

Learning ActionScript 3.0

Second Edition

Rich Shupe with Zevan Rosser

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Learning ActionScript 3.0, Second Edition
by Rich Shupe with Zevan Rosser

Copyright © 2011 Rich Shupe and Zevan Rosser. All rights reserved.
Printed in Canada.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are also
available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Mary Treseler

Production Editors: Rachel Monaghan and Teresa Elsey

Development Editor: Linda Laflamme

Technical Reviewers: Anselm Bradford, Chrissy Rey-Drapeau, Tim Goss, Xingyi Guo, Sonia Garbès Putzel, and
Bentely Wolfe

Proofreaders: Nancy Kotary and Chris Niemiec

Indexer: Ron Strauss

Interior Designer: Ron Bilodeau

Cover Designer: Mark Paglietti

Compositor: Nancy Kotary

Print History:

December 2007: First Edition.

October 2010: Second Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. This book’s trade dress is a trademark of O’Reilly
Media, Inc. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no responsibil-
ity for errors or omissions, or for damages resulting from the use of the information contained herein.

ISBN: 978-1-449-39017-4
[TI]

Adobe Developer Library, a copublishing partnership between O’Reilly Media Inc.
and Adobe Systems, Inc., is the authoritative resource for developers using Adobe
technologies. These comprehensive resources offer learning solutions to help devel-
opers create cutting-edge interactive web applications that can reach virtually any-
one on any platform.

With top-quality books and innovative online resources covering the latest tools for
rich-Internet application development, the Adobe Developer Library delivers expert
training, straight from the source. Topics include ActionScript, Adobe Flex®, Adobe
Flash®, and Adobe Acrobat® software.

Get the latest news about books, online resources, and more at adobedeveloper-
library.com.

v

Preface . xi

Part I Getting Started 1

Chapter 1
What Is ActionScript? . 3

What’s New in ActionScript 3.0? . 5
The Flash Platform . 8
Procedural Versus Object-Oriented Programming . 9
The Document Class . 11
Legacy Code Compatibility . 14
Hello World . 14
What’s Next? . 17

Chapter 2
Core Language Fundamentals . 19

Jump Right In . 21
Miscellaneous Basics . 22
Variables and Data Types . 23
Operators . 27
Conditionals . 29
Loops . 34
Arrays . 37
Vectors . 39
Functions . 40
Custom Objects . 44
this and parent . 45
Absolute Versus Relative Addresses . 45
Put It All Together . 46
What’s Next? . 48

Contents

Contentsvi

Part II Graphics and Interaction 49

Chapter 3
Properties, Methods, and Events . 51

Jump Right In . 52
Properties . 53
Events . 54
Methods . 60
Event Propagation . 62
Frame and Timer Events . 65
Removing Event Listeners . 67
What’s Next? . 70

Chapter 4
The Display List . 71

Jump Right In . 72
The Sum of Its Parts . 73
Adding and Removing Children . 81
Managing Object Names, Positions, and Data Types . 87
Changing the Display List Hierarchy . 90
A Dynamic Navigation Bar . 93
What’s Next? . 95

Chapter 5
Timeline Control . 97

Jump Right In . 97
Playhead Movement . 98
Frame Labels . 101
Frame Rate . 106
A Simple Site or Application Structure . 108
What’s Next? . 111

Contents vii

Chapter 6
OOP . 113

Classes . 115
Inheritance . 122
Composition . 131
Encapsulation . 133
Polymorphism . 139
Navigation Bar Revisited . 147
What’s Next? . 151

Chapter 7
Motion . 153

Basic Movement . 154
Simple Physics . 159
A Basic Particle System . 162
Simple Collision Detection . 166
Geometry and Trigonometry . 169
Programmatic Tweening . 183
What’s Next? . 190

Chapter 8
Drawing with Vectors . 191

The Graphics Class . 192
The Geometry Package . 205
9-Slice Scaling . 215
Applied Examples . 217
What’s Next? . 224

Chapter 9
Drawing with Pixels . 225

Bitmap Caching . 226
The BitmapData Class . 228
Blend Modes . 233
Bitmap Filters . 237
Color Effects . 247
Image Encoding and Saving . 250
Adding Functionality to Your Color Picker . 252
What’s Next? . 258

Contentsviii

Part III Text 259

Chapter 10
Text . 261

Creating Text Fields . 262
Setting Text Field Attributes . 262
Selecting Text . 265
Formatting Text . 266
Formatting with HTML and CSS . 274
Triggering ActionScript from HTML Links . 278
Loading HTML and CSS . 279
Text Layout Framework . 283
What’s Next? . 292

Part IV Sound and Video 293

Chapter 11
Sound . 295

ActionScript Sound Architecture . 296
Internal and External Sounds . 298
Playing, Stopping, and Pausing Sounds. 301
Buffering Sounds . 307
Changing Sound Volume and Pan . 308
Reading ID3 Metadata from MP3 Sounds . 311
Visualizing Sound Data . 313
Visualizing Microphone Input . 322
Recording, Playing, and Saving Microphone Input . 327
What’s Next? . 333

Chapter 12
Video . 335

Encoding. 336
Components . 340
Full-Screen Video . 343
Captions . 344
Writing Your Own Player . 350
What’s Next? . 358

Contents ix

Part V Input/Output 359

Chapter 13
Loading Assets . 361

Loading SWFs and Images . 362
Loading Data . 370
Communicating with Loaded SWFs . 379
Additional Online Resources . 381
What’s Next? . 384

Chapter 14
XML . 385

Understanding XML Structure . 386
Creating an XML Object . 390
Using Variables in XML . 391
Reading XML . 392
Writing XML . 399
Deleting XML . 401
Loading External XML Documents . 402
Sending to and Loading from a Server . 404
An XML-Based Navigation System . 405
What’s Next? . 420

Index . 421

xi

When deciding if the book in your hands will be a good resource for your
library, it might help you to know why we, the authors, wrote this particular
book. We are both developers who use ActionScript extensively in our every-
day work, but we are also teachers. Collectively, we have taught thousands of
stu dents at multiple universities, training facilities, and conferences, and yet
we share one significant common experience. We were consistently told that
no feature-rich ActionScript book existed that didn’t assume readers already
had extensive programming experience and an understanding of object-
oriented programming.

So, we started to research how we could fill this void and provide a book to
our students that would really help them beyond the classroom. We talked
with a lot of students, user groups, and instructors and began to sketch out a
book that would put what we learned into practice.

When ActionScript 3.0 was released, the interest in the language grew dra-
matically. In the Flash community reactions ranged from excitement to
uncertainty to fear, as the ActionScript 3.0 learning curve became apparent.
Talk of the Flash Platform splintering into Flex (“developer”) and Flash
(“designer”) camps left many designers and programmers more uncertain
than ever about their futures. When Flash CS3 Professional was released, the
need for a guiding resource increased, and we knew it was time to write the
book you hold in your hands.

We hope this book will help ActionScript coders of all kinds—from curious
to intimi dated, from eager to experienced—embrace the power and perfor-
mance of ActionScript 3.0. We hope these pages will ease the transition from
whatever prior version of ActionScript you may have used (if any) to 3.0—the
biggest architectural change to the language since its inception.

PrefaCe

Prefacexii

Who This Book Is For
This book is aimed at designers and developers without extensive ActionScript
3.0 experience. Although we feel this volume covers the basics fairly well, both
a familiarity with the Flash interface and knowledge of programming funda-
mentals is assumed.

We’ve tried to explain the material herein clearly and concisely enough
for any reader with at least this minimal background. However, we recom-
mend that you skim Chapter 2 to see if you think we’ve provided enough
core programming fundamentals to fill any gaps in your knowledge base.
Throughout this book we cover relevant syntax with extensive comments,
but the first two chapters serve as a foundation upon which the rest of the
chapters are built.

Similarly, if you are a relatively experienced ActionScript 2.0 programmer,
you may wish to glance at a few chapters of interest before deciding whether
or not this book is for you. Migration from ActionScript 2.0-to-ActionScript
3.0 is not our primary focus, so we want you to be happy with the tone and
straightforward approach we’ve adopted before you decide to rely solely on
this book.

If you need additional support with the Flash Professional interface, want
solutions to specific problems, or would benefit from a quick look at migra-
tion issues, consider augmenting this book with the ActionScript Quick
Reference Guide by David Stiller, Rich Shupe, Jen deHaan, and Darren
Richardson (O’Reilly). The book is divided into two halves, starting with
interface-centric material and culminating with a series of recipe-style
problem-solving chapters, including one that focuses on ActionScript 2.0 to
3.0 migration.

Push Yourself
Although this book was written for a reader still finding his or her way with
ActionScript 3.0, we’ve tried to include exercises throughout the book that
encourage you to push yourself. When exercises move somewhat beyond the
basics of a topic, we’ve identified them with this icon:

We’ve also tried to mention additional exercises and resources from the
companion website (which we’ll talk about in a moment) that may help you
continue your explorations. In most cases, these exercises and notes are not
central to understanding syntax or a topic as a whole. If you find any of these
inclusions to be too much to digest, feel free to skip them and come back to
them later.

Between these two supplemental efforts, we hope this book will be useful to
a wide variety of scripters and allow you to progress along the ActionScript
3.0 learning curve quicker than expected.

Pu
sh

 Yourself!

Preface xiii

ActionScript Editors
Although we try to remain ActionScript-editor neutral whenever possible,
the examples in this book were created in Flash Professional. We’ve provided
source files that are compatible with the oldest version of Flash Professional
that the applicable feature will allow. Most are compatible with Flash CS3
Professional, some require later versions of the tool, and some require Flash
Player 10.1, the latest version as of this writing.

However, we’ve also tried to provide files for users that are working with
other ActionScript editors, like Adobe’s Flash Builder, Powerflasher’s FDT, or
the open-source FlashDevelop (Windows-only). These class-based files may
also be useful to readers who already have experience with object-oriented
programming.

Despite these efforts, it’s very important to understand that these supplemental
files will not be actively supported. You should buy this book knowing that
many of the source files are in FLA format and, even if you typed in the
scripts yourself, some rely on assets found in the libraries of these FLA files.
If you are not a Flash Professional user, you may need to recreate these scripts
and assets as best you can.

How This Book Is Organized
Unlike any other book on ActionScript 3.0 that we’ve seen, this book does
not rely extensively on object-oriented programming (OOP) principles. If you
are unfamiliar with this term, don’t worry. You have the correct book in your
hands, and you’ll learn more with each successive chapter.

We demonstrate key chapter concepts using focused syntax that’s executable
within the Flash Professional timeline and gradually introduce OOP con-
cepts along the way. The first five chapters—including coverage of the new
ActionScript 3.0 event model and means of displaying content (the display
list)—do not introduce more than a modicum of content that is class- or
OOP-related. Starting in Chapter 6, we provide increased object-oriented
coverage, beginning with an OOP primer, and continuing for the remaining
chapters with select class- or OOP-based applied examples.

This book was designed to be read linearly. Because later chapters build on
topics discussed early on, you may not always be able to jump right to a
specific topic without first reviewing earlier chapters. If you’re looking for
specific solutions to specific problems, take a look at the ActionScript 3.0
Cookbook by Joey Lott, Darron Schall, and Keith Peters (O’Reilly).

Prefacexiv

What Is—and Isn’t—In This Book
We’ve tried to design a book that covers as many ActionScript essentials as
we could include, even while being constrained by a page count designed to
keep the book affordable.

What’s In
Part I: Getting Started

Part I begins with Chapter 1, discussing ActionScript 1.0, 2.0, and 3.0, and
how the different versions are used in the Flash Professional application
and Flash Player. It concludes with Chapter 2 looking at the building
blocks that are ActionScript’s version-neutral core fundamentals.

Part II: Graphics and Interaction

Chapter 3 leads off Part II with explanations of the basic vocabulary of
ActionScript: properties, methods, and events (including ActionScript
3.0’s significantly different event model). Chapter 4 focuses on displaying
content dynamically, which is also a big departure from prior versions of
the language. Chapter 5 covers timeline control, and Chapter 6 introduces
OOP. Chapter 7 discusses animating objects using ActionScript, and
Chapters 8 and 9 explain drawing with code.

Part III: Text

Chapter 10 is the only chapter in Part III and focuses on text formatting,
HTML support, and the use of Cascading Style Sheets.

Part IV: Sound and Video

Chapter 11 opens Part IV with a discussion about sound. In addition to
manipulating internal and external sounds, it touches on parsing ID3
metadata and culminates with a sound visualization exercise, drawing a
sound’s waveform during live playback. Chapter 12 wraps up Part IV by
demonstrating how to play video both with and without components, as
well as how to subtitle your videos for accessibility.

Part V: Input/Output

Part V focuses on loading assets into Flash and sending data out to a
server or another client. Chapter 13 covers loading SWF files, images,
text, URL variables, and binary data, as well as communicating between
loader and loadee SWFs. Chapter 14 covers XML and the new standard
for working with XML that makes the task as easy as working with other
ActionScript objects, methods, and properties.

Part VI: 3D (Download)

A special bonus chapter, available for download from the companion web-
site, takes a short look at the 3D capabilities built-in to ActionScript 3.0.

Preface xv

What’s Not
As mentioned previously, this book focuses on ActionScript 3.0 (which
applies to most segments of the Flash platform), but is presented within a
Flash Professional context. As such, it does not include coverage of Flex, AIR,
Flash Media Server, or other evolving Flash platform technologies.

As a basic text, this book has understandable constraints that limit the extent
of coverage we can offer. Browsing through the Table of Contents will tell
you what we include and, in some cases, the depth in which we’ll cover the
material. While it does include coverage of object-oriented programming
techniques, for example, it does not address this material in great depth. (For
more information about this point, please see the previous section, “How
This Book Is Organized.”) When you want to continue your OOP studies,
we recommend Object-Oriented ActionScript 3.0 by Peter Elst, Todd Yard, and
Sas Jacobs (Friends of Ed).

We didn’t intend this text to be a reference book, but rather a learning tool.
If you’re looking for a comprehensive reference volume, we recommend
Essential ActionScript 3.0 by Colin Moock (O’Reilly). Our book may serve as
a useful companion to this title, particularly if you are not an advanced user,
but it’s not a substitute.

Companion Website
All the exercises included in this book are available for download from
the book’s companion website, http://www.LearningActionScript3.com.
Supplemental materials are also available, including additional exercises, self
quizzes, extended examples, ongoing learning suggestions, a list of additional
resources, reader comments, errata, and more. The source file archives for
each chapter are available from the Downloads page, and you can sort posts
by category or use the search feature to find posts by name. Both authors can
be reached directly through this website.

Typographical Conventions Used In
This Book
The following typographical conventions are used in this book:

Plain text

Indicates menu titles, menu options, menu buttons, and keyboard modi-
fiers (such as Alt and Command).

Italic

Indicates new terms, URLs, email addresses, filenames, file extensions,
pathnames, and directories.

http://www.LearningActionScript3.com

Prefacexvi

Constant width

Indicates ActionScript code, text output from executing scripts, XML tags,
HTML tags, and the contents of files.

Constant width bold

Shows commands or other text that should be typed literally.

Constant width italic

Shows text that should be replaced with user-supplied values.

Using Code Examples
This book is here to help you get your job done. In general, you may use the
code in this book in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant por-
tion of the code. For example, writing a program that uses several chunks
of code from this book does not require permission. Selling or distribut-
ing a CD-ROM of examples from O’Reilly books does require permission.
Answering a question by citing this book and quoting example code does
not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually
includes the title, author, publisher, copyright holder, and ISBN. For example:
Learning ActionScript 3.0, Second Edition, by Rich Shupe with Zevan Rosser
(O’Reilly). Copyright 2011 Rich Shupe and Zevan Rosser, 978-1-449-39017-4.

If you feel your use of code examples falls outside fair use or the permission
given above, feel free to contact us at permissions@oreilly.com.

We’d Like To Hear From You
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)

(707) 829-0515 (international or local)

(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at:

http://www.oreilly.com/catalog/9781449396558

NOTE

A note gives additional information,
such as resources or a more detailed
explanation.

WARNING

This box indicates a warning or caution.

mailto:permissions@oreilly.com
http://www.oreilly.com/catalog/9781449396558

Preface xvii

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and
the O’Reilly Network, see our website at:

http://www.oreilly.com

Acknowledgments
We would like to give thanks to our talented O’Reilly team: Linda Laflamme,
Ron Bilodeau, Nellie McKesson, Rachel Monaghan, Teresa Elsey, Nancy
Kotary, Mary Treseler, Betsy Waliszewski, Anselm Bradford, Chrissy Rey-
Drapeau, Bentely Wolfe, Tim Goss, Robyn Thomas, Steve Weiss, Michele
Filshie, Matthew Roberts, Jill Steinberg, Joy Dean Lee, Phil Dangler, Linda
Seifert, Mark Paglietti, Karen Montgomery, and Laurie Petrycki. Extra thanks
to Linda, Ron, and Rachel for their endless patience and support.

Zevan would like to thank: Rich Shupe, The School of Visual Arts, Jesse
Reznick and the creative team at SOM, Ann Oren, all of his students, and his
family.

Rich would like to thank: Zevan Rosser, Jodi Rotondo, Sally Shupe, Claire
Shupe, Mike Wills, Steven Mattson Hayhurst, Thomas Yeh, Anita Ramroop,
and his family.

Rich would also like to show his appreciation for:

• Bruce Wands, Joe Dellinger, Russet Lederman, Mike Barron, Jaryd
Lowder, Diane Field, Jenny Lin, Annie Wang, all at The School of Visual
Arts, and all my students.

• Mark Anders, Paul Burnett, Mike Chambers, Mike Downey, Richard
Galvan, Mally Gardiner, Stefan Gruenwedel, Jeff Kamerer, John Nack,
Michael Ninness, Pete Falco, Nivesh Rajbhandari, and all at Adobe.

• John, Jo, and Amy Davey, Joe Franklin, Hippy Wright, and everyone at
Flash on the Beach and Geeky By Nature; Dave Schroeder and everyone
at Flashbelt; Susan Horowitz, William Morrison, and the University of
Hawaii’s Outreach program; Kelly Sanders, Tomo Kuriyama, and Julie
Loo of Sheraton Hotels.

• Alex Taylor (Eltima); Gaby Ciordas, Alin Dogar, Raul Popa (Jumpeye
Components); John Pattenden (Screentime Media); Coby Rich (Sorenson
Media); Jerry Chabolla, Richard Blakely, and Grant Garrett at Influxis
(the only streaming media host you’ll ever need).

• Lynda Weinman, Bruce Heavin, and everyone at Lynda.com; everyone at
Flashcoders NYC.

mailto:bookquestions@oreilly.com
http://www.oreilly.com

Prefacexviii

• Aral Balkan, Pete Barr-Watson, Rob Bateman, Brendan Dawes, Julian
Dolce, Stephen (Tink) Downs, Joa Ebert, Hugh Elliot, Peter Elst, Hardy
Fox, Homer Flynn, Jared Ficklin, Jesse Freeman, Chris Georgenes, Hoss
Gifford, Bruce Gilbert, Brandon Hall, Ralph Hauwert, Robert Hodgin,
Thibault Imbert, Scott Janousek, Penn Jillette, Mike Jones, Lisa Larson-
Kelley, Philip Kerman, Mario Klingemann, Seb Lee-Delisle, Graham
Lewis, Richard Lord, Jobe Makar, Niqui Merret, André Michelle, Stacey
Mulcahey, Erik Natzke, Colin Newman, James Paterson, Chris Pelsor,
Keith Peters, Robert Reinhart, Lou Reed, Tim Saguinsin, Grant Skinner,
David Stiller, Craig Swann, Jared Tarbell, Teller, Jer Thorpe, Carlos Ulloa,
(and no doubt others that I’m forgetting) for support and/or inspiration.

• (Extra special thanks to) Hudson Ansley, Tim Beynart, Anselm Bradford,
Lee Brimelow, Veronique Brossier, Thaylin Burns, Xingyi Guo, Colin
Holgate, Tyler Larson, Chris Niemiec, Sonia Garbès Putzel, Kevin Suttle,
and Josh Tynjala.

• (Supreme nod to) Scotty and Kat Meltzer, Steve and Cindy Shupe, Dennis
and Elaine Rotondo, Mari Howard, and Brian and Abigail Shupe. You
know why.

Welcome Lucas Robert Bilodeau! Best wishes to Tom Kelley. I wish I could
say this book is for whomever Kyle Baker is going out with now, but that was
done long ago. This book is for Sally and Claire.

About the Authors
Rich Shupe is the founder and president of FMA—a full-service multimedia
development company and training facility in New York City. Rich teaches
a variety of digital technologies in academic and commercial environments,
and has frequently lectured on these topics at conferences all over the world.
He is currently on the faculty of New York’s School of Visual Arts in the
MFA Computer Art department. Rich has written or co-written multiple
books, including Learning Flash CS4 Professional, The ActionScript Quick
Reference Guide, and Flash 8: Projects for Learning Animation and Interactivity
(all O’Reilly), Flash CS3 Professional Video Training Book (Lynda.com/Peachpit),
and the CS3 Web and Design Workflow Guides (Adobe). He also presents video
training for Lynda.com. Visit Rich’s website at http://www.fmaonline.com.

Zevan Rosser is a freelance designer/programmer/consultant and computer
artist. He teaches ActionScript and Flash animation at New York’s School of
Visual Arts in the Undergraduate and Continuing Education programs, and
has acted as thesis advisor for a handful of Masters students. He also teaches
ActionScript and Flash at FMA in New York. When he’s not working on
commercial projects, he works on his personal site, http//www.shapevent.com.

http://www.fmaonline.com
http//www.shapevent.com

Preface xix

Colophon
Our look is the result of reader comments, our own experimentation, and
feedback from distribution channels. Distinctive covers complement our
distinctive approach to technical topics, breathing personality and life into
potentially dry subjects. The text font is Linotype Birka; the heading font is
Adobe Myriad Pro.

1

IN THIS PART

Chapter 1
ActionScript Overview

Chapter 2
Core Language
Fundamentals

GettinG Started PART I

Part I starts this book off with a collection of basic overviews, spanning
Chapters 1 and 2. It begins with a survey of ActionScript, providing a list of
new feature highlights, a brief explanation of procedural versus object-oriented
programming, and gets you started right away with your first script.

It concludes with a review of core language fundamentals, most of which
remain consistent across all versions of ActionScript. The material at the out-
set of the book serves as an introduction to ActionScript for those new to the
language, or as a refresher for those already familiar with it, and allows you
to focus later on ActionScript 3.0–specific syntax.

3

IN THIS CHAPTER

What’s New in
ActionScript 3.0?

The Flash Platform

Procedural Versus Object-
Oriented Programming

The Document Class

Legacy Code Compatibility

Hello World

What’s Next?

While you likely know that ActionScript is the main scripting language of
the Flash Platform, and you’re no doubt eager to begin working with the new
version, a brief overview of its development will give you some insight into
its use—particularly as related to Flash Player and how it handles different
versions of ActionScript. This brief introductory chapter will give you a quick
look at where ActionScript 3.0 fits into your workflow.

Before we get started, it might help to understand how you get from
ActionScript code to a finished file that you can put into a website. If this isn’t
news to you, bear with us for just a paragraph or two.

When you publish a Flash file—using Flash Professional’s File→Publish or
Control→Test Movie—all of the internal graphics and other assets used in
your movie, as well as all of the ActionScript code, are compiled into a final
file format called a SWF (pronounced “swiff” or “S-W-F”). That is, a part of
your Flash Platform application of choice (such as Flash Professional) con-
tains software called the compiler. This software converts all of your human-
readable scripts into an optimized, machine-readable format. It combines
that code with your assets into a single SWF file that Flash Player can decode
and play back for all to see.

Although your SWF can load external assets not already compiled into your
SWF (such as an MP3 or a video), any asset that you imported or embedded
and all scripts—even if they originate outside the FLA (pronounced “flah”
or “F-L-A”) file—must go through this compilation process to be included
in the SWF. This is why you must publish a new SWF every time you make
a change to your code. It’s also why you don’t have to distribute ActionScript
files with your SWF, even if you created external files, such as classes, when
coding. Distributing ActionScript files with your SWF won’t affect playback,
but it may expose your source code to the public. This is fine when you’re
contributing code for others to learn from, but it won’t make a client happy
if you’re doing work for hire!

What Is
aCtIonsCrIPt?

CHAPTER 1

Part I: Getting Started4

For most users, the compilation process occurs behind the scenes and is
handled by Flash Professional. At the time of this writing, the current version
is Flash Professional CS5, but most of this book is compatible with versions
dating back to Flash Professional CS3.

Other applications, such as Adobe’s Flash Builder (or its predecessor Flex
Builder), Power Flasher’s FDT, the open source FlashDevelop, and even
text editors in combination with a command-line compiler, can transform
ActionScript into SWFs. However, this book focuses primarily on Flash
Professional as an ActionScript editor.

Many examples will work seamlessly in any ActionScript editor; other exam-
ples will rely on symbols found in the library of a sample Flash file (FLA).
This will be discussed briefly in the “Flash Platform” section of this chapter,
but be sure you’re comfortable with this workflow before investing any time
in these examples. If your primary goal is to become a Flex developer, for
example, with an equal emphasis on that technology’s MXML syntax, you
may want to pick up a companion to this text that focuses more significantly
on Flex, such as Learning Flex 4 (O’Reilly).

• What Is ActionScript 3.0? Every new version of ActionScript intro-
duces new features. ActionScript 3.0, however, was written from scratch
(not built on prior versions of the language) and is handled entirely
separately from previous versions of ActionScript anywhere the language
is used. This intentional branching allows for syntax improvements and
significantly improves performance, but also makes it more difficult to
use multiple versions of ActionScript at the same time.

• The Flash Platform. ActionScript 3.0 can be used in Flash, Flex projects,
and AIR (Adobe Integrated Runtime) desktop applications, each of which
are part of what is collectively known as the Flash Platform. Although
they affect only a small portion of the language, differences in these envi-
ronments prevent ActionScript 3.0 from working exactly the same way in
every application that is part of the Flash Platform. The fundamentals,
however—indeed, the bulk—of the language, are the same throughout.

• Procedural Versus Object-Oriented Programming. A lot of attention
has been focused on the object-oriented programming (OOP) capa-
bilities of ActionScript 3.0, and the language’s power really shines in this
area. However, embracing ActionScript 3.0 doesn’t mean that you must
become an expert in OOP. Using Flash, it is still possible to write scripts
in the timeline, using functions to organize more complex code. This is
commonly called procedural programming. If you prefer object-oriented
programming, enhancements to ActionScript’s OOP structure make ver-
sion 3.0 more robust and bring it more in line with the features of other
OOP-based languages (such as Java). This also makes moving between
such languages a bit easier.

 What Is ActionScript?

What’s New in ActionScript 3.0?

Chapter 1: What Is ActionScript? 5

• The Document Class. Object-oriented programming is not for every-
one, but for those starting on the OOP journey, Flash offers a simple step-
ping off point in the Document class. Using this feature, you need only
specify an external ActionScript class file as your starting point, and no
timeline script is required.

• Legacy Code Compatibility. Because ActionScript 3.0 can’t mingle with
previous versions of the language in the same file, developing projects
that support older code is a challenge. We’ll briefly introduce the issues
involved and point to a technique that makes possible some communica-
tion between ActionScript versions.

• Hello World. This chapter will conclude with you writing your first
ActionScript 3.0 application. We’ll dive into some syntax for text manip-
ulation, but don’t worry: we’ll cover the material in more detail in a
later chapter. This exercise is just to get you started and build a little
confidence.

What’s New in ActionScript 3.0?
If you’re familiar with ActionScript or you’re learning it based on experi-
ence with another programming language, you may want to know what
ActionScript 3.0 has to offer. Although the third major version of the Flash
Platform’s primary scripting language contains much that will be familiar
to users of prior versions, it’s probably best to think of ActionScript 3.0 as
entirely new, for a few simple reasons.

First, a few things are quite different, such as how events are handled and
the way assets are displayed. Second, subtle changes run throughout the lan-
guage. (These are usually small concerns, such as a slight change in the name
of a property, but if you are used to ActionScript 2.0, for example, old habits
can die hard.) Most importantly, ActionScript 3.0 has been rewritten from the
ground up and uses a different code base than prior versions of the language.
This optimization provides relatively dramatic performance increases, but it
means that ActionScript 3.0 code cannot be mixed with prior versions of the
language in the same file.

Regardless of your experience level, don’t let the newness of ActionScript 3.0
intimidate you. It’s true that its learning curve is steeper than that of prior ver-
sions, but that is usually a function of its robustness more than one of difficul-
ty. Typically, whether you are coming to ActionScript 3.0 from a prior version
of ActionScript or another language altogether, there is an adjustment period
during which users must occasionally adapt to a new way of doing things.

Part I: Getting Started6

What’s New in ActionScript 3.0?

Here’s a look at some of the highlights of ActionScript 3.0. Keeping these
benefits in mind may help make it easier to learn a robust language, or accept
change—particularly when that change may initially seem tedious or overly
complicated. Select new features include:

Detailed error reporting

ActionScript 3.0 supports strict data typing of variables, arguments, values
returned from functions, and so on. Chapter 2 discusses data typing in
depth, but it boils down to telling the compiler and Flash Player which
kind of data you want to work with at different points within your proj-
ect code. This allows the compiler to warn you if you use the wrong data
type, catching related errors. ActionScript 3.0 supports static data type
checking, which occurs at compile time (when publishing your SWF),
and improves dynamic data type checking, which checks for errors at run-
time. In ActionScript 3.0, errors will no longer fail silently. Understanding
this fully in this overview isn’t important, and the benefits of data typing
will become apparent after reading Chapter 2—and even more so after
gaining a little experience with ActionScript 3.0. For now, just take heart
knowing that error checking and reporting are more vigilant than in any
prior version of ActionScript.

Syntax improvements

Syntax issues have been unified and cleaned up throughout the language.
For instance, some property names have been clarified and made con-
sistent by removing leading underscores. (Setting the x coordinate of a
movie clip, for example, now uses x instead of _x.). Also, former multiple
and varying ways of approaching the same or similar tasks have been
simplified and made consistent.

New display architecture

The many previous approaches to displaying assets are now consolidated.
ActionScript 3.0 has simplified how visible assets, such as movie clips and
text fields, are handled, using a new display architecture called the display
list. Chapter 4 examines this major change introduced by ActionScript 3.0.

New event architecture

Still another example of improved consistency, all events—such as a
mouse click or key press—are handled by event listeners in ActionScript
3.0—essentially listening for a specific event to occur, and then reacting
accordingly. The new event model is very powerful when combined with
the display list, allowing mouse and keyboard events to propagate through
multiple display objects. The event model is discussed in Chapter 3.

Improved XML handling

Working with complex XML documents is a pleasure with ActionScript 3.0.
It allows you to reference XML data the same way you reference properties
of other objects, such as movie clips or buttons, using a similar syntax.

What’s New in ActionScript 3.0?

Chapter 1: What Is ActionScript? 7

You’ll learn more about this in Chapter 14, but a simple example is refer-
ring to an XML node called phone, nested inside a node called user, as
user.phone. This is comfortable territory when you remember that a
movie clip called mc2, nested inside a movie clip called mc1, is referenced
as mc1.mc2.

Additional text options

New text-processing options now allow for much finer control over text
manipulation. For example, you can now find the contents of a particular
line in a text field, the number of characters in that line, and the char-
acter at a specified point (such as under the mouse). Flash Professional
CS5 also introduces a brand new text feature called the Text Layout
Framework (TLF). This new engine provides a greater degree of text con-
trol, including traditional typographic features, automatic text flow, and
even support for right-to-left and vertical text layouts and double-byte
languages (such as Chinese, Japanese, and Korean, among others). Text is
discussed in Chapter 10.

More sound management options

ActionScript 3.0’s sound capabilities are among the jazziest changes to
the language. On a practical level, they improve programmatic control
over both individual sounds and all sounds playing. Sounds are now
placed into separate channels, making it easier to work with more than
one discrete sound. Sounds are also funneled through a sound mixer for
collective control. You can get the amplitude and frequency spectrum data
from sounds during playback, as well as from microphone input. Chapter
11 covers sound in detail.

New access to raw data

For more advanced needs, you can access raw binary data at runtime.
Individual bytes of data can be read during download, during sound
playback, or from bitmap data, to name a few examples. These bytes can
be stored in a large list and still be accessed quickly and efficiently. We’ll
show an example of this technique in Chapter 11 when discussing sound
visualization.

New automatic scope management

In a programming language, the word scope is sometimes used to define
the realm in which an object, such as a movie clip, lives. A movie clip
might exist in one part of a Flash movie but not another. For example, a
child movie clip might be nested inside one of two movie clips found in
the main timeline. That nested movie clip exists within one clip but not
the other. Its scope, therefore, is restricted to the movie clip in which it
lives, or its parent. Programming structures have specific scopes, as well,
and ActionScript 3.0 greatly simplifies this concept by automatically keep-
ing track of where a particular block of code was defined—so you don’t
have to.

Part I: Getting Started8

The Flash Platform

Improved object-oriented programming

If you’re familiar with object-oriented programming, you’ll be glad to
know that ActionScript 3.0 supports this structure well. If you’re new to
OOP, don’t worry: we’ll introduce it in this book at a comfortable pace.
We’ll focus on syntax throughout by using simple examples, and we’ll
start to discuss OOP in greater detail in Chapter 6. If you’re already
familiar with OOP, you may be happy to know that sealed classes and
new namespaces, among other things, have been added to ActionScript
3.0. Most classes are sealed by default, meaning the compiler recog-
nizes only those properties and methods defined at compile time. This
improves memory usage and performance. However, if you need to add
properties to an instance of a class at runtime (for example), you can still
use dynamic classes such as the MovieClip and Object, and you can make
your own custom classes dynamic. Additionally, namespaces, including
the ability to define custom namespaces, allow finer control over classes
and XML manipulation.

The Flash Platform
It’s important to note that this book focuses primarily on developing
ActionScript 3.0 applications using the Flash Professional application (also
commonly referred to as an integrated development environment, or IDE).
However, ActionScript 3.0 is the programming language used in Flash
Platform technologies, as well—notably AIR and Flex.

AIR is the Adobe Integrated Runtime application, a sophisticated way of
delivering your applications to the computer desktop, rather than through a
web browser. Flex is another technology for creating SWFs that includes not
only the ActionScript 3.0 language, but also MXML, a tag-based language that
is part of what is commonly called the Flex Framework. This book will not
discuss MXML or the Flex Framework at all, but most of the ActionScript
you learn herein can be used in ActionScript-only Flex projects.

The existence of AIR and Flex means that the scripting skills you develop
using Flash Professional will be largely applicable in other areas of the Flash
Platform, extending your reach as a programmer. There are, however, some
differences between these technologies that are important to understand
when examining the big picture of cross-application scripting.

For instance, each technology adds some features that are not available to
the others. Using a feature that is specific to AIR or Flex, for example, means
that your code may not compile in Flash Professional. The thing to keep in
mind is that the ActionScript 3.0 language skills you develop will ease your
move between these applications and even allow you to work with different
authoring tools or compilers to create your finished product.

NOTE

AIR projects can also be created from
HTML, JavaScript, and PDF, but
ActionScript 3.0 is a large part of its
appeal and the language most relevant
to this discussion.

NOTE

This book is written for readers who
have some familiarity with scripting
but are new to ActionScript 3.0, and it
assumes a working knowledge of the
Flash Professional interface. See the
Preface for more information about this
expectation.

While virtually all of the code in the
book applies to any tool that sup-
ports ActionScript 3.0, some of the
examples use assets that are embedded
within FLA files—the main document
format used by Flash Professional.
The companion website, http://www.
LearningActionScript3.com, contains
information about using the examples
with applications other than Flash
Professional. See the “Using the Book
Examples” post as a starting point for
learning more about this process.

http://www.LearningActionScript3.com
http://www.LearningActionScript3.com

Procedural Versus Object-Oriented Programming

Chapter 1: What Is ActionScript? 9

Procedural Versus Object-Oriented
Programming
Much discussion has been made over the pros and cons of procedural and
object-oriented programming, and many who are new to ActionScript 3.0
have been led to believe that using OOP is the only way to program in
ActionScript 3.0. This is not the case. Object-oriented programming is very
powerful, and you’ll probably want to use it when you’re more comfortable
with the language. However, it’s just one possible way to write ActionScript.
We’ll introduce OOP slowly throughout the book, and we’ll try to encourage
you to learn OOP by presenting some exercises that use its methodologies.
We’d like to reassure you, however, that OOP isn’t required to program the
Flash Platform, or to use this book.

To put this into an ActionScript perspective, consider a little background on
the language’s evolution. ActionScript started as a sequential programming
language, meaning that scripting was limited to a linear sequence of instruc-
tions telling Flash what to do in a step-by-step manner. This approach to
scripting was not very flexible and did not promote reuse.

As the language evolved, it became a procedural programming language. Like
sequential programming, procedural programming relied on a step-by-step
set of instructions, but introduced a more structured, modular approach to
scripting. Procedures, otherwise known as functions (or sometimes subroutines),
could be executed again and again as needed from different parts of a project,
without copying and pasting copies of the code into the ongoing sequence of
instructions. This modularity promoted reuse, and made the code easier to
edit and more efficient.

Scripters in search of an even greater degree of modularity and reuse
gravitated toward object-oriented programming. OOP languages create
programs that are a collection of objects. Objects are individual instances
of classes—collections of code that are self-contained and do not materially
alter or disrupt each other. Creating an instance of a class, also referred to as
instantiation, is much like creating an instance of a library symbol in Flash
Professional. Just like movie clips dragged from the library onto the stage,
multiple instances of that movie clip symbol can be altered without affecting
one another, and without affecting the original from which they were derived.

Using OOP, however, you can extend this idea much further. One example of
extending an object-oriented system is the use of inheritance—the ability to
derive classes from other classes, passing on specific characteristics from the
base class, or parent class.

Consider, for instance, designing an OOP application that simulates a set
of transportation vehicles. You might start with a generic Vehicle class that
includes traits common to all vehicles, such as the basic physics of movement.
You might then extend Vehicle to create three subclasses: GroundVehicle,

NOTE

The programming terms parent, child,
sibling, ancestor, and similar words and
phrases mean much the same as they do
when used to describe families.

One simple example occurs when refer-
ring to symbol instances such as movie
clips, which can be nested within each
other. The upper- or outermost movie
clip is sometimes referred to as the par-
ent (there is even an ActionScript 3.0
property called parent), and the clips
nested inside are sometimes called chil-
dren. Similarly, two movie clips at the
same hierarchical level are siblings, and
clips that are more than one parent
up the chain of nested clips are called
ancestors.

In general, if you liken these terms to
their everyday uses, referring to families,
you will readily grasp their meanings.

Part I: Getting Started10

Procedural Versus Object-Oriented Programming

WaterVehicle, and AirVehicle. These classes would alter or introduce
vehicle traits, making them specific to ground, water, and air travel, respec-
tively. However, these classes might not yet be complete enough to represent
an actual vehicle. Further derived classes might be Car and Motorcycle
(descending from GroundVehicle), Boat, and Submarine (descending from
WaterVehicle), and Plane and Helicopter (descending from AirVehicle).
Depending on the complexity of your system, you can carry on this process,
creating individual models with individual settings for fuel consumption,
friction, and so on.

Vehicle

Car SubmarineBoat

WaterVehicle

Motorcycle Plane Helicopter

GroundVehicle AirVehicle

Figure 1-1. An example of inheritance

As you can probably imagine, this approach to development adds additional
power, flexibility, and prospects for reuse. These benefits, among others,
sometimes position object-oriented programming as the best approach to a
problem. However, as we implied at the start of this section, there is a ten-
dency among some programmers to believe that OOP is the best solution to
all problems or, effectively, the only solution. This is flat-out untrue.

OOP is often best for large projects or for working with a team of program-
mers, but it can be overkill for small projects. Additionally, for the uninitiated,
it can significantly increase the learning curve and distract from key topical
concepts during your studies. In short, OOP is not always the best tool for the
job. Procedural programming still has its place, and Flash Professional allows
you to explore and employ both programming paradigms.

This book attempts to introduce material using both procedural and OOP
approaches where appropriate. Using object-oriented practices is a fine goal,
and one that we will encourage. However, we will try first to use simple pro-
cedural syntax to focus on the material central to each chapter, highlighting
syntax and explaining how and why each topic should be addressed in code.

The Document Class

Chapter 1: What Is ActionScript? 11

In general terms, we will focus on procedural programming prior to Chapter 6.
Chapter 6 introduces OOP using a simplified version of the vehicle metaphor
and serves as a transition chapter between procedural and OOP practices.
Beginning with Chapter 7, chapters will introduce new concepts using simple
timeline syntax and, when appropriate, include an applied OOP example.

This is our preferred approach to presenting material for all possible users—
in both procedural and OOP formats. It is our hope that, regardless of your
skill and experience, you will hone in on the topics at hand, and then choose
to work using the timeline or classes based on your comfort level.

The Document Class
If you want to start thinking in OOP terms right away, you can easily take a
step in that direction. Remember that this is not necessary to get started and
that you should feel free to skip this section if you don’t want to be exposed
to classes yet. You won’t lose any momentum if you decide to skip ahead, as
all of this material will be discussed again in Chapter 6.

Flash Professional introduced a new feature that simplifies associating a main
class, or primary entry point for your application, with your FLA. In Flash
Professional, this class is called the document class, and it does all the work
of instantiating the class for you. This means you don’t need any code in the
timeline at all and can edit your code not only in Flash Professional, but also
in the external text editor or development environment of your choice.

Let’s start with a simulated chapter example that you might use in the time-
line. It does nothing more than use the trace() statement to display text in
your authoring environment. In Flash Professional, this text will appear in
the Output panel, an authoring-only panel that accepts text output from your
file for diagnostic purposes.

In Flash Professional, use File→New and create a new ActionScript 3.0 FLA
file. Select frame 1, and add the following to the Window→Actions panel:

trace("Flash");

To accomplish this using a document class, you essentially need to create an
external file and enclose this instruction in the correct class syntax.

Users of Flash Professional CS3 and CS4 should use File→New and create a
new ActionScript File (rather than a new FLA document). Users of Flash CS5
Professional will see this option as ActionScript 3.0 Class and most of this will
be taken care of for you (Figure 1-2).

NOTE

If you don’t plan to start using OOP
until we roll it out in later chapters, feel
free to skip this section as the material
is discussed again in Chapter 6. We will
provide minimal explanation here just
to get you going using document classes,
and will explain these concepts in great-
er detail in later chapters throughout
the book.

NOTE

As discussed previously, this book focus-
es strictly on ActionScript and assumes
a familiarity with the Flash Professional
application. If you are unfamiliar with
the Actions, Timeline, or Output panels,
please consult a reference on the Flash
Professional application, such as this
book’s companion volume, Learning
Flash CS4 Professional (O’Reilly). If
you are using another script editor,
please consult similar references for your
editor of choice.

Part I: Getting Started12

The Document Class

Figure 1-2. Creating a new class in Flash CS5 Professional

In the new file, type or edit the following:

1	 package	{
2	
3	 				import	flash.display.MovieClip;
4	
5	 				public	class	Main	extends	MovieClip	{
6	
7	 								public	function	Main()	{
8	 												
9	 								}
10	
11	 				}
12	 }

The first line, along with the closing brace in line 12, defines the class’s pack-
age. This is a mandatory structure that tells the compiler where your class
resides. For simplicity, you will save your file in the same directory as the FLA
that will use this class, so no further syntax is required.

Next, you must import any additional classes that your class will reference.
The import keyword doesn’t actually import anything; it just provides the
location of a class to the compiler so it can validate your code and include
the class when creating the SWF. Ordinarily, because this simple example
uses only the trace() statement, you wouldn’t need any additional classes to
accomplish your goal. However, a document class is essentially a replacement
for your main timeline. Behind the scenes, the compiler will use an instance
of this class, instead of the main timeline, as the starting point for your
SWF. Therefore, your document class should extend, or be derived from, the
MovieClip class so that it inherits all the functionality of the main timeline.
So, as a result of extending the MovieClip class in line 5, you must import the
MovieClip class, as seen in line 3.

Line 5, along with its closing brace on line 11, is the class definition. What you
decide to call your class (in this case, “Main”) is up to you, but when nam-
ing it you should follow a few basic rules and conventions. The name can’t
contain spaces, it can’t already exist in ActionScript, it should start with an

NOTE

When creating a document class, you
can also extend the Sprite class,
which is essentially a movie clip with-
out a timeline. However, using the
MovieClip class for this purpose offers
more flexibility.

For example, although it’s not a good
idea to combine timeline code with a
document class (it’s best to think of the
document class as replacing the time-
line), it is possible only when the docu-
ment class extends MovieClip.

For more information, see the “Sprite
versus MovieClip” post at the compan-
ion website.

The Document Class

Chapter 1: What Is ActionScript? 13

alpha character (rather than a number or other character), and it is typically
capitalized.

You must add public to line 5 when declaring the class, so that other parts of
your program can access it. We’ll cover this in detail in Chapter 6, but you can
control which parts of your class are accessible to other areas of your project.
For example, if you make something private, it will be accessible only from
within the class. Doing so can protect portions of your class from outside
manipulation and reduce conflicts with similar functionality that may exist
elsewhere in your project. The class, itself, however, must be public so that it
can be instantiated.

Line 7, along with its closing brace on line 9, define what is called the class
constructor. This is the main function that automatically runs when creating
an instance of this class. It, too, must be public and must have the same name
as the class. Other functions (if any) can, and must, have unique names, but
using the same name as the class identifies this function as the class construc-
tor, so it is executed upon instantiation.

All that remains to complete this document class is to add the lone instruc-
tion required to replicate the timeline example discussed previously. The
constructor must trace “Flash” to the Output panel, so add the following to
line 8:

7	 								public	function	Main()	{
8 trace("Flash");
9	 								}

Now that you’re finished writing your class, name your file Main.as and save
it to a location you’ll remember. (In a moment, you’ll need to save an FLA to
this same location.) When creating a class, you must give the class, construc-
tor, and file the same name—the notable exception being that the file must
bear the .as extension.

Now, in Flash Professional, use File→New and create a new ActionScript 3.0
FLA file. Because this simple example included no custom path instructions
in the package declaration in line 1 of your class, save your file in the same
directory as your class file. The name of the FLA is unimportant, so you may
as well call it main.fla.

Finally, open the Properties panel in the FLA and add the name of your class
to the document class field. (It’s labeled “Class” and appears in the Publish
section of the panel.) Use the name of the class, not the name of the file. In
this case, type Main instead of Main.as, as seen in Figure 1-3.

Now compile your FLA file using the Control→Test Movie menu com-
mand in Flash Professional, or Cmd-Return (Mac)/Ctrl-Return (Windows).
(For Flash Professional CS5 users, the command is now Control→Test
Movie→Test.) When your SWF runs, you should see “Flash” appear in the
output panel, and your test application will be complete. You can compare

Figure 1-3. Adding a document class to
your FLA

Part I: Getting Started14

Legacy Code Compatibility

your work to the files found in the document_class_example directory in the
accompanying source code.

Hereafter, you can try any of our timeline code in a document class of your
own. Initially, you probably won’t know which classes to import or how to
make any possible changes to variables or similar structures to conform to
the class syntax. However, all the sample code will come with an accompany-
ing class file for testing. You can use those files whenever you wish until you
get used to the document class format.

Legacy Code Compatibility
If you’ve worked with ActionScript 1.0 or 2.0 in the past—or even if you find
yourself updating legacy code created by someone else—it’s very impor-
tant to understand that you cannot mix ActionScript 1.0 or 2.0 code with
ActionScript 3.0 code in the same SWF. You are unlikely to do this if you’re
learning from scratch, but you may run into this limitation if you attempt to
update legacy projects by adding ActionScript 3.0 code.

If you ever have the need to run a discrete mixture of ActionScript 3.0 and
a prior version of the language, such as showing a legacy file within a new
demo interface shell, you can do so by loading a SWF. An ActionScript 3.0
file can load a SWF created in ActionScript 1.0 or 2.0, but it cannot directly
access the older SWF’s code. A SWF created in ActionScript 1.0 or 2.0, however,
cannot load an ActionScript 3.0 SWF.

In Chapter 13, we will discuss how to communicate between these two dis-
crete SWFs using a special process. For now, however, just remind yourself
again that you cannot combine ActionScript 3.0 with older versions of the
language in the same file.

Hello World
Now it’s time to write your first ActionScript 3.0 application. If you learned
about the document class earlier in this chapter, you’ve already done this.
That exercise, however, displayed text only within an authoring application
like Flash Professional—a technique used for testing and debugging, but
not for displaying text in your finished files. In this section, we’ll expand the
example to show you how to display text in the SWF files you send out into
the world. Using a text field makes a small leap, because we won’t discuss text
at length until Chapter 10, but our needs are meager for this example, and you
should have no problem at all. Our main goal is to give you a big-picture view
of the script-writing process and to give you some experience coding.

Hello World

Chapter 1: What Is ActionScript? 15

Timeline Example
First you’ll create your Hello World application using a simple timeline script
to focus on the basic syntax. Then we’ll show you how to use a document
class to achieve the same result.

Create a new ActionScript 3.0 FLA file and type the following into a script in
frame 1 of the file.

Throughout this book, any time you want to create a timeline script, select a key-
frame in which you want the script to reside, open the Window→Actions panel, and
write your code.

1	 var	txtFld:TextField	=	new	TextField();
2	 addChild(txtFld);
3	 												
4	 txtFld.text	=	"Hello	World!";

When you’re finished, test your movie choosing Control→Test Movie in Flash
Professional. You should see the phrase, “Hello World!” in the upper-left cor-
ner of your published file.

NOTE

Because you use variables to store information for later retrieval, naming them in a
clear and meaningful way is important. Ideally, the name you choose should convey
the purpose of the variable whenever practical. You have a lot of freedom when
determining what to call your variables, but there are a few simple guidelines to
follow. We’ll discuss variables, including naming requirements and conventions, in
Chapter 2.

Line 1 of the script creates a new text field using the TextField class and
places a reference to that field into the variable txtFld. Note the colon and
reference to the TextField class immediately following the variable name.
This is called a data type and makes sure that only a compatible type of data
can be put into that variable—in this case, a TextField instance. If you try to
put something else into this variable, an error is displayed, which can help
you spot problems with your code. Using data typing will save you lots and
lots of time, and we’ll talk about it in greater detail in Chapter 2.

Line 2 adds the text field to the display list so it can be seen at runtime.
Chapter 4 will explore this further, but put simply, the display list contains
everything you can see in your file. For example, a text field is a visual asset,
but a sound is not. For the user to see the text field, you must add it to the
display list, but this does not apply to the sound. Finally, line 4 puts the
phrase “Hello World!” into the text field. Default values for font, size, and
color are used to display the text in the field. You’ll learn how to manipulate
those characteristics in Chapter 10.

NOTE

When writing your own class files,
you’ll see that other classes referenced
therein (such as MovieClip) must be
imported so the compiler knows where
to find them when publishing your
SWF. There are no import statements
in this script, however, because Flash
Professional does not require that you
import any class that is built into Flash
player when coding in the timeline.

In short, when referencing a class in the
timeline, if that class appears in a flash
package—such as the flash.text
package in which TextField resides—it
doesn’t have to be imported. On the
other hand, classes in packages not
starting with flash—such as class you
write or a class used with a component
like fl.controls.Button—must still
be imported, even in the timeline.

For brevity, we will follow this guideline,
but importing classes does no harm. In
fact, as an interface improvement, Flash
Professional CS5 will often automatically
add import statements to your scripts
when you use a class in the timeline—
including those from the flash package.
If you are using CS5, consider these auto-
matic imports when comparing line num-
bers between your code and the book.

Part I: Getting Started16

Hello World

Document Class Example
To recreate this example using a document class, place the same code inside
the constructor of the class—the only function included in this example. Take
the following steps to create the files required:

First, create a new ActionScript 3.0 file and type or edit the following code.
Save the file as HelloWorld.as and remember where you saved it.

1	 package	{
2	 				
3	 				import	flash.display.MovieClip;
4	 				import	flash.text.TextField;
5	 				
6	 				public	class	HelloWorld	extends	MovieClip	{
7	 								
8	 								public	function	HelloWorld()	{
9	 												var	txtFld:TextField	=	new	TextField();
10	 												addChild(txtFld);
11	 												
12	 												txtFld.text	=	"Hello	World!";
13	 								}
14	 								
15	 				}
16	 }

Next, create a new ActionScript 3.0 FLA and save it in the same directory
in which you saved your class. The name of the FLA is not critical. In the
Properties panel in that FLA, add HelloWorld to the document class field.

Finally, test your movie. You should see the small phrase, “Hello World!” on
the stage in the upper-left corner.

The class syntax here conforms to the syntax described in “The Document
Class” section of this chapter, with two small exceptions. (If you want to com-
plete this portion of the Hello World exercise, and haven’t already read that
section, please do so now.) The main difference is that the code in the class
constructor differs because its purpose differs. Like the timeline code used to
create the first Hello World example, this code uses a text field to display text,
instead of the Output panel. The second difference results from this change.
Because you are now using the TextField class to create a new text field, you
must also import this class in line 4 so the compiler knows to include it.

Success
Congratulations! If you completed one or both of these Hello World exam-
ples, you just created an ActionScript-only application. You can compare your
work to the hello world_timeline.fla file and/or the files in the hello_world_
document_class directory, both found in the accompanying source code at
http://www.LearningActionScript3.com.

http://www.LearningActionScript3.com

What’s Next?

Chapter 1: What Is ActionScript? 17

What’s Next?
Now that you know a little more about ActionScript 3.0 and the Flash
Platform, it’s time for a look at some of the fundamentals of the language.
By reviewing version-independent concepts at the outset, we can focus on
new syntax in subsequent chapters. If you have a lot of experience with
ActionScript 1.0 or 2.0, you may wish to skim Chapter 2.

In the next chapter, we’ll discuss:

• Basic concepts to bring you up to speed quickly, including using the
trace() statement as a diagnostic tool to see immediate feedback from
your scripts

• Using variables to store data (including arrays and custom objects that
allow you to easily manage more than one value) and data typing to
improve error reporting

• Structures such as conditionals for decision making and loops for simpli-
fying repetitive tasks

• Functions that can isolate code into convenient blocks that will be execut-
ed only when instructed

• Ways to address Flash objects with ActionScript, including using absolute
and relative paths, and the identifier this

19

IN THIS CHAPTER

Jump Right In

Miscellaneous Basics

Variables and Data Types

Operators

Conditionals

Loops

Arrays

Vectors

Functions

Custom Objects

this and parent

Absolute Versus Relative
Addresses

Put It All Together

What’s Next?

ActionScript 3.0 is a complete rewrite of the language—so much so that
ActionScript 3.0 doesn’t even share the same Flash Player code base as
prior versions of ActionScript. But that’s all behind the scenes. The truth is
that all versions of ActionScript to date have quite a bit in common. This
is because ActionScript is based on a scripting language standard (called
ECMA-262) that grew from the success of JavaScript, and ongoing versions of
ActionScript are as backward-compatible as possible in an effort to support
legacy projects.

Of course, each new update to ActionScript introduces new features and,
because the decision was made to create ActionScript 3.0 from scratch, an
opportunity presented itself to tidy up a few messy things that lingered from
previous versions. Among these improvements are tightening up and requir-
ing best practices that had been optional, and restructuring how events and
graphical assets are handled (the Event Model and Display List, respectively).
All of this progress, however, didn’t steamroll over the standard upon which
ActionScript is based, and most of the language fundamentals remain intact.

With the intention to focus on new ActionScript 3.0 features later on, we want
to cover some of the more commonly used fundamentals up front. We do not
intend to ignore these ideas throughout the rest of the book. However, we
hope to explain them in sufficient detail here and spend less time on them
as we proceed.

This book doesn’t assume that you’re well versed in any prior version of
ActionScript, but its size and purpose requires that we assume a basic under-
standing of general scripting concepts. If you haven’t already, please look over
the Preface for a good idea of whom this book is for, as well as a few alterna-
tive references if you need more background information.

If you’re already comfortable with ActionScript and are reading this text as an
introduction to version 3.0, you may want to skim this chapter. In any case,
you can refer to it as a point of reference when an underlying programming
concept needs further explanation.

Core Language
fundamentaLs

CHAPTER 2

Part I: Getting Started20

You can also look at the source files, which can be downloaded from the
companion website at http://www.LearningActionScript3.com. As we have not
yet discussed some of the essentials of ActionScript required to manipulate
assets, we’ll use a common testing and debugging technique to display text
while reviewing each example.

In these pages, we’ll look at the following topics:

• Jump Right In. Add core logic to your Hello World! example with a
conditional, a loop, and random number generation.

• Miscellaneous Basics. This section includes a few essential items and
techniques used throughout this book that don’t necessarily warrant sec-
tions of their own.

• Variables and Data Types. Information must be stored in containers
called variables if it is to be recalled for later use, and declaring which
type of data will be stored in each variable can help Flash check for errors
during development.

• Operators. ActionScript uses characters called operators, such as plus
(+) and less than (<), that combine, compare, or modify values of objects,
properties, or expressions.

• Conditionals. Often, when a decision must be made in the course of a
script’s execution, a conditional is used to evaluate an outcome. We’ll look
at the if and switch conditional statements.

• Loops. When you must execute an instruction multiple times, it is some-
times handy to do so within a loop structure. We’ll look at the commonly
used for and while loops and also at alternatives to explicit loops, includ-
ing frame and timer events.

• Arrays. Although a basic variable can contain a single value only, it is fre-
quently efficient, or even necessary, to store more than one value at a time.
Imagine a shopping list, for example, with several items written on a single
piece of paper rather than many individual paper slips. In ActionScript,
you can use an array to store several values in a similar manner.

• Functions. Functions are essential to just about any programming lan-
guage, and allow you to execute code only when you are ready to do so
and reuse that code efficiently.

• Custom Objects. A custom object is essentially an advanced kind of
variable that allows you to store lots of information as well as to consis-
tently and easily retrieve it.

Jump Right In

Chapter 2: Core Language Fundamentals 21

• this and parent. The this keyword is used as a shorthand reference,
much like a self-referential pronoun, typically referring to the current
object or scope of a script. Similarly, parent refers to an object immedi-
ately higher up in the ActionScript family tree, if you will. These ideas
will become clearer in context, but understanding how these keywords
work can save you much repetitive typing and reduce the need for more
complex references in your scripts.

• Absolute versus Relative Addresses. ActionScript can reference objects
using absolute paths, such as starting from the root timeline and includ-
ing every object between it and your destination, or relative paths, such
as going up to a parent and down to a sibling, no matter where you are.

Again, this chapter is not meant to act as the only reference to bring you up
to speed if you have absolutely no experience with ActionScript. It will likely
serve the bulk of your needs, but other basics—such as reviewing where
scripts are created in Flash Professional or another application—require a
text dedicated to the editor of your choice.

For the most part, this chapter—along with the context and supplemental
explanations presented in subsequent chapters—should provide you with
enough to understand the topics and to get the sample exercises working.

Jump Right In
Before we cover some of the fundamental structure and logic of ActionScript
3.0, let’s write another script to help get the feel of the language and build a
little confidence. Specifically, we’ll build on the Hello World! exercise from
Chapter 1 to introduce some of the material explained in detail in this chap-
ter. We’ll give you a brief explanation here and then expand on each relevant
topic as you read on. Create a new ActionScript 3.0 FLA file and type the fol-
lowing code into frame 1 using the Actions panel. You can compare your work
with the hello_world_if_loop.fla source file.

1	 var	str:String	=	"Hello	World!";
2	
3	 if	(Math.random()	<	0.5)	{
4	 				var	txtFld:TextField	=	new	TextField();
5	 				addChild(txtFld);
6	 				txtFld.text	=	str;
7	 }	else	{
8	 				for	(var	i:int	=	0;	i	<	3;	i++)	{
9	 								trace(str);
10	 				}
11	 }

Line 1 creates a variable and tells the ActionScript compiler that it will con-
tain a String, which is simply text. Telling the compiler what kind of data you
intend to put into a variable will help it warn you if something attempts to
manipulate the data in an incompatible way later on—such as trying to treat
text as if it were a number.

NOTE

As the Preface mentioned, we recom-
mend Learning Flash CS4 Professional
by Rich Shupe (O’Reilly) for a starter
book on the Flash interface and
Essential ActionScript 3.0 by Colin
Moock (O’Reilly) for a more complete
ActionScript 3.0 resource. The latter is
decidedly an intermediate to advanced
reference but, at nearly three times the
size of this volume, it is also substan-
tially more comprehensive.

Part I: Getting Started22

Miscellaneous Basics

The if statement in line 3 does what its name implies. It tests to see if some-
thing is true and, if so, executes the code within its braces. In this case, the
braces are balanced on line 7, but the statement continues with an else. This
means that if the test is false, the next set of instructions, balanced with the
last brace on line 11 (lines 8 through 10), is executed. The test in this example,
added to show how easy it can be to randomize an outcome in ActionScript,
is whether a random number is less than 0.5. Math.random() will create a ran-
dom number between 0 and 1.

If that number is less than 0.5, the first block of code (lines 4 through 6) will
execute. This code creates a text field, makes it visible by adding it to the
display list, and puts the contents of the variable into the field—just as you
saw in Chapter 1. If the test fails, the second block (lines 8 through 10) will
execute. This code is a loop that will run through three times, tracing the
value of the string to the Window→Output panel.

We’ll explain the syntax of this script in greater detail as this chapter pro-
gresses, but if you test your movie using Control→Test Movie, you’ll see the
result immediately. Based on the random number selection, you’ll either see
text on the stage or in your Output panel. You can test your movie repeatedly
to see various outcomes. Now, let’s dig in to some language fundamentals!

Miscellaneous Basics
Some basic topics don’t require a section devoted to their discussion, but
should still be mentioned due to their use throughout the book. For example:

Case sensitivity

ActionScript 3.0 is a case-sensitive language, so you have to be careful with
capitalization. For example, the keyword true is all lowercase. If you type
TRUE or True, in the same context, you will get an error.

Use of the semicolon (;)

The official use of the semicolon in ActionScript is to execute more than
one statement on a single line. This is rare in the average script, but we
will look at this technique when discussing loops. The semicolon is also
used to indicate the end of a line. This is not typically required, but it is
recommended for clarity and to ease any possible transition into learning
other languages in which the semicolon at the end of a line is required.

Use of trace()

As a means of getting quick feedback in an example, or as a testing and
debugging technique when writing scripts, trace() can be very helpful.
This instruction places text into the Output panel of the Flash Professional
interface. As such, this is an option that is available only when creating your
file, and has no use in your distributed SWF. ActionScript 3.0’s version of
trace() supports tracing multiple items at once by separating them with
commas. These items are then traced with a space separating the content.

Variables and Data Types

Chapter 2: Core Language Fundamentals 23

Typing the following into a script, for example, will display “Learning
ActionScript 3.0 Shupe Rosser” in Flash Professional’s Output panel:

trace("Learning	ActionScript	3.0",	"Shupe",	"Rosser");

Variables and Data Types
Variables are best described as containers into which you place information
for later recall. Imagine if you were unable to store any information for later
use. You would not be able to compare values against previously described
information (such as user names or passwords), your scripts would suf-
fer performance lags due to unnecessarily repeating calculations, and you
wouldn’t be able to carry any prior experiences through to the next possible
implementation of a task. In general, you wouldn’t be able to do anything
that required data that your application had to “remember.”

Variables make all this and more possible. In the most basic terms, you need
only create a variable with a unique name and then populate it with a value.
However, for an ActionScript 3.0 compiler to know you are creating a vari-
able, rather than mistyping some other ActionScript keyword, you must also
declare the variable using the var keyword. A simple example is remembering
the number 1 with the following:

var	myVariable	=	1;

Keep in mind that variable names:

• Must not contain spaces

• Should not already be a keyword or reserved word in the ActionScript
language specification

• Should not start with a number

• Can include only alphanumeric characters along with the dollar sign ($)
or underscore (_)

To help ensure that you are using variables (and other ActionScript language
elements) appropriately, ActionScript can check your efforts and warn you
when you go awry. Not every mistake can be detected, of course, but every
little bit helps. For example, your ActionScript compiler can warn you if you
try to perform a mathematical operation on a passage of text. Dividing the
text “Flash” by 17, for example, doesn’t make much sense, and it really helps
when you are told of such errors.

To make this possible, you must use what is called data typing when you
write your code. That is, you must tell the compiler that a variable will con-
tain a specific type of data. To accomplish this, you must follow your variable
name with a colon (:) and then the type of data that you want to store in that
variable. For example, to data type the previous sample code write:

var	horizontalLocation:Number	=	4.5;

NOTE

Throughout this book, code samples
will be presented in full color. Most
ActionScript editors, including Flash
Professional, can apply colors, based on
your preference, to specific ActionScript
structures. As the average reader of this
book is likely to use Flash Professional,
we have adopted the default color
scheme used by that application. Other
editors may use different colors, but you
will rapidly adjust to any such differ-
ences. In this context, key ActionScript
terms are in blue, strings (or text values)
are in green, comments are in gray, and
more basic elements, (such as paren-
theses, semicolons, and the like) are in
black. Anything that is not already pre-
defined in ActionScript, such as names
of variables that we create, will also be
in black.

Part I: Getting Started24

Variables and Data Types

This insures that any type of number, be it positive or negative, whole num-
ber or decimal value, is the only type of data that can ever be stored in hori-
zontalLocation. (In just a few moments, we’ll show you what would happen
if you tried to put something other than a number into this variable.)

ActionScript supports several basic data types including, but not limited to,
those listed in Table 2-1.

Table 2-1. Variable types

Data type Example Description

Number 4.5 Any number, including floating-point values (decimals)

int -5 Any integer or whole number

uint 1 Unsigned integer or any nonnegative whole number

String "hello" Text or a string of characters

Boolean true Values true or false

Object {name:"Claire", age:2} The basic structure of every ActionScript entity, typically
used to store multiple name-value pairs of data

In addition to these basic data types, it’s very common to store variable refer-
ences to ActionScript objects, such as a movie clip, text field, or sound, and to
use type checking to make sure your code contains fewer errors. For example,
the following instruction places a MovieClip into the variable logo. The data
type insures that the compiler will warn you if you do anything with this
variable that is not compatible with the MovieClip type.

var	logo:MovieClip	=	new	MovieClip();

Let’s revisit our horizontalLocation variable and see what happens if we try
to perform an operation on it that is incompatible with the Number data type.
Here’s an example of trying to reassign the variable to a String:

horizontalLocation	=	"ActionScript";

Having told the compiler to expect only numbers in this variable, this will
yield the following error:

1067:	Implicit	coercion	of	a	value	of	type	String	to	an	unrelated	type	
Number.

This means your code is trying to change a value of type Number to a value
of type String, without first explicitly telling the compiler you want to do so.
The compiler warns you about this because you may not have intended to
change the data type and it wants a clearer instruction before allowing the
switch. While this is usually a huge benefit, you may sometimes want a type
change to occur. In these cases, you just need to be more direct by casting the
data.

Variables and Data Types

Chapter 2: Core Language Fundamentals 25

Casting
Casting is the overt act of telling the compiler to treat a value of one data
type as if it’s a value of another data type. When discussing type conversion
previously, we showed that trying to assign a String to a variable with a
Number data type would cause an error. This is pretty clear when you’re trying
to overwrite a variable called horizontalLocation, which contains a value of
1, with a new value of “ActionScript.”

But what if you want to assign the text “300” to that variable? For example,
what if you want to create a horizontal location value from something a user
typed into a text field? Although text entered into a text field originates as
having a data type of String, you need to be able to tell the compiler to treat
that information as having a data type of Number.

There are two ways to cast data, both shown here, and both with pros and
cons.

horizontalLocation	=	Number("300");
horizontalLocation	=	"300"	as	Number;

The first example, using the format type(data), is simple and, best of all, will
generate an error if you try to cast to an incompatible data type. On the other
hand, it could be confusing because it resembles other ActionScript syntax
that we’ll discuss a bit later (such as the name of a function or instantiation of
a class). There are also isolated cases where this approach won’t work because
it conflicts with syntax reserved for another purpose. For example, later in
this chapter we’ll discuss arrays (objects designed to contain multiple values),
and you’ll learn that the Array() syntax creates a new array. As such, this form
can’t be used to cast data to an array.

The second example, using the format data as type will work where the prior
syntax fails, but it won’t generate an error if the casting fails. Instead, it will
simply return null as the resulting value.

You can check whether an object is of a certain type using the is operator.

var	userName:String	=	"Aubrey";
trace(userName	is	String);
//traces	true	to	the	Output	panel

Strict Mode
Once you start data typing your variables, you can be warned of related
errors when your application runs or, better yet, when you compile your
file—such as when testing your movie in Flash Professional. Whether you
check for errors at runtime or when compiling your code is determined by
your ActionScript compiler’s Strict Mode setting.

NOTE

Our personal preference is to use the
type(data) form of casting because we
want to take advantage of the error
reporting to correct any problems. If a
resulting error points to a conflict with
this format, we then switch to data as
type for specific needs.

Part I: Getting Started26

Variables and Data Types

In Flash Professional, the Strict Mode setting is on by default and is a
per-file preference, rather than an application preference. As such, it’s
found in the Publish Settings of each file (File→Publish Settings). Flash
Professional CS5 users will find shortcuts to this destination in the File menu
(File→ActionScript Settings) and in the Publish section of the Properties
panel. In the Flash option at the top of the Publish Settings dialog is a pull-
down menu that lets you choose which version of ActionScript to use in each
file. Next to that menu is a Settings button, as seen in Figure 2-1. Clicking
this button will reveal the Strict Mode option in the Advanced ActionScript
3.0 Settings dialog, as seen in Figure 2-2.

Figure 2-1. A detail from the Flash section of the Publish Settings dialog

Figure 2-2. A detail from the Advanced ActionScript 3.0 Settings dialog, where the Strict
Mode preference is found

If Strict Mode is enabled, you will be notified of errors when you compile
your file as well as when your SWF is running. If you disable Strict Mode,
you will rely solely on runtime error warnings to catch mistakes. We recom-
mend keeping Strict Mode enabled because the compiler will not only help
you catch problems as you code, but will even try to tell you where the prob-
lem is in your scripts.

Operators

Chapter 2: Core Language Fundamentals 27

Operators
Operators are characters that dictate how to combine, compare, or modify val-
ues of objects, properties, or expressions. Table 2-2 lists most of ActionScript
3.0’s operators, focusing on the operators you’re likely to use when working
with this book’s examples.

Table 2-2. A partial list of ActionScript 3.0 operators

Arithmetic

+ addition Adds numeric expressions.

- subtraction Negates or subtracts numeric expressions.

* multiplication Multiplies two numeric expressions.

/ division Divides two numeric expressions.

++ increment (1) Adds 1 to a numeric expression.

-- decrement (1) Subtracts 1 from a numeric expression.

% modulo (2) Calculates remainder of expression1 divided by expression2.

Assignment

= assignment Assigns value at right of operator to variable, array element, or object property at
left of operator.

Arithmetic compound assignment

+= addition assignment (3) Assigns expression1 the value of expression1 + expression2.

-= subtraction assignment Assigns expression1 the value of expression1 – expression2.

*= multiplication assignment Assigns expression1 the value of expression1 * expression2.

/= division assignment Assigns expression1 the value of expression1 / expression2.

%= modulo assignment Assigns expression1 the value of expression1 % expression2.

Comparison

== equality (4) Tests two expressions for equality.

!= inequality Tests for the exact opposite of the equality (==) operator.

> greater than Compares two expressions and determines whether expression1 is greater than
expression2; if so, the result is true.

>= greater than or equal to Compares two expressions and determines whether expression1 is greater than or
equal to expression2; if so, the result is true.

< less than Compares two expressions and determines whether expression1 is less than
expression2; if so, the result is true.

<= less than or equal to Compares two expressions and determines whether expression1 is less than or equal
to expression2; if it is, the result is true.

Logical

&& AND (4) Tests two expressions to see if both are true.

|| OR Tests two expressions to see if either is true.

! NOT Inverts the Boolean value (truth) of a variable or expression.

Part I: Getting Started28

Operators

Table 2-2. A partial list of ActionScript 3.0 operators

Type

as as Casts data to left of operator as data type to right of operator.

is is (5) Evaluates whether an object is compatible with a specific data type.

String

+ concatenation (6) Concatenates (combines) strings.

+= concatenation assignment Concatenates value to right of operator. Assigns string1 the value of string1 + string2.

You’re probably familiar with many of ActionScript 3.0’s arithmetic, assign-
ment, and comparison operators. Other operators may be new to you, and
many will be explained and used throughout the coming chapters. Here are
some quick notes referred to in Table 2-2 covering some of the operators you
may be less familiar with:

1. Increment and decrement operators add 1 to or subtract 1 from an expres-
sion. For example, i++ is the same as saying i = i + 1. They come in post-
fix (i++) and prefix (++i) flavors. The difference between them is that the
postfix version alters the value of the variable after a related expression is
evaluated, and the prefix version alters the value before the expression is
evaluated. This can be seen by tracing both operators at work:

var	i:int	=	0;
trace(i++);
//0
trace(i);
//1

var	j:int	=	0;
trace(++j);
//1
trace(j);
//1

In the first example, the postfix increment operator is used within a
trace() statement. Because the postfix flavor of the operator increments
after the statement is executed, the first trace is 0 and the second is 1. The
prefix flavor of the operator increments before the trace() statement is
executed, so both traces show the value of 1.

2. Modulo calculates the remainder of a division, not how many times the
numerator goes into the denominator. In other words, 4 % 2 is 0 because
2 goes into 4 two times, and leaves no remainder. However, 5 % 2 is 1
because 2 goes into 5 two times and leaves a remainder of 1.

Conditionals

Chapter 2: Core Language Fundamentals 29

3. Compound assignment operators work a bit like increment and decre-
ment operators, but they are not restricted to altering an expression by a
value of 1. Instead, they alter the original based on whatever is to the right
of the equal sign. For example, 10 += 5 is 15 and is equivalent to saying
10 = 10 + 5.

4. Note the difference between the assignment operator (=, a single equal
sign) and the comparison equality operator (==, a double equal sign). The
first assigns a value to an expression; the second tests whether two values
are equal. Both comparison and logical operators are discussed later in
the “Conditionals” section of this chapter.

5. The as and is operators are discussed earlier in the “Casting” section of
this chapter.

6. When used in the context of strings, the plus symbol (+) is a concatena-
tion operator, which joins two strings together. The expression "Sally" +
"Claire" evaluates to “SallyClaire”.

Arithmetic Operator Precedence
Arithmetic and arithmetic compound assignments are evaluated in order
of precedence. Multiplication, division, and modulo are executed first, and
addition and subtraction are executed second. For example, 1 + 2 / 3 + 4 is
equivalent to five and two-thirds because the division is evaluated before the
addition.

Parentheses can alter the order of precedence by evaluating their contents
first. Changing the previous expression to (1 + 2) / (3 + 4) is equivalent to
three-sevenths because the addition is evaluated before the division.

Conditionals
You will often need to make a decision in your script, choosing to do one
thing under one circumstance and another thing under a different circum-
stance. These situations are usually handled by conditionals. Put simply, a test
asks whether a condition is met. If the condition is met, the test evaluates to
true and specific code is executed accordingly. If the condition is not met,
either no further action is taken or an alternate set of code is executed. We’ll
now take a look at the if and switch conditional structures.

You can try this code for yourself, or look at the conditionals.fla source file
from the chapter archive found in the Downloads section of the companion
website. This section provides multiple examples of conditionals to teach the
logic behind their use. For an additional practical example, revisit the open-
ing of this chapter, which uses a conditional to perform one of two tasks
based on a random number value.

NOTE

Additional ActionScript 3.0 opera-
tors can be found at http://www.
adobe.com/livedocs/flash/9.0/
ActionScriptLangRefV3/operators.html.

Part I: Getting Started30

Conditionals

if
The most common form of the conditional is the if statement. The state-
ment’s basic structure is the if keyword, followed by parentheses in which
the conditional test resides, and braces that contain the code that is executed
when the statement evaluates to true. The first three lines in the following
example create and populate a set of variables. These variables will be used
for this and subsequent examples in this section, but will not be repeated.

var	num:Number	=	1;
var	str:String	=	"hello";
var	bool:Boolean	=	false;

if	(num	==	1)	{
				trace("num	equals	1");
}

To evaluate the truth of the test inside the parentheses, conditionals often
make use of comparison and logical operators. A comparison operator com-
pares two values, such as equals (==), less than (<), and greater than or equal
to (>=), to name a few. See Table 2-2 for more examples of operators.

Logical operators allow you to build complex tests by combining multiple
conditional expressions. The AND (&&), and OR (||) operators allow you to
combine two or more tests into one. They allow you to ask if “this and that”
are true, if “this or that” is true. The NOT (!) operator will negate the results
of a test, or ask if “this” is not true. Table 2-3 is a Boolean truth table that
shows several possible outcomes of conditional tests. The first two columns
represent the initial outcome of two separate conditional tests, a and b. Using
our given variables, these columns might represent the questions, “is num
equal to 1?” and “is str equal to ‘hello’?” The rows show various permuta-
tions of true and false results of these tests. Column 3 shows the effect of
the NOT operator, negating the results for test b. Columns 4 and 5 show the
results of using the AND and OR operators on the outcomes in each row.

Table 2-3. A Boolean truth table

a b !b a && b a || b

true true false true true

true false true false true

false true false false true

false false true false false

Looking at some ActionScript syntax, the following snippet uses the AND
operator and will evaluate to false because only one of the conditions is true.
When using the AND operator, both conditions must be true. As a result,
nothing would appear in the Output panel.

NOTE

The test in this example uses a double
equal sign. This is a comparison opera-
tor that asks, “Is this equal to?” This
distinction is very important because the
accidental use of a single equal sign will
cause unexpected results. A single equal
sign is an assignment operator and
assigns the value on the right side of the
equation to the object on the left side of
the equation. Because this assignment
naturally occurs when an assignment
operator is used, the test will always
evaluate to true.

Conditionals

Chapter 2: Core Language Fundamentals 31

if	(num	==	1	&&	str	==	"goodbye")	{
				trace("both	tests	are	true");
}

In the next example, the test will evaluate to true, because one of the two con-
ditions (the first) is true. As a result, “one test is true” will be traced.

if	(num	==	1	||	str	==	"goodbye")	{
				trace("one	test	is	true");
}

Finally, the following would also evaluate to true, because the NOT operator
correctly determines that bool is not true. (Remember, that every if state-
ment, at its core, is testing for truth.)

if	(!bool)	{
				trace("bool	is	not	true");
}

The logical NOT operator should not be confused with the != comparison
operator. The NOT operator reverses the truth of a test (returning false where
true was expected, or true instead of false); the != operator is the reverse of
the == operator, and tests whether something is “not equal to” a value. The
following will evaluate to false because num does equal 1, and nothing will be
traced.

if	(num	!=	1)	{
				trace("num	does	not	equal	1");
}

Additional power can be added to the if statement by adding an uncondi-
tional alternative. That is, an alternative set of code is executed any time the
main test fails, without a need for any additional evaluation. This is accom-
plished by adding an else to the if block. With the following new code
added to the previous example, the last trace will occur:

if	(num	!=	1)	{
				trace("num	does	not	equal	1");
}	else	{
				trace("num	equals	1");
}

Finally, the statement can be even more flexible by adding a conditional
alternative (or an additional test) to the structure. To add another test, you
must add an else if section to your conditional. In this example, the second
trace will occur:

if	(num	==	2)	{
				trace("num	does	not	equal	1");
}	else	if	(num	==	1)	{
				trace("num	equals	1");
}

The if statement requires one if, only one optional else can be used, and
any number of optional else if tests can be added. In all cases, however, only
one result can come from the structure.

Part I: Getting Started32

Conditionals

Consider the following example, in which all three results could potentially
execute—the first two because they are true, and the last because it is an
unconditional alternative:

if	(num	==	1)	{
				trace("num	equals	1");
}	else	if	(str	==	"hello")	{
				trace("str	equals	'hello'");
}	else	{
				trace("other");
}

In this case, only “num equals 1” (the first option) would appear in the
Output panel. Because only one result is possible from an if statement,
the first time a test evaluates to true, the conditional is exited and the script
continues. If you need more than one execution to occur when using if state-
ments, you need to use two or more conditionals. The following structure
is based on the prior example in which all tests evaluate to true. However,
because the code has been broken into two separate if statements, the first
and second traces will occur.

if	(num	==	1)	{
				trace("num	equals	1");
}
if	(str	==	"hello")	{
				trace("str	equals	'hello'");
}	else	{
				trace("other");
}

Logical Operator Precedence
When more than one logical operator is used, they are evaluated in a par-
ticular order. NOT is evaluated first, then AND, and finally OR. For example,
considering the expression a && b || c, the expression would evaluate as, “are
both a and b true?” and then “is either the outcome of the a && b test or c
true?” Because of operator precedence, the following expression would evalu-
ate the same way: c || a && b. That is, the operators are not evaluated from
left to right. In this last example, a && b would still be evaluated first, and the
outcome of that test would be compared with c.

It’s possible to build more complex conditional tests by overriding this prece-
dence with parentheses. Table 2-4 contains all the possible outcomes of three
tests in the first three columns. Column 4 checks the outcome of two tests,
using operator precedence. Column 5 tests the outcome of the same tests, but
gives the OR test precedence using parentheses.

Conditionals

Chapter 2: Core Language Fundamentals 33

Table 2-4. Logical operator precedence truth table

a b c a && b || c a && (b || c)

true true true true true

true true false true true

true false true true true

true false false false false

false true true true false

false true false false false

false false true true false

false false false false false

switch
An if statement can be as simple or as complex as you need. Long if struc-
tures can be difficult to read, however, and are sometimes better expressed
using the switch statement. In addition, switch has a unique feature that lets
you control which results are executed—even when a test evaluates to false—
and can be a simpler way to execute multiple results.

Imagine an if statement asking if a variable is 1, else if it’s 2, else if it’s 3, else
if it’s 4, and so on. A test like that quickly becomes difficult to read, so use
switch instead:

switch	(num)	{
				case	1	:
								trace("one");
								break;
				case	2	:
								trace("two");
								break;
				case	3	:
								trace("three");
								break;
				default	:
								trace("other");
								break;
}

A switch statement begins with an expression in the parentheses of its first
line. Because this is an expression, rather than a test, it does not have to
evaluate to true. For example, the contents of the parentheses could be 5 + 5.
Possible results of the expression are included in as many case statements as
necessary. If the result of the expression matches the contents of a particular
case statement, the instructions following the colon of that case are executed.
Each break statement prevents any subsequent instructions from executing
once a test is successful. We’ll talk more about break in just a moment.

Part I: Getting Started34

Loops

Meanwhile, the example code asks: is it the case that num equals 1 is true? Is
it the case that num equals 2 is true? This continues with all remaining case
statements. The equivalent of an unconditional alternative (or else, in an if
statement) is default. In other words, this is the default response in the event
that no case evaluations are true.

The result of the example is that the word “one” appears in the Output panel
because num is equal to 1 and a break follows the trace() statement.

Now back to the break feature. Use of break is optional and, when you don’t
use break, the next instructions will execute regardless of the outcome of the
case evaluation. That is, the next instruction will execute even if the prior
case already evaluated to true and even if the following case evaluates to false.

For example, note the absence of break in the first case of the following code.
This structure will trace both “one” and “two” to the Output panel, even
though the first evaluation is true, and even though num does not equal 2.

switch	(num)	{
				case	1	:
								trace("one");
				case	2	:
								trace("two");
								break;
}

This break feature does not exist with the if statement and, if used with care,
makes switch an efficient alternative to a more complex series of multiple
if statements. Switch statements must have one switch and one case, an
optional unconditional alternative in the form of default, and an optional
break for each case and default. The last break is not needed, but may be
preferred for consistency.

Loops
It is quite common to execute many repetitive instructions in your scripts.
However, including them line by line, one copy after another, is inefficient as
well as difficult to edit and maintain. Wrapping repetitive tasks in an efficient
structure is the role of loops. A programming loop is probably just what you
think it is: it goes through the structure and then loops back to the start and
does it again until its task is concluded. There are a few kinds of loops, and
the type you choose to use can help determine how many times your instruc-
tions are executed. The examples in this section can be found in the loops.
fla file, which is downloadable from the companion website. This section
explains two kinds of loops: for and while. The first for loop example will
look familiar from the opening of this chapter.

NOTE

If you need to evaluate the truth of
more than one expression in a switch
structure, you can restructure it by
swapping the result and expression
between switch and case. That is, you
can place a single result, true, in the
switch statement, and each expression
in the case statements. The following
example can be found in the switch_2.
fla source file.

switch	(true)	{
				case	num	==	1	:
								trace("one");
								break;
				case	str	==	"hello"	:
								trace("two");
								break;
				case	bool	:
								trace("three");
								break;
}

Loops

Chapter 2: Core Language Fundamentals 35

for Loop
The for loop executes its contents a finite number of times of your choosing.
For example, you may wish to create a grid of 25 movie clips or check to see
which of 5 radio buttons has been selected. The first example here uses a for
loop to trace content to the Output panel three times.

To loop through a process, as in the case of our three traces, you must first
start with an initial value, such as 0, so you know you have not yet traced
anything to the Output panel. The next step is to test to see whether you have
exceeded the limit you set (in this case, 3). The first time through the loop,
0 does not exceed the prescribed limit. The next step is to trace the content,
and the final step is to increment your initial value, registering that you’ve
traced the desired content once. The process then starts over until, ultimately,
you exceed the limit of the loop. The syntax for a basic for loop is as follows:

for	(var	i:int	=	0;	i	<	3;	i++)	{
				trace("hello");
}

The first thing you may notice is the declaration and typing of the counter,
i. This is a common technique because the i variable is often used only for
counting and is therefore created on the spot and not used again. If you have
already declared and typed the counter previously, that step can be omitted.
(This is true in the next example, as these code passages are in the same
source file.)

Next is the loop test. The counter variable must have a value that is less than
the limit, in this case 3, for the loop to execute. Finally, the double plus sign
(++) is the increment operator and is equivalent to i = i + 1, or adding 1 to
the current value of i.

The result is three occurrences of the word “hello” in the Output panel. The
first time through the loop the value of i is 0, that value is less than 3, a trace
occurs, and i is incremented by 1. The second time through the loop, i is 1,
that value is less than 3, a trace occurs, and i is again incremented. This con-
tinues until the value of i fails the loop test. The third time through the loop
i is incremented to a value of 2. The fourth time through, the loop test fails
because 3 is not less than 3, and the loop concludes.

If desired, you also can count down by reversing the values in the test, starting
with a maximum initial value, and then decrementing the counter. In other
words, instead of starting with 0 start with 3, then test to be sure i is greater
than 0, and decrement by subtracting 1 each time through the loop using the
decrement operator (--) (which is equivalent to i = i - 1). Here’s the code:

for	(i	=	3;	i	>	0;	i--)	{
				trace("hello");
}

NOTE

As stated earlier, the variable i is inten-
tionally not declared (using the var
keyword) in this loop because it is in the
same source file as a loop that previ-
ously declared i. Once a variable has
been declared in a scope, it need not be
declared again. If it is declared a second
time, a duplicate variable declaration
warning will be displayed.

Part I: Getting Started36

Loops

while Loop
The other kind of loop that you are likely to use is a while loop. Instead of
executing its contents a finite number of times, a while loop executes as long
as something remains true. As an example, consider a very simple case of
choosing a random number.

To create a random number, use the syntax Math.random(). Just like the
MovieClip class discussed in Chapter 1, Math is a class, or collection of code. It
contains instructions for performing mathematical tasks, including picking
a random number. This method always generates a decimal number greater
than or equal to 0 and less than 1. So, let’s say you wanted to choose a random
number greater than or equal to 0.5. Because of the random factor in this
exercise, you may end up with the wrong choice several times in a row. To be
sure you get a qualifying number, you can use this code:

var	num:Number	=	Math.random();
while	(num	<	0.5)	{
				trace(num,	"is	less	than	0.5");
	 num	=	Math.random();
}
trace("final	num:",	num);

Starting with a default value of 0, num will be less than 0.5 the first time into
the loop, so the contents of the loop are executed. A random number is then
put into the num variable and, the structure loops back to test the new value.
The loop will continue to execute as long as the random numbers chosen are
less than 0.5. When that test fails, because a number chosen is greater than or
equal to 0.5 (and, although not material to the test, less than 1 by restrictions
of the Math.random() method) the loop concludes.

A Loop Caveat
It’s very important to understand that loop structures, although compact
and convenient, are not always the best method to use to achieve a repetitive
outcome. This is because loops are very processor-intensive. Once a loop
begins its process, nothing else will execute until the loop has been exited. For
this reason, you may be wise to avoid for and while loops when you require
interim visual updates.

In other words, when a for or while loop serves as an initialization for a
process that is updated only upon the loop’s completion (such as creating a
grid of 25 movie clips), you are less likely to have a problem. The script enters
the loop, 25 clips are created, the loop is completed, a frame update can then
occur, and you see all 25 clips.

If you want each of the 25 clips to appear one by one, however, those interim
visual updates cannot occur while the processor is consumed by the for or
while loop. In this situation, another type of looping—one that does not
interfere with the normal playhead updates—is desirable. Two such loops,
frame and timer loops, are commonly used for this purpose. A frame loop

NOTE

Use while loops with caution until you
are comfortable with them. It’s very easy
to accidentally write an infinite loop
(a loop with no exit), which will cause
your code to loop continuously within
the while code block, stopping any fur-
ther execution of your program. Here is
a significantly simplified example of an
infinite loop:

var	flag:Boolean	=	true;
while	(flag)	{
				trace("infinite	loop");
}

As you may notice, the flag variable is
never changed, and therefore remains
true, so the loop can never fail.

It’s also possible to write an infinite for
loop, typically by reassigning the value
of the loop counter inside the loop:

for	(var	i:int;	i	<	3;	i++)	{
				trace("infinite	loop");
				i	=	0;
}

If you get caught in an infinite loop,
Flash Player fortunately will timeout
(after 15 seconds, by default) and abort
the script.

Arrays

Chapter 2: Core Language Fundamentals 37

is not a defined ActionScript structure, but rather simply a repeating frame
event, executing an instruction each time the playhead is updated. A timer
loop is similar, repeating a timer event, but is not tied to the frame tempo.
Instead, an independent timer triggers a timer event at a set frequency.

In both cases, the events occur in concert with any other events in the ordi-
nary functioning of the file, so visual updates, as one example, can continue
to occur. Both frame and timer loops will be explained, complete with exam-
ples, in Chapter 3. The first exercise in that chapter is a great example of using
a frame event as an alternative to a loop.

Arrays
Basic variables can contain only one value. If you set a variable to 1 and then
set that same variable to 2 in the following line of code, the value would be
reassigned, and the value of the variable would be 2.

However, there are times when you need one variable to contain more than
one value. Think of a hypothetical set of groceries, including 50 items. The
standard variable approach to this problem would be to define 50 variables
and populate each with a grocery item. That is the equivalent of 50 pieces of
paper, each with one grocery item written on its face. This is unwieldy and
can be created only at authoring time—at which point the process is fixed—
and you’d have to recall and manage all variable names every time you wanted
to access the grocery items.

In real life, you handle the problem by writing a list of 50 grocery items
on one piece of paper. You can add to the list while at the store and cross
each item off once it is acquired, and you only have to manage one piece of
paper. In ActionScript, you handle the problem by creating an array, the code
equivalent of that sheet of paper.

Creating an array is quite easy. Like many objects in ActionScript 3.0, you can
create an array using the new keyword—either prepopulating the array with a
comma-separated list of items, or as an empty array that you intend to popu-
late at runtime. You can also create an array by wrapping your list of items in
brackets. Creating an empty array with brackets requires only an empty set
of brackets. Both techniques are illustrated here:

var	needToBuy:Array	=	new	Array("eggs",	"flour",	"milk");
var	impulseItems:Array	=	new	Array();

var	needToBuy2:Array	=	["eggs",	"flour",	"milk"];
var	impulseItems2:Array	=	[];

An array of comma-separated values is called a linear array because it con-
tains a series of items in linear order. Whether the array is prepopulated or
empty, you can add to, or remove from, the array at runtime. For example, you
can add a value to an array using the push() method, which pushes the value
into the array at the end.

NOTE

A method is an action performed by an
object—in this case adding something
to an array—and will be discussed in
detail in the next chapter.

Part I: Getting Started38

Arrays

The push() method is a handy way to add something to an array because
it also tells you how long the new array is, and you can choose to use that
information or ignore it. In the following example, the second line of code
uses push() without any regard for the feedback the method returns. All that
matters is adding the item to the end of the array. The second time push()
is used, however, the entire statement is placed inside a trace(). As a result,
when push() returns a value of 2 to indicate that there are now two items in
the array, that value will be traced. Finally, the resulting array is displayed in
the last executed instruction.

var	cake:Array	=	new	Array();
cake.push("sugar");
trace(cake);
//	sugar	appears	in	the	Output	panel
trace(cake.push("vanilla"));
//	2	appears	in	the	Output	panel
trace(cake);
//	sugar,vanilla	appears	in	the	Output	panel

You can remove an item from the end of an array in a similar manner, using
the pop() method. This method also returns a value that you may wish to
use but, instead of returning the new length of the array, it returns the item
removed from the array.

The next code passage continues the previous example, in which the last
value of cake was “sugar, vanilla”. The first line removes the last item in the
array and, because it does so from within the trace() statement, the removed
item appears in the Output panel. Finally, the entire array is then traced.

trace(cake.pop());
//	vanilla	appears	in	the	Output	panel
trace(cake);
//	the	final	one-item	array,	sugar,	is	traced

You can add values to or retrieve values from locations within the array by
using brackets and including the index, or position, of the array item you
need. To do so, you must understand that ActionScript uses what are called
zero-based arrays. This means that the first value is at position 0, the second
is at position 1, the next at position 2, and so on. As an example, to retrieve
the existing third value from an array, you must request the item at index 2:

var	newArray:Array	=	["chocolate",	"lemon",	"red	velvet"];
trace(newArray[2]);
//"red	velvet"	appears	in	the	Output	panel

To determine the number of items in an array, use the length property:

trace(newArray.length);
//"3"	appears	in	the	Output	panel

You can also create arrays inside arrays. These are typically called multi-
dimensional arrays and are used to create multiple levels of data. A typical
database is a multidimensional array because it is a list of records (such as
users), each of which contains fields (such as name, phone, email). If such

NOTE

We’ll further discuss the idea of
ActionScript returning values upon
receiving instructions when we get to
functions later in this chapter.

NOTE

Methods (like push() and pop()) are
added to the end of objects (the cake
variable) with a dot separating the two
words. This is the syntax used to navi-
gate the ActionScript object model, and
is sometimes referred to as dot syntax
or dot notation. This describes a parent-
child relationship among the objects.

Consider an example where you may
wish to check the width of a movie clip
that is inside another movie clip. The
first, or most senior item in this familial
chain is the container movie clip, or
parent. Let’s call it mc1. A reference to
the child clip nested inside, called mc2
in this example, follows, and the width
property concludes the statement:

mc1.mc2.width;

This dot syntax will be used in virtually
every example for the rest of the book,
and it will soon become quite easy to
understand just what each object refer-
ences along the way.

NOTE

A property describes an aspect of an
object—in this case how long the array
is, or how many items it contains—and
will be discussed in detail in the next
chapter.

Vectors

Chapter 2: Core Language Fundamentals 39

a database had three records, it would be equivalent to one array of three
arrays.

Creating this arrangement is as simple as using an inner array as a value for
one of the indices of the outer array. You can do this at the outset, or add it
using push()—both of which are demonstrated here:

var	mdArray1:Array	=	["a",	"b",	["c",	"d"]];
var	mdArray2:Array	=	["e",	"f"];
mdArray2.push(["g",	"h"]);

To access values in a multidimensional array, you must use multiple brackets
to go into the nested arrays. For instance, continuing the prior example to
retrieve the first item in the array mdArray1, you need only the standard single
bracket syntax:

trace(mdArray1[0]);
//traces	"a"	to	the	Output	panel

However, to access the values in the nested array requires two components.
First, you must identify the nested array as the third item of mdArray1 (at
index 2). Then you must reference the item within that nested array with
another pair of brackets. So, to retrieve “c”, which is the first item in the nested
array, the syntax is as follows:

trace(mdArray1[2][0]);
//traces	"c"	to	the	Output	panel

This makes sense, if you think about it in steps, because not only is mdArray1
an array requiring bracket syntax to retrieve an item therein, but mdArray1[2]
is also an array requiring its own brackets to retrieve an item.

Vectors
Vectors (not to be confused with the precise lines, curves, and shapes created
by such object-drawing tools as Adobe Illustrator) are typed arrays. Arrays
like those in the previous section can contain data of any type. The following
example array includes a String, Number, and Boolean:

var	arr:Array	=	new	Array();
arr[0]	=	"avocado";
arr[0]	=	2;
arr[0]	=	true;

A vector, however, can contain data of only one type, which is determined at
the time the vector was created. Although vector syntax may look a little odd
at first, its principle uniqueness is the addition of the data type to the vector
creation process. The following example vector contains only integers.

var	vec:Vector.<int>	=	new	Vector.<int>();
vec[0]	=	1;
vec[0]	=	2;
vec[0]	=	3;

NOTE

There is another kind of array, called
an associative array, which is often used
interchangeably with custom objects.
We’ll discuss both in the “Custom
Objects” section later in this chapter.

Part I: Getting Started40

Functions

If you try to add an incompatible data type to a vector, you will receive a type
coercion error. The following example tries to add a String to the integer
vector from the previous snippet:

vec[3]	=	"guacamole"
//Error	1067:	Implicit	coercion	of	a	value	of	type	String	
//											to	an	unrelated	type	int.

From a syntax and use perspective, vectors function the same way arrays do.
Vector syntax is typically identical to array syntax. However, because they
can contain only one data type, they support more restrictive error checking.
When working with vectors, you can be certain that any data you retrieve
will be the correct data type for your needs, and any data you add will be
checked to be sure it conforms to the desired type. In addition, vectors can be
significantly faster than arrays—particularly with large data sets.

Functions
Functions are an indispensable part of programming in that they wrap code
into blocks that can be executed only when needed. They also allow code
blocks to be reused and edited efficiently, without having to copy, paste, and
edit repeatedly. Without functions, all code would be executed in a linear
progression from start to finish, and edits would require changes to every
single occurrence of any repeated code. We’ll look at functions in three parts:
minimal structure, use of arguments, and returning values. Figure 2-3 identi-
fies examples of each of the parts of a function that we’ll discuss.

parameter parameter
data type

return
data type

name

value returned

Figure 2-3. Parts of a function

Creating a basic function requires little more than surrounding the code you
wish to trigger at will with a simple syntax that allows you to give the block
of code a name. Triggering that function later requires only that you call the
function by name.

NOTE

One thing to remember about data
type checking when populating vectors
is that content added with the push()
method will be type checked at runtime.
For this reason, you should use bracket
syntax when adding elements to a vec-
tor, as in the example in this section,
to receive the benefits of compile-time
error checking.

Functions

Chapter 2: Core Language Fundamentals 41

The following syntax shows a function that traces a string to the Output
panel. The function is first defined and then, to illustrate the process, imme-
diately called. (In a real-world scenario, the function is usually called at some
other time or from some other place, such as when the user clicks a button
with the mouse.) The actual output is depicted in the comment that follows
the function call, without any added quotation marks. This code can be
found in the functions_simple.fla source file.

function	showMsg()	{
				trace("hello");
}
showMsg();
//hello

If reusing code and executing code only when needed were the only advan-
tages of functions, you’d already have a useful enhancement to the linear exe-
cution of ActionScript, because it would allow you to group your code into
subroutines that could be triggered at any time and in any order. However,
you can do much more with functions to gain even greater power.

Local Variables
For example, you can define a variable that exists only inside a function.
These are called local variables because they are local to the function. The
syntax to declare and use the variable is the same; to make it local, simply
declare the variable inside the function. These variants on the prior example
can be found in the functions_local_var.fla source file.

function	showMsg()	{
				var	msg:String	=	"hello";
				trace(msg);
}
showMsg();
//hello

If you tried to trace the value of msg at the end of this script, you would
receive an error because ActionScript thinks it doesn’t exist outside the func-
tion. The following syntax is what the same example might look like using a
variable that is available to the entire script, not just a single function:

var	msg2:String	=	"hello";
function	showMsg2()	{
				trace(msg2);
}
showMsg2();
//hello

Declaring msg2 outside the function means it is not local to showMsg2(). In
this case, tracing msg2 at the end of the script would successfully show “hello”
in the Output panel of Flash Professional.

NOTE

Commenting your code to explain as
much about what it does as is practical
can help you greatly if you return to a
project after a prolonged absence. It’s
also vital to projects with multiple pro-
grammers and when distributing your
code to others, like clients or the public.

You can comment a single line of code
using two slashes (//), and multiple
lines of code using a balanced pair of
slash-asterisk (/*) and asterisk-slash
(*/).

//single-line	comment

/*
multi-line
comment
*/

NOTE

Unlike some other languages,
ActionScript 3.0 does not support block-
level local variables. That is, declaring a
variable within a logical block, such as a
conditional or loop, does not confine the
life of that variable to the block itself.
In ActionScript 3.0, variables are either
accessible to an entire script or restricted
to a function, depending on where
they’re declared.

Part I: Getting Started42

Functions

Parameters and Arguments
Even when defining a local variable to hold content, your function is still
“hard-wired.” That is, it can’t change from the effect of some outside influ-
ence. Let’s say you need to trace ten different messages. To do that without
any new features, you’d have to create ten functions and vary the string that
is traced inside each function.

However, this can be more easily accomplished with the use of parameters
and arguments—words that are often used interchangeably but that have a
subtle distinction. Parameters are like local variables in that they exist only
inside a function, but they are easier to use because they do not have to be
declared. Instead, you just place them inside the function’s parentheses and
use them inside the function as you see fit. Arguments are the values that are
passed into those parameters. By passing data into a function, you can vary
its execution.

When using parameters, it is a great idea to use the same data typing prac-
tices as you would with variables, so the ActionScript compiler knows how to
react and can notify you of errors. Simply follow the parameter name with a
colon and data type. The same rules that apply to naming variables, apply to
naming parameters. Furthermore, because parameters are local to a function,
you can reuse parameter names in different functions without ill effect. Just
be sure not to confuse yourself!

In the following example, the function no longer traces “hello” every time it is
called. Instead, it traces whatever text is sent into the function. To send data
in, you need only include the data in the parentheses used when calling the
function.

function	showMsg(msg:String)	{
				trace(msg);
}
showMsg("goodbye");
//goodbye

You can even use multiple parameters separated by commas and pass mul-
tiple arguments to the function. To avoid errors, the order of the arguments
must match the order of parameters. This example expands on the previous
code by adding a second parameter. In this case, the function uses the plus
operator (+) to concatenate, or join, strings together.

function	showMsg2(msg:String,	user:String)	{
				trace(msg	+	",	"	+	user	+	"!");
}
showMsg2("Welcome",	"Sally");
//Welcome,	Sally!

Default values can also be supplied for a parameter. This makes sending an
argument into the parameter optional because, if no value is sent, the default
will be used. When using parameter default values, you must place them at
the end of the parameter list so they always follow any parameters for which

Functions

Chapter 2: Core Language Fundamentals 43

values are required. For example, the following code requires a message but
the user name is optional. As a result, user must appear after msg in the order
of parameters.

function	showMsg3(msg:String,	user:String="User")	{
				trace(msg	+	",	"	+	user	+	"!");
}
showMsg3("Welcome",	"Claire");
//Welcome,	Claire!
showMsg3("Welcome");
//Welcome,	User!

The code in this section is in the functions_parameters.fla source file.

Returning a Value from a Function
Finally, it is also possible to return a value from a function, increasing its
usefulness even further. Having the ability to return a value to the script
from which it was called means you can vary both the input and output of
a function.

The following examples are used to convert temperature values from Celsius
to Fahrenheit and Fahrenheit to Celsius. In both cases, a value is sent into the
function and the result of a calculation is returned to the script. The return
value is sent back to the exact same location as the function call.

For instance, in the first of the two following cases, the return keyword
returns the value to the inside of a trace() statement, which consequently
traces the result. In the second case, the return keyword returns the value
to the right side of an equation, thereby populating a variable. This mimics
real-life usage in that you can immediately act upon the returned value or
store and process it at a later time. In both cases, the actual trace is shown
as a comment. This code can be found in the functions_return.fla source file.

function	celciusToFarenheit(temp:Number):Number	{
				return	(9	/	5)	*	(temp	+	32);
}
trace(celciusToFarenheit(20));
//68

function	farenheitToCelcius(temp:Number):Number	{
				return	(5	/	9)	*	(temp	-	32);
}
var	temperature:Number	=	farenheitToCelcius(68);
trace(temperature);
//20

Note that when returning a value from a function, you should also declare
the data type of the return value. This is achieved the same way you type data
in variables or parameters—with a colon followed by the data type. This time,
the data type is placed between the closing parenthesis of the function’s dec-
laration and its opening curly brace. This position symbolizes output, rather
than input, of the function.

NOTE

Values are returned from a function
immediately, so any code inside the
function that appears after the return
statement is not executed.

Part I: Getting Started44

Custom Objects

Once you get used to this practice, it is best to specify void as a return data
type to indicate when your function does not return a value. By telling the
ActionScript compiler that nothing should be returned (by using void as a
data type), it can warn you if you inadvertently add a return statement later.

Custom Objects
After working with ActionScript for just a short while, you will realize that
you are immersed neck-deep in objects—whether you’re using procedural or
object-oriented programming. In addition to the numerous objects that are
already predefined in the ActionScript language (such as movie clips, text
fields, sounds, and more), you can create your own objects and give them
properties—the adjectives of the ActionScript world, describing an object’s
general characteristics, the way you might describe a movie clip’s width, loca-
tion, rotation, and so on.

To demonstrate this, we’ll create a custom object called villain, and give it
properties for health, armor, and lives. None of these terms—villain, health,
armor, or lives—are already part of the ActionScript language. However,
the syntax for using custom objects conforms to the same dot syntax used
throughout ActionScript, so it will seem like those properties have always
been there. The following snippet creates an object, and then creates and
populates properties:

var	villain:Object	=	new	Object();
villain.health	=	100;
villain.armor	=	100;
villain.lives	=	3;

These values can be called up at any time, by querying the properties the
same way they were created.

trace(villain.health);
//100

Objects and Associative Arrays
Another way to create a custom object is type its properties and values explic-
itly at the time of definition:

var	obj:Object	=	{msg:"Hello",	user:"Jodi"};

This structure is sometimes also called an associative array because it asso-
ciates a value with a property (also called a key in this context). The object
syntax to retrieve a key value is the same as described in the prior section.
Using associative array syntax, you substitute a string of the key, in place of
the integer index used with linear arrays. Both of the following examples trace
“Hello”:

NOTE

You will use objects later in the book, in
Chapter 10 when working with cascad-
ing style sheets and in Chapter 12 when
working with video.

Absolute Versus Relative Addresses

Chapter 2: Core Language Fundamentals 45

//object	syntax
trace(obj.msg);
//associative	array	syntax
trace(obj["msg"]);

You can find both object examples in the custom_objects.fla source file.

this and parent
Although potentially a bit nebulous when you’re starting with ActionScript,
this can be your friend. It is essentially a self-referential pronoun and is
shorthand for “whichever object or scope you’re working with now.” Scope is
the realm or space within which an object lives. For example, think of a movie
clip inside Flash’s main timeline. Each of these objects (the movie clip and
main timeline) has a unique scope, so a variable or function defined inside
the movie clip will not exist in the main timeline, and vice versa.

It is easiest to understand the usage of this in context, but here are a couple
of examples to get you started. If, from the current scope, you wanted to check
the x location of a movie clip with the instance name mc, you might say:

this.mc.x;

Conversely, if you wanted to send the main timeline to frame 2, but do so
from within the movie clip, you might say:

this.parent.gotoAndStop(2);

The latter example uses the parent keyword, which refers to the object that
is immediately above the current scope in the object hierarchy. In this case, it
refers to a movie clip (or main timeline) in which another movie clip resides,
and this will be discussed a wee bit more in the following section.

In both cases, this is a reference point from which you start your path. It’s
very common to drop the this keyword when referencing properties and
methods in the current scope. Many programmers include the keyword for
clarity, but it’s also sometimes particularly useful or even required—such
as when some ActionScript editors color various parts of your script for
improved legibility. In any case, keeping this in your code will help you
remember that you’re referencing an object—a concept easy to forget if you
frequently omit the friendly pronoun.

Absolute Versus Relative Addresses
Much like a computer operating system’s directory, or the file structure of
a website, ActionScript refers to the address of its objects in a hierarchical
fashion. You can reference an object address using an absolute or relative
path. Absolute paths can be easy because you most likely know the exact
path to any object starting from the top of your application—such as Flash
Professional’s main timeline. However, absolute paths are quite rigid and will

NOTE

Depending on how you set up your
file, it is often necessary to specifically
declare what kind of parent you are ref-
erencing. For example, you may need to
explicitly say the parent is a movie clip
before you can work with its timeline.
A little more background is probably
needed to grasp this, as covered in detail
in the “Clarifying or Changing the Data
Type of a Display Object” section of
Chapter 4.

Part I: Getting Started46

Put It All Together

break if you change the nested relationship of any of the referenced objects.
Relative paths can be a bit harder to call to mind at any given moment, but
they are more flexible. Working from a movie clip and going up one level to
its parent and down one level to a child will work from anywhere—be that
in the root timeline, another movie clip, or nested even deeper—because the
various stages aren’t referenced by name.

Tables 2-5 and 2-6 draw analogies to uses found in more familiar computer
operating system and website analogies.

Table 2-5. Absolute (from main timeline to mc3, a nested movie clip inside mc2)

ActionScript Windows OS Mac OS Website

root.mc2.mc3 c:\folder2\folder3 Macintosh/folder2/folder3 http://www.domain.com/dir/dir

Table 2-6. Relative (from a first-level movie clip called mc1, up to its root, and down to the child of a sibling)

ActionScript Windows OS Mac OS Website

this.parent.mc2.mc3 ..\folder2\folder3 ../folder2/folder3 ../dir/dir

Put It All Together
To end this chapter, let’s look at a script that brings together much of what
we’ve discussed to create a randomizing sentence builder. This code can be
found in the build_a_sentence.fla source file. To begin, lines 1 through 7 create
a series of arrays of adjectives, nouns, and verbs, imagined by my children,
Sally and Claire.

Lines 9 through 22 define the buildASentence() function, which takes the
adjective, noun, and verb arrays as arguments. Lines 10 through 12 store the
number of items in each array, and then the conditional in lines 13 through 15
check to make sure there is at least one item in each array. If any array has 0
items, a warning is returned in line 14 and the function is at an end.

Lines 17 through 19 create a random number between 0 and 2. The Math.
random() method generates a random number between 0 and 1, which is then
multiplied by the length of each array. The resulting numbers will be used in
line 21 as indices to retrieve values from the arrays that were passed into the
function. Because array indices must be integers, we must round the random
number created.

However, a random number between 0 and 3 might round to a value of 3.
Traditional rounding techniques round up when the number is 0.5 or above,
and round down for anything under 0.5. So, value of 2.9 would round up to
3. In this case, you’d receive an error because only items 0, 1, and 2 exist in the
array. There is no fourth item (that would be retrieved with an index of 3).

Put It All Together

Chapter 2: Core Language Fundamentals 47

To skirt this possibility, we force the rounding operation to round down,
using the Math.floor() method, allowing only numbers 0, 1, and 2.

The function then ends by returning a sentence. It combines “The ”, a ran-
dom adjective, a space, a random noun, a space, a random verb, and “ away!”
and returns it to the caller of the function. We’ll look at that process, after
the code.

1	 var	adjsSally:Array	=	["hairy",	"funny",	"bouncy"];
2	 var	nounsSally:Array	=	["daddy",	"mommy",	"sister"];
3	 var	verbsSally:Array	=	["drove",	"swam",	"ran"];
4	
5	 var	adjsClaire:Array	=	["tall",	"snuggly",	"clean"];
6	 var	nounsClaire:Array	=	["duck",	"birdy",	"chipmunk"];
7	 var	verbsClaire:Array	=	["ran",	"jumped",	"tip-toed"];
8	
9	 function	buildASentence(adj:Array,	noun:Array,	verb:Array):String	{
10	 				var	aCount:int	=	adj.length;
11	 				var	nCount:int	=	noun.length;
12	 				var	vCount:int	=	verb.length;
13	 				if	(aCount	==	0	||	nCount	==	0	||	vCount	==	0)	{
14	 								return	("not	enough	words	provided");
15	 				}
16	
17	 				var	a:int	=	Math.floor(Math.random()	*	aCount);
18	 				var	n:int	=	Math.floor(Math.random()	*	nCount);
19	 				var	v:int	=	Math.floor(Math.random()	*	vCount);
20	 				
21	 				return	"The	"	+	adj[a]	+	"	"	+	noun[n]	+	"	"	+	verb[v]	+	
															"away!";
22	 }
23	
24	 for	(var	i:int	=	0;	i	<	3;	i++)	{
25	 				var	sallySays:String	=	makeASentence(adjsSally,	nounsSally,						

																				verbsSally);
26	 				trace(sallySays);
27	
28	 				var	claireSays:String	=	makeASentence(adjsClaire,	nounsClaire,	

																					verbsClaire);
29	 				trace(claireSays);
30	 }

To call the function, we use a for loop in lines 24 through 30. The loop
executes 3 times, calling the function with Sally’s arrays (line 25) and Claire’s
arrays (line 28). The function returns a sentence in each line, and the loop
then traces the results in lines 26 and 29. The results are random, but here
is a sample:

The	funny	mommy	drove	away!
The	snuggly	birdy	ran	away!
The	funny	sister	swam	away!
The	tall	duck	tip-toed	away!
The	hairy	daddy	swam	away!
The	clean	chipmunk	jumped	away!

NOTE

Here are some examples of the round-
ing features of the Math class, with the
results listed as comments following
each method:

Math.round(0.8);	//1
Math.round(0.2);	//0
Math.floor(0.8);	//0
Math.floor(0.2);	//0
Math.ceil(0.8);	//1
Math.ceil(0.2);	//1

The Math.round() method rounds
up when the value is 0.5 and above
and down when the value is below 0.5.
Math.floor() always rounds down,
and Math.ceil() (short for ceiling)
always rounds up to the nearest whole
number.

Part I: Getting Started48

What’s Next?

What’s Next?
Ideally, we’ve provided just enough background (or review) of key ActionScript
fundamentals to now focus on topical syntax. Although we won’t entirely
ignore basic elements within the scripts of future chapters, we will spend
more time describing the collective goal of a script, and highlighting new
issues introduced or updated by ActionScript 3.0.

Next, we start off the ActionScript 3.0-specific material with a look at the
three essential building blocks of most ActionScript objects: properties,
methods, and events. Events are one of the most significantly changed ele-
ments of ActionScript with the introduction of version 3.0.

In the next chapter, we’ll discuss:

• The descriptive properties, such as width, height, location, alpha (opaci-
ty), rotation, and more, of each object that define its major characteristics

• The actions you may exert on objects, or that objects may take on other
objects, in the form of methods

• The events issued by the user or aspects of your program or environment
and, perhaps more directly, the reactions to those events

49

IN THIS PART

Chapter 3
Properties, Methods,

and Events

Chapter 4
The Display List

Chapter 5
Timeline Control

Chapter 6
OOP

Chapter 7
Motion

Chapter 8
Drawing with Vectors

Chapter 9
Drawing with Pixels

GraphicS and
interaction PART II

Part II represents the largest section of the book, spanning Chapter 3 through
Chapter 9. This part covers many significant features that distinguish
ActionScript 3.0 from prior versions. It focuses on graphics and interactions
and includes the new event model and display list.

Chapter 3 is a discussion of properties, events, and methods—the items
responsible for manipulating just about anything in Flash. Chapter 4 goes on
to explain the display list, a great new way to display visual assets in Flash.
Chapter 5 discusses timeline control, including various navigation techniques.

Chapter 6 marks an important transition in the book. Chapter 6 discusses
object-oriented programming and, while still introducing syntax in the
timeline, the remaining chapters in the book will focus increasingly on OOP.
Chapter 7 takes a look at various ways to animate graphics with ActionScript.
Chapters 8 and 9 round out the presentation of graphics and interactivity
with tutorials covering drawing with vectors and pixels. Included are demon-
strations for creating vectors with ActionScript and manipulating a variety of
bitmap properties in your projects.

51

IN THIS CHAPTER

Jump Right In

Properties

Events

Methods

Event Propagation

Frame and Timer Events

Removing Event Listeners

What’s Next?

In addition to the core language fundamentals reviewed in the previous chap-
ter, you will find that the majority of your scripts are written using properties,
methods, and events. These are the basic building blocks of most scripted
tasks and allow you to get and set characteristics of, issue instructions to, and
react to input from, many assets.

This is what we’ll be covering in this chapter:

• Jump Right In. Get your feet wet right away by starting the chapter with
a simple practical example. Adapt the Hello World! example by conveying
your greeting one character at a time.

• Properties. Properties are somewhat akin to adjectives, in that they
describe the object being modified or queried. For example, you can
check or set the width of a button. Most properties are read-write, in that
you can both get and set their values. Some properties, however, are read-
only, which means you can ask for, but not change, their values.

• Events. Events are the catalysts that trigger the actions you write, set-
ting properties and calling methods. For instance, a user might click the
mouse button, which would then result in a mouse event. If you write
code to react when that event is detected, the event can then cause a func-
tion to execute performing the desired actions.

• Methods. Methods are a bit like verbs. They tell objects to do something,
such as play and stop. In some cases, methods can be used to simplify
the setting of properties. You might use a method called setSize(), for
example, to simultaneously set the width and height of something. Other
methods are more unique, such as navigateToURL(), which instructs a
browser to display a web page.

In this chapter, you will build a utility that will demonstrate each of these
ActionScript structures. Using mouse and keyboard events, you will manipu-
late several properties, as well as execute a few methods. The majority of
ActionScript objects—from visual assets like movie clips to code-only objects
like timers—have properties, methods, and events.

ProPertIes, methods,
and events

CHAPTER 3

Part II: Graphics and Interaction52

Jump Right In

For simplicity, we’ll focus primarily on the movie clip. Using the movie clip to
centralize our discussion will make it easier for you to expand your examples
on your own, as you look for other attributes to manipulate. Once you are
comfortable with how properties, methods, and events work, it will be rela-
tively easy to learn about other objects.

Jump Right In
This chapter’s first script again builds on the Hello World! theme, this time
concentrating on properties, methods, and events. In this example, we’ll
display our salutation one character at a time. As with prior chapters, we’ll
explain this code briefly, and elaborate as the chapter continues. This script
is found in the hello_world_prop_event.fla source file.

1	 var	txtFld:TextField	=	new	TextField();
2	 addChild(txtFld);
3	
4	 txtFld.textColor	=	0xFF0000;
5	
6	 var	str:String	=	"Hello	World!";
7	 var	len:int	=	str.length;
8	 var	i:int	=	0;
9	
10	 this.addEventListener(Event.ENTER_FRAME,	onEnter,	false,	0,	true);	
11	 function	onEnter(evt:Event):void	{
12	 				txtFld.appendText(str.charAt(i));
13	 				i++;
14	 				if	(i	>	len)	{
15	 								removeEventListener(Event.ENTER_FRAME,	onEnter);	
16	 				}
17	 }

Lines 1 and 2 again create a text field and add it to the display list so the user
can see it. Line 4 sets textColor, a basic property of the text field, coloring
the text red. This approach to text coloring is a quick solution, but it colors
all text in the field. In Chapter 10, you’ll learn how to exercise more precise
control over text, allowing you to color individual segments of text.

Lines 6 through 8 create and populate variables including a string, the num-
ber of characters in that string, and a counter’s initial value. The remainder of
the script is an enter frame event listener to add the string text to the end of
the field, character by character. Each time the event is received, line 12 uses
the string method charAt() to determine the character at position i in the
string, and the appendText() method to add that character to the field. The
i counter is then incremented and, if it exceeds the number of characters in
the field, the listener is removed, halting the process. The result is that “Hello
World!” is added to the field, one character at a time.

NOTE

ActionScript 3.0 uses hexadecimal nota-
tion to express colors as numbers. The
format of a simple color is 0xRRGGBB.
0x tells the compiler the number is a
hexadecimal value and replaces the #
symbol used to express the same value
as a string, as in HTML. The next three
character pairs represent red, green, and
blue and must represent values from 0
to 255. To do this, hexadecimal num-
bers use base16 (instead of base10 like
a decimal number) and each character
uses not only 0–9 but also A–F. 00 is
no color and FF is all color, for each
pair. 0x000000 is black (no colors),
and 0xFFFFFF is white (all colors). The
color used in this script is all red, no
green, and no blue.

Properties

Chapter 3: Properties, Methods, and Events 53

Properties
If you think of properties as ways of describing an object, they become sec-
ond nature. Asking where a movie clip is, for example, or setting its width, are
both descriptive steps that use properties.

In Chapter 2, we briefly discussed the object model and dot syntax that
bring order and structure to ActionScript as well as many other scripting and
programming languages. The first step in using a property is to determine
which object you want to manipulate. For example, you might want to affect
a movie clip on the stage with an instance name of box. The instance name is
important because there may be multiple movie clips on stage, but you may
want to alter only one. So you need to be able to differentiate which clip to
change.

It’s easy to give a movie clip on the stage an instance name. Select it and
type the name in the upper portion of Flash Professional’s Properties panel,
as seen in Figure 3-1. (You’ve also learned how to create objects, such as text
fields, entirely from code, and you’ll be doing that more and more as the book
progresses.)

Figure 3-1. Giving a movie clip an instance name in Flash Professional CS5’s Properties
panel

The syntax for manipulating a property with ActionScript requires that you
follow the instance name with a dot (period) and the property name. To get
you started, we’ll show you the syntax for making several changes to movie
clip properties in the following table. Then, when we demonstrate how to
handle events in the next section, we’ll change these properties interactively.
The following examples assume that a movie clip with an instance name of
box is on the stage, and Figure 3-2 demonstrates the visual change made by
each property. The light-colored square is the original state before the movie
clip is affected. (The alpha property shows only the final state, and the dashed
stroke for the visible property is only to show that the box is not visible.)

Table 3-1 shows nine movie clip properties with sample syntax and notes on
each property’s unit of measure and possible sample range of values.

box.x += 10;
box.y += 10;

box.scaleX = 0.5;
box.scaleY = 0.5;

box.rotation = 20;

box.alpha = 0.5;

box.visible = false;

Figure 3-2. Changes to movie clip
properties

Part II: Graphics and Interaction54

Events

Table 3-1. Movie clip properties

Description Property Syntax for Setting Value Units and/or Range

Location x,	y box.x	=	100;
box.y	=	100;

Pixels

Scale scaleX,	scaleY box.scaleX	=	0.5;
box.scaleY	=	0.5;

Percent / 0–1

Dimensions width,	height box.width	=	72;
box.height	=	72;

Pixels

Rotation rotation box.rotation	=	45; Degrees / 0–360

Transparency alpha box.alpha	=	0.5; Percent / 0–1

Visibility visible box.visible	=	false; Boolean

If you have experience with prior versions of ActionScript, you may notice a
few changes in the property syntax. First, the properties do not begin with an
underscore. This is a beneficial consistency introduced with ActionScript 3.0.
Rather than varying property syntax, some with and some without leading
underscores, in 3.0 no properties begin with the underscore character.

Second, some value ranges that used to be 0–100 are now 0–1. Examples
include scaleX, scaleY, and alpha. Instead of using 50 to set a 50% value,
specify 0.5.

Finally, the first scaling method uses properties scaleX and scaleY, rather
than _xscale and _yscale, which are their ActionScript 1.0 and 2.0 equiva-
lents. Typically, ActionScript 3.0 properties will cite the x and y version of a
property as a suffix to make referencing the property easier.

Table 3-1 shows syntax only for setting properties for the box movie clip.
Getting the value of a property is just as easy. For example, if you wanted
to trace the movie clip’s alpha value, or store it in a variable, you could write
either of the following, respectively:

trace(box.alpha);
var	bAlpha:Number	=	box.alpha;

Events
Events make the Flash world go ’round. They are responsible for setting your
scripts in motion, causing them to execute. A button can be triggered by a
mouse event, text fields can react to keyboard events—even calling your own
custom functions is a means of issuing a custom event.

Events come in many varieties. In addition to the obvious events like mouse
and keyboard input, most ActionScript classes have their own events. For
example, events are fired when watching a video, working with text, and resiz-
ing the stage. To take advantage of these events to drive your application, you
need to be able to detect them.

NOTE

In Chapter 2, you learned that ++ adds
1 and -- subtracts 1 from a variable.
You can also use these operators with
properties.

The following code uses += to change
the rotation of the box movie clip.
Rather than adding just 1 to the left side
of the equation, += will add whatever
value is on the right side of the equa-
tion. The operators -=, *=, and /= func-
tion similarly—subtracting, multiplying,
or dividing the left side of an equation
by the value on the right of the operator.
These are called compound assignment
operators because they simultaneously
alter and assign values.

This code will add 20 degrees to the
movie clip’s rotation:

box.rotation	+=	20;

This is equivalent to, but shorter than:
box.rotation	=	box.rotation	+	20;

Events

Chapter 3: Properties, Methods, and Events 55

In previous versions of ActionScript, there were a variety of ways to react to
events. You could apply a script directly to a button, for example, and use
the on(Release) approach. As the language matured, you could create event
handlers and apply them remotely using instance names—for example, using
myButton.onRelease. Finally, you could use event listeners, structures that listen
for the occurrence of an event and execute a function, primarily with compo-
nents or custom objects.

In the latest version of ActionScript, reacting to events is simplified by relying on
one approach for all event handling. The ActionScript 3.0 event model uses event
listeners regardless of the type of event or how it is used.

Using Event Listeners
The concept of event listeners is pretty simple. Essentially, you tell an object
to listen for an event and react if that event occurs. Imagine that you’re sitting
in a busy airport. Lots of things are going on around you, all of which can be
thought of as events. If you had no particular reason to be at the airport, you
might ignore all of these events. They would still occur, but you would not listen
for them.

However, if you’re scheduled to depart on an upcoming flight, you might establish
a few listeners. For example, you might listen for a loudspeaker announcement
about your flight number but ignore everything else. Or, you might also listen for
a loudspeaker announcement about your destination city. You might even plan to
listen for a third event: the inclusion of your airline in an announcement.

In all cases, the reaction to these events would be to pay attention to the
announcement hoping to learn more about your flight. Other events might still
occur in the airport, including other announcements, but without listening for
those events, they would wash over you without reaction.

ActionScript 3.0 event listeners work much the same way. Creating an event
listener, in its most basic form, is fairly straightforward. The first item needed
is the object that will listen for the event. A button is a good example to start
with. The addEventListener() method is then used to assign a listener to that
object. This method requires two arguments. The first argument is an event to
listen for—one that is appropriate for your goal. For example, it makes sense for
a button to listen for a mouse event, but less so to listen for the end of a video
or a resizing of the stage. The second argument is a function to execute when
the event is heard.

Here’s an example of code that uses a button with the instance name rotate_
right_btn and a function called onRotateRight(). This can be found in the
simple_event_listener.fla source file.

1	 rotate_right_btn.addEventListener(MouseEvent.MOUSE_UP,	onRotateRight);
2	 function	onRotateRight(evt:MouseEvent):void	{
3	 				box.rotation	+=	20;
4	 }

Part II: Graphics and Interaction56

Events

The event this code is listening for is a mouse up event—that is, when the
mouse button is released while over the button. In ActionScript 3.0 syntax,
events are typically grouped together in classes, and the event itself is usually
defined as a constant—a variable that cannot be changed after it’s defined.
Using constants, when you know a value will never change, reduces errors
because the compiler will warn you if you try to change them. Constants
are usually typed in all uppercase letters, with multiple words separated by
underscores.

The MouseEvent class contains constants that refer to mouse events like
MOUSE_UP and MOUSE_DOWN. Other examples of events are ENTER_FRAME, found
in the Event class and used to react to playhead updates, and KEY_UP, found
in the KeyboardEvent class, for reacting to user keyboard input. We’ll look at
both of these events later on in this chapter.

The second argument in the addEventListener() method, the function that is
called when the event is received, is listed by name only, without the trailing
parentheses. This is because you are referring to the function, not actually
calling it. The listener will do that for you when the event is received. In this
example, onRotateRight refers to the onRotateRight() function, defined in
lines 2 through 4.

You will probably be familiar with the structure of this function from the
discussion about functions in Chapter 2. To review the syntax, the braces
define the function’s contents. In this case, line 3 adds 20 degrees to the cur-
rent rotation value of the movie clip box. Also explained in Chapter 2, the
void that follows the function name and parentheses indicates that no value
is returned by the function.

However, new to our discussion of functions (see Chapter 2 if needed)
is the fact that when functions are used in event listeners, the function
requires a single parameter. This parameter receives information not from
any ActionScript you write, but rather from the event. In this case, we arbi-
trarily named the parameter evt. (You may also see e or event used in other
resources, but any valid parameter name will work.)

Without a parameter in place to receive that incoming data, you will get an
error that says something like, “Argument count mismatch. Expected 0, got
1.” It will also tell you which function has the problem to make it easier to
find. The error means that the function expected no arguments coming in,
because no parameters were defined. Instead, one argument was received,
resulting in a mismatch.

You’ll get used to this quickly, and reap the benefits. The data received usually
contains useful information about the event and element that triggered the
event. You can parse this information for use in the function. In keeping with
good error reporting, the parameter should have a data type that matches the
type of data being sent into the function. In this case, the event that triggered
the listener was of type MouseEvent. Using this as the parameter data type will

NOTE

Separating mouse events into discrete
up and down events allows you to react
independently to each event. That is,
you can assign one listener to the down
event and another to the up event. This
can be useful when creating draggable
objects. You can start dragging on mouse
down, and then stop dragging on mouse
up, as you’ll see later in this chapter.

You can also use a simpler mouse event
called CLICK, which requires both the
down and up stages of the user’s click
process to trigger a listener.

Events

Chapter 3: Properties, Methods, and Events 57

make sure that the listener receives only a MouseEvent, or the compiler will
warn you to the contrary.

To illustrate the use of this argument data, let’s look at another mouse event
example, found in the start_stop_drag.fla source file. This time, however, we’ll
use two events, and use the incoming information to identify the target
of the event—speaking generically, the object at which the event occurred.
Specific to this case, the target is the object that was clicked.

1	 myMovieClip.addEventListener(MouseEvent.MOUSE_DOWN,	onStartDrag);
2	 myMovieClip.addEventListener(MouseEvent.MOUSE_UP,	onStopDrag);
3	 function	onStartDrag(evt:MouseEvent):void	{
4	 				evt.target.startDrag();
5	 }
6	 function	onStopDrag(evt:MouseEvent):void	{
7	 				stopDrag();
8	 }

In this example, two event listeners are assigned to a movie clip in lines 1
and 2. One listens for a mouse down event, another listens for a mouse up
event. They each invoke different functions. In the first function, the target
property of the event, which is parsed from the function argument, is used
to identify which object received the mouse event. This allows the onStart-
Drag() function in lines 3 through 5 to start dragging the movie clip that
was clicked. The onStopDrag() function in lines 6 through 8 then stops all
dragging when the movie clip receives a mouse up event.

The best thing about this example is that the target property identifies the
movie clip without an instance name. This generic approach is very useful
because it makes the function much more flexible. The function can act
upon any appropriate object that is clicked and passed into its parameter.
In other words, the same function could start and stop dragging any movie
clip to which the same listener was added. The following additional lines,
adding the same functionality to a second movie clip called myMovieClip2,
demonstrate this:

9	 myMovieClip2.addEventListener(MouseEvent.MOUSE_DOWN,	onStartDrag);
10	 myMovieClip2.addEventListener(MouseEvent.MOUSE_UP,	onStopDrag);

Finally, this example’s last modification demonstrates that more than one
object can also call the same listener function. It is possible, while dragging
an object, to move your mouse so quickly that the mouse up event occurs
outside the bounds of the object you’re dragging. If that occurs, the object
would not receive the mouse up event, and the drag would not be stopped.

One way to get around this is to attach another listener to the stage, and set
that listener to also call the onStopDrag() function. This way, whether your
mouse up occurs over the movie clip or over the stage, the dragging will cease.

11	 stage.addEventListener(MouseEvent.MOUSE_UP,	onStopDrag);

NOTE

It is also possible to type an event lis-
tener parameter with the more generic
Event class, from which other built-
in ActionScript 3.0 event classes are
extended. This will allow more than one
type of event to call the same function.

NOTE

A similar event property is current-
Target, which references the object to
which the event listener is attached.
When a listener is attached to a single
movie clip (as in the cited example),
target and currentTarget are the
same because you click on the object
with the listener. However, you’ll learn
in the next chapter that events can
pass from a parent clip down to any
child clips within. When the listener is
attached to the parent and you click
on the child, target will still refer to
the child, because that’s what you
clicked. The currentTarget prop-
erty, however, will refer to the parent
movie clip because that’s the object to
which the listener is attached. For more
information, see “The Event Object,”
an event-related post at http://www.
LearningActionScript3.com.

Part II: Graphics and Interaction58

Events

Using Mouse Events to Control Properties
Now we can combine the syntax we’ve covered in the “Properties” and “Events”
sections to set up interactive control over properties. In the chapter03 direc-
tory of the accompanying source code for this book, you’ll find a file called
props_events_methods_ui.fla. It contains nothing more than the example
movie clip box and two buttons in the library that will be used repeatedly to
change the five properties discussed earlier. The movie clip contains numbers
to show which of its frames is visible, and the instance name of each copy
of the button on the stage reflects its purpose. Included are move_up_btn,
scale_down_btn, rotate_right_btn, fade_in_btn, and toggle_visibile_btn, among
others. Figure 3-3 shows the layout of the file.

Figure 3-3. Layout of the props_events_ui.fla file

Starting with movement, we need to define one or more functions to update
the location of the movie clip. There are two common approaches to this
task. The first is to create one function in the keyframe in frame 1 for all
movement that uses a conditional to decide how to react to each event. We’ll
demonstrate that when we discuss keyboard events. For now, we’ll use the
simpler direct approach of defining a separate basic function for each type of
movement, as shown in the following script:

Events

Chapter 3: Properties, Methods, and Events 59

1	 function	onMoveLeft(evt:MouseEvent):void	{
2	 				box.x	-=	20;
3	 }
4	 function	onMoveRight(evt:MouseEvent):void	{
5	 				box.x	+=	20;
6	 }
7	 function	onMoveUp(evt:MouseEvent):void	{
8	 				box.y	-=	20;
9	 }
10	 function	onMoveDown(evt:MouseEvent):void	{
11	 				box.y	+=	20;
12	 }

Once the functions are defined, all you have to do is add the listeners to the
appropriate buttons.

13	 move_left_btn.addEventListener(MouseEvent.MOUSE_UP,	onMoveLeft);
14	 move_right_btn.addEventListener(MouseEvent.MOUSE_UP,	onMoveRight);
15	 move_up_btn.addEventListener(MouseEvent.MOUSE_UP,	onMoveUp);
16	 move_down_btn.addEventListener(MouseEvent.MOUSE_UP,	onMoveDown);

This simple process is then repeated for each of the buttons on stage. The
remaining script collects the aforementioned properties and event listeners
to complete the demo pictured in Figure 3-3. The resulting file wires up one
or more buttons for each property, all of which manipulate the movie clip in
the center of the stage. The finished script can be found in the prop_events.
fla source file.

17	 scale_up_btn.addEventListener(MouseEvent.MOUSE_UP,	onScaleUp);
18	 scale_down_btn.addEventListener(MouseEvent.MOUSE_UP,	onScaleDown);
19	
20	 rotate_left_btn.addEventListener(MouseEvent.MOUSE_UP,	onRotateLeft);
21	 rotate_right_btn.addEventListener(MouseEvent.MOUSE_UP,	
22	 																																		onRotateRight);
23	
24	 fade_in_btn.addEventListener(MouseEvent.MOUSE_UP,	onFadeIn);
25	 fade_out_btn.addEventListener(MouseEvent.MOUSE_UP,	onFadeOut);
26	
27	 toggle_visible_btn.addEventListener(MouseEvent.MOUSE_UP,	
28	 																																				onToggleVisible);
29	
30	 function	onScaleUp(evt:MouseEvent):void	{
31	 				box.scaleX	+=	0.2;
32	 				box.scaleY	+=	0.2;
33	 }
34	 function	onScaleDown(evt:MouseEvent):void	{
35	 				box.scaleX	-=	0.2;
36	 				box.scaleY	-=	0.2;
37	 }
38	
39	 function	onRotateLeft(evt:MouseEvent):void	{
40	 				box.rotation	-=	20;
41	 }
42	 function	onRotateRight(evt:MouseEvent):void	{
43	 				box.rotation	+=	20;
44	 }
45	
46	 function	onFadeIn(evt:MouseEvent):void	{
47	 				box.alpha	+=	0.2;
48	 }

Part II: Graphics and Interaction60

Methods

49	 function	onFadeOut(evt:MouseEvent):void	{
50	 				box.alpha	-=	0.2;
51	 }
52	
53	 function	onToggleVisible(evt:MouseEvent):void	{
54	 				box.visible	=	!box.visible;
55	 }

Methods
Methods, the verbs of the ActionScript language, instruct their respective
objects to take action. For example, you can tell a movie clip to stop playing
by using its stop() method. Like properties, methods appear consistently in
the dot syntax that is the foundation of ActionScript, following the object
calling the method. One way to tell methods apart from properties is that
methods always end with parentheses—even when no values are required for
the method to work. For example, if the movie clip box in the main timeline
calls the stop() method, the syntax would be:

box.stop();

As they have properties, most ActionScript classes also have specific methods,
and you can define your own methods by writing functions in your own cus-
tom classes. For the following demonstration, we’ll again focus on the movie
clip from the prior example. This time, however, we’ll introduce another event
class and show you how to control your movie clips with the keyboard.

Using Keyboard Events to Call Methods
Listening for keyboard events is very similar to listening for mouse events,
with one significant exception: The target of the event listener is not always
the object you wish to manipulate. When working with text, the text field
may indeed serve well as the target of the keyboard events. When controlling
movie clips, however, the stage itself is often a useful, centralized recipient of
keyboard events.

Adding an event listener to the stage means that you can process all key
events with a single listener, and then isolate only the desired key events with
a conditional, issuing instructions accordingly. To simplify the syntax of this
demonstration, we’ll use the switch form of conditional statements. The switch
statement, discussed in Chapter 2, is simply a more easily readable if/else-if
conditional structure.

This script in the following example can be seen in the methods_events.fla
file in the accompanying source code. We’ll start by adding the listener to the
stage. In this case, we’ll be looking for the key down event, which is specified
using a constant like all predefined events, KEY_DOWN. This time, however, it’s
part of the KeyboardEvent class. When the event is heard, our listener will call
the onKeyPressed() function.

1	 stage.addEventListener(KeyboardEvent.KEY_DOWN,	onKeyPressed);

Methods

Chapter 3: Properties, Methods, and Events 61

Next, we define the onKeyPressed() function, being sure to type the incoming
argument value as KeyboardEvent. Finally, we parse the incoming event infor-
mation for the keyCode property. The keyCode is a unique number assigned to
each key and allows you to determine which key was pressed.

To specify each key in our script, we’ll use constants defined in the Keyboard
class that each contain key codes. Using these constants, when they suit your
purpose, is easier than having to know the keyCode value for each key. For
example, you can reference the Enter/Return key as Keyboard.ENTER, the left
arrow key as Keyboard.LEFT, and so on.

We’ll use five keys to execute five methods. When each desired key is pressed,
it will execute the appropriate method, and then break out of the switch state-
ment. We’ll also add a default state that will trace the keyCode of any other
key pressed. The final script segment looks like this:

2	 function	onKeyPressed(evt:KeyboardEvent):void	{
3	 				switch	(evt.keyCode)	{
4	 								case	Keyboard.ENTER:
5	 												box.play();
6	 												break;
7	 								case	Keyboard.BACKSPACE:
8	 												box.stop();
9	 												break;
10	 								case	Keyboard.LEFT:
11	 												box.prevFrame();
12	 												break;
13	 								case	Keyboard.RIGHT:
14	 												box.nextFrame();
15	 												break;
16	 								case	Keyboard.SPACE:
17	 												box.gotoAndStop(3);
18	 												break;
19	 								default:
20	 												trace("keyCode:",	evt.keyCode);
21	 				}
22	 }

The first four methods are basic movie clip navigation options: playing, stop-
ping, or sending the movie clip to the previous or next frame in its timeline.
The last method sends the movie clip to a specific frame and then stops
its playback. The methods are probably self-explanatory, with only the last
method even using an argument—in this case, the frame number. If you do
want additional information, however, we’ll put these and other navigation
options to use in Chapter 5 when we discuss timeline control.

The combined source file, props_methods_events.fla, includes both the prop-
erties and methods examples in this chapter.

NOTE

One keyCode value is assigned to a key,
so this value can’t be used directly for
case-sensitive key checking—that is,
uppercase “S” has the same keyCode as
lowercase “s.” In case you need to analyze
case sensitivity, the charCode property
has a unique value for each character in
each case. Finally, not all keys trigger key-
board events, as some keys are reserved
for operating system use.

NOTE

Depending on your computer setup,
some key events may not function
properly in Flash Professional when
using the Control ➝ Test Movie com-
mand. This is probably not an error
but instead a result of Flash Player
using keyboard shortcuts just like the
Flash Professional application does.
To test your key events, simply use the
Control ➝ Disable Keyboard Shortcuts
menu command to disable keyboard
shortcuts in the Flash Professional
integrated player (that is, after invok-
ing Test Movie). Be sure to reenable the
shortcuts, or you won’t be able to use
Cmd+W (Mac) or Ctrl+W (Windows)
to close the window, or use other famil-
iar shortcuts.

Alternatively, you can test the movie
in a browser using Cmd+F12 (Mac) or
Ctrl+F12 (Windows). Also, the keyboard
shortcut conflicts do not apply to the
standalone Flash Player, in case you
choose to use it for testing. Typically,
double-clicking an SWF will open the
SWF in the standalone player, but your
system may be configured differently.

Part II: Graphics and Interaction62

Event Propagation

Event Propagation
So far in this book, we’ve been working primarily with movie clips, which
are visual assets, or display objects. A display object is any ActionScript object
that can be seen by the eye. That is, a movie clip is a display object, but a
sound is not. For your audience to see a display object, it must be part of the
display list—a list of everything a user can see at any given time. That is, you
can create a display object (such as a text field), but not add it to the display
list. This means the text field will exist, but the user won’t be able to see it.

The display list includes the stage, buttons, text fields, shapes, and bitmaps, as
well as visual assets loaded at runtime like images and other SWFs—every-
thing you can see, right down to the most deeply nested clip. We’ll explain
the display list in greater detail in the next chapter, but we need a little
background to get the most from our introduction to events. (It’s hard to talk
about one without the other!)

One of the best things about ActionScript 3.0 is the way that events and the
display list work together. This includes event propagation, in which events
flow through objects in the display list, making it possible for multiple dis-
play objects to react to the same event. Certain events, such as mouse and
key events, are not sent directly to the target of the event. That is, a button
doesn’t immediately receive a mouse event when clicked. Instead, events are
dispatched to the start of the display list, and the event propagates down to
the event target, and then bubbles back up through the display list again. You
can react to the event anywhere along this path.

Consider two movie clips (mc2 and mc3) within another movie clip (mc1)
that is on the stage. Next, imagine that you click on the nested movie clip,
mc2, making it the target of the event. When the event occurs, it is not dis-
patched directly to mc2, but rather to the display list. For a simple look at the
route the event takes, the stage receives the event first, then the main timeline
(also called the root), then the parent movie clip, mc1, and then the target of
the event, mc2. After the target receives the event, it then propagates back up
through the display list to mc1, the main timeline (root), and stage. Figure 3-4
depicts the journey of the event.

Not every display object is a part of this path, however—only those in the
hierarchical line of the event flow. For example, mc3 is not a child or parent
of any of the objects between the stage and the event target. Therefore, it’s
outside this event flow, as seen in Figure 3-4.

Event Propagation

Chapter 3: Properties, Methods, and Events 63

stage

root

mc1

mc2 mc3

target

Figure 3-4. Event propagation process

Event propagation can be used to great advantage with just a little bit of plan-
ning. For example, let’s say both nested movie clips in Figure 3-4, mc2 and
mc3, were designed to react to mouse over and mouse out events. Whenever the
user rolled the mouse over either of the clips, it would change its alpha value.
In the most direct case, you would attach a listener for each event to each
movie clip. The following code shows the script for this scenario using two
movie clips, folder0 and folder1, and Figure 3-5 depicts the result.

1	 folder0.addEventListener(MouseEvent.MOUSE_OVER,	onFolderOver);
2	 folder0.addEventListener(MouseEvent.MOUSE_OUT,	onFolderOut);
3	 folder1.addEventListener(MouseEvent.MOUSE_OVER,	onFolderOver);
4	 folder1.addEventListener(MouseEvent.MOUSE_OUT,	onFolderOut);
5	
6	 function	onFolderOver(evt:MouseEvent):void	{
7	 				evt.target.alpha	=	0.5;
8	 }
9	
10	 function	onFolderOut(evt:MouseEvent):void	{
11	 				evt.target.alpha	=	1;
12	 }

Figure 3-5. The effect of the changing alpha values using mouse over and mouse out
events

Part II: Graphics and Interaction64

Event Propagation

Figure 3-6. Using the parent movie clip to propagate events

Now imagine having to use the same approach for many folders, as seen in
Figure 3-6. The code could get quite extensive with all those listeners for each
folder. However, with event propagation, it’s possible to attach the listener to
the parent movie clip. In this example, all of the folders are inside a movie clip
called folder_group, symbolized by the dashed line in Figure 3-6. If we attach
the listener to the parent movie clip, the event will cascade through the dis-
play list, and the listener functions will be able to determine the object target
from the data sent into the function. The code that follows is significantly
simplified, thanks to event propagation, and can be seen in the source file
event_propagation2.fla.

1	 folder_group.addEventListener(MouseEvent.MOUSE_OVER,	onFolderOver);
2	 folder_group.addEventListener(MouseEvent.MOUSE_OUT,	onFolderOut);
3	
4	 function	onFolderOver(evt:MouseEvent):void	{
5	 				evt.target.alpha	=	0.5;
6	 }
7	
8	 function	onFolderOut(evt:MouseEvent):void	{
9	 				evt.target.alpha	=	1;
10	 }

NOTE

It’s important to note that not all
events propagate through the display
list. Frame events, for example, which
we’ll discuss in the next section, are
dispatched directly to the event target.
Before relying on event propagation,
check the documentation to see how
the event behaves. In particular, the
bubbles property of an event class is a
Boolean that indicates whether an event
bubbles back up through the display list
after reaching its target.

For more information, see the compan-
ion website, which includes discussions
about event phases, priority of execu-
tion, stopping event propagation, and
more. Consult Essential ActionScript
3.0, Chapters 12 and 21, for more discus-
sions on event propagation.

NOTE

To see another example of the difference
between the target and currentTarget
event properties, change target in lines 5
and 9 to currentTarget in the code at
right. Because the listener is attached to
the parent movie clip, which contains all
the folders, currentTarget causes the
parent clip to fade, affecting all its chil-
dren. Used judiciously, these properties
could be used to highlight a single folder,
or all folders as a group.

Frame and Timer Events

Chapter 3: Properties, Methods, and Events 65

Frame and Timer Events
We’ve been using mouse and keyboard events because you’re almost certainly
familiar with them to some degree, and they are ideally suited to this tutorial
context. However, there are many events in the ActionScript language. While
it’s not possible to cover every one, we would like to round out the chapter
with two other significant event types: frame and timer.

Frame Events
Frame events are not triggered by user input the way mouse and keyboard
events are. Instead, they occur naturally as the SWF plays. Each time the
playhead enters a frame, a frame script is executed. This means that frame
scripts execute only once for the life of the frame, making them an excellent
location for seldom executed tasks, such as initializations. In other words, for
a frame script to execute more than once, the playhead must leave the frame
and return—either because of an ActionScript navigation instruction, or a
playback loop that returns the playhead to frame 1 when it reaches the end
of the timeline. Single-frame FLA files, therefore, execute their single frame
scripts only once.

However, using an event listener, you can listen for a recurring enter frame
event that some display objects have, including the main timeline, movie
clips, and even the stage. An enter frame event is fired at the same pace as the
document frame rate. For example, the default frame rate of an FLA created
by Flash Professional CS4 and later is 24 frames per second, so the default
enter frame frequency is 24 times per second. Using the enter frame event
allows your file to update frequently—a handy thing for updating visual
assets.

The frame_events.fla file in the accompanying source code demonstrates
this event by updating the position of a unicycle every time an enter frame
event is detected. It places the unicycle at the location of the mouse and, as
a further review of properties, it rotates the child movie clip in which the
wheel resides. Figure 3-7 demonstrates the effect. As you move your mouse
to the right on the stage, the unicycle will move to the right, and the wheel
will rotate clockwise.

The code for this example follows. The first line adds an enter frame event
listener to the main timeline, specifying the event using the ENTER_FRAME
constant of the Event class. The function sets the unicycle’s x coordinate and
rotation to the x coordinate of the mouse.

1	 stage.addEventListener(Event.ENTER_FRAME,	onFrameLoop);
2	
3	 function	onFrameLoop(evt:Event):void	{
4	 				cycle.x	=	mouseX;
5	 				cycle.wheel.rotation	=	mouseX;
6	 }

Figure 3-7. Visual depiction of the unicycle
movements

NOTE

This example demonstrates a scripting
shortcut aided by ActionScript. When
specifying a rotation higher than 360
degrees, ActionScript will understand
the fact that an angle of rotation can-
not exceed 360 and use the correct
value. That is, 360 degrees is one full
rotation around a circle, bringing you
back to degree 0 (720 degrees is twice
around the circle and also equates to 0).
Similarly, 370 degrees is equivalent to 10
degrees, as it is 10 degrees past degree
0, and so on. This allows you to set the
rotation of the wheel movie clip to the x
coordinate of the mouse, without worry-
ing about rotation ceasing after moving
past the 360th pixel on the stage.

Part II: Graphics and Interaction66

Frame and Timer Events

Timer Events
An alternative to using enter frame events to trigger actions on a recurring
basis is to use time-based events. Although it’s among the most straightfor-
ward options, using the enter frame event exclusively for this purpose has
disadvantages. For example, Flash Player can reliably achieve only moderate
frame rates—somewhere between the default 24 frames per second (fps) and
perhaps 60 or so fps on the high end. Your mileage may vary, but that’s fairly
accurate when averaging the CPU population at large. More importantly, the
rate at which the enter frame fires is not always consistent.

On the other hand, time-based events are measured in milliseconds and can
therefore sometimes fire more quickly. Further, time-based events don’t vary as
much from scenario to scenario, so they are more reliable and consistent.

Previous versions of ActionScript used the setInterval() method for ongo-
ing recurring events and the setTimeout() method for finitely recurring
events. ActionScript 3.0 wraps up these approaches neatly behind the scenes
of the new Timer class, simplifying the process of using timers.

The first step in using the Timer class is to create an instance of the class.
Fortunately, creating instances in ActionScript 3.0 is very consistent, so this
may look familiar. A variable is declared and typed using a data type that
matches the class being instantiated. The new keyword creates a new instance
of the class and that instance is stored in the variable:

var	timer:Timer	=	new	Timer(delay,	repeatCount);

In this case, the class constructor can take two arguments. The first is manda-
tory and specifies the delay, in milliseconds, before the timer event is fired.
The second is optional and is the number of times the event fires. Omitting
the second argument will cause the event to fire indefinitely, each time after
the specified delay. Using a positive value, such as 3, will cause the event to
fire that finite number of times (again, after the specified delay).

In the sample timer_events.fla in the accompanying source code, the timer
event (consistently specified as the constant TIMER in the TimerEvent class),
occurs every second (or, in Timer units, every 1,000 milliseconds) and calls
a function that increases the rotation of a hand nested inside a watch
movie clip. The rotation increases 6 degrees every second, making one full
360-degree journey in 60 seconds.

1	 var	timer:Timer	=	new	Timer(1000);
2	 timer.addEventListener(TimerEvent.TIMER,	onTimer);
3	 timer.start();
4	
5	 function	onTimer(evt:TimerEvent):void	{
6	 				watch.hand.rotation	+=	6;
7	 }

One important thing to note is line 3. The timer you instantiate does not start
automatically. This gives you greater flexibility and control over your timer

NOTE

As described in Chapter 2, frame and
timer loops, such as those seen in the
previous examples, are often an attrac-
tive alternative to for loops because
they allow additional updates to occur
throughout the file. A code loop, such as
a for loop, is one of the most processor-
intensive structures and will execute
only the code inside the loop until the
loop is finished. This means that ani-
mation, sound, or video updates, for
example, will all be halted while the
loop is working.

Removing Event Listeners

Chapter 3: Properties, Methods, and Events 67

events. You can also stop the timer using the stop() method, and reset the
timer using the reset() method. The latter stops the timer and also resets the
repeat count to zero. For example, if you specified that the timer call a func-
tion five times, but reset it after the third call, the timer would begin counting
again from zero rather than picking up from three at the point when it was
reset. Figure 3-8 shows the watch used in timer_events.fla.

Removing Event Listeners
Though event listeners make most event handling easy to add and maintain,
leaving them in place when unneeded can wreak havoc. From a logic stand-
point, consider what could happen if you kept an unwanted listener in opera-
tion. Imagine a weeklong promotion for radio station 101 FM, which rewards
customer number 101 who enters a store each day of that week. The manager
of the store is set up to listen for “customer enter” events, and when customer
101 enters the store, oodles of prizes and cash are bestowed upon the lucky
winner. Now imagine if you left that listener in place after the promo week
was over. Oodles of prizes and cash would continue to be awarded at great,
unexpected expense.

Unwanted events are not the only problem, however. Every listener created
occupies a small amount of memory. Injudiciously creating many event lis-
teners, without cleaning up after yourself, uses memory without releasing it,
which reduces available memory over time. This effect is called a memory
leak. Therefore, it’s a good idea to remove listeners when you know they will
no longer be needed.

To do so, just use the removeEventListener() method. This method must
be invoked by the object to which the listener was originally attached and
requires two parameters: the event and function specified when the listener
was created. Specifying the correct object, event, and function is important
because you may have multiple listeners set up for the same object or event
and you’ll want to remove the correct listener.

Let’s show how this works by adding to the previous example and remov-
ing the timer event listener when the rotation of the watch hand meets or
exceeds 30 degrees of rotation. The new code is in bold and can be found in
the source file removing_listeners.fla.

1	 var	timer:Timer	=	new	Timer(1000);
2	 timer.addEventListener(TimerEvent.TIMER,	onTimer);
3	 timer.start();
4	
5	 function	onTimer(evt:TimerEvent):void	{
6	 				watch.hand.rotation	+=	6;
7 if (watch.hand.rotation >= 30) {
8 timer.removeEventListener(TimerEvent.TIMER, onTimer);
9 }
10	 }

Figure 3-8. Use of the timer event in a
stopwatch

Part II: Graphics and Interaction68

Removing Event Listeners

Checking ActionScript Angles
The code in the “Removing Event Listeners” section of this chapter is a simple
extension of the prior example, rotating a watch hand every second. However, it was
chosen to demonstrate one of the efficiencies of ActionScript: using the shortest
angle possible to get to a specific degree of rotation. This is best explained by
showing that 270-degrees is the same as –90 degrees.

Rotation angles in ActionScript start with 0 at East on the compass, or three o’clock on
a watch face. If you start at three o’clock on a watch face, and travel around a circle for
270 degrees, you’ll move three-quarters of the way around the circle and end up at
twelve o’clock. However, if you start at the same original position and travel counter-
clockwise, or a negative angle, you need travel only –90 degrees, or one quarter of
the way around the circle to end up at the same location.

Setting an angle is easy because, as noted previously, ActionScript will automatically
adjust the value over 360 degrees to a compatible angle. However, getting an angle
can be more difficult. For example, if you changed the angle used in the conditional
in the cited example from 30 to 270, the listener would never be removed. Why?
Because ActionScript rotation angles span 0 to 180 degrees and 0 to –180 degrees, so
270 never occurs.

You can compensate for this in one of two ways. You can write functions that take
negative angles and convert them to their positive equivalents (so you can ask for a
familiar 270 degrees but really ask ActionScript for –90 degrees behind the scenes),
or you can just use a variable, instead of checking the rotation property directly. This
variant of the existing example can be found in the removing_listeners_2.fla source file.

1	 var	angle:Number	=	0;
2	 var	timer:Timer	=	new	Timer(1000);
3	 timer.addEventListener(TimerEvent.TIMER,	onTimer);
4	 timer.start();
5	
6	 function	onTimer(evt:TimerEvent):void	{
7	 				angle	+=	6;
8	 				watch.hand.rotation	=	angle;
9	 				if	(angle	>=	270)	{
10	 								timer.removeEventListener(TimerEvent.TIMER,	onTimer);
11	 				}
12	 }

This can be accomplished using a repeat count in the timer, like this:

var	timer:Timer	=	new	Timer(1000,	5);

However, the point of the example is to show you how to remove the listener
from your logic flow and, equally important, from memory, when it is no
longer needed. We briefly discuss an additional scenario for removing listen-
ers in the upcoming “Garbage Collection” sidebar, but in all cases, it’s good
practice to remove any listeners that you know you’ll no longer need.

Removing Event Listeners

Chapter 3: Properties, Methods, and Events 69

Garbage Collection:
A Recommended Optional Parameter for Event Listeners
Garbage collection is the method by which Flash Player purges
from memory objects that you no longer need. Garbage
collection and memory management typically are not topics
you need to concern yourself with when just getting started
with ActionScript 3.0. However, garbage collection frees up
memory so it’s available for your SWF to use throughout its
runtime life, so it’s a good thing to be aware of. There are some
coding practices that you can adopt immediately, and relatively
painlessly—even at the outset of your learning—that may prove
to be useful habits in the long run. Using weak references is such
a practice.

We want to just scratch the surface of this subject, laying
the groundwork for conventions that we’ll use throughout
the remainder of this book, and then refer you to additional
resources for more information.

There are three optional parameters that you can add to the end
of the addEventListener() method. Here is the syntax of the
method, which will look partly familiar. The optional parameters
we’ll discuss are in bold.

eventTarget.addEventListener(EventType.EVENT_
NAME,	eventResponse,	useCapture:Boolean,	
priority:int,	weakReference:Boolean);

The first two optional parameters control when the listener
function executes. You may never need to adjust these values
often, but here’s a quick snapshot of what they do.

The first optional parameter, useCapture, allows you to handle
the listener event before it reaches its target (if set to true) or
once the event has reached its target (if set to false) and is
bubbling back up through the display list. The default (false)
behavior is to react to all events captured at or after the event
reaches the target, and this is the configuration you will use
most of the time. Using true is akin to clicking on a button
but capturing the event before it reaches the button. It will
appear as if nothing happened. (The only practical use of this
feature that we’ve found is preventing any mouse clicks from
registering, as in the case of a modal dialog.)

The second optional parameter, priority, allows you to order
the execution of multiple listeners set to respond to the same
event in the same phase. In other words, if the same button
used three mouse down listeners, you could set their order of
execution. This, too, is unlikely to be a common issue, and the
default parameter of 0 will serve you well in the vast majority of
circumstances. When you need this feature, the highest number
will execute first.

The third optional parameter, weakReference, is the option
we want you to understand and start using. In a nutshell, this

parameter helps with memory management in the event that
you’re not careful about removing unneeded listeners.

Briefly, in ActionScript 3.0, memory management that you don’t
explicitly control is handled behind the scenes by the garbage
collector, using the mark and sweep process. When you are no
longer referencing an object in your application, it is marked for
cleanup, and the garbage collector periodically sweeps through
your application discarding unneeded items, freeing up memory
along the way. If a reference to an object remains, however, the
garbage collector can’t know that the object should be purged
from memory.

Try as we might to be good, it’s not uncommon for developers
to forget to remove event listeners in their code (see the section
“Removing Event Listeners” earlier in this chapter). However, a
distant next-best thing is a weakly referenced listener. Simply
put, weakly referenced listeners aren’t supervised by the
garbage collector and therefore don’t have to be manually
marked for removal. If only weak references to an object remain
after you have finished using it, then the object is eligible for
collection.

Using this option is very simple. All you need to do is change
the weakReference setting of the addEventListener()
method from its default value of false, to true. Because it’s
the third optional parameter, values for the first and second
arguments must be included so that ActionScript knows which
parameter you are trying to set. You will rarely need to change
those values, so you can use their aforementioned defaults
(false for useCapture and 0 for priority).

So, our preference, and the convention we will use hereafter in
this book, is to use the addEventListener() method with
this syntax:

eventTarget.addEventListener(EventType.EVENT_NAME,	
eventResponse,	false, 0, true);

If you get in the habit of using this syntax, you will be less likely
to run into memory management problems due to lax code
maintenance. Remember, this is not a substitute for removing
your unneeded listeners explicitly. However, it’s a backup plan
and a best practice that is easy to adopt.

Additional discussion of the event flow—including event
phases, setting listener priority, stopping propagation along the
way, manually dispatching events, and more—is featured on the
companion website. Flash developer Grant Skinner also wrote a
helpful series of articles on resource management on his blog
(http://www.gskinner.com/blog) that got us thinking about this
in the first place. Finally, event flow is discussed in depth in
Chapters 12 and 21 of Essential ActionScript 3.0.

Part II: Graphics and Interaction70

What’s Next?

What’s Next?
This chapter has demonstrated ways to manipulate ActionScript objects, but
in the case of our example movie clip, we have assumed that the movie clip
already existed on the stage. This is an acceptable assumption for projects
authored primarily using the timeline, but it’s limiting. If all files are to be
constrained by using only elements manually added to the stage at time
of authoring, and used only in the manner and order in which they were
originally added, the files cannot be as dynamic as the ActionScript language
allows.

Coming up, we’ll talk more about the display list—an excellent means of
managing visual assets. Understanding the basics of the display list is instru-
mental not only in dynamically adding elements at runtime, but also inn
manipulating existing stage-bound objects to their fullest potential.

In the next chapter, we’ll discuss:

• Adding new children to the display list

• Removing existing children from the display list

• Swapping depths of objects in the display list to change their visual stack-
ing order dynamically

• Managing the hierarchical relationship of display list objects and how to
change that relationship through reparenting

71

IN THIS CHAPTER

Jump Right In

The Sum of Its Parts

Adding and Removing
Children

Managing Object Names,
Positions, and Data Types

Changing the Display List
Hierarchy

A Dynamic Navigation Bar

What’s Next?

One of the most dramatic changes introduced by ActionScript 3.0, par-
ticularly for designers accustomed to prior versions of ActionScript, is the
way in which visual elements are added to an application at runtime. In
prior versions of ActionScript, a separate approach was used to add most
kinds of visual assets at runtime, requiring varied syntax. Management of
those assets—particularly depth management—and creating and destroying
objects, were also fairly restrictive and could be relatively involved, depending
on what you were trying to accomplish.

ActionScript 3.0 brings with it an entirely new way of handling visual assets.
It’s called the display list. It’s a hierarchical list of all visual elements in your
file. It includes common objects such as movie clips, but also objects such as
shapes and sprites that either didn’t previously exist or could not be created
programmatically.

The biggest difference between the ActionScript 3.0 display list display tech-
niques used in prior versions of ActionScript is that the display list can’t have
any gaps. If the display list contains 10 display objects (such as 10 movie
clips), you can’t add a new display object to position 20. Furthermore, if
something is removed from the display list, any display objects at a higher
position will all drop down to fill in the gap.

That is, if display objects a, b, and c were added to the display list in that
order, a would be at the bottom of the list (and, therefore, at the bottom of the
SWF’s visual stacking order), and c would be at the top of the list. Their posi-
tions in the display list would be 0, 1, and 2, respectively. Objects with higher
indices are above objects with lower indices in the visual stacking order of the
SWF. If b were removed, c would drop down and the new display list would
be a, c. This makes working with the display list much easier because you
don’t have to worry about any empty positions in the list.

the dIsPLay LIst

CHAPTER 4

Part II: Graphics and Interaction72

Jump Right In

In this chapter, we’ll look at the following topics:

• Jump Right In. Say hello to the world using three separate display objects.

• The Sum of Its Parts. Understanding the display list means understand-
ing its parts. In addition to knowing the kinds of objects that can be
part of the display list, it’s also important to grasp the simple difference
between display objects and display object containers—objects that can
contain other display objects.

• Adding and Removing Children. The best part of the display list is
how easy and consistent it is to add objects to, and remove objects from,
the list.

• Managing Object Names, Positions, and Data Types. In addition to
adding and removing display objects, you will need to manipulate exist-
ing members of the display list. You will likely need to find an object,
either by name or position in the list, or even identify an object’s data type
as a particular kind of display object.

• Changing the Display List Hierarchy. It’s also much easier than ever before
to manage asset depths (z-order, or the visual stacking order controlled by
ActionScript rather than timeline layers), and to change the familial relation-
ship of assets. Moving a child from one parent to another is a breeze.

• A Dynamic Navigation Bar. As a quick demonstration of using the
display list, we’ll show you how to dynamically generate a very simple
navigation bar.

Jump Right In
Adapting the Hello World! examples of previous chapters, this exercise
focuses on the display list and the very useful technique of relative position-
ing. It creates three text fields and positions them horizontally adjacent to
each other, using only the display list for references to the fields. As in prior
chapters, this script is provided up front just to get you started and give you
a little experience with the material you’ll be covering. The code used in
these examples is designed to focus on the chapter at hand while presenting
as little unfamiliar territory as possible. Content will be further explained
in this chapter as well as later in the book. This script can be found in the
hello_world_display_list.fla source file.

1	 var	i:int;
2	 var	parts:Array	=	["Hello",	"World",	"!"];
3	
4	 for	(i	=	0;	i	<	3;	i++)	{
5	 				var	txtFld:TextField	=	new	TextField();
6	 				txtFld.text	=	parts[i];

The Sum of Its Parts

Chapter 4: The Display List 73

7	 				txtFld.autoSize	=	TextFieldAutoSize.LEFT;
8	 				if	(i	>	0)	{
9	 								txtFld.x	=	getChildAt(i-1).x	+	getChildAt(i-1).width;
10	 				}
11	 				addChild(txtFld);
12	 }

Lines 1 and 2 create an integer counter and an array with three strings. Line
4 defines a for loop that executes three times. Lines 5 and 6 create and popu-
late a text field, using each string from the array, consecutively. As the value
of i increases with each iteration, the next string in the array is used. Line 7
uses the autoSize property to automatically adjust the size of the field to the
minimum required to display the text, anchoring the resizing process to the
upper-left corner.

Line 8 ensures that the first field exists because i is incremented after the first
iteration of the loop. If the first field has already been added to the display
list, line 9 positions the remaining fields relative to the prior field’s position
and width. The power of the display list allows us to do this without any
instance names or preexisting object references because we can get a child
from the any position in the list. For example, the second time through the
loop, line 9 positions the new field based on the position and width of the
display object at position 0 in the display list (i equals 1, so i – 1 equals 0 in
the getChildAt() method). Finally, line 11 adds each field to the display list
so the user can see it.

If you want to see the boundaries of the three separate text fields, you can add
the following bold line of code to your file:

1	 				txtFld.autoSize	=	TextFieldAutoSize.LEFT;
2 txtFld.border = true;
3	 				if	(i	>	0)	{
4	 								txtFld.x	=	getChildAt(i-1).x	+	getChildAt(i-1).width;
5	 				}

The Sum of Its Parts
If you think about the display list by considering what you see in any given
application, you’re halfway home. In addition to contributing to the structure
of the new event model, discussed in Chapter 3, the display list is responsible
for maintaining the visual assets in your file. You will use the display list to
create and destroy visual assets, and manage how they interrelate.

Let’s take a look at the contents of the display list of a simple file. Figure 4-1
shows that this file has a shape, a text element, and a movie clip, and inside
the movie clip is a bitmap. You can see this example in the sample_display_list.
fla source file.

Figure 4-2 shows the display list of the same structure.

NOTE

By default, text fields are 100 pixels
wide and 100 pixels tall. The autoSize
property can resize a field to match its
contents, based on the left, center, or
right edges of the field.

movie
clip

text
element

shape

bitmap

Figure 4-1. The visual layout of the simple
file structure

Part II: Graphics and Interaction74

The Sum of Its Parts

Stage
(Display Object Container)

Shape
(Display Object)

Text
(Display Object)

Main Timeline
(Display Object Container)

MovieClip
(Display Object Container)

Bitmap
(Display Object)

Figure 4-2. The display list of the sample file

At the top of the list is the stage. Although you can access the stage from
many objects in the display list, it’s easiest to think of the stage as the foun-
dation on which everything is built. It also helps to think of the stage as the
ultimate container within which all your visual assets reside at runtime. The
container analogy is central to this discussion. The stage contains everything.

Next is the main timeline, which can also be referenced using the root prop-
erty. (See the sidebar “_root versus root” for more information.) An FLA file
has a main timeline within which all other assets are contained. Because
of event propagation, it is common to use the main timeline as a location
to add event listeners when writing scripts in the timeline. In that context,
the main timeline is typically referenced using the this identifier, as in “this
object being currently referenced within the context of the script.” (For more
information about event listeners and event propagation, see Chapter 3. For
more information about this, see Chapter 2.)

Below the main timeline in the display list hierarchy are all the visual assets
in the file. Included in our sample display list are the aforementioned shape,
text, and movie clip assets, and inside the movie clip is the bitmap.

You may notice in Figure 4-2 that everything is subtitled as a display object or
display object container. This is key to understanding and working with the
display list effectively. It probably follows that everything in the display list is
a display object. However, some display objects can contain other elements
and therefore are also display object containers.

For example, a shape is a display object, as are bitmaps and videos. However,
none of these items can have children, so the display list lineage ends there.

_root versus root
If you have experience with
ActionScript 1.0 or 2.0, you may have
heard that you should avoid using
the _root property. That’s because
the value of the property was subject
to change. Before ActionScript 3.0,
_root referred to the timeline of the
original host SWF no matter how
many SWFs got loaded.

_root was the equivalent of an
absolute address, like referring to an
image in a website as http://www.
yourdomain.com/image, or a file
on your computer as C:\directory\
file, instead of a more flexible relative
address such as “image” (or “../image,”
for example).

Because _root was an absolute
address, if a SWF using the property
was loaded into another SWF, _root
was redefined to become the
timeline doing the loading, rather
than your original SWF as intended.
This then broke any object path
references that originated with
_root.

In ActionScript 3.0, the display list
changed that prevailing logic, the
new root property is safer to use.
root is now relative to the context
in which it’s used and doesn’t always
refer to the main timeline. As a
result, it behaves more like a relative
address. The root of a movie clip in
SWF A, is the same if it stands alone
or is loaded into SWF B. The same
goes for the root in SWF B, whether it
stands alone or is loaded into SWF C,
and so on.

http://www.yourdomain.com/image
http://www.yourdomain.com/image

The Sum of Its Parts

Chapter 4: The Display List 75

That is, it doesn’t make sense for a bitmap to have a nested object. A movie
clip can have children, however, so it is also a display object container.

Display List Classes
In just a moment, we’ll walk through a typical ActionScript display list that
demonstrates the distinction between display objects and display object con-
tainers. First, however, take a look at the individual classes that contribute to
the display list, as shown in Figure 4-3.

DisplayObject

SimpleButton TextField

Stage Loader

InteractiveObject

DisplayObjectContainer

Sprite

MovieClip

Video AVM1Movie MorphShape StaticTextBitmapShape

Figure 4-3. The display list classes

We discussed classes in Chapter 1, and we’ll be using them extensively as
you delve deeper into the book. In this context, however, just think of these
classes as blueprints for objects that can be part of the display list. As you
look through Figure 4-3, for instance, you’ll recognize Shape, Bitmap, Video,
and so on.

Note however, that, unlike Figure 4-2, this is not a depiction of an average dis-
play list. For example, it is possible for shapes, bitmaps, videos, and static text,
among other items, to exist inside movie clips. Figure 4-3 merely shows all the
possible object types that can be a part of any display list, and displays the
hierarchical relationship among display list classes. Here is a quick descrip-
tion of the classes in Figure 4-3, rearranged slightly for clarity of discussion:

DisplayObject

Anything that can exist in the display list is a display object, and more
specialized classes are derived from this class.

Part II: Graphics and Interaction76

The Sum of Its Parts

Shape

This is a rectangle, ellipse, line, or other shape created with drawing tools.
New to ActionScript 3.0, you can now create these at runtime.

Bitmap

This is an ActionScript bitmap created at runtime using the BitmapData
class.

Video

This is a video display object, the minimum required to play a video,
rather than using a video component for this task. This can also now be
created dynamically at runtime.

InteractiveObject

This class includes any display object the user can interact with using the
mouse or keyboard. You can’t create an instance of this class. Instead, you
work with its descendants.

Skipping a bit, temporarily, and moving down a level:

SimpleButton

This class is used to manipulate buttons created in the Flash Professional
interface, so you don’t have to rely solely on movie clips. Introduced in
ActionScript 3.0, this class also allows you to create a button with code.
You can assign display objects to properties of a SimpleButton instance to
serve as the button’s up, over, down, and hit states, and the instance will
swap these states automatically as well as automatically show the finger
cursor state, when responding to mouse interaction. This class is differ-
ent from the Button class, which is used with Flash Professional’s Button
component.

TextField

This class includes dynamic and input text fields. Both are controllable
from ActionScript and input fields can also be edited by the user.

DisplayObjectContainer

This class is similar to DisplayObject in that it refers to multiple display
object types. The difference here, however, is that this object can contain
children. All display object containers are display objects, but display
only objects that can have children are display object containers. For
example, a video is a display object, but it cannot have children. A movie
clip is a display object, and it can have children, so it’s also a display
object container. Typically, you will work directly with this class when
traversing the display list, looking for children or ancestors. Usually, you
will manipulate one or more of its descendant classes.

NOTE

When using ActionScript to refer to an
image that has been manually added to
the stage, such as when dragging it to
the stage from the library, ActionScript
will see the object as a Shape. However,
you can still create a Bitmap object
from an imported image using the
BitmapData class.

The Sum of Its Parts

Chapter 4: The Display List 77

There are four kinds of display object containers:

Stage

Remember, the stage itself is part of the display list. Any interactive object
can reference the stage, which is a display object container itself.

Sprite

New to ActionScript 3.0, a sprite is simply a movie clip without a timeline.
Many ActionScript manipulations typically performed using movie clips
require only one frame. So the size and administrative overhead of the
timeline is unnecessary. As you become more accustomed to ActionScript
3.0, and begin to consider optimization more frequently, you may find
yourself using sprites more often.

Loader

This class is used to load external assets destined for the display list,
including images and other SWFs.

MovieClip

This refers to the movie clip symbol you might create using drawing tools
in Flash Professional. They can also be created with ActionScript.

We left three items from the second tier for last, as you will probably use these
classes least often:

AVM1Movie

This class is for working with loaded SWFs created using ActionScript
1.0 or 2.0. AVM1, (which stands for ActionScript Virtual Machine 1) is
reserved for SWFs that use ActionScript 1.0 and/or ActionScript 2.0, while
AVM2 is used for SWFs that use ActionScript 3.0. Because Flash Player
uses two discrete code bases, these virtual machines are not compatible.
The AVM1Movie class provides a way of manipulating display properties of
legacy SWFs, but does not facilitate communication between ActionScript
3.0 and older SWFs. This must be accomplished by other means, such as a
LocalConnection. We will discuss this approach in Chapter 13.

MorphShape and StaticText

These two classes represent a shape tween and a static text element,
respectively. You can’t create a shape tween, or do very much with the text
in a static text element, with ActionScript. However, they are part of the
display classes because they inherit properties, methods, and events from
their DisplayObject parent class. This makes it possible to rotate a static
text element, for example.

Once you begin using the display list frequently, you will quickly become
enamored with its power, flexibility, and simplicity. We will show you how to
perform several common display list tasks in this chapter but, if you take one
thing away from this initial discussion, it should be a basic understanding of
display object versus display object container. To demonstrate this effectively,

Part II: Graphics and Interaction78

The Sum of Its Parts

let’s look at a short segment of code that traces display list content to the
output window.

Displaying the Display List
It’s sometimes useful, especially when you’re creating many display objects
with potentially complicated nested objects, to walk through the display list
and analyze its contents. The trace_display_list.fla file from the companion
source code, will trace the contents of any display object that you pass into it,
and indent each child and successive grandchild to help convey its position
in the display list hierarchy.

This function introduces our first display list property and method—-
numChildren and getChildAt(), respectively—both used for retrieving
information. As the name implies, numChildren returns the number of chil-
dren within the object being analyzed. If, for example, there is one movie
clip in the main timeline, and that movie clip contains two nested but-
tons, the main timeline has one child and the movie clip has two children.
Grandchildren are not considered in this property.

The getChildAt() method retrieves a reference to a display object in the
desired scope. For example, myMovieClip.getChildAt(0) will return the first
child of the myMovieClip object, while getChildAt(1) will return the second
display object of the current scope.

This source file also makes practical use of some of the skills we’ve discussed,
such as sending arguments into (and returning a value from) a function,
default argument values, and using a for loop, among others. Here’s the code:

1	 function	showChildren(dispObj:*,	indentLevel:int=0):void	{
2	 				for	(var	i:int	=	0;	i	<	dispObj.numChildren;	i++)	{
3	 								var	obj:DisplayObject	=	dispObj.getChildAt(i);
4	 								trace(padIndent(indentLevel),	obj.name,	obj);
5	 								if	(obj	is	DisplayObjectContainer)	{
6	 													showChildren(obj,	indentLevel	+	1);
7	 								}
8	 				}
9	 }
10	
11	 function	padIndent(indents:int):String	{
12	 					var	indent:String	=	"";
13	 					for	(var	i:Number	=	0;	i	<	indents;	i++)	{
14	 									indent	+=	"				";
15	 					}
16	 					return	indent;
17	 }
18	
19	 showChildren(stage);

Lines 1 through 9 define the function showChildren(), which has two param-
eters. The first receives the display object you want to inspect. This parameter
uses a special value for its data type. Specifying an asterisk as a data type
means the type will not be checked. This makes the function more flexible

The Sum of Its Parts

Chapter 4: The Display List 79

and is required in this case because you may pass different data types into
the function: DisplayObject or DisplayObjectContainer (a display object
that can contain children).

The second parameter is used by the function itself, and its value will ulti-
mately indent each level of child objects, formatting the output to show the
hierarchical relationships in the file. Here is a sample output of a file that
contains two movie clips. We’ll walk through another example after we dis-
cuss the code.

root1	[object	MainTimeline]
				myMovieClip	[object	MovieClip]
				myMovieClip	[object	MovieClip]

Note that the second parameter of the showChildren() function has a default
value of 0, so you don’t have to pass anything into the function for this param-
eter to work. Line 19 shows the syntax for calling the function and passes in
the stage for analysis, but no second argument. Therefore, the default value
of the argument will be used. In this example, the function will trace the
contents of all children of the stage.

Lines 2 through 8 of the function define a for loop, which will loop until
there are no more children in the display object passed to the function. The
number of loops is determined by the aforementioned numChildren property.
Each time through the loop, line 3 populates the obj variable with the next
child in the display list using the getChildAt() method. This determines the
child object at the display list index indicated by the loop counter (i). The
first time through the loop, when i is 0, the first child will be returned—
equivalent to getChildAt(0). The second time, when i is 1, the second child
will be returned, and so on.

Once a display object reference is obtained, line 4 traces the object name
and the reference itself, as arguments 2 and 3 of the trace() statement.
The latter is handy because the type of object will also be displayed. For
example, if the object is a movie clip called logo, the output will say “logo
[object MovieClip].” But line 4 also does something else. The first item in
the trace() is a function call to padIndent() and passes one argument to the
function: the level of indent desired. The first time showChildren() is called,
the initial value of this argument is 0, which comes from the default value of
the indentLevel parameter. You’ll soon see that this value can change as the
function continues and progressive indents are needed for successive chil-
dren. But first, let’s jump down to look at how padIndent() works, in lines 11
through 17.

The padIndent() function begins by initializing a local variable as an empty
string in line 12. It then enters a loop in lines 13 through 15 that adds four
spaces to this variable. The indent level desired determines the number of
loops. Once the loop is completed, this string of empty spaces is returned to
the showChildren() from line 16, so the spaces can be added to the beginning

NOTE

You can also omit a data type to prevent
the compiler from testing an object’s
type. However, using an asterisk is
considered a best practice because it
reminds you, and others who may read
your code, that preventing type checking
was intentional.

NOTE

See the “Functions” section in Chapter 2
for a review of argument default values.

Part II: Graphics and Interaction80

The Sum of Its Parts

of every trace. The end result is that, for each level of indent, these accumu-
lated spaces push the output to the right, resulting in an outline format.

Lines 5 through 7 are what make this function powerful. Line 5 checks to see
whether the display object currently being analyzed is also a display object
container. It does so by using the is operator, which checks the data type of
the object in question, and comparing it against the DisplayObjectContainer
type. If the object is a container, the function calls itself again, in line 6. When
doing so, it passes in that current object, and increments the indent level so
any children found will be further indented during the trace.

This idea of a function calling itself is called recursion. It may seem redun-
dant, but it can be very useful. In this case, it’s the most efficient way for the
showChildren() function to continue introspecting every display object it
finds, no matter how deeply nested. The result is a complete walkthrough of
all display objects, no matter how many children each may have.

The showChildren() function in action
Take a look at the function in action. Figure 4-4 shows a sample file that will
be analyzed. The rectangle and circle movie clips, with their instance names,
are indicated in the figure. Within each rectangle, a shape is used to create
the fill and stroke appearance. Inside each circle, a shape again provides the
fill and stroke and a static text element is added to display the word “child.”

child

child

child

child0

largeContainer

child2

smallContainer

child1

Figure 4-4. A look at the stage of trace_display_list.fla

NOTE

Remember that variables that are
declared inside a function are local to
that function only and have no value
elsewhere. See the “Functions” section
in Chapter 2 for more about local vari-
ables.

NOTE

An advantage to using spaces for the
indent in this context is that you can
replace them with other characters to
create tab leaders—visual indicators
that draw the eye across to the farthest
indent. The period (.) character is com-
monly used for this purpose.

Adding and Removing Children

Chapter 4: The Display List 81

When the function runs, the following is traced to the output window, show-
ing all children of the stage. Note that whenever a display object has no name,
“instance” is combined with an incrementing integer to create a unique name.

root1	[object	MainTimeline]
					largeContainer	[object	MovieClip]
									instance1	[object	Shape]
									smallContainer	[object	MovieClip]
													instance2	[object	Shape]
													child2	[object	MovieClip]
																	instance3	[object	Shape]
																	instance4	[object	StaticText]
									child0	[object	MovieClip]
													instance5	[object	Shape]
													instance6	[object	StaticText]
									child1	[object	MovieClip]
													instance7	[object	Shape]
													instance8	[object	StaticText]

Adding and Removing Children
The previous section described the parts of the display list and how to analyze
an existing list. But you’ll also need to know how to add to, and remove from,
the display list at runtime. In previous versions of ActionScript, you needed to
rely on varying methods to add items to the stage. For example, you needed
to use separate methods for creating a movie clip, placing a library movie clip
on stage, or duplicating a movie clip. Using the ActionScript 3.0 display list,
you need only one approach to create a movie clip: new MovieClip(). Even
adding a precreated movie clip from the library is consistent with this syntax,
as you’ll soon see.

Using addChild()
Adding a display object to the display list requires just two simple steps. The
first is to create the object—in this case, an empty movie clip (a movie clip
created dynamically, but without content). Commonly, this reference to this
object is stored in a variable.

var	mc:MovieClip	=	new	MovieClip();

This creates the movie clip but does not display it. To display the movie clip,
you must add it to the display list using the addChild() method:

addChild(mc);

Without any additional syntax, this adds a child to the current scope of the
script. That is, if you typed this into a frame script in the main timeline, it
would add the movie clip to the main timeline. You can also add a child to
another display object container. So, if you instead wanted to add the mc
movie clip nested inside another movie clip called navBar, you would change
the second step to:

navBar.addChild(mc);

NOTE

Remember, you can’t add children to
display objects like shapes, videos, text
elements, and so on, because they are
not display object containers.

Part II: Graphics and Interaction82

Adding and Removing Children

We’ve been adding movie clips to the display list in our examples, but it’s just
as straightforward to add other display objects. Two simple examples include
creating a sprite and a shape:

var	sp:Sprite	=	new	Sprite();
addChild(sp);

var	sh:Shape	=	new	Shape();
addChild(sh);

You don’t even have to specify a depth (visible stacking order) because the
display list automatically handles that for you. Remember, the display list
can’t have any gaps, so the addChild() method always adds the object to the
end of the display list no matter how long it is. You never need to know how
many items are in the display list to use this method.

Adding Custom Symbol Instances
to the Display List
In the previous examples, we created display objects without any visible con-
tent. In Chapter 8, we’ll show you how to draw with code so you can create
art for these movie clips solely with code. This keeps file size down and allows
more dynamic control.

However, you will frequently need custom art in your files, which would be
difficult or virtually impossible to create with code. So we’re going to show
you how to dynamically add movie clips that already exist to the display
list. In this chapter, we’ll focus on adding instances of symbols that exist
in your Library, using Flash Professional. In the accompanying source file,
add_child_linkage.fla, you will find a unicycle in the library. To add this movie
clip to the display list using ActionScript, you must first prepare the library
symbol for ActionScript use.

In prior versions of ActionScript, there were two ways of doing this. The
first approach was to assign the symbol a linkage identifier name—a name
unrelated to symbol and instance names, specifically for use in ActionScript.
The second way was to assign your own class to the movie clip so that it
could be created when you created an instance of the class.

In ActionScript 3.0, these two approaches are unified into a single linkage
class. This name allows you to create runtime instances of the symbol, but
also allows you to create a class of the same name that will give the movie
clip autonomous behavior. The most important thing to know at this point
is that you don’t have to write your own class to control the symbol instance
if you don’t want to. Before defining your own class, Flash will automati-
cally create an internal placeholder class for you, so you can use its name to
dynamically create the symbol when requested.

To prepare a movie clip for ActionScript use, select it in your library, and
then click the Symbol Properties button (it looks like an “i” at the bottom
of the library) to access the clip’s properties, as shown in Figure 4-5. You can

NOTE

This improved approach to dynamically
creating custom symbol instances also
allows you to add classes easily later on
for these instances to use—without hav-
ing to edit your library. See the “Adding
Classes to Pre-Existing Symbols” post at
http://www.LearningActionScript3.com
for more information.

http://www.LearningActionScript3.com

Adding and Removing Children

Chapter 4: The Display List 83

also right-click (Windows) or Ctrl-click (Mac) on the symbol and choose
Properties from the pop-up menu.

In the resulting dialog, seen in Figure 4-6, click to enable the Export for
ActionScript option (click the Advanced button if this option is not visible),
and add a name to the Class field. When naming classes, it’s common prac-
tice to begin the name with an uppercase letter. This is a bit different from
naming a variable, where you might choose to use a lowercase first letter, so
it’s a good idea to get into this practice now. In the provided source file, we’ve
already used the class name Unicycle.

Figure 4-6. Entering a class name for a movie clip in the library Properties dialog

You will also likely notice that Flash adds the MovieClip class (in this case) to
the Base Class field for you. A base class is a class from which other classes
can be derived. A base class is also sometimes called a parent class because
this is a form of inheritance. You’ll learn more about inheritance in Chapter 6,
but basically, this makes it possible for your new class to automatically inher-
it the accessible properties, methods, and events available to the MovieClip
class. For example, you can automatically manipulate the x and y coordinates
of your new custom movie clip.

Figure 4-5. Accessing a symbol’s
Properties dialog

Part II: Graphics and Interaction84

Adding and Removing Children

Now that you’ve given your movie clip a class name, you can create an
instance of that class the same way you created an instance of the generic
movie clip class. Instead of writing new MovieClip(), however, you will write
new Unicycle() to create the movie clip. The same call of the addChild()
method is used to add the newly created unicycle to the display list, as seen
in the following code:

var	cycle:MovieClip	=	new	Unicycle();
addChild(cycle);

Using addChildAt()
The addChild() method adds the display object to the end of the display list,
which places the object at the top-most position in the visible stacking order.
This makes it very easy to place items on top of all other items. However, it’s
also useful to be able to add a child at a specific position in the display list.
For example, you may wish to insert an item into the middle of a stack of
display objects.

To accomplish this, the addChildAt() method takes as its arguments not only
the object to add, but also the position in the display list where you want the
object to appear. The following example, found in the add_child_at.fla source
file, adds a movie clip with the class name Ball to the start of the display list
(position 0) with every mouse click. The effect is that a new ball is added
below the previous balls (and positioned down and to the right 10 pixels
using additional code), every time the mouse is clicked.

Remember, you can’t add an object to a position greater than the number of
items already in the display list because the display list can’t have gaps.

1	 var	inc:int	=	0;
2	
3	 stage.addEventListener(MouseEvent.CLICK,	onClick,	false,	0,	true);
4	
5	 function	onClick(evt:MouseEvent):void	{
6	 				var	ball:MovieClip	=	new	Ball();
7	 				ball.x	=	100	+	inc	*	10;
8	 				ball.y	=	100	+	inc	*	10;
9	 				addChildAt(ball,	0);
10	 				inc++;
11	 }

Line 1 creates a variable that will be incremented each time the mouse is
clicked. This variable will be used to help position each ball. Line 3 adds an
event listener to the stage, listening for a mouse click, so that any mouse click
will trigger the listener’s function in lines 5 through 11.

In line 6, a new movie clip is created, using a library symbol with a linkage
class of Ball. Lines 7 and 8 manipulate the x and y coordinates, setting x
and y to 100 and adding a 10-pixel offset for each ball added. The offset is
calculated using the incrementing variable. For example, when the first ball is
added, inc is 0 so the additional pixel offset is 0 multiplied by 10 or 0. Then
inc is incremented at the end of the function, in line 10. The next mouse click

Adding and Removing Children

Chapter 4: The Display List 85

will offset the new ball to 1 multiplied by 10 or 10 pixels. The third click offset
will be 2 multiplied by 10 or 20 pixels, and so on. Most importantly, line 9
adds the ball to the display list, but always at position 0, making sure the
newest ball is always on the bottom.

NOTE

It is possible to issue more than one assignment instruction in a single line. For
example, this code assigns 100 to both the x and y coordinate of a movie clip:

ball.x	=	100;
ball.y	=	100;

Because both values are 100, the same task can be expressed this way:
ball.x	=	ball.y	=	100;

This is handy for making code shorter for less scrolling, but some may think this
form is harder to read or understand. The result is the same, whichever syntax you
choose, so use what is most comfortable for you.

Display Objects and References to Stage and Root
It’s usually possible to manipulate display objects before or after
adding them to the display list. For example, you can set the x
coordinate of a display object before adding it to the display list
and the object will appear at the desired location when added.
You can also change the object’s x coordinate any time after
appearing in the display list to update the object’s position later.

However, some display object properties or methods may not
be valid when the object is not part of the display list. Good
examples of this scenario include the root and stage instances
of any display object.

Once a display object is added to the display list, its stage
and root properties are valid. However, if the object is not
part of the display list, these properties will return null. Try
the following example, in which trace output is shown in
comments:

var	mc:MovieClip	=	new	MovieClip();

trace(mc.stage);	//null	
trace(mc.root);	//null

addChild(mc);

trace(mc.stage);	//[object	Stage]
trace(mc.root);	//[object	MainTimeline]	

The first line creates a new movie clip. However, the clip is not
added to the display list, so the traces in the next two lines
return null. After adding the movie clip to the display list,
though, the properties return references to the Stage and
MainTimeline, respectively.

Invalid stage and root properties can be a common problem
if you don’t plan ahead. For example, the following code tries to
set the location of a movie clip to the center of the stage prior
to adding the object to the display list:

var	mc:MovieClip	=	new	MovieClip();
mc.x	=	mc.stage.stageWidth	/	2;
addChild(mc);

This will fail, however, because the stage property is null. This
problem can be corrected by transposing the last two lines of
the script.

It’s very easy to fall into this trap if you often code in the
timeline, because the stage appears to exist without referencing
a display object, as seen here without error:

var	mc:MovieClip	=	new	MovieClip();
mc.x	=	stage.stageWidth	/	2;
addChild(mc);

However, this only works because the stage is referencing
a display object. It’s just an implied reference. This can be
illustrated by rewriting the second line of the previous code this
way:

mc.x	=	this.stage.stageWidth	/	2;

The code works only because, in this example, the this
keyword refers to the main timeline. In Flash Professional, the
main timeline is always automatically part of the display list. (See
Chapter 2 for more information on this.) The this keyword
is usually omitted when the scope of the script is obvious, but
its use here illustrates that stage must always be accessed
through a display object.

Part II: Graphics and Interaction86

Adding and Removing Children

Removing Objects from the Display List
and from Memory
It’s just as important to know how to remove objects from the display list
after they’ve been added. The processes for adding to and removing from
the display list are similar. To remove a display object, you can use the
removeChild() method, which takes only one argument: a reference to the
child that must be removed:

removeChild(ball);

You can also remove a display object from a specific position in the display
list using removeChildAt(). However, this method will remove any object
from the specified position, so, unlike removeChild(), no object reference is
needed.

removeChildAt(0);

The following example, found in the remove_child_at.fla source file, is the
reverse of the addChildAt() script discussed in the prior section. It starts by
using a for loop to add 20 balls to the stage, positioning them with the same
technique used previously. It then uses the event listener to remove a child
with each click.

1	 for	(var	inc:int	=	0;	inc	<	20;	inc++)	{
2	 				var	ball:MovieClip	=	new	Ball();
3	 				ball.x	=	ball.y	=	100	+	inc	*	10;
4	 				addChildAt(ball,	0);
5	 }
6	
7	 stage.addEventListener(MouseEvent.CLICK,	onClick,	false,	0,	true);
8	
9	 function	onClick(evt:MouseEvent):void	{
10	 				removeChildAt(0);
11	 }

This script works if something’s in the display list because there is always
something at position 0. After removing the last ball, however, a click will
result in an error like, “the supplied index is out of bounds” because no
object is in position 0.

To avoid this problem, check to see if there are any children in the display
object container you are trying to empty. Making sure that the number of
children exceeds zero will prevent the aforementioned error from occurring.
The following is an updated onClick() function; it replaces lines 9 through
11 used in the previous code with a new conditional, which is shown in bold
here. (For more information on conditionals, please review Chapter 2.)

1	 function	onClick(evt:MouseEvent):void	{
2 if (numChildren > 0) {
3	 								removeChildAt(0);
4 }
5	 }

NOTE

For more information on for loops,
please review Chapter 2. For more infor-
mation on simultaneous assignment, as
seen in line 3 of this script, see the note
on page 85.

Managing Object Names, Positions, and Data Types

Chapter 4: The Display List 87

The numChildren property, in this scope, references the main timeline. You can
check the number of children in any display object container by preceding
the property with your object of choice.

Removing objects from memory
It’s always a good idea to try to keep track of your objects and, when you’re
sure you no longer need them, to remove them from memory. This not only
uses less memory and helps keep your projects efficient, but can also prevent
unexpected errors that come from using old objects or values left in memory.

This is particularly relevant when discussing the display list because remov-
ing an object from the display list does not remove it from memory. The fol-
lowing script, found in the remove_child.fla source file, is a simplification of
the previous example and will both remove a movie clip from the display list
and from memory. Trace outputs are shown here as comments.

1	 var	ball:MovieClip	=	new	Ball();
2	 ball.x	=	ball.y	=	100;
3	 addChild(ball);
4	
5	 stage.addEventListener(MouseEvent.CLICK,	onClick,	false,	0,	true);
6	
7	 function	onClick(evt:MouseEvent):void	{
8	 				removeChild(ball);
9	 				trace(ball);	//[object	Ball]
10	
11	 				ball	=	null;
12	 				trace(ball);	//null
13	
14	 				stage.removeEventListener(MouseEvent.CLICK,	onClick);
15	 }

Lines 1 through 5 are derived from the previous example, creating and posi-
tioning the ball, adding it to the display list, and adding a mouse click listener
to the stage. The first line of the function, line 8, removes the ball from the
display list. Although it’s no longer displayed, it’s still in memory, as shown by
the trace in line 9. Line 11, however, sets the object to null, allowing it to be
removed from memory. Line 12 shows that the ball variable is null.

Managing Object Names, Positions,
and Data Types
As any display list grows, it will likely become desirable to traverse its con-
tents and work with individual display objects. This may require simple tasks
such as identifying a display object by name or position in the list, or even
by referencing existing objects as a specific display object type. (For example,
you may need to refer to an existing object as a movie clip if you want to use
a movie clip method like play()).

NOTE

If you want to use a for loop to remove
all children of a container (such as
everything in the display list or all chil-
dren of a specific movie clip), it is easiest
to remove the objects from the bottom,
as discussed here. This prevents out of
range errors that might be caused by
removing objects from a specific position
using the loop counter.

For example, this code will cause an
error because the display list updates
itself to remove gaps and, after children
0 through 4 are removed, there are no
longer objects at positions 5 through 9.

for	(var	i:int	=	0;	i	<	10;	i++)	{
				removeChildAt(i);
}

Use this approach, instead:
for	(var	i:int	=	0;	i	<	10;	i++)	{
				removeChildAt(0);
}

NOTE

As an added review of best practices,
line 14 emphasizes the concept of remov-
ing event listeners covered in Chapter 3.

Part II: Graphics and Interaction88

Managing Object Names, Positions, and Data Types

Finding Children by Position and by Name
In most of the example scripts in this chapter, references to the display objects
already exist and are known to you. However, you will likely need to find chil-
dren in the display list with little more to go on than their position or name.

Finding a child by position is consistent with adding or removing children
at a specific location in the display list. Using the getChildAt() method, you
can supply a position in the list and retrieve a reference to that object. For
example, you can work with the first child found using this familiar syntax:

var	dispObj:DisplayObject	=	getChildAt(0);

If you don’t know the location of a needed child, you can try to find it by name
using its instance name (or value of its name property). Assuming a child had
a name of circle, you could store a reference to that child using this syntax:

var	dispObj:DisplayObject	=	getChildByName("circle");

Finally, if you need to know the location of a display object in the display list,
but only have its name, you can add the getChildIndex() method to accom-
plish your goal. The first line of the following snippet retrieves a reference to
the desired object, and the second line uses that reference to determine its
index in the display list.

var	dispObj:DisplayObject	=	getChildByName("circle");
var	doIndex:int	=	getChildIndex(dispObj);

Clarifying or Changing the Data Type
of a Display Object
Note that, in the preceding discussion, we used DisplayObject as the data
type when retrieving a reference to a display object—rather than MovieClip,
for example. This is because you may not know if a child found in the display
list is a movie clip, sprite, shape, and so on.

For example, if you call a function that adds a display object to the display
list, what is the data type of that item? Without knowledge of what the
function does, you can’t know if the item is a movie clip, text field, or video.
Similarly, what if you reference the parent of a display object, without giving
the compiler any additional information? The only thing the compiler knows
is that the parent is a display object container (because it’s part of the display
list and has children).

This can be a problem because the compiler can’t know if a property or
method is legal if it doesn’t know the object’s data type. The following creates
a movie clip, adds it to the display list, and tells the movie clip’s parent to go
to frame 20 and stop:

var	mc:MovieClip	=	new	MovieClip();
addChild(mc);

mc.parent.gotoAndStop(20);

Managing Object Names, Positions, and Data Types

Chapter 4: The Display List 89

However, the ActionScript compiler doesn’t know if gotoAndStop() is a legal
method of mc’s parent because it doesn’t know the parent’s data type. For
example, the parent might be a sprite and a sprite doesn’t have a timeline. As
such, you can’t very well go to frame 20 of a sprite. If the data type of the par-
ent is unknown to the ActionScript compiler, you will get an error similar to:

Call	to	a	possibly	undefined	method	gotoAndStop	through	a	reference	with	
static	type	flash.display:DisplayObjectContainer.

You can avoid this error by casting the object. Previously discussed in
Chapter 2, casting is particularly important when manipulating the display
list and warrants another mention. Casting means you are explicitly tell-
ing the ActionScript compiler the data type of the object—changing the
compiler’s understanding of the data from one type to another. Casting
does not actually change data. In our example, to make sure the compiler
doesn’t object to the gotoAndStop() method, you must cast the parent from
DisplayObjectContainer to MovieClip. You can do this by surrounding the
object of unknown type with the desired class name. The following syntax
tells the compiler that mc’s parent is of data type MovieClip:

MovieClip(mc.parent).gotoAndStop(20);

NOTE

Another way to cast an object is by using the as operator. Continuing the example on
this page, this syntax will also cast mc’s parent as a movie clip:

var	mc2:MovieClip	=	mc.parent	as	MovieClip;
mc2.gotoAndStop(20);

Although this is more verbose, it has advantages. For example, the <ClassName>()
syntax may be confusing because it looks like you are calling a function or instan-
tiating a class. Also, some conversion or creation functions takes precedence over
casting and prevents casting from working. For example, Array() will not cast to
an array because that syntax is equivalent to new Array(), which creates an array.
This means it’s possible to cast an object to Array only using the as operator.

One reason we like to use the <ClassName>() syntax is that the compiler will dis-
play an error if the casting is incorrect. The as operator will return null in this case,
but not issue an error.

If you need to tell the compiler that a display object is of another type, the
syntax is consistent. The following syntax examples tell the compiler that a
variable named obj is a text field, and that an item retrieved from the display
list is a sprite, respectively:

TextField(obj);
Sprite(getChildAt(0));

NOTE

It’s possible to change the data type of
an object implicitly, or even inadver-
tently. This is called coercion. You will
sometimes see this in error messages
similar to “Type Coercion failed,” or
“Implicit coercion of type X to type Y.”
When you see this, you should look in
your code for possible data type errors
or incompatible operations performed
on a specific data type.

Part II: Graphics and Interaction90

Changing the Display List Hierarchy

Changing the Display List Hierarchy
In addition to improving consistency over previous versions of ActionScript,
the display list also makes managing assets much easier. Particularly simpli-
fied are: changing the visual stacking order (depth management) and dynam-
ically changing the familial relationship between visual assets (reparenting, or
moving a display object from one parent to another).

Depth Management
Adding items to the display list does not require that you specify which level
the new child should occupy, because all of that is handled for you automati-
cally. This also makes managing the depths of display objects much easier
than ever before.

To begin with, you can simply use the addChild() or addChildAt() methods
to alter the order of display list items. As we discussed, adding a child to a
display list position below other elements using the addChildAt() method
will automatically push the other elements up in the list. But you can also
use the addChild() method on an object that already exists in the display list.
This step will remove the object from its original position and move it to the
top of stack, pushing the other elements down.

For example, consider the following simple code, found in the source file
add_child_trace.fla. Lines 1 through 6 use the standard approach of creating
and adding movie clips to the display list, with the added step of giving each
clip an instance name. Lines 7 and 8 display the results at this point and, as
expected, the traces (indicated by comments here) show mc1, or “clip1,” at
position 0, and mc2, or “clip2,” at position 1.

1	 var	mc1:MovieClip	=	new	MovieClip();
2	 mc1.name	=	"clip1";
3	 addChild(mc1);
4	 var	mc2:MovieClip	=	new	MovieClip();
5	 mc2.name	=	"clip2";
6	 addChild(mc2);
7	 trace(getChildAt(0).name);	//clip1
8	 trace(getChildAt(1).name);	//clip2

However, if you add mc1 to the display list again, it is moved from position 0
to the end of the list, and mc2 gets pushed to position 0. Adding the following
lines to the script will demonstrate this process.

9	 addChild(mc1);
10	 trace(getChildAt(0).name);	//clip2
11	 trace(getChildAt(1).name);	//clip1

This is demonstrated further in the following script, found in the bring_to_
top.fla source file (Figure 4-7). This example takes advantage of the event
propagation discussed in Chapter 3 to automatically bring any display object
that is rolled over with the mouse to the top of the visual stacking order:

Figure 4-7. In bring_to_top.fla, rolled-over
items pop to the top

Changing the Display List Hierarchy

Chapter 4: The Display List 91

1	 addEventListener(MouseEvent.MOUSE_OVER,	onBringToTop,	
2	 																	false,	0,	true);
3	
4	 function	onBringToTop(evt:MouseEvent):void	{
5	 				addChild(MovieClip(evt.target));
6	 }

If adding or moving an item to the top of all others is not specific enough for
your needs, there are also direct methods for swapping the depths of objects
that are already in the display list. The swapChildren() method will swap the
depths of two display objects regardless of where they are in the display list.
For example, the following code, found in the swap_children.fla source file,
will swap positions between the movie clip at the top of the display list—no
matter how many display objects exist—and the movie clip that is clicked—
no matter where in the display list that clip may be:

1	 var	gs:MovieClip	=	new	GreenSquare();
2	 gs.x	=	gs.y	=	0;
3	 addChild(gs);
4	 var	rs:MovieClip	=	new	RedSquare();
5	 rs.x	=	rs.y	=	25;
6	 addChild(rs);
7	 var	bs:MovieClip	=	new	BlueSquare();
8	 bs.x	=	bs.y	=	50;
9	 addChild(bs);
10	
11	 addEventListener(MouseEvent.CLICK,	onClick,	false,	0,	true);
12	 function	onClick(evt:MouseEvent):void	{
13	 				var	clickedChild:MovieClip	=	MovieClip(evt.target);
14	 				var	topChild:MovieClip	=	MovieClip(getChildAt(numChildren-1));
15	 				swapChildren(clickedChild,	topChild);
16	 }

Lines 1 through 9 repeat the same process three times. First, new instances of
library symbols, using the GreenSquare, RedSquare, and BlueSquare linkage
classes, respectively, are created. (See the “Adding Custom Symbol Instances
to the Display List” section in this chapter for more information.) Next, the
x and y coordinates of each instance are set 25 pixels apart. Finally, each
instance is added to the display list.

Line 11 creates an event listener that is attached to the main timeline and
listens for a mouse click. Any time an object in the main timeline is clicked,
the onClick() function is called. Line 13 casts whatever is clicked as a movie
clip, line 14 does the same with the last object in the display list, and line 15
swaps those display objects.

ActionScript identifies the bottom item in the display list using 0. Therefore,
Line 14 can’t use the numChildren property by itself to identify the last item in
the display list. For example, if you have three items in the display list, num-
Children returns 3, but the indices (positions) of those items are 0, 1, and 2.
So, to retrieve the last item in the list, you must use numChildren - 1, which
correctly identifies the last item in the list.

NOTE

This script is written in the main time-
line, so that is the script’s scope. By
using methods like addChild() and
addEventListener() without attach-
ing them to a specific object, the scope
of the script is the implied object. Using
the this keyword to refer to the cur-
rent scope is another way to make this
clear. Considering line 3 as an example,
the syntax is this.addChild(gs). See
Chapter 2 for more information.

Part II: Graphics and Interaction92

Changing the Display List Hierarchy

You can also swap the contents of any two depths, no matter what’s in them,
using the swapChildrenAt() method. This example snippet will swap which-
ever display objects are in display list positions 0 and 10:

swapChildrenAt(0,	10);

Finally, you can move a child to a specific depth using the setChildIndex()
method. It requires two arguments: the child you want to move, and its
intended depth. The following code adjustment to the swap children exam-
ple, found in the set_child_index.fla source file, changes line 15 to set the
index of the clicked child to 0.

12	 function	onClick(evt:MouseEvent):void	{
13	 				var	clickedChild:MovieClip	=	MovieClip(evt.target);
14	 				var	topChild:MovieClip	=	MovieClip(getChildAt(numChildren-1));
15 setChildIndex(clickedChild, 0);
16	 }

Reparenting Children
Another task made easy by the display list is moving a child from one parent
to another. In the reparenting.fla source file, a moon can be moved to either
of two night skies, just by clicking that sky (Figure 4-8). Both skies are also
draggable, demonstrating that the moon will automatically move with each
sky because it is a child object inside the parent.

Figure 4-8. In reparenting.fla, the moon becomes a child of the clicked sky

This exercise again demonstrates the bubbling of events by attaching both
listeners to a parent container once, instead of to each sky. (See Chapter 3 for
more information.) However, a side effect of this efficiency is that the moon,
as a child of that parent container, will also react to the events. So, it’s possible
to add the moon to itself, resulting in an error. To prevent this from happen-
ing, line 1 disables mouse interaction with the moon.

A Dynamic Navigation Bar

Chapter 4: The Display List 93

In the default layout of the file, the three siblings (moon and two skies) are
all on the stage. The first reparenting process is demonstrated in line 2 by
adding the moon to the first sky (on the left) as its starting position. Lines 4
and 5 then add two event listeners to the main timeline. Note that the listen-
ers are not attached to a specific object in lines 4 and 5. The this object is
the implied responsible party, indicating the current scope, or main timeline.
As a result, any child display object that receives a mouse down event will call
onDrag() and a child mouse up event will call onDrop().

1	 moon.mouseEnabled	=	false;
2	 sky0.addChild(moon);
3	
4	 addEventListener(MouseEvent.MOUSE_DOWN,	onDrag,	false,	0,	true);
5	 addEventListener(MouseEvent.MOUSE_UP,	onDrop,	false,	0,	true);
6	
7	 function	onDrag(evt:MouseEvent):void	{
8	 				evt.target.addChild(moon);
9	 				evt.target.startDrag();
10	 }

Line 8 then adds the moon to the sky that was clicked. This process removes
the moon from its previous parent and adds it to the clicked item, reparenting
the moon. The last line of the function then enables dragging of the clicked
item.

Finally, when the mouse up event is received, the onDrop() function disables
dragging.

11	 function	onDrop(evt:MouseEvent):void	{
12	 				stopDrag();
13	 }

As you can see, by using the addChild() method, you can move a display
object from one parent container to another. As a result, the child will inherit
basic display attributes from its parent. For example, in addition to the x and
y coordinates demonstrated in this file, the child will also be affected by any
changes to rotation, scale, or alpha values of the parent.

A Dynamic Navigation Bar
Now it’s time to tie much of this together and create a dynamic navigation
bar. This project will create a five-button navigation bar that will be centered
on the stage as shown in Figure 4-9. To simulate functionality, each button
will trace its name to the Output panel when clicked. Later in the book, you’ll
combine additional skills to create a similar navigation bar that will use XML
and load external assets.

Figure 4-9. A dynamically generated navigation bar

Part II: Graphics and Interaction94

A Dynamic Navigation Bar

This script can be found in the dyn_nav_bar.fla source file. Lines 1 and 2
initialize the number of buttons used and the space between each button (in
pixels). Line 4 creates a container that will hold not only the buttons, but also
background art. The container doesn’t need a timeline, so for efficiency (and
practice), a sprite is used rather than a movie clip. Next, line 5 adds the sprite
to the display list.

1	 var	btnNum:int	=	5;
2	 var	spacing:Number	=	10;
3	
4	 var	navBar:Sprite	=	new	Sprite();
5	 addChild(navBar);

Lines 6 through 15 create the buttons. Line 6 types a variable as SimpleButton,
which allows you to use (or create) button symbol instances, rather than rely-
ing solely on movie clips. The loop defined in line 7 creates five buttons,
based on the value of btnNum assigned in line 1.

6	 var	btn:SimpleButton;
7	 for	(var	i:int	=	0;	i	<	btnNum;	i++)	{
8	 				btn	=	new	Btn();
9	 				btn.name	=	"button"	+	i;
10	 				btn.x	=	spacing	+	i	*	(btn.width	+	spacing);
11	 				btn.y	=	spacing	/	2;
12	 				btn.addEventListener(MouseEvent.CLICK,	onTraceName,	
13	 																									false,	0,	true);
14	 				navBar.addChild(btn);
15	 }

Each time through the loop, a new button is created from a button symbol in
the library with the linkage class, Btn (line 8). The button is given a name by
combining the string “button” and the loop counter value (line 9). The first
button is called button0, the second is called button1, and so on.

Each button is positioned horizontally (line 10) using the spacing gap set
in line 2, plus the width of the button (in this case, 65 pixels) and another
spacing gap. Figure 4-10 shows the measurements in use. The first button is
positioned only 10 pixels to the right of the container’s edge, while the second
button is positioned 85 pixels to the right of the container’s edge. In both
cases, the spacing is 10, and the button width (65) plus spacing is 75. So, the
first result is 10 plus 0 * (65 + 10), or 10 + 0, or 10. The second result is 10 plus
1 * (65 + 10), or 10 + 75, or 85. This process continues for each button. The
vertical position is also set for each button, moving the button down 10 / 2,
or 5 pixels.

10

10

65 10 65 10 65 10 65 10 1065

75
150

225

Figure 4-10. Object positioning in the dynamic navigation bar

NOTE

The SimpleButton class, used to create
custom buttons, is so named because a
Button class already existed. The latter
is used to create instances of the Button
component.

What’s Next?

Chapter 4: The Display List 95

The last lines in the loop add a mouse click event listener to the button (line
12) that will call the onTraceName() function when the event is received, and
add the button to the navBar parent container (line 14).

16	 var	bg:MovieClip	=	new	NavBarBack();
17	 bg.width	=	spacing	+	btnNum	*	(btn.width	+	spacing);
18	 bg.height	=	btn.height	+	spacing;
19	 navBar.addChildAt(bg,	0);

Starting with line 15, a background is added to the navBar. Similar to the
calculation used to position each button, its width is set to an initial spacing
gap plus the total number of buttons times the sum of the button width and
spacing (line 16). It’s height is set to the button height plus spacing (line 17).
The background is then added to the navBar at position 0, ensuring that it’s
placed behind all the buttons (line 18). The result is, no matter how many
buttons you need, or what the button size is, the buttons will be spaced uni-
formly within the background, both horizontally and vertically.

Finally, the last script block positions the finished navBar and creates the lis-
tener function. The bar is centered horizontally by subtracting its width from
the stage width, and dividing that value by two for a left and right margin
(line 19). It is also positioned vertically at a y coordinate of 20 pixels (line 20).
The onTraceName() function (lines 22 through 24) traces the name of each
button when the user clicks on it.

20	 navBar.x	=	(stage.stageWidth	-	navBar.width)	/	2;
21	 navBar.y	=	20;
22	
23	 function	onTraceName(evt:MouseEvent):void	{
24	 				trace(evt.target.name);
25	 }

This exercise demonstrates how to create a simulated navigation bar using
the display list, when no assets previously existed on the stage. Later in the
book, you’ll also learn how to create the buttons and draw the background
shape entirely with ActionScript, removing the need to precreate these assets
as library symbols. You’ll also learn how to create a class-based version of this
system to control the playhead of a movie clip (Chapter 6), and load images
or SWFs (Chapter 13).

What’s Next?
The display list is among the most important new introductions to
ActionScript 3.0. It is worth the effort to explore the properties, methods,
and events of the various display list classes—starting with the contents of
this chapter, and then delving into the Flash help system, and additional
resources, as you gain experience. Experimenting with the display list will
show you that it is easy to use and, if you have experience with prior versions
of ActionScript, you will soon find that it’s much simpler and more consistent
than equivalent methods in ActionScript 1.0 or ActionScript 2.0.

NOTE

Push Yourself: A bonus file in this chap-
ter’s source archive expands on this
example. It’s called dyn_nav_bar_urls.
fla and shows how to load web pages
based on this dynamic navigation bar
example. It uses information explained
in Chapter 13, but if you want to learn
more at the same time you put this
chapter into practice, give the file a look!

Part II: Graphics and Interaction96

What’s Next?

Next, we’ll discuss timeline control. Regardless of whether you are creat-
ing lengthy linear animations or single-frame applications, you are likely
to require some degree of control over the main timeline or movie clips.
ActionScript 3.0 offers a few new features for you to try out.

In the next chapter, we’ll discuss:

• Controlling playback of your animations and applications by moving the
playhead with ActionScript

• Parsing frame label names from timelines and scenes

• Changing the frame rate of movie playback for the first time

97

IN THIS CHAPTER

Jump Right In

Playhead Movement

Frame Labels

Frame Rate

A Simple Site
or Application Structure

What’s Next?

In this chapter, you’ll learn some basic approaches to controlling timelines—
both that of the main Flash movie and the movie clips it contains. We’ll
divide our focus into three main areas:

• Jump Right In. Change the frame rate of your SWF at runtime.

• Playhead Movement. This includes stopping and playing the file, and
going to a specific frame.

• Frame Labels. Including improved playhead movement techniques with-
out relying on frame numbers.

• Frame Rates. Changing the movie’s frame rate to increase or decrease
animation speed during playback.

• A Simple Site or Application Structure. We’ll wrap up the chapter by
building a project that combines timeline animation with ActionScript
navigation. The project can be used as an example template for a multi-
state application or Flash-based website.

We’ll also take a look at an undocumented feature that allows you to add
frame scripts to movie clips at runtime and show you a demo of how to create
a flexible structure for a Flash website or application.

Jump Right In
We’ll start off with one of the most-desired features in the evolution of
ActionScript: the ability to adjust the frame rate of a file with code. Consider
a simple example that switches a SWF’s frame rate between 1 and 24 frames
per second, with every click of the mouse. This script can be found in the
frame_rate_trace.fla source file.

1	 stage.frameRate	=	24;
2	
3	 this.addEventListener(Event.ENTER_FRAME,	onEnter,	false,	0,	true);
4	 function	onEnter(evt:Event):void	{
5	 				trace(stage.frameRate);
6	 }
7	

tImeLIne ControL

CHAPTER 5

Part II: Graphics and Interaction98

Playhead Movement

8	 stage.addEventListener(MouseEvent.CLICK,	onClick,	false,	0,	true);
9	 function	onClick(evt:MouseEvent):void	{
10	 				if	(stage.frameRate	==	24)	{
11	 								stage.frameRate	=	1;
12	 				}	else	{
13	 								stage.frameRate	=	24;
14	 				}
15	 }

Line 1 shows a new stage property called frameRate, which is assigned to
24 frames per second. Lines 3 through 6 contain an enter frame listener
that traces the current frame rate. Lines 8 through 15 contain a mouse click
listener that will toggle the frame rate between 1 and 24 frames per second.

Once you get this example working, experiment by adding visual assets, as in
frame_rate_timeline_tween.fla, and watch your animations change. A similar
example later in the chapter will show the speed of an animation change in
response to buttons that increase or decrease the frame rate.

Playhead Movement
One of the most basic ActionScript skills you need to embrace is the ability
to navigate within your Flash movies. You will often use these skills to control
the playback of movie clips nested within your main movies.

The code in this chapter is straightforward enough that you can create your
own examples to test the functionality discussed, if you want to use your own
assets. We’ll cover the structural necessities for each example to make it easier
for you to follow along using your own assets. In each section, we’ll also cite
the sample file we’re using so you can consult that file if preferred.

Let’s start by covering the basic concept of stopping and starting playback
of the main timeline or movie clip, and then add an initial jump to another
frame. If you’re creating your own file, be sure it has a linear animation in
one layer of the main timeline, and four buttons in one or more other layers
that span the length of the animation. In other words, your buttons must be
visible throughout the animation. Alternatively, you can open the sample file
navigation_01.fla.

Figure 5-1 shows navigation_01.fla, which contains four timeline tweens of
black circles. For added visual impact, the circles use the Invert blend mode
(seen in the Display section of the Properties panel) to create an interesting
optical illusion of rotating cylinders. We’ll be starting and stopping playback
at any point, as well as jumping to a specific frame to start and stop playback
(frame 1, in this example). Initially, we’ll rely on frame numbers to specify
where to start and stop.

NOTE

Real-world frame rates vary based on
many factors including the processing
power of your computer, how hard it’s
working at any given moment, and what
your SWF is trying to do. Depending
on these circumstances, among others,
you’re likely to achieve a maximum
frame rate between 60 and 120 frames
per second.

Although you’re unlikely to see this
performance anytime soon, it’s theoreti-
cally possible to assign a frame rate up
to 1000 fps. Any assignment above that
number will fall back to 1000.

NOTE

To review the basics of movie clips, con-
sult Chapters 3 and 4.

Playhead Movement

Chapter 5: Timeline Control 99

Figure 5-1. navigation_01.fla demonstrates simple navigation

Placing a stop() action in any frame script is a means of halting playback of
that timeline without user interaction—perhaps at the end of an animation
or to support a menu or similar need to display a single frame. Only the
timeline in which the stop() action is used will stop, so if the main timeline
is stopped, movie clips will continue to animate.

Let’s take a more interactive approach and look at invoking the stop() action
via user input, such as clicking a button. Line 1 of the following script is an
event listener added to a button named stopBtn. It uses a mouse click to call
onStopClick(), the function defined in Lines 3 through 5.

1	 stopBtn.addEventListener(MouseEvent.CLICK,	onStopClick,	
2	 																									false,	0,	true);
3	 function	onStopClick(evt:MouseEvent):void	{
4	 				stop();
5	 }

All playback of the main timeline will cease when the user clicks the button.
Adding the following lines to the script will allow you to restart playback.
The new code is similar to the previous example, but invokes the play()
method from the playBtn instead. Using this pair of buttons, you can start
and stop playback at any time without relocating the playback head in the
process.

6	 playBtn.addEventListener(MouseEvent.CLICK,	onPlayClick,	
7	 																									false,	0,	true);
8	 function	onPlayClick(evt:MouseEvent):void	{
9	 				play();
10	 }

NOTE

If you don’t know about event listeners
or typed arguments, consult Chapter
3 for more information. Be sure to
pay particular attention to the sidebar
“Garbage Collection” on weak refer-
ences.

Part II: Graphics and Interaction100

Playhead Movement

Using stop() and play() in this fashion is useful for controlling a linear
animation, much in the same way a YouTube controller bar might control
video playback. However, it’s less common when using interactive menus,
for example, because you typically want to jump to a specific point in your
timeline before stopping or playing.

For example, you might have generic sections that could apply to any project,
such as home, about, and help. If you were restricted to the use of stop() and
play(), you would be forced to play through one section to get to another.

Adding again to the previous script, the following content adds a slight varia-
tion. The buttons in the new script function in similar ways. However, instead
of stopping in (or playing from) the current frame, the new buttons move the
playhead to a specific frame first. For example, if you had previously stopped
playback in frame 20, triggering play() again would send the playhead to
frame 21. However, if you used gotoAndPlay() and specified frame 1 as a
destination (as seen in line 16 of the script that follows), you would resume
playback at frame 1, rather than at frame 21. If you use gotoAndStop() (as in
line 19), the playhead will go to that frame but not continue to play through
the rest of the timeline. There are no structural differences in this code, so
simply add the following content to your existing script:

11	 gotoPlayBtn.addEventListener(MouseEvent.CLICK,	onGotoPlayClick,	
12	 																													false,	0,	true);
13	 gotoStopBtn.addEventListener(MouseEvent.CLICK,	onGotoStopClick,	
14	 																													false,	0,	true);
15	 function	onGotoPlayClick(evt:MouseEvent):void	{
16	 				gotoAndPlay(1);
17	 }
18	 function	onGotoStopClick(evt:MouseEvent):void	{
19	 				gotoAndStop(1);
20	 }

Once you get a navigation system working, it may sometimes be useful to
know where you are in a timeline, or how many frames the timeline contains.
For example, you can determine if you’re in the last frame of a timeline by
checking to see if the current frame matches the total number of frames.
Tracing this information to the Output panel can help you track your move-
ments during development. Tracing totalFrames will display the number of
frames in the timeline, and tracing currentFrame will show the frame number
in which the playhead currently sits.

trace("This	movie	has",	totalFrames,	"frames.");
trace(currentFrame);

The companion sample file, navigation_02.fla, demonstrates the use of these
properties, tracing totalFrames in frame 1, and currentFrame each time a but-
ton is clicked.

NOTE

Organizing your code is a very personal
thing, subject to preference. Many cod-
ers group listener objects (like buttons)
together and place the corresponding
functions soon after. This allows you
to look at all the buttons at once with-
out scrolling through all the functions.
Others like to group the listener object
and function together so the functional-
ity of the object is immediately appar-
ent. This exercise demonstrates both
styles.

When defining the listeners, the order
in which these items exist in the same
script typically doesn’t matter. (After
you’ve programmed for a while, you
may find a need to create a listener at
a specific moment at runtime, such as
when you click a button. In these cases,
where you place your code will take on
additional importance.) Adopt a style
and organization that suits your habits
and makes your code easiest to read.

Frame Labels

Chapter 5: Timeline Control 101

Frame Labels
Using frame numbers with goto methods has advantages, among them
simplicity and use in numeric contexts (such as with a loop or other type
of counter when an integer is at hand). However, frame numbers also have
disadvantages. The most notable disadvantage is that edits made to your file
after your script is written may result in a change to the number of frames, or
frame sequence, in your timeline.

For example, your help section may start at frame 100, but you may then
insert or delete frames in a section of your timeline prior to that frame. This
change may cause the help section to shift to a new frame. If your navigation
script sends the playhead to frame 100, you will no longer see the help section.

One way around this problem is to use frame labels to mark the location of a
specific segment of your timeline. As long as you shift content by inserting or
deleting frames to all layers in your timeline (maintaining sync among your
layers), a frame label will move with your content.

This is a useful feature when you are relying heavily on timeline tweens for
file structure or transitions (as we’ll see in our demo site in a short while), or
when you think you may be adding or deleting sections in your file. Frame
labels remove the need to organize your content linearly and free you to
rearrange your timeline at any point.

The sample file, frame_labels_01.fla, demonstrates the use of frame labels
instead of frame numbers when using a goto method. It also illustrates
another important and useful concept, which is that you can use these meth-
ods to control the playback of movie clips as well as the main timeline.

Instead of controlling the playback of a linear animation, the sample file
moves the playhead between the frames of a movie clip called pages. This is a
common technique for swapping content in a Flash file because you can keep
your main timeline simple, and jump the movie clip from frame to frame to
reveal each new screen. Figure 5-2 displays the “page1” frame of the pages
movie clip in frame_labels_01.fla, after jumping to the frame by specifying
the frame label. The timeline inset shows the frame labels.

The initial setup of this example requires that we prevent the movie clip
from playing on its own, so we can exert the desired control over its play-
back. There are several ways to do this. The first, and perhaps most obvious
approach, is to put a stop() action in the first frame of the movie clip.

NOTE

A frame number is always an integer
equal to, or greater than 1. A frame label
is always a string.

Part II: Graphics and Interaction102

Frame Labels

Button one

Button two

Button three

Figure 5-2. The “page1” frame of the pages movie clip in frame_labels_01.fla

The second technique is more flexible and easier to maintain because it cen-
tralizes your code into fewer frames. Use the stop() method, but in your main
timeline, targeting the movie clip instance. To do this, precede the method
with the object you wish to stop, as seen in line 1 of the following script.
In this case, we are stopping the movie clip called pages. Immediately upon
starting, the SWF stops the pages movie clip in line 1. Each button causes the
movie clip to change frames in lines 8, 11, and 14.

1	 pages.stop();
2	
3	 one.addEventListener(MouseEvent.CLICK,	onOneClick,	false,	0,	true);
4	 two.addEventListener(MouseEvent.CLICK,	onTwoClick,	false,	0,	true);
5	 three.addEventListener(MouseEvent.CLICK,	onThreeClick,	
6	 																							false,	0,	true);
7	 function	onOneClick(evt:MouseEvent):void	{
8	 				pages.gotoAndStop("page1");
9	 }
10	 function	onTwoClick(evt:MouseEvent):void	{
11	 				pages.gotoAndStop("page2");
12	 }
13	 function	onThreeClick(evt:MouseEvent):void	{
14	 				pages.gotoAndStop("page3");
15	 }

Frame Labels

Chapter 5: Timeline Control 103

To test the effectiveness of using frame labels, add or delete frames across
all layers before one of the existing frame labels. Despite changing the frame
count, you will find that the navigation still works as desired.

New Timeline ActionScript
ActionScript 3.0 provides a few new features relevant to timelines. The first
is an associative array of all frame labels in a file. This array is called labels,
and contains name and frame properties that provide the text of the frame
label and the frame number to which it is applied.

The second is a scenes array that contains each scene’s name and number of
frames, stored in the array’s name and numFrames properties, respectively. The
scenes array also has its own labels object so you can check the label names
and frame numbers as described previously, in all the scenes in your file.

The sample file, frame_labels_02.fla, demonstrates several of these features, as
well as illustrates a couple uses of the available frame label options. It uses the
same pages movie clip as in the prior file, but with adapted functionality and
buttons. Figure 5-3 shows the direct navigation to a frame that is four frames
after a specified label.

Button onePlus

Button output

Button labelCheck

new frame art

Figure 5-3. The pages movie clip of frame_labels_02.fla jumping to a frame relative to
the location of a label

NOTE

In case you’re unfamiliar with scenes,
they’re essentially a way of organizing
very long timelines into smaller man-
ageable chunks. At runtime, all scenes
are treated as one giant timeline, and
the playhead can move freely between
scenes either automatically during linear
playback, or with ActionScript.

We don’t use scenes much in the work
we do, but we’ve had students who rely
on scenes to tell long stories through
linear animation. Adding a new scene to
a file (Window→Other Panels→Scene)
effectively resets the interface to a new
timeline, making it easier to work with
the relevant frames without being dis-
tracted by prior or future scenes in your
file. Another advantage of scenes is that
you can test single scenes during devel-
opment, rather than having to test your
entire movie.

Part II: Graphics and Interaction104

Frame Labels

We’re going to start by highlighting the functionality of the second button,
output, which collects many of the features in one information dump to the
Output panel. Looking at the following script, the first new item you’ll see is
a main movie stop() action on line 1. This has been added because this file
has a second scene to demonstrate the new scenes array and currentScene
property. Line 3 stops the movie clip as in the prior example, and line 5 cre-
ates a mouse click listener for the button.

1	 stop();
2	
3	 pages.stop();
4	
5	 output.addEventListener(MouseEvent.CLICK,	onOutputClick,	
6	 																								false,	0,	true);
7	 function	onOutputClick(evt:MouseEvent):void	{
8	 				trace("The	main	movie	has	"	+	scenes.length	+	"	scenes.");
9	 				trace("The	current	scene	is	0"	+	currentScene.name	+	"0.");
10	 				trace("It	has	"	+	currentScene.numFrames	+	"	frame(s),");
11	 				trace("	and	"	+	currentScene.labels.length	+	"	label(s).	");
12	 				trace("The	second	scene's	first	label	is	0"	+	
13	 										scenes[1].labels[0].name	+	"0,");
14	 				trace("	which	is	in	frame	"	+	scenes[1].labels[0].frame	+	".");
15	 				var	numLabels:int	=	pages.currentLabels.length;
16	 				trace("Movie	clip	'pages'	has	"	+	numLabels	+	"	labels.");
17	 				trace("Its	last	label	is	0"	+	
18	 										pages.currentLabels[numLabels-1].name		+	"0.");
19	 }

Lines 7 through 19 contain this button’s goodies, tracing the number of scenes
(line 8), the name and number of frames of the current scene (lines 9 and
10), and the total number of labels in the current scene (line 11). The script
also traces the name and frame number of the first label of the second scene
(lines 12 through 14). Line 14 uses the array syntax discussed in Chapter 2,
with indices starting at 0 to represent the first item in an array. Thus the code
targets the second scene, first label, frame number.

Finally, lines 15 through 18 look at the currentLabels array of the pages movie
clip, getting the number of labels through the length property, and the name
of the last label in the clip.

This series of trace commands offers a half dozen or so variants on the new
scene and label features and should stimulate your imagination. Try to figure
out interesting ways to make use of these properties. To get you started, we’ve
provided two examples, included on the other two buttons.

Attached to the first button, onePlus is a way of reaching a frame relative to
a frame label. For instance, you may want to revisit a section of your file, but
without retriggering an initialization routine found in the frame marked by
your frame label. For example, a section may have an intro animation that
you want to see the first time, but skip thereafter. In that case, you may want
to go to the “label frame plus one.”

NOTE

In ActionScript 3.0, you can trace mul-
tiple items to the Output panel by sepa-
rating them with commas when using
the trace() statement. However, that
will automatically put a space between
each item in the trace. So, when you
want to build a string with adjacent
items, such as the single-quotation
marks that surround some of the values
in this script, it’s better to use the string
concatenation operator (+) to join the
items together, rather than use commas.

Frame Labels

Chapter 5: Timeline Control 105

Perhaps more common is a uniformly structured file, such as a character
animation cycle (walk, run, jump, duck, and so on), or an interface of draw-
ers or tabs that slide in and out from off-stage. In these cases, each action
might consist of the same number of frames. You may want to interrupt one
sequence and jump to the same position in another sequence. Imagine, as an
example, interrupting a timeline tween of an interface drawer sliding open,
and wanting to jump to the same location in the timeline tween of the drawer
sliding closed.

To avoid relying strictly on frame numbers, it helps to be able to start from
a frame label and jump to a specific number of frames beyond that label. As
an addition to your ongoing script, look at the following. This code sends
the pages movie clip to a frame returned by the getFrame() function. In Line
21, the script passes in a label and a movie clip. The function, which we’ll
look at in just a moment, returns the frame number that matches the label
provided. In line 22, if the value returned is greater than zero (as all timelines
start with frame 1), the movie clip is sent to that frame plus a relative offset
of four additional frames.

20	 onePlus.addEventListener(MouseEvent.CLICK,	onOnePlusClick,	
21	 																									false,	0,	true);
22	 function	onOnePlusClick(evt:MouseEvent):void	{
23	 				var	frameNum:int	=	getFrame("page1",	pages);
24	 				if	(frameNum	>	0)	{
25	 								pages.gotoAndStop(frameNum	+	4);
26	 				}
27	 }
28	
29	 function	getFrame(frLabel:String,	mc:MovieClip):int	{
30	 				for	(var	i:int	=	0;	i	<	mc.currentLabels.length;	i++)	{
31	 								if	(mc.currentLabels[i].name	==	frLabel)	{
32	 												return	mc.currentLabels[i].frame;
33	 								}
34	 				}
35	 				return	-1;
36	 }

The aforementioned getFrame() function appears in lines 27 through 34.
The function accepts a String parameter containing the name of the original
frame label, and the movie clip within which the label resides. Note the int
data type of the return value so the compiler knows to expect an integer from
the function. Lines 28 and 29 loop through all the labels in the referenced
movie clip, comparing the name of each label to the label desired. If a match
is found, the frame in which the label resides is returned in line 30. If no
match is found after looping through all the labels, –1 is returned in line 33.
The desired result, in our sample file, is that the playhead jumps to frame 5
instead of frame 1 where the “page1” label resides.

A similar coding technique is to use these features to check whether a specific
frame exists. This option can be used for navigation error checking or simply
to make sure you’re working with the correct movie clip among many that
may be available.

NOTE

Although not universal, returning –1
when something isn’t found is a common
technique. It may sound counterintuitive,
but it came into popular use because
zero is often a meaningful value. For
example, both the first item in an array
and the first character in a string have
an index of zero.

In this example, you might choose to
return 0 because you know there is no
frame 0. However, maintaining consis-
tency with other methods that return –1
when nothing is found will make things
easier the more you code.

Part II: Graphics and Interaction106

Frame Rate

The following code adds such a function and triggers it from a mouse click
listener defined in lines 35 through 39. As before, the function call passes a
label and movie clip to the function, as seen in line 38. The function itself is
defined in lines 41 through 48, and is explained following the code.

37	 labelCheck.addEventListener(MouseEvent.CLICK,	onLabelCheckClick,	
38	 																												false,	0,	true);
39	 function	onLabelCheckClick(evt:MouseEvent):void	{
40	 				trace(frameLabelExists("page3",	pages));
41	 }
42	
43	 function	frameLabelExists(frLabel:String,	mc:MovieClip):Boolean	{
44	 				for	(var	i:int	=	0;	i	<	mc.currentLabels.length;	i++)	{
45	 								if	(mc.currentLabels[i].name	==	frLabel)	{
46	 												return	true;
47	 								}
48	 				}
49	 				return	false;
50	 }

The functionality of isFrameLabel() is nearly the same as the getFrame()
function discussed previously, except that this function returns true if a que-
ried frame label is found, or false if it is not found. In our sample file, the
third button will trace true to the Output panel, because the “page3” frame
label does exist in the pages movie clip. This subtle variant is just another
simple example of how you might use the frame label and scene arrays and
properties introduced in ActionScript 3.0.

Frame Rate
As seen in the chapter’s opening script, you can now dynamically change the
frame rate at which your file plays at runtime. In Flash Professional CS5, the
default frame rate of an FLA is 24 frames per second, which can be adjusted
in the Properties panel. Prior to ActionScript 3.0, the frame rate you chose
was locked in for the life of your SWF. It is now possible to update the speed
at which your file plays by changing the frameRate property of the stage, as
demonstrated in the sample file frame_rate.fla.

Figure 5-4 shows the interface of frame_rate.fla, which visualizes the runtime
reassigning of frame rates.

NOTE

For more information about referenc-
ing the stage in ActionScript 3.0, see
Chapters 3 and 4.

Frame Rate

Chapter 5: Timeline Control 107

Figure 5-4. frame_rate.fla with buttons on the left that increase and decrease the frame
rate, which controls the speed of the animation on the right

The script in this file, shown in the following code block, increments or
decrements the frame rate by five frames per second with each click of a
button. You may also notice another simple example of error checking in
the onSlowerClick() function, to prevent a frame rate of zero or below. Start
the file and watch it run for a second or two at the default frame rate of 24
frames per second. Then experiment with additional frame rates to see how
they change the movie clip animation.

1	 info.text	=	stage.frameRate;
2	
3	 faster.addEventListener(MouseEvent.CLICK,	onFasterClick,	
4	 																								false,	0,	true);
5	 slower.addEventListener(MouseEvent.CLICK,	onSlowerClick,	
6	 																								false,	0,	true);
7	 function	onFasterClick(evt:MouseEvent):void	{
8	 				stage.frameRate	+=	5;
9	 				info.text	=	stage.frameRate;
10	 }
11	 function	onSlowerClick(evt:MouseEvent):void	{
12	 				if	(stage.frameRate	>	5)	{
13	 								stage.frameRate	-=	5;
14	 				}
15	 				info.text	=	stage.frameRate;
16	 }

The frameRate property requires little explanation, but its impact should not
be underestimated. Other interactive environments have long been able to
vary playback speed, and this is a welcome change to ActionScript for many
enthusiastic developers—especially animators. Slow motion has never been
easier.

Part II: Graphics and Interaction108

A Simple Site or Application Structure

A Simple Site or Application Structure
As the final demo file in this chapter, we want to provide a very simple
example of one of our most commonly requested uses of navigation to add
visual interest. The demo_site.fla source file shows how to design a basic site
or application skeleton that gives you the freedom to combine your timeline
animation skills with ActionScript coding.

This file intentionally uses detailed, and varied, timeline tweens—with
inconsistent frame counts—to transition between three separate sections
of this sample site or application (Figure 5-5). The idea is to take advantage
of frame label navigation, but freely move from any section to any other
section without concern of interrupting (or matching) the entrance or exit
animations.

As you look through the sample file, you’ll see that a virtual gamut of prop-
erty manipulations add visual interest. Section 1 rotates in and skews out,
section 2 bounces in and zooms out, and section 3 wipes in and fades out.
Each section stops in the middle of the transitions to display its placeholder
content. Moving unencumbered between any sections is achieved through a
combination of the play() method and a variable.

Figure 5-5. The file demo_site.fla demonstrates navigation with transitions

The first script of this file is in frame 1 of the main timeline. Line 1 initializes
the nextSection variable, typing it as a String. We will store the destination
frame label in this variable. Scripts in other keyframes (which we’ll look at in
a moment) will use the gotoAndPlay() method to jump to the frame stored
in this variable.

A Simple Site or Application Structure

Chapter 5: Timeline Control 109

1	 var	nextSection:String	=	"";
2	
3	 section1.addEventListener(MouseEvent.CLICK,	navigate,	
4	 																										false,	0,	true);
5	 section2.addEventListener(MouseEvent.CLICK,	navigate,	
6	 																										false,	0,	true);
7	 section3.addEventListener(MouseEvent.CLICK,	navigate,	
8	 																										false,	0,	true);
9	 function	navigate(evt:MouseEvent):void	{
10	 				nextSection	=	evt.target.name;
11	 				play();
12	 }

The remainder of the script is similar to the previous examples, creating three
buttons that all access the same listener. Line 10 populates the nextSection
variable using the name of the button that was clicked. Knowing that the
target property can identify the button that was clicked, we can further
query its name property to determine the name of the button. By naming but-
tons with names that match frame labels, we can set up our file cleanly and
efficiently. Clicking the section1 button will take us to the corresponding
“section1” frame label.

How, then, do we prevent the entry and exit animations from being interrupted
or from overlapping? First, each button click populates the nextSection vari-
able with the desired destination frame label. Then we use play() to play the
file from that point forward. This plays through the entry animation of the
first section, and then another script halts the playhead in the content key-
frame of the section with a stop() action.

//at	end	of	entry	animation
stop();

Using the play() method prevents repeated clicks on a button from start-
ing an entry animation over and over again—a possible side effect of using
gotoAndPlay(). Instead of every click first jumping to a specific frame before
playing, each click just continues to tell the timeline to play, which it’s already
doing, and so has no ill effect.

Having stopped at the content frame of the section, the user is free to view
that screen. Any subsequent button clicks will first populate the nextSection
variable and then again call the play() method. This sets the playhead in
motion, carrying it through the concluding animation until it hits the last
frame script in the section:

//at	end	of	exit	animation
gotoAndPlay(nextSection);

This script is the last piece of the puzzle. After playing the prior section outro
animation, this method sends the playhead to the new section entry anima-
tion. The cycle then repeats as the playhead dutifully stops at the content
frame of the new section.

This structure allows you to be as creative as you want with timeline tweens
and still move in and out of any section no matter how many frames each

NOTE

Chapter 3 discussed the use of the event
argument in event listeners, and the
ability to learn about the event trigger
by querying its target property.

Part II: Graphics and Interaction110

A Simple Site or Application Structure

animation requires. Because you’re using frame labels, you can easily change
any sequence without having to adjust your scripts to update new frame
numbers.

Undocumented: Adding Frame Scripts
to Movie Clips at Runtime
To finish off our discussion of timelines, we want to show you an undocumented
method for adding frame scripts to movie clips at runtime. As always, be careful using
undocumented ActionScript, testing your implementation thoroughly and trying not
to rely on its use for final production, if possible. In addition to making no warranties
as to current reliability, there’s no guarantee that future versions of Flash Player will
support an undocumented feature.

To implement this feature, you need to create a movie clip with two or more frames,
and give it an instance name of mc. Alternately, you can use the addFrameScript.fla
source file. The method we will use is:

<movieclip>.addFrameScript(<framenum1>,	<function1>,	
																											<framenum2>,	<function2>,
																											...rest);

By adding the method to a movie clip instance, you can dictate that any function be
called when the specified frame number is reached. The ellipsis followed by “rest” is a
special case that indicates this function will accept an unlimited number of comma-
delimited arguments. In this case, the structure requires pairs of frame number,
function; frame number, function; and so on. In the following example, only one
frame script is added.

First, a function is defined that will stop the movie clip and trace the frame on which
it stopped.

function	onStopMC()	{
				mc.stop();
				trace(mc.currentFrame);
}
mc.addFrameScript(mc.totalFrames	-	1,	onStopMC);

Then the addFrameScript() method is used, specifying that the onStopMC()
function be added to the last frame. This can be a bit confusing because the
totalFrames property returns a number that corresponds with the last frame,
yet this script subtracts one from that value. The addFrameScript() method
consistently functions on the premise that a first item in most ActionScript
structures (such as an array, the display list, a string, and more) is item 0. Therefore,
totalFrames - 1 is the last frame of the movie clip.

When you run the sample file, the movie clip animates and, when it reaches frame 40,
the script stops and traces 40 to the Output window.

What’s Next?

Chapter 5: Timeline Control 111

What’s Next?
By now you should have a relatively firm grasp of how to navigate timelines,
be able to manipulate display objects (including their properties and meth-
ods), and understand the fundamentals of the ActionScript 3.0 event model.
Up to this point, we’ve been focusing primarily on syntax and approaching
each task using simple procedural programming techniques.

As you’ll read in Chapter 6, you may find this sufficient for many of the
projects you create. However, larger projects, and projects developed in a
workgroup environment with multiple programmers, can significantly ben-
efit from OOP techniques. From this point on, we’ll be using a little OOP in
our demos, and you will eventually end up with a final project that is built
entirely using object-oriented programming. This content design allows you
to learn at your own pace, choosing when to use procedural programming
and when to use OOP.

In the next chapter, we’ll introduce some basics of OOP, including:

• Using encapsulation and polymorphism

• Writing your first class

• Creating a subclass that demonstrates inheritance

• Organizing your classes and packages

113

IN THIS CHAPTER

Classes

Inheritance

Composition

Encapsulation

Polymorphism

Navigation Bar Revisited

What’s Next?

Object-oriented programming (OOP) is an approach to coding that uses
classes to create individual objects and control how those objects interrelate.
It’s sometimes described as a problem-solving technique—a programming
style that addresses issues that procedural programming (which is also
referred to as timeline programming in Flash Professional) can’t handle well.
It’s a way of organizing your code into small, specific, easily digestible chunks
to make project or application development more manageable. These objects
are typically designed to be as self-contained as possible, but are also usually
designed to play well with other objects.

Whether you know it or not, you’ve been flirting with object-oriented pro-
gramming for some time now, You’ve been creating objects from classes, call-
ing methods, getting and setting property values, and so on. Each time you
create a movie clip with ActionScript, for example, you’re creating an object
by instantiating the MovieClip class. But although you may be using objects
fluently while coding in the timeline, this is only the tip of the OOP iceberg.
To really embrace OOP, you need to write your own custom classes, guided
by a few basic object-oriented principles that we’ll discuss in this chapter. For
our discussions, we’ll further define OOP as using classes primarily, if not
entirely, rather than simply using objects in procedural programming.

Choosing OOP as a programming methodology is a decision that is some-
times fairly obvious, such as when working with large projects or with
a team of collaborating programmers. At other times, however, adopting
OOP as a development strategy can be less obvious, and even debated.
In still other cases, using OOP can be like driving a finishing nail with
a sledgehammer—overkill that just doesn’t make sense for quick experi-
ments or proofs of concept.

The goal of this chapter is to give you a high-level view of object-oriented
principles, as well as supporting examples, to help prepare you to make these
decisions on a project-by-project basis. Each subsequent chapter in this

ooP

CHAPTER 6

Part II: Graphics and Interaction114

book will continue to introduce syntax in concise, timeline-based exercises,
but also make increasing use of classes. Ultimately, we hope you will con-
tinue your learning using the book’s companion website, where a cumulative
project will collect much of what you’ve created along the way into a “lab”
of experiments. The larger project will be OOP-based, but also will contain
exercises that you create throughout the book using procedural techniques,
exposing you to both programming paradigms.

Knowing when to opt for an object-oriented model depends largely on
understanding the benefits of OOP. Among the highlights we’ll cover in this
chapter are:

• Classes. Classes are collections of related functions and variables (called
methods and properties, respectively, in class vernacular) gathered to facili-
tate one or more specific goals. They are the foundation of OOP, and we’ll
look at a few ways to use them.

• Inheritance. Inheritance is one of OOP’s greatest sources of power, espe-
cially in ActionScript 3, as it allows you to add functionality to an exist-
ing feature set without reinventing the wheel. This is known as extending
an existing class to create a subclass, rather than originating a new class.
Inheritance can save you time and labor, as well as improve project design.

• Composition. Inheritance isn’t appropriate for every situation, and com-
position is often a useful alternative. Using composition, new classes are
assembled using other classes, rather than inheriting from parent classes.

• Encapsulation. It’s usually not a good idea to expose all aspects of a class
to other classes or the surrounding application. Encapsulation isolates
most elements of a class from the outside world, allowing only a select
few elements, if any, to be seen by other classes.

• Polymorphism. Polymorphism is a design practice that allows you to use
objects of different types in a uniform manner. For example, it allows you
to have methods that share the same name but that behave differently (if
desired) when called. Considering a method responsible for motion, you
can name it move() everywhere instead of drive() for a car and fly() for a
plane. This makes it easier to document, write, and even change your code.

It’s important to understand that OOP is not appropriate for everyone, and
it is not even appropriate for every situation. OOP can dramatically improve
the development cycle of large projects or projects to which more than one
programmer can contribute. OOP can even be ideal for smaller projects that
are particularly suited for object-based coding (such as some kinds of arcade
games, as one example).

The common thread is that object-oriented programming benefits from
economies of scale. The time, labor, and learning investments begin to pay off
over time. Procedural programming is often more appropriate for small tasks

 OOP

Classes

Chapter 6: OOP 115

and is sometimes less time-consuming for smaller-scale projects, resulting in
code that is simpler to maintain.

You don’t need to learn OOP to use ActionScript 3.0. The benefits and buzz of
object-oriented programming—particularly the continuing swell of interest
in design patterns—sometimes lead to almost fetishistic adherence to their
principles, without context and at the cost of practicality.

The key to adopting any programming paradigm is finding the right tool for
the job. It’s certainly a good idea to learn OOP as soon as your schedule and
skill set permits, simply because it gives you more options to choose from.
Remember, however, that there is more than one way to skin an interface.
Before embracing your next significant project, try to set aside some time for
planning, information architecture, and programming design. You may find
that your goals will be more easily achieved by adopting an object-oriented
approach.

If your typical production schedule or project budget cannot allow the inevi-
table time and resource stumbles associated with attempting new challenges,
try learning OOP through a series of fun experiments or artistic endeavors.
You may find that the things you learn, the mistakes you make, and the
epiphanies you experience will improve your next project.

Having said all that, we’ll hit the high points in this introduction to object-
oriented programming. This chapter is meant to be a transition between
prior and future chapters. As mentioned, we’ll continue to show simple
procedural examples for syntax, but we’ll make more frequent use of OOP
techniques—particularly in applied examples at the end of the chapters, and
even more so in the supplemental source code and enhanced learning avail-
able on the companion website.

Classes
In Chapter 1, we discussed the three most common programming paradigms:
sequential, procedural, and object-oriented. We described procedural pro-
gramming as an improvement over sequential programming because, instead
of being limited to a linear sequence of statements, you can group related
tasks together into procedures (called functions, in ActionScript).

Classes offer a similar improvement over procedural programming, in that
they collect related functions (methods), variables (properties), and other
relevant items. They are the foundation of object-based programming, yet
you have probably been working with them for some time. Even if you are
new to programming, if you have followed this book through to this chapter,
you already have some experience with classes but may not realize it. This is
because most of what goes on behind the scenes in ActionScript is accom-
plished through the use of classes.

Part II: Graphics and Interaction116

Classes

To start off with, Chapter 1 of this book gave you a quick peek at classes, and
introduced the first use of the document class. We’ll look at that again in just
a moment, as a quick review.

Beyond that, you learned how to use events (using several event classes,
including Event, MouseEvent, and Timer in Chapter 3), how objects are
displayed (using a large number of display classes, including TextField,
MovieClip, DisplayObject, DisplayObjectContainer, and more in Chapter 4),
and how to control navigation and timelines (including FrameLabel, among
others in Chapter 5). Even in Chapter 2, when discussing basic language fun-
damentals, you were using classes when learning about data types.

If you’re suddenly concerned that you’ve missed a lot of material, don’t be. In
part, that’s the point. All of these examples make use of classes. You just may
not be aware of it because it’s happening behind the scenes.

Take a look at the movie clip, for example. Throughout the preceding chap-
ters, you’ve worked fairly extensively with movie clips. You’ve set numerous
properties (such as x, y, rotation, alpha, and more), called methods (play()
and stop() among them), and handled events (like Event.ENTER_FRAME)—all
while making use of the MovieClip class. You even learned how to create a
movie clip dynamically by creating an instance of the class—a fundamental
step in working with classes:

var	mc:MovieClip	=	new	MovieClip();

So, with all that experience, what’s the big deal about classes? A bit of a flip-
pant thought, perhaps, but not entirely off the mark. The fact is, you can
apply that history to learning OOP. You may not have a lot of experience
writing classes, but you do have some experience using them. In fact, it isn’t
until you begin working with custom classes that things begin to look new.

Custom Class Review
Start by revisiting the structure of the first custom class introduced in this
book, all the way back in Chapter 1—a very basic use of Flash Professional’s
document class. A document class is little more than a timeline replace-
ment—allowing you to move timeline code into a class. But it eases you into
OOP because it’s a simple way to start using classes. Moving from timeline
to class not only points you in the direction of object-oriented programming,
it makes your code easier to reuse, share, and archive.

If you need to, you can review Chapter 1 for more information about the
document class, including how to create it and how to reference it in Flash
Professional’s Properties panel. Here, however, we’d like to quickly review the
formatting of the class, as you’ll use this format for many classes in the future.
Consider the following class code:

1	 package	{
2	
3	 				import	flash.display.MovieClip;

Classes

Chapter 6: OOP 117

4	
5	 				public	class	Main	extends	MovieClip	{
6	
7	 								public	function	Main()	{
8	 												trace("Flash");
9	 								}
10	
11	 				}
12	 }

Line 1 and the balancing brace in line 12 surround the class in a package.
Packages help organize your code and are the programming equivalent of
your computer’s folders or directories. We’ll discuss this in a moment or two,
but for now, think of a package as a wrapper for your class. While getting
started, you don’t need to concern yourself with packages if you place all your
classes in the same directory as your .fla file. The ActionScript compiler will
automatically look for classes in this location.

Line 3 is an import statement. It doesn’t really import anything: it just tells
the compiler where to find the classes needed by your code. The compiler
can then use the class to validate your code and add the needed class to your
SWF when it is compiled. This gives your class access to all the properties,
methods, and events needed by your script.

Line 3 also demonstrates the use of a package. This document class requires
the MovieClip class, which is found in the flash.display package. In other
words, the MovieClip.as file is inside a “display” directory, which is inside
a “flash” directory, which is in a classpath, or location of classes known to
the compiler. Your ActionScript editor of choice, such as Flash Professional,
already knows about a few such locations, and you’ll learn to create your own
in the next section of this chapter.

None of the timeline examples in the previous chapters included import
statements because the examples used only items found in flash packages.
Importing classes from these packages is not required when writing Flash
Professional timeline scripts, but you must import them in classes. As a rule
of thumb, import all classes used when writing your own classes.

Line 5 declares the class. The first thing you may notice about this is the word
public beginning the declaration. This is called an access control modifier and
determines how something can be accessed by code elsewhere in your project.
Using public makes the class available to the rest of your project. Additional
modifiers are covered in the “Encapsulation” section of this chapter.

The next thing you may notice is the phrase extends MovieClip following the
name of the class, Main. This is called inheritance and means that the publicly
accessible events, methods, and properties of the MovieClip class will also
be available to (are inherited by) this class. This use of the MovieClip class
requires the import in line 3. We’ll talk more about extending classes in the
“Inheritance” section of this chapter.

NOTE

Some ActionScript editors, such as
Adobe’s Flash Builder, PowerFlasher’s
FDT, and even Flash Professional as
of version CS5, will automatically add
class import statements as you edit your
code.

Part II: Graphics and Interaction118

Classes

Finally, lines 7 through 9 are the class constructor. This is a function that’s
executed automatically when an instance of the class is created. Just as you
can create instances of a library symbol in the Flash Professional timeline,
you can create instances of a class. Although Flash Professional instantiates a
class for you when you use a document class, you can also do this manually:

var	main:Main	=	new	Main();

Does this manual instantiation look familiar? It should. This is the same
format used to instantiate the vast majority of classes in ActionScript 3.0,
including the recently cited example of creating a movie clip. So, you already
have some of the skills required for working with custom classes!

Classpaths
You have a few choices when deciding where to place your custom classes.
The ActionScript compiler will automatically look for a class in the same
directory as the file (FLA or other class) making use of the class. This is the
easiest way to store classes because it’s easy to transport them with your proj-
ect by just moving the parent directory.

However, you can also organize your classes into directories, grouping classes
of similar functionality for easier management. This technique was detailed
when using existing ActionScript classes, as in the cited movie clip example,
but applies to custom classes as well. When using classes in a package, you
must import them—including classes in the flash package.

It’s usually a good idea to import every class needed so you can see all depen-
dencies of your class—other files your class relies on—at a glance. However,
you can also import all classes in a package by using an asterisk (*) as a wild-
card. This saves a little time and reduces the number of lines in your script so
you can focus more on your code. (We’ll use this approach as a space-saving
technique from time to time in this book.) It’s also no less efficient, because
the compiler will include only classes required by your code, rather than the
entire package, when compiling a SWF.

Here are examples of a full package and wildcard used with built-in
ActionScript 3 classes, as well as a full package for a custom class:

import	flash.display.MovieClip;
import	flash.events.*;
import	com.mycompany.effects.Water;

Naming the parent directory of a class library com stems from what is called
reverse domain naming. It breaks your domain into folder names in reverse
order, starting with your domain extension (.com, .org, .edu), then the next
portion of your domain, and so on, until you want to stop. This is common
but only a convention. It’s helpful to think of this when you work with other
programmers, but you can organize your package folders any way you like
and your code will still work.

NOTE

We should reinforce from Chapter 1
that the name of an external class file
must match the name of the class and
constructor. In the class being discussed,
the file must be called Main.as. It is
common practice to start class names,
and therefore their file and constructor
names, with a capital letter.

Classes

Chapter 6: OOP 119

Here is an example structure of the fictional Water class cited in the prior
import statement. Note the path—up to, but not including, the class name—
in the package declaration. Forgetting to include this will result in a compiler
error telling you that the package declaration of the class does not reflect the
location of the file.

package	com.mycompany.effects	{

				public	class	Water	{

								public	function	Water()	{
								}
				}
}

Finally, the ActionScript compiler needs to know where to start looking for
these packages and classes. Because the compiler will automatically look in
the same folder as the file using the class, you can put package directories (as
well as individual classes) next to your FLA file. This is often called a local
or relative classpath (local or relative to your FLA). For most situations, this
is all you need to worry about. Figure 6-1 shows an example parent directory
for a project that uses the aforementioned Water class.

However, this approach can be somewhat impractical if you intend to build
a library of classes that you will reuse often. In this case, you can store fre-
quently reused classes in a centralized location, and add that location to the
list of classpaths your compiler will search.

You can add paths to folders, or SWCs if you have them (Flash Professional
CS4 and later)—the latter being compressed collections of classes and assets
that can be used for compilation but can’t be edited. You can also add paths
of runtime shared libraries, which we’ll demonstrate in Chapter 10 when we
discuss the Text Layout Framework, the new text options introduced in Flash
Professional CS5.

You can add your own classpath to Flash Professional either at the applica-
tion or project level. To make a classpath available to all projects, you can go
to Flash Professional’s Preferences (Macintosh: Flash→Preferences; Windows:
Edit→Preferences), select ActionScript from the left menu, and click on the
ActionScript 3.0 button at the bottom of the ActionScript preferences. Using
the resulting dialog, seen in Figure 6-2, you can browse to the directory in
which you will be maintaining your class libraries, and Flash will thereafter
also search in that directory when importing your classes.

Figure 6-1. A sample directory structure
using the local classpath

Part II: Graphics and Interaction120

Classes

Figure 6-2. Adding your own application-wide classpath to Flash Professional CS5’s
ActionScript preferences

To add a file-specific classpath, the process is very similar and begins in
the dialog, File→Publish Settings→ActionScript 3.0 Settings. (In Flash
Professional CS5, the new menu item File→ActionScript Settings accesses this
dialog immediately.) As seen in Figure 6-3, choose the Source Path section of
the dialog and again browse to the directory you want to add.

Classes

Chapter 6: OOP 121

Figure 6-3. Adding your own file-specific classpath to Flash Professional CS5’s
ActionScript Settings dialog

Note to Flash Professional CS5 users
Flash Professional CS5 now offers code completion and color syntax
highlighting for custom classes as well as built-in ActionScript classes. It
accomplishes this by parsing all known classpaths and building a cache of
all classes in these paths. A side effect of this feature is that the process of
building the cache can become overwhelmed if there are too many classes
to analyze. Therefore, try not to collect every class you have into one giant
folder. Move applicable classes in and out of your folder, or create classpaths
for smaller folders on a project-by-project basis. See the companion website
for more information about this issue.

Part II: Graphics and Interaction122

Inheritance

Inheritance
Among the most easily explained concepts of an object-oriented program-
ming model is inheritance. This means that you can create a new class, typi-
cally called a subclass, which can inherit attributes from the original class,
also called the superclass. This is similar to the way you inherit characteristics
from your parents. You share many things in common with a parent but also
have several unique attributes. The same can be said of classes. Through
inheritance, a class can acquire from its parent useful methods and proper-
ties, as well as add entirely new methods and properties.

The source files for this section are found in the inheritance_mc folder in the
Chapter 6 archive—available from the Downloads page at the companion
website, http://www.LearningActionScript3.com. Ultimately, you’ll test the FLA
file, inheritance_mc_01.fla, but you’ll be working primarily with the Box.as
and Square.as class files.

The following script creates a class called Box, found in the Box.as source file,
that is a subclass of MovieClip. As a result, it has access to all the properties,
methods, and events accessible in a movie clip, including the x property seen
in line 22, and the graphics property used in lines 13 through 16 to draw a
blue box. We’ll discuss drawing vectors with code in Chapter 8, but the script
sets a 1-pixel black line style, sets a fill color stored in the color variable,
draws a rectangle from x,y coordinate point (0, 0) to the coordinate point
(100, 100), and ends the fill.

The color variable is declared in line 9. This is an example of a class property.
As you can see, it uses the same syntax as the variables you create in the time-
line, with one exception. Like timeline programming, it is defined within the
scope of the script (inside the class just like inside a frame script), but outside
all methods, so it can be available to the entire script scope (in this case, the
entire class, similar to the entire frame script in the timeline). The declaration
uses a var keyword and data type and is given a color value that produces a
dark blue. The only exception is that here the public access modifier is added,
which makes the variable available to code outside the class. We’ll continue
our explanation after the code.

1	 package	{
2	 				
3	 				import	flash.display.MovieClip;
4	 				import	flash.display.Graphics;
5	 				import	flash.events.Event;
6	 				
7	 				public	class	Box	extends	MovieClip	{
8	
9	 								public	var	color:uint	=	0x000099;
10	 				
11	 								public	function	Box()	{
12	 												this.graphics.lineStyle(1,	0x000000);
13	 												this.graphics.beginFill(color);

http://www.LearningActionScript3.com

Inheritance

Chapter 6: OOP 123

14	 												this.graphics.drawRect(0,	0,	100,	100);
15	 												this.graphics.endFill();
16	 												
17	 												this.addEventListener(Event.ENTER_FRAME,	onLoop,	
18	 																																		false,	0,	true);
19	 								}
20	 								
21	 								public	function	onLoop(evt:Event):void	{
22	 												this.x	+=	5;
23	 								}
24	 								
25	 				}
26	 }

The Box() method is a special kind of method called a constructor. In the class,
it appears no differently than any other, but it’s unique because this code will
automatically be executed the moment an instance of the class is created. A
class instance is created using the new keyword or, in the case of a document
class in Flash Professional, when a SWF is launched. In ActionScript 3.0, if
a constructor is used, it must always be available to other parts of your pro-
gram, so it must always use the public access control modifier.

In this class, the constructor draws a box at runtime and adds an event lis-
tener. The event listener created in lines 17 and 18 calls the onLoop() function
on every enter frame event, which adds five pixels to the current horizontal
location of the class.

But what does it draw the box into? This class extends MovieClip, so Box is,
essentially, a movie clip. Box is still unique, because it has visual content and
a new movie clip does not, but creating an instance of this class is just like
creating an instance of MovieClip.

As discussed in the “Classpaths” section of this chapter, the ActionScript
compiler must know where your class resides. The Box class does not include
a path in its package declaration, so if you place this class into the same
directory as your FLA, the compiler will find it. Therefore, all that is required
to create an instance of this class in the timeline is using the new keyword.
Finally, just like a movie clip, you must add the instance to the display list to
see the box on the stage. The inheritance_mc_01.fla source file demonstrates
this code, in the first keyframe:

var	box:Box	=	new	Box();
addChild(box);

With these two lines, an instance of the Box class will be created and added to
the display list, and the drawn square will move across the stage at 5 pixels
per enter frame event. Very much a benefit of OOP, this box is given autono-
mous behavior. With just the two preceding lines of code, the box can create
its own appearance and control its own movement. This class can also easily
be reused elsewhere with the same result.

Part II: Graphics and Interaction124

Inheritance

Symbol Base Classes
We can take further advantage of inheriting from the MovieClip class by
linking a class directly to a movie clip library symbol. You did this more than
once in Chapter 4 when adding symbol instances to the display list. (See
“Adding Symbol Instances to the Display List” in Chapter 4.) At that time,
however, you had not written a class to link up with the symbol instance, so
you let Flash create a placeholder class just for the purpose of supporting
runtime creation.

Now, you can make use of this existing link by providing the symbol with a
custom class to execute when instantiated. As described, creating an instance
of the symbol either by manually dragging it to the stage, or using the new
keyword, will execute the constructor in the linked class.

The following example is nearly identical to the previous class but excludes
visual content, focusing only on motion. Similarly, in the inheritance_mc_02.
fla source file, no timeline code is used to create the movie clip. This dem-
onstrates the automatic link between a linkage class assigned in the symbol’s
property dialog, and a custom class with the same name. Simply by adding
an instance of the symbol to the stage, the class is applied. This code is in the
Square.as class.

1	 package	{
2	 				
3	 				import	flash.display.MovieClip;
4	 				import	flash.events.Event;
5	 				
6	 				public	class	Square	extends	MovieClip	{
7	 				
8	 								public	function	Square()	{
9	 											this.addEventListener(Event.ENTER_FRAME,	onLoop,	
10	 																																	false,	0,	true);
11	 								}
12	 								
13	 								public	function	onLoop(evt:Event):void	{
14	 												this.x	+=	5;
15	 								}
16	 								
17	 				}
18	 }

Can You Figure Out Why?
As a fun break, and a bit of review, take a look at the inheritance_mc_03.fla
source file. This file combines both the Square class, instantiated by virtue of
the Square symbol placed on the stage, and the Box class, instantiated through
its use as a document class. Each class moves itself 5 pixels to the right every
enter frame. Why then does the square instance (red) move twice as fast as
the box instance (blue)? Look for the answer to the left.

ANSWER: In the file inheritance_mc_03.
fla, why does the square instance (red)
move twice as fast as the box instance
(blue)? Because square is a child of box.

Remember that a document class is a
timeline replacement. As such, the refer-
ence this in the Box document class
refers to the entire timeline. Updating its
x coordinate moves the timeline (docu-
ment class) and all its children. Because
square is placed manually, it is a child
of the timeline so it moves accordingly.
However, square also moves on its own,
due to the Square class. So, for every
enter frame event, the entire timeline
(thus both movie clips) is moved 5 pix-
els and then square is updated 5 pixels
again, effectively moving square 10 pix-
els every enter frame event.

For comparison, take a look at inheri-
tance_mc_04.fla, in which Box is
instantiated using the new keyword,
rather than via the document class. In
this example, both movie clips update
themselves and the timeline is not
affected. For further reference, you can
also see the entire timeline move without
any classes in play by looking at time-
line_move.fla.

Inheritance

Chapter 6: OOP 125

A More Traditional Look at Inheritance
Now that you have a basic idea of how a custom class inherits the attributes
of a movie clip, let’s look at a more traditional example with a bit more
substance. The files in this section are found in the inheritance folder of this
chapter’s source. We’ll also build on this example throughout the remainder
of the chapter, adding features as we go, to demonstrate the various tenets of
object-oriented programming.

We described inheritance earlier by discussing how a child inherits from a
parent. The same analogy can be made from other real-world scenarios. A
Puppy class might inherit from a Dog class, a Ball class might inherit from a
Toy class, and a Car class might inherit from a Vehicle class.

Consider a very simple execution of the vehicle metaphor. Whether a vehicle
is a car or a truck—or even a plane or a boat, for that matter—it’s still a
vehicle and shares much in common with other vehicles. It makes sense, then,
to create a class that contains basic methods and properties that are common
to all vehicles. For simplicity, think about fuel availability (the number of
gallons of fuel the vehicle has in its tank) and fuel efficiency (gas mileage, in
miles per gallon, for our purposes). Also, a calculation based on that informa-
tion could result in miles traveled and the resulting reduction in the amount
of fuel. Obviously not every vehicle uses gas (such as a glider or bicycle), but
this limited scenario will suit our purposes.

Vehicle class
Here is a basic class you can use to represent a generic vehicle. We’ll call this
class Vehicle, so the document name will be Vehicle.as, and the class will
be saved in the same directory as your FLA. This class creates a vehicle and,
when activated (by calling the go() method), increases the number of miles
traveled and decreases the remaining gallons of gas after each enter frame
event, tracing the result. It will show in the Output window how many miles
the vehicle traveled, and how much fuel remains until it runs out of gas.

The class has four public properties, representing: gas mileage, available fuel,
miles traveled, and a Boolean property called moving. The latter will enable
functionality when true, and disable functionality when false. All the proper-
ties and methods in the class are public so other classes can see them. We’ll
discuss that in further detail in a little while.

The constructor does only two things. It sets the properties for gas mileage
and available fuel to the arguments passed in when the class was instantiated,
and adds a listener to the vehicle that reacts to the enter frame event and calls
the onLoop() method. Here’s what this portion of the class looks like:

1	 package	{
2	
3	 				import	flash.display.MovieClip;
4	 				import	flash.events.Event;
5	 				

NOTE

Note that default values have been
added to the parameters in the Vehicle
class constructor in line 13. If an
instance of the class is created without
passing in arguments, the default values
will be used.

Part II: Graphics and Interaction126

Inheritance

6	 				public	class	Vehicle	extends	MovieClip	{
7	
8	 								public	var	gasMileage:Number;
9	 								public	var	fuelAvailable:Number;
10	 								public	var	milesTraveled:Number	=	0;
11	 								public	var	moving:Boolean;
12	
13	 								public	function	Vehicle(mpg:Number=21,	fuel:Number=18.5)	{
14	 												gasMileage	=	mpg;
15	 												fuelAvailable	=	fuel;
16	 												this.addEventListener(Event.ENTER_FRAME,	
17	 																																		onLoop,	false,	0,	true);
18	 								}

Now let’s talk about the listener function in the next segment of the script.
When the moving property is true, the onLoop() method first decrements the
fuelAvailable property and increases the milesTraveled property by the
value of the gasMileage property. So, if a vehicle claims a gas mileage rating
of 21 miles per gallon, the car will travel 21 miles using 1 gallon of gas.

Next, the method checks to see if there’s less than one gallon of gas remain-
ing. If so, the listener is removed. While the listener remains, the class will
trace the vehicle object, miles it’s traveled, and remaining fuel to the output
panel. In addition, the x coordinate of the class instance will be set to the
current number of miles traveled, so any visual asset associated with this
class will move. Because Vehicle inherits from MovieClip, the x property is
accessible to Vehicle so it doesn’t have to be added anew. The effect is that
a corresponding movie clip will move across the stage by pixels that corre-
spond to miles driven.

Finally, the go() method, when called from outside the class, sets the moving
Boolean property to true and allows the frame loop to work. This could be
likened to starting the engine of the vehicle and driving. A more complex
system might also provide a method for stopping the vehicle, as well as other
features, but let’s keep this example simple.

1	 								public	function	onLoop(evt:Event):void	{
2	 												if	(moving)	{
3	 																fuelAvailable--;
4	 																milesTraveled	+=	gasMileage;
5	 																if	(fuelAvailable	<	1)	{
6	 																				this.removeEventListener(Event.ENTER_FRAME,	
7	 																																													onLoop);
8	 																}
9	 																trace(this,	milesTraveled,	fuelAvailable);
10	 																this.x	=	milesTraveled;
11	 												}
12	 								}
13	 								
14	 								public	function	go():void	{
15	 												moving	=	true;
16	 								}
17	
18	 				}
19	 }

Inheritance

Chapter 6: OOP 127

Simple example
To see this class in action, all you need to do is create an instance of the class,
and call the go() method from that instance. If desired, you can also pass in
a new value for gas mileage and available fuel. If there is a visual component
to the instance (and we’ll see that soon), you would also add the instance to
the display list. Here is an example of all three steps, including new values
for the mpg and fuel parameters, as seen in the vehicle_only.fla source file.
This is the last time in this chapter that we’ll use the timeline. For future
examples, we’ll use a document class, moving all aspects of each example
from the timeline to classes.

var	vehicle:Vehicle	=	new	Vehicle(21,	18);
addChild(vehicle);
vehicle.go();

When testing this file, the resulting trace lists the Vehicle class instance, the
accumulating miles traveled, and the decreasing fuel available. After several
iterations (condensed with the ellipsis in the sample that follows), the trace
stops and shows the final number of miles traveled and less than one gallon
of gas remaining.

//output
[object	Vehicle]	21	17
[object	Vehicle]	42	16
[object	Vehicle]	63	15
...
[object	Vehicle]	336	2
[object	Vehicle]	357	1
[object	Vehicle]	378	0

That’s fine if every vehicle you ever create is exactly the same kind of vehicle.
However, the principle of inheritance allows you to subclass this Vehicle
class, inheriting the attributes of Vehicle, but customizing each subclass into
a specific kind of vehicle, like car and truck, as in the following examples.

The following two classes, Car (Car.as) and Truck (Truck.as), both extend
Vehicle, so they inherit the properties and methods of Vehicle. Because the
properties are inherited, they’re not included in the subclasses. Although
these classes extend Vehicle, you can add unique properties and methods
to make each class further specialized. For simplicity, we’ll add a method to
each class to control an accessory—a sunroof for the car and a tailgate for
the truck.

Car class
1	 package	{
2	 				
3	 				public	class	Car	extends	Vehicle	{
4	
5	 								public	function	Car(mpg:Number,	fuel:Number)	{
6	 												gasMileage	=	mpg;
7	 												fuelAvailable	=	fuel;
8	 								}

NOTE

Although not used in these example
classes, both Car and Truck can take
advantage of MovieClip properties
and methods by virtue of inheri-
tance because Vehicle inherits from
MovieClip and Car and Truck inherit
from Vehicle. This is just like passing
DNA on from grandfather to father to
son. The inheritance chain is not limited
to the immediacy of superclass and
subclass.

Part II: Graphics and Interaction128

Inheritance

9	 								
10	 								public	function	openSunroof():void	{
11	 												trace(this,	"opened	sunroof");
12	 								}
13	 				}
14	 }

Truck class
1	 package	{
2	
3	 				public	class	Truck	extends	Vehicle	{
4	
5	 								public	function	Truck(mpg:Number,	fuel:Number)	{
6	 												gasMileage	=	mpg;
7	 												fuelAvailable	=	fuel;
8	 								}
9	 								
10	 								public	function	lowerTailgate():void	{
11	 												trace(this,	"lowered	tailgate");
12	 								}
13	 				}
14	 }

Because of inheritance, the Vehicle class constructor is called implicitly when
you create instances of the Car and Truck classes. This adds the enter frame
listener so the cars and trucks can move, and then the Car and Truck class
instances redefine the gasMileage and fuelAvailable public properties from
the Vehicle class. It’s also possible to explicitly call the constructor, or other
accessible method, of a superclass, which we’ll demonstrate when we discuss
encapsulation.

Document class and revised FLA
Now we can revisit the FLA and, instead of instantiating the Vehicle class, we
can create instances of the new Car and Truck subclasses. We can also create
car and truck movie clips in the FLA’s library and associate those symbols
with Car and Truck by adding their names as linkage classes in each symbol’s
Library Properties dialog. The new symbols will add a visual element to the
example because they will be updated by the classes automatically. Because
the Vehicle class extends MovieClip, and the x coordinate of Vehicle is
updated, any subclass of the Vehicle class will also update its x coordinate.

In this example, we’re going to move away from the timeline and use
a document class instead. So start by creating a new ActionScript 3.0
file (ActionScript 3.0 Class file in the New Document window in Flash
Professional CS5). We’ll discuss its contents in a moment, but first save the
file as Main.as in the same directory as your FLA file, and reference this class,
Main, as the FLA’s document class. If you’d rather use the source file provided
to get you started, it’s called car_truck.fla.

Lines 1 through 7 create the package, import the necessary class dependencies
and create this class. Remember a document class should extend MovieClip

NOTE

As shorthand, neither the Car class nor
the Truck class must import Vehicle
because all three classes are in the same
classpath. However, listing the import to
show all dependencies at a glance won’t
hurt.

Inheritance

Chapter 6: OOP 129

so they can behave as a timeline. Lines 9 and 10 create two properties, com-
pact and pickup, and type them as Car and Truck, respectively.

Lines 14 and 20 create instances to these classes, passing in values for gas mileage
and fuel available. Both compact and pickup are set to the same initial x value
(lines 15 and 21), and pickup is given a different y value (line 22) so you can easily
see both vehicles once they are added to the display list (lines 17 and 23).

The custom methods for both instances are called right away (lines 18 and
24), but the vehicles don’t move because the go() method calls are inside an
event listener function (lines 38 through 41) waiting for you to click the stage.
Setting up the event listeners in lines 26 through 36 is very important, and
we’ll discuss this after the code and a description of this example’s output.

1	 package	{
2	 				
3	 				import	flash.display.MovieClip;
4	 				import	flash.events.Event;
5	 				import	flash.events.MouseEvent;
6	 				
7	 				public	class	Main	extends	MovieClip	{
8	 								
9	 								public	var	compact:Car;
10	 								public	var	pickup:Truck;
11	
12	 								public	function	Main()	{
13	 												
14	 												compact	=	new	Car(21,	18);
15	 												compact.x	=	0;
16	 												compact.y	=	20;
17	 												addChild(compact);
18	 												compact.openSunroof();
19	
20	 												pickup	=	new	Truck(16,	23);
21	 												pickup.x	=	0;
22	 												pickup.y	=	100;
23	 												addChild(pickup);
24	 												pickup.lowerTailgate();
25	 												
26	 												this.addEventListener(Event.ADDED_TO_STAGE,	
27	 																																		onAddedToStage,	
28	 																																		false,	0,	true);
29	 								}
30	 								
31	 								public	function	onAddedToStage(evt:Event):void	{
32	 												this.removeEventListener(Event.ADDED_TO_STAGE,	
33	 																																					onAddedToStage)
34	 												stage.addEventListener(MouseEvent.CLICK,	onClick,
35	 																																			false,	0,	true);
36	 								}
37	 								
38	 								public	function	onClick(evt:MouseEvent):void	{
39	 												compact.go();
40	 												pickup.go();
41	 								}
42	 				}
43	 }

Part II: Graphics and Interaction130

Inheritance

The first thing to appear in the Output panel when testing your FLA is the
initial trace caused by the custom method calls:

[object	Car]	opened	sunroof
[object	Truck]	lowered	tailgate

When the stage is clicked, the go() methods start the car and truck moving,
and traces like the one seen in the vehicle-only example will now compare the
miles traveled by the car and truck instances. Which will travel the farthest
on a tank of gas? The car gets better gas mileage, but has a smaller gas tank.
Try it and see!

Accessing the Stage in a Class
In the document class from the preceding section, you may have noticed that
we didn’t just add the mouse click event listener to the stage inside the class
constructor. This is because the stage usually doesn’t yet exist in a constructor
and this technique will typically result in an error.

When referencing a display object outside this class, such as the stage or root,
the document class is a special exception to this rule. Because the document
class is a timeline replacement, it automatically becomes a part of the display
list. If the very same class is not used as a document class, however, this
exception will not apply. Therefore, when referencing a display object outside
this class, it’s important to set up your listeners as we are about to describe
to make your classes more flexible.

In the display list (the new display architecture of ActionScript 3.0 discussed
in Chapter 4), the stage is the senior-most item, and you must access it
through a display object. We discussed this in the Chapter 4 sidebar, “Display
Objects and References to Stage and Root,” but this is particularly important
when writing classes. Remembering that you must access the stage through a
display object, knowing when the class is instantiated, and when the stage is
referenced in a class, play a big part in the success of your script.

Recall how to instantiate a display object class: you first use the new keyword
and then add the instance to the display list. The prior example of creating a
Vehicle instance is repeated here for reference:

var	vehicle:Vehicle	=	new	Vehicle(21,	18);
addChild(vehicle);

Earlier we told you that the class constructor executes immediately upon
instantiation. In other words, it executes before adding the instance to the
display list. As you may have read in the “Display Objects and References
to Stage and Root” sidebar, this means that you can’t access the stage in the
constructor.

Composition

Chapter 6: OOP 131

So, when we need to access a display object like the stage, we must add an
event listener to the constructor that listens for the ADDED_TO_STAGE event.
This listener will be executed when the class instance is added to the display
list, with the stage as its senior-most object. At that point, the class instance
is a part of the display list and access to the stage or root is possible.

Composition
Although inheritance is a common practice in object-oriented programming,
it’s not the only way to build OOP projects. Composition is more appropriate
in some cases. Composition says that an object is composed of other objects,
rather than descending from other objects. The best way to decide when to
use inheritance or composition is to follow the “is a/has a” rule.

Consider how to add tires to the car example. You might be able to use inheri-
tance (“is a”), but composition (“has a”) is likely better. A car “is a” vehicle,
meaning inheritance will work well, but tires don’t fit the “is a” vehicle, or
car, or truck model. However, a car (or truck) “has a” set of tires, making this
model suited to composition. In a real-world scenario, this might be particu-
larly useful in an expanded version of our vehicle metaphor. For example,
land vehicles typically have tires, but water vehicles usually don’t.

Composition makes it easier to switch out items that compose a class. If a
car is extended from a vehicle, you can’t change that any more than you can
change your parents. However, if a car is composed of things, you can easily
remove one object and substitute another. Now let’s use composition to put
tires onto our car and truck.

Continuing our work on our vehicle example, this time using the files in the
composition folder of the source archive, let’s set up the process by adding a
tires property to the Car and Truck classes, as seen in line 5 of the following
code excerpts. This will hold an instance of the Tires class we’ll create, and
is typed accordingly. Next, we’ll create an instance of the new Tires class.
The new class will be able to equip vehicles with different kinds of tires so
we’ll pass in a different tire type for car and truck, as seen in line 10 of both
excerpts that follow. The class will also trace the kind of tire used, by query-
ing a public property called type, shown in line 11 of both excerpts.

Car class
3	 				public	class	Car	extends	Vehicle	{
4	
5 public var tires:Tires;
6	
7	 								public	function	Car(mpg:Number,	fuel:Number)	{
8	 												gasMileage	=	mpg;
9	 												fuelAvailable	=	fuel;
10 tires = new Tires("highperformance");
11 trace(this, "has", tires.type, "tires");
12	 								}

Part II: Graphics and Interaction132

Composition

Truck class
3	 				public	class	Truck	extends	Vehicle	{
4	
5 public var tires:Tires;
6	
7	 								public	function	Truck(mpg:Number,	fuel:Number)	{
8	 												gasMileage	=	mpg;
9	 												fuelAvailable	=	fuel;
10 tires = new Tires("snow");
11 trace(this, "has", tires.type, "tires");
12	 								}

New Tires class
This basic Tires class simulates functionality by putting the type of tire
requested into a property. In a real-world situation, the new class might affect
the performance of a car or truck object. For example, using snow tires might
reduce fuel efficiency, and upgrading to high-performance radials might
improve mileage. In our simplified example, the Car and Truck classes will
just trace the value of this property.

1	 package	{
2	
3	 				public	class	Tires	{
4	
5	 								public	var	type:String;
6	
7	 								public	function	Tires(tire:String)	{
8	 												//simulated	functionality	change	based	on	tire	type
9	 												switch	(tire)	{
10	 																case	"snow"	:
11	 																				type	=	"storm-ready	snow";
12	 																				break;
13	 																case	"highperformance"	:
14	 																				type	=	"high-performance	radial";
15	 																				break;
16	 																default	:
17	 																				type	=	"economical	bias-ply";
18	 																				break;
19	 												}
20	 								}
21	 				}
22	 }

As you try out the amended classes, the most important thing to understand
is that inheritance is not used to introduce the Tires class. Instead, the car
and truck are composed of objects. In this simplified case, only the tires were
added, but a complete car (for example) would consist of seats, windows,
and so on, all composed rather than inherited from Car or Vehicle. Again,
this satisfies the “is a/has a” rule, which should be your guide when deciding
whether inheritance or composition is optimal.

Encapsulation

Chapter 6: OOP 133

Document class
No change is required to the document class, but testing the car_truck.fla file
again will show a new element to the trace output. In addition to the use of
the accessories (sunroof and tailgate) and the resulting miles traveled until
fuel is depleted, the tires used will also be traced, as shown:

[object	Car]	has	high-performance	radial	tires
[object	Car]	opened	sunroof
[object	Truck]	has	storm-ready	snow	tires
[object	Truck]	lowered	tailgate
[object	Car]	21	17
[object	Truck]	16	22
[object	Car]	42	16
[object	Truck]	32	21
...

Encapsulation
In the preceding examples, all class properties and methods were public. This
is convenient in that it allows code outside the classes to see properties and
methods inside classes. However, this is also risky because other elements of
the application can change property values or execute methods—intentionally
or even accidentally—when not desired.

The way to avoid this possible problem is through encapsulation. Put simply,
encapsulation is the practice of hiding class properties and methods from
other areas of your project while still allowing you to manipulate them in a
controlled fashion.

There are a handful of built-in namespaces in ActionScript 3.0. They are
also called access control modifiers because they control how outside objects
access properties and methods. Although we’ll focus primarily on private
and public modifiers in this book, Table 6-1 describes some of the other
access control modifiers available.

Table 6-1. ActionScript 3.0 access control modifiers

Example Description

public Accessible to all objects, inside and outside the class

private Accessible to objects only inside the class

protected Accessible to objects inside the class and any derived class

internal Accessible to objects inside the class and all classes in the same package

A loosely related analogy might help describe the ideas behind encapsulation.
If you include your email address in the text of an HTML page, spam bots
will likely harvest it and flood you with unwanted solicitations. However, if
you keep your email entirely private, potential contacts won’t be able to reach
you. One solution to this problem is to use a contact form that connects to a

NOTE

There is another access control modi-
fier, called static, which is a bit differ-
ent. The static modifier indicates that
a property or method is accessed from
a class reference, but not an instance
of the class. For example, random()
is a static method of the Math class.
You call this method not from a class
instance, but from a reference to the
class directly. Compare this syntax of an
instance method, like play() from the
MovieClip class, and a static method,
like random() from the Math class.

var	mc:MovieClip	=	
				new	MovieClip();
mc.play();

trace(Math.random());

In the first case, the method is called
from mc, the class instance. By contrast
no instance is created before invoking
the random() method. Instance methods
and properties are not aware of static
methods or properties, and vice versa.

Part II: Graphics and Interaction134

Encapsulation

server that, in turn, sends information to your email address. This allows you
to keep your email address private, but provide some sort of public access.
This control is the basis of encapsulation.

Getters and setters
How, then, can you provide public access to private information? This is
accomplished with a special group of methods called getters and setters.
These public methods are used to retrieve from, or reassign values to, private
properties. In their simplest use, getters and setters can provide a friendly or
consistent public name for a possibly more obscurely named property. For
example, a property named “registeredUserEmail” could be referenced out-
side the class as “email.”

Beyond that use case, getters and setters can also add functionality. A simple
example includes wanting to allow a programmer to get, but not set, the
value of a property. Or, you might want to convert a property value behind
the scenes when requested or supplied, without requiring a custom method
or two to do so. For instance, a currency value might be stored as a number
but, when retrieved with a getter, might be formatted as a string with a lead-
ing currency symbol (such as a dollar sign, $), commas, and a decimal point.
Neither example is possible when just exposing a property as public.

Getters and setters are also special because they behave like properties as far
as the rest of your application is concerned. This simplifies what is typically
called an application programming interface (API)—all the public properties
and methods of your class (and, by extension, all the classes that make up
your application) that a programmer can access.

Let’s revisit our email address discussion to show how this works. The first
step in changing from using a public property to using getters and setters is
to change the property from public to private. This requires only changing
the access modifier, but a common naming convention advocates preceding
private properties with underscores. This is a personal choice, and some favor
it because you can see at a glance if access to the property is limited to the
class. We’ll follow this convention in this book. This first snippet shows both
changes:

private	var	_registeredUserEmail:String		=	"person1@example.com";

Next, to provide access to the property, a getter/setter pair is added to the end
of the class. Let’s discuss the content of the functions first. The public getter
will return the value of the private property, and the public setter will assign
a new value, sent in as an argument, to the private property:

public	function	get	email():String	{
				return	_registeredUserEmail;
}
public	function	set	email(newEmail:String):void	{
				_registeredUserEmail	=	newEmail;
}

NOTE

A property that a programmer can get,
but not set, is called a read-only prop-
erty.

Encapsulation

Chapter 6: OOP 135

Note, however, that both methods are named “email.” This would ordinarily
cause a conflict error because all methods within the same scope must have
unique names. However, this is part of how getters and setters work. The
matching method names are preceded by identifiers get and set, and both
methods work together to appear as a single property in the code that is ref-
erencing the class. That is, instead of having to remember and document two
functions, perhaps called getUserEmail() and setUserEmail(), all you need
is one property: email. Getting and setting are both shown in the following
snippet (assuming an example class instance called user):

user.email	=	"person2@example.com";
trace(user.email);

As you can see, property syntax, rather than method syntax, is used. Which
version of the method in the class is called is determined by usage. In the first
line, a value is being assigned to the property, so the class knows to call the set-
ter. In the second line, no value is assigned, so the class calls the getter, and the
property value is retrieved. Now that you have a brief background on imple-
mentation, let’s put that information to use in our ongoing vehicle example.

Vehicle class
Let’s move to the encapsulation folder of this chapter’s source archive. The
first thing we’ll do to adapt our existing code is make the properties in lines 8
through 11 and the method defined in line 20 in the Vehicle class private. All
constructors in ActionScript 3.0 must be public, and the go() method should
remain public so it can easily be executed from other areas of your project.

1	 package	{
2	
3	 				import	flash.display.MovieClip;
4	 				import	flash.events.Event;
5	 				
6	 				public	class	Vehicle	extends	MovieClip	{
7	
8 private var _gasMileage:Number;
9 private var _fuelAvailable:Number;
10 private var _milesTraveled:Number = 0;
11 private var _moving:Boolean;
12	
13	 								public	function	Vehicle(mpg:Number=21,	fuel:Number=18.5)	{
14	 												_gasMileage	=	mpg;
15	 												_fuelAvailable	=	fuel;
16	 												this.addEventListener(Event.ENTER_FRAME,	onLoop,	
17	 																																		false,	0,	true);
18	 								}
19	 								
20 private function onLoop(evt:Event):void {
21	 												if	(_moving)	{
22	 																_fuelAvailable--;
23	 																_milesTraveled	+=	_gasMileage;
24	 																if	(_fuelAvailable	<	1)	{
25	 																				this.removeEventListener(Event.ENTER_FRAME,	
26	 																																													onLoop);
27	 																}

NOTE

The use of getters and setters, versus
using public properties, is often debated.
You may find it interesting to search
online resources for discussions about
this concept, and the companion website
may have additional information about
this and related topics in the future.

Part II: Graphics and Interaction136

Encapsulation

28	 																trace(this,	_milesTraveled,	_fuelAvailable);
29	 																this.x	=	_milesTraveled;
30	 												}
31	 								}
32	 								
33	 								public	function	go():void	{
34	 											_moving	=	true;
35	 								}

Now that the properties are private, getters and setters must be added to
access them. Lines 37 through 55 add a getter and setter pair for each of the
private properties in the class.

36	 								//new	getters	and	setters
37 public function get gasMileage(): Number {
38 return _gasMileage;
39 }
40
41 public function set gasMileage(mpg:Number):void {
42 _gasMileage = mpg;
43 }
44
45 public function get fuelAvailable():Number {
46 return _fuelAvailable;
47 }
48
49 public function set fuelAvailable(fuel:Number):void {
50 _fuelAvailable = fuel;
51 }
52
53 public function get milesTraveled():Number {
54 return _milesTraveled;
55 }
56	 				}
57	 }

Getters and setters are used to update properties, but subclasses can also
update properties of a superclass directly. Remember that when Car and
Truck instances were created, the constructor of these subclasses updated the
gasMileage and fuelAvailable properties of Vehicle class. If those properties
are no longer public, this isn’t possible using the same techniques.

A subclass uses the super() method to call the corresponding method in
its superclass. For example, placing super() in a subclass constructor will
call the constructor in the superclass. You can even pass arguments into the
superclass method, if the superclass constructor normally accepts the same
arguments. We will modify the Car and Truck classes to use this technique.

When building instances of these classes, you can pass arguments in to cre-
ate custom miles per gallon and available fuel values for each car or truck.
Because the classes inherit properties from Vehicle, these properties are not
recreated. However, now that we’re exploring encapsulation, and the proper-
ties are private, a direct assignment is not possible. Instead, you can use the
syntax super() to pass the incoming values on to Vehicle where the proper-
ties are assigned. The object super refers to the superclass, and the super()

Encapsulation

Chapter 6: OOP 137

statement explicitly calls the constructor of the superclass. Line 8 in both of
the following excerpts uses this technique.

Also note that, just like in the Vehicle class, we’ve changed the property from
public to private (line 5 in both Car and Truck classes), and added an under-
score to the start of the property name (line 5, and again when used in lines
9 and 10, of both classes).

Car class
3	 				public	class	Car	extends	Vehicle	{
4	
5 private var _tires:Tires;
6	 		
7	 								public	function	Car(mpg:Number,	fuel:Number)	{
8 super(mpg, fuel);
9 _tires = new Tires("highperformance");
10 trace(this, "has", _tires.type, "tires");
11	 								}

Truck class
3	 				public	class	Truck	extends	Vehicle	{
4	
5 private var _tires:Tires;
6	
7	 								public	function	Truck(mpg:Number,	fuel:Number)	{
8 super(mpg, fuel);
9 _tires = new Tires("snow");
10 trace(this, "has", _tires.type, "tires");
11	 								}

Tires class
The Tires class (Tires.as) is adjusted in much the same way the Vehicle
class was altered, shown in the bold lines that follow. First, the lone property
becomes private, and its uses are updated to add the underscore reserved for
private properties. Next, a getter and setter pair is added to make the property
accessible outside the class.

1	 package	{
2	
3	 				public	class	Tires	{
4	
5 private var _type:String;
6	
7	 								public	function	Tires(tire:String)	{
8	 												//simulated	functionality	change	based	on	tire	type
9	 												switch	(tire)	{
10	 																case	"snow"	:
11 _type = "storm-ready snow";
12	 																				break;
13	 																case	"highperformance"	:
14 _type = "high-performance radial";
15	 																				break;
16	 																default	:
17 _type = "economical bias-ply";

NOTE

Another way to access properties from a
superclass, without making them public,
is to use the protected access control
modifier. For more information, see the
companion website.

Part II: Graphics and Interaction138

Encapsulation

18	 												}
19	 								}
20	 								
21 public function get type():String {
22 return _type;
23 }
24
25 public function set type(tire:String):void {
26 _type = tire;
27 }
28	 				}
29	 }

Document class
The only changes required to the document class to complete our encapsu-
lation example are to make the properties and methods private, and add an
underscore to the property names. Only the class and constructor remain
public. Note these changes in bold:

7	 				public	class	Main	extends	MovieClip	{
8	 								
9 public var _compact:Car;
10 public var _pickup:Truck;
11	
12	 								public	function	Main()	{
13	 												
14 _compact = new Car(21, 18);
15 _compact.x = 0;
16 _compact.y = 20;
17 addChild(_compact);
18 _compact.openSunroof();
19	
20 _pickup = new Truck(16, 23);
21 _pickup.x = 0;
22 _pickup.y = 100;
23 addChild(_pickup);
24 _pickup.lowerTailgate();
25	 												
26	 												this.addEventListener(Event.ADDED_TO_STAGE,		
27	 																																		onAddedToStage,
28	 																																		false,	0,	true);
29	 								}

The property names also appear in the onClick() method.

30 private function onClick(evt:MouseEvent):void {
31 _compact.go();
32 _pickup.go();
33	 								}
34	

Polymorphism

Chapter 6: OOP 139

Polymorphism
The last important concept of object-oriented programming that we want to
discuss is polymorphism. Although we’ll expand the explanation as this sec-
tion evolves, you can start by thinking of polymorphism as a design practice
that allows you to use objects of different types in a uniform manner. For
example, for our vehicle exercise, you might create classes for land-, water-,
and air-based vehicles and write code to move each type of vehicle. In this
scenario, it’s better to use one method name for moving all of these vehicle
types (such as “move”), instead of separate method names (like “drive,” “pilot,”
and “fly,” for moving a car, boat, and plane, respectively). Doing so makes your
code more flexible, more reusable, and easier to read and document.

In ActionScript 3.0, polymorphism is commonly used with inheritance and/or
interfaces. We’ll work with interfaces in a moment but, for now, think of them
as rulebooks for classes. An interface is nothing more than a list of public
methods that must be present in any class that conforms to the interface. For
example, you might continue to develop our vehicle exercise and eventually
end up with vehicles that contain public methods that activate (start up), go,
stop, and deactivate (shut down) your vehicles. You can create an interface
that includes these method names and requires classes to adhere to that inter-
face. This makes certain all of those classes can be controlled consistently.

An interface doesn’t restrict your class to those methods, either. Classes can
have their own public methods that are not in the interface, without conse-
quence. As long as the interface methods are present, everyone will be happy.
We’ll discuss the further role that interfaces play in polymorphism a little
bit later. For now, let’s extend what you already know and show how to use
polymorphism with inheritance.

Polymorphism and inheritance
Employing polymorphism with inheritance allows you to design subclasses
that can use the same method names as their superclasses, but without
creating a conflict. For example, a superclass can have a public method
called “turn,” which multiple subclasses use. One subclass, however, might
also have a public method called “turn,” that is either entirely different or
enhanced. Ordinarily, the fact that a subclass inherits public methods from a
superclass means that the subclass would effectively have two methods called
“turn” and a conflict would exist.

However, polymorphism allows the subclass method to replace or augment
the superclass method of the same name by overriding it. Overriding a meth-
od tells the compiler that the new version of the method (in the subclass)
takes precedence over the previous version of the method (in the superclass).

To demonstrate this process, let’s begin by adding two methods to our
Vehicle class. If you want to look at the source files, they are in the polymor-
phism folder of the chapter archive. The new methods can be seen in lines

NOTE

Only public and protected methods can
be seen by ActionScript 3.0 subclasses,
so they are the only kinds of methods
that can be overridden.

Part II: Graphics and Interaction140

Polymorphism

33 through 39 in the following excerpt, and are named useAccessory() and
changeGear(). Both of the new methods are available to the Car and Truck
subclasses through inheritance and notice that the functionality of the use-
Accessory() method is to turn on a vehicle’s lights.

Vehicle class
20	 								private	function	onLoop(evt:Event):void	{
21	 												if	(_moving)	{
22	 												_fuelAvailable--;
23	 												_milesTraveled	+=	_gasMileage;
24	 												if	(_fuelAvailable	<	1)	{
25	 																			this.removeEventListener(Event.ENTER_FRAME,	
26	 																																												onLoop,	false,	0,	true);
27	 																}
28	 																trace(this,	_milesTraveled,	_fuelAvailable);
29	 																this.x	=	_milesTraveled;
30	 												}
31	 								}
32	 								
33 public function changeGear(): void {
34 trace(this, "changed gear");
35 }
36
37 public function useAccessory():void {
38 trace(this, "vehicle lights turned on");
39 }

Next let’s see how to override the useAccessory() method in the Car and
Truck classes so we can customize its functionality without having to change
our API.

Car class
A public method also named useAccessory() is added to the Car class, seen in
lines 17 through 19 of the following excerpt. Remember that this would ordi-
narily conflict with the method of the same name in the Vehicle superclass,
because of inheritance. As discussed previously, we avoid this by preceding
the method declaration, including its access control modifier, with the over-
ride keyword.

The functionality of the method is the same in both classes: to use an acces-
sory. So the useAccessory() method in the Car class can call its existing
openSunroof() method.

13	 								public	function	openSunroof():void	{
14	 												trace(this,	"opened	sunroof");
15	 								}
16	 								
17 override public function useAccessory():void {
18 openSunroof();
19 }

The beauty of this arrangement is that you’ve created an API that employs
the flexible “use accessory” idea to . . . er . . . use accessories. Hereafter, you
can write instancename.useAccessory() and be free to change your Car class

Polymorphism

Chapter 6: OOP 141

without having to change the rest of your application. For example, you might
have many method calls using the syntax useAccessory() that all open car
sunroofs. If you later decide to change the accessory to something else, you
would need to edit only the Car class, not the many existing method calls, to
update your application.

Truck class
Now we’ll do the same thing with the Truck class, but with a twist. In some
cases when overriding, you may not want to entirely replace the original
behavior that exists in the superclass. When needed, you can execute the cus-
tom code in the subclass method and call the same method in the superclass.
To do this, add an instruction in the subclass method to explicitly call the
original superclass method, as seen in line 18 of the Truck class. In this case,
you can’t simply use the super() statement the way you did earlier, because
that only works in the constructor. Within a method, you must reference the
superclass using the super object, and follow it with the superclass method
you want to call. The edit is in bold.

13	 								public	function	lowerTailgate():void	{
14	 												trace(this,	"lowered	tailgate");
15	 								}
16	
17 override public function useAccessory():void {
18 super.useAccessory();
19 lowerTailgate();
20 }

Tires class and Document class
No change to the Tires class is required, but we’ll make two changes to the
document class Main to show the outcome of your efforts. First, in both Car
and Truck instances (compact and pickup), we’ll call the other method we
added, changeGear() (lines 18 and 25). This will show that the outcome of a
public method called from either car or truck will be the same if polymor-
phism is not in play.

Next, we’ll follow the example discussed and change our code from calling
openSunroof() and lowerTailgate(), for compact and pickup respectively, to
both instances calling useAccessory() (lines 19 and 26). This will make our
code a bit more flexible, as we can later change the accessories in one or both
classes and not have to change our FLA to benefit from the adjustment.

12	 								public	function	Main()	{
13	 												
14	 												compact	=	new	Car(21,	18);
15	 												compact.x	=	20;
16	 												compact.y	=	20;
17	 												addChild(compact);
18 compact.changeGear();
19 compact.useAccessory();
20	 												

Part II: Graphics and Interaction142

Polymorphism

21	 												pickup	=	new	Truck(16,	23);
22	 												pickup.x	=	20;
23	 												pickup.y	=	100;
24	 												addChild(pickup);
25 pickup.changeGear();
26 pickup.useAccessory();
27	 												
28	 												this.addEventListener(Event.ADDED_TO_STAGE,	
29	 																																		onAddedToStage,	
30	 																																		false,	0,	true);
31	 								}

An abbreviated output follows. As you can see, the car class traced its tires,
the compact instance changed gear, and then used its accessory. This opened
the sunroof, but nothing more because the Car class override replaced the
functionality of the Vehicle useAccessory() method, which turned on the
vehicle’s lights. The pickup behaved similarly, but in addition to lowering its
tailgate, also turned on its lights. This is because the Truck class also called
the useAccessory() method in the superclass, rather than just overriding it.

[object	Car]	has	high-performance	radial	tires
[object	Car]	changed	gear
[object	Car]	opened	sunroof
[object	Truck]	has	storm-ready	snow	tires
[object	Truck]	changed	gear
[object	Truck]	lowered	tailgate
[object	Truck]	turned	on	lights
[object	Car]	21	17
[object	Truck]	16	22
[object	Car]	42	16
[object	Truck]	32	21
...

Polymorphism and interfaces
Earlier, we said there’s another way to use polymorphism that doesn’t focus
on inheritance. Because it’s not based on method overriding between sub-
class and superclass, it’s applicable to more situations. The general idea is
the same, in that your coding is simplified by using the same method names
across different object types. However, it’s even more useful in that it adds
additional flexibility by not requiring that you type your object to a specific
class.

To help explain this, let’s sideline a bit to revisit two important ActionScript
3.0 topics: compile-time error checking and the display list. The benefit of
using data typing with your objects is that the ActionScript compiler will
warn you if you do something that’s incompatible with your stated data type.
By design, the simplest case means that you can only work with one data
type. (A look at Chapter 2 will reinforce this idea if you need a quick review.)

However, there are times when you may want things to be a bit more flexible.
For example, you may want to put either a MovieClip or Sprite into a vari-
able. If you type the variable as MovieClip, only a movie clip will be accepted.
To get around this, you can type a variable as the base class DisplayObject,

Polymorphism

Chapter 6: OOP 143

from which both MovieClip and Sprite descend (see Chapter 4 for more
information), and the compiler won’t object.

The downside to this is that it can be a bit too generic. If, for example, you
used a movie clip method on an object that the compiler only understood as
a DisplayObject, an error would occur:

var	thing:DisplayObject	=	new	MovieClip();
thing.play();

Why? Because, although play() is a legal movie clip method, the compiler
doesn’t understand that thing is actually a movie clip. It might be a sprite
(and that flexibility is the very reason we’re discussing this), and a sprite
doesn’t have a timeline.

This can be addressed by casting (also discussed in Chapter 4), but that kind
of defeats the purpose of what we’re doing. Instead, what if you could specify
a data type that was flexible enough to work with different kinds of objects,
but also knew which methods those objects supported? That’s where inter-
faces come in.

As we explained earlier, an interface is simply a list of public methods that
must be present in a class. The following is an example of an interface that
might be used with classes for devices that play music (like a radio or CD
player). All of the code for this discussion can be found in the polymorphism_
interface source code directory. The interface is called IAudible and is found
in the IAudible.as source file. It’s a very common practice to start the name of
all interfaces with a capital I, to differentiate them from classes.

1	 package	{
2	 				
3	 				public	interface	IAudible	{
4	 								
5	 								function	turnOn():void;
6	 								function	playSelection(preset:int):void;
7	 								function	turnOff():void;
8	 								
9	 				}
10	 }

As you can see, not even the content of a method is included. Only the name,
parameters and data types, and return data type (which are collectively called
the method’s signature) are included. Also, any import statements needed to
support included data types are required. (In this case, the compiler auto-
matically understands the int data type. However, if a data type represents a
class, such as MovieClip or Event, that class must be imported.)

Once you’ve created an interface, you can require a class to adhere to it by
implementing it using the implements keyword in the interface declaration, as
shown in line 3 of the following simple Radio class (Radio.as):

1	 package	{
2	 				
3	 				public	class	Radio	implements	IAudible	{
4	

Part II: Graphics and Interaction144

Polymorphism

5	 								public	function	Radio()	{
6	 												trace("radio	added");
7	 								}
8	 								
9	 								public	function	turnOn():void	{
10	 												trace("radio	on");
11	 								}
12	 								
13	 								public	function	playSelection(preset:int):void	{
14	 												trace("radio	selection:	channel",	preset);
15	 								}
16	 								
17	 								public	function	turnOff():void	{
18	 												trace("radio	off");
19	 								}
20	 				}
21	 }

All this class does is trace appropriate diagnostic statements, identifying itself
as “radio” each time. It complies with the interface because every method
required is present. Here is a CDPlayer class (CDPlayer.as) that also imple-
ments, and complies with, the same interface. The purpose of the class is
similar, but it identifies itself as “cd player” in each trace to demonstrate
unique functionality.

1	 package	{
2	 				
3	 				public	class	CDPlayer	implements	IAudible	{
4	
5	 								public	function	CDPlayer()	{
6	 												trace("cd	player	added");
7	 								}
8	 								
9	 								public	function	turnOn():void	{
10	 												trace("cd	player	on");
11	 								}
12	 								
13	 								public	function	playSelection(preset:int):void	{
14	 												trace("cd	player	selection:	track",	preset);
15	 								}
16	 								
17	 								public	function	turnOff():void	{
18	 												trace("cd	player	off");
19	 								}
20	 								
21	 								public	function	eject():void	{
22	 												trace("cd	player	eject");
23	 								}
24	
25	 				}
26	 }

Although the Radio and CDPlayer classes do different things (demonstrated
simply by the unique traces), the method names required by the interface
are present in both classes. This means that you can write a full application
using a radio, later swap out the radio with a CD player, but not have to
change any of your basic method calls—a key benefit of polymorphism.

Polymorphism

Chapter 6: OOP 145

The CDPlayer class also demonstrates that additional methods, not referenced
by an interface, can appear in classes—as shown by the eject() method in
lines 21 through 23. An interface is only designed to enforce a contract with
a class, making sure the required methods are present. It doesn’t restrict the
functionality of a class.

Simple example
All that remains is putting this into practice. The following basic implemen-
tation is found in the sound_system.fla source file. The key step in using
interfaces in this context is typing to the interface. If you type to Radio, you
can’t switch to CDPlayer later. However, if you type to IAudible, the compiler
will nod approvingly at both Radio and CDPlayer. Also, because the interface
rigidly enforces that all public methods are present, you don’t run into situa-
tions where the compiler is unsure if a method is legal. This is polymorphism
at its best. The following script starts with a radio and then switches to a CD
player, using methods in both cases without error.

var	soundSystem:IAudible	=	new	Radio();
soundSystem.turnOn();

soundSystem	=	new	CDPlayer();
soundSystem.turnOn();
soundSystem.playSelection(1);

Adding a sound system to your vehicles through composition
Now let’s practice what you’ve learned by composing the sound system
example into the ongoing vehicle exercise. This will review encapsulation,
composition, and polymorphism.

First, add another private property to the Vehicle class to hold the sound
system, just like we did when we composed Tires into the exercise. It’s typed
to the interface to allow a vehicle to have any sound system that implements
IAudible. The property can be seen in line 12 of the following excerpt from
the Vehicle.as source file:

8	 							private	var	_gasMileage:Number;
9	 								private	var	_fuelAvailable:Number;
10	 								private	var	_milesTraveled:Number	=	0;
11	 								private	var	_moving:Boolean;
12 private var _soundSystem:IAudible;

Next, provide public access to this property by adding a getter and setter,
again typed to the IAudible interface. The following excerpt, still in the
Vehicle.as source file, shows this addition in lines 64 through 70:

60	 								public	function	get	milesTraveled():Number	{
61	 												return	_milesTraveled;
62	 								}
63	 								
64 public function get soundSystem():IAudible {
65 return _soundSystem;
66 }

Part II: Graphics and Interaction146

Polymorphism

67
68 public function set soundSystem(device:IAudible):void {
69 _soundSystem = device;
70 }

The last class changes involve adding an instance of CDPlayer in the Car class,
and a Radio instance in the Truck class—just as we did when adding Tires in
the composition example. This excerpt from the Car class (Car.as) shows the
change at the end of the constructor:

7	 								public	function	Car(mpg:Number,	fuel:Number)	{
8	 												super(mpg,	fuel);
9	 												_tires	=	new	Tires("highperformance");
10	 												trace(this,	"has",	_tires.type,	"tires");
11 soundSystem = new CDPlayer();
12	 								}

This excerpt from the Truck class (Truck.as) also adds the sound system at
the end of the constructor. The edits in both classes appear in bold at line 11:

7	 								public	function	Truck(mpg:Number,	fuel:Number)	{
8	 												super(mpg,	fuel);
9	 												_tires	=	new	Tires("snow");
10	 												trace(this,	"has",	_tires.type,	"tires");
11 soundSystem = new Radio();
12	 								}

Finally, the document class is modified to use the sound system in both the
Car instance (compact) and Truck instance (pickup) when you click the stage.
Shown in bold in the Main.as excerpt below, lines 42 through 44 access the
CD player and radio through the soundSystem property. This triggers the get-
ter method in the respective classes and returns the car’s CD player and the
truck’s radio.

39	 								public	function	onClick(evt:MouseEvent):void	{
40	 												compact.go();
41	 												pickup.go();
42 compact.soundSystem.turnOn();
43 compact.soundSystem.playSelection(2);
44 pickup.soundSystem.turnOn();
45	 								}

The trace immediately reflects the fact that the car has a CD player and the
truck has a radio. Once you click the stage (shown by the gap in the output
that follows), the sound systems are used and the vehicles drive off into the
sunset.

[object	Car]	has	high-performance	radial	tires
cd	player	added
[object	Car]	changed	gear
[object	Car]	opened	sunroof
[object	Truck]	has	storm-ready	snow	tires
radio	added
[object	Truck]	changed	gear
[object	Truck]	lowered	tailgate
[object	Truck]	turned	on	lights

Navigation Bar Revisited

Chapter 6: OOP 147

cd	player	on
cd	player	selection:	track	2
radio	on
[object	Car]	21	17
[object	Truck]	16	22
...

Navigation Bar Revisited
Chapter 5 concluded with the start of a simple navigation bar created using
procedural programming techniques. We’ll now step through a new exercise
to demonstrate one way to approach the same task using OOP. This exercise
combines the use of standalone classes with classes that are linked to movie
clips in the main Flash file, LAS3Lab.fla—found in the nav_bar folder of the
chapter source archive.

This exercise is also the start of the navigation system for the cumulative
book/companion website collective project. In this chapter, we’ll use a basic
array to create five main buttons. Later, in Chapter 14, we’ll add submenus to
this system and load all the content dynamically through the use of XML.

The files and directories you create here will continue to be used and
enhanced throughout the remainder of this book, so establishing a logical
directory structure now will be very helpful. The FLA and document class
should reside in the top level of a new directory. Adjacent to the FLA, you’ll
eventually create two directories for classes. In later versions of the exercise,
you’ll create a com folder for general packages that you may use in multiple
projects. At this point, you’re ready to create an app folder for classes specific
to this project that you are less likely to reuse. As always, adopting naming
conventions and organization recommendations are personal choices that
you can adapt when your comfort increases.

The FLA requires two symbols in the library (included in the source):

MenuButtonMain

In our example, this is a movie clip that looks like a tab. (Its name was
influenced by the fact that submenus will be introduced to this example,
later in the book.) The symbol’s linkage class is called MenuButtonMain,
too. However, we’ll be using a custom class this time, rather than just rely-
ing on the automatic internal class created by Flash Professional for the
sole purpose of birthing the object with ActionScript. Therefore, the fully
qualified path name, which includes not only the class name but also
its package, is used as the symbol’s linkage class: com.learningaction-
script3.gui.MenuButtonMain.

HLineThick

This is simply a thick line, approximately 8 pixels tall and the width of
your file. This serves as the horizontal plane on which the main menu but-
tons reside to form the navigation bar. Unlike the button symbol, there’s no

NOTE

Push Yourself: A great way to make
sure you understand packages is to
reorganize the source files in the poly-
morphism_inheritance exercise by put-
ting the sound system files in their own
package. Pick a package name such as
app.las3.soundsystem, or try your
own reverse domain path. Don’t forget
to revise the package declaration line
in each affected class, and add import
statements to the other classes referenc-
ing your sound systems. An example of
this kind of organization can be found
in the polymorphism _packages direc-
tory.

Part II: Graphics and Interaction148

Navigation Bar Revisited

 external class for this line, as it has no functionality. Still, we’ll give it a linkage
class that includes a package location anyway: com.learningactionscript3.
gui.HLineThick. The result will be the same as using a class name without
package information; Flash Professional will still create a placeholder class
in the SWF. However, the nice thing about preplanning this way is that if
you ever want to add functionality to this asset, you can create a class in this
location and perhaps avoid additional edits to the FLA.

Document class
The entry point to this project is the document class, LAS3Main.as, which
follows. Lines 3 and 4 import the MovieClip class and custom NavigationBar
class, which you’ll create in a moment. Line 6 declares the class and extends
MovieClip. Lines 8 through 14 contain the class constructor.

This navigation bar can feature a variable number of buttons, determined
by the contents of an array seen in lines 9 and 10. Lines 11 and 12 creates an
instance of the NavigationBar class and passes in the array of labels for the
new buttons. Finally, line 13 adds the navigation bar to the display list.

1	 package	{
2	 				
3	 				import	flash.display.MovieClip;
4	 				import	com.learningactionscript3.gui.NavigationBar;
5	 				
6	 				public	class	LAS3Main	extends	MovieClip	{
7	
8	 								public	function	LAS3Main()	{
9	 												var	menuData:Array	=	["one",	"two",	"three",	
10	 																																		"four",	"five"];
11	 												var	navBar:NavigationBar	=	
12	 																new	NavigationBar(menuData);
13	 												addChild(navBar);
14	 								}
15	 				}
16	 }

NavigationBar
Next we need to create the NavigationBar class (NavigationBar.as), which will
be the home for our buttons. Here we’ll focus on the times that are appreciably
different in purpose from the prior class, or are otherwise noteworthy. Line
1, for example is the package declaration discussed several times previously
in the book, but is worthy of mention because it reflects the location of the
class—in the gui directory, within the com directory, found in the same folder
as the FLA. Lines 9 through 12 contain the class constructor, populate the
properties with the incoming argument data, and call the build() method:

1	 package	com.learningactionscript3.gui	{
2	
3	 				import	flash.display.MovieClip;
4	

Navigation Bar Revisited

Chapter 6: OOP 149

5	 				public	class	NavigationBar	extends	MovieClip	{
6	
7	 								private	var	_navData:Array;
8	
9	 								public	function	NavigationBar(navData:Array)	{
10	 												_navData	=	navData;
11	 												build();
12	 								}

In the next code segment, the build() method uses a for loop to add
each button to the navigation bar. The loop first creates an instance of the
MenuButtonMain class, passing the name of the button as a string for the but-
ton’s label. This string comes from the button array passed into the construc-
tor from the document class, and can be seen in line 9 of the prior class. Next,
the button is positioned horizontally by starting with a 20-pixel offset, and
then multiplying the width of the button plus a 2-pixel space for each button.
That is, the first button starts at 20 pixels because i begins as 0 and no further
offset is added. The second button starts at 20 and then 1 * (button width + 2)
is added, and so on. A fixed y location is also used, and each button is added
to the display list.

Finally, the aforementioned horizontal bar from the FLA library is added to
the bottom of the menu buttons (lines 22 through 25). Two things are impor-
tant here. First, the line is typed as MovieClip to give you a bit more flexibility.
We haven’t yet created a dedicated class for this object, and it’s a movie clip
in the FLA. Second, as a display object, this line movie clip can be a target of
mouse events. Because it has no active role in the navigation bar, we disable it
from interacting with the mouse by setting its mouseEnabled property to false.

13	 								private	function	build():void	{
14	 												for	(var	i:uint;	i	<	_navData.length;	i++)	{
15	 																var	menuBtn:MenuButtonMain	=	
16	 																				new	MenuButtonMain(_navData[i]);
17	 																menuBtn.x	=	20	+	i	*	(menuBtn.width	+	2);
18	 																menuBtn.y	=	75;
19	 																addChild(menuBtn);
20	 												}
21	 												
22	 												var	hline:MovieClip	=	new	HLineThick();
23	 												hline.y	=	100;
24	 												hline.mouseEnabled	=	false;
25	 												addChild(hline);
26	 								}
27	 				}
28	 }

MenuButtonMain
Finally, we present the MenuButtonMain class, which creates the button for each
menu added to the navigation bar. In addition to the previously explained
package declaration and imports, this class also uses two text classes origi-
nally discussed in Chapter 4—the display list class TextField and the text
automatic sizing and alignment class, TextFieldAutoSize. The text field goes

Part II: Graphics and Interaction150

Navigation Bar Revisited

into a private property called _btnLabel, and the remainder of the functional-
ity will be explained after the code.

1	 package	com.learningactionscript3.gui	{
2	
3	 				import	flash.display.MovieClip;
4	 				import	flash.events.MouseEvent;
5	 				import	flash.text.TextField;
6	 				import	flash.text.TextFieldAutoSize;
7	 				
8	 				public	class	MenuButtonMain	extends	MovieClip	{
9	 				
10	 				private	var	_btnLabel:TextField;
11	 				
12	 				public	function	MenuButtonMain(labl:String)	{
13	 												_btnLabel	=	new	TextField();
14	 												_btnLabel.autoSize	=	TextFieldAutoSize.CENTER;
15	 												_btnLabel.textColor	=	0xFFFFFF;
16	 												_btnLabel.text	=	labl;
17	 												_btnLabel.mouseEnabled	=	false;
18	 												addChild(_btnLabel);
19	
20	 												buttonMode	=	true;
21	 												useHandCursor	=	true;
22	 												addEventListener(MouseEvent.CLICK,	onClick,	
23	 																													false,	0,	true);
24	 								}
25	 								
26	 								private	function	onClick(evt:MouseEvent):void	{
27	 												trace(_btnLabel.text);
28	 								}
29	 				}
30	 }

Lines 13 through 18 apply to the text label inside the button. When a button
is created, a string that will serve as the button text is passed into the labl
parameter (custom-named to differentiate it from an ActionScript property
called label). Line 13 creates a new text field and line 14 sizes the field to the
minimum dimensions required to display the text—reducing the field at left,
right, and bottom, effectively centering the text. Line 15 colors all text in the
field white, and line 16 places the string from labl into the field.

Line 17 is particularly important in this example. The default mouse behavior
for a dynamic text field is to display a standard I-beam text cursor and allow
a varying degree of text editing (depending on properties we’ll discuss in
Chapter 10). As such, a text field used inside a button will follow this behavior
and intercept mouse events, preventing the button from behaving properly.
Line 17 disables mouse interaction with the text field, so it won’t interfere, and
so the mouse will display a pointer cursor when interacting with the button.
Line 18 adds the field to the button.

Lines 20 through 23 apply to the button itself. Although a movie clip will
react to mouse events, it will not exhibit the mouse cursor feedback associat-
ed with a button. For example, it won’t switch from a pointer to a finger. Line

What’s Next?

Chapter 6: OOP 151

20 tells the movie clip to behave like a button, and line 21 enables the button
mouse cursor. Lines 22 and 23 assigns a mouse click listener to the button.

For simplicity, this exercise merely traces the text of each button clicked to
the Output panel. Later in the book, we’ll show you how to format text and
load external assets using the next generation of this navigation bar. Figure
6-4 shows the final navigation bar.

Figure 6-4. The finished navigation bar

What’s Next?
Although we’ve really just scratched the OOPy surface, this chapter presented
some key concepts of object-oriented programming. As the chapter unfolded,
and each section extended the vehicle/car/truck example, you addressed
inheritance, added composition, improved data security with encapsulation,
and simplified your method vocabulary with polymorphism. From a tutorial
standpoint, the final set of files demonstrated basic best practices in these
areas.

You also learned how to create a system that uses document classes as well as
standalone classes that require instantiation. Finally, you learned how to link
a class to a movie clip to give a symbol instance its own behavior.

In the next chapter, we’ll look at animating with ActionScript. You’ll learn:

• Movement using the x- and y-coordinate system, velocity, and acceleration

• Light geometry and trigonometry, including circular movement, angle
and distance calculation, and more

• Simplified physics, including gravity, friction, and springs

• ActionScript alternatives to timeline tweens, including easing

• Particle systems that put several of these principles into action while gen-
erating endless individual particles

NOTE

Practice Your Skills: Now would be
a great time to practice what you’ve
learned in the previous chapter. Try to
replace the trace() statement in this
example with a navigation instruction
that would control a movie clip timeline.
An example of this change is included in
the source files in the movie_clip_navi-
gation directory.

153

IN THIS CHAPTER

Basic Movement

Simple Physics

A Basic Particle System

Simple Collision Detection

Geometry and
Trigonometry

Programmatic Tweening

What’s Next?

From your very first experiment to the umpteenth time you’ve performed a
familiar task, moving assets with code can be very gratifying. In addition to
creating more dynamic work by freeing yourself from the permanency of the
timeline, there is something very immediate and pleasing about controlling
the motion of an object purely with ActionScript.

Because programming motion can cover many concepts, we’ve chosen to
focus on a few key topics in this chapter. For each group of ideas we intro-
duce, we offer what we call simplified simulations—that is, we don’t maintain
that our examples accurately reflect real-world scenarios. When discussing
physics, for example, we won’t be accounting for every force that can act on
an object. On the contrary, we’ll try to provide simple implementations that
you can easily integrate into your own projects.

We also hope to show that math can be your friend. To some of you, this
may be a given, but to others, math can be a little intimidating. If you’re in
the latter group, we hope to reduce what may be a knee-jerk reaction to noth-
ing more than working with numbers. Understanding just a few practical
applications of mathematical or scientific principles can really go a long way.
Before you know it, you’ll be creating what seem like complex animations
with little effort. You’ll be building grids of movie clips, animating planets
in elliptical orbits, shooting projectiles in games, building novel navigation
systems, and more.

In this chapter, we’ll look at the following topics:

• Basic Movement. We’ll start with simple movement, updating x and y
coordinates using velocity, acceleration, and easing.

• Physics. Gravity, friction, and elasticity add a bit of realism to anima-
tions, and you may be surprised how easy they are to simulate.

• A Basic Particle System. Learning by doing is important, so we’ll com-
bine movement, physics, and object-oriented programming to create a
class-based particle system.

motIon

CHAPTER 7

Part II: Graphics and Interaction154

Basic Movement

• Collision Detection. Next we’ll discuss how to detect collisions with
other objects, points, and the boundaries of the stage.

• Geometry and Trigonometry. Even basic geometric and trigonometric
principles can make animated objects move in wonderful ways. We’ll
show you how to determine the distance between two points, how to
move an object along a specific angle, how to animate objects in a circu-
lar path, and how to rotate objects to point at a specific location. We’ll
also combine some of these skills to create a novel navigation widget and
another basic particle system.

• Programmatic Tweening. Scripting movement entirely from scratch
affords the greatest flexibility but also requires a fair amount of labor.
Sometimes, a prewritten method or two can satisfy a basic need for
motion. We’ll demonstrate ActionScript’s Tween class and its occasional
partner in crime, the Easing package.

• Using a Tweening Engine: TweenLite. Finally, we’ll show you an alter-
native to ActionScript’s built-in tweening options (and, at the same time,
give you some experience using third-party ActionScript 3.0 packages) by
introducing the fabulous TweenLite tweening engine.

Basic Movement
When discussing scripted motion, a good place to begin is simple move-
ment through updating x and y coordinates of a display object. Whether
you realize it or not, you’re probably already used to thinking of points in
two-dimensional space as x and y coordinates. However, you’re probably used
to thinking about positive x values moving to the right and positive y values
moving up, the way simple graphs are usually expressed.

The Flash coordinate system differs a bit from the typical x-, y-coordinate
system with which you may be familiar. The x values still increase to the
right, but the (0, 0) point of the stage is in the upper-left corner, and the y
values increase when moving down. This becomes important when you want
an object to travel up, because you must subtract from the y property. For
example, if a MovieClip starts at an x, y position of (100, 100), getting it to
move up by 10-pixel increments means changing its y property to 90, 80, 70,
and so on. This inverted y axis also makes a difference when creating practi-
cal user interface elements, such as sliders. We’ll create a slider in Chapter 11
to control sound volume, in which the inverted y value plays a part.

To increase or decrease a value, you simply add to, or subtract from, the
previous value. You may recall from Chapter 2 that the increment operator,
two plus signs (++), are equivalent to value = value + 1, and two minus signs
(--) represent value = value – 1. We also discussed the compound assignment
operators += and -=, which add or subtract (respectively) whatever is on the
right of the equal sign from the existing value of the variable or property on

Basic Movement

Chapter 7: Motion 155

the left of the equal sign. Assuming two movie clips begin at (0, 0), where will
they be after this code?

mc.x++;
mc.y--;
mc2.x	+=	10;
mc2.y	-=	10;

The mc movie clip ends up at (1, –1) and the mc2 movie clip ends up at (10,
–10). In this chapter, you’ll be moving objects around the stage in this way,
as well as by using more involved formulas and variables. To give you some
perspective on what lies ahead, it will help to understand the terms speed,
velocity, and acceleration, which we use throughout the chapter:

Speed

Speed, or how fast an object is moving, is a scalar quantity, which means
it’s a value that can be expressed with magnitude alone. That is, you can
drive your car at 60 miles per hour, but that speed doesn’t imply a direc-
tion. We can create a variable or object property called speed, but it won’t
help animate a display object until we add a direction to the mix.

Velocity

Velocity is a constant speed of motion, but adds direction. It’s called a
vector quantity because it’s expressed with both magnitude and direction.
One easy way to do this when animating objects in ActionScript is by
referring to the x and y properties of a display object. For example, mov-
ing a movie clip 20 pixels in the x direction sends it to the right, represent-
ing speed and direction.

Acceleration

Acceleration is the rate of change in velocity and is also a vector quantity,
requiring both magnitude and direction. For example, an object that
accelerates to the right has an ever increasing change in its x property.

These distinctions may be subtle, but they are helpful when understanding
how to get from point a to point b. You certainly don’t have to memorize
them, but understanding the basics of each term will help you plan, and
even troubleshoot, your code. If a display object is moving at a constant rate
of speed when it’s meant to move faster over time, you may realize that you
forgot to add acceleration before updating your x or y values.

Velocity
Starting out, velocity will be expressed as an increase or decrease of x and y
coordinates. Later on, we’ll show you how to move an object using an angle
but, for now, remember that incrementing the x property by 4 means a veloc-
ity of 4 pixels to the right. Breaking this update into separate components
for position and velocity can make this clearer and easier to work with—
particularly when additional factors enter the equation such as acceleration,
gravity, friction, and so on.

Part II: Graphics and Interaction156

Basic Movement

The following code, found in velocity.fla in the companion source files, cre-
ates a ball from a library movie clip with the linkage class, Ball. It then adds 4
pixels to the ball’s x and y coordinates each time the enter frame event occurs.
This means the ball moves down and to the right, as depicted in multiple
frames in Figure 7-1.

1	 var	ball:MovieClip	=	new	Ball();
2	 ball.x	=	ball.y	=	100;
3	 addChild(ball);
4	
5	 var	xVel:Number	=	4;
6	 var	yVel:Number	=	4;
7	
8	 addEventListener(Event.ENTER_FRAME,	onLoop,	false,	0,	true);
9	 function	onLoop(evt:Event):void	{						
10	 				ball.x	+=	xVel;
11	 				ball.y	+=	yVel;
12	 }

If the ball’s x velocity is 4, how far does the ball move along the x axis in one
second? This an important question because the ball’s speed is dependent
upon the FLAs frame rate. Because the function is executed every time an
enter frame event is received, a frame rate of 20 frames per second (fps) yields
a distance of 80 pixels per second—approximately one inch on a 72-pixel-
per-inch monitor—in the x direction. Next let’s look at how to change that
ball’s velocity.

Acceleration
Changing the velocity over time accelerates or decelerates an object. Consider
a ball that moves 4 pixels in the x direction every time an enter frame event
occurs; you can easily calculate the ball’s movement as 4 + 4 + 4 + 4 and
so on. In 3 seconds the ball would travel 240 pixels (4 pixels per frame * 20
frames per second * 3 seconds). If we accelerate the object 1 pixel per enter
frame event, however, the ball’s changing velocity would be 4 + 5 + 6 + 7, and
so on. At the same frame rate of 20 frames per second, the ball would travel
2070 pixels in the same 3 seconds! Acceleration is the compound interest of
motion.

Figure 7-2 illustrates the effect of acceleration by depicting an increasing
distance traveled by a ball each time an update occurs. You can illustrate this
change more dramatically by changing acceleration in only one direction. All
you have to do is increment velocity by acceleration every time the function
executes. The source file acceleration.fla demonstrates this idea by adding
acceleration to the x velocity. This file augments the velocity example by add-
ing lines 7 and 14, shown in bold:

1	 var	ball:MovieClip	=	new	Ball();
2	 ball.x	=	ball.y	=	100;
3	 addChild(ball);
4	
5	 var	xVel:Number	=	4;
6	 var	yVel:Number	=	4;

NOTE

See the “Adding Custom Symbol
Instances to the Display List” section of
Chapter 4 to review how to use a link-
age class.

Figure 7-1. Simulated movement of a
movie clip, at a constant velocity, down
and to the right

Figure 7-2. Acceleration increasing the
velocity over time, simulated by increased
movement in each frame

Basic Movement

Chapter 7: Motion 157

7 var xAcc:Number = 1;
8	
9	 addEventListener(Event.ENTER_FRAME,	onLoop,	false,	0,	true);
10	 function	onLoop(evt:Event):void	{
11	 				ball.x	+=	xVel;
12	 				ball.y	+=	yVel;
13	
14 xVel += xAcc;
15	 }

Easing
One of the biggest challenges to creating good animated sequences is bring-
ing realism to your work. As any animator will tell you, this is a lifelong effort,
but adding easing to your animation is a very quick way to take a big step
towards that goal. Easing is so named because when used, an object appears
to “ease in” to an animation, accelerating as the animation progresses, or
“ease out” of an animation, decelerating as the animation finishes. As a crude
real-world example, think about merging onto a highway. As you approach
the highway from the on ramp, you slowly increase your speed looking for a
chance to join the stream of vehicles. You continue to add acceleration, find
an opening, and ease into the highway traffic.

Later in this chapter we’ll show you how to use preexisting easing equations
but it’s very useful to first understand the basics behind easing. For one
thing, writing your own simple easing code helps you learn more about pro-
gramming motion. More importantly, however, integrating easing into your
scripts is also more flexible. The most common use of easing is when adding
it to tweens—sequences where the computer calculates the interim property
values between starting and finishing frames. However, these starting and
finishing values are typically preset in tweens. Writing your own easing code
means you can add it to any other scripted motion, even when values are
changing on the fly.

The simplest easing equation is a formula akin to Zeno’s paradox. This philo-
sophical idea says that, when moving from one point to another, you never
really reach your ultimate destination because you’re dividing the remaining
distance with every movement. If you divide the distance between point a
and point b in half with every step, theoretically, you could never reach point
b. As a philosophical idea this may be interesting, but in practical terms,
objects reach their intended destinations all the time. In fact, we can use a
formula derived from Zeno’s paradox in animation, to slow down an object
as it approaches its new location, as shown in Figure 7-3.

Figure 7-3. Zeno’s paradox, a simple way to depict friction or easing

Part II: Graphics and Interaction158

Basic Movement

The following example, found in the easing.fla source file, demonstrates this
principle; it first creates a ball movie clip from the library, and then calls the
onLoop() function every enter frame. This updates the movie clip’s x and y
coordinates every enter frame by calling the zeno() function, where the eas-
ing equation does its work:

1	 var	ball:MovieClip	=	new	Ball();
2	 ball.x	=	ball.y	=	100;
3	 addChild(ball);
4	
5	 addEventListener(Event.ENTER_FRAME,	onLoop,	false,	0,	true);
6	 function	onLoop(evt:Event):void	{
7	 				ball.x	+=	zeno(ball.x,	mouseX,	2);
8	 				ball.y	+=	zeno(ball.y,	mouseY,	2);
9	 }
10	
11	 function	zeno(orig:Number,	dest:Number,	reducer:Number):Number	{
12	 				return	(dest	-	orig)	/	reducer;
13	 }

The zeno() function starts by subtracting the starting location (the ball’s cur-
rent x or y location) from the ending location (the mouse x or y location) to
determine the distance that must be traveled. It then divides that distance by
an amount used to slow the progress. Finally, it adds that diminished value to
the current coordinates of the ball and the process begins again. The result is
that every time you move the mouse, the ball begins moving again and slows
down as it approaches the new mouse position.

In this example, the amount is cut in half every time simply to relate back to
the explanation of Zeno’s paradox. Discussing only the horizontal position
for simplicity, if the ball must move from an x coordinate of 100 to an x coor-
dinate of 200, the first few updated positions are as follows. (Also shown are
the formula values used to calculate each position.) The effect is that the ball
eases in to the final destination.

starting	point										:100
100	+=	(200	-	100)	/	2		:150
150	+=	(200	-	150)	/	2		:175
175	+=	(200	-	175)	/	2		:187.5

You don’t always have to cut the remaining distance in half, of course, when
using this formula. In fact, this is how you vary an animation’s deceleration.
Numbers higher than 2 require more time for the object to reach its destina-
tion, and lower numbers finish the animation more quickly. The easing.fla
source file in the companion source code demonstrates this by passing 8 into
the reducer parameter of the zeno() function.

Best of all, every time you move the mouse in this example, the equation auto-
matically adjusts because the starting and ending locations are dynamic. The
starting point will always be the current location of the ball, and the ending
point will always be the mouse location.

NOTE

Although the examples in this book are
necessarily general and concise for tuto-
rial purposes, you may sometimes want
to add tolerance factors when applying
them to your own projects. When eas-
ing, for example, you may want to add
a conditional statement that removes an
event listener when your display object
comes close enough to your destination.
This will eliminate unnecessary activity
in your scripts, and you can also use the
opportunity to snap your display object
to your exact destination, if important.

The upcoming section “A Basic Particle
System” shows a variant of this
approach by removing a listener when a
particle leaves the stage.

Simple Physics

Chapter 7: Motion 159

Simple Physics
In the quest for more expressive animation, you will find that adding physics
to animations, games, and similar projects can really elevate them to another
level of user enjoyment. The visual appearance and, in interactive scenarios,
even the user experience of a project are sometimes dramatically enhanced
by surprisingly small code additions.

We’re going to be discussing some basic physics principles in this section,
but it’s more important for you to understand their effects than to focus
minutely on the math and science behind them. This is because the formulas
offered here are necessarily simplified, or even adapted, from their real-world
counterparts. Once you’re comfortable with the principles in general, you can
refine formulas, account for additional variables, and so on, to improve their
realism. For example, it’s often helpful to first simulate the simple orbit of
a planet before considering the orbit’s decay, the gravitational attraction of
other bodies, and so on.

Gravity
What happens when you toss a ball into the air? It goes up, starts to slow
down as gravity affects its rate of ascent, it stops momentarily at the top of
its journey, and then the ball starts moving faster again as gravity starts to
accelerate its trip downward.

If you think about it carefully, a simple ActionScript simulation of gravity
requires little more than acceleration in the y direction. The following code,
found in the gravity.fla source file, requires only minor changes to the previ-
ous acceleration example. Here we’ll focus on acceleration in the y direction,
and we’ll start with a negative y velocity to start the ball moving upward:

1	 var	ball:MovieClip	=	new	Ball();
2	 ball.x	=	ball.y	=	100;
3	 addChild(ball);
4	
5	 var	xVel:Number	=	4;
6 var yVel:Number = -10;
7 var yAcc:Number = 1;
8	
9	 addEventListener(Event.ENTER_FRAME,	onLoop,	false,	0,	true);
10	 function	onLoop(evt:Event):void	{
11	 				ball.x	+=	xVel;
12	 				ball.y	+=	yVel;
13	 				
14 yVel += yAcc;
15	 }

The ball begins moving at 10 pixels per enter frame event, but acceleration
adds 1 to the y velocity each iteration. As such, the velocity decreases from –10
to –9 to –8, and so on, slowing the ball’s ascent, just as if gravity were coun-
teracting the upward force of the toss. Eventually, the y velocity reaches zero at
the height of the toss, where the upward force and gravity reach equilibrium.

NOTE

Remember that, in the ActionScript
coordinate system, increasing y values
move an object downward.

Part II: Graphics and Interaction160

Simple Physics

Then, as we continue to add 1 to the y velocity, its value becomes 1, then 2,
then 3, and so on, as the ball begins to accelerate downward due to the effect
of gravity. Figure 7-4 shows the effect of the simulated gravity by depicting
several frames of the animation at once. When a ball is tossed in the air, grav-
ity slows its rate of ascent and then increases the rate at which it falls.

Friction
All other things being equal, if you slide a hockey puck along three surfaces—
a street, a marble floor, and an ice rink—the puck will travel three different
distances due to friction. Friction will be highest on the street, building up
resistance to motion between the puck and the street surface, limiting the
progress of the puck. Friction will be reduced on the marble surface, and low-
est on the ice, allowing the puck to travel the farthest.

A simple way to add friction to an animation is to create a friction coefficient.
A coefficient is a modifier that alters an object’s property, the way friction
alters the speed of the hockey puck. It’s often a multiplier, which we’ll use in
this example, multiplying by a value less than 1 to reduce an effect, or by a
value grater than 1 to exaggerate an effect.

To demonstrate this, we’ll adapt the prior velocity and gravity examples to
create the friction.fla source file. The example begins with x and y velocities
of 10 in lines 5 and 6. Like the gravity example, we’ll update the velocity
before adding it to the ball’s x and y properties. This time, however, instead
of accelerating the ball in the y direction only, we’re going to decelerate the
ball’s movement in both directions, as if friction was slowing its movement.

Remember that friction hinders movement, so you want to choose a friction
value between 0 and 1 to slow down the motion. If you choose a value greater
than 1, the motion would speed up, while a negative friction coefficient would
move an object in reverse. Depending on the application, you can vary the
number. Perhaps you might use 0.95 for ice, 0.90 for marble, and 0.60 for
asphalt. With a friction coefficient in place in line 7, we can then multiply the
x and y velocities by this value in lines 11 and 12. Then we can update the ball’s
x and y positions in lines 13 and 14.

1	 var	ball:MovieClip	=	new	Ball();
2	 ball.x	=	ball.y	=	100;
3	 addChild(ball);
4	
5	 var	xVel:Number	=	10;
6	 var	yVel:Number	=	10;
7	 var	frCoeff:Number	=	0.95;
8	
9	 addEventListener(Event.ENTER_FRAME,	onLoop,	false,	0,	true);
10	 function	onLoop(evt:Event):void	{
11	 				xVel	*=	frCoeff;
12	 				yVel	*=	frCoeff;
13	 				ball.x	+=	xVel;
14	 				ball.y	+=	yVel;
15	 }

Figure 7-4. The effect of gravity on
acceleration

NOTE

To continue your exploration of gravity,
velocity, and acceleration, visit the book’s
companion website. The “More Motion
(Gravity)” post includes a file called
wall_bounce.fla that demonstrates all
these concepts and adds several addi-
tional features. Included are condition-
als to change the ball’s direction when
hitting a stage boundary (which we’ll
discuss in a moment), bounce behavior,
and even a texture to simulate rotation
during bouncing.

Simple Physics

Chapter 7: Motion 161

In addition to simulating friction, this formula is another type of easing. The
big difference here is that you don’t need a final value for the formula to work.
That is, in the previous “Easing” section, the formula diminished the distance
between two known points by adding ever decreasing values to an object’s
current location. In this case, all you need to know is the degree to which the
velocities of an object will be reduced. Where that object ends up depends on
the velocities and coefficients used.

Elasticity
The last simple physics principal we’ll look at is elasticity. Elastic properties
can be applied to simulate springs, of course, but can also be used as yet
another easing method.

The following example uses elasticity to settle a movie clip into a new loca-
tion. The movie clip moves from a starting position to the mouse location,
bouncing around the destination until settled. Figure 7-5 simulates this by
showing that each successively larger position gets closer to the final location,
indicated by the red crosshairs.

origin 12 34 5

Figure 7-5. A basic depiction of easing using Hooke’s law of elasticity

The ball in the figure overshoots the destination just like a spring, stopping
at position 1. It then bounces back, but not quite as far, to position 2. This
continues, bouncing to position 3, then 4, and ultimately settling at position 5.

Elasticity is calculated using Hooke’s law. Hooke’s law says that the force
exerted by a spring is linearly proportional to the distance it’s stretched or
compressed. It’s expressed with the formula F = –kx. F is the resulting force
of the spring, –k is a spring constant (the strength of the spring, so differ-
ent springs can have different elasticities), and x is the distance to which the
spring is stretched or compressed. This formula determines the power of the
spring but eventually all springs return to their original state due to conser-
vation of energy. So we’ll also add a damping factor to reduce the bounce of
the spring over time.

The following script, found in the elasticity.fla source file, starts as the prior
examples have begun, by creating and adding a movie clip to the display list
(lines 1 through 3), and initializing x and y velocity variables (lines 5 and 6).
It then creates a listener in line 8, which calls the listener function in lines 9
through 14, every enter frame. In turn, the velElastic() function determines
the x and y velocity of the movie clip, and the clip’s x and y properties are
updated.

NOTE

Developer extraordinaire Seb Lee-
Delisle is developing an ActionScript
animation library called Tweaser, based
on easing coefficients that alter prop-
erty values over time. Other animation
libraries work by using the starting and
ending points of the motion. Tweaser, on
the other hand, works by using a start-
ing point and an easing coefficient so
you don’t have to have a final destina-
tion for the animated object. This adds
a bit of freedom to the task of anima-
tion. Tweaser was in beta at the time of
this writing, but you can learn more at
http://www.tweaser.org.

NOTE

Although not vital to this discussion,
the elasticity equation is expressed as a
negative because the force given off by
the spring is not in the same direction
as the force applied to the spring. This is
called a restorative force because it helps
restore a property to its prior value.

http://www.tweaser.org

Part II: Graphics and Interaction162

A Basic Particle System

Passed to the function in lines 10 and 11 are the movie clip’s starting and end-
ing positions, the spring constant and damping factor, and the current veloci-
ties that will be changed by the formula. The last part of the listener function
includes updates to the x and y locations of the movie clip, using the newly
calculated velocities. The elasticity calculation follows in the velElastic()
function, which we’ll discuss after the code.

1	 var	ball:MovieClip	=	new	Ball();
2	 ball.x	=	ball.y	=	100;
3	 addChild(ball);
4	
5	 var	xVel:Number	=	0;
6	 var	yVel:Number	=	0;
7	 												
8	 addEventListener(Event.ENTER_FRAME,	onLoop,	false,	0,	true);
9	 function	onLoop(evt:Event):void	{
10	 				xVel	=	velElastic(ball.x,	mouseX,	0.3,	0.8,	xVel);
11	 				yVel	=	velElastic(ball.y,	mouseY,	0.3,	0.8,	yVel);
12	 				ball.x	+=	xVel;
13	 				ball.y	+=	yVel;
14	 }
15	 function	velElastic(orig:Number,	dest:Number,	
16	 																				springConst:Number,	
17	 																				damp:Number,	vel:Number):Number	{
18	 				var	elasticForce:Number	=	-springConst	*	(orig	-	dest);
19	 				var	newVelocity:Number	=	(vel	+	elasticForce)	*	damp;
20	 				return	newVelocity;
21	 }

All that remains is the elasticity calculation itself. Line 18 uses Hooke’s law
to calculate the force of the spring by multiplying the spring constant (the
strength of the spring) by the distance between the starting point and the
mouse location (the distance the metaphorical spring is stretched). Line 19
calculates the new velocity affected by the spring. It adds the newly calcu-
lated elastic force to the velocity, but reduces the value due to conservation of
energy. If this dampening effect were not in place, the spring would bounce
infinitely.

Both the strength of a spring (the spring constant), and the dampening effect
on its force, are arbitrary values that can be adjusted to fit the needs of your
projects. In this example, each successive force of the spring will be only 80
percent (0.8) of the prior force.

A Basic Particle System
Now let’s combine several of the things you’ve learned—including velocity,
acceleration, gravity, and object-oriented programming—to create a class-
based project. Particle systems are a way of simulating complex objects or
materials that are composed of many small particles, such as fluids, fireworks,
explosions, fire, smoke, water, snow, and so on.

Complex systems are achievable because individual particles have their own
characteristics and behave autonomously. Further, the particles themselves

A Basic Particle System

Chapter 7: Motion 163

are typically easy to adjust, or even replace, making it possible to alter the
appearance or functionality of the system relatively easily. These are also char-
acteristics of object-oriented programming, so it’s not surprising that particle
systems are often written using this approach.

As you’re just getting started, this is a simple particle system using only two
classes, which looks a little bit like a primitive water fountain. Blue circles
shoot up out of the “fountain” and then fall down under the effect of grav-
ity. Figure 7-6 shows what the system looks like, and you can get a look for
yourself by testing the particle_system.fla source file.

The particle
The first step in creating the system is to create a Particle class, found in
the Particle.as class file. This class will give life to each individual particle.
Reviewing class syntax, line 1 creates the class package, lines 3 and 4 import
the required classes, and line 6 declares the class and extends Sprite to
inherit display object properties like x and y. Lines 8 through 12 declare the
position, velocity, and gravity properties that are private to this class.

1	 package	{
2	 				
3	 				import	flash.display.Sprite;
4	 				import	flash.events.Event;
5	 				
6	 				public	class	Particle	extends	Sprite	{
7	 								
8	 								private	var	_xPos:Number;
9	 								private	var	_yPos:Number;
10	 								private	var	_xVel:Number;
11	 								private	var	_yVel:Number;
12	 								private	var	_grav:Number;

Next, the class constructor creates and initializes the particle. Lines 17
through 21 populate the private properties with values passed into the con-
structor when the particle is instantiated. These parameters all have default
values, but our example will vary their values when creating each particle.

Next, the constructor adds visual content to the particle by creating an
instance of the Ball class from the FLA library and adds it to the display list.
This ball movie clip is nothing more than a blue circle with a radius of 20
pixels. Five particle properties are then populated in lines 26 through 29: x, y,
alpha, scaleX, and scaleY, their values coming into the class during instan-
tiation. The last line of the constructor adds an enter frame event listener to
the particle.

13	 								public	function	Particle(xPos:Number=100,	yPos:Number=100,	
14	 																																	scale:Number=1,	opacity:Number=1,
15	 																																	xVel:Number=4,	yVel:Number=-10,	
16	 																																	grav:Number=1)	{
17	 												_xPos	=	xPos;
18	 												_yPos	=	yPos;
19	 												_xVel	=	xVel;
20	 												_yVel	=	yVel;

Figure 7-6. A particle system simulating a
primitive water fountain

Part II: Graphics and Interaction164

A Basic Particle System

21	 												_grav	=	grav;
22	 												
23	 												var	ball:Sprite	=	new	Ball();
24	 												addChild(ball);
25	 												
26	 												x	=	_xPos;
27	 												y	=	_yPos;
28	 												alpha	=	opacity;
29	 												scaleX	=	scaleY	=	scale;
30	 												
31	 												addEventListener(Event.ENTER_FRAME,	onRun,	
32	 																													false,	0,	true);
33	 								}

The event listener function, onRun(), uses the techniques discussed in the
velocity and gravity examples of this chapter—first altering the y velocity
with the effect of gravity, and then updating the x and y properties of the par-
ticle every enter frame. It also adds one new thing. A conditional statement
determines whether the particle position is off the stage on the left or right
(line 41), or top or bottom (line 42). If so, the event listener is removed in line
43, and the particle is removed from the display list in line 44.

34	 								private	function	onRun(evt:Event):void	{
35	 												_yVel	+=	_grav;
36	 												_xPos	+=	_xVel;
37	 												_yPos	+=	_yVel;
38	 												x	=	_xPos;
39	 												y	=	_yPos;
40	
41	 												if	(_xPos	<	0	||	_xPos	>	stage.stageWidth	
42	 																||	_yPos	<	0	||	_yPos	>	stage.stageHeight)	{
43	 																removeEventListener(Event.ENTER_FRAME,	onRun);
44	 																parent.removeChild(this);
45	 												}
46	 								}
47	 				}
48	 }

Note, in line 44, that an object can’t directly remove itself using syntax like
removeChild(this). A display object to be removed must be a child of the
object calling the removeChild() method, and an object can’t be a child of
itself. One way to remind yourself about this is to precede the method call
with the optional this reference to clarify which object is calling the method.
Ideally, writing this.removeChild(this) shows that this can’t be a child of
this. Instead, the object instructs its parent to remove itself and, as the object
is a child of its parent, the syntax works just fine.

The system
The following simple document class ParticleDemo is responsible for creating
the particles. It creates a particle every time an enter frame event is received
and adds it to the display list. The variance in the system comes from the
values passed into the Particle class in the listener method onLoop().

NOTE

Because particle systems can create
hundreds or even thousands of particles
a second, it’s very easy to run out of
memory if you don’t remove listeners,
display objects, and particle storage
(such as a variable or array).

A Basic Particle System

Chapter 7: Motion 165

1	 package	{
2	
3	 				import	flash.display.MovieClip;
4	 				import	flash.events.Event;
5	
6	 				public	class	ParticleDemo	extends	MovieClip	{
7	
8	 								public	function	ParticleDemo()	{
9	 												addEventListener(Event.ENTER_FRAME,	onLoop,	
10	 																													false,	0,	true);
11	 								}
12	 								
13	 								private	function	onLoop(evt:Event):void	{
14	 												var	p:Particle	=	new	Particle(mouseX,
15	 																																										mouseY,
16	 																																										(Math.random()*1.8)	+	0.2,
17	 																																										(Math.random()*0.8)	+	0.2,
18	 																																										(Math.random()*10)	-	5,
19	 																																											Math.random()*-10,
20	 																																								1);
21	 												addChild(p);
22	 								}
23	 				}
24	 }

Recalling the signature of the Particle class, its parameters are xPos, yPos,
scale, opacity, xVel, yVel, and grav. The corresponding order of arguments
passed into the class when a particle is instantiated (starting in line 14), deter-
mine its appearance and behavior. To begin with, the particle is born at the
mouse location (mouseX, mouseY).

The formulas for scale, opacity, xVel, and yVel are then randomized within
specific ranges. The random() method of the Math class always generates a
random number greater than or equal to 0 and less than 1. Therefore, to pick
a random value greater than or equal to 0 and less than a number other than
1, you must multiply the decimal value generated by the desired maximum
value. Jumping ahead to the y velocity, for example, the ultimate value will
be greater than or equal to 0 and less than –10. If a range that does not start
with 0 is desired, an offset must be applied.

For example, the scale value is not just a random number times 2. This may
result in a scale of 0 and the particle would disappear. The 0.2 offset guaran-
tees this will not happen. If the random number selected is 0 or very near 0,
the minimum size of 0.2 will be used (0 + 0.2). If the random number chosen
is near 1, the ultimate outcome is 2 (1.8 + 0.2). The opacity of the particle is
determined the same way with the next formula, yielding a value between 0.2
and 1 (20 and 100 percent, respectively).

The x velocity is calculated in a similar manner, but this time the offset value
is subtracted from the possible range of random numbers. If the random
number is near 0, the resulting value is 0 minus 5, or –5. If the random num-
ber is near 1, the outcome will be 10 minus 5, or 5. Therefore, the possible x
velocity values are between –5 and 5.

The last argument represents gravity, for which a constant value of 1 is used.

NOTE

A signature describes a constructor or
method by including its name; param-
eters, data types, and possible default
values; and return data type. This lets
a programmer know how to invoke the
constructor or method.

Part II: Graphics and Interaction166

Simple Collision Detection

The FLA file
The particle_system.fla source file uses the ParticleSystem class as a docu-
ment class, so there is no additional code therein. If you prefer not to use
the document class approach, however, all you need to do is instantiate the
ParticleSystem class and add it to the display list.

1	 var	ps:ParticleSystem	=	new	ParticleSystem();
2	 addChild(ps);

Particle systems are a lot of fun and can lead to many fruitful experiments.
Run this system several times, modifying the values sent to the Particle
class. Increase the range of x and y velocities for a larger spread of particles,
or decrease the force of gravity to see what particle life is like on the moon.
Let your creativity flow.

Simple Collision Detection
Once you get your display objects on the move, you can add code that will
react when objects collide. For example, games like pool, pinball, and plat-
form scrollers wouldn’t be possible without collisions. We’ll show you three
collision types in this section: collisions between two objects, between an
object and a point, and between an object and the boundaries of the stage.

Collision with Objects
Collisions between two objects are detected using the hitTestObject() method.
It determines whether the object calling the method collides with another object
passed in as an argument in the method call. The following code, found in the
collision_objects.fla source file, will remove two objects from the display list
when they collide. This is handy, for example, when bullets hit spaceships and
they must disappear. Lines 1 through 11 give us two balls and an event listener
to work with. Every enter frame, line 12 moves the ball to the right, and line 13
checks to see if ball collides with ball2. If so, the listener is removed in line 14, and
both ball and ball2 are removed from the display list in lines 15 and 16.

1	 var	ball:MovieClip	=	new	Ball();
2	 ball.x	=	ball.y	=	100;
3	 addChild(ball);
4	
5	 var	ball2:MovieClip	=	new	Ball();
6	 ball2.x	=	100;
7	 ball2.y	=	400;
8	 addChild(ball2);
9	
10	 addEventListener(Event.ENTER_FRAME,	onEnter,	false,	0,	true);
11	 function	onEnter(evt:Event):void	{
12	 				ball.x	+=	5;
13	 				if	(ball.hitTestObject(ball2))	{
14	 								removeEventListener(Event.ENTER_FRAME,	onEnter);

Simple Collision Detection

Chapter 7: Motion 167

15	 								removeChild(ball);
16	 								removeChild(ball2);
17	 				}
18	 }

It’s important to note that the hitTestObject() method uses the minimum
bounding rectangle of both objects to detect collisions. Figure 7-7 shows two
circles that appear to not collide. However, the minimum bounding rect-
angles of the circles overlap and, therefore, a collision is reported.

Figure 7-7. The pictured overlap of circles would cause a collision using
hitTestObject() because the method uses the minimum bounding rectangle
of each object

Collision with Points
Similarly, collisions between an object and a point are detected using the
hitTestPoint() method. It determines whether the object calling the method
collides with a point specified in the method call. The script in the colli-
sion_points.fla source file, will move an object to a random location when it
comes in contact with the mouse. After creating the ball and listener in lines
1 through 6, line 7 checks to see if ball collides with the mouse, and sets the
optional shape flag to true. When true, the shape flag uses nontransparent
pixels to test for collisions with the point, rather than the minimum bound-
ing rectangle of the object. If a collision occurs, the ball is relocated.

1	 var	ball:MovieClip	=	new	Ball();
2	 ball.x	=	ball.y	=	100;
3	 addChild(ball);
4	
5	 addEventListener(Event.ENTER_FRAME,	onEnter,	false,	0,	true);
6	 function	onEnter(evt:Event):void	{
7	 				if	(ball.hitTestPoint(mouseX,	mouseY,	true))	{
8	 								ball.x	=	Math.random()	*	stage.stageWidth;
9	 								ball.y	=	Math.random()	*	stage.stageHeight;
10	 				}
11	 }

NOTE

Checking for more accurate collisions of
nonrectangular assets requires signifi-
cantly more advanced programming—
typically using precise pixel analysis
with the BitmapData class, which we’ll
introduce in Chapter 9. Fortunately,
Corey O’Neil has done most of the
work for you by creating his fantastic
Collision Detection Kit. Now, instead of
programming all the collision detection
yourself, you only have to implement his
code in your projects. Documentation
and examples can be found at http://
code.google.com/p/collisiondetectionkit/.

NOTE

Any alpha value above 0 will register
a collision using the hitTestPoint()
method. Only when a pixel is com-
pletely transparent will no collision
be detected. To register collisions with
nontransparent alpha values, use Corey
O’Neil’s Collision Detection Kit. See the
previous note.

NOTE

Placing a display object on the stage
within a given area ensures only that
the registration point of the object is in
the area prescribed. If, for example, the
object is placed adjacent to a stage edge,
part of the object may be out of view.
Later in the chapter, we’ll show you how
to be sure the entire object is always vis-
ible, even with random placement.

http://code.google.com/p/collisiondetectionkit/
http://code.google.com/p/collisiondetectionkit/

Part II: Graphics and Interaction168

Simple Collision Detection

Figure 7-8 shows the mouse overlapping the bounding rectangle of the circle,
but not touching any nontransparent pixels. In this case, because the shape
flag is true, no collision would be detected.

Collision with Stage Boundaries
The following code, found in the collision_stage_boundaries.fla source file,
moves the movie clip instance, ball, to the right 5 pixels every enter frame. For
this example, the movie clip added in lines 1 through 3 has a center registra-
tion point. Before moving the ball, however, the conditional in line 7 checks
to make sure the ball hasn’t passed the right side of the stage. If not, the ball’s
position is updated. If it has passed that boundary, the listener is removed
and the ball stops moving.

1	 var	ball:MovieClip	=	new	Ball();
2	 ball.x	=	ball.y	=	100;
3	 addChild(ball);
4	
5	 addEventListener(Event.ENTER_FRAME,	onEnter,	false,	0,	true);
6	 function	onEnter(evt:Event):void	{
7	 				if	(ball.x	+	5	<	(stage.stageWidth	-	ball.width	/	2))	{
8	 								ball.x	+=	5;
9	 				}	else	{
10	 								removeEventListener(Event.ENTER_FRAME,	onEnter);
11	 				}
12	 }

Notice that the right stage boundary is detected using the width of the stage,
but that’s not the only value used in the conditional. Instead, half the width of
the ball is subtracted from the boundary value first to prevent the ball from
leaving the stage before the test fails. If this adjustment were not made, at
least half of the ball would need to leave the stage before its center registration
point caused the conditional to fail. Figure 7-9 shows the point at which a
boundary collision is detected without accounting for a display object’s cen-
ter registration point (top) and when subtracting half the width of the object
from the test value (bottom).

A similar equation is used to detect movement beyond the bottom of the
stage, using stage.stageHeight in the conditional. To check whether an
object is about to leave the left or top of the stage, the test must start with a
value of 0, but add half the width of the display object to inset the boundary
from each edge. Later in this chapter, a more complete example will be used
to reverse the direction of a particle’s movement before leaving the stage.

NOTE

If you create a display object with a noncenter registration point, your collision
detection code will need to change. For example, using a registration point in the
upper-left corner of a display object, you will need to subtract the full width of the
object to see if it leaves the left or top sides of the stage, and subtract nothing to see if
it leaves the right or bottom sides of the stage.

Figure 7-8. No collision is detected here
because only nontransparent pixels
collide with a point (such as the mouse
location) when the shape flag of the
hitTestPoint() method is true

half the width of the display object

stage width

Figure 7-9. When testing for boundary
collisions on display objects with a center
registration point, the collision value must
be inset by half the width of the object
from the stage dimensions

Geometry and Trigonometry

Chapter 7: Motion 169

Geometry and Trigonometry
Although many people find geometry and trigonometry intimidating, the
small investment required to understand a few basic principles in these
disciplines can pay large dividends. For example, what if you needed to find
the distance between two points, or rotate one object around another? These
small tasks are needed more often than you may think, and are easier to
accomplish than you may realize.

Movement Along an Angle
Earlier we discussed velocity as a vector quantity because it combined mag-
nitude and direction. However, the direction in the previous example was
determined by changing x and y coordinates. Unfortunately, such a direction
is easily identifiable only when moving along simple paths, such as along the
x or y axis. A much better way to indicate a direction is to specify an angle
to follow.

Before we discuss angles and their different units of measure, you need to
understand how angles are indicated in the ActionScript coordinate system.
As you might expect, angles are commonly referenced using degrees, but it’s
important to note that 0 degrees is along the x axis pointing to the right. The
360-degree circle then unfolds clockwise around the coordinate system. This
means 90 degrees points down along the y axis, 180 degrees points left along
the x axis, and so on, as shown in Figure 7-10.

Now that you have a correct point of reference, the next important concept to
understand is that most of ActionScript, like most computer languages and
mathematicians, does not use degrees as its preferred unit of measurement for
angles. This is true for just about all common uses of angles, except for the
rotation property of display objects and one or two more obscure items also
related to rotation. Predominately, ActionScript uses radians as the unit of
measure for angles. A radian is the angle defined by moving along the outside
of the circle only for a distance as long as the circle’s radius, as seen in Figure
7-4. One radian is 180/pi degrees, which is approximately 57 degrees.

Though some of you may find that interesting or helpful, memorizing this
definition isn’t vital. Instead, all you need to do is remember a handy con-
version formula: radians = degrees * (Math.PI/180). Conversely, to convert
radians to degrees use: degrees = radians / (Math.PI/180). (You may also see
a degrees-to-radians conversion that looks like this: degrees = radians * (180/
Math.PI)). In the upcoming example, we’ll write utility functions for this pur-
pose that you can use throughout the rest of the examples.

Now we’re prepared to address the task at hand. We must send a movie clip
off in a direction specified by an angle (direction) at a specific speed (magni-
tude). This will be the resulting velocity. This script, found in the movement_
along_angle.fla source file, starts by creating a movie clip and positioning it
on stage at point (100, 100). It then specifies the speed and angle at which the

rotation
angles in
degrees

start at 0°,
pointing right
along the x axis,
and increase
clockwise

0°

90°

180°

270°

Figure 7-10. How Flash angles are
referenced

radius

length
of arc
= radius

resulting
angle =
1 radian

Figure 7-11. How radians are calculated

Part II: Graphics and Interaction170

Geometry and Trigonometry

movie clip will travel, and converts commonly used degrees to ActionScript-
preferred radians using the utility function at the end of the script.

1	 var	ball:MovieClip	=	new	Ball();
2	 ball.x	=	ball.y	=	100;
3	 addChild(ball);
4	
5	 var	speed:Number	=	12;
6	 var	angle:Number	=	45;
7	 var	radians:Number	=	deg2rad(angle);

With both a direction (angle) and magnitude (speed), we can determine the
required velocities relative to the x and y axes. To do so, we use the sin() and
cos() methods of the Math class, which calculate the sine and cosine of an
angle, respectively. If this dredges up bad memories of high school math class,
just relax and picture a right-angle triangle with one point at the origin of
the x/y axes (Figure 7-12).

x

origin

origin

hypotenuse

y

= sin(angle)y coordinate = opposite side
hypotenuse

= cos(angle)x coordinate = adjacent side
hypotenuse

Figure 7-12. A point on a circle can be determined by using the cosine and sine of an
angle and the circle’s radius

The sine of an angle is the length of the opposite side of the triangle (shown
in blue in Figure 7-12) divided by the length of the triangle’s hypotenuse (the
longest side, opposite the triangle’s right angle). The cosine of an angle is
the length of the adjacent side of the triangle (shown in red in Figure 7-12)
divided by the length of the triangle’s hypotenuse. In terms more applicable
to our needs, the x component of the direction we’re looking for is the cosine
of an angle (in radians), and the direction’s y component is the sine of the
same angle.

Multiply each value by a speed and you get x and y velocities, as seen in lines
8 and 9 of the following script block, respectively. All that remains is to add
those velocities to the x and y coordinates of the ball (in the listener function
at lines 13 and 14) and it’s on the move.

8	 var	xVel:Number	=	Math.cos(radians)	*	speed;
9	 var	yVel:Number	=	Math.sin(radians)	*	speed;
10	

Geometry and Trigonometry

Chapter 7: Motion 171

11	 addEventListener(Event.ENTER_FRAME,	onLoop,	false,	0,	true);
12	 function	onLoop(evt:Event):void	{
13	 				ball.x	+=	xVel;
14	 				ball.y	+=	yVel;
15	 }
16	
17	 function	deg2rad(deg:Number):Number	{
18	 				return	deg	*	(Math.PI	/	180);
19	 }

Lines 17 and 18 contain the conversion function called in line 7. It takes an
angle in degrees and returns the same angle in radians.

Distance
Let’s say you’re programming a game in which a character is pursued by an
enemy and must exit through one of two doors to safety. However, the enemy
is close enough that the character must choose the nearest exit to survive. The
player controls the character, but you must make sure the enemy catches the
character if the player makes the wrong decision. To do that, the enemy must
know which exit is closest.

To determine the distance between the enemy and a door, all you need to do
is imagine a right triangle between those points and use a formula called the
Pythagorean theorem. The theorem states that the square of the longest side
of a right triangle is equal to the sum of the squares of the other two sides.
This is illustrated in the top of Figure 7-13.

The bottom of Figure 7-13 shows this theorem in use, determining the dis-
tance between two movie clips, or, in our metaphorical case, between an
enemy and a door. The triangle appears beneath the two points, and the
differences between the x and y coordinates of points 1 and 2 are shown in
dotted lines. These lengths correspond to the a and b sides of the triangle,
so we need to square (x2 – x1) and square (y2 – y1) to satisfy the theorem.

The linear distance between the two points is shown as a solid red line. This
linear distance corresponds to the length of the longest side of the triangle,
but we don’t want the square of this length. So we must take the square root
of both sides of the equation. In other words, we need the square root of
(x2 – x1) * (x2 – x1) + (y2 – y1) * (y2 – y1).

Once you determine the distance between the enemy and one door, you
repeat the process for the distance between the enemy and the other door. You
can then determine which door is closest.

In the source file, distance.fla, the getDistance() function calculates the dis-
tance between two balls and returns that value as a Number. Line 3 determines
the distance between the x coordinates, and line 4 determines the distance
between the y coordinates. Line 5 uses the sqrt() method of the Math class to
calculate the square root of the sum of those squares.

c (hypotenuse)

right angle

a
c = a + b2 2 2

b

Math.sqrt(x*x + y*y)

x

y

Figure 7-13. Calculating the distance
between two points using geometry

Part II: Graphics and Interaction172

Geometry and Trigonometry

It compares the distance between ball0 and ball1 to the distance between
ball0 and ball2:

1	 function	getDistance(x1:Number,	y1:Number,	
2	 																					x2:Number,	y2:Number):Number	{
3	 				var	dX:Number	=	x2	-	x1;
4	 				var	dY:Number	=	y2	-	y1;
5	 				return	Math.sqrt(dX	*	dX	+	dY	*	dY);
6	 }
7	
8	 var	dist1:Number	=	getDistance(ball0.x,	ball0.y,	
9	 																															ball1.x,	ball1.y);
10	 var	dist2:Number	=	getDistance(ball0.x,	ball0.y,	
11	 																															ball2.x,	ball2.y);
12	
13	 if	(dist1	<	dist2)	{
14	 				trace("ball1	is	closest	to	ball0");
15	 }	else	{
16	 				trace("ball2	is	closest	to	ball0");
17	 }

More Particles: Collision and Distance
Now it’s time for another project to put your latest knowledge to the test. This
second particle system, found in particles_angle.fla, will again create particles
that move around on their own. This time, however, they’ll bounce off the
edges of the stage and a line will be drawn between any particles that are
within 100 pixels of each other.

This exercise will combine skills you’ve developed in moving objects along
angles, collision detection, and distance calculation. It also uses such lan-
guage fundamentals as for loops, conditionals, array structures, and random
numbers, as well as reviews the display list and event listeners.

Finally, it makes use of the Graphics class to draw lines at runtime. We’ll cover
this class in greater depth in the next chapter, but briefly, it allows you to
draw vectors, including lines, curves, fills, and shapes, into display objects. In
this script, we’ll just define line characteristics, connect points, and periodi-
cally clear what we’ve drawn.

Lines 1 through 4 of the following code create variables for use throughout
the script. Line 1 creates an array to hold all the particles created. Line 2
creates a single particle so its diameter (line 3) and radius (line 4) can be
determined. Lines 6 and 7 create a container sprite and add it to the display
list. This will be a container into which we’ll draw lines that connect our
particles. Line 8 makes this process a bit easier and more efficient by storing a
reference to the graphics property of the container. This is the virtual canvas
into which we’ll draw.

Lines 10 through 20 create 20 particles. Line 11 creates a new Particle
instance, and lines 12 and 13 position the particles randomly on stage. Like
the previous discussion about stage boundary collision testing, these lines

NOTE

In Chapter 8, we’ll show you another
way to calculate the distance between
two points using a simple method of the
Point class.

Geometry and Trigonometry

Chapter 7: Motion 173

guarantee that the particle is placed wholly within the stage. They do so by
reducing the available area by the diameter of the particle, and insetting the
left- and topmost positions by the radius.

1	 var	particles:Array	=	new	Array();
2	 var	particle:Particle	=	new	Particle();
3	 var	pD:Number	=	particle.width;
4	 var	pR:Number	=	particle.width	/	2;
5	
6	 var	container:Sprite	=	new	Sprite();
7	 addChild(container);
8	 var	g:Graphics	=	container.graphics;
9	 				
10	 for	(var	i:int	=	0;	i	<	20;	i++)	{
11	 				particle	=	new	Particle();					
12	 				particle.x	=	Math.random()	*	(stage.stageWidth	-	pD)	+	pR;
13	 				particle.y	=	Math.random()	*	(stage.stageHeight	-	pD)	+	pR;
14	 				particle.speed	=	Math.random()	*	5	+	1;
15	 				particle.angle	=	Math.random()	*	360;
16	 				updateParticleVelocities(particle);
17	 	
18	 				container.addChild(particle);
19	 				particles[i]	=	particle;
20	 }

Line 14 creates a random speed, between 1 and 6, for each particle, and line
15 creates a random angle for movement, in degrees. This angle will be
converted later into radians. Note that these are properties specific to each
particle, not variables available to a function or the entire script. This is a
useful practice because the values are created randomly when the particle is
instantiated, and they are easily stored this way within each particle.

Line 16 calls the updateParticleVelocities() function found in lines 57
through 61. In line 58, the function converts the particle’s angle into radians
using the conversion function at the end of the script. It then uses the formu-
las from the “Movement Along an Angle” section in lines 59 and 60 to update
the x and y velocities for each particle. The particle is passed into the func-
tion as an argument, so these velocities can be stored in the particle object, as
described in the previous paragraph. The velocities are calculated using the
cosine and sine, respectively, of the angle, multiplied by the particle’s speed.
Finally, the particle is added to the container (line 18), and to the array we’ll
use to keep track of all the particles (line 19).

The remainder of the script is an event listener that’s executed every time an
enter frame event is received. The listener function begins with line 23 by
clearing the graphics property of any previously dynamically drawn lines.
Next a loop executes once for every particle upon every enter frame. The
loop first stores a reference to the next instance in the particles array (line
26). Lines 28 through 37 then determine if the next location of the particle
is beyond the bounds of the stage; they check the current location plus the
current velocity to see if the resulting point is outside the area available for
placement.

Part II: Graphics and Interaction174

Geometry and Trigonometry

The conditional uses the same technique explained in the “Collision with
Stage Boundaries” section of this chapter. It first takes the appropriate stage
edge (top or bottom in lines 28 and 29, or left and right in lines 33 and 34),
and then insets the radius of the particle from each edge to determine the
allowable values for particle movement. If a particle collides with a horizontal
plane (top or bottom stage edge), the angle of movement is turned into a neg-
ative of itself (multiplied by –1) (line 30). Table 7-1 shows a range of incoming
angles (angles of incidence) and after-bounce angles (angles of reflection), off
both bottom and top edges, using this formula.

Table 7-1. Angles before and after bounce off horizontal planes

Angle of incidence Angle of reflection

45 –45

90 –90

135 –135

225 –225

270 –270

315 –315

If a particle collides with a vertical plane (left or right stage edge), the angle
of movement is turned into a negative of itself and 180 is added to that value
(line 35). Table 7-2 shows a range of incidence and reflection angles, off both
right and left edges, using this formula. Remember that you don’t have to
think in terms of radians because the conversion function takes care of that
for you.

Table 7-2. Angles before and after bounce off vertical planes

Angle of incidence Angle of reflection

45 135

135 45

180 0

225 –45

315 –135

360 180

The last step in handling the movement of each particle is to again call the
updateParticleVelocities() method (lines 31 and 36), to update the par-
ticle’s x and y velocities after the collision, and, in turn, its x and y properties

21	 addEventListener(Event.ENTER_FRAME,	onEnter,	false,	0,	true);
22	 function	onEnter(evt:Event):void	{
23	 				g.clear();
24	 	
25	 				for	(var	i:int	=	0;	i	<	particles.length;	i++)	{
26	 								var	particle:Particle	=	particles[i];
27	

Geometry and Trigonometry

Chapter 7: Motion 175

28	 								if	(particle.y	+	particle.velY	<	0	+	pR	||
29	 												particle.y	+	particle.velY	>	stage.stageHeight	-	pR)	{
30	 												particle.angle	=	-particle.angle;
31	 												updateParticleVelocities(particle);
32	 								}
33	 								if	(particle.x	+	particle.velX	<	0	+	pR	||	
34	 												particle.x	+	particle.velX	>	stage.stageWidth	-	pR)	{
35	 												particle.angle	=	-particle.angle	+	180;
36	 												updateParticleVelocities(particle);
37	 								}
38	
39	 								particle.x	+=	particle.velX;
40	 								particle.y	+=	particle.velY;
41	 	
42	 								for	(var	j:int	=	i	+	1;	j	<	particles.length;	j++)	{
43	 												var	nextParticle:Particle	=	particles[j];
44	 	
45	 												var	dX:Number	=	particle.x	-	nextParticle.x;
46	 												var	dY:Number	=	particle.y	-	nextParticle.y;
47	 												var	distance:Number	=	Math.sqrt(dX	*	dX	+	dY	*	dY);
48	 												if	(distance	<	100)	{
49	 																g.lineStyle(0,	0x999999);
50	 																g.moveTo(particle.x,	particle.y);
51	 																g.lineTo(nextParticle.x,	nextParticle.y);
52	 												}
53	 								}
54	 				}
55	 }
56	
57	 function	updateParticleVelocities(p:Particle):void	{
58	 				var	radians:Number	=	deg2rad(p.angle);
59	 				p.velX	=	Math.cos(p.angle)	*	p.speed;
60	 				p.velY	=	Math.sin(p.angle)	*	p.speed;
61	 }
62	
63	 function	deg2rad(degree):Number	{
64	 				return	degree	*	(Math.PI	/	180);
65	 }

Finally, the loop in lines 42 through 53 checks the distance between every
particle. Upon entering this nested loop, the current particle (particle,
assigned in the outer loop in line 26) is compared with every other particle
(nextParticle, assigned in the inner loop in line 43). By nesting the loop this
way, each particle compares itself with the other remaining particles every
time an enter frame event is received. This way, we can determine whether
the distance between any two particles is less than 100 so we can draw a line
between them. Note, too, that the counter variable of the inner loop is j, not i.
This is necessary because if i were used again, it would conflict with the outer
loop, get reassigned, and wreak havoc.

This nested loop structure is also more efficient than it could be, because
the inner loop doesn’t start with 0 every time. Instead, it starts at the next
particle in line (i + 1), after the current particle (i). This is possible because
the relationships between the previous particles have already been examined.
Put another way, when the outer loop reaches 19, the inner loop need only
compare particle 19 (i) with particle 20 (i + 1).

Part II: Graphics and Interaction176

Geometry and Trigonometry

When making the comparisons, the loop checks the distance between every
two particles. If less than 100 (line 48), it readies a gray hairline stroke (line
49), moves to the location of the first point (line 50) and draws a line to the
location of the second point (line 51) being compared. We’ll discuss drawing
vectors with code in the next chapter, but the effect is that only those particles
within close proximity of each other will be connected. As the positions of the
particles change, so do their connections. Figure 7-14 shows the file in action.

Circular Movement
Now that you know how to determine x and y coordinates from an angle,
circular movement is a snap. It will now be relatively trivial for you to move
an object in a circle, the way a moon revolves around a planet. With circular
movement, we are not interested in the velocity derived from direction and
magnitude, because the display object will not be traveling along that vector.
Instead, we want to calculate the x and y coordinates of many consecutive
angles. By plotting the sine and cosine of many angles, you can move the ball
in a circle.

If you think of the sine and cosine values of various angles, this technique
is easy to understand. (For simplicity, all angles will be discussed in degrees,
but assume the calculations are performed with radians.) The values of both
cosine and sine are always between –1 and 1. The x component, or cosine, of
angle 0 is 1, and the y component, or sine, of angle 0 is 0. That describes an
x, y point (1, 0), or straight out to the right. The cosine of 90 degrees is 0 and
the sine of 90 is 1. That describes (0, 1), or straight down.

This continues around the axes in a recognizable pattern. Remembering that
we’re discussing degrees but calculating in radians, the cosine and sine of 180
degrees are –1 and 0, respectively (point (–1, 0), straight to the left), and the
cosine and sine of 270 degrees are 0 and 1, respectively (point (0, 1), straight
up).

You must do only two more things to plot your movie clip along a circular
path. Because all the values you’re getting from your math functions are
between –1 and 1, you must multiply these values by the desired radius of
your circle. A calculated value of 1 times a radius of 100 equals 100, and
multiplying –1 times 100 gives you –100. This describes a circle around the
origin point of the axes, which spans from –100 to 100 in both horizontal and
vertical directions.

Figure 7-15 illustrates these concepts in one graphic. Each color represents a
different angle shown in the legend in both degrees and radians. The x and y
values of the radians are expressed in the legend in standard cosine and sine
units (between –1 and 1). The resulting x and y coordinates determined by
multiplying these values by 100 are shown in the graph.

Figure 7-14. During movement, particles
in close proximity to each other will be
connected.

Geometry and Trigonometry

Chapter 7: Motion 177

(–64, –77)
(77, –64)

(64, 77)

(–77, 64)

deg = 50; rad = 0.87
x: Math.cos(rad) = 0.64
y: Math.sin(rad) = 0.77

deg = 140; rad = 2.44
x: Math.cos(rad) = –0.77
y: Math.sin(rad) = 0.64

deg = 230; rad = 4.01
x: Math.cos(rad) = –0.64
y: Math.sin(rad) = –0.77

deg = 320; rad = 5.59
x: Math.cos(rad) = 0.77
y: Math.sin(rad) = –0.64

radians = degrees * (Math.PI / 180)
radius of circle = 100

y

x

Figure 7-15. Four angles around a circle, expressed in degrees, radians, and as x and y
points on a circle with a radius of 100 pixels

Finally, you can position your invisible circle wherever you want it on the
stage. If you take no action, the object will rotate around the upper-left corner
of the stage, or x, y coordinates (0, 0). The following script centers the circle
on the stage.

The following example is found in the circular_movement.fla source file. The
first nine lines of the script initialize the important variables. Specified are a
starting angle of 0, a circle radius of 100, an angle increment of 10, and a circle
center that matches the center of the stage (its width and height divided by 2,
respectively). Also created is the satellite that will be orbiting the center of the
stage, derived from the Asteroid linkage class assigned to a library symbol
(line 7). It’s initially placed offstage in line 8 before becoming a part of the
display list in line 9.

1	 var	angle:Number	=	0;
2	 var	radius:Number	=	100;
3	 var	angleChange:Number	=	10;
4	 var	centerX:Number	=	stage.stageWidth	/	2;
5	 var	centerY:Number	=	stage.stageHeight	/	2;
6	
7	 var	satellite:MovieClip	=	new	Asteroid();
8	 satellite.x	=	satellite.y	=	-200;
9	 addChild(satellite);

The last part of the script is the enter frame event listener and degree-to-
radian conversion utility discussed earlier. The listener function sets the x
and y properties of the asteroid by starting with the center of the circle, and
multiplying its radius by the x and y values calculated by the Math.cos()
and Math.sin() methods (lines 13 and 14). After each plot, the angle is incre-
mented in line 15.

NOTE

As discussed in Chapter 3, ActionScript
will automatically adjust incoming
rotation angles to create values most
efficient for Flash Player to handle.
Therefore, it doesn’t matter if angle
continues to increment and exceed 360.
For example, if you set a display object’s
rotation property to 370 degrees, Flash
Player will understand that this is
equivalent to 10 degrees.

Part II: Graphics and Interaction178

Geometry and Trigonometry

10	 addEventListener(Event.ENTER_FRAME,	onLoop,	false,	0,	true);
11	 function	onLoop(evt:Event):void	{
12	 				var	radian:Number	=	deg2rad(angle);
13	 				satellite.x	=	centerX	+	radius	*	Math.cos(radian);
14	 				satellite.y	=	centerY	+	radius	*	Math.sin(radian);
15	 				angle	+=	angleChange;
16	 }
17	
18	 function	deg2rad(deg:Number):Number	{
19	 				return	deg	*	(Math.PI	/	180);
20	 }

A Circular Navigation System
Although this chapter is called Motion, you can do more with the skills you’re
accumulating than move objects around the stage. You can use the same
math that animates an object along a circular path to position static elements
along a circle. The following script, found in the circle_navigation.fla source
file, automatically positions six buttons around a center draggable object, as
shown in Figure 7-16. The buttons, complete with labels, are children of the
center object. So, when the center object is dragged around, all the buttons
follow making a movable navigation system. Such a system could be very
useful for projects with large visual assets, or many user interface elements,
because the navigation widget could be moved around as needed to expose
underlying content.

Line 1 sets the number of satellite buttons positioned around the center
object. Line 2 sets the radius of the hidden outer circle, effectively setting
the distance each button rests from the center object. Line 3 sets the starting
angle of the first button. Remember that ActionScript angles begin at 0 to
the right (or 3:00 on a clock face) and increase clockwise. Therefore, the first
button appears straight up, or 12:00 on a clock face. Line 4 sets the amount
the angle will be incremented with each new button. The number of buttons
needed determines this. Our example uses six buttons, so they are positioned
60 degrees apart (360/6).

Lines 6 through 9 create the center button from the FLA library using the
MainButton linkage class, center the button in the middle of the stage, and add
it to the display list.

1	 var	numButtons:int	=	6;
2	 var	radius:Number	=	100;
3	 var	angle:Number	=	270;
4	 var	angleChange:Number	=	360/numButtons;
5	
6	 var	mainButton:MainButton	=	new	MainButton();
7	 mainButton.x	=	stage.stageWidth	/	2;
8	 mainButton.y	=	stage.stageHeight	/	2;
9	 addChild(mainButton);

The heart of this script is the positionButtons() function (lines 10 through
33). When called from line 34, it runs through a loop once for every button
requested—6 times, in this example. For each button, the loop begins by

NOTE

The companion website discusses addi-
tional ways to convert rotation angles
to usable values. See the “Working with
Rotation Angles” post at http://www.
LearningActionScript3.com.

B1

B2

B5

B4

B3

B0

Figure 7-16. A navigation system created
by positioning buttons in a circle

http://www.LearningActionScript3.com
http://www.LearningActionScript3.com

Geometry and Trigonometry

Chapter 7: Motion 179

storing the current angle in a variable (line 12) and incrementing the angle
to the next button position (line 13). The value of the angle is converted
from degrees to radians using deg2rad(), the utility function we’ve discussed
before, at the end of the script.

The button is then created using the library symbol with the SatelliteButton
linkage class, centered, and positioned on the circle defined by the mainButton
center point and radius. The same technique to move an object along a circu-
lar path is used here. The cosine of the current angle times the radius of the
circle determines the x coordinate, and the sine of the angle multiplied by the
circle’s radius calculates the y coordinate (lines 16 and 17).

Each button is then given a name in line 18, consisting of an uppercase “B,”
and the number of the button, taken from the loop counter. The first button,
for example, will be B0, the second B1, and so on. the last line of this code
block adds a mouse click listener to each button that calls the onClick()
function found in lines 36 through 38. In this simple example, this function
just traces the button name. However, as discussed in Chapter 6, you can
change this instruction to update the playhead in a movie clip, and we’ll teach
you how to load external assets in Chapter 13.

Because the buttons in this example have text labels, Line 21 is very impor-
tant. Setting the mouseChildren property of an object to false prevents the
content of that object from receiving mouse events. By default, the mouse
will automatically interact with the text fields in this example that display
the labels inside the buttons. This interaction includes text selection, cursor
feedback, and more. With mouseChildren set to false for each button, the text
field child of the button won’t react to mouse events.

Line 22 is also important to this example because the navigation widget is
draggable. By adding each button as a child of mainButton, rather than the
main timeline, dragging the center button will also drag all its satellite but-
ton children.

The remainder of the function is consistent with our prior basic uses of text
fields in the Hello World! applications presented in earlier chapters. Line 24
creates the text field, line 25 sets the field’s width to the width of the button,
and lines 26 and 27 center the button horizontally and vertically, respectively.
Line 28 automatically scales the text field down to fit its text and is also a
simple way to center the text prior to learning more advanced formatting
options in Chapter 10. Line 29 is another formatting shortcut, making all text
in the field white. Finally, the button name is added to the text field in line 30
and the field is added as a child of the button to serve as its label.

10	 function	positionButtons()	{
11	 				for	(var	i:int	=	0;	i	<	numButtons;	i++)	{
12	 								var	radian:Number	=	deg2rad(angle);
13	 								angle	+=	angleChange;
14	 								
15	 								var	btn:SatelliteButton	=	new	SatelliteButton();
16	 								btn.x	=	Math.cos(radian)	*	radius;

NOTE

Although not strictly necessary in this
example, it’s good practice to convert the
int data type of the loop counter to a
String data type before adding it to the
button name.

Part II: Graphics and Interaction180

Geometry and Trigonometry

17	 								btn.y	=	Math.sin(radian)	*	radius;
18	 								btn.name	=	"B"	+	String(i);
19	 								btn.addEventListener(MouseEvent.CLICK,	onClick,	
20	 																													false,	0,	true);
21	 								btn.mouseChildren	=	false;
22	 								mainButton.addChild(btn);
23	 								
24	 								var	tf:TextField	=	new	TextField();
25	 								tf.width	=	btn.width;
26	 								tf.x	=	-btn.width	/	2;
27	 								tf.y	=	-btn.height	/	4;
28	 								tf.autoSize	=	TextFieldAutoSize.CENTER;
29	 								tf.textColor	=	0xFFFFFF;
30	 								tf.text	=	btn.name;
31	 								btn.addChild(tf);
32	 				}
33	 }
34	 positionButtons();
35	
36	 function	onClick(evt:MouseEvent)	{
37	 				trace(evt.target.name);
38	 }

Lines 39 through 51 are responsible for creating the drag behavior of main-
Button. Lines 39 and 40 create a mouse down listener that triggers onStart-
Drag(), and lines 41 through 44 assign mouse up listeners to both mainButton
and the stage. The latter is important because it’s possible while dragging for
a mouse up event to not register on the button. Without allowing the stage to
catch that event, the draggable object would be stuck to your mouse.

The onStartDrag() function (lines 46 through 48) is a great example of how
using currentTarget in an event listener function can be very helpful. As dis-
cussed in Chapter 3, the target property will tell you which button received
the mouse down event, but it will also make that single button draggable.
The currentTarget property, on the other hand, refers to the object to which
the listener is attached. That means that no matter which button you mouse
down upon, mainButton will move, dragging all its child buttons along.

Finally, the onStopDrag() function (lines 49 through 51) stops all dragging.

39	 mainButton.addEventListener(MouseEvent.MOUSE_DOWN,	onStartDrag,	
40	 																												false,	0,	true);
41	 mainButton.addEventListener(MouseEvent.MOUSE_UP,	onStopDrag,	
42	 																												false,	0,	true);
43	 stage.addEventListener(MouseEvent.MOUSE_UP,	onStopDrag,	
44	 																							false,	0,	true);
45	
46	 function	onStartDrag(evt:MouseEvent):void	{
47	 				evt.currentTarget.startDrag();
48	 }
49	 function	onStopDrag(evt:MouseEvent):void	{
50	 				stopDrag();
51	 }
52	
53	 function	deg2rad(degree):void	{
54	 				return	degree	*	(Math.PI	/	180);
55	 }

Geometry and Trigonometry

Chapter 7: Motion 181

This example shows how a little math can spice up even a simple naviga-
tion system, but without being too difficult to master. Best of all, this script
automatically positions your satellite buttons for you, even if the number of
buttons changes. If you’d rather have nine buttons instead of six, so be it! Just
change the value in line 1 and the script will evenly space the buttons around
the circumference of the circle.

Rotation Toward an Object
Determining points on a circle when you start with an angle requires sine
and cosine, as seen in the previous example. However, the opposite of that
task requires a different trigonometric method. Determining an angle when
starting with point data requires atan2(). The atan2() method is a varia-
tion on the arctangent method and is especially useful when you want to
use rotation to point something at another location. For instance, the next
code example uses a frame event to continuously point a movie clip at the
mouse location, no matter where the mouse is on the stage, as simulated in
Figure 7-17.

The formula used to calculate the angle for the rotating object is:

Math.atan2(y2	-	y1,	x2	-	x1)

There are two important issues to be aware of when using atan2(). As you
can see, the method always takes y point data as its first parameter (instead of
x, which is more commonly placed in the first position). Second, the method
returns its angle in radians, not degrees.

With that in mind, let’s take a look at the following script, found in the
point_at_mouse.fla source file. It begins by creating a new instance of the Hand
linkage class from the library, placing the hand and forearm shown in Figure
7-17 in the center of the stage, and adding it to the display list. The listener
that follows in lines 6 through 11 calculates the angle of rotation in radians,
and then converts it to degrees, the unit required by the movie clip’s rotation
property. The conversion takes place in the utility function rad2deg() at the
end of the script.

The atan2() method in line 8 subtracts the mouse location from the hand
location (in y and x components) to get the angle the hand must use to point
at the mouse. Think of the location at which you want to point as the origin
of the system. In other words, point back to home base. That will help you
remember that the rotating object is point 2, and the mouse (in this case) is
point 1.

1	 var	hand:MovieClip	=	new	Hand();
2	 hand.x	=	stage.stageWidth	/	2;
3	 hand.y	=	stage.stageHeight	/	2;
4	 addChild(hand);
5	

Figure 7-17. Using atan2(), you can
continuously point a movie clip at the
mouse no matter where it’s on the stage

Part II: Graphics and Interaction182

Geometry and Trigonometry

6	 addEventListener(Event.ENTER_FRAME,	onLoop,	false,	0,	true);
7	 function	onLoop(evt:Event):void	{
8	 				var	rotationRadians:Number	=	Math.atan2(hand.y	-	mouseY,	
9	 																																												hand.x	-	mouseX);
10	 				hand.rotation	=	rad2deg(rotationRadians);
11	 }
12	
13	 function	rad2deg(rad:Number):Number	{
14	 				return	rad	/	(Math.PI	/	180);
15	 }

This example points one movie clip at the mouse, but the effect can be
adapted in many ways. One obvious variant is to point a movie clip at
another movie clip. Another visually interesting adjustment is to point many
instances of a movie clip at the same object. A grid of such pointers, for
example, looks interesting because each pointer rotates independently based
on its location. This can be seen in Figure 7-18, and will be demonstrated in
the next script. Finally, the ultimate effect need not be visual. You can use
this technique simply to track things, such as planning the trajectory of a
projectile toward a target.

Creating a grid using modulus
The following script, found in the grid_point_mouse.fla source file, points
several independent objects at the mouse, but it also lays out the objects in a
grid. Using atan2() to point at the mouse has already been discussed in the
prior example, so let’s focus on how to create the grid.

Line 1 stores the y position of the first row in the grid, and the variable in line
2 will hold instances of the FLA library linkage class, Arrow. Line 3 starts a
loop that increments 70 times to build a grid with as many arrows. Each arrow
is created in line 4 and added to the display list in line 10. But the grid layout
occurs in lines 5 through 9 through the magic of the modulo operator (%).

The modulo operator, often refer to as “mod,” returns the remainder of a divi-
sion—any partial value left over when a number can’t be divided into equal
parts. For example, 4 divided by 2 is 2, with no remainder. However, 5 divided
by 2 leaves a remainder of 1. Modulo can be used to test when a specific num-
ber of iterations has occurred, without the need for another variable.

It’s tidy to arrange 70 items in a grid that contains 10 columns and 7 rows. To
do this, we can loop over a process 70 times, but we need to know when the
end of a row is reached if we are to advance down to the next row. We can’t
rely solely on the loop counter because it increments from 0 to 70. However,
dividing the loop counter by 10, there will be no remainder at counter values
0, 10, 20, and so on. Therefore, using the modulo operator, we can tell when
the remainder is 0 and when we’ve reached the end of a row. The header of
Table 7-3 shows the remainders of all numbers 0 through 69. For example,
the numbers in the first column all have a remainder of 0, the numbers in the
second column all have a remainder of 1, and so on.

Figure 7-18. Detail of grid_point_mouse.
fla. Using atan2(), you can continuously
point a movie clip at the mouse no matter
where it is on the stage

Programmatic Tweening

Chapter 7: Motion 183

Table 7-3. 70 values (i) listed by their remainder when dividing by 10 (i % 10)

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

Line 6 sets the x coordinate of the arrow based on the grid column number,
derived using modulo (i % 10). All columns start with an initial offset of 50,
and an additional offset of 50 pixels per column is added. The first arrow will
be positioned at 50 (based on 50 + (0 * 50)), the second will be positioned
at 100 (based on 50 + (1 * 50)), and so on. If i % 10 is 0 (line 6) a new row is
required and 50 is added to rowY.

1	 var	rowY:Number	=	0;
2	 var	myArrow:Arrow;
3	 for	(var	i:int	=	0;	i	<	70;	i++)	{
4	 				myArrow	=	new	Arrow();
5	 				myArrow.x	=	50	+	((i	%	10)	*	50);
6	 				if	(i	%	10	==	0)	{
7	 								rowY	+=	50;
8	 				}
9	 				myArrow.y	=	rowY;
10	 				addChild(myArrow);
11	 				myArrow.addEventListener(Event.ENTER_FRAME,	onLoop,	
12	 																													false,	0,	true);
13	 }
14	
15	 function	onLoop(evt:Event):void	{
16	 				var	thisArrow:Arrow	=	Arrow(evt.target);
17	 				var	rotationRadians:Number	=	Math.atan2(thisArrow.y	-	mouseY,	
18	 																																												thisArrow.x	-	mouseX);
19	 				thisArrow.rotation	=	rad2deg(rotationRadians);
20	 }
21	
22	 function	rad2deg(rad:Number):Number	{
23	 				return	rad	/	(Math.PI	/	180)
24	 }

Programmatic Tweening
Scripting your own animations from scratch gives you a lot of control and
freedom, but it can be time-consuming, too. You may also discover that you’re
frequently rewriting similar equations in project after project. If you find
yourself spending too much time in this manner, you may want to look into
ActionScript tweening classes. A tween is an animation sequence in which the

Part II: Graphics and Interaction184

Programmatic Tweening

computer interpolates all relevant settings between starting and ending prop-
erty values. For example, just like you would create a motion tween in Flash
Professional’s timeline, you might write a programmatic tween that moves a
movie clip from an x position of 100 to an x position of 400.

Adobe’s Tween Class
Until you are comfortable using third-party ActionScript packages, you may
want to get up to speed with tweening using Adobe’s Tween class. Built into
the ActionScript language, the Tween class is fairly limited but also easy to
understand. Here is a look at the class’s signature, and the seven parameters
into which you send data when instantiating a tween object:

Tween(obj:Object,	prop:String,	func:Function,	begin:Number,
						finish:Number,	duration:Number,	useSeconds:Boolean):Tween

The class takes the following arguments (in this order):

• obj: The object to animate

• prop: A relevant property to manipulate

• func: A preexisting easing function to add expressiveness to the ani-
mation

• begin: The beginning value of the property

• finish: The finishing value of the property

• duration: The duration of the tween

• useSeconds: Whether to use seconds or frames as the desired time unit

It also returns a Tween object, so you can store a reference to the tween for
additional manipulation. For example, you can stop or start the tween at a
later point.

The following script, found in the tween_class.fla source file, provides a
simple example of how to use the Tween class. It moves a movie clip from
one side of the stage to the other, bouncing the clip into its final destination.
Lines 1 through 4 tell the compiler where to find the required classes. Lines
6 through 8 create a movie clip from the FLA library using the Ball linkage
class, place it at point (100, 100), and then add it to the display list.

1	 import	fl.transitions.Tween;
2	 import	fl.transitions.easing.Bounce;
3	 import	fl.transitions.easing.None;
4	 import	fl.transitions.TweenEvent;
5	
6	 var	ball:MovieClip	=	new	Ball();
7	 ball.x	=	ball.y	=	100;
8	 addChild(ball);
9	
10	 var	ballXTween:Tween	=	new	Tween(ball,	"x",	Bounce.easeOut,	
11	 																																	100,	400,	3,	true);
12	

NOTE

As discussed in Chapters 1 and 6, even
though this code is a simple timeline
script, it still needs import statements
because the required classes are not part
of the flash package. Only classes from
this package are automatically imported
behind the scenes in Flash Professional
timeline scripts.

Programmatic Tweening

Chapter 7: Motion 185

13	 ballXTween.addEventListener(TweenEvent.MOTION_FINISH,	
14	 																												onMotionFinish);
15	 function	onMotionFinish(evt:TweenEvent):void	{
16	 				var	ballAlphaTween:Tween	=	new	Tween(ball,	"alpha",	
17	 																																									None.easeOut,	
18	 																																									1,	0.3,	1,	true);
19	 }

Lines 10 and 11 create a Tween instance to animate ball’s x property. Pay par-
ticular attention to the fact that the property is specified in string format.
That can take a little getting used to.

The tween will use the Bounce easing function to add expressiveness to the
animation while moving the movie clip horizontally from 100 to 400 pixels.
As a result, the ball will appear to bounce against its final position. Finally,
the tween will conclude in 3 seconds—indicated by the time unit 3, and the
true value of the last parameter, useSeconds, ensuring the tween is timed with
seconds, not frames.

Lines 13 and 14 add an event listener to the ballXTween object, to trigger
the listener function when the animation is finished and the TweenEvent.
MOTION_FINISH event is fired. At that point, a new tween is created, to fade the
alpha property of the same object from 1 to 0.3. The second tween will take 1
second, and uses no easing to complete the task.

Only the last parameter of the Tween class is optional. (When omitted,
useSeconds will be false and will use frames to time the tween, rather than
seconds.) Therefore, if you don’t want to use easing, you must specify the None
easing class, and either the easeIn or easeOut property. Which you choose
will not matter, as no easing will be applied. The names and descriptions
of other available easing classes can be found in Table 7-4. All easing classes
allow easing in, easing out, and easing both in and out of the tween.

Table 7-4. Easing types found in the fl.transitions.easing package

Easing Class Description

Back Easing in begins by backing up and then moving toward the tar-
get. Easing out overshoots the target and backtracks to approach it.

Bounce Bounces in with increasing speed, or out with decreasing speed.

Elastic Undulates in an exponentially decaying sine wave, accelerating in
and decelerating out.

None Linear motion without easing.

Regular Normal easing, like that found in the timeline’s simple easing fea-
ture, accelerating in and decelerating out.

Strong Emphasized easing, stronger than that found in the timeline’s
simple easing feature, but without additional effects. Accelerates in
and decelerates out.

Part II: Graphics and Interaction186

Programmatic Tweening

GreenSock’s TweenLite
After gaining a little experience with third-party packages, you’ll very likely
want to stop using the built-in Tween class and find a tweening package that
you like. Invariably, these heavily optimized products are smaller, faster, and
more robust, offering quite a bit that is worthy of your experimentation.

Our favorite is the Tweening Platform by GreenSock. The platform contains
several great products, but the one we want to focus on is TweenLite. The
tweening library comes in two variations: TweenLite, which is the smallest
possible size and is optimized by making a wide array of features optional,
and TweenMax, which is basically TweenLite with all of its features pre-
enabled, as well as a handful of additional advanced features.

We’ll introduce TweenLite by recreating the tween example from the “Adobe’s
Tween Class” section for comparison, and then building an example ban-
ner as an additional project. The main tools of TweenLite are a pair of nice,
simple methods: to() and from(). As their names imply, they allow you to
tween an object’s properties from their current values to final values, or from
initial values to their current values, respectively.

Our first TweenLite example will demonstrate the to() method, which has
the following signature:

to(target:Object,	duration:Number,	vars:Object):TweenLite	

It begins with the object to tween, then includes the duration of the tween,
and finishes up with an object that contains all other variables you may want
to use to manipulate your tween. We’ll show you a few options for the vari-
ables object in a moment, but a relevant example is the useFrames property.
The duration of the tween is measured in seconds by default, but you can set
useFrames to true if you prefer, and the tween duration will be based on the
file’s frame rate. The method also returns a TweenLite instance if you want to
store a reference to the tween for later use.

All TweenLite examples are found in the tweenLite directory in the source
archive, and the following script is in the tweenLite.fla source file, The first
six lines are very similar to the Tween class example from the prior section—
importing required classes and creating a movie clip to manipulate. Because
this is an external library, you must have the Greensock Tweening Platform
package in a known class path for the imports to work. For this example, you
can place the package’s com folder in the same directory as your FLA file.

1	 import	com.greensock.TweenLite;
2	 import	com.greensock.easing.Bounce;
3	
4	 var	ball:MovieClip	=	new	Ball();
5	 ball.x	=	ball.y	=	100;
6	 addChild(ball);
7	
8	 TweenLite.to(ball,	3,	{x:400,	ease:Bounce.easeOut,	
9	 																							onComplete:fadeBall});

NOTE

With the developer’s kind permission,
we’ve included the Tweening Platform
with the sample source code from the
companion website. As with any software
product, however, you would be wise to
check periodically with the Greensock
website (http://www.greensock.com)
to see if any changes to the packages
have been made, and update your files
accordingly.

http://www.greensock.com

Programmatic Tweening

Chapter 7: Motion 187

10	 function	fadeBall():void	{
11	 				TweenLite.to(ball,	1,	{alpha:0.3});
12	 }

In lines 8 and 9, TweenLite to() method is used to tween ball for 3 seconds,
from whatever the current location is (100, as set in line 5) to 400. It uses the
Bounce easing class and calls the fadeBall() function when the animation is
complete.

The way TweenLite handles methods is quite different from the Tween class.
Instead of having to create all your own listeners, TweenLite uses callbacks.
An ActionScript callback is similar to the everyday use of the term. It’s a
mechanism where you can essentially leave a message for an object and ask
it to call you back at the function specified when an event occurs. In this
case, you’re asking TweenLite to call the fadeBall() function when the tween
is complete. When the function is called, another tween is created, this time
fading the ball movie clip to 30 percent.

TweenLite also makes it very easy to build a sequence of tweens by using
the delay property. In the prior example, the first tween spanned 3 seconds
and, upon finishing, called another tween. Rather than relying on events, you
can simply create both tweens but delay the second one to occur when the
first finishes. This will produce the same effect as the previous example, but
illustrates the ability to start your tweens whenever it suits you. To see this
in action, simply use the following code to replace lines 8 through 12 of the
prior example. This modification can be found in the tweenLite_to_delay.fla
source file.

8 TweenLite.to(ball, 3, {x:400, ease:Bounce.easeOut});
9 TweenLite.to(ball, 1, {alpha:0.3, delay:3, overwrite:false});

Note that when taking this approach, you’re essentially asking the tween to
reassign itself. Just like for a variable, you may want a new behavior, or you
may not. If you don’t want a tween to cancel out a prior tween referencing
the same object, you must use a property called overwrite to control how the
tweens interrelate. Setting the property to false will treat the tweens indepen-
dently. The result is a sequence of tweens but without relying on events. The
next example uses this technique.

Creating a simple banner using TweenLite
With a little experience under your belt, let’s make a banner. We’ll explore two
key TweenLite concepts in this exercise: the from() method, and the ability to
add advanced features through a plug-in mechanism.

The nice thing about using the from() method is that you can precreate a
layout and TweenLite will automatically build it up using your specified
from settings. For example, Figure 7-19 shows what the FLA file looks like
when you write your script. This is actually the final state of the banner, so
you can adjust your layout until you’re satisfied. Once you’re happy with the

NOTE

The object syntax for the third param-
eter of TweenLite’s to() method makes
it very easy to tween many properties
at once. For example, you could write a
tween like this:

TweenLite.to(ball,	3,	{x:10,	
y:10,	alpha:1,	rotation:90,	
ease:Bounce.easeOut});

This tween would alter the x, y, alpha,
and rotation properties all in a single
structure, making it much easier to use
than Adobe’s Tween class. You can kill
all properties, or even select properties,
any time so you can change the behav-
ior of the tween after creating it.

Part II: Graphics and Interaction188

Programmatic Tweening

banner, it’s time to itemize the properties you want to work with and their
initial values. The following script is found in the tweenLite_from_banner.fla
source file.

The first property we’ll use is called tint, and it’s not part of the TweenLite
default configuration. It is part of TweenLite’s bigger brother package,
TweenMax, but TweenLite is optimized to be as small as possible and doesn’t
include any non-essential features. However, you don’t need to move up to
TweenMax if you only want to use a few features and keep everything really
small. TweenLite has a plug-in system that allows you to activate specific
plug-ins on an as-needed basis. You have to do this only once and the plug-in
features will be available to the rest of your file thereafter.

Lines 1 through 4 import the needed classes, including the TweenPlugin class
that manages plug-ins, and the specific plug-in we need, TintPlugin. Line 6
activates the TintPlugin. It will then be available throughout the life of the
project. Lines 9 through 17 are the from() tweens, each of which lasts for 1
second.

Line 8 fades the background up from black. Lines 9 through 16 scale up the
four balls from 0 to final size. They use an Elastic ease so the tweens spring
forward and back a few times around their final scale values. However, each
tween is delayed a bit to build a sequence. The first ball starts a half-second
after the tint fade begins, the second tween starts one and one-half seconds
later, and so on. The last ball springs into place three seconds after the process
begins. This timing is amassed from a two-second delay and a one-second
duration. At the same time, the word “AS3” finishes sliding in from the left.

1	 import	com.greensock.TweenLite;
2	 import	com.greensock.plugins.TweenPlugin;
3	 import	com.greensock.plugins.TintPlugin;
4	 import	com.greensock.easing.Bounce;
5	
6	 TweenPlugin.activate([TintPlugin]);
7	
8	 TweenLite.from(bg,	1,	{tint:0x000000});
9	 TweenLite.from(ball0,	1,	{scaleX:0,	scaleY:0,	
10	 																										ease:Elastic.easeOut,	delay:0.5});
11	 TweenLite.from(ball1,	1,	{scaleX:0,	scaleY:0,	
12	 																										ease:Elastic.easeOut,	delay:1.5});
13	 TweenLite.from(ball2,	1,	{scaleX:0,	scaleY:0,	
14	 																										ease:Elastic.easeOut,	delay:1.75});
15	 TweenLite.from(ball3,	1,	{scaleX:0,	scaleY:0,	
16	 																										ease:Elastic.easeOut,	delay:2});
17	 TweenLite.from(as3,	1,	{x:-100,	ease:Elastic.easeOut,	delay:2});

Figure 7-19. A mock banner
advertisement animated with TweenLite

Programmatic Tweening

Chapter 7: Motion 189

Reproducing Timeline Tweens with ActionScript
The last thing we want to mention in this chapter is a companion website
post about a feature that’s a bit out of the ordinary. As such, we intend it
to be an additional resource for your continued study outside this book. In
addition to scripting motion solely with code, it’s also possible to rebuild a
Flash Professional timeline motion tween using ActionScript.

At the very least, this is an interesting workflow between designer and devel-
oper—allowing a designer to carefully tweak an animation using traditional
interface tools, and then turning the file over to a developer that can make
the entire process more dynamic with ActionScript. At best, it’s a way for any
Flash user to turn restrictive timeline tweens into code-based animations that
are vastly easier to reuse and adapt.

This process requires that a traditional timeline tween be created first, and
then Flash can break down the steps needed to reproduce the tween and write
them to an XML document. ActionScript can then load the document, parse
the instructions, and recreate the tween on the fly. The companion website
(http://www.LearningActionScript3.com) has a full tutorial, including sample
files, in a post called “Recreating Timeline Tweens with ActionScript,” so be
sure to check it out.

learningactionscript3 Packages
As discussed multiple times in prior chapters, one of the greatest benefits of learning
object-oriented programming is the ability to quickly and easily reuse code. To that
end, we’re going to evolve a small library of code as the book progresses, to show
you how to build reusable packages of your own.

In this and every subsequent chapter, we’ll add a little code to this ongoing
learningactionscript3 project package. We won’t stress this too heavily, and it
won’t get in the way of learning any of the syntax. However, by the time you finish
the book, you will have amassed a small collection of classes that you can use in your
own projects.

The contribution from this chapter is the MotionUtils class, which includes several
of the basic formulas covered herein, including the degree-to-radian and radian-to-
degree conversion, Zeno’s paradox, Hooke’s law, and more.

NOTE

In this introduction, we’ve only
scratched the surface of what the
GreenSock Tweening Platform can
do. Visit http://www.greensock.com
for details, documentation, interactive
examples, performance comparisons of
other tweening engines, and more.

http://www.LearningActionScript3.com
http://www.greensock.com

Part II: Graphics and Interaction190

What’s Next?

What’s Next?
Though this chapter details a variety of ActionScript animation techniques, it
only begins to cover the subject of motion through code. The basic building
blocks are here, however, and it’s with these concepts (and related skills that
grow from the ideas herein) that greater art and industry can be achieved.

Next on the to-do list is the ability to partially free yourself from the con-
straints of the Flash Professional interface and approach code-only projects
with a little more latitude. When working with visual assets, we’ve so far
relied heavily on symbols created within Flash and stored in a file’s library.

It’s true that we’ve sneaked a dynamically created vector in here and there,
such as in the second particle system in this chapter, when lines were drawn
between particles in close proximity. Despite that, thus far we’ve typically
instantiated objects from a file’s library using a linkage class. We’ll continue
to do that any time complex artwork warrants this practice, but we’ll also
begin to work with vectors and bitmaps created with code. In addition to giv-
ing you more freedom, this approach can also reduce file size and make your
SWFs load faster.

In the next chapter, we’ll discuss:

• Using the Graphics class to draw vectors to create assets on the fly with-
out contributing to file size

• Calling methods of the flash.geom package to use rectangles and points
in your scripts

• Using 9-slice scaling to achieve distortion-free symbol instance scaling

191

IN THIS CHAPTER

The Graphics Class

The Geometry Package

9-Slice Scaling

Applied Examples

What’s Next?

Flash is well known for popularizing vector graphics on the Web. Put simply,
vectors are composed of mathematically generated points, lines, curves, and
shapes and are used to create artwork in computer software. Using vectors is
optimal when you need to scale artwork because the vectors remain crisp and
clean at any size. By contrast, bitmap graphics pixelate when scaled.

Drawing vectors graphics with code brings with it special benefits. Included
among them is the freedom to create assets on the fly, rather than relying
solely on art drawn or imported prior to publishing your file. Related to this
is the additional bonus of reduced file size, because assets are created at run-
time rather than occupying space in your SWF. Smaller files mean less time
that your viewers spend waiting for your files to load.

In this chapter, we’ll focus on drawing vectors, the first of two ways to origi-
nate visual assets with code. Over the next several pages, we’ll cover:

• The Graphics Class. This class, often referred to as part of the draw-
ing API, contains methods for drawing vectors. You have control over
stroke and fill attributes, and can move a virtual pen around the
screen, choosing where to draw lines, curves, and shapes like circles
and rectangles.

• The Geometry Package. This utility package contains classes for creat-
ing points and rectangles, as well as transforming objects, and creating
matrices (a special kind of number array) for complex simultaneous
changes to rotation, scaling, and x and y translation. Using matrices,
you can achieve effects for which no properties exist, including skew
and shear.

• 9-slice Scaling. Through the use of a dynamically assignable rect-
angle, 9-slice scaling can prevent the sides and corners of a movie clip
from distorting when scaled.

draWIng WIth
veCtors

CHAPTER 8

Part II: Graphics and Interaction192

The Graphics Class

• Applied Examples. Combining what you’ll learn in this chapter,
you’ll write a custom button class that can be reused from project to
project, and create the graphics for a color picker. You can then carry
the color picker exercise into the next chapter, where you’ll put it to
work while composing and creating bitmaps.

The Graphics Class
The Graphics class is the foundation for drawing vectors with code. You use
methods of this class to define line and fill styles, and draw lines, curves, and
shapes, similar to how you would by using the Flash interface.

Before we get started with syntax-specific discussions, however, here’s a quick
word of advice about where to draw your vectors. It is possible to draw vec-
tors directly into the main timeline, but we recommend that you first create
one or more movie clips or sprites to serve as canvases for your drawings. This
is analogous to an artist drawing on a canvas instead of a studio wall—which
makes it a lot easier to move a masterpiece around or exhibit it in a gallery.
The same is true of virtual canvases in movie clips.

For example, if you draw into a movie clip, you can change its depth, assign it
to a new parent, or change many properties to affect its appearance or func-
tionality. Similarly, as you’ll learn in the next chapter, you can apply special
effects and filters to movie clips, which can’t be applied directly to the stage.

This is particularly relevant because you don’t create a new instance of the
Graphics class when you want to start drawing. Instead, all methods of the
class must be called from the graphics property of the movie clip or sprite
you’re drawing into, and it’s useful to create a reference to this property, both
as a shortcut and performance enhancement. For example, the following code
creates a sprite canvas and stores its graphics object in the variable g. In this
snippet, <methodOrProperty> is a placeholder for method or property syntax
we are about to introduce.

var	canvas:Sprite	=	new	Sprite();
var	g:Graphics	=	canvas.graphics;
g.<methodOrProperty>;

After creating g, you can manipulate all methods and properties of the
Graphics class from that reference. This is not only less to type, but it’s faster
because the player doesn’t have to retrieve the reference to the graphics object
every time it’s used. This isn’t a requirement, and we may not use this method
universally throughout this book, but it’s a good habit to get into.

To demonstrate styling and drawing lines, curves, and shapes, we’re going to
build the contents of Figure 8-1 over several examples. Continuing the same
example over multiple snippets will also emphasize the fact that you can con-
tinue drawing from where you left off, move your virtual pen before drawing
again, and restyle your stroke or fills while you draw. The finished script can
be found in the lines_curves_primitives.fla source file.

Figure 8-1. The culmination of several
Graphics class method calls

The Graphics Class

Chapter 8: Drawing with Vectors 193

Drawing Lines
The first step in drawing lines is to set a line style using the lineStyle()
method. This is equivalent to setting several stroke properties in the
Properties panel of the Flash Professional interface. The typical syntax is as
follows:

1	 var	canvas:Sprite	=	new	Sprite();
2	 addChild(canvas);
3	 var	g:Graphics	=	canvas.graphics;
4	
5	 g.lineStyle(2,	0x000000);

The first parameter of the lineStyle() method represents line thickness
in points, and the second is color in 0xRRGGBB hexadecimal format, as
described in Chapter 3. When a color is not included, black is used as the
default. When a line thickness of 0 is specified, a hairline thickness is used.
If you don’t want to use a line at all, you can omit the method. If you want to
switch to no line for future shapes, after you’ve already started drawing, call
the method with no parameters to clear any existing line style.

The next step is to draw the line. The process of doing so is similar to physi-
cally drawing a line on a piece of paper. Ordinarily, you don’t start drawing
a line from the edge of the paper to the intended first point of the line, and
then continuing to draw until you reach the second point of the line. Instead,
you move your pen to the preferred starting point and then begin drawing.
This is also true with the Graphics class. If you don’t first move your virtual
pen to the line’s starting point, you will begin drawing from point (0, 0), the
upper-left corner of your canvas. The moveTo() method moves the virtual pen
to the x and y coordinate specified therein, and the lineTo() method draws
from the previous virtual pen location to the x and y coordinates specified.
Continuing our script from the prior code block, the following sequence will
first move to point (150, 100) and then draw to point (400, 100):

6	 //continued	from	prior	section
7	 g.moveTo(150,	100);
8	 g.lineTo(400,	100);

To continue drawing straight lines, you can add more lineTo() methods.
Each successive call will continue drawing the line from the previous loca-
tion, as if you never lifted pen from paper. You can, however, change line
styles at any time during the process.

The following script continuation draws another line 20 pixels down, and
then another line back to the left to the x coordinate where we started. It
then changes the line style from 2-pixel black to 4-pixel red, moves the pen
to a new location 55 pixels below the prior line, and draws another line of
the same length back to the right. When this script block finishes executing,
it will have drawn the straight black and red line segments seen in Figure 8-1.

9	 //continued	from	prior	section
10	 g.lineTo(400,	120);
11	 g.lineTo(150,	120);

NOTE

As described in Chapter 4, when you
don’t need a timeline, as in this example,
you can work with a sprite instead of a
movie clip. For more information about
when to use MovieClip and when to
use Sprite, see the “MovieClip versus
Sprite” post at the companion website,
http://www.LearningActionScript3.com.

NOTE

The lineStyle() method includes
additional properties that are also found
in the Properties panel, including alpha,
stroke hinting, caps (end cap style:
round, square, or none), join (joint style:
round, bevel, or miter), and miter (miter
limit: degree of joint pointiness). In cases
like these, where the Flash Professional
interface overlaps an ActionScript
method so thoroughly, comparing the
Properties panel with the ActionScript
documentation can help jump-start your
experimentation with these features.

http://www.LearningActionScript3.com

Part II: Graphics and Interaction194

The Graphics Class

12	 g.lineStyle(4,	0xFF0000);
13	 g.moveTo(150,	175);
14	 g.lineTo(400,	175);

Drawing Curves
As you might imagine, you’re not limited to drawing straight lines. You can
also draw curves like those created by vector drawing programs such as
Adobe Illustrator. The syntax for drawing a curve requires the addition of a
point that will act as a control point, effectively pulling the curve away from
an ordinary straight-line appearance. This is equivalent to creating a control
point in Illustrator.

ActionScript, however, uses the quadratic Bézier curve model. Quadratic
curves use one control point (often referred to as a handle) for both end points
of a line segment. By contrast, other drawing tools (including Illustrator) use
the cubic Bézier model, which adds separate control handles for each point.
A quadratic Bézier curve is illustrated in Figure 8-2, showing both end points
and the control point used to manipulate the curve.

Though the algorithms used by ActionScript behind the scenes aren’t para-
mount, remembering that only one control point is used to create a curve can
help you remember the syntax of the curveTo() method, used to draw a curve
with the drawing API. Here is the method’s signature:

curveTo(controlX:Number,	controlY:Number,	
anchorX:Number,	anchorY:Number):void

Unlike lineTo(), it uses four coordinates. The first two are the x and y values
of the control point, and the second two are the x and y values of the destina-
tion point.

The following code continues our script by drawing the curve shown at the
top of Figure 8-1. It starts by switching to a 2-point blue line and moving the
pen to point (150, 100). It then draws a curve that ends at point (400, 100) but
is affected by the control point at point (275, 0).

1	 //continued	from	prior	section
2	 g.lineStyle(2,	0x0000FF);
3	 g.moveTo(150,	100);
4	 g.curveTo(275,	0,	400,	100);

It’s also possible to draw simple shapes including a circle and a rectangle
with or without rounded corners. Before we demonstrate drawing these basic
shapes, let’s introduce how to style fills.

Adding Solid Fills
To add a solid-color fill to a drawing, you must use the beginFill() method.
It accepts two parameters: color and alpha. Color is a uint (an unsigned
integer, or nonnegative integer), and is typically specified in the 0xRRGGBB

NOTE

Although originally developed by Paul
de Casteljau, vector curves are com-
monly called Bézier curves because they
were famously used by French engineer
Pierre Bézier in the design of automotive
bodies during the early 1960s.

(150, 100) (400, 100)

(275, 0)

Figure 8-2. A quadratic Bézier curve with
one control point for both end points of a
line segment

The Graphics Class

Chapter 8: Drawing with Vectors 195

hexadecimal format. The alpha value is a Number in the percentage range of 0
to 1, with a default of 1 (100 percent).

After setting a fill style, you can continue drawing lines, curves, and shapes,
and then conclude with the endFill() method, which uses no parameters.
The following code demonstrates two things. First, it shows the benefit of
drawing into a dedicated canvas, allowing you to position the display object
(and therefore your drawing) anywhere on the stage (lines 20 through 23). It
then demonstrates line and fill styling (lines 26 and 27) and moving to, and
drawing, a triangle (lines 28 through 31). Finally line 32 ends the fill.

1	 //continued	from	prior	section
2	 var	triangle:Sprite	=	new	Sprite();
3	 triangle.x	=	50;
4	 triangle.y	=	250;
5	 addChild(triangle);
6	
7	 var	tg:Graphics	=	triangle.graphics;
8	 tg.lineStyle(0);
9	 tg.beginFill(0xFF9900,	1);
10	 tg.moveTo(50,	0);
11	 tg.lineTo(100,	100);
12	 tg.lineTo(0,	100);
13	 tg.lineTo(50,	0);
14	 tg.endFill();

Drawing Shapes
Drawing one line segment at a time is not the only method for drawing
shapes. It’s also possible to draw simple shapes using a trio of methods:
drawCircle(), drawRect(), and drawRoundRect() (for drawing rectangles with
rounded corners). The following code segment concludes our ongoing script
by drawing three shapes—with varying fill colors and fill alpha values—into
the same canvas, newly created in lines 34 through 37. Drawing multiple
objects into one canvas reduces flexibility because you can’t manipulate the
objects separately thereafter. However, this is useful when drawing complex
shapes that will be treated as a single object.

Lines 41 and 42 show how to use opacity for a special effect. Note that the
stroke and fill both have an alpha value of 50 percent. The fill is red and the
stroke is blue and 6 pixels thick. In Flash, strokes center on the edge to which
they are applied, which, in this case, results in a 3-pixel overlap between
stroke and fill edge. The partial opacity of both stroke and fill result in a red
circle with the appearance of a 3-pixel purple outline surrounded by a 3-pixel
blue outline. Line 43 creates the circle itself, using the drawCircle() method.
This method requires the x and y values of the center of the circle (50, 50),
and the circle’s radius (50). The end result can be seen in the circle at the
bottom of Figure 8-1.

1	 //continued	from	prior	section
2	 var	shapes:Sprite	=	new	Sprite();
3	 shapes.x	=	150;
4	 shapes.y	=	250;

NOTE

Although the endFill() method can
be omitted for simple drawings, doing so
can produce unexpected results. See the
“Using endFill() with the Drawing API”
post at the companion website for more
information.

Part II: Graphics and Interaction196

The Graphics Class

5	 addChild(shapes);
6	
7	 var	sg:Graphics	=	shapes.graphics;
8	
9	 sg.lineStyle(6,	0x0000FF,	0.5);
10	 sg.beginFill(0xFF0000,	0.5);
11	 sg.drawCircle(50,	50,	50);
12	 sg.endFill();
13	
14	 sg.lineStyle();
15	 sg.beginFill(0x0000FF,	0.2);
16	 sg.drawRect(125,	0,	100,	100);
17	 sg.endFill();
18	 	
19	 sg.beginFill(0x0000FF,	0.5);
20	 sg.drawRoundRect(250,	0,	100,	100,	50);
21	 sg.endFill();

Line 46 shows how to clear a previously existing line style. If you want to
begin without a stroke, it’s easy to omit the method. If a stroke already exists,
however, and you want to clear it, you must invoke the lineStyle() method
with no parameters. (If you use a value of 0, the method creates a hairline
stroke.) Line 48 draws a rectangle using the drawRect() method, which
accepts the x and y coordinates of the rectangle, followed by the width and
height of the rectangle. The last shape method, drawRoundRect() in line 52, is
the same as drawRect() but adds a fifth parameter for the corner radius used
to draw all four corners of the rectangle. See Figure 8-1 to check the results of
this finished script.

NOTE

An undocumented method called drawRoundRectComplex() allows you to control
the corner radius of each corner independently. Here is the method signature:

drawRoundRectComplex(x:Number,	y:Number,	width:Number,	
height:Number,	topLeftRadius:Number,	topRightRadius:Number,	
bottomLeftRadius:Number,	bottomRightRadius:Number):void	

The following code, found in the draw_round_rect_complex.fla source file, creates a
graphic that looks like a tab, which is convenient for tab-based navigation systems.

var	tab:Sprite	=	new	Sprite();
tab.x	=	tab.y	=	50;
addChild(tab);
tab.graphics.beginFill(0x333399);
tab.graphics.drawRoundRectComplex(0,	0,	100,	25,
																																		15,	15,	0,	0);

As with all undocumented code, use at your own risk. Adobe may remove this meth-
od at any time. (The likelihood of that is probably low, however, because the method
has been part of the Flex ActionScript documentation since Flex 2. Adobe has never
made public why they chose not to document this method for Flash Professional
users.)

The Graphics Class

Chapter 8: Drawing with Vectors 197

Using Gradient Fills and Lines
ActionScript 3.0 doesn’t restrict you to using solid colors for your fills or lines.
You can also use gradients and bitmaps. Let’s first discuss gradients, using the
beginGradientFill() method for fills and the lineGradientStyle() method
for lines.

Gradient fills
Gradients can be linear (left to right, by default) or radial (radiating from
the epicenter of the gradient outward). The content of the gradient is then
determined by three parallel arrays (arrays with the same number of items in
a corresponding order): colors, alpha values for each color, and ratios—values
for each color that determine its weighting within the gradient.

The type of gradient is specified by the GradientType constants LINEAR or
RADIAL. The colors of the gradient are specified as an array of color values,
typically uint values in hexadecimal format, and listed within the array in
the order in which they appear in the gradient. The alpha values for color are
specified as an array of Number values between 0 and 1, and correspond with
the order of the colors.

The ratio array contains a number for each color that places it within the
gradient between 0 (far left, or center of radial) to 255 (far right or outer edge
of radial). For simplicity, we’ll use a linear gradient in our description, but the
same ideas apply to radial gradients.

Think of the numeric span from 0 to 255 as a distance. If a gradient has
only two colors, an evenly distributed gradient would have a ratio array of
[0, 255]. In this example, the starting value of one color is at the extreme left
and the starting value of the other color is at the extreme right. The mixture
between these two colors creates the gradient, as you can see in the center of
Figure 8-3.

However, you can also weight a color by skewing the ratio array. For example,
to favor the right color, move its starting point further to the left—expanding
the amount of the right color in the gradient, and reducing the amount of
the left color, resulting in a ratio of [0, 127]. The top of Figure 8-3 shows this
effect, skewing to black. Using a ratio of [127, 255] will have the reverse effect,
favoring the color on the left and skewing red in the bottom of Figure 8-3.

Now let’s put these values to work in the following example. Having shown
the appearance of linear gradients in Figure 8-3, let’s take a look at radial
gradients. This exercise can be found in the radial_gradient_1.fla source file.
Lines 1 through 3 create our drawing canvas and Graphics reference, line 10
creates the gradient fill using variables for each parameter, and line 11 draws
a square. The heart of the gradient fill spans lines 5 through 8. Line 5 opts
for a radial gradient. Line 6 identifies red and black as the gradient’s colors.
Line 7 provides an alpha value of 1 (100 percent) for each color. Finally, line 8
weights the colors evenly across the full distance of the gradient.

[0, 255]

[0, 127]

0 255

[127, 255]

Figure 8-3. Gradient color ratios

NOTE

Graphic symbols beneath each gradient
in Figure 8-3 mark color positions for
demonstration purposes only. Although
these symbols make intentional allu-
sions to the Flash Professional Color
panel, the gradients in the figure were
created solely with ActionScript.

Part II: Graphics and Interaction198

The Graphics Class

1	 var	canvas	=	new	Sprite();
2	 addChild(canvas);
3	 var	g:Graphics	=	canvas.graphics;
4	
5	 var	gradType:String	=	GradientType.RADIAL;
6	 var	colors:Array	=	[0xFF0000,	0x000000];
7	 var	alphas:Array	=	[1,	1];
8	 var	ratios:Array	=	[0,	255];
9	
10	 g.beginGradientFill(gradType,	colors,	alphas,	ratios)
11	 g.drawRect(0,	0,	100,	100);

Figure 8-4 shows the resulting gradient fill. To manipulate the gradient as a
whole, such as moving the center of a radial gradient, rotating a linear gradi-
ent, or scaling a gradient to include more or less of the color span, you must
use a matrix—a special kind of number array, which we’ll introduce later
in the chapter. Before that, let’s look at gradient line styles, bitmap fills, and
bitmap line styles. Then we’ll revisit these topics to see how matrices can alter
their appearance.

Gradient line styles
Using a gradient line style is very much like combining a regular line style
with a gradient fill. The only difference is that the gradient is applied to the
line, not the fill. In fact, lineGradientStyle(), the method for applying a
gradient line style, doesn’t even replace the solid-color lineStyle() method.
Instead, both methods work together to define a line style and then paint it
with a gradient. If you omitted the basic lineStyle() method, no line would
appear at all.

The following script, found in line_style_gradient.fla source file, shows this
medley in action. Lines 1 through 5 create and position a canvas, as well as
create a reference to its graphics property. Line 6 applies a conventional line
style, specifying a black, 20-pixel stroke. Lines 8 through 11 define the gradi-
ent properties, just as we did in the last example, specifying a linear gradient,
from red to black, at full alpha, and evenly distributed between the two col-
ors. Line 13 applies the gradient, also in a similar fashion to the last example,
but this time to the line style, not the fill. Once the line is styled, line 14 draws
a 200 × 200 rectangle. The effect is illustrated in Figure 8-5.

1	 var	canvas:Sprite	=	new	Sprite();
2	 addChild(canvas);
3	 var	g:Graphics	=	canvas.graphics;
4	
5	 canvas.x	=	canvas.y	=	10;
6	 g.lineStyle(20,	0x000000);
7	
8	 var	gradType:String	=	GradientType.LINEAR;
9	 var	colors:Array	=	[0xFF0000,	0x000000];
10	 var	alphas:Array	=	[1,	1];
11	 var	ratios:Array	=	[0,	255];
12	
13	 g.lineGradientStyle(gradType,	colors,	alphas,	ratios);
14	 g.drawRect(0,	0,	200,	200);

Figure 8-4. A radial gradient fill created
with the Graphics class

Figure 8-5. A linear gradient line style

NOTE

As discussed in the “Gradient fills” por-
tion of this section, transforming the line
gradient also requires a special mathe-
matical construct called a matrix, which
we’ll introduce in the upcoming section
“The Geometry Package.”

The Graphics Class

Chapter 8: Drawing with Vectors 199

Using Bitmap Fills and Lines
In addition to applying gradients to fills and lines, you can use bitmaps
to decorate your drawing’s fills and lines. Both the beginBitmapFill() and
lineBitmapStyle() methods we cover in this section use instances of the
BitmapData class. This class handles pixel color and alpha data and allows
low-level manipulation of bitmaps. Conveniently, BitmapData is also the data
type of bitmaps instantiated from the Flash Professional library using a link-
age class. So, any time we need such an instance in the following examples,
using a linkage class with an imported bitmap will fit the bill.

Bitmap fills
Using bitmap fills is an easy way to add art to a shape created with the drawing
API. Instead of using the beginFill() method, simply substitute beginBitmap-
Fill(). The method requires a BitmapData instance, such as a bitmap from
the library, but all remaining parameters are optional. When using the default
values, the bitmap will automatically tile. This is very useful for keeping file size
down because you can fill large areas with custom bitmap art by using tiles.

In the following example, the 18 × 19 pixel tile in Figure 8-6 has been import-
ed into the bitmap_fill_tiled.fla source file and been given a linkage class of
WeaveTile. The following code fills a 200 × 200 rectangle with the tile result-
ing in what you see in Figure 8-7. Note in line 5 that you must pass in the
size of the bitmap you want to use for your fill when creating the BitmapData
instance.

1	 var	canvas:Sprite	=	new	Sprite();
2	 addChild(canvas);
3	 var	g:Graphics	=	canvas.graphics;
4	
5	 g.beginBitmapFill(new	WeaveTile(18,	19));	
6	 g.drawRect(0,	0,	200,	200);
7	 g.endFill();

If you don’t want to tile the bitmap, you need only adjust an optional param-
eter of the beginBitmapFill() method. Here is the method signature:

beginBitmapFill(bitmap:BitmapData,	matrix:Matrix=null,	
repeat:Boolean=true,	smooth:Boolean=false):void

The first optional parameter is for a matrix, used to rotate, scale, or adjust
the location of a bitmap within your shape. We’ll do that a little later in the
chapter. We do need to provide a value here, however, to get to the remaining
parameters, because the order of parameters is not arbitrary. So, in this case,
we’ll pass in null to make no change.

The second parameter controls tiling. By default, its value is true, but you
can turn off tiling by setting its value to false. The third optional parameter
smoothes the appearance of the bitmap when scaled, softening up the edges.
Smoothing can adversely affect performance, so don’t apply it arbitrarily, and
usually not to fast-moving sprites.

NOTE

In Chapter 13, we’ll discuss how to load
external images so you can use bitmaps
that haven’t already been imported into
an FLA. For now, let’s focus on the syn-
tax required to use bitmaps, no matter
where they originate.

NOTE

Flash Professional CS5 users can omit
the width and height values in this
usage. This will be discussed further
in the next chapter, when covering the
BitmapData class in greater detail.

Figure 8-6. A bitmap tile

Figure 8-7. A tiled bitmap fill

Part II: Graphics and Interaction200

The Graphics Class

The following code, found in the bitmap_fill.fla source file, is nearly identical
to the last example, only modifying the arguments in the beginBitmapFill()
method. It uses a bitmap with a linkage class of Texture, no matrix, turns off
tiling, and turns on smoothing to show you an example of the syntax for the
optional parameters (all in line 5). The result is shown in Figure 8-8.

8	 var	canvas:Sprite	=	new	Sprite();
9	 addChild(canvas);
10	 var	g:Graphics	=	canvas.graphics;
11	
12	 g.beginBitmapFill(new	Texture(550,	400),	null,	false,	true);	
13	 g.drawRect(0,	0,	200,	200);
14	 g.endFill();

Bitmap line styles
Applying bitmaps to line styles will likely feel like familiar territory. It’s simi-
lar to applying gradients to line styles, in that the basic lineStyle() method
is still required to control things like thickness and alpha values for the line.
The lineBitmapStyle() method is then used immediately thereafter to apply
the bitmap. This method is similar to the beginBitmapFill() method in that
it takes the same parameters: a BitmapData instance, a matrix for bitmap
manipulation (null by default), and tiling and smoothing options (true and
false by default, respectively).

The only drawing API change the following code (found in the line_style_
bitmap_tiled.fla source file) makes to the previous examples is substituting a
bitmap line style for a fill style. It again uses the WeaveTile linkage class, put-
ting the tile from Figure 8-6 to use one more time. Because tiling is enabled
by default, the result of this simple code is seen in Figure 8-9.

1	 var	canvas:Sprite	=	new	Sprite();
2	 addChild(canvas);
3	 var	g:Graphics	=	canvas.graphics;
4	
5	 canvas.x	=	canvas.y	=	10;
6	 g.lineStyle(20,	0x000000);
7	 g.lineBitmapStyle(new	WeaveTile(18,	19));
8	 g.drawRect(0,	0,	200,	200);

When tiling is turned off, you can apply larger bitmaps to line styles for a less
geometric effect. The following code uses the previously mentioned Texture
bitmap and sets tiling to false. The result is seen in Figure 8-10, and found in
the line_style_bitmap.fla source file.

9	 var	canvas:Sprite	=	new	Sprite();
10	 addChild(canvas);
11	 var	g:Graphics	=	canvas.graphics;
12	
13	 canvas.x	=	canvas.y	=	20;
14	 g.lineStyle(40,	0x000000);
15	 g.lineBitmapStyle(new	Texture(550,	400),	null,	false)
16	 g.drawRect(0,	0,	510,	360)

Figure 8-8. A bitmap fill without tiling

Figure 8-9. A tiled bitmap line style

Figure 8-10. A bitmap line style without
tiling

NOTE

One very important thing to remem-
ber is that bitmap line styles are new
to Flash Player as of version 10.1.
Therefore, your viewers must have that
version of the player or later for this
feature to work.

The Graphics Class

Chapter 8: Drawing with Vectors 201

Simulating the Pencil Tool
A good way to learn interactive drawing is to simulate the functionality of the
Flash Professional Pencil tool. As when you use the Pencil tool in Flash, in
ActionScript you select a line size and color, move the mouse to the drawing’s
starting point, then click and drag to draw. In both cases, you also release the
mouse to move to a new location, and then start drawing again.

This process is outlined in the following script from the pencil.fla source file.
Lines 1 through 3 prepare our usual canvas, and line 4 initializes a Boolean to
keep track of whether the pencil is drawing. Line 6 sets the line style.

Lines 8 through 18 create a trio of listeners: Line 8 is added to the main time-
line (the scope of the script) and updates the art every enter frame. Lines 9
through 11 are added to the stage and toggle the drawing Boolean based on
the mouse activity. Finally, lines 21 through 25 move the drawing point with
the mouse if the mouse button is up, and draw with the mouse if its button
is down. Figure 8-11 is a simple graphic drawn with this code.

1	 var	canvas:Sprite	=	new	Sprite();
2	 addChild(canvas);
3	 var	g:Graphics	=	canvas.graphics;
4	 var	drawing:Boolean	=	false;
5	
6	 g.lineStyle(1,	0x000000);
7	
8	 this.addEventListener(Event.ENTER_FRAME,	onLoop,	false,	0,	true);
9	 stage.addEventListener(MouseEvent.MOUSE_DOWN,	onDown,	
10	 																							false,	0,	true);
11	 stage.addEventListener(MouseEvent.MOUSE_UP,	onUp,	false,	0,	true);
12	
13	 function	onDown(evt:MouseEvent):void	{
14	 				drawing	=	true;
15	 }
16	 function	onUp(evt:MouseEvent):void	{
17	 				drawing	=	false;
18	 }
19	
20	 function	onLoop(evt:Event):void	{
21	 				if	(drawing)	{
22	 								g.lineTo(mouseX,	mouseY);
23	 				}	else	{
24	 								g.moveTo(mouseX,	mouseY);
25	 				}
26	 }

NOTE

In lines 9 and 10 of the pencil.fla code,
the mouse event listeners are added to
the stage because the stage can eas-
ily react to mouse events. If you add
a mouse event listener to a movie clip
(which the main timeline is), the mouse
events will register only if you click on
visible content within the movie clip. As
this example is a simple drawing appli-
cation that begins with a blank canvas,
attaching mouse events to the main
timeline would mean that no mouse
event would ever be heard.

Figure 8-11. Art created using the pencil.fla
source file

Part II: Graphics and Interaction202

The Graphics Class

Drawing Complex Shapes with drawPath()
If you want to push yourself a bit to use many of the skills you’ve learned
throughout this book, you can take a sideline and look over this more
advanced technique for drawing with vectors. Feel free to skip this section, if
you’re still finding your scripting legs. You can always come back to it when
you’re more comfortable with ActionScript 3.0.

This exercise is just a form of self-guided study, and introduces a new feature
of Flash Player 10.1. Although it can really expand what you can do in combi-
nation with other new features discussed on the companion website, there’s
nothing here that you can’t put off for now. In essence, all this feature does is
allow you to draw a complex shape all at once, having stored the same draw-
ing methods you’ve just learned, and corresponding points, for later recall.

The drawPath() method allows you to build a collection of drawing com-
mands and draw a vector masterpiece all at once. From a comparison
standpoint, drawPath() isn’t very different from executing a list of individual
drawing API commands. In the simplest terms, it collects moveTo(), lineTo(),
and curveTo() commands into a single method, but it does a bit more if you
delve deeper.

First, it stores both the commands and data points using the fast, efficient
Vector class. An instance of the Vector class is very different from the vectors
we’ve been drawing throughout this chapter. Essentially, the ActionScript
construct vector is an array and, in most cases, working with a vector will be
the same as working with an array. However, vectors are very fast because they
are typed arrays. That is, normal arrays can contain a mixture of many data
types, making it impossible for the array as a whole to be checked against a
single data type. Each vector, on the other hand, can contain only one data
type, so the compiler knows right away what the data type of everything in
the vector will be. That makes them fast. If you haven’t used vectors yet, take
another look at Chapter 2.

The second, and most beneficial feature of the drawPath() method is that
you can save the drawing commands and points for later use; you can recall
them again and again to draw complex paths without having to rewrite the
code every time. The companion website has more information about this
process in a series of posts aptly prefixed “The Drawing API.” For now, how-
ever, let’s write a function that will collect polygon coordinates and lineTo()
commands to draw finished polygons using the drawPath() method. Two
example polygons created by the script, a hexagon and a triangle, are shown
in Figure 8-12.

The following script can be found in the draw_path_polygons.fla source file.
Lines 1 through 7 create two canvases into which we will draw a triangle
and hexagon, respectively. We’re using two canvases because our function can
draw polygons with three or more sides, and the script will demonstrate both
a three-sided polygon (triangle) and a six-sided polygon (hexagon).

Pu
sh

 Yourself!

Figure 8-12. Two shapes created with the
drawPath() method

The Graphics Class

Chapter 8: Drawing with Vectors 203

1	 var	hexagon:Sprite	=	new	Sprite();
2	 hexagon.x	=	hexagon.y	=	100;
3	 addChild(hexagon);
4	
5	 var	triangle:Sprite	=	new	Sprite();
6	 triangle.x	=	triangle.y	=	200;
7	 addChild(triangle);

The drawPolygon() method, which we defined in lines 9 through 33, uses
simple math to calculate points on an invisible circle, and then divides the
circumference of that circle into equal segments to find the points of a poly-
gon. In other words, if you divided a circle at two equidistant points along its
circumference, you’d end up with two points that describe a straight line (the
circle’s diameter). If you divided the circumference into three segments, you’d
end up with three points that form a triangle, and so on.

The drawPolygon() method takes as its arguments: a sprite to draw into, the
radius and number of sides for the polygon, and the starting angle of the first
point in the polygon (lines 9 and 10). Line 11 stores the graphics property of
the desired canvas so we can draw into it, and line 12 stores the number of
points of the polygon we want to draw to. (The number of points is one larger
than the number of sides because we have to draw back to the first point
again, to close the shape.)

The number of polygon segments determines the amount by which the angle
is incremented each time a line is drawn (line 13). A triangle touches our
invisible circle three times, so the angle increment is 360/3 or 120 degrees. A
hexagon has 6 sides, so its angle is incremented 60 degrees each time a side
is drawn (360 / 6 = 60).

The last initialization steps, in lines 14 and 15, create empty vectors to contain
the polygon points and commands. Note that the data type of the vector is
added to the process, as discussed in Chapter 2. The points of the polygon
will be stored in Number format, and the commands will be stored in int
(integer) format. Line 16 adds the first drawing instruction, a moveTo(), to the
commands vector. The constant MOVE_TO from the GraphicsPathCommand class
contains the required integer, making it easier to remember because you don’t
have to recall which integer corresponds to which method. If you prefer to use
integers to save space, however, moveTo() is 1, lineTo() is 2, and curveTo() is 3.

Lines 17 through 21 determine the point to which the first move is made.
They use the basic circle math discussed in Chapter 7 to find the points of
the polygon on our invisible circle. The current angle is first converted from
degrees to radians (line 17, calling the function in lines 35 through 37), and
then the x and y coordinates of the first point are calculated, using cosine and
sine respectively, times the radius of the circle (lines 18 and 19). Finally, lines
20 and 21 push the point into the points vector. Note that the x and y values
are stored separately and sequentially, rather than as x-y pairs, to take advan-
tage of the speed boost that comes from processing numbers in a vector.

Figure 8-13. Forming polygons by dividing
a circle’s circumference into equal sections
and then connecting the equidistant
points

Part II: Graphics and Interaction204

The Graphics Class

8	 //drawing	function
9	 function	drawPolygon(canvas:Sprite,	radius:Number,	
10	 																					numSegments:int,	angle:Number=0):void	{
11	 				var	g:Graphics	=	canvas.graphics;
12	 				var	numPoints:int	=	numSegments	+	1;
13	 				var	angleChange:Number	=	360/numSegments;
14	 				var	points:Vector.<Number>	=	new	Vector.<Number>;
15	 				var	commands:Vector.<int>	=	new	Vector.<int>;
16	 				commands.push(GraphicsPathCommand.MOVE_TO);
17	 				var	radians:Number	=	deg2rad(angle);
18	 				var	xLoc:Number	=	Math.cos(radians)	*	radius;
19	 				var	yLoc:Number	=	Math.sin(radians)	*	radius;
20	 				points.push(xLoc);
21	 				points.push(yLoc);

The for loop in lines 22 through 30 repeats this process for every point in
the polygon, with two exceptions. First, line 23 increments the angle to deter-
mine the location of the next point. For each subsequent point, the lineTo()
method is used to draw a line to the point, rather than move there.

The final part of the function sets a line style, and draws the polygon all at
once by walking through each command and matching it with correspond-
ing points (lines 31 and 32, respectively).

22	 				for	(var	i:int	=	0;	i	<	numPoints;	i++)	{
23	 								angle	+=	angleChange;
24	 								radians	=	deg2rad(angle);
25	 								xLoc	=	Math.cos(radians)	*	radius;
26	 								yLoc	=	Math.sin(radians)	*	radius;
27	 								commands.push(GraphicsPathCommand.LINE_TO);
28	 								points.push(xLoc);
29	 								points.push(yLoc);
30	 				}
31	 				g.lineStyle(1,	0x000000);
32	 				g.drawPath(commands,	points);
33	 }
34	
35	 function	deg2rad(deg:Number):Number	{
36	 				return	deg	*	(Math.PI/180)
37	 }
38	
39	 drawPolygon(hexagon,	50,	6);
40	 drawPolygon(triangle,	50,	3,	270);

The last step in the process occurs in lines 39 and 40 when the function
is called. Each time, a minimum of three things is passed to the function:
a movie clip canvas into which the art is drawn, the radius of the desired
polygon, and the number of sides used to create the polygon. Line 40 demon-
strates the optional parameter, dictating the starting position of the polygon’s
first point. By default, this is at angle 0, or to the right. (This is determined by
the default value of 0 for the angle parameter in line 10.) To align the triangle
upward, we must set the starting angle to 270 degrees.

Don’t forget: there are additional discussions related to this process on the com-
panion website. Two more drawing methods, for example, offer slightly modi-
fied syntax for the moveTo() and lineTo() drawing commands. They introduce

The Geometry Package

Chapter 8: Drawing with Vectors 205

no new functionality, but are designed to require fewer code edits, should
you ever need to switch to drawing a curve later on. More importantly, addi-
tional features not covered here can be used to store and redraw graphics
data again and again. Push yourself to learn and check out the site when
you’re ready.

The Geometry Package
Regardless of whether you intend to use a lot of math in your programming,
you will probably use more geometry than you think. You’ve already indi-
rectly referenced points on many occasions, and you might also use rectangles
for simple tasks like defining an area or checking to see if something is within
a given boundary. Fortunately, simple tasks like these do not require that you
calculate your own formulas. In fact, preexisting ActionScript classes can even
replace some of the manual coding you’re already doing, such as calculating
the distance between two points, discussed in Chapter 7.

The flash.geom package contains a handy set of utility classes that help cre-
ate and manipulate points, rectangles, and other data used to transform the
appearance of objects. Here we’ll focus on three of its classes that most closely
relate to drawing with code: Point, Rectangle, and Matrix. We’ll also revisit
the Geometry package when discussing color in the next chapter.

Creating Points
The Point class allows you to reference an x and y coordinate as a single
point. An instance of the Point class contains x and y properties, and creating
the instance is as easy as using the new operator, just as you’ve done many
times so far. Using an empty constructor, as seen in the first line of the fol-
lowing code block, will automatically create a default point of (0, 0). You can
reference another location, however, by passing x and y values into the con-
structor. The first syntax demonstration that follows creates a default point
and traces the point’s x and y properties separately. The second demonstra-
tion creates a specific point and traces the point as a whole.

var	pt:Point	=	new	Point();
trace(pt.x,	pt.y);
//0	0

var	pt2:Point	=	new	Point(100,	100);
trace(pt2);
//(x=100,	y=100)

In addition to its x and y properties, the Point class also has a handful of
useful methods to make processing point data easier. These methods allow
you to move a point, add or subtract the x and y values of two points, or
determine whether two points are the same. It can even calculate the distance
from one point to another, or find an interim location between two points.

NOTE

Neither the Point nor the Rectangle
class draws a shape. These classes define
virtual points and rectangles for use
with other coding needs.

Part II: Graphics and Interaction206

The Geometry Package

The following code is found in the points.fla source file. Traces are used
throughout the code to show you the immediate results of each instruction.
To start, lines 1 and 2 create two points to work with. Line 3 demonstrates the
offset() method, moving the point 50 pixels in both the x and y directions.

Lines 6 and 8 demonstrate adding and subtracting points. These methods
work on the point’s x and y values independently, creating a new point that is
calculated from the sum or difference of the two point coordinates. Line 10
checks to see if two points are the same using the equals() method. This is
very handy for conditionals because you don’t have to test for x and y values
independently.

1	 var	pt1:Point	=	new	Point(100,	100);
2	 var	pt2:Point	=	new	Point(400,	400);
3	 pt1.offset(50,	50);
4	 trace(pt1);
5	 //(x=150,	y=150)
6	 trace(pt1.add(pt2));
7	 //(x=550,	y=550)
8	 trace(pt2.subtract(pt1));
9	 //(x=250,	y=250)
10	 trace(pt1.equals(pt2));
11	 //false

Two very convenient Point methods are distance() and interpolate(),
which really simplify animation math. Essentially, distance() performs the
work of the Pythagorean theorem discussed in the previous chapter, so you
don’t have to do it yourself. The interpolate() method calculates an interim
location between two specified points. The method’s third parameter deter-
mines how close to either point you want the new location to be. A value
closer to 0 is nearer the proximity of the second point; a value approaching 1
is closer to the first point.

12	 trace(Point.distance(pt1,	pt2));
13	 //353.5533905932738
14	 trace(Point.interpolate(pt1,	pt2,	0.5));
15	 //(x=275,	y=275)

Creating Rectangles
Rectangles are defined in a way similar to defining points, but by using the
Rectangle class. Like using point data, creating and manipulating rectan-
gular areas via ActionScript can be very helpful when positioning objects.
For example, a rectangle can be used to establish a boundary within which
something must remain or occur—such as keeping a movie clip in a corner
of the stage. You will also see in the next chapter that rectangles are valuable
for defining areas of data—in much the way a marquee selection or cropping
tool behaves in a drawing application.

Here’s an example of creating a rectangle, and checking its location, width,
and height. The first line of the following snippet shows the order of argu-
ments that must be supplied when instantiating a rectangle. Comparing the

NOTE

See the “Using Points and Rectangles”
post on the companion website for addi-
tional information.

The Geometry Package

Chapter 8: Drawing with Vectors 207

sample output comments to this line shows how the properties and values
are related.

//Rectangle(x:Number,	y:Number,	width:Number,	height:Number)
var	rect:Rectangle	=	new	Rectangle(0,	0,	100,	100);
trace(rect.x,	rect.y);
//0	0
trace(rect.width,	rect.height);
//100	100
trace(rect);
//(x=0,	y=0,	w=100,	h=100)

Three sets of properties also give you a more granular look at location and
dimension values of the rectangle. For example, in the rectangles.fla source
file, you’ll find the following script, which shows how to find the rectangle’s
location, width, and height, just as you did with the Point class. Line 4 dem-
onstrates the left, top, right, and bottom properties of the rectangle. You can
use these properties to check for the location of an edge of a rectangle. Finally,
line 6 uses the topLeft and bottomRight properties to retrieve the appropri-
ately named bounding points of the rectangle.

1	 var	rect:Rectangle	=	new	Rectangle(50,	50,	200,	100);
2	 trace(rect.x,	rect.y,	rect.width,	rect.height);
3	 //50	50	200	100
4	 trace(rect.left,	rect.top,	rect.right,	rect.bottom);
5	 //50	50	250	150
6	 trace(rect.topLeft,	rect.bottomRight);
7	 //(x=50,	y=50)	(x=250,	y=150)

As with the Point class, you can move a rectangle with one call to the off-
set() method (shown in line 9 of the continuing script that follows), instead
of changing both the rectangle’s x and y properties. You can also create a
larger rectangle by increasing the width and height on all sides surrounding
the initial rectangle’s center point. This is accomplished using the inflate()
method and is another way of creating a quick frame around a rectangle. The
first parameter of this method is added to the location of the rectangle’s left
and right dimensions (enlarging the rectangle horizontally), and the second
parameter is applied to the top and bottom dimensions (enlarging the rect-
angle vertically).

8	 //offset	and	inflate
9	 rect.offset(10,	10);
10	 trace(rect.left,	rect.top,	rect.right,	rect.bottom);
11	 //60	60	260	160
12	 rect.inflate(20,	20);
13	 trace(rect.left,	rect.top,	rect.right,	rect.bottom);
14	 //40	40	280	180

Next, you can use a handful of methods to compare rectangles with points
and other rectangles. The following code block compares two new rectangles,
rect1 and rect2, and a new point, pnt. Lines 19, 21, and 23 determine whether
an object is inside a rectangle. Line 19 checks to see whether x and y locations
are both inside the rectangle. Line 21 performs the same test, but allows you
to pass in a point instead of discreet x and y values. Line 23 checks to see

Part II: Graphics and Interaction208

The Geometry Package

whether an entire rectangle is within another rectangle. These methods can
be handy for programming drag-and-drop exercises.

15	 //contains
16	 var	rect1:Rectangle	=	new	Rectangle(0,	0,	100,	50);
17	 var	rect2:Rectangle	=	new	Rectangle(50,	25,	100,	50);
18	 var	pnt:Point	=	new	Point(125,	50);
19	 trace(rect1.contains(25,	25));
20	 //true
21	 trace(rect2.containsPoint(pnt));
22	 //true
23	 trace(rect1.containsRect(rect2));
24	 //false

Line 26 of this ongoing example checks to see if two rectangles overlap, and
line 28 returns any area shared by both rectangles. Line 30 returns the union
of the two specified rectangles—a new rectangle created from the minimum-
bounding area that fully encompasses both original rectangles.

25	 //intersection	and	union
26	 trace(rect1.intersects(rect2));
27	 //true
28	 trace(rect1.intersection(rect2));
29	 //(x=50,	y=25,	w=50,	h=25)
30	 trace(rect1.union(rect2));
31	 //(x=0,	y=0,	w=150,	h=75)

These methods can be used in advanced collision detections, drawing tools,
and other efforts. For example, you can rule that two objects collide only if a
certain degree of overlap is achieved (rather than first contact). This can be
determined by checking the size of the resulting intersection.

Because neither the Rectangle nor Point classes create display objects, Figure
8-14 visualizes the rectangles and points discussed. The blue rectangle repre-
sents rect1, the yellow rectangle represents rect2, the red dot represents pnt,
and the black dot represents the explicit point (25, 25). The green area depicts
the new rectangle created by the intersection of rect1 and rect2, and the
dashed line depicts the new rectangle created by the union of rect1 and rect2.

Using Matrices
ActionScript offers predefined properties for affecting a display object’s
scale, rotation, and x and y locations, all of which are specified individually.
However, there are certain types of objects to which these properties do not
apply, such as the gradient fill and line style discussed previously and similar
bitmap properties we’ll introduce in a moment and cover in the next chapter.

To change these kinds of objects, you must use a matrix. A matrix is basically
a special kind of array of numbers, expressed in a grid. It is not a multi-
dimensional array, as the numbers are stored linearly. However, they relate
to each other within the matrix in special ways. Matrix elements can be
used independently or together to perform complex object transformations.

rect1

intersection

union

(25, 25)

(125, 50)

rect2

pnt

Figure 8-14. Rectangle class methods
demonstrated

The Geometry Package

Chapter 8: Drawing with Vectors 209

For example, combinations of elements, such as scale and rotation, can be
applied at once, and matrices can even be used to achieve effects that are
otherwise not possible with individual properties, such as skewing.

You can also use matrices for more advanced operations such as determining
where a point ends up after an object has been transformed. In other words,
the point (10, 10) near the upper-left corner of a rectangle will not be at point
(10, 10) after a 90-degree rotation. The Matrix class can tell you the new loca-
tion to which that point has moved, or even the change in location between
the new and original points.

The Matrix class provides a basic 3 × 3 matrix for use in several transfor-
mation processes. Its structure can be seen in Figure 8-15. Built-in Matrix
properties a and d affect scaling. Properties b and c will skew (or shear) an
object. The tx and ty properties affect x and y location, respectively. Together,
elements a, b, c, and d, affect rotation. The last three values in the matrix, u,
v, and w, are not used in ActionScript and can be ignored.

Table 8-1 shows the transformations possible with a matrix. The first column
shows the type of transformation, the second column lists related properties
and a simplified class method for accomplishing the goal (if one exists), and
the third column shows the values that must be adjusted, if you need to do
so manually. It is almost always more convenient to use existing methods,
or the a, b, c, d, tx, and ty properties, but writing out the matrix explicitly
is useful when you want to make several changes at once. Finally, the last
column depicts a representative change in an object when the transformation
is applied.

Table 8-1. Matrix values and how they transform objects

Transformation Properties/Methods Matrix Result

Identity

Default matrix, null transformation

a, b, c, d, tx, ty

identity()

1,
0,
0,

0,
1,
0,

0
0
1

[

]

Translation

Changes position, x and y, respectively,
using pixels

tx, ty

translate(tx, ty)

1,
0,
0,

0,
1,
0,

tx
ty
1

[

]

Scale

Scales along the x and y axes, respectively,
using percent

a, d

scale(a, d)

sx,
0,
0,

0,
sy,
0,

0
0
1

[

]

Rotation

Rotates, using radians

a, b, c, d

rotate(q)

cos(q),
–sin(q),

0,

sin(q),
cos(q),

0,

0
0
1

[

]

a,
b,
u,

c,
d,
v,

tx
ty
w

[

]

Figure 8-15. Matrix properties

(continued)

Part II: Graphics and Interaction210

The Geometry Package

Table 8-1. Matrix values and how they transform objects

Transformation Properties/Methods Matrix Result

Skew (Shear)

Skews along the x and y axes, respec-
tively, using pixels

b, c

None. (See the
MatrixTransformer note in
the “Calculating changes in
points after transformations”
section.)

1,
tan(zy),

0,

tan(zx),
1,
0,

0
0
1

[

]

Skewing with matrices
To test this information, let’s use the Matrix class to do something you can’t
do with a built-in property or method—skew a display object. The following
script, found in the matrix_skew_1.fla source file, creates a rectangle with the
Graphics class and then skews it.

To start with, lines 1 through 7 create a translucent green rectangular sprite
with a 1-pixel black border and add it to the display list. The function span-
ning lines 9 through 10, originally discussed in Chapter 7, converts degrees to
radians for use with the Matrix skewing code.

1	 var	rect:Sprite	=	new	Sprite();
2	 addChild(rect);
3	 var	g:Graphics	=	rect.graphics;
4	 g.lineStyle(1,	0x000000);
5	 g.beginFill(0x00FF00,	0.4);
6	 g.drawRect(0,	0,	100,	50);
7	 g.endFill();
8	
9	 function	deg2rad(deg:Number):Number	{
10	 	return	deg	*	Math.PI	/	180;
11	 }
12	
13	 var	matrix:Matrix	=	rect.transform.matrix;
14	 matrix.c	=	Math.tan(deg2rad(20));
15	 rect.transform.matrix	=	matrix;

Finally, lines 13 through 15 apply the skewing effect. Line 13 creates a matrix
based on the existing object’s matrix, by retrieving the value of the matrix
property of the transform object. This makes sure you are starting from any
current transformation, whatever that may be. That is, if an object has already
been skewed, starting with a default matrix (also called an identity matrix)
will effectively reset the prior skew with the new values.

Line 14 sets the c property of the matrix, which skews along the x-axis using
the angle specified. It requires radians instead of degrees, so a value of 20
degrees is passed to the conversion function to get back the required radian
value. Finally, the matrix is applied to the object’s matrix property in line 15.
The result is seen in the top illustration in Figure 8-16.

c = 20

θ

c = –20

c = –20
x o�set by deltaTransformPoint()

Figure 8-16. A sprite skewed with the
Matrix class

(continued)

The Geometry Package

Chapter 8: Drawing with Vectors 211

Note that the skew is applied to the bottom edge of the sprite. This is impor-
tant because if you wanted to give the sprite the appearance that it was
slanted right rather than left, you need to compensate with the correct angle.
Angles between 90 and 180 degrees and between 270 and 360 degrees will
slant an object to the right but it’s easier to use corresponding negative values.
The following change to the existing script (indicated in bold) is found in
matrix_skew_2.fla and uses –20 degrees instead of 20 degrees, and the result
appears in the middle illustration of Figure 8-16.

16	 var	matrix:Matrix	=	rect.transform.matrix;
17 matrix.c = Math.tan(deg2rad(-20));
18	 rect.transform.matrix	=	matrix;

Calculating changes in points after transformations
The sprite slants to the right, but because horizontal skewing affects only
the bottom edge, the sprite now appears offset to the left. That is, we suc-
cessfully skewed the object –20 degrees, but it is no longer where we want it
to be. To compensate, we can use the occasionally life-saving methods that
calculate the change in a point’s location as a result of a transformation. We’ll
demonstrate this feature first. Putting aside the correction we’re seeking for
a mometnt, let’s trace the new position of a sprite point, as it exists after the
skew.

Let’s focus on the original location of the lower-left corner of the rectangle.
We knew that to be (0, 50) because the rectangle had a height of 50 and was
positioned at (0, 0) (per our drawRect() instruction in line 6). Therefore, we
can pass a point of (0, 50) to the transformPoint() method to see the new
value of that location:

19	 trace(matrix.transformPoint(new	Point(0,	50)));

The new point will trace as approximately (18, 50) because the prior point
(0, 50) has been skewed to the left. Calculating this change can require fairly
involved trigonometry, so this method is very handy.

If we stopped here, we could determine the difference between the two points
and change the location of the sprite accordingly. However, there’s already a
method that eliminates the need to calculate the offset. The deltaTransform-
Point() method determines the change in the before and after locations of a
point, rather than the absolute old and new locations.

We know from the prior trace that the lower-left corner of the rectangle
has moved approximately 18 points to the left, and did not move vertically.
Therefore, passing (0, 50) to the deltaTransformPoint() method will return
a point that is approximately (–18, 50). All we need to do is use that infor-
mation to correct the location of the sprite. We can, therefore, stubtract the
x change in the point from the original x, and the sprite will be restored to
its original position. Add lines 16 and 17 to the ongoing example (as in the
matrix_skew_2.fla source file) and see the bottom illustration in Figure 8-16.

20	 rect.x	-=	matrix.deltaTransformPoint(new	Point(0,	50)).x;

NOTE

If you’re a Flash Professional user, check
out the timesaving MatrixTransformer
class. It’s part of the fl.motion pack-
age, added to Flash to support recreating
timeline animations with ActionScript.

This class makes matrix transfor-
mations even easier than the dedi-
cated methods of the Matrix class. For
instance, it has getters and setters for
every matrix setting and both degrees
and radians are supported, eliminating
the need to convert angle values before
use.

Here’s an example of using the class to
skew the mc movie clip 20 degrees:

var	matrix:Matrix	=	new	Matrix();
MatrixTransformer.

setSkewX(matrix,	20);
mc.transform.matrix	=	matrix;

That’s easier than transforming points,
as described in the “Skewing with matri-
ces” discussion of this chapter. The class
can also automatically rotate a display
object around any point, rather than
just the object’s transformation point.
See the “Using the MatrixTransformer
Class” post at the companion website
for more information.

Part II: Graphics and Interaction212

The Geometry Package

Manipulating gradient fills and line styles
Now that you know a little bit about matrices, you can exert greater control
over gradient fills and line styles. The first time we introduced gradient fills,
we filled a rectangle with a radial gradient. The center of the fill did not
match the center of the object because we couldn’t control the scale of the
gradient. Similarly, the scale of the gradient applied to the line style was too
large, not revealing full red on the left or full black on the right.

Using matrices, you can control a number of attributes, including the width,
height, rotation, and translation of these fills and line styles. To simplify this
process for you, Adobe added the createGradientBox() method to the Matrix
class. This method allows you to affect all of these properties with a single
method call, and accepts these parameters:

createGradientBox(width,	height,	rotation,	tx,	ty);

Let’s see how the optional addition of a matrix to the beginGradientFill()
method improves our gradient, by starting with the simplest use of the
createGradientBox() method. The following code is derived from the prior
radial gradient example and is found in the radial_gradient_2.fla source file.
We’ve created a matrix in line 10, and then used the createGradientBox()
method in line 11 to set the size of the matrix to match the size of the sprite.
Finally, we added that matrix to the fill creation in line 12.

1	 var	canvas	=	new	Sprite();
2	 addChild(canvas);
3	 var	g:Graphics	=	canvas.graphics;
4	
5	 var	gradType:String	=	GradientType.RADIAL;
6	 var	colors:Array	=	[0xFF0000,	0x000000];
7	 var	alphas:Array	=	[1,	1];
8	 var	ratios:Array	=	[0,	255];
9	
10	 var	matrix:Matrix	=	new	Matrix();
11	 matrix.createGradientBox(100,	100,	0);
12	 g.beginGradientFill(gradType,	colors,	alphas,	ratios,	matrix);
13	
14	 g.drawRect(0,	0,	100,	100);

Figure 8-17 shows the original look of the gradient (top) and its appearance
after matching its size to that of the rectangle. After the transformation, the
radial gradient is now entirely visible.

By adding translation values to the method, you can also now reposition the
center of the gradient. For example, using 30 pixels for tx and ty would place
the epicenter of the gradient in the lower-right corner of the rectangle, dem-
onstrated in the radial_gradient_3.fla source file.

15	 var	matrix:Matrix	=	new	Matrix();
16 matrix.createGradientBox(100, 100, 0, 30, 30);

To demonstrate the rotation of a gradient, we’ll change the script in two
small ways. First, we’ll switch the gradient type from radial to linear so the
rotation is more noticeable (line 5). Then we’ll send a rotation value into

Figure 8-17. A radial gradient before (top)
and after (bottom) matrix transformations

The Geometry Package

Chapter 8: Drawing with Vectors 213

the createGradientBox() method (line 11). The degree-to-radian conversion
function rounds out the changes in lines 16 through 18 of the following script.
Figure 8-18 shows before and after rotating a linear gradient 90 degrees. This
code can be found in the linear_gradient_matrix.fla source file.

17	 var	canvas	=	new	Sprite();
18	 addChild(canvas);
19	 var	g:Graphics	=	canvas.graphics;
20	
21 var gradType:String = GradientType.LINEAR;
22	 var	colors:Array	=	[0xFF0000,	0x000000];
23	 var	alphas:Array	=	[1,	1];
24	 var	ratios:Array	=	[0,	255];
25	
26	 var	matrix:Matrix	=	new	Matrix();
27 matrix.createGradientBox(100, 100, deg2rad(90));
28	 g.beginGradientFill(gradType,	colors,	alphas,	ratios,	matrix);
29	
30	 g.drawRect(0,	0,	100,	100);
31	 	
32 function deg2rad(deg:Number):Number {
33 return deg * (Math.PI / 180);
34 }

Adjusting gradient line styles
The same matrix adjustment can improve the gradient line style example from
earlier in the chapter. The following example, from the line_style_ gradient_
matrix.fla source file, uses the changes indicated in bold to display the full
size of the gradient—exposing full red and full black at the left and right
sides, respectively. The result appears in Figure 8-19, which can be compared
with Figure 8-5 to see the change.

1	 var	canvas:Sprite	=	new	Sprite();
2	 addChild(canvas);
3	 var	g:Graphics	=	canvas.graphics;
4	
5	 canvas.x	=	canvas.y	=	10;
6	 g.lineStyle(20,	0x000000);
7	
8	 var	gradType:String	=	GradientType.LINEAR;
9	 var	colors:Array	=	[0xFF0000,	0x000000];
10	 var	alphas:Array	=	[1,	1];
11	 var	ratios:Array	=	[0,	255];
12	
13 var matrix:Matrix = new Matrix();
14 matrix.createGradientBox(200, 200, 0);
15	
16 g.lineGradientStyle(gradType, colors, alphas, ratios, matrix);
17	 g.drawRect(0,	0,	200,	200);

Adjusting bitmap line styles
So far, we’ve adjusted the size of gradients to improve their appearance in
fills and line styles. Now let’s look at using a matrix to translate the location
of a bitmap line style or fill. When a bitmap tiles, it initially tiles relative to

NOTE

The linear_gradient_matrix.fla source
file contains additional code to create a
second box with a gradient that is not
rotated. Comparing the boxes next to
each other, as seen in Figure 8-18, will
show the effect of the matrix manipula-
tion.

Figure 8-18. A linear gradient after (top)
and before (bottom) rotation with the
Matrix class

Figure 8-19. A gradient line style
transformed with a matrix to show the full
range of colors in the gradient. Compare
with Figure 8-5.

Part II: Graphics and Interaction214

The Geometry Package

a global positioning point. That is, point (0, 0) of your tile won’t necessar-
ily line up with point (0, 0) of your object. The following code, found in
line_style_bitmap_tiled_heart.fla, uses a heart tile to fill a 20-pixel line. The
initial result, shown in Figure 8-20, demonstrates what can happen when the
tile and object don’t initially line up properly.

1	 var	canvas:Sprite	=	new	Sprite();
2	 addChild(canvas);
3	 var	g:Graphics	=	canvas.graphics;
4	
5	 canvas.x	=	canvas.y	=	10;
6	 g.lineStyle(20,	0x000000);
7	
8	 g.lineBitmapStyle(new	HeartTile(20,	19));
9	 g.drawRect(0,	0,	200,	209);

However, we can use a matrix to translate the x and y coordinates of the bit-
map so that it better matches our shape. The following adjustments appear
in the line_style_bitmap_tiled_heart_matrix.fla source file. The changes to the
previous script add a matrix (line 9), use the translate() method to move
the bitmap 10 pixels to the left and 9 pixels up, and then apply the matrix
when creating the line’s bitmap style (line 11). (To prevent this particular tile
from showing an extra pixel at the bottom, we also reduced the height of the
rectangle. Be prepared to fiddle with your values a bit, to achieve your goal.)
The result can be seen in Figure 8-21.

10	 var	matrix:Matrix	=	new	Matrix();
11 matrix.translate(-10, -9);
12
13 g.lineBitmapStyle(new HeartTile(20, 19), matrix);
14 g.drawRect(0, 0, 200, 209);

Gradient Spread Method
For our last word on gradients, let’s talk about the available gradient spread
methods. Using these options, you can control the way a gradient behaves
when it fills an area larger than its own dimensions. In Flash Professional’s
Color panel this feature is called overflow (or flow in version CS5), but in
ActionScript it is called the spread method. The default behavior is extend
in the Color panel, which is called pad in ActionScript—specified by the
SpreadMethod.PAD constant. This setting continues the last color in the gradi-
ent throughout the remaining visible area to which the gradient is applied.
This can be seen in all prior figures depicting gradients, as well as in the first
illustration of Figure 8-22.

NOTE

The change in nomenclature for the gradient fill spread method was required because
overflow and extend both have important separate meanings in ActionScript.

Figure 8-20. Bitmap line style with no
transformation matrix

Figure 8-21. Bitmap line style corrected
with transformation matrix

9-Slice Scaling

Chapter 8: Drawing with Vectors 215

The other two ActionScript options, SpreadMethod.REFLECT and SpreadMethod.
REPEAT, share the same names and functionality with the Color panel. The
former reverses the colors as many times as is needed to occupy the available
space filled by the gradient, as if the gradient was held against a mirror. The
latter fills the visible area in a similar fashion but starts over at the first color
as if tiled. Figure 8-22 shows these effects in the middle and bottom illustra-
tions, respectively.

To control this feature, we must add another optional parameter to the beg-
inGradientFill() call. The following code is found in spread_method.fla,
and is based on the code from the linear_gradient_matrix.fla source file. The
changes in bold, reflect the gradient. Commented lines are included for test-
ing the pad and repeat options, as well. You can switch the comments to see
the varying results.

Remember that a gradient needs to spread only when it is smaller than the
canvas it is trying to fill. Therefore, this example reduces the width and height
of the gradient using the createGradientBox() method to show the effect in
action. If both the gradient and rectangle were 100 × 100 pixels, no spreading
would occur.

1	 var	canvas:Sprite	=	new	Sprite();
2	 addChild(canvas);
3	 var	g:Graphics	=	canvas.graphics;
4	
5	 var	gradType:String	=	GradientType.LINEAR;
6	 var	colors:Array	=	[0xFF0000,	0x000000];
7	 var	alphas:Array	=	[1,	1];
8	 var	ratios:Array	=	[0,	255];
9	
10	 var	matrix:Matrix	=	new	Matrix();
11	 matrix.createGradientBox(50,	50,	deg2rad(90),	0,	0);
12	
13 //var spread:String = SpreadMethod.PAD;
14 var spread:String = SpreadMethod.REFLECT;
15 //var spread:String = SpreadMethod.REPEAT;
16 g.beginGradientFill(gradType, colors, alphas, ratios, matrix,

spread);
17	
18	 g.drawRect(0,	0,	100,	100);
19	 	
20	 function	deg2rad(deg:Number):Number	{
21	 				return	deg	*	(Math.PI	/	180);
22	 }

9-Slice Scaling
Scaling vectors is usually a pleasure because the crispness of the vector art
isn’t lost when it’s resized. This is because the vectors are recalculated every
time an object is scaled. However, one of the downsides of this default behav-
ior is that certain visual characteristics, such as stroke weight and rounded
corners, can become distorted during scaling. This phenomenon can be seen
in the top two illustrations of Figure 8-23.

Figure 8-22. Gradient fill spread method
options pad (top), reflect (middle), and
repeat (bottom)

Part II: Graphics and Interaction216

9-Slice Scaling

To reduce distortion caused by scaling in many types of display objects, you
can use a feature called 9-slice scaling. This feature virtually slices a display
object into nine pieces and controls scaling of these pieces independently. A
typical grid of nine slices can be seen in Figure 8-23, marked with “9-slice
scaling enabled.” The four corners are not scaled. The top and bottom slices
between the corners are scaled only horizontally, the left and right slices
between the corners are scaled only vertically, and the center slice is scaled in
both directions.

To enable this feature using ActionScript, you must set the correspond-
ing scale9grid property to a rectangle that, in essence, defines the object’s
center slice. ActionScript then extrapolates the corners and perimeter slices
by extending the sides of the virtual rectangle. The aforementioned “9-slice
scaling enabled” illustration in Figure 8-23 shows this by darkening the cen-
ter rectangle and outlining the slices with dashed lines. To demonstrate this
feature, the following exercise, found in the scale9.fla source file, will create a
sprite with rounded corners and then scale it using the mouse.

Lines 1 through 9 follow our familiar routine of creating a sprite, drawing vec-
tor assets, and positioning and adding the sprite to the display list. However,
there’s one new twist to this process. The lineStyle() method in line 6 con-
tains an optional parameter we haven’t discussed. The third parameter tells
the method to give the line an alpha value of 100 percent. This parameter was
discussed in the Drawing Shapes section of the chapter when we overlapped
a 50-percent fill and a 50-percent line. (See the circle in Figure 8-1.) An alpha
value of 1 is the default behavior, but we need to include it here to add our
fourth parameter. (It’s not possible to vary the order in which parameters are
supplied to this method, so the first three must be present to use the fourth.)

The fourth parameter enables stroke hinting, which aligns strokes along
whole pixels, improving legibility. Specifically, this parameter reduces the
apparent loss of stroke thickness due to anti-aliasing and improves the look
of rounded corners, which is central to this exercise.

1	 var	canvas:Sprite	=	new	Sprite();
2	 canvas.x	=	canvas.y	=	50;
3	 addChild(canvas);
4	
5	 var	g:Graphics	=	canvas.graphics;
6	 g.lineStyle(1,	0x000000,	1,	true);
7	 g.beginFill(0xFFFF00,	0.5);
8	 g.drawRoundRect(0,	0,	100,	50,	15);
9	 g.endFill();
10	
11	 var	slice9rect:Rectangle	=	new	Rectangle(15,	15,	70,	20);
12	 canvas.scale9Grid	=	slice9rect;
13	
14	 addEventListener(Event.ENTER_FRAME,	onLoop,	false,	0,	true);
15	 function	onLoop(evt:Event):void	{
16	 				canvas.width	=	Math.max(mouseX	-	canvas.x,	30);
17	 				canvas.height	=	Math.max(mouseY	-	canvas.y,	30);
18	 }

original

scaled with distortion

9-slice scaling enabled

scaled without distortion

Figure 8-23. 9-Slice scaling reduces
distortion during scaling

NOTE

It is possible to slice a display object
into a different number of slices by
repositioning the slice-defining rectangle,
but unpredictable results may occur.

Applied Examples

Chapter 8: Drawing with Vectors 217

Lines 11 and 12 create a rectangle that is inset from all four sides of the sprite
by 15 pixels, and sets the scale9Grid property of the sprite to the specified
rectangle. An inset of 15 pixels is just enough to ensure that the rounded
corners of the rectangle are positioned in the four corners of the grid, thus
preventing scaling.

Finally, an event listener calls the onLoop() function every enter frame, resiz-
ing the sprite based on the mouse location. Lines 16 and 17 set the width and
height, respectively, of the sprite to the mouse coordinates minus 50, which
are the x and y values of the sprite assigned in line 2. So, if the mouse is at
point (150, 150), the sprite will have a size of 100 × 100.

One new element, introduced in lines 16 and 17, limits how small the rect-
angle can become. The max() method of the Math class determines which of
the two values provided to it is larger and uses that value. Therefore, if the dis-
tance of the mouse from the sprite registration point’s x or y value is greater
than 30, that value is used. Conversely, if the mouse is closer than 30 pixels
to the sprite’s registration point, 30 will be used. This allows the rectangle to
scale but prevents it from getting any smaller than 30 × 30 pixels.

If you want to see a live comparison between using and not using 9-slice scal-
ing, add the bold lines in the following code to your script, or see the source
file, which already includes this code. Every time you click the mouse, the
feature toggles between on and off by alternately applying or removing the
rectangle to the sprite’s scale9Grid property.

19	 //switch	between	default	and	9-slice	scaling
20	 function	onLoop(evt:Event):void	{
21	 				canvas.width	=	Math.max(mouseX	-	sp.x,	30);
22	 				canvas.height	=	Math.max(mouseY	-	sp.y,	30);
23	 }
24	
25 stage.addEventListener(MouseEvent.CLICK, onClick, false, 0, true);
26 function onClick(evt:Event):void {
27 if (canvas.scale9Grid) {
28 canvas.scale9Grid = null;
29 } else {
30 canvas.scale9Grid = slice9rect;
31 }
32 }

Applied Examples
Now let’s use much of what we’ve covered in this chapter in two applied
examples. In the first exercise, we’ll create the artwork for a basic color picker.
Then we’ll create a custom button tool that can serve as a lightweight, code-
only alternative to components. In both cases, let’s build the examples in
classes to practice using object-oriented programming.

NOTE

Remember that providing left-, top-,
right-, and bottom-edge coordinates does
not specify a Flash rectangle. Instead,
the x and y coordinates of the upper-left
corner, width, and height of the rect-
angle are specified. So, a rectangle that
insets 15 pixels from a 100 × 50-pixel
sprite, must start at the sprite’s point
15, 15, and have dimensions of 70 × 20
pixels.

Pu
sh

 Yourself!

Part II: Graphics and Interaction218

Applied Examples

Starting a Color Picker
Let’s start by writing a class that will build the display portion of a simple
color picker. In the next chapter, we’ll show you how to retrieve values from
the picker using your mouse. To preview this exercise, test the color_picker_
graphics_example.fla source file, which simply instantiates the class we’re
about to discuss, and adds it to the display list.

The picker will contain two separate pieces: a color spectrum in vertical
blended stripes, and a transparent-to-black gradient overlay, as seen in Figure
8-24. The overlay will allow you to vary how much black is added to a color.

First we’ll create the color spectrum and add it to the display list. Then we’ll
create the transparent-to-black overlay and add it to the display list. Adding
it after the color spectrum gradient will position it on top. Because both
sprites will be added to the class, all you need to do is add an instance of the
finished class to the display list of your project and your color picker artwork
will be self-contained and ready for the functional enhancements planned in
Chapter 9.

Now take a look at the following code. Lines 1 through 10 cover the basic
syntax found in many classes. Line 1 defines the package, including a pack-
age location. This means that the ColorPickerGraphics class will be found
inside a directory called color, which is inside learningactionscript3, which is
inside com.

Lines 3 through 6 import the necessary classes, line 8 defines the class, and
line 10 defines the constructor that will be executed immediately when the
class is instantiated. Note in line 8 that the class extends MovieClip. This
means that this class will inherit the public and protected properties and
methods found in MovieClip. It also means that we can add the class to the
display list as if it were a movie clip itself.

Our gradient method requires arrays for colors, alpha values, and color ratios,
as previously described. The colors array includes red, yellow, green, cyan,
blue, purple, and red again. The alphas array contains a 1 for every color,
rendering each step in the gradient at full alpha. The ratios array evenly dis-
tributes each color across the 0–255 span, without weighting any one color
over another.

The spectrum is next created and added to the display list in lines 18 through
20. The process is then repeated for the overlay. The overlay includes two
evenly distributed colors, black at 0 percent alpha, and black at 100 percent
alpha (lines 22 through 24). It’s then created and added to the display list.
We’ll explain the calls to drawGradientBox(), in lines 18 and 26 when we
discuss the method. Review the following code and then we’ll look at the
method that creates the artwork.

Figure 8-24. Two layers of the color picker

NOTE

Creating the two layered gradients for
the picker requires the same code with
only minor variance in some of the set-
tings. Therefore, it makes sense to define
a method to handle the work without a
lot of repetition. This way, we can vary
the parameters sent to the method and
create multiple gradients with the same
code.

NOTE

The reverse domain naming convention
is discussed in Chapters 1 and 6.

NOTE

Because the artwork is created in the
constructor, and the data is passed to
the gradient method through param-
eters, there is no need for these values to
be stored in class properties.

Applied Examples

Chapter 8: Drawing with Vectors 219

1	 package	com.learningactionscript3.color	{
2	 				
3	 				import	flash.display.Sprite;
4	 				import	flash.display.GradientType;
5	 				import	flash.geom.Matrix;
6	 				import	flash.display.Graphics;
7	 				
8	 				public	class	ColorPickerGraphics	extends	Sprite	{
9	
10	 								public	function	ColorPickerGraphics()	{
11	 												
12	 												var	colors:Array	=	[0xFF0000,	0xFFFF00,	0x00FF00,	
13	 																																0x00FFFF,	0x0000FF,	0xFF00FF,	
14	 																																0xFF0000];
15	 												var	alphas:Array	=	[1,	1,	1,	1,	1,	1,	1];
16	 												var	ratios:Array	=	[0,	42,	84,	126,	168,	210,	255];
17	 												
18	 												var	spectrum:MovieClip	=	drawGradientBox(100,	colors,	
19	 																																																					alphas,	ratios);
20	 												addChild(spectrum);
21	 												
22	 												colors	=	[0x000000,	0x000000];
23	 												alphas	=	[0,	1];
24	 												ratios	=	[0,	255];
25	 												
26	 												var	overlay:Sprite	=	drawGradientBox(100,	colors,	
27	 																																																	alphas,	ratios,	
28	 																																																	deg2rad(90));
29	 												addChild(overlay);
30	 								}

In addition to the aforementioned arrays, the method also requires a size
for the artwork (100 for both components) and, optionally, a rotation (90
degrees, in the case of the overlay, sent to the method in line 28). The rotation
value can be omitted from the method call that creates the spectrum (lines 18
and 19), not just because it isn’t needed, but also because the matrixRotation
parameter of the method (line 34) has a default value.

Lines 35 and 36 create a sprite and reference to its graphics property, but
the movie clip is not yet added to the display list. Instead, it is returned by
the method in line 48 and added to the display list by the constructor, as
discussed previously.

Because the gradient data is sent to the method through its parameters, all
that remains in lines 38 through 41 is to specify a linear gradient, create the
matrix, and modify the matrix with the specified size and rotation, if any. The
matrix is then applied using the createGradientBox() method (lines 40 and
41), a 1-pixel black line is specified in line 43, and all the gradient values are
passed to the beginGradientFill() method in lines 44 and 45. Finally, lines
46 through 48 draw the rectangle, close the fill, and return the sprite to the
constructor.

NOTE

Because the rotation angle is easier to
specify in degrees, the value is converted
to radians using the function at the end
of the class.

Part II: Graphics and Interaction220

Applied Examples

31	 								//creating	the	gradient	artwork
32	 								private	function	drawGradientBox(size:Number,	colors:Array,	
33	 																											alphas:Array,	ratios:Array,	
34	 																											matrixRotation:Number=0):Sprite	{
35	 												var	canvas:Sprite	=	new	Sprite();
36	 												var	g:Graphics	=	canvas.graphics;
37	 												
38	 												var	fill:String	=	GradientType.LINEAR;
39	 												var	matrix:Matrix	=	new	Matrix();
40	 												matrix.createGradientBox(size,	size,	
41	 																																					matrixRotation,	0,	0);
42	 												
43	 												g.lineStyle(1,	0x000000);
44	 												g.beginGradientFill(fill,	colors,	alphas,	
45	 																																ratios,	matrix);
46	 												g.drawRect(0,	0,	size,	size);
47	 												g.endFill();
48	 												return	canvas;
49	 								}
50	
51	 								private	function	deg2rad(deg:Number):Number	{
52	 												return	deg	*	(Math.PI/180);
53	 								}
54	 				}
55	 }

To add this first step of our color picker to your project, all you need to do
is create an instance of the class and add it to the display list. The source file
color_picker_graphics_example.fla has already been created for this purpose.

import	com.learningactionscript3.color.ColorPickerGraphics;

var	picker:ColorPickerGraphics	=	new	ColorPickerGraphics();
addChild(picker);

Don’t forget that this example just demonstrates the dynamic creation of
the picker. (No assets—all code!) In the next chapter, we’ll show you how to
retrieve color values from the picker so you can use it in your own projects.

A Custom Button Class
The next applied example is a class that creates functioning buttons entirely
with code, and it’s based on your work with the Graphics class in this chapter.
The RoundRectButton_example.fla source file shows the class at work. This
example introduces two new concepts. The first is the use of the SimpleButton
class, which allows you to dynamically create traditional buttons that have
up, over, down, and hit states, as well as cursor feedback. As such, they
will behave just like buttons you create manually on the stage using Flash
Professional’s drawing and symbol tools. The button’s behavior is simulated
in Figure 8-25, showing not only cursor feedback in the over and down states
(middle and bottom) showing up, over, and down states, but also the use of a
brighter color in the over state, and darker color in the down state.

RoundRectButton

RoundRectButton

RoundRectButton

Figure 8-25. A custom button created by
the RoundRectButton class

Applied Examples

Chapter 8: Drawing with Vectors 221

This color change is a result of the other new concepts discussed in this
example: the ability to automatically interpolate a color that falls between
two given color values. For example, given red and blue, the code will return
purple. This is accomplished through the Color class, which is part of the
fl.motion package.

Our custom button class starts with the standard package syntax through
line 19, declaring the package, importing classes, and declaring the class and
class properties. Note, again, the custom package path. See the introduction to
“Starting a Color Picker” earlier in this chapter for more information.

1	 package	com.learningactionscript3.ui	{
2	
3	 				import	flash.display.Graphics;
4	 				import	flash.display.MovieClip;
5	 				import	flash.display.Shape;
6	 				import	flash.display.SimpleButton;
7	 				import	flash.text.TextField;
8	 				import	flash.text.TextFieldAutoSize;
9	 				import	fl.motion.Color;
10	
11	 				public	class	RoundRectButton	extends	MovieClip	{
12	
13	 								private	var	_w:Number;
14	 								private	var	_h:Number;
15	 								private	var	_rad:Number;
16	 								private	var	_linW:Number;
17	 								private	var	_col:uint;
18	 								private	var	_txt:String;
19	 								private	var	_txtCol:uint;

The constructor begins with lines 21 through 31, populating the class vari-
ables with the parameter values passed in when instantiating the class. These
include values for width, height, corner radius, line weight, color, text, and
text color. It follows with the creation of a button and text field (both of
which we’ll discuss in just a moment), and adding both to the display list of
the class instance.

20	 								//constructor
21	 								public	function	RoundRectButton(w:Number,	h:Number,	
22	 																																								rad:Number,	linW:Number,
23	 																																								col:uint,	txt:String,	
24	 																																								txtCol:uint){
25	 												_w	=	w;
26	 												_h	=	h;
27	 												_rad	=	rad;
28	 												_linW	=	linW;
29	 												_col	=	col;
30	 												_txt	=	txt;
31	 												_txtCol	=	txtCol;
32	
33	 												var	btn:SimpleButton	=	createBtn();
34	 												addChild(btn);
35	 												var	labl:TextField	=	createLabel();
36	 												addChild(labl);
37	 								}

NOTE

As mentioned previously, the Color
class is available to Flash Professional
users only. However, we have repro-
duced the functionality in the com.
learningactionscript3.color.
ColorUtils class for users of other
ActionScript editors. The sample source
code for this chapter includes notes on
its use.

Part II: Graphics and Interaction222

Applied Examples

The createBtn() method assembles the button using the SimpleButton
class. The createBtn() method calls createRoundRect() (reviewed in just a
moment) to create a shape that serves as the background for each button
state. The latter method requires only one parameter, which is the color used
for the background shape.

We determine these colors in lines 40 and 41 using the static method
interpolateColor() from the Color class. Given two colors, the method cal-
culates a color between the two. A third parameter indicates how close to either
color the new value should be. For example, if you provided black and white
and a weighting of 0.1, the new color would be closer to the first, or a charcoal
gray. A weighting of 0.9 would be closer to the second color, or near white.

To create the over-state color (lines 40 through 42), we calculate a value 30
percent between the main button color (visible in the button’s up state) and
white. To determine the down state color (lines 43 through 45), we calculate
a value 30 percent between the main button color and black. Accordingly, the
over state is lighter than the up state, and the down state is darker than the up
state. After each state is added to the SimpleButton instance (lines 47 through
50), the button is returned to the constructor.

38	 								//create	all	button	states
39	 								private	function	createBtn():SimpleButton	{
40	 												var	ovCol:uint	=	Color.interpolateColor(_col,	
41	 																																																				0xFFFFFF,	
42	 																																																				0.3);
43	 												var	dnCol:uint	=	Color.interpolateColor(_col,	
44	 																																																				0x000000,	
45	 																																																				0.3);
46	 												var	btn:SimpleButton	=	new	SimpleButton();
47	 												btn.upState	=	createRoundRect(_col);
48	 												btn.overState	=	createRoundRect(ovCol);
49	 												btn.downState	=	createRoundRect(dnCol);
50	 												btn.hitTestState	=	btn.upState;
51	 												return	btn;
52	 								}

The createRoundRect() method (lines 54 through 62) presents no new mate-
rial, but reviews an idea discussed in Chapter 4 about display lists. Notice
that the method returns a shape instead of a sprite or movie clip. You can now
create shapes with code, an improvement over prior versions of ActionScript.
Unlike sprites and movie clips, shapes don’t support interactivity like mouse
event listeners. However, they do require fewer resources to create. Because
these shapes will be used inside a SimpleButton instance, which provides all
the necessary interactivity, they are well suited for this situation.

NOTE

Static methods are called from the class,
not an instance of the class. As such,
the new keyword is not used to create an
instance before invoking the method.

Applied Examples

Chapter 8: Drawing with Vectors 223

53	 								//create	background	shape	for	button	states
54	 								private	function	createRoundRect(col:uint):Shape	{
55	 												var	rRect:Shape	=	new	Shape();
56	 												var	g:Graphics	=	rRect.graphics;
57	 												g.lineStyle(_linW,	_col);
58	 												g.beginFill(col,	0.5);
59	 												g.drawRoundRect(0,	0,	_w,	_h,	_rad);
60	 												g.endFill();
61	 												return	rRect;
62	 								}

Finally, the createLabel() method in lines 64 through 74 adds text to the
button. Line 65 creates the text field, line 66 sets the width of the field to
the width of the button, and line 67 sets the y location to slightly above the
midpoint of the button, centering the text vertically. The text is centered hori-
zontally in line 68, and line 69 sets the color of the text to the value passed
into the class during instantiation. Finally, the specified button’s text is added
to the field in line 70, all mouse interaction with the field is disabled in line
71, and the field is returned to the constructor in line 73.

63	 								//create	text	overlay	for	button
64	 								private	function	createLabel():TextField	{
65	 												var	txt:TextField	=	new	TextField();
66	 												txt.width	=	_w;
67	 												txt.y	=	_h	/	2	-	6;
68	 												txt.autoSize	=	TextFieldAutoSize.CENTER;
69	 												txt.textColor	=	_txtCol;
70	 												txt.text	=	_txt;
71	 												txt.mouseEnabled	=	false;
72	
73	 												return	txt;
74	 								}
75	 				}
76	 }

Using this class is one way to present interface buttons to the user without
having to precreate them in the Flash Professional interface. This restricts the
ability to use custom artwork for individual buttons but keeps file size to a
minimum. This is a simple demonstration, so the class is not very feature-
rich when it comes to button styling options. However, that fact presents an
ideal opportunity for you to practice what you’ve learned. Try to improve
on this class by drawing specialized button shapes or, perhaps, by offering a
choice between circular, rectangular, or rounded button shapes.

NOTE

As discussed in prior chapters, disabling
mouse interaction with the text field is
vital because if this step is omitted, the
field will interfere significantly with the
operation of the button. The cursor will
change to an I-beam text editing cursor,
the text will be selectable, and the field
will intercept mouse events.

Part II: Graphics and Interaction224

What’s Next?

learningactionscript3 Package
The project package for this chapter includes ColorUtils, which provides color
interpolation and tinting options to those using an ActionScript editor other than
Flash Professional. ColorUtilsExample.fla, the example file in this chapter’s source
archive, demonstrates its use. Also included is RoundRectButton, a custom code-
only button class, and ColorPickerGraphics, the beginnings of a color picker that
we’ll expand in Chapter 9. We will make use of one or more of these classes in future
chapters to create small exercise files without building custom assets, and to increase
your comfort with using classes.

What’s Next?
Manipulating visual assets with ActionScript is one of the most fun and most
satisfying ways to learn the language. Drawing vectors does more than mini-
mize file size. It also provides nearly limitless possibilities for creating genera-
tive art. Combining data from other corners of the ActionScript world (user
input, sound, mathematical calculations, random numbers, and so on) with
vectors opens the door to compelling and instructional experiments. Vectors,
however, are only half of the puzzle. Flash also provides an impressive range
of classes for manipulating pixel-based assets at runtime.

In the next chapter, we’ll look at working with bitmaps, including:

• Drawing bitmaps at runtime

• Applying blend modes such as lighten, screen, and Flash-specific options

• Using simple filters like drop shadow, bevel, and blur, to enhance assets

• Using complex filter techniques like convolution, color mixing, and dis-
placement maps for special effects

• Encoding custom bitmap data and saving those graphics to your hard
drive

225

IN THIS CHAPTER

Bitmap Caching

The BitmapData Class

Blend Modes

Bitmap Filters

Color Effects

Image Encoding and Saving

Adding Functionality to
Your Color Picker

What’s Next?

Though largely known for its focus on vector assets, ActionScript also has
an impressive arsenal of bitmap compositing features—options that work by
layering, blending, and filtering pixel-based assets. ActionScript can even take
a snapshot of vectors and manipulate the snapshot—behind the scenes with
no loss in vector quality—giving you additional compositing options and, in
many cases, performance gains.

Although it’s unrealistic to expect ActionScript to achieve the feature breadth
and depth of a pixel-editing application like Adobe Photoshop, you really can
accomplish quite a bit with it. Among others, ActionScript features include a
set of blend modes (darken, lighten, multiply, screen, and others that closely
resemble Photoshop blend modes), basic filters (like drop shadow, bevel, and
blur, akin to Photoshop layer styles), and advanced filter effects (like convolu-
tion and displacement mapping, similar to Photoshop filters).

Today, ActionScript 3.0’s speed and efficiency make bitmap manipulation
practical in more processor-intensive scenarios than ever before. In this chap-
ter, we’ll discuss several ways to add pixel pushing to your projects, including:

• Bitmap Caching. Moving pixels on screen is a lot more efficient than
recalculating the math required to display moving vectors every time a
frame renders. Temporarily caching a bitmap representation of a vec-
tor asset can reduce this strain and increase performance.

• The BitmapData Class. Just as you use the Graphics class to draw with
vectors, you can use the BitmapData class to draw with pixels.

• Blend Modes. ActionScript can blend assets together to alter the
appearance of one or more assets. Included are a standard set of blend
modes, which you might find in a typical bitmap editing application,
such as Darken, Multiply, Lighten, Screen, and so on. We’ll also dis-
cuss a few ActionScript-specific blend modes that use transparency to
great effect.

draWIng WIth
PIxeLs

CHAPTER 9

Part II: Graphics and Interaction226

Bitmap Caching

• Bitmap Filters. Advanced filtering techniques such as blurring,
sharpening, embossing, and distorting images can also be applied at
runtime. They can even be applied to vector symbol instances, as well
as bitmaps, without losing any fidelity or access to vector properties.

• Color Effects. ActionScript 3.0 offers a few ways to manipulate color,
ranging from applying simple tints to full manipulation of red, green,
blue, and alpha channels of bitmap data.

• Image Encoding. Bitmap data can even be encoded and saved
in an external graphics format like JPG or PNG, using additional
ActionScript libraries.

Bitmap Caching
First, we need to clear up a misconception: manipulating bitmaps in
ActionScript does not mean you’ll lose all the advantages of crisp, clean
vectors. ActionScript offers multiple ways to work with bitmap information,
and, as you’ll see, vectors and bitmaps can work together well. In fact, using
bitmaps judiciously can help you improve the look and performance of your
vector animations.

Vector animations can sometimes lag behind comparable bitmap animations
because they’re much more processor intensive to manipulate. The resources
needed to render all the vectors every time an update is required is invariably
more demanding than moving and compositing bitmaps.

With that in mind, ActionScript has the capability of caching, or temporar-
ily storing, a version of a vector asset as a bitmap. It can then work with the
bitmap instead of the original vector until it’s no longer optimal to do so. For
example, consider a complex vector background over which other vectors
are changing. If the background is unchanging, there’s no need to redraw the
vector background repeatedly. Instead, it’s more efficient to work with the
changing foreground elements on top of a bitmap. This situation is ideal for
bitmap caching, the syntax for which is shown here:

displayObject.cacheAsBitmap	=	true;

By setting the cacheAsBitmap property to true, you can tell Flash Player to
create a surface, a cosmetically identical bitmap representation of a symbol,
to use for display purposes. Viewers won’t notice the difference, because the
bitmap snapshot of the symbol is always kept current, through any changes,
to prevent degradation of image quality. For example, if the symbol is scaled,
the original cached bitmap is discarded and a new version is generated.

Bitmap Caching

Chapter 9: Drawing with Pixels 227

Because of this automatic updating feature, knowing when, and when not,
to use bitmap caching is important. For example, if you’re moving several
complicated vector assets around the stage, but doing little to alter their
appearance, bitmap caching can dramatically improve performance. However,
it’s usually unwise to enable caching if you’ll be scaling, rotating, or chang-
ing the opacity of a display object frequently. These operations change the
appearance of the display object, and it must be composited again with any
surrounding elements. Therefore, a new cache is created each time such a
change is made, so making many changes (and therefore caching frequently)
in quick succession can slow things down.

Soft-Edged Masks
Optimizing performance isn’t the only reason to use cacheAsBitmap. Some
features require this property to be true in order to function. For example,
although you can use ActionScript to assign one display object to mask
another, the mask has sharp edges by default because it can’t use varying
degrees of alpha transparency. That is, any nontransparent pixel, no matter
what its alpha value, is considered opaque when added to the mask.

NOTE

A mask is used to reveal a portion of a display object. Only the areas of the display
object that overlap with the mask area are visible.

If you use bitmap caching for both the masker (the display object that will
serve as the mask) and maskee (the display object that will be masked), how-
ever, ActionScript can composite the two elements as bitmaps. This allows
alpha masks to composite semitransparent pixels using their actual alpha
values to create a soft edge. Figure 9-1 illustrates this effect. The top image
is of the mask itself, showing a soft edge. The middle image is the default
appearance of an ActionScript mask, even when the mask contains varying
degrees of opacity. The bottom image shows the same mask in use, but this
time both the mask and revealed display object have their cacheAsBitmap
property set to true.

The following code snippet can be found in the as_mask.fla source file, which
has two movie clips on the stage, with instance names of maskee and masker.

1	 masker.cacheAsBitmap	=	true;
2	 maskee.cacheAsBitmap	=	true;
3	 maskee.mask	=	masker;

Mask

Mask applied without bitmap caching

Mask applied with bitmap caching

Figure 9-1. The same alpha mask applied
without bitmap caching (above) and with
bitmap caching (below)

Part II: Graphics and Interaction228

The BitmapData Class

The BitmapData Class
The BitmapData class is the real workhorse when it comes to ActionScript
pixel-based manipulations. As its name implies, an instance of the BitmapData
class contains not a bitmap, but the pixel color and alpha data that often
comprise a bitmap. As with bitmap caching, you need not be confined to
working with actual bitmaps to create a bitmap data instance. You can draw
bitmap data from scratch or derive it from vector assets just as easily as
from bitmap assets. Think of the latter process as working with a screenshot.
Whether the display object contains a bitmap or a vector shape is immaterial.
You can capture the bitmap data of that object in either case. Let’s start by
looking at creating bitmap data from scratch and highlighting the difference
between bitmap data and a bitmap.

Creating Opaque Bitmaps
There are two parts to creating a bitmap. One is the bitmap display object,
and the other is the bitmap data. The bitmap display object is the picture you
see on stage, and the bitmap data is a detailed description of the number of
pixels used, their individual colors and alpha values, and so on. Your ultimate
goal may be to display a bitmap, but you may also find it advantageous to
work with bitmap data without ever actually displaying the pixels in ques-
tion! (You’ll do just that later in the chapter when we demonstrate using a
displacement map.)

In our next example, we want to see the fruit of our labors, so we’ll work with
both bitmap data and a bitmap. The following script, found in the bitmap_
from_scratch.fla source file, creates an instance of the BitmapData class, creates
a bitmap using that data, and adds the bitmap to the display list. Without
setting the x or y property of the bitmap, it appears at (0, 0).

1	 var	bmd:BitmapData	=	new	BitmapData(100,	100,	false,	0xFF0000FF);
2	 var	bm:Bitmap	=	new	Bitmap(bmd);
3	 addChild(bm);

The first two arguments sent to the BitmapData class are the dimensions
of the instance (100 × 100 pixels, in this example), and are required. If you
intend only to create an empty BitmapData instance into which you’ll add
content later, you need not add the remaining arguments. If you want to add
visible pixels to your data instance at this stage, however, you can dictate the
transparency and color of the data.

The third parameter tells the class that this instance will not be transpar-
ent. The last parameter is the color desired, but it uses a format we haven’t
discussed previously. Instead of using the familiar 0xRRGGBB format, this
class parameter must communicate alpha values, and thus requires the 32-bit
0xAARRGGBB hexadecimal format. This format adds two digits for alpha
data at the beginning of the number. Line 1 of this code specifies FF, or full

NOTE

The maximum size of a BitmapData
object in Flash Player 10 is determined
by a combination of total number of
pixels and dimensions. It can’t exceed
16,777,215 pixels. When creating a bit-
map, square dimensions can’t exceed
4095 × 4095 pixels, and a single side
can’t exceed 8,191 pixels. Currently,
it’s possible to load bitmaps that
exceed these side restrictions, as long
as the total pixel count doesn’t exceed
16,777,215 pixels. This may change
in the future. For more information,
see http://kb2.adobe.com/cps/496/
cpsid_49662.html.

Flash Player 9 limits are considerably
more restrictive. BitmapData instances
can’t exceed 8,294,400 pixels (2880 ×
2880) or 2880 pixels on any side.

If you exceed the maximum value in
either dimension, in either player ver-
sion, an instance is not created.

http://kb2.adobe.com/cps/496/cpsid_49662.html
http://kb2.adobe.com/cps/496/cpsid_49662.html

The BitmapData Class

Chapter 9: Drawing with Pixels 229

opacity, and then 0000FF, or blue, for the color. The result of this script is a
100 × 100–pixel, 100-percent opaque, blue square positioned at (0, 0).

Creating Bitmaps with Transparency
To create a bitmap data object with transparency, you must change the third
parameter of the class constructor to true and then reduce the opacity of the
color value. The first pair of characters in the hexadecimal number (from
left to right) represents alpha (AA in the 32-bit format listed previously). The
acceptable alpha range is 00 (fully transparent) to FF (fully opaque). For
example, the following code, found in the bitmap_from_scratch_transparency.
fla source file, creates a green square that is 50-percent transparent. The alpha
value is 80, or half of the alpha range. The color that follows is then 00FF00,
or green, corresponding with the RRGGBB format.

1	 var	bmd:BitmapData	=	new	BitmapData(100,	100,	true,	0x8000FF00);
2	 var	bm:Bitmap	=	new	Bitmap(bmd);
3	 addChild(bm);

Using a Bitmap from the Library
If you need to work with an actual bitmap image, rather than originating your
own BitmapData object, you can add an imported bitmap dynamically from
the library. You can use the bitmap_from_library.fla file from the accompany-
ing source code for this exercise, or use your own image. You must have an
image already imported into the library and have given it a class name in the
Linkage Properties dialog.

In our sample source file, a 550 × 400–pixel image of penguins has been
given the linkage class name Penguins. Discussed briefly in Chapter 8, the
base class for a library bitmap is BitmapData. This allows you to easily access
the data without requiring that you first create an instance of the Bitmap. If
you want to display a bitmap, objects for both BitmapData and Bitmap must
be created.

The following three lines, found in the bitmap_from_library.fla source file,
create both objects, and add the bitmap to the display list.

1	 var	penguinsBmd:BitmapData	=	new	Penguins(550,	400);
2	 var	penguinsBm:Bitmap	=	new	Bitmap(penguinsBmd);
3	 addChild(penguinsBm);

In the section “Creating Opaque Bitmaps” earlier in this chapter, we said that
the first two parameters of the BitmapData constructor, width and height, are
required. This makes sense when you’re creating bitmap data from scratch,
but is a bit inconsistent when instantiating a bitmap from the library.
Thinking about your past experience with creating movie clips and text
fields, for example, it may be more intuitive to try this:

var	penguinsBmd:BitmapData	=	new	Penguins();

NOTE

The hexadecimal value 0x80 is equiva-
lent to 128, or half of the 0–255 range
for red, blue, green, and alpha channels
of a color.

NOTE

When adding a linkage class name to
a symbol, you needn’t actually create a
class file first. The compiler will create
an internal placeholder for you, which
will automatically be replaced by an
actual class should you later decide to
create one. For more information, see
the “Adding Custom Symbol Instances to
the Display List” section of Chapter 4.

NOTE

Loading a bitmap from an external
source is discussed in Chapter 13.

NOTE

Typing your bitmap data instance as
BitmapData, rather than the linkage
class name (Penguins, in this case) is
more flexible because any bitmap data
can be put into the variable. However, if
you want your data type checking to be
stricter, you can type to the linkage class
name, instead:

var	penguinsBmd:Penguins	=	new	
Penguins(550,	400);

This will restrict the variable to accept-
ing only the Penguins data.

Part II: Graphics and Interaction230

The BitmapData Class

However, in earlier versions of most ActionScript editors, including Flash
Professional CS3 and CS4, this will cause the compiler to generate the error:
Incorrect number of arguments. Expected 2. This behavior has been improved
in Flash Professional CS5, which will no longer issue this error, allowing you
to create a BitmapData instance from a library bitmap in a manner consistent
with the instantiation of many other objects.

Fortunately for users of older ActionScript compilers, the exact width and
height values are not required when using a preexisting bitmap (as in the
preceding penguins example). The BitmapData class will update these values
and the data will be placed into the instance variable without scaling. If you’re
uncertain about the dimensions of the bitmap you want to instantiate, just
use (0, 0).

Copying Pixels
In the previous example, you populated an instance of the BitmapData class
with a bitmap. But what if you want to work with only a portion of a bitmap?
You can simply copy pixels from one BitmapData instance to another. The exer-
cise that follows uses the copyPixels() method to create a new penguin bitmap
by copying a segment from another bitmap. The method is called from a new
BitmapData instance (into which you’re copying) and requires three parameters:
the source object, a rectangle defining the pixels to be copied, and the destina-
tion point in the new object to which the pixels should be copied.

The following code is found in the copy_pixels_stage_click.fla source file.
Lines 1 through 3 create the original penguin bitmap, as seen in the prior
example. Line 4 adds a listener to the stage to call the onClick() function
when the mouse is clicked. This is where the pixel copying takes place, which
we’ll explain after the code.

1	 var	penguinsBmd:BitmapData	=	new	Penguins(550,	400);
2	 var	penguinsBm:Bitmap	=	new	Bitmap(penguinsBmd);
3	 addChild(penguinsBm);
4	 stage.addEventListener(MouseEvent.CLICK,	onClick,	false,	0,	true);
5	
6	 function	onClick(evt:MouseEvent):void	{
7	 				var	rect:Rectangle	=	new	Rectangle(290,	196,	95,	170);
8	 				var	penguinCopyBmd:BitmapData	=	new	BitmapData(95,	170);
9	 				penguinCopyBmd.copyPixels(penguinsBmd,	rect,	new	Point());
10	
11	 				var	penguinCopyBm:Bitmap	=	new	Bitmap(penguinCopyBmd);
12	 				penguinCopyBm.x	=	385;
13	 				penguinCopyBm.y	=	196;
14	 				addChild(penguinCopyBm);
15	 }

Line 7 defines the rectangle required to specify the area you want to copy.
The Rectangle class requires the rectangle’s x and y location, and width and
height. Figure 9-2 shows these values in a detail of the source material. We
want to reference the area outlined in red, which is 95 × 170, but begins at
(290, 196) from the upper-left corner of the bitmap.

NOTE

For improved compatibility with multi-
ple ActionScript compilers, we’ll contin-
ue to use 0 for width and height when
creating a BitmapData instance from a
bitmap symbol of unknown size. Those
of you using current compilers can try
omitting these values, if you prefer.

x: 290, y: 196
w: 95, h: 170

Figure 9-2. A detail of the source image
with the area to be copied marked in red

The BitmapData Class

Chapter 9: Drawing with Pixels 231

Line 8 creates a new BitmapData instance the size of the desired rectangle.
Line 9 concludes the copy process by copying the pixels into the new
BitmapData instance, using the original source (penguinsBmd), the area to be
copied (rect), and the destination for the copied pixels. We want to copy the
pixels into a new bitmap, so for the last parameter, we just use a default Point
instance to copy into (0, 0) of the new bitmap.

Finally, lines 11 through 14 create a new bitmap from the copied pixels, posi-
tion it next to the original penguin, and add the new bitmap to the display list
so it appears atop the original. The result is seen in detail view in Figure 9-3.

By design, this exercise demonstrates that not all display objects are interac-
tive. The preceding code attached the mouse listener to the stage because we
can’t attach a listener to a bitmap.

If you want a bitmap to serve as a button, however, you can place the bitmap
into an interactive display object, such as a sprite. In the code excerpt that
follows, found in the copy_pixels_sprite_click.fla source file, note that the step
to add the bitmap to the stage, and the stage listener (lines 3 and 4 from the
preceding script), have both been removed. In their place (indicated by the
bold code), the bitmap is placed inside a new sprite and a listener is attached
to that sprite, rather than the stage.

16	 var	penguinsBmd:BitmapData	=	new	Penguins(550,	400);
17	 var	penguinsBm:Bitmap	=	new	Bitmap(penguinsBmd);
18	 var	sp:Sprite	=	new	Sprite();
19	 sp.addChild(penguinsBm);
20	 addChild(sp);
21	 sp.addEventListener(MouseEvent.CLICK,	onClick,	false,	0,	true);

Drawing into a Bitmap
Sometimes it’s simpler to draw the entire contents of a bitmap data source
into another, rather than copying pixels. For example, this is often true when
you want to draw into a bitmap repeatedly or build bitmaps from mul-
tiple sources. Let’s demonstrate this by actually painting on a canvas. In the
paint_tool.fla source file, we’ll create two simple, one-color circular brushes
and the user will be able to switch between them by pressing the Shift key. In
this section, we’ll match the color of one brush to the color of the canvas for
a simple eraser effect. Figure 9-4 shows an example of a painted area with a
swatch of color “erased” in the middle.

The no-interface functionality of this simple example calls for a dual role
for the mouse—both painting and erasing. So we’ll start the following script
by declaring a Boolean variable to track the mouse state. We then create
an empty canvas to hold our bitmap painting and add it to the display list
(lines 3 and 4). Lines 6 through 10 prepare the drawing surface by creating an
empty white BitmapData object the size of the stage, populating a bitmap with
that data, and adding the bitmap to the canvas sprite. Each time the bitmap
data is updated, the display bitmap will reflect the change.

NOTE

For more information about the
Rectangle or Point classes, see Chapter
7.

Figure 9-3. A detail of the SWF after the
pixels have been copied

Figure 9-4. A detail of drawing into a
BitmapData object with brush and eraser

NOTE

In the next section, we’ll use a blend
mode to add true eraser functionality to
this basic drawing application.

Part II: Graphics and Interaction232

The BitmapData Class

1	 var	mouseIsDown:Boolean;
2	
3	 var	canvas:Sprite	=	new	Sprite();
4	 addChild(canvas);
5	
6	 var	w:Number	=	stage.stageWidth;
7	 var	h:Number	=	stage.stageHeight;
8	 var	bmd:BitmapData	=	new	BitmapData(w,	h,	false,	0xFFFFFFFF);
9	 var	bm:Bitmap	=	new	Bitmap(bmd);
10	 canvas.addChild(bm);
11	
12	 var	brush:Sprite	=	createBrush(0x000099);
13	 var	eraser:Sprite	=	createBrush(0xFFFFFF);
14	 var	tool:Sprite	=	brush;
15	
16	 function	createBrush(col:uint):Sprite	{
17	 				var	sp:Sprite	=	new	Sprite();
18	 				sp.graphics.beginFill(col);
19	 				sp.graphics.drawCircle(0,	0,	20);
20	 				sp.graphics.endFill();
21	 				return	sp;
22	 }

Lines 12 through 22 finish the tool setup by creating a brush and an eraser.
Both tools are created by the same function, each passing in a different color;
blue for the brush and white for the eraser. The createBrush() function
returns a new sprite with an opaque circle of the color requested, with a
20-pixel radius. Line 14 initializes the tool’s default state to using the brush,
rather than eraser.

In the next script segment, a trio of listeners controls the brush/eraser func-
tionality. The mouse down event listener function (lines 30 through 37) first
sets the mouseIsDown Boolean to true so the app will know to alter the can-
vas. Then in line 32, a conditional checks to see if the shiftKey property of
the incoming mouse event is true, indicative of whether the user is holding
down the Shift key when the mouse is clicked. If so, the tool variable is set
to eraser. Otherwise, tool is set to brush. The mouse up listener (lines 39
through 41) resets mouseIsDown to false, as the user is neither painting nor
erasing. This combination of listeners toggles the paint/erase functionality
with every mouse click.

The enter frame listener function, onLoop() (lines 43 through 49), starts by
placing the tool at the mouse location so the user is ready to draw or erase.
It then uses a conditional to determine whether the mouse is down. If so, the
appropriate tool is drawn into the BitmapData instance used by the canvas.
We’ll talk about the matrix used by the second parameter of the draw()
method after the code.

23	 canvas.addEventListener(MouseEvent.MOUSE_DOWN,	onDown,	
24	 																								false,	0,	true);
25	 canvas.addEventListener(MouseEvent.MOUSE_UP,	onUp,	
26	 																								false,	0,	true);
27	 canvas.addEventListener(Event.ENTER_FRAME,	onLoop,	
28	 																								false,	0,	true);
29	

NOTE

In this painting example, note that nei-
ther brush nor eraser is added to the
display list. A display object does not
need to be in the display list to draw it
into a bitmap data instance.

Blend Modes

Chapter 9: Drawing with Pixels 233

30	 function	onDown(evt:MouseEvent):void	{
31	 				mouseIsDown	=	true;
32	 				if	(evt.shiftKey)	{
33	 								tool	=	eraser;
34	 				}	else	{
35	 								tool	=	brush;
36	 				}
37	 }
38	
39	 function	onUp(evt:MouseEvent):void	{
40	 				mouseIsDown	=	false;
41	 }
42	
43	 function	onLoop(evt:Event):void	{
44	 				tool.x	=	mouseX;
45	 				tool.y	=	mouseY;
46	 				if	(mouseIsDown)	{
47	 								bmd.draw(tool,	tool.transform.matrix);
48	 				}
49	 }

In line 47, we added a second argument to the draw() method: a matrix used
to transform the pixels drawn.

By default, no transformations of the source or destination BitmapData
instances are performed by the draw() method. The resulting effect is that
the bitmap data from the source object at point (0, 0) will be drawn into
the canvas at point (0, 0). That wouldn’t make a very interesting painting
program because changes would only appear at x, y coordinate point (0, 0)
in the canvas.

For this exercise, therefore, we can’t merely copy the tool bitmap data; we also
need the location of the brush (or eraser) relative to point (0, 0). The second
parameter of the draw() method is designed to process any such changes by
using a matrix. In this case, we care about the translation values for x and y,
meaning the degree to which the x and y values of the source differ from (0,
0). Using the matrix, pixel data that was offset from the origin of the source
BitmapData instance will be drawn into the destination source BitmapData
instance using the same offset from its origin. The tx and ty values of the
matrix will be updated when the x and y values of the tool are changed with
the mouse movement. In other words, if the brush is used at (100, 100), it will
be drawn into the canvas at (100, 100).

Blend Modes
Not every bitmap manipulation requires building BitmapData objects from the
ground up. Sometimes you may need to just apply a quick effect—to bitmaps
and vectors alike—to get the result you want. One of the most basic, yet very
useful, effects you can apply is a blend mode—a means of blending two or
more sets of visual data to create a unique appearance. ActionScript supports
a set of these compositing behaviors similar to the blending modes used in
Adobe Photoshop (in the Layers panel, for instance). Though ActionScript’s

NOTE

For more information about matrices,
see Chapter 7.

Part II: Graphics and Interaction234

Blend Modes

set of blend modes is understandably smaller than Photoshop’s, many of the
most widely used modes (such as Darken, Multiply, Lighten, Screen, Overlay,
and Hard Light) are available.

The syntax required to apply a blend mode to a display object or BitmapData
object is very simple. The object’s blendMode property is set to one of the
blend mode values, typically via a constant of the BlendMode class that identi-
fies each mode by name. Here’s an example:

dispObj.blendMode	=	BlendMode.DARKEN;

Let’s take a look at a practical example that combines a couple of blend
modes. One of the modes used is Darken, which preserves the darker value
of each of the red, green, and blue color components of every overlapping
(foreground and background) pixel. This mode is typically used for remov-
ing a light background in an overlapping image. Figure 9-5 shows a bitmap
of the word Waikiki, on a white background, overlapping a blue sky. When
a Darken blend mode is applied to the overlaying image, the white will drop
out because the underlying blue sky in the bottom image is darker.

The second mode used in this example is Overlay, which adjusts the compos-
iting method of the foreground element dynamically, based on the darkness
of the background. If the background is lighter than 50 percent gray, the ele-
ments are screened, resulting in a bleaching effect. If the background is darker
than 50 percent gray, the elements are multiplied, resulting in a darkening
effect.

Figure 9-6 shows the resulting effect of the Darken blend mode applied to the
“Waikiki” image, and the Overlay blend mode applied to an orange gradient,
which turns reddish after blending with the blue sky. The gradient alters the
color of the blue sky to hint at the color-rich sunsets typical of tropical areas.

The code for this example is found in the blend_modes_darken_overlay.fla
source file. The FLA contains the bitmaps shown in Figure 9-5, with linkage
classes Beach and Waikiki.

Lines 1 through 3 of this script review the process of adding library bitmap
symbols to the display list, described earlier in this chapter. The beach
image is the first to be added to the stage. Lines 5 through 16 review the
steps required to create a gradient fill, as described in Chapter 8. This fill is
linear, evenly distributed with an orange color from 100-percent opaque to
100-percent transparent, measures 310 × 110 pixels, and is rotated 90 degrees.
The rotation is specified in degrees and converted to radians, thanks to the
conversion function in lines 24 through 26.

The blend modes are applied in lines 14 and 21. The canvas sprite, into which
the gradient is drawn, is assigned the Overlay mode, changing a harsh orange
gradient to a simulated sun-saturated skyline, in which the orange is applied
based on the darkness of the clouds and the sky. The text is assigned the
Darken mode, so only the word “Waikiki” remains visible after compositing,

Figure 9-5. Two overlapping images (word
and photo) prior to the use of blend modes

Figure 9-6. The finished composition with
the Darken blend mode applied to the
word, and the Overlay blend mode applied
to a red gradient

Blend Modes

Chapter 9: Drawing with Pixels 235

the white background having dropped out because white is lighter than all
red, green, and blue color components of the background.

1	 var	beachBmd:BitmapData	=	new	Beach(310,	256);
2	 var	beach:Bitmap	=	new	Bitmap(beachBmd);
3	 addChild(beach);
4	
5	 var	gradType:String	=	GradientType.LINEAR;
6	 var	matrix:Matrix	=	new	Matrix();
7	 matrix.createGradientBox(310,	110,	deg2rad(90),	0,	0);
8	 var	colors:Array	=	[0xFF6600,	0xFF6600];
9	 var	alphas:Array	=	[1,	0];
10	 var	ratios:Array	=	[0,	255];
11	 var	canvas	=	new	Sprite();
12	 canvas.graphics.beginGradientFill(gradType,	colors,	alphas,	
13	 																																		ratios,	matrix);
14	 canvas.graphics.drawRect(0,	0,	310,	110);
15	 canvas.blendMode	=	BlendMode.OVERLAY;
16	 addChild(canvas);
17	
18	 var	waikikiBmd:BitmapData	=	new	Waikiki(310,	76);
19	 var	waikiki:Bitmap	=	new	Bitmap(waikikiBmd);
20	 addChild(waikiki);
21	 waikiki.blendMode	=	BlendMode.DARKEN;
22	 waikiki.y	=	10;
23	
24	 function	deg2rad(deg:Number):Number	{
25	 				return	deg	*	(Math.PI	/	180);
26	 }

ActionScript Compositing Blend Modes
Even if you only glance at Figure 9-6, you’ll probably recognize the effects
of these traditional blend modes. However, we’d like to call your attention to
three ActionScript-specific blend modes that aren’t as easy to grasp: Layer,
Alpha, and Erase.

Layer
Layer is an extremely useful and welcome problem solver. In brief, Layer
creates a transparency group for a display object container. It precomposes
any contents of the container into a virtual layer so that an effect applied
to the container will alter the container as a whole, rather than altering each
individual element. This can be made clearer by demonstrating this effect.

The top of Figure 9-7 shows a movie clip that contains three additional movie
clips: two adjacent squares, red and blue, and a green square of the same
dimensions centered on top of the underlying red and blue squares. If you
were to apply a 50-percent alpha value to the parent movie clip, you might
expect the parent movie clip opacity to be reduced by 50 percent, produc-
ing a lighter version of exactly what you saw on the stage. Unfortunately,
ActionScript effectively goes into the parent clip and applies a 50-percent
alpha reduction to each of the children individually.

Part II: Graphics and Interaction236

Blend Modes

The result, shown in the middle of Figure 9-7, is what you’d expect to see
when applying a 50-percent alpha value to each square. However, when you
want the entire container to fade, the default behavior produces an unpleas-
ant effect. Because each of the squares is partially transparent, their colors
blend, creating four bands. Left to right, the first is 50-percent red, the second
is 50-percent green overlapping 50-percent red, the third is 50-percent green
overlapping 50-percent blue, and the fourth is 50-percent blue.

When applying the Layer blend mode, however, the children of the parent
movie clip are composited together as a single item and the alpha value is
correctly applied to the container, not separately to each child within. As a
result, you see the expected appearance of the original three colors all at 50
percent, as seen in the bottom of Figure 9-7.

NOTE

The blend_mode_layer.fla source file includes an interactive example toggling the
application of the Layer blend mode to the three color boxes, as seen in Figure 9-7.

Alpha and Erase
Layer mode also facilitates the use of two more blend modes, Alpha and
Erase. The functionality of each is straightforward. Given a foreground dis-
play object with alpha data, such as a movie clip with a partially transparent
PNG inside, the two modes behave this way: Alpha knocks out a background
element using the foreground element’s alpha channel, and Erase does the
opposite, knocking out the background using the nontransparent pixel data
of the foreground element. The effects of each can be seen in Figure 9-8. The
overlying image is an opaque star on a transparent background. The white
areas are actually missing from the underlying image, showing the stage
beneath.

The important item to note, however, is that these effects work only when
applied to display objects that are inside a display object container (such as a
movie clip) and only when the Layer blend mode is applied to the container.
The child elements must be composited together first for the effect to be visible.

In other words, if you used the same movie clip with semitransparent star
PNG therein, and placed it on top of the same background beach image on
the stage (rather than inside a movie clip), the beach image would not be
affected even if the Alpha or Erase blend modes were applied to the star.
Instead, it would cause the foreground element to disappear altogether.

NOTE

Push Yourself: Try to apply what you’ve learned and create a dynamic version of the
example described in the “Alpha and Erase” section of this chapter. The blend_mode_
alpha_erase_assets.fla source file contains the beach and star images. After giving
this a try, look at the blend_mode_alpha_erase.fla source file. It includes an interac-
tive example toggling the Alpha and Erase blend modes shown in Figure 9-8.

container 100% opacity; no blend mode

container 50% opacity; no blend mode

container 50% opacity; Layer blend mode

Figure 9-7. Original (top), default 50%
opacity (middle), and 50% opacity after
applying the Layer blend mode (bottom)

Figure 9-8. The Alpha (above) and Erase
(below) blend modes

Bitmap Filters

Chapter 9: Drawing with Pixels 237

Using Blend Modes with BitmapData Instances
Blend modes can also modify other ActionScript objects, including instances
of the BitmapData class. Earlier, we created a drawing program that used
brush and eraser tools to paint on a canvas. In that simple example, the eraser
tool was nothing more than a brush set to the color of the canvas, giving the
illusion of erasing what you painted.

However, the draw() method used in that example takes, as its fourth argu-
ment, a blend mode, and we can use the Erase blend mode to erase brush-
strokes instead of paint over them. Remember that the Erase blend mode uses
the foreground content to erase the background content. In the example paint
program, this means it will use the eraser tool pixels to erase the bitmap data
of the canvas.

The following modification to the earlier example is found in the paint_tool_
erase.fla source file. All we have to do is replace the use of the single draw()
method in the prior script, at line 44, with a conditional statement. The con-
ditional checks to see if the current tool is the brush. If so, it uses the same
code as the previous example, drawing into the canvas bitmap data without
using a blend mode (line 45). However, if the current tool is not the brush
(which means the user is erasing content) the modified draw() method is
used, with the Erase blend mode (lines 47 and 48).

1	 function	onLoop(evt:Event):void	{
2	 				tool.x	=	mouseX;
3	 				tool.y	=	mouseY;
4	 				if	(mouseIsDown)	{
5 if (tool == brush) {
6 bmd.draw(tool, tool.transform.matrix);
7 } else {
8 bmd.draw(tool, tool.transform.matrix, null,
9 BlendMode.ERASE);
10 }
11	 				}
12	 }

Bitmap Filters
Filters have been a mainstay of graphics editing programs for years, add-
ing special effects to images and illustrations with a minimum of effort.
ActionScript has a number of filters for your number-crunching manipula-
tion. Although there are no official classifications for filters, we’ve divided
the filters we discuss into two sections: basic and advanced. Using Adobe
Photoshop for comparison, basic filters are like Layer Styles—quick, easy-
to-apply effects with limited functionality—and advanced filters are more
robust and are more like the features found in Photoshop’s Filters menu.

NOTE

The third parameter of the draw()
method is used to transform the color
of the bitmap data, which is not a part
of this example. However, to use the
fourth parameter, arguments for the
first three parameters must be pro-
vided. The first is mandatory, and is
the BitmapData instance we’re draw-
ing. The second is optional, and is the
transform matrix we’re using. The third
is a colorTransform instance, which we
aren’t using. In its place, we send in the
parameter’s default value, null. Supplying
these three values then allows us to pro-
vide the fourth value, our blend mode.

Part II: Graphics and Interaction238

Bitmap Filters

Basic Filters
A good place to start when learning how to control filter effects with code
is with a subset of filters found both in Flash Professional’s Properties panel
and in their own ActionScript classes. These filters include DropShadow, Blur,
Glow, Bevel, GradientGlow, and GradientBevel. This convenient overlap lets
you play around with Flash Professional’s interface to see how various proper-
ties affect the appearance of the filter. You can then apply that understanding
to your code settings later on. The advantages to using ActionScript over the
Flash Professional interface include the ability to apply changes dynamically
at runtime and reuse your code more easily.

For the most part, the properties of the ActionScript filter classes correlate
closely with the properties found in the Properties panel for the same filter,
providing a smooth transition to ActionScript without much effort. Let’s use
the DropShadowFilter class in the next example, to create button artwork
without custom graphics.

Creating dynamic button art with the DropShadowFilter
The following script, found in the drop_shadow_button.fla source file, simu-
lates a two-state button by using a drop shadow. At rest, the button has a
small drop shadow, but when a user clicks the button, the drop shadow is
removed as if the button is being pressed down to the screen. This effect is
shown in Figure 9-9.

The script begins by creating the drop shadow filter. Once created, it can be
applied to objects at any time. An instance of the aptly named class is created
in line 1. Individual properties are then set in lines 2 through 4. In this case,
the degree of blur in the x and y directions is set to 10, and the opacity of the
shadow is set to 60 percent. Other properties, including the angle of the shad-
ow and its distance offset from the display object, use their default values.

Lines 6 through 11 use the Graphics class discussed in Chapter 8 to create a
basic, yellow rectangle with rounded corners and add it to the display list.
Line 13 is where the shadow is applied. The display object property, filters,
accepts an array of filter instances so that more than one filter can be applied.
In this example, only DropShadowFilter is used so only the ds filter instance
is placed into the array. At this point, the application of the filter is complete,
and the sprite is added to the display list in line 14. However, this example
changes with mouse interaction, so let’s look at its interactive elements in the
next code block.

1	 var	ds:DropShadowFilter	=	new	DropShadowFilter();
2	 ds.blurX	=	10;
3	 ds.blurY	=	10;
4	 ds.alpha	=	0.6;
5	
6	 var	sp:Sprite	=	new	Sprite();
7	 var	g:Graphics	=	sp.graphics;
8	 g.lineStyle(1,	0x000000);

NOTE

There’s no class in the flash.filters
package for the Adjust Color filter found
in Flash Professional’s Properties panel.
However, Flash Professional users can
use the AdjustColor class found in
the fl.motion package. If you’re not
using Flash Professional, advanced filter
classes that appear a little bit later in
the chapter can mimic Adjust Color’s
filter results.

Figure 9-9. An interactive element with
DropShadowFilter applied (above) and
removed (below) to simulate the pressing
of a raised button

Bitmap Filters

Chapter 9: Drawing with Pixels 239

9	 g.beginFill(0xFFFF00,	1);
10	 g.drawRoundRect(0,	0,	200,	50,	20);
11	 g.endFill();
12	
13	 sp.filters	=	[ds];
14	 addChild(sp);

Because we went the simple route of using a sprite for our interactive element
(rather than building a multistate button with the SimpleButton class, as seen
in the applied example at the end of Chapter 8), we need to set the buttonMode
property of the sprite to true in line 15. This won’t create the up, over, and
down states of a button symbol, but it will provide visual feedback by chang-
ing the cursor to the hand cursor when over the sprite.

The listeners in lines 16 through 18 trigger functions based on mouse behav-
ior. The mouse down listener function, onDown() (lines 20 to 22) removes the
drop shadow effect from the sprite by clearing the filters array. Both the
mouse up and mouse out listeners point to the onUp() function in lines 23 to
25, which repopulates the filters array with the drop shadow. This restores
the elevated “up” appearance to the sprite.

15	 sp.buttonMode	=	true;
16	 sp.addEventListener(MouseEvent.MOUSE_DOWN,	onDown,	false,	0,	true);
17	 sp.addEventListener(MouseEvent.MOUSE_UP,	onUp,	false,	0,	true);
18	 sp.addEventListener(MouseEvent.MOUSE_OUT,	onUp,	false,	0,	true);
19	
20	 function	onDown(evt:MouseEvent):void	{
21	 				sp.filters	=	[];
22	 }
23	 function	onUp(evt:MouseEvent):void	{
24	 				sp.filters	=	[ds];
25	 }

Another way to handle this task would be to leave the ds filter active, but
change some of its properties. For example, rather than eliminating the
shadow, you could reduce its distance value when the button is pressed.
When the shadow appears closer to the object, the object’s virtual elevation
appears to be reduced.

Using the BlurFilter to create an airbrush
With just a couple of lines of additional code, you can turn the brush from
the drawing tool developed previously in this chapter into an airbrush. The
following ActionScript excerpt shows new code in bold, and can be found
in the paint_tool_erase_blur.fla source file. The first new line (30) creates an
instance of the BlurFilter that blurs 40 pixels in the x and y direction. The
second new line (39) applies the filter to the current tool. Figure 9-10 shows
the result of softening the brush and eraser with these modifications.

26	 canvas.addEventListener(MouseEvent.MOUSE_DOWN,	
27	 																								onDown,	false,	0,	true);
28	 canvas.addEventListener(MouseEvent.MOUSE_UP,	onUp,	
29	 																								false,	0,	true);
30	 canvas.addEventListener(Event.ENTER_FRAME,	onLoop,	
31	 																								false,	0,	true);

NOTE

For information about creating arrays
with bracket syntax ([]), see Chapter 2.

NOTE

Filters can be used in creative ways.
If you wanted to simulate casting a
shadow from a moving light source,
you could vary the distance, angle, and
alpha values of the DropShadowFilter.
See the “Animating Filters” post at
the companion website, http://www.
LearningActionScript3.com, for more
information.

http://www.LearningActionScript3.com
http://www.LearningActionScript3.com

Part II: Graphics and Interaction240

Bitmap Filters

32	
33 var blur:BlurFilter = new BlurFilter(40, 40);
34	
35	 function	onDown(evt:MouseEvent):void	{
36	 				mouseIsDown	=	true;
37	 				if	(evt.shiftKey)	{
38	 								tool	=	eraser;
39	 				}	else	{
40	 								tool	=	brush;
41	 				}
42 tool.filters = [blur];
43	 }

Advanced Filters
A number of more advanced ActionScript filters allow you to mimic some of
the special effects features in pixel-editing applications like Photoshop. We’ll
focus on the convolution, displacement map, and Perlin noise filters in this
section, and then group a trio of color filters together in the following section.

Convolution filter
Convolution filtering is typically a part of many visual effects in most, if not
all, pixel-editing applications. Photoshop offers direct access to a convolution
filter (renamed to Custom some years ago, and found in the Filters→Other
menu), but usually the filter works quietly behind the scenes.

Put simply, a convolution filter calculates pixel color values by combining
color values from adjacent pixels. Combining these colors in different ways
(using different values in the matrix) produces a wide variety of image effects.
These effects include, but are not limited to, blurring, sharpening, embossing,
edge detection, and brightness.

Using the filter effectively requires at least a working knowledge of matrices
so, if you haven’t read Chapter 8, do so now. Although still a matrix, visualized
as a grid of numbers, the ConvolutionFilter doesn’t use the same matrix for-
mat discussed in Chapter 8. Instead, you can define any number of rows and
columns in a convolution matrix, and the structure of the matrix determines
how each pixel is affected.

Unless you plan to delve deeply into writing your own filters, you probably
don’t need to learn the algorithms behind how a convolution matrix works.
In most circumstances, you’ll use an existing matrix for a specific effect and
use experimentation to determine a satisfactory setting.

To give your experimenting some focus, let’s look at three parts of the matrix:
the center grid element, the grid symmetry, and the sum of all grid elements.
Consider a 3 × 3 matrix. The center value in the matrix represents the current
pixel (all pixels in an image are analyzed), while the remaining elements are the
eight adjacent pixels. The numbers in each matrix position determine how the
color values of that pixel affect the current pixel. The basic idea is that each of
the nine pixels is given a weight, or importance, that affects how they are altered.

Figure 9-10. A Blur filter applied to
the drawing tool in the ongoing paint
application

Bitmap Filters

Chapter 9: Drawing with Pixels 241

Blur Brightness Edges

Emboss Original Sharpen

Figure 9-11. Example convolution filter effects

A convolution matrix of all zeros will turn an image black because no color
values are used for any pixel, including the current pixel in the center of the
grid. Using a 1 in the center of an all-zero grid won’t change the image because
the current pixel is unchanged (default value of 1), and no color values from
surrounding pixels are used. Placing a 2 in the center of an all-zero grid will
brighten the image because no colors from surrounding pixels are used, but
the weight of the color values of the current pixel are increased.

The ConvolutionFilter constructor appearing on line 8, 14, and 20 in the
following code example requires two parameters, the number of rows and
the number of columns. A third, optional parameter is the matrix used to
affect the image. If no matrix is furnished a default (no change) matrix is
used. Applying a default matrix allows you to remove any changes made by
prior convolution filters, as seen in the event listener that follows. This code
is found in the convolution_filter_basics.fla source file.

1	 var	black:ConvolutionFilter;
2	 var	noChange:ConvolutionFilter;
3	 var	brightness:ConvolutionFilter;
4	
5	 var	blackArr:Array	=	[0,	0,	0,
6	 																						0,	0,	0,
7	 																						0,	0,	0];
8	 black	=	new	ConvolutionFilter(3,	3,	blackArr);
9	 mc0.filters	=	[black];
10	

Part II: Graphics and Interaction242

Bitmap Filters

11	 var	noChangeArr:Array	=	[0,	0,	0,
12	 																									0,	1,	0,
13	 																									0,	0,	0];
14	 noChange	=	new	ConvolutionFilter(3,	3,	noChangeArr);
15	 mc1.filters	=	[noChange];
16	
17	 var	brightnessArr:Array	=	[0,	0,	0,
18	 																											0,	2,	0,
19	 																											0,	0,	0];
20	 brightness	=	new	ConvolutionFilter(3,	3,	brightnessArr);
21	 mc2.filters	=	[brightness];
22	
23	 stage.addEventListener(MouseEvent.CLICK,	onClick,	
24	 																							false,	0,	true);
25	
26	 function	onClick(evt:MouseEvent):void	{
27	 				for	(var	i:int	=	0;	i	<	3;	i++)	{
28	 								var	mc:MovieClip	=	MovieClip(getChildAt(i));
29	 								mc.filters	=	[noChange];
30	 				}
31	 }

Now let’s focus on the symmetry of the surrounding grid elements. The
remainder of the code in this section is found in the convolution_filter_more.
fla source file, and demonstrates centralizing the filter creation into a func-
tion called convFilter() to reduce repeating code. The function appears at
the end of the discussion so you can focus on the matrices we’re discussing.

The embossUp example uses reduced values for the three pixels to the upper left
of the current pixel, and increased values for the three pixels to the lower right
of the current pixel. The result is a traditional embossing effect (see Figure 9-11).
By contrast, the embossDown example reverses this effect, seemingly stamping
into the image.

32	 var	embossUp:Array	=	[-1,	-1,	0,
33	 																						-1,		1,	1,
34	 																							0,		1,	1];
35	 convFilter(mc0,	embossUp);
36	
37	 var	embossDown:Array	=	[1,		1,		0,
38	 																								1,		1,	-1,
39	 																								0,	-1,	-1];
40	 convFilter(mc1,	embossDown);

As our third area of interest, we want to focus on the fact that overall image
brightness is affected by the sum of all elements in the matrix. In each of the
prior examples, all the matrix elements add up to 1, except brighter (which
adds up to 2) and black (which adds up to 0). The following example is a
matrix that uses the left, top, right, and bottom adjacent pixel color values to
affect the current pixel. The result is a blurring effect. However, a dramatic
brightening of the image occurs because the sum of the matrix elements is 5,
not 1. The affected image is five times brighter.

If this is not desired, you can compensate by using an optional fourth param-
eter of the ConvolutionFilter class, called a divisor. The sum of the matrix
will be divided by this value and the result will affect the brightness. If the

Bitmap Filters

Chapter 9: Drawing with Pixels 243

result is 1, the brightening effect of the matrix will be eliminated. The first
filter instance here uses only the first three parameters without compensating
for brightness. The second instance adds the divisor as the fourth parameter,
bringing the brightness back to the original state, leaving only the blur effect.

41	 var	blurBright:Array	=	[0,	1,	0,
42	 																								1,	1,	1,
43	 																								0,	1,	0];
44	 convFilter(mc2,	blurBright);
45	
46	 var	blurOnly:Array	=	[0,	1,	0,
47	 																						1,	1,	1,
48	 																						0,	1,	0];
49	 convFilter(mc3,	blurOnly,	5);

As a summary of what we’ve learned, we’ll look at how sharpen and find
edges filters differ. The sharpen instance that follows uses negative values for
the left, top, right, and bottom pixels, which is the opposite of blur and causes
the pixels to pop. The sum of the matrix is 1, meaning there is no increase or
decrease in brightness.

The edges instance uses the same values for the surrounding pixels, but the
sum of the array is 0. This has a sharpening effect but reduces the brightness,
leaving only the emphasized edges visible.

50	 var	sharpen:Array	=	[0,	-1,		0,
51	 																					-1,		5,	-1,
52	 																						0,	-1,		0];
53	 convFilter(mc4,	sharpen);
54	
55	 var	edges:Array	=	[0,	-1,		0,
56	 																			-1,		4,	-1,
57	 																				0,	-1,		0];
58	 convFilter(mc5,	edges);

The function that applies these matrices differs from the prior source file in
only one major respect: It provides for the use of the fourth optional param-
eter, divisor, to compensate for accumulated brightness.

59	 function	convFilter(dispObj:DisplayObject,	matrix:Array,	
60	 																				divisor:int=1):void	{
61	 				var	conv:ConvolutionFilter	=	
62	 								new	ConvolutionFilter(3,	3,	matrix,	divisor);
63	 				dispObj.filters	=	[conv];
64	 }

Perlin noise and displacement map
Two other very useful and entertaining effects supported by ActionScript
are the Perlin noise generator and the displacement map filter. Perlin noise
is widely used for generating naturalistic animated effects like fog, clouds,
smoke, water, and fire, as well as textures like wood, stone, and terrain.
Displacement maps are used to translate (or displace) pixels to add extra
dimension to surfaces. They are commonly used to add realism to textures
(such as a pitted or grooved surface) as well as distort images to appear as if
seen through a refracting material like glass or water.

NOTE

Ken Perlin developed the Perlin noise
algorithm while creating the special
effects for the 1982 film Tron. At the
time, the extensive use of effects in that
film may have been cost-prohibitive
using traditional multi-exposure film
compositing techniques. Perlin noise was
used to manipulate the near-constant
computer-generated glows and shad-
ings, among other effects. Mr. Perlin
won an Academy Award for Technical
Achievement in 1997 for his contribu-
tions to the industry.

Part II: Graphics and Interaction244

Bitmap Filters

The following exercise, found in the perlin_displacement.fla source file, will cre-
ate an animated Perlin noise texture that will then be used as the source for a
displacement map. In our example, the Perlin noise will include random areas
of blue, as shown in Figure 9-12. These blue areas will cause the displacement
in a photo of a reef aquarium, and the combined effect will cause soft corals in
the scene to undulate as if experiencing the effect of water currents.

The source material we’ll use is a picture of a reef aquarium, as seen in Figure
9-13. The sea life are the sole elements in a foreground image, and will be
affected by the filters so that they will appear to be moving in the water cur-
rent. The rock is in a separate background and will not be affected.

Perlin noise
The first step in building our aquarium simulation is to create a BitmapData
object to contain the Perlin noise. Our image will cover the stage, so we’ll
pass the stage width and height into the object to size it appropriately (line
1). Lines 3 and 4 create a bitmap using the bitmap data, and then add that
bitmap to the display list. However, the lines are commented out because we
do not want to see the Perlin noise in the final product. We need access only
to the bitmap data to drive the displacement map. However, it’s often help-
ful to see the Perlin noise as you work so you can experiment with various
settings. By uncommenting these lines, you can adjust the Perlin noise values
until you’re satisfied with the effect, and then comment out these lines again
when moving on to the displacement filter.

1	 var	bmpData:BitmapData	=	new	BitmapData(stage.stageWidth,	
2	 																																								stage.stageHeight);
3	 //var	bmp:Bitmap	=	new	Bitmap(bmpData);
4	 //addChild(bmp);
5	 //comment	out	lines	3	and	4	to	see	Perlin	noise

The Perlin noise generator has a number of settings that will produce dra-
matically different results when adjusted. As we discuss these settings, we’ll
reference natural phenomena, like water and smoke. We’ll first discuss the
settings of the filter and then simply pass these settings into the perlin-
Noise() method later on in lines 30 through 32.

Lines 7 and 8 set the scale of the texture in the x and y directions. Think of
this as influencing the number of waves you can see at one time in water. A
very large scale might result in the look of a swelling sea, and a small scale
might look like a babbling brook.

Line 7 determines the number of octaves in the texture, which are discreet
layers of noise that function independently of each other. A single-octave
noise will not be as complex as a multi-octave noise and, during animation,
you can move a single-octave noise in only one direction at a time. You can
create basic animations with single octaves, like the look of running water
or, in our case, underwater current. But the ability to move each octave in a
different direction makes multi-octave noise better suited for effects like col-
liding waves moving in multiple directions, or fire, or smoke.

Figure 9-12. Perlin noise texture

Figure 9-13. Elements of the Perlin noise
and displacement map filter exercise

Bitmap Filters

Chapter 9: Drawing with Pixels 245

Line 10 creates a random seed to influence the starting point for the creation
of the texture. A random seed allows you to randomize the effect but also call
back that same result by using the same seed at a later time. In our case, we
only care about the randomization, so we’ll use a random number, between
0 and 100, for the seed as well.

6	 //perlin	noise	settings
7	 var	baseX:Number	=	50;
8	 var	baseY:Number	=	50;
9	 var	numOctaves:Number	=	1;
10	 var	randomSeed:Number	=	Math.random()	*	100;
11	 var	stitch:Boolean	=	true;
12	 var	fractalNoise:Boolean	=	true;
13	 var	channelOptions:Number	=	BitmapDataChannel.BLUE;
14	 var	grayScale:Boolean	=	false;
15	 var	offsets:Array	=	new	Array(new	Point());

Line 11 determines whether the edges of the area defined when creating the
noise pattern are stitched together in an attempt to create a seamless tile.
When creating static textures, this “stitching” is not usually needed, but it’s
recommended when animating the effect.

Whether fractal noise or turbulence techniques are used when generating
the effect is determined by line 12. Fractal noise (used when the fractalNoise
property is true) generates a smoother effect; turbulence (used when the
fractalNoise property is false) produces more distinct transitions between
levels of detail. For example, fractal noise might be used to create a terrain
map of rolling hills or an oceanscape, and turbulence might be better suited
to a terrain of mountains or crevices in a rock.

Line 13 chooses which channels of bitmap data are used when generating
the texture: red, green, blue, and/or alpha. These can be indicated by con-
stants from the BitmapDataChannel class or with integers. You can also use a
special operator called the bitwise OR operator (|) to combine channels to
create multicolor effects or combine color with alpha. For example, combin-
ing alpha with noise can create fog or smoke with transparent areas through
which a background can be seen.

In this exercise, because we are generating a pattern only to provide data for
a displacement map, we need only one channel. (Blue was chosen arbitrarily.)
However, experimenting with the Perlin noise settings can make it difficult
to visualize the texture’s effect. To improve these efforts a bit, you can add
alpha data to the mix, so you can see the underlying image through the pat-
tern. Figure 9-14 shows the visible noise texture and the reef beneath it. In our
finished example, the anemones will be displaced to a greater degree where
blue is more visible.

To see the background image as you experiment with the noise settings, you
just have to add an alpha channel to the channelOptions property. To do this,
replace line 13 with this:

13	 var	channelOptions:Number	=	BitmapDataChannel.BLUE	|	
BitmapDataChannel.ALPHA	;

NOTE

Perlin noise layers are called octaves
because, like musical octaves, each one
doubles the frequency of the previous
octave, increasing detail within the tex-
ture. It’s also important to note that the
processor power required to generate
noise patterns increases with the num-
ber of octaves used.

Figure 9-14. Perlin noise detail without
alpha data

Part II: Graphics and Interaction246

Bitmap Filters

The grayscale parameter in line 14 desaturates the texture so it generates
only grays. In our exercise, the texture won’t be visible, so this isn’t relevant,
but it’s ideal when visible fog or smoke is required.

Finally, line 15 uses an array of offset points, one for each octave, to control
the location of the noise pattern generated. We need only one octave in this
example, so this is a single-item array. Because the texture will not be visible,
its starting point is arbitrary, so we’ll use a default point of (0, 0). During
animation, we’ll alter the position of this point to move the pattern.

You’ve now set all the values required to create a Perlin noise texture. If you
want to see the noise before moving on to the next section, look at the per-
lin_noise_only.fla source file. Later, we’ll animate these values by changing the
offset values upon every enter frame event. First, however, we need to set up
the displacement map settings.

Displacement map
The displacement map filter is a bit simpler. Lines 18 and 19 of the script
that follows determine which color channel will affect the distortion in each
direction. We used the blue channel when creating our Perlin noise texture,
so we’ll use the same channel here.

Next, lines 20 and 21 set the scale of displacement in the x and y directions.
Think of these values as the size of the waves when looking through water, or
the degree of refraction when looking through glass, in each direction.

16	 //displacement	map	settings
17	 var	displaceMap:DisplacementMapFilter;
18	 var	componentX:uint	=	BitmapDataChannel.BLUE;
19	 var	componentY:uint	=	BitmapDataChannel.BLUE;
20	 var	xScale:Number	=	10;
21	 var	yScale:Number	=	10;
22	 displaceMap	=	new	DisplacementMapFilter(bmpData,	new	Point(),	
23	 																		componentX,	componentY,	xScale,	yScale,
24	 																		DisplacementMapFilterMode.CLAMP);

Finally, lines 22 through 23 determine how the edges of the displacement
map will behave. When set to clamp, any displacement will be confined by
the edges of the source data. If wrap, is used, the distortion will wrap around
from edge to edge. The wrap option is great for tiled patterns but not useful
for affecting a realistic image of a recognizable object. You don’t want to see
the top of a person’s head appearing beneath their feet as a displacement
wraps from top to bottom edge.

Now that our settings are complete, we create the DisplacementMapFilter
in lines 22 through 24. The source for the displacement data is the same
BitmapData object that is being affected by the Perlin noise pattern, so the
degree of displacement will be determined by that bitmap data, passed into
the class in the first parameter. The second parameter is the map point—the
location at which the upper-left corner of the displacement map filter will
be applied. This is useful for filtering only a portion of the image. We want

Color Effects

Chapter 9: Drawing with Pixels 247

to filter the entire image, however, so we’ll pass in a default point to begin
filtering at (0, 0). The remainder of the parameters correspond directly to the
settings previously created.

Animating the effect
To animate the Perlin noise, and therefore the displacement map effect, we
start with a listener that triggers the onLoop() function upon every enter
frame event. The first thing the function does is update the offset point for
the Perlin noise octave, seen in lines 28 and 29. This example sets the offset
point of the octave, not the location of a display object (see the adjacent note
for more information). Lines 28 and 29 move the first octave (the only octave
used in our example) up and to the right, 2 pixels in each direction.

With each change to the offset point, the perlinNoise() method is called
(line 30), applying all the previously set parameters along with the offset
update. Finally, with the call of the Perlin noise method, the DisplacementMap
filter source data is updated, so the DisplacementMap filter must be reapplied
to the display object in line 33.

25	 //enter	frame	update	of	both	filters
26	 addEventListener(Event.ENTER_FRAME,	onLoop,	false,	0,	true);
27	 function	onLoop(evt:Event):void	{
28	 				offsets[0].x	-=	2;
29	 				offsets[0].y	+=	2;
30	 				bmpData.perlinNoise(baseX,	baseY,	numOctaves,	randomSeed,	
31	 																								stitch,	fractalNoise,	channelOptions,	
32	 																								grayScale,	offsets);
33	 				tank_mc.filters	=	[displaceMap];
34	 }

Color Effects
You can apply color effects using ActionScript in multiple ways, and we’ll
look at three. The first is relatively straightforward: Alter the emphasis of
individual color channels (red, green, blue, and alpha) in an image using the
ColorTransform class. The second is a more powerful technique that uses the
ColorMatrixFilter to apply a detailed matrix to simultaneously change all
color and alpha channels. The last method discussed is the simplest, using
the Color class to apply a tint to a display object.

The ColorTransform Class
Although we’ll focus exclusively on color, you can use the ColorTransform
class to adjust the alpha channel as well as the individual color channels of
a display object or BitmapData object. In the examples that follow, we’ll be
using the class to invert an image (create a color negative) and apply a simple
saturation effect.

NOTE

Animating an octave with the offset
property is not the same as moving a
display object. Instead, think of adjust-
ing the offset position of an octave as
adjusting that octave’s registration point.

If you move a movie clip five pixels
in the x and y directions, it will move
down and to the right. However, if you
adjust the movie clip’s registration point,
down and to the right, the clip won’t
move on stage, but its contents will
move up and to the left.

Part II: Graphics and Interaction248

Color Effects

The class offers two ways to change color. First, you can multiply a color chan-
nel to increase or decrease its effect. For example, you can double the weight of
the color by using a multiplier of 2, and you can reduce the weight of the color
by half by using 0.5 as a multiplier. Second, you can offset a color channel from
–255 to 255. For example, assuming a default multiplier of 1 (no change from
the multiplier), an offset value of 255 would maximize the red channel, 0 would
apply no change, and –255 would remove all red from the image.

The following code, found in the color_transform.fla source file, manipulates
three movie clips instantiated as mc0, mc1, and mc2. Lines 1 through 10 show
the default ColorTransform instance, which makes no change to the source
material. Also, by using this default configuration (with a multiplier of 1
and an offset of 0 on each channel), you can effectively reset any prior color
transformation. Despite the example’s focus on color, we’ve included alpha
multiplier and offset values to show the complete syntax of a reset.

Note that the ColorTransform class is not a filter, so it’s not applied to the fil-
ters property of a display object. Instead, the color transformation is applied
to the colorTransform property of a display object’s transform object (line
10). Similar to the filtering process, however, every time a change is made to
the color transformation, it must be reapplied to the colorTransform property.

Lines 12 through 19 provide for an increase in saturation. The offset values
of all colors are unchanged, but the color multipliers increase the color for
each channel. To emphasize the image, the values used increase red more than
green and blue. This effect can be seen in the “Saturation” example in Figure
9-15. You could also partially desaturate an image using the same technique
but applying a multiplier value of less than 1 to each color channel.

Finally, lines 21 through 28 invert all color in the image. The multiplier for all
color channels is set to –1, which effectively turns the image black, and then
the offset values are set to full to revert back to color. This effect can be seen
in the “Invert” example from Figure 9-15.

1	 var	noChange:ColorTransform	=	new	ColorTransform();
2	 noChange.redOffset	=	0;
3	 noChange.greenOffset	=	0;
4	 noChange.blueOffset	=	0;
5	 noChange.alphaOffset	=	0;
6	 noChange.redMultiplier	=	1;
7	 noChange.greenMultiplier	=	1;
8	 noChange.blueMultiplier	=	1;
9	 noChange.alphaMultiplier	=	1;
10	 mc0.transform.colorTransform	=	noChange;
11	
12	 var	saturation:ColorTransform	=	new	ColorTransform();
13	 saturation.redOffset	=	0;
14	 saturation.greenOffset	=	0;
15	 saturation.blueOffset	=	0;
16	 saturation.redMultiplier	=	1.3;
17	 saturation.greenMultiplier	=	1.1;
18	 saturation.blueMultiplier	=	1.1;
19	 mc1.transform.colorTransform	=	saturation;
20	

Original

Saturation

Invert

Figure 9-15. ColorTransform filter effects

Color Effects

Chapter 9: Drawing with Pixels 249

21	 var	invert:ColorTransform	=	new	ColorTransform();
22	 invert.redOffset	=	255;
23	 invert.greenOffset	=	255;
24	 invert.blueOffset	=	255;
25	 invert.redMultiplier	=	-1;
26	 invert.greenMultiplier	=	-1;
27	 invert.blueMultiplier	=	-1;
28	 mc2.transform.colorTransform	=	invert;

The ColorMatrixFilter Class
The next color effect uses the ColorMatrixFilter class. This class uses a 4 × 5
matrix to transform red, green, blue, and alpha values of the image, and can
be used to create advanced hue, saturation, and contrast changes, among other
effects. The following example demonstrates using luminance constants to
desaturate an image to create a color grayscale.

The identity matrix (the default matrix, as discussed in Chapter 8) for the
ColorMatrixFilter class is as follows:

							Rs,	Gs,	Bs,	As,	Os
Rnew	=		1,		0,		0,		0,		0,
Gnew	=		0,		1,		0,		0,		0,
Bnew	=		0,		0,		1,		0,		0,
Anew	=		0,		0,		0,		1,		0

The rows represent the sum of changes in red, green, blue, and alpha values
for each pixel. The first four columns are the multipliers for red, green, blue,
and alpha values of the source (s), and the fifth column is the offset value for
each row. The identity matrix shows a default multiplier of 1 and offset of 0
for each color channel, and no change to the other source color multiplier or
offset values for that channel—that is, Rnew equals Rs, Gnew equals Gs, and
so on.

By introducing changes to the other color values, the appearance of each pixel
will change. A good way to make this clear is to demonstrate the creation of a
color grayscale image. When creating the new red value for a pixel, instead of
using a multiplier of 1 for red and 0 for green and blue, you can use a partial
value of 1 for all colors (with no change in alpha or offset). There will be no
change in brightness because the sum of each row will still be 1. The alpha
row receives no change to R, G, or B values, and the standard alpha multiplier
of 1 is used with no offset.

The only question is, what partial values should be used for each color?
Knowing that hexadecimal values of gray are created with equal values of
each color (0x666666, for example), it’s common to see a value of 0.33 used for
each R, G, and B component of every pixel. However, it turns out that unequal
values of red, green, and blue combine to create better grayscale images. We
can take advantage of prior research to achieve color grayscales that are more
pleasing to the eye, using what are known as luminance constants—constant
red, green, and blue brightness values used for color calibration.

NOTE

Luminance is the amount of light that
is reflected or emitted by a color. In lay
terms, luminance is brightness (which
is more of a human perception than a
measured quantity). NTSC broadcast
luminance constants (TV grayscale)
published in 1954 were replaced by val-
ues better tuned to CRT monitors and
computer displays.

For many years, Paul Haeberli’s lumi-
nance vectors of 0.3086 for red, 0.6094
for green, and 0.0820 for blue, published
in 1993, were used for color grayscale.
Recently, these values have been adjust-
ed for HDTV standards and are now
slightly different. Red has reduced slight-
ly, and green and blue have increased
slightly, over previous values. The cur-
rent standard is 0.2126 for red, 0.7152 for
green, and 0.0722 for blue. Experiment
to see which combination you prefer.

Part II: Graphics and Interaction250

Image Encoding and Saving

By applying these constants to the source R, G, and B values, the new red,
green, and blue values for each pixel will be optimized for grayscale display
(Figure 9-16). The newly created matrix is passed to the filter constructor (line
8), and the result is applied to the filters array of the display object (line 12).
The following code is found in the color_matrix_filter.fla source file.

1	 //ITU-R	BT.709-5	Parameter	Values	for	the	HDTV
2	 //		Standards	for	Production,	2002
3	 var	lumRd:Number	=	.2126;
4	 var	lumGr:Number	=	.7152;
5	 var	lumBl:Number	=	.0722;
6	
7	 var	grayscale:ColorMatrixFilter	=
8	 				new	ColorMatrixFilter([lumRd,	lumGr,	lumBl,	0,	0,
9	 																											lumRd,	lumGr,	lumBl,	0,	0,
10	 																											lumRd,	lumGr,	lumBl,	0,	0,
11	 																															0,					0,					0,	1,	0]);
12	 mc1.filters	=	[grayscale];

The Color Class
The last color manipulation is the simplest. It uses the Color class, from the
fl.motion package to set the tint of a display object. The tint is set the same
way line and fill styles are set using the Graphics class. Two parameters, color
and alpha, are used to define the tint. Once the tint is created, it’s applied to
the colorTransform property of the display object’s transform object, as in
previous examples.

The following code is found in the set_tint.fla source file:

1	 import	fl.motion.Color;
2	
3	 var	blueTint:Color	=	new	Color();
4	 blueTint.setTint(0x0000FF,	1);
5	 mc.transform.colorTransform	=	blueTint;

Image Encoding and Saving
Now that you know how to create bitmap data, let’s talk about how to save
it! We’ll discuss encoding a BitmapData object and saving the image as a JPG.
At the end of the chapter, you’ll see how to add encoding and saving to our
ongoing painting application, as well as save to PNG format, complete with
transparency.

The encoding process involves sending the bitmap data to an image encod-
ing class. Fortunately, Adobe provides both JPG and PNG encoders as part
of Adobe’s AS3 Core Library. At the time of this writing, information can be
found at https://github.com/mikechambers/as3corelib, where you can down-
load the library.

Original

Grayscale

Figure 9-16. Grayscale created by the
ColorMatrixFilter

NOTE

Discussed in Chapter 8, the Color class
was written to support converting time-
line animations into ActionScript and
is only available to Flash Professional
users. However, we have reproduced a
subset of these features, to support the
material covered in this book, in the
com.learningactionscript3.color.
ColorUtils class. This will allow
users of other ActionScript editors to
use the scripts in this book with minor
modification. The class is included in the
source material for this chapter, and its
use in sample source code for Chapter 8
includes notes on its use.

https://github.com/mikechambers/as3corelib

Image Encoding and Saving

Chapter 9: Drawing with Pixels 251

The saving portion of the exercise is accomplished using the FileReference
class. This class allows you to upload and download files. Some features,
including the save() method for saving to your hard drive, require Flash
Player 10.

Saving JPG Images
The heavy lifting of this exercise is performed during the encoding process
by Adobe’s image encoder classes. The inner workings of these classes are a
bit outside the scope of this book, but they’re very easy to use. The following
script is found in the encode_and_save_jpg.fla source file, and it demonstrates
the handy feature of taking a screen capture of everything on the stage. We’ll
review Chapter 8 by drawing a button dynamically and adding it to the
stage. Clicking that button will copy anything on the stage into a BitmapData
instance, and then provide a prompt to save that image as a JPG. Later on,
we’ll use a button to save the contents of a preexisting BitmapData instance—
namely, the output of the paint program we developed earlier in this chapter.

This exercise starts routinely with line 1 importing the JPGEncoder class, and
lines 3 through 11 drawing a button and adding it to the display list. Notice
that lines 8 and 9 center the button by determining the horizontal and verti-
cal center of the stage, and line 10 sets the buttonMode property of the sprite
to true to enable hand cursor feedback when rolling over the sprite.

1	 import	com.adobe.images.JPGEncoder;
2	
3	 var	saveBtn:Sprite	=	new	Sprite();
4	 var	g:Graphics	=	saveBtn.graphics;
5	 g.beginFill(0x990000,	1);
6	 g.drawCircle(0,	0,	40);
7	 g.endFill();
8	 saveBtn.x	=	stage.stageWidth/2;
9	 saveBtn.y	=	stage.stageHeight/2;
10	 saveBtn.buttonMode	=	true;
11	 addChild(saveBtn);

Lines 12 and 13 add a mouse click event listener to the button, which calls
the function in lines 14 through 24 when the button is clicked. Lines 15 and
16 create a BitmapData object the size of the stage, and line 17 draws into the
object everything on the stage, effectively taking a screen shot of the stage.

Line 19 creates an instance of the JPGEncoder class, and passes an image qual-
ity setting of 100 into the constructor when doing so. If no value is passed
into the class during instantiation, a 50-percent quality setting is used. Line
20 encodes the bitmap data into bytes that can be understood as a JPG. It also
stores the bytes in a special array called a ByteArray. A ByteArray is a heavily
optimized array with its own properties and methods for reading and writing
data at the byte level.

NOTE

An ActionScript 3.0 package called
ZaaIL, developed by Aaron Boushley and
Nate Beck of ZaaLabs, adds support for
40 additional image formats! See http://
www.zaalabs.com/2010/04/introducing-
zaail-40-image-format-support-for-flash/
for more information.

NOTE

When using a Flash Player 10–specific
feature, be sure your file is set to publish
to Flash Player 10 in the File→Publish
Settings→Flash→Player menu. (Flash
Professional CS5 users can get to this
setting immediately by clicking the
Profile→Edit button in the Publish sec-
tion of the Properties panel.)

NOTE

The companion website includes infor-
mation about using a server and PHP
to accomplish the same goal in Flash
Player 9. See the post “Saving Data in
Flash Player 9 Using PHP” for more
information.

NOTE

See Chapter 8 if you need to review
drawing vectors with the Graphics
class.

http://www.zaalabs.com/2010/04/introducing-zaail-40-image-format-support-for-flash/
http://www.zaalabs.com/2010/04/introducing-zaail-40-image-format-support-for-flash/
http://www.zaalabs.com/2010/04/introducing-zaail-40-image-format-support-for-flash/

Part II: Graphics and Interaction252

Adding Functionality to Your Color Picker

Finally, line 22 creates an instance of the FileReference class, and line 23
invokes the save() method from this instance. In doing so, it passes in
the bytes for the JPG and a default file name. The user’s operating system
prompts for a location to save the file and the JPG is written to your local
directory of choice.

12	 saveBtn.addEventListener(MouseEvent.CLICK,	onSaveImage,	
13	 																									false,	0,	true);
14	 function	onSaveImage(evt:Event):void	{
15	 				var	stageCapture:BitmapData	=	
16	 								new	BitmapData(stage.stageWidth,	stage.stageHeight);
17	 				stageCapture.draw(stage);
18	
19	 				var	jpgEncoder:JPGEncoder	=	new	JPGEncoder(100);
20	 				var	jpgBytes:ByteArray	=	jpgEncoder.encode(stageCapture);
21	 				
22	 				var	fileRef:FileReference	=	new	FileReference();
23	 				fileRef.save(jpgBytes,	"stageCapture.jpg");
24	 }

Adding Functionality to Your Color Picker
Now it’s time to exercise the gray cells and put what you’ve learned into prac-
tice. The first example makes the color picker art you created in Chapter 8
functional. In the process, you’ll learn how to get and set pixel color values in a
BitmapData instance. Then we’ll end with an exercise that uses many of the skills
you’ve developed over the past few chapters. We’ll expand the drawing applica-
tion you created by adding the color picker to change the color of your brush.
We’ll also use the RoundRectButton class from Chapter 8 to create a button that
triggers a save method, saving your artwork to your hard drive in PNG format.

Getting and Setting Pixels
In Chapter 8, we created the visual component of a color picker (shown in
Figure 9-17), but didn’t add any functionality to the exercise. In this chapter,
we’ll expand this class-based example and create a ColorPickerCustom class
(named as such to differentiate it from the ColorPicker component in Flash
Professional). This class will add an instance of the ColorPickerGraphics
class you created in Chapter 8 to serve as the color graphic in the picker. We’ll
also add a simple text display and a “current color” chip to the picker, and
then show you how to get and set pixels using methods of the BitmapData
class. The class is found in the book code library, at com/learningactionscript3/
color/ColorPickerCustom.as, and we’ll put it to use in the next section.

Lines 1 through 10 define the package and import all the classes required by
this class. Lines 12 through 18 declare the class (which extends MovieClip so
you can easily treat the picker as a display object) and declare a small number
of variables. Lines 14 and 15 contain the picker (_pickerArt) and a BitmapData
instance (_bmd) that will contain the pixel data from the picker. This will allow
us to get the color value of a pixel during the actual color picking process.

NOTE

Prior to Flash Player 10.1, saving a file
using the FileReference class required
active involvement, such as a mouse
click, from the user. You can’t invoke the
save() method from a timer or enter
frame event, for example, because that
is considered a passive experience from
the viewpoint of the user. This has been
relaxed in Flash Professional CS5.

Pu
sh

 Yourself!

Figure 9-17. The color picker created in
Chapter 8

NOTE

ColorPickerGraphics, the display por-
tion of the color picker exercise created
in Chapter 8, is in the same directory
as this class, so your new code will
function without importing that class.
However, doing so allows you to see all
class dependencies at a glance.

Adding Functionality to Your Color Picker

Chapter 9: Drawing with Pixels 253

The _col variable in line 16 will hold the picked color, and the _tf variable
in line 17 will contain a text field that we’ll use to display the color value in
string hexadecimal notation (#FFFFFF rather than 0xFFFFFF). The final
variable, _chip, in line 18, will contain a movie clip that we’ll tint to match
the selected color. The text and color chip will provide valuable feedback for
the user when picking colors.

1	 package	com.learningactionscript3.color	{
2	 				
3	 				import	flash.display.BitmapData;
4	 				import	flash.display.Graphics;
5	 				import	flash.display.MovieClip;
6	 				import	flash.events.MouseEvent;
7	 				import	flash.text.TextField;
8	 				import	flash.text.TextFieldAutoSize;
9	 				import	fl.motion.Color;
10	 				import	com.learningactionscript3.color.ColorPickerGraphics;
11	 				
12	 				public	class	ColorPickerCustom	extends	MovieClip	{
13	 								
14	 								private	var	_pickerArt:ColorPickerGraphics;
15	 								private	var	_bmd:BitmapData;
16	 								private	var	_col:uint	=	0x000000;
17	 								private	var	_tf:TextField;
18	 								private	var	_chip:MovieClip;

Lines 20 through 50 make up the class constructor. Lines 21 and 22 create
an instance of the ColorPickerGraphics class to create the spectrum artwork,
and add it as a child of the new class instance. Lines 23 and 24 add a mouse
click event listener to the picker art inside the class. The private method
onClick() (lines 52 through 59) will be used for visual feedback inside the
picker (setting the text and “current color” chip values) and to populate a
class property with the selected color. What we do with that color will be
determined outside the ColorPickerCustom class when the picker is put into
use by a project. We’ll look at that process later in this section.

Lines 26 through 28 create a BitmapData instance the size of the picker art
and draw the picker art into the bitmap data. Once we have the color spec-
trum in pixel data, we can retrieve the color values of a pixel clicked on by
the mouse.

Lines 30 through 37 create a text field to display the chosen color’s hexadeci-
mal value. It’s the width of the picker art, 14 pixels tall, and positioned just
under the picker art. Note its initial content of “#FFFFFF” (white) is in line
34. In a moment, we’ll also apply an initial white color to the selected color
chip. In line 35, the field’s background (with a default color of white) is turned
on so the picker won’t let the stage color show beneath the field. Also, line 36
disables mouse interaction so that the cursor won’t change into a text cursor
upon rolling over the field and the text won’t be selectable.

Lines 39 through 45 draw a small movie clip using the Graphics class dis-
cussed in Chapter 8, to serve as the selected color chip. It’s white (set in line
41), 100 × 14 pixels (line 42) and is positioned just under the text field (line

NOTE

In this example, no bitmap is created
from the bitmap data or added to the
display list. Because the spectrum art
has already been stored in the _pic-
kerArt property and added to the dis-
play list, we need only the BitmapData
instance for accessing color data. It need
not be a part of the display list.

Part II: Graphics and Interaction254

Adding Functionality to Your Color Picker

44). Also, using the Graphics class, lines 47 through 50 draw a 1-pixel black
border for the entire picker, as a finishing touch to the picker’s appearance.

19	 								//class	constructor
20	 								public	function	ColorPickerCustom()	{
21	 												_pickerArt	=	new	ColorPickerGraphics();
22	 												addChild(_pickerArt);
23	 												_pickerArt.addEventListener(MouseEvent.CLICK,	
24	 																																							onClick,	false,	0,	true);
25	
26	 												_bmd	=	new	BitmapData(_pickerArt.width,	
27	 																																		_pickerArt.height);
28	 												_bmd.draw(_pickerArt);
29	 												
30	 												_tf	=	new	TextField();
31	 												_tf.width	=	100;
32	 												_tf.height	=	14;
33	 												_tf.y	=	100;
34	 												_tf.text	=	"#000000";
35	 												_tf.background	=	true;
36	 												_tf.mouseEnabled	=	false;
37	 												addChild(_tf);
38	 												
39	 												_chip	=	new	MovieClip();
40	 												var	g:Graphics	=	_chip.graphics;
41	 												g.beginFill(0x000000);
42	 												g.drawRect(0,	0,	100,	14);
43	 												g.endFill();
44	 												_chip.y	=	114;
45	 												addChild(_chip);
46	 												
47	 												var	border:MovieClip	=	new	MovieClip();
48	 												border.graphics.lineStyle(1,	0x000000);
49	 												border.graphics.drawRect(0,	0,	100,	128);
50	 												addChild(border);
51	 								}

getPixel()
Three things happen within the class when the picker is clicked. First, the
getPixel() method is used in lines 54 and 55 to retrieve the color value from
the pixel at the mouse location. This color is stored in the private property
_col. Second, line 56 places the hexadecimal value of the color into the text
field, using the prependZeros() method in lines 67 through 75. We’ll cover
that method in a moment. Finally, the setTint() method (line 59) is used to
apply the selected color to the color chip, as discussed previously in the sec-
tion “The Color Class.”

52	 								//listener	function
53	 								private	function	onClick(evt:MouseEvent):void	{
54	 												_col	=	_bmd.getPixel(_pickerArt.mouseX,	
55	 																																	_pickerArt.mouseY);
56	 												_tf.text	=	prependZeros(_col);
57	 												
58	 												var	col:Color	=	new	Color();
59	 												col.setTint(_col,	1);
60	 												_chip.transform.colorTransform	=	col;
61	 								}

Adding Functionality to Your Color Picker

Chapter 9: Drawing with Pixels 255

At this point, the color picker is completely functional, but only as a self-
contained widget. We can’t yet use the picker for its intended purpose,
because the _col property is private, so we can’t retrieve the selected color
from outside the class. Therefore, the last functionality we need to put in
place is a getter, color, in lines 63 through 65, to provide access to the _col
property.

62	 								//getter	for	access	to	_col
63	 								public	function	get	color():uint	{
64	 												return	_col;
65	 								}

Finishing the explanation of this class, the aforementioned prependZeros()
method takes a numeric color value and converts it to a string for display in
the picker’s text field. However, when converting to a string, leading zeros are
dropped. As such, if blue was selected, a string converted from its hexadeci-
mal value would read FF instead of the far more typical 0000FF equivalent.
So we need to add the number of leading zeros required to fill out the color
value.

The method starts with an empty string, zeros, in line 68, and then converts
the numeric value to a string in line 69 using the toString() method. If we
used this method without an argument, it would convert the number to
decimal, or base 10. White, therefore, would appear as 16777215, which isn’t
very useful for most people. By passing 16 into the method, it will convert
the value to hexadecimal, or base 16. Using this argument, the result for
white would be ffffff—acceptable, but not ideal. By using the toUpperCase()
method, the string will be converted to uppercase and display as FFFFFF. All
that remains is adding any necessary leading zeros and the preceding hash
mark (#).

Because the hexadecimal color string we want has six characters, line 70
determines how many zeros are needed by subtracting the current length of
the string from 6. Using blue (0000FF) as an example again, 6 minus 2 (for
the two characters in FF) is 4, so we need 4 zeros. Lines 71 through 73 loop
the determined number of times and build the zeros string. Finally, the return
string is assembled by concatenating the hash mark, leading zeros, and color
string.

66	 								//text	formatting	for	hex	string	display	in	picker
67	 								private	function	prependZeros(hex:uint):String	{
68	 												var	zeros:String	=	"";
69	 												var	hexString	=	hex.toString(16).toUpperCase();
70	 												var	cnt:int	=	6	-	hexString.length;
71	 												for	(var	i:int	=	0;	i	<	cnt;	i++)	{
72	 																zeros	+=	"0";
73	 												}
74	 												return	"#"	+	zeros	+	hexString;
75	 								}
76	 				}
77	 }

Part II: Graphics and Interaction256

Adding Functionality to Your Color Picker

Using the picker with setPixel()
Now that you know how to get the color values from a pixel, let’s do the
reverse. To set the color values of a pixel in a BitmapData object, you need to
again provide an x and y coordinate, but you also need to furnish the color
you want the pixel to display. In the color_picker_set_pixel.fla source file, we’ll
use the picker we just created to set the color of pixels in a small bitmap.

Lines 1 through 5 import the ColorPickerCustom class, instantiate the picker,
place it at point (10, 10), and add it to the display list. Lines 7 through 12 cre-
ate a 100 × 100–pixel black BitmapData object, create a bitmap from that data,
position it just to the right of the picker, and add it to the display list. The
enter frame event listener in lines 14 through 19 manipulates the bitmap data,
which we’ll explain after the code.

1	 import	com.learningactionscript3.color.ColorPickerCustom;
2	
3	 var	colorPicker:ColorPickerCustom	=	new	ColorPickerCustom();
4	 colorPicker.x	=	colorPicker.y	=	10;
5	 addChild(colorPicker);
6	
7	 var	canvasBmd:BitmapData	=	new	BitmapData(100,	100,	
8	 																																										false,	0xFF000000);
9	 var	canvasBm:Bitmap	=	new	Bitmap(canvasBmd);
10	 canvasBm.x	=	120;
11	 canvasBm.y	=	10;
12	 addChild(canvasBm);
13	
14	 addEventListener(Event.ENTER_FRAME,	onLoop,	false,	0,	true);
15	 function	onLoop(evt:Event):void	{
16	 				var	rndX:int	=	Math.random()	*	100;
17	 				var	rndY:int	=	Math.random()	*	100;
18	 				canvasBmd.setPixel(rndX,	rndY,	colorPicker.color);
19	 }

Lines 16 and 17 of the listener select random pixel locations between 0 and
100, the size of the BitmapData instance. These values are then passed to the
setPixel() method, along with the value from the color property of the
picker. Figure 9-18 shows the file in action.

If you want to get a better view of the pixels changing, add the following
bold line to your script after line 11. This will scale the bitmap 300 percent,
enlarging the pixels so they are easier to see. The source file already has this
line in place, so you can compare your file with the source file, if you prefer.

10	 canvasBm.y	=	10;
11 canvasBm.scaleX = canvasBm.scaleY = 3;
12	 addChild(canvasBm);

Expanding Your Paint Program
This exercise picks up where our paint tool left off, and can be found in the
paint_tool_erase_blur_pick_save_png.fla source file. At this point, the paint
program can paint using a blue color and air brush effect, as well as erase
what you create. We’re going to add the most recent color picker, to allow you

Figure 9-18. Setting pixels in a canvas

NOTE

The setPixel() method takes integer
pixel values but ActionScript will auto-
matically truncate a Number (lop off the
decimal value) when passed into any
object typed as an int.

Adding Functionality to Your Color Picker

Chapter 9: Drawing with Pixels 257

to pick the color for your brush, and a custom button and image encoder to
save your artwork as a PNG.

Although you may want to reorganize your file later (to consolidate import
statements, for example), we’re going to add the new code to the end of the
existing script for consistency and simplicity. Lines 56 through 58 import
the required classes, including the color picker, button, and image encoder
classes. Lines 60 through 62 create and position the color picker, and add it
to the display list, as in the setPixel() example.

Lines 64 through 68 add a mouse click event listener to the color picker to
supplement its functionality. In addition to its self-contained behavior (like
populating its text field and tinting its color chip), clicking on the picker
widget will also query its color property and recreate the brush tool with the
newly selected color. This will change the color of your airbrush.

56	 import	com.learningactionscript3.color.ColorPickerCustom;
57	 import	com.learningactionscript3.ui.RoundRectButton;
58	 import	com.adobe.images.PNGEncoder;
59	
60	 var	colorPicker:ColorPickerCustom	=	new	ColorPickerCustom();
61	 colorPicker.x	=	colorPicker.y	=	10;
62	 addChild(colorPicker);
63	
64	 colorPicker.addEventListener(MouseEvent.CLICK,	
65	 																													onPickColor,	false,	0,	true);
66	 function	onPickColor(evt:MouseEvent):void	{
67	 				brush	=	createBrush(colorPicker.color,	1);
68	 }

The final section of code allows you to save your artwork to a PNG file.
Lines 70 through 72 create a single instance of the RoundRectButton class
introduced in Chapter 8. The button is 60 × 20 pixels, with a rounded corner
radius of 6. A single-pixel border and button color based on a dark blue color
theme, offsets the white button label, “Save.” The button is positioned below
the picker in lines 73 and 74, and added to the display list in line 75.

Lines 77 through 84 add a mouse click event listener to the button, and the
three simple lines of code therein are all it takes to save your art as a PNG.
Line 80 encodes the bitmap data into bytes, just like the JPGEncoder class that
you used in the “Saving JPG Images” section of this chapter, with two small
exceptions. The PNGEncoder class requires no quality setting or instantiation.
Instead, the encode() method is static and can be called by the class itself, not
by an instance of the class. Lines 82 and 83 are essentially the same in both
examples, with the very minor change of the default file name.

69	 //encode	and	save
70	 var	saveBtn:RoundRectButton	=	
71	 				new	RoundRectButton(60,	20,	6,	1,	0x000066,	
72	 																								"Save",	0xFFFFFF);
73	 saveBtn.x	=	10;
74	 saveBtn.y	=	150;
75	 addChild(saveBtn);
76	

Part II: Graphics and Interaction258

What’s Next?

77	 saveBtn.addEventListener(MouseEvent.CLICK,	onSaveImage,	
78	 																									false,	0,	true);
79	 function	onSaveImage(evt:Event):void	{
80	 				var	byteArray:ByteArray	=	PNGEncoder.encode(bmd);
81	 				
82	 				var	fileRef:FileReference	=	new	FileReference();
83	 				fileRef.save(byteArray,	"myArt.jpg");
84	 }

Congratulations! Your modifications are complete. Figure 9-19 shows a detail
of the application at work. In this figure, we set the stage color to a pale yellow
to emphasize that the erasing is actually removing color, instead of painting
over it with white.

What’s Next?
One of the most surprising things to come to light after each major Flash
upgrade is how small the engineering team manages to keep Flash Player. The
bitmap manipulation and compositing features discussed in this chapter are
by no means an exhaustive look at everything Flash Player can do with pix-
els. If you spent some time and effort on the project, you could make a fairly
respectable graphics-editing application using only Flash (and, perhaps, a
server technology like PHP for file management). The best examples of this
that we can think of are the image editing applications available in the Aviary
suite at http://www.aviary.com. Yet despite these capabilities, Flash Player still
remains small and easy to install and update. Bravo, past and present Flash
Professional and Flash Player engineers, and congratulations to the creative
and programming team at Aviary!

Now it’s time to change direction and focus on the oft-overlooked workhorse
of the Flash family: text. Text can be as fruitful a subject for experimentation
and eye-candy as vectors and bitmaps, but it also serves a very important
utilitarian purpose. Creating, styling, and parsing text are fundamental needs
that you’ll frequently encounter.

In the next chapter, we’ll look at ways to work with text, including:

• Creating text fields on the fly

• Initializing basic text field appearance and behavioral attributes

• Formatting text, including default formats for text fields, as well as chang-
ing formats across entire fields or partial text selections

• Using HTML and Cascading Style Sheets (CSS) for limited HTML ren-
dering and global styling

• Embedding ActionScript triggers in HTML anchor tags

• Parsing paragraph, line, and character data from text fields using points
and indices

Figure 9-19. A detail of the save-capable
painting application

learningaction-
script3 Packages
The new packages contributed
to the book’s ActionScript 3.0
library for this chapter include
ColorPickerCustom, a class for
creating a functioning color picker,
and ColorEffects, a bonus
class that consolidates several
preset color effects discussed in
the chapter, which you can use
with the ConvolutionFilter,
ColorTransform, and
ColorMatrixFilter classes.

http://www.aviary.com

259

IN THIS PART

Chapter 10
Text

text PART III

Part III focuses exclusively on text, and covers a variety of text uses. Chapter
10 begins with the dynamic creation of text fields and the styling of text
elements using TextFormat objects. Using this approach, text styles can be
precreated and applied to individual text fields at any time. For global styling,
you can use a combination of HTML and Cascading Style Sheets (CSS). Both
the HTML content and the CSS styles can be created internally or loaded
from external sources. By using HTML and CSS, you can establish styles that
apply to an entire project, if desired. Further, CSS styles can be edited easily
in one central location, and all text to which the styles are applied will be
automatically updated.

We finish the chapter with a look at Adobe’s new text technology, the Text
Layout Framework (TLF). Built atop Flash Player’s new text engine, TLF was
officially released both as part of the Flash Professional CS5 interface and as a
set of ActionScript 3.0 classes, and offers Flash Platform users unprecedented
typographic control.

261

IN THIS CHAPTER

Creating Text Fields

Setting Text Field Attributes

Selecting Text

Formatting Text

Formatting with
HTML and CSS

Triggering ActionScript
from HTML Links

Loading HTML and CSS

Text Layout Framework

What’s Next?

Working with text can be a basic affair, such as displaying a simple text string
in a default text field, or as complex as your needs require, perhaps creating
individual text fields for every character in a string to build an animated text
effect. Learning how to create and manipulate text objects at runtime with
ActionScript can increase flexibility and make it much easier to reuse code
from project to project.

In this chapter, we’ll focus mostly on how to display, populate, and format
text data. We’ll discuss two kinds of text: the traditional Flash Platform text
technology, available for many years and newly christened Classic text; and
text created using the Text Layout Framework (TLF)—a significantly more
robust text technology introduced with Flash Player 10. TLF offers improved
typographical control, support for multiple columns, flowing text among
multiple linked containers, and more.

We’ll cover:

• Creating Text Fields. Text fields can be created with ActionScript
like any display object, freeing you from the Flash Properties panel
and allowing you to create fields on the fly.

• Setting Text Field Characteristics. How you set up your text field
will determine how the field will appear and function.

• Selecting Text. You can select segments of text using ActionScript by
specifying the start and end of a selection block.

• Formatting with TextFormat. Text can be formatted easily by creat-
ing a formatting object that can be applied to one or more text fields
at any time, including partial content of these fields.

• Formatting with HTML and CSS. It’s also possible to use a lim-
ited subset of supported Hypertext Markup Language (HTML) and

text

CHAPTER 10

Part III: Text262

Creating Text Fields

Cascading Style Sheets (CSS) features to format and style your text
globally or on a field-by-field basis.

• Triggering ActionScript from HTML. In addition to standard links
in HTML text that might open a website, you can also use links to
trigger ActionScript. This makes it easier to use HTML data to control
your project and provides another way of dynamically triggering func-
tions. For example, rather than creating buttons to drive an interface, a
text field could contain links to serve the same purpose.

• Push Yourself. Concluding this chapter is an example of how to load
HTML and CSS data from external files, and an introduction to the
Text Layout Framework (TLF).

Creating Text Fields
Creating text fields dynamically is as simple as creating any other display
object, and we’ll be using this method in most of the examples in this chap-
ter. The code that follows creates a text field and adds it to the display list. It
also uses the text property to populate the field, as seen in the text_field_1.fla
source file.

1	 var	txtFld:TextField	=	new	TextField()
2	 txtFld.text	=	"Hello	Skinny";
3	 addChild(txtFld);

Without your setting additional properties of the field, default values will
shape most of its characteristics. These defaults are fairly straightforward,
such as black text, dimensions of 100 × 100 pixels, no field styling (such as
background or border use), and single-line display without text wrapping. In
other words, no assumptions are made by ActionScript about the way you
want to display the text.

By default, a text field created with ActionScript will be a dynamic field type.
This type supports programmatic control, in contrast to the static field type
you might create by hand using Flash Professional’s Text tool. Later on we’ll
show you how to create an input text field type, which also supports user
input at runtime.

Setting Text Field Attributes
It’s almost certain that you’ll need to customize text fields to suit your needs,
so we’ll modify a typical set of properties to demonstrate the most common
adjustments made to a field. Whether you need fields that simply display
text or accept input at runtime, ActionScript offers ample control over the
appearance and functionality of a text field. It’s a simple matter to control
color, wrap text, limit acceptable input characters, and more.

Setting Text Field Attributes

Chapter 10: Text 263

Dynamic Text Fields
Dynamic text fields are the go-to field type because they support ActionScript
control but not user input. When displaying text in typical scenarios, for
example, you’re unlikely to want the user to edit your content. This first
example can be found in the text_field_2.fla source file, and includes syntax
for setting the most common properties of a text field. If you’ve been reading
this book linearly, you’ve used several of these properties in the Hello World!
examples as well as a few other exercises in past chapters. Collecting the
properties here, however, will help you focus on them in the context of other
text manipulations.

Lines 1 and 2 create a text field and position it at (20, 20), while lines 3 and 4
set the width of the field to 200, and automatically size the height of the field
to fit its content, while justifying left. This means the field will remain 200
pixels wide, but will resize from the upper-left corner to whatever height is
required to accommodate all the text you add to the field.

1	 var	txtFld:TextField	=	new	TextField();
2	 txtFld.x	=	txtFld.y	=	20;
3	 txtFld.width	=	200;
4	 txtFld.autoSize	=	TextFieldAutoSize.LEFT;
5	 txtFld.border	=	true;
6	 txtFld.borderColor	=	0x000033;
7	 txtFld.background	=	true;
8	 txtFld.backgroundColor	=	0xEEEEFF;
9	 txtFld.textColor	=	0x000099;
10	 txtFld.multiline	=	true;
11	 txtFld.wordWrap	=	true;
12	 txtFld.selectable	=	false;
13	
14	 for	(var	i:Number	=	0;	i	<	25;	i++)	{
15	 				txtFld.appendText("word"	+	String(i)	+	"	");
16	 }
17	
18	 addChild(txtFld);

Lines 5 through 9 enable and set the color of the border, background, and
text of the field. By default, a field is transparent with black text. To show
a border or background of any color, the corresponding properties must
first be enabled, as shown in lines 5 and 7. Once enabled, the default colors
of the border and background are black and white, respectively. Line 6 sets
the field’s border to a dark blue, and line 8 sets its background to light blue.
Finally, line 9 sets the color of the text to a medium blue.

Lines 10 through 12 control text behavior. Line 10 supports more than one
line of text (allowing carriage returns or line feeds in the text, for example),
and line 11 supports wrapping text to the next line. Line 12 prevents the user
from selecting text within the field. Even if a field is of dynamic type, rather
than input type, the user can still select and copy text by default. However, you
may not want a text field to allow selection, or you may not want the mouse
cursor to switch to the corresponding I-beam text edit cursor that comes with
the selection process. In these cases, set the selectable property to false.

Part III: Text264

Setting Text Field Attributes

Lines 14 through 16 populate the field using a for loop. This loop puts mul-
tiple occurrences of the text “word” into the field, adding the loop counter
number to the text as it goes, ending with a space each time through the
loop. The result will be “word0 word1 word2 ” and so on. The appendText()
method is used to add text to the field incrementally.

This is a simple example that fills a text field quickly with minimal code, but
adding new text to a populated field is quite common. You may want to build
a list based on user selections, for example. Imagine a to-do list application
in which a user can create a running list by adding new items when needed.
Without appending text to the end of a list, every new item would replace
all current items. In fact, you’ve already added text incrementally in previous
chapters, including the opening script of Chapter 3 when you animated the
string, “Hello World!”.

Input Text Fields
To allow the user to input text in a field at runtime, all you need to do is to set
the field’s type property to INPUT using the TextFieldType class. Using default
input field properties will suffice for things like a user typing a name or email
address into a form. For more specific tasks, additional features are available.

Consider, for example, a password field. When entering passwords, you usu-
ally want to obscure the password by replacing its characters with symbols.
You may also want to limit input in a field to a specific number of characters
or range of allowable input. To demonstrate, consider the following script,
seen in the text_field_3.fla source file:

1	 var	txtFld:TextField	=	new	TextField();
2	 txtFld.x	=	txtFld.y	=	20;
3	 txtFld.width	=	100;
4	 txtFld.height	=	20;
5	 txtFld.border	=	txtFld.background	=	true;
6	 txtFld.type	=	TextFieldType.INPUT;
7	 txtFld.maxChars	=	10;
8	 txtFld.restrict	=	"0-9";
9	 txtFld.displayAsPassword	=	true;
10	 addChild(txtFld);
11	 stage.focus	=	txtFld;

Lines 1 through 4 and line 10 create, position, and size the field, and add it to
the display list. Line 6 sets the field to an input field, and lines 7 through 9
define the password-related behavior. The maxChars property limits the num-
ber of characters that can be entered. The restrict property limits the valid
characters that can be entered. These characters can be expressed individually
or in ranges, such as the 0 through 9 number range used in this example. For
example, you could allow uppercase and lowercase letters, the dollar sign ($)
and underscore (_), and numbers 0 through 5, this way:

txtFld.restrict	=	"A-Za-z$_0-5";

NOTE

The appendText() method executes
faster than using the += compound oper-
ator (txtFld.text += "new value")
and is recommended for this purpose.

Selecting Text

Chapter 10: Text 265

Line 9 performs the task of automatically switching the typed character for
an asterisk at runtime to hide the password. Finally, line 11 gives the field
focus so the user can begin typing without first selecting the field with the
mouse.

Selecting Text
Your control over text and text fields is not limited to styling or input. You can
also track user selections or even select portions of a field programmatically
and replace its content.

The following example, found in the text_field_4.fla source file, uses the but-
ton creation class discussed in Chapter 8 to create two buttons that allow you
to select and replace a word of text. The first block of code consists only of
material discussed previously in this and prior chapters. Line 1 imports the
RoundRectButton class, lines 3 through 11 create and setup a dynamic text
field, and lines 12 through 28 create two buttons and add event listeners to
trigger the functions at the end of the script.

1	 import	com.learningactionscript3.ui.RoundRectButton;
2	
3	 var	txtFld:TextField	=	new	TextField();
4	 txtFld.x	=	txtFld.y	=	20;
5	 txtFld.width	=	500;
6	 txtFld.autoSize	=	TextFieldAutoSize.LEFT;
7	 txtFld.multiline	=	true;
8	 txtFld.wordWrap	=	true;
9	 txtFld.selectable	=	false;
10	 txtFld.text	=	"Lorem	ipsum	dolor	sit	amet,	elit,	sed.";
11	 addChild(txtFld);
12	
13	 var	selBtn:RoundRectButton	=	createButton("Select");
14	 selBtn.x	=	300;
15	 selBtn.y	=	20;
16	 selBtn.addEventListener(MouseEvent.CLICK,	onSelectWord,	
17	 																								false,	0,	true);
18	 addChild(selBtn);
19	
20	 var	repBtn:RoundRectButton	=	createButton("Replace");
21	 repBtn.x	=	300;
22	 repBtn.y	=	60;
23	 repBtn.addEventListener(MouseEvent.CLICK,	onReplaceWord,	
24	 																								false,	0,	true);
25	 addChild(repBtn);
26	
27	 function	createButton(labl:String):RoundRectButton	{
28	 				return	new	RoundRectButton(110,	20,	10,	2,	0x000099,	
29	 																															labl,	0xFFFFFF);	
30	 }

The new functionality is introduced in the pair of functions shown below.
The first function, onSelectWord() in lines 31 through 34, defines the selec-
tion behavior. Line 32 selects characters bound by indices 6 and 11. Counting
characters begins with 0, and the setSelection() method includes the first

NOTE

If you have trouble using the Backspace/
Delete key when testing your movie
in Flash Professional, it’s not because
the restrict property prohibits its
operation. This is a function of keyboard
behavior in Flash’s built-in player. You
can either test in a browser or disable
keyboard shortcuts via the Control
menu while in the player. This will
remove the functional limitation on the
Backspace/Delete key. Just remember
to reenable keyboard shortcuts when
returning to Flash.

NOTE

You can select text content with code
when using either dynamic or input text
fields.

Part III: Text266

Formatting Text

character up to, but not including the last character. So, in this example, the
second word, “ipsum,” is selected. Setting the alwaysShowSelected property in
line 33 to true ensures that the selection highlight remains visible even when
the field no longer has focus. When false (the default), the selection highlight
will disappear when the user interacts with any other part of the SWF.

31	 function	onSelectWord(evt:MouseEvent):void	{
32	 				txtFld.setSelection(6,	11);
33	 				txtFld.alwaysShowSelection	=	true;
34	 }

The onReplaceWord() function replaces the selected word with another. The
first line is a form of error check that ensures that a selection has been made.
This prevents an error if the user clicks the second button before making a
selection with the first button. The error is avoided by checking that the start
and end of the current selection are not equal.

If, as a hypothetical example, you selected the first five characters of text in
any field, the start of the selection would be different from the end of the
selection. If, however, you made no selection, both values would be 0, and
if you just clicked in the field without selecting any text, both values would
reflect the caret, or text edit cursor, location. Either way, both values would
be the same, allowing you to use this information to confirm an attempted
selection.

If this error check passes, line 37 uses the replaceSelectedText() method to
replace the previously selected text with the string argument of the method.

35	 function	onReplaceWord(evt:MouseEvent):void	{
36	 				if	(txtFld.selectionBeginIndex	!=	txtFld.selectionEndIndex)	{
37	 								txtFld.replaceSelectedText("LOREM");
38	 				}
39	 }

Formatting Text
Now that you can create, style, and populate text fields, as well as select their
contents, you’re ready to learn how to format the text the field contains. This
is accomplished with another class called TextFormat. The process is to set up
a TextFormat instance that controls all the desired formatting, and then apply
that object to all or part of a field.

You can apply the object in two ways: by establishing it as the default format
for the field, affecting all future input or by applying it on a case-by-case basis,
affecting all or part of existing text. Only the application of the format varies
in these cases. Creating the TextFormat instance is unchanged. In the upcom-
ing example, we’ll create a source file that uses a format to style future text,
and then we’ll modify that file to style text after it’s been added to the field.

NOTE

It’s also possible to select text field con-
tent interactively using mouse input.
See the companion website, http://
www.LearningActionScript3.com, for
more information, specifically the
post “Parsing Text Data with Mouse
Interaction.”

http://www.LearningActionScript3.com
http://www.LearningActionScript3.com

Formatting Text

Chapter 10: Text 267

Establishing a format for new text
In the following code, found in the text_format_1.fla source file, lines 1
through 7 create the format. It’s instantiated in line 1, and settings for font,
color, size, leading (line spacing), left and right margins, and paragraph
indent are established.

The font property is the name of the font you wish to use. The following
syntax shows the use of a device font—a font that must be in the operating
system of the user’s device (computer, handheld) to display correctly. System
fonts can be specified by name, such as “Verdana,” but there’s no certainty
that a user will have that particular font installed. To account for this variance,
Flash Player can work with a user’s operating system to specify its default font
(whatever that may be) in one of three categories.

Using “_serif” for the font property will use a font with serifs—the flourishes
usually found at the top and bottom of most characters, as shown in Figure
10-1. Typically this means Times or Times New Roman, but anyone can cus-
tomize an operating system, so the actual font used isn’t guaranteed. All that’s
reasonably sure to happen is that a serif font will be chosen. Using “_sans,” as
in the following script, will specify a sans-serif font (without serifs), such as
Arial or Helvetica. Finally, using “_typewriter” will specify a fixed-width font,
in which all characters share the same width to ensure that they line up nicely.
This usually means that Courier or Courier New will be used.

The color property is a hexadecimal color value in the 0xRRGGBB format.
The size, leftMargin, and rightMargin properties are measured in pixels.
The leading property is also measured in pixels but is based on the space
between lines, rather than including the line height as in some typography-
centric applications. For example, if you wanted 10-point type on 12-point
leading, size would be set to 10 and leading would be set to 2. Finally, indent
indents the first line of every paragraph by a measure of pixels.

1	 var	txtFmt:TextFormat	=	new	TextFormat();
2	 txtFmt.font	=	"_sans";
3	 txtFmt.color	=	0x000099;
4	 txtFmt.size	=	10;
5	 txtFmt.leading	=	4;
6	 txtFmt.leftMargin	=	txtFmt.rightMargin	=	6;
7	 txtFmt.indent	=	20;

Lines 8 through 13 create and setup a text field. Lines 14 though 18 apply the
format to the field. Line 14 uses the defaultTextFormat() method to format
future text. This must be applied while the field is empty, or it will have no
effect. Lines 16 through 18 use a for loop and the appendText() method to
add 25 words to the field, and line 19 adds the field to the display list.

8	 var	txtFld:TextField	=	new	TextField();
9	 txtFld.x	=	txtFld.y	=	20;
10	 txtFld.width	=	200;
11	 txtFld.autoSize	=	TextFieldAutoSize.LEFT;
12	 txtFld.multiline	=	true;
13	 txtFld.wordWrap	=	true;

serif

sans serif

Figure 10-1. Serif (top) and sans-serif
(bottom) fonts

NOTE

The blockIndent property (not used
in this example), will indent the entire
paragraph rather than the first line—
typical when formatting block quotes in
text display.

Part III: Text268

Formatting Text

14	 txtFld.defaultTextFormat	=	txtFmt;
15	
16	 for	(var	i:Number	=	0;	i	<	25;	i++)	{
17	 				txtFld.appendText("word"	+	String(i)	+	"	");
18	 }
19	 addChild(txtFld);

Applying a format to existing text
If you need to format existing text, you must use the setTextFormat() meth-
od. This method can apply a TextFormat instance to an entire field just like
the defaultTextFormat property, but only after the text has been added to
the field. To format an entire field, the only argument you must supply to the
method is the format you want to use:

txtFld.setTextFormat(txtFmt);

To format selected text within the field, you can add two additional argu-
ments to the method call, specifying the characters to be formatted. The first
integer value is the starting character index and the second integer value is
one more than the last character index. In other words, the span includes the
character at the first index, but not the character at the second index.

The text_format_2.fla source file demonstrates this by adding the following
new five lines of code to the prior example. Lines 20 through 23 create a new
format that will style the changed text as red, bold, and underline, and lines
25 and 26 format the first and last word in the field. Line 25 formats from
character 0 up to 5, to include “word0.” Line 26 uses the text field property
length to determine the number of characters in the field and uses that value
for the last index. The first index is 7 characters less to include the last char-
acters added to the field, “word24 ”—created by line 17 of the last example in
the “Establishing a format for new text” section.

20	 var	txtFmt2:TextFormat	=	new	TextFormat();
21	 txtFmt2.color	=	0xFF0000;
22	 txtFmt2.bold	=	true;
23	 txtFmt2.underline	=	true;
24	
25	 txtFld.setTextFormat(txtFmt2,	0,	5);
26	 txtFld.setTextFormat(txtFmt2,	txtFld.length-7,	txtFld.length);

Adding text after using setTextFormat()
One important issue is worthy of note when adding text to a field after apply-
ing a format with setTextFormat(). Using the recommended appendText()
method to add text to a field will maintain the formatting of the last character
as expected. Using the compound assignment operator (+=) to add text, how-
ever, will reset the field to its default text format. As a proof of concept, add the
following lines to the end of the current example (or look at text_format_3.fla),
and test your file twice, using each line in turn.

27	 txtFld.appendText("new");
28	 //txtFld.text	+=	"new";

NOTE

Remember that character counting
starts with 0 and the length property
tells you how many characters are actu-
ally in the field. So, if a text field con-
tains five characters, the indices of the
characters would be 0, 1, 2, 3, and 4, and
the length of the field would be 5.

The setTextFormat() method uses an
ending index one higher than the char-
acters you want to format in order to
support the use of the length property
in the method’s last argument.

Formatting Text

Chapter 10: Text 269

Using the first line, the extra word, “new” will be red, bold, and underlined
because that’s the format when the text was added. Commenting out line 27
and using line 28, however, will remove all the red, bold, underline formatting
from the field because the field will revert to its default format.

Tab Stops
Another handy feature made possible by the TextFormat class is tab stops. If
you find formatting text columns difficult using the Flash Professional inter-
face, you’ll be relieved to find how easy it can be to create simple columns
with tab stops using ActionScript. The next example uses the TextFormat
class to set two tab stops so that text including tab characters will line up at
these stops, forming columns. See file text_format_4.fla to try this yourself.

Let’s get to the code. The first 13 lines of this script include only previously dis-
cussed material—creating and configuring TextFormat and TextField objects.
We didn’t include the tab stops in the format initially, because we want to show
you how to edit and use a TextFormat object after it’s been created. Take a look
at the setup first, and then we’ll discuss the application of the tab stops:

1	 var	txtFmt:TextFormat	=	new	TextFormat();
2	 txtFmt.font	=	"_sans";
3	 txtFmt.size	=	10;
4	 txtFmt.leading	=	4;
5	 txtFmt.leftMargin	=	txtFmt.rightMargin	=	6;
6	
7	 var	txtFld:TextField	=	new	TextField();
8	 txtFld.x	=	txtFld.y	=	20;
9	 txtFld.width	=	400;
10	 txtFld.autoSize	=	TextFieldAutoSize.LEFT;
11	 txtFld.border	=	txtFld.background	=	true;
12	 txtFld.multiline	=	txtFld.wordWrap	=	true;
13	 txtFld.defaultTextFormat	=	txtFmt;

Lines 14 through 17 populate the field, txtFld, which you just set up in lines 7
through 13. Notice the inclusion of the \t escape character in line 15. Its back-
slash prevents this character from being understood as the letter “t.” Instead,
it’s interpreted as a tab. Another escape character, \n, appears in line 16. In this
case, the “n” is a new line character, moving the new text insert point down
to the next line in the field. Therefore, each time through the loop, new text
is added on a new line.

All we need to do now is add our tab stops to ensure that the columns line
up nicely. These are applied in line 20, using an array of pixel values to indi-
cate the location of each tab stop. We applied this property later, in line 20,
for demonstration purposes. You may go back and edit a TextFormat instance
at any time. After you make such a change, however, you must reapply the
format to the text field, as seen in line 21, for the change to be reflected in
the field.

NOTE

As a nicety, Flash Professional will warn
you that using the compound assign-
ment operator (+=) is slower than using
the appendText() method.

NOTE

At the end of this chapter, we’ll show
you a way to create true column-based
layouts using a new Flash Platform text
technology. Unlike simple tab-based
columns, text using this technology can
flow into columns, wrap from one col-
umn to the next, and adjust when the
text is changed.

Part III: Text270

Formatting Text

14	 for	(var	i:Number	=	0;	i	<	10;	i++)	{
15	 				txtFld.appendText("product:\t"	+	String(i)	+	"\tin	stock:\t"	
16	 																						+	"yes\n");
17	 }
18	 addChild(txtFld);
19	
20	 txtFmt.tabStops	=	[120,	200];
21	 txtFld.setTextFormat(txtFmt);

Using Embedded Fonts
Up to this point, we’ve been using system fonts in our examples. When a
custom font is required, you must embed that font to ensure that it displays
properly on all machines. Embedding adds just enough vector information
to the SWF for the Flash Player to display the font, even if it’s not in a user’s
operating system. The embedding process has changed through the evolution
of Flash Professional, so we’ll cite versions where appropriate.

Flash Professional CS3 and CS4
The first step to embedding a font in Flash Professional CS3 or CS4 is to
create a new font symbol from the Library panel’s menu, seen in Figure 10-2.
In the resulting Font Symbols Properties dialog—Figures 10-3 (CS3) and 10-4
(CS4)—choose the font and font style you wish to embed.

Figure 10-2. Creating a new font from the Library menu (CS4 pictured)

In Flash Professional CS3, you select the bold, italic, or combination
bold/italic styles by using the checkboxes below the font name (see Figure
10-3). In Flash Professional CS4, support for font families was introduced. You
select these styles using the font family’s dedicated bold, italic (oblique), or
bold/italic font in the Style menu. Older fonts that don’t have individual style
variants may support the checkboxes for faux bold and italic found below
the Style menu.

NOTE

Flash Professional CS3 did not support
proper style fonts, instead decorating a
plain version of the font with faux styles
by strengthening or skewing the outlines
(for bold and italic, respectively).

Formatting Text

Chapter 10: Text 271

Figure 10-3. Font Symbol Properties (CS3 pictured)

Each font symbol can style text in a preset manner only: plain, bold, italic, or
a combination thereof, and they can’t be combined at runtime. So, to include
separate bold and italic font styles, for example, you need a font symbol for
bold and a font symbol for italic.

As with other symbols, such as movie clips, we need to use a linkage class to
instantiate a font symbol. So the name of the symbol itself should be useful
and descriptive, but need not follow any specific conventions. When creat-
ing a linkage class, on the other hand (using the same Library menu shown
in Figure 10-2), the class name should follow the same naming conventions
applied to other classes throughout earlier chapters. For example, the name
should contain no spaces and start with a capital letter. Figure 10-4 shows a
class name for the font symbol in the exercise we’re building, VerdanaPlain.

Figure 10-4. Font Symbol Properties (CS4 pictured)

Part III: Text272

Formatting Text

In both Flash Professional CS3 and CS4, the Linkage information can be
found in the Font Symbol Properties dialog, accessed from the Library menu
after the Font symbol has been created.

Flash Professional CS5
The process for embedding fonts in Flash Professional CS5 has been
improved and simplified. All of the steps discussed in the CS3/CS4 section
are accessed in one dialog box in version CS5. This dialog box is accessed by
the Text→Font Embedding menu command. Figure 10-5 shows the Options
tab of this dialog box. At the top, selecting a font is similar to the process used
in CS4, choosing a name, picking a family, and selecting a style.

As of CS5, however, you can specify which glyphs (characters) should be
embedded with the font, just like you can when you embed fonts into a spe-
cific text field using the Flash Professional Properties panel. This allows you
to select only a subset of the glyphs in a particular font family, which reduces
file size. In Figure 10-5, only uppercase, lowercase, numerals, and punctuation
characters are being embedded.

Figure 10-5. Flash Professional CS5’s Font Embedding dialog, showing the Options tab

Formatting Text

Chapter 10: Text 273

Next to the Options tab in the dialog box is the ActionScript tab, as shown in
Figure 10-6. Under this tab, you can export for ActionScript use and set a link-
age class name, as is possible in previous versions of Flash Professional. At the
top of this dialog box, you’ll notice an Outline format section with options
for Classic and TLF text. Classic text includes dynamic and input text fields,
and TLF is a new text field type that stands for Text Layout Framework,
which we’ll discuss at the end of the chapter. If you embed an OpenType or
TrueType font, you can choose the appropriate outline format for the kind of
field you intend to use: Classic for Classic text fields, and TLF for Text Layout
Framework fields.

Figure 10-6. A detail of the ActionScript tab from Flash Professional CS5’s Font
Embedding dialog

Regardless of which version of Flash Professional you use, you end up with
the same thing at this point: a Font Symbol that can be instantiated at run-
time using ActionScript.

ActionScript
Once your symbol has been embedded and given a linkage name, you’re
ready to use it in a TextFormat instance. The following code, found in the
embed_font.fla source file, uses embedded fonts and the VerdanaPlain font
symbol created in the previous sections. Line 1 instantiates the font symbol,
and line 4 applies the embedded font to the font property of the text format.

Part III: Text274

Formatting with HTML and CSS

This is a very important step because it can be counterintuitive. You can’t set
the property to the class or instance reference from line 1, and you can’t use
a string, like “Verdana.” You must specify the fontName property of the font
symbol instance. Finally, line 14 sets the embedFonts property to true.

1	 var	verdanaPlain:Font	=	new	VerdanaPlain();
2	
3	 var	txtFmt:TextFormat	=	new	TextFormat();
4	 txtFmt.font	=	verdanaPlain.fontName;
5	 txtFmt.size	=	8;
6	 txtFmt.bold	=	true;
7	
8	 var	txtFld:TextField	=	new	TextField();
9	 txtFld.x	=	txtFld.y	=	20;
10	 txtFld.width	=	300;
11	 txtFld.defaultTextFormat	=	txtFmt;
12	 txtFld.text	=	"Hello	World!";
13	 txtFld.selectable	=	false;
14	 txtFld.embedFonts	=	true;
15	 addChild(txtFld);

Using Custom Anti-Aliasing
Once you use an embedded font, you can take advantage of custom anti-
aliasing options. By setting the antiAliasType property to ADVANCED using the
AntiAliasType class, you can control the thickness of the text (using a range
of –200 to 200, thinner to thicker) and its sharpness (using a range of –400 to
400, blurrier to sharper). Custom anti-aliasing can be used on any type size
and is one way to achieve an effect that is more pronounced than a plain font,
but not quite as strong as a bold font. It’s also good for softening the edges
of fonts to better meld with background art, and it’s particularly useful for
improving the legibility of small type sizes.

The following code, when added to the example in the prior section, will
adjust the text to maximum thickness and a little less sharp. This adaptation
is found in the embed_font_custom_anti-alias.fla source file.

1	 txtFld.antiAliasType	=	AntiAliasType.ADVANCED;
2	 txtFld.thickness	=	100;
3	 txtFld.sharpness	=	-100;	

Formatting with HTML and CSS
The TextFormat class is great for case-by-case uses. But managing a large
ActionScript project this way might become unwieldy if several formats are
required and all must be manually applied. An alternative to this approach is
to use HTML and CSS to style the project globally.

NOTE

Although it may sound strange, assets
are often easier on the eye when their
edges are softened a bit. It’s quite com-
mon, for example, to apply a very slight
blur to shapes, text, and even video
(during the compression process). There
are a few ActionScript features that will
do this for you automatically, such as
the image smoothing option, which will
soften images by a preset amount.

How different people see text is too var-
ied to rely on a single preset of this kind,
so ActionScript’s custom anti-aliasing
features allow you to tweak the appear-
ance of the text to your liking.

NOTE

This material assumes you are familiar
with HTML and CSS. For more infor-
mation, see http://en.wikipedia.org/wiki/
HTML and http://en.wikipedia.org/
wiki/CSS for background and additional
resource links.

NOTE

The embed_font_custom_anti-alias_
click.fla source file adapts this further
by toggling between custom anti-alias
settings with a mouse click. It applies
a subtle setting to show the improved
legibility that custom anti-aliasing can
bring to small font sizes.

http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/CSS
http://en.wikipedia.org/wiki/CSS

Formatting with HTML and CSS

Chapter 10: Text 275

Hypertext Markup Language (HTML)
Flash supports a limited subset of HTML tags, as seen in Table 10-1.

Table 10-1. The HTML tags supported by Flash Player

HTML Tag Notes

 Supported attributes include: color, face, size.

 Bold version of font must exist to work.

<i> Italic version of font must exist to work.

<u> Underlines text.

 Supported attributes include: class.

<p> multiline must be enabled to work; supported attributes include: align and class.

 multiline must be enabled to work.

 All lists are bulleted; ordered and unordered qualifiers are ignored.

 Supported attributes include: src, width, height, align, hspace, vspace, and id; can embed external
images (JPG, GIF, PNG) and SWF files with automatic text flow around the images.

<a> Supported attributes include: href and target.

<textformat> Used to apply a limited subset of TextFormat properties to text; supported attributes include:
 blockindent, indent, leading, leftmargin, rightmargin, and tabstops.

To use HTML in a text field, you need only switch from using the text prop-
erty to using the htmlText property. For example, the following code will put
the word “ActionScript,” in bold, into a text field:

txtFld.htmlText	=	"ActionScript";

If you are seeing unexpected results, you should look closely at Table 10-1 for
anything that might vary from what you have written, and to ensure Flash-
specific requirements have been fulfilled for a particular tag to function. For
example, it should make sense that line breaks (through use of <p> or

tags) require a multiline field, because you can’t have a line break if more
than one line isn’t supported. However, it may not be obvious that and
 have no effect on list items, resulting in bullets for all lists.

CSS
ActionScript also supports a limited subset of CSS properties, as seen in
Table 10-2. Style sheets require a bit more setup than just using the htmlText
property to populate fields. We’ll begin by demonstrating how to create style
objects with code, and then the last section of the chapter will describe how
to load both the HTML and CSS data from external files.

NOTE

The efficient appendText() method
does not work with HTML, so you must
use traditional compound addition (+=)
to append HTML text to a field.

Part III: Text276

Formatting with HTML and CSS

Table 10-2. The CSS properties supported by Flash Player

CSS Property AS3 Property Notes

color color Font color in “#RRGGBB” format.

display display Controls display of an item. Values include: none, block, and inline.

font-family fontFamily Font name in comma-separated list to indicate priority; device fonts
also supported using the following conversions: mono = _typewriter,
sans-serif = _sans, and serif = _serif.

font-size fontSize Font size in pixels.

font-style fontStyle Font style. Values include: italic and normal.

font-weight fontWeight Font style. Values include: bold and normal.

kerning kerning Turns kerning on or off. Value can be true or false.

leading leading Number of pixels added after each line. A negative value condenses the
space between lines.

letter-spacing letterSpacing Specified in pixels.

margin-left marginLeft Specified in pixels.

margin-right marginRight Specified in pixels.

text-align textAlign Aligns text. Values include: left, right, center, and justify.

text-decoration textDecoration Underlines text. Values include: underline none.

text-indent textIndent First-line paragraph indent specified in pixels.

The process of building a style sheet involves creating an instance of the
StyleSheet class, and then adding styled objects for each tag or class to the
instance. For each tag or class, you create a custom object to which the rel-
evant CSS properties are added. Once complete, each object is associated with
the tag or class and added to your style sheet using the setStyle() method.

In the following example, seen in html_css.fla, line 1 creates the style sheet,
lines 3 through 21 create styles for the body HTML tag, heading CSS class,
byline CSS class, and a (anchor) HTML tag respectively. Finally, lines 23
through 26 add each style to the css instance of the StyleSheet class.

1	 var	css:StyleSheet	=	new	StyleSheet();
2	
3	 var	body:Object	=	new	Object();
4	 body.fontFamily	=	"Verdana";
5	 body.textIndent	=	20;
6	
7	 var	heading:Object	=	new	Object();
8	 heading.fontSize	=	18;
9	 heading.fontWeight	=	"bold";
10	 heading.textIndent	=	-20;
11	 heading.letterSpacing	=	1;
12	 heading.color	=	"#FF6633";
13	
14	 var	byline:Object	=	new	Object();
15	 byline.fontSize	=	14;
16	 byline.fontStyle	=	"italic";
17	 byline.textAlign	=	"right";

Formatting with HTML and CSS

Chapter 10: Text 277

18	
19	 var	a:Object	=	new	Object();
20	 a.color	=	"#990099";
21	 a.textDecoration	=	"underline";
22	
23	 css.setStyle(".heading",	heading);
24	 css.setStyle(".byline",	byline);
25	 css.setStyle("body",	body);
26	 css.setStyle("a",	a);

The remainder of the script creates and sets up a text field, and then popu-
lates it with HTML. Remember, the appendText() method will not work
when using the htmlText property. Instead, you must use the compound
assignment operator for addition.

More importantly, however, we must stress that the style sheet must be
applied before the HTML is added to the field. If you don’t follow this rule,
the style sheet won’t be applied. In this example, the style sheet is applied in
line 33, before the HTML is added to the field beginning at line 34.

27	 var	txtFld:TextField	=	new	TextField();
28	 txtFld.x	=	txtFld.y	=	20;
29	 txtFld.width	=	500;
30	 txtFld.autoSize	=	TextFieldAutoSize.LEFT;
31	 txtFld.multiline	=	true;
32	 txtFld.wordWrap	=	true;
33	 txtFld.styleSheet	=	css;
34	 txtFld.htmlText	=	"<body>";
35	 txtFld.htmlText	+=	"ActionScript	10.0	Adds	

Time	Travel

";
36	 txtFld.htmlText	+=	"by	Walter	Westinghouse</

span>

";
37	 txtFld.htmlText	+=	"<p>January	1,	2015.	The	rumors	swirling	around	

the	tech	community	recently	have	been	confirmed	today	as	lead	Flash	
Player	engineer,	Dr.	Eldon	Tyrell,	announced	that	ActionScript	10.0	
will	support	time	travel.	Ever	since	the	concept	of	time	travel	was	
popularized	by	H.	G.	Wells	in	1895,	humans	have	yearned	for	the	
ability	to	travel	through	time,	and	now	it's	a	reality.</p>
";

38	 txtFld.htmlText	+=	"<p>Flash	Player	QA	lead	Roy	Batty,	agreed.	
\"We're	happy	to	add	this	feature	to	human	BioChips	everywhere	using	
the	standard	Express	Install	Opt-In	process.	Flash	Player	has	long	
been	a	leader	in	bringing	immersive	experiences	to	humans.	Just	
search	Google</
a>	for	your	favorite	feature	and	you'll	likely	find	that	it's	
supported.\"</p>
";

39	 txtFld.htmlText	+=	"<p>Users	of	the	antiquated	\"desktop	computing\"	
model	can't	take	advantage	of	this	feature,	nor	can	users	of	the	
recently	standardized	HTML5.</p>";

40	 txtFld.htmlText	+=	"</body>";
41	 addChild(txtFld);

Escaping quotation marks
Finally, note that lines 38 and 39 contain quotes within quotes. This would
ordinarily be a problem because the second quotation mark would balance
the first quotation mark and close a string. Typically, prematurely closing a

Part III: Text278

Triggering ActionScript from HTML Links

string will cause a syntax error of some kind, but it virtually always results
in unexpected behavior.

However, this file has no problem because the nested quotes have been escaped
just like the tab and new line characters in the “Tab Stops” section of this chap-
ter. The backslashes, when used as part of a string, prevent the characters from
functioning like quotation marks and make them behave instead like any other
character. It’s also possible to nest single quotes within double quotes when a
double-quote is not required. This is demonstrated in lines 35 and 36.

Triggering ActionScript from HTML Links
In addition to supporting standard HTML links, ActionScript can trigger
functions from anchor tags. Simply replace the Internet protocol http:// with
event: and ActionScript will fire a TextEvent.LINK event that can trigger a
listener function.

The following example, seen in text_event_link.fla, shows both a conventional
http:// link and ActionScript event: link in action. The traditional link is in
line 10. The ActionScript event: link is in line 12. The link is still constructed
using the anchor tag and href attribute but, instead of pointing to a URL, a
string is specified—in this case, “showMsg.” An event listener is added to the
field in line 11, listening for the TextEvent.LINK event.

When a user clicks the conventional link, the normal behavior ensues auto-
matically. Flash Player launches or switches to the default browser and navi-
gates to the site. However, when the user clicks the “Show Message” link, the
listener traps the event and calls the linkHandler() function, passing the link
information into the argument. To demonstrate one way to handle many links,
a conditional queries the text passed in from the event. If the incoming text
matches a specific string, the listener traces a message to the Output panel.

1	 var	txtFmt:TextFormat	=	new	TextFormat();
2	 txtFmt.size	=	18;
3	 txtFmt.bullet	=	true;
4	 txtFmt.color	=	0x990099;
5	
6	 var	txtFld:TextField	=	new	TextField();
7	 txtFld.autoSize	=	TextFieldAutoSize.LEFT;
8	 txtFld.multiline	=	true;
9	 txtFld.defaultTextFormat	=	txtFmt;
10	 txtFld.htmlText	=	"Search";
11	 txtFld.htmlText	=	"
";
12	 txtFld.htmlText	+=	"Show	Message";
13	 txtFld.addEventListener(TextEvent.LINK,	linkHandler,	
14	 																								false,	0,	true);
15	 addChild(txtFld);
16	
17	 function	linkHandler(evt:TextEvent):void	{
18	 				if	(evt.text	==	"showMsg")	{
19	 								trace("Dynamic	links	are	useful");
20	 				}
21	 }

NOTE

If you are familiar with prior versions of
ActionScript, the event: protocol replac-
es the asfunction: protocol.

Loading HTML and CSS

Chapter 10: Text 279

Now we come again to a point where you should stretch the mental muscles
and try to take what you’ve learned one step further. The first topic of this sec-
tion will give you a peak at what we’ll be covering in Chapter 13: loading exter-
nal assets. You’ll learn how to load and apply external HTML and CSS files.

The second topic of this section will give a brief overview of the new Text
Layout Framework that brings some advanced typographic support to
ActionScript. We’ll list a few pros and cons of this new technology and then
show you a few examples of how to use TLF fields that differ from uses of
ordinary text fields.

Loading HTML and CSS
This exercise uses the same HTML, CSS, and some of the ActionScript from
the prior HTML and CSS example but loads the content from external files.
We’ll discuss loading again in Chapter 13, but here we’ll just focus on loading
text files.

The assets you’ll need for this exercise are included with the source code from
the companion website, but here are the setup files in case you wish to recre-
ate them on your own. The following files should go in the same directory
as your host .fla file. In case you want to try the sample files, they’re found
in the LoadHTMLCSS_Example directory of the source archive, and the FLA
uses the class as a document class.

HTML (demo.html)

<body>
				<p	class='heading'>ActionScript	10.0	Adds	Time	Travel</p>
				<p	class='byline'>by	Walter	Westinghouse</p>
				<p>January	1,	2015.	The	rumors	swirling	around	the	tech	
							community	recently	have	been	confirmed	today	as	lead	
							Flash	Player	engineer,	Dr.	Eldon	Tyrell,	announced	that	
							ActionScript	10.0	will	support	time	travel.	Ever	since	
							the	concept	of	time	travel	was	popularized	by	
							<a	href="event:author	of	early	science	fiction	novel,	
							The	Time	Machine">H.	G.	Wells	in	1895,	humans	have	
							yearned	for	the	ability	to	travel	through	time,	and	now	
							it's	a	reality.
				</p>
				<p>Flash	Player	QA	lead	Roy	Batty,	agreed.	"We're	happy	to	
							add	this	feature	to	human	BioChips	everywhere	using	the	
							standard	Express	Install	Opt-In	process.	Flash	Player	has	
							long	been	a	leader	in	bringing	immersive	experiences	to	
							humans.	Just	search	<a	href="http://www.google.com"	
							target="_blank">	Google	for	your	favorite	feature	and	
							you'll	likely	find	that	it's	supported."
				</p>
				<p>Users	of	the	antiquated	"desktop	computing"	model	can't	
							take	advantage	of	this	feature,	nor	can	users	of	the	
							recently	standardized	HTML5.
				</p>
</body>

Pu
sh

 Yourself!

NOTE

When text resides in an external file and
you’re not assigning strings to variables
in ActionScript, nested quotes are typi-
cally not a problem and don’t have to be
escaped with a backslash character.

Part III: Text280

Loading HTML and CSS

CSS (demo.css)

body	{
				font-family:	Verdana;
				text-indent:	20px;
}

.heading	{
				font-size:	18px;
				font-weight:	bold;
				text-indent:	-20px;
				letter-spacing:	1px;
				color:	#FF6633;
}

.byline	{
				font-size:	14px;
				font-style:	italic;
				text-align:	right;
}

a:link	{
				color:	#000099;
				text-decoration:	underline;
}

a:hover	{
				color:	#990099;
}

ActionScript (LoadHTMLCSS_Eample.as)

Loading HTML and CSS from external files requires use of the URLLoader and
URLRequest classes. The loading process is the same for both HTML and CSS,
so we’ll focus on one and discuss the other briefly. You’ll also use the Event.
COMPLETE event to continue after the loading is complete.

Lines 1 through 12 set up the class by creating the package, importing
required classes, and creating the class. Lines 14 through 17 create four private
properties that reference two loaders, the CSS data, and a text field used to
display a definition when the user clicks on a term in a link.

1	 package	{
2	
3	 				import	flash.display.MovieClip;
4	 				import	flash.events.Event;
5	 				import	flash.events.TextEvent;
6	 				import	flash.net.URLLoader;
7	 				import	flash.net.URLRequest;
8	 				import	flash.text.StyleSheet;
9	 				import	flash.text.TextField;
10	 				import	flash.text.TextFormat;
11	 				
12	 				public	class	LoadHTMLCSS_Example	extends	MovieClip	{
13	
14	 								private	var	_cssFile:URLLoader;
15	 								private	var	_htmlFile:URLLoader;
16	 								private	var	_css:StyleSheet;
17	 								private	var	_definitionField:TextField;

Loading HTML and CSS

Chapter 10: Text 281

The constructor sets up the CSS loading, so we’ll focus on that in detail. Line
19 creates an instance of the URLLoader class that you can monitor. Lines 20
through 22 add a listener to that instance, which calls the onLoadCSS() func-
tion when the load is complete. Line 23 creates an instance of the URLRequest
class for the URL that points to our external CSS file. A URLRequest object is
used for all loads and allows for consistent handling of URLs throughout
ActionScript 3.0. Line 24 loads the CSS.

18	 								//constructor
19	 								public	function	LoadHTMLCSS_Example()	{
20	 												_cssFile	=	new	URLLoader();
21	 												_cssFile.addEventListener(Event.COMPLETE,	onLoadCSS,	
22	 																																						false,	0,	true);
23	 												var	req:URLRequest	=	new	URLRequest("demo.css");
24	 												_cssFile.load(req);
25	 								}

When the CSS document loads, the function in the following code block is
called. Line 28 creates a new StyleSheet instance, and line 29 parses the CSS
data sent to the listener function. Note the use of the data property to retrieve
this information from the event’s target (in this case, the cssFile instance
responsible for the loading). The style sheet is now ready to be applied, but
neither the HTML nor the text field exist yet.

Next on the to-do list is the exact same procedure for the HTML file. Line
30 creates the URLLoader instance, a listener is added to the instance in lines
31 and 32, a URLRequest instance is created in line 33, and the file is loaded
in line 34.

26	 								//loading	style	sheet
27	 								private	function	onLoadCSS(evt:Event):void	{
28	 												_css	=	new	StyleSheet();
29	 												_css.parseCSS(evt.target.data);
30	 												_htmlFile	=	new	URLLoader();
31	 												_htmlFile.addEventListener(Event.COMPLETE,	onLoadHTML,	
32	 																																							false,	0,	true);
33	 													var	req:URLRequest	=	new	URLRequest("demo.html");
34	 												_htmlFile.load(req);
35	 								}

Once the HTML is fully loaded (triggering the listener function in the fol-
lowing code block), it’s put into the htmlString variable (line 38). In line 40, a
text field is created that will hold the body copy from the story in the loaded
HTML. Lines 41 through 52 do nothing that we haven’t already covered, but
it warrants repeating that the CSS is applied before the HTML is added to
the field (lines 47 and 48, respectively). Also, a listener is added to trap any
link-based ActionScript triggered by an HTML anchor tag’s event: protocol.
This event will be used to show a definition of a term clicked on in the main
body text.

Lines 54 through 57 create a TextFormat instance to format any definition
displayed, and lines 59 through 66 create the field to hold that definition. The
last thing the function does is clean up a bit by removing the listeners from

NOTE

Even though the req variable appears
in the constructor function, it can be
reused without concern because declar-
ing a variable inside a function makes
the variable local to that function.

Part III: Text282

Loading HTML and CSS

the two URLLoader instances, because everything has loaded successfully at
that point in the code.

The last functions in the class, onTextEvent() places the definition sent by
any event: link click to the _definitionField text field.

36	 								//loading	html
37	 								private	function	onLoadHTML(evt:Event):void	{
38	 												var	htmlString:String	=	evt.target.data;
39	
40	 												var	storyField:TextField	=	new	TextField();
41	 												storyField.x	=	storyField.y	=	20;
42	 												storyField.width	=	500;
43	 												storyField.height	=	330;
44	 												storyField.multiline	=	true;
45	 												storyField.wordWrap	=	true;
46	 												storyField.selectable	=	false;
47	 												storyField.styleSheet	=	_css;
48	 												storyField.htmlText	=	htmlString;
49	 												storyField.addEventListener(TextEvent.LINK,	
50	 																																								onTextEvent,	
51	 																																								false,	0,	true);
52	 												addChild(storyField);
53	 												
54	 												var	definitionFormat:TextFormat	=	new	TextFormat();
55	 												definitionFormat.font	=	"_sans";
56	 												definitionFormat.size	=	12;
57	 												definitionFormat.italic	=	true;
58	 												
59	 												_definitionField	=	new	TextField();
60	 												_definitionField.x	=	20;
61	 												_definitionField.y	=	360;
62	 												_definitionField.width	=	500;
63	 												_definitionField.height	=	20;
64	 												_definitionField.mouseEnabled	=	false;
65	 												_definitionField.defaultTextFormat	=	definitionFormat;
66	 												addChild(_definitionField);
67	
68	 												_cssFile.removeEventListener(Event.COMPLETE,	
69	 																																									onLoadCSS);												
70	 												_htmlFile.removeEventListener(Event.COMPLETE,	
71	 																																										onLoadHTML);
72	 								}
73	
74	 								private	function	onTextEvent(evt:TextEvent):void	{
75	 												_definitionField.text	=	evt.text;
76	 								}
77	 				}
78	 }

With this exercise as a basis for future work, you can control the text format-
ting for very large projects by applying a project-wide CSS document to every
applicable text field. This also makes your development process much easier
because you can edit the external CSS file and its styles will be updated every-
where the file is used. The document in Figure 10-7 was created using external
HTML data and formatted using a CSS document.

Text Layout Framework

Chapter 10: Text 283

ActionScript 10.0 Adds Time Travel

by Walter Westinghouse

 January 1, 2015. The rumors swirling around the tech community recently
have been confirmed today as lead Flash Player engineer, Dr. Eldon Tyrell,
announced that ActionScript 10.0 will support time travel. Ever since the
concept of time travel was popularized by H. G. Wells in 1895, humans have
yearning for the ability to travel through time, and now it's a reality.

 Flash Player QA lead Roy Batty, agreed. "We're happy to add this feature
to human BioChips everywhere using the standard Express Install Opt-In
process. Flash Player has long been a leader in bringing immersive
experiences to humans. Just search Google for your favorite feature and you'll
likely find that it's supported."

 Users of the antiquated "desktop computing" model can't take advantage
of this feature, nor can users of the recently standardized HTML5.

Figure 10-7. Text loaded and styled from external HTML and CSS data

Text Layout Framework
Integrated in Flash Professional CS5 and Flash Builder 4, a new text mecha-
nism called Text Layout Framework (TLF) brings unprecedented control over
type to the Flash Platform. TLF requires Flash Player 10 and the following are
just a few of things that TLF offers:

• Added character styles including subscript, superscript, underline, strik-
ethrough, case conversion, enhanced leading, ligatures, highlight color,
and more.

• Added paragraph styles including multicolumn support with gutter
width, last line justification options, enhanced margins and indents, para-
graph spacing, padding, and more.

• Text flow across multiple linked text containers.

• Support for alpha and rotation transformations when using device fonts.

• Support for 3D rotation, color effects, and blend modes without first plac-
ing the field into a movie clip or sprite.

• Support for right-to-left text for languages like Arabic and Hebrew.

• Support for bidirectional text, or right-to-left text that can contain ele-
ments within it that flow left-to-right. This is important for embedding
English words or numbers within Arabic or Hebrew text, for example.

Along with TLF’s extensive feature set comes complexity. We want to stress
that we consider TLF to be an intermediate to advanced feature, depending
on how deeply you want to delve into its inner workings. Documentation, in
particular, is still in its infancy. However, we thought it important to discuss

Pu
sh

 Yourself!

Part III: Text284

Text Layout Framework

TLF in this book because it offers several useful text features not supported
by the traditional Flash Platform text technology (now called Classic text,
and covered throughout this chapter).

For basic use, the ActionScript syntax for creating and manipulating TLF
fields is very similar to that of Classic text fields, so we’ll avoid straight repeti-
tion wherever possible. For the following exercises, we’ve chosen a practical
subset of TLF’s features that are likely to be useful in a variety of situations
and apply to the widest range of possible users. We’re just discussing the tip
of the proverbial iceberg, however. Please consider this section an introduc-
tion to TLF—a trial run that will, at best, encourage you to explore additional
capabilities and, at minimum, provide you with a set of code blueprints that
you can adapt for your own use.

Rotating device fonts
Using Classic text fields, rotating a field will cause device fonts to disappear.
The workaround for this issue is to embed the font in your SWF—after which
the text will display correctly. The problem is, every font symbol you embed
contributes to file size, and adding TLF fields to your files requires only a
one-time file size increase for each user (which we’ll discuss at the end of this
section). So, if you intend to use many device fonts, or even several variants
of a small number of device fonts, you may be better served by using TLF.

The following code, found in the tlf_rotation.fla source file demonstrates
rotation of both Classic and TLF text fields. The Classic field is positioned
at x, y coordinates (20, 20), and the TLF field is placed at (100, 100). In the
former case, the rotation causes the device font text to disappear. However, the
same device font used in the TLF field remains visible.

1	 import	fl.text.TLFTextField;
2	
3	 var	txtFld:TextField	=	new	TextField();
4	 txtFld.x	=	txtFld.y	=	20;
5	 txtFld.text	=	"Hello	World!";
6	 txtFld.rotation	=	45;
7	 addChild(txtFld);
8	
9	 var	tlfFld:TLFTextField	=	new	TLFTextField();
10	 tlfFld.x	=	tlfFld.y	=	100;
11	 tlfFld.text	=	"Hello	World!";
12	 tlfFld.rotation	=	45;
13	 addChild(tlfFld);

Improved typographic controls
In many ways, the core of the Text Layout Framework is the TextFlow class
(contained in the flashx.textLayout.elements package provided by Adobe)
and its TextFlow markup syntax. TextFlow markup is a bit like a cross
between XML and HTML. It’s structured like XML but has predefined tags
and attributes, and controls display features. Manipulating this class is your
ticket to improved typographic control, columnar layout, and more.

NOTE

TLF was first introduced to Flash
Professional users in beta format as
a component for Flash Professional
CS4 and to other ActionScript editors
(such as Adobe’s Flash Builder 4 and
Powerflasher’s FDT) via the beta ver-
sion of the Flex 4 SDK.

At the time of this writing, it’s still avail-
able on Adobe Labs: http://labs.adobe.
com/technologies/textlayout/. However,
there is no guarantee that it will remain
available for Flash Professional CS4,
nor is it certain that the beta release is
stable enough to use in production.

If you are interested in using TLF, we
recommend using Flash Professional
CS5, Flash Builder 4, or another editor
built around the release version of the
Flex 4 SDK.

http://labs.adobe.com/technologies/textlayout/
http://labs.adobe.com/technologies/textlayout/

Text Layout Framework

Chapter 10: Text 285

Although you can populate a TextFlow instance incrementally using string
input, it requires creating each paragraph, span, and so on individually with
a collection of classes and a fair amount of additional syntax. Sometimes it’s
simpler to write the TextFlow content as one string containing markup syn-
tax, which is structured much like HTML. Understanding the syntax is not
difficult, but explaining HTML-style syntax is outside the scope of this book.

Unfortunately, no clear documentation of the TextFlow markup syntax
currently exists. At the time of this writing, Adobe recommends an under-
standing of TextFlow markup tags (Table 10-3) to learn how to structure the
content and consulting the documentation of the TextLayoutFramework class
(http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flashx/
textLayout/formats/TextLayoutFormat.html) to learn how to lay out and for-
mat the content within the field.

Table 10-3. TextFlow markup tags

Element Notes

div A division of text; can contain only div or p elements

p A paragraph; can contain any element except div

br A break character; text continues on the next line but does not start a new paragraph

a A hypertext link (anchor); can contain span, img, br, tab, and tcy elements

span A run of text in a paragraph; cannot contain other elements

img An image in a paragraph element

tab A tab character; (not included in this chapter’s examples)

tcy A run of horizontal text, used within vertical text (such as Japanese) used, for example, to include English text
within Japanese text. can contain the a, span, img, tab, or br elements; (not included in this chapter’s examples)

Figure 10-8 shows the hierarchical relationship among TextFlow elements,
which is also illustrated in the following sample markup structure.

<div>
				<p>
								text

								<a>link	text
				</p>
				<p>
								text

								
				</p>
</div>

Div elements (div) can be used to organize copy into separate sections and
commonly apply block styling that might apply to multiple paragraphs.
Paragraph elements (p) are used (unsurprisingly) to define discrete para-
graphs and contain paragraph-wide styling. They need not be limited to text,
however. It’s common, for example, to enclose images (img) or lists of links
(a) in paragraph tags, as shown previously. Span elements are used to style
segments of a paragraph because they don’t force a line break. Finally, if a

NOTE

See the post “Building a TLF TextFlow”
at the companion website for an example
of writing TextFlow content incrementally.

TextFlow

p

p

span img a br

br

div

div

Figure 10-8. Hierarchy of TextFlow
elements

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flashx/textLayout/formats/TextLayoutFormat.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flashx/textLayout/formats/TextLayoutFormat.html

Part III: Text286

Text Layout Framework

line break (br) is desired, you can add them anywhere within a paragraph or
link element.

Table 10-4 describes a selection of TextFlow formatting options, all of which
are used in the following example.

Table 10-4. Select TextFlow formatting options

Element Notes

fontFamily Font family; can contain a comma-separated list of font families; the first font in the list found
will be used.

fontSize Font size from 1 to 720, or inherit.

fontWeight Font weight; values include normal, bold, and inherit; applies only to device fonts, as embed-
ded fonts use one font family, including weight and style, per font symbol.

fontStyle Font style; values include normal, italic, and inherit; applies only to device fonts, as embed-
ded fonts use one font family, including weight and style, per font symbol.

typographicCase Case; values include default (mixed case), upper, lower, smallCaps, and inherit.

textDecoration Underline; values include none, underline, and inherit.

color Color in string hexadecimal format (#FF0000 for red, for example).

lineThrough Character strike-through; values include true, false, and inherit.

textAlign Text alignment; values include left, right, center, justify, start, end, and inherit; start
and end are designed to accommodate alignment in text that can be right-to-left or left-to-right;
start represents left in left-to-right text and right in right-to-left text; end represents right in
left-to-right text and left in left-to-right text.

textAlpha Opacity from 0 to 1 and inherit.

trackingRight Letter spacing in pixels or percent of font size (with % symbol), and inherit; number values for
both pixels and percent range from –1000 to 1000;.

textRotation Character rotation; values include rotate0, rotate90, rotate180, rotate270, auto, and
inherit.

lineHeight Leading in pixels (–720 to 720), percent of font size (–1000 to 1000, with % symbol), or inherit.

baselineShift Distance from baseline in pixels (–1000 to 1000) percent of font size (–1000 to 1000 with % sym-
bol), subscript, superscript, or inherit.

alignmentBaseline Aligns baseline of specified text to baseline; values include roman, ascent, descent, ideo-
graphicCenter, ideographicTop, ideographicBottom, useDominantBaseline, and inherit;
ideographic baselines used by Asian fonts; useDominantBaseline used when Asian fonts
enabled, determining baseline of text explicitly selected, not by paragraph. See Figure 10-9.

top

center

bottom

ascent

IDEOGRAPHIC ROMAN

roman
descent

Figure 10-9. TLF text baselines

NOTE

Elements without a balancing closing
tag, such as img and br, must be applied
as self-closing tags to conform to XML
specifications. This means you must add
a slash as the last character inside the
tag:
.

Text Layout Framework

Chapter 10: Text 287

The following code is found in the tlf_typography.fla source file. It demon-
strates many of the most common formatting options used in a TextFlow
string, including some of those listed in Table 10-4. This example shows the
simplest way to apply a TextFlow string to a TLFTextField class instance.
The field’s tlfMarkup property will automatically populate the field’s internal
TextFlow instance without first having to process the incoming string. Figure
10-10 shows the outcome of this file.

Figure 10-10. A TLF field formatted by a TextFlow markup string

1	 import	fl.text.TLFTextField;
2	 	
3	 var	tlfTxt:TLFTextField	=	new	TLFTextField();
4	 tlfTxt.x	=	tlfTxt.y	=	100;
5	 tlfTxt.width	=	350;
6	 tlfTxt.multiline	=	true;
7	 tlfTxt.wordWrap	=	true;
8	 tlfText.selectable	=	false;
9	 addChild(tlfTxt);
10	
11	 tlfTxt.tlfMarkup	=	"<TextFlow	xmlns='http://ns.adobe.com/

textLayout/2008'	fontFamily='Arial'	fontSize='18'><div><p>H<span	
baselineShift='subscript'	alignmentBaseline='descent'>2</
span>O,	water,	<span	typ
ographicCase='uppercase'>everywhere,
<span	
textDecoration='underline'>And	all</
span>	the	<a	href='http://
en.wikipedia.org/wiki/The_Rime_of_the_Ancient_Mariner'>boards</
a>	did	shrink</
span>.</p></div><p	textAlign='right'>Water,	
water,	everywhere,
Nor	any	drop	to	<span	
textRotation='rotate90'	baselineShift='10'>drink.	<img	
width='10'	height='16'	source='water_drop.jpg'	/></p></TextFlow>";

One side effect of this approach, however, is that the TextFlow instance is
tied to the field. In the last example of the chapter, we’ll look at an alterna-
tive approach that creates an independent TextFlow instance first, and then
translates a string to populate it.

Columnar layout
The following code, found in tlf_columns.fla, builds on the prior source file.
Adding this code to the end of the prior example provides a simple demon-
stration of columnar layout. Arranging TLF text in columns requires direct

NOTE

The text in this example is a modified
excerpt of “The Rime of the Ancient
Mariner” by Samuel Taylor Coleridge.

NOTE

If when testing your file you get no
errors but the text does not display,
check the syntax of your TextFlow
string. Look for single tags that are not
self-closing (
, for example), tags
that are not balanced (such as a
with no), incorrect or mis-
spelled format properties, and improp-
erly nested tags (such as text within a
<div> rather than within a <p> inside
that <div>).

Part III: Text288

Text Layout Framework

manipulation of a TextFlow instance. In the prior example, however, working
directly with a TextFlow instance was not required, thanks to the field’s tlf-
Markup property. This code demonstrates a simple way of gaining access to a
populated TLF field’s TextFlow instance through its textFlow property:

12	 //addition	to	previous	example
13	 import	flashx.textLayout.elements.TextFlow;
14	
15	 var	tlfTextFlow:TextFlow	=	tlfTxt.textFlow;
16	 tlfTextFlow.columnCount	=	1;
17	 tlfTextFlow.columnGap	=	30;
18	
19	 stage.addEventListener(MouseEvent.CLICK,	onClick,	false,	0,	true);
20	 function	onClick(evt:MouseEvent):void	{
21	 				if	(tlfTextFlow.columnCount	==	1)	{
22	 								tlfTextFlow.columnCount	=	2;
23	 				}	else	{
24	 								tlfTextFlow.columnCount	=	1;
25	 				}
26	 				tlfTextFlow.flowComposer.updateAllControllers();
27	 }

Line 13 adds an import statement for the TextFlow class. Line 15 creates
a TextFlow instance by referencing the field’s textFlow property. All that
remains is to set the columnCount and, optionally, the columnGap properties.
In this example, a mouse click will change the column count at runtime to
demonstrate the automatic reflow of text. Line 16 sets the initial number of
columns to 1, to match the appearance of the prior example. Line 17 sets the
gap between columns to 30 pixels. This has no immediate effect on the layout
of the text.

However, lines 19 through 27 create a mouse click listener and add it to the
stage. With each mouse click, the conditional beginning in line 20 checks
the number of columns in the field and toggles between 1 and 2 columns.
Finally, Line 26 instructs the flow composer (which controls the flow of text)
of the TextFlow instance to update the text flow of the field. Because the field
is already populated, the layout reflows between 1 and 2 columns on the fly.
Figure 10-11 shows the two-column layout of the file.

Figure 10-11. The same TLF field from Figure 10-10, reflowed into two columns

NOTE

Although code is consolidated in this
book into logical blocks, import state-
ments can be moved to the top of the
collected script if you prefer. This option-
al edit will organize all your import
statements in one place for clarity but
will not affect the file in any other way.

Text Layout Framework

Chapter 10: Text 289

Flowing text across multiple containers
The last example of the chapter is the most advanced and demonstrates
one of TLF’s most powerful features: the ability to flow text across multiple
containers. This is called linked text, or threaded text, because the text is not
broken apart when populating more than one text field. Instead, it flows
through linked text fields, threading its way through your layout. This is fur-
ther demonstrated with selectable linked text and the ability to scroll within
a field while selecting text—just like you can in a text editor.

One of the first things you’re likely to notice, is that this script contains
no direct reference to TLF text fields. Instead, it uses the concept of TLF
containers—sprites or movie clips that are automatically populated with TLF
text by Flash Player. This approach is very powerful because it means that
anywhere you can create a sprite, you can fill it with TLF text, and even link
it up as part of a chain of TLF text.

For example, you could create many text fields across the stage and size them
all to accommodate one line of text. You could then link them together, flow
“The Rime of the Ancient Mariner” through them, and animate them up and
down like undulating waves of water. Best of all, you can easily reflow the text
along the linked chain whenever required.

The following code is found in the tlf_containers.fla source file. Lines 1
through 6 import all the classes required to complete this exercise.

1	 import	flashx.textLayout.compose.StandardFlowComposer;
2	 import	flashx.textLayout.container.ContainerController;
3	 import	flashx.textLayout.container.ScrollPolicy;
4	 import	flashx.textLayout.conversion.TextConverter;
5	 import	flashx.textLayout.edit.SelectionManager;
6	 import	flashx.textLayout.elements.TextFlow;

Lines 8 through 16 fill the field with text. Lines 8 through 12 create a string of
TLF markup. Lines 9 and 12 open and close the TextFlow content, and lines
10 and 11 use the dummyText() function (found in lines 49 through 55) to fill
the two paragraphs with dummy text.

Lines 14 through 16 demonstrate how to create an independent TextFlow
instance. They use the TextConverter class’s static method importToFlow() to
convert the TextFlow markup into layout format. Not only does this allow you
to separate the TextFlow from a text field for easy reuse, but it’s also particu-
larly important here because we’re not making direct use of a TLF text field.

7	 //create	TextFlow	instance
8	 var	textMarkup:String	=	
9	 				"<TextFlow	xmlns='http://ns.adobe.com/textLayout/2008'>"	+
10	 								"<p>"	+	dummyText()	+	"</p>
"	+
11	 								"<p>"	+	dummyText()	+	"</p>"	+
12	 				"</TextFlow>";
13	
14	 var	textFlow:TextFlow	=	
15	 				TextConverter.importToFlow(textMarkup,
16	 				TextConverter.TEXT_LAYOUT_FORMAT);

Part III: Text290

Text Layout Framework

Lines 18 through 25 do nothing more than create sprites for cosmetic pur-
poses. They will lie under the TLF containers to provide a border for each.
This process uses the borderedBox() function, in lines 57 through 63, to draw
borders into the sprites.

17	 //create	border	shapes	for	cosmetic	purpose
18	 var	box1:Sprite	=	borderedBox();
19	 box1.x	=	box1.y	=	10;
20	 addChild(box1);
21	
22	 var	box2:Sprite	=	borderedBox();
23	 box2.x	=	240;
24	 box2.y	=	10;
25	 addChild(box2);

Lines 27 through 44 set up containers for the TLF text. Lines 27 through
29, and 31 through 34, create two sprites and position them side by side.
Lines 36 through 39 turn these sprites into TLF containers using the
ContainerController class. The containers and the width and height of each
are passed to the class constructor. The class then does everything required
to support TLF text display, all automatically.

The last part of the container code occurs in lines 41 through 44. These lines
link the containers together and ready them for TLF text. Line 41 adds a new
StandardFlowComposer instance to the TextFlow object’s flowComposer prop-
erty. Lines 42 and 43 add the two containers to the flow composer using the
addController() method, and line 44 updates all the controllers, flowing the
text among them.

26	 //create	TLF	containers
27	 var	container1:Sprite	=	new	Sprite();
28	 container1.x	=	container1.y	=	20;
29	 addChild(container1);
30	
31	 var	container2:Sprite	=	new	Sprite();
32	 container2.x	=	250;
33	 container2.y	=	20;
34	 addChild(container2);
35	
36	 var	controllerOne:ContainerController	=	
37	 				new	ContainerController(container1,	200,	200);
38	 var	controllerTwo:ContainerController	=	
39	 				new	ContainerController(container2,	200,	200);
40	
41	 textFlow.flowComposer	=	new	StandardFlowComposer();
42	 textFlow.flowComposer.addController(controllerOne);
43	 textFlow.flowComposer.addController(controllerTwo);
44	 textFlow.flowComposer.updateAllControllers();

Finally, lines 46 and 47 control the selection and scrolling options. Line 46
populates the interactionManager of the TextFlow with a SelectionManager
instance. The interactionManager controls how a user can interact with a
container. It can enable selection, editing, or both. In this case, the resulting
TLF containers will allow users to select, but not edit, their content.

NOTE

It’s possible to draw directly into TLF
containers, but if they are designed to
scroll, they may cover one or more sides
of the border. By placing self-contained
border objects beneath the TLF contain-
ers, this issue is avoided.

Text Layout Framework

Chapter 10: Text 291

Line 47 concludes our discussion by enabling vertical scrolling, but only for the
second container. Because the two containers are linked and selectable, users
will be able to select text across both containers. Because the second container
is scrollable, dragging your mouse through the text will scroll up or down as
long as content exists outside the bounds of the container in that direction.
Figure 10-12 shows the result of this exercise, with a selection in progress.

45	 //enable	selection	and	scrolling
46	 textFlow.interactionManager	=	new	SelectionManager();
47	 controllerTwo.verticalScrollPolicy	=	ScrollPolicy.AUTO;
48	
49	 function	dummyText():String	{
50	 				var	str:String	=	"";
51	 				for	(var	i:int	=	0;	i	<	60;	i++)	{
52	 								str	+=	"dummy	text	";
53	 				}
54	 				return	str;
55	 }
56	 												
57	 function	borderedBox():Sprite	{
58	 				var	sp:Sprite	=	new	Sprite();
59	 				var	g:Graphics	=	sp.graphics;
60	 				g.lineStyle(1,	0x000000);
61	 				g.drawRect(0,	0,	220,	220);
62	 				return	sp;
63	 }

Figure 10-12. Text flowed across two TLF containers with selection in progress

Distributing SWFs that use TLF
TLF is significantly different from Classic text when it comes to distributing
your SWFs. TLF works as a runtime shared library (RSL)—an external archive
of code (and sometimes assets) that must be distributed with your SWF.

When you publish your file, you will notice in the same directory as your
SWF, that a document with the extension .swz has been created. This is the
extension for a compressed runtime library. At the time of this writing, the

NOTE

Although technically a component, this
is virtually transparent to the Flash
Professional CS5 user. TLF is tightly
integrated into the Properties panel and,
unlike other components, does not need
to be in the Library of your FLA before
it can be used.

Part III: Text292

What’s Next?

file is called textLayout_1.0.0.595.swz, but the numbers used in this filename
may change with future releases.

Unlike the classes and packages that are compiled into your SWF when you
publish your projects, runtime shared libraries remain external. They must be
distributed with your SWFs, and their location relative to your SWF should
be maintained. For example, if the RSL is in the same directory as your SWF,
this should be true when distributing your project, as well.

In the case of the TLF, Flash Player will attempt to download the RSL from
the Adobe website, but it’s still a good idea to keep your own copy with your
SWF in case the Adobe site is unavailable.

As external files, runtime shared libraries must be downloaded by the user,
so using TLF adds about 160K to your overall project size. The good news is
that you need to download each RSL only once. For example, if you create 10
projects that use TLF, and a reader views all 10 projects, the first project will
initiate the download of the TLF RSL, but all remaining projects will use the
library already on the reader’s hard drive.

TLF also causes a problem when a parent SWF loads a child SWF that uses
a TLF text field. We’ll discuss this in Chapter 13 when we discuss loading
external assets.

What’s Next?
Text is fundamental to most ActionScript projects, and this chapter should
give you the starting knowledge you need to explore text usage further. Once
you’ve become more comfortable with using text (including tasks like dis-
playing and formatting), start to delve deeper into the raw data that makes up
text. Look at strings and break them into their constituent parts. Learn how
to build and parse the paragraphs, words, and characters you see every day.
Try to think of imaginative ways of generating, deconstructing, and otherwise
manipulating text, such as combining string methods and properties with
arrays and other ActionScript elements.

In the next chapter, we’ll look at many ways of using sound in ActionScript,
including:

• Understanding the new granular components of sound management,
including individual sound channels and a global sound mixer

• Playing, stopping, and pausing internal and external sounds

• Controlling the volume and pan of sounds

• Working with microphone input

• Parsing data from sounds, including ID3 tags from MP3 files

• Visualizing frequency amplitudes

NOTE

When authoring a TLF project, Flash
Player will attempt to connect to the
Internet to retrieve the RSL from
Adobe’s site. If you do not have an
active connection, you will see an error
something like this: “Error opening URL
‘http://fpdownload.adobe.com/pub/swz/
crossdomain.xml’.” If you then activate
a connection later, your code will work
without this error.

293

IN THIS PART

Chapter 11
Sound

Chapter 12
Video

Sound and
Video PART IV

Part IV covers sound and video, the media types that arguably contributed
most significantly to the ubiquitous use of Flash on the web. Chapter 11 cov-
ers the use of internal and external sound, and features examples of control-
ling sound playback, as well as manipulating volume and stereo panning.
The chapter also includes a brief overview of parsing ID3 metadata from
MP3 sounds, for display during audio playback. Also featured is a sound
visualization exercise that uses the Graphics class from Chapter 8 to draw a
waveform in real time. The chapter concludes with new features that allow
access to incoming microphone data, allowing you to record, play back, and
even save microphone input.

Chapter 12 contains information about encoding video using the free Adobe
Media Encoder. The chapter also discusses two approaches to authoring
video playback. By using components, you’re able to focus more on the bal-
ance of your design and application as most of the ActionScript is taken care
of for you. However, this chapter also includes the information necessary to
code your own video player, so you can keep file size down if you choose not
to rely on the video components. Finally, Chapter 12 provides true full-screen
video examples, and covers accessibility and multilanguage projects through
the use of video captioning.

295

IN THIS CHAPTER

ActionScript Sound
Architecture

Internal and External
Sounds

Playing, Stopping, and
Pausing Sounds

Buffering Sounds

Changing Sound Volume
and Pan

Reading ID3 Metadata from
MP3 Sounds

Visualizing Sound Data

Visualizing Microphone
Input

Recording, Playing, and
Saving Microphone Input

What’s Next?

As the ActionScript language has evolved, it’s interesting to see how far
its sound capabilities have come. Although many audio and ActionScript
experts alike will say that many issues still must be overcome before the Flash
Platform truly conquers sound, few will deny that the current audio features
far surpass anything available in ActionScript before.

As of Flash Player 9 you can control multiple discrete channels of audio, gain
direct access to the bytes of data that make up the actual sound file, process
that data in several ways, and visualize its content. Flash Player 10 adds the
ability to extract data from audio files, generate sound from scratch, save
audio files, record microphone input without a server, and more.

If you want to be inspired before beginning your journey into ActionScript
sound control, visit http://www.audiotool.com and play with the incredibly
impressive Audiotool. This amazing project replicates a feature-rich electron-
ic music studio and allows you to pick from many sound synthesizers, pro-
cess them through a host of effects, sequence them in a near infinite number
of ways, and even save and share your compositions with others.

Make no mistake: Audiotool is a very advanced project created by program-
ming experts that have long led the way in ActionScript sound manipulation.
In fact, much of what ActionScript can do today in this area is possible par-
tially because of the efforts of this team—forever pushing the limits of the
language—and the Flash Player engineers who were inspired to add greater
sound features to Flash Player as a result.

Will you be able to create anything of Audiotool’s complexity and quality
after only working through this chapter? Realistically, no; such a project
takes great skill, effort, and time to achieve. You will, however, have a good
foundation of techniques on which you can build and evolve creative sound
toys of your own.

sound

CHAPTER 11

http://www.audiotool.com

Part IV: Sound and Video296

ActionScript Sound Architecture

To get you started, we’ll look at the following introductory topics in this
chapter:

• ActionScript Sound Architecture. Depending on what you want
to do, you’re likely to work with a handful of sound-related classes in
ActionScript 3.0. This section provides a quick overview of the most
commonly used classes.

• Internal and External Sounds. We’ll show you how to work with
internal sounds found in your library, as well as load external MP3
sounds on the fly.

• Playing, Stopping, and Pausing Sounds. In addition to playing and
stopping sounds, you’ll learn how to pause and resume playback, as
well as stop sound playback in all active channels at once.

• Buffering Streaming Sounds. To optimize playback across slower con-
nections, you can buffer, or preload, sounds. This ensures that sounds
play longer without interruption while data continues to download.

• Changing Sound Volume and Pan. The SoundTransform class gath-
ers volume and panning features, allowing you to increase or decrease
volume, as well as move sounds between the left and right speakers.

• Reading ID3 Metadata from MP3 Sounds. When creating MP3
files, it’s possible to embed metadata, including artist name, track title,
and so on, into the file. The ID3Info class allows you to parse this
information, if available, for use in your application.

• Visualizing Sound Data. Using ActionScript 3.0, you can dynami-
cally poll the amplitude and frequency spectrum data of a sound
during playback. You can use the information gathered to display
visualizations of the sound, such as waveforms, peak meters, and
artistic interpretations while the sound plays.

• Working with Microphone Data. You can also access the micro-
phone to check the activity level periodically to visualize the ampli-
tude of a live sound source. Depending on the version of the Flash
Player you want to target, and your ActionScript compiler, you can
also access the raw microphone data.

• Recording, Playing, and Saving Microphone Input. To end this
chapter, we’ll use features introduced in Flash Player versions 10 and
10.1 to record microphone input, generate sound dynamically (rather
than playing an MP3, for example), and save the result as a WAV file.

ActionScript Sound Architecture
The ActionScript 3.0 sound architecture, found in the flash.media package,
is composed of several classes that contribute to a finer degree of control
over sound data and sound manipulation than previously available. You’ll be

ActionScript Sound Architecture

Chapter 11: Sound 297

using several of these classes, so before moving on to specific examples, let’s
take a quick look at each.

Sound

The Sound class is the first required to work with sound. It’s used to load
and play sounds, and manage basic sound properties.

SoundChannel

This class is used to create a separate channel for each discrete sound file.
In this context, we’re not referring to the left or right channel of a stereo
sound. Audio playing in an ActionScript sound channel can be either
mono or stereo. Instead, an instance of this class is analogous to a channel
in a recording studio mixing desk. By placing each sound in its own chan-
nel, you can work with multiple audio files but control each separately.

SoundMixer

As the name implies, the SoundMixer class creates a central mixer object
through which all sound channels are mixed. Changes to the mixer will
affect all playing sounds. For example, you can use this class to stop all
sounds that are playing.

SoundLoaderContext

In conjunction with the load() method of the Sound class, you can use
the SoundLoaderContext class to specify how many seconds of a sound
file to buffer.

SoundTransform

This class is used to control the volume and panning between left and
right stereo channels of a source. With it, you can also affect a single
sound channel, the SoundMixer object (to globally affect all playing
sounds), the microphone, and even the sound of a video.

ID3Info

The ID3Info class is used to retrieve metadata written into ID3 tags
found in an MP3 file. ID3 tags store information about the MP3, includ-
ing artist name, song name, track number, and genre.

Microphone

Using the Microphone class, you can control the gain, sampling rate,
and other properties of the user’s microphone, if present. You can check
the activity level of the microphone (and create simple visualizations of
microphone amplitude values) in all versions of ActionScript. In Flash
Player 10 and later, you can also access raw microphone data to visualize,
process, and even save recorded input.

Although we’ll demonstrate many capabilities of these classes, experiment-
ing with sound is one of the most rewarding ways to learn more about what
ActionScript has to offer. Be sure to carry on your learning after working
through this chapter!

Part IV: Sound and Video298

Internal and External Sounds

Internal and External Sounds
Typically, ActionScript control of sound in your projects will include loading
sounds from external sources. Keeping your sounds external to your primary
SWF has many benefits. As two simple examples, external audio can keep
the file size of your SWF from becoming too large, and it’s easy to change the
sound files without having to recompile your SWF.

Most of the examples we’ll cover in this chapter use external sound files, but
it’s still possible to use internal sounds without having to rely on the timeline.
To prepare for the remaining examples, we’ll show you how to store a refer-
ence to both an internal and an external sound. Thereafter, you can adapt any
exercise to use internal or external audio sources.

Working with Sounds in Your Library
Creating an instance of a sound from your Flash Professional library is con-
sistent with creating an instance of a display object, as described in Chapter
4 and used throughout the book. After importing a sound, you’ll find it in
the Library panel of your FLA file. Select the sound in the Library panel and
open the Symbol Properties dialog. Click the Export for ActionScript check
box and give the sound a class name. Flash Professional will automatically
create a class name for you, but look at it carefully, as you may want to edit
the provided text.

For example, consider a sound in your library called claire elmo.mp3. When
exporting this symbol for ActionScript, Flash Professional will remove the
space for you (all class names must be one word) giving you claireelmo.mp3.
However, you must still remove the period, which is also not allowed in a
class name, and omit the file extension. Finally, it’s a good idea to capitalize
the first character of class names and use camel case (uppercase letter for each
new word) if you want to follow best practices. This gives you ClaireElmo, as
shown in Figure 11-1. Appropriately, the Base class automatically assigned is
the Sound class, so your class inherits all the accessible properties, methods,
and events of the Sound class upon instantiation.

Figure 11-1. Detail of the sound symbol’s Properties dialog; choosing a linkage class
name for instantiating a sound symbol with ActionScript

Internal and External Sounds

Chapter 11: Sound 299

Once you’ve provided a linkage class name, you can create an instance of the
sound the same way you instantiate a movie clip:

var	snd:Sound	=	new	ClaireElmo();

Thereafter, you can manage the instance of this sound by referring to the vari-
able snd. This creation of a Sound class instance and the use of one method
to load a sound file are the only basic differences between using internal and
external sounds. All play, pause, stop, and transform operations are identical,
regardless of the sound source.

If you prefer to use internal sounds, the using_internal_sound.fla source file
demonstrates the playing and stopping of a short imported sound using the
basic syntax explained in the “Playing, Stopping, and Pausing Sounds” sec-
tion later in this chapter. However, we recommend using external sounds for
most uses.

Loading External Sounds
Using internal sounds, creating an instance of the Sound class and populating
it with audio occur in one step. To load a sound from an external MP3, we
need to use the load() method of the Sound class, so we must first explicitly
create an instance of the class. This is shown in line 1 of the following code,
found in the loading_external_sound.fla source file.

1	 var	snd:Sound	=	new	Sound();
2	
3	 var	req:URLRequest	=	new	URLRequest("song.mp3");
4	 snd.load(req);

As discussed in prior chapters, you also need to create an instance of the
URLRequest class (line 3) any time you load something. Although it has addi-
tional purposes for advanced URL processing, the URLRequest class is also
used to standardize the loading process. This allows you to load many asset
types in a consistent manner. Finally, we load the sound in line 4.

Once you’ve completed this process, you’re again ready to start manipulating
the snd instance. When working with external sounds, however, there are
additional factors that warrant a little extra attention. The steps we’ll describe
aren’t required, but they’re recommended. You’ll find that they improve not
only your own development efforts (such as when listening for errors when
loading a sound), but also the user experience (such as providing feedback
during loading).

It’s not uncommon when loading external assets to encounter a missing file
problem. The path to the file may be old or incorrect, or the loaded asset or
your SWF may have been moved. In this case, a runtime error like this may
occur:

Error	#2044:	Unhandled	IOErrorEvent:.	
text=Error	#2032:	Stream	Error.

NOTE

Another difference between working
with internal and external sounds is
that you can buffer a loaded sound to
improve playback experience. Buffering
a sound means that your playback won’t
begin until a specified amount of sound
data has loaded. This allows the back-
ground loading of the rest of the sound
to stay ahead of your playback and is
discussed in the “Buffering Sounds” sec-
tion later in this chapter.

Part IV: Sound and Video300

Internal and External Sounds

So, it’s a good idea to plan for this possibility and listen for an IO_ERROR
(input/output error). If you do encounter an error, you can present it to the
viewer as part of the user experience (through an alert or warning icon, for
example), or just try to correct it during the authoring process by tracing to
the Output panel. The following listener function traces a message, as well as
the descriptive text sent with the event.

5	 //listen	for	error
6	 snd.addEventListener(IOErrorEvent.IO_ERROR,	onIOError,	
7	 																					false,	0,	true);
8	 function	onIOError(evt:IOErrorEvent):void	{
9	 				trace("Error	occurred	when	loading	sound:",	evt.text);
10	 }

The next enhancement to include when working with external sounds is
to provide feedback to the user during the loading process. Again we add a
listener to the sound instance, this time listening for a PROGRESS event, which
is dispatched whenever loading progress occurs. When this happens, you can
update the user by, for example, increasing the width of a sprite to create a
progress bar.

Lines 12 through 24 of the following code create the progress bar. Line 12
passes a color to the drawBar() function (lines 17 through 24), which creates
a sprite, draws a rectangle that is 1 pixel wide and 10 pixels tall, and returns
the sprite. Lines 13 and 14 position the progress bar and line 15 adds it to the
display list.

Lines 26 through 30 contain the listener function. The event captured by the
listener function carries with it information, including the total number of
bytes in the target object (in this scenario the sound being loaded), as well as
the number of bytes loaded at the moment the event was fired. By dividing
the latter by the former, you end up with a fraction. For example, if 500 bytes
of a total 1,000 bytes have loaded, the progress is 500/1,000 or 0.5, indicating
that the object is 50-percent loaded. By multiplying with a desired width of
the progress bar, the bar will increase to the final desired size when the file is
100-percent loaded.

11	 //track	loading	progress
12	 var	loadBar:Sprite	=	drawBar(0x000099);
13	 loadBar.x	=	20;
14	 loadBar.y	=	15;
15	 addChild(loadBar);
16	
17	 function	drawBar(col:uint):Sprite	{
18	 				var	bar:Sprite	=	new	Sprite();
19	 				var	g:Graphics	=	bar.graphics;
20	 				g.beginFill(col,	1);
21	 				g.drawRect(0,	0,	1,	10);
22	 				g.endFill();
23	 				return	bar;
24	 }
25	
26	 snd.addEventListener(ProgressEvent.PROGRESS,	onLoadingProgress,	
27	 																					false,	0,	true);

NOTE

In this example, the progress bar will
reach 100 pixels wide when the process
finishes or will stay at its original 1-pixel
width if the function fails. Keeping these
start and finish sizes in mind when test-
ing locally is useful because loading
even very large files from a local hard
drive happens very quickly, and it’s
quite common not to see the progress
bar move at all with small sound files.

Playing, Stopping, and Pausing Sounds

Chapter 11: Sound 301

28	 function	onLoadingProgress(evt:ProgressEvent):void	{
29	 				loadBar.width	=	100	*	(evt.bytesLoaded	/	evt.bytesTotal);
30	 }

The last option we’ll introduce here is for responding to the completion of
the sound loading process. The structure is similar to the prior two event
listener examples, this time using the Event.COMPLETE event to trigger the
listener function.

31	 //react	to	successful	load
32	 var	sndLength:Number	=	0;
33	 snd.addEventListener(Event.COMPLETE,	onCompleteLoad,	
34	 																					false,	0,	true);
35	 function	onCompleteLoad(evt:Event):void	{
36	 				sndLength	=	snd.length;
37	 				trace("Sound	length:",	sndLength);
38	 }

After creating the variable in line 32, this example stores the length of the
sound in milliseconds in sndLength, and traces that value as a quick indica-
tion that the process is complete. This code is the starting point for an audio
player exercise that runs throughout the chapter. Soon, we’ll use the sound’s
length to update a progress bar during playback of the sound. First, however,
let’s look closely at the playback syntax.

Playing, Stopping, and Pausing Sounds
The simple syntax of the Sound class’s play() method can be a bit deceiving
because it’s only part of the picture. To play a sound, all you need to do is call
the method from the Sound class instance. However, all this does is start play-
back and, without additional infrastructure, you can’t do much else. Instead,
you should play the sound into an instance of the SoundChannel class, which
allows you to stop, pan, or adjust the volume of the channel. This is different
from prior versions of ActionScript, in which all sound control rested with
the Sound object.

To emphasize this idea, let’s think again about a recording studio. To move a
sound from the left speaker to the right speaker in a mix, a sound engineer
would twist a knob at the mixing desk, not ask a musician to run from one
side of the studio to another. Similarly, although musicians often handle
volume subtleties, fading a sound up or down is typically accomplished by
adjusting a sound channel’s volume slider. In other words, the playback of
the sound is typically separated from the manipulation of that sound in the
mixing process. The same is true in ActionScript 3.0.

We’ll begin with simple examples and then we’ll add these features to our
ongoing audio player.

Part IV: Sound and Video302

Playing, Stopping, and Pausing Sounds

Playing a Sound
To place a sound into a channel, all you need to do is create the channel and
then set it equal to the result of the sound’s play() method.

var	channel:SoundChannel;	=	new	SoundChannel();
channel	=	snd.play();

This associates the sound with the specified channel, the same way you
would plug a guitar into a channel in our metaphorical recording studio’s
mixing desk. Once the sound is in the channel, you’ll be able to adjust its
volume, set its pan, and stop its playback—all of which we’ll discuss in a
moment.

But how soon can you play the sound? If you’re using imported audio files,
you can typically play the sound right away. However, when working with
external files, you must consider the loading process. If you invoke the load()
method to start loading an external sound file and then immediately attempt
to play the sound, your attempt will likely fail because the sound will prob-
ably still be loading. However, we saw in the previous section that a COMPLETE
event is dispatched when a Sound instance’s MP3 is finished loading. So, an
event listener listening for that event can play the sound without any problem.

The following snippet shows syntax for playing a sound immediately after it’s
loaded. This snippet assumes a Sound instance of snd, and a SoundChannel
instance of channel.

snd.addEventListener(Event.COMPLETE,	onLoadComplete,	
																					false,	0,	true);
function	onLoadComplete(evt:Event):void	{
				channel	=	snd.play();
}

This approach is used to play a sound as soon after loading as possible. This
is useful for things like background audio that begins playing right away.
Perhaps the most common way to play a sound, however, is by clicking a but-
ton or through similar user interaction. We’ll set up just such a button when
we return to our ongoing sound player project.

Stopping a Sound
Stopping a single sound in a channel requires only the stop() method.
Unlike playing the sound, however, this method is invoked from the channel,
not from the sound itself. Again assuming you’ve previously created a new
instance of the SoundChannel, named channel, the syntax looks like this:

channel.stop();

It’s also possible to stop all sounds using the SoundMixer class. As in the real
world, multichannel playback funnels through a master sound mixer. Just as
you can kill that master channel in a studio, you can stop all sounds using
the SoundMixer class and it’s stopAll() method.

Playing, Stopping, and Pausing Sounds

Chapter 11: Sound 303

Unlike the previous methods discussed, stopAll() is static. This means an
instance of the SoundMixer class does not need to be created using the new
keyword. Instead, the method is called directly from the class. Therefore, to
stop playing the sounds in all channels, you need only write:

SoundMixer.stopAll();

Pausing Sounds and Resuming Playback
Pausing a sound is a bit different. Currently, there is no dedicated pause
method in ActionScript 3.0. Instead, you must rely on an optional parameter
of the play() method that allows you to play the sound starting from a par-
ticular number of seconds offset from the beginning of the sound.

To use this feature to pause playback, you must first store the current posi-
tion of a sound as it’s playing. Having retrieved this value from the channel’s
aptly named position property, you can then stop playback in that channel.
Later, you can resume playback by playing the sound from the stored posi-
tion. Assuming the ongoing use of the snd and channel instance names, here
are the first and second steps of the process:

var	pausePosition:Number	=	channel.position;
channel.stop();

Then, at some later point, you can resume playback from where you left off:

channel	=	snd.play(pausePosition);

Applying the Syntax
Now let’s put these concepts into practice and pick up from the source file we
started in the “Loading External Sounds” section. The following code, added
to the previous example, forms the player_basic.fla source file.

If you want to look ahead, here’s a quick description of all the code related
to playing a sound, spanning lines 40 through 75, so we know what we’re
trying to accomplish. Lines 44 through 54 contain an event listener that will
be triggered when a user clicks on the play button we’ll soon create. Lines 56
through 65 include the code required to show a progress bar during playback.
Finally, lines 67 through 75 contain the function triggered when the playback
is complete.

Now let’s focus on the function that plays the sound and its accompanying
variables. Line 40 creates a Boolean variable that we’ll use to check whether
the sound is already playing. Because we’ll be using a button to play our
sound, it will now be possible to play the sound multiple times. However,
this also means that rapid repeated clicks of the button will play the sound
over and over itself, layering the sound. This is fine for simulating a musical
instrument or an echo, for which multiple simultaneous occurrences of the
sound are acceptable, but it’s less desirable for playing spoken dialog or other
sounds that typically would not be layered over themselves.

NOTE

You can control the volume and
pan of the master mix by using the
SoundMixer class, which we’ll dem-
onstrate later on. We’ll also use the
SoundMixer to visualize a sound during
playback later in the chapter.

Part IV: Sound and Video304

Playing, Stopping, and Pausing Sounds

Line 41 creates a variable that will store the most recent playback position of
the song in its channel, when the pause button is pressed. Remember that
we’re adding extra functionality to the play process to support pausing play-
back, so we’ll need to pass this value to the play() method. Because we’re
using one play() method to play from a stop and from a pause, it’s very
important to initialize the value of this variable to zero so that the sound
starts playing at the beginning when first played. Similarly, when we code
the stop behavior later on, we’ll need to reset this variable to zero after stop-
ping the sound, to avoid restarting from any previous pause position when
replaying.

Lines 44 through 54 make up the onPlaySound() function, which will be
called by a play button that we’ll add later on. Line 45 checks to see whether
the sound is not already playing. If that test passes, the isPlaying variable
is set to true to prevent the sound from playing more than once simultane-
ously. Lines 47 and 48 add a listener to the main timeline (the scope of the
script) that will fire upon every enter frame event. We’ll use this listener to
update the playback progress bar in just a moment. Lines 49 through 51 add
a listener to the channel to trigger when the sound playback is complete. We’ll
use that to reset things so the sound can be played again. Finally, line 52 plays
the sound. The first time it plays, it will play from the beginning because of
the initial 0 value of the soundPosition variable in line 41.

39	 //play
40	 var	isPlaying:Boolean	=	false;
41	 var	soundPosition:Number	=	0;
42	 var	channel:SoundChannel	=	new	SoundChannel();
43	
44	 function	onPlaySound(evt:MouseEvent):void	{
45	 				if	(!isPlaying)	{
46	 								isPlaying	=	true;
47	 								addEventListener(Event.ENTER_FRAME,	onPlayProgress,	
48	 																									false,	0,	true);								
49	 								channel.addEventListener(Event.SOUND_COMPLETE,	
50	 																																	onPlayComplete,	
51	 																																	false,	0,	true);
52	 								channel	=	snd.play(soundPosition);
53	 				}
54	 }

Next, we’ll setup the playback progress bar. Lines 56 through 59 create the
bar, position it and add it to the display list. The drawBar() function is the
same function found earlier in the file, spanning lines 17 through 24 and
discussed in the “Loading External Sounds” section earlier in this chapter. It
simply creates a sprite and draws a 1 × 10-pixel rectangle.

The function in lines 61 through 65 updates the width of the progress bar. It’s
called every enter frame event because of the listener created in lines 47 and 48.
Dividing the playback position of the sound in the channel by the total length
of the sound gives us a percentage. For example, if the position is 5000 and the
length of the sound clip is 10,000 milliseconds (10 seconds), the playback is

Playing, Stopping, and Pausing Sounds

Chapter 11: Sound 305

50-percent complete. That percentage is then multiplied by the desired width of
the bar, 100 pixels, and the width of the bar is set to this value.

Later on in the chapter, we’ll drop two function calls into lines 63 and 64
to control the volume and pan of the sound, and we’ll update peak meter
graphics on the stage that show the amplitude of the sound during playback.

55	 //play	progress	bar
56	 var	playBar:Sprite	=	drawBar(0x0000FF);
57	 playBar.x	=	20;
58	 playBar.y	=	15;
59	 addChild(playBar);
60	
61	 function	onPlayProgress(evt:Event):void	{
62	 				playBar.width	=	100	*	(channel.position	/	sndLength);
63	 				//future	home	of	volume	and	pan	adjustment
64	 				//future	home	of	amplitude	meter	adjustment;
65	 }

The onPlayComplete() listener function (added in line 48) is triggered after
the sound has finished playing. Lines 68 and 69 remove both listeners added
when playback began. Once the sound is finished playing, there is no longer
a need to update its playback progress or listen for a SOUND_COMPLETE event.
Removing the listeners is not only efficient, but also allows us to set the play-
back progress bar width to 0. If not removed, the enter frame event would
continue to set the bar’s width to 100. (The position of the sound is at the end
of the file when playback is complete.)

The remainder of the function stops the sound, resets the soundPosition
variable to 0, the width of the play progress bar to 0, and the isPlaying vari-
able to false. All of this allows us to play the sound anew.

66	 //playback	complete	listener	function
67	 function	onPlayComplete(evt:Event):void	{
68	 				removeEventListener(Event.ENTER_FRAME,	onPlayProgress);
69	 				channel.removeEventListener(Event.SOUND_COMPLETE,	
70	 																																onPlayComplete);
71	 				channel.stop();
72	 				soundPosition	=	0;
73	 				playBar.width	=	0;
74	 				isPlaying	=	false;
75	 }

Now that we have the play functionality complete, we need a button to trig-
ger it. We’ll be creating three buttons by the time we’re done, so rather than
repeating the button creation code three times, let’s set up a function to do
the work for us. This takes less code but, more importantly, it means that if a
future edit is required, you have to edit the code in only one place, not three.

We’re going to draw our buttons dynamically, using the RoundRectButton
class we created in Chapter 8, so line 77 imports the class. Remember that
this material is presented in chunks for clarity. Import statements are typical-
ly consolidated at the top of your script and you should feel free to reorganize
your code any way you see fit.

NOTE

One idea behind using the
RoundRectButton class to draw but-
tons dynamically is to give you contin-
ued practice using packages and classes.
However, you’ll also find when we’re
done that this entire file will contain
no imported assets. As such, the entire
audio player is less than 5 KB! This is
a best-case scenario because we kept
the interface simple—both so you didn’t
need to rely on library assets and so a
more complex interface didn’t intrude on
the sound tutorial. The idea, however, is
good. You could use the Graphics class
to draw additional interface artwork, for
example, and still keep the file size low.

Part IV: Sound and Video306

Playing, Stopping, and Pausing Sounds

The createButton() function in lines 79 through 87 instantiates a button,
positions it on the stage, adds a mouse click event listener, and adds the but-
ton to the display list. This later lets us create buttons with only one line of
code, as seen with the first button in line 89. With three or more buttons, this
approach can really be economical.

The function takes three arguments: the y coordinate to place the button
on the stage, the label for the button, and the function that will be triggered
when the user clicks on the button. Although this book has shown how to
pass numbers and strings into functions, this is the first time we’ve used a
function as an argument. This is a handy process that’s not only expedient,
but also emphasizes the fact that functions are objects too, just like numbers
and strings.

As mentioned, line 89 creates the first button, passing a y-position of 40, a
label of “Play” and the onPlaySound() function, created earlier, as the func-
tion to execute when the button is clicked.

76	 //playback	complete	listener	function
77	 import	com.learningactionscript3.ui.RoundRectButton;
78	
79	 function	createButton(yLoc:Number,	labl:String,	
80	 																						func:Function):void	{
81	 				var	btn:RoundRectButton	=	
82	 								new	RoundRectButton(100,20,10,2,0x000099,labl,0xFFFFFF);
83	 				btn.x	=	20;
84	 				btn.y	=	yLoc;
85	 				btn.addEventListener(MouseEvent.CLICK,	func,	false,	0,	true);
86	 				addChild(btn);
87	 }
88	
89	 createButton(40,	"Play",	onPlaySound);

The remainder of the script is dedicated to the pause and stop buttons. Lines
91 through 98 create the pause button, setting its y location to 65 and adding
the onPauseSound() function as its mouse click listener. In line 93, the func-
tion checks to see whether the sound is playing and, if so, stores the current
playback position in the soundPosition variable. It then stops the sound and
sets the isPlaying variable to false so the sound can play again later.

Lines 99 through 102 follow the same process but are even simpler. The stop
button is created in line 99, which places the button below the previously cre-
ated play and pause buttons, and adds the onStopSound() method as the but-
ton’s mouse click listener. The functionality required by manually stopping
the sound is the same as the functionality required when the sound stops on
its own in the onPlayComplete() function (lines 67 through 75). Therefore,
all that’s required here is to call that function.

However, because onPlayComplete() is a listener function, it expects an
event argument. Calling the function without supplying the expected event
argument will cause an argument count mismatch error. We can get around

Buffering Sounds

Chapter 11: Sound 307

this by sending null to the function to stand in for the event. The null value
will satisfy the type checking at the listener function because null is the
default value for all events. As long as your listener function doesn’t rely on
specific information from the event, such as mouse coordinates or keyboard
key code values, this technique makes it possible to use listener functions not
only when an event occurs, but also manually.

90	 //playback	complete	listener	function
91	 createButton(65,	"Pause",	onPauseSound);
92	 function	onPauseSound(evt:MouseEvent):void	{
93	 				if	(isPlaying)	{
94	 								soundPosition	=	channel.position;
95	 								channel.stop();
96	 								isPlaying	=	false;
97	 				}
98	 }
99	 createButton(90,	"Stop",	onStopSound);
100	function	onStopSound(evt:MouseEvent):void	{
101					onPlayComplete(null);
102	}

At this point, you should be able play, pause, and stop your sound, and both
the load and play progress bar should reach 100 pixels in width upon their
respective completions.

Buffering Sounds
Waiting to play a sound until it’s fully loaded will prevent errors or stutters
that might otherwise occur during the loading process. This method, howev-
er, does suffer from the drawback of having to wait. An alternative approach
is to preload only a portion of the sound prior to playback, and then play
the sound while it continues to download progressively to Flash Player in the
background. The principle behind this approach is to preload a buffer that
can stay ahead of playback during the time required to download the remain-
der of the sound. You’ll still need to wait, but not as much.

How much of the sound should you buffer? That depends on how you plan
to distribute your project. Theoretically, if you have no load time, you need
no buffer time because the sound loads instantly. This is usually true of local
files, when you are not loading the sound from the Internet. For remote files,
connection speeds can dictate how much sound needs to be preloaded. If you
know you’ll only encounter broadband connection speeds, you can buffer
less of the sound. If you’re worried about slower connections, you may want
to buffer more of the sound to prevent the playback from catching up with
the loading process and stalling playback.

To specify the buffer time, you must use the SoundLoaderContext class at
the time of sound loading. The number of milliseconds of sound to buffer is
passed to the constructor when instantiating the class; otherwise, a default
value of 1000 is used. After instantiating the class, you then pass the resulting

NOTE

For more information about listener
functions and the argument count
mismatch error, see the “Using Event
Listeners” section of Chapter 3.

Part IV: Sound and Video308

Changing Sound Volume and Pan

instance into the sound load() method, as a second parameter following the
URLRequest object.

The following example adapts the start of our audio player by inserting line
2, and modifying line 4. It buffers 5 seconds of the loaded sound before the
play() method will execute. This modification can be found in the player_
buffering.fla source file.

1	 var	snd:Sound	=	new	Sound();
2 var context:SoundLoaderContext = new SoundLoaderContext(5000);
3	 var	req:URLRequest	=	new	URLRequest("song.mp3");
4 snd.load(req, context);

Changing Sound Volume and Pan
During playback, it’s possible to manipulate the volume and pan of indi-
vidual channels, as well as the global mixer containing all sounds. Doing so
requires the SoundTransform class.

The process involves starting with a SoundTransform instance (either by
creating a new instance or by storing a reference to the existing transform
object of the channel or mixer), setting the volume and/or pan setting of that
instance, and then applying the transformation to the channel. For example,
this snippet will set the volume of a SoundChannel instance called channel
to 50 percent.

var	trans:SoundTransform	=	new	SoundTransform();
trans.volume	=	0.5;
channel.soundTransform	=	trans;

This syntax will set the volume of a channel to half of what it currently is:

var	trans:SoundTransform	=	channel.soundTransform;
trans.volume	*=	0.5;
channel.soundTransform	=	trans;

Notice that the first example sets the volume of a new SoundTransform
instance to 0.5, while the second example multiplies the volume of an exist-
ing SoundTransform instance by 0.5. The first example will set the volume to
50 percent, regardless of its prior setting, but the second example will cut the
current volume in half. For example, if the second volume was originally 50
percent, it would then be 25 percent.

Most ActionScript 3.0 settings that require percentage values use a unit range
of 0 to 1. For example, volume is expressed as a range of 0 (muted) to 1 (full
volume) with any interim value expressed as a percentage of full volume.

To determine a value that describes a pan setting between left and right
stereo channels, both a percentage left and a percentage right are required.
Therefore, the units are expressed as a range of –1 (full left) through 0 (cen-
tered) to 1 (full right). Negative interim values reflect some degree of pan left,

NOTE

Remember that buffering will have
little effect when testing locally because
the loading process will complete very
quickly. You may wish to upload your
test files to a server, and perhaps even
use a very large sound file, to test your
efforts.

Changing Sound Volume and Pan

Chapter 11: Sound 309

and positive interim values reflect some degree of pan right. The following
script sets the channel instance to a pan setting of full left:

var	trans:SoundTransform	=	new	SoundTransform();
trans.pan	=	-1;
channel.soundTransform	=	trans;

To transform all playing sounds at once, substitute the specified channel
with the master SoundMixer class. For example, the following script mutes
all sounds:

var	trans:SoundTransform	=	new	SoundTransform();
trans.volume	=	0;
SoundMixer.soundTransform	=	trans;

Now let’s apply what we’ve learned to our ongoing player example. The fol-
lowing code can be found in the player_transform.fla source file, and demon-
strates both volume and pan by using mouse coordinates. Figure 11-2 shows
how the mouse will affect the sound transformation. Moving the mouse left
and right pans the sound left and right. Moving the mouse up and down
fades the volume up and down.

stage origin
{x:0, y:0}

default direction of increasing y values
(will be inverted for usability using ActionScript)

center of stage

Figure 11-2. How the mouse affects sound volume and panning in the adaption made to
the sound player project

Line 104 creates a SoundTransform instance and lines 105 through 109 con-
tain the onPlayProgress() function that will set and apply the transforma-
tions. This function will be called from the enter frame event listener function
created earlier, which we’ll adapt in a moment.

Part IV: Sound and Video310

Changing Sound Volume and Pan

To set these changes with the mouse in a natural and intuitive way, we need
to think about ActionScript mouse coordinates and apply a little math. Line
106 sets the volume based on the y-coordinate of the mouse. By dividing
the current vertical mouse coordinate (mouseY) by the stage height, we get a
percentage change. For example, if the mouse were in the middle of the stage,
the value would be 50 percent (0.5). This suits us just fine because the volume
setting should be between 0 and 1.

103	//transformations
104	var	trans:SoundTransform	=	new	SoundTransform();
105	function	updateMouseTransform():void	{
106					trans.volume	=	1	-	mouseY	/	stage.stageHeight;
107					trans.pan	=	mouseX	/	(stage.stageWidth	/	2)	-	1
108					channel.soundTransform	=	trans;	
109	}

However, y-coordinates in ActionScript increase by moving down, and we
typically think of the values of a volume slider increasing as they go up.
Therefore, we must subtract our percentage from 1 to get the correct value.
For example, let’s say the mouseY is 100, and the stage is 400 pixels tall.
Dividing 100 by 400 gives us 25 percent, but the mouse is near the top of the
stage, which we think of as a higher volume when imagining a volume slider.
By subtracting 0.25 from 1, we end up with 0.75, or 75 percent, which is what
we want. Next, let’s look at calculating pan.

Line 107 affects the pan. This calculation is similar to the volume calculation,
but we need a value between –1 for full left and 1 for full right, and a value
in the center of the stage should equate to 0. To find the middle of the stage,
we need to divide the stage width by 2, and if we continually divide the hori-
zontal location of the mouse (mouseX) by that value, we get a range of 0 to 2.
For example, using the default stage width of 550, the center would be 275. Far
left is 0/275 (0), center is 275/275 (1) and far right is 550/275 (2). Because, we
need a range of –1 to 1, we subtract 1 from the entire formula.

After calculating the volume and pan values based on the mouse position,
and altering the corresponding properties of the trans transform object you
created (lines 106 and 107), all that remains is updating the soundTransform
property of the desired channel (line 108).

Now all we have to do is amend the onPlayProgress() function earlier in the
script, to update the transform. The function spans lines 60 through 64 and we
need to replace the earlier sound transformation placeholder comment with a
call to the updateMouseTransform() function (shown in bold in the follow-
ing example). Now when you test your movie, you should be able to vary the
volume and pan of the playing sound by moving the mouse around the stage.

60	 function	onPlayProgress(evt:Event):void	{
61	 				playBar.width	=	100	*	(channel.position	/	sndLength);
62 updateMouseTransform();
63	 				//future	home	of	amplitude	meter	adjustment;
64	 }

NOTE

Again, if you want to transform every
sound playing at a given moment, sim-
ply substituting SoundMixer for the
specific channel in line 108 will accom-
plish the task.

Reading ID3 Metadata from MP3 Sounds

Chapter 11: Sound 311

Reading ID3 Metadata from MP3 Sounds
When encoding MP3 files (compressing and saving the audio in the MP3 for-
mat), most sound applications can inject metadata into the file, storing this
data in tags established by the ID3 specification. The amount of metadata
included is decided during the encoding process, usually by whomever is
doing the encoding. The software itself, however, can add some information,
such as the name and/or version of the encoding software.

Accessing this information is accomplished via the ID3Info class. The sim-
plest way to query a sound’s main ID3 tags is by using the named properties
of the ID3Info instance found in every Sound object. This is found in every
sound’s id3 property. For example, you can query the artist and song names
of an MP3 file this way (again assuming a Sound instance called snd):

snd.id3.artist;
snd.id3.songName;

There are seven tags supported in this direct fashion, as seen in Table 11-1.

Table 11-1. The most common ID3 tags and their corresponding
ActionScript property names

ID3 2.0 tag ActionScript property

COMM Sound.id3.comment
TALB Sound.id3.album
TCON Sound.id3.genre
TIT2 Sound.id3.songName
TPE1 Sound.id3.artist
TRCK Sound.id3.track
TYER Sound.id3.year

The remainder of the supported tags can be accessed through the same id3
property of the Sound class, but using the tag’s four-character name. Table 11-2
shows supported tags that do not also have accompanying property names of
their own. Accessing the beats-per-minute data, for example, would require the
following syntax:

snd.id3.TBPM;

If you prefer a consistent approach, it’s also possible to access all ID3 tag
information using the four-character tag names, including the seven tags that
have their own dedicated property names. However, for quick access to the
most commonly used properties, you will likely find the descriptive names
to be more useful.

NOTE

Many audio applications can add ID3
tags to sounds, both during and after the
encoding process. Apple’s free iTunes can
tag and encode, and Pa-software’s share-
ware ID3 Editor can inject tags into
existing MP3s. Both are available for
the Macintosh and Windows platforms.

Part IV: Sound and Video312

Reading ID3 Metadata from MP3 Sounds

Table 11-2. Supported ID3 tags without dedicated ActionScript property names

ID3 2.0 tag Description

TBPM Beats per minute

TCOM Composer

TFLT File type

TIT1 Content group description

TIT3 Subtitle/description refinement

TKEY Initial key

TLAN Languages

TLEN Length

TMED Media type

TOAL Original album/movie/show title

TOFN Original filename

TOLY Original lyricists/text writers

TOPE Original artists/performers

TORY Original release year

TOWN File owner/licensee

TPE2 Band/orchestra/accompaniment

TPE3 Conductor/performer refinement

TPE4 Interpreted, remixed, or otherwise modified by

TPOS Disc/position in set

TPUB Publisher

TRDA Recording dates

TRSN Internet radio station name

TRSO Internet radio station owner

TSIZ Size

TSRC ISRC (international standard recording code)

TSSE Software/hardware and settings used for encoding

WXXX URL link frame

Finally, it’s possible to output all ID3 tags using a type of for loop. The fol-
lowing code, found in the player_id3.fla source file, continues our player
example by first creating a text field to display the data (lines 111 through
118). Lines 120 through 127 then add a listener to the sound instance to listen
for the Event.ID3 event. Line 122 pulls the ID3 information from the event
argument.

The for...in loop in lines 123 through 126 is a little different than the for
loop discussed in Chapter 2. Instead of looping through a finite number of
times, it loops through all the properties of an object. It uses the property

Visualizing Sound Data

Chapter 11: Sound 313

name as a key, and pulls the property value from the object using that string.
Lines 124 and 125 add each tag to the end of the field by concatenating a
string and ending it with a new line character to jump down to the next line.

110	//id3
111	var	id3Field:TextField	=	new	TextField();
112	id3Field.x	=	140;
113	id3Field.y	=	15;
114	id3Field.width	=	340;
115	id3Field.height	=	95;
116	id3Field.border	=	true;
117	id3Field.background	=	true;
118	addChild(id3Field);
119	
120	snd.addEventListener(Event.ID3,	onID3Info,	false,	0,	true);
121	function	onID3Info(evt:Event):void	{
122					var	id3Properites:ID3Info	=	evt.target.id3;
123					for	(var	propertyName:String	in	id3Properites)	{
124									id3Field.appendText("ID3	Tag	"	+	propertyName	+	"	=	"	+	
125																													id3Properites[propertyName]	+	"\n");
126					}
127	}

When ID3 information is detected and the listener function is triggered, an
ID3Info object is created to store the incoming data. The for...in loop in
lines 123 through 126 walks through all the properties stored and, in this case,
adds them to a text field on stage. The data could also be displayed in a cus-
tom MP3 player interface, placed into a database to rank most often played
songs, and so on.

Visualizing Sound Data
Mastering any language depends heavily on motivating yourself to practice it.
This is especially true with programming languages, because code is difficult
to work into day-to-day conversation. Finding as little as 15 minutes a day
to experiment with ActionScript 3.0 will hasten your progress considerably,
however, and visualizing sound data will make that practice time fly by.

ActionScript 3.0 gives you access to raw sound data during playback, allowing
you to synchronize visuals to amplitude or frequency spectrum information.
Using the former, you might easily create peak meters, or animated speaker
illustrations, that bounce or throb to the beat. With spectrum data, on the
other hand, you can draw a waveform of the sound or depict the low-, mid-,
and high-range frequency bands of a sound much like an equalizer display.

Amplitude
The terms amplitude and volume are often used interchangeably, but under-
standing just a bit about these concepts can help clarify our task. Volume
is probably a familiar idea. It’s a measure of the loudness or intensity of

NOTE

In all cases, if a tag has not been
encoded into the MP3, querying the tag
directly will return undefined as a
value.

Part IV: Sound and Video314

Visualizing Sound Data

a sound, and is somewhat subjective. Amplitude, on the other hand, is a
physics property that more directly applies to a sound wave. It measures the
distance of the peak of a sound wave from its baseline.

Because a waveform can contain positive and negative values, amplitude can
also be positive or negative, as a waveform’s peaks can be above and below its
baseline. Peak amplitude is a specific measurement of amplitude, measuring
from one peak of a sound wave to the next. Because it’s measuring between
peaks, and not from a baseline, its value is always positive. In other words,
peak amplitude is the absolute value, or nonnegative value, of amplitude,
and is the kind of amplitude information ActionScript 3.0 will deliver in this
example. Figure 11-3 shows both amplitudes in a hypothetical sound wave.

Getting the amplitude of a sound channel requires only that you read its
leftPeak and/or rightPeak properties depending on which stereo channel
you want to visualize. These properties will be equal when mono sounds are
playing. Assuming a SoundChannel instance called channel, the syntax is:

channel.leftPeak;
channel.rightPeak;

These properties will return a value between 0 and 1 to represent the current
amplitude. Conveniently, this is also the range of values used by such prop-
erties as alpha, scaleX, and scaleY. Therefore, to create a basic amplitude
meter, you need only manipulate the height of a movie clip. Imagine two
movie clips that look like vertical bars 100 pixels high, with instance names
leftMeter and rightMeter. Because the leftPeak or rightPeak values are
always a fraction of 1, multiplying the full size of the meters by these values
will cause the meter to vary between a height of 0 (at minimum volume) and
100 (at full volume). A leftPeak value of 0.5 will set the left meter to half-
height, or 50 pixels. The following snippet shows this process in code. We’ll
also use this same technique in our sound player project in just a moment.

leftMeter.height	=	100	*	channel.leftPeak;
rightMeter.height	=	100	*	channel.rightPeak;

If you wanted something slightly less conventional, you might manipulate
the scale of a graphic, rather than the height of a bar, with the amplitude
values. For example, you could create a picture of a speaker that increased in
size based on the amplitude values. Unlike a peak meter, however, you don’t
want the speaker icons to disappear at 0 volume—a possible byproduct of
setting the scale of the graphic to a dynamic value between 0 and 1, inclusive.
Therefore, you can add the amplitude value to the graphic’s original scale of
1 (100 percent, or full size). The speakers, therefore, will remain unchanged
during silence and potentially grow to twice their size at 100 percent ampli-
tude—that is, a scale of 1 + 1, or 2. This approach is shown in the following
code snippet, and a complete implementation of the code is found in the
speakers_peak.fla source file.

leftSpeaker.scaleX	=	leftSpeaker.scaleY	=	1	+	channel.leftPeak;
rightSpeaker.scaleX	=	rightSpeaker.scaleY	=	1	+	channel.rightPeak;

NOTE

A simple way to distinguish ampli-
tude and volume is to remember that
amplitude will likely change over time
even while a sound plays at a fixed
volume. Think about a basic bass drum
rhythm playing at full volume. As the
beats progress, the peak amplitude will
vary between 0 (no sound) and 1 (full
amplitude). The peak amplitude of a
bass drum kick might shoot up to 1 and
then decay quickly back to 0, over and
over again, but the volume remains
constant. If you visualized this change
in amplitude during playback, you’d
end up with what are often called peak
meters—meters that repeatedly display
the maximum current amplitude. If you
visualized full volume, you’d see a very
boring straight line at 1.

amplitude

amplitude

peak
amplitude

Figure 11-3. Amplitude and peak
amplitude of a sound wave

NOTE

Remember that sound channels are akin
to recording tracks, allowing multiple
sound sources to be manipulated dis-
cretely, and that stereo channels deliver
only left and right separation of a spe-
cific sound. A sound channel can contain
mono or stereo sounds. Mono sounds
will contain the same information in
both channels.

Visualizing Sound Data

Chapter 11: Sound 315

Adding peak meters to the sound player
Let’s add a pair of peak meters to the sound player project we’ve been devel-
oping. The following code is found in player_peak.fla.

Lines 129 through 139 create two sprites using the drawBar() method dis-
cussed earlier—with one important difference. The bars are rotated –90
degrees so that they will expand upward, instead of to the right. Lines 141
through 144 update the scaleX of each peak meter. Note that we’re updating
scaleX, even though it will look like the height of the meters is changing due
to the rotation in lines 130 and 136. Figure 11-4 illustrates this idea.

128	//peak	meters
129	var	lPeak:Sprite	=	drawBar(0x009900);
130	lPeak.rotation	=	-90;
131	lPeak.x	=	500;
132	lPeak.y	=	110;
133	addChild(lPeak);
134	
135	var	rPeak:Sprite	=	drawBar(0x009900);
136	rPeak.rotation	=	-90;
137	rPeak.x	=	520;
138	rPeak.y	=	110;
139	addChild(rPeak);
140	
141	function	updatePeakMeters():void	{
142					lPeak.scaleX	=	channel.leftPeak	*	100;
143					rPeak.scaleX	=	channel.rightPeak	*	100;
144	}

As with the updateMouseTransform() function call in the “Changing Sound
Volume and Pan” section, we must now update our peak meters in the
onPlayProgress() function found earlier in the script. We’ll again replace
a function placeholder comment, this time the amplitude meter adjustment
comment found in line 63 with a call to the updatePeakMeters() function.

60	 function	onPlayProgress(evt:Event):void	{
61	 				playBar.width	=	100	*	(channel.position	/	sndLength);				
62	 				updateMouseTransform();
63 updatePeakMeters();
64	 }

Now when you test your file, you should see two peak meters in the upper-
right corner of the stage, moving in sync with the music and visualizing the
peak amplitude of the sound during playback. You may also notice that this
visual feedback reflects the sound transformations made with your mouse.

If, for example, you move the mouse to the upper-left corner of the stage,
you will see larger peaks in the left meter. If you move your mouse across the
top of the stage, you will see the peaks move from the left meter to the right
meter to correspond with the panning of the sound. Finally, if you then move
your mouse down the right side of the stage, you will see the peaks steadily
diminish in size as the amplitudes of the sound diminish.

adjusting width

ad
ju

st
in

g
w

id
th

adjusti
ng w

idth

Figure 11-4. Adjusting the width of a
sprite rotated –90 degrees appears to
affect the height of the sprite

Part IV: Sound and Video316

Visualizing Sound Data

Creating More Expressive Peak Meters
Using Masks
Just for fun, we’re going to show you a slightly more expressive peak meter, based on a
meter that you might see on a home stereo. In case you’ve never seen a peak meter
before, it’s usually a series of 6 to 10 consecutive lights, stacked vertically or placed end to
end, which glow in sequence depending on the amplitude of the sound. Typically, low
amplitudes reveal cool colors (green or blue) for acceptable amplitudes. Additional lights
reveal warm colors (yellow or amber) as amplitudes increase to possible distortion levels.
Finally, hot colors (red) are revealed when the amplitude exceeds acceptable levels. A
representation of this type of meter is shown in the top illustration of Figure 11-5.

Because of the color changes, we can’t simply adjust the width, height, scaleX, or
scaleY properties of the meter. If we did that, we would invalidate the purpose of the
color bands because all the colors would be visible all the time, even at low amplitudes.
This can be seen in the bottom left illustration of Figure 11-5. We need, instead, to show
only those colors representative of the amplitude, be they cool or hot, as seen in the
bottom-right illustration of Figure 11-5.

You can reveal only specific colors by creating a mask for the color bars, and scaling only
the mask. The entire peak meter is a movie clip, within which are two discrete elements:
the color bands and another movie clip used as a mask. (In our file, a third element
serves as an outline but is not affected by ActionScript.) Because a mask dictates which
part of the content is seen (rather than hiding that content), altering the size of the mask
will reveal the desired portion of the color bars, as seen in Figure 11-6.

The following code is included in multicolor_peak_meters.fla, which contains two
instances of a movie clip that serves as our meter. The instances are called lPeak and
rPeak, and the symbol contains the outline, mask, and color bars seen in Figure 11-6. The
mask has an instance name of barMask.

The first five lines cover the basic sound loading and playing tasks discussed earlier in
the chapter. The code inside the listener function sets the vertical scale of the mask
inside each meter to match the peak amplitudes of the left and right channels.

var	snd:Sound	=	new	Sound();
snd.load(new	URLRequest("song.mp3"));

var	channel:SoundChannel	=	new	SoundChannel();
channel	=	snd.play();

addEventListener(Event.ENTER_FRAME,	onLoop,	
																	false,	0,	true);

function	onLoop(evt:Event):void	{
				lPeak.barMask.scaleY	=	channel.leftPeak;
				rPeak.barMask.scaleY	=	channel.rightPeak;
}

Unlike the speaker example discussed earlier, we do want the colors in the peak meter
to disappear during silent passages, so we can set the scaleY property directly to the
values generated by the leftPeak and rightPeak properties.

Though this example uses assets found in the library of an FLA, the learningactionscript3
package contains the PeakMeter class for creating multicolor peak meters entirely from
code. The PeakMeter_Example.as document class, and the corresponding PeakMeter_
Example.fla file for Flash Professional users, demonstrate how to use the class.

Figure 11-5. The color peak meter in use

Figure 11-6. The component parts of the
color peak meter

Visualizing Sound Data

Chapter 11: Sound 317

Sound Spectrum Data
So far, we’ve been able to synchronize visuals with sound data by using
the values returned by the leftPeak and rightPeak properties of the
SoundChannel instance. With this information, we’ve already created peak
meters to visualize the amplitude of a sound during playback—but there’s
a lot more you can do. We discussed scaling a speaker, and you can just as
easily change the alpha, x, y, or rotation properties of a display object.
The peak_visualizations directory in the accompanying source code includes
examples of each of these tasks.

Even with a lot of creativity behind your efforts, however, you still only
have two simultaneous values to work with when using peak amplitudes.
Fortunately, ActionScript 3.0 provides another way to visualize sound by
giving you access to spectrum data during playback. Audio spectrum data
typically contains a mixture of frequency and amplitude information and
can give you a visual snapshot of a sound at any moment. You can use this
information to draw a sound wave or you can preprocess the information to
look at amplitudes in the low, mid, and high frequency ranges—much like
the visual feedback a home-stereo equalizer can give you.

We’ll support both kinds of data, and we’ll do so in a class so that it’s easy
to add waveform visualization to your own projects. Figure 11-7 shows an
example of what our class can draw. It depicts the left stereo channel wave-
form in green and the right stereo channel waveform in red.

Storing and retrieving sound spectrum data
Before we discuss the new class, let’s talk a little bit about how much data
we’ll be using and how we’ll handle the load. Each time we retrieve the sound
spectrum data, we’re going to do so using the computeSpectrum() method of
the SoundMixer class. This method retrieves data from the sound in real time
and places that data into a special kind of array called the ByteArray, which
we’ll explain in a moment. Every time the method is called, we’ll be using 512
data values from the sound—256 for the left channel and 256 for the right
channel—to draw our waveform.

We’re going to use an enter frame event listener to call the method so, assuming
the default Flash Professional frame rate of 24 frames per second, that means
we’ll be using 12,288 values per second. What’s more, the computeSpectrum()
method returns bytes, which are very small units of data. We need to work with
decimal values like 0.5, which are also called floating-point numbers or floats.
It takes 4 bytes to make a single float, and we need 12,288 floats per second.
Therefore, our file will need to process 49,152 bytes per second!

You don’t need to worry about any of this math, because you’ll soon see that
it’s all handled for you. But it does help to understand the magnitude of what
we’re going to be doing. Working your way through nearly 50,000 values per
second isn’t trivial, so this is a potential performance issue.

Figure 11-7. A visualization of left and
right channel waveforms

Part IV: Sound and Video318

Visualizing Sound Data

Storing the data and retrieving it quickly are challlenges handled by the
ByteArray class. A byte array is an optimized array that can be used to store
any kind of bytes. For example, we used the ByteArray as part of the process
that saved an image in Chapter 9. It can also be used to read external file data,
like the ZaaIL library mentioned in the same chapter, that reads unsupported
image formats. In this case, we’re going to use a ByteArray instance to store
sound data.

The ByteArray class has special methods that make retrieving data fast and
efficient. These methods will process a series of bytes and turn them into
the data format you need, so you don’t have to. For instance, we need float
values, rather than bytes. The readFloat() method will read four sequential
bytes, translate them into a float, and return the data we need. What’s more,
the method will automatically increment through the bytes so that you don’t
have to update a loop counter when parsing the contents of the array.

For example, think of an array called myByteArray that contains 12 bytes. If
this data were stored in a normal array, you’d likely work through it using
a for loop, and you’d have to increment the loop counter after each query.
Using a byte array, however, the first time you execute myArray.readFloat(),
it will read the first four bytes, return a float, and remain poised at byte 5 to
continue parsing the array. With the next call of myArray.readFloat(), bytes
5 though 8 will be returned as a float—again with no manual incrementing
of the array—and you’re now at byte 9 ready to continue.

The computeSpectrum() method will populate our ByteArray for us, and
the readFloat() method will automatically translate the bytes into the data
format we need, so we’re ready to go. However, a second, optional parameter
of the computeSpectrum() method will allow us to choose between two ways
to analyze our sound.

Drawing a waveform or frequency spectrum
By default, the computeSpectrum() method will fill a byte array with values
that will translate to floats between –1 and 1. These values will plot a waveform
as it ascends above or descends below its baseline, as shown in Figure 11-7.

However, a second, optional parameter called FFTMode will return the ampli-
tude of individual frequencies, with values between 0 and 1. An FFT plot
distributes positive amplitudes of different frequencies across the baseline,
much like the visual feedback a home-stereo equalizer can give you. Low
frequencies of each channel appear on the left, and high frequencies appear
on the right, as seen in Figure 11-8.

As previously described, our example exercise will draw a waveform.
However, after you’ve successfully tested your code, experiment with setting
the second parameter of the computeSpectrum() method to true to plot FFT
frequency amplitudes.

NOTE

FFT refers to “Fast Fourier Transform,”
a method for efficiently computing the
component frequencies that make up a
signal like a sound or light wave.

Figure 11-8. Visualizing frequency values
with an FFT display

Visualizing Sound Data

Chapter 11: Sound 319

The Waveform class
The first dozen or so lines of the Waveform class will be familiar to you if
you’ve been reading this book linearly. Line 1 declares the class’s package
path as this class is part of the learningactionscript3 code library developed
throughout this book. Lines 3 through 7 import all the other classes required
by this class. Line 9 declares the class and extends Sprite so it can inherit
all accessible properties, methods, and events from the Sprite class. As dis-
cussed extensively in Chapter 6, this is important for things like being able to
access properties like graphics, use event listeners, and add instances of this
class to the display list.

1	 package	com.learningactionscript3.sound	{
2	 				
3	 				import	flash.display.Graphics;
4	 				import	flash.display.Sprite;
5	 				import	flash.events.Event;
6	 				import	flash.media.SoundMixer;
7	 				import	flash.utils.ByteArray;
8	
9	 				public	class	Waveform	extends	Sprite	{
10	
11	 								private	var	_bytes:ByteArray	=	new	ByteArray();
12	 								private	var	_fft:Boolean;
13	 								private	var	_g:Graphics;
14	
15	 								public	function	Waveform(fft:Boolean=false)	{
16	 												_fft	=	fft;
17	 												_g	=	this.graphics;
18	 												
19	 												this.addEventListener(Event.ENTER_FRAME,	onVisualize,
20	 																																		false,	0,	true);
21	 								}
22	
23	 								private	function	onVisualize(evt:Event):void	{
24	 												SoundMixer.computeSpectrum(_bytes,	_fft);
25	 												_g.clear();
26	 												plotWaveform(0x009900,	50);
27	 												plotWaveform(0xFF0000,	100);
28	 								}
29	 								
30	 								private	function	plotWaveform(col:uint,	
31	 																																						chanBaseline:Number):void	{
32	 												_g.lineStyle(1,	col);
33	 												_g.beginFill(col,	0.5);
34	 												_g.moveTo(0,	chanBaseline);
35	 												for	(var	i:Number	=	0;	i	<	256;	i++)	{
36	 																_g.lineTo(i,	(chanBaseline	-	
37	 																														_bytes.readFloat()	*	50));
38	 												}
39	 												_g.lineTo(i,	chanBaseline);
40	 												_g.endFill();
41	 								}
42	 				}
43	 }

Part IV: Sound and Video320

Visualizing Sound Data

Lines 11 through 13 create three class properties. The _bytes property stores
an instance of the ByteArray class to hold the sound data. The Boolean _fft
determines whether the class draws a waveform or frequency peaks. Finally,
_g stores a reference to the graphics property, as described in Chapter 8, so
we can draw the waveform with vectors.

The class constructor in lines 15 through 21 does only three simple things. Line
16 sets the Boolean class property _fft to the value passed into the FFTMode
parameter during instantiation. Note that the parameter has a default value
of false. Therefore, if true is passed into the parameter, computeSpectrum()
will use its FFT mode, and only positive values will be calculated. If nothing
is passed into the parameter, computeSpectrum() will return values between
–1 and 1, drawing a waveform.

Line 17 stores a reference to the graphics property of the class so we can
draw the sound’s waveform at runtime. Remember that this class extends
Sprite, so it already has its own graphics property. Furthermore, because
you’ll be adding an instance of this Waveform class to the display list anyway,
there’s no benefit to creating another sprite within that instance just to serve
as a canvas for your drawing.

Finally, lines 19 and 20 add an event listener to the class that calls the
onVisualize() method every time it hears an enter frame event. This meth-
od draws one waveform for each stereo channel.

The first task of the onVisualize() method is to extract the waveform data
from the sound using the computeSpectrum() method (line 24). The data is
stored in the _bytes property and _fft determines if wave or frequency spec-
trum data is returned. Line 25 then clears all prior drawing to the graphics
property to show only the current waveform and prevent an ongoing layering
of vectors. Finally, lines 26 and 27 call the plotWaveform() method to draw a
waveform for the left and right stereo channels, respectively. These calls pass
the color and y coordinate of the baseline of each waveform to the method.

The first two lines of the method create a hairline stroke (line 32) and
50-percent transparent fill (line 33) of the requested color. Line 34 moves the
virtual drawing pen to an x coordinate of 0, and a y coordinate that matches
the requested baseline. The loop that follows in lines 35 through 41 will draw
the waveform from this point.

Earlier we mentioned that the ByteArray is populated with 512 data values
each time the computeSpectrum() method is called. Note, however, that the
for loop starting in line 35 iterates only 256 times. This is because the class is
designed to draw the waveform for the left and right stereo channels consecu-
tively. That is, the method call in line 26 draws a waveform using the first 256
values, which correspond to the left channel. Line 27 calls the method to draw
a waveform using the next 256 values, representing the right channel. Therefore,
each time onVisualize() is executed all 512 values are retrieved. Because the
ByteArray instance automatically increments itself when a value is retrieved, it
returns to its first position ready for the next request of 256 values.

NOTE

Using two loops of 256 values, rather
than 1 loop of 512 values, makes it easier
for us to draw the left and right chan-
nels separately. For example, because the
loop counter (i) ranges from 0 to 255, we
can use it as an x coordinate for each
point of our waves. If we used a single
loop from 0 to 511, the x coordinate of
the right channel waveform would begin
at 256, after the left channel waveform
ended, and the two waveforms would
appear next to each other, rather than
stacked vertically.

Visualizing Sound Data

Chapter 11: Sound 321

Lines 36 and 37 call the lineTo() method of the Graphics class. The
repeated call of the method by the loop draws a line that connects all 256
samples of each waveform. The x coordinates increment from 0 to 255, and
the y coordinates are based on the values stored in the byte array. Each float,
or decimal value, returned from the byte array is multiplied by the maximum
waveform height of 40 pixels.. Therefore, at full amplitude (1 or –1), the wave-
form height at that point is 40 or –40, at minimum amplitude (0), the height
of the waveform is 0, and with an interim amplitude the waveform height will
fall somewhere in between.

The resulting waveform height is then subtracted from the desired baseline.
A positive sample amplitude is subtracted from the baseline position, causing
a peak to rise above the baseline. Negative sample amplitudes are effectively
added to the baseline position (subtracting a negative value is equivalent to
adding that value) causing a peak to appear below the baseline. (Increasing
y values in the Flash Coordinate system move down the y axis.) Figure 11-9
shows a few sample values and their resulting position in the waveform.

Finally, lines 39 and 40 return the drawing point of the waveform to its base-
line, and then close the fill, respectively.

The best part of this visualization is that it operates independently of any
sound playback code. As we discussed previously, the SoundMixer class is
equivalent to the main channel on a recording studio mixing desk. As such,
our Waveform class will automatically visualize any sound running through
that master mixer—in other words, any sound in any SoundChannel instance.
We’ll show this in action by demonstrating how easy it is to add the visualiza-
tion to a project that already plays sound.

Adding the Waveform Visualization to Our
Sound Player
The following code completes our ongoing sound player project, and appears
in the player_complete.fla source file. Because the visualizer plots waveforms
for all sounds, and because the player is already capable of playing sound,
all we need to do is add an instance of Waveform to the player’s display list.

Line 146 imports the class we just created, line 148 creates the instance we
need, lines 149 and 150 position the visualization sprite, and line 151 adds it
to the display list. For cosmetic purposes, line 152 doubles the scale of the
visualization so it spans 512 pixels to fill the stage, rather than its default
256-pixel width.

145	//waveform	visualization
146	import	com.learningactionscript3.sound.Waveform;
147	
148	var	vis:Waveform	=	new	Waveform();
149	vis.x	=	20;
150	vis.y	=	100;
151	vis.scaleX	=	vis.scaleY	=	2;
152	addChild(vis);

100 - (-1.0 * 100) = 200

100 - (-0.5 * 100) = 150

100 - (0.75 * 100) = 25

y: 100

y: 200

y: 0

Figure 11-9. A few sample amplitude
calculations, and where they appear in an
example waveform

Part IV: Sound and Video322

Visualizing Microphone Input

This is just one example visualization, with a simple display. The kind of art
you can create is limited only by what you can manipulate with numbers in
real time and, of course, your imagination.

Visualizing Microphone Input
Prior to Flash Player 10, accessing input from the microphone was very limited.
Only an overall activity level, somewhat akin to the amplitude of the input,
was available. As of Flash Player 10, extensive manipulation of mic input is now
possible. You can draw a waveform of the input, capture the input, alter it, and
even save it to a WAV file with the help of additional classes.

For maximum compatibility, we’ll start our discussion about microphone
input by visualizing the mic’s activityLevel property. This is compatible
all the way back to the introduction of ActionScript 3 (which also means ver-
sions CS3 through CS5 of Flash Professional support this technique). We’ll
then follow with additional features that require Flash Player 10.

Activity Level
The following code is found in the microphone_activity_level.fla source file.
After granting Flash Player permission to use the microphone, this file will
continually react to microphone input, drawing a line across the screen that
corresponds to microphone activity level. The relationship between activity
and time makes the file look a bit like an EKG read out. The line perpetually
draws to the right and the line draws up and down with mic activity.

Figure 11-10 shows a sample of the file output. The first segment of the plot
was created with staccato whistling. The sharp rise and fall of activity is char-
acteristic of this type of sound. The second segment was created by a human
voice steadily increasing the amplitude of a single tone to crescendo and then
diminishing again to silence. The fact that the rise and fall of the tone are not
represented by straight lines is attributed to the natural wavering of the aver-
age human voice when attempting this exercise.

The first six lines of this script are important as they initialize the micro-
phone for use. Line 1 stores a reference to the current microphone using the
static method, getMicrophone() of the Microphone class. This will activate
the microphone, but it won’t yet provide any data to ActionScript. In order
to work with the microphone input, you’ll need to feed that data back to
ActionScript, as seen in line 2.

When doing so, it’s best to use echo suppression, shown in line 3, to mini-
mize feedback from your speakers during recording. As an added measure
against feedback, we’ll set the volume of the microphone to 0 later on, as
we don’t need to hear the input in this example. Line 4 sets the gain of the
 microphone—the amount by which the microphone data is multiplied
before transmitting. It’s a little like the volume of the microphone’s throughput.

Figure 11-10. A visualization of a
microphone’s activity level

Visualizing Microphone Input

Chapter 11: Sound 323

0 transmits nothing, 50 is the default value, and 100 amplifies the input to its
maximum degree.

Line 5 sets the sample rate of the microphone—the number of samples taken
from the source audio during the encoding process. The higher the sample
rate, more samples are taken, and the better the sound quality is. Possible
values include 5, 8, 11, 22, and 44, which correspond to 5.512 and 8.000 kHz,
(both poor quality), 11.025 kHz (good for basic voice input), 22.050 kHz (mid
quality), and 44.100 kHz (maximum quality, and the rates at which audio
CDs are sampled).

Line 6 sets the silence level—a kind of activity threshold. In order for the
microphone to sense any activity, a noise level above the first value (5 in this
case) must be sustained for a specified number of milliseconds (1,000, or
1 second, in this case). This helps reduce the amount of background noise
captured by the microphone.

1	 var	mic:Microphone	=	Microphone.getMicrophone();
2	 mic.setLoopBack(true);
3	 mic.setUseEchoSuppression(true);
4	 mic.gain	=	80;
5	 mic.rate	=	11;
6	 mic.setSilenceLevel(5,	1000);

Despite echo suppression, if your microphone is close to your speakers (par-
ticularly when using a laptop with a built-in microphone), feedback can still
occur. Therefore, if you don’t need to hear the input, you may wish to set the
volume of the mic throughput to zero, as seen in lines 8 through 10. This is
not the same as muting, or deactivating, the microphone; it merely sets the
volume of the data recorded to an inaudible level.

7	 //transformation
8	 var	trans:SoundTransform	=	mic.soundTransform;
9	 trans.volume	=	0;
10	 mic.soundTransform	=	trans;

The next two dozen lines are optional and provide feedback about the mic to
the Output panel. If you’re not getting any results from your code, it’s helpful
to know what your microphone settings are. You may find that the mic is
muted, or has a 0 gain, or a high silence threshold.

You may also be able to check on the microphone’s responsiveness by check-
ing its silenceTimeout property. This is the number of milliseconds between
the time the microphone stops sensing input, and the time an inactivity event
is sent. (The event ActivityEvent.ACTIVITY is dispatched both when the
microphone starts and stops sensing activity.)

The listener created in lines 12 through 20 responds to the event, StatusEvent.
STATUS, which is triggered by any microphone status updates, such as when
the mic is muted or unmuted. Each time the listener function is triggered,
it checks to see whether the user has granted access to the mic, which
would be reflected by a Microphone.Unmuted status code (line 15). If so,

Part IV: Sound and Video324

Visualizing Microphone Input

the showMicInfo() function is called. If the received code is Microphone.
Muted (line 17), a trace says that access was denied.

11	 //mic	status
12	 mic.addEventListener(StatusEvent.STATUS,	onMicStatus
13	 																					false,	0,	true);
14	 function	onMicStatus(evt:StatusEvent):void	{
15	 				if	(evt.code	==	"Microphone.Unmuted")	{
16	 								showMicInfo();
17	 				}	else	if	(evt.code	==	"Microphone.Muted")	{
18	 								trace("Microphone	access	denied.");
19	 				}
20	 }
21	
22	 function	showMicInfo():void	{
23	 				var	sndInputs:Array	=	Microphone.names;
24	 				trace("Available	sound	input	devices:");
25	 				for	(var	i:int	=	0;	i	<	sndInputs.length;	i++)	{
26	 								trace("--",	sndInputs[i]);
27	 				}
28	 				trace("Selected	sound	input	device	name:",	mic.name);
29	 				
30	 				trace("Muted:",	mic.muted);
31	 				trace("Echo	suppression:",	mic.useEchoSuppression);
32	 				trace("Gain:",	mic.gain);
33	 				trace("Rate:",	mic.rate,	"kHz");
34	 				trace("Silence	level:",	mic.silenceLevel);
35	 				trace("Silence	timeout:",	mic.silenceTimeout);
36	 }

Another reason that you may not get the results you expect from microphone
input is if the wrong input has been selected, when multiple inputs are avail-
able. Lines 23 through 28 of the showMicInfo() function retrieve an array of
all available microphones, loop through the list and trace them, and finish
with the name of the currently selected microphone. This allows you to verify
that the desired mic is active.

Next, we begin to get into the visualization section of the file. This example
will plot a graph of microphone activity levels over time. To do this, we need
to use the Graphics class and draw lines from point to point, as discussed
earlier when covering the Waveform class. Lines 38 through 46 create a sprite
into which we can draw, clear the canvas, set a line style, and move the virtual
drawing pen to the far left of the stage at the y coordinate 300.

Notice that lines 43 through 45, the methods responsible for initializing the
canvas, are placed into a function and then called right away in line 47. This
may seem like an unnecessary step but the initCanvas() function will be
called again and again to reinitialize the canvas.

37	 //creating	a	canvas	to	draw	into
38	 var	canvas:Sprite	=	new	Sprite();
39	 var	g:Graphics	=	canvas.graphics;
40	 addChild(canvas);
41	
42	 function	initCanvas():void	{
43	 				g.clear();

Visualizing Microphone Input

Chapter 11: Sound 325

44	 				g.lineStyle(0,	0x6600CC);
45	 				g.moveTo(0,	300);
46	 }
47	 initCanvas();

As our last task, we draw the graph. We want this exercise to plot continually,
even if there is no activity, much like an EKG will run until it is stopped. So,
we’ll use a Timer event firing every 50 milliseconds to visualize the mic activ-
ity (lines 49 through 52). Line 54 initializes a variable that will be used for the
x coordinate of each point in the line.

The graph is drawn from point to point in line 56, using the same technique
discussed in the Waveform class. The x coordinate is advanced across the
screen, and the y coordinate is determined by subtracting the mic activity
level from a baseline. A maximum line height is not required here, however,
because the values output from the activityLevel property are between 0
and 100.

Finally, a conditional in lines 57 through 62 determines the x coordinate of
each point to which a line is drawn in the graph. Line 57 checks to see if the
x coordinate has exceeded the right side of the stage. If so, the xPos property
is reset to 0, the graph is cleared, and the graphing process begins anew from
the left side of the stage. If not, the graph continues to advance across the
stage 2 pixels at a time.

48	 //drawing	the	activity	graph
49	 var	myTimer:Timer	=	new	Timer(50);
50	 myTimer.addEventListener(TimerEvent.TIMER,	onTimer,	
51	 																									false,	0,	true);
52	 myTimer.start();
53	
54	 var	xPos:int	=	0;
55	 function	onTimer(ev:TimerEvent):void	{
56	 				g.lineTo(xPos,	300	-	mic.activityLevel);
57	 				if	(xPos	>	stage.stageRight)	{
58	 								xPos	=	0;
59	 								initCanvas();
60	 				}	else	{
61	 								xPos	+=	2;
62	 				}
63	 }

SampleDataEvent
Flash Player 10 significantly improves ActionScript’s sound processing capa-
bilities through the use of the SampleDataEvent.SAMPLE_DATA event. This
event is dispatched in two ways. The first is when a sound object requests
sound data. We’ll look at this circumstance at the end of the chapter when
we play back recorded input.

The second way this event is used is when the microphone receives input.
Every time audio samples become available to the microphone, the event is
dispatched and you can process the incoming data. The following example,

NOTE

See the “Timer Events” section of
Chapter 3 for more information.

Part IV: Sound and Video326

Visualizing Microphone Input

found in the microphone_sample_data_event.fla source file, visualizes micro-
phone input by drawing a waveform at runtime.

Lines 1 through 5 create a sprite canvas into which we’ll draw our visualiza-
tion. Line 3 positions it horizontally, 20 pixels from the left of the stage, and
line 4 centers the visualization vertically. Line 5 scales the canvas to 25 per-
cent of its original size. We’ll tell you why in a moment when we discuss the
size of the waveform we’re drawing.

Line 8 creates an instance of the microphone, and line 9 sets its sample
rate to 44.100 kHz. Lines 10 and 11 create a microphone event listener that
responds to the SAMPLE_DATA event. Each time sample data is received by the
microphone, the onMicData() function (lines 13 through 22) is called. This
function uses the same techniques described when visualizing spectrum
data and microphone activity level, with a few notable exceptions that we’ll
explain after the code.

1	 var	canvas:Sprite	=	new	Sprite();
2	 var	g:Graphics	=	canvas.graphics;
3	 canvas.x	=	20;
4	 canvas.y	=	stage.stageHeight	/	2;
5	 canvas.scaleX	=	canvas.scaleY	=	0.25;
6	 addChild(canvas);
7	
8	 var	mic:Microphone	=	Microphone.getMicrophone();
9	 mic.rate	=	44;
10	 mic.addEventListener(SampleDataEvent.SAMPLE_DATA,	onMicData,
11	 																					false,	0,	true);
12	
13	 function	onMicData(evt:SampleDataEvent):void	{
14	 				var	xPos:Number	=	0;
15	 				g.clear();
16	 				g.lineStyle(1,	0x0000FF);
17	 				
18	 				while(evt.data.bytesAvailable)	{
19	 								g.lineTo(xPos,	evt.data.readFloat()	*	200);
20	 								xPos++;
21	 				}
22	 }

First, we’re not calculating sound bytes using the computeSpectrum() meth-
od. Instead, bytes are being provided by the event, and we’re referencing the
byte array in which they’re stored through the event’s data property.

Second, we’ve simplified access to the byte array by looping through all avail-
able bytes. This is possible because the byte array readFloat() method auto-
matically increments through the data, as discussed in the “Sound Spectrum
Data” section of this chapter. So, as long as the event has bytes that have not
yet been read, the loop will continue. When all bytes have been checked, the
loop concludes and the next event is processed.

Finally, although the actual drawing of the waveform (line 19) is consistent
with prior examples, it does influence the scale setting we used in line 5.
There’s nothing different about the use of the lineTo() method in this
example. We’re still incrementing the x coordinate of each point every time

Recording, Playing, and Saving Microphone Input

Chapter 11: Sound 327

through a loop, and we’re still determining the y coordinate of each point by
multiplying an amplitude float from the byte array by a maximum possible
wave height.

However, the number of samples used by the microphone dictates how many
points are drawn. When recording or generating audio, you can typically
work with between 2048 and 8192 samples (bytes) per SAMPLE_DATA event.
The higher the number of samples, the better your sound. The number of
samples used is determined by the rate property of the microphone. Table
11-3 shows the correlation between the digital sample rate and the number
of samples used.

We set the mic rate property to 44 in line 9, which means 8192 samples are
used every time onMicData() is called. Because we need floats, not bytes, the
readFloat() method advances through the available bytes four at a time.
This means that we end up with 2048 points each time the waveform is plot-
ted. So, to fit the waveform within the default stage width of 550 pixels, we
scale the canvas sprite down to 25 percent.

When testing your file, after you grant access to the microphone, the SWF
will draw a single waveform in the center of the screen when microphone
input is received, as shown in Figure 11-11.

Figure 11-11. A microphone input waveform, using SampleDataEvent

Recording, Playing, and Saving
Microphone Input
The following exercise covers new features introduced with Flash Players 10
and 10.1 and requires Flash Player 10.1 or later to function. In this example,
you’ll capture mic input and play it back without a sound file to work from.
You’ll also use the ByteArray to save the data as a WAV file.

The source code consists of two classes: RecordMicrophone, which is
part of the learningactionscript3 package (in the sound directory), and
RecordMicrophone_Example, which is a document class that accompanies
the RecordMicrophone_Example.fla. The document class simply sets up a user
interface with five buttons that are used to control the RecordMicrophone
class. The RecordMicrophone class contains the core functionality of the
exercise and is where we’ll start.

NOTE

When recording microphone input, you
can actually work with 1024 samples
per SAMPLE_DATA event, by using a
microphone rate of 8 or 5. However,
we recommend against it. We suggest
using a rate of 44, resulting in 8192
samples per event, but a rate of 11, for
2048 samples per event, should be a
minimum.

Notably, the fewer samples you use,
the higher the likelihood of introducing
audio artifacts like clicks and pops into
your sound. In fact, when generating
sounds from code, you can’t even use
fewer than 2048 samples.

Table 11-3. Microphone sample rates
and the number of samples recorded
per SAMPLE_DATA event

Mic rate Sample Rate
Samples
Used

44 44.100 kHz 8192

22 22.050 kHz 4096

11 11.025 kHz 2048

8 8.000 kHz 1024

5 5.512 kHz 1024

NOTE

See “Storing and retrieving sound spec-
trum data” earlier in the chapter for
more information about the ByteArray
class and readFloat() method.

Pu
sh

 Yourself!

Part IV: Sound and Video328

Recording, Playing, and Saving Microphone Input

Flash Professional users can try the exercise by testing the FLA, but you’ll
need version CS5 to compile. If you’re using another ActionScript editor,
we’ve written the RecordMicrophone_Example class to extend MovieClip so
it can easily be used as an application class.

RecordMicrophone Class
Relying heavily on event-driven sample processing, RecordMicrophone is a
utility class that provides the minimum required to effectively record, play,
and save microphone input. During recording, it adds an event listener to the
microphone to listen for the SAMPLE_DATA event, and will capture any input
that is fed to the mic.

During playback, it again creates an event listener to listen for the SAMPLE_
DATA event but, this time, the listener is added to the Sound object. In this
case, the listener plays any sample data that is sent to the sound object, gen-
erating the sound dynamically at runtime.

Because both processes are event-driven, adding and removing these listeners
essentially switches on and off the two functions. Stopping recording or play-
back, for example, removes the corresponding listener, and listeners are recre-
ated each time the record or play button is used. Now let’s look at the code.

Lines 1 through 10 establish the package path of the class, and import all
required additional classes. Note that we’re using another class from Adobe’s
as3corelib package, and the FileReference class, discussed in the “Image
Encoding and Saving” section of Chapter 9. The WAVWriter class encodes
bytes of sound data as a WAV file and, as of Flash Player 10 and later, the
FileReference class saves a file to your hard drive.

Lines 12 through 17 declare the class and class properties. The _mic property
holds an instance of the microphone. The _sndBytes property contains a byte
array of all microphone input, _snd is a Sound instance that we can use to
play back what we record, and _channel references the sound channel into
which the Sound object is played.

Lines 19 through 28 include the class constructor and setupMicrophone()
method. The latter is a basic microphone initialization method that creates
an instance of the microphone and sets three simple mic properties discussed
previously in the chapter.

1	 package	com.learningactionscript3.sound	{
2	 				
3	 				import	flash.events.Event;
4	 				import	flash.events.SampleDataEvent;
5	 				import	flash.media.Microphone;
6	 				import	flash.media.Sound;
7	 				import	flash.media.SoundChannel;
8	 				import	flash.net.FileReference;
9	 				import	flash.utils.ByteArray;
10	 				import	com.adobe.audio.format.WAVWriter;
11	 				

NOTE

As you look over the
RecordMicrophone class in the com-
ing pages, note which methods are pub-
lic and which are private. Their designa-
tion will affect which methods we can
call from our second class, which builds
the example interface.

NOTE

The RecordMicrophone class doesn’t
extend anything because no inheri-
tance is required. We don’t need to add
instances of this class to the display list,
for example, or inherit the accessible
properties, methods or events of a par-
ent class.

Recording, Playing, and Saving Microphone Input

Chapter 11: Sound 329

12	 				public	class	RecordMicrophone	{
13	 				
14	 								private	var	_mic:Microphone;
15	 								private	var	_sndBytes:ByteArray;
16	 								private	var	_snd:Sound	=	new	Sound();
17	 								private	var	_channel:SoundChannel	=	new	SoundChannel();
18	 								
19	 								public	function	RecordMicrophone()	{
20	 												setupMicrophone();
21	 								}
22	 								
23	 								public	function	setupMicrophone():void	{
24	 												_mic	=	Microphone.getMicrophone();
25	 												_mic.rate	=	44;
26	 												_mic.setSilenceLevel(0);
27	 												_mic.setUseEchoSuppression(true);
28	 								}

Recording microphone input at runtime
Lines 30 through 45 contain the code needed to start and stop recording.
When the public startRecording() method is called from a button we’ll
create later, a new byte array is created to hold the new recording. Lines 33
and 34 add a SAMPLE_DATA event listener to the mic to prepare it for capturing
input. First, however, line 32 checks to see if the listener doesn’t already exist.
This is a very useful technique to prevent the accidental creation of redun-
dant listeners and makes it easier to remove listeners and manage memory
and performance issues.

The getMicData() method in lines 38 through 40 is the aforementioned lis-
tener method and does nothing more than write incoming bytes to the byte
array. It’s private because it’s only accessed by the listener, not from outside
the class. The last method in this block, stopRecording() in lines 42 through
45, removes the SAMPLE_DATA listener, to stop the recording process. This, too,
is public so a stop recording button in a user interface can call the method.

29	 								//start	and	stop	recording
30	 								public	function	startRecording():void	{
31	 												_sndBytes	=	new	ByteArray();
32	 												if(!_mic.hasEventListener(SampleDataEvent.SAMPLE_DATA)){
33	 																_mic.addEventListener(SampleDataEvent.SAMPLE_DATA,
34	 																																						getMicData,	false,	0,	true);
35	 												}
36	 								}
37	 								
38	 								private	function	getMicData(evt:SampleDataEvent):void	{
39	 												_sndBytes.writeBytes(evt.data);
40	 								}
41	 								
42	 								public	function	stopRecording():void	{
43	 												_mic.removeEventListener(SampleDataEvent.SAMPLE_DATA,	
44	 																																					getMicData);
45	 								}

NOTE

Note that the RecordMicrophone con-
structor does nothing but call the meth-
od setupMicrophone(). Why, then,
isn’t the content of the latter method
just placed inside the constructor?

Remember that a constructor executes
immediately upon instantiation but is
not typically called again. By moving
the setup routine to its own method, you
can setup your microphone any time
you like. What’s more, by making the
method public, you can setup the mic
from another part of your project, such
as a button or frame script, if desired.
The constructor calls this method, too,
to enable recording the moment the
RecordMicrophone class is instanti-
ated.

NOTE

Although helpful when adding listeners,
checking to see if a listener is present
before removing it is not required. The
removeEventListener() method is
designed to have no effect if the listener
doesn’t already exist.

Part IV: Sound and Video330

Recording, Playing, and Saving Microphone Input

The next three methods control recording playback. The playSound()
method in lines 47 through 58 starts the process. After checking to see if a
SAMPLE_DATA listener doesn’t already exist in line 48, the listener is added
in lines 49 through 51. This is the mechanism used to enable playback of a
dynamically generated sound. When we used this event with the microphone,
the listener listened for incoming data to record. When we use the event to
generate a new sound, the sound object listens for data to play.

The byte array is then reset in line 52 to enable playback. Remember that
the byte array automatically increments itself as its used. So, when you finish
populating or playing a byte array, its position will be at the end of the file. If
not reset, the byte array will have nothing to play.

The sound is then played into a channel in line 53, and a COMPLETE event
listener is added to the channel in lines 54 through 56.

Writing sound data dynamically at runtime
The playbackData() method is an example of generating sound at runtime.
Instead of playing an internal audio file, or a loaded MP3, bytes from the
captured microphone input are fed to the Sound object in real time.

When generating sound dynamically, you must feed the Sound object between
2048 and 8192 samples at a time. The greater the number of samples, the less
likely you are to hear pops, clicks, or other audio artifacts.

Because you can’t be sure of the amount of microphone input you’ll receive,
you need to process as many samples as are required to play back the sound.
As a safeguard against running out of data prematurely and generating an
error, we need to be sure we have enough data to accomplish our immediate
goal. In this case, we need to write floats from the mic to a Sound object, so
we’ll be using the writeFloat() method to turn 4 bytes into a float.

So before proceeding, line 62 first checks to be sure there are at least 4 bytes
in the mic data to create a float. If so, line 63 creates the sample. Because the
mic input is mono, and the sound object contains stereo channels, the sample
must be written twice—once for each channel. This will create a mono sound
with the same data in both left and right channels. As the mic data is written
to the sound object, we hear the sound play. Next we need to understand two
circumstances under which playback is halted.

Stopping playback
The onPlayComplete() method in lines 70 through 75 remove the listeners
from the sound and sound channel objects, readying them for reuse. This
function is triggered when the sound has played fully and stops on its own.
We need similar behavior when the user stops playback.

This is accomplished with the stopPlaying() function in lines 77 through
80. In addition to stopping the channel playback manually, it also calls
the onPlayComplete() method to remove the active listeners. Rather than

NOTE

When using higher numbers of samples,
the chance of latency—the delay
between interacting with a sound and
hearing the result—also increases.
Unfortunately, latency is the hardest
thing to conquer when processing sound
in Flash Player, and the problem is
related to your computer operating sys-
tem performance. We recommend start-
ing with 8192 samples when generating
audio and scaling back when required.
See http://help.adobe.com/en_US/
as3/dev/WSE523B839-C626-4983-
B9C0-07CF1A087ED7.html for more
information.

http://help.adobe.com/en_US/as3/dev/WSE523B839-C626-4983-B9C0-07CF1A087ED7.html
http://help.adobe.com/en_US/as3/dev/WSE523B839-C626-4983-B9C0-07CF1A087ED7.html
http://help.adobe.com/en_US/as3/dev/WSE523B839-C626-4983-B9C0-07CF1A087ED7.html

Recording, Playing, and Saving Microphone Input

Chapter 11: Sound 331

repeating this code, the event listener method is called, passing the default
event value of null to avoid an argument count mismatch error. (See the
“Pausing Sounds and Resuming Playback” section for more information.)

46	 								//play	recording
47	 								public	function	playSound():void	{
48	 												if(!_snd.hasEventListener(SampleDataEvent.SAMPLE_DATA)){
49	 																_snd.addEventListener(SampleDataEvent.SAMPLE_DATA,
50	 																																						playbackData,	
51	 																																						false,	0,	true);
52	 																_sndBytes.position	=	0;
53	 																_channel	=	_snd.play();
54	 																_channel.addEventListener(Event.SOUND_COMPLETE,	
55	 																																										onPlayComplete,	
56	 																																										false,	0,	true);
57	 												}
58	 								}
59	 								
60	 								private	function	playbackData(evt:SampleDataEvent):void	{
61	 												for	(var	i:int	=	0;	i	<	8192;	i++)	{
62	 																if	(_sndBytes.bytesAvailable	>=	4)	{
63	 																				var	sample:Number	=	_sndBytes.readFloat();
64	 																				evt.data.writeFloat(sample);	
65	 																				evt.data.writeFloat(sample);	
66	 																}	
67	 												}																
68	 								}
69	 								
70	 								private	function	onPlayComplete(evt:Event):void	{
71	 												_snd.removeEventListener(SampleDataEvent.SAMPLE_DATA,
72	 																																					playbackData);
73	 												_channel.removeEventListener(Event.SOUND_COMPLETE,
74	 																																									onPlayComplete);
75	 								}
76	 								
77	 								public	function	stopPlaying():void	{
78	 												_channel.stop();
79	 												onPlayComplete(null);
80	 								}

Finally, lines 82 through 96 contain the saveFile() method, which we’ll use
for encoding and saving the recording as a WAV file. Line 83 first checks to be
sure the byte array contains content to save. If it does, line 84 again resets the
byte array’s position to the beginning of the sound data, and line 86 creates
a byte array to contain the newly encoded data. Line 88 creates an instance
of Adobe’s WAVWriter class to initialize a new WAV file, and line 89 sets its
encoding channel count to 1 (mono) instead of the default 2 (stereo).

Line 90 encodes the data from the recording byte array _sndBytes and stores
it in the new byte array, outputStream. It also specifies the incoming sample
rate and number of channels for the encoding process. You must match the
incoming sample rate and number of channels with the corresponding values
used for the WAVWriter instance to avoid resampling or errors during the
encoding process.

NOTE

WAVWriter uses a default bit depth
of 16-bit, and a default sample rate
of 44.100 kHz. If you use a different
sample rate in your microphone settings,
you must assign the samplingRate
property of the WAVWriter class to
match.

For example, if your mic rate property
were 22, you would set the WAVWriter
instance samplingRate property to
22050. (It’s measured in Hz, not kHz.)
If you save a stereo sound you can use
the default numOfChannels value of
2, but remember that the ActionScript
Microphone class records in mono.

Part IV: Sound and Video332

Recording, Playing, and Saving Microphone Input

The last part of the function is to instantiate the FileReference class and
use its save() method to save the newly WAV-encoded byte array data with
a default file name of recording.wav. The user’s operating system will prompt
for a save location during the save. This is the same process we used to save a
PNG in the “Image Encoding and Saving” section of Chapter 9, and requires
Flash Player 10.

81	 								//save	recording	to	WAV								
82	 								public	function	saveFile():void	{
83	 												if	(_sndBytes.length	>	0)	{
84	 																_sndBytes.position	=	0;
85	
86	 																var	outputStream:ByteArray	=	new	ByteArray();
87	 												
88	 																var	wavWriter:WAVWriter	=	new	WAVWriter();
89	 																wavWriter.numOfChannels	=	1;
90	 																wavWriter.processSamples(outputStream,	_sndBytes,	
91	 																																									44100,	1);	
92	 												
93	 																var	fileRef:FileReference	=	new	FileReference();
94	 																fileRef.save(outputStream,	"recording.wav");
95	 												}
96	 								}
97	 				}
98	 }

RecordMicrophone_Example Class
This class sets up a simple five-button interface to put the RecordMicrophone
class to work. It extends MovieClip so it can be used as a document class or
application class so that an FLA is not mandatory to try the exercise.

Lines 1 through 9 are standard fare, with the only additional notable men-
tion being that we’re using the RoundRectButton class to create our but-
tons. Lines 11 and 12 declare class properties to store an instance of the
RecordMicrophone class and microphone, respectively.

Line 15 creates the RecordMicrophone instance, and lines 17 through 34
create five buttons to record, stop recording, play, stop playing, and save the
recording, respectively. Using a method to create multiple buttons is the same
approach used in the “Playing, Pausing, and Resuming Sounds” section of
this chapter.

The remainder of the class consists of event listener methods triggered by
the buttons. They do nothing but call the equivalent public methods of the
RecordMicrophone class.

1	 package	{
2	 				
3	 				import	flash.display.MovieClip;
4	 				import	flash.media.Microphone;
5	 				import	flash.events.MouseEvent;
6	 				import	com.learningactionscript3.ui.RoundRectButton;
7	 				import	com.learningactionscript3.sound.RecordMicrophone;
8	 				

What’s Next?

Chapter 11: Sound 333

9	 				public	class	RecordMicrophone_Example	extends	MovieClip	{
10	 								
11	 								private	var	_sm:RecordMicrophone;
12	 								private	var	_mic:Microphone;
13	 								
14	 								public	function	RecordMicrophone_Example()	{
15	 												_sm	=	new	RecordMicrophone();
16	 												
17	 												createButton(25,	"Record",	startRecording);
18	 												createButton(50,	"Stop	Recording",	stopRecording);
19	 												createButton(75,	"Play",	playRecording);
20	 												createButton(100,	"Stop	Playing",	stopPlaying);
21	 												createButton(125,	"Save	Recording",	saveRecording);
22	 								}
23	 								
24	 								private	function	createButton(yLoc:Number,	labl:String,	
25	 																																						func:Function):void	{
26	 												var	btn:RoundRectButton	=	
27	 																new	RoundRectButton(120,	20,	10,	2,	0x000099,
28	 																																				labl,	0xFFFFFF);
29	 												btn.x	=	20;
30	 												btn.y	=	yLoc;
31	 												btn.addEventListener(MouseEvent.CLICK,	func,	
32	 																																	false,	0,	true);
33	 												addChild(btn);
34	 								}
35	 								
36	 								private	function	startRecording(evt:MouseEvent):void	{
37	 												_sm.startRecording();
38	 								}
39	 								
40	 								private	function	stopRecording(evt:MouseEvent):void	{
41	 												_sm.stopRecording();
42	 								}
43	 								
44	 								private	function	playRecording(evt:MouseEvent):void	{
45	 												_sm.playSound();
46	 								}
47	 								
48	 								private	function	stopPlaying(evt:MouseEvent):void	{
49	 												_sm.stopPlaying();
50	 								}
51	 								
52	 								private	function	saveRecording(evt:MouseEvent):void	{
53	 												_sm.saveFile();
54	 								}		
55	 				}
56	 }

What’s Next?
This chapter covered quite a bit of ground regarding ActionScript control of
sound, but there is much left to explore and many fun experiments left to
try. The companion website for this book can serve as a starting point for this
ongoing study. The website includes a more elaborate object-oriented example
akin to a desktop sound mixer, in which you can mix three sound files.

Part IV: Sound and Video334

What’s Next?

The site also includes examples of how to generate sound from scratch and
how to extract sound from MP3 files and use the extracted sample.

Next, we make the logical jump to another media type: video. We’ll not only
demonstrate how to deliver Flash video in a number of ways—including both
with components and ActionScript-only solutions—but we’ll also briefly
discuss how to encode videos into a Flash-compatible format.

In the next chapter, we’ll discuss:

• Using components for video playback requiring little to no ActionScript

• Writing your own simple ActionScript-only video player to reduce file size

• Displaying video in a browser in true full-screen resolution

• Adding captions to video playback

learningaction-
script3 Package
This chapter’s contribution to the
learningactionscript3 package
includes the Waveform visualization
class discussed in the “Sound
Spectrum Data” section of this
chapter, the PeakMeter class,
mentioned in the “Creating More
Expressive Peak Meters Using Masks”
sidebar, and the RecordMicrophone
class covered in this chapter’s “Push
Yourself” section.

335

IN THIS CHAPTER

Encoding

Components

Full-Screen Video

Captions

Writing Your Own Player

What’s Next?

These days, you have to live under a rock not to repeatedly hear how preva-
lent Flash Platform video solutions are. Video playback is largely responsible
for dramatic increases in Flash Player use over the past several years, and
Flash Player is now the first choice for the world’s largest video delivery site,
Google’s YouTube. Flash is estimated to drive more than 75 percent of all
Internet video playback, in part because Flash Player is installed on more
than 99 percent of computers in the world market, and in part because it’s
among the most reliable and easy to use cross-platform video technologies.

At the time of this writing, Flash video has also been the subject of much
debate as it faces challenges from emerging interest in the next phase of
HTML development, HTML5. Although HTML5 is not expected to be rati-
fied as an official standard for some time (many theorize that wide browser
adoption may not happen until 2011 or 2012, but that ratification could
happen as late as 2022), the allure of video playback without reliance on a
browser plug-in is already attracting attention.

In this debate much has been made of replacing the proprietary Flash video
format, FLV, with other open video formats. However, although support for
video playback within HTML5 is improving, no video file format is cur-
rently part of the HTML5 specification. At present, which codec (the software
algorithm used to compress and decompress video) to support is decided
by the makers of software that renders HTML5, such as the developers of
today’s web browsers. This potential incompatibility risks continuing some
of the decidedly nonstandard ways of creating rich media that have plagued
developers for years and, some believe, make the consistency of ActionScript
development even more compelling.

Furthermore, in addition to the FLV format, Flash Player can play one of
today’s most widely used video standards, H.264—the codec most com-
monly used in the MP4 video format popularized by personal video players.
This flexibility makes the Flash Platform even more enticing as a playback
technology independent of the available video format used.

vIdeo

CHAPTER 12

Part IV: Sound and Video336

Encoding

In this chapter, we’ll leave the fortune telling and politics for another forum
and focus instead on using ActionScript to play both FLV- and H.264-
encoded videos. We’ll discuss:

• Encoding. Encoding is the process of converting video assets to a format
compatible with your delivery system, in this case Flash Player, and typi-
cally involves compressing the video to reduce its file size. The scope of
this book doesn’t allow us to delve extensively into video encoding, but a
little background will be enough to get you started.

• Components. It’s easy to get going with Flash video by using the
FLVPlayback component. Components combine user interface assets
with ActionScript to create ready-to-use widgets for specific tasks. The
FLVPlayback component contains everything you need for basic video
playback.

• Full-Screen Video. We’ll discuss the steps required to present your
video in a true full-screen environment, where your video fills the screen
entirely—rather than just filling a browser window.

• Captions. Adding captions to your video becomes a basic task with
another component and a basic XML file. The FLVPlaybackCaptioning
component simplifies accessibility efforts by supporting external caption
files that can be loaded at runtime. We’ll introduce the Timed Text caption
file format and show you how to use it to easily add captions to videos
controlled by the FLVPlayback component.

• Writing Your Own Player. Although components are valuable tools, we
also want to show you how to create simple video playback functional-
ity strictly with code. Eliminating the use of components means you can
make use of video content without any internal assets and reduce your
SWF file size in the process.

Encoding
Before you can control video with ActionScript, you need to encode video
source material into a format that’s compatible with Flash Player. Encoding
is a big topic that entails finding a sometimes complex balance between qual-
ity, video dimensions, and file size. As we are focusing on ActionScript, any
in-depth discussion of encoding subtleties is beyond the scope of this book,
but we’ll show you how to create a video that’s compatible with Flash Player.

Three popular encoding applications are Adobe Media Encoder (AME),
Wildform Flix Pro, and Sorenson Media Squeeze. In this text, we’ll focus
on Media Encoder, as it is installed free with the purchase of Adobe Flash
Platform tools. However, the commercial products from Wildform and
Sorenson Media offer additional features, and the book’s companion website
contains information about both products.

NOTE

The correct terminology is to say that
the title element is nested within the
head element. We’ll talk about nesting
more in later chapters.

NOTE

For comprehensive discussions about
encoding and all things Flash video,
consult the excellent Video with
Adobe Flash CS4 Professional Studio
Techniques (Adobe Press), by Robert
Reinhart.

Encoding

Chapter 12: Video 337

Let’s start with the basics of Media Encoder. The application’s interface is
quite simple, opening to little more than a field that holds a list of files for
encoding and a single active Add button. Media Encoder supports batch
encoding, allowing you to add several files to a queue for processing. You can
add to the queue by dragging the source into the field or using the Add but-
ton to browse for your file.

Once you’ve added a file to the queue, you can immediately choose an output
file format from the Format menu, one of many encoding presets from the
Preset menu, and the location of the output file by clicking on the link in the
Output File column. Figure 12-1 shows a detail of the initial interface, includ-
ing a single file in the encoding queue.

Figure 12-1. Detail of the Adobe Media Encoder CS5 encoding queue

Formats
Media Encoder supports encoding to a wide array of video file types for use
with other applications as well as Flash Player. The two file types optimized
for Flash Player are FLV and F4V. Supported by Flash Player for several years,
FLV is a proprietary video format (also sometimes called a container or wrap-
per). Two codecs can be used within an FLV container, Spark and VP6, but
we’ll focus on VP6-encoded FLVs in our discussions. F4V is the file format for
H.264-encoded video in an MP4 container. This format is an adaptation of
MPEG-4, based on Apple’s QuickTime container (see http://en.wikipedia.org/
wiki/MPEG-4_Part_14 for more information), and was introduced with Flash
Player 9 Update 3 (version 9,0,115,0) in December 2007.

The first consideration when choosing a video format is which Flash Player
you wish to target. If you must target a Flash Player version prior to 9,0,115,0,
you will need to use FLV. If you plan to publish for later Flash Player versions,
you have the freedom to choose FLV or F4V.

Another deciding factor is whether or not you need cue points. Embedded
within the video during encoding or assigned with ActionScript, cue points
are markers that can trigger events when reached during playback. Although
both video formats now support cue points, this again comes down to which
version of Flash Player you want to target. Cue points have been supported in
FLV files since Flash Player 8, but were added to F4V files in Flash Player 10.

Beyond the constraints of Flash Player compatibility, each file format has its
strengths. FLV supports alpha channels for transparency in your video and
performs better on weaker computers. The H.264 codec and MP4 container

NOTE

Although it’s possible to use the
Spark codec to encode FLV files that
are compatible from Flash Player 6
onward, the VP6 codec, introduced with
Flash Player 8, is superior in nearly
every way. Furthermore, as this is an
ActionScript 3.0 text, we are focusing on
Flash Player 9 and later, so we’ll assume
that FLV files are encoded using the
VP6 codec for these discussions.

NOTE

There are no statistics available for
the installed user base of interim Flash
Player releases but, as of June 2010, col-
lective versions of Flash Player 9 have
a 99.2 percent market penetration, and
collective versions of Flash Player 10
have a 97.5 percent market penetra-
tion. (Both statistics apply to mature
world markets, and you can find more
information at http://www.adobe.com/
products/player_census/flashplayer/
version_penetration.html.) Therefore, it’s
safe to say that Flash Player 9 Update
3, the first version capable of playing
H.264-encoded video, has a market pen-
etration higher than 97.5 percent.

http://en.wikipedia.org/wiki/MPEG-4_Part_14
http://en.wikipedia.org/wiki/MPEG-4_Part_14
http://www.adobe.com/products/player_census/flashplayer/version_penetration.html
http://www.adobe.com/products/player_census/flashplayer/version_penetration.html
http://www.adobe.com/products/player_census/flashplayer/version_penetration.html

Part IV: Sound and Video338

Encoding

used when encoding F4V files are very widely implemented making it easier
to reuse videos with non-Flash projects. This latter point is especially impor-
tant if you work with a large library of existing MP4 video assets, as they
most likely won’t need to be reencoded to be compatible with Flash Player.

NOTE

An H.264-encoded video need not have an .f4v extension to work in Flash Player.
Extensions such as .mp4, .m4v, and .mov will work as long as the video is encoded
correctly. It’s a good idea to test your videos for compatibility as early as you can
because it’s possible to use the H.264 codec without encoding into a compatible MP4
container. This is particularly important when you haven’t encoded the video files
yourself.

For maximum compatibility with Flash Professional CS3 through CS5 and
support for all versions of Flash Player 9, we’ll work with FLV files in this
chapter, but feel free experiment with whichever one you choose. You can
make that decision in a moment, when we get to encoding presets. For now,
after adding your source video to the interface, select FLV | F4V from the
Format menu, as shown in Figure 12-2.

Presets
The next step is to pick an encoding preset. There are almost 50 presets that
apply to FLV or F4V files, configured to suit multiple quality settings, resolu-
tions, frame dimensions, and even playback mediums (web or mobile, for
example). Figure 12-3 shows a detail of the Preset menu, and selecting a preset
that will encode the video to dimensions of 320 × 240, maintain a 4 × 3 aspect
ratio, use the source material’s frame rate, and compress to a data bitrate (the
recommended minimum amount of data used when encoding the video)
of 500 kilobits per second. This is a pretty good starting point for your
first encoding test. It’s also a good idea to compare your results with output
encoded with other presets if you require a smaller file size or better quality.

Figure 12-3. Detail from the Preset menu; selecting an encoding preset from the
approximately four dozen that ship with Media Encoder

Figure 12-2. Selecting a video format from
Media Encoder’s format menu

NOTE

Robert Reinhart has created a very use-
ful bitrate calculator for compressing
FLV files. You can enter concrete data
like dimensions, audio sample rate, and
whether you’re using stereo or mono
sound, as well as qualifying information
like how much motion is in the video,
and it will give you a recommended
bitrate to use when encoding. The calcu-
lator can be found at http://blogs.flash-
support.com/robert/?p=138.

http://blogs.flashsupport.com/robert/?p=138
http://blogs.flashsupport.com/robert/?p=138

Encoding

Chapter 12: Video 339

Customizing Settings
If you’re not content with a preset, or if you have additional needs (such as
resizing the source), you can click on the Settings button to customize the
settings. (You can even save your customizations as a preset of your own.)
Figure 12-4 shows the Settings interface. The upper left quadrant allows you
to see various sizes of the source material, as well as crop the source prior to
encoding. The bottom left quadrant allows you to create cue points that will
be embedded in the video during encoding. Between those areas is the video
timeline, which you can use to preview the video and set in and out points if
you wish to compress only a portion of the video.

Figure 12-4. The Settings interface of Adobe Media Encoder (CS5 pictured)

The upper right quadrant is a general settings area that allows you to choose
the file format, encoding preset, and output directory, as well as show a sum-
mary of the settings applied by the chosen preset. The lower right quadrant
contains more specific settings including video and audio encoding options,
and the ability to apply a blur during encoding.

Part IV: Sound and Video340

Components

For more information about Adobe Media Encoder, see the Using Adobe
Media Encoder CS5 resource at http://help.adobe.com/en_US/mediaencoder/
cs/using/index.html. Information about embedding cue points during encod-
ing can be found in the “Encoding and exporting” section of this resource.
The companion website has additional information about creating cue
points—both during encoding and at runtime through ActionScript when
using the FLVPlayback component.

Starting the Queue
Once a preset is selected, all you need to do is press the Start Queue button.
Adobe Media Encoder will encode the file and save it in the location specified
in the Output File column. (The default location for the output is the same
directory in which the source file resides.)

Components
Components offer designers and coders alike a chance to speed up the
development process by using precreated widgets. Components usually
combine ActionScript and assets to make it easier to achieve a specific goal.
Components can be dropped onto the stage like a movie clip or button sym-
bol and often function with little or no intervention. When effort is required,
most components can be configured using the Flash Professional CS5
Properties panel or Flash Professional CS3 or CS4 Components Inspector
panel.

Most components can also be manipulated with ActionScript, which is what
we’ll focus on in this section. Before working with any component, however,
Flash Professional users must place the component in the library of the
FLA file that will compile to SWF. Simply drag any component from the
Components panel to the Library panel, or drag it to the stage and delete it
immediately. In this chapter, we’ll work with three different components. First,
we’ll add the FLVPlayback component as a prefabricated video player. Next,
we’ll add captioning support to the player with the FLVPlaybackCaptioning
component. Finally, we’ll add a Button component to satisfy a simple user
interface need.

Working with the FLVPlayback Component
The fastest way to add video to your ActionScript application is by using the
FLVPlayback component (Figure 12.5). The component is available in two fla-
vors. FLVPlayback is available to Flash Professional users of version CS3 and
later, and FLVPlayback 2.5 was introduced with version Flash Professional
CS4 and is also available for Flex.

NOTE

By default, Adobe Media Encoder will
start processing the assets in the encod-
ing queue after two minutes of idle time.
This behavior can be adjusted in the
application preferences.

http://help.adobe.com/en_US/mediaencoder/cs/using/index.html
http://help.adobe.com/en_US/mediaencoder/cs/using/index.html

Components

Chapter 12: Video 341

Figure 12-5. The FLVPlayback component simplifies adding video to projects

In addition to Flex compatibility, FLVPlayback 2.5 was designed to take
advantage of features introduced in version 3.5 of Flash Media Interactive
Server—Adobe’s streaming media and real-time communication server
software. It improves performance for video on demand and live streaming
and supports live DVR functionality (pausing, rewinding, and recording live
streams) introduced in FMS 3.5.

If you prefer to avoid components—perhaps because you want to design your
own player interface, or because components increase the size of your SWF
(the FLVPlayback component contributes between 50k and 65k)—we’ll show
you how to play video entirely with ActionScript shortly. If you’re open to the
use of components, however, FLVPlayback has a few useful benefits.

First, you can pick from several preconfigured controllers, or skins, or you
can use the component without a skin and create your own custom control-
ler. This lets the component handle all the heavy lifting in the video display
area, but allows you to control playback with your own code and your own
design. (We’ll show you a very simple implementation of this approach later
in the chapter.)

More importantly, the code in the FLVPlayback component takes care of
some important behind-the-scenes tasks that you would have to recreate.
For example, the component will automatically determine if you’re using a
streaming server by parsing the URL of the video source. If so, it will then

NOTE

You may notice in further research
that Flash Media Interactive Server is
typically abbreviated as FMS. This is
because “interactive” was added to the
product’s name only in recent versions.

Part IV: Sound and Video342

Components

handle the necessary initial communication with the streaming server for you
so you don’t have to script those connections yourself.

We advise starting out with the FLVPlayback component, even if you choose
to create your own controller. Then you can move on to coding your own
player to replace the component after you’re comfortable with the relevant
classes.

Scripting the component
The following example, found in the video_comp.fla source file, demonstrates
the minimum code necessary to play a video.

1	 import	fl.video.FLVPlayback;
2	
3	 var	vid:FLVPlayback	=	new	FLVPlayback();
4	 vid.source	=	"nero.flv";
5	 addChild(vid);

Note in line 1 that the FLVPlayback class must be imported even in the time-
line because it’s not part of the flash package. (Most component classes are
found in the fl package and are not automatically part of the Flash Player to
keep the player size small.) Line 3 types the instance variable and instantiates
the component. Line 4 populates the source property (telling the component
which video to play), and line 5 adds the instance to the display list.

Skinning the component
To add controls simply, we can use a skin that ships with the component.
FLVPlayback skins are external SWFs that are loaded at runtime. Therefore,
to add a skin with ActionScript, you must know the path to the skin.

Fortunately, Flash Professional users can take advantage of the fact that Flash
will move your chosen skin to the same directory as your SWF when you
test your file. To choose a skin, save your FLA, or create a new temporary
file and save that, to the directory you’re using for your project. Temporarily
drag the component from your file’s library to the stage and select it. Flash
Professional CS5 users can then look in the Component Parameters section
of the Properties panel (shown in Figure 12-6) to customize the component.
Flash Professional CS3 and CS4 users will need to open the Component
Inspector panel to see the same content.

Next, click on the UI element next to the skin option. (In Flash Professional
CS5 there’s a pencil button, while other versions show a magnifying glass
button after clicking on the field.) This will open a dialog box that allows you
to preview all the available skins, collected into groups that display the con-
troller under your video or over your video. Flash Professional CS5 users will
also see an additional grouping of new skins called Minima. You can choose
which functionality to include in your controller by looking at the name of
the skin and previewing its appearance when displayed in the dialog box.

NOTE

If you test the video_comp.fla file, you
may wonder how it can play without
any instruction to do so. The component
has an autoplay property that’s set to
true by default.

Figure 12-6. The Component Parameters
section of the Properties panel (CS5
pictured)

NOTE

Users of Flex Framework authoring
tools can download the component,
skins, sample files, component source,
and several additional related tools at
http://www.adobe.com/products/flash-
mediaserver/tool_downloads/.

http://www.adobe.com/products/flashmediaserver/tool_downloads/
http://www.adobe.com/products/flashmediaserver/tool_downloads/

Full-Screen Video

Chapter 12: Video 343

For the following exercise, found in the video_comp_skin.fla source file, choose
the SkinUnderAllNoFullNoCaption skin and test your movie. Don’t worry
about the fact that it won’t work. After all, you didn’t select a video source.
All that matters is that Flash copies the skin to the same directory in which
you published your SWF. You should see SkinUnderAllNoFullNoCaption.
swf in that directory. (If not, be sure you save the FLA you were using for
this task and retest.) Once you have your skin in place, you can remove the
FLVPlayback component from the stage, or discard any temporary file you
created.

Once the skin is in place, all that remains is to add one or more of the fol-
lowing three lines to your existing script. Line 6 specifies your skin choice,
and the optional lines 7 and 8 specify the color and alpha of the skin. Now,
when you test your movie, you’ll see a skin that you can use to control video
playback.

6	 vid.skin	=	"SkinUnderAllNoFullNoCaption.swf";
7	 vid.skinBackgroundColor	=	0x003366;
8	 vid.skinBackgroundAlpha	=	0.75;

If you don’t want to store the skin file in the same directory as your main
SWF (for example, if you want to store multiple skins in a directory), you can
specify another path for the skin property. Also, remember that the skin you
see is an external SWF that’s loaded at runtime. Therefore, just like the video
file, the skin must be deployed with your main SWF and HTML files.

Full-Screen Video
One of the most entertaining Flash video features is true full-screen video—
video that occupies the entire screen, rather than a maximized browser or
player window, hiding other computer operating system interface elements
for a fully immersive experience. Both the FLVPlayback component and pure
ActionScript can launch into full-screen mode, both of which we’ll cover.
Before we get to implementation, however, we need to cover two preliminary
steps.

The first step is to start with optimal source material for final assets. This
includes the highest quality source, the largest size your interface will allow,
and careful attention during encoding. Beyond those common sense sug-
gestions, you’ll probably want to experiment with such encoding options as
different bitrates and deinterlacing your content if you’re using a DV source.
Deinterlacing is the process of converting the two fields of a DV source (which
are like video frames but each contain half the horizontal lines and are dis-
played twice as fast) into the frames used by the FLV format. One common
artifact that is more pronounced when working with interlaced source mate-
rial is jagged lines visible along sharp edges in your videos. Deinterlacing the
source during encoding significantly reduces this effect.

Part IV: Sound and Video344

Captions

The second step is to instruct Flash Player to allow the switch to full-screen
display. If you think about it for a moment, you certainly don’t want the deci-
sion to switch to full-screen mode left in the hands of content creators. If that
were the case, every Flash advertisement would take over your screen, leaving
you no control. Instead, the developer must make the feature possible, and
the user must be responsible for switching back and forth between normal
and full-screen modes.

To enable the feature, you must add the allowFullScreen parameter, with a
value of true, to the file’s host HTML file. One way to do this is to add this
parameter manually to the object and embed tags, as seen in the following
excerpt.

<object>
				...
				<param	name="allowFullScreen"	value="true"	/>
				<embed	...	allowfullscreen="true"	/>
</object>

Flash Professional users can also use the quick and easy solution (par-
ticularly handy during testing) of choosing the “Flash Only – Allow Full
Screen” publishing template in the Publish Settings dialog (File→Publish
Settings→HTML→Template).

After adding support for full-screen video in your HTML host file, you’re
ready to enable the full-screen button in the FLVPlayback component. To
do so, choose any skin that supports full screen, such as SkinUnderAll or
SkinOverPlayFullscreen, to cite two examples. These and other skins add the
Full Screen button shown in Figure 12-7.

The following change to line 6 of the previous example, found in the video_
comp_skin_full.fla source file, changes the skin to one that supports full
screen mode.

6 vid.skin = "SkinUnderAllNoCaption.swf";

Once you have a video and have supported full screen mode in your host
HTML file and skin, you can test your file in a browser. Full screen mode will
not work when testing within Flash Professional, so Flash users can select the
default Publish Preview command, File→Publish Preview→HTML. Pressing
the Full Screen button in the skin will switch to full-screen mode, and you
can press the Escape key to return to normal mode. Later in this chapter, we’ll
show you how to add full-screen playback using your own ActionScript.

Captions
Captions, also referred to in some contexts as subtitles, consist of text that
is displayed synchronously during video playback. Captions are useful for
providing alternate language tracks to bring your video to a wider audience.
Captions are also appreciated by the deaf and hearing impaired, as they provide

Figure 12-7. The Full Screen button used
by select FLVPlayback skins (color and
alpha may differ)

NOTE

If HTML is not available for
Flash Professional users, go to the
File→Publish Settings menu dialog and
add HTML as a publishable format.

Captions

Chapter 12: Video 345

a much needed accessible alternative for audio tracks when it comes to dialog
and descriptive audio services.

Captions help satisfy requirements imposed by the United States
Rehabilitation Act of 1973, Section 508, which establishes accessibility man-
dates for content developed for government use, or financed by federal funds.
Many private entities, particularly those serving the educational markets, also
require accessible content. As the demand for this requirement increases, cap-
tions will play an increasingly more important role in digital video.

Using the FLVPlaybackCaptioning Component
Flash supports captioning via the FLVPlaybackCaptioning component,
when used in conjunction with the FLVPlayback component. Adding the
FLVPlaybackCaptioning component to the stage at authoring time, or
dynamically at runtime with ActionScript, opens the door for caption use.

The simplest way to display captions is to use the FLVPlayback component.
In fact, with only one FLVPlayback instance on the stage the captioning
component will automatically detect the playback component, and use its
internal text element for caption display. You can also manually specify any
FLVPlayback component as the target for the captions (in case you require
more than one at any given time), or even your own target for the captions
(in the event that you want to use another text element—perhaps integrated
into your interface, rather than the video).

To use the FLVPlayback, you’ll need to choose any skin that supports cap-
tions, such as SkinUnderAll or SkinOverPlayCaption, among others. These
skins feature the Captions button shown in Figure 12-8.

The following edit to line 6 of the previous example, found in the video_
comp_skin_full_captions.fla source file, uses a skin that supports all skinned
features, including captions.

6 vid.skin = "SkinUnderAll.swf";

Once the FLVPlayback component is configured to display captions, we must
add the FLVPlaybackCaptioning component to the stage.

The following code continues the example first by importing the component
class in line 10, and instantiating the component in line 11. Line 12 assigns the
caption file for loading at runtime (which we’ll discuss in a moment), and
line 13 adds the component to the display list.

10	 import	fl.video.FLVPlaybackCaptioning;
11	 var	cap:FLVPlaybackCaptioning	=	new	FLVPlaybackCaptioning();
12	 cap.source	=	"nero_timed_text.xml";	
13	 addChild(cap);

Note that we’re not placing the component at a particular location on the
stage. Although it appears as a small rectangle when dragged to the stage in

Figure 12-8. The Captions button used by
select FLVPlayback skins (color and alpha
may differ)

NOTE

As with the FLVPlayback component,
Flash Professional users must have the
component in the library of their FLA
to instantiate it with ActionScript. See
the “Working with the FLVPlayback
Component” section of this chapter for
more information.

Part IV: Sound and Video346

Captions

authoring mode, this is merely to simplify selecting the component. At run-
time, it will be invisible, so its position is irrelevant.

Now both components are ready to display captions, so we need to create the
caption file. You can create a captioned video in two ways. You can embed the
caption data in the video using cue points. Embedding means they’ll always
be with the video, but it also means that you have to reencode the video just
to edit the text. A far more flexible option is to load a caption file at runtime.
This approach also allows you to switch caption files dynamically—ideal for
offering subtitles in multiple languages, a task we’ll look at later in the chap-
ter. First, however, we need to know how to format the captions.

Creating Captions with Timed Text
To create a caption file to load at runtime, you need to write an XML
(Extensible Markup Langauge, discussed in Chapter 14) file using the World
Wide Web Consortium (W3C) Timed Text Markup Language (TTML or,
familiarly, TT)—also sometimes referred to by its format name, Distribution
Format Exchange Profile (DFXP). We’ll cover a portion of Timed Text features
here, but you can learn more about the language by visiting the W3C page
at http://www.w3.org/AudioVideo/TT/. More importantly, you can learn about
the subset of features supported by the FLVPlaybackCaptioning component
from Adobe’s ActionScript 3.0 Language and Components Reference at http://
www.adobe.com/livedocs/flash/9.0/ActionScriptLangRefV3/TimedTextTags.
html.

Several tools can create Timed Text files, including the pair listed in the
adjacent note. However, you can also write your own Timed Text files. The
example XML that follows is an edited excerpt of the nero_timed_text.xml
source file provided in this chapter’s source archive. (For brevity, two cap-
tions are shown and minor edits have been made to use all features from the
source file.)

1	 <?xml	version="1.0"	encoding="UTF-8"?>
2	 <tt	xmlns="http://www.w3.org/2006/04/ttaf1"
3	 		xmlns:tts="http://www.w3.org/2006/04/ttaf1#styling">
4	 		<head>
5	 				<styling>
6	 						<style	id="1"
7	 								tts:textAlign="center"
8	 								tts:fontFamily="_sans"
9	 								tts:fontSize="18"
10	 								tts:fontWeight="bold"
11	 								tts:color="#FFFF00FF"	/>
12	 						<style	id="2"	tts:backgroundColor="#00000000"	/>
13	 						<style	id="3"	tts:backgroundColor="#000000FF"	/>
14	 						<style	id="trans"	style="1	2"	/>
15	 						<style	id="opaq"	style="1	3"	/>
16	 				</styling>
17	 		</head>
18	 		<body>
19	 				<div>
20	 						<p	begin="00:00:05.00"	dur="00:00:04.00"	style="opaq">

NOTE

MAGpie is a free captioning tool devel-
oped by accessibility leaders at the
National Center for Accessible Media
(NCAM). For more information, see
http://ncam.wgbh.org/invent_build/
web_multimedia/tools-guidelines/mag-
pie. You can find the Manitu Group’s
Captionate at http://www.captionate.
com, and Adobe’s Flash Developer
Center features a tutorial on using
Captionate with the FLVPlayback and
FLVPlaybackCaptioning components
(http://www.adobe.com/devnet/flash/
articles/video_captionate.html).

http://www.w3.org/AudioVideo/TT/
http://www.adobe.com/livedocs/flash/9.0/ActionScriptLangRefV3/TimedTextTags.html
http://www.adobe.com/livedocs/flash/9.0/ActionScriptLangRefV3/TimedTextTags.html
http://www.adobe.com/livedocs/flash/9.0/ActionScriptLangRefV3/TimedTextTags.html
http://ncam.wgbh.org/invent_build/web_multimedia/tools-guidelines/magpie
http://ncam.wgbh.org/invent_build/web_multimedia/tools-guidelines/magpie
http://ncam.wgbh.org/invent_build/web_multimedia/tools-guidelines/magpie
http://www.captionate.com
http://www.captionate.com
http://www.adobe.com/devnet/flash/articles/video_captionate.html)
http://www.adobe.com/devnet/flash/articles/video_captionate.html)

Captions

Chapter 12: Video 347

21	 								Nero	is	a	Lionfish
	(
22	 								Pterois	volitans),
23	 						</p>
24	 						<p	begin="00:00:09.00"	dur="00:00:02.00"	style="trans">
25	 								in	his	reef	aquarium.
26	 						</p>
27	 				</div>
28	 		</body>
29	 </tt>

We’ll discuss custom XML solutions in Chapter 14, but Timed Text is a
predefined format so conforming to its specification is pretty straightfor-
ward. We’ll occasionally point out things that we’ll cover in greater detail in
Chapter 14, but you should feel comfortable simply editing an existing Timed
Text file until you gain a little experience with XML.

Lines 1 through 3 include two default tags used to validate the file. The first
tag (also called a node) is <?xml... ?> and is the XML declaration tag. We’ll
discuss this in Chapter 14 but, essentially, it declares the version of XML in
use and the character encoding used when writing the document.

The second tag, <tt>, is the document’s root node. All XML documents must
have a root node that encloses all other nodes, and we’ll discuss this further
in Chapter 14, as well. Be sure to see the accompanying note describing the
use of attributes in this tag.

NOTE

The ActionScript 3.0 Language and Components Reference entry “Timed Text
Tags”, found at http://www.adobe.com/livedocs/flash/9.0/ActionScriptLangRefV3/
TimedTextTags.html, specifies that all attributes of the <tt> tag are ignored.
However, this is not the case if you style your captions. If you omit the xmlns attri-
bute, your captions will not be styled, and if you omit the xmlns:tts attribute, the
use of the tts namespace in styles will result in errors. When using styles, consider
both of these attributes required.

A <head> tag (spanning lines 4 through 17) is optional, but we recommend its
use because it makes styling your captions much easier. Within it, a <styl-
ing> tag (spanning lines 5 through 16) is also optional but necessary if you
intend to create styles. Styles are Cascading Style Sheet (CSS) entities for the
Timed Text document and are itemized in lines 6 through 15. You can have as
many styles as you like, but each must have a unique id attribute. The style
attributes that are actually responsible for the formatting are very similar to
CSS properties, but are preceded by the tts: prefix.

It’s possible to assign multiple styles directly by their alphanumeric id, but
it’s also possible to manage formatting efficiently by creating new styles con-
sisting of other styles. Take a look at the styles in our example. We wanted to
achieve two looks for our captions: one with a black background, for use over
light areas of video, and one with a transparent background, to allow more of
the video to show through the text.

NOTE

Character encoding just maps text
characters to specific codes (usually
numeric), so that software responsible
for parsing the text know which char-
acter to use based on a given code. It’s
a way of bringing platform, hardware,
and software neutrality to the process
of rendering text. We recommend using
UTF-8, which includes a wide range of
characters, such as those used in differ-
ent languages around the world.

For more information about character
encoding, see http://en.wikipedia.org/
wiki/Character_encoding. For more
information about UTF-8, see http://
en.wikipedia.org/wiki/UTF-8.

NOTE

Be sure to consult the “Timed Text
Tags” ActionScript 3.0 Language and
Components Reference resource, men-
tioned earlier in this section, for a com-
plete list of supported and unsupported
properties. Here are a few noteworthy
mentions:

• fontFamily supports device fonts, as
seen in our example.

• fontSize supports only the first size
found; supports absolute and rela-
tive sizes but not percentages.

• lineHeight, padding, and over-
flow, although potentially useful
for captions, are among several
options that are not supported.

http://www.adobe.com/livedocs/flash/9.0/ActionScriptLangRefV3/TimedTextTags.html
http://www.adobe.com/livedocs/flash/9.0/ActionScriptLangRefV3/TimedTextTags.html
http://en.wikipedia.org/wiki/Character_encoding
http://en.wikipedia.org/wiki/Character_encoding
http://en.wikipedia.org/wiki/UTF-8
http://en.wikipedia.org/wiki/UTF-8

Part IV: Sound and Video348

Captions

Style 1 consists of all styling attributes common to both treatments, which
means that the background alpha information appears in other styles. Styles
2 and 3 itemize only the background color and specify transparent and
opaque, respectively. The Timed Text format uses #RRGGBBAA color nota-
tion, where AA is alpha. However, the ActionScript components support only
opaque and transparent settings. All zeros will be seen as transparent, but
any value other than zero will be opaque. We’ve used the opposite of zero for
alpha, FF, to remind us that this is opaque. The resulting value of #000000FF
is, therefore, an opaque black background.

Once you’ve created these individual styles, you can then apply more than
one style at a time. It’s possible to do so at the caption level by using syntax
like id="1 2", but it’s also possible to create a new style the same way. For
example, you can create a new style combining styles 1 and 2 and, because
the style names can be alphanumeric, you can give it a descriptive name.
We’ve done this in lines 14 and 15, specifying that trans is centered, sans-serif,
18-point, bold, yellow text on a transparent (because it uses styles 1 and 2),
and opaq shares the same font attributes but is atop an opaque background
because it uses styles 1 and 3.

A <body> tag (lines 18 through 28) is required and is used to hold all the
caption data. Within the body tag, one <div> tag (lines 19 through 27) is
required, and paragraph tags <p> are required for each line of caption (lines
20 through 26).

The ActionScript documentation doesn’t say that <div> is required but nei-
ther <p> nor tags can appear in the <body> tag. Similarly, the documen-
tation says zero or more paragraph tags are supported, but we didn’t find a
logical way of applying time or style attributes to individual captions without
them. For example, tags (lines 21 and 22) are supported, but not in
the <body> or <div> tags. Therefore, we suggest you consider <div> and <p>
tags required.

For each caption (in our case, in each <p> tag), a begin attribute is required
to set the time of the caption. The attributes dur (duration) and end (the time
at which the caption should end) are optional. If omitted, the caption will
remain onscreen until the next caption appears. Time can be specified in full
clock format (HH:MM:SS.m, where m is milliseconds), partial clock format
(MM:SS.m or SS.m), or offset time (with units, such as “1s” for one second).
Frames are not supported as a measure of time.

Now that you know how to create a Timed Text file, you can run the previous
source file, video_comp_skin_full_captions.fla, (discussed in the “Captions”
section of this chapter) which makes use of the nero_timed_text.xml caption
source file.

NOTE

If you’ve spent some time with Chapter
9 in this book, you may recall that the
color notation that included alpha was
specified as 0xAARRGGBB. The dif-
ference between this BitmapData color
notation, and the #RRGGBBAA used
with Timed Text, can lead to confusion.
If you see an unpredictable color behind
your caption text, check to see if you’ve
used the wrong format.

NOTE

In our main Timed Text example, we
used full clock format for clarity and
consistency, even when the duration
matched the time at which the next
caption appeared. However, you can
simplify this by using partial clock for-
mat, and omitting any duration or end
attributes when the caption is to remain
on screen until replaced. As an illustra-
tion, we have formatted our Spanish-
language example this way, which we’ll
discuss shortly.

Captions

Chapter 12: Video 349

Providing Captions in Multiple Languages
Feature-rich DVD titles frequently have multiple caption programs available,
each in a different language. This broadens the reach of the title across cul-
tures and supports a wider audience with accessibility needs. It’s possible to
achieve the same thing using the FLVPlaybackCaptioning component.

All you need to do is prepare multiple Timed Text files, one for each lan-
guage, and switch among them when needed. Off the shelf, however, the
FLVPlaybackCaptioning component does a couple of things that make this
an odd experience.

First, if you change the caption content between times specified in a Timed Text
document, the component will overwrite the caption field only if the current
caption is empty or contains only white space (tab, return, or space). If that’s
not the case (such as when switching captions from one language to another at
any moment), it adds the new text to the existing caption. Only when the next
Timed Text caption time comes along will the field contents be replaced cor-
rectly. Second, the method it uses to determine whether or not the Timed Text
file has already been loaded results in no immediate change. Therefore, you
must wait for the next caption to come along to see a language update.

Fortunately, there’s an easy workaround. All you have to do is turn off caption
display before making the caption source switch, and then turn the display
back on again. The example file, video_comp_skin_full_captions_multilingual.fla,
demonstrates this using the Button component to toggle the caption source files.

15	 import	fl.controls.Button;
16	 var	capsLangBtn:Button	=	new	Button();
17	 capsLangBtn.label	=	"English/Spanish";
18	 capsLangBtn.x	=	vid.x	+	vid.width	+	20;
19	 capsLangBtn.y	=	vid.y	+	vid.height;
20	 addChild(capsLangBtn);
21	 capsLangBtn.addEventListener(MouseEvent.CLICK,	switchTTCaps,
22	 																													false,	0,	true);
23	
24	 function	switchTTCaps(evt:MouseEvent):void	{
25	 				cap.showCaptions	=	false;
26	 				if	(cap.source	==	"nero_timed_text.xml")	{
27	 								cap.source	=	"nero_timed_text_sp.xml";
28	 				}	else	{
29	 								cap.source	=	"nero_timed_text.xml";
30	 				}
31	 				cap.showCaptions	=	true;
32	 }

Line 15 imports the Button class so we can instantiate the Button in line 16.
Lines 17 through 20 set the buttons label, position it next to the lower-right
corner of the FLVPlayback component, and add it to the display list. Lines 21
and 22 add an event listener to call the switchTTCaps() function upon each
mouse click event. Finally, the switchTTCaps() function (lines 24 through 32)
turns off caption display, checks to see which caption source is in use and
switches to the other file, and then turns caption display back on again.

NOTE

As with the FLVPlayback and
FLVPlaybackCaptioning components,
you must have this component, found
in the User Interface category of the
Components panel, in your library.

Part IV: Sound and Video350

Writing Your Own Player

Writing Your Own Player
Wrapping up the chapter, we want to introduce you to some of the
ActionScript required to create a customized player. We’ll start with coding
your own controls for the FLVPlayback component, to give you freedom to
design your own controller bar. Then we’ll show you how to write your own
player to eliminate reliance on the FLVPlayback component altogether.

In both cases, we’ll create play, pause, and stop buttons using the
RoundRectButton class discussed in Chapter 8. While not a fully functional
controller, this will give you the foundation necessary to set properties and
call methods in the FLVPlayback and NetStream classes. You can then decide
which features you want to implement in your custom controllers.

Scripting Buttons to Control the FLVPlayback
Component
This exercise, found in the video_comp_custom_buttons.fla source file, builds
on the first example in the chapter. That example showed that you can use
the FLVPlayback component without having to use a skin. This exercise will
add custom buttons to the file to control video playback.

Lines 1 and 2 import the FLVPlayback and RoundRectButton classes. Lines 4
through 7 initialize the FLVPlayback component, as previously discussed.
In this exercise, however, we’ve added line 6 to set the autoPlay property to
false. This will prevent the video from playing automatically and let the user
choose when to play it.

Lines 9 through 24 create three buttons using the RoundRectButton class. The
class was introduced in Chapter 8, and we’ve used this technique in several
chapters. Briefly, a function is used to create an instance of the class, as well as
position the button and assign a function to the event listener. This approach
is designed to minimize the number of lines required to create the buttons,
and it can be customized to fit your needs. We’ll discuss the functions that
control the video after the code.

1	 import	fl.video.FLVPlayback;
2	 import	com.learningactionscript3.ui.RoundRectButton;
3	
4	 var	vid:FLVPlayback	=	new	FLVPlayback();
5	 vid.source	=	"nero.flv";
6	 vid.autoPlay	=	false;
7	 addChild(vid);
8	
9	 createButton(50,	"Play",	playVideo);
10	 createButton(130,	"Pause",	pauseVideo);
11	 createButton(210,	"Stop",	stopVideo);
12	 createButton(240,	"Full	Screen",	fullScreenVideo);
13	 								
14	 function	createButton(xLoc:Number,	labl:String,	
15	 																						func:Function):void	{
16	 				var	btn:RoundRectButton	=	

Writing Your Own Player

Chapter 12: Video 351

17	 								new	RoundRectButton(60,	20,	10,	2,	0x000099,
18	 																												labl,	0xFFFFFF);
19	 				btn.x	=	xLoc;
20	 				btn.y	=	240;
21	 				btn.addEventListener(MouseEvent.CLICK,	func,	
22	 																									false,	0,	true);
23	 				addChild(btn);
24	 }
25	
26	 function	playVideo(evt:MouseEvent):void	{
27	 				vid.play();
28	 }
29	
30	 function	pauseVideo(evt:MouseEvent):void	{
31	 				vid.pause();
32	 }
33	
34	 function	stopVideo(evt:MouseEvent):void	{
35	 				vid.stop();
36	 				vid.seek(0);
37	 }
38	
39	 function	fullScreenVideo(evt:MouseEvent):void	{
40	 				stage.displayState	=	StageDisplayState.FULL_SCREEN;
41	 }

Lines 26 through 41 contain the functions used to control the video. The
functions and methods used are self-explanatory, with two exceptions. First,
in addition to stopping the video in the stopVideo() function, we also use
the seek() method to seek through the video to a specific point in time.
Seeking to 0 returns the video to its starting point. This is a user-experience
consideration that differentiates the functionality of the pause and stop but-
tons. Second, to switch to full screen, you set the displayState property of
the stage to StageDisplayState.FULL_SCREEN.

By default, changing the stage’s display state to full screen mode when an
FLVPlayback component is in use mimics the behavior of the component.
The video will fill the screen and show only the video regardless of any other
user interface elements. In this case, however, we’re not using a skin that’s
designed to show the controller on top of the video. As a result, the control
buttons disappear. To show the control buttons, you can prevent the video
from taking over the stage after resizing by setting the fullScreenTakeOver
property of the FVLPlayback instance to false.

One side effect of this is that you can then see the Full Screen button and
it won’t do anything because the display state will already be in full screen
mode. So, you can write a simple if statement that will toggle between the dis-
play states as needed. The script below replaces the fullScreenVideo() function
in the previous example and appears in the video_comp_custom_buttons_full.fla
source file.

39 vid.fullScreenTakeOver = false;
40 function fullScreenVideo(evt:MouseEvent):void {
41 if (stage.displayState == StageDisplayState.NORMAL) {
42 stage.displayState = StageDisplayState.FULL_SCREEN;

Part IV: Sound and Video352

Writing Your Own Player

43 } else {
44 stage.displayState = StageDisplayState.NORMAL;
45 }
46 }

Finally, you can even control how much of the stage is visible in full screen mode
by setting the stage’s fullScreenSourceRect property to a rectangular area. The
following line is included in the video_comp_custom_buttons_full.fla source file,
and specifies a rectangle that encloses the video and buttons.

stage.fullScreenSourceRect	=	new	Rectangle(0,	0,	320,	270);

This line is initially commented out in the source file, so you publish to
HTML multiple times and comment this line in and out to see its effect.

A Code-Only Solution
Up to this point, we’ve relied on components for video display. Creating your
own player exclusively with ActionScript can reduce file size and allow you to
customize functionality. In this exercise, you’ll write a class called BasicVideo
to create a simple video player that does not use the FLVPlayback component.
As a result, the generated SWF file is less than 4K.

If you want to preview this exercise before going over the code, it uses a
document class called BasicVideo_UI in the main directory of the chapter
source archive. Flash Professional users can open the code_only_player.fla
source file, which already makes use of this class. BasicVideo is in the com.
learn ingactionscript3.video package. We’ll discuss BasicVideo first, and then
talk about the document class that creates the user interface.

The main video class
Line 1 declares the package, and lines 3 through 9 import the required classes.
Line 11 declares the class and extends MovieClip so we can use its accessible
properties, methods, and events of that class. Lines 13 through 17 declare pri-
vate class properties—available throughout the class.

1	 package	com.learningactionscript3.video	{
2	
3	 				import	flash.display.MovieClip;
4	 				import	flash.events.AsyncErrorEvent;
5	 				import	flash.events.MouseEvent;
6	 				import	flash.events.NetStatusEvent;
7	 				import	flash.net.NetConnection;
8	 				import	flash.net.NetStream;
9	 				import	flash.media.Video;
10	
11	 				public	class	BasicVideo	extends	MovieClip	{
12	
13	 								private	var	_conn:NetConnection;
14	 								private	var	_stream:NetStream;
15	 								private	var	_vid:Video;
16	 								private	var	_vidPlaying:Boolean;
17	 								private	var	_source:String;

Writing Your Own Player

Chapter 12: Video 353

Lines 19 through 36 contain the class constructor. It accepts one string
parameter for the video path to allow you to select a video when instantiating
the class. Later, we’ll add a getter and setter to let you to do this by setting a
property instead.

Lines 22 through 24 use the two main classes required to play videos with
ActionScript. Line 22 creates an instance of the NetConnection class, which
establishes a bi-directional connection between the user’s player and a server
delivering data, such as a video streaming server. It’s a bit like the cable run-
ning between your house and the cable television company. You connect to
the server using the connect() method in line 23. In this example, however,
we’re not using a server, so we’ll pass null into this method. In this case, the
class is designed to connect to a local file.

Line 24 creates an instance of the NetStream class and is associated with the
NetConnection instance by passing the latter into the former’s constructor.
A NetStream instance is a channel of a NetConnection instance, a little like
a single cable channel, and transmits data in one direction. For example, a
server can send data and a client can receive data.

Line 26 creates an instance of the Video class, which is the display object used
to show the video. This is a bit like a television set. The NetStream instance
is then attached to the video in line 27, a little like picking the cable channel
you want to watch. Line 28 adds the video instance to the main class instance
so it can become part of the display list.

Lines 30 through 33 create a custom object that will serve as a data client for
the class. Select data will automatically be sent out when playing the video
and if this object (or a similar object like a custom class created for the same
purpose) does not exist, errors will occur. For example, any metadata that
exists in the video, either by default or that was added during encoding, will
be sent soon after the video begins loading. Similarly, any cue points that
were embedded in the video will be sent when encountered. Lines 31 and 32
assign the onMetaData() and onCuePoint() methods to their corresponding
properties so Flash Player knows where to send the appropriate information.
This association is formalized when the object is assigned to the client prop-
erty of the NetStream instance in line 33. Finally, event listeners are added to
the class in line 35, which we will talk about after the code block.

18	 								//constructor
19	 								public	function	BasicVideo(path:String="")	{
20	 												_source	=	path;
21	
22	 												_conn	=	new	NetConnection();
23	 												_conn.connect(null);
24	 												_stream	=	new	NetStream(_conn);
25	 												
26	 												_vid	=	new	Video();
27	 												_vid.attachNetStream(_stream);
28	 												addChild(_vid);
29	 												
30	 												var	_infoClient:Object	=	new	Object();

Part IV: Sound and Video354

Writing Your Own Player

31	 												_infoClient.onMetaData	=	this.onMetaData;
32	 												_infoClient.onCuePoint	=	this.onCuePoint;
33	 												_stream.client	=	_infoClient;
34	 												
35	 												addEventListeners();
36	 								}

Lines 38 through 47 add two event listeners each to the NetConnection and
NetStream instances. The NET_STATUS event is dispatched when status updates
become available from either instance. Similarly, the ASYNC_ERROR event is
dispatched when an asynchronous error occurs in either instance. An asyn-
chronous error is an error that’s not dependent on a specific (synchronized)
order of execution. That is, it need not be the sequential result of another task
performed by the class. This event is typically dispatched when a server calls
a method that’s not defined in the client.

When either event is received, the methods in lines 49 through 60 are called.
Both trace information so you can see what’s going on, but onNetStatus()
also toggles the value of the _vidPlaying property. When a status update indi-
cates that the video has started, the _vidPlaying property is set to true. When
the status indicates that the video has stopped it sets the property to false.

37	 								//event	listeners
38	 								private	function	addEventListeners():void	{
39	 												_conn.addEventListener(NetStatusEvent.NET_STATUS,
40	 																																			onNetStatus,false,0,true);
41	 												_conn.addEventListener(AsyncErrorEvent.ASYNC_ERROR,
42	 																																			onAsyncError,false,0,true);
43	 												_stream.addEventListener(NetStatusEvent.NET_STATUS,	
44	 																																					onNetStatus,false,0,true);
45	 												_stream.addEventListener(AsyncErrorEvent.ASYNC_ERROR,	
46	 																																					onAsyncError,false,0,true);
47	 								}
48	 								
49	 								private	function	onAsyncError(evt:AsyncErrorEvent):void	{
50	 												trace(evt.text);
51	 								}
52	 								
53	 								private	function	onNetStatus(evt:NetStatusEvent):void	{
54	 												trace(evt.info.level	+	":	"	+	evt.info.code);
55	 												if	(evt.info.code	==	"NetStream.Play.Start")	{
56	 																_vidPlaying	=	true;
57	 												}	else	if	(evt.info.code	==	"NetStream.Play.Stop")	{
58	 																_vidPlaying	=	false;
59	 												}
60	 								}

Lines 62 through 74 contain the methods triggered by the metadata and cue
points received during video playback. Line 63 traces the duration metadata
field to demonstrate reacting to incoming information. You can add metadata
during the encoding process, and encoding software can also automatically
create metadata for you. Available metadata fields range from such basic items
as duration, creation and modified date, width, height, and so on, to the highly
specialized, like the DICOM collection of medical fields, depending on the

Writing Your Own Player

Chapter 12: Video 355

encoder. Adobe Media Encoder supports an impressive array of available
metadata.

Lines 67 through 69 trace the time, name, and type properties of any cue
point received, and lines 70 through 73 trace any parameters added to that
cue point when it was created.

61	 								//client	methods
62	 								private	function	onMetaData(info:Object):void	{
63	 												trace("MetaData	duration:",	info.duration);
64	 								}
65	 								
66	 								private	function	onCuePoint(info:Object):void	{
67	 												trace("CuePoint	time:",	info.time);
68	 												trace("CuePoint	type:",	info.type);
69	 												trace("CuePoint	name:",	info.name);
70	 												for	(var	prop	in	info.parameters)	{
71	 																trace("Cue	point	parameter	"	+	prop	+	":	"	+	
72	 																						info.parameters[prop]);
73	 												}
74	 								}

Finally, lines 76 through 101 contain the public methods, getters, and setters
available outside the class. Lines 76 through 93 contain methods to play,
pause, and stop the video, all of which are configured to receive mouse events.
However, they also all include default values for the event, making it possible
to call the methods directly, rather than as a result of an event. We’ll see this
demonstrated in the main document class.

The playVideo() method in lines 76 through 83 first checks to see if the _vid-
Playing property is true. If so, it calls the resume() method of the NetStream
instance. This is because the class changes this property value when a status
event indicates that the stream has been started or stopped, but not paused.
Therefore, if a play button is clicked and the property is true, the video has
been paused and should be resumed. If the property is false, the play()
method is called, using the path in the _source property to indicate which
video to play. In either case, the _vidPlaying property is set to true to record
the fact that the video is playing.

The pauseVideo() method in lines 85 through 87 calls the togglePause()
method. This is a nice feature because it will automatically pause the video if
it’s playing and play the video if it’s paused.

Lines 89 through 93 contain the stopVideo() method. This method closes the
stream (which is a bit like turning off your cable set top box), clears the Video
instance (which is akin to turning off your television), and sets the _vidPlaying
property to false.

Finally, lines 95 through 101 provide a getter and setter to allow the retrieval
and assignment of the _source property from outside the class.

75	 								//public	player	methods	and	getter/setter
76	 								public	function	playVideo(evt:MouseEvent=null):void	{
77	 												if	(_vidPlaying)	{
78	 																_stream.resume();

NOTE

For more information about getters and
setters, see the “Encapsulation” section of
Chapter 6.

Part IV: Sound and Video356

Writing Your Own Player

79	 												}	else	{
80	 																_stream.play(_source);
81	 												}
82	 												_vidPlaying	=	true;
83	 								}
84	 								
85	 								public	function	pauseVideo(evt:MouseEvent=null):void	{
86	 												_stream.togglePause();
87	 								}
88	 								
89	 								public	function	stopVideo(evt:MouseEvent=null):void	{
90	 												_stream.close();
91	 												_vid.clear();
92	 												_vidPlaying	=	false;
93	 								}
94	 								
95	 								public	function	set	source(path:String):void	{
96	 												_source	=	path;
97	 								}
98	 								
99	 								public	function	get	source():String	{
100													return	_source;
101									}
102					}
103	}

The document class
The BasicVideo_UI class is a document class that instantiates BasicVideo and
creates a simple interface with a play, pause, and stop button. Lines 1 through
7 declare the package and import the required classes. Lines 9 through 12
declare the class (which extends MovieClip so it can easily function as a
document class) and declare two private properties. The first is a movie
clip container to hold the video and buttons, so you can easily position the
video interface anywhere on the stage. The second stores a reference to the
BasicVideo instance so it can be used throughout the class.

Lines 14 through 27 contain the class constructor. Lines 15 through 17 create
a container to hold the video and buttons, but also use the drawBackground()
method (lines 29 through 36) to draw a black background the size of the
video into the container. This is so, when clearing the video object after stop-
ping playback, the video doesn’t look like it’s disappearing. (The function
simply creates a movie clip, draws a black rectangle into it, and returns it to
the point in the script where the function was called.)

Lines 19 through 21 create an instance of the BasicVideo class, assign the source
property of the instance to the appropriate video path, and add the BasicVideo
instance to the container. Line 22 demonstrates how to call the BasicVideo
public method playVideo() directly, rather than from an event. This means
you can automatically start the video playing without requiring a mouse
click from the user.

The remainder of the class creates three buttons and assigns a listener to
each to control the video, just like we did in the “Scripting Buttons to Control

Writing Your Own Player

Chapter 12: Video 357

the FLVPlayback Component” section of this chapter. The only difference
between the two examples is that listeners in this class call the methods in
the BasicVideo class, while the previously cited example called methods of
the FLVPlayback component.

1	 package	{
2	
3	 				import	flash.display.Graphics;
4	 				import	flash.display.MovieClip;
5	 				import	flash.events.MouseEvent;
6	 				import	com.learningactionscript3.ui.RoundRectButton;
7	 				import	com.learningactionscript3.video.BasicVideo;
8	
9	 				public	class	BasicVideo_UI	extends	MovieClip	{
10	
11	 								private	var	_container:MovieClip;
12	 								private	var	_vidPlayer:BasicVideo;
13	
14	 								public	function	BasicVideo_UI()	{												
15	 												_container	=	drawBackground();
16	 												_container.x	=	_container.y	=	20;
17	 												addChild(_container);
18	
19	 												_vidPlayer	=	new	BasicVideo();
20	 												_vidPlayer.source	=	"nero.flv";
21	 												_container.addChild(_vidPlayer);
22	 												_vidPlayer.playVideo();
23	 												
24	 												createButton(20,	"Play",	playVideo);
25	 												createButton(120,	"Pause",	pauseVideo);
26	 												createButton(220,	"Stop",	stopVideo);
27	 								}
28	 								
29	 								private	function	drawBackground():MovieClip	{
30	 												var	sp:MovieClip	=	new	MovieClip();
31	 												var	g:Graphics	=	sp.graphics;
32	 												g.beginFill(0x000000);
33	 												g.drawRect(0,	0,	320,	240);
34	 												g.endFill();
35	 												return	sp;
36	 								}
37	 								
38	 								private	function	createButton(xLoc:Number,	labl:String,	
39	 																																						func:Function):void	{
40	 												var	btn:RoundRectButton	=	
41	 																new	RoundRectButton(80,	20,	10,	2,	0x000099,	
42	 																																				labl,	0xFFFFFF);
43	 												btn.x	=	xLoc;
44	 												btn.y	=	250;
45	 												btn.addEventListener(MouseEvent.CLICK,	func,	
46	 																																	false,	0,	true);
47	 												_container.addChild(btn);
48	 								}
49	 								
50	 								private	function	playVideo(evt:MouseEvent=null):void	{
51	 												_vidPlayer.playVideo();
52	 								}
53	 								
54	 								private	function	pauseVideo(evt:MouseEvent=null):void	{

Part IV: Sound and Video358

What’s Next?

55	 												_vidPlayer.pauseVideo();
56	 								}
57	 								
58	 								private	function	stopVideo(evt:MouseEvent=null):void	{
59	 												_vidPlayer.stopVideo();
60	 								}
61	 				}
62	 }

Although this exercise doesn’t create a full-featured video controller, it
demonstrates the basics required to create the remaining functionality on
your own, with help from the ActionScript 3.0 Language and Component
Reference. Having completed this exercise, try to build a progress bar or a
seek option. Try to combine what you’ve learned here with what you learned
in Chapter 11 and create a volume or mute button. How you design your
controller is up to you.

What’s Next?
This chapter discussed a few ways to add video features to your projects.
You can now decide, typically on a project-by-project basis, whether to use
prebuilt components, or your own custom ActionScript player. You also have
the ability to add full screen support and captions, if your project calls for
these features.

In the next chapter, we’ll begin Part V of book, covering input and output.
Chapter 13 discusses the basics of loading external assets, including:

• Using the universal URLRequest class

• Loading visual assets, including graphics and other SWF files

• Loading text and variables

Project Package
This chapter’s contribution to the
learningactionscript3 package is the
BasicVideo class. With this class,
you can add a video display to any
project and be free to customize the
access controls to fit any design.

359

IN THIS PART

Chapter 13
Loading Assets

Chapter 14
XML and E4X

input/output PART V

Part V homes in on two of the possible input and output methods used for
transferring data and assets in the Flash world. Chapter 13 covers several
ways to load external assets. It also includes a discussion of text, with an
in-depth look at loading variables. Similar to the text-loading example, the
chapter takes a close look at best practices for loading external SWF and
image formats. The chapter wraps up with a look at communicating with
loaded SWFs.

Chapter 14 provides a detailed look at what may be the most common format
for structured data exchange: XML. In addition to the creation of XML docu-
ments in their own right, the chapter discusses reading, writing, and editing
XML on the fly. Finally, the chapter covers XML communication between
client and server.

361

IN THIS CHAPTER

Loading SWFs and Images

Loading Data

Communicating with
Loaded SWFs

Additional Online Resources

What’s Next?

You don’t always need to load external assets at runtime, but the ability to
do so is extremely important. Loading assets on the fly reduces initial file
size and, therefore, load times. It also increases the degree to which a Flash
experience can change—not only through the all-important dynamic nature
of runtime content updates, but also by streamlining the editing process. For
example, you can alter external assets easier and faster than you can republish
an FLA file every time an update occurs.

Augmenting prior discussions regarding sound, video, and plain text, this
chapter will teach you how to load external SWFs and images. You’ll also take
a peek at loading variables and binary data, and see how to increase your
error checking efforts. Specifically, we’ll look at:

• Loading SWFs and Images. Right out of the gate, it’s fairly easy to load
SWFs and JPG, PNG, and GIF images. Third-party ActionScript librar-
ies support loading even more asset types. We’ll look at simple syntax
examples and then build a multipurpose class that can handle some error
checking and reporting for you automatically.

• Loading Data. Next we’ll discuss loading text, URL variables, and bina-
ry data. We discussed loading text from external sources in Chapter 10
but limited our coverage to loading HTML and CSS information. In this
chapter, we’ll expand the scope of our discussion to loading URL-encoded
variables and binary data. We’ll also write a multipurpose class you can
use to load data. In Chapter 14 you’ll use that class to load XML.

• Communicating with Loaded SWFs. After a SWF is loaded, the parent
and child SWFs can communicate. We’ll discuss communication in both
directions, and demonstrate a variety of tasks you may want to perform
in the process.

LoadIng assets

CHAPTER 13

Part V: Input/Output362

Loading SWFs and Images

• Additional Online Resources. We’ll wrap up the chapter by referencing
two additional loading-related topics discussed online. First we’ll describe
problems caused by loading SWFs that use Text Layout Framework (TLF)
assets (featured in Chapter 10). TLF assets use a custom preloader at run-
time, which presents its own unique difficulties. We’ll point to two solu-
tions, including Adobe’s new SafeLoader class, designed to successfully
load SWFs that use TLF. Finally, we’ll introduce a great new ActionScript
3.0 loading library called LoaderMax, created by GreenSock, the makers
of TweenLite.

Loading SWFs and Images
There are a few ways to load SWFs or images at runtime, but you’ll com-
monly use the Loader class in one way or another. To simplify the process of
loading these visual assets, the Loader is also a display object. This makes it
much easier to load and display visual assets because the Loader itself can be
added to the display list, rather than waiting for its content to finish loading.
In addition, because it’s a display object, you can use a variety of proper-
ties and methods shared with other display objects, affecting position (x, y),
transformation (alpha, rotation), event management (addEventListener())
and more.

Loading SWFs
The following example is found in the load_swf.fla source file. Line 1 cre-
ates an instance of the Loader class, line 2 loads a SWF using a URLRequest
instance, and line 3 adds the Loader instance to the display list. Even if it
takes some time for the remote SWF to load, the Loader is already waiting, a
little bit like a TV waiting for a program to begin.

1	 var	swfLoader:Loader	=	new	Loader();
2	 swfLoader.load(new	URLRequest("swfToLoad.swf"));
3	 addChild(swfLoader);

One important difference between the Loader class and other display object
classes, such as MovieClip, is that event listeners are usually attached to the
contentLoaderInfo property of the Loader instance, rather than the instance
itself. The property references an instance of the LoaderInfo class, which traf-
fics all information about the content of the Loader.

For example, if you attached an event listener to the Loader instance that lis-
tened for the COMPLETE event, it would work without error, but would respond
to the fact that the Loader itself had loaded, not its content. As this is virtu-
ally instantaneous and doesn’t relate to the content you’re trying to load, it’s
not very helpful. If you attached the same listener to the contentLoaderInfo
property of the Loader instead, it would trigger its function when the content
finished loading.

Loading SWFs and Images

Chapter 13: Loading Assets 363

The following code, added to the prior example, stresses two concepts. First, it
demonstrates attaching an event listener to the contentLoaderInfo property,
as discussed (lines 5 through 7), showing that the target of the listener is the
LoaderInfo instance described (line 10). Second, it shows that you can access
the Loader instance from the data sent with the event, as well as the content of
the Loader, as seen in lines 11 and 12, respectively. Note, too, that the example
cleans up after itself by removing the COMPLETE event listener in line 9, once
the loading is finished.

4	 //use	contentLoaderInfo	for	listeners
5	 swfLoader.contentLoaderInfo.addEventListener(Event.COMPLETE,	
6	 																																													onComplete,	
7	 																																													false,	0,	true);
8	 function	onComplete(evt:Event):void	{
9	 				evt.target.removeEventListener(Event.COMPLETE,	onComplete);
10	 				trace(evt.target);
11	 				trace(evt.target.loader);
12	 				trace(evt.target.loader.content);
13	 }

Loading Images
Waiting for the content of the Loader to finish loading is important when
you need to work with the content rather than just display it. For example,
we discussed working with bitmaps in Chapter 9, both with and without add-
ing them to the display list. For example, if you just want to load the bitmap
data from the bitmap, you don’t need to add it to the display list. In this case,
you can’t pull bitmap data from a Loader instance and, even if you do want
to add the Loader content to the display list, you can’t add something that
hasn’t yet loaded.

The following example, found in the load_jpg.fla source file, uses the same
basic syntax as the previous example, but with two significant differences.
First, it loads a JPG rather than a SWF. Second, it adds the JPG directly to
the display list (line 9) instead of adding the Loader instance. The result is
a single child in the display list that is of type Bitmap. As a demonstration
of using Loader properties, it also traces the bytesLoaded and bytesTotal of
the loaded asset in lines 11 and 12. (After loading is complete, both numbers
should be the same, no matter what the asset’s size.)

1	 var	jpgLoader:Loader	=	new	Loader();
2	 jpgLoader.load(new	URLRequest("imageToLoad.jpg"));
3	
4	 jpgLoader.contentLoaderInfo.addEventListener(Event.COMPLETE,	
5	 																																													onComplete,	
6	 																																													false,	0,	true);
7	 function	onComplete(evt:Event):void	{
8	 				evt.target.removeEventListener(Event.COMPLETE,	onComplete);
9	 				addChild(evt.target.content);
10	
11	 				trace(evt.target.bytesLoaded);
12	 				trace(evt.target.bytesTotal);
13	 }

Part V: Input/Output364

Loading SWFs and Images

Writing a Multiuse SWF and Image Loading Class
The previous examples presented the simplest syntax for loading visual
assets. Typical loading tasks are more involved, because they include addi-
tional features such as error checking and tracking loading progress.

Unfortunately, this can result in long scripts and become tedious quickly.
So we’ll write a multipurpose class that will not only load SWF and image
files, but will also report errors, monitor loading progress, and provide other
diagnostic options, if you desire. The class will also mimic some of the fea-
tures of the Loader class, allowing you to use much of the same syntax you
would use if writing the code from scratch each time using that class. This is
helpful because one of the drawbacks of a do-it-all approach like this is less
flexibility. If the new class resembles the existing Loader class in useful ways,
you can use the new class instead when you want a diagnostic environment
rolled into a simple load, but revert to Loader when you want more control.

Writing the CustomLoader Class
The class we want to write is called CustomLoader and is in the in the load-
ing directory of the learningactionscript3 package we’ve been developing
throughout the book. We’ll be using this class with the load_swf_custom.fla
and load_jpg_custom.fla source files, if you want to test it before proceeding.

Lines 1 through 9 declare the package and import all required classes. We’ll dis-
cuss classes from the flash.events package that we haven’t mentioned before.

Line 11 declares the class and extends the Loader class. This makes the acces-
sible properties, methods, and events of the Loader class available to our
custom loader through inheritance. Lines 13 through 16 declare four private
properties that will contain: a reference to the LoaderInfo instance of the
class inherited from Loader (line 13), the path to the asset you want to load
(line 14), a flag used to enable and disable trace statements (line 15), and a
number between 0 and 1 representing the percentage of the asset’s bytes that
have already been loaded (line 16).

1	 package	com.learningactionscript3.loading	{
2	 				
3	 				import	flash.display.Loader;
4	 				import	flash.display.LoaderInfo;
5	 				import	flash.events.Event;
6	 				import	flash.events.HTTPStatusEvent;
7	 				import	flash.events.IOErrorEvent;
8	 				import	flash.events.ProgressEvent;
9	 				import	flash.net.URLRequest;
10	
11	 				public	class	CustomLoader	extends	Loader	{
12	 								
13	 								private	var	_ldrInfo:LoaderInfo;
14	 								private	var	_path:String;
15	 								private	var	_verbose:Boolean	=	false;
16	 								private	var	_loadedPercent:Number	=	0;

Pu
sh

 Yourself!

NOTE

You can even type the new class as
Loader when creating instances, so your
code can be more flexible.

NOTE

See Chapter 6 for more information
about inheritance.

Loading SWFs and Images

Chapter 13: Loading Assets 365

The constructor is pretty simple. It takes two arguments: the asset path and
flag to show trace output, as mentioned previously, both with default values.
Lines 20 and 21 populate class properties with data provided to the construc-
tor during instantiation. Line 23 calls the addListeners() method, which
adds all the listeners used internally by the class (more on this in a moment).

The last lines of the constructor (25 through 31) load the requested asset if a
path is passed into the constructor during instantiation. Providing a default
value for path, and checking path before calling the load() method, means
that you can load assets in two ways. First, you can pass a simple string to
the constructor during instantiation. In this case, path will contain a String,
and load() will be called in the constructor. Or, you can pass nothing to the
class during instantiation (in which case path will remain null, and load()
will not be called in the constructor) and use the load() method from the
class instance with a URLRequest, just as you do with the Loader class. We’ll
demonstrate both techniques when we show usage examples.

Before we talk about the try..catch block that surrounds the load() method,
note that no Loader instance is created before loading. This is because the
class you’re writing extends the Loader class and, through inheritance, we
can use its accessible methods, which include load(). Therefore, the this
keyword is used instead, so the class loads the asset without having to create
an additional Loader.

A try..catch block, discussed at the end of Chapter 2, allows you to try
something but suppress a resulting error to prevent it from being seen by
those viewing your SWF in the wild. You can use a try..catch block in many
ways. For example, you could try to load an asset from a remote server and,
upon receiving an error, load a local version of the asset instead. More generi-
cally, you can use a try..catch block when a runtime error is possible so the
error doesn’t reach the user. It’s helpful to trace these errors and add descrip-
tive messages, so it’s easier to track them down during development.

17	 								//constructor
18	 								public	function	CustomLoader(path:String=null,	
19	 																																					verbose:Boolean=false)	{
20	 												_path	=	path;
21	 												_verbose	=	verbose;
22	 												
23	 												addListeners();
24	 												
25	 												if	(path	!=	null)	{
26	 																try	{
27	 																				this.load(new	URLRequest(path));
28	 																}	catch	(err:Error)	{
29	 																				trace("Cannot	load",	_path,	err.message);
30	 																}
31	 												}
32	 								}

The addListeners() and removeListeners() methods do nothing but add
and remove listeners, respectively, but there are a few things worthy of note.

Part V: Input/Output366

Loading SWFs and Images

First, in line 35 the listeners are added to the contentLoaderInfo property of
the class (again, inherited from Loader), as explained in the “Loading SWFs”
section of this chapter.

Second, we’re adding several new events, including some that come from
event classes we haven’t previously discussed. For completeness, let’s briefly
go over when each event is dispatched.

• Event.OPEN: When the loading process is initiated. If this event is never
received, you know loading never even started.

• ProgressEvent.PROGRESS: Each time data is received during the load.
This allows you to update a loading progress bar.

• HTTPStatusEvent.HTTP_STATUS: When an HTTP request is made
(such as fetching an asset from a server) and a status code is
detected. For more information see http://en.wikipedia.org/wiki/
List_of_HTTP_status_codes.

• Event.INIT: When enough of the loading process is complete to have
access to the properties of the object. If, for example, you try to query
the width of a loaded asset before this event is dispatched, it will likely
be 0. After properties are accessible, the correct width will be available.

• Event.COMPLETE: When loading is finished. This occurs after Event.
INIT.

• IOErrorEvent.IO_ERROR: When an input/output error occurs. One
example of such an error is when the asset can’t be found at the URL
provided.

• Event.UNLOAD: When the asset is unloaded. This is usually the last
event to be dispatched.

Lastly, notice that the removeListeners() method is public. This allows you
to remove all listeners from outside the class, when you’re through using the
class instance you created. In some cases, you want to remove listeners right
away, such as when you only need your listener once, as demonstrated in
the examples earlier in this chapter. In other circumstances, you may want
to use the same Loader instance repeatedly to load asset after asset, in which
case you want the listeners to remain active. The removeListeners() method
allows you to remove the listeners any time you like.

33	 								//listeners
34	 								private	function	addListeners():void	{
35	 												_ldrInfo	=	this.contentLoaderInfo;
36	 												_ldrInfo.addEventListener(Event.OPEN,
37	 																																						onOpen,	false,	0,	true);
38	 												_ldrInfo.addEventListener(ProgressEvent.PROGRESS,
39	 																																						onProgress,	false,	0,	true);
40	 												_ldrInfo.addEventListener(HTTPStatusEvent.HTTP_STATUS,
41	 																																						onStatusEvent,	
42	 																																						false,	0,	true);
43	 												_ldrInfo.addEventListener(Event.INIT,

NOTE

New to Flash Player version 10.1 is the
uncaughtErrorEvents property of the
Loader and LoaderInfo classes. This
allows you to trap any errors not caught
by other means (such as a try..catch
block) in your code. For more infor-
mation, see the “Trapping Uncaught
Errors” post at the companion website,
http://www.LearningActionScript3.com.

NOTE

Another way to maintain your listen-
ers is to add them before every load
and remove them every time the load
is complete. To keep your class as self-
reliant as possible, you want to add
the listeners when calling the load()
method. This requires that you over-
ride the load() method, as discussed in
the “Polymorphism” section of Chapter
6. The post, “Overriding the load()
Method in Custom Loader Classes,”
found at the companion website shows
how this is done.

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://www.LearningActionScript3.com

Loading SWFs and Images

Chapter 13: Loading Assets 367

44	 																																						onInit,	false,	0,	true);
45	 												_ldrInfo.addEventListener(Event.COMPLETE,
46	 																																						onComplete,	false,	0,	true);
47	 												_ldrInfo.addEventListener(IOErrorEvent.IO_ERROR,
48	 																																						onIOError,	false,	0,	true);
49	 												_ldrInfo.addEventListener(Event.UNLOAD,
50	 																																						onUnloadContent,	
51	 																																						false,	0,	true);
52	 								}
53	 								
54	 								public	function	removeListeners():void	{
55	 												_ldrInfo.removeEventListener(Event.OPEN,	onOpen);
56	 												_ldrInfo.removeEventListener(ProgressEvent.PROGRESS,
57	 																																									onProgress);
58	 												_ldrInfo.removeEventListener(HTTPStatusEvent.HTTP_STATUS,
59	 																																									onStatusEvent);
60	 												_ldrInfo.removeEventListener(Event.INIT,	onInit);
61	 												_ldrInfo.removeEventListener(Event.COMPLETE,	
62	 																																									onComplete);
63	 												_ldrInfo.removeEventListener(IOErrorEvent.IO_ERROR,	
64	 																																									onIOError);
65	 												_ldrInfo.removeEventListener(Event.UNLOAD,	
66	 																																									onUnloadContent);
67	 								}

The remainder of the class contains the listener methods, one getter, and one
setter. The listener methods all trace specific feedback during the loading
process, only if you pass true into the verbose flag during instantiation. Note,
however, that the trace in the onIOError() method is not wrapped in a condi-
tional that uses the _verbose Boolean. This is because we only want to turn
on and off the logging feature, not any valid error reports. If the error were
included in the list of items shown only when _verbose is true, we would
have to see all diagnostic text all the time just to see any input/output errors.

The onProgress() method also calculates the percent that an asset has load-
ed. This way, if you want to create a progress bar, you can simply check the
related property, percentLoaded, via the getter at the end of the class, instead
of calculating the value yourself. The onInit() method also traces a few
properties of the asset to help you in your loading diagnostics. The first is the
asset’s URL (line 89) and, if the asset is a SWF, lines 93 through 96 trace the
version of the Flash Player and ActionScript that the SWF was compiled for,
and the SWF’s frame rate.

The percentLoaded getter provides access to the _loadedPercent property
previously described, and the verbose setter allows you to optionally turn on
or off debugging through a property, rather than in the constructor.

68	 								//listener	methods,	getter,	and	setter
69	 								private	function	onOpen(evt:Event):void	{
70	 												if	(_verbose)	{	trace("Loading	begun:",	_path);	}
71	 								}
72	 								
73	 								private	function	onProgress(evt:ProgressEvent):void	{
74	 												_loadedPercent	=	evt.bytesLoaded	/	evt.bytesTotal;
75	 												
76	 												if	(_verbose)	{	

NOTE

In this class, enabling debugging
through the constructor parameter or
the verbose setter is entirely a matter
of preference. The setter was provided
to allow the instantiation of the class to
more closely resemble the instantiation
of the Loader class.

Part V: Input/Output368

Loading SWFs and Images

77	 																trace("Loading",	_path,	
78	 																						"--	progress	(0-1):",	_loadedPercent);
79	 												}
80	 								}
81	 								
82	 								private	function	onStatusEvent(evt:HTTPStatusEvent):void	{
83	 												if	(_verbose)	{	trace("HTTP	status:",	evt.status);	}
84	 								}
85	
86	 								private	function	onInit(evt:Event):void	{
87	 												if	(_verbose)	{	
88	 																trace("Content	initialized.	Properties:");	
89	 																trace("url:",	evt.target.url);
90	 																trace("Same	Domain:",	evt.target.sameDomain);
91	 																if	(evt.target.contentType	==	
92	 																				"application/x-shockwave-flash")	{
93	 																				trace("SWF	Version:",	evt.target.swfVersion);
94	 																				trace("AS	Version:",	
95	 																										evt.target.actionScriptVersion);
96	 																				trace("Frame	Rate:",	evt.target.frameRate);
97	 																}
98	 												}
99	 								}
100	
101									private	function	onComplete(evt:Event):void	{											
102													if	(_verbose)	{	trace("Loading	complete:",	_path);	}
103									}
104	
105									private	function	onUnloadContent(evt:Event):void	{
106													if	(_verbose)	{	trace("Unloaded:",	_path);	}
107									}
108	
109									private	function	onIOError(evt:IOErrorEvent):void	{
110													trace("CustomLoader	loading	error:\n",	evt.text);
111									}
112									
113									public	function	get	percentLoaded():Number	{
114													return	_loadedPercent;
115									}
116									
117									public	function	set	verbose(bool:Boolean):void	{
118													_verbose	=	bool;
119									}
120					}
121	}

Using the CustomLoader Class
Because we extended the Loader class when writing CustomLoader, both class-
es use similar syntax. The following examples replicate the previous examples
closely to demonstrate this benefit of inheritance.

Loading SWFs
The first example, found in the load_swf_custom.fla, loads a SWF. After
importing the class in line 1, line 3 passes the SWF’s path to the constructor
during instantiation, and the class takes care of the URLRequest and call to the

Loading SWFs and Images

Chapter 13: Loading Assets 369

load() method. The only other difference between this script and the exam-
ple shown in the “Loading SWFs” section is in line 11. Because the example
makes no further use of the CustomLoader class, all its listeners are removed.

1	 import	com.learningactionscript3.loading.CustomLoader;
2	
3	 var	swfLoader:CustomLoader	=	new	CustomLoader("swfToLoad.swf",	true);
4	 addChild(swfLoader);
5	
6	 swfLoader.contentLoaderInfo.addEventListener(Event.COMPLETE,	
7	 																																													onComplete,	
8	 																																													false,	0,	true);
9	 function	onComplete(evt:Event):void	{
10	 				evt.target.removeEventListener(Event.COMPLETE,	onComplete);
11	 				evt.target.loader.removeListeners();
12	 				trace(evt.target);
13	 				trace(evt.target.content);
14	 				trace(evt.target.loader);
15	 }

Loading images
The second example, found in the load_jpg_custom.fla, uses CustomLoader
much the same way Loader is used. The instantiation process in line 3 passes
no values to the constructor, the verbose flag is enabled in line 4, and loading
is accomplished via the load() method and a URLRequest instance in line 5.
Like the previous JPG loading example, this script also loads the JPG directly
to the display list in the last instruction of the onComplete() method.

This example also adds the use of the percentLoaded getter to increase the
horizontal scale of a progress bar. In line 7 the progress bar is created using
the createProgressBar() function found at the end of the script. The func-
tion creates a sprite, draws a green rectangle, and returns the sprite to the
progressBar variable. The sprite is then added to the display list in line 8.

Two listeners are then added to the contentLoaderInfo property of the
CustomLoader instance, so the property is stored in a variable for efficiency.
In addition to the COMPLETE event listener found in the prior JPG loading
example, a PROGRESS event listener is added in lines 13 through 15. It calls
the onProgress() function in lines 17 through 19, which updates the scaleX
property of the progress bar sprite every time asset data is received during
the loading process.

1	 import	com.learningactionscript3.loading.CustomLoader;
2	
3	 var	jpgLoader:CustomLoader	=	new	CustomLoader();
4	 jpgLoader.verbose	=	true;
5	 jpgLoader.load(new	URLRequest("imageToLoad.jpg"));
6	
7	 var	progressBar:Sprite	=	createProgressBar();
8	 addChild(progressBar);
9	
10	 var	jpgLoaderInfo:LoaderInfo	=	jpgLoader.contentLoaderInfo;
11	 jpgLoaderInfo.addEventListener(Event.COMPLETE,	onComplete,
12	 																															false,	0,	true);

NOTE

The event listeners in the example FLA
files are not the same as the event lis-
teners inside the class. All the internal
listeners are at the class level, and are
private so nothing outside the class is
aware of their existence. The listeners
in the example FLA files are applied to
class instances.

Part V: Input/Output370

Loading Data

13	 jpgLoaderInfo.addEventListener(ProgressEvent.PROGRESS,	
14	 																															onProgress,
15	 																															false,	0,	true);
16	
17	 function	onProgress(evt:Event):void	{
18	 				progressBar.scaleX	=	evt.target.loader.percentLoaded;
19	 }
20	
21	 function	onComplete(evt:Event):void	{
22	 				evt.target.removeEventListener(Event.COMPLETE,	onComplete);
23	 				evt.target.loader.removeListeners();
24	 				addChild(evt.target.content);
25	 }
26	
27	 function	createProgressBar():Sprite	{
28	 				var	sp:Sprite	=	new	Sprite();
29	 				var	g:Graphics	=	sp.graphics;
30	 				g.beginFill(0x00FF00);
31	 				g.drawRect(0,	0,	100,	10);
32	 				g.endFill();
33	 				sp.x	=	sp.y	=	10;
34	 				return	sp;
35	 }

Loading Data
While the Loader class will load visual assets, data such as text, URL vari-
ables, and even binary data, is loaded with the URLLoader class. Using the
URLLoader class is similar in many ways to using the Loader class. In fact, we’ll
write a custom class for loading data that will closely resemble the program-
ming design and syntax of the CustomLoader class we wrote previously.

Just like the Loader class can load more than one kind of object (SWF and
image), URLLoader can load three kinds of data, selected with the dataFormat
property of the URLLoader instance. Plain text (such as text, HTML, CSS and
so on) returns a string. URL-encoded variables (such as HTML form data
and server responses) returns an instance of the URLVariables class with a
collection of variables and corresponding values. Binary data (such as image
or sound data) returns a ByteArray.

We introduced loading plain text in the “Loading HTML and CSS” section of
Chapter 10, but we’ll cover it again here for completeness. We’ll also include
examples of loading variables and binary data, including a beyond the basics
look at how you can use binary data.

Loading Text
The default behavior of the URLLoader class is to load text. The following
example, found in the load_text.fla source file, is the simplest implementation
of the URLLoader class. All you need to do is instantiate the class (line 1), and
load the text file using a URLRequest instance. This example uses a COMPLETE
event listener to initialize a text field when the loading is finished (lines 4

NOTE

If you want your usage of the Loader
and CustomLoader classes to be as
similar as possible, so you can switch
between them with as few edits as possi-
ble, you can still enable verbose tracing
without loading the asset immediately.
You can set up your code like the custom
JPG loading example, so the load()
method is used separately—just like
using the Loader class. However, when
instantiating CustomLoader (line 3 in
the example), just pass in null and true
as the parameter values:

new	CustomLoader(null,	true);

This will enable verbose logging, but
will not invoke the load() method in
the class constructor.

NOTE

Loading XML is just like loading text.
We’ll cover loading XML in detail
in Chapter 14 and make use of the
CustomURLLoader class you’ll write in
this chapter.

Loading Data

Chapter 13: Loading Assets 371

through 15), populate the field with the text data sent with the event (line 13),
and add the field to the display list (line 14).

1	 var	ldrText:URLLoader	=	new	URLLoader();
2	 ldrText.load(new	URLRequest("lorem.txt"));
3	
4	 ldrText.addEventListener(Event.COMPLETE,	onComplete,	
5	 																									false,	0,	true);
6	 function	onComplete(evt:Event):void	{
7	 				evt.target.removeEventListener(Event.COMPLETE,	onComplete);
8	 				var	txtFld:TextField	=	new	TextField();
9	 				txtFld.x	=	txtFld.y	=	20;
10	 				txtFld.width	=	500;
11	 				txtFld.height	=	350;
12	 				txtFld.multiline	=	txtFld.wordWrap	=	true;
13	 				txtFld.text	=	evt.target.data;
14	 				addChild(txtFld);				
15	 }

Loading Variables
One of the ways to send data between client and server is by using name-
value pairs (also called attribute-value pairs). These are assembled in a URL
like those sent from an HTML form or returned from some web applications
like search tools. An example is firstname=Liz&lastname=Lemon.

If your project requires communication using URL variables, you must set
the dataFormat property of the URLLoader class to URLLoaderDataFormat.
VARIABLES before loading. This automatically changes the data returned from
the loading process to a URLVariables object. Names and values are created
in the object to match the names and values from the loading result. You can
then access those properties to retrieve their values.

Web-based applications change frequently, so we’ve demonstrated this syntax
using a local file written as URL variables. (Local URLs are no different to
URLLoader than remote server URLs.) The file vars.txt contains the following
data:

name=Joe&age=25

This data will be loaded by the following example, found in load_vars.fla.
The example assigns the dataFormat property in line 2, and the property val-
ues are traced from the event target’s data property in lines 9 and 10.

1	 var	ldrVars:URLLoader	=	new	URLLoader();
2	 ldrVars.dataFormat	=	URLLoaderDataFormat.VARIABLES;
3	 ldrVars.load(new	URLRequest("vars.txt"));
4	
5	 ldrVars.addEventListener(Event.COMPLETE,	onComplete,	
6	 																									false,	0,	true);
7	 function	onComplete(evt:Event):void	{
8	 				evt.target.removeEventListener(Event.COMPLETE,	onComplete);
9	 				trace("name	property:",	evt.target.data.name);
10	 				trace("age	property:",	evt.target.data.age);
11	 }

Part V: Input/Output372

Loading Data

The following is the trace output:

//name	property:	Joe
//age	property:	25

Loading Binary Data
It’s also possible to load binary data from a URL, which is stored in a
ByteArray. In this book, we’ve already used the ByteArray to load frequency
spectrum data from sounds at runtime. ActionScript 3.0 has also been used
to create FTP clients, VNC clients, and image loaders, just to name a few
examples.

To send or load binary data with the URLLoader class, you must set the data-
Format property to URLLoaderDataFormat.BINARY. The following example,
found in the load_binary.fla source file, sets the property in line 2, loads an
image in line 3, and, upon completing the load, creates a Loader instance to
read the bytes of data returned from the URLLoader instance, and adds the
instance to the display list (lines 9 through 11).

1	 var	imgLoader:URLLoader	=	new	URLLoader();
2	 imgLoader.dataFormat	=	URLLoaderDataFormat.BINARY;
3	 imgLoader.load(new	URLRequest("imageToLoad.jpg"));
4	
5	 imgLoader.addEventListener(Event.COMPLETE,	onComplete,	
6	 																											false,	0,	true);
7	 function	onComplete(evt:Event):void	{
8	 				evt.target.removeEventListener(Event.COMPLETE,	onComplete);
9	 				var	ldr:Loader	=	new	Loader();
10	 				ldr.loadBytes(evt.target.data);
11	 				addChild(ldr);
12	 }

This example was designed to be simple to introduce the syntax for loading
binary data. Later in the chapter, a beyond-the-basics example will use this
technique to load a Pixel Bender filter to process an image.

Writing a Multiuse Data Loading Class
Just as our CustomLoader class extended the Loader class, we want to extend
the URLLoader class and add similar automatic diagnostic features. We’ll call
the new class CustomURLLoader and, as before, we’ll design it to use familiar
syntax so you can switch between URLLoader and CustomURLLoader relatively
easily. This class is very similar to CustomLoader in design and syntax, so our
discussion will focus primarily on what makes it unique.

Writing the CustomURLLoader Class
Lines 1 through 9 declare the package, and import all the required classes. The
classes required are similar to those required by CustomLoader, with the addi-
tion of the SecurityErrorEvent class and the substitution of the URLLoader
class for Loader. We’ll discuss the SecurityErrorEvent class when we cover

NOTE

Pixel Bender is an Adobe technology
that lets you use a programming lan-
guage based on C to write your own
image filters.

Pu
sh

 Yourself!

Loading Data

Chapter 13: Loading Assets 373

the listeners. Line 11 declares the class and extends URLLoader. Again, this
makes available the accessible properties and methods of the URLLoader class.
Lines 13 through 15 contain private properties also used in CustomLoader to
contain the asset path, the logging Boolean, and a number that reports what
percentage of the asset has loaded.

1	 package	com.learningactionscript3.loading	{
2	
3	 				import	flash.events.Event;
4	 				import	flash.events.HTTPStatusEvent;
5	 				import	flash.events.IOErrorEvent;
6	 				import	flash.events.ProgressEvent;
7	 				import	flash.events.SecurityErrorEvent;												
8	 				import	flash.net.URLLoader;
9	 				import	flash.net.URLRequest;
10	 				
11	 				public	class	CustomURLLoader	extends	URLLoader	{
12	 								
13	 								private	var	_path:String;
14	 								private	var	_verbose:Boolean;
15	 								private	var	_loadedPercent:Number	=	0;

The constructor is nearly identical to that of the CustomLoader class. Starting
with their similarities, this class accepts the asset path string and Boolean for
verbose logging as arguments during instantiation (lines 17 and 18), populates
the related properties (lines 20 and 21), adds the needed listeners (line 24), and
tries to load the asset if a path was provided (lines 26 through 31). The big dif-
ference between the two classes is that this class also accepts the format string
argument, with a default value of “text” (line 19), and assigns that value to the
dataFormat property of the class, inherited from URLLoader, (line 22).

16	 								//constructor
17	 								function	CustomURLLoader(path:String=null,	
18	 																																	verbose:Boolean=false,	
19	 																																	format:String="text")	{
20	 												_path	=	path;
21	 												_verbose	=	verbose;				
22	 												this.dataFormat	=	format;
23	
24	 												addListeners();
25	
26	 												if	(path	!=	null)	{
27	 																try	{
28	 																				this.load(new	URLRequest(path));
29	 																}	catch	(err:Error)	{
30	 																				trace("URL	load	error:",	err.message);
31	 																}
32	 												}
33	 								}

The remainder of the class is also nearly identical to that of CustomLoader.
Starting with the event listeners, the addListeners() and removeListeners()
methods also add and remove listeners, respectively (lines 35 through 63).
The INIT and UNLOAD listeners are absent, as they do not apply to URLLoader,
and the SecurityErrorEvent.SECURITY_ERROR has been added (lines 47
through 49, and 61 through 62). The latter is dispatched when you attempt

Part V: Input/Output374

Loading Data

to load data from a URL outside the security sandbox used by the SWF, and
calls the method in lines 85 through 87.

Flash Player security is a big topic, which is discussed in greater detail on the
companion website. Put simply, however, not every asset can be loaded with-
out permission. Notably, a SWF can’t readily access the user’s local file system
and remote URLs at the same time unless permission is granted, nor can you
load content from different domains without permission—typically granted
with a cross-domain policy file, which is an XML file on the remote server,
listing any IP addresses that are allowed access. As your experience grows, and
you start to work on projects where either of these needs arise, you’ll want to
leave ample time to study security issues. See the post “Security Overview”
on the companion website for more information.

Finally, the getter and setter (lines 93 through 99) are identical to those found
in the CustomLoader class, returning the percentage of bytes loaded, and
enabling or disabling the verbose logging feature, respectively.

34	 								//listeners
35	 								private	function	addListeners():void	{
36	 												this.addEventListener(Event.OPEN,
37	 																																		onOpen,	false,	0,	true);
38	 												this.addEventListener(ProgressEvent.PROGRESS,
39	 																																		onProgress,	false,	0,	true);
40	 												this.addEventListener(HTTPStatusEvent.HTTP_STATUS,
41	 																																		onStatusEvent,
42	 																																		false,	0,	true);
43	 												this.addEventListener(Event.COMPLETE,
44	 																																		onComplete,	false,	0,	true);
45	 												this.addEventListener(IOErrorEvent.IO_ERROR,
46	 																																		onIOError,	false,	0,	true);
47	 												this.addEventListener(SecurityErrorEvent.SECURITY_ERROR,
48	 																																		onSecError,
49	 																																		false,	0,	true);
50	 								}
51	 								
52	 								public	function	removeListeners():void	{
53	 												this.removeEventListener(Event.OPEN,	onOpen);
54	 												this.removeEventListener(ProgressEvent.PROGRESS,
55	 																																					onProgress);
56	 												this.removeEventListener(HTTPStatusEvent.HTTP_STATUS,
57	 																																					onStatusEvent);
58	 												this.removeEventListener(Event.COMPLETE,	onComplete);
59	 												this.removeEventListener(IOErrorEvent.IO_ERROR,
60	 																																					onIOError);
61	 												this.removeEventListener(SecurityErrorEvent.SECURITY_ERROR,
62	 																																					onSecError);
63	 								}
64	 								
65	 								private	function	onOpen(evt:Event):void	{
66	 												if	(_verbose)	{	trace("Loading	begun:",	_path);	}
67	 								}
68	
69	 								private	function	onProgress(evt:ProgressEvent):void	{
70	 												_loadedPercent	=	evt.bytesLoaded	/	evt.bytesTotal;
71	 												if	(_verbose)	{	
72	 																trace("Loading",	_path,		

NOTE

When doing anything that might cause
a possible security concern, includ-
ing loading assets, test your work in a
browser as often as is practical. Flash
Professional is considered a trusted
zone that is not susceptible to most
Flash Player security issues. As a result
you may think your file is working
without security problems throughout
development, only to find out at the
last minute that restrictions do apply
in the browser. The default settings of
Flash Professional allow you to test in
a browser easily using the Ctrl+F12
(Windows) or Cmd+F12 (Mac) key-
board shortcut.

Loading Data

Chapter 13: Loading Assets 375

73	 																						"--	progress	(0-1):",	_loadedPercent);
74	 												}
75	 								}
76	 								
77	 								private	function	onStatusEvent(evt:HTTPStatusEvent):void	{
78	 												if	(_verbose)	{	trace("HTTP	status:",	evt.status);	}
79	 								}
80	 								
81	 								private	function	onComplete(evt:Event):void	{												
82	 												if	(_verbose)	{	trace("Loading	complete:",	_path);	}
83	 								}
84	 								
85	 								private	function	onSecError(evt:SecurityErrorEvent):void	{
86	 												trace("Security	error:",	evt.text);
87	 								}
88	
89	 								private	function	onIOError(evt:IOErrorEvent):void	{
90	 												trace("Loading	error:",	evt.text);
91	 								}
92	
93	 								public	function	get	percentLoaded():Number	{
94	 												return	_loadedPercent
95	 								}
96	
97	 								public	function	set	verbose(bool:Boolean):void	{
98	 												_verbose	=	bool;
99	 								}
100					}
101	}

Using the CustomURLLoader Class
As you might imagine from their complementary design, using the
CustomURLLoader class is very similar to using the CustomLoader class. We’ll
show examples for loading text, variables, and binary data.

Loading text
The following example, found in the load_text_custom.fla source file, is a
simple use of the class. It passes the path of the text file into the class con-
structor to let the class handle the loading (lines 3 and 4), and it uses verbose
logging so you can see what’s going on. Other than using our custom class
and removing its internal listeners (line 10), it’s the same in every other respect
as the basic text-loading example explained earlier in the chapter.

1	 import	com.learningactionscript3.loading.CustomURLLoader;
2	
3	 var	ldrText:CustomURLLoader	=	new	CustomURLLoader("lorem.txt",
4	 																																																		true);
5	
6	 ldrText.addEventListener(Event.COMPLETE,	onComplete,	
7	 																									false,	0,	true);
8	 function	onComplete(evt:Event):void	{
9	 				evt.target.removeEventListener(Event.COMPLETE,	onComplete);
10	 				evt.target.removeListeners();
11	 				var	txtFld:TextField	=	new	TextField();
12	 				txtFld.x	=	txtFld.y	=	20;

NOTE

As with the CustomLoader class, the
companion website includes an alter-
nate version of CustomURLLoader
that overrides the load() method.
This simplifies the use of both classes
because their internal listeners—those
responsible for the verbose logging—
are added and removed automatically.
See the post, “Overriding the load()
Method in Custom Loader Classes,”
at the companion website, http://www.
LearningActionScript3.com.

http://www.LearningActionScript3.com
http://www.LearningActionScript3.com

Part V: Input/Output376

Loading Data

13	 				txtFld.width	=	500;
14	 				txtFld.height	=	350;
15	 				txtFld.multiline	=	txtFld.wordWrap	=	true;
16	 				txtFld.text	=	evt.target.data;
17	 				addChild(txtFld);				
18	 }

Loading variables
The next example, found in the load_vars_custom.fla source file, employs
syntax similar to what you used with the URLLoader class. The class is instan-
tiated with no arguments (line 3), the dataFormat property is set separately
(line 4), and the load() method is called using a URLRequest instance (line 5).

Two things that are different than the previous variable loading example are
the removal of the self-contained class listeners (line 11) and the fact that the
event listener method demonstrates using a for..in loop (lines 12 through
14) to iterate through all variables, rather than retrieving their values by name.

1	 import	com.learningactionscript3.loading.CustomURLLoader;
2	
3	 var	ldrVars:CustomURLLoader=	new	CustomURLLoader();
4	 ldrVars.dataFormat	=	URLLoaderDataFormat.VARIABLES;
5	 ldrVars.load(new	URLRequest("vars.txt"));
6	
7	 ldrVars.addEventListener(Event.COMPLETE,	onComplete,	
8	 																									false,	0,	true);
9	 function	onComplete(evt:Event):void	{
10	 				evt.target.removeEventListener(Event.COMPLETE,	onComplete);
11	 				evt.target.removeListeners();
12	 				for	(var	prop	in	evt.target.data)	{	
13	 								trace(prop	+	":	"	+	evt.target.data[prop]);	
14	 				}
15	 }

Loading binary data
The final use of our CustomURLLoader class will again demonstrate loading
binary data. This time, however, we’ll load a Pixel Bender filter. Adobe devel-
oped Pixel Bender to allow users to program image processing filters using a
C-based language. Filters are typically written using the Pixel Bender Toolkit
(an integrated development environment created expressly for this purpose)
and then used by other Adobe applications like Photoshop, AfterEffects, and
Flash Player.

You don’t have to be able to write the filters to use them, however. Many filters
exist under a variety of licenses, including open source, freeware, shareware,
and commercial. One place to find Pixel Bender filters is the Adobe Pixel
Bender Exchange. Visit http://www.adobe.com/cfusion/exchange/, select the
Pixel Bender exchange, and then browse or search for filters that can be used
with Flash.

Pu
sh

 Yourself!

NOTE

You can learn more about Pixel Bender
from the Pixel Bender Developer
Center: http://www.adobe.com/devnet/
pixelbender/.

http://www.adobe.com/cfusion/exchange/
http://www.adobe.com/devnet/pixelbender/
http://www.adobe.com/devnet/pixelbender/

Loading Data

Chapter 13: Loading Assets 377

In this example, we’ll use the SquarePattern filter created by the talented
Flash Platform evangelist, teacher, and developer Lee Brimelow. You can read
about it at Lee’s blog, The Flash Blog, at http://blog.theflashblog.com/?p=432.

In ActionScript, this process begins by creating a shader using the Shader
class. A shader defines a function that executes on all the pixels of an image,
one pixel at a time. Shaders can be used for filters, fills, blend modes, and even
numeric calculations. The benefit of these efforts is that Pixel Bender shaders
can improve performance of these processor-intensive tasks. In this example,
we’ll create a filter using the ShaderFilter class.

The following class, CustomLoadBinaryExample.as, is a document class used
by the accompanying CustomLoadBinaryExample.fla source file. It will use
the CustomLoader class to import an image and add it to the display list, then
load the SquarePattern filter using the CustomURLLoader class, and finally
animate the filter using an enter frame event listener.

Lines 1 through 11 declare the package and import all the required classes.
Line 13 declares the class, which extends MovieClip so it can be used as a
document class, if desired. Lines 15 through 20 declare a set of private proper-
ties that will hold the CustomLoader’s LoaderInfo instance (line 15), the loaded
image (line 16), a CustomURLLoader instance (line 17), the Pixel Bender Shader
and ShaderFilter (lines 18 and 19), and a property to hold the changing filter
values during animation (line 20).

The constructor (lines 22 through 29) then uses the CustomLoader class to
load an image (lines 23 and 24) and create an event listener to respond to the
COMPLETE event (lines 25 through 28).

1	 package	{
2	
3	 				import	flash.display.Bitmap;
4	 				import	flash.display.LoaderInfo;
5	 				import	flash.display.MovieClip;
6	 				import	flash.display.Shader;
7	 				import	flash.filters.ShaderFilter;
8	 				import	flash.events.Event;
9	 				import	flash.net.URLLoaderDataFormat;
10	 				import	com.learningactionscript3.loading.CustomLoader;
11	 				import	com.learningactionscript3.loading.CustomURLLoader;
12	 				
13	 				public	class	CustomLoadBinaryExample	extends	MovieClip	{
14	
15	 								private	var	_ldrInfo:LoaderInfo;
16	 								private	var	_penguins:Bitmap;
17	 								private	var	_ldrBinary:CustomURLLoader;
18	 								private	var	_shader:Shader;
19	 								private	var	_shaderFilter:ShaderFilter;
20	 								private	var	_val:Number	=	0;
21	
22	 								public	function	CustomLoadBinaryExample()	{
23	 												var	jpgLoader:CustomLoader	=	
24	 																new	CustomLoader("penguins.jpg");

NOTE

Lee Brimelow also created the Pixel
Bender Viewer, a tool that allows you
to load Pixel Bender filters, experiment
with their settings, and export them in
a format compatible with Flash Player.
For more information, see http://blog.
theflashblog.com/?p=385.

http://blog.theflashblog.com/?p=432
http://blog.theflashblog.com/?p=385
http://blog.theflashblog.com/?p=385

Part V: Input/Output378

Loading Data

25	 												_ldrInfo	=	jpgLoader.contentLoaderInfo;
26	 												_ldrInfo.addEventListener(Event.COMPLETE,	
27	 																																						onImgLoaded,	
28	 																																						false,	0,	true);
29	 								}

Once the image has loaded, the onImgLoaded() method (lines 31 through 44)
is called. The COMPLETE event listener is removed from the CustomLoader’s
LoaderInfo instance (lines 32 and 33), the class’s internal listeners are
removed (line 34), and the loaded bitmap is then added to the display list
(lines 35 and 36). Next, the CustomURLLoader class is used to load the Pixel
Bender filter file as binary data (lines 38 through 40), and another COMPLETE
listener is created (lines 41 through 43)—this time calling its method when
the filter is completely loaded.

30	 								//load	filter
31	 								private	function	onImgLoaded(evt:Event):void	{
32	 												evt.target.removeEventListener(Event.COMPLETE,	
33	 																																											onImgLoaded);
34	 												evt.target.loader.removeListeners();
35	 												_penguins	=	Bitmap(evt.target.content);
36	 												addChild(penguins);
37	 												
38	 												_ldrBinary	=	
39	 																new	CustomURLLoader("squarepattern.pbj",	true,
40	 																																				URLLoaderDataFormat.BINARY);
41	 												_ldrBinary.addEventListener(Event.COMPLETE,	
42	 																																								onFilterLoaded,	
43	 																																								false,	0,	true);
44	 								}

When the filter file is loaded, the onFilterLoaded() method (lines 46 through
55) is called. The COMPLETE event listener is removed from the CustomURLLoader
(lines 47 and 48), and the class’s internal listeners are removed on line 49.
Next a Shader instance is created from the loaded Pixel Bender data, and
a ShaderFilter instance is derived from the Shader instance. The last task
of the method sets up the filter animation by creating an enter frame event
listener (lines 53 through 54).

45	 								//create	Shader	and	ShaderFilter
46	 								private	function	onFilterLoaded(evt:Event):void	{
47	 												_ldrBinary.removeEventListener(Event.COMPLETE,	
48	 																																											onFilterLoaded);
49	 													evt.target.removeListeners();
50	 												_shader	=	new	Shader(evt.target.data);
51	 												_shaderFilter	=	new	ShaderFilter(shader);
52	 												
53	 												this.addEventListener(Event.ENTER_FRAME,	onEnter,
54	 																																		false,	0,	true);
55	 								}

Finally, the enter frame event listener method onEnter() (lines 57 through 66)
animates the filter. First, the filter is assigned to the Bitmap instance’s filters
property, as discussed in Chapter 9. Next the _val property is incremented
(line 60). Then the _val property is used to update the SquarePattern’s amount
property value. The property takes an array of three numbers: minimum,

Communicating with Loaded SWFs

Chapter 13: Loading Assets 379

maximum, and default. We’ve set the maximum to 50, and the default to
0, and we’re incrementing the minimum by 1 every enter frame. When the
value reaches 50, the event listener is removed, halting the animation (lines
62 through 65).

56	 								//adjust	filter	values
57	 								private	function	onEnter(evt:Event):void	{
58	 											_penguins.filters	=	[_shaderFilter];
59	 											
60	 											_val++;
61	 											_shader.data.amount.value	=	[_val,	50,	0];
62	 											if	(_val	>=	50)	{
63	 															this.removeEventListener(Event.ENTER_FRAME,	
64	 																																								onEnter);
65	 											}
66	 								}
67	 				}
68	 }

Communicating with Loaded SWFs
Now that you know how to load SWFs, let’s talk about communicating
between them. For this discussion, we’ll reference the Loader class, but the
ideas in this section apply equally to the CustomLoader class.

The key to communicating between a parent SWF created with ActionScript
3.0 and a loaded SWF created with ActionScript 3.0 is understanding the posi-
tion of the Loader instance between the two SWFs. Within the parent, access-
ing the child SWF is straightforward because you need only do so through
the Loader instance. The same is true in the other direction, from child to
parent, but is less obvious to some. Just like when traversing the display list,
you can use this.parent within a loaded child SWF to talk to its parent.
However, this will refer to the Loader instance, not the SWF’s main timeline
(or document class) scope.

The following examples, found in the communication_parent.fla and com-
munication_child.fla source files, demonstrate several tasks you may need to
perform when communicating between parent and child SWFs, including
getting or setting properties, calling methods, and calling functions. This
exercise shows communication in both directions. Both SWFs contain a
simple movie clip animation, a function, and a variable. They both trace
information to help you understand what’s happening when the parent SWF
loads the child SWF into a Loader instance.

The child SWF
Lines 1 through 7 provide the code that is self-contained within the child
SWF, which the parent will manipulate. Line 1 initially stops the animation
so we can demonstrate the parent calling the MovieClip play() method. We’ll
show you when this occurs in the parent script, but after loading, the anima-
tion should play. Line 3 creates and populates a string variable, the content

NOTE

To see the CustomLoader class used in
this context, consult the nearly identical
source files, communication_child_cus-
tom.fla and communication_parent_
custom.fla. For these examples to work,
the child SWF must exist before testing
the parent SWF.

NOTE

SWFs created with ActionScript 3.0 can-
not talk directly to SWFs created with
ActionScript 2.0 or ActionScript 1.0. If
you must do this, such as when show-
casing legacy projects in a new portfolio
site, you can do so with a workaround
that establishes a LocalConnection
channel between the SWFs. For more
information, see the “Sending Data from
AVM2 to AVM1” post on the companion
website.

Part V: Input/Output380

Communicating with Loaded SWFs

of which states that it exists inside the child SWF. Lines 5 through 7 define a
function that traces a string passed to it as an argument. This string will orig-
inate in the parent SWF to demonstrate calling a function in the child SWF.

Lines 9 through 25 contain the inter-SWF communication, but the condi-
tional beginning in line 9 is necessary to prevent errors when testing the SWF
prior to loading. The conditional simply checks to see if the parent of the
SWF’s main timeline is the stage. As we discussed in Chapter 4 when cover-
ing the display list, there is only one stage and, when a SWF is on its own, its
parent is the stage. If this is true, the child will trace [object Stage] in line 11,
and show that the stage has no other parent by tracing null in line 12. We’ll
discuss what happens when the SWF’s parent is not the stage after the code.

1	 childAnimation.stop();
2	
3	 var	stringMsg:String	=	"STRING	INSIDE	CHILD";
4	
5	 function	childFunction(msg:String):void	{
6	 				trace("traced	from	function	within	child:",	msg);
7	 }
8	
9	 if	(this.parent	==	this.stage)	{
10	 				trace("child	without	being	loaded:");
11	 				trace("		my	parent:",	this.parent);
12	 				trace("		my	parent's	parent:",	this.parent.parent);
13	 }	else	{
14	 				trace("child	communicating	with	parent:");
15	 				var	parentLoader:Loader	=	Loader(this.parent);
16	 				var	parentApp:MovieClip	=	MovieClip(this.parent.parent);
17	 				trace("		my	parent:",	parentLoader);
18	 				trace("		getting	my	parent's	property:",	parentLoader.x);
19	 				trace("		my	parent's	parent:",	parentApp);
20	 				parentApp.stringMsg	=	"NEW	STRING	INSIDE	PARENT";
21	 				trace("		my	parent's	parent's	redefined	variable:",	
22	 										parentApp.stringMsg);
23	 				parentApp.parentFunction("message	from	child");
24	 				parentApp.parentAnimation.play();
25	 }

If the child SWF’s parent is not the stage, lines 15 and 16 cast the parent to
a Loader instance and the parent’s parent (which is the main timeline of
the SWF doing the loading) to a MovieClip instance. Line 17 then traces the
Loader instance, and line 18 traces a property of that Loader. Line 20 demon-
strates setting a variable in another SWF by changing the string variable in
the parent. (We’ll see that variable in a moment, but it’s equivalent to line 3
in the child). Lines 21 and 22 then get and trace that variable. Finally, line 23
calls a function in the parent (passing a string argument in the process), and
line 24 plays the movie clip in the parent.

The parent SWF
The parent SWF requires no conditional, but is responsible for loading the
child SWF. Lines 1 through 7 perform similar roles to the corresponding lines
in the child SWF—initially stopping a movie clip animation, declaring and

Additional Online Resources

Chapter 13: Loading Assets 381

populating a string variable, and defining a function that accepts a string as
an argument. The variable in line 3 is the same one redefined by the child
SWF in its line 20, and the function in line 5 is the same one called by the
child SWF in its lines 21 and 22.

Lines 9 through 15 should be familiar territory by now. They create a Loader
instance, add it to the display list, load the child SWF, and create a COMPLETE
event listener that calls the function in line 16 when the event is heard. Line 17
casts the content of the Loader (the child SWF) as a MovieClip, line 19 traces
the child SWF’s variable, line 21 calls the child SWF’s function, and line 22
plays the child SWF’s movie clip.

1	 parentAnimation.stop();
2	
3	 var	stringMsg:String	=	"STRING	INSIDE	PARENT";
4	
5	 function	parentFunction(msg:String):void	{
6	 				trace("traced	from	within	parent:",	msg);
7	 }
8	
9	 var	ldr:Loader	=	new	Loader();
10	 addChild(ldr);
11	 ldr.load(new	URLRequest("communication_child.swf"));
12	
13	 ldr.contentLoaderInfo.addEventListener(Event.COMPLETE,	
14	 																																							onComplete,	
15	 																																							false,	0,	true);
16	 function	onComplete(evt:Event):void	{
17	 				var	childSWF:MovieClip	=	MovieClip(ldr.content);
18	 				trace("\nparent	communicating	with	child:");
19	 				trace("		getting	my	child's	variable:",	
20	 										childSWF.stringMsg);
21	 				childSWF.childFunction("message	from	parent");
22	 				childSWF.childAnimation.play();
23	 }

Additional Online Resources
We want to wrap up by drawing attention to two important loading-related
issues that we’ve documented in detail online. The first is a workaround
for a problem that occurs when loading SWFs that contain Text Layout
Framework (TLF) assets (discussed in Chapter 10). The second is a third-
party ActionScript package called LoaderMax that brings a lot of power and
convenience to the loading process.

Loading SWFs with TLF Assets
TLF uses a Runtime Shared Library (RSL)—an external library of code with
an .swz extension that’s loaded at runtime. If a user doesn’t already have the
correct version of the RSL on his or her computer, the TLF asset will try to
download it from the Adobe website. Failing that, a version of the RSL from
the same directory as the SWF will be loaded.

NOTE

The source files communication_par-
ent_custom.fla and communication_
child_custom.fla replicate the scripts in
this section but use the CustomLoader
class for all loading.

The companion website also contains
an example of communication between
parent and child SWF without using
a Loader instance. See the post “SWF
Communication without Going Through
Loader.”

NOTE

Runtime shared libraries can have a
.swz extension if compressed, and a .swc
extension if not compressed.

Part V: Input/Output382

Additional Online Resources

Because RSLs are external, it’s possible to experience a short delay when view-
ing TLF assets. (Ideally this occurs only the first time, as RSLs should be cached
on your computer thereafter.) To compensate for this possible delay, Adobe
included a preloader that’s automatically added to any SWF that uses TLF.

Unfortunately, this setup causes problems after loading SWFs with TLF
assets. The most common problem is that you can’t communicate between
parent and child, as described in the “Communicating with Loaded SWFs”
section of this chapter, because of the extra layers of loaders that are inserted
into the display list by the TLF asset.

There are essentially two solutions to this problem, both of which are dis-
cussed on the companion website in the “Loading SWFs that Use TLF” post.
The first is to compile the TLF Runtime Shared Library code into your SWF.
This makes the entire setup internal, but also increases your SWF’s file size
by about 120k. The second solution is to use Adobe’s new SafeLoader class.

The SafeLoader class is a replacement for the Loader class (it doesn’t extend
Loader) and is available for download from the following Adobe Technote:
http://kb2.adobe.com/cps/838/cpsid_83812.html. Its use is nearly identical to
the Loader class, and you only really need to use it when you know you’re
loading TLF assets. Sample code is provided with the class in the cited down-
load. We’ll also use it in the XML navigation bar in Chapter 14.

The SafeLoader class was released soon after Flash Professional CS5 was
released and may still have some issues to grapple with. We discuss such
issues in the aforementioned companion website post, so be sure to review it
before using the class.

TLF assets also affect preloading code designed to preload the SWF in which
the code resides. That is, instead of loading an external asset, this kind of
preloading code sits in frame 1 of the SWF and loops back to frame 1 until
the SWF is fully loaded. Once the SWF is loaded, the code then moves the
playhead on to the next frame.

GreenSock’s LoaderMax
A fitting end to this chapter is a quick blurb about LoaderMax. Brought to
you by GreenSock, the makers of TweenLite, LoaderMax is the crème de la
crème of ActionScript 3.0 loading libraries. Adding as little as 7k to your
SWF (depending on which classes you need to use), LoaderMax loads SWFs,
images, XML, videos, MP3s, CSS, data, and more. LoaderMax simplifies and
enhances loading the way TweenLite simplifies and enhances tweening. For
example, here are some of the things LoaderMax can do:

NOTE

If you ever see an animated line of five
dots before a TLF asset displays, that’s
its preloader at work.

NOTE

Flash Professional CS5 users can see
an example of a self-preloader in the
templates that ship with the applica-
tion. Select the File→New menu option,
and then select the Templates tab in the
dialog box that appears. Choose the
Sample Files category and select the
Preloader for SWF template. You can
then see the preloading code in frame 1.

If you are not using Flash Professional
CS5, you can search the web using the
phrase “AS3 preloader internal” for
many examples to find one that suits
your coding style. Because links change
often, the companion website will pro-
vide a link to both a class-based and
timeline-based example in the cited post.

http://kb2.adobe.com/cps/838/cpsid_83812.html

Additional Online Resources

Chapter 13: Loading Assets 383

• Build loaders in a variety of ways, including single-item loaders from
nothing more than a String path (LoaderMax can automatically deter-
mine which type of loader to use based on the file extension) and loader
queues automatically assembled from XML documents

• Build a queue that intelligently loads assets in the order specified but that
can easily reprioritize the queued assets on the fly

• Show progress of individual loaders or all loaders as a group

• Easily add robust event listeners, including multiple events in a single
line of code

• Integrate subloaders (LoaderMax instances that exist inside an asset
being loaded) with the overall progress and event model of the main
loader

• Provide an alternate URL that will automatically be used in the event the
first URL fails

• Pause and resume loads in progress

• Circumvent existing ActionScript loading and unloading issues with
improved garbage collection, including properly loading SWFs with TLF
assets

• Optionally manipulate many display characteristics include automatic
scaling, image smoothing, centering registration points, and more

• Operationally control video and MP3 assets, including methods that play,
pause, and go to specific time; properties that get or set volume, time, and
duration; and events that monitor playback progress and more

• Provide a substantial number of shared properties, methods, and events
to all loader types improving consistency and saving lots of manual labor.

LoaderMax is easy to learn and use, particularly after you’re familiar with the
ActionScript 3.0 loading process. Ideally, this chapter has provided you with
the groundwork to get you started, and you can consider using LoaderMax
for your next project. For more information, visit http://www.LoaderMax.com.

learningactionscript3 Package
The contributions from this chapter to our ongoing package of ActionScript classes
include CustomLoader (for loading SWFs and images) and CustomURLLoader (for
loading text, URL variables, and binary data).

NOTE

See the “Meet LoaderMax” post at the
companion website for additional infor-
mation and source code.

http://www.LoaderMax.com

Part V: Input/Output384

What’s Next?

What’s Next?
Throughout this book, we’ve demonstrated a few examples of loading exter-
nal assets. Previously, we discussed loading HTML and CSS (Chapter 10),
sound (Chapter 11), and video (Chapter 12). In this chapter, we focused on
loading SWF and image assets, as well as text, URL variables, and binary
data. We also extended the Loader and URLLoader classes to add some basic
diagnostic features to make it easier to check on your loading efforts. Finally,
we discussed communication with loaded SWFs and provided a few online
resources that touch on additional loading-related topics. With this informa-
tion as a head start, you should be able to begin working with just about any
basic external asset, and begin explorations into intermediate and advanced
loading issues.

Next we’re going to cover XML, which is among the most important stan-
dard formats used for data exchange, and E4X, the dramatically simplified
approach to working with XML in ActionScript. XML is very widely used and
enables a significant leg up over name-value pairs when it comes to struc-
tured data and large data sizes.

In the next chapter, we’ll cover:

• The basics of the XML format

• Reading, writing, and editing XML data

• Loading XML assets using the CustomURLLoader class from this chapter

• XML communication with servers and other peers

385

IN THIS CHAPTER

Understanding XML
Structure

Creating an XML Object

Using Variables in XML

Reading XML

Writing XML

Deleting XML

Loading External XML
Documents

Sending to and Loading
from a Server

An XML-Based Navigation
System

What’s Next?

XML, which stands for Extensible Markup Language, is a structured, text-
based file format for storing and exchanging data. If you’ve seen HTML
before, XML will look familiar. Like HTML, XML is a tag-based language.
However, it was designed to organize data, rather than lay out a web page.
Instead of a large collection of tags that define the language (as found in
HTML), XML is wide open. It starts with only a handful of preexisting tags
that serve very basic purposes. This freedom allows you to structure data in
a way that’s most efficient for your needs.

In the past, traversing and working with XML within ActionScript has not
been the most pleasant or efficient of experiences. Fortunately, E4X (which
stands for ECMAScript for XML), is a part of ActionScript 3.0. E4X is the
current standard for reading and writing XML documents and is maintained
by the European Computer Manufacturers Association. It greatly reduces the
amount of code and hoop-jumping required to communicate with XML. It
allows you to treat XML objects like any other object with familiar dot syn-
tax, and provides additional shortcuts for traversing XML data. You can use
ActionScript’s E4X implementation to create XML inside a class or the Flash
timeline or, more commonly, load an XML file at runtime.

In this chapter you’ll learn the essentials of E4X, and other XML-related con-
cepts. We’ll cover:

• Understanding XML Structure. The flexibility of XML means you can
set up files in a manner that best serves your project’s requirements. Unlike
other tag-based languages, there’s no library of tags to memorize—just a
few simple rules to follow.

• Creating an XML Object. To learn how to read and write XML, you
must first be able to create an XML object. We’ll show you how to create
an object directly from XML nodes and from parsing a string. Later, we’ll
show you how to load XML from an external file.

• Using Variables with XML Nodes. Both when creating an XML object
and when writing XML on the fly, you can use variables when building

xmL

CHAPTER 14

Part V: Input/Output386

Understanding XML Structure

nodes. This gives you the same latitude to manipulate XML on the fly
using stored information that you enjoy when working with other data.
We’ll also review basic variable practice to build a string, which can then
be parsed, or analyzed, as XML.

• Reading XML. Reading and parsing XML files is significantly easier
using E4X than when using prior versions of ActionScript. You can
find specific pieces of information, as well as sweep through the entire
document, using properties and methods that are consistent with other
ActionScript objects.

• Writing XML. You can also put the same power, clarity, and ease of use
to work when creating XML. You can create XML for internal use or build
data structures for use with servers or other clients.

• Deleting XML. Whether eliminating unwanted items during reading to
simplify the final XML object or removing errant elements when writing,
it is sometimes necessary to delete elements.

• Loading External XML Documents. Because you determine its struc-
ture, XML is highly efficient and often the format of choice for portable
data. As a result, external XML documents are very useful for loading
data at runtime.

• Communicating with XML Servers. After learning how to read and
write XML, you can then use it in your communications between servers
and other clients.

• An XML Navigation System. We’ll enhance the navigation system cre-
ated in Chapter 6, reading the menu content from XML instead of an
array. We’ll also populate a Loader instance so you can use the menu to
load external SWFs and images.

Understanding XML Structure
When working with large data sets, XML is a vast improvement over the
name-value pairs that are used in simple web communications, such as
HTML forms. An XML document can contain much more data, but can
also convey an information hierarchy, detailing relationships among data
elements. For example, you can organize a list of users—with names, emails,
passwords, and similar information—much the way you would a traditional
database. Records might be represented with tags (called element nodes in
XML) that define a single user, similar to a database record; nested, or child,
tags might serve as the equivalent of database fields, associating data with
that user. Element nodes can contain text, which is also considered an XML
node (a text node) for easy parsing. Once you establish a structure, you can
duplicate a tag set any time a new record (or user, in this case) is added, and
the consistent structure can be reliably navigated when retrieving the data.

Understanding XML Structure

Chapter 14: XML 387

Here is an example XML document:

<users>
		<user>
				<username>johnuser</username>
				<email>email1@domain.com</email>
				<password>123456</password>
		</user>
		<user>
				<username>janeuser</username>
				<email>email2@domain.com</email>
				<password>abcdef</password>
		</user>
</users>

Because you make up the tags as you go along, this document would be just
as valid if you replaced the word “user” with “student” throughout. Neither
the data nor the data structure would change. The document simply might
be more meaningful if you were describing students instead of users.

The easiest way to understand this open format is to remember that XML
simply structures your content. While HTML defines the layout of a web
page and gives instructions for displaying that page to a browser, XML does
nothing more than organize data. It’s up to the application to correctly parse
the data. Think of XML as you would any other structuring effort. For exam-
ple, you might export text from a database or a spreadsheet using XML as
a replacement for comma-delimited or tab-delimited formats (records sepa-
rated by carriage returns, fields separated by commas or tabs, respectively).

There are only a few simple rules to remember when you’re creating an XML
document:

• Every XML document must have a root node that contains all other infor-
mation. It doesn’t have to have a specific name, but all XML data must be
nested within one node.

• XML is case-sensitive. It doesn’t matter whether you use lowercase or
uppercase, but the case used in matching opening and closing tags must
be consistent. There are two schools of thought when it comes to choos-
ing a case. The first school advocates uppercase as a means of making it
easier to separate tags from content when you glance at the document.
The other school pursues lowercase as a de facto standard form used in
programming, URLs, and other places where case sensitivity matters.

• All nodes must be closed—either with a balancing tag or as a self-closing
tag. Balancing tags must be written as <one>text</one> versus <one>text.
Single tags (such as a line break,
, in HTML), must use the self-
closing format—preceding the last greater-than symbol with a slash (such
as
).

• All tags must be properly nested. The following is incorrect:
<one><two>term</one></two>. But this is correct: <one><two>term</two>
</one>.

NOTE

As a personal preference, we opt for
lowercase. You’ll learn later in this
chapter how you can address XML ele-
ments using dot syntax the same way
you would create custom properties
of objects, as described in the section
“Custom Objects” section of Chapter
2. However, case sensitivity must be
preserved. Therefore, a node called
username in lowercase would be repre-
sented as <username>, while uppercase
requires <USERNAME>. We prefer to
reserve uppercase in ActionScript as a
convention for representing constants.

Part V: Input/Output388

Understanding XML Structure

• All attributes must be enclosed within quotation marks. The following
would generate an error: <story class=headline>News</story>. But this
will not: News. This is important not only
because the XML must be well formed, but because attributes are also
XML nodes and can be parsed just like element and text nodes.

A few other items that warrant a bit more discussion are covered in the fol-
lowing sections.

White Space
White space includes all returns, tabs, and spaces between tags, as indicated
in the example below:

<users>
<user>

<username>johnuser</username>
<email>email1@domain.com</email>
<password>123456</password>

</user>
</users>

By contrast, the following example has no white space:

<users><user><username>richshupe</username><email>email1@domain.com
</email><password>123456</password></user></users>

Both are representations of the same document, and they each have their
benefits. The file size of the version with no white space is a tiny bit smaller
due to the reduced number of characters; however, in all but very large docu-
ments, this is usually negligible. The version with white space is much easier
to read.

White space is important to understand because this information could be
interpreted as text. Return, tab, and space characters are all legal text entities,
so the XML parser must be told to ignore them or they will be counted as
such when reading the document. This is because tags and text are separate
objects when parsed. The tags are called element nodes and the text entries
within the tags are called text nodes. Because the white space can be inter-
preted as text nodes, the previous XML examples would contain a different
number of nodes with and without white space.

Readability usually prevails when formatting XML documents and, fortu-
nately, ignoring white space is the default behavior of ActionScript’s E4X
implementation. To parse white space, you must add this static property set-
ting to your script before creating your XML object.

XML.ignoreWhitespace	=	false;

NOTE

We strongly recommend against this
unless you have a pressing need to parse
the whitespace. If you choose not to
ignore whitespace, every discrete run of
space, tab, and return characters will be
interpreted as a text node.

Understanding XML Structure

Chapter 14: XML 389

Declarations
You will likely see additional tags at the start of XML documents that you
should be aware of. The first is the XML declaration tag, and it usually looks
something like this:

<?xml	version="1.0"	encoding="UTF-8"?>

This may differ, depending on the source document, but the purpose of such
a tag is usually the same. It tells parsers the version of the XML language spec-
ification and the type of encoding used when the file was written. Another
example of a declaration tag is the document type declaration (DTD), which is
used to identify a set of rules against which a parser will compare the XML
when validating. An example can be seen here:

<!DOCTYPE	note	SYSTEM	"note.dtd">

ActionScript does not validate XML using these declaration tags. If you plan
to use an XML document with another parser, such as a server-side compo-
nent of your project with which ActionScript will communicate, you may
need to use these tags. However, ActionScript does not require their presence.

Comments and Processing Instructions
XML comments use the same form as HTML comments: <!-- comment -->.
In ActionScript, they are ignored by default but they can be parsed using E4X
in the rare case that you may want to use them. For example, you may want
to track version or date information that wouldn’t otherwise appear in the
structure of your data. To parse comments, you must add the following static
property assignment to your script before creating your XML object:

XML.ignoreComments	=	false;

Processing instructions are strings typically used when working with style
sheets to display XML, and ActionScript does not use them. They take the
form: <?instruction ?>. They are ignored by default but can also be parsed
using E4X and converted to strings if you wish to use them, though this, too,
is exceedingly rare. To do so, you must add this static property setting to your
script before creating your XML object:

XML.ignoreProcessingInstructions	=	false;

Entities and the CDATA Tag
When writing your XML documents, you must be aware that it is possible to
confuse a parser or even break your document by including restricted charac-
ters. For example, the following document would cause a problem:

<example	topic="<,	"">use	entities	for	<	and	"</example>

Part V: Input/Output390

Creating an XML Object

In this case, the XML parser assumes the quotation mark within the attribute
is closing the attribute prematurely, and it sees the two less than symbols (one
within the attribute and one within the text node) as the start of XML tags.
The quotation mark within the text node is fine, as it does not conflict with
the quotation marks required for attributes. To be considered well formed, the
offending characters must be represented by entities:

<example	topic="<,	"">use	entities	for	<	and	"</example>

There are only five entities included in the XML specification, as seen in
Table 14-1.

Table 14-1. The five entities included in the XML specification

Entity Correct Form Notes

< < Less than

> > Greater than

& & Ampersand

' ' Apostrophe

" " Quotation mark

To include other special characters, or preserve special formatting, you can
use a CDATA (character data) tag. This tag wraps around the special content
and tells the XML parser to consider everything therein as plain text. This is
particularly useful when you want to include HTML, white space, or format-
ted text inside your XML document. The following example might be used
to display a sample ActionScript function. The less than and greater than
symbols will not cause a problem, and the white space will be preserved.

<stuff>
		<![CDATA[
				function	styleBold(txt:String):String	{
						return	""	+	txt	+	"";
				}
]]>
</stuff>

Creating an XML Object
The first step in using XML in ActionScript 3.0 is typically to create an
instance of the XML class. There are two ways of creating an XML instance from
internal data. (We’ll cover loading external XML files separately.) The first
approach is to write the content explicitly, as XML nodes, when creating the
object. The following example is found in the xml_from_nodes.fla source file:

1	 var	las3Data:XML	=	<authors>
2	 																					<author>
3	 																							<firstname>Rich</firstname>
4	 																							<lastname>Shupe</lastname>
5	 																					</author>

Using Variables in XML

Chapter 14: XML 391

6	 																					<author>
7	 																							<firstname>Zevan</firstname>
8	 																							<lastname>Rosser</lastname>
9	 																					</author>
10	 																			</authors>;
11	 trace(las3Data);

There are a couple of wonderful things about of this approach. First, the
XML is automatically treated like XML, rather than like plain text. As a result,
an instance of the XML class is automatically created, and you don’t need to
enclose the XML in quotes. Second, you don’t need to worry about white
space or line breaks until the next ActionScript instruction is encountered.
In line 11, for example, a trace statement occurs. This makes it easy to format
your XML in a nice, readable way.

The second approach is to create the XML instance from a string. This is handy
for creating XML on the fly from user input, such as when a user types
information into a field. In this case, you must use the XML class constructor
explicitly, passing to it the string you want to convert to XML. This example
is in the xml_from_string.fla source file.

1	 var	str:String	=	"<book><publisher>O'Reilly</publisher></book>";
2	 var	las3Data:XML	=	new	XML(str);
3	 trace(las3Data);

Using Variables in XML
It’s even possible to use variables when writing XML nodes by enclosing the
variables in braces. This can be seen inside the tags in lines 7 and 8 in the
following example, found in the xml_from_nodes_variables.fla source file.

1	 var	author1First:String	=	"Rich";
2	 var	author1Last:String	=	"Shupe";
3	
4	 var	las3Data:XML	=	<authors>
5	 																					<author>
6	 																							<firstname>{author1First}</firstname>
7	 																							<lastname>{author1Last}</lastname>
8	 																					</author>
9	 																			</authors>;
10	 trace(las3Data);

If you choose to create XML from a string, you can also use standard vari-
able syntax to build the string before parsing. Lines 2 and 3 join two strings
with a variable before converting to XML. The following code is found in the
xml_from_string_variables.fla source file.

1	 var	publisher:String	=	"O'Reilly";
2	 var	str:String	=	"<book><publisher>"	+	publisher	+	
3	 																	"</publisher></book>";
4	 var	las3Data:XML	=	new	XML(str);
5	 trace(las3Data);

NOTE

This is a good example of where the
semicolon at the end of a line signifi-
cantly improves readability. The semico-
lon at the end of line 10 clearly indicates
the end of the XML.

Part V: Input/Output392

Reading XML

Reading XML
ActionScript 3.0 makes reading XML easier than ever before. You can now use
syntax consistent with that of other ActionScript objects. Not only can you
use basic properties and methods of an XML instance, you can also work with
individual nodes and attributes using familiar dot syntax.

A familial relationship is used to describe nodes. Nested element nodes, text
nodes, and comments are children of their parent element nodes. Nodes at
the same level—meaning they have the same parent node—are known as
siblings. Retrieving a node from an XML object is as easy as drilling down
through the family tree of parent and child nodes—just like you would access
a nested movie clip from the main timeline.

Before we continue, take care to note that the root node of an XML object is
never included in dot syntax that references its child nodes. Consider this
example:

var	las3Data:XML	=	<book><publisher>O'Reilly</publisher></book>;
//trace(las3Data.book.publisher);
trace(las3Data.publisher);

The commented line is wrong, and the last line is correct. This is because
the root node is synonymous with the XML instance. Every XML document
must have a root node, so traversing it is an unnecessary extra step, and it
should not be referenced.

Element and Text Nodes, and the XMLList Class
As mentioned previously, element nodes are XML tags, and text enclosed in a
pair of tags is a text node unto itself. Conveniently, accessing an element node
allows you to work with the node as an object—such as when you want to
copy or delete a node (both of which we’ll do later in this chapter)—but it
also returns useful context-sensitive data for immediate use.

When the queried node contains additional element nodes, they are returned
so that you can work with a subset of the larger XML object. This is handy for
working only with information you really need, as we’ll see when working
with individual menus in our XML-based navigation system project at the
end of the chapter. When the queried node contains a text node, the text is
returned as a String. This is convenient for populating variables or text fields
with node content without first having to convert the data to a String.

In all cases, however, it’s important to understand the difference between the
node and what’s returned when accessing the node. This is worth a few min-
utes of detailed focus, as it will save you time when you have to write code to
parse XML for use at runtime. Let’s look at how to work with text nodes first.

NOTE

Including a root node in your syntax
targeting XML nodes will not only
produce no useable result, it typically
won’t generate an error and you’ll be left
scratching your head. Remember to omit
it from all node references and use the
XML class instance instead.

Reading XML

Chapter 14: XML 393

Text nodes and strings
The following example is found in the text_nodes_and_strings.fla source file
and begins with the explicit creation of an XML instance called las3Data, in
lines 1 through 15.

1	 var	las3Data:XML	=	<book>
2	 																					<publisher	name="O'Reilly"/>
3	 																					<title>Learning	ActionScript	3.0</title>
4	 																					<subject>ActionScript</subject>
5	 																					<authors>
6	 																							<author>
7	 																									<firstname>Rich</firstname>
8	 																									<lastname>Shupe</lastname>
9	 																							</author>
10	 																							<author>
11	 																									<firstname>Zevan</firstname>
12	 																									<lastname>Rosser</lastname>
13	 																							</author>
14	 																					</authors>
15	 																			</book>;
16	
17	 trace("-	name	of	title	node:",	las3Data.title.name());
18	 //-	name	of	title	node:	title
19	
20	 trace("-	data	returned	from	title	node:",	las3Data.title);
21	 //-	data	returned	from	title	node:	Learning	ActionScript	3.0
22	
23	 var	txtFld:TextField	=	new	TextField();
24	 txtFld.width	=	300;
25	 txtFld.text	=	las3Data.title;
26	 addChild(txtFld);

Now take a look at line 17. This illustrates a simple example of working with
a node object by using the name() method to return the node’s name. The
rest of the segment demonstrates working with data returned when querying
a node. Line 20 traces the value to the Output panel, and lines 23 through 26
show a text field populated with the String returned.

Line 28 in the following code block further demonstrates the difference
between these two concepts by showing that the title node, itself, is still
an element node. Like an element node, a text node is also XML and can be
accessed using the text() method shown in line 31. This, too, will return a
String for your convenience, but line 34 shows that the node itself is a text
node.

27	 //node	kind
28	 trace("-	kind	of	title	node:",	las3Data.title.nodeKind());
29	 //-	kind	of	title	node:	element
30	
31	 trace("-	text	node	child	of	title:",	las3Data.title.text());
32	 //-	text	node	child	of	title:	Learning	ActionScript	3.0
33	
34	 trace("-	kind	of	text	node:",	las3Data.title.text().nodeKind());
35	 //-	kind	of	text	node:	text

NOTE

Throughout the chapter, ActionScript
comments are used to show trace()
output to simplify our discussion, and
have been included in the file so you
can compare your own results.

The trace() statements will often use
a comma to separate items output to a
single line, but a newline and plus (+)
operator for multiple line output. This
is purely aesthetic. The comma adds
a space between items in a trace and,
when combined with a carriage return,
it causes the first line of multiline input
to be formatted with a leading space.
Because white space plays a part in
XML, we didn’t want this to be a dis-
traction, so we concatenated multiline
items to avoid this cosmetic issue.

NOTE

It’s not uncommon for ActionScript to
return separate but related data that
may be useful to you. For example, we
discussed in Chapter 2 that the push()
method of the Array class adds an item
to an array. However, it also returns the
new length of the array. The following
snippet shows the most common use
of the push() method—simply adding
an item (banana) to an array (fruit).
However, in the third line of this snip-
pet, you’ll see another push() that’s
inside a trace() statement. This dis-
plays a 4 in the Output panel, which is
the new length of the array.

var	fruit:Array	=	["apple",	
"orange"];

fruit.push("banana");
trace(fruit.push("grape"));
//4

You don’t have to use the returned infor-
mation, as seen in the second line of the
example, but it’s there if you want it.

Part V: Input/Output394

Reading XML

When your goal is to work with text, you are most likely to use the String
data returned when querying a text node or an element node that contains
text. However, it’s occasionally convenient to work with the text node instead
because it’s still XML. For example, you can use XML syntax to collect all
occurrences of a particular node in an XML object. This is accomplished with
the XMLList class, the real heart of E4X. We’ll demonstrate the power of this
class using element nodes.

Element nodes and the power of XMLList
An XMLList instance is a list of all occurrences of a node at the same hierarchi-
cal level in the XML object—even if there is only one of those nodes. Let’s start
right away by pointing out that all XML nodes are of the XMLList data type.
The following example is found in the element_nodes_and_xmllist.fla source
file, and lines 1 through 15 again create a basic instance of the XML class. Lines
17 and 20 show that both element and text nodes are typed as XMLList.

1	 var	las3Data:XML	=	<book>
2	 																					<publisher	name="O'Reilly"/>
3	 																					<title>Learning	ActionScript	3.0</title>
4	 																					<subject>ActionScript</subject>
5	 																					<authors>
6	 																							<author>
7	 																									<firstname>Rich</firstname>
8	 																									<lastname>Shupe</lastname>
9	 																							</author>
10	 																							<author>
11	 																									<firstname>Zevan</firstname>
12	 																									<lastname>Rosser</lastname>
13	 																							</author>
14	 																					</authors>
15	 																			</book>;
16	
17	 trace("-	XMLList	element	node:",	las3Data.title	is	XMLList);
18	 //-	XMLList	element	node:	true
19	
20	 trace("-	XMLList	text	node:",	las3Data.title.text()	is	XMLList);
21	 //-	XMLList	text	node:	true

Now let’s take a closer look at how wonderful XMLList can be. First, you can
isolate a segment of your XML object to make it easier to parse. Lines 23 and
24 show that you can place a subset of las3Data into an XMLList instance
(<authors>, in this case).

22	 //isolation	of	XML	subset
23	 var	authors:XMLList	=	las3Data.authors;
24	 trace("-	authors:\n"	+	authors);
25	 /*-	authors:
26	 <authors>
27	 		<author>
28	 				<firstname>Rich</firstname>
29	 				<lastname>Shupe</lastname>
30	 		</author>
31	 		<author>
32	 				<firstname>Zevan</firstname>
33	 				<lastname>Rosser</lastname>

Reading XML

Chapter 14: XML 395

34	 		</author>
35	 </authors>
36	 */

But that’s just the beginning. What XMLList excels at is pulling together all
occurrences of a node at the same hierarchical level. We’ll first show this at
work by collecting both <author> nodes within the <authors> node.

37	 //collecting	siblings	into	an	XMLList	instance
38	 trace("-	author:\n"	+	las3Data.authors.author);
39	 /*-	author:
40	 <author>
41	 		<firstname>Rich</firstname>
42	 		<lastname>Shupe</lastname>
43	 </author>
44	 <author>
45	 		<firstname>Zevan</firstname>
46	 		<lastname>Rosser</lastname>
47	 </author>
48	 */

Note that line 38 references simply <author>, but two of these nodes are
returned, evidenced by the trace() output. This is XMLList collecting the
relevant nodes for you. If an additional <author> node appeared on another
level, perhaps as a parent, child, or grandchild, it would not be included.

Collecting siblings for you is great, because you don’t have to loop through the
siblings and build an array yourself. Using XMLList, for example, you could
automatically generate a list of all sibling news items from an XML news feed.
What’s really great, however, is that XMLList will traverse nodes for you to collect
all nodes at the same hierarchical level. Continuing the news feed example, you
could collect all headline nodes from each parent news node.

Using our book example, line 50 of the following script collects both
<firstname> nodes, even though they are in separate <author> parent nodes.
Furthermore, you can use bracket syntax to retrieve specific data from the
list. For example, line 56 retrieves only the first <firstname> node.

49	 //collecting	nodes	at	the	same	level	into	an	XMLList	instance
50	 trace("-	firstname:\n"	+	las3Data.authors.author.firstname);
51	 /*-	firstname:
52	 <firstname>Rich</firstname>
53	 <firstname>Zevan</firstname
54	 */
55	
56	 trace("-	firstname[0]:\n",	las3Data.authors.author.firstname[0]);
57	 //-	firstname[0]:	Rich

Using the descendant accessor operator and wildcards
Two more powerful tools make traversing XML and XMLList instances easier:
the descendant accessor operator and the wildcard. The descendant accessor
operator is a pair of dots (..) and allows you to query a node or nodes in any
hierarchical level at or below the specified node, without using a complete
path to that element. This is convenient for retrieving deeply nested nodes,

NOTE

Using the same name for nodes that are
not siblings with the same purpose is
bad XML design because of the possible
confusion this structure may cause. If
something akin to this is required (such
as listing primary authors at one level
and contributing authors at another,
to follow our example), it’s best to use
separate names for each node purpose
(such as <primary> and <contribu-
tor>).

NOTE

Although you can use bracket syntax,
an XMLList instance is not an array.
One of the most common mistakes
developers make when working with
XMLList results is using the array
length property to see how many items
are in the list. This will not work, either
failing silently or returning a null object
reference error depending on usage. The
XMLList equivalent to this property
exists as a method: length().

Part V: Input/Output396

Reading XML

as long as no other nodes bear the same name. (Again, this would probably
be bad XML design, and all nodes of the same name would be collected.)
The following is an alternate way to retrieve only the <firstname> nodes that
reside within separate parent nodes, anywhere in the las3Data instance.

58	 //descendant	accessor	operator
59	 trace("-	..firstname:\n"	+	las3Data..firstname);
60	 /*-	..firstname:
61	 <firstname>Rich</firstname>
62	 <firstname>Zevan</firstname>
63	 */

The wildcard is an asterisk (*) that allows you to include every node at one
hierarchical level. The following will retrieve both <firstname> and <last-
name> nodes, even traversing multiple parent nodes.

64	 //wildcard	operator
65	 trace("-	author.*:\n"	+	las3Data.authors.author.*);
66	 /*-	author.*:	
67	 <firstname>Rich</firstname>
68	 <lastname>Shupe</lastname>
69	 <firstname>Zevan</firstname>
70	 <lastname>Rosser</lastname>
71	 */

Using Attributes
XML element nodes can include attributes the same way HTML nodes can.
For example, an HTML image tag might contain a width attribute, and the
<publisher> node of our las3Data XML object contains an attribute called
name with “O’Reilly” as its content. To access an attribute by name, you first
treat it like a child of the node in which it resides, and then precede its name
with an at symbol (@). The following code is found in the xml_attributes.fla
source file and contains a simplified adaptation of our las3Data example.

1	 var	las3Data:XML	=	<book>
2	 																					<publisher	name="O'Reilly"	state="CA"/>
3	 																			</book>;
4	 		
5	 trace("-	dot	syntax:",	las3Data.publisher.@name);
6	 //-	dot	syntax:	O'Reilly;

Because an element node can contain multiple attributes, you can also access
all attributes as an XMLList. You can create the list using the attributes()
method (line 8) or a wildcard (line 11). And, as the result of both queries is
an XMLList, you can again use array syntax to select one attribute by index
number. (This syntax is shown in line 11, though only one attribute exists in
this simple example).

7	 //collecting	attributes	using	XMLList
8	 trace("-	attributes():",	las3Data.publisher.attributes());
9	 //-	attribute():	O'ReillyCA
10	
11	 trace("-	@*:",	las3Data.publisher.@*[0]);
12	 //-	@*:	O'Reilly

Reading XML

Chapter 14: XML 397

Collecting attributes using one of these methods is particularly important
when you have to work with XML that uses node names that aren’t legal
in ActionScript. The most common example is a node name that contains
a dash. The following example creates a simple XML instance in lines 14
through 16 and then repeats two ways to retrieve an attribute: by name and
by the attributes() method. The first approach (line 18) would generate an
error if uncommented. The second (line 21) will work correctly.

13	 //querying	attribute	names	illegal	in	AS3
14	 var	example:XML	=	<file	creation-date="20071101">
15	 																				<modified-date>20100829</modified-date>
16	 																		</file>;
17	
18	 //trace("-	bad	attribute	name",	example.@creation-date);
19	 //causes	an	error
20	
21	 trace("-	attribute(name):",	example.attribute("creation-date"));
22	 //-	attribute(name):	20071101

Coping with element node names that are incompatible
with ActionScript
Finally, on a related note, using a method to retrieve all nodes of a specified
type can also be used to retrieve element nodes with illegal names. This
is seen in line 24 of the following code, which has been appended to the
xml_attributes.fla source file for side-by-side comparison.

Note, however, that there is an inconsistency here. The attributes() (plural)
method collects all attributes in a given scope, while the attribute(), (sin-
gular) method is used to query a single attribute. The elements() (plural)
method, however, is used for both purposes.

1	 //querying	node	names	illegal	in	AS3
2	 trace("-	elements(name):",	example.elements("modified-date"));
3	 //-	elements(name):	20100829

Finding Elements by Content
Another convenient feature of E4X is the ability to use conditionals when
querying a node. For example, instead of walking through the contents of
an XML document with a loop and a formal if structure, you can simply
start with the conditional directly inside the dot-syntax address, and create
an XMLList automatically. Consider the following information, which can be
seen in find_by_content.fla:

1	 var	phones:XML	=	<phones>
2	 																			<model	stock="no">
3	 																					<name>T2</name>
4	 																					<price>89.00</price>
5	 																			</model>
6	 																			<model	stock="no">
7	 																					<name>T1000</name>
8	 																					<price>99.00</price>
9	 																			</model>

NOTE

The output from the trace() statement
in line 8 reads “O’ReillyCA” but the
data is returned as an XMLList. You can
still work with a single item, as shown
in line 11.

Part V: Input/Output398

Reading XML

10	 																			<model	stock="yes">
11	 																					<name>T3</name>
12	 																					<price>199.00</price>
13	 																			</model>
14	 																	</phones>;

Line 15 checks to see if any phone model has a price that is below $100. Only
the first two models are listed because they are the only models with a price
less than 100.

15	 trace("<	100:\n"	+	phones.model.(price	<	100));
16	 /*
17	 <model	stock="no">
18	 		<name>T2</name>
19	 		<price>89.00</price>
20	 </model>
21	 <model	stock="no">
22	 		<name>T1000</name>
23	 		<price>99.00</price>
24	 </model>
25	 */

Line 26 looks for any element one level down that has an attribute named
stock with a value of “yes.” Both implicit and explicit casting are also repre-
sented here, with the same results of both instructions listed only once.

26	 trace("in	stock:\n"	+	phones.*.(@stock	==	"yes"));
27	 /*
28	 <model	stock="yes">
29	 		<name>T3</name>
30	 		<price>199.00</price>
31	 </model>
32	 */

A limitation when filtering by attribute
Another important thing to know about the aforementioned @ versus attri-
bute() choice is that filtering content using @ works only if all of the queried
elements have the attribute. Note, in the following example, found in the
xml_attributes_filtering_issue.fla source file, that one of the element nodes
is missing the price attribute. Matching nodes using @price will generate an
error, but using attribute("price") will not.

1	 var	catalog:XML	=	<stock>
2	 																				<product	name="one"	price="100"	/>
3	 																				<product	name="two"	price="200"	/>
4	 																				<product	name="three"	/>
5	 																				<product	name="four"	price="100"	/>
6	 																		</stock>;
7	 																
8	 //trace(catalog.product.(@price	==	100));
9	 //error
10	
11	 trace(catalog.product.(attribute("price")	==	100));

Finding Elements by
Relationship
Although it’s a bit less common, it’s
also possible to parse XML using
familial relationships like asking for all
the children of a node or the parent
of a node. This sidebar will give you
a quick overview of a handful of
ways to do this, and the “Parsing XML
Using Familial Relationships” post at
the companion website (http://www.
LearningActionScript3.com) discusses
this further.

There are four ways to access
descendents of a node, all of which
return an XMLList instance. The first
is using the children() method.
This will return all immediate
children, including comments and
processing instructions, if you’ve
chosen to override the default
behavior of ignoring these node
types. See the “Comments and
Processing Instructions” section of
this chapter for more information.
The second and third ways to access
node descendants are using the
elements() and text() methods to
return only the element node children
or text node children, respectively.

All three of these methods return
only the first level of child nodes
within the specified node and will
preserve their familial relationships. In
some cases, particularly for diagnostic
or analysis purposes, you may instead
want an XMLList of every node
nested within a parent node—not
only children but grandchildren, great
grandchildren, and so on, element
nodes and text nodes alike—which
flattens everything into one linear list.

To do this, you can use the
descendants() method, which
drills down completely through each
child in turn. For example, it starts
by collecting the first child of the
specified node, then goes through
its first child, and then its first child,
and so on, until it reaches the last
element or text node in the chain. It
then moves on to the next child, and
continues.

http://www.LearningActionScript3.com
http://www.LearningActionScript3.com

Writing XML

Chapter 14: XML 399

Writing XML
You’ve already seen how to write XML when creating an instance of the XML
class, but you may also have to write to the instance over time. For example,
you may need to add to XML based on user input or as data changes. The
majority of techniques for adding content to XML mirror the process of read-
ing the data, except this time you’re assigning information to a node rather
than retrieving it.

In this section, you’ll re-create the data used throughout the “Reading XML”
section of this chapter. For simplicity, we’ll create element nodes, text nodes,
and attributes in one example, and build an XML instance as if we were writ-
ing it over time. In a real scenario you would not assemble XML in multiple
steps in the same script. However, assuming the premise that we’re writing
the object in stages will allow us to demonstrate the most common XML
writing methods.

Because we’re intentionally writing the XML out of order to demonstrate
methods like insertChildBefore() that will alter the order of nodes, we’ll
show the progress of the XML as we go. The code that follows can be found
in the write_xml.fla source file. For clarity, only the last trace() statement is
used in the source file, to show the final XML content, but you can uncom-
ment any trace along the way to see interim results.

To begin, we must have an XML instance and a root node, so line 1 creates both.
Note that, when adding element nodes without content, you must specify a
self-closing tag so the XML remains well formed. As soon as you add content
to a self-closing node, ActionScript will replace it with balanced open and
closing tags. For example, we’re initially adding <book /> as the root node
but, after adding the next element node, the root node will become <book>
</book>.

Line 2 demonstrates the simplest technique for creating both an element
node and a text node. When assigning a value to a node, if the node does not
already exist, it will be created. If you assign another element node to the new
node, a nested element will be created. If you assign a String to the new node,
a text node will be created. Line 2, therefore, creates an element node called
<title> and a text node that contains “Learning ActionScript 3.0.” The result
appears in lines 5 through 7.

1	 var	las3Data:XML	=	<book	/>
2	 las3Data.title	=	"Learning	ActionScript	3.0";
3	 trace(las3Data);
4	 /*
5	 <book>
6	 		<title>Learning	ActionScript	3.0</title>
7	 </book>
8	 */

We started with the <title> node intentionally to demonstrate the next
method. The prependChild() method will add a node to the beginning of

Part V: Input/Output400

Writing XML

the XML object specified. In this case, line 9 creates the <publisher> ele-
ment node and positions it before the <title> node so it’s the first node of
las3Data. Line 10 demonstrates the creation of an attribute node adding the
name attribute to the publisher element node just created. The cumulative
result appears in lines 13 through 16.

9	 las3Data.prependChild(<publisher	/>);
10	 las3Data.publisher.@name	=	"O'Reilly";
11	 trace(las3Data);
12	 /*
13	 <book>
14	 		<publisher	name="O'Reilly"/>
15	 		<title>Learning	ActionScript	3.0</title>
16	 </book>
17	 */

The opposite of prependChild(), appendChild() adds a node to the end of
an XML object. Therefore, line 18 adds the <authors> node after the <title>
node. Up to this point, we’ve only added objects to the XML instance, which
is equivalent to the root node. However, you can also use appendChild() to
add a child to another node. Line 19 adds the first <author> node as a child
of <authors>. Lines 20 and 21 again demonstrate the simultaneous creation
of element and text nodes, adding <firstname> and <lastname> nodes and
assign a String to each. The cumulative result appears in lines 24 through 33.

18	 las3Data.appendChild(<authors	/>);
19	 las3Data.authors.appendChild(<author	/>);
20	 las3Data.authors.author.firstname	=	"Zevan";
21	 las3Data.authors.author.lastname	=	"Rosser";
22	 trace(las3Data);
23	 /*
24	 <book>
25	 		<publisher	name="O'Reilly"/>
26	 		<title>Learning	ActionScript	3.0</title>
27	 		<authors>
28	 				<author>
29	 						<firstname>Zevan</firstname>
30	 						<lastname>Rosser</lastname>
31	 				</author>
32	 		</authors>
33	 </book>
34	 */

Line 35 demonstrates the insertChildAfter() method, the first of a pair that
allows you to provide an existing node as a reference point for where the new
node should be added. The first argument of the method is the existing node,
and the second argument is the node you want to create. In this case, the
<subject> node is being inserted after the <title> node. Line 36 adds a text
node to <subject>, and the cumulative result is seen in lines 39 through 49.

35	 las3Data.insertChildAfter(las3Data.title,	<subject	/>);
36	 las3Data.subject	=	"ActionScript";
37	 trace(las3Data);
38	 /*
39	 <book>
40	 		<publisher	name="O'Reilly"/>

NOTE

It’s not possible, using this method, to
add more than one node with the same
name to an XMLList. For example,
we have to add another author to the
<authors> node, but if we repeat lines
19 through 21, we’ll receive this error:

Error	#1089:	Assignment	to	lists	
with	more	than	one	item	is	
not	supported.

Instead, we must copy the first author
node and change its contents. We’ll show
you how to do that in just a moment.

Deleting XML

Chapter 14: XML 401

41	 		<title>Learning	ActionScript	3.0</title>
42	 		<subject>ActionScript</subject>
43	 		<authors>
44	 				<author>
45	 						<firstname>Zevan</firstname>
46	 						<lastname>Rosser</lastname>
47	 				</author>
48	 		</authors>
49	 </book>
50	 */

The next block of code demonstrates insertChildBefore(), the other method
that uses an existing node as a reference. However, it also demonstrates how
to copy a node and change its values. Line 51 uses the copy() method to
copy the previously created <author> node, and lines 52 and 53 change the
text nodes in <firstname> and <lastname>. After the edits, the new node is
inserted before the existing <author> node to match the order of the original
data we’re trying to recreate. Using the copy() method is a real timesaver
when tags with many children must be reproduced over and over again with
few changes.

The final result is shown in lines 57 through 71, and matches the original
las3Data object to achieve our goal.

51	 var	firstAuthor:XMLList	=	las3Data.authors.author.copy();
52	 firstAuthor[0].firstname	=	"Rich";
53	 firstAuthor[0].lastname	=	"Shupe";
54	 las3Data.authors.insertChildBefore(las3Data.authors.author,	

firstAuthor);
55	 trace(las3Data);
56	 /*
57	 <book>
58	 		<publisher	name="O'Reilly"/>
59	 		<title>Learning	ActionScript	3.0</title>
60	 		<subject>ActionScript</subject>
61	 		<authors>
62	 				<author>
63	 						<firstname>Rich</firstname>
64	 						<lastname>Shupe</lastname>
65	 				</author>
66	 				<author>
67	 						<firstname>Zevan</firstname>
68	 						<lastname>Rosser</lastname>
69	 				</author>
70	 		</authors>
71	 </book>
72	 */

Deleting XML
We’ve placed deleting XML elements in a separate section because you may
delete elements when reading or writing XML. When parsing XML, you’re
likely to ignore small sections of unwanted content, but deleting large seg-
ments of unneeded material can sometimes simplify your task. When writing

Part V: Input/Output402

Loading External XML Documents

XML, you may find the need to delete an element added in error or that is
no longer needed.

To delete something, simply use the delete operator on the desired item.
Here are a few examples showing how to delete attributes, element nodes, and
text nodes from a simplified version of our ongoing las3Data example. This
code can be seen in the delete_xml.fla source file. Line 7 deletes an attribute,
line 8 deletes an element node and all its children (which deletes the text
node therein), and line 9 deletes only a text node, leaving the parent element
node intact. The final result is seen in lines 12 through 15.

1	 var	las3Data:XML	=	<book>
2	 																					<publisher	name="O'Reilly"	/>
3	 																					<title>Learning	ActionScript	3.0</title>
4	 																					<subject>ActionScript</subject>
5	 																			</book>;
6	
7	 delete	las3Data.publisher.@name;
8	 delete	las3Data.subject;
9	 delete	las3Data.title.text()[0];
10	 trace(las3Data);
11	 /*
12	 <book>
13	 		<publisher/>
14	 		<title/>
15	 </book>
16	 */

Note that the delete operator won’t work with text(), elements(), attri-
butes(), children(), or descendents() to delete all of the nodes returned
by these methods. Rather, you must specify which item within the XMLList
returned that you want to delete. This can be counterintuitive if you just want
to delete a single text node, as in line 9.

Loading External XML Documents
Often when you work with XML, you’re using data that’s being retrieved from
an external source. Even when you need only a local data source, however,
it’s almost always easier to work with an external XML document because it’s
easier to edit the XML as you project evolves.

We’ll use the LoadURL class developed in Chapter 13 to load data for our XML
navigation system at the end of this chapter, but right now we’d like to stress
the basic syntax of loading XML. The code in this section can be found in
the load_xml.fla source file.

Before we get started with the syntax, let’s create a very simple XML docu-
ment called toLoad.xml. It contains the mandatory root node, one element
node called <stuff>, and one text node with the string, “XML loaded!”

<main>
		<stuff>XML	loaded!</stuff>
</main>

Loading External XML Documents

Chapter 14: XML 403

With that in hand, let’s start our script by creating a text field to display our
results (lines 1 through 5). This is a handy alternative to tracing loaded con-
tent because it’s easier to test in a browser. Next, create a URLRequest instance
for the XML file (line 7), and a URLLoader instance to load the document (line
9). Then create two event listeners to react to a possible I/O error (lines 10 and
11), and the completion of the loading process (lines 12 and 13). The onIOError()
function in lines 16 through 18 places any error text (if an I/O error occurs)
into a text field, and we’ll discuss the onComplete() function after the first
code block. Next, the XML document is loaded in line 14.

1	 var	txtFld:TextField	=	new	TextField();
2	 txtFld.width	=	500;
3	 txtFld.height	=	350;
4	 txtFld.multiline	=	txtFld.wordWrap	=	true;
5	 addChild(txtFld);
6	
7	 var	req:URLRequest	=	new	URLRequest("toLoad.xml");
8	
9	 var	urlLoader:URLLoader	=	new	URLLoader();
10	 urlLoader.addEventListener(IOErrorEvent.IO_ERROR,	
11	 																											onIOError,	false,	0,	true);
12	 urlLoader.addEventListener(Event.COMPLETE,	
13	 																											onComplete,	false,	0,	true);
14	 urlLoader.load(req);
15	
16	 function	onIOError(evt:IOErrorEvent):void	{
17	 				txtFld.text	=	"XML	load	error.\n"	+	evt.text;
18	 }

The onComplete() function (lines 19 through 28) is triggered when the XML
file has completely loaded. The function first removes the listeners because
the XML document was both found and loaded. It then uses a try..catch
block to create an XML instance from the loaded data, and places the <stuff>
node into a text field. If unsuccessful, an error message is placed into the
same field, often allowing you to locate something that may cause the XML
to be malformed.

19	 function	onComplete(evt:Event):void	{
20	 				urlLoader.removeEventListener(IOErrorEvent.IO_ERROR,	onIOError);
21	 				urlLoader.removeEventListener(Event.COMPLETE,	onComplete);
22	 				try	{
23	 								var	loadedXML:XML	=	new	XML(evt.target.data);
24	 								txtFld.text	=	loadedXML.stuff;
25	 				}	catch	(err:Error)	{
26	 								txtFld.text	=	"XML	parse	error:\n"	+	err.message;
27	 				}
28	 }

Before we demonstrate populating menus with XML in our navigation sys-
tem project, let’s look at sending data to a server and loading the result.

Part V: Input/Output404

Sending to and Loading from a Server

Sending to and Loading from a Server
Another frequent use of XML data is for transmission to and from a server.
XML is often the data format used by news feeds (RSS, ATOM), Web services,
and database output. While some of these uses require only loading informa-
tion, other tasks, including application logins, game high score submission,
and so on, also require sending data. In this chapter, we’ll cover the basic send
and load method of communicating with a server.

Send and Load
The send-and-load approach is a form of traditional server communication,
be it a browser retrieving an HTML file or a user submitting data via a form.
Essentially, the client sends data to the server and waits for a response. The
server processes the incoming information, formulates a reply, and sends
information back to the client.

For simplicity, this example sends a short XML object to a PHP script, which
then writes data to a text file on the server and sends back a short reply.
Writing a text file on the server may not be the most common use of XML
submissions, but it’s basic enough to illustrate in this context. This example
uses two files: send_load_xml.fla and save_xml.php. Let’s look at the FLA file
first.

The client source
This example is nearly identical to the load_xml.fla source file discussed in
the preceding “Loading External XML Documents” section. All we need to
do is substitute the following eight lines of code for line 7 of that example.
These lines both create XML to send, and customize the URLRequest instance
to send data, as well as load it.

Lines 7 through 9 create the XML object to send to the server. Like ActionScript,
our PHP script does not require the XML declaration tag in line 7 but, for
maximum flexibility, it’s not a bad idea to prepend this to any XML you send
to a server. You may find that it’s required in a future configuration of your
project and, since it makes no difference in ActionScript, there’s no good rea-
son not to include it.

Lines 11 through 14 create a URLRequest instance for submitting the data. Note
that you’ll need to put the correct path to your server in line 11. As discussed
in Chapter 13, line 12 assigns the outgoing XML to the data property of the
request, and lines 13 and 14 specify “text/xml” as the contentType, and POST
as the method, of the request object, respectively.

7 var str:String = "<?xml version='1.0' encoding='utf-8'?>";
8 str += "<value>Sent from ActionScript</value>";
9 var xmlToSend:XML = new XML(str);
10

An XML-Based Navigation System

Chapter 14: XML 405

11 var req:URLRequest = new URLRequest("save_xml.php");
12 req.data = xmlToSend;
13 req.contentType = "text/xml";
14 req.method = URLRequestMethod.POST;

The server source
The next code block is the server-side PHP script. This is the server destina-
tion of your simple XML data and, as specified in line 11 of the ActionScript
code, should be called save_xml.php. The script first checks to be sure POST
data has been received (line 3), and then populates the $data variable with
that data (line 4). In lines 6 through 8, it creates and opens for writing a
file called data.txt, writes the data to the file, and then closes the open file
instance. Lastly, it checks to make sure the file was written successfully and
sends a simple XML object back to ActionScript.

If successful, you’ll see the message “File saved.” in the text field. If not, you’ll
see “Server unable to create file.” There may be a permissions issue on the
server preventing write access to the directory in which the PHP script has
been placed, for example, or another error preventing file creation.

1	 <?php
2	
3	 if	(isset($GLOBALS["HTTP_RAW_POST_DATA"])){
4	 				$data	=	$GLOBALS["HTTP_RAW_POST_DATA"];
5	 				
6	 				$file	=	fopen("data.txt",	"wb");
7	 				fwrite($file,	$data);
8	 				fclose($file);
9	 				
10	 				if	(!$file)	{
11	 								echo("<stuff>Server	unable	to	create	file.</stuff>");
12	 				}	else	{
13	 								echo("<stuff>File	saved.</stuff>");
14	 				}
15	 }
16	
17	 ?>

An XML-Based Navigation System
If you haven’t done so already, you may want to read the last exercise in
Chapter 6, before continuing with this project. Chapter 6 discusses object-
oriented programming and uses a simplified version of this exercise without
XML, populating the menus with an array. By comparing this exercise with
the more basic version in Chapter 6, you can see how incorporating XML
changes the system. The result of this exercise will be a five-button naviga-
tion bar with submenus, the labels and partial functionality of which are
populated through XML.

Pu
sh

 Yourself!

Part V: Input/Output406

An XML-Based Navigation System

The Directory Structure and Source Files
Before looking at the ActionScript for this exercise, we need to explain a
couple of quick things about the project’s directory structure and source files.
We’ve tried to use several of the key topics that we’ve learned throughout
the book to approximate an average use of an XML-driven menu system.
Highlights include: object-oriented design, embedded fonts, text formatting,
TweenLite animations, loading external assets, drawing with vectors, filter
effects, and, of course, parsing XML.

The project directory, nav_bar_xml, includes the primary FLA file, LAS3Lab.fla,
and document class, LAS3Main.as. The exercise also uses classes from the
learningactionscript3 package (in the com directory) that we’ve been building
throughout the book:

com.learningactionscript3.loading.LoadURL

Created in Chapter 13, this class can load text from a URL, and includes
error checking, making it convenient for loading XML.

com.learningactionscript3.ui.NavigationBarXML

This class is the backbone of the system and is a new version of the
NavigationBar class used in Chapter 6. It replaces that chapter’s array data
with XML, adds submenus, and puts the whole system to work by adding
a loader that the menu items can target for loading SWFs and images.

import com.learningactionscript3.ui.MenuButtonMain

This simple class essentially provides a text field and text formatting for
the MenuButtonMain movie clip in the LAS3Main.fla library.

import com.learningactionscript3.ui.MenuButtonSub

This class dynamically creates submenu buttons that will be clicked to
load visual content at runtime.

In addition, the exercise uses classes that are developed by others and are not
part of any default ActionScript 3.0 distribution, including a few classes from
TweenLite (the ActionScript tweening platform discussed in Chapter 7), and
a modified version of Adobe’s SafeLoader class (the class designed to load
SWFs that contain TLF instances without error, discussed in Chapter 13).

The last parts of the exercise directory are the XML data and content for load-
ing. The XML file that populates the menus is called nav.xml and is found
inside a directory called data, and the content ready for loading, and specified
in paths in the XML data, is found inside the projects directory.

NOTE

The navigation menu system in this
chapter is an enhancement of the ver-
sion in Chapter 6. We elected, however,
not to replace the older classes to allow
you to compare the classes and see the
evolution of the code. Instead, we placed
the new and revised classes in the com.
learningactionscript3.ui package.

An XML-Based Navigation System

Chapter 14: XML 407

The Library of the FLA
The main FLA file requires three symbols in its library:

ArialBold

ArialRegular

These are embedded font symbols containing bold and plain versions of
the Arial font with linkage class names of ArialBold and ArialRegular,
respectively. Although embedded fonts in a SWF ensure that viewers
don’t need to have the fonts installed in their computer, this is not true of
editing an FLA. If you prefer, you can substitute your own fonts and then
either use the same linkage class names or update the code accordingly.

MenuButtonMain

This is a movie clip that looks like a tab-shaped button. The class of the
same name provides the text field and text formatting needed to display
the tab’s text label.

The XML and Classes
Now we’ll being looking at the code behind the project. We’ll start by show-
ing you an excerpt of the XML data file, and then discuss each of the classes
that you’ll write. We’ll also explain the usage of related, third-party classes.

XML
You can look at the XML document any time, but the following excerpt is
representative of the data:

<nav>
		<menus>
				<button	label="MOTION">
						<project	label="flocking"	path="projects/motion/worm.swf">
								Flocking	with	Zeno's	paradox
						</project>
						<project	label="point	at"	path="projects/motion/point.swf">
								Pointing	at	the	mouse	position	
						</project>
				</button>
		</menus>
</nav>

The root node, <nav>, has a child node, <menus>, which contains the data for
all menus. Each menu is delineated by a <button> node, which corresponds
to the main menu button. This node has a label attribute, which holds the
text used for the main menu button text label.

Within each <button> node are multiple child nodes called <project> (two
are shown in the excerpt for brevity). Collectively, these make up the submenu
for each menu. Each <project> node corresponds with one button in the
submenu, and has an attribute called label. This is used to populate the text

Part V: Input/Output408

An XML-Based Navigation System

label of the submenu button. It also has a path attribute, used to load the cor-
responding content, and a text node, which we’ll use in Chapter 15 to display
a brief blurb about the loaded asset.

LAS3Main (document class)
The document class is pretty straightforward. It loads the XML data, creates
a SafeLoader for loading content and a mask for masking the content to an
area below the menus, and initializes the menus.

Lines 1 through 10 declare the package and import required classes, including
SafeLoader, and two custom classes, CustomURLLoader and NavigationBarXML.
Line 12 declares the class, including extending MovieClip so it can easily be
used as a document class. Finally, lines 14 through 16 create three private
properties for the CustomURLLoder, XML, and SafeLoader instances, respectively.

1	 package	{
2	 				
3	 				import	flash.display.Graphics;
4	 				import	flash.display.MovieClip;
5	 				import	flash.events.Event;
6	 				import	flash.filters.DropShadowFilter;
7	 				import	flash.net.URLRequest;
8	 				import	fl.display.SafeLoader;
9	 				import	com.learningactionscript3.loading.CustomURLLoader;
10	 				import	com.learningactionscript3.ui.NavigationBarXML;
11	
12	 				public	class	LAS3Main	extends	MovieClip	{
13	
14	 								private	var	_menuLdr:CustomURLLoader;
15	 								private	var	_xml:XML;
16	 								private	var	_loader:SafeLoader;

The class constructor occupies lines 18 through 22 and creates an instance of
the CustomURLLoader class to load the external data. Discussed in Chapter 13,
this class does all the loading work for us and dispatches an Event.COMPLETE
event when the loading is finished. Line 20 adds an event listener to trap this
event and call onLoadXML().

Once the XML is loaded, the onLoadXML() method uses a try..catch block
to attempt to parse the XML. It retrieves the data from the data property of
the CustomURLLoader instance and tries to instantiate an XML object using that
data (line 26). If successful, it calls the initLoader() and initMenus() meth-
ods (lines 27 and 28, respectively). If the data can’t be parsed as XML, it traces
an error (lines 30 and 31).

17	 								//constructor	and	xml	load
18	 								public	function	LAS3Main()	{
19	 												_menuLdr	=	new	LoadURL("data/nav.xml");
20	 												_menuLdr.addEventListener(Event.COMPLETE,	onLoadXML,	
21	 																																						false,	0,	true);
22	 								}
23	
24	 								private	function	onLoadXML(evt:Event):void	{
25	 												try	{

An XML-Based Navigation System

Chapter 14: XML 409

26	 																_xml	=	new	XML(_menuLdr.data);
27	 																initLoader();
28	 																initMenus();
29	 												}	catch	(err:TypeError)	{
30	 																trace("Can't	parse	loaded	content	as	XML:",
31	 																						err.message);
32	 												}
33	 								}

The initLoader() method creates an instance of the SafeLoader class (line
36), positions it below the future location of the menus (line 37), and adds it
to the display list (line 38). It also draws a 750 × 450 pixel movie clip (lines 40
through 44), adjusts its y position to 100, the same location as the SafeLoader
instance (line 45), and uses it to mask the loaded content (line 46).

34	 								//loader	and	mask
35	 								private	function	initLoader():void	{
36	 												_loader	=	new	SafeLoader();
37	 												_loader.y	=	100;
38	 												this.addChild(_loader);
39	 												
40	 												var	loaderMask:MovieClip	=	new	MovieClip();
41	 												var	g:Graphics	=	loaderMask.graphics;
42	 												g.beginFill(0x000000,	1);
43	 												g.drawRect(0,	0,	750,	450);
44	 												g.endFill();
45	 												loaderMask.y	=	100;
46	 												_loader.mask	=	loaderMask;
47	 								}

The initMenus() method creates an instance of the NavigationBarXML class
(lines 50 and 51) and adds it to the display list (line 52). In doing so, it passes
the scope of the document class into the constructor, as well as the <menus>
XMLList. This makes all of the menu XML data available to the class so it can
create the necessary buttons. The method also creates a DropShadowFilter
instance (line 54), sets its alpha to 25 percent, and adds it to the _navBar
instance. This will give the entire menu system, including the submenus that
appear interactively, a drop shadow.

48	 								//navigation	menu	bar
49	 								private	function	initMenus():void	{
50	 												var	_navBar:NavigationBarXML	=	
51	 																new	NavigationBarXML(this,	_xml.menus);
52	 												this.addChild(_navBar);
53	 												
54	 												var	ds:DropShadowFilter	=	new	DropShadowFilter();
55	 												ds.alpha	=	0.25;
56	 												_navBar.filters	=	[ds];
57	 								}
58	 								
59	 								public	function	get	assetLoader():SafeLoader	{
60	 												return	_loader;
61	 								}
62	 				}
63	 }

NOTE

Using a mask prevents loaded content
from appearing outside the area dedi-
cated for its display—something that
frequently happens when assets follow
the mouse, for example. If you want to
see what the project looks like without a
mask at any point, simply comment out
line 46 when testing.

NOTE

See Chapter 13 for information about
a modification made to Adobe’s
SafeLoader class.

Part V: Input/Output410

An XML-Based Navigation System

Finally, a getter is provided to return the SafeLoader instance when required.
Despite not processing the information returned, a getter is used here instead
of a public property because the value should be read-only. By contrast, we’ll
use public properties later on in the MenuButtonSub class, to give you more
experience with both approaches to controlling information access in classes.
For more information, see the “Encapsulation” section in Chapter 6.

NavigationBarXML
The NavigationBarXML class is the longest class in the project, and the real
workhorse. Although its functionality isn’t particularly complex, a little more
detail is warranted to cover some of its inner workings.

Lines 1 through 15 declare the package and import the necessary classes. In
this case, note that three TweenLite classes that we haven’t discussed before
are imported: TweenPlugin, ColorTransformPlugin, and VisiblePlugin. We’ll
discuss those when we go over the constructor. Also, note that MenuButtonMain
and MenuButtonSub are imported. It’s in this class that we’ll be using both but-
ton types.

Line 17 declares the class and extends MovieClip so the navigation bar
instance inherits the accessible properties and methods of the MovieClip
class. Lines 19 through 21 create three private properties, preventing access
from outside the class. The first property (line 19) will hold an instance of the
document class (remember that it extended MovieClip, as well) passed into
the constructor during instantiation. This will allow us to get the SafeLoader
instance when one of the menu buttons needs to load content.

The second property (line 20) will hold an XMLList of all the button data
loaded in the document class—also passed into the constructor during
instantiation. The last property (line 21) will contain the currently active
submenu when the user rolls his or her mouse over a menu button. This will
allow us to reference the same menu in another method when the user rolls
the mouse away and we must hide the menu.

1	 package	com.learningactionscript3.ui	{
2	
3	 			import	flash.display.Graphics;
4	 			import	flash.display.MovieClip;
5	 			import	flash.events.Event;
6	 			import	flash.events.MouseEvent;
7	 			import	flash.geom.Matrix;
8	 			import	flash.net.URLRequest;
9	 			import	flash.text.TextField;
10	 			import	com.greensock.TweenLite;
11	 			import	com.greensock.plugins.TweenPlugin;
12	 			import	com.greensock.plugins.VisiblePlugin;
13	 			import	com.greensock.plugins.ColorTransformPlugin;
14	 			import	com.learningactionscript3.ui.MenuButtonMain;
15	 			import	com.learningactionscript3.ui.MenuButtonSub;
16	
17	 			public	class	NavigationBarXML	extends	MovieClip	{
18	

An XML-Based Navigation System

Chapter 14: XML 411

19	 						private	var	_app:MovieClip;
20	 						private	var	_navData:XMLList;
21	 						private	var	_subMenu:MovieClip;

The class constructor occupies lines 23 through 41. It accepts two arguments:
the movie clip in which the navigation bar was instantiated (to allow us to
get a reference to the SafeLoader instance), and the button data loaded from
XML. This information is immediately stored in the aforementioned private
properties, in lines 25 and 26, so we can use the references in multiple meth-
ods within the class.

Line 28 calls the addMenus() function, which builds the menu system and
which we’ll discuss in just a moment. Lines 30 through 37 dynamically draw
the thick black line that serves as the lower bound of the main menu tabs.
This improves upon the original version of the menu system in Chapter 6,
which used a symbol for this purpose, because the code can easily be altered
without having to create new artwork in the FLA.

The last two lines in the constructor activate the TweenLite plugins. The
TweenLite tweening package is kept staggeringly small by only integrating
the bare animation essentials. It doesn’t skimp on bells and whistles, how-
ever, because it allows you to add individual features as needed by activating
plugins. This project uses two TweenLite plugins: VisiblePlugin, which
turns an asset invisible after a tween, and ColorTransformPlugin, which
allows us to tween color values. The uses of both plugins will be explained
in context. This is a one-time process. Once the plugins are activated, their
features will be available throughout your SWF, and any SWFs loaded from
the same domain.

22	 						//constructor
23	 						public	function	NavigationBarXML(app:MovieClip,	
24	 																																							navData:XMLList)	{
25	 									_app	=	app;
26	 									_navData	=	navData;
27	 									
28	 									addMenus();
29	 									
30	 									var	line:MovieClip	=	new	MovieClip();
31	 									var	g:Graphics	=	line.graphics;
32	 									g.beginFill(0x000000);
33	 									g.drawRect(0,	0,	_app.stage.stageWidth,	4);
34	 									g.endFill();
35	 									line.y	=	100;
36	 									line.mouseEnabled	=	false;
37	 									this.addChild(line);
38	 									
39	 									TweenPlugin.activate([VisiblePlugin]);
40	 									TweenPlugin.activate([ColorTransformPlugin]);
41	 						}

The addMenus() method is the workhorse of this class, and it’s responsible for
parsing the XML data, instantiating each main menu button, creating their
submenus, and instantiating all submenu buttons. Line 44 uses the XML

Part V: Input/Output412

An XML-Based Navigation System

length() method to determine how many main menu buttons are included
in the XML. (The project source XML contains five menus.)

The remainder of the function is inside a loop that iterates five times, once for
every menu. Line 46 starts the process by excerpting only the XML relevant
to the current menu. Lines 49 through 59 then initialize the main menu but-
ton. Lines 49 and 50 create a MenuButtonMain instance, passing the label attri-
bute from the XML into the class constructor to create the button’s text label.

Line 51 positions the button horizontally, beginning at 20 pixels and then
offsetting a distance equivalent to the buttons width and a 2-pixel space, for
each button in the loop. As the button is 120 pixels wide, this means the first
button is placed at an x position of 20 pixels (20 + 0 * (120 + 2)), the sec-
ond at 142 (20 + 1 * (120 + 2)), and so on. Line 52 positions each button
at a y coordinate of 75.

Lines 53 through 58 create two event listeners, one for the MOUSE_OVER event
and another for the MOUSE_OUT event. When these events occur, they call the
methods starting at lines 83 and 90, respectively. We’ll discuss these methods
in a few minutes. Finally, line 59 adds each main menu button to the display
list.

42	 						//building	the	menus
43	 						private	function	addMenus():void	{
44	 									var	mainButtonLength:uint	=	_navData.button.length();
45	 									for	(var	i:int;	i	<	mainButtonLength;	i++)	{
46	 												var	buttonXML:XML	=	_navData.button[i];
47	 												
48	 												//main	button
49	 												var	mainBtn:MovieClip	=	
50	 																new	MenuButtonMain(buttonXML.@label);
51	 												mainBtn.x	=	20	+	i	*	(mainBtn.width	+	2);
52	 												mainBtn.y	=	75;
53	 												mainBtn.addEventListener(MouseEvent.MOUSE_OVER,	
54	 																																					onMainBtnOver,	
55	 																																					false,	0,	true);
56	 												mainBtn.addEventListener(MouseEvent.MOUSE_OUT,	
57	 																																					onMainBtnOut,			
58	 																																					false,	0,	true);
59	 												this.addChild(mainBtn);

Still within the primary loop that iterates once for each main menu button,
lines 61 through 64 create the subMenu MovieClip instance to hold all sub-
menu buttons. The submenu is added as a child to the main button (line
64), so their locations start out at the same point. In line 62, the submenu’s y
coordinate is set to the bottom of the main button (using the button’s height
plus a 2-pixel margin to account for the black line that will lay on top of the
navigation bar).

Line 67 next determines the number of project nodes in the current menu.
This will determine how many submenu buttons are required. Lines 68
through 79 make up a loop that iterates once for every submenu button. Line
69 parses the current project node from the parent menu XML data.

NOTE

As mentioned previously, length()
is a method, in contrast to the Array
property length that serves the same
purpose. This can take a little getting
used to.

NOTE

Note the nested loop that results from
the loop that begins at line 68 residing
within the loop that begins at line 45.
The outer loop increments through the
five main menus, using i as its increment
variable. The inner loop increments
through the number of projects in each
menu (which can vary) and uses j as its
increment variable.

Each time through the outer loop, line
46 creates a subset of XML that only
pertains to the current menu, beginning
with the main menu button:

var	buttonXML:XML	=	_navData.
button[i];

Then each time through the inner loop,
each project node from this subset is
parsed in line 69, resulting in each sub-
menu button:

var	projectNode:XML	=	buttonXML.
project[j];

Thereafter, any XML information can be
parsed from the projectNode variable.

An XML-Based Navigation System

Chapter 14: XML 413

Lines 70 and 71 create an instance of the MenuButtonSub class, passing the
label attribute of the <project> node into the constructor to serve as the
button’s text label. Line 72 sets the button’s public property projectPath to
the path attribute of the project, and Line 73 sets the button’s public property
projectDescription to the text within the <project> node.

Lines 75 through 77 add an event listener for the CLICK event so the submenu
button will load the asset at the path associated with the button. Note that no
other mouse event listeners are created. The ROLL_OVER and ROLL_OUT behav-
ior of the button is cosmetic and is not customizable, so we’ll build it in the
MenuButtonSub class.

The last line of the loop, line 78, adds the button to the submenu.

60	 												//sub	menu
61	 												var	subMenu:MovieClip	=	new	MovieClip();
62	 												subMenu.y	=	mainBtn.height	+	2;
63	 												subMenu.visible	=	false;
64	 												mainBtn.addChild(subMenu);
65	
66	 												//sub	buttons
67	 												var	subButtonLength:uint	=	buttonXML.project.length();
68	 												for	(var	j:int	=	0;	j	<	subButtonLength;	j++)	{
69	 															var	projectNode:XML	=	buttonXML.project[j];
70	 															var	subButton:MovieClip	=	
71	 																			new	MenuButtonSub(projectNode.@label);
72	 															subButton.projectPath	=	projectNode.@path;
73	 															subButton.projectDescription	=	projectNode;
74	 															subButton.y	=	((subButton.height)	*	j);
75	 															subButton.addEventListener(MouseEvent.CLICK,	
76	 																																										onSubBtnClick,
77	 																																										false,	0,	true);
78	 															subMenu.addChild(subButton);
79	 												}
80	 									}
81	 						}

Called each time the main menu button is rolled over, the onMainBtnOver()
method shows the submenu. Line 84 first determines which button was
rolled over by checking the currentTarget property of the event. Next, the
button must show its submenu. Because the main menu button contains
both a sprite background and a text field (explained in the next section), line
85 references the submenu by querying the third child of the button. Line 86
sets the visibility of the menu to true, and then line 87 uses TweenLite to fade
from an alpha of 0 (transparent) to 1 (opaque), in one-quarter of a second.

Rolling off the main menu button calls the onMainBtnOut() method so we
can again hide the menu. The first line of the method uses the relatedObject
property of mouse events to determine if the mouse has rolled onto anything
but a submenu button. We don’t want to hide the menu if one of its buttons
is in use. If that’s not the case, the submenu’s visible property is set to true
so you can see the submenu when it fades in. TweenLite is used to fade the
submenu up to an alpha of 1 over one-quarter second.

NOTE

If the contents of the button were less
uniform, you might prefer to set the
name property of the submenu in the
creation process (perhaps after line 64
in this class) and then us the getChild-
ByName() method to retrieve a reference
to the submenu.

Part V: Input/Output414

An XML-Based Navigation System

Also, the visibility of the menu is set to false using TweenLite’s VisiblePlugin.
When the visible property of the TweenLite object is set to false, this plugin
automatically sets the visibility of the target to false after the tween is com-
plete. In other words, the menu fades out and then becomes invisible. This is
vital to the success of the menu because we can’t rely solely on alpha to hide
our menus.

Despite being transparent, display objects with an alpha value of 0 can still
receive mouse events. If we just faded the submenu out, rolling the mouse
over its prior location would cause it to fade back into view without ever
going near its main menu button. Instead, the menus must be invisible
because invisible assets won’t respond to mouse events. So, the menus must
start as invisible, become visible but tween their alpha property from 0 to
1 when rolled over, tween their alpha back to 0 and become invisible again
upon mouse out.

82	 						//menu	button	mouse	roll	behavior:	appearance
83	 						private	function	onMainBtnOver(evt:MouseEvent):void	{
84	 									var	mainBtn:MovieClip	=	MovieClip(evt.currentTarget);
85	 									_subMenu	=	mainBtn.getChildAt(2);
86	 									_subMenu.visible	=	true;
87	 									TweenLite.to(_subMenu,	0.25,	{alpha:1});	
88	 						}
89	 						
90	 						private	function	onMainBtnOut(evt:MouseEvent):void	{
91	 									if	(!(evt.relatedObject	is	MenuButtonSub))	{
92	 												TweenLite.to(_subMenu,	0.25,	{alpha:0,	visible:false});
93	 									}
94	 						}

The last method in the class is called when a submenu button is clicked.
Line 97 determines which button was clicked and retrieves the values from
its public properties projectPath and projectDescription. The path is used
to load the content associated with that button, and the description (included
here only as an example) might be used to show information about the asset
in a caption field, if you thought it necessary.

Line 100 or 101 will unload any content from the SafeLoader instance
(retrieved from the document class assetLoader getter), depending on which
platform you’re targeting. As discussed in Chapter 13, unloadAndStop() is
preferable because it closes all sound and video streams, stops all timers, and
removes all relevant listeners, so the asset can be properly unloaded. This
method, however, requires Flash Player 10 or later. If you must target Flash
Player 9, you must use the unload() method and take all necessary steps
yourself to close open streams, stop timers, and remove listeners within the
loaded asset. After any content is unloaded, line 102 then loads the content
at the path contained in the local path variable.

95	 						//menu	button	click	behavior:	loading
96	 						private	function	onSubBtnClick(evt:MouseEvent):void	{
97	 									var	subBtn:MovieClip	=	MovieClip(evt.target);
98	 									var	path:String	=	subBtn.projectPath;
99	 									var	description:String	=	subBtn.projectDescription;

NOTE

Hiding and revealing the submenus
could be simplified by just popping
the menus in and out when the value
of their visible property changes. But
TweenLite makes this so easy that only
three extra lines of code are required—
line 87 does the work and lines 12
and 39 enable the VisiblePlugin.
(Line 11 is still required to support the
ColorTransformPlugin, and line 92
will still be required in another form.)

If you prefer that the submenus pop in
and out (perhaps because the quarter-
second tween up and down makes the
system feel less responsive), that’s easy to
change. First comment out lines 87 and
92 and then add the following after line
92 to hide the menu:

_subMenu.visible	=	false;

(You may also comment out line 12 and
39, but their effect on the project will be
negligible. To remove all alpha tween-
ing of the submenus entirely, you can
remove lines 12, 39, 87, and the original
line 92, but they will not hinder perfor-
mance if the appropriate lines remain
commented, and this allows you restore
the functionality later if you change
your mind.)

An XML-Based Navigation System

Chapter 14: XML 415

100										//_app.assetLoader.unload();	//FP	9
101										_app.assetLoader.unloadAndStop();	//FP	10
102										_app.assetLoader.load(new	URLRequest(path));
103							}
104				}
105	}

This actually concludes the main functionality of the navigation bar, includ-
ing the XML loading and parsing, and the content loading triggered by using
the system. However, we must still discuss the classes that create the main
menu buttons and submenu buttons.

MenuButtonMain
The MenuButtonMain class works hand in hand with the corresponding
movie clip symbol in the main FLA’s Library. The movie clip contains art-
work resembling a tab, and a linkage class of com.learningactionscript3.
ui.MenuButtonMain. This class resides in that location and creates the button’s
text field and text format.

Lines 1 through 8 declare the package and import the required classes. Line
10 declares the class and extends MovieClip to work with the aforementioned
symbol. Line 12 opens the class constructor, and receives a String as its only
argument to serve as the text label for the button. It has a default value of
an empty String, so an instance of the class can still be created even without
passing in any text.

Line 13 sets the buttonMode property of the button to true, so the cursor will
change from a pointer to a finger when rolling over the button.

Lines 15 through 22 initialize the button’s text field, and lines 24 through 31
initialize and apply a text format. Much of this is self-explanatory, but a few
things are worthy of note. Lines 17 and 18 set the width and height of the text
field to fill the button. This exposes the possibility that the button will cease
working because the text field will trap incoming mouse events. To prevent
this, line 21 disables mouse interaction with the field.

Also of note, line 19 sets the field to use embedded fonts, allowing us to use
the font symbols in the library of the FLA. Line 24 instantiates the ArialBold
symbol, line 26 ensures that we’re using the embedded font, and, finally, line
31 applies the text format using the setTextFormat() method, after the text
has been added to the field.

1	 package	com.learningactionscript3.ui	{
2	
3	 				import	flash.display.MovieClip;
4	 				import	flash.text.Font;
5	 				import	flash.text.TextField;
6	 				import	flash.text.TextFieldAutoSize;
7	 				import	flash.text.TextFormat;
8	 				import	flash.text.TextFormatAlign;
9	 				
10	 				public	class	MenuButtonMain	extends	MovieClip	{
11	 				

Part V: Input/Output416

An XML-Based Navigation System

12	 								public	function	MenuButtonMain(labl:String="")	{
13	 												this.buttonMode	=	true;
14	 												
15	 												var	btnLabel:TextField	=	new	TextField();
16	 												btnLabel.y	=	5;
17	 												btnLabel.width	=	this.width;
18	 												btnLabel.height	=	20;
19	 												btnLabel.embedFonts	=	true;
20	 												btnLabel.text	=	labl;
21	 												btnLabel.mouseEnabled	=	false;
22	 												this.addChild(btnLabel);
23	 												
24	 												var	btnFont:Font	=	new	ArialBold();
25	 												var	labelFormat:TextFormat	=	new	TextFormat();
26	 												labelFormat.font	=	btnFont.fontName;
27	 												labelFormat.size	=	12;
28	 												labelFormat.bold	=	true;
29	 												labelFormat.color	=	0xFFFFFF;
30	 												labelFormat.align	=	TextFormatAlign.CENTER;
31	 												btnLabel.setTextFormat(labelFormat);
32	 								}
33	 				}
34	 }

MenuButtonSub
The MenuButtonSub class is responsible for creating a submenu button and
controlling only its appearance when the mouse rolls over or out of the but-
ton. The click behavior is controlled from the NavigationBarXML class. This
makes the button more flexible and reusable. It also uses two public proper-
ties to store the path and description of the asset the button will load.

Lines 1 through 13 declare the class package and import the required classes,
including TweenLite. Line 15 declares the class and extends MovieClip to
inherit its accessible properties and methods. Lines 17 through 19 declare the
class properties. Note that both projectPath and projectDescription are public,
meaning they can be both set and retrieved from outside the class. As a result,
no getter or setter is used.

1	 package	com.learningactionscript3.ui	{
2	
3	 				import	flash.display.GradientType;
4	 				import	flash.display.Graphics;
5	 				import	flash.display.MovieClip;
6	 				import	flash.display.Sprite;
7	 				import	flash.events.MouseEvent;
8	 				import	flash.geom.Matrix;
9	 				import	flash.text.Font;
10	 				import	flash.text.TextField;
11	 				import	flash.text.TextFormat;
12	 				import	flash.text.TextFormatAlign;
13	 				import	com.greensock.TweenLite;
14	 				
15	 				public	class	MenuButtonSub	extends	MovieClip	{
16	
17	 								private	var	_background:Sprite;
18	 								public	var	projectPath:String;
19	 								public	var	projectDescription:String;

An XML-Based Navigation System

Chapter 14: XML 417

Lines 21 through 30 contain the class constructor. The String that will serve
as the button label is passed into the constructor, and the argument uses an
empty String as a default value so the button can still be instantiated even
without text input. Lines 22 and 23 call functions to draw the button’s back-
ground and create its text label, both of which we’ll look at in a moment.
(Note that the String passed into the constructor is passed on to the add-
TextLabel() method.)

Line 24 disables mouse interaction with the button’s children. This is not only
an alternative to disabling mouse interaction directly on the text field (as seen
in MenuButtonMain class); it also disables interaction with the background
sprite. Finally, lines 26 through 29 add event listeners for mouse roll over and
roll out events.

20	 								//constructor
21	 								public	function	MenuButtonSub(labl:String="")	{
22	 												addBackground();
23	 												addTextLabel(labl);
24	 												this.mouseChildren	=	false;
25	 												
26	 												this.addEventListener(MouseEvent.ROLL_OVER,	
27	 																																		onOver,	false,	0,	true);
28	 												this.addEventListener(MouseEvent.ROLL_OUT,	
29	 																																		onOut,	false,	0,	true);
30	 								}

The addBackgound() method in lines 32 through 43, create the button’s back-
ground sprite using the gradient fill technique discussed in Chapter 8. The
colors used in the gradient both have alpha values of 80 percent, making
the buttons translucent. The addTextLabel() method receives the button’s
label String from the constructor, and uses the same technique seen in the
MenuButtonMain class to create and format a text field.

31	 								//background	and	text	label
32	 								private	function	addBackground():void	{
33	 												_background	=	new	Sprite();
34	 												var	g:Graphics	=	_background.graphics;
35	 												var	matrix:Matrix	=	new	Matrix();
36	 												matrix.createGradientBox(120,	25,	deg2rad(90));
37	 												g.beginGradientFill(GradientType.LINEAR,	
38	 																																[0x64788C,	0x2C4054],
39	 																																[0.8,	0.8],	[0,	255],	matrix);
40	 												g.drawRect(0,	0,	120,	25);
41	 												g.endFill();
42	 												addChild(_background);
43	 								}
44	 								
45	 								private	function	addTextLabel(btnLabelText:String):void	{
46	 												var	btnLabel:TextField	=	new	TextField();
47	 												btnLabel.x	=	btnLabel.y	=	2;
48	 												btnLabel.width	=	this.width;
49	 												btnLabel.height	=	20;
50	 												btnLabel.embedFonts	=	true;
51	 												btnLabel.text	=	btnLabelText;
52	 												this.addChild(btnLabel);
53	 												

Part V: Input/Output418

An XML-Based Navigation System

54	 												var	btnFont:Font	=	new	ArialRegular();
55	 												var	labelFormat:TextFormat	=	new	TextFormat();
56	 												labelFormat.font	=	btnFont.fontName;
57	 												labelFormat.size	=	12;
58	 												labelFormat.color	=	0xDDDDEE;
59	 												labelFormat.align	=	TextFormatAlign.LEFT;
60	 												btnLabel.setTextFormat(labelFormat);
61	 								}

Although the actions invoked by a button click are invoked from the
NavigationBarXML class, each MenuButtonSub instance updates its own appear-
ance based on mouse interaction. Specifically, TweenLite is used to tint the
button a slate blue using TweenLite’s ColorTransformPlugin (activated earlier
in the NavigationBarXML class). When rolling over the button with the mouse,
TweenLite changes the tint from 0 to 100 percent, tinting it blue. When rolling
off the button, the tint changes from 100 to 0 percent.

62	 								//submenu	button	mouse	behavior
63	 								private	function	onOver(evt:MouseEvent):void	{
64	 												TweenLite.to(_background,	0.3,	{colorTransform:
65	 																									{tint:0x223355,	tintAmount:1}});
66	 								}
67	 								
68	 								private	function	onOut(evt:MouseEvent):void	{
69	 												TweenLite.to(_background,	0.3,	{colorTransform:
70	 																									{tint:0x334466,	tintAmount:0}});	
71	 								}
72	 								
73	 								private	function	deg2rad(deg:Number):Number	{
74	 												return	deg	*	(Math.PI/180);
75	 								}
76	 				}
77	 }

Finally, the deg2rad() method in lines 73 through 75 supports the create-
GradientBox() method in line 36, allowing us to convert degrees to radians
so we can rotate the gradient.

Tying it all together
When you tie it all together, you end up with Figure 14-1. The document
class creates the loader, loader mask, and navigation bar, and loads the XML.
The NavigationBarXML class instantiates each MenuButtonMain instance, sub-
menu, and MenuButtonSub instance based on the XML data. It also sets the
click behavior of the submenu buttons to load content into the SafeLoader
instance in the document class. The result is that new content is loaded every
time the user clicks a submenu button.

An XML-Based Navigation System

Chapter 14: XML 419

Figure 14-1. A simple navigation system that loads button properties from an external
XML file

This simple navigation system brings a lot of power to a project because
it allows you to quickly and easily change the main and submenu button
names, modify project descriptions, and update what’s loaded from each
button—all by configuring an external XML file. In other words, you don’t
have to edit and republish the SWF every time you want to make a change.

NOTE

The companion website contains addi-
tional examples that use XML for a
variety of tasks, including driving an
image gallery, and populating text fields.

Part V: Input/Output420

What’s Next?

What’s Next?
A nice rest and a beverage, that’s what. Reward yourself for all the progress
you’ve made learning a new language. You’ve made your way through 14
chapters of new material; you’ve earned a break. Then, after putting your
feet up for a while, get back to work. Spend 15 minutes a day experimenting.
Adapt every exercise in the book to accomplish something new. Create mini-
projects that combine topics, using the skills you’ve learned in each area to
create something new. For example, create a particle system of text fields, or
use the microphone activity level to start playing a video.

Write a class for every timeline example. Start just by converting each time-
line script to document classes and compare your efforts to the supplemental
source files provided. Then start writing classes that you can reuse.

Don’t forget the companion website! Start reading its posts and explore the
additional resources. Visit those and other ActionScript-related websites regu-
larly, and subscribe to their news feeds, if available.

Finally, look for a bonus chapter on the companion website. In it, we’ll
examine the basic 3D capabilities that are integrated into ActionScript 3.0 as
of Flash Player 10 and later. In the bonus chapter, we’ll discuss rotating and
translating (moving) objects in 3D space, perspective angle, vanishing point,
and more.

We hope you enjoyed this book, and that you continue your learning. Please
visit the companion website at your leisure and use the contact form to let us
know how you’re doing!

Index

Symbols and
Numbers
0xRRGGBB color format, 267
9-slice scaling, 191, 215–217
32-bit 0xAARRGGBB hexadecimal

format, 228
&& (AND) operator, 30–31
* (asterisk) as data type, 78
* (asterisk) as wildcard, 396, 398
@ (at symbol), preceding XML

attributes, 396–398
\ (backslash) in strings, 278
| (bitwise OR) operator, 245
, (comma), tracing multiple items with,

104
+= compound operator, 264
.. descendant accessor operator in

XML, 395–396
++ increment operator, 35
! (NOT) operator, 30–31
|| (OR) operator, 30
() (parentheses)

in arithmetic operators, 29
in methods, 60

. (period) for tab leaders, 80
+ (plus symbol) as concatenation

operator, 29, 42
" " (quotation marks), escaping, 277
; (semicolon) in ActionScript, 22
* (wildcards) in XML, 396

A
absolute address, _root as, 74
absolute value, 314
absolute vs. relative addresses (objects),

21, 45

acceleration of objects
defined, 155
example, 156–157

access control modifiers
defined, 117
function of, 133
internal, 133
private, 133
protected, 133
public, 133

ActionScript 3.0
background and development of, 3–5
basics, 22–23
case-sensitivity of, 22
defined, 4
editors, 4
embedded fonts and, 273–274
Language and Component Reference,

347, 358
new features in, 5–8
overview of fundamentals, 19–21
rebuilding timeline tweens with, 189
tab (Flash Pro CS5), 273
triggering from HTML links, 278

ActivityEvent.ACTIVITY event, 323
activity levels, microphone input,

322–326
addBackgound() method, 417
addChildAt() method, 84–85
addChild() method, 81–82, 93
addController() method, 290
ADDED_TO_STAGE event, 131
addEventListener() method, 55, 69
addFrameScript() method, 110
“Adding Classes to Pre-Existing

Symbols” post, 82
addListeners()/removeListeners()

methods, 365

addMenus() function, 411
addresses, object, 45
AdjustColor class, 238
Adobe

AS3 Core Library, 250
Flash CS4 Professional Studio

Techniques (Adobe Press), 336
Media Encoder (AME), 336
Tween class, 184–186

AIR (Adobe Integrated Runtime)
applications

ActionScript in, 4
defined, 8

airbrush, creating with BlurFilter
(bitmaps), 239–240

allowFullScreen parameter, 344
Alpha blend mode, 236
alpha masks, 227
alpha parameter (beginFill() method),

194
alwaysShowSelected property, 266
amplitude, sound, 313–316
ancestors, defined, 9
AND (&&) operator, 30–31
angles

movement along, 169–171
rotation, 68

animation. See also motion through
code

“Animating Filters” post, 239
anti-aliasing

custom (text), 274
features (ActionScript), 274

AntiAliasType class, 274
appendChild() method, 400
appendText() method, 52, 264, 269, 275
application programming interface

(API), 134

Index422

arctangent method – <ClassName>() syntax

arctangent method, 181
arguments and parameters (functions),

42–43
arithmetic operators, 27, 29
arrays

associative arrays, 44, 103
defined, 25
fundamentals of, 37–39
labels array, 103
length property and, 38
multidimensional, 38
overview, 20
pop() method and, 38
push() method and, 38
scenes array, 103

.as file extension, 13
as operator, 89
assignment operators, 27, 29
associative arrays, 39, 44, 103
AsyncErrorEvent, 352, 354
asynchronous error, defined, 354
atan2() method, 181
attributes

attribute-value pairs, 371
filtering by (XML), 398
in XML element nodes, 396–397
text field, 262–264

audio spectrum data, 317
Audiotool, 295
autoSize property (fields), 73
Aviary suite, 258
AVM1Movie class, 77

B
backslashes (\) in strings, 278
Backspace/Delete key, 265
banner, creating with TweenLite

(exercise), 187
BasicVideo_UI class, 356
Beck, Nate, 251
beginBitmapFill() method, 199
beginFill() method, 194
beginGradientFill() method, 212, 215,

219
Bézier curves, 194
binary data

accessing at runtime, 7
loading, 372, 376–379

BitmapData, 230–233
copyPixels() method and, 230
draw() method and, 232, 233, 237

BitmapDataChannel class, 245–246
bitmaps

bitmap data, 228
BitmapData class, 228–233
BitmapData color notation, 348
BitmapData data type, 199
BitmapData instances, using blend

modes with, 237
bitmap display objects, 228
blend modes, 233–237
caching, 226–227
color effects, 247–250
color picker, adding functionality to

(exercise), 252–256
compositing features, 225
copying pixels, 230–231
creating with transparency, 229
as display objects, 74
drawing into, 231–233
fills and lines, 199–200
filters. See filters, bitmap
image encoding/saving, 250–252
importing from libraries, 229–230
line styles, 213–214
opaque, creating, 228–229
overview, 225–226
paint program exercise, 256–257

bitrate calculator, 338
bitwise OR operator (|), 245
blend modes (bitmaps), 233–237
blockIndent property (text), 267
BlurFilter (bitmaps), 239–240
<body> tag (video captions), 348
Boolean truth table, 30
Boushley, Aaron, 251
Box class (example), 122–123
Box() method (example), 123
break statements, 33
Brimelow, Lee, 377
brush tool, creating, 232
bubbles property (events), 64
buffering sounds, 299, 307–308
buildASentence() function, 46
buttons

bitmaps as, 231
button interface for

RecordMicrophone_Example
class, 332

buttonMode property, 415
creating for navigation bar, 149–151

custom button class exercise,
220–223

dynamic art with DropShadow filter,
238–239

dynamic navigation bar, 93–95
fl.controls.Button, 349
paint program exercise, 257
satellite buttons (example), 178–179

ByteArray class, 318
ByteArrays, defined, 251

C
caching

bitmap, 226–227
cacheAsBitmap property, 226

callbacks, defined (ActionScript), 187
captions, video

Captionate software, 346
creating with timed text, 346–348
FLVPlaybackCaptioning component,

345–346
overview, 336, 344–345
providing in multiple languages, 349

Car class (example), 127–128, 131–132,
137, 140–141

Cascading Style Sheets (CSS). See CSS
case-sensitivity of ActionScript 3.0, 22
Casteljau, Paul de, 194
casting

data, 25
objects, 89

CDATA (character data) tags (XML),
389–390

CDPlayer class example, 144
character encoding, 347
charAt() method, 52
children

adding/removing (display lists), 81
children() method (XML), 398
child SWF, 379–380
defined, 9
finding by position/name, 88
nodes (XML), 392
reparenting (display lists), 92–93

circular movement (animation),
176–178

circular navigation system, 178–180
Claire, xvii, xviii, 24, 29, 43, 46–47,

298–299
<ClassName>() syntax, 89

classes – data types

Index 423

createRoundRect() method, 222
CSS (Cascading Style Sheets)

formatting text with, 274–277
loading, 279–283
for Timed Text document, 347

cubic Bézier model, 194
cue points (video), 337
currentLabels, 104–106
currentTarget event property, 64
currentTarget property, 180
curves

curveTo() command, 202
curveTo() method, 194
drawing, 194–195

customized video player, creating
code-only solution, 352–358
overview, 350
scripting buttons to control

FLVPlayback component,
350–352

customizing
adding custom symbol instances to

display lists, 82–84
custom anti-aliasing (text), 274
custom button class exercise,

220–223
CustomURLLoader Class, writing,

372
encoding settings, 339

CustomLoader class
using, 368–370
writing, 364–368

custom objects
creating, 44–45
defined, 20

CustomURLLoader Class
using, 375–379

D
Darken blend mode, 234
data

bitmap, 228
casting, 25
dataFormat property, 371
loading, 370
“Sending Data from AVM2 to AVM1”

post, 379
data types

defined, 15
of display objects, changing, 88–89
variables and, 23–27

command-line compilers, 4
commas, tracing multiple items with,

22, 104
comments in XML, 389

ignoring. See ignoreComments
comparison operators

comparison equality operator (==),
29

defined, 30
listed, 27

compatibility with legacy code
(ActionScript 3.0), 5, 14

compilation, 3–4
compiler software (Flash Professional),

3
components, video, 336, 340–343
compositing blend modes

(ActionScript), 235–236
composition

adding sound system to vehicle
through, 145–147

basics (OOP), 131–133
defined (OOP), 114

compound assignment operators, 29,
54

computeSpectrum() method, 317, 318
concatenate (+) operator, 42
conditional statements, 20
conditional structures

if statements, 30–32
logical operator precedence, 32–33
overview, 29–30
switch statements, 33–34

constants, defined, 56
constructors

class, 118
defined, 13, 123

containers
ContainerController class, 290
TLF, 289

contentLoaderInfo property, 362, 369
convFilter() function, 242
ConvolutionFilter (bitmaps), 240–243
copying

copy() method, 401
pixels, 230–231

cos() method (Math class), 170
createBtn() method, 222
createButton() function, 306
createGradientBox() method, 213, 215,

219, 418
createLabel() method, 223

classes
accessing stages in, 130–131
“Adding Classes to Pre-Existing

Symbols” post, 82
class constructors, 13, 118, 320
classpaths, 118–121
creating in Flash Professional, 10
defined (OOP), 114
display lists, 75–78
document. See document class
extending, 114
linkage, 82
naming, 83, 118
overview, 115–116
Square class (example), 124
subclasses, 122, 139
superclasses, 122, 139
symbol base, 124
tweening, 183
Vehicle class (example), 125–128

classic text, 273
classpaths, defined, 117
client source (XML send-and-load),

404–405
code

for playing videos, 342
organizing, 100
selecting text with, 265

codecs, defined, 335
coefficients, friction, 160–161
coercion, defined, 89
collision detection, 166–168
colors

Color class, 221, 250
color effects (bitmaps), 247–250
ColorMatrixFilter class, 249–250
color parameter (beginFill() method),

194
color peak meter, 316
color picker exercise, 218–220,

252–256
color property (text), 267
ColorTransform class, 247–249
ColorTransformPlugin, 411
ColorUtils package, 224
custom button class exercise, 222
expressing as numbers, 52
gradient fills and lines, 197
gradient spread methods, 214–215
#RRGGBBAA color notation, 348
solid-color fills, 194–195

columnar layout (TLF), 287–288

Index424

declaration tags (XML) – Erase blend mode

custom button class exercise,
220–223

drawing API, 191
geometry package. See geometry

package
gradient fills and lines, 197–198
graphics class. See Graphics class
lines, 193–194
Pencil tool, simulating, 201
polygons, 203
shapes, 195–196

DropShadowFilter (bitmaps), 238–239
dynamic data type checking, 6
dynamic navigation bar, creating,

93–95
dynamic text fields, 263–264

E
E4X (ECMAScript for XML), 385–386
easeIn/easeOut properties, 185
easing objects, 157–158
ECMAScript for XML. See E4X
editors, ActionScript, 4, 117
Elastic ease, 188
elasticity, 161–162
element nodes (XML), 386, 388,

392–396, 397
elements() method (XML), 398
else, 31

else if, 31
embedded fonts, 270–274
embedFonts property, 274
encapsulation

basics of, 133–134
defined (OOP), 114
getter/setter methods, 134–138
Vehicle class example, 135–137

encoding
customizing settings, 339
defined, 336
formats, 337–338
MP3 files, 311
presets, 338
and saving bitmap images, 250–252
starting queue, 340
videos, applications for, 336–337

endFill() method, 195
ENTER_FRAME constant (Event

class), 65
entities in XML specification, 390
Erase blend mode, 236

defined, 62
DisplayObject class, 75
DisplayObjectContainer class, 76
display object containers, 77
manipulating, 85

displayState property, 351–352
distances, calculating (animation),

171–172
Distribution Format Exchange Profile

(DFXP), 346
divisor parameter (ConvolutionFilter

class), 242
document class

BasicVideo_UI, 356
encapsulation example, 138
feature in Flash, 5
fundamentals of, 11–14
Hello World example, 16
navigation bar example, 148
OOP example, 116–118
Tires class and (polymorphism),

141–142
Vehicle class example, 128–130, 133

documents, loading external XML,
402–403

dot notation. See dot syntax
dot syntax, 38
drawing

into bitmaps, 231–233
drawBar() function, 304
drawCircle() method, 195
drawGradientBox() method, 218
“The Drawing API” posts, 202
draw() method, 232–233, 237
drawPath() method, 202–205
drawPolygon() method, 203
drawRect() method, 196
drawRoundRectComplex() method,

196
with pixels. See bitmaps
into TLF containers, 290
“Using endFill() with the Drawing

API” post, 195
waveform or frequency spectrum,

318–319
drawing with vectors

9-slice scaling, 215–217
bitmap fills and lines, 199–200
color picker exercise, 218–220
complex shapes with drawPath(),

202–205
curves, 194–195

declaration tags (XML), 389
decrement/increment operators, 28
defaultTextFormat() method, 267
deg2rad() method, 418
deg2rad() utility function, 179
degrees, radian conversion and, 169
deinterlacing, defined, 343
delay property (TweenLite), 187
deleting

event listeners, 67
objects from display lists/memory,

86–87
XML elements, 401–402

dependencies, class, 118
descendant accessor operator (..) in

XML, 395–396
descendants() method (XML), 398
device font, 267
Disable Keyboard Shortcuts menu

command, 61
displacement map filter (bitmaps),

246–247
DisplacementMapFilter, 246

display lists
addChildAt() method, 84–85
adding custom symbol instances to,

82–84
adding/removing children, 81
changing data type of display objects,

88–89
changing hierarchy of, 90–93
classes, 75–78
content of (example), 73–74
defined, 6, 62
depth management, 90–92
displaying, 78–81
dynamic navigation bar, creating,

93–95
finding children by position/name,

88
getChildAt() method, 78
main timeline element, 74
managing object names/positions/

data types, 87–89
numChildren property, 78
overview, 71–72
removing objects from, 86–87
reparenting children, 92–93
stage element, 74

display objects
bitmap, 228
changing data type of, 88–89

eraser tool – go() method

Index 425

with HTML, 274–275
tab stops, 269–270
TextFlow formatting options (TLF),

286–288
TextFormat class, 269
TextFormat instance, 266

format type(data), 25
fractal noise, 245
frame events, 64, 65
frame labels (timelines), 101–106

currentLabels, 104–106
frame loops, defined, 36
frame numbers, 101

currentFrame, 100
totalFrames, 100

frame rates
adjustment example, 97–98
frameRate property, 107
maximum range of, 98
runtime reassigning of, 106–107

frequency spectrum, drawing, 318–319
friction coefficients, 160–161
from() method (TweenLite), 187
full-screen video

defined, 336
fundamentals, 343–344

functions
defined, 20
local variables, 41
overview, 40–41
parameters and arguments, 42–43
returning values from, 43–44

G
gain, microphone, 322
garbage collection, 69
geometry package

gradient spread methods, 214–215
matrices, 208–214
points, creating, 205–206
rectangles, creating, 206–208

getChildAt() method, 78, 88
getChildByName() method, 413
getChildIndex() method, 88
getDistance() function, 171
getFrame() function, 105, 106
getMicData() method, 329
getPixel() method, 254
getter/setter methods, 134–138
glyphs (characters), 272
go() method, 126

flash.geom package, 205
FLV (Flash video) format, 335, 337
FLVPlaybackCaptioning component,

336, 345–346
FLVPlayback component, 336,

340–343, 350–352
Platform, 4, 8–9
Professional library, sounds from,

298–299
Flash Player

CSS properties supported by, 276
frame rates and, 66
HTML tags supported by, 275
keyboard shortcut conflicts and, 61
popularity of, 335, 337
rotation angles and, 177
“Saving Data in Flash Player 9 using

PHP” post, 251
security and, 374

Flash Professional
creating classes in, 10
CS5 features for custom classes, 121
embedded fonts in CS3/CS4, 270–271
embedded fonts in CS5, 272–273
fl.motion package, 238
fl.transitions.easing package, 185

Flex
projects, ActionScript in, 4
technology, defined, 8

floating point numbers, 317
flowComposer property, 288–290
flowing text across multiple containers

(TLF), 289–292
fonts

device, 267
embedded, 270–274
Font Symbol Properties dialog, 272
font symbols, 270–271
Font Symbols Properties dialog, 270
rotating device fonts (TLF), 284
System, 267

for...in loops, 312–313
for loops, 35–36, 204, 264

appendText() method, 264
formatting text

adding text after using
setTextFormat(), 268–269

applying format to existing text, 268
with CSS, 274–277
custom anti-aliasing, 274
embedded fonts, 270–274
establishing format for new text,

267–268

eraser tool, creating, 232
error reporting in ActionScript 3.0, 6
Essential ActionScript 3.0 (O’Reilly),

21, 69
European Computer Manufacturers

Association, 385
event listeners

defined, 6
removing, 67–69
using, 55–58

events
controlling properties with mouse

events, 58–60
defined, 51
Event.COMPLETE event, 301
frame, 65
keyboard, calling methods with,

60–62
MouseEvent class, 56
overview, 54–55
propagation of, 62–64
timer, 66–67

extend, defined (ActionScript), 214
extending classes, 114
external sounds, loading, 299–301

F
F4V format, 337
fadeBall() function, 187
FFT (Fast Fourier Transform) method,

318
FileReference class, 252, 328, 332
fills

bitmap, 199–200
gradient, 197–198
solid-color, 194–195

filtering by attribute (XML), 398
filters, bitmap

BlurFilter, 239–240
ColorMatrixFilter class, 249–250
ConvolutionFilter, 240–243
displacement map filter, 246–247
DropShadowFilter, 238–239
overview, 237–238
Perlin noise filter, 243–246

fixed-width fonts, 267
Flash

Coordinate system, 321
Developer Center (Adobe), 346
Document class feature, 5
FLA files, 3, 128–130

Index426

gotoAndPlay() method – libraries

initMenus() method, 409
input text fields, 264–265
insertChildBefore() method, 399
instance names, 53
instantiation, defined, 9
integrated development environment

(IDE), 8
interactionManager (containers), 290
InteractiveObject class, 76
interfaces

defined, 139
naming, 143
polymorphism and, 142–145

Invert blend mode, 98
IOErrorEvent, 299, 366
isFrameLabel() function, 106
is operator, 25

J
JPG images, saving, 251–252

K
keyboard events, calling methods with,

60–62
keyboard shortcuts, disabling, 61, 265
keyCode property, 61

L
labels

array, 103
frame (timelines), 101–106

languages for video caption, 349
latency, defined (sound), 330
Layer blend mode, 235–236
leading property (text), 267
learningactionscript3 project package,

189
Learning Flash CS4 Professional

(O'Reilly), 11, 21
Learning Flex 4 (O’Reilly), 4
legacy code compatibility (ActionScript

3.0), 5, 14
length() method, 412
length property, 104, 395

currentLabels and, 104
libraries

importing bitmaps from, 229–230
library Properties dialog box, 83
LoaderMax loading, 382

hitTestPoint() method, 167
HLineThick symbol, 147
Hooke’s law, 161–162
HTML (Hypertext Markup Language)

as publishable format, 344
formatting text with, 274–275
HTML5, 335
links, triggering from ActionScript,

278
loading, 279–283

HTTP status codes, 366
HTTPStatusEvent, 364, 366

I
I-beam text edit cursor, 263
ID3Info class (sound), 297
ID3 metadata, reading from MP3s,

311–313
identity matrix, defined, 210
if statements

Hello World example, 22
structure of, 30–32

ignoreComments, 389
ignoreProcessingInstructions, 389
ignoreWhitespace, 388
images

bitmap, encoding/saving, 250–252
JPG, saving, 251
loading, 363, 369–370
smoothing option (ActionScript), 274
writing multiuse SWF/image loading

class, 364–368
implements keyword, 143
importing

bitmaps from libraries, 229–230
import statements, 288
importToFlow() method, 289

increment/decrement operators, 28, 35
indexes, array, 38
inflate() method, 207
inheritance

defined, 9
defined (OOP), 114
example, 117
fundamentals of, 122–123
polymorphism and, 139–140
symbol base classes, 124
Vehicle class (example), 125–128

initCanvas() function, 324
initLoader() method, 409

gotoAndPlay() method, 100, 108
gotoAndStop() method, 100
gradient fills, 197–198, 212
gradient line styles, 212
gradient spread methods, 214–215
GradientType constants, 197
Graphics class

beginBitmapFill() method, 199–200
beginFill() method, 194–195, 199
beginGradientFill() method, 197, 219
bitmap fills and lines, 199–200
complex shapes with drawPath(),

202–205
curveTo() method, 194, 202–203
drawCircle() method, 195–196
drawing curves, 194–195
drawing lines, 193–194
drawing lines at runtime with, 172
drawing shapes, 195–196
drawPath() method, 202–203
drawRect() method, 195–196
drawRoundRectComplex() method,

196
drawRoundRect() method, 195–196
endFill() method, 195–196
gradient fills and lines, 197–198
lineGradientStyle() method, 197–198
lineStyle() method, 196, 198
lineTo() method, 194, 202–203
moveTo() method, 202–203
overview, 192
Pencil tool, simulating, 201
solid-color fills, adding, 194–195

gravity, simulating, 159
Greensock Tweening Platform, 186–187
grids, creating with modulo operator,

182–183

H
H.264 codec, 337
Haeberli, Paul, 249
<head> tags (video captions), 347
Hello World application

display lists, 72–73
document class example, 16
new ActionScript 3.0 FLA file, 21–22
properties/methods/events, 52
timeline example, 14–15

hexadecimal notation, 52
hitTestObject() method, 166–167

linear arrays – MP3s

Index 427

microphone input
activity levels, 322–326
Microphone class, 297
recording at runtime, 329–330
RecordMicrophone class, 328–333
RecordMicrophone_Example class,

332
SampleDataEvent, 325–327
stopping playback, 330–331
writing sound data dynamically at

runtime, 330
modulo operator, 28, 182
Moock, Colin, 21
“More Motion (Gravity)” post, 160
MorphShape class, 77
motion through code

acceleration, 156–157
basics of, 154–155
circular movement, 176–178
circular navigation system, 178–180
collision and distance project,

172–176
collision detection, 166–168
distances, calculating, 171–172
easing, 157–158
elasticity, 161–162
friction coefficients, 160–161
gravity, simulating, 159–160
MotionUtils class, 189
movement along angles, 169–171
overview, 153–154
particle systems, creating, 162–166,

172–176
rotation toward objects, 181–183
tweening. See tweening
velocity, 155–156

mouseChildren property, 179
mouse events

MouseEvent class, 56
mouse event listeners, 201
using to control properties, 58–60

movement_along_angle.fla source file,
169

moveTo() command, 202
movie clips

adding frame scripts to at runtime,
110

“MovieClip versus Sprite” post, 193
MovieClip class, 12, 77

MP3s, reading IDE metadata from,
311–313

M
MAGpie captioning tool, 346
MainButton linkage class, 178
main timeline (display lists), 74, 85
map point parameter, 246
margin properties (text), 267
mark and sweep process, 69
masks

creating peak meters with, 316
soft-edged, 227

Math class, 165, 170
ceil() method, 47
floor() method, 47
round() method, 47

matrices
calculating point changes after

transformations, 211
defined, 208
gradient fills/line styles, 212
Matrix class. See Matrix class
MatrixTransformer class, 211
skewing objects with, 210–211
transforming objects with matrix

values, 209–210
Matrix class, 208–214

createGradientBox() method, 212–215
deltaTransformPoint() method,

211–212
transformPoint() method, 211–212
translate() method, 209, 214

max() method (Math class), 217
Media Encoder

format menu, 338
overview, 337

memory
deleting objects from, 86–87
leaks, 67
management in ActionScript, 69

MenuButtonMain class, 149–151,
415–416

MenuButtonMain symbol, 147
MenuButtonSub class, 413
meters, peak (sound), 315–316
methods

defined, 51, 60, 114
gradient spread, 214–215
overriding, 139
signatures of, 143
using keyboard events to call, 60–62

linear arrays, 37
LINEAR GradientType constant, 197
lines

bitmap line styles, 200, 213–214
drawing, 193–194
gradient, 197–198
lineGradientStyle() method, 198
lineStyle() method, 193, 196, 200
lineTo() command, 202
lineTo() method, 193, 321, 326

linkage classes, 82
linked text, 289
listener function, 300
listener objects, grouping, 100
listeners, event, 55–58
loading

binary data, 372, 376–379
contentLoaderInfo, 362–366
external sounds, 299–301
external XML documents, 402–403
images, 363, 369–370
loaded SWFs, communicating with,

379–381
Loader class, 77, 362, 368
LoaderMax loading library, 382
“Loading SWFs that Use TLF” post,

382
load() method, 365
“Meet LoaderMax” post, 383
“Overriding the load() Method in

Custom Loader Classes” post,
375

send and load server communication
(XML), 404–405

SWFs, 362–363, 368–369
SWFs with TLF assets, 381
text, 370–371, 375–376
variables, 371–372, 376

local (relative) classpaths, 119
local variables, 41–42
logical operators

basics, 30
precedence of, 32–33

loops
fundamentals, 34–36
nested, 175
overview, 20
removing all children in containers

with, 87
luminance, 249

Index428

MP4 video format – pixels

OR (||) operator, 30
overflow (Flash Professional), 214
Overlay blend mode, 234
override keyword, 140
“Overriding the load() Method in

Custom Loader Classes” post,
375

overriding methods, 139

P
packages

defined (OOP), 117
organizing sound system files in, 147

pad, defined (ActionScript), 214
padIndent() function, 79
pages (frames), 101
paint program exercise, 256–257
paint_tool_erase.fla source file, 237
parallel arrays, 197
parameters

for addEventListener() method, 69
and arguments (functions), 42–43
of draw() method, 237
parameter data types, 56

parentheses in arithmetic operators, 29
parentheses () in methods, 60
parents

defined, 9, 21
parent keyword, 45–46
parent nodes (XML), 392
parent SWF, 380

“Parsing Text Data with Mouse
Interaction” post, 266

“Parsing XML Using Familial
Relationships” post, 398

particle system, creating, 162–166
password fields, 264
pauseVideo() method, 355
peak amplitude (sound), 314

absolute value and, 314
peak meters

adding to sound player, 315
creating with masks, 316

Pencil tool, simulating, 201
Perlin noise filter (bitmaps), 243–246
perlinNoise() method, 247
pixels

copying, 230–231
drawing with. See bitmaps
getPixel() method, 254

objects
absolute vs. relative addresses, 45
associative arrays and, 44
collision with, 166–167
creating XML, 390–391
custom, 20, 44–45
display, 62
removing from display lists, 86–87
rotation toward (animation), 181–183
transforming with matrix values,

209–210
octaves, defined (Perlin noise), 244
offset() method, 207
onClick() function, 86, 91, 179
onComplete() function, 403
onDrag()/onDrop() functions, 93
O’Neil, Corey, 167
onInit() method, 367
onKeyPressed() function, 61
onLoadXML() method, 408
onLoop() function, 158, 217, 247
onMainBtnOver() method, 413
onPauseSound() function, 306
onPlayComplete() listener function,

305, 306
onPlayComplete() method, 330
onPlayProgress() function, 310
onPlaySound() function, 304, 306
onProgress() method, 367
onReplaceWord() function, 266
onSelectWord() function, 265
onStartDrag() function, 180
onStopDrag() function, 180
onTextEvent() function, 282
onTraceName() function, 95
onVisualize() method, 320–321
OOP (object-oriented programming).

See object-oriented
programming (OOP)

opacity
opaque bitmaps, 228–229
for special effects, 195

OpenType fonts, 273
operators

ActionScript, overview, 27–29
arithmetic, 27, 29
assignment, 27, 29
comparison, 27, 29, 30
compound assignment, 54
defined, 20
logical, 30, 32

MP4 video format, 335–338
multidimensional arrays, 38
multiuse data loading class, writing,

372
MXML (Macromedia Flex Markup

Language)
defined, 8
syntax, 4

N
names, finding children by, 88
name-value pairs, 371
naming

classes, 83, 118
interfaces, 143
reverse domain naming, 118
variables, 23

navigation bar
creating dynamic, 93–95
creating with OOP, 147–151
NavigationBar class, 148–149
NavigationBarXML class, 410–415

navigation error checking, 105
nested loops, 175
nested (multidimensional) arrays, 39
NetConnection class, 353
NetStatusEvent, 352, 354
NetStream class, 353
nodes, XML, 392
None easing class, 185
notation, dot. See dot syntax
NOT (!) operator, 30
null value, 25
numbers, frame, 101
numChildren property, 78, 87, 91

O
object-oriented programming (OOP)

ActionScript 3.0 support of, 8
classes. See classes
composition, 131–133
creating navigation bar with, 147–151
encapsulation. See encapsulation

(OOP)
inheritance. See inheritance
overview, 113–115
polymorphism. See polymorphism

(OOP)
vs. procedural programming, 4, 9–11
vehicle example, 9

playbackData() method – scale9grid property

Index 429

rectangles
creating, 206–208
Rectangle class. See Rectangle class
union, 208

recursion, defined, 80
Reinhart, Robert, 336
relative (local) classpaths, 119
relative positioning technique, 72
relative vs. absolute addresses, 21, 45
removeChildAt() method, 86
removeChild() method, 164
removeEventListener() method, 67, 329
reparenting children (display lists),

92–93
replaceSelectedText() method, 266
reset() method (timer events), 67
return keyword, 43
reverse domain naming, 118
_root as absolute address, 74
root nodes, 347
root property, 74, 85
rotating device fonts (TLF), 284
rotation angles, 68, 177
rotation toward objects (animation),

181–183
RoundRectButton classes, 257, 305, 332,

350
#RRGGBBAA color notation, 348
RSL (Runtime Shared Library), 291, 381

S
SafeLoader class, 382, 409
Sally, xvii, xviii, 29, 42, 46–47
SAMPLE_DATA event listener, 329
SampleDataEvent (sound), 325–327
sampling rates

microphone, 323, 327
samplingRate property, 331

_sans, 267, 276
sans-serif fonts, 267

_sans value, 267, 276
SatelliteButton linkage class, 179
saving

bitmap images, 250–252
JPG images, 251–252
saveFile() method, 331
save() method, 252, 332
“Saving Data in Flash Player 9 using

PHP” post, 251
scalar quantities, 155
scale9grid property, 216–217

processing instructions in XML,
ignoring, 389

ProgressEvent, 366
PROGRESS event, 300
propagation of events, 62–64
properties

class property example, 122
controlling with mouse events, 58–60
CSS, 276
defined, 51, 114
fundamentals of, 53–54
of objects, 44
private, 134
Properties panel, 13, 16, 193
public, 134–135

public properties, 134–135
Publish command (Flash Professional),

3
Publish Settings (File menu), 26
push() method, 37, 393

Q
quadratic Bézier curves, 194
queue, encoder, 340
quotation marks (" "), escaping, 277

R
Radial GradientType constant, 197
radians, defined, 169
Radio class example, 143
random() method (Math class), 165
random seeds, defined, 245
ratios, gradient color, 197
readFloat() method, 318, 326
read-only properties, 134
recording

microphone input at runtime,
329–330

RecordMicrophone class, 328–333
RecordMicrophone_Example class,

327
“Recreating Timeline Tweens with

ActionScript" post, 189
Rectangle class, 206–208

containsPoint() method, 208
containsRect() method, 208
inflate() method, 207
intersection() method, 208
intersects() method, 208
offset() method, 207

Pixel Bender filter, 376
setPixel() method, 256

playbackData() method, 330
playback of movie clips, 98–99
playhead movement, 98–100
playing sounds in ActionScript, 302
play() method, 99–100, 109, 143
playSound() method, 330
playVideo() method, 355
plotWaveform() method, 320
plug-ins, TweenLite, 188
plus symbol (+) as concatenation

operator, 29
PNGEncoder class, 257
Point class, 205–206

distance() method, 206
interpolate() method, 206
offset() method, 206

points
calculating changes after

transformations, 211
collision with, 167–168
Point class. See Point class

polygons, drawing, 203
polymorphism (OOP)

Car class example, 140–141
defined, 114
inheritance and, 139–140
interfaces and, 142–145
overview, 139
Tires class and document class,

141–142
Truck class example, 141
Vehicle class example, 140

pop() method, 38
positions

finding children by, 88
positionButtons() function, 178

postfix increment/decrement
operators, 28

Preferences, Flash Professional, 119
prefix increment/decrement operators,

28
prependChild() method, 400
prependZeros() method, 254
presets, encoding, 338
priority parameter (listener events), 69
private properties, 134
procedural programming

languages, 9
vs. object-oriented programming, 4,

9–11

Index430

scaleX property – swapChildren() method

spread method (ActionScript), 214
SpreadMethod.PAD constant, 214
SpreadMethod.REFLECT option, 215
SpreadMethod.REPEAT option, 215
sprites

defined, 77
Sprite class, 12

Square class (example), 124
SquarePattern filter, 377
stages

accessing in classes, 130–131
collision with stage boundaries, 168
stage class, 77
stage element (display lists), 74
stage property, 85

StandardFlowComposer, 289–290
startRecording() method, 329
static access control modifier, 133
static data type checking, 6
StaticText class, 77
StatusEvent.Status event, 323
stop() action function, 99
stop() method, 67, 100, 102, 302
stopPlaying() function, 330
stopRecording() method, 329
stopVideo() method, 355
storing/retrieving sound spectrum

data, 317
Strict Mode setting (Flash

Professional), 26–27
strings, 52

appendText() method, 52
charAt() method, 52

stroke hinting, 216
strokes in Flash, 195
styles

bitmap line, 200
gradient line, 198
line styles, 212
style sheets, building, 276–277
video caption styles, 347–348

subclasses
defined, 114, 122
naming methods of, 139
in OOP example, 9

superclasses
defined, 122
naming methods of, 139

super() method, 136, 141
surfaces (Flash Player, 226
swapChildren() method, 91–92

sizing
BitmapData objects in Flash Player,

228
size properties (text), 267

skewing objects with matrices, 210–211
Skinner, Grant, 69
skins, component (video), 341–343
soft-edged masks, 227
solid-color fills, 194–195
Sorenson Media Squeeze, 336
SoundMixer.computeSpectrum(),

317–320
sounds (ActionScript 3.0)

amplitude of, 313–316
architecture of, 296–297
Audiotool, 295
buffering, 307–308
changing pan function, 308–310
changing volume of, 308–310
from Flash Professional library,

298–299
ID3Info class, 297
loading external, 299–301
Microphone class, 297
microphone input. See microphone

input
overview, 7, 296
pausing/resuming, 303
peak meters, adding to sound player,

315
peak meters, creating with masks, 316
playing, 302
reading IDE metadata from MP3s,

311–313
SoundChannel class, 297
Sound class, 297
SoundLoaderContext class, 297, 307
SoundMixer class, 297, 302, 309, 317
sound system, adding to vehicle

(example), 145–147
SoundTransform class, 297
spectrum data, 317–318
stopping, 302–303
syntax for player_basic.fla source file,

303–307
Waveform class, 319–321
waveform visualization, adding to

sound player, 321–322
Spark codec, 337
spectrum data (sound), 317–318
speed of objects, defined, 155

scaleX property, 54
scaleY property, 54
scaling, 9-slice, 215–217
scenes

basics of, 103
scenes array, 103

scope
automatic management of, 7
defined, 45
of scripts, 91

ScrollPolicy, 289–291
SecurityErrorEvent class, 372–375
security, Flash Player and, 374
selecting text, 265–266
SelectionManager, 289–291
semicolon (;) in ActionScript, 22
"Sending Data from AVM2 to AVM1”

post, 379
sentence builder ActionScript example,

46–48
sequential programming languages, 9
_serif, 267, 276
serif fonts, 267

_serif value, 267, 276
server source (XML send-and-load),

405
setPixel() method, 256
setSelection() method, 265
setter/getter methods, 134–138
setTextFormat(), 268–269
Settings interface (Media Encoder), 339
setTint() method, 254
setupMicrophone() method, 328
Shader class, 377
ShaderFilter property, 377–379
shapes

as display objects, 74–75
drawing with drawPath() method,

202–205
drawing, 195–196
shape class, 76

shearing objects, 209
showChildren() function, 78, 80–81
showMicInfo() function, 324
Shupe, Rich, 21
siblings

defined, 9
nodes (XML), 392

signatures of methods, 143
SimpleButton class, 76, 220–222
sin() method (Math class), 170

SWC – tweening

Index 431

this keyword, 21, 45–46, 91
threaded text, 289
tiling bitmaps, 199
Timed Text, creating captions with,

346–348
timeline control

adding frame scripts to movie clips at
runtime., 110

basic site or application structure, 108
frame labels, 101–106

currentLabels, 104–106
frame rate, 106–107
frame rate adjustment (example),

97–98
playhead movement, 98–100

timelines
programming, 113
“Recreating Timeline Tweens with

ActionScript” post, 189
timeline tweens, rebuilding with

ActionScript, 189
Timer class, 66–67

setInterval() method, 66
setTimeout() method, 66
start() method, 66
stop() method, 66

TimerEvent class, 66–67
timer loops, 36
tint property (TweenMax), 188
Tires class (example), 132, 137–138,

141–142
TLF (Text Layout Framework). See Text

Layout Framework (TLF)
togglePause() method, 355
to() method, 186
toString() method., 255
toUpperCase() method, 255
tracing

multiple items with commas, 104
trace() function, 22
trace() statements, 43, 393

translate() method, 214
transparency, creating bitmaps with,

229
"Trapping Uncaught Errors” post, 366
Truck class (example), 128, 132, 137, 141
TrueType fonts, 273
try..catch blocks, 365
tweening

Adobe Tween class, 184–186
“Recreating Timeline Tweens with

ActionScript” post, 189

“Parsing Text Data with Mouse
Interaction” post, 266

selecting, 265–266
TextConverter class.

See TextConverter class
text editors, 4
TextEvent.LINK event, 278
TextFormat instance, 273
Text Layout Framework. See Text

Layout Framework (TLF)
text() method (XML), 398
text nodes (XML), 386, 388, 392–396
threaded, 289
Timed Text, 346–348
TLF text, 273

TextConverter class, 289
importToFlow() method, 289

TextField
htmlText property, 275–278
setTextFormat() method, 268–270,

415–418
StyleSheet class, 276–277, 280–282
textColor property, 52

text fields. See also text; TextField
creating, 262
creating in Hello World app, 179
dynamic, 263–264
input, 264–265
relative positioning and, 72
setting attributes of, 262–265
TextFieldAutoSize class, 149
TextField class, 76
TextFieldType class, 264
triggering ActionScript from HTML

links, 278
Text Layout Framework (TLF)

columnar layout, 287–288
defined, 7
distributing SWFs that use TLF, 291
flowComposer property and,

288–290
flowing text across multiple

containers, 289–292
loading SWFs with TLF assets, 381
overview, 283–284
rotating device fonts, 284
TextFlow formatting options,

286–288
TextFlow markup tags, 284–285
TLF containers, 289
tlfMarkup property, 287
TLF text, 273

SWC
defined, 119
runtime shared libraries and, 381

SWF files
communicating with loaded, 379–381
defined, 3
distributing SWFs that use TLF, 291
loading, 362–363, 368–369, 381
parent and child, 379–380
“SWF Communication without

Going Through Loader” post,
381

writing multiuse SWF/image loading
class, 364–368

switch statements, 33–34, 60
SWZ

defined, 291
runtime shared libraries and, 291, 381

symbols
“Adding Classes to Pre-Existing

Symbols” post, 82
custom instances, adding to display

lists, 82–84
font symbols, 270–271
symbol base classes, 124

syntax, dot, 38
syntax improvements in ActionScript

3.0, 6
System fonts, 267

T
tab leaders, 80
tab stops (text), 269–270
tags, ID3, 311–312
target event property, 64
\t escape character, 269
Test Movie command (Flash

Professional), 3, 13, 61
text. See also text fields

classic text, 273
creating captions with Timed Text,

346–348
displaying in SWF files, 14–16
flowing across multiple containers

(TLF), 289–292
formatting. See formatting text
linked, 289
loading, 370–371, 375–376
loading HTML and CSS, 279–283
overview, 261–262

Index432

tweening (continued) – XML (Extensible Markup Language)

LoaderMax, 383
MPEG-4 format, 337
Pixel Bender Developer, 376
sizing BitmapData objects, 228
source code for examples, 16
Timed Text Markup Language, 346
Timed Text Tags, 347
Using Adobe Media Encoder CS5

resource, 340
while loops, 36–37
white space in XML documents, 388

ignoring. See ignoreWhitespace
wildcards (*) in XML, 396
Wildform Flix Pro, 336
writing XML, 399–401

X
XML-based navigation bar

directory structure/source files, 406
FLA library symbols, 407
LAS3Main (document class),

408–410
MenuButtonMain class, 415–416
MenuButtonSub class, 416–418
NavigationBarXML class, 410–415
overview, 405
XML document, 407–408

XML (Extensible Markup Language)
attributes, using, 396–397
CDATA tags, 389–390
comments in, 389
creating XML objects, 390–391
declaration tags, 389
deleting, 401–402
descendant accessor operator (..),

395–396
documents, handling in ActionScript

3.0, 6
element nodes in, 392–396
entities in XML specification, 390
finding elements by content, 397–398
finding elements by relationship, 398
loading external XML documents,

402–403
overview, 385–386
“Parsing XML Using Familial

Relationships” post, 398
processing instructions in, 389
reading, 392
rules for creating documents in,

387–388

Vehicle class (example), 125–128,
135–137, 139

velocity of objects, 155–156
video

captions. See captions, video
components, 340–343
customized video player, creating.

See customized video player,
creating

encoding. See encoding videos
Flash video. See Flash video
full-screen video, 343–344
overview, 336–337
video_comp.fla file, 342
video display object class, 76
videos as display objects, 74
Video with Adobe Flash CS4

Professional Studio Techniques
(Adobe Press), 336

VisiblePlugin, 411
visualization of waveforms, 321–322
volume, sound (ActionScript), 308–310

W
waveforms (sound)

drawing, 318–319
visualization of, 321–322
Waveform class, 319–321

WAVWriter class, 328, 331
weak references, 69
web sites, for downloading

Adobe AS3 Core Library, 250
Adobe Pixel Bender Exchange, 376
Audiotool, 295
Aviary suite, 258
bitrate calculator, 338
Captionate software, 346
MAGpie captioning tool, 346
SafeLoader class, 382
ZaaIL package, 251

web sites, for further information
ActionScript 3.0 operators, 29
character encoding, 347
Collision Detection Kit, 167
CSS, 274
Flash Blog, 377
Grant Skinner blog, 69
GreenSock Tweening Platform, 189
HTML, 274
HTTP status codes, 366
learning ActionScript, 8

tweening (continued)
timeline tweens, rebuilding with

ActionScript, 189
TweenLite plugins, 411
TweenLite/TweenMax (GreenSock),

186–189
tweens, defined, 157, 183

typed arrays (vectors), 39–40
type(data) casting format, 25

U
uncaughtErrorEvents property (Flash

Player), 366
unconditional alternative code, 31
unloadAndStop() method, 414
updateMouseTransform() function,

310, 315
updateParticleVelocities() function, 173
updateParticleVelocities() method, 174
URLLoader class, 280–281, 371
URLLoaderDataFormat, 371
URLRequest class, 280–281
useCapture parameter (listener events),

69
“Using endFill() with the Drawing API”

post, 195
UTF-8, 347

V
values

returning from functions, 43–44
syntax for setting (properties), 54

variables
basics of, 23–27
Boolean, 24
data types and, 20
int, 24
loading, 371–372, 376
local, 41–42
Number, 24
Object, 24
String, 24
uint, 24
using in XML, 391

vectors
defined, 39–40, 191
drawing with. See drawing with

vectors
Vector class, 202
vector quantities, 155

ZaaIL library – zero-based arrays

Index 433

Z
ZaaIL library, 318
ZaaIL package, 251
zeno() function, 158
Zeno’s paradox, 157–158
zero-based arrays, 38

send and load server communication,
404–405

structure overview, 386–388
text nodes in, 392–396
using variables in, 391
white space and, 388
writing, 399–401
XMLList class, 394–395

	Contents
	Preface
	Part I: Getting Started
	Chapter 1: What is ActionScript?
	What’s New in ActionScript 3.0?
	The Flash Platform
	Procedural Versus Object-Oriented Programming
	The Document Class
	Legacy Code Compatibility
	Hello World
	What’s Next?

	Chapter 2: Core Language Fundamentals
	Jump Right In
	Miscellaneous Basics
	Variables and Data Types
	Operators
	Conditionals
	Loops
	Arrays
	Vectors
	Functions
	Custom Objects
	this and parent
	Absolute Versus Relative Addresses
	Put It All Together
	What’s Next?

	Part II: Graphics and Interaction
	Chapter 3: Properties, Methods, and Events
	Jump Right In
	Properties
	Events
	Methods
	Event Propagation
	Frame and Timer Events
	Removing Event Listeners
	What’s Next?

	Chapter 4: The Display List
	Jump Right In
	The Sum of Its Parts
	Adding and Removing Children
	Managing Object Names, Positions, and Data Types
	Changing the Display List Hierarchy
	A Dynamic Navigation Bar
	What’s Next?

	Chapter 5: Timeline Control
	Jump Right In
	Playhead Movement
	Frame Labels
	Frame Rate
	A Simple Site or Application Structure
	What’s Next?

	Chapter 6: OOP
	Classes
	Inheritance
	Composition
	Encapsulation
	Polymorphism
	Navigation Bar Revisited
	What’s Next?

	Chapter 7: Motion
	Basic Movement
	Simple Physics
	A Basic Particle System
	Simple Collision Detection
	Geometry and Trigonometry
	Programmatic Tweening
	What’s Next?

	Chapter 8: Drawing with Vectors
	The Graphics Class
	The Geometry Package
	9-Slice Scaling
	Applied Examples
	What’s Next?

	Chapter 9: Drawing with Pixels
	Bitmap Caching
	The BitmapData Class
	Blend Modes
	Bitmap Filters
	Color Effects
	Image Encoding and Saving
	Adding Functionality to Your Color Picker
	What’s Next?

	Part III: Text
	Chapter 10: Text
	Creating Text Fields
	Setting Text Field Attributes
	Selecting Text
	Formatting Text
	Formatting with HTML and CSS
	Triggering ActionScript from HTML Links
	Loading HTML and CSS
	Text Layout Framework
	What’s Next?

	Part IV: Sound and Video
	Chapter 11: Sound
	ActionScript Sound Architecture
	Internal and External Sounds
	Playing, Stopping, and Pausing Sounds
	Buffering Sounds
	Changing Sound Volume and Pan
	Reading ID3 Metadata from MP3 Sounds
	Visualizing Sound Data
	Visualizing Microphone Input
	Recording, Playing, and Saving Microphone Input
	What’s Next?

	Chapter 12: Video
	Encoding
	Components
	Full-Screen Video
	Captions
	Writing Your Own Player
	What’s Next?

	Part V: Input/Output
	Chapter 13: Loading Assets
	Loading SWFs and Images
	Loading Data
	Communicating with Loaded SWFs
	Additional Online Resources
	What’s Next?

	Chapter 14: XML
	Understanding XML Structure
	Creating an XML Object
	Using Variables in XML
	Reading XML
	Writing XML
	Deleting XML
	Loading External XML Documents
	Sending to and Loading from a Server
	An XML-Based Navigation System
	What’s Next?

	Index

