
an event parameter with a target property that references the URLLoader object dispatching the
event. The URLLoader class defines a data property that contains the data that was loaded. The
following event listener uses trace() to output the data that was loaded:

private function onData(event:Event):void {
 trace(event.target.data);
}

Next, we'll look at a simple example that uses the Model View Controller (MVC) pattern
(described in Chapter 3) to load and display four different limericks from text files. This example
uses four text files called limerick0.txt, limerick1.txt, limerick2.txt, and limerick3.txt.
The files contain the following text (each block of text is a different file):

There was an Old Man on a hill,
Who seldom, if ever, stood still;
He ran up and down,
In his Grandmother's gown,
Which adorned that Old Man on a hill.
- Edward Lear

There was a Young Lady whose chin,
Resembled the point of a pin;
So she had it made sharp,
And purchased a harp,
And played several tunes with her chin.
- Edward Lear

There was a Young Lady whose eyes,
Were unique as to colour and size;
When she opened them wide,
People all turned aside,
And started away in surprise.
- Edward Lear

There was a Young Lady of Bute,
Who played on a silver-gilt flute;
She played several jigs,
To her uncle's white pigs,
That amusing Young Lady of Bute.
- Edward Lear

Creating the LimerickData Class

Next, we'll create a model class called LimerickData that essentially acts as a wrapper for a
URLLoader object:

package com.peachpit.aas3wdp.limerickreader.data {
 import flash.events.EventDispatcher;
 import flash.net.URLLoader;
 import flash.net.URLRequest;
 import flash.events.Event;
 import flash.net.URLVariables;
 import flash.net.URLRequestMethod;
 import flash.net.URLLoaderDataFormat;

public class LimerickData extends EventDispatcher {

 private var _loader:URLLoader;
 private var _limerick:String;
 private var _ids:Array;

// Retrieve the current limerick string.
public function get limerick():String {
 return _limerick;
 }

public function LimerickData() {
 _loader = new URLLoader();
 _loader.addEventListener(Event.COMPLETE, onData);
 _limerick = "";
 // Store indices to use to reference each of the
 // text files.
 _ids = [0, 1, 2, 3];
 }

// Advance to the next limerick.
public function next():void {
 // Retrieve a random element from _ids.
 var index:uint = uint(_ids[Math.floor(Math.random() * _ids.length)]);

 // Load the text from one of the files.
 var request:URLRequest = new URLRequest("limerick" + index + ".txt");
 _loader.load(request);
 }

// The data has loaded. Set the limerick text, and dispatch
// an event to notify listeners.
private function onData(event:Event):void {
 _limerick = _loader.data;
 dispatchEvent(new Event(Event.CHANGE));

 }

 }

}

We'll use the LimerickData class as a data model for the application. As the limerick changes, it
will notify listeners.

Creating the LimerickView Class

The LimerickView class listens for change events dispatched by a model object, and it then
draws itself using the data passed into the constructor:

package com.peachpit.aas3wdp.limerickreader.views {
 import flash.display.Sprite;
 import com.peachpit.aas3wdp.limerickreader.data.LimerickData;
 import flash.text.TextField;
 import flash.text.TextFieldAutoSize;
 import flash.events.Event;

public class LimerickView extends Sprite {

 private var _data:LimerickData;
 private var _textField:TextField;

 // Pass in the data model to use.
 public function LimerickView(data:LimerickData) {
 _data = data;

 // Listen for change events.
 _data.addEventListener(Event.CHANGE, draw);

 // Create the text field to use to display the
 // limerick.
 _textField = new TextField();
 _textField.border = true;
 _textField.autoSize = TextFieldAutoSize.LEFT;
 addChild(_textField);
 draw();
}

// The data has changed, so display the new text.
public function draw(event:Event = null):void {
 _textField.text = _data.limerick;
}

}

}

This class simply creates a text field that displays the current limerick text value from the data
model.

Creating the Main Class

The main class simply creates an instance of the model and an instance of the view and uses a
timer to load a random limerick every five seconds:

package {

 import flash.display.Sprite;
 import com.peachpit.aas3wdp.limerickreader.views.LimerickView;
 import com.peachpit.aas3wdp.limerickreader.data.LimerickData;
 import flash.utils.Timer;
 import flash.events.TimerEvent;
 import flash.events.Event;

 public class LimerickExample extends Sprite {

 private var _data:LimerickData;

 public function LimerickExmmple() {
 _data = new LimerickData();
 var view:LimerickView = new LimerickView(_data);
 addChild(view);
 startTimer(null);
 }

 private function startTimer(event:Event):void {
 var timer:Timer = new Timer(5000);
 timer.addEventListener(TimerEvent.TIMER, onTimer);
 timer.start();
 onTimer();
 }

 private function onTimer(event:TimerEvent = null):void {
 _data.next();

 }
 }
}

This class creates an instance of both the model and the view. It uses a timer to advance the
model to the next limerick every 5 seconds. When you run this code, you should see the
limericks displayed on the screen, changing every 5 seconds.

Sending and Loading Variables

The preceding technique is appropriate when you want to simply load blocks of text from static
URLs. However, often an application requires a greater degree of variability. In such cases, you
need to send and/or load variables either by themselves or in conjunction with loading text.

Although there are lots of ways to send and load variables, the following sections look
specifically at sending and loading URL-encoded variables using HTTP requests and responses
through a URLLoader object, building on what we discussed in the preceding section regarding
loading text.

Note

The URL-encoded format serializes values into a string that uses Web-safe characters.
Variables are grouped into name/value pairs, which consist of the name of the
variable and the value delimited by an equal sign. For example, a=1 is a name/value
pair for a variable called a with a value of 1 . If there are multiple name/value pairs,
they are delimited by ampersands. For example, a=1&b=2 represents two variables:
a and b .

Sending Variables

Sending variables requires that the resource receiving the request is capable of receiving the
variables. For example, you can send variables to a PHP or ColdFusion page, but you cannot
meaningfully send variables to a text file.

When you want to send variables, you have two basic options: appending the query string to
the URL in the URLRequest object or using a URLVariables object.

When you construct a URLRequest object, you can simply append a query string to the URL. The
following example constructs a URLRequest object that points to a URL with a query string:

var request:URLRequest = new URLRequest("data.php?index=0");

Sending data using this first technique has the advantage of being relatively simple to
implement when the query string is simple. However, there are two primary disadvantages:

Adding lots of variables with dynamic values to the query string makes the code more
difficult to read.

You can send the data only using HTTP GET .

The second technique uses a flash.net.URLVariables object. The URLVariables constructor
does not require any parameters. After you've constructed a URLVariables object, you can

assign arbitrary properties and values to the instance. Each property corresponds to a variable
you want to send.

var variables:URLVariables = new URLVariables();
variables.a = 1;
variables.b = 2;

You can then assign the URLVariables object to the data property of the URLRequest object, like
this:

var request:URLRequest = new URLRequest("data.php");
request.data = variables;

Regardless of which technique you use to assign the variables, you employ the load() method
of a URLLoader object to send the request just as you would when loading text. The only
difference occurs when you want to send the variables using POST rather than GET . URLRequest
objects send all requests using GET by default. If you want to specify the method explicitly, you
can use the method property and assign to it either the GET or the POST constant of the
flash.net.URLRequestMethod class, like this:

request.method = URLRequestMethod.POST;
loader.load(request);

The following revision to the LimerickData class presented earlier in this chapter uses a PHP
script as the request URL, and it sends two variables:

[View full width]package com.peachpit.aas3wdp.limerickreader.data {
 import flash.events.EventDispatcher;
 import flash.net.URLLoader;
 import flash.net.URLRequest;
 import flash.events.Event;
 import flash.net.URLVariables;
 import flash.net.URLRequestMethod;
 import flash.net.URLLoaderDataFormat;

 public class LimerickData extends EventDispatcher {

 private var _loader:URLLoader;
 private var _limerick:String;
 private var _ids:Array;

 public function get limerick():String {
 return _limerick;
 }

 public function LimerickData() {
 _loader = new URLLoader();
 _loader.addEventListener(Event.COMPLETE, onData);
 _limerick = "";
 _ids = [0, 1, 2, 3];
 }
 public function next():void {
 var index:uint = uint(_ids[Math.floor(Math.random() * _ids.length)]);

 var variables:URLVariables = new URLVariables();
 variables.limerickIndex = index;
 variables.html = 0;
 var request:URLRequest = new URLRequest("http://www.rightactionscript.com/
limerick/limerick.php");
 request.method = URLRequestMethod.POST;
 request.data = variables;
 _loader.load(request);
 }

 private function onData(event:Event):void {
 _limerick = _loader.data;
 dispatchEvent(new Event(Event.CHANGE));
 }

 }
}

Now the LimerickData class is configured to send a request with variables to a PHP script. The
result is the same as before when it was loading data from four text files, but now it is able to
point to a single PHP script.

Loading Variables

Not only can you send variables, you can also load variables. Loading variables differs from
loading text only in how you ask Flash Player to interpret the return value. By default, Flash
Player treats the data property of the URLLoader object as plain text. However, if you set the
URLLoader.dataFormat property, you can specify that you want Flash Player to automatically
attempt to decode the return value as variables. When that occurs, the data property is a
URLVariables object, and you can simply retrieve the variable values by using the variable
names.

To set the dataFormat property, use the VARIABLES constant of the
flash.net.URLLoaderDataFormat class, like this:

loader.dataFormat = URLLoaderDataFormat.VARIABLES;

In the preceding examples, we've had to assume that there were four limericks, and we had to
hard-code the indices that would return the limericks. In this example, we'll first load variables
from a PHP script to retrieve the valid indices. The PHP script returns a string in the following
format: limerickIds=0,1,2,3 . Next we'll revise the LimerickData class so that it loads the data
and parses it into an array before loading any of the limericks. Because the model cannot load
the limericks until it has first loaded the variables, that introduces a dilemma: Currently, the
main class calls the next() method immediately. There is no guarantee that the limerick IDs will
have loaded before the next() method is called, and that will result in an unhandled error with
the current implementation (because the _ids will be null.) You have two basic options:

Require a change to the main class so that it doesn't call next() until the IDs have loaded.
This option entails dispatching and listening for an additional event.

Change the implementation of next() so that it handles requests elegantly if the IDs
haven't yet loaded.

We'll opt for the second option. The next() method will test that _ids is not null before trying
to make a request to the server. We'll add a property that keeps track of whether or not the
next() method has been called. If that property is true, then the code will automatically call
next() when the IDs load. Here's the updated class:

package com.peachpit.aas3wdp.limerickreader.data {
 import flash.events.EventDispatcher;
 import flash.net.URLLoader;
 import flash.net.URLRequest;
 import flash.events.Event;
 import flash.net.URLVariables;
 import flash.net.URLRequestMethod;
 import flash.net.URLLoaderDataFormat;

 public class LimerickData extends EventDispatcher {

 private var _loader:URLLoader;
 private var _limerick:String;
 private var _idsLoader:URLLoader;
 private var _ids:Array;
 private var _pendingNext:Boolean;

 public function get limerick():String {
 return _limerick;
 }

 public function LimerickData() {
 _loader = new URLLoader();
 _loader.addEventListener(Event.COMPLETE, onData);
 _limerick = "";
 _idsLoader = new URLLoader();
 _idsLoader.addEventListener(Event.COMPLETE, setIds);
 _idsLoader.load(new URLRequest("http://localhost/limerick/limerickIndex.php"));
 _idsLoader.dataFormat = URLLoaderDataFormat.VARIABLES;

 }
 private function setIds(event:Event):void {
 _ids = _idsLoader.data.limerickIds.split(",");
 if(_pendingNext){
 next();
 }
 }

 public function next():void {
 if(_ids != null) {
 var variables:URLVariables = new URLVariables();
 variables.limerickIndex = _ids[Math.floor(Math.random() * _ids.length)];
 variables.html = 0;
 var request:URLRequest = new URLRequest("http://localhost/limerick/
 limerick.php");
 request.method = URLRequestMethod.POST;
 request.data = variables;
 _loader.load(request);
 }
 else {
 _pendingNext = true;

 }

 }

 private function onData(event:Event):void {
 _limerick = _loader.data;
 dispatchEvent(new Event(Event.CHANGE));
 }
 }

 }

Now the code loads limerick IDs from the PHP script first. After it loads the IDs, it can load
limericks from the limerick PHP script just as it did previously. This configuration is much more
flexible because it allows us to change the IDs of the limericks by changing the output of the
limerickIndex.php script rather than having to recompile the SWF with new IDs.

Sending and Loading XML

XML (eXtensible Markup Language) is a standard for storing and transferring data. Flash Player
has built-in support for working with XML data. You can read about working with XML in
Chapter 15 , "E4X (XML)." In this chapter, we'll focus on how to send and load XML data.

When you send and load XML from Flash Player, it is always converted to a string. That enables
you to send and load XML data (as a string) using the same techniques you use to send and
load text. To send and load XML, you use the same URLLoader and URLRequest classes you used
to send and load text.

Sending XML

When you send XML data, you generally send the raw XML data using HTTP POST . The
ActionScript code required to accomplish this task is similar to that for sending variables.
However, rather than using a URLVariables object, you simply assign the XML string to the data
property of the URLRequest object. You then generally want to set the MIME type of the request
using the URLRequest.contentType property. The following example sends an XML string to a
PHP script:

var loader:URLLoader = new URLLoader();
var request:URLRequest = new URLRequest("saveSettings.php");
request.contentType = "text/xml";
request.method = URLRequestMethod.POST;
request.data = "<settings><email>email@domain.com</email><phone>555-1212</phone></settings>";
loader.load(request);

Loading XML

Loading XML is exactly the same as loading text with one additional step after the data has
loaded. The XML constructor allows you to pass it a string that the constructor will parse into
the XML object. You can simply pass the value from the data property of the URLLoader object.

var xml:XML = new XML(_loader.data);

Note

You can optionally cast the data as XML rather than passing it to an XML constructor.

Some XML you load might have additional whitespace (carriage returns and tabs) added for
human readability. Unless you tell Flash Player to watch for the extra whitespace, it will
interpret whitespace as XML elements. That's generally not the desired behavior. The simple

solution is to set XML.ignoreWhitespace before parsing the string to the XML object, like this:

XML.ignoreWhitespace = true;
var xml:XML = new XML(_loader.data);

Using Web Services

Web services are a popular standard for client-server data communication. However, Flash
Player has no built-in classes specifically designed for working with Web services. If you are
using the Flex framework, you can employ the mx.rpc.soap.WebService class. In this book,
we're concerned primarily with solutions that rely exclusively on the Flash Player API. For a
description of the WebService class, see the Flex documentation.

If you are interested in a Web services solution that does not rely on the Flex framework, you
have two options:

Write your own Web services framework in ActionScript. Although Web services appear in
many forms, one of the most popular uses SOAP, an XML-based protocol that is sent over
HTTP. Writing a Web service framework requires sending and loading XML data using
URLLoader along with a custom SOAP parser.

Make standard requests to a server-side script that makes the Web service calls. The
server-side script can return URL-encoded data or XML data.

Note

Another option is to manually create and parse SOAP requests and responses. This is
advisable for only very simple cases. You can see an example of this in Chapter 15.

The second option is often the best. One obvious reason that server-side Web service proxies
are a good idea is that server-side languages generally have robust Web service capabilities
that can work with a variety of protocolsnot just SOAP. Server-side scripts can also generally
parse Web service responses more quickly. They can relay the responses back to the client in a
format that is more compact than SOAP (to limit the bandwidth overhead), and the server can
even cache responses when applicable to limit the number of Web service requests.

Using Flash Remoting

Flash Remoting is a technology for making remote procedure calls from Flash Player to server-
side services. The concept is similar to that of Web services: The client makes a request to a
method that's exposed using a server-side service. The request is serialized in a specific format,
sent over HTTP (or HTTPS), and the response is likewise serialized and sent back to the client.
This approach enables remote clients and services to interact to create integrated applications.
Like Web services, Flash Remoting has the advantage of automatically serializing and
deserializing to and from native data types.

However, there are significant differences between Flash Remoting and Web services. Following
are a few of those differences:

Flash Remoting uses AMF (Action Message Format) as the protocol for packaging data.
Although this might initially sound like yet another non-standardized, proprietary format,
AMF is actually a binary form of SOAP that has a significant advantage over SOAP. SOAP
packets have a lot of overhead that increases the bandwidth requirements. Over time, the
extra bandwidth costs can add up. AMF can send the same amount of data in a much more
compact (i.e., binary) format than its SOAP counterparts.

AMF is supported natively by Flash Player. In addition to its use with Flash Remoting, AMF
is the format Flash Player uses for shared objects and local connections. Because AMF is
supported natively in Flash Player, that means that serializations and deserializations to
and from native ActionScript types is automatic and fast.

AMF support is not built into most server technologies. However, adding the necessary
AMF gateway on the server is simple. Gateways are available for most major platforms
including ColdFusion, Java, Perl, .NET, and PHP. There are even reliable and enterprise-
ready open-source options available.

Understanding Flash Remoting Basics

When you want to use Flash Remoting, there are two elements that communicate: a client and
a service. The service is generally a class that has been exposed so that it is available to Flash
Remoting. Flash Remoting is a request-response model, which means the client must initiate all
requests. The client must make all calls through an intermediary called a gateway. The gateway
is a web-accessible resource on the server that is capable of accepting AMF requests,
deserializing them, and delegating the requests to the appropriate services.

There are many Flash Remoting gateway products, including the following:

OpenAMF (www.openamf.org): an open-source Java gateway

WebORB (www.themidnightcoders.com): gateway products for .NET, Java, Ruby on Rails,
and PHP

AMFPHP (www.amfphp.org): an open-source PHP gateway

Each gateway has its specific installation instructions. However, after you've installed the
gateway, the general instructions to use it are the same. The following section looks at the
ActionScript required to make Flash Remoting calls. In each case, you'll need to know the URL
to the gateway resource for your server. The documentation for the specific gateway you are
using will tell you what you need to know to locate the correct resource. It is always a web-
accessible resource such as a page (a PHP page, a .NET page, and so on) or a servlet.

Making Flash Remoting Calls

Although the Flex framework and the Flash Remoting components for Flash provide a high-level
API for working with Flash Remoting, at a lower level, all Flash Remoting calls go through a
flash.net.NetConnection object. In this section, we'll look exclusively at working directly with
NetConnection objects to make Flash Remoting calls.

The first step in making Flash Remoting calls is to construct a NetConnection object using the
constructor. The constructor does not require any parameters, as you can see here:

var netConnection:NetConnection = new NetConnection();

Next, you must specify the gateway URL using the connect() method. Despite its name, the
connect() method does not actually attempt to make a connection to the resource. It simply
sets the gateway URL for the object so that subsequent Flash Remoting calls can be routed
through the correct gateway resource.

netConnection.connect("http://localhost/gateway");

After you've set the gateway URL, you can make calls to methods of available services using the
call() method. The call() method requires at least two parameters: the name of the service
and method as a string, and an object indicating how to handle responses.

The name of the service and method must be the fully qualified service name and method
name, all in dot notation. That means that if the service is in a package, you must specify the
package as well as the name of the service. The name of the service and the name of the
method are also separated by a dot. The following statement makes a call to the test method of
the Example service:

netConnection.call("Example.test", null);

The second parameter can be null (as in the preceding example) if and when you do not need
to listen for a response from the service method. However, if you do need to listen for a
response, you can use a flash.net.Responder object. The Responder constructor requires that
you specify two functions to handle the possible responses: a result and an error. The following
statement makes a call to the test method, this time handling the response:

netConnection.call("Example.call", new Responder(onResult, onError));

When the service method returns a valid value, the result method gets called and is passed the
return value as a parameter. When an error occurs, the error method gets called with an Object
parameter whose properties detail the error.

You can also pass parameters to the service method by adding additional parameters to the
call() method parameter list. For example, the following code passes the parameters 1 , TRue ,

and "a" to the service method:

netConnection.call("Example.call", new Responder(onResult, onError), 1, true, "a");

The following rewrite of the LimerickData class uses Flash Remoting instead of loading data
using URLLoader . For the sake of simplicity, this example does not handle errors. In an actual
application, you might want to handle errors by bubbling up error events (as described in
Chapter 13 , "Working with Events").

package com.peachpit.aas3wdp.limerickreader.data {
 import flash.events.EventDispatcher;
 import flash.events.Event;
 import flash.net.NetConnection;
 import flash.net.Responder;

 public class LimerickData extends EventDispatcher {

 private var _limerick:String;
 private var _ids:Array;
 private var _pendingNext:Boolean;
 private var _netConnection:NetConnection;

 public function get limerick():String {
 return _limerick;
 }

 public function LimerickData() {
 _limerick = "";

 // Use a NetConnection object rather than the
 // URLLoader object used previously.
 _netConnection = new NetConnection();
 _netConnection.connect("http://www.rightactionscript.com/limerick/gateway.php");
 _netConnection.call("LimerickService.getIds", new Responder(setIds, null));
 }

 private function setIds(ids:Array
 _ids = ids;
 if(_pendingNext) {
 next();
 }
 }
 public function next():void {
 if(_ids != null) {
 var index:uint = _ids[Math.floor(Math.random() * _ids.length)];
 _netConnection.call("LimerickService.getLimerick", new Responder(onData,
 null), index, false);
 }
 else {
 _pendingNext = true;
 }
 }

 private function onData(limerick:String
 _limerick = limerick;

 dispatchEvent(new Event(Event.CHANGE));
 }

 }
 }

This version accomplishes the same basic tasks as previous versions. However, it now uses
Flash Remoting to accomplish these goals.

Optimizing Data Communication

When you work with data, it is frequently important that you optimize the manner in which you
work with the data. The following sections look at several specific ways you can optimize your
work with data.

Caching Data

When an application makes calls to services, it is typically either submitting or requesting data.
When an application requests data, there are two ways it can use that data: temporarily or
persistently. If the data is used temporarily, it can and should be discarded when the
application no longer needs it. However, when the data is used persistently, it can sometimes
be useful to store that data in a persistent data model rather than discarding it and re-
requesting it when the application needs the data again.

The technique of caching persistent data allows you to minimize the number of requests made
to the server when the same data is used over and over. The sample limerick application is a
good case in point. The application uses just a handful of pieces of data. The implementation
thus far makes requests for each limerick every time the data is needed by the application. If
the application displays one of the limericks fifty times, it also makes a request for the data fifty
times from the server. Yet the cost of making those network requests is expensive, both in
terms of bandwidth usage and latency in the application. In this particular case, a better
solution is to store the limerick data client-side rather than making the request to the server
each time.

There are two ways you can handle retrieving persistent data: requesting all the data at once or
requesting the data one piece at a time as the user needs it, but caching the data rather than
discarding it. The first technique has the advantage of ensuring the immediate availability of
data when the user requests it. Yet the first technique also requires a potentially large initial
download, even though the user may or may not be using all the data. The second technique
allows the application to download data only when it is first requested by the user. Which
technique you select depends on the requirements for the application. If the application allows
for an initial wait for the user but requires low latency and immediate responsiveness after that
initial wait, then you should download the data as part of an initialization. If the data set is very
large and the average user of the application is not likely to use all the data every time she uses
the application, it is generally better to download data on demand and cache it for later use.

We'll look at how to rewrite the LimerickData class so that it uses the on-demand
techniquecaching data so the class doesn't have to download the same data twice. For this
purpose, we'll introduce a new class called LimerickItem . This class is a simple data model for
a single limerick that stores the limerick text and its index.

package com.peachpit.aas3wdp.limerickreader.data {
 import flash.events.EventDispatcher;
 import flash.events.Event;

public class LimerickItem extends EventDispatcher {

 private var _index:uint;

 private var _text:String;

 public function LimerickItem(index:uint) {
 _index = index;
 }

 public function getIndex():uint {
 return _index;
 }

 public function getText():String {
 return _text;
 }

 public function setText(value:String):void {
 _text = value;
 dispatchEvent(new Event(Event.CHANGE));
 }

 }
}

Next, modify the existing LimerickData class so that it stores LimerickItem objects in an array.
When the application requests a limerick that's already been loaded, the data model returns the
cached data rather than request it from the server again.

package com.peachpit.aas3wdp.limerickreader.data {
 import flash.events.EventDispatcher;
 import flash.events.Event;
 import flash.net.NetConnection;
 import flash.net.Responder;

 public class LimerickData extends EventDispatcher {

 private var _limerick:String;
 private var _ids:Array;
 private var _pendingNext:Boolean;
 private var _netConnection:NetConnection;
 private var _limericks:Array;

 public function get limerick():String {
 return _limerick;
 }

 public function LimerickData() {
 _limerick = "";
 _netConnection = new NetConnection();
 _netConnection.connect("http://localhost/limerick/gateway.php");
 _netConnection.call("LimerickService.getIds", new Responder(setIds, null));

 // This is the array in which the model stores each
 // of the LimerickItem objects.
 _limericks = new Array();
 }

 private function setIds(ids:Array):void {
 _ids = ids;
 if(_pendingNext) {
 next();
 }
 }

 public function next():void {
 if(_ids != null) {
 var index:uint = _ids[Math.floor(Math.random() * _ids.length)];

 // Test if the data has already been
 // requested. If not, request it. If so,
 // set current limerick to the cached
 // value.
 if(_limericks[index] == undefined) {
 var item:LimerickItem = new LimerickItem(index);
 // Listen for the change event that
 // the item dispatches when the value
 // is set, and then call onItem().
 item.addEventListener(Event.CHANGE, onItem);
 _limericks[index] = item;
 // Use item.setText as the result
 // event handler method.
 netConnection.call("LimerickService.getLimerick", new Responder
 (item.setText, null), index, false);
 }
 else{
 onData(_limericks[index].getText());
 }
 }
 else {
 _pendingNext = true;
 }
 }
 // When the data is returned and assigned to the limerick
 // item, then call onData() wuith the data.
 private function onItem(event:Event):void {
 onData(event.target.getText());
 }

 private function onData(limerick:String):void {
 _limerick = limerick;
 dispatchEvent(new Event(Event.CHANGE));
 }

 }
 }

Queuing and Pooling Requests

When you have lots of service calls, there are two ways you can call them: back to back, or all
together. The back-to-back technique is what we call queuing . The technique of calling all the
methods at once is what we call pooling . Each has advantages and disadvantages.

A novice approach to remote procedure calls is to simply make the calls when it's convenient.
This approach means that some calls are queued and some calls are pooled, but never
intentionally. This is not generally a good approach because there are cases in which calls must
be queued and cases in which it is better if they are pooled. It is better to specifically select the
manner in which you make service method calls.

The limerick application has a perfect example of a case in which method calls must be queued.
Two service methods are called in the example: getIds() and getLimerick() . It is essential
that getIds() is called before getLimerick() because getLimerick() requires a parameter
whose value is determined by the result of the getIds() method call. This means you must
queue the method calls to ensure that getIds() returns a value before getLimerick() is called.
In the existing example, this order is achieved by using an if statement to test that the _ids
array (which is populated by the return value from getIds()) is defined before calling
getLimerick() .

Pooling requests is rarely if ever required. However, pooling does significantly reduce network
overhead. If there are several method calls that do not have dependencies (which would require
that they be queued), and if those methods are likely to be called in relatively close succession
anyway, it is better to make the requests all at the same time. Flash Player automatically
bundles together all requests made in the same frame (which basically amounts to all requests
made in the same routine) into a single AMF request packet.

Summary

Working with data is integral to the majority of Flash Platform applications. In this chapter, you
learned how to load text, send and load variables, work with the transfer of XML, and use Flash
Remoting. You also learned techniques for optimizing your work with data.

Chapter 15. E4X (XML)

In This Chapter

Creating XML Objects 239

Property Accessors 240

XML Filtering 241

Iterating Through an XMLList 242

Namespaces 243

Sending and Loading XML Data 243

Simple Soap Example 243

Summary 249

XML got a major overhaul with the release of ActionScript 3.0. The much-anticipated E4X has
finally made its way into Flash Player 9. This makes working with XML in Flash much simpler
and reduces the need for complex XML logic. Nearly everything you know about working with
XML in Flash has changed with this release.

In this chapter, we examine the new features of E4X, look at how loading external XML files has
changed, review the classic XML API, and create an example application that uses a few of these
advanced features.

E4X stands for ECMAScript for XML. ECMAScript is the language ActionScript is based on. The
E4X specification was developed by ECMA International and was released in the summer of
2004. The goal of E4X is to simplify the way developers use XML inside ECMAScript languages.
It also introduces features that were not available in ActionScript 2.0.

New Classes in Actionscript 3.0

Because E4X is not simply an upgrade of the previous XML functionality, the class
structure is not exactly the same. ActionScript 3.0 has the following top-level
classes for working with E4X functionality: XML, XMLList, QName, and Namespace.

XML

The new XML class is nothing like the XML class in ActionScript 2.0. ActionScript 2.0
had two classes that represented the XML structure: XML and XMLNode. The XMLNode
class was always a little silly because technically each node is a self-contained XML
document. Therefore, in ActionScript 3.0, Adobe corrected this confusion by
removing the XMLNode class. Now the XML type represents all elements, attributes,
processing instructions, and text.

XMLList

ActionScript 3.0 introduces a new class called XMLList. In ActionScript 2.0, you
could get an array of XMLNode objects by calling the childNodes property of any
XMLNode object. Now, instead of working with a generic Array, you can use the
XML.children() method to return an XMLList with the same functionality. A nice
feature of the XMLList class is that if you have a case where there is only one XML
object in the list, the XMLList delegates calls to that object. It basically functions as
though it is that XML object. In the following example, lines 2 and 3 are identical
because there is only one item:

var data:XML = <data><item>Test Value</item.</data>;
var value1:String = data.item[0].toString();
var value2:String = data.item.toString();

The first line in the preceding example might seem a bit strange if you are
completely new to E4X. It is a new way to define XML objects in ActionScript 3.0
using literals. We'll talk more about literals later in this chapter.

QName

The QName class, also new to ActionScript 3.0, is used to represent the qualified
names of elements and attributes in an XML object. There are two parts to qualified
names: The first part is a local name that conforms to XML standards, and the
second part is a namespace URI (Uniform Resource Identifier). The namespace is
optional.

Namespace

The Namespace class is used to define XML namespaces. Namespace support is a new
feature included in E4X that is also used to define namespaces in your code not
related to XML. It's important to understand that this class has multiple uses, only
one of which relates to XML.

Creating XML Objects

ActionScript 3.0 provides two basic ways to create XML objects: using a constructor or using
literal notation. The constructor works just as you would expect:

var xml:XML = new XML();

Optionally you can pass a string to the constructor that you want to parse into XML:

var xml:XML = new XML("<data><value>a</value></data>");

However, using literal notation is often far easier and more readable. The following example
shows a simple XML object that is created with literal syntax:

var catalog:XML = <catalog>
 <product id="0">
 <name>Product One</name>
 <price>50</price>
 </product>
 <product id="1">
 <name>Product Two</name>
 <price>35</price>
 </product>
</catalog>;

You can see that literal notation is easier and more readable, especially when you compare the
literal notation with the equivalent constructor notation, shown here:

var catalog:XML = new XML('<catalog><product id="0"><name>Product One</
name><price>50</price></product><product id="1"><name>Product Two</name><price>35</
price></product></catalog>');

You can also use literals to declare XMLList objects. When using XMLList literal notation, you
should use <></> as the root tag. The following example creates two XML objects named product
in an XMLList object:

var products:XMLList = <>
 <product id="0">
 <name>Product One</name>
 <price>50</price>
 </product>
 <product id="1">
 <name>Product Two</name>
 <price>35</price>
 </product>
</>;

Sometimes you'll have a situation in which you need variable values in your XML object. You can
achieve this by using curly braces ({}) to surround the variable within the XML literal. The
following example shows how you can create a XML object named product using variable values
for both name and price :

var productName:String = "Product One";
var productPrice:Number = 50;
var product:XML = <product id="0">
 <name>{productName}</name>
 <price>{productPrice}</price>
 </product>;
 var catalog:XML = <catalog>
 {product}
 </catalog>;

Note

The name of the variable product is the same as the first element of the XML object.

Although this is not required, we do this for simplicity. If we were to use a different
name for the variable, we would treat that variable name as though it were the name
of the first element of our XML object. By naming them the same, we minimize

confusion.

Property Accessors

E4X syntax reuses and extends the property accessor syntax already familiar to ActionScript
developers. For example, ActionScript developers are already familiar with how to use dot-
notation to access a property such as the x or y properties of a display object.

sprite.x = 100;
sprite.y = 100;

Because of this familiarity, the learning curve for XML in ActionScript 3.0 is lowered.

For the following discussion we'll use this XML object.

var catalog:XML = <catalog>
 <product id="0">
 <name>Product One</name>
 <price>50</price>
 </product>
 <product id="1">
 <name>Product Two</name>
 <price>35</price>
 </product>
</catalog>;

First, we'll access the XMLList that is a child of the root node. Because the child nodes of the
root are called product, you can use dot notation to access a property of that same name which
will reference the XMLList:

var products:XMLList = catalog.product;

XMLList objects allow you to use array-access notation to access the elements of the list. For
example, the following code retrieves a reference to the first product XML node.

var firstProduct:XML = catalog.product[0];

Although up to this point the syntax has been familiar, we'll now introduce one new syntax that
uses an @ symbol to reference attributes. By using the @ symbol, you can target attributes of an
XML object as shown in the following example. This code retrieves the id attribute value of the
first product node.

var id:Number = Number(catalog.product[0].@id);

If you use the @ symbol for an XMLList, it will return an XMLList of all the attributes of that
name for all the XMLList elements. Here's an example that retrieves all the id attributes for all
the product nodes:

var allProductIds:XMLList = catalog.product.@id;

You can use an asterisk as a wildcard to get all the items at a given level. For example, the
following code retrieves all the product nodes without having to know the name of the nodes:

var firstLevel:XMLList = catalog.*;

You can also use wildcards with attributes. This example retrieves all the attributes of all the
product nodes:

var firstLevel:XMLList = catalog.product.@*;

XML Filtering

Arguably, the most powerful and useful feature of E4X is its ability to filter data. This new
feature replaces the need for XPath libraries and the loops previously used to search an XML
document in earlier versions of ActionScript. Now you can do all this natively in ActionScript 3.0
using as little as one line of code.

To use filtering, you can enclose expressions in parentheses as part of an E4X expression. The
following examples show a few uses of filtering. We'll use the same XML object for all our
examples:

var catalog:XML = <catalog>
 <product id="0">
 <name>Product One</name>
 <price>50</price>
 </product>
 <product id="1">
 <name>Product Two</name>
 <price>35</price>
 </product>
</catalog>;

The following line retrieves the product element that has an id attribute equal to 1. This
example returns just one XML object, but it would return an XMLList if more than one element
matches the criteria.

var product1:XML = catalog.product.(@id == 1);

This next line grabs the name of the product element that has a price less than 50. It's
important to understand that this would return an XMLList if more than one element met the
criteria:

var cheapestProductName:String = catalog.product.(price < 50).name;

This example retrieves the product elements that have a price greater than 35 and less than
50:

var productRange:XMLList = catalog.product.(price >= 35 && price <= 50);

Iterating Through an XMLList

Developers must often iterate, or loop, through an XMLList object. ActionScript 3.0 provides a
few ways to do this. We'll use the same catalog example to demonstrate three different ways to
iterate through the products and add up the price values. Here again is the literal syntax for
creating the catalog object:

var catalog:XML = <catalog>
 <product id="0">
 <name>Product One</name>
 <price>50</price>
 </product>
 <product id="1">
 <name>Product Two</name>
 <price>35</price>
 </product>
</catalog>;

The first method of iterating through an XMLList is a simple for loop. We use the
XMLList.length() method to get the number of items in the XMLList. Then we simply iterate
that number of times, incrementing the index (i) with each iteration. You use a similar syntax
to loop through an indexed array.

var total:Number = 0;
for(var i:int = 0; i < catalog.product.length(); i++) {
 total += (catalog.product[i].price as Number);

}

The second method is a for...in loop that iterates over the XMLList. This method is commonly
used to loop over an associative array or an object.

var total:Number = 0;
for(var i:String in catalog.product) {
total += (catalog.product[i].price as Number);
}

The third method is new to ActionScript 3,0. It's a for each..in loop and provides a cleaner
way to loop over XML.

var total:Number = 0;
for each(var product:XML in catalog.product) {
 total += (product.price as Number);
}

It's also possible to use the new for each..in loop structure to iterate over attributes in an XML
object.

var product:XML = <product id="0" name="Product One" price="50" />;
for each(var attribute:XML in product.@*) {
 trace(attribute.name() + ": " + attribute.toXMLString());
}

Namespaces

E4X has the added capability of XML namespaces . Namespaces are used to avoid element
name conflicts. Namespaces are most commonly found in complex XML documents that contain
XML data from multiple sources. SOAP, the XML format behind many Web services, is one of the
most common examples of XML documents that use namespaces. Many developers never use
namespaces in their XML documents, but if you do, there are some new ways to work with them
in ActionScript 3.0.

We'll use a simple SOAP envelope to show how you can work with namespaces. The following
code shows how to create an XML namespace using literals:

var envelope:XML = <soap:envelope xmlns:soap="http://www.w3.org/2003/05/
soap-envelope" />;

Next, we'll add a body element to the envelope. The body should have the same namespace as
the envelope. We can do this a few different ways. We can use the literal syntax to create the
body element, as in this example:

envelope.body = <soap:body xmlns:soap="http://www.w3.org/2003/05/soap-envelope" />

We can also create the body element by declaring the namespace and using the :: operator, like
this:

var soap:Namespace = new Namespace("http://www.w3.org/2003/05/soap-envelope");
envelope.soap::body = new XML();

Both of these examples create an XML object that looks like the following:

<soap:envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope">
 <soap:body />
</soap:envelope>

We can also create an XML object using a default namespace, like this:

default xml namespace = new Namespace("http://www.w3.org/2003/05/soap-envelope");
var envelope:XML = <envelope><body /></envelope>;

Sending and Loading XML Data

The two main classes that send or load data in ActionScript 3.0 are URLRequest and URLLoader.
The URLRequest class is used to create any HTTP request, and the URLLoader class is used to
transfer the request and listen for the response. Chapter 14, "Sending and Loading Data,"
explains how to use URLLoader to send and load data. Here in the following sections we'll revisit
this information in the context of sending and loading XML.

Simple Soap Example

To demonstrate many of the new features of E4X, we'll create a simple example that uses
SOAP-formatted XML to send and receive data from a remote Web service. The service accepts
an IP address and returns the geographical location it resolves to.

Note

For more information on sending and loading XML, see Chapter 14 .

The following example sends and loads data using a public Web service whose WSDL document
is located at http://ws.cdyne.com/ip2geo/ip2geo.asmx . You can read more about the Web
service at http://ws.cdyne.com/ip2geo/ip2geo.asmx?op=ResolveIP .

Before we create the example, we'll first look at the format of the request and response packets.
The request packet is a standard SOAP-formatted request. The heart of the request is inside the
<m:ResolveIP> tags. It has two child elements: the first is the IP address value, and the second
is the license key. Here's an example of what the packet might look like:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:xsi="http://www.
w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Body>
 <m:ResolveIP xmlns:m="http://ws.cdyne.com/">
 <m:IPaddress>24.118.19.171</m:IPaddress>
 <m:LicenseKey>0</m:LicenseKey>
 </m:ResolveIP>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

In this example, notice that the license key is 0. This particular Web service allows us to test the
service by using a license key of 0.

The response packet is a SOAP-formatted response. Inside the <ResolveIPResult> tag are the
values for the response:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" xmlns:
xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/
XMLSchema">
 <soap:Body>
 <ResolveIPResponse xmlns="http://ws.cdyne.com/">
 <ResolveIPResult>
 <City>Chicago</City>
 <StateProvince>IL</StateProvince>
 <Country>USA</Country>

 <Latitude>41.5000000</Latitude>
 <Longitude>-87.4100000</Longitude>
 <HasDaylightSavings>false</HasDaylightSavings>
 <Certainty>16</Certainty>
 </ResolveIPResult>
 </ResolveIPResponse>
 </soap:Body>
</soap:Envelope>

You can see that the response includes information such as the city, state, and country to which
the IP address resolves. This example contains specific data such as Chicago, IL , and USA . The
actual Web service responses will contain data specific to the IP address passed in using the
request.

Now that we've looked at the structure of the request and response packets, we can build the
sample application.

Building the Custom Event

The very first thing we'll need to build in this example is a custom event type. Because our
event has data associated with it, we will create a custom event class called LocationEvent .
This class extends the built-in Event class and simply adds five public properties. These
properties are later populated from the data returned by the Web service.

package com.peachpit.aas3wdp.e4xexample {

 import flash.events.Event;

 public class LocationEvent extends Event {

 private var _city:String;
 private var _stateProvince:String;
 private var _country:String;
 private var _latitude:String;
 private var _longitude:String;

 public function get city():String {
 return _city;
 }

 public function set city(value:String):void {
 _city = value;
 }

 public function get stateProvince():String {
 return _stateProvince;
 }

 public function set stateProvince(value:String):void {
 _stateProvince = value;
 }

 public function get country():String {
 return _country;

 }

 public function set country(value:String):void {
 _country = value;
 }

 public function get latitude():String {
 return _latitude;
 }

 public function set latitude(value:String):void {
 _latitude = value;
 }

 public function get longitude():String {
 return _longitude;
 }

 public function set longitude(value:String):void {
 _longitude = value;
 }

 public function LocationEvent(type:String, bubbles:Boolean = false,
cancelable:Boolean = false) {
 super(type, bubbles, cancelable);
 }

 }

}

This class requires a fair amount of code, but it is quite simple. It merely extends Event and
adds additional properties specific to location. We'll see how to use this event type in the next
few sections.

Building the Web Service Class

The ResolveIP class does all the heavy lifting in this example. It is responsible for making the
request and listening for the response. All the SOAP communication is encapsulated in this
class.

The first thing our class does in the constructor is to create the URLRequest object. This object is
where we define the request data (the request SOAP packet), headers, URL, methods, and
content type. Notice the use of curly braces to populate the request data with the IP address
that is passed into the constructor. The URLLoader object is used to execute this request.

The onComplete() event handler is where we respond to the URLLoader.COMPLETE event. Here we
create a custom event object using our LocationEvent class.

package com.peachpit.aas3wdp.e4xexample {

 import com.peachpit.aas3wdp.e4xexample.LocationEvent;
 import flash.events.Event;
 import flash.events.EventDispatcher;

 import flash.net.URLLoader;
 import flash.net.URLRequest;
 import flash.net.URLRequestHeader;

 public class ResolveIP extends EventDispatcher {

 private var urlLoader:URLLoader;

 public function ResolveIP(ipAddress:String) {
 var urlRequest:URLRequest = new URLRequest();
 urlRequest.contentType = "text/xml; charset=utf-8";
 urlRequest.method = "POST";
 urlRequest.url = "http://ws.cdyne.com/ip2geo/ip2geo.asmx";
 var soapAction:URLRequestHeader = new URLRequestHeader("SOAPAction",
 "http://ws.cdyne.com/ResolveIP");
 urlRequest.requestHeaders.push(soapAction);
 urlRequest.data = <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.
 org/soap/envelope/" xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/
 encoding/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:
 xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Body>
 <m:ResolveIP xmlns:m="http://ws.cdyne.com/">
 <m:IPaddress>{ipAddress}</m:IPaddress>
 <m:LicenseKey>0</m:LicenseKey>
 </m:ResolveIP>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>;

 urlLoader = new URLLoader();
 urlLoader.addEventListener(Event.COMPLETE, onComplete);
 urlLoader.load(urlRequest);
 }

 private function onComplete(event:Event):void {
 var envelope:XML = XML(urlLoader.data);
 var soap:Namespace = envelope.namespace("soap");
 var response:Namespace = new Namespace("http://ws.cdyne.com/");
 var result:XMLList = envelope.soap::Body.response::ResolveIPResponse.
 response::ResolveIPResult;
 var locationEvent:LocationEvent = new LocationEvent(Event.COMPLETE, true, true);
 locationEvent.city = result.response::City.toString();
 locationEvent.stateProvince = result.response::StateProvince.toString();
 locationEvent.country = result.response::Country.toString();
 locationEvent.latitude = result.response::Latitude.toString();
 locationEvent.longitude = result.response::Longitude.toString();
 dispatchEvent(locationEvent);
 }

 }

}

Creating the Main Class

Invoking the ResolveIP class is simple. Just create a new instance of the class and pass an IP
address into the constructor during creation. Then register for the complete event and the error
event. The complete event returns a LocationEvent object. The error events are not actually
thrown by ResolveIP , but instead are thrown by the URLLoader object inside the ResolveIP
object. Because the error events aren't caught by the ResolveIP object, they bubble up to our
WebServiceExample object.

Here's the main class for our SOAP-parsing Web service example:

package {

 import com.peachpit.aas3wdp.e4xexample.LocationEvent;
 import com.peachpit.aas3wdp.e4xexample.ResolveIP;
 import flash.events.Event;
 import flash.events.IOErrorEvent;
 import flash.events.SecurityErrorEvent;
 import flash.events.KeyboardEvent;
 import flash.ui.Keyboard;
 import flash.display.Sprite;
 import flash.text.TextField;
 import flash.text.TextFieldType;

 public class WebServiceExample extends Sprite {

 private var _resolveIP:ResolveIP;
 private var _text:TextField;

 public function WebServiceExample() {

 // Create a text field to accept user input and
 // display the response.
 _text = new TextField();
 _text.type = TextFieldType.INPUT;
 _text.width = 200;
 _text.height = 22;
 _text.background = true;
 _text.border = true;

 // Initially populate the text field with a valid
 // IP address. This makes it easy to test the
 // application. You can also change this at runtime
 // if you want to test a different IP address.
 _text.text = "24.118.19.171";

 // Listen for keyboard events.
 _text.addEventListener(KeyboardEvent.KEY_UP, onKey);
 addChild(_text);
 }

 private function onKey(event:KeyboardEvent):void {

 // If the user presses the Enter key then createa a
 // new ResolveIP object, passing it the text from
 // the text field. Then listen for events.
 if(event.keyCode == Keyboard.ENTER) {
 _resolveIP = new ResolveIP(_text.text);

 _resolveIP.addEventListener(Event.COMPLETE, onComplete);
 _resolveIP.addEventListener(IOErrorEvent.IO_ERROR, onError);
 _resolveIP.addEventListener(SecurityErrorEvent.SECURITY_ERROR, onError);
 }
 }

 // When the response is returned, display the location
 // to which the IP address resolves.
 private function onComplete(locationEvent:LocationEvent):void {
 _text.text = locationEvent.city + ", " + locationEvent.stateProvince;
 }

 private function onError(event:Event):void {
 _text.text = "error: " + event.type;
 }

 }

}

You can test this example by entering a valid IP address in the text field and pressing the Enter
key. The Web service will respond shortly, and the result will be displayed in the text field.

Classic XML API

The old way of working with XML still exists in ActionScript 3.0 in the form of the XMLDocument
and XMLNode classes. These classes are included in ActionScript 3.0 mainly for backwards
compatibility. All new projects should use E4X because it is the new standard for working with
XML in ActionScript.

Summary

E4X is one of the biggest improvements to ActionScript in years. This enhancement increases
the power of XML and makes it an even more robust option for ActionScript programmers. In
this chapter, you learned about the new features of E4X and created a simple Web service
application.

Chapter 16. Regular Expressions

In This Chapter

Introducing the RegExp Class 252

Working with Regular Expressions 252

Using Regular Expression Flags 255

Understanding Metacharacters and Metasequences 258

Using Regular Expression groups 261

Building a Mad Libs Application Using Regular Expressions 263

Summary 272

Regular expressions enable you to look for substrings that match a pattern, making them a
powerful way to work with strings. For basic substring searches, you can use String class
methods such as indexOf(). Methods such as indexOf() work when you know the exact
substring you want to find. For example, if you want to determine whether a string contains the
substring cog you can use the following code:

var string:String = "Gears and cogs";
var index:int = string.indexOf("cog");
trace("contains substring? " + (index != -1));

The preceding code determines whether string contains the letters "cog." If the indexOf()
method doesn't return -1, then it means that it found an occurrence of the substring.

When writing sophisticated programs, it's entirely likely that you'll want to search for substrings
in a more abstract fashion. For example, consider if you wanted to determine whether a string
contains the substring cog or the substring log. In such a case, you could simply test for both
substrings using indexOf(). Yet as the number of possible substrings for which you want to test
increases, so too does the complexity of the code necessary to test for every substring using
indexOf(). If you wanted to test for all substrings that start with a letter followed by og, then
you have to test for 52 possible substrings. More complex substring possibilities could require
testing for hundreds, thousands, millions, even billions of substrings. This is where regular
expressions simplify things greatly.

Regular expressions are a way of testing for substrings by using patterns. Regular expressions
use standard characters such as letters and numbers as well as special metacharacters and
metasequences to form these patterns. In this chapter, we'll look at how to build and work with
regular expressions using ActionScript 3.0.

Note

Regular expressions are supported natively in Flash Player 9 with ActionScript 3.0.

Introducing the RegExp Class

ActionScript 3.0 uses the RegExp class to define regular expressions. There are two basic ways
to construct a RegExp object. You can use the RegExp constructor or literal notation (that is, you
can type it in directly as you would type a string or a number). Which you choose is mainly a
matter of preference and usage. The constructor requires that you pass it at least one
parameter specifying the regular expression pattern as a string. The following example
constructs a RegExp object that matches any substring that contains between 4 and 8 lowercase
alphabetic characters:

var pattern:RegExp = new RegExp("[a-z]{4,8}");

Note that when you want to define a regular expression pattern at runtime, you ought to use
the constructor because it allows you to use a string value to define the expression. You can
build this string using code, allowing you to create patterns appropriate for the situation at
hand.

The literal notation surrounds the regular expression pattern by forward slashes (/). In the case
of literal notation, the pattern is not a string and therefore is not surrounded by quotes. The
following constructs a RegExp object that matches the same substrings as the preceding
example. However, rather than using the constructor, the following example uses literal
notation:

var pattern:RegExp = /[a-z]{4,8}/;

Note that when you want to add a backslash to a pattern that you build with the constructor,
you'll have to escape the backslash because the constructor requires that you specify the
pattern as a string and the backslash character has special meaning within a string. Many
regular expression metasequences use backslashes. For example, the \d metasequence matches
any digit. The following statement illustrates how to construct a RegExp object that matches any
digit. Because the example uses the constructor, it's necessary to escape the backslash.

var pattern:RegExp = new RegExp("\\d");

Because the backslash character doesn't have special meaning within regular expression literal
notation, the following is the literal notation equivalent of the preceding example:

var pattern:RegExp = /\d/;

However, because forward slashes have special meaning within regular expression literal
notation, you must escape forward slashes. You can escape forward slashes with backslashes.
The following matches the literal forward slash character:

var pattern:RegExp = /\//;

Working with Regular Expressions

You can work with regular expressions by way of the RegExp methods or by way of the String
methods that accept RegExp parameters. The methods are as follows.

RegExp.test()

RegExp.exec()

String.search()

String.replace()

String.match()

We'll next look at using these methods in the following sections.

Boolean Testing Regular Expressions

The test() method is a method of the RegExp class, and it accepts a string parameter. The
test() method returns true if the string parameter contains a substring that matches the
regular expression pattern. Otherwise it returns false. The following example uses a regular
expression that matches one or more lowercase characters. As you can see from the comments,
the test() method returns true or false depending on whether or not the regular expression
matches a substring in the string parameter.

var pattern:RegExp = /[a-z]+/;
var string:String = "abcd";
trace(pattern.test(string)); // true
string = "1234";
trace(pattern.test(string)); // false

Finding Matching Substring Indices

The search() method is a method of the String class, and it accepts a regular expression
parameter. The search() method returns the index of the first matching substring. The
following example locates the index of the first word that starts with the letter p:

var pattern:RegExp = /\bp[a-z]+/;
var string:String = "There is no path to peace. Peace is the path.";
trace(string.search(pattern)); // 12

The search() method always starts searching from the start of the string. The global flag and
lastIndex property have no effect on search() .

Retrieving Matching Substrings

The RegExp.exec() method and the String.match() method both enable you to retrieve
matching substrings using regular expressions. However, the two methods operate in different
ways.

The exec() method returns an array containing the substring matched. As discussed in the
section, "Using Regular Expression Groups ," later in this chapter, the array returned by exec()
can also contain group subpattern matches.

Even when the global flag is set, the exec() method only ever finds one match at a time. The
exec() method sets the lastIndex property of the RegExp object from which it was called to the
index immediately following the most recent matching substring. This arrangement allows you
to continue to apply the exec() method to a string, and it finds the next matching substring
each time. The exec() method uses the lastIndex property to determine that index from which
to start the next search. When no more matching substrings are found, exec() returns null and
resets lastIndex to 0. The following code illustrates the use of exec() as well as lastIndex .
When you run the code, you can see that after null is returned, the lastIndex property is reset
to 0. Following that, the method searches from the start of the string once again. The following
example outputs each word within the string, one at a time, along with the index of the last
character in the string that was previously examined:

var pattern:RegExp = /[a-z]+/ig;
var string:String = "There is no path to peace. Peace is the path.";
for(var i:uint = 0; i < 12; i++) {
 trace(pattern.exec(string));
 trace(pattern.lastIndex);
 }

The lastIndex property is a read-write property. That means you can set lastIndex so that it
specifies the starting index from which exec() ought to start searching.

The match() method returns an array of all the substrings that match the pattern. Use the
global flag to match all substrings. If you don't set the global flag, the match() method returns
an array with only the first matching substring. The following example illustrates the use of the
match() method.

// This expression will match strings that follow the rules of email
// address values.
var pattern:RegExp = /(?:\w|[_.\-])+@(?:(?:\w|-)+\.)+\w{2,4}/g;
var string:String = "emails: user@domain.com, user@server.com, email@example.com";
trace(string.match(pattern));
// user@domain.com, user@server.com, email@example.com

Replacing Substrings Using Regular Expressions

The replace() method is a String method that enables you to replace substrings using regular
expressions. When using regular expressions with the replace() method, use the global flag if
you want to replace all instances of a pattern or it will only replace the first instance. The
following example replaces all email address with <email>@<domain>.com .

var pattern:RegExp = /((?:\w|[_.\-])+)@(?:((?:\w|-)+)\.)+\w{2,4}+/;
var string:String = "The following was posted by user@domain.com.";

trace(string.replace(pattern, "<email>@<domain>.com"));
// outputs: The following was posted by <email>@<domain>.com.

For more complex replacements, you can specify a function reference for the second parameter
in place of the string. That function is then passed the following parameters:

The matching substring

Capturing groups (see "Using Regular Expression Groups ") (Note that if there are no
capturing groups then these parameters are omitted.)

The index of the matching substring

The original string

The function should return a string. The string the function returns is what gets substituted.

The following example uses a replacement function:

package {

 import flash.display.Sprite;

 public class RegularExpressions extends Sprite {

 public function RegularExpressions() {
 // The ?: sequences make the groups non-capturing as discussed in
 // the sections on groups in this chapter.
 var pattern:RegExp = /(?:\w|[_.\-])+@(?:(?:\w|-)+\.)+\w{2,4}/;
 var string:String = "The following was posted by user@domain.com.";
 trace(string.replace(pattern, replacer));
 // Prints out: The following was posted by user AT domain DOT com
 }

 // The regular expression doesn't have any capturing groups, so the
 // function only expects three parameters.
 private function replacer(match:String, index:int, originalString:String):String {
 var string:String = match.replace("@", " AT ");
 string = string.replace(/\./g, " DOT ");
 return string;
 }

 }

}

Using Regular Expression Flags

ActionScript lets you specify flags that affect how regular expressions work. Table 16.1 is a
comprehensive list of those flags.

g

Global

i

Ignore case

m

Multiline

s

Dot matches newlines

x

Extended notation allows spaces in regular expression patterns

Table 16.1. Regular Expression Flags

Flag Description

You can specify flags when you construct a RegExp object. When you use the constructor, you
specify the flags as a second string parameter. The following example matches all substrings of
4 to 8 alphabetical characters:

var pattern:RegExp = new RegExp("[a-z]{4,8}", "ig");

You can specify the flags with literal notation by adding the flag characters following the second
forward slash, as shown here:

var pattern:RegExp = /[a-z]{4,8}/ig;

The order in which you specify the flags makes no difference. Specifying igms is the same as
specifying sgim .

The Global Flag

By default, regular expressions match only the first instance of a pattern in a string. Obviously,
there are cases in which it's beneficial to be able to match every instance of a pattern, not just
the first instance. The global flag enables just that. Consider the following example. The pattern
matches whole words. By default, it finds only one matching substring.

var pattern:RegExp = /\b\w+\b/;
var string:String = "There is no path to peace. Peace is the path.";
trace(string.match(pattern).toString()); // There

The preceding code finds just the first substring because the global flag is not set. The following
changes the preceding example simply by setting the global flag. Notice that it then finds every
word.

var pattern:RegExp = /\b\w+\b/g;
var string:String = "There is no path to peace. Peace is the path.";
trace(string.match(pattern).toString()); // There,is,no,path,to,peace,Peace,is,
the,path

Note

Both examples in this section return arrays. Because the first example does not have
the global flag set, it returns only one element in the array.

The Ignore Case Flag

By default, ActionScript regular expressions make a distinction between lowercase and
uppercase characters. For example, A and a are not considered the equivalent by default. The
following code illustrates this. The pattern is supposed to match any continuous sequence of
lowercase characters bordered by non-word characters (such as a space). Notice that the first
matching substring it finds is the second word because the first word has an uppercase
character.

var pattern:RegExp = /\b[a-z]+\b/;
var string:String = "There is no path to peace. Peace is the path.";
trace(string.match(pattern)); // is

Setting the i flag causes the regular expression to ignore the distinction between uppercase and
lowercase characters. The following regular expression differs from the preceding code only by
the i flag being set. The following regular expression matches the first word in the string.

var pattern:RegExp = /\b[a-z]+\b/i;
var string:String = "There is no path to peace. Peace is the path.";
trace(string.match(pattern)); // There

The Multiline Flag

The ^ character matches the start of a string, and the $ character matches the end of a string by
default. Consider the following example in which the pattern looks for any sequence of
lowercase and uppercase characters, spaces, and dots in which the substring is at the start of
the string. Notice that the newline character (\n) delimits the substring, and even though the
global flag is set, the regular expression finds only one substring.

var pattern:RegExp = /^[a-zA-Z .]+/g;
var string:String = "There is no path to peace.\nPeace is the path.";
trace(string.match(pattern)); // There is no path to peace.

The multiline flag causes the ^ character to match both the start of the string and the start of
the second line, and the $ character to match both the end of the string and the end of the first
line. The following example is identical to the preceding code except that it also sets the
multiline flag. Notice that it now matches both lines from the string.

var pattern:RegExp = /^[a-zA-Z .]+/mg;
var string:String = "There is no path to peace.\nPeace is the path.";
trace(string.match(pattern)); // There is no path to peace.,Peace is the path.

The Dot Matches Newline Flag

The dot (.) character matches any character. However, it does not match the newline character
by default. The following example illustrates the default behavior. The pattern matches one or
more non-newline characters. Note that because the pattern does not match the newline
character, it matches the substring only up until the newline character.

var pattern:RegExp = /.+/;
var string:String = "There is no path to peace.\nPeace is the path.";
trace(string.match(pattern)); // There is no path to peace.

The s flag causes the dot to match every character including the newline character. The
following example illustrates the difference with the s flag.

var pattern:RegExp = /.+/s;
var string:String = "There is no path to peace.\nPeace is the path.";
trace(string.match(pattern));
/*
There is no path to peace.
Peace is the path.
*/

The Extended Flag

By default, spaces within patterns are interpreted literally. For complex regular expressions,
that fact can make the patterns difficult to read by humans. For the purposes of legibility, you
might want to add additional spaces to a pattern. If you want Flash Player to ignore additional
spaces added for the purposes of legibility, you can set the x flag. Consider the following
example that matches an email address:

var pattern:RegExp = /(\w|[_.\-])+@((\w|-)+\.)+\w{2,4}+/;

var string:String = "email@address.com";
trace(pattern.test(string)); // true

The pattern is complex and perhaps difficult to read. You can make it more legible by adding
spaces, as follows:

var pattern:RegExp = / (\w | [_.\-])+ @ ((\w | -)+ \.)+ \w{2,4}+ /;
var string:String = "email@address.com";
trace(pattern.test(string)); // false

In the preceding example, the x flag is not set, so the spaces are interpreted literally, and the
test evaluates to false. The following example evaluates to true because the x flag is set so that
the additional spaces are ignored.

var pattern:RegExp = / (\w | [_.\-])+ @ ((\w | -)+ \.)+ \w{2,4}+ /x;
var string:String = "email@address.com";
trace(pattern.test(string)); // true

If you want to match a literal space when the x flag is set, you can use a backslash to escape
the space, as shown here:

var pattern:RegExp = /a\ b/x;
var string:String = "a b";
trace(pattern.test(string)); // true

Understanding Metacharacters and Metasequences

Regular expressions are composed of standard characters such as letters and numbers as well
as special characters and sequences called metacharacters and metasequences. These
metacharacters and metasequences are what enable regular expressions to match abstract
patterns. For example, using the metasequence \d, you can match any digit, which is more
abstract than matching a specific digit.

The metacharacters used by regular expressions enable you to match specific parts of a string,
group characters, and even perform logical operations. The list of metacharacters used by
regular expressions is relatively short. The metacharacters are summarized in Table 16.2.

Table 16.2. Metacharacters Used in Regular Expressions

Metacharacter Description

^ The start of the string or the start of a line when the m flag is set

$ The end of a string or the end of a line when the m flag is set

\ Escape a metacharacter or metasequence so it is interpreted literally

. Any character; includes the newline character only when the s flag is set

* Zero or more occurrences of the preceding item

+ One or more occurrences of the preceding item

? Zero or one occurrences of the preceding item

() A group

[] A character class

| Either the item on the left or the item on the right

The metasequences are sequences of characters that are interpreted in a specific manner by
regular expressions. Table 16.3 summarizes the regular expression metasequences.

Table 16.3. Metasequences Used in Regular Expressions

Metasequence Description

{n} n occurrences of the preceding item

{n,} n or more occurrences of the preceding item

{n,m} Between n and m occurrences of the preceding item

Metasequence Description

\A The start of the string

\b The border between a word character (a-z, A-Z, 0-9, or _) and a non-
word character including the start and end of a string

\B The border between two word characters or two non-word characters

\d Any digit

\D Any non-digit

\n Newline

\r Return

\s Any whitespace character

\S Any non-whitespace character

\t Tab

\unnnn The Unicode character represented by the character code nnnn

\w Any word character (a-z, A-Z, 0-9, or _)

\W Any non-word character

\xnn The character represented by the ASCII value nn

\z The end of the string including any final newline character

\Z The end of the string excluding any final newline character

Using Character Classes

Character classes are denoted by square brackets ([]), and they enable you to specify a set of
characters for one position within a regular expression. For example, the following regular
expression uses a character class to match any substring that starts with b, followed by any
vowel, and ending with a t.

var pattern:RegExp = /b[aeiou]t/g;
var string:String = "The bat lost the bet, but he didn't mind a bit.";
trace(string.match(pattern)); // bat,bet,but,bit

Most metacharacters and metasequences aren't interpreted as such within a character class. For
example {5} is interpreted literally as the digit 5 and the right and left curly brace characters
when placed within a character class. The exceptions are the metasequences \n, \r, \t, \unnnn,
and \xnn. In addition, the ,], and \ characters have special meaning within character classes.

The - (hyphen) character within a character class can indicate a range of characters. For
example, the following code defines a regular expression that matches any lowercase
alphabetical character:

var pattern:RegExp = /[a-z]/;

You can define valid ranges of uppercase and lowercase alphabetical characters, digits, and

\A The start of the string

\b The border between a word character (a-z, A-Z, 0-9, or _) and a non-
word character including the start and end of a string

\B The border between two word characters or two non-word characters

\d Any digit

\D Any non-digit

\n Newline

\r Return

\s Any whitespace character

\S Any non-whitespace character

\t Tab

\unnnn The Unicode character represented by the character code nnnn

\w Any word character (a-z, A-Z, 0-9, or _)

\W Any non-word character

\xnn The character represented by the ASCII value nn

\z The end of the string including any final newline character

\Z The end of the string excluding any final newline character

Using Character Classes

Character classes are denoted by square brackets ([]), and they enable you to specify a set of
characters for one position within a regular expression. For example, the following regular
expression uses a character class to match any substring that starts with b, followed by any
vowel, and ending with a t.

var pattern:RegExp = /b[aeiou]t/g;
var string:String = "The bat lost the bet, but he didn't mind a bit.";
trace(string.match(pattern)); // bat,bet,but,bit

Most metacharacters and metasequences aren't interpreted as such within a character class. For
example {5} is interpreted literally as the digit 5 and the right and left curly brace characters
when placed within a character class. The exceptions are the metasequences \n, \r, \t, \unnnn,
and \xnn. In addition, the ,], and \ characters have special meaning within character classes.

The - (hyphen) character within a character class can indicate a range of characters. For
example, the following code defines a regular expression that matches any lowercase
alphabetical character:

var pattern:RegExp = /[a-z]/;

You can define valid ranges of uppercase and lowercase alphabetical characters, digits, and

ASCII character codes. If you use a - character such that it does not define a valid range, then
it will be interpreted literally. For example, the following defines a character class that matches
all lowercase characters, digits, and the - character:

var pattern:RegExp = /[a-z-0-9]/;

The] character closes a character class. If you want to match the literal] character within a
character class, you have to escape it. The backslash character (\) is the escape character. The
following example matches all lowercase characters or the right square bracket character:

var pattern:RegExp = /[a-z\]]/;

If you want to match the literal backslash character, you can escape it with a preceding
backslash character. The following matches any lowercase character or the backslash character:

var pattern:RegExp = /[a-z\\]/;

Working with Quantifiers

The metacharacters and metasequences *, +, ?, {n}, {n,}, and {n,m} are quantifiers. They allow
you to specify repetitions within patterns. Quantifiers are applied to the item preceding them.
An item can be a character, metasequence, character class, or group.

The following example uses the + operator to find all the substrings that consist of alphabetical
characters:

var pattern:RegExp = /[a-z]+/ig;
var string:String = "There is no path to peace. Peace is the path.";
trace(string.match(pattern)); // There,is,no,path,to,peace,Peace,is,the,path

The following code matches only the words that are 4 or 5 characters:

var pattern:RegExp = /[a-z]{4,5}/ig;
var string:String = "There is no path to peace.\nPeace is the path.";
trace(string.match(pattern)); // There,path,peace,Peace,path

Using Regular Expression Groups

Regular expression groups are denoted by parentheses. You can use groups for the following
basic purposes:

Add quantifiers to more than one character

Add more control to logical or operations

Remember subpattern matches for subsequent use in the code

Quantifiers apply to the preceding item. The preceding item might be a character,
metasequence, character code, or group. The following example uses a regular expression that
matches substrings with an is followed by one or more s characters:

var pattern:RegExp = /iss+/g;
var string:String = "Mississippi";
trace(string.match(pattern)); // iss,iss

The following example matches all substrings composed of one or more iss sequences:

var pattern:RegExp = /(iss)+/g;
var string:String = "Mississippi";
trace(string.match(pattern)); // ississ

The | character normally matches the entire pattern on either side of the character. For
example, the following code uses a regular expression that matches either re or ad :

var pattern:RegExp = /re|ad/g;
var string:String = "red is rad";
trace(string.match(pattern)); // re,ad

If parentheses are used, then the | operates on just the characters surrounded by the
parentheses as shown in the following example:

var pattern:RegExp = /r(e|a)d/g;
var string:String = "red is rad";
trace(string.match(pattern)); // red,rad

Parentheses also enable you to use backreferences. Backreferences allow you to reference a
grouped substring within the regular expression. You can reference each group numerically
from 1 to 99. The following illustrates a backreference:

var pattern:RegExp = /(\d) = \1/g;
var string:String = "1 = 1, 2 = 1 + 1, 3 = 1 + 1 + 1, 4 = 4";
trace(string.match(pattern)); // 1 = 1,4 = 4

In the preceding example, the \1 references the first group in the regular expression: the
substring matched by (\d). The following is a similar example. Notice that in this case, the
pattern doesn't match 2 = 2 because the grouped substring must consist of two digits:

var pattern:RegExp = /(\d\d) = \1/g;
var string:String = "20 = 20, 2 = 2, 3 = 1 + 1 + 1, 40 = 40";
trace(string.match(pattern)); // 20 = 20,40 = 40

The following example uses two backreferences:

var pattern:RegExp = /(\d)(\d) = \2\1/g;
var string:String = "42 = 24, 2 = 2, 3 = 1 + 1 + 1, 40 = 40";
trace(string.match(pattern)); // 42 = 24

You can use $1 tHRough $99 as references to grouped substrings when using the
String.replace() method. The following example illustrates how to use these references:

[View full width]var pattern:RegExp = /([a-z]+) function ([a-zA-Z]+)\(\):([a-zA-Z]+)/g;
var string:String = "public function example():void";
trace(string.replace(pattern, "The function called $2 is declared as $1 with a return type
 of $3"));

When you call the RegExp.exec() method, it returns an array with the current matching
substring as well as any grouped substring.

var pattern:RegExp = /([a-z]+) function ([a-zA-Z]+)\(\):([a-zA-Z]+)/g;
var string:String = "public function example():void { trace('example');}";
var substrings:Array = pattern.exec(string);
trace(substrings[0]); // public function example():Void
trace(substrings[1]); // public
trace(substrings[2]); // example
trace(substrings[3]); // void

You can also defined named groups using ?P<groupName> immediately following the opening
parenthesis. In this case, RegExp.exec() returns an associative array where the names of the
captured groups are keys of the array. The entire matched string is still returned in the first
index. The following example is a rewrite of the preceding code such that it uses named groups:

[View full width]var pattern:RegExp = /(?P<modifier>[a-z]+) function (?P<functionName>[a-zA-Z]+)\(\):(
?P<returnType>[a-zA-Z]+)/g;
var string:String = "public function example():void {trace('example');}";
var substrings:Array = pattern.exec(string);
trace(substrings[0]);
trace(substrings.modifier);
trace(substrings.functionName);
trace(substrings.returnType);

You can also instruct the regular expression not to capture a group. For example, you might
want to use a group with a quantifier, but without capturing the group. In such cases, you can

use ?: immediately following the opening parenthesis. The following example uses a standard
capturing group. Notice that the array returned by exec() has two elements because it captures
the subpattern.

var pattern:RegExp = /i(s|p){2}/;
var string:String = "Mississippi";
trace(pattern.exec(string)); // iss,s

The following code rewrites the preceding example such that it uses a non-capturing group. In
this example, the array returned by exec() has just one element:

var pattern:RegExp = /i(?:s|p){2}/;
var string:String = "Mississippi";
trace(pattern.exec(string)); // iss

Lookahead groups are non-capturing groups that can be either positive (the subpattern must
appear) or negative (the subpattern must not appear.) Positive lookahead groups are denoted
by ?= following the opening parenthesis. A positive lookahead group says that the specified
subpattern must appear in that position, but it will not be included in the match. Frequently,
positive lookahead groups are used to match patterns that are followed by a specific pattern.
For example, consider a string that contains filenames with file extensions. If you want to
retrieve the filenames minus the file extensions from the string, you can use a positive
lookahead group as in the following example:

var pattern:RegExp = /[a-z]+(?=\.[a-z]+)/g;
var string:String = "Copy the program.exe and run.bat files. Move file.txt.";
trace(string.match(pattern)); // program,run,file

You can use positive lookahead groups for complex patterns that would be extremely difficult or
impossible to match otherwise. Consider the example of an alphanumeric password that must
be between 6 and 20 characters and must contain at least 2 digits as well as at least 1
lowercase and 1 uppercase character. The following example uses positive lookahead groups to
accomplish that goal:

var pattern:RegExp = /(?=.*\d.*\d)(?=.*[a-z])(?=.*[A-Z])[a-zA-Z0-9]{6,20}/;
var string:String = "a1b2cd3e4"; // No uppercase
trace(pattern.test(string)); // false
string = "aBcdefg"; // No digits
trace(pattern.test(string)); // false
string = "a1B2cd3e4";
trace(pattern.test(string)); // true

Negative lookahead groups are denoted by ?! . Negative lookahead groups work just like
positive lookahead groups, but they define subpatterns that must not appear. The following
example uses a negative lookahead group to match all filenames (with file extensions) that
don't have the file extension .txt .

var pattern:RegExp = /[a-z]+(?!\.txt)\.([a-z]+)/g;
var string:String = "Copy the program.exe and run.bat files. Move file.txt.";
trace(string.match(pattern)); // program.exe,run.bat

The following example rewrites the preceding regular expression slightly so that it matches all
filenames except those that have file extensions of .txt or .bat :

var pattern:RegExp = /[a-z]+(?!\.txt|\.bat)\.([a-z]+)/g;
var string:String = "Copy the program.exe and run.bat files. Move file.txt.";
trace(string.match(pattern)); // program.exe

Building a Mad Libs Application Using Regular

Expressions

In this example application, we'll use regular expressions to build a Mad Lib application. Mad
Libs are the fill-in-the-blank word games that prompt the user to specify words without knowing
the context of the words. The words are then used to fill in the blanks of a story, often with
humorous results.

The Mad Lib application we'll build consists of the following elements:

MadLibTextElementData : A data model class for each text element, whether plain text or
substitutable text.

MadLibInputItemData : A data model class for each of the word blanks that stores both the
original value from the text file and the user-provided value that is substituted for the
original. MadLibInputItemData is a subclass of MadLibTextElementData .

MadLibData : A data model class for the entire story. The data model consists of several
arrays of MadLibInputItemData and MadLibTextElementData objects. The class loads the
data from a text file; after the data has loaded, it dispatches an event to all listeners.
MadLibData is a Singleton class (see Chapter 4 , "Singleton Pattern ," for more
information).

MadLibInputItem : A control that allows the user to input a word. MadLibInputItem objects
use MadLibInputItemData objects as their data models.

FormScreen : A view class that renders the form of MabLibIinputItem controls for each of
the word blanks from the MadLibData instance.

ResultScreen : A view class that renders the story with the user-substituted words.

MadLibs : The main class that renders a FormScreen and ResultScreen instance, and uses
buttons to allow the user to toggle between the screens.

Additionally, the application has to load text from a file to use as the Mad Libs text. To start,
create a file called madlibstory.txt in the deploy directory for the application. Then add the
following text to the document.

There was once an old <type of building>, that stood in the middle of a deep gloomy
wood, and in the <type of building> lived an old fairy. Now this fairy could take
any shape she pleased. All the day long she flew about in the form of a/n <something
that flies>, or crept about the country like a/n <something that moves on land>; but
at night she always became an old woman again. When any young man came within a
hundred paces of her castle, he became quite fixed, and could not move a step till
she came and set him free; which she would not do till he had given her his word
never to <something you like to do> again: but when any pretty maiden came within
that space she was changed into a/n <something that goes in a cage>, and the fairy
put her into a cage, and hung her up in a chamber in the castle. There were seven
hundred of these cages hanging in the castle, and all with beautiful <something that

goes in a cage> in them.

The words and phrases that appear within <> are the word blanks. The application uses regular
expressions to substitute those values.

Creating the Data Model Classes

As described previously, the Mad Libs application uses several data model classes. The first
class we'll define is the data model class for each text element used in the application. A text
element could be a substitutable or non-substitutable portion of the application. Define the
com.peachpit.aas3wdp.madlibs.data.MadLibTextElementData class as follows:

package com.peachpit.aas3wdp.madlibs.data {

 import flash.events.EventDispatcher;
 import flash.events.Event;

 public class MadLibTextElementData extends EventDispatcher {

 public static const UPDATE:String = "update";

 private var _data:String;

 public function get data():String {
 return _data;
 }

 public function set data(value:String):void {
 _data = value;
 dispatchEvent(new Event(UPDATE));
 }

 public function MadLibTextElementData(value:String = "") {
 _data = value;
 }

 }
}

This class simply holds the string value for a text element, whether substitutable or non-
substitutable.

Next, we'll create the data model class that is specific to substitutable text. This class is called
MadLibInputItemData , and it extends MadLibTextElementData . This class stores one additional
piece of data: the label to use for the input. Define
com.peachpit.aas3wdp.madlibs.data.MadLibInputItemData as follows:

package com.peachpit.aas3wdp.madlibs.data {

 import flash.events.EventDispatcher;
 import flash.events.Event;

 public class MadLibInputItemData extends MadLibTextElementData {

 private var _label:String;

 // The default label includes <>. Use a regular expression
 // to return the value between the <>.
 public function get labelFormatted():String {
 var pattern:RegExp = /[a-z]+/i;
 return _label.match(pattern)[0];
 }

 public function get label():String {
 return _label;
 }

 public function set label(value:String):void {
 _label = value;
 }

 public function MadLibInputItemData(value:String) {
 _label = value;
 }

 }
}

Next we'll create a class to serve as the data model for the entire Mad Libs application. This is
the most complex of the data model classes. It should store collections of instances of the other
data model classes. The class should then define an interface that allows access to those
collections using iterators. Define com.peachpit.aas3wdp.madlibs.data.MadLibData as follows:

package com.peachpit.aas3wdp.madlibs.data {

 import com.peachpit.aas3wdp.collections.ICollection;
 import com.peachpit.aas3wdp.iterators.ArrayIterator;
 import com.peachpit.aas3wdp.iterators.IIterator;

 import flash.events.Event;
 import flash.events.EventDispatcher;
 import flash.net.URLLoader;
 import flash.net.URLRequest;

 public class MadLibData extends EventDispatcher {

 private var _items:Array;
 private var _textElements:Array;

 private static var _instance:MadLibData;

 public static const UPDATE:String = "update";
 public static const INPUT_ITEMS:String = "inputItems";
 public static const ALL_ITEMS:String = "allItems";

 public function MadLibData(enforcer:SingletonEnforcer) {
 }

 public static function getInstance():MadLibData {

 if(_instance == null) {
 _instance = new MadLibData(new SingletonEnforcer());
 }
 return _instance;
 }

 // Load the data from a specified location.
 public function load(file:String):void {
 var loader:URLLoader = new URLLoader();
 var request:URLRequest = new URLRequest(file);
 loader.addEventListener(Event.COMPLETE, onData);
 loader.load(request);
 }

 // Return an iterator of either all the text elements
 // (inclusive of the input items) or just the input items.
 public function iterator(type:String = ALL_ITEMS):IIterator {
 if(type == INPUT_ITEMS) {
 return new ArrayIterator(_items);
 }
 else {
 return new ArrayIterator(_textElements);
 }
 }
 // The onData() method is the listener that gets called
 // when the text data loads.
 private function onData(event:Event):void {

 // Retrieve the data from the URLLoader.
 var text:String = String(event.target.data);

 // Define a regular expression that will match all
 // the substitutable text.
 var expression:RegExp = /<[a-z0-9]+>/ig;

 // Match all the substitutable items.
 var items:Array = text.match(expression);

 // The _items array stores references to the
 // MadLibInputItemData objects. The _textElements
 // array stores references to all the text elements,
 // including the input items.
 _items = new Array();
 _textElements = new Array();

 // Make an array of all the text element text.
 var textElementsText:Array = text.split(expression);

 var index:uint = 0;
 var item:MadLibInputItemData;
 var newItem:Boolean;

 // Loop through all the matched items.
 for(var i:uint = 0; i < items.length; i++) {

 // With each iteration initially assume the

 // input item is new.
 newItem = true;

 // Create a new MadLibInputItemData object.
 item = new MadLibInputItemData(String(items[i]));

 // Loop through all the items already stored
 // in the _items array. If the current item
 // label is equal to that of an existing
 // item in the array, then use the existing
 // item, and don't add the new item to the
 // _items array.
 for(var j:uint = 0; j < _items.length; j++) {
 if(item.label == _items[j].label) {
 item = _items[j];
 newItem = false;
 break;
 }
 }
 if(newItem) {
 _items.push(item);

 // Listen for UPDATE events from the
 // item.
 item.addEventListener(MadLibTextElementData.UPDATE, onUpdate);
 }

 // Add the text element for the non-
 // substitutable text.
 _textElements[index] = new MadLibTextElementData(String(textElementsText
 [index]));

 // Add the text element for the
 // substitutable text.
 _textElements.splice(index + 1, 0, item);

 // Increment the index by 2 since each
 // iteration adds two items to the
 // _textElements array.
 index += 2;
 }

 // Notify listeners that the data model has updated.
 dispatchEvent(new Event(UPDATE));
 }

 private function onUpdate(event:Event):void {
 dispatchEvent(new Event(UPDATE));
 }

 }
}
class SingletonEnforcer {}

Creating the Input Control

Next we'll create a class to use as an input control. The Mad Lib application consists of two
screens: one that accepts user input and one that displays the results of the input combined
with the story. The MadLibInputItem class defines the input control elements used on the form
screen. This class uses MadLibInputItemData as a data model. Define
com.peachpit.aas3wdp.madlibs.controls.MadLibInputItem as follows:

package com.peachpit.aas3wdp.madlibs.controls {

 import flash.display.Sprite;
 import flash.text.TextField;
 import flash.events.TextEvent;
 import com.peachpit.aas3wdp.madlibs.data.MadLibInputItemData;

 public class MadLibInputItem extends Sprite {

 private var _label:TextField;
 private var _value:TextField;
 private var _data:MadLibInputItemData;

 public function MadLibInputItem(data:MadLibInputItemData) {
 _data = data;

 // Add a text field to display the input label.
 _label = new TextField();
 _label.autoSize = "left";
 _label.text = data.labelFormatted;
 addChild(_label);

 // Add an input text field for the user value.
 _value = new TextField();
 _value.type = "input";
 _value.border = true;
 _value.background = true;
 _value.width = 200;
 _value.height = 20;
 _value.x = 200;
 addChild(_value);

 // Listen for TEXT_INPUT events.
 _value.addEventListener(TextEvent.TEXT_INPUT, onText);
 }

 // When the user updates the text, update the value stored
 // in the data model.
 private function onText(event:TextEvent):void {
 _data.data = event.target.text + event.text;
 }

 }
}

Creating the View Classes

Now we'll create the two screens used by the application. Each uses MadLibsData as the data
model. However, each displays the data in different ways. The first class, FormScreen , displays
just the inputs for substitutable text. Define
com.peachpit.aas3wdp.madlibs.views.screens.FormScreen as follows:

package com.peachpit.aas3wdp.madlibs.views.screens {

 import com.peachpit.aas3wdp.iterators.IIterator;
 import com.peachpit.aas3wdp.madlibs.controls.MadLibInputItem;
 import com.peachpit.aas3wdp.madlibs.data.MadLibData;
 import com.peachpit.aas3wdp.madlibs.data.MadLibInputItemData;

 import flash.display.Sprite;
 import flash.events.Event;

 public class FormScreen extends Sprite {

 public function FormScreen(data:MadLibData) {
 data.addEventListener(MadLibData.UPDATE, onUpdate);
 }

 private function onUpdate(event:Event):void {
 // If the screen hasn't already drawn itself, then
 // add input items for each of the elements from the
 // data model's INPUT_ITEMS iterator.
 if(numChildren == 0) {
 var data:MadLibData = MadLibData(event.target);
 var iterator:IIterator = data.iterator(MadLibData.INPUT_ITEMS);
 var item:MadLibInputItem;
 var y:Number = 0;
 while(iterator.hasNext()) {
 item = new MadLibInputItem(MadLibInputItemData(iterator.next()));
 item.y = y;
 y += 25;
 addChild(item);
 }
 }
 }
 }
 }

Now we'll create the screen that displays the results of the user input. This screen displays both
the non-substitutable text as well as the user input text in place of the substitutable text. Define
com.peachpit.aas3wdp.madlibs.views.screens.ResultScreen as follows.

package com.peachpit.aas3wdp.madlibs.views.screens {

 import flash.display.Sprite;
 import com.peachpit.aas3wdp.madlibs.data.MadLibData;
 import com.peachpit.aas3wdp.madlibs.data.MadLibTextElementData;
 import com.peachpit.aas3wdp.iterators.IIterator;
 import flash.text.TextField;
 import flash.events.Event;

 public class ResultScreen extends Sprite {

 private var _text:TextField;

 public function ResultScreen(data:MadLibData) {
 data.addEventListener(MadLibData.UPDATE, onUpdate);

 // Add a text field to display the story.
 _text = new TextField();
 _text.width = 400;
 _text.height = 400;
 _text.multiline = true;
 _text.wordWrap = true;
 addChild(_text);
 }

 // When the data model dispatches an UPDATE event, update
 // the text correspondingly.
 private function onUpdate(event:Event):void {
 var data:MadLibData = MadLibData(event.target);
 _text.text = "";
 var iterator:IIterator = data.iterator(MadLibData.ALL_ITEMS);
 while(iterator.hasNext()) {
 _text.appendText(MadLibTextElementData(iterator.next()).data);
 }

 }

 }

}

Defining the Main Class

We have yet to create the main class that puts the application together. In this class, we create
instances of the two screens and use buttons to toggle between the screens. You'll need to
ensure that the AAS3WDP library is in your project's class path for this to work. Here's the main
class.

package {

 import flash.display.Sprite;
 import flash.events.Event;
 import flash.events.MouseEvent;
 import com.peachpit.aas3wdp.madlibs.data.MadLibData;
 import com.peachpit.aas3wdp.controls.BasicButton;
 import com.peachpit.aas3wdp.madlibs.views.screens.FormScreen;
 import com.peachpit.aas3wdp.madlibs.views.screens.ResultScreen;

 public class MadLibs extends Sprite {

 private var _data:MadLibData;
 private var _formScreen:FormScreen;
 private var _resultScreen:ResultScreen;

 private var _formButton:BasicButton;
 private var _resultButton:BasicButton;

 public function MadLibs() {

 // Tell the data model to load the data from the
 // text file.
 _data = MadLibData.getInstance();
 _data.load("madlibstory.txt");

 // Add the two screens. Only add the form screen to
 // the display list.
 _formScreen = new FormScreen(_data);
 _formScreen.y = 25;
 addChild(_formScreen);
 _resultScreen = new ResultScreen(_data);
 _resultScreen.y = 25;

 // Add buttons for toggling between the screens.
 _formButton = new BasicButton("Mad Lib Form");
 _formButton.addEventListener(MouseEvent.CLICK, onFormScreen);
 addChild(_formButton);
 _resultButton = new BasicButton("Story");
 _resultButton.addEventListener(MouseEvent.CLICK, onResultScreen);
 _resultButton.x = _formButton.width;
 addChild(_resultButton);
 }

 private function onResultScreen(event:Event):void {
 if (contains(_resultScreen)) return;
 removeChild(_formScreen);
 addChild(_resultScreen);
 }

 private function onFormScreen(event:Event):void {
 if (contains(_formScreen)) return;
 removeChild(_resultScreen);
 addChild(_formScreen);
 }

 }

}

When you test the application, you ought to be presented initially with the form screen with
input controls for each of the substitutable elements from the story. After you've entered a
value for each input control, click the story button to toggle to the ResultScreen view. Then you
will see the story with the new words substituted for the original placeholders.

Because the application uses regular expressions to parse the text data, you can quite easily
change the story and/or the substitutable elements. Regardless of how you edit the text in the
madlibstory.txt file, the application will parse it and interpret any text in between the <> as
substitutable text.

Summary

Regular expressions are a powerful way to find substrings that match a pattern. In this chapter,
you've seen how to construct RegExp objects and use them to match substrings by using the
RegExp and String methods that support regular expressions.

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

AAS3WDP library

abstract classes

 Composite pattern interfaces

 Decorator pattern

 Factory/Template Method patterns

 State pattern

abstract decorator class, creating

abstract methods

AbstractBasicShape class

AbstractReader class

AbstractReaderDecorator class

AbstractShooterState class

access

 Decorator pattern

 instances

 objects in collections

accessors, E4X properties

actors

 primary

 UML

Adapter pattern

addEventListener() method 2nd

adding

 behavior to objects [See also Decorator pattern.]

 bevel shapes

 controllers 2nd

 decorator classes

 getter methods

 instances to Command property

 multiple class definitions

 non-commutative decorators

 redo buttons

 redo/undo functionality

 resize handlers

 shapes

 static methods

 text to Decorator patterns

 types to Decorator patterns

 undo buttons 2nd

 views

addItem() method 2nd

advantages

 of composition

 of inheritance

aggregation, relationships

alternative scenarios

AMFPHP

analog clocks

analysis phase

APIs (Application Programming Interfaces)

 Flikr

 formalizing

Application Programming Interfaces [See APIs (Application Programming Interfaces).]

applications

 analysis phase

 Command pattern

 building

 testing

 composition

 coupling

 design 2nd

 encapsulation

 implementation phase

 inheritance

 Mad Libs

 MVC [See also MVC (Model View Controller).]

 Singleton pattern [See also Singleton pattern.]

 testing

 undoable actions

applying

 events

 Iterator pattern

 null iterators

 polymorphism

 Proxy patterns

 regular expressions

 search proxy

ArrayIterator instance

arrays

 command histories

 concrete iterators

 defining iterators

 exposing

 Iterator pattern

 queuing requests

Assert class

association

 instances

 relationships

asynchronous unit tests, creating

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

basic unit tests, creating

BasicButton class

behavior

 drawbacks of inheritance

 events

 State pattern [See also State pattern.]

BevelShape class

Boolean testing, regular expressions

bubble phase, events

building [See also design.]

 applications

 Command pattern

 Mad Libs

 undoable actions

 commutative decorators

 MVC patterns

 Proximity game

 reader decorators

 redoable actions

 Singleton patterns

 visual decorators

ButtonImp class

buttons

 creating

 redo

 undo 2nd

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

caching data

calculations, State pattern [See also State pattern.]

calling

 Flash Remoting

 object invokers

capture phase, events

caretakers

Circle class

circular references, troubleshooting

class responsibility and collaboration cards [See CRC cards.]

classes

 abstract

 Composite pattern interfaces

 Decorator pattern

 State pattern

 AbstractBasicShape

 AbstractReader

 AbstractReaderDecorator

 AbstractShooterState

 Assert

 BasicButton

 BevelShape

 ButtonImp

 Circle

 ColorableShape

 commands

 CommandStack

 concrete collections

 concrete decorated

 conventions

 creating

 data model

 Decorator pattern

 defining

 collections

 controllers

 determining

 differentiating between types

 Directory 2nd

 DraggableShape

 EventDispatcher

 File

 FileSystemItem

 Help

 IconButton

 interfaces

 iteration

 leaf elements

 LimerickData

 LimerickView

 LineReader

 main

 creating

 E4X

 editing

 events

 loading text

 regular expressions

 State pattern 2nd

 updating

 Namespace

 null iterators

 PhotoSearchProxy

 PieceData

 Product

 properties

 QName

 redo buttons

 RegExp

 relationships

 ResizableShape

 RotateClockwiseCommand

 RotateCounterclockwiseCommand

 ScaleDownCommand

 ScaleUpCommand

 Settings

 ShooterStateMachine

 SimpleShooter

 SimpleShooterExample

 Singleton patterns [See also Singleton patterns.]

 SortedReader

 StringReader

 Time

 UIntCollection

 UML

 undo buttons 2nd

 UnitCollection

 view

 WordReader

 XML

 XMLList

clients, instantiation

clocks

 analog

 data models

 testing

 views

closure, methods

code

 conventions

 Factory Method pattern [See also Factory Method pattern.]

collaborators, determining

collections

 classes

 concrete collection class

 cursors

 interfaces

 iterating

 navigating

 null iterators

 requests

ColorableShape class

Command pattern

 applications

 implementing

 interfaces

 Proximity game

 redoable actions

 undoable actions

CommandButton constructor

CommandFactory, updating 2nd

commands [See also Command pattern.]

 classes

 concrete

 containers

 creating

 moving

 editing

 formatting

 histories

 mementos [See also Memento pattern.]

 recording

 redoable actions

 undoable actions

 creating

 defining types

CommandStack class

communication, optimizing

commutative decorators, building

COMPLETE event

components, reusable [See also Command pattern.]

Composite pattern

 elements

 file systems

composition

concrete collection class

concrete command

concrete decorated class 2nd 3rd

concrete decorator class 2nd

concrete iterators

configuring

 abstract decorator class

 analysis phase

 applications

 Command pattern

 Mad Libs

 undoable actions

 asynchronous unit tests

 basic unit tests

 buttons

 classes

 Decorator pattern

 main

 commands

 classes

 undoable actions

 commutative decorators

 containers

 CRC cards

 interfaces

 MVC patterns

 objects

 originators

 Proximity game

 reader decorators

 receiver types

 redoable actions

 search proxy

 Settings class

 Singleton patterns

 state objects

 visual decorators

 XML documents

constants

 conventions

 State pattern

constructors

 CommandButton

 FileSystemItemView

constructs, explicit interfaces

containers

 creating

 moving

controllers

 adding 2nd

 classes

 MVC

controls, input

conventions

 abstract classes

 classes

 code

 constants

 functions

 interfaces

 naming 2nd

 packages

 Singleton patterns

 variables

conversion, testing

counting references

coupling

CRC (class responsibility and collaboration) cards 2nd

createField() method

current() method

cursors

 collections

 command histories

customizing [See also configuring.]

 applications

 Command pattern

 Mad Libs

 undoable actions

 commutative decorators

 E4X events

 MVC patterns

 Proximity game

 reader decorators

 redoable actions

 Singleton patterns

 visual decorators

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

data model classes

data.txt file

debugging [See also troubleshooting.]

 Decorator pattern

 State pattern

decorated property

Decorator pattern

 abstract classes

 access

 classes

 commutative/visual decorators

 debugging

 elements

 implementing

 interfaces

 reader decorators

 testing 2nd

 types

defining

 classes

 collections

 controller

 collection interfaces

 concrete decorated class 2nd

 concrete decorator class

 Factory Method pattern

 Help class

 interfaces 2nd

 iterators

 types

 Memento pattern

 undoable actions

degrees, testing

delegating requests

deleting events

deserialization, Flash Remoting

design

 abstract decorator class

 analysis phase

 applications

 Command pattern

 Mad Libs

 undoable actions

 asynchronous unit tests

 basic unit tests

 buttons

 classes

 Decorator pattern

 main

 commands

 classes

 undoable actions

 commutative decorators

 containers

 CRC cards

 interfaces

 MVC patterns

 objects

 originators

 Proximity game

 reader decorators

 receiver types

 redoable actions

 search proxy

 Settings class

 Singleton patterns

 state objects

 visual decorators

 XML documents

destroying state objects

development [See also design.]

 Adapter pattern

 Command pattern

 applications

 implementing

 interfaces

 Proximity game

 redoable actions

 undoable actions

 Composite pattern

 elements

 file systems

 Decorator pattern

 abstract classes

 access

 classes

 commutative/visual decorators

 debugging

 elements

 implementing

 interfaces

 reader decorators

 testing 2nd

 Façade pattern

 Factory Method 2nd 3rd

 Iterator pattern

 applying

 elements

 interfaces 2nd

 null iterators

 troubleshooting

 MVC pattern

 adding controllers

 building

 elements

 implementing models

 multiple views

 Proxy pattern

 flash.utils.Proxy

 image loaders

 Remote Proxy

 serialization

 Virtual Proxy

 Singleton pattern

 building

 invoking

 object instantiation

 settings frameworks

 static members

 State pattern

 abstract classes

 encapsulation

 example of

 main class 2nd

 objects 2nd

 state machines

 transitions

 troubleshooting

 Template Method pattern

digital clocks

 testing

 views

directories, leaf elements

Directory class 2nd

disadvantages

 of composition

 of inheritance

dispatchers (events) 2nd

dispatchEvent() method

Document View Implementation (MVC)

documents [See also text.]

 analysis phase

 XML [See also XML.]

dot matches newline flag

DraggableShape class

dragging and dropping [See also copying; moving.]

drawing

 circles

 rectangles

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

E4X (ECMAScript for XML)

 events

 filtering

 main class

 namespaces

 property accessors

 SOAP-formatted XML

 Web services

ECMAScript for XML [See E4X.]

editing

 CommandFactory 2nd

 commands

 main class

elements

 basic unit tests

 Command pattern

 Composite pattern

 implementing

 leaf

 Decorator pattern

 events

 Iterator pattern

 Memento pattern

 MVC

enabling

 iterators

 polymorphism 2nd

 undoable actions

encapsulation

 Command pattern [See also Command pattern.]

 design 2nd

 Memento pattern [See also Memento pattern.]

 State pattern 2nd [See also State pattern.]

 troubleshooting

errors, throwing

EventDispatcher class

events

 applying

 behavior

 COMPLETE

 dispatchers 2nd

 E4X

 elements

 implementing

 inheritance

 listeners

 deleting

 registering

 main class

 MOUSE_UP

 objects 2nd

 phases

 bubble

 capture

 target

 priority

 target properties

 troubleshooting

 weak references

execute() method

existing behavior, modifying

explicit interface constructs

exposing

 arrays

 collections

expressions, regular [See regular expressions.]

extended flag, regular expressions

extending

 abstract decorator class

 ICommand interfaces

Extensible Markup Language [See XML.]

external references

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Façade pattern

Factory Method pattern 2nd 3rd

File class 2nd

file systems, Composite pattern

files

 .SWF

 data.txt

 leaf elements

 XML

FileSystemItem class

FileSystemItemView constructor

filtering E4X

flags, regular expressions

Flash Remoting

flash.utils.Proxy

FlexUnit

Flikr

folders [See also files.]

 MyDocuments

 ProgramFiles

formal interfaces [See also interfaces.]

formal use cases, writing

formatting

 abstract decorator class

 analysis phase

 applications

 Command pattern

 Mad Libs

 undoable actions

 asynchronous unit tests

 basic unit tests

 buttons

 classes

 Decorator pattern

 main

 commands

 classes

 undoable actions

 commutative decorators

 containers

 CRC cards

 interfaces

 MVC patterns

 objects

 originators

 Proximity game

 reader decorators

 receiver types

 redoable actions

 search proxy

 Settings class

 Singleton patterns

 state objects

 visual decorators

 XML documents

frameworks, Singleton patterns

functionality

 Command pattern [See also Command pattern.]

 interfaces

 redo/undo buttons

 State pattern

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

garbage collection

getAccuracy() method

getDescription() method

getInstance() method

getMemento() method

getPointValue() method

getState() method

getter methods, adding

global access, instances

global flag, regular expressions

groups, regular expressions

guidelines [See also conventions.]

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

hasEventListener() method

hasNext() method 2nd

Help class, defining

histories, commands 2nd

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

ICommand interface

IconButton class

IElement interface

IEventDispatcher interface 2nd

IEventDispatcher method

if statements

IField interface

IFileSystem interface

ignore case flag, regular expressions

images

 loaders

 modifying

implementation phase

implementing

 abstract decorator class

 analysis phase

 applications

 Command pattern

 Mad Libs

 undoable actions

 asynchronous unit tests

 basic unit tests

 buttons

 classes

 Decorator pattern

 main

 collection interfaces

 Command pattern

 commands

 classes

 undoable actions

 commutative decorators

 Composite pattern

 containers

 CRC cards

 Decorator pattern

 events

 interfaces 2nd

 Composite pattern

 Decorator pattern

 IRedoableCommand interfaces

 ISearchable interfaces

 iterator interfaces

 IUndoableCommand interface

 models (MVC)

 MVC patterns

 objects

 originators

 Proximity game

 reader decorators

 receiver types

 redoable actions

 search proxy

 Settings class

 Singleton patterns

 state objects

 State pattern 2nd

 visual decorators

 XML documents

implements keyword

indexes, regular expressions

INetworkProtocol method

inheritance

 drawbacks of

 events

 formal interfaces

 interfaces

 relationships

 Sprite interface

 undoable commands

initialize() method

input controls

inserting [See adding.]

instances

 ArrayIterator

 Command property

 commands

 composition

 global access

 NullIterator

instantiation

 clients

 objects

 tight coupling

interaction, use cases

interfaces [See also APIs (Application Programming Interfaces).]

 classes

 collections 2nd

 Command pattern

 Composite pattern

 conventions

 Decorator pattern

 defining

 formatting

 functionality

 ICommand

 IElement

 IEventDispatcher 2nd

 IField

 IFileSystem

 implementing

 inheritance

 IReader

 IRedoableCommand 2nd

 IShooterState

 Iterator pattern 2nd

 IUndoableCommand 2nd 3rd

 MVC [See also MVC (Model View Controller).]

 polymorphism

 programming

 Sprite

invokers

invoking

 Settings class

 Singleton patterns

IReader interface

IRedoableCommand interface 2nd

ISearchable interface [See also interfaces.]

IShooterState interface

isReady() method 2nd

iteration, XMLList class

Iterator pattern

 applying

 elements

 interfaces 2nd

 null iterators

 troubleshooting

iterator() method 2nd

IUndoableCommand interface 2nd 3rd

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

keywords

 implements

 override

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

languages, UML [See also Unified Modeling Language.]

leaf elements, Composite pattern

libraries, AAS3WDP

LimerickData class

LimerickView class

LineReader class

listeners

 events

 deleting

 priority

 registering

 queuing

load() method

loading

 images

 text

 variables

 XML 2nd 3rd

loops, undo() method

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Mad Libs application

main class

 creating

 E4X

 editing

 events

 loading text

 regular expressions

 State pattern 2nd

 updating

main success scenarios

maintainability, State pattern

managing state objects

mark-and-sweep garbage collection

members, static

Memento pattern

 redoable actions

 types

 undoable actions

metacharacters, regular expressions

methods

 abstract

 addEventListener() 2nd

 adding

 addItem() 2nd

 closure

 concrete iterators

 createField()

 current()

 dispatchEvent()

 execute()

 getAccuracy()

 getDescription()

 getInstance()

 getMemento()

 getPointValue()

 getState()

 getter

 hasEventListener()

 hasNext() 2nd

 IEventDispatcher

 INetworkProtocol

 initialize()

 isReady() 2nd

 iterator() 2nd

 load()

 next()

 onClick()

 overriding

 public

 read()

 readArray()

 readString()

 redo() 2nd

 removeEventListener() 2nd

 removeItem() 2nd

 reset()

 search()

 setMemento()

 setParent()

 setState()

 signatures

 traceReader() 2nd

 undo() 2nd

 willTrigger()

Model View Controller [See MVC (Model View Controller).]

models

 clocks

 implementing

 multiple views (MVC)

 MVC

modifying

 abstract decorator class

 analysis phase

 applications

 Command pattern

 Mad Libs

 undoable actions

 asynchronous unit tests

 basic unit tests

 behavior of objects [See also Decorator pattern.]

 buttons

 classes

 Decorator pattern

 main

 commands

 classes

 undoable actions

 commutative decorators

 containers

 CRC cards

 functionality

 images

 interfaces

 MVC patterns

 objects 2nd

 originators

 Proximity game

 reader decorators

 receiver types

 redoable actions

 search proxy

 Settings class

 Singleton patterns

 state objects

 visual decorators

 XML documents

mouse events

MOUSE_UP event

moving

 command containers

 objects 2nd

 shapes

multiline flag, regular expressions

multiple class definitions, adding

multiple views

MVC (Model View Controller)

 adding controllers

 building

 elements

 implementing models

 multiple views

MyDocuments folder

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Namespace class

namespaces, E4X

naming

 abstract classes

 conventions

 events

navigating collections

networks, polymorphism

new features, instantiation

next() method

non-commutative decorators, adding

notification, event dispatchers

null iterators

NullIterator instance

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

objects

 Adapter pattern

 client instantiation

 collection access

 Command pattern

 applications

 implementing

 interfaces

 Proximity game

 redoable actions

 undoable actions

 Composite pattern

 elements

 file systems

 Decorator pattern

 abstract classes

 access

 classes

 commutative/visual decorators

 debugging

 elements

 implementing

 interfaces

 reader decorators

 testing 2nd

 drawbacks of inheritance

 events 2nd

 Façade pattern

 Factory Method pattern 2nd 3rd

 instantiation

 Iterator pattern

 applying

 elements

 interfaces 2nd

 null iterators

 troubleshooting

 modifying

 moving

 MVC pattern

 adding controllers

 building

 elements

 implementing models

 multiple views

 NullIterator

 Proxy pattern

 flash.utils.Proxy

 image loaders

 Remote Proxy

 serialization

 Virtual Proxy

 receivers [See also receivers.]

 recording state

 rotating

 Singleton pattern

 building

 invoking

 object instantiation

 settings frameworks

 static members

 State pattern

 abstract classes

 encapsulation

 example of

 main class 2nd

 objects 2nd

 state machines

 transitions

 troubleshooting

 Template Method pattern

 UIntCollection

 XML

onClick() method

open issues

OpenAMF

optimizing

 abstract decorator class

 analysis phase

 applications

 Command pattern

 Mad Libs

 undoable actions

 asynchronous unit tests

 basic unit tests

 buttons

 classes

 Decorator pattern

 main

 collection interfaces

 Command pattern

 commands

 classes

 undoable actions

 communication

 commutative decorators

 Composite pattern

 containers

 CRC cards

 Decorator pattern

 events

 interfaces 2nd

 Composite pattern

 Decorator pattern

 IRedoableCommand interfaces

 ISearchable interfaces

 iterator interfaces

 IUndoableCommand interface

 models (MVC)

 MVC patterns

 objects

 originators

 Proximity game

 reader decorators

 receiver types

 redoable actions

 search proxy

 Settings class

 Singleton patterns

 state objects

 State pattern 2nd

 visual decorators

 XML documents

originators 2nd

override keyword

overriding methods

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

packages, conventions

parameters

parsing composite structures

passing receiver references

patterns

 Adapter

 Command

 applications

 implementing

 interfaces

 Proximity game

 redoable actions

 undoable actions

 Composite

 elements

 file systems

 Decorator

 abstract classes

 access

 classes

 commutative/visual decorators

 debugging

 elements

 implementing

 interfaces

 reader decorators

 testing 2nd

 Façade

 Factory Method 2nd 3rd

 Iterator

 applying

 elements

 interfaces 2nd

 null iterators

 troubleshooting

 MVC

 adding controllers

 building

 elements

 implementing models

 multiple views

 Proxy

 flash.utils.Proxy

 image loaders

 Remote Proxy

 serialization

 Virtual Proxy

 Singleton

 building

 invoking

 object instantiation

 settings frameworks

 static members

 State

 abstract classes

 encapsulation

 example of

 main class 2nd

 objects 2nd

 state machines

 transitions

 troubleshooting

 Template Method

phases (events)

 bubble

 capture

 target

PhotoSearchProxy class

PieceData class

polymorphism [See inheritance.]

 applying

 enabling 2nd

 runtime decisions

pooling requests

preconditions

primary actors (use cases)

priority, events

procedure calls, Flash Remoting

Product class

ProgramFiles folder

programming interfaces [See also interfaces.]

propagation, stopping

properties

 accessors (E4X)

 classes

 decorated

 event targets

 public

 rotation

 scaleX

 scaleY

 state

 static_instance

protocols, polymorphism

Proximity game

 building

 Memento pattern

Proxy pattern

 flash.utils.Proxy

 image loaders

 Remote Proxy

 serialization

 Virtual Proxy

public methods

public properties

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

QA (Quality Assurance) testing

QName class

Quality Assurance [See Quality Assurance.]

queuing

 listeners

 requests 2nd

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

radians, testing

read() method

readArray() method

reader decorators

readString() method

receivers

 passing

 scaling

 types

recording

 command histories

 Memento pattern [See also Memento pattern.]

rectangles, drawing

redo buttons, adding

redo() method 2nd

redoable actions

references

 counting

 external

 receiver

 passing

 scaling

 state objects

 storing

 weak

RegExp class

registering

 events

 listeners

 weak references

regular expressions

 applying

 flags

 groups

 indexes

 Mad Libs application

 main class

 metacharacters

 RegExp class

 substrings

 testing

relationships

 aggregation

 association

 classes

 inheritance

 MVC elements

Remote Proxy [See also Proxy pattern.]

removeEventListener() method 2nd

removeItem() method 2nd

requests

 arrays

 delegating

 pooling

 queuing 2nd

reset() method

resetting iterator interfaces

ResizableShape class

resize handlers, adding

responsibilities, determining

restoring state

restricting instantiation

results, design

reusable components [See also Command pattern.]

revisions [See editing.]

RotateClockwiseCommand class

RotateCounterclockwiseCommand class

rotation property

rules [See also conventions.]

 Memento patterns

 Singleton patterns

runners, test

runtime

 Decorator pattern [See also Decorator pattern.]

 polymorphism

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

saving state

ScaleDownCommand class

scaleX property

scaleY property

scaling

 receiver references

 State pattern

search() method

searching

 regular expressions

 Remote Proxy

selecting composition or inheritance

sending

 variables

 XML 2nd

serialization

 Flash Remoting

 Proxy pattern

servers, Flash Remoting

setMemento() method

setParent() method

setState() method

Settings class

settings frameworks, Singleton patterns

shapes

 adding

 moving

ShooterStateMachine class

signatures, methods

SimpleShooter class

SimpleShooterExample class

single instance, global access

Singleton pattern

 building

 invoking

 object instantiation

 settings frameworks

 static members

SOAP-formatted XML

SortedReader class

special requirements

Sprite interface

stacks, adding commands

state

 recording

 restoring

State pattern

 abstract classes

 encapsulation

 example of

 main class 2nd

 objects 2nd

 state machines

 transitions

 troubleshooting

state property

statements, if

static members, Singleton pattern

static methods, adding

static_instance property

stopping propagation

storing

 mementos

 references

StringReader class

substrings [See also strings.]

support

 arrays

 typed arrays

.SWF files

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

targets

 events

 phases

 properties

Template Method pattern

terminating leaf elements

testing

 analog clocks

 Command pattern

 Decorator pattern 2nd

 digital clocks

 regular expressions

 State pattern

text

 Decorator pattern

 loading

throwing errors

tight coupling, events

Time class

traceReader() method 2nd

tracking command histories

transitions, State pattern

troubleshooting

 circular references

 encapsulation

 events

 Iterator pattern

 State pattern

typed arrays, support

types

 Decorator pattern

 differentiating between classes

 event objects

 Memento pattern

 receivers

 undoable actions

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

UIntCollection class

UML (Unified Modeling Language)

 analysis phase

 design phase

undo buttons, adding 2nd

undo() method 2nd

undoable actions

 applications

 Command pattern

 commands

 creating

 defining types

 enabling

 Memento pattern

Unified Modeling Language [See Unified Modeling Language.]

unit tests

 asynchronous

 basic

UnitCollection class

updating

 CommandFactory

 main class

 views

use cases

 guidelines

 writing

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

variables

 conventions

 loading

 sending

viewing test results

views

 adding

 analog clocks

 classes

 digital clocks

 multiple

 MVC

 updating

Virtual Proxy [See also Proxy pattern.]

visual decorators, building

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

weak references

Web services 2nd

WebORB

willTrigger() method

WordReader class

writing

 test cases

 test runners

 use cases

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

XML (Extensible Markup Language)

 creating documents

 creating objects

 E4X [See E4X.]

 loading 2nd 3rd

 sending 2nd

XML class

XMLList class 2nd

	Advanced ActionScript 3 with Design Patterns, 1/e
	Table of Contents
	Copyright
	Acknowledgments
	Introduction
	About This Book

	Part I: Successful Projects
	Chapter 1. Designing Applications
	The Analysis Phase
	The Design Phase
	The Implementation Phase
	Testing
	Summary

	Chapter 2. Programming to Interfaces
	Defining Interfaces
	Using Polymorphism
	Summary

	Part II: Patterns
	Chapter 3. Model View Controller Pattern
	Understanding MVC Elements
	Building a Simple Example
	Enabling Multiple Views for One Model
	Modifying Model Implementation
	Adding A Controller
	Summary

	Chapter 4. Singleton Pattern
	Object Instantiation
	Singleton Versus Static Members
	Building a Simple Singleton
	Building a Settings Framework
	Summary

	Chapter 5. Factory and Template Method Patterns
	Abstract Classes
	Template Method
	Factory Method
	Summary

	Chapter 6. Proxy Pattern
	Virtual Proxy
	Remote Proxy
	Adapter and Façade Patterns
	Summary

	Chapter 7. Iterator Pattern
	Understanding the Problems with Iteration
	Understanding Iterator Elements
	Using Iterators
	Using Null Iterators
	Summary

	Chapter 8. Composite Pattern
	Understanding the Element Interface
	Understanding Leaf Elements
	Understanding Composite Elements
	Building a File System Example
	Summary

	Chapter 9. Decorator Pattern
	Understanding the Decorator Pattern
	Building Reader Decorators
	Building Visual and Commutative Decorators
	Summary

	Chapter 10. Command Pattern
	Understanding the Command Pattern
	Building a Simple Command Application
	Making Commands Undoable and Keeping Command Histories
	Building an Undoable Application
	Building a Redoable Application
	Using Commands to Build a Proximity Game
	Summary

	Chapter 11. Memento Pattern
	Using Mementos to Make Actions Undoable in the Proximity Game
	Using Mementos to Make Actions Redoable in the Proximity Game
	Summary

	Chapter 12. State Pattern
	Simple State Example
	Encapsulating the States
	Using Abstract Classes
	Transitions
	Summary

	Part III: Advanced ActionScript Topics
	Chapter 13. Working with Events
	Understanding Events
	Using Events
	Creating Event Dispatchers
	An Example Working with Events
	Summary

	Chapter 14. Sending and Loading Data
	Loading Text
	Sending and Loading Variables
	Sending and Loading XML
	Using Web Services
	Using Flash Remoting
	Optimizing Data Communication
	Summary

	Chapter 15. E4X (XML)
	Creating XML Objects
	Property Accessors
	XML Filtering
	Iterating Through an XMLList
	Namespaces
	Sending and Loading XML Data
	Simple Soap Example
	Summary

	Chapter 16. Regular Expressions
	Introducing the RegExp Class
	Working with Regular Expressions
	Using Regular Expression Flags
	Understanding Metacharacters and Metasequences
	Using Regular Expression Groups
	Building a Mad Libs Application Using Regular Expressions
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

