

Essential ActionScript 3.0

Other resources from O’Reilly

Related titles ActionScript 3.0 Design
Patterns

Dynamic HTML: The
Definitive Reference

Ajax on Java

Ajax on Rails

Learning JavaScript

Programming Atlas

Head Rush Ajax

Rails Cookbook

oreilly.com oreilly.com is more than a complete catalog of O’Reilly books.
You'll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit con-
ferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today with a free trial.

Essential ActionScript 3.0

Colin Moock

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Essential ActionScript 3.0
by Colin Moock

Copyright © 2007 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Steve Weiss
Developmental Editor: Robyn G. Thomas
Production Editor: Philip Dangler
Proofreader: Mary Anne Weeks Mayo

Indexer: John Bickelhaupt
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrators: Robert Romano and Jessamyn Read

Printing History:

August 2007: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Essential ActionScript 3.0, the image of a coral snake, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-52694-6

ISBN-13: 978-0-596-52694-8

[M]

http://safari.oreilly.com
mailto:corporate@oreilly.com

v

Table of Contents

Foreword . xv

Preface . xix

Part I. ActionScript from the Ground Up

1. Core Concepts . 3
Tools for Writing ActionScript Code 3
Flash Client Runtime Environments 4
Compilation 5
Quick Review 6
Classes and Objects 6
Creating a Program 8
Packages 9
Defining a Class 11
Virtual Zoo Review 13
Constructor Methods 14
Creating Objects 16
Variables and Values 19
Constructor Parameters and Arguments 24
Expressions 26
Assigning One Variable’s Value to Another 28
An Instance Variable for Our Pet 30
Instance Methods 31
Members and Properties 42
Virtual Zoo Review 42
Break Time! 43

vi | Table of Contents

2. Conditionals and Loops . 44
Conditionals 44
Loops 50
Boolean Logic 58
Back to Classes and Objects 62

3. Instance Methods Revisited . 63
Omitting the this Keyword 64
Bound Methods 66
Using Methods to Examine and Modify an Object’s State 68
Get and Set Methods 72
Handling an Unknown Number of Parameters 75
Up Next: Class-Level Information and Behavior 76

4. Static Variables and Static Methods . 77
Static Variables 77
Constants 80
Static Methods 82
Class Objects 85
C++ and Java Terminology Comparison 86
On to Functions 86

5. Functions . 87
Package-Level Functions 88
Nested Functions 90
Source-File-Level Functions 91
Accessing Definitions from Within a Function 92
Functions as Values 93
Function Literal Syntax 93
Recursive Functions 95
Using Functions in the Virtual Zoo Program 96
Back to Classes 100

6. Inheritance . 101
A Primer on Inheritance 101
Overriding Instance Methods 105
Constructor Methods in Subclasses 108
Preventing Classes from Being Extended and Methods
from Being Overridden 112

Table of Contents | vii

Subclassing Built-in Classes 113
The Theory of Inheritance 114
Abstract Not Supported 120
Using Inheritance in the Virtual Zoo Program 121
Virtual Zoo Program Code 126
It’s Runtime! 129

7. Compiling and Running a Program . 130
Compiling with the Flash Authoring Tool 130
Compiling with Flex Builder 2 131
Compiling with mxmlc 133
Compiler Restrictions 134
The Compilation Process and the Classpath 134
Strict-Mode Versus Standard-Mode Compilation 135
The Fun’s Not Over 136

8. Datatypes and Type Checking . 137
Datatypes and Type Annotations 138
Untyped Variables, Parameters, Return Values, and Expressions 142
Strict Mode’s Three Special Cases 143
Warnings for Missing Type Annotations 144
Detecting Reference Errors at Compile Time 145
Casting 146
Conversion to Primitive Types 150
Default Variable Values 153
null and undefined 153
Datatypes in the Virtual Zoo 154
More Datatype Study Coming Up 158

9. Interfaces . 159
The Case for Interfaces 159
Interfaces and Multidatatype Classes 161
Interface Syntax and Use 162
Another Multiple-Type Example 165
More Essentials Coming 171

10. Statements and Operators . 172
Statements 172
Operators 174
Up Next: Managing Lists of Information 185

viii | Table of Contents

11. Arrays . 186
What Is an Array? 186
The Anatomy of an Array 187
Creating Arrays 187
Referencing Array Elements 189
Determining the Size of an Array 191
Adding Elements to an Array 193
Removing Elements from an Array 197
Checking the Contents of an Array with the toString() Method 199
Multidimensional Arrays 200
On to Events 201

12. Events and Event Handling . 202
ActionScript Event Basics 202
Accessing the Target Object 209
Accessing the Object That Registered the Listener 212
Preventing Default Event Behavior 213
Event Listener Priority 214
Event Listeners and Memory Management 216
Custom Events 221
Type Weakness in ActionScript’s Event Architecture 233
Handling Events Across Security Boundaries 236
What’s Next? 240

13. Exceptions and Error Handling . 241
The Exception-Handling Cycle 241
Handling Multiple Types of Exceptions 244
Exception Bubbling 253
The finally Block 258
Nested Exceptions 260
Control-Flow Changes in try/catch/finally 264
Handling a Built-in Exception 267
More Gritty Work Ahead 268

14. Garbage Collection . 269
Eligibility for Garbage Collection 269
Incremental Mark and Sweep 272
Disposing of Objects Intentionally 273
Deactivating Objects 274

Table of Contents | ix

Garbage Collection Demonstration 277
On to ActionScript Backcountry 278

15. Dynamic ActionScript . 279
Dynamic Instance Variables 280
Dynamically Adding New Behavior to an Instance 284
Dynamic References to Variables and Methods 286
Using Dynamic Instance Variables to Create Lookup Tables 287
Using Functions to Create Objects 289
Using Prototype Objects to Augment Classes 291
The Prototype Chain 292
Onward! 294

16. Scope . 295
Global Scope 296
Class Scope 297
Static Method Scope 298
Instance Method Scope 298
Function Scope 299
Scope Summary 300
The Internal Details 300
Expanding the Scope Chain via the with Statement 302
On to Namespaces 303

17. Namespaces . 304
Namespace Vocabulary 304
ActionScript Namespaces 305
Creating Namespaces 307
Using a Namespace to Qualify Variable and Method Definitions 310
Qualified Identifiers 312
A Functional Namespace Example 314
Namespace Accessibility 317
Qualified-Identifier Visibility 321
Comparing Qualified Identifiers 322
Assigning and Passing Namespace Values 323
Open Namespaces and the use namespace Directive 334
Namespaces for Access-Control Modifiers 338
Applied Namespace Examples 341
Final Core Topics 352

x | Table of Contents

18. XML and E4X . 353
Understanding XML Data as a Hierarchy 353
Representing XML Data in E4X 355
Creating XML Data with E4X 357
Accessing XML Data 359
Processing XML with for-each-in and for-in 377
Accessing Descendants 379
Filtering XML Data 383
Traversing XML Trees 386
Changing or Creating New XML Content 387
Loading XML Data 397
Working with XML Namespaces 398
Converting XML and XMLList to a String 404
Determining Equality in E4X 407
More to Learn 410

19. Flash Player Security Restrictions . 411
What’s Not in This Chapter 412
The Local Realm, the Remote Realm, and Remote Regions 412
Security-Sandbox-Types 413
Security Generalizations Considered Harmful 415
Restrictions on Loading Content, Accessing Content as Data,
Cross-Scripting, and Loading Data 416
Socket Security 422
Example Security Scenarios 422
Choosing a Local Security-Sandbox-Type 425
Distributor Permissions (Policy Files) 429
Creator Permissions (allowDomain()) 444
Import Loading 446
Handling Security Violations 448
Security Domains 450
Two Common Security-Related Development Issues 452
On to Part II! 454

Table of Contents | xi

Part II. Display and Interactivity

20. The Display API and the Display List . 457
Display API Overview 458
The Display List 462
Containment Events 487
Custom Graphical Classes 499
Go with the Event Flow 501

21. Events and Display Hierarchies . 502
Hierarchical Event Dispatch 502
Event Dispatch Phases 503
Event Listeners and the Event Flow 505
Using the Event Flow to Centralize Code 511
Determining the Current Event Phase 514
Distinguishing Events Targeted at an Object from Events Targeted at That
Object’s Descendants 516
Stopping an Event Dispatch 518
Event Priority and the Event Flow 522
Display-Hierarchy Mutation and the Event Flow 523
Custom Events and the Event Flow 526
On to Input Events 530

22. Interactivity . 531
Mouse-Input Events 532
Focus Events 548
Keyboard-Input Events 555
Text-Input Events 565
Flash Player-Level Input Events 580
From the Program to the Screen 586

23. Screen Updates . 587
Scheduled Screen Updates 587
Post-Event Screen Updates 596
Redraw Region 600
Optimization with the Event.RENDER Event 601
Let’s Make It Move! 609

xii | Table of Contents

24. Programmatic Animation . 610
No Loops 610
Animating with the ENTER_FRAME Event 611
Animating with the TimerEvent.TIMER Event 616
Choosing Between Timer and Event.ENTER_FRAME 623
A Generalized Animator 624
Velocity-Based Animation 627
Moving On to Strokes ’n’ Fills 628

25. Drawing with Vectors . 629
Graphics Class Overview 629
Drawing Lines 630
Drawing Curves 633
Drawing Shapes 634
Removing Vector Content 636
Example: An Object-Oriented Shape Library 637
From Lines to Pixels 647

26. Bitmap Programming . 648
The BitmapData and Bitmap Classes 649
Pixel Color Values 649
Creating a New Bitmap Image 654
Loading an External Bitmap Image 656
Examining a Bitmap 658
Modifying a Bitmap 664
Copying Graphics to a BitmapData Object 672
Applying Filters and Effects 686
Freeing Memory Used by Bitmaps 694
Words, Words, Words 695

27. Text Display and Input . 696
Creating and Displaying Text 699
Modifying a Text Field’s Content 705
Formatting Text Fields 708
Fonts and Text Rendering 735
Missing Fonts and Glyphs 748
Determining Font Availability 749
Determining Glyph Availability 751
Embedded-Text Rendering 752

Table of Contents | xiii

Text Field Input 755
Text Fields and the Flash Authoring Tool 759
Loading...Please Wait... 761

28. Loading External Display Assets . 762
Using Loader to Load Display Assets at Runtime 763
Compile-Time Type-Checking for Runtime-Loaded Assets 781
Accessing Assets in Multiframe .swf Files 790
Instantiating a Runtime-Loaded Asset 793
Using Socket to Load Display Assets at Runtime 796
Removing Runtime Loaded .swf Assets 806
Embedding Display Assets at CompileTime 807
On to Part III 818

Part III. Applied ActionScript Topics

29. ActionScript and the Flash Authoring Tool . 821
The Flash Document 821
Timelines and Frames 822
Timeline Scripting 826
The Document Class 828
Symbols and Instances 832
Linked Classes for Movie Clip Symbols 834
Accessing Manually Created Symbol Instances 838
Accessing Manually Created Text 844
Programmatic Timeline Control 845
Instantiating Flash Authoring Symbols via ActionScript 847
Instance Names for Programmatically Created Display Objects 848
Linking Multiple Symbols to a Single Superclass 849
The Composition-Based Alternative to Linked Classes 851
Preloading Classes 852
Up Next: Using the Flex Framework 855

xiv | Table of Contents

30. A Minimal MXML Application . 856
The General Approach 856
A Real UI Component Example 859
Sharing with Your Friends 860

31. Distributing a Class Library . 861
Sharing Class Source Files 862
Distributing a Class Library as a .swc File 863
Distributing a Class Library as a .swf File 867
But Is It Really Over? 873

Appendix . 875

Index . 891

xv

Foreword1

We imagine a world where every digital interaction—whether in the classroom, the
office, the living room, the airport, or the car—is a powerful, simple, efficient, and
engaging experience. Flash Player is widely used to deliver these experiences and has
evolved into a sophisticated platform across browsers, operating systems, and devices.

One of the main forces driving Adobe’s innovation and the development of the Flash
Player is seeing where developers are pushing the edge of what’s possible to imple-
ment, and then enabling more developers to accomplish that kind of work.

Taking the way-back machine to 2001, you would see the web being widely used and
the early signs of web sites containing not only pages but also interactive applica-
tions. These applications were primarily using HTML forms and relying on web serv-
ers for processing the form information. A handful of leading edge developers were
working to implement a more responsive interaction by taking advantage of client-
side processing with ActionScript in Flash. One of the earliest examples of successful
interactive applications was the hotel reservation system for the Broadmoor Hotel,
which moved from a multi-page HTML form to a one-screen, highly interactive res-
ervation interface that increased their online reservations by 89%.

Clearly, responsiveness matters. It creates a much more effective, engaging experi-
ence. However, in 2001, there was a lot to be desired in terms of performance, power
of the scripting language, ease of debugging, and design constraints within browsers
(which were created to view pages rather than host applications).

We did a lot of brainstorming and talked extensively to developers and decided to
embark on a mission to enable this trend, naming the category “Rich Internet Appli-
cations” (RIAs). To better support RIAs, we aimed to create:

• A tremendously faster virtual machine in Flash Player for ActionScript 3.0.

• A development framework called Flex, making it radically easier to build RIAs.

• An environment specifically to deliver rich Internet applications to their full
potential, known now as the Adobe Integrated Runtime (AIR). During the dot-
com bust, we held onto the vision of enabling this future world of rich Internet
applications.

xvi | Foreword

We continued to invest in building a range of technologies and prepared for the day
that innovation on the web would ignite again. The days of innovation have now
returned in full force, and I am delighted to see rich Internet applications coming
into their own with Web 2.0. Developers are creating applications with a range of
technologies and frameworks that tap into the distributed creativity of the Internet,
take advantage of HTML, Flash, Flex, Ajax; and balance logic between the client and
server.

The new virtual machine has been delivered now in Flash Player 9, enabling Action-
Script 3.0 to run an order of magnitude faster and implement the most recent work
on the ECMA standard for the language (JavaScript follows this same standard). This
modern implementation has also now been released as open source with the Mozilla
Foundation as the Tamarin project, enabling the Flash Player team to work with
Mozilla engineers and others in the open source community to continue optimizing
the virtual machine and keeping up with the most recent standards work. This core
scripting engine will be incorporated over time in Firefox, bringing consistency
across scripting in HTML and Flash.

The development framework has also been delivered today as Flex, enabling rapid
development through common patterns for interaction and data management, with
the whole framework built in ActionScript 3.0. The Flex framework is available for
free, and the framework source code is included so you can see exactly how it works.
You can use any editor to write code using Flex, and a specific IDE is also available,
called Adobe Flex Builder.

As we saw innovation on the web returning and were pursuing this vision, we
decided to unite efforts across Adobe and Macromedia. While Macromedia was driv-
ing RIAs with Flash, Adobe was innovating in delivery of electronic documents,
among other areas. We saw over time that Macromedia would be adding electronic
document capability to RIAs and that Adobe would add RIA capability around elec-
tronic documents. Rather than pursue those paths separately and duplicate efforts,
we joined forces to deliver our vision for the next generation of documents and RIAs,
bringing together the world’s best technology for electronic documents and the
world’s best, most pervasive technology for RIAs. It’s an incredibly powerful
combination.

After we announced the merger, we created a “clean room” team to plan for our next
generation of software, drawing on everything we’ve learned to date as well as from
the potential of bringing Flash, PDF, and HTML together in the new Adobe AIR
environment for RIAs.

The AIR project is actually our third attempt at creating this new environment. The
first two attempts were part of an experimental project called Central which was
code named Mercury and then Gemini after the United States space program, and
with AIR code named Apollo. We learned a lot from those first two projects, and as I
like to remind the team, Apollo is the one that actually went to the moon.

Foreword | xvii

With AIR, you can leverage your existing web development skills (Flash, Flex,
HTML, JavaScript, Ajax) to build and deploy RIAs to the desktop. Just like web pub-
lishing allowed anyone with basic HTML skills to create a web site, AIR will enable
anyone with basic web development skills to create a desktop application.

As a developer, you can now create a closer connection to your users. With the
browser, you have a fleeting, somewhat tenuous, connection to users. They browse
to a page, and then they’re gone. AIR enables you to create an experience that can
keep you continuously connected to your customers. Just like a desktop application,
AIR applications have an icon on the desktop, in the Windows start menu, or in the
OS X dock. Also, when you’re running a web application today, it’s a separate world
from your computer. You can’t easily integrate local data with your web application.
For example, you can’t just drag and drop your Outlook contacts onto a web-based
mapping application to get directions to your friend’s house. Yet with AIR applica-
tions you can, as it bridges the chasm between your computer and the Internet.

I believe AIR represents the beginning of a new medium. And these applications are
fun to build. If you start early, you’ll be able to deliver capabilities in your applica-
tions that others won’t have yet—especially in terms of increasing the presence of
your application on the computer and bridging the web and the desktop.

The core of these RIAs is the ActionScript language, whether they run in the Flash
Player in a browser, as a desktop application through AIR, or on mobile devices.
Each generation of the ActionScript language has been comprehensively described by
Colin Moock in this series of O’Reilly books, becoming the reference book you’ll
find on most Flash developer’s desks. With ActionScript 3.0, you have unprece-
dented power in building engaging applications and with this reference you have tre-
mendous insight to use that power effectively.

I look forward to seeing what you create and to the next generation of applications
ahead. Keep pushing the boundaries of what’s possible on the Internet to make the
experience more engaging and effective for people around the world, and we will do
our best to continue bringing more expressiveness and power to help you in your
efforts.

—Kevin Lynch
Chief Software Architect, Adobe

 San Francisco, 2007

xix

-Ch

Preface

ActionScript is the official programming language of Adobe’s Flash platform. While
originally conceived as a simple tool for controlling animation, ActionScript has
since evolved into a sophisticated programming language for creating content and
applications for the Web, mobile devices, and desktop computers. True to its roots,
ActionScript can be used in many different ways by many different kinds of program-
mers and content producers. For example, an animator might use just a few lines of
ActionScript to pause the playback of a web animation. Or, an interface designer
might use a few hundred lines of ActionScript to add interactivity to a mobile phone
interface. Or, an application developer might use thousands of lines of ActionScript
to create an entire email-reading application for web browser and desktop
deployment.

This book covers ActionScript programming fundamentals in truly exhaustive detail,
with extreme clarity and precision. Its unparalleled accuracy and depth is the result
of an entire decade of daily ActionScript research, real-world programming experi-
ence, and unmitigated insider-access to Adobe’s engineers. Every word of this book
has been carefully reviewed—in many cases several times over—by key members of
Adobe’s engineering staff, including those on the Flash Player, Flex Builder, and
Flash authoring teams. (See the “Acknowledgments” section at the end of this
preface.)

Beginners Welcome
This book explores ActionScript from a programmer’s perspective but assumes no
prior programming knowledge. If you have never programmed before, start with
Chapter 1. It will guide you through the very basics of ActionScript, demystifying
terms like variable, method, class, and object. Then continue through the book
sequentially. Each chapter builds on the previous chapter’s concepts, introducing
new topics in a single, prolonged narrative that will guide you on your journey to
ActionScript proficiency.

xx | Preface

Note, however, that if you are a designer who simply wants to learn how to control
animations in the Flash authoring tool, you probably don’t need this book. Adobe’s
documentation will tell what you need to know. Come back to this book when you
want to learn how to add logic and programmatic behavior to your content.

Expert Guidance
If you already have existing ActionScript experience, this book will help you fill in
gaps in your knowledge, rethink important concepts in formal terms, and under-
stand difficult subjects through plain, careful language. Consider this book an
ActionScript expert that sits with you at your desk. You might ask it to explain the
subtleties of ActionScript’s event architecture, or unravel the intricacies of Flash
Player’s security system, or demonstrate the power of ActionScript’s native XML
support (E4X). Or you might turn to this book for information on under-docu-
mented topics, such as namespaces, embedded fonts, loaded-content access, class-
library distribution, garbage collection, and screen updates.

This book is a true developer’s handbook, packed with practical explanations,
insightful warnings, and useful example code that demonstrates how to get the job
done right.

What’s In This Book
This book is divided into three parts.

Part I, ActionScript from the Ground Up, provides exhaustive coverage of the core
ActionScript language, covering object-oriented programming, classes, objects, vari-
ables, methods, functions, inheritance, datatypes, arrays, events, exceptions, scope,
namespaces, XML. Part I closes with a look at Flash Player’s security architecture.

Part II, Display and Interactivity, explores techniques for displaying content on
screen and responding to input events. Topics covered include the Flash runtime dis-
play API, hierarchical event handling, mouse and keyboard interactivity, animation,
vector graphics, bitmap graphics, text, and content loading operations.

Part III, Applied ActionScript Topics, focuses on ActionScript code-production issues.
Topics covered include combining ActionScript with assets created manually in the
Flash authoring tool, using the Flex framework in Flex Builder 2, and creating a cus-
tom code library.

This book closes with a walkthrough of a fully functional example program—a vir-
tual zoo.

Preface | xxi

What’s Not In This Book
The ActionScript ecosystem is vast. No single book can cover it all. Noteworthy top-
ics that are not covered extensively in this book include:

• MXML

• The Flex framework

• Flex Data Services

• The Flash authoring tool’s built-in components

• Flash Media Server

• Flash Remoting

• ActionScript’s regular expression support

For information on these topics, see Adobe’s documentation and O’Reilly’s Adobe
Developer Library, at http://www.oreilly.com/store/series/adl.csp.

Authoring Tool Agnosticism
This book teaches core ActionScript concepts that apply to any ActionScript 3.0
authoring environment and any runtime that supports ActionScript 3.0. As much as
possible, this book avoids tool-specific development topics and focuses on program-
ming concepts rather than tool usage. That said, Chapter 29 covers ActionScript’s
use in the Flash authoring tool, and Chapter 30 covers the very basics of using the
Flex framework in Flex Builder 2. Likewise, Chapter 7 describes how to compile a
program using various authoring tools (Flash, Flex Builder 2, and mxmlc).

Now let’s turn our attention to the ActionScript language itself. The following sec-
tions provide a technical introduction to ActionScript 3.0 for experienced program-
mers. If you are completely new to programming, you should skip down to
“Typographical Conventions” and then proceed to Chapter 1.

ActionScript Overview
ActionScript 3.0 is an object-oriented language for creating applications and scripted
multimedia content for playback in Flash client runtimes (such as Flash Player and
Adobe AIR). With a syntax reminiscent of Java and C#, ActionScript’s core lan-
guage should be familiar to experienced programmers. For example, the following
code creates a variable named width, of type int (meaning integer), and assigns it the
value 25:

var width:int = 25;

http://www.oreilly.com/store/series/adl.csp

xxii | Preface

The following code creates a for loop that counts up to 10:

for (var i:int = 1; i <= 10; i++) {
 // Code here runs 10 times
}

And the following code creates a class named Product:

// The class definition
public class Product {
 // An instance variable of type Number
 var price:Number;

 // The Product class constructor method
 public function Product () {
 // Code here initializes Product instances
 }

 // An instance method
 public function doSomething ():void {
 // Code here executes when doSomething() is invoked
 }
}

The Core Language
ActionScript 3.0’s core language is based on the ECMAScript 4th edition language
specification, which is still under development as of May 2007.

The ECMAScript 4 specification can be viewed at http://developer.
mozilla.org/es4/spec/spec.html. The ActionScript 3.0 specification can
be viewed at http://livedocs.macromedia.com/specs/actionscript/3.

In the future, ActionScript is expected to be a fully conforming implementation of
ECMAScript 4. Like ActionScript, the popular web browser language JavaScript is
also based on ECMAScript. The future Firefox 3.0 web browser is expected to imple-
ment JavaScript 2.0 using the same code base as ActionScript, which was contrib-
uted to the Mozilla Foundation by Adobe in November 2006 (for information, see
http://www.mozilla.org/projects/tamarin).

ECMAScript 4 dictates ActionScript’s basic syntax and grammar—the code used to
create things such as expressions, statements, variables, functions, classes, and
objects. ECMAScript 4 also defines a small set of built-in datatypes for working with
common values (such as String, Number, and Boolean).

Some of ActionScript 3.0’s key core-language features include:

• First-class support for common object-oriented constructs, such as classes,
objects, and interfaces

• Single-threaded execution model

http://developer.mozilla.org/es4/spec/spec.html
http://developer.mozilla.org/es4/spec/spec.html
http://livedocs.macromedia.com/specs/actionscript/3
http://www.mozilla.org/projects/tamarin

Preface | xxiii

• Runtime type-checking

• Optional compile-time type-checking

• Dynamic features such as runtime creation of new constructor functions and
variables

• Runtime exceptions

• Direct support for XML as a built-in datatype

• Packages for organizing code libraries

• Namespaces for qualifying identifiers

• Regular expressions

All Flash client runtimes that support ActionScript 3.0 share the features of the core
language in common. This book covers the core language in its entirety, save for reg-
ular expressions.

Flash Runtime Clients
ActionScript programs can be executed in three different client runtime environ-
ments: Adobe AIR, Flash Player, and Flash Lite.

Adobe AIR
Adobe AIR runs Flash-platform applications intended for desktop deployment.
Adobe AIR supports SWF-format content, as well as content produced with
HTML and JavaScript. Adobe AIR must be installed directly on the end user’s
computer at the operating-system level.

For more information, see http://www.adobe.com/go/air.

Flash Player
Flash Player runs Flash-platform content and applications intended for web
deployment. Flash Player is the runtime of choice for embedding SWF-format
content on a web page. Flash Player is typically installed as a web browser add-
on but can also run in standalone mode.

Flash Lite
Flash Lite runs Flash-platform content and applications intended for mobile-
device deployment. Due to the performance limitations of mobile devices, Flash
Lite typically lags behind Flash Player and Adobe AIR in both speed and feature
set. As of June 2007, Flash Lite does not yet support ActionScript 3.0.

The preceding Flash client runtimes offer a common core set of functionality, plus a
custom set of features that cater to the capabilities and security requirements of the
runtime environment. For example, Adobe AIR, Flash Player, and Flash Lite all use
the same syntax for creating a variable, but Adobe AIR includes window-manage-
ment and filesystem APIs, Flash Lite can make a phone vibrate, and Flash Player
imposes special web-centric security restrictions to protect the end user’s privacy.

http://www.adobe.com/go/air

xxiv | Preface

Runtime APIs
Each Flash client runtime offers its own built-in set of functions, variables, classes,
and objects—known as its runtime API. Each Flash client runtime’s API has its own
name. For example, the Flash client runtime API defined by Flash Player is known as
the Flash Player API.

All Flash client runtime APIs share a core set of functionality in common. For exam-
ple, every Flash client runtime uses the same basic set of classes for displaying con-
tent on screen and for dispatching events.

Key features shared by all Flash client runtime APIs include:

• Graphics and video display

• A hierarchical event architecture

• Text display and input

• Mouse and keyboard control

• Network operations for loading external data and communicating with server-
side applications

• Audio playback

• Printing

• Communicating with external local applications

• Programming utilities

This book covers the first five of the preceding items. For information on other spe-
cific Flash client runtime APIs, consult the appropriate product documentation.

Components
In addition to the Flash client runtime APIs, Adobe also offers two different sets of
components for accomplishing common programming tasks and building user inter-
faces. Flex Builder 2 and the free Flex 2 SDK include the Flex framework, which
defines a complete set of user interface controls, such as RadioButton, CheckBox, and
List. The Flash authoring tool provides a similar set of user interface components.
The Flash authoring tool’s components combine code with manually created graphi-
cal assets that can be customized by Flash developers and designers.

Both the Flex framework and the Flash authoring tool’s component set are written
entirely in ActionScript 3.0. The user interface components in the Flex framework
generally have more features than those in the Flash authoring tool’s component set
and, therefore, also have a larger file size.

User interface components from the Flex framework cannot be used in
the Flash authoring tool, but user interface components from the Flash
authoring tool can be used (both legally and technically) with Flex
Builder 2 and mxmlc.

Preface | xxv

This book does not cover component use or creation in ActionScript. For informa-
tion on components, see the appropriate product documentation.

The Flash File Format (SWF)
ActionScript code must be compiled into a .swf file for playback in one of Adobe’s
Flash client runtimes. A .swf file can include both ActionScript bytecode and
embedded assets (graphics, sound, video, and fonts). Some .swf files contain assets
only and no code, while others contain code only and no assets. A single Action-
Script program might reside entirely within a single .swf file, or it might be broken
into multiple .swf files. When a program is broken into multiple .swf files, one spe-
cific .swf file provides the program point of entry, and loads the other .swf files as
required. Breaking a complex program into multiple .swf files makes it easier to
maintain and, for Internet-delivered applications, can give the user faster access to
different sections of the program.

ActionScript Development Tools
Adobe offers the following tools for creating ActionScript code:

Adobe Flash
http://www.adobe.com/go/flash/

A visual design and programming tool for creating multimedia content that inte-
grates graphics, video, audio, animation, and interactivity. In Adobe Flash,
developers create interactive content by combining ActionScript code with ani-
mation, manually created content, and embedded assets. Adobe Flash is also
known as the Flash authoring tool. As of June 2007, the latest version of the
Flash authoring tool is Flash CS3 (Version 9 of the software).

Adobe Flex Builder
http://www.adobe.com/products/flex/productinfo/overview/

A development tool for producing content using either pure ActionScript or
MXML, an XML-based language for describing user interfaces. Flex Builder
includes a development framework known as the Flex framework, which pro-
vides an extensive set of programming utilities and a library of skinnable,
styleable user-interface controls. Based on Eclipse, the popular open source pro-
gramming tool, Flex Builder 2 can be used in either hand-coding mode or in a
visual-development mode similar to Microsoft’s Visual Basic.

Adobe Flex 2 SDK
http://www.adobe.com/go/flex2_sdk

A free command-line toolkit for creating content using either pure ActionScript
3.0 or MXML. The Flex 2 SDK includes the Flex framework and a command-
line compiler, mxmlc (both of which are also included with Adobe Flex Builder
2). Using the Flex 2 SDK, developers can create content for free in the

http://www.adobe.com/go/flash/
http://www.adobe.com/products/flex/productinfo/overview/
http://www.adobe.com/go/flex2_sdk

xxvi | Preface

programming editor of their choice. (For a wide variety of open source tools and
utilities for ActionScript development, see http://osflash.org.)

This Book’s Example Files
The official companion web site for this book is:

http://moock.org/eas3

You can download the example files for this book at:

http://moock.org/eas3/examples

Note that most of the examples in this book are presented in the context of an
enclosing main class, which is intended to be compiled as a .fla file’s document class
(Flash authoring tool) or a project’s default application class (Flex Builder).

Using Code Examples
This book is here to help you get your job done. In general, you can use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Essential ActionScript 3.0 by Colin
Moock. Copyright 2007 O’Reilly Media, Inc., 0-596-52694-6”.

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Typographical Conventions
In order to indicate the various syntactic components of ActionScript, this book uses
the following conventions:

Menu options
Menu options are shown using the ➝ character, such as File ➝ Open.

Constant width
Indicates code examples, code snippets, variable names, and parameter names.

http://osflash.org
http://moock.org/eas3
http://moock.org/eas3/examples
mailto:permissions@oreilly.com

Preface | xxvii

Italic
Indicates function names, method names, class names, package names, URLs,
filenames, datatypes, keywords, objects, and file suffixes such as .swf. In addi-
tion to being italicized in the body text, method and function names are also fol-
lowed by parentheses, such as duplicateMovieClip().

Constant width bold
Indicates text that you must enter verbatim when following a step-by-step proce-
dure. Constant width bold is also sometimes used within code examples for
emphasis, such as to highlight an important line of code in a larger example.

Constant width italic
Indicates code that you must replace with an appropriate value (e.g.,
yournamehere).

This is a tip. It contains useful information about the topic at hand,
often highlighting important concepts or best practices.

This is a warning. It helps you solve and avoid annoying problems.
Ignore at your own peril.

This is a note about ActionScript 2.0. It compares and contrasts
ActionScript 2.0 with ActionScript 3.0, helping you to migrate to
ActionScript 3.0 and to understand important differences between the
two versions of the language.

Coding and vocabulary conventions used in this book include:

• The keyword this is written in constant-width font because it is an implicit
parameter passed to methods and functions.

• In general, the keyword this is not included when making reference to identifi-
ers from within instance methods. However, this is used to disambiguate
instance variables and instance methods from parameters and local variables.

• When discussing accessor methods and mutator methods, this book avoids the
traditional terms accessor, mutator, getter, and setter. Instead, this book uses the
unofficial terms retriever method and modifier method. See Chapter 3.

• In a class definition that contains static variables, static methods, instance vari-
ables, instance methods, and a constructor method, this book lists the static
variables first, followed by the static methods, the instance variables, the class
constructor method, and finally, the instance methods.

• This book uses ALL CAPITAL LETTERS for constant names.

xxviii | Preface

• When referring to static variables and static methods, this book always includes
the name of the class that defines the variable or method.

• Unless otherwise stated, function closures are referred to by the shorter term
function. See Chapter 5 for a description of the difference between the two
terms.

• This book assumes that all code is compiled in strict mode. Furthermore, after
Chapter 7, this book supplies type annotations for all variables, parameters, and
return values.

• Event listeners in this book are named using the format eventNameListener,
where eventName is the string name of the event.

How to Contact Us
We have tested and verified the information in this book to the best of our ability,
but you may find that features have changed (or even that we have made mistakes!).
Please let us know about any errors you find, as well as your suggestions for future
editions, by writing to:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

We have a web page for the book, where we list errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596526948

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, software, Resource Centers,
and the O’Reilly Network, see our web site at:

http://www.oreilly.com

http://www.oreilly.com/catalog/9780596526948
mailto:bookquestions@oreilly.com
http://www.oreilly.com

Preface | xxix

Safari® Enabled
When you see a Safari® Enabled icon on the cover of your favorite tech-
nology book, it means the book is available online through the O’Reilly
Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top technology books, cut and paste code samples, down-
load chapters, and find quick answers when you need the most accurate, current
information. Try it for free at http://safari.oreilly.com.

Acknowledgments
This book could not have been written without the abundant trust and very active
support of both Adobe and O’Reilly. In the summer of 2005, in a meeting with Steve
Weiss, Lisa Friendly, and Mike Chambers, I agreed to write a new book called
Essential ActionScript 3.0. The book was originally billed as “a short update to
Essential ActionScript 2.0.” But as the ActionScript 3.0 language evolved, Essential
ActionScript 3.0 become a full work of its own. Patiently and faithfully, Adobe and
O’Reilly watched the book increase vastly in scope, and agreed to let the publication
deadline creep from nine months to two years. Throughout the entire process, I truly
believed we were making the right choice, and I’m honored that Adobe and O’Reilly
agreed.

Throughout this book’s writing, Adobe graciously furnished me with full access to
internal resources and official engineering time for technical reviews. I owe great
thanks to JuLee Burdekin and Francis Cheng from Adobe’s documentation team.
JuLee and Francis coordinated my efforts internally at Adobe and answered a seem-
ingly endless stream of questions.

Dozens of Adobe employees provided me with information and instruction during
this book’s research. I am deeply grateful to all of them, and would especially like to
thank the following:

• Francis Cheng was a constant source of information on the core language and
provided invaluable feedback on Essential ActionScript 3.0’s manuscript. Fran-
cis sits on the ECMAScript 4 committee and is one of the authors of the Action-
Script 3.0 specification.

• Jeff Dyer consistently took time out of his schedule to help clarify core-language
concepts and investigate bugs. Jeff is one of the principal developers of the
ActionScript 3.0 compiler, the principal author of the ActionScript 3.0 specifica-
tion, and a key member of the ECMAScript 4 committee.

http://www.oreilly.com

xxx | Preface

• Deneb Meketa patiently endured my misunderstanding of Flash Player’s secu-
rity system. Through phone calls and emails that spanned more than a month of
intensive research, Deneb managed to bring clarity to Chapter 19. Deneb is the
engineer responsible for implementing security in Flash Player.

• Jeff Mott, Flash Player engineer, consistently offered extensive, near instant
responses to my questions about ActionScript’s event system.

• Jim Corbett, Flash Player engineer, helped me understand many display list and
event-loading subtleties.

• Rebecca Sun, Flash authoring engineer, answered many questions about the
links between the ActionScript 3.0 compiler and Flash CS3. She also listened
openly to suggestions, and endured my frequent spontaneous requests for infor-
mation over instant messenger.

• Lee Thomason, Flash Player Architect, gave me a personal education in Flash
Player’s text rendering engine.

• Roger Gonzalez, Flex Compiler Architect, regularly fielded my questions on class
loading and the Flex compiler.

• Werner Sharp, Flash Player engineer, explained many subtle nuances of bitmap
programming in ActionScript.

• Paul Betlem, Senior Director of Flash Player Engineering, helped facilitate the
technical review process and reviewed several chapters himself.

• Mike Chambers, Senior Product Manager of Developer Relations for Adobe AIR,
provided regular technical information, and helped nurture the Essential Action-
Script 3.0 project from its earliest stages.

• Gary Grossman, the original creator of ActionScript, taught me much of what I
know about programming for the Flash platform. In August 2006, Gary teamed
up with the inventors of Flash (Jon Gay and Robert Tatsumi) to co-found a new
company, Software as Art. See http://www.softwareasart.com.

Other Adobe staff, past and present, that I’m honored to know and work with
include Mike Downey, Kevin Lynch, Paul Betlem, Edwin Smith, Christine Yarrow,
Jeff Kamerer, Nigel Pegg, Matt Wobensmith, Thomas Reilly, Jethro Villegas, Rob
Dixon, Jeff Swartz, Waleed Anbar, Chris Thilgen, Gilles Drieu, Nivesh Rajbhandari,
Tei Ota, Akio Tanaka, Sumi Lim, Troy Evans, John Dowdell, Bentley Wolfe, Tinic
Uro, Michael Williams, Sharon Seldon, Jonathan Gay, Robert Tatsumi, Pete Santan-
geli, Mark Anders, John Nack, Matt Chotin, Alex Harui, Gordon Smith, Sho Kuwa-
moto, Craig Goodman, Stefan Gruenwedel, Deepa Subramaniam, Ethan Malasky,
Sean Kranzberg, Michael Morris, Eric Wittman, Jeremy Clark, and Janice Pearce.

Table P-1 gives a statistical view of the depth of gratitude I owe this book’s official
technical reviewers.

http://www.softwareasart.com

Preface | xxxi

Thanks to Robyn Thomas, this book’s editor, who reviewed and polished the manu-
script with great speed and precision. Thanks also to all of the members of O’Reilly’s
management, editorial, production, interior design, art, marketing, and sales teams
including Tim O’Reilly, Steve Weiss, and Karen Montgomery. And thanks to the
copy editor, Philip Dangler, for helping to ensure the text’s consistency, readability,
and accuracy.

In addition to being technically reviewed by Adobe staff, this book was also
inspected for accuracy and quality by a keen group of beta readers, including Brett
Walker, Chafic Kazoun, Derek McKenna, Edwin van Rijkom, Greg Burch, Jim Arm-
strong, Jon Williams, Mark Jonkman, Matthew Keefe, Mauro Di Blasi, Ralf Bokel-
berg, Ric Ewing, Robin Debreuil, and Victor Allen. The beta readers were
indispensable, catching a great number of inconsistencies and subtle code errors.
Mark Jonkman bears special mention for his extremely meticulous examination of
the manuscript and its code examples.

Two mentors who helped shape me as a programmer and a writer are Bruce Epstein
and Derek Clayton. Bruce was the editor for all of my previous books, and his rich
lessons still inform every word I write. Derek is the creator of moock.org’s Unity
multiuser server (http://www.moock.org/unity), and a regular source of programming
inspiration and friendship.

Table P-1. Adobe reviewers

Reviewer Title Chapters reviewed
Number of
emails fielded

Deneb Meketa Computer Scientist, Flash Platform 17 75

Erica Norton Senior Quality Engineer, Flash Player 14, 19, 21, 22 3

Francis Cheng Senior Technical Writer 1-11, 13, 15, 16, 18 334

Jeff Dyer Compiler Architect, ActionScript Language Group 17 106

Jeff Mott Computer Scientist, Flash Player Engineering 12, 20-25 85

Jim Corbett Senior Computer Scientist, Flash Player Engineering 20, 23, 24, 28 52

Lee Thomason Architect, Flash Player 25, 27 33

Mike Chambers Senior Product Manager, Developer Relations,

Adobe AIR

1 89

Mike Richards Computer Scientist, Mobile and Devices 22-26 9

Paul Robertson ActionScript Developer/Writer 1, 2, 24, 27-31 14

Paul Betlem Senior Director, Flash Player Engineering 20, 27, 26 19

Rebecca Sun Computer Scientist, Flash Authoring 7, 29, 31 60

Robert Penner Senior Engineer, Flash Authoring 18, 23-25 16

Roger Gonzalez Flex Compiler Architect 25, 30, 31 64

Werner Sharp Senior Computer Scientist, Flash Player Engineering 18, 22 35

http://www.moock.org/unity

Of course, no book on any ECMAScript-based language is complete without
acknowledging Brendan Eich’s pioneering of JavaScript and ongoing development of
ECMAScript. Thanks Brendan!

Finally, love and peace to the following for their love and friendship: James Porter,
Graham Barton, Joe Duong, Tommy Jacobs, Wendy Schaffer, Andrew Harris, Dave
Luxton, Dave Komlos, Marco Crawley, Eric Liphardt, Ken Reddick, Mike Linkov-
ich, Matt Wearn, Mike Dobell, Mike “Nice,” Hoss Gifford, Erik Natzke, Jared Tar-
bell, Marcos Weskamp, Dan Albritton, Francis Bourre, Thijs Triemstra, Veronique
Brossier, Saima Khokhar, Amit Pitaru, James Patterson, Joshua Davis, Branden Hall,
Robert Hodgin, Shin Matsumura, Yugo Nakamura, Claus Whalers, Darron Schall,
Mario Klingeman, Fumio Nonaka, Robert Reinhardt, Grant Skinner, and the
Moocks.

—Colin Moock
March 2007

Toronto, Canada

PART I

I.ActionScript from the Ground Up

Part I provides exhaustive coverage of the core ActionScript 3.0 language, covering
object-oriented programming, classes, objects, variables, methods, functions, inherit-
ance, datatypes, arrays, events, exceptions, scope, namespaces, and XML. Part I
closes with a look at Flash Player’s security architecture.

When you complete Part I, you will have gained a deep knowledge of core Action-
Script 3.0, and applied that knowledge to the development of a virtual zoo example-
application.

Chapter 1, Core Concepts

Chapter 2, Conditionals and Loops

Chapter 3, Instance Methods Revisited

Chapter 4, Static Variables and Static Methods

Chapter 5, Functions

Chapter 6, Inheritance

Chapter 7, Compiling and Running a Program

Chapter 8, Datatypes and Type Checking

Chapter 9, Interfaces

Chapter 10, Statements and Operators

Chapter 11, Arrays

Chapter 12, Events and Event Handling

Chapter 13, Exceptions and Error Handling

Chapter 14, Garbage Collection

Chapter 15, Dynamic ActionScript

Chapter 16, Scope

Chapter 17, Namespaces

Chapter 18, XML and E4X

Chapter 19, Flash Player Security Restrictions

3

Chapter 1 CHAPTER 1

Core Concepts2

A program is a set of written instructions to be executed (i.e., carried out) by a com-
puter or a software application. The written, human-readable text of a program is
called source code, or just code. The person who creates a program is called a pro-
grammer, a coder, or a developer. Every program is written in a particular program-
ming language, just as every book is written in a particular language (English,
Russian, Japanese, etc.). Programming languages dictate the syntax and grammar
that programmers must use to form the instructions in a given program. This book
provides from-the-ground-up coverage of the syntax, grammar, and usage of one spe-
cific programming language, ActionScript 3.0. Get ready for a good time.

Tools for Writing ActionScript Code
ActionScript code is written in plain text, so an ActionScript program can be created
with nothing more than a simple text editor, such as Notepad on Windows or
TextEdit on Macintosh. However, most ActionScript programmers write ActionScript
code using one (or both) of two commercial tools produced by Adobe Systems Incor-
porated: Flex Builder and the Flash authoring tool.

Flex Builder is an integrated development environment, or IDE. An IDE is an applica-
tion for writing and managing code, much as a word processor is an application for
creating printed documents. Developers use Flex Builder to create software applica-
tions and multimedia content using either ActionScript or MXML, or both. MXML is
an XML-based language for describing user interfaces.

By contrast, the Flash authoring tool is a hybrid design, animation, and program-
ming editor. Developers use the Flash authoring tool to create software applications
and multimedia content by combining ActionScript code with manually drawn
graphics, animation, and multimedia assets.

4 | Chapter 1: Core Concepts

ActionScript 3.0 is supported by Flex Builder 2 or higher, and Flash CS3 (Version 9
of the Flash authoring tool) or higher. To obtain a copy of Flex Builder, visit http://
www.adobe.com/products/flex/productinfo/overview/. To obtain a copy of the Flash
authoring tool, visit http://www.adobe.com/go/flash/.

The vast majority of this book concentrates on the creation of software applications
and multimedia content using pure ActionScript (i.e., code only). Chapter 29 covers
the use of ActionScript in the Flash authoring tool. This book specifically does not
include coverage of MXML. For coverage of MXML, see O’Reilly’s Programming
Flex 2 (Kazoun and Lott, 2007) and Adobe’s Flex Builder documentation.

Flash Client Runtime Environments
ActionScript programs can be executed by three different software applications (all
produced by Adobe): Flash Player, Adobe AIR, and Flash Lite.

Flash Player executes ActionScript programs in a web browser or in a standalone
mode on the desktop. Flash Player has very little access to the operating system (e.g.,
it cannot manage files, control windows, or access most hardware).

Adobe AIR executes ActionScript programs on the desktop and has full integration
with the desktop operating system (e.g., can manage files, control windows, and
access hardware).

Flash Lite executes ActionScript programs on mobile devices, such as cellular
phones. As of the publication of this book, Flash Lite can execute ActionScript pro-
grams written in ActionScript 2.0, but not ActionScript 3.0, while Flash Player and
Adobe AIR can execute programs written in ActionScript 3.0. Therefore, the tech-
niques taught in this book apply to Flash Player and Adobe AIR, but will not apply
to Flash Lite until it adds support for ActionScript 3.0.

In generic terms, Flash Player, Adobe AIR, and Flash Lite are all known as Flash cli-
ent runtime environments (or Flash runtimes for short) because they manage Action-
Script programs while they execute, or “run.” Flash runtimes are available for
Windows, Macintosh, and Linux, as well as a variety of different mobile hardware
devices. Because ActionScript programs are executed by a Flash runtime, not a spe-
cific operating system or hardware device, each ActionScript program is considered
portable because it can run on different hardware devices (phones, game consoles)
and operating systems (Windows, Macintosh, and Linux).

In casual discussion, the term ActionScript virtual machine is sometimes used as an
equivalent for Flash client runtime environment. There is, however, a difference
between these two terms, so they should not be used interchangeably. The Action-
Script virtual machine (AVM) is technically the software module inside Flash Player,
Adobe AIR, and Flash Lite that executes ActionScript programs. But each Flash run-
time also has other responsibilities, such as displaying content on screen, playing

http://www.adobe.com/go/flash/

Compilation | 5

video and audio, and communicating with the operating system. The specific ver-
sion of the ActionScript virtual machine that runs ActionScript 3.0 code is known as
AVM2. The specific version of the ActionScript virtual machine that executes Action-
Script 1.0 and ActionScript 2.0 code (not covered in this book) is known as AVM1.

Compilation
Before an ActionScript program can be executed by a Flash runtime, it must be con-
verted from human-readable ActionScript 3.0 code to a condensed, binary format
that Flash runtimes understand, known as ActionScript bytecode, or ABC. On its
own, however, ActionScript bytecode cannot be executed by Flash runtimes; instead,
it must be wrapped in a binary container file known as a .swf file. The .swf file stores
the bytecode and any embedded media assets required by the ActionScript program
in Flash file format, or SWF. The process of converting an ActionScript program to
bytecode is known as compiling the program. The process of generating a .swf file is
known as compiling the .swf file, or sometimes, exporting or publishing the .swf file.

To compile ActionScript 3.0 programs and .swf files, we use a software module
known as a compiler. A compiler that compiles ActionScript code is known as an
ActionScript compiler. A compiler that generates .swf files is known as a SWF com-
piler. Any SWF compiler that claims full support for the Flash file format includes an
ActionScript compiler. Naturally, both Flex Builder 2 and the Flash authoring tool
include a SWF compiler (and, by extension, an ActionScript compiler). Flex Builder
2 and the Flash authoring tool share the same ActionScript compiler but have differ-
ent SWF compilers—known, respectively, as the Flex compiler and the Flash com-
piler. Adobe also offers the Flex compiler as a standalone command-line application
called mxmlc. The mxmlc compiler is included in Adobe’s free developer’s toolkit,
the Flex 2 SDK, available at http://www.adobe.com/go/flex2_sdk.

Just-In-Time Compilation
When an ActionScript program runs, the Flash runtime reads compiled ActionScript
bytecode and translates it into native machine-code instructions that are executed by
the specific computer hardware on which the program is running. In many cases, the
native machine-code instructions are saved so they can be used again without the
need to be retranslated from ActionScript bytecode.

Just as converting ActionScript 3.0 code to bytecode is called compiling, the process
of translating ActionScript bytecode into native machine code and then saving that
machine code for later execution is, likewise, known as compiling. Hence, most
ActionScript code undergoes two levels of compilation. First, the developer compiles
the code from human-readable format to a format understood by the Flash runtime
(ActionScript bytecode). Then, the Flash runtime automatically compiles the Action-
Script bytecode to a format understood by the hardware running the program (native

http://www.adobe.com/go/flex2_sdk

6 | Chapter 1: Core Concepts

machine code). The latter form of compilation (bytecode to machine code) is known
as just-in-time compilation, or JIT, because it happens immediately before the spe-
cific bytecode being compiled is needed by the program. Just-in-time compilation is
sometimes also called dynamic translation. Experienced programmers may be inter-
ested to know that code at the top level of a class definition is not just-in-time com-
piled (because it is executed only once).

Quick Review
The past several pages covered a lot of ground. Let’s review what we’ve covered so
far.

An ActionScript program is a set of instructions to be executed by one of the Flash
runtimes: Flash Player, Adobe AIR, or Flash Lite. ActionScript programs can be writ-
ten in a text editor, Flex Builder, or the Flash authoring tool. In order to run an
ActionScript program, we must first compile it into a .swf file using a SWF compiler
such as the Flash compiler included with the Flash authoring tool, or mxmlc, which
is included with both Flex Builder 2 and the Flex 2 SDK.

Don’t worry if some of the preceding concepts or terms are new to you. We’ll be
applying them abundantly over the next 900-plus pages.

Now let’s write some code!

Classes and Objects
Imagine you are going to build an airplane, entirely from scratch. Think about the
process you would follow. You very likely wouldn’t just head to a metal shop and
start welding. You’d have to draw up a blueprint for the airplane first. In fact, given
that you are building the airplane from scratch, you’d have to draw up not just one,
but many blueprints—one for each of the airplane’s many parts (the wheels, the
wings, the seats, the brakes, and so on). Each blueprint would describe a specific
part conceptually and correspond to an actual part in the physical incarnation of the
airplane. To build the airplane, you would manufacture each of the parts individu-
ally, and then assemble them according to a master blueprint. The interoperation of
the airplane’s assembled parts would produce the airplane’s behavior.

If that all sounds logical to you, you’ve got what it takes to become an ActionScript
programmer. Just as an airplane flying through the sky is a group of interoperating
parts based on a set of blueprints, a running ActionScript program is a group of inter-
operating objects, based on a set of classes. ActionScript objects represent both the
tangible things and the intangible concepts in a program. For example, an object
might represent a number in a calculation, a clickable button in a user interface, a
point in time on a calendar, or a blur effect on an image. Objects are incarnations, or
instances, of classes. Classes are the blueprints upon which objects are based.

Classes and Objects | 7

The first step in writing a new program is determining its classes. Each class
describes, in code, both the characteristics and behavior of a particular type of
object. Some of the classes in a program must be written from scratch, while others
are provided by ActionScript and the various Flash runtimes. Classes written from
scratch (known as custom classes) are used to produce specialized types of content,
such as an order form for a shopping application, a car in a racing game, or a mes-
sage in a chat application. By contrast, classes provided by ActionScript and the vari-
ous Flash runtimes (known as built-in classes) are used to perform fundamental tasks
such as creating numbers and text, playing sounds, displaying images, accessing the
network, and responding to user input.

From the classes in a program, we make (or instantiate) objects and then tell those
objects what to do. What the objects do determines the behavior of the program.

Building a program with classes and objects is known as object-
oriented programming (OOP).

In the next section we’ll start writing an actual program, but before we do, let’s take
a brief look at an important group of classes, known as native classes, that are built
directly into ActionScript. The native classes, listed in Table 1-1, are used to manipu-
late basic types of information, such as numbers and text. You can expect to use
instances of at least one or two of the native classes in every program you write—
much like you might use ready-made parts from a third-party supplier when build-
ing an airplane. Read over Table 1-1 for basic familiarity. In the coming chapters,
we’ll study the native classes in much more detail.

Table 1-1. ActionScript’s native classes

Class Description

String Represents textual data (i.e., a string of characters)

Boolean Represents the logical states true and false

Number Represents floating-point numbers (i.e., numbers with a fractional value)

int Represents integer numbers (i.e., numbers with no fractional value)

uint Represents positive integer numbers

Array Represents an ordered list

Error Represents a program error (i.e., a problem in your code)

Date Represents a specific point in time

Math Contains common mathematical values and operations

RegExp Defines tools for searching and replacing text

Function Represents a reusable set of instructions that can be executed, or called, repeatedly

Object Defines the basic features of every object in ActionScript

8 | Chapter 1: Core Concepts

Now let’s try using classes and objects in an example program—a simple simulated
zoo game with virtual pets.

Using the technique known as timeline scripting in the Flash authoring
tool, it is possible to create an ActionScript program without first cre-
ating a class (see Chapter 29). However, even if you never expect to
create classes yourself, you should still study the techniques presented
in this chapter. Knowing how classes are created will greatly deepen
your understanding of ActionScript and make you a better
programmer.

Creating a Program
As we just learned, ActionScript programs are made up of classes, which are the
blueprints for the interoperating parts (objects) of a program. Typically, the develop-
ment of a new ActionScript program starts with a design phase, during which the
program’s functionality is broken into a logical set of classes. Each class is given a
name, a set of features, and a role in the larger program. One class in particular is
designated as the main class. The main class provides the starting point, or program
point of entry, for the application. To start a new program, the Flash runtime auto-
matically creates an instance of the program’s main class.

For our virtual zoo example program, we’ll name the main class VirtualZoo. As the
first step in building the program, we’ll create a folder on the filesystem, named
virtualzoo. Within that folder, we’ll create a subfolder named src (short for source) in
which to store all .as files (i.e., all files containing source code).

Each program’s main class code must be placed in a text file named after the main
class, and given the extension .as. Accordingly, we’ll create an empty text file named
VirtualZoo.as. Notice that the filename VirtualZoo.as exactly matches the class name
VirtualZoo and that case sensitivity matters. We’ll place VirtualZoo.as in the folder
virtualzoo/src. Here’s the file structure for our program’s source files so far:

virtualzoo
 |- src
 |- VirtualZoo.as

With VirtualZoo.as created, we can start writing the VirtualZoo class. However, first
we must deal with a potential problem—if our chosen main class name conflicts
with (i.e., is the same as) one of ActionScript’s built-in classes, then ActionScript
won’t let us create the class, and our program won’t be able to start. To prevent
potential naming conflicts in our program, we use packages.

There is a lot of ground to cover, so we won’t actually compile our zoo
program’s code until Chapter 7. If you decide to jump ahead and com-
pile the examples presented in Chapters 1 through 6, you are likely to
encounter various warnings and errors. After Chapter 7, you’ll be able
to compile all versions of the example program without errors.

Packages | 9

Packages
Like its name suggests, a package is a conceptual container for a group of classes
and, as we’ll learn later, for other things in a program. Each package delimits an
independent physical region of a program and gives that region a name, called the
package name. By convention, package names typically start with a lowercase letter
while class names typically start with an uppercase letter. This helps distinguish
package names from class names.

When a class’s source code resides within a package, that class automatically adopts
the package’s name as part of its own name, much like a child takes on his parents’
family name. For example, a class named Player in a package named game becomes
known as game.Player. Notice that the package name comes first and is separated
from the class name using a period (.) character (character is simply programming
jargon for letter, number, punctuation, and so on). The package name helps distin-
guish the game.Player class from other classes also named Player, thus preventing
name conflicts between different parts of a program or between a program’s custom
classes and ActionScript’s built-in classes.

To create a new package, we use a package definition directive. Let’s dissect that
term. In ActionScript, all program instructions are known generally as directives.
Definitions are one type of directive; they create, or define something, such as a pack-
age or a class. In this case, the thing being defined is a package, hence the term, pack-
age definition directive.

A definition that creates something in a program is said to define or
declare that thing. Definitions are sometimes also referred to as
declarations.

Here’s the general form of a package definition directive:

package packageName {
}

All package definitions start with a keyword: package. A keyword is a command
name reserved for use by the ActionScript language. In this case, the package
keyword tells ActionScript to create a package. After the package keyword, we pro-
vide the desired package name, represented by packageName in the preceding code.
(Throughout this book, italicized code, such as packageName, indicates text that must
be replaced by the programmer.) Next, we mark the beginning and end of the pack-
age contents using curly braces: { and }. To add a class to a package, we insert its
source code between the curly braces, as follows:

package packageName {
Class source code goes here

}

10 | Chapter 1: Core Concepts

In technical terms, the curly braces in a package definition are a kind of statement,
known as a block statement. Like definitions, statements are a kind of directive, or
basic program instruction. A block statement marks the beginning and end of a
group of directives that should be treated as a logical whole. A package definition’s
block statement is known as a package block or sometimes package body.

For a complete list of ActionScript statements, see Chapter 10.

By convention (but not necessity), package names typically have the following
structure:

• The reversed domain name of the organization creating the program

• Followed by a period (.)

• Followed by the general purpose package’s contents

For example, a package containing classes for a mapping application created by
Acme Corp., whose domain name is acme.com, might be named com.acme.map, as
shown in the following code:

package com.acme.map {
}

Notice that com precedes acme (i.e., in the package name, the domain name is
reversed).

Domain names are guaranteed to be unique by the system of autho-
rized top-level-domain registrars; thus, starting your package names
with your organization’s domain name avoids name conflicts with
code developed by other organizations.

Now let’s try using packages in our virtual zoo program. To keep our example sim-
ple, we’ll use the package name zoo, without any leading domain name. To define
the zoo package, we’ll add the following code to the file VirtualZoo.as:

package zoo {
}

Now that we’ve added a package to the file VirtualZoo.as, we must change that
file’s location on the filesystem to match the package it contains. Due to a require-
ment imposed by all Adobe’s ActionScript compilers, when a source file contains a
class (or other definition) in a package, it must reside in a folder structure that
matches that package name. For example, a file that contains a package named
com.gamecompany.zoo must reside in a folder named zoo, in a folder named
gamecompany, contained by a folder named com (i.e., com/gamecompany/zoo).
Accordingly, we’ll create a new folder named zoo in our program’s file structure

Defining a Class | 11

and move VirtualZoo.as into it. The file structure for our program’s source files
becomes:

virtualzoo
 |- src
 |- zoo
 |- VirtualZoo.as

Now that we have a package definition, let’s add the VirtualZoo class to it.

Defining a Class
To create a new class, we use a class definition, as shown in the following generalized
code:

class Identifier {
}

A class definition starts with the keyword class, followed by a class name, repre-
sented by Identifier in the preceding code. The term identifier simply refers to a
name. Identifiers must not contain spaces or dashes, and cannot start with a num-
ber. Class names conventionally use a capital letter for the first, and all subsequent
words in the name, as in Date or TextField. (TextField is a built-in Flash-runtime
class whose instances represent text that can be displayed on screen.)

The curly braces ({}) following Identifier in the preceding class definition are a
block statement, just like the block statement in a package definition. A class defini-
tion’s block statement is known as the class block or sometimes the class body. The
class block contains directives that describe the characteristics and behavior of the
class and its instances.

Here’s the basic class definition for the main class of our simulated zoo game,
VirtualZoo. We place the class definition in the package body, in the file
VirtualZoo.as:

package zoo {
 class VirtualZoo {
 }
}

Because the preceding VirtualZoo class definition resides in a package named zoo, the
complete name of the class (known as the fully qualified class name) is zoo.VirtualZoo.
In casual discussion, however, we’ll use the shorter, unqualified class name,
VirtualZoo.

Now that we have our program’s main class defined, let’s create one of the other
classes in the program—VirtualPet. From the VirtualPet class, we’ll create objects
representing pets in the zoo.

12 | Chapter 1: Core Concepts

Like VirtualZoo, we’ll place the source code for the VirtualPet class in the zoo pack-
age, in its own file named VirtualPet.as saved in the zoo folder. Here’s the code from
the VirtualPet.as file:

package zoo {
 class VirtualPet {
 }
}

Notice that a package definition can span multiple source files. Even though
VirtualZoo and VirtualPet are stored in different .as files, they belong to the same
package, zoo. Any class in any file that resides in a package named zoo is considered
part of the zoo package. By contrast, a class definition cannot span multiple files; it
must be written, in its entirety, within a single file.

Access Control Modifiers for Classes
By default, a class in a given package can be used by code that also resides in that
package only. To make a class available for use outside the package in which it is
defined, we must define it with the public attribute. In general terms, a class’s
attributes dictate how the class and its instances can be used in a program. Attributes
are listed before the keyword class in a class definition, as shown in the following
generalized code:

attribute class ClassIdentifier {
}

For example, to add the public attribute to the VirtualPet class, we’d use:

package zoo {
 public class VirtualPet {
 }
}

However, in the case of VirtualPet, the public attribute is unnecessary because
VirtualPet is used by the VirtualZoo class only, and VirtualZoo can use the VirtualPet
class because both classes reside in the zoo package (classes in the same package can
always access each other). Hence, we can return to our original VirtualPet definition,
which implicitly allows VirtualPet to be used within the zoo package only:

package zoo {
 class VirtualPet {
 }
}

If we wish to explicitly indicate that we intend VirtualPet to be used within the zoo
package only, we can use the internal attribute, as shown in the following code:

package zoo {
 internal class VirtualPet {
 }
}

Virtual Zoo Review | 13

A class defined with the internal attribute can be used within its containing package
only. That is, defining a class with the internal attribute is identical to defining the
class with no access-control modifier at all. The internal attribute simply serves to
make the programmer’s intention unambiguous.

The internal and public attributes are known as access-control modifiers because they
control the region within which a class can be used (accessed) within a program.

Unlike the VirtualPet class, the VirtualZoo class must be defined with the public
attribute because it is the application’s main class.

Adobe’s compilers require an application’s main class to be defined
with the public attribute.

The following code updates VirtualZoo to include the necessary public attribute:

package zoo {
 public class VirtualZoo {
 }
}

Virtual Zoo Review
Our game now has two classes: VirtualZoo (the main class) and VirtualPet (which
represents the pets in the game). The classes reside in the package zoo, and are stored
in plain-text files named VirtualZoo.as and VirtualPet.as, respectively. By require-
ment of Adobe’s ActionScript compilers, VirtualZoo is defined with the public
attribute because it is the application’s main class. By contrast, VirtualPet is defined
with the internal attribute, so it can be used inside the zoo package only.

Example 1-1 shows the code for our game so far. The example also introduces some-
thing new—code comments. A code comment is a note meant to be read by program-
mers only and is completely ignored by the compiler. ActionScript code comments
come in two varieties: single line, which start with two slashes (//), and multiline,
which start with the character sequence /*, and end with the character sequence */.

This is a single-line comment:

// No one here but us programmers

This is a multiline comment:

/*
No one here
but us programmers
*/

The current code for our zoo game follows.

14 | Chapter 1: Core Concepts

Now let’s carry on with the development of our program, starting with the construc-
tor method of our main class, VirtualZoo.

Constructor Methods
A constructor method (or, constructor, for short) is a discrete set of instructions used
to initialize the instances of a class. To create a constructor method, we use a func-
tion definition within a class block, as shown in the following generalized code:

class SomeClass {
 function SomeClass () {
 }
}

In the preceding code, the keyword function begins the constructor method. Next
comes the constructor method name, which must exactly match the class name (case
sensitivity matters!). The constructor method name is followed by a pair of parenthe-
ses that contain a list of constructor parameters, which we’ll study later. The curly
braces ({}) following the parameter list are a block statement, just like the block
statements in package and class definitions. A constructor method’s block statement
is known as the constructor body. The constructor body contains the directives that
initialize instances. Whenever a new instance of SomeClass is created, the directives in
the constructor body are executed (sequentially, from top to bottom). Executing the
directives in the constructor body is known as executing the constructor or, more
casually, running the constructor.

Constructor methods are created using the function keyword because
they are, technically speaking, a type of function. We’ll study func-
tions in Chapter 5.

When a class does not define a constructor function explicitly, ActionScript auto-
matically provides a default constructor that performs no initialization on new
instances of the class. Despite this convenience, as a best practice, always include a
constructor, even if it is just an empty one. The empty constructor serves as a formal

Example 1-1. Zoo game

// Contents of the file VirtualZoo.as
package zoo {
 public class VirtualZoo {
 }
}

// Contents of the file VirtualPet.as
package zoo {
 internal class VirtualPet {
 }
}

Constructor Methods | 15

indication that the class design does not require a constructor and should be accom-
panied by a comment to that effect. For example:

class SomeClass {
 // Empty constructor. This class does not require initialization.
 function SomeClass () {
 }
}

Unlike classes, the accessibility of constructor methods cannot be controlled with
access-control modifiers. In ActionScript 3.0, all constructor methods are implicitly
considered public. (Future versions of ActionScript might, however, allow for non-
public constructor methods.) As a matter of style, this book always includes the
public access-control modifier when defining constructor methods, stressing the fact
that all constructor methods must be public. The following code demonstrates:

class SomeClass {
 public function SomeClass () {
 }
}

The rule that constructor methods must be public in ActionScript 3.0
was instituted due to engineering time constraints and volatility of the
ECMAScript 4 Language Specification. For details, see Sho Kuwa-
moto’s article at: http://kuwamoto.org/2006/04/05/as3-on-the-lack-of-
private-and-protected-constructors. (Sho is Adobe’s Flex Builder 2’s
development team lead.)

The constructor method of an application’s main class plays a special role in a pro-
gram. It provides an opportunity to execute code immediately after the application
has started. As such, the constructor method of an application’s main class is consid-
ered the program point of entry.

The following code adds a constructor method to our VirtualZoo class (shown in
bold):

package zoo {
 public class VirtualZoo {
 public function VirtualZoo () {
 }
 }
}

Our application now has an official point of entry. When our application starts, the
Flash runtime will automatically create a VirtualZoo instance, executing the
VirtualZoo constructor method in the process. Given that our application is a virtual
zoo, the first thing we’ll do in the VirtualZoo constructor method is create a
VirtualPet object (i.e., add a pet to the zoo). We’ll learn how to create objects next.

http://kuwamoto.org/2006/04/05/as3-on-the-lack-of-private-and-protected-constructors
http://kuwamoto.org/2006/04/05/as3-on-the-lack-of-private-and-protected-constructors

16 | Chapter 1: Core Concepts

Creating Objects
To create an object from a class (known technically as instantiating the object), we
use the keyword new in combination with the name of the class. The following gen-
eralized code shows the approach:

new ClassName

For example, to make an object from our VirtualPet class, we use the following code:

new VirtualPet

Multiple independent objects can be made from the same class. For example, the fol-
lowing code creates two VirtualPet objects:

new VirtualPet
new VirtualPet

Literal Syntax
We’ve just learned that the generalized syntax for creating a new object is:

new ClassName

That syntax applies to both built-in and custom classes. For example, the following
code creates a new instance of the built-in Date class, which represents a particular
point in time:

new Date

However, for some native classes, ActionScript also offers an alternative, more con-
venient means of creating instances, known as literal syntax. For example, to create a
new Number instance representing the floating-point number 25.4, we can use the
convenient literal form:

25.4

Likewise, to create a new String instance representing the text “hello,” we can use the
convenient literal form:

"hello"

Finally, to create a new Boolean instance representing the logical state of true, we
can use the convenient literal form:

true

And to create a new Boolean instance representing the logical state of false, we can
use the convenient literal form:

false

Literal syntax is also available for the Object, Function, RegExp, and XML classes.
We’ll study Object literal syntax in Chapter 15, Function literal syntax in Chapter 5,
and XML literal syntax in Chapter 18. For information on RegExp literal syntax, see
Adobe’s documentation.

Creating Objects | 17

Object Creation Example: Adding a Pet to the Zoo
Now that we know how to create objects, we can add a VirtualPet object to our zoo
program. The following code does just that:

package zoo {
 public class VirtualZoo {
 public function VirtualZoo () {
 new VirtualPet
 }
 }
}

Notice that the preceding code refers to the VirtualPet class by its unqualified name,
VirtualPet—not by its qualified name, zoo.VirtualPet. Code in a given package can
refer to the classes in that package by their unqualified names.

By contrast, code in a given package cannot refer to classes in other packages at all.
To gain access to a public class in another package, we use the import directive,
which has the following general form:

import packageName.className;

In the preceding code, packageName is the name of the class’s package, and className
is the name of the public class we wish to use. If the specified class is not public, the
import attempt fails because a non-public class cannot be used outside its package.
Once a class has been imported, it can then be referred to by its unqualified name.
For example, to create an instance of the built-in flash.media.Sound class (which is
used to load and play sounds), we would use the following code:

import flash.media.Sound
new Sound

Importing a class at the package-level makes that class available to code throughout
the entire package body. For example, the following code imports flash.media.Sound
at the package-level, and then later creates an instance of the Sound class within the
VirtualZoo constructor method:

package zoo {
 import flash.media.Sound

 public class VirtualZoo {
 public function VirtualZoo () {
 new Sound
 }
 }
}

If a class’s unqualified name conflicts with the unqualified name of another class,
then qualified names must be used to differentiate the two classes. For example, if
we were to define a class in the zoo package named Sound, then, within the zoo

18 | Chapter 1: Core Concepts

package, we would use the following code to create an instance of the built-in
flash.media.Sound class (notice the use of the qualified name):

new flash.media.Sound

And we would use the following code to create an instance of the zoo package’s
Sound class:

new zoo.Sound

Use of the unqualified class name (e.g., Sound) on its own causes an error that pre-
vents the offending program from compiling. Errors that prevent a program from
compiling are known as compile-time errors.

To gain access to all the public classes in another package, we use the following
code:

import packageName.*

For example, to gain access to all the public classes in the flash.media package, we
use the following code:

import flash.media.*

Note that classes contained by a package that has no name are placed in an automat-
ically created package known as the unnamed package. Classes in the unnamed pack-
age can be used directly anywhere in a program, without the need for the import
directive. In other words:

package {
 // Classes defined here are in the unnamed package, and can be
 // used directly anywhere in a program
}

However, as a best practice, you should avoid defining classes in the unnamed pack-
age because their names might conflict with classes (and other kinds of definitions)
defined by ActionScript, other programs, or even other parts of the same program.

On a technical level, the import directive opens the public namespace
of the specified package for the current scope and all nested scopes.
But if you are new to ActionScript, you needn’t worry about the tech-
nical details of the import directive. We’ll examine everything you
need to know in the chapters to come.

Now let’s return to the task of creating objects in the virtual zoo program. Recall the
following code, which creates a new VirtualPet object (shown in bold):

package zoo {
 public class VirtualZoo {
 public function VirtualZoo () {
 new VirtualPet
 }
 }
}

Variables and Values | 19

The preceding code successfully creates a new VirtualPet object, but it also suffers
from a problem: after the object has been created, the program has no way to refer to
it. As a result, our program cannot subsequently use or control the new pet. To give
our program a way to refer to the VirtualPet object, we use variables.

Variables and Values
In ActionScript, every object is considered a single, self-contained piece of data (i.e.,
information) known as a value. Apart from objects, the only other legal values in
ActionScript are the special values null and undefined, which represent the concept
of “no value.” A variable is an identifier (i.e., a name) associated with a value. For
example, a variable might be the identifier submitBtn associated with an object repre-
senting a button in an online form. Or a variable might be the identifier
productDescription associated with a String object that describes some product.

Variables are used to keep track of information in a program. They give us a means
of referring to an object after it is created.

Variables come in four varieties: local variables, instance variables, dynamic instance
variables, and static variables. We’ll study the first two varieties now, and the
remaining two varieties later in this book.

Local Variables
Local variables are used to track information temporarily within the physical con-
fines of a constructor method, an instance method, a static method, or a function.
We haven’t studied instance methods, static methods, or functions yet so for now
we’ll focus on local variables in constructor methods.

To create a local variable within a constructor method, we use a variable definition,
as shown in the following generalized code. Notice that the definition starts with the
keyword var and, by convention, ends in a semicolon, as do all directives that do not
include a block statement. The semicolon indicates the end of the directive, much
like the period at the end of a sentence in a natural language.

class SomeClass {
 public function SomeClass () {
 var identifier = value;
 }
}

In the preceding code, identifier is the local variable’s name, and value is the value
associated with that variable. Together, the equals sign and the value are known as
the variable initializer because they determine the initial value of the variable.

20 | Chapter 1: Core Concepts

Associating a variable with a value is known as assigning, setting, or
writing the variable’s value.

When the variable initializer is omitted, ActionScript automatically assigns the vari-
able a default value. Default values for variables are discussed in Chapter 8.

A local variable can be used within the method or function that contains its defini-
tion only. When the method or function finishes executing, the local variable expires
and can no longer be used by the program.

Let’s create a local variable to refer to the VirtualPet object we created earlier in the
VirtualZoo constructor. We’ll name the local variable pet, and we’ll use an initializer
to associate it with the VirtualPet object. Here’s the code:

package zoo {
 public class VirtualZoo {
 public function VirtualZoo () {
 var pet = new VirtualPet;
 }
 }
}

Having associated the local variable pet with a VirtualPet object, we can now use
that variable to refer to, and therefore control, that object. However, currently our
VirtualPet object can’t actually do anything because we haven’t programmed its
functionality. We’ll start to rectify that shortcoming in the next section by giving pets
the ability to have nicknames.

Instance Variables
Earlier we learned that a class describes the characteristics and behavior of a particu-
lar type of object. In object-oriented programming terms, a “characteristic” is a spe-
cific piece of information (i.e., value) that describes some aspect of an object—such
as its width, speed, or color. To keep track of an object’s characteristics, we use
instance variables.

An instance variable is a variable attached to a particular object. Typically, each
instance variable describes a characteristic of the object to which it is attached. For
example, an instance variable might be the identifier width associated with the value
150, describing the size of the button object in an interface. Or, an instance variable
might be the identifier shippingAddress associated with the value “34 Somewhere
St,” describing the destination of a product-order object.

Instance variables are created using variable definitions directly within class defini-
tions, as shown in the following generalized code:

class SomeClass {
 var identifier = value;
}

Variables and Values | 21

Adding an instance variable definition to a class definition causes that variable to be
automatically attached to each instance of the class. As with local variables, the ini-
tializer of an instance variable definition specifies the initial value of the instance
variable. However, because instance variables are set independently for each individ-
ual instance of a class, the initial value of an instance variable is very often omitted
and assigned later in the program.

As an example, let’s add an instance variable to the VirtualPet class that tracks the
nickname of each VirtualPet object. We’ll call our instance variable petName. Here’s
the code:

package zoo {
 internal class VirtualPet {
 var petName = "Unnamed Pet";
 }
}

As a result of the preceding code, the instance variable petName is automatically
attached to each new instance of the VirtualPet class. The initial value of petName for
all VirtualPet instances is “Unnamed Pet.” However, once each VirtualPet instance is
created, a new, custom value can be assigned to its petName variable.

To assign an instance variable a new value, we use the following generalized code:

object.instanceVariable = value

In the preceding code, object is the object whose instance variable will be assigned a
value, instanceVariable is one of object’s instance variables (as defined by object’s
class), and value is the value to assign.

Let’s use the preceding technique to assign a nickname to the VirtualPet object we
created earlier in the VirtualZoo constructor. Here’s the code as we last saw it:

package zoo {
 public class VirtualZoo {
 public function VirtualZoo () {
 var pet = new VirtualPet;
 }
 }
}

According to the generalized code for assigning an instance variable a new value, we
need to start by referring to an object. In this case, we use the local variable pet to
refer to the desired VirtualPet instance:

pet

Next, we write a dot:

pet.

Then, we write the name of the instance variable whose value we wish to assign—in
this case, petName:

pet.petName

22 | Chapter 1: Core Concepts

Finally, we write an equals sign, then the value we wish to assign to the instance vari-
able. Let’s use “Stan”:

pet.petName = "Stan"

Isn’t that cute? Our pet has a name. We’re making progress.

Here’s the code as it appears in our program:

package zoo {
 public class VirtualZoo {
 public function VirtualZoo () {
 var pet = new VirtualPet;
 pet.petName = "Stan";
 }
 }
}

In the preceding code, notice that the petName instance variable, which is defined in
the VirtualPet class, is set through a VirtualPet instance from within the VirtualZoo
class. The petName instance variable is, therefore, said to be accessible to code in the
VirtualZoo class. When a class makes its instance variables accessible to code in
other classes, it is conceptually allowing those classes to modify the characteristics of
its instances. The nickname of a pet is a characteristic that naturally lends itself to
external modification. However, some instance variables represent characteristics
that should not be modified outside the class in which they are defined. For exam-
ple, later in this chapter we’ll create an instance variable, caloriesPerSecond, that
represents the speed with which a pet digests its food. If an inappropriately small or
large value is assigned to caloriesPerSecond, a pet might starve instantly or never
grow hungry. Hence, to prevent external code from assigning an inappropriate value
to caloriesPerSecond, we must limit access to that variable. To limit access to a vari-
able, we use access-control modifiers.

Access-control modifiers for instance variables

An instance variable’s access-control modifier controls that variable’s accessibility in
a program. The access-control modifiers available for instance variable definitions
are public, internal, protected, and private. The public and internal modifiers have the
same effect with instance variables that they have with classes: an instance variable
declared public can be accessed both inside and outside of the package in which it is
defined; an instance variable declared internal can be accessed inside the package in
which it is defined only. The protected and private modifiers are even more restric-
tive than internal. An instance variable declared protected can be accessed by code in
the class that contains the variable’s definition, or by code in descendants of that
class only (we haven’t studied inheritance yet, so if you are new to object-oriented
programming, you can simply ignore protected for now). An instance variable
declared private can be accessed by code in the class that contains the variable’s defi-
nition only. When no modifier is specified, internal (package-wide access) is used.

Variables and Values | 23

Table 1-2 summarizes the access-control modifiers for instance variables.

By defining a class’s instance variables as private, we can keep each instance’s infor-
mation safely encapsulated, preventing other code from relying too heavily on the
internal structure of the class or accidentally assigning invalid values to instance vari-
ables. In general, it’s good form to specify an access-control modifier explicitly for
every instance variable. No instance variable should be defined as public unless spe-
cifically required by its class’s architecture. If you are unsure which access-control
modifier to use, use private. Down the road, you can easily make the instance vari-
able more accessible if required. By contrast, if you start with a public instance vari-
able, you’ll have a tough time changing it to private later if external code already
relies on it.

In the current version of our virtual zoo application, the petName instance variable is
used within both the VirtualPet class and the VirtualZoo class, so we should define
petName with the access-control modifier internal, as follows:

package zoo {
 internal class VirtualPet {
 internal var petName = "Unnamed Pet";
 }
}

Note that defining an instance variable with the internal attribute is identical to
defining the variable with no access-control modifier at all (because internal is the
default).

There are plenty more examples of instance variables throughout the remainder of
this book. Now let’s continue with the development of our virtual zoo program.

So far, the structure of our VirtualPet class requires each VirtualPet object’s petName
variable to be set voluntarily. If, however, we want to guarantee that a name is
supplied for every pet, we can use constructor parameters, as described in the next
section.

Table 1-2. Instance variable access-control modifiers

Attribute

Code placement Public Internal Protected Private

Code in class containing variable’s
definition

Access allowed Access allowed Access allowed Access allowed

Code in descendant of class containing
variable’s definition

Access allowed Access allowed Access allowed Access denied

Code in different class in same package as
variable’s definition

Access allowed Access allowed Access denied Access denied

Code not in same package as variable’s
definition

Access allowed Access denied Access denied Access denied

24 | Chapter 1: Core Concepts

Constructor Parameters and Arguments
A constructor parameter is special type of local variable that is created as part of a
constructor-method definition. Unlike regular local variables, a constructor parame-
ter’s initial value can be (or in some cases, must be) supplied externally when a new
object is instantiated.

Constructor parameters are not created with the keyword var. Instead, to create a
constructor parameter, we simply provide the desired name and variable initializer
within the parentheses of a constructor function definition, as shown in the follow-
ing generalized code:

class SomeClass {
 function SomeClass (identifier = value) {
 }
}

In the preceding code, identifier is the name of a constructor parameter, and value
is the parameter’s initial value.

To create more than one parameter for a constructor method, we list multiple
parameter names, separated by commas, as shown in the following generalized code
(notice the line breaks, which are both legal and common):

class SomeClass {
 function SomeClass (identifier1 = value1,

identifier2 = value2,
identifier3 = value3) {

 }
}

By default, the initial value of a constructor parameter is set to the value supplied in
that parameter’s definition. However, a constructor parameter’s value can alterna-
tively be supplied when an object is instantiated, using the following generalized
object-creation code:

new SomeClass(value1, value2, value3)

In the preceding code, value1, value2, and value3 are values that are assigned, in
order, to the constructor parameters of SomeClass’s constructor method. A value sup-
plied to a constructor parameter when an object is instantiated (as shown in the pre-
ceding code) is known as a constructor argument. Using a constructor argument to
supply the value of a constructor parameter is known as passing that value to the
constructor.

When a constructor parameter definition does not include a variable initializer, that
parameter’s initial value must be supplied via a constructor argument. Such a parame-
ter is known as a required constructor parameter. The following generalized code

Constructor Parameters and Arguments | 25

shows how to create a class with a single required constructor parameter (notice that
the parameter definition does not include a variable initializer):

class SomeClass {
 function SomeClass (requiredParameter) {
 }
}

Any code that creates an instance of the preceding class must supply
requiredParameter’s value using a constructor argument, as shown in the following
generalized code:

new SomeClass(value)

Failure to supply a constructor argument for a required parameter causes an error
either when the program is compiled (if the program is compiled in strict mode) or
when the program runs (if the program is compiled in standard mode). We’ll learn
the difference between strict mode and standard mode compilation in Chapter 7.

When creating a new object without constructor arguments, some pro-
grammers choose to retain the constructor-argument parentheses. For
example, some programmers prefer to write:

new VirtualPet()

rather than:

new VirtualPet

The choice is entirely stylistic; ActionScript allows both formats. How-
ever, the ActionScript programming community favors the former
style (with parentheses) over the latter (without parentheses). Hence,
from now on, this book will always include parentheses when creat-
ing new objects, even when no constructor arguments are used.

Using the preceding generalized parameter code is a guide, let’s add a new construc-
tor method to our VirtualPet class, and define a single, required constructor parame-
ter, name. We’ll use the value of the name parameter to set each VirtualPet object’s
petName instance variable. Here’s the basic code for the constructor method, shown,
for the moment, without any code in the constructor body:

package zoo {
 internal class VirtualPet {
 internal var petName = "Unnamed Pet";

 public function VirtualPet (name) {
 }
 }
}

26 | Chapter 1: Core Concepts

Because name is a required parameter, its initial value must be supplied externally at
object-creation time. Accordingly, we must update the code that creates our
VirtualPet object in the VirtualZoo constructor. Previously, the code looked like this:

package zoo {
 public class VirtualZoo {
 public function VirtualZoo () {
 var pet = new VirtualPet;
 pet.petName = "Stan";
 }
 }
}

Here’s the updated version, which passes the value “Stan” to the VirtualPet construc-
tor instead of assigning it to the new instance’s petName variable:

package zoo {
 public class VirtualZoo {
 public function VirtualZoo () {
 var pet = new VirtualPet("Stan");
 }
 }
}

When the preceding code creates the VirtualPet instance, VirtualPet’s constructor
runs, and the constructor argument “Stan” is assigned to the name parameter. Hence,
within the VirtualPet constructor, we can use the name parameter to assign the value
“Stan” to the new VirtualPet object’s petName instance variable. To do that, we need
to specify petName’s value using an identifier expression. The next section describes
expressions and identifier expressions.

Expressions
The written form of a value in an ActionScript program is known as an expression.
For example, the following code shows a new expression—an expression represent-
ing a new object (in this case, a Date object):

new Date()

Likewise, the following code shows a literal expression representing a Number object
with the value 2.5:

2.5

Individual expressions can be combined together with operators to create a com-
pound expression, whose value is calculated when the program runs. An operator is a
built-in command that combines, manipulates, or transforms values (which are
known as the operator’s operands). Each operator is written using either a symbol,
such as +, or a keyword, such as instanceof.

Expressions | 27

For example, the multiplication operator, which multiplies two numbers, is written
using the asterisk symbol (*). The following code shows a compound expression that
multiplies 4 and 2.5:

4 * 2.5

When the preceding code is executed, ActionScript calculates the result of multiply-
ing 4 by 2.5, and the entire compound expression (4 * 2.5) is replaced by that single
calculated result (10). Calculating the value of an expression is known as evaluating
the expression.

For a complete list of ActionScript operators, see Chapter 10.

To represent values that are not known when a program is compiled (at compile-
time), but are supplied or calculated when the program runs (i.e., at runtime), we use
variable names. When ActionScript evaluates an expression containing a variable
name, it replaces that variable name with the corresponding variable’s value. The
process of replacing the variable name with the variable’s value is known as retriev-
ing, getting, or reading the variable value.

For example, consider the following compound expression, in which two values rep-
resented by variable names are multiplied together:

quantity * price

The variables quantity and price are placeholders for values that will be determined
at runtime. The value of quantity might be, say, a number supplied by the user,
while the value of price might be a number retrieved from a database. For the sake of
this example, let’s assume that the variable quantity has the value 2, and the vari-
able price has the value 4.99.

When ActionScript evaluates the expression quantity * price, it replaces quantity
with 2 and price with 4.99. Hence, during evaluation, the expression reads:

2 * 4.99

And the final value of the expression is:

9.98

In formal terms, an expression that contains a variable name only,
such as quantity, is known as an identifier expression.

Now let’s try using an identifier expression in our virtual pet program.

28 | Chapter 1: Core Concepts

Assigning One Variable’s Value to Another
When we last saw our virtual zoo program, we had just finished creating a construc-
tor method for the VirtualPet class. The constructor method defined a single parame-
ter, name, whose value was supplied externally by object-creation code in the
VirtualZoo class. Here’s the code for the VirtualPet and VirtualZoo classes, as we left
them:

// VirtualPet class
package zoo {
 internal class VirtualPet {
 internal var petName = "Unnamed Pet";

 public function VirtualPet (name) {
 }
 }
}

// VirtualZoo class
package zoo {
 public class VirtualZoo {
 public function VirtualZoo () {
 var pet = new VirtualPet("Stan");
 }
 }
}

Now that we know how to use variables in expressions, we can use the name parame-
ter to assign the value “Stan” to the new VirtualPet object’s petName instance variable.

Recall that to assign an instance variable a new value, we use the following general-
ized code:

object.instanceVariable = value

According to that generalized code, we need to start our variable assignment by
referring to an object. In this case, that object is the new VirtualPet instance being
created. To refer to it, we use the keyword this, which is an automatically created
parameter whose value is the object being created:

this

Within the body of a constructor method, the object being created is
known as the current object. To refer to the current object, we use the
keyword this.

After the keyword this, we write a dot, followed by the name of the instance vari-
able whose value we wish to assign—in this case petName.

this.petName

Assigning One Variable’s Value to Another | 29

Finally, we write an equals sign, then the value we wish to assign to the instance
variable:

this.petName = value

The value we wish to assign is the value associated with the name parameter. Hence,
for value, we write simply: name.

this.petName = name

At runtime, ActionScript replaces name, in the preceding code, with the value passed
to the VirtualPet constructor. That value is then assigned to the instance variable
petName.

Here’s the assignment code as it appears in our VirtualPet constructor:

package zoo {
 internal class VirtualPet {
 internal var petName = "Unnamed Pet";

 public function VirtualPet (name) {
 this.petName = name;
 }
 }
}

Now that petName’s value is assigned in the VirtualPet constructor, we can remove
the redundant initial value “Unnamed Pet” in the petName variable definition. The
petName variable definition used to look like this:

internal var petName = "Unnamed Pet";

From now on, it will look like this (notice the removal of the variable initializer):

package zoo {
 internal class VirtualPet {
 internal var petName;

 public function VirtualPet (name) {
 this.petName = name;
 }
 }
}

An expression that assigns a variable a value, such as this.petName =
name is known as an assignment expression. The equals sign in assign-
ment expressions is an operator called the assignment operator.

Copies and References
In the preceding section, we learned how to assign one variable’s value to another.
Specifically, we assigned the value of the parameter name to the instance variable
petName. Here’s the code:

this.petName = name;

30 | Chapter 1: Core Concepts

The result of assigning the one variable’s value to another variable depends on the
type of value being assigned.

In an assignment where the source variable’s value is an instance of String, Boolean,
Number, int, or uint, ActionScript makes a copy of that value and assigns the copy to
the destination variable. After the assignment, two separate copies of the original
value exist in system memory—the original value itself, and the copy of that value.
The source variable points, or refers, to the original value in memory. The destina-
tion variable refers to the new value in memory.

By contrast, in an assignment where the source variable’s value is an instance of a
custom class or an instance of a built-in class other than String, Boolean, Number,
int, or uint, ActionScript associates the second variable directly with the first vari-
able’s value. After the assignment, only one copy of the value exists in memory, and
both variables refer to it. The variables are said to share a reference to the single
object in memory. As a natural consequence, changes to the object made through the
first variable are reflected by the second variable. For example, consider the follow-
ing code, which creates two local variables, a and b, and then assigns a’s value to b:

var a = new VirtualPet("Stan");
var b = a;

When the first line of the preceding code runs, ActionScript creates a new VirtualPet
object, stores that object in memory, and then associates the local variable a with
that object. When the second line of the preceding code runs, ActionScript associ-
ates the local variable b with the VirtualPet object already referred to by a. Changes
made to the VirtualPet object through a are, hence, naturally reflected by b, and vice
versa. For example, if we assign petName using the code b.petName = "Tom", then sub-
sequently retrieving a.petName also yields “Tom.” Or, if we assign petName using the
code a.petName = "Ken", then subsequently retrieving b.petName also yields “Ken.”

A variable associated with an object does not store or contain that
object—it simply refers to that object. The object, itself, is stored
internally by ActionScript, in system memory.

An Instance Variable for Our Pet
Earlier, we learned that a local variable expires when the method or function in
which it is defined finishes executing. To make sure that the VirtualPet instance in
our VirtualZoo class will be accessible after the VirtualZoo constructor finishes, let’s
update the VirtualZoo class. Instead of assigning our VirtualPet object to a local vari-
able, we’ll assign it to an instance variable, pet. We’ll make pet private so that it can
be accessed by code in the VirtualZoo class only. Here’s the code (the new instance
variable is shown in bold):

package zoo {
 public class VirtualZoo {
 private var pet;

Instance Methods | 31

 public function VirtualZoo () {
 this.pet = new VirtualPet("Stan");
 }
 }
}

Over the preceding several sections, we’ve learned how to use instance variables to
give characteristics to the objects of a class. Now let’s explore how to use instance
methods to give behaviors to the objects of a class.

Instance Methods
An instance method is a discrete set of instructions that carry out some task related
to a given object. Conceptually, instance methods define the things an object can do.
For example, the built-in Sound class (whose instances represent sounds in a pro-
gram) defines an instance method named play that can start a sound playing. Like-
wise, the built-in TextField class (whose instances represent onscreen text) defines a
method named setSelection that can change the amount of text selected in the text
field.

To create an instance method, we use a function definition within a class block, as
shown in the following generalized code:

class SomeClass {
 function identifier () {
 }
}

In the preceding code, the keyword function begins the instance method. Next comes
the instance method name, which can be any legal identifier. (Recall that identifiers
must not contain spaces or dashes, and cannot start with a number.) The method
name is followed by a pair of parentheses that contain a list of method parameters,
which we’ll study later. The curly braces ({}) following the parameter list are a block
statement. A instance method’s block statement is known as the method body. The
method body contains directives that perform some task.

Instance methods are created using the function keyword because they
are, technically speaking, a type of function. We’ll study functions in
Chapter 5.

To execute the code in a given method body, we use a call expression, as shown in
the following generalized code. Notice the important and mandatory use of the
parentheses operator, (), following the method name.

object.methodName()

In the preceding code, methodName is the name of the method whose code should be
executed, and object is a reference to the specific instance that will conceptually
perform the task represented by the specified method. Using a call expression to

32 | Chapter 1: Core Concepts

execute the code in an instance method’s body is known as calling a method of an
object (or, synonymously calling a method through an object, or calling an object’s
method). The term invoke is also used to mean call.

When discussing a particular method by name, most documentation
includes the parentheses operator, (). For example, typical documen-
tation would write setSelection() rather than setSelection. The conven-
tion of including the parentheses operator helps distinguish method
names from variable names in prose. To further emphasize the distinc-
tion between variable names and method names, this book italicizes
method names and uses constant-width font for variable names.

Let’s put the preceding concepts into practice in our virtual zoo program.

To give our pets the ability to eat, we’ll add a new instance variable and a new
instance method to the VirtualPet class. The new instance variable, currentCalories,
will track the amount of food each pet has eaten, as a numeric value. The new
instance method, eat(), will implement the concept of eating by adding 100 calories
to currentCalories. Eventually, the eat() method will be called in response to a user
action—feeding a pet.

The following code shows the currentCalories variable definition. To prevent exter-
nal code from tampering with the amount of calories each VirtualPet instance has,
we define currentCalories as private. Notice that each new VirtualPet instance is
given 1,000 calories to start:

package zoo {
 internal class VirtualPet {
 internal var petName;
 private var currentCalories = 1000;

 public function VirtualPet (name) {
 this.petName = name;
 }
 }
}

The following code shows the basic eat() method definition. Notice that, by conven-
tion, instance methods are listed after the class’s constructor method, while instance
variables are listed before the class’s constructor method.

package zoo {
 internal class VirtualPet {
 internal var petName;
 private var currentCalories = 1000;

 public function VirtualPet (name) {
 this.petName = name;
 }

Instance Methods | 33

 function eat () {
 }
 }
}

Even though the eat() method body does not yet contain any code, with the preced-
ing definition in place, we can already invoke the eat() method on a VirtualPet
object, as shown in the following updated version of the VirtualZoo class:

package zoo {
 public class VirtualZoo {
 private var pet;

 public function VirtualZoo () {
 this.pet = new VirtualPet("Stan");
 // Invoke eat() on the VirtualPet object referenced by the
 // variable pet
 this.pet.eat();
 }
 }
}

Within the eat() method body, we want to add 100 to the currentCalories variable
of the object through which the eat() method was called. To refer to that object, we
use the keyword this.

Within the body of an instance method, the object through which the
method is called is known as the current object. To refer to the current
object, we use the keyword this. Notice that the term “current object”
can refer to either the object being created in a constructor method or
the object through which an instance method was called.

Adding a numeric value (such as 100) to an existing variable (such as
currentCalories) is a two-step process. First, we calculate the sum of the variable
and the numeric value; then we assign that sum to the variable. Here’s the general-
ized code:

someVariable = someVariable + numericValue

In the case of the eat() method, we want to add 100 to the currentCalories variable
of the current object (this). Hence, the code is:

this.currentCalories = this.currentCalories + 100;

As a convenient alternative to the preceding code, ActionScript offers the addition
assignment operator, +=, which, when used with numbers, adds the value on the right
to the variable on the left, as shown in the following code:

this.currentCalories += 100;

Here’s the code as it appears in the VirtualPet class:

package zoo {
 internal class VirtualPet {

34 | Chapter 1: Core Concepts

 internal var petName;
 private var currentCalories = 1000;

 public function VirtualPet (name) {
 this.petName = name;
 }

 function eat () {
 this.currentCalories += 100;
 }
 }
}

From now on, every time a VirtualPet instance’s eat() method is called, that
instance’s currentCalories variable will increase by 100. For example, the following
code, repeated from the VirtualZoo constructor, increases pet’s currentCalories to
1,100 (because all VirtualPet instances start with 1,000 calories).

this.pet = new VirtualPet("Stan");
this.pet.eat();

Notice that even though the VirtualPet characteristic currentCalories is kept pri-
vate, it can still be modified as result of a VirtualPet instance performing a behavior
(eating) that is instigated by an external code. In some cases, however, even instance
methods must be kept private. As with instance variables, we use access-control
modifiers to control the accessibility of instance methods in a program.

Access Control Modifiers for Instance Methods
The access-control modifiers available for instance method definitions are identical
to those available for instance variables—public, internal, protected, and private. An
instance method declared public can be accessed both inside and outside of the pack-
age in which it is defined; an instance method declared internal can be accessed only
inside the package in which it is defined. An instance method declared protected can
be accessed by code in the class that contains the method’s definition, or by code in
descendants of that class only (we haven’t studied inheritance yet, so if you are new
to object-oriented programming, you can simply ignore protected for now). An
instance method declared private can be accessed by code in the class that contains
the method’s definition only. When no modifier is specified, internal (package-wide
access) is used.

By adding access-control modifiers to the methods of the class, we can put the “black
box” principle into strict practice. In object-oriented programming, each object can
be thought of as a black box that is controlled by an external assortment of meta-
phoric knobs. The object’s internal operations are unknown (and unimportant) to
the person using those knobs; all that matters is that the object performs the desired
action. An object’s public instance methods are the knobs by which any programmer
can tell that object to perform some operation. An object’s non-public methods

Instance Methods | 35

perform other internal operations. Hence, the only methods a class should make
publicly accessible are those that external code needs when instructing instances of
that class to do something. Methods needed to carry out internal operations should
be defined as private, protected, or internal. As an analogy, think of an object as a car,
whose driver is the programmer using the object, and whose manufacturer is the pro-
grammer that created the object’s class. To drive the car, the driver doesn’t need to
know how a car’s engine works. The driver simply uses the gas pedal to accelerate
and the steering wheel to turn. Accelerating the car in response to the driver step-
ping on the gas pedal is the manufacturer’s concern, not the driver’s.

As you manufacture your own classes, focus as much energy designing the way the
class is used as you do implementing how it works internally. Remember to put
yourself in the “driver’s seat” regularly. Ideally, the way the class’s public methods
are used externally should change very little or not at all each time you make an
internal change to the class. If you put a new engine in the car, the driver should still
be able to use the gas pedal. As much as possible, keep the volatility of your classes
behind the scenes, in private methods.

In object-oriented terms, a class’s public instance methods and public
instance variables are, together, sometimes called the class’s interface
to the outside world—or, synonymously, the class’s API (Application
Programming Interface).

The term API also refers to the collective services provided by an entire
group of classes. For example, the built-in Flash-runtime classes for
displaying content on screen are known as the display API. Likewise, a
custom set of classes used to render 3D content might be known as a
“3D API”. In addition to classes, APIs can also include other program
definitions (such as variables and functions).

In ActionScript, the term interface has an additional technical mean-
ing, covered in Chapter 9. To avoid confusion, this book does not use
the term “interface” to describe an object’s public instance methods
and public instance variables.

Returning to our virtual zoo program, let’s now add an access-control modifier to the
VirtualPet class’s eat() method. We’ll make eat() a public method because it is one of
the official means by which external code is intended to control VirtualPet objects.
Here’s the revised code:

package zoo {
 internal class VirtualPet {
 internal var petName;
 private var currentCalories = 1000;

 public function VirtualPet (name) {
 this.petName = name;
 }

 public function eat () {
 this.currentCalories += 100;

36 | Chapter 1: Core Concepts

 }
 }
}

As it stands, the VirtualPet class’s eat() method is inflexible because it adds the same
amount of calories to currentCalories every time it is called. Eventually, we’ll want
to dynamically adjust the amount of calories added when a pet eats based on the
type of food fed to it by the user. To allow the amount of calories added at feeding
time to be specified externally when eat() is called, we need method parameters.

Method Parameters and Arguments
Like constructor parameters, a method parameter is special type of local variable that
is created as part of a method definition, but whose initial value can be (or, in some
cases, must be) supplied externally when the method is called.

To define a method parameter, we use the following generalized code. Notice that a
method-parameter definition has the same general structure as a constructor-param-
eter definition.

function methodName (identifier1 = value1,
identifier2 = value2,
...
identifiern = valuen) {

}

In the preceding code, identifier1=value1,identifier2=value2,...
identifiern=valuen is a list of method parameter names and their corresponding ini-
tial values. By default, a method parameter’s initial value is the value supplied in that
parameter’s definition. However, a method parameter’s value can alternatively be
supplied via a call expression, as shown in the following generalized code:

theMethod(value1, value2,...valuen)

In the preceding code, theMethod is a reference to the method being invoked, and
value1, value2,...valuen is a list of values that are assigned, in order, to theMethod’s
parameters. A value supplied to a method parameter through a call expression (as
shown in the preceding code) is known as a method argument. Using a method
argument to supply the value of a method parameter is known as passing that value
to the method.

As with constructor parameters, when a method parameter definition does not
include a variable initializer, that parameter’s initial value must be supplied via a
method argument. Such a parameter is known as a required method parameter. The
following generalized code shows how to create a method with a single required
method parameter (notice that the parameter definition does not include a variable
initializer):

function methodName (requiredParameter) {
}

Instance Methods | 37

Any code that calls the preceding method must supply requiredParameter’s value
using a method argument, as shown in the following generalized code:

theMethod(value)

Failure to supply a constructor argument for a required parameter causes an error
either when the program is compiled (if the program is compiled in strict mode) or
when the program runs (if the program is compiled in standard mode).

Now let’s update the VirtualPet class’s eat() method to include a required parame-
ter, numberOfCalories. Each time eat() is called, we’ll increase the value of the cur-
rent object’s currentCalories variable by the value of numberOfCalories. Here’s the
updated code for the eat() method:

package zoo {
 internal class VirtualPet {
 internal var petName;
 private var currentCalories = 1000;

 public function VirtualPet (name) {
 this.petName = name;
 }

 public function eat (numberOfCalories) {
 this.currentCalories += numberOfCalories;
 }
 }
}

Because numberOfCalories is a required parameter, its initial value must be supplied
externally when eat() is called. Let’s try it out with the VirtualPet object created in
the VirtualZoo constructor. Previously, the code for the VirtualZoo constructor
looked like this:

package zoo {
 public class VirtualZoo {
 private var pet;

 public function VirtualZoo () {
 this.pet = new VirtualPet("Stan");
 this.pet.eat();
 }
 }
}

Here’s the updated version, which passes the value 50 to eat():

package zoo {
 public class VirtualZoo {
 private var pet;

38 | Chapter 1: Core Concepts

 public function VirtualZoo () {
 this.pet = new VirtualPet("Stan");
 this.pet.eat(50);
 }
 }
}

The preceding call expression causes eat() to run with the value 50 assigned to the
numberOfCalories parameter. As a result, 50 is added to the currentCalories instance
variable of the VirtualPet instance referenced by pet. After the code completes, the
value of pet’s currentCalories variable is 1050.

Method Return Values
Just as methods can accept values in the form of arguments, methods can also pro-
duce or return values. To return a value from a method, we use a return statement, as
shown in the following general code:

function methodName () {
 return value;
}

The value returned by a method is known as the method’s return value
or result.

When a method executes, its return value becomes the value of the call expression
that called it.

To demonstrate the use of method return values, let’s add a new method to the
VirtualPet class that calculates and then returns the age of a pet. In order to be able
to calculate a pet’s age, we need a little knowledge of the Date class, whose instances
represent specific points in time. To create a new Date instance, we use the follow-
ing code:

new Date()

Times represented by Date instances are expressed as the “number of milliseconds
before or after midnight of January 1, 1970.” For example, the time “one second
after midnight January 1, 1970” is expressed by the number 1000. Likewise, the time
“midnight January 2, 1970” is expressed by the number 86400000 (one day is 1000
milliseconds × 60 seconds × 60 minutes × 24 hours). By default, a new Date object
represents the current time on the local system.

To access a given Date instance’s numeric “milliseconds-from-1970” value, we use
the instance variable time. For example, the following code creates a new Date
instance and then retrieves the value of its time variable:

new Date().time;

Instance Methods | 39

On January 24, 2007, at 5:20 p.m., the preceding code yielded the value:
1169677183875, which is the precise number of milliseconds between midnight
January 1, 1970 and 5:20 p.m. on January 24, 2007.

Now let’s return to the VirtualPet class. To be able to calculate the age of VirtualPet
objects, we must record the current time when each VirtualPet object is created. To
record each VirtualPet object’s creation time, we create an instance of the built-in
Date class within the VirtualPet constructor, and then assign that instance to a
VirtualPet instance variable, creationTime. Here’s the code:

package zoo {
 internal class VirtualPet {
 internal var petName;
 private var currentCalories = 1000;
 private var creationTime;

 public function VirtualPet (name) {
 this.creationTime = new Date();
 this.petName = name;
 }

 public function eat (numberOfCalories) {
 this.currentCalories += numberOfCalories;
 }
 }
}

Using creationTime, we can calculate any VirtualPet object’s age by subtracting the
object’s creation time from the current time. We’ll perform that calculation in a new
method named getAge(). Here’s the code:

public function getAge () {
 var currentTime = new Date();
 var age = currentTime.time - this.creationTime.time;
}

To return the calculated age, we use the following return statement:

public function getAge () {
 var currentTime = new Date();
 var age = currentTime.time - this.creationTime.time;

 return age;
}

The following code shows the getAge() method in the context of the VirtualPet class:

package zoo {
 internal class VirtualPet {
 internal var petName;
 private var currentCalories = 1000;
 private var creationTime;

40 | Chapter 1: Core Concepts

 public function VirtualPet (name) {
 this.creationTime = new Date();
 this.petName = name;
 }

 public function eat (numberOfCalories) {
 this.currentCalories += numberOfCalories;
 }

 public function getAge () {
 var currentTime = new Date();
 var age = currentTime.time - this.creationTime.time;
 return age;
 }
 }
}

Now let’s use getAge()’s return value in the VirtualZoo class. Consider the getAge()
call expression in the following updated version of VirtualZoo:

package zoo {
 public class VirtualZoo {
 private var pet;

 public function VirtualZoo () {
 this.pet = new VirtualPet("Stan");
 this.pet.getAge();
 }
 }
}

In the preceding code, the expression pet.getAge() has a numeric value representing
the number of milliseconds since the creation of the VirtualPet object referenced by
pet. In order to be able to access that value later in the program, we could assign it to
a variable, as follows:

package zoo {
 public class VirtualZoo {
 private var pet;

 public function VirtualZoo () {
 this.pet = new VirtualPet("Stan");
 var age = this.pet.getAge();
 }
 }
}

Alternatively, in a more complete version of the virtual zoo program, we might dis-
play the returned age on screen for the user to see.

Method return values are a highly common part of object-oriented programming.
We’ll use them extensively throughout this book, as you will in your own code.

Instance Methods | 41

Note that like any other expression, a call expression can be combined with other
expressions using operators. For example, the following code uses the division oper-
ator to calculate half the age of a pet:

pet.getAge() / 2

Likewise, the following code creates two VirtualPet objects, adds their ages together,
and assigns the sum to a local variable, totalAge:

package zoo {
 public class VirtualZoo {
 private var pet1;
 private var pet2;

 public function VirtualZoo () {
 this.pet1 = new VirtualPet("Sarah");
 this.pet2 = new VirtualPet("Lois");
 var totalAge = this.pet1.getAge() + this.pet2.getAge();
 }
 }
}

Note that when a return statement does not include any value to return, it simply ter-
minates the currently executing method. For example:

public function someMethod () {
 // Code here (before the return statement) will be executed

 return;

 // Code here (after the return statement) will not be executed
}

The value of a call expression that calls a method with no return value (or with no
return statement at all) is the special value undefined. Return statements with no
return value are typically used to terminate methods based on some condition.

Method Signatures
In documentation and discussions of object-oriented programming, a method’s
name and parameter list are sometimes referred to as the method’s signature. In
ActionScript, a method signature also includes each parameter’s datatype and the
method’s return type. Parameter datatypes and method return types are discussed in
Chapter 8.

For example, the signature of the eat() method is:

eat(numberOfCalories)

The signature of the getAge() method is simply:

getAge()

We’ve now covered the basics of instance methods. Before we conclude this chapter,
we’ll study one last issue related to ActionScript vocabulary.

42 | Chapter 1: Core Concepts

Members and Properties
In the ActionScript 3.0 specification, an object’s variables and methods are referred
to collectively as its properties, where property means “a name associated with a
value or method.” Confusingly, in other ActionScript documentation (most notably
Adobe’s ActionScript Language Reference), the term property is also used to mean
“instance variable.” To avoid the confusion caused by this contradiction, this book
avoids the use of the term “property” entirely.

Where necessary, this book uses the traditional object-oriented programming term
instance members (or simply members) to refer to a class’s instance methods and
instance variables collectively. For example, we might say “radius is not a member of
Box,” meaning that the Box class does not define any methods or variables named
radius.

Virtual Zoo Review
This chapter has introduced a large number of concepts and terms. Let’s practice
using them by reviewing our virtual zoo program for the last time in this chapter.

Our virtual zoo game has two classes: VirtualZoo (the main class) and VirtualPet
(which represents the pets in the zoo).

When our program starts, the Flash runtime automatically creates an instance of
VirtualZoo (because VirtualZoo is the application’s main class). The act of creating
the VirtualZoo instance causes the VirtualZoo constructor method to execute. The
VirtualZoo constructor method creates an instance of the VirtualPet class, with a sin-
gle constructor argument, “Stan.”

The VirtualPet class defines three instance variables, petName, currentCalories, and
creationTime. Those three instance variables represent the following pet characteris-
tics: the pet’s nickname, the amount of food in the pet’s stomach, and the pet’s birth
date. For a new VirtualPet object, the initial value of currentCalories is a number
created using the literal expression 1000. The initial value of creationTime is a Date
object representing the time at which each VirtualPet object is created. When a
VirtualPet object is created, petName is assigned the value of the required constructor
parameter, name. The constructor parameter name receives its value through a con-
structor argument, supplied by the new expression that creates the VirtualPet object.

The VirtualPet class defines two instance methods, eat() and getAge(). The eat()
method increases currentCalories by the specified numeric value. The getAge()
method calculates and returns the pet’s current age, in milliseconds.

Example 1-2 displays the current code for our zoo program.

Break Time! | 43

Break Time!
We’ve made great progress in this chapter. There’s lots more to learn, but it’s time
for a well-deserved break. When you’re ready for more ActionScript 3.0 essentials,
head on to the next chapter.

Example 1-2. Zoo program

// VirtualPet class
package zoo {
 internal class VirtualPet {
 internal var petName;
 private var currentCalories = 1000;
 private var creationTime;

 public function VirtualPet (name) {
 this.creationTime = new Date();
 this.petName = name;
 }

 public function eat (numberOfCalories) {
 this.currentCalories += numberOfCalories;
 }

 public function getAge () {
 var currentTime = new Date();
 var age = currentTime.time - this.creationTime.time;
 return age;
 }
 }
}

// VirtualZoo class
package zoo {
 public class VirtualZoo {
 private var pet;

 public function VirtualZoo () {
 this.pet = new VirtualPet("Stan");
 }
 }
}

44

Chapter 2CHAPTER 2

Conditionals and Loops 3

In this chapter, we’ll depart from the general topics of classes and objects. Instead,
we’ll focus, on two essential types of statements: conditionals and loops. Condition-
als are used to add logic to a program, while loops are used to perform repetitive
tasks. Both conditionals and loops are extremely common, and can be found in
nearly every ActionScript program. Once we’ve finished with conditionals and loops,
we’ll return to classes and objects, and continue developing our virtual zoo program.

This chapter presents all code examples outside the context of a functioning class or
program. However, in a real program, conditionals and loops can be used within
instance methods, constructor methods, static methods, functions, directly within
class bodies or package bodies, and even outside package bodies.

Conditionals
A conditional is a type of statement that executes only when a specified condition is
met. Conditionals let a program choose between multiple possible courses of action
based on the current circumstances.

ActionScript provides two different conditionals: the if statement and the switch
statement. ActionScript also provides a single conditional operator, ?:, which is cov-
ered briefly in Chapter 10. For details on the ?: operator, see Adobe’s ActionScript
language reference.

The if Statement
The if statement is like a two-pronged fork in the road. It contains two blocks of
code and an expression (known as the test expression) that governs which block
should execute. To create an if statement, we use the following generalized code:

if (testExpression) {
codeBlock1

} else {

Conditionals | 45

codeBlock2
}

When ActionScript encounters an if statement, it executes either codeBlock1 or
codeBlock2, depending on the value of testExpression. If the value of testExpression
is the Boolean value true, then the first block is executed. If the value of
testExpression is the Boolean value false, then the second block is executed. If the
value of testExpression is not a Boolean value, ActionScript automatically converts
testExpression to a Boolean object and uses the result of that conversion to decide
which block to execute. (The rules for converting a value to the Boolean class are
described in Table 8-5 in Chapter 8.)

For example, in the following if statement, the supplied test expression is the
Boolean value true, so the value of the variable greeting is set to “Hello”, not
“Bonjour”.

var greeting;

// Test expression is true, so...
if (true) {
 // ...this code runs
 greeting = "Hello";
} else {
 // This code doesn't run
 greeting = "Bonjour";
}

Of course, the preceding test expression would rarely, if ever, be used in a real pro-
gram because it always produces the same result. In the vast majority of cases, the
test expression’s value is dynamically determined at runtime based on information
calculated by the program or provided by the user.

For example, suppose we’re building a social activity web site that includes gam-
bling activities. To participate in a gambling activity, the user must be at least 18
years old. At login time, each user’s status is loaded from a database. The loaded sta-
tus is assigned to a variable, gamblingAuthorized. A gamblingAuthorized of true indi-
cates that the user is 18 or older; a gamblingAuthorized of false, indicates that the
user is under 18.

When the user attempts to start gambling, the application uses the following condi-
tional statement to determine whether the attempt should be permitted or denied:

if (gamblingAuthorized) {
 // Code here would display the gambling activity's interface
} else {
 // Code here would display an "entry denied" message
}

Very often, the test expression in an if statement is either an equality expression or a
relational expression. Equality expressions and relational expressions use equality
operators and relational operators to compare two values, and express the result of

46 | Chapter 2: Conditionals and Loops

that comparison as a Boolean value (i.e., either true or false). For example, the
following equality expression uses the equality operator (==) to compare expression
“Mike” to the expression “Margaret”:

"Mike" == "Margaret"

The preceding expression evaluates to the Boolean value false because “Mike” is
considered not equal to “Margaret”.

Likewise, the following relational expression uses the less than operator (<) to com-
pare the expression 6 to the expression 7:

6 < 7

This expression evaluates to the Boolean value true because 6 is less than 7.

As the preceding examples show, instances of the String class are compared based on
the individual characters they represent, and instances of the Number, int, and uint
classes are compared based on the mathematical quantities they represent. Note that
string comparisons are case-sensitive; for example, “a” is considered not equal to
“A”. For the rules governing whether one value is equal to, greater than, or less than
another value, see the entries for the ==, ===, <, and > operators in Adobe’s Action-
Script Language Reference.

Now let’s take a look at an example of an if statement that uses an equality expres-
sion as its test expression. Suppose we’re building an online shopping program with
a virtual shopping basket. The program maintains an instance variable, numItems,
whose value indicates the number of items currently in the user’s shopping basket.
When the basket is empty, the program displays the message “Your basket is
empty”. When the basket is not empty, the program instead displays the message
“Total items in your basket: n” (where n represents the number of items in the
basket).

The following code shows how our program might create the shopping cart status
message. It assigns the value of the variable basketStatus based on the value of
numItems.

var basketStatus;

if (numItems == 0) {
 basketStatus = "Your basket is empty";
} else {
 basketStatus = "Total items in your basket: " + numItems;
}

In the preceding code, if numItems is equal to zero, the program sets basketStatus to
the expression:

"Your basket is empty"

Otherwise, if numItems is greater than zero, the program sets basketStatus to the
expression:

Conditionals | 47

"Total items in your basket: " + numItems

Notice the use of the concatenation operator (+) in the preceding expression. The con-
catenation operator converts the numeric value referenced by numItems to a string and
then combines that string with the string "Total items in your basket:". The result-
ing value is a combination of the two expressions. For example, if numItems is 2, then
the result of the concatenation expression is the following string:

"Total items in your basket: 2"

An if statement with no else

When the else clause of an if statement is not needed, it can simply be omitted. For
example, suppose that, in our shopping application, if the user orders more than 10
items, the total order is discounted by 10%. At checkout time, we might use code
such as the following when calculating the cost of the entire order:

if (numItems > 10) {
 totalPrice = totalPrice * .9;
}

If numItems is less than 11, totalPrice is simply not altered.

Chaining if statements

To make a decision between more than two possible courses of action, we chain
multiple if statements together, as shown in the following generalized code for a con-
dition with three possible outcomes:

if (testExpression1) {
codeBlock1

} else if (testExpression2) {
codeBlock2

} else {
codeBlock3

}

For example, suppose we’re writing a multilingual application that displays a greet-
ing message to its users in one of four languages: English, Japanese, French, or Ger-
man. When the program starts, we ask the user to choose a language, and we set a
corresponding variable, language, to one of the following strings: “english”, “japa-
nese”, “french”, or “german” (notice that the language names are not capitalized; it’s
typical to use all lowercase or all UPPERCASE when comparing strings). To create
the appropriate greeting message, we use the following code:

var greeting;

if (language == "english") {
 greeting = "Hello";
} else if (language == "japanese") {
 greeting = "Konnichiwa";
} else if (language == "french") {

48 | Chapter 2: Conditionals and Loops

 greeting = "Bonjour";
} else if (language == "german") {
 greeting = "Guten tag";
} else {
 // Code here (not shown) would display an error message indicating
 // that the language was not set properly
}

When the preceding code runs, if language’s value is “english”, then greeting is set
to “Hello”. If language’s value is “japanese”, “french”, or “german”, then greeting is
set to “Konnichiwa”, “Bonjour”, or “Guten tag”, respectively. If language’s value is
not “english”, “japanese”, “french”, or “german” (probably due to some program
error), then the code in the final else clause is executed.

Now that we’re familiar with the if statement, let’s consider the switch statement,
which is offered by ActionScript as a convenient way to create a condition with mul-
tiple possible outcomes.

The behavior of a switch statement can also be implemented with if
statements, but switch is considered more legible than if when work-
ing with conditions that have multiple possible outcomes.

The switch Statement
The switch statement lets us execute one of several possible code blocks based on the
value of a single test expression. The general form of the switch statement is:

switch (testExpression) {
 case expression1:

codeBlock1
 break;
 case expression2:

codeBlock2
 break;
 default:

codeBlock3
}

In the preceding code, testExpression is an expression that ActionScript will attempt
to match with each of the supplied case expressions, from top to bottom. The case
expressions are supplied with the statement label case, followed by a colon. If
testExpression matches a case expression, all statements immediately following that
case label are executed—including those in any subsequent case blocks! To prevent
subsequent case blocks from executing, we must use the break statement at the end
of each block. Alternatively, when we want more than one condition to trigger the
execution of the same block of code, we can omit the break statement. For example,
in the following code, codeBlock1 executes when testExpression matches either
expression1 or expression2:

switch (testExpression) {

Conditionals | 49

 case expression1:
 case expression2:

codeBlock1
 break;
 case expression3:

codeBlock2
 break;
 default:

codeBlock3
}

If no case expression matches testExpression, all statements following the default
label are executed.

Though the default label is normally listed last, it can legally come anywhere within
the switch statement. Furthermore, the default label is not mandatory in a switch
statement. If no default is provided and testExpression does not match a case expres-
sion, execution flow simply continues after the end of the switch statement block
(that is, the code within the switch statement is skipped).

The following code shows how to implement the preceding section’s multilingual
greeting condition using a switch statement instead of a chain of if statements. Both
approaches implement the same behavior, but the switch code is arguably easier to
read and scan quickly.

var greeting;

switch (language) {
 case "english":
 greeting = "Hello";
 break;

 case "japanese":
 greeting = "Konnichiwa";
 break;

 case "french":
 greeting = "Bonjour";
 break;

 case "german":
 greeting = "Guten tag";
 break;

 default:
 // Code here (not shown) would display an error message indicating
 // that the language was not set properly
}

50 | Chapter 2: Conditionals and Loops

The switch statement implicitly uses the strict equality operator
(===)—not the equality operator (==)—when comparing the
testExpression with case expressions. For a description of the differ-
ence, see Adobe’s ActionScript Language Reference.

Loops
In the preceding section, we saw that a conditional causes a statement block to exe-
cute once if the value of its test expression is true. A loop, on the other hand, causes
a statement block to be executed repeatedly, for as long as its test expression
remains true.

ActionScript provides five different types of loops: while, do-while, for, for-in, and
for-each-in. The first three types have very similar effects but with varying syntax.
The remaining two types are used to access the dynamic instance variables of an
object. We haven’t studied dynamic instance variables yet, so for now we’ll consider
the first three types of loops. For information on for-in and for-each-in, see
Chapter 15.

The while Statement
Structurally, a while statement is constructed much like an if statement: a main state-
ment encloses a code block that is executed only when a given test expression is true:

while (testExpression) {
codeBlock

}

If testExpression is true, the code in codeBlock (called the loop body) is executed.
But, unlike the if statement, when the codeBlock is finished, execution begins again at
the beginning of the while statement (that is, ActionScript “loops” back to the begin-
ning of the while statement). The second pass through the while statement works just
like the first: the testExpression is evaluated, and if it is still true, codeBlock is exe-
cuted again. This process continues until testExpression becomes false, at which
point execution continues with any statements that follow the while statement in the
program. If testExpression never yields false, the loop executes infinitely, eventu-
ally causing the Flash runtime to generate an error, which stops the loop (and all cur-
rently executing code). To avoid infinite execution, a while loop’s codeBlock typically
includes a statement that modifies the testExpression, causing it to yield false when
some condition is met.

For example, consider the following loop, which calculates 2 to the power of 3 (i.e.,
2 times 2 times 2) by executing the loop body two times:

var total = 2;
var counter = 0;

Loops | 51

while (counter < 2) {
 total = total * 2;
 counter = counter + 1;
}

To execute the preceding while loop, ActionScript first evaluates the test expression:

counter < 2

Because counter is 0, and 0 is less than 2, the value of the test expression is true; so,
ActionScript executes the loop body:

total = total * 2;
counter = counter + 1;

The loop body sets total to its own value multiplied by two and adds one to
counter. Hence, total becomes 4, counter becomes 1. When the loop body com-
pletes, it’s time to repeat the loop.

The second time the loop executes, ActionScript once again checks the value of the
test expression. This time, counter’s value is 1, and 1 is still less than 2, so the value
of the test expression is, once again, true. Consequently, ActionScript executes the
loop body for a second time. As before, the loop body sets total to its own value
multiplied by two and adds one to counter. Hence, total becomes 8, counter
becomes 2. When the loop body completes, it’s again time to repeat the loop.

The third time the loop executes, ActionScript once again checks the value of the test
expression. This time, counter’s value is 2, which is not less than 2, so the value of
the test expression is false, and the loop ends. When the entire process is complete,
total, which started with the value 2, has been multiplied by itself two times, so it
ends up with the value 8.

In real code, you should use Math.pow()—not a loop statement—to
perform exponential calculations. For example, to calculate 2 to the
power of 3, use Math.pow(2, 3).

While not particularly thrilling, the preceding loop provides great flexibility. For
example, if we wanted to calculate, say, 2 to the power 16, we would simply update
the number in the test expression to make the loop body run 15 times, as follows:

var total = 2;
var counter = 0;
while (counter < 15) {
 total = total * 2;
 counter = counter + 1;
}
// Here, total has the value 65536

One execution of a loop body is known as an iteration. Accordingly, a variable, such
as counter, that controls the number of times a given loop iterates is known as the

52 | Chapter 2: Conditionals and Loops

loop iterator, or, sometimes, the loop index. By convention, loop iterators are typi-
cally named i, as shown in the following code:

var total = 2;
var i = 0;
while (i < 15) {
 total = total * 2;
 i = i + 1;
}

The last line of the preceding loop body is known as the loop update because it
updates the value of the iterator in a way that will eventually cause the loop to end.
In this case, the loop update adds one to the value of the loop iterator. Adding one to
the value of the loop iterator is such a common task that it has its own operator: the
increment operator, written as ++. The increment operator adds one to the value of
its operand. For example, the following code adds one to the variable n:

var n = 0;
n++; // n's value is now 1

The following code revises our loop to use the increment operator:

var total = 2;
var i = 0;
while (i < 15) {
 total = total * 2;
 i++;
}

The opposite of the increment operator is the decrement operator, written as --. The
decrement operator subtracts one from the value of its operand. For example, the
following code subtracts one from the variable n:

var n = 4;
n--; // n's value is now 3

The decrement operator is often used with loops that count down from a given
value, rather than counting up (as our preceding examples did). We’ll see both the
increment and decrement operators used throughout this book. However, in general,
the increment operator is used much more frequently than the decrement operator.

Processing Lists with Loops
Loops are typically used to process lists of things.

For example, suppose we’re creating a registration form that requires the user to sub-
mit an email address. Before the form is submitted to the server, we want to check
whether the supplied email address contains an @ sign. If it doesn’t, we’ll warn the
user that the email address is invalid.

Loops | 53

Note that in this example, our concept of a “valid” address is
extremely rudimentary. For example, in our code, addresses that start
or end with an @ character, or that contain multiple @ characters, are
considered valid. Nevertheless, our example shows a decent first step
towards creating an email validation algorithm.

To check for the @ sign in the email address, we’ll use a loop that treats the email
address as a list of individual characters. Before we start the loop, we’ll create a vari-
able, isValidAddress, and set it to false. The loop body will execute once for each
character in the email address. The first time the loop body executes, it checks
whether the first character in the email address is an @ sign. If it is, the loop body sets
isValidAddress to true, indicating that the email address is valid. The second time
the loop body executes, it checks whether the second character in the email address is
an @ sign. Once again, if the @ sign is found, the loop body sets isValidAddress to
true, indicating that the email address is valid. The loop body continues checking
each character in the email address until there are no more characters to check. At
the end of the loop, if isValidAddress is still false, then the @ sign was never found,
so the email address is invalid. If, on the other hand, isValidAddress is true, then the
@ sign was found, so the email address is valid.

Now let’s take a look at the actual validation code. In a real application, we’d start
by retrieving the user’s supplied email address, However, for the sake of simplicity in
this example will supply the address manually, as follows:

var address = "me@moock.org";

Next, we create the isValidAddress variable and set it to false:

var isValidAddress = false;

Then, we create our loop iterator:

var i = 0;

Next comes the while statement for our loop. We want it to run once for every char-
acter in address. To retrieve the number of letters in a string, we use the String class’s
instance variable length. For example, the value of the expression "abc".length is 3,
indicating that there are three letters in the string “abc”. Accordingly, the basic struc-
ture of our loop is as follows:

while (i < address.length) {
 i++;
}

Each time the loop body runs, we must retrieve one of the characters in address and
compare it to the string “@”. If the retrieved character is equal to “@”, then we’ll set
isValidAddress to true. To retrieve a specific character from a string, we use the
built-in String class’s instance method charAt(). The name “charAt” is short for

54 | Chapter 2: Conditionals and Loops

“character at”. The charAt() method expects one argument—a number specifying
the position, or index, of the character to retrieve. Character indices start at zero. For
example, the following call expression has the value “m” because the character at
index 0 is “m”:

address.charAt(0);

Likewise, the following call expression has the value “@” because the character at
index 2 is “@”:

address.charAt(2);

In our loop body, the index of the character to retrieve is specified dynamically by
the loop iterator, i, as shown in the following code:

while (i < address.length) {
 if (address.charAt(i) == "@") {
 isValidAddress = true;
 }
 i++;
}

Here’s the validation code in its entirety:

var address = "me@moock.org";
var isValidAddress = false;
var i = 0;

while (i < address.length) {
 if (address.charAt(i) == "@") {
 isValidAddress = true;
 }
 i++;
}

For practice, let’s examine how ActionScript would execute the preceding while
statement.

First, ActionScript evaluates the test expression:

i < address.length

In this case, i is 0, and address.length is 12. The number 0 is less than 12, so the
value of the test expression is true, and ActionScript executes the loop body:

if (address.charAt(i) == "@") {
 isValidAddress = true;
}
i++;

In the loop body, ActionScript must first determine whether to execute the code in
the conditional:

if (address.charAt(i) == "@") {
 isValidAddress = true;
}

Loops | 55

To decide whether to execute the code in the preceding conditional, ActionScript
checks whether address.charAt(i) is equal to “@”. The first time the loop body exe-
cutes, i is 0, so address.charAt(i) evaluates to address.charAt(0), which, as we saw
earlier, yields the character “m” (the first character in the email address). The charac-
ter “m” is not equal to the character “@”, so ActionScript does not execute the code
in the conditional.

Next, ActionScript executes the loop update, incrementing i’s value to 1:

i++;

With the loop body complete, it’s time to repeat the loop.

The second time the loop executes, ActionScript once again checks the value of the
test expression. This time, i is 1, and address.length is still 12. The number 1 is less
than 12, so the value of the test expression is true, and ActionScript executes the
loop body for the second time. As before, in the loop body, ActionScript must deter-
mine whether to execute the code in the conditional:

if (address.charAt(i) == "@") {
 isValidAddress = true;
}

This time, i is 1, so address.charAt(i) evaluates to address.charAt(1), which yields
the character “e” (the second character in the email address). The character “e” is
again not equal to the character “@”, so ActionScript does not execute the code in
the conditional.

Next, ActionScript executes the loop update, incrementing i’s value to 2. Again, it’s
time to repeat the loop.

The third time the loop executes, ActionScript checks the value of the test expres-
sion. This time, i is 2, and address.length is still 12. The number 2 is less than 12, so
the value of the test expression is true, and ActionScript executes the loop body for
the third time. As before, in the loop body, ActionScript must determine whether to
execute the code in the conditional:

if (address.charAt(i) == "@") {
 isValidAddress = true;
}

This time, i is 2, so address.charAt(i) evaluates to address.charAt(2), which yields
the character “@”. The character “@” is equal to the character “@”, so ActionScript
executes the code in the conditional, setting isValidAddress to true. Then, Action-
Script executes the loop update, incrementing i’s value to 3.

The loop repeats in the same way nine more times. When the entire process is com-
plete, isValidAddress has been set to true, so the program knows that the email
address can safely be submitted to the server for processing.

56 | Chapter 2: Conditionals and Loops

Ending a Loop with the break Statement
The loop presented in the preceding section was effective but inefficient. According
to the hypothetical address-checker’s simple logic, an email address is considered
valid if it contains the @ character. To check for the @ character, the loop in the pre-
ceding section examined every single character in the supplied email address. In the
case of the example email address "me@moock.org", the loop body executed a full 12
times, even though the address was known to be valid after the third character was
examined. Hence, the loop body executed needlessly nine times.

To make the loop from the preceding section more efficient, we can use the break
statement, which immediately terminates a loop. Here’s the updated code:

var address = "me@moock.org";
var isValidAddress = false;
var i = 0;

while (i < address.length) {
 if (address.charAt(i) == "@") {
 isValidAddress = true;
 break;
 }
 i++;
}

In the preceding loop, as soon as an @ character is found in address, isValidAddress
is set to true, and then the break statement causes the loop to terminate.

If you create a loop whose job is to find something in a list, always use
break to terminate that loop when it finds what it’s looking for.

Reader exercise: See if you can update the preceding loop to reject addresses that
start or end with an @ character, or contain multiple @ characters. You might also try
to update the loop to reject addresses that contain no . character.

The do-while Statement
As we saw earlier, a while statement tells ActionScript to execute a block of code
repeatedly while a specified condition remains true. Due to a while loop’s structure,
its body will be skipped entirely if the loop’s test expression is not true the first time
it is tested. A do-while statement lets us guarantee that a loop body will be executed
at least once with minimal fuss. The body of a do-while loop always executes the first
time through the loop. The do-while statement’s syntax is somewhat like an inverted
while statement:

do {
codeBlock

} while (testExpression);

Loops | 57

The keyword do begins the loop, followed by the codeBlock of the body. On the first
pass through the do-while loop, the codeBlock is executed before the testExpression
is ever checked. At the end of the codeBlock block, if testExpression is true, the loop
is begun anew, and the codeBlock is executed again. The loop executes repeatedly
until testExpression is false, at which point the do-while statement ends.

The for Statement
A for loop is essentially synonymous with a while loop, but it is written with more
compact syntax. The for loop places the loop initialization and update statements
together with test expression, at the top of the loop. Here’s the syntax of the for
loop:

for (initialization; testExpression; update) {
codeBlock

}

Before the first iteration of a for loop, the initialization statement is performed
(once and only once). It is typically used to set the initial value of one or more itera-
tor variables. As with other loops, if testExpression is true, then the codeBlock is
executed. Otherwise, the loop ends. Even though it appears in the loop header, the
update statement is executed at the end of each loop iteration, before testExpression
is tested again to see if the loop should continue.

Here’s a for loop that calculates 2 to the power 3:

var total = 2;

for (var i = 0; i < 2; i++) {
 total = total * 2;
}

For comparison, here’s the equivalent while loop:

var total = 2;
var i = 0;

while (i < 2) {
 total = total * 2;
 i++;
}

Here’s a for loop that checks to see whether a string contains the @ character. It is
functionally identical to our earlier while loop that performs the same task:

var address = "me@moock.org";
var isValidAddress = false;

for (var i = 0; i < address.length; i++) {
 if (address.charAt(i) == "@") {
 isValidAddress = true;
 break;

58 | Chapter 2: Conditionals and Loops

 }
}

Once you’re used to the for syntax, you’ll find it saves space and allows for easy
interpretation of the loop’s body and controls.

Boolean Logic
Early in this chapter, we saw how to make logical decisions using test expressions
that yield Boolean values. The decisions were based on a single factor, such as “if
language is "english", then display "Hello"”. But not all programming logic is so sim-
ple. Programs often need to consider multiple factors in branching logic (i.e., deci-
sion making). To manage multiple factors in a test expression, we use the Boolean
operators: || (logical OR) and && (logical AND).

Logical OR
The logical OR operator is most commonly used to initiate some action when at least
one of two conditions is met. For example, “If I am hungry or I am thirsty, I’ll go to
the kitchen.” The symbol for logical OR is made using two “pipe” characters: ||.
Typically, the pipe character (|) is accessible using the Shift key and the Backslash (\)
key in the upper right of most Western keyboards, where it may be depicted as a
dashed vertical line. Logical OR has the following general form:

expression1 || expression2

When both expression1 and expression2 are Boolean values or evaluate to Boolean
values, logical OR returns true if either expression is true and returns false only if
both expression are false. In summary:

true || false // true because first operand is true
false || true // true because second operand is true
true || true // true (however, either operand being true is sufficient)
false || false // false because both operands are false

When expression1 is not a Boolean value, ActionScript first converts it to a Boolean;
if the result of such a conversion is true, logical OR returns expression1’s resolved
value. Otherwise, logical OR returns expression2’s resolved value. Here’s some code
to demonstrate:

0 || "hi there!" // expression1 does not convert to true, so the
 // operation returns expression2's value: "hi there!"

"hey" || "dude" // expression1 is a nonempty string, so it converts to
 // true and the operation returns
 // expression1's value: "hey"

false || 5 + 5 // expression1 does not convert to true, so the
 // value of expression2 (namely 10) is returned.

Boolean Logic | 59

The results of converting various kinds of data to a Boolean value are listed in the
section “Conversion to Primitive Types” in Chapter 8.

In practice, we rarely use non-Boolean values returned by a logical OR expression.
Instead, we normally use the result in a conditional statement where it is used to
make a Boolean decision. Consider the following code:

var x = 10;
var y = 15;
if (x || y) {
 // This code executes if one of either x or y is not zero
}

On line 3, we see a logical OR operation (x || y) being used where a Boolean is
expected as the test expression of an if statement. The first step in determining the
value of x || y is to convert 10 (the value of the first operand, x) to a Boolean. Any
nonzero finite number converts to the Boolean true. Hence, the logical OR returns
the value of x, which is 10. So, to ActionScript, the if statement looks like this:

if (10) {
 // This code executes if one of either x or y is not zero
}

But 10 is a number, not a Boolean. So what happens next? The if statement converts
the return value of the logical OR operation to a Boolean. In this case, 10 is con-
verted to the Boolean value true, and ActionScript sees our code as:

if (true) {
 // This code executes if one of either x or y is not zero
}

And there you have it. The test expression is true, so the code between the curly
braces is executed.

Note that if the first expression in a logical OR operation resolves to true, it is unnec-
essary, and therefore inefficient, to evaluate the second expression. Hence, Action-
Script evaluates the second expression only if the first expression resolves to false.
This fact is useful in cases in which you don’t want to resolve the second expression
unless the first expression resolves to false. In the following example, we check if a
number is out of range. If the number is too small, there is no need to perform the
second test, in which we check whether it is too large.

if (xPosition < 0 || xPosition > 100) {
 // This code executes if one of either xPosition is between
 // 0 and 100, inclusive
}

Note that the variable xPosition must be included in each comparison. The follow-
ing code shows a common mistaken attempt to check xPosition’s value twice:

// Oops! Forgot xPosition in the comparison with 100
if (xPosition < 0 || > 100) {
 // This code executes if one of either xPosition is between

60 | Chapter 2: Conditionals and Loops

 // 0 and 100, inclusive
}

Logical AND
Like the logical OR operator, logical AND is used primarily to execute a block of
code conditionally—in this case, only when both of two conditions are met. The log-
ical AND operator has the following general form:

expression1 && expression2

Both expression1 and expression2 can be any valid expression. In the simplest case,
in which both expressions are Boolean values, logical AND returns false if either
operand is false and returns true only if both operands are true. In summary:

true && false // false because second expression is false
false && true // false because first expression is false
true && true // true because both expressions are true
false && false // false because both expressions are false
 // (either is sufficient)

Let’s see how the logical AND operator is used in two examples. First, we execute
some code only when two variables are both greater than 50:

x = 100;
y = 51;
if (x>50 && y>50) {
 // Code here executes only if x and y are greater than 50
}

Next, imagine a New Year’s Day-contest web site in which users are granted access
only when they provide the correct password, and the current date is January 1. The
following code shows how to use the AND operator to determine whether both con-
ditions have been met (the correct password is “fun”):

var now = new Date(); // Create a new Date object
var day = now.getDate(); // Returns an integer between 1 and 31
var month = now.getMonth(); // Returns an integer between 0 and 11

if (password=="fun" && (month + day)>1) {
 // Let the user in...
}

The technical behavior of the logical AND operator is quite similar to that of the log-
ical OR operator. First, expression1 is converted to a Boolean. If the result of that
conversion is false, the value of expression1 is returned. If the result of that conver-
sion is true, the value of expression2 is returned.

As with OR, if the first expression in a logical AND operation resolves to false, it is
unnecessary, and therefore inefficient, to evaluate the second expression. Therefore,
ActionScript evaluates the second expression only if the first expression resolves to

Boolean Logic | 61

true. This fact is useful in cases in which you don’t want to resolve the second
expression unless the first operand resolves to true. In this example, we perform a
division operation only if the divisor is nonzero:

if (numItems!=0 && totalCost/numItems>3) {
 // Execute this code only when the number of items is not equal
 // to 0, and the total cost of each item is greater than 3
}

Logical NOT
The logical NOT operator (!) returns the Boolean opposite of its single operand. It
takes the general form:

!expression

If expression is true, logical NOT returns false. If expression is false, logical NOT
returns true. If expression is not a Boolean, its value is converted to a Boolean for the
sake of the operation, and its opposite is returned.

Like the does-not-equal operator (!=), the logical NOT operator is convenient for
testing what something isn’t rather than what it is. For example, the body of the fol-
lowing conditional statement executes only when the current date is not January 1.
Notice the extra parentheses, which force a custom order of operations (prece-
dence), as discussed in Chapter 10.

var now = new Date(); // Create a new Date object
var day = now.getDate(); // Returns an integer between 1 and 31
var month = now.getMonth(); // Returns an integer between 0 and 11

if (!((month + day)==1)) {
 // Execute "not-January 1st" code
}

The NOT operator is also sometimes used to toggle a variable from true to false and
vice versa. For example, suppose we have a single button that is used to turn an
application’s sound on and off. When the button is pressed, the program might use
the following code to enable or disable audio playback:

soundEnabled = !soundEnabled // Toggle the current sound state

if (soundEnabled) {
 // Make sure sounds are audible
} else {
 // Mute all sounds
}

Notice that ! is also used in the inequality operator (!=). As a programming symbol,
the ! character usually means not, or opposite. It is unrelated to the ! symbol used to
indicate “factorial” in common mathematical notation.

62 | Chapter 2: Conditionals and Loops

Back to Classes and Objects
We’re now done with our introduction to conditionals and loops, but we definitely
haven’t seen the last of them. Over the course of this book, we’ll encounter plenty of
examples of conditionals and loops used in real-world situations.

In the next chapter, we’ll return to the general topics of classes and objects. If you’ve
been yearning for our virtual pets, read on.

63

Chapter 3 CHAPTER 3

Instance Methods Revisited4

In Chapter 1, we learned how to create instance methods. In this chapter, we’ll
expand that basic knowledge by studying the following additional instance-method
topics:

• Omitting the this keyword

• Bound methods

• State-retrieval and state-modification methods

• Get and set methods

• Extra arguments

Along the way, we’ll continue developing the virtual zoo program that we started in
Chapter 1. But before we begin, take a minute to reacquaint yourself with the virtual
zoo program. Example 3-1 shows the code as we last saw it.

Example 3-1. Zoo program

// VirtualPet class
package zoo {
 internal class VirtualPet {
 internal var petName;
 private var currentCalories = 1000;
 private var creationTime;

 public function VirtualPet (name) {
 this.creationTime = new Date();
 this.petName = name;
 }

 public function eat (numberOfCalories) {
 this.currentCalories += numberOfCalories;
 }

 public function getAge () {
 var currentTime = new Date();
 var age = currentTime.time - this.creationTime.time;

64 | Chapter 3: Instance Methods Revisited

Omitting the this Keyword
In Chapter 1, we learned that the this keyword is used to refer to the current object
within constructor methods and instance methods. For example, in the following
code, the expression this.petName = name tells ActionScript to set the value of the
instance variable petName on the object currently being created:

public function VirtualPet (name) {
 this.petName = name;
}

In the following code, the expression this.currentCalories += numberOfCalories tells
ActionScript to set the value of the instance variable currentCalories on the object
through which the eat() method was invoked:

public function eat (numberOfCalories) {
 this.currentCalories += numberOfCalories;
}

In code that frequently accesses the variables and methods of the current object,
including this can be laborious and can lead to clutter. To reduce labor and
improve readability, ActionScript generally allows the current object’s instance vari-
ables and instance methods to be accessed without this.

Here’s how it works: within a constructor method or an instance method, when
ActionScript encounters an identifier in an expression, it searches for a local vari-
able, parameter, or nested function whose name matches that identifier. (Nested
functions are discussed in Chapter 5.) If no local variable, parameter, or nested func-
tion’s name matches the identifier, then ActionScript automatically searches for an
instance variable or instance method whose name matches the identifier. If a match
is found, then the matching instance variable or instance method is used in the
expression.

 return age;
 }
 }
}

// VirtualZoo class
package zoo {
 public class VirtualZoo {
 private var pet;

 public function VirtualZoo () {
 this.pet = new VirtualPet("Stan");
 }
 }
}

Example 3-1. Zoo program (continued)

Omitting the this Keyword | 65

For example, consider what happens if we remove the keyword this from the eat()
method, as follows:

public function eat (numberOfCalories) {
 currentCalories += numberOfCalories;
}

When the preceding method runs, ActionScript encounters numberOfCalories, and
tries to find a local variable, parameter, or nested function by that name. There is a
parameter by that name, so its value is used in the expression (in place of
numberOfCalories).

Next, ActionScript encounters currentCalories, and tries to find a local variable,
parameter, or nested function by that name. No variable, parameter, or nested func-
tion named currentCalories is found, so ActionScript then tries to find an instance
variable or instance method by that name. This time, ActionScript’s search is suc-
cessful: the VirtualPet class does have an instance variable named currentCalories,
so ActionScript uses it in the expression. As a result, the value of numberOfCalories is
added to the instance variable currentCalories.

Therefore, within the eat() method, the expression this.currentCalories and
currentCalories are identical.

For the sake of easier reading, many developers (and this book) avoid redundant uses
of this. From now on, we’ll omit this when referring to instance variables and
instance methods. However, some programmers prefer to always use this, simply to
distinguish instance variables and instance methods from local variables.

Note that use of the this keyword is legal within instance methods, constructor
methods, functions, and code in the global scope only. (Global scope is discussed in
Chapter 16.) Elsewhere, using this generates a compile-time error.

The process ActionScript follows to look up identifiers is known as
identifier resolution. As discussed in Chapter 16, identifiers are
resolved based on the region (or scope) of the program in which they
occur.

Managing Parameter/Variable Name Conflicts
When an instance variable and a method parameter have the same name, we can
access the variable by including the this keyword (known as disambiguating the vari-
able from the parameter). For example, the following revised version of VirtualPet
shows the eat() method with a parameter, calories, whose name is identical to (i.e.,
conflicts with) an instance variable named calories:

package zoo {
 internal class VirtualPet {
 // Instance variable 'calories'
 private var calories = 1000;

66 | Chapter 3: Instance Methods Revisited

 // Method with parameter 'calories'
 public function eat (calories) {
 this.calories += calories;
 }
 }
}

Within the body of eat(), the expression calories (with no this) refers to the
method parameter and the expression this.calories (with this) refers to the
instance variable. The calories parameter is said to shadow the calories instance
variable because on its own, the identifier calories refers to the parameter, not the
instance variable. The instance variable can be accessed only with the help of the
keyword this. Note that like parameters, local variables can also shadow instance
variables and instance methods of the same name. A local variable also shadows a
method parameter of the same name, effectively redefining the parameter and leav-
ing the program with no way to refer to the parameter.

Many programmers purposely use the same name for a parameter and an instance
variable, and rely on this to disambiguate the two. To keep things more clearly sepa-
rated in your own code, however, you can simply avoid using parameter names that
have the same name as instance variables, instance methods, or local variables.

Now let’s move on to our next instance-method topic, bound methods.

Bound Methods
In ActionScript, a method can, itself, be treated as a value. That is, a method can be
assigned to a variable, passed to function or another method, or returned from a
function or another method.

For example, the following code creates a new VirtualPet object, and then assigns
that object’s eat() method to the local variable consume. Notice that in the assign-
ment statement, the method-call parentheses, (), are not included after the method
name. As a result, the method itself—not the method’s return value—is assigned to
the variable consume.

package zoo {
 public class VirtualZoo {
 private var pet;

 public function VirtualZoo () {
 pet = new VirtualPet("Stan");
 // Assign the method eat() to a variable
 var consume = pet.eat;
 }
 }
}

Bound Methods | 67

A method assigned to a variable can be invoked via that variable using the standard
parentheses operator, (). For example, in the following code, we invoke the method
referenced by the variable consume:

package zoo {
 public class VirtualZoo {
 private var pet;

 public function VirtualZoo () {
 pet = new VirtualPet("Stan");
 // Assign a bound method to consume
 var consume = pet.eat;
 // Invoke the method referenced by consume
 consume(300);
 }
 }
}

When the preceding bolded code runs, the eat() method is invoked and passed the
argument 300. The question is, which pet eats the food? Or, put more technically, on
which object does the method execute?

When a method is assigned to a variable and then invoked through that variable, it
executes on the object through which it was originally referenced. For example, in
the preceding code, when the eat() method is assigned to the variable consume, it is
referenced through the VirtualPet object with the name “Stan”. Hence, when eat() is
invoked via consume, it executes on the VirtualPet object with the name “Stan”.

A method that is assigned to a variable, passed to a function or method, or returned
from a function or method is known as a bound method. Bound methods are so
named because each bound method is permanently linked to the object through
which it was originally referenced. Bound methods are considered instances of the
built-in Function class.

When invoking a bound method, we need not specify the object on
which the method should execute. Instead, the bound method will
automatically execute on the object through which it was originally
referenced.

Within the body of a bound method, the keyword this refers to the object to which
the method is bound. For example, within the body of the bound method assigned
to consume, this refers to the VirtualPet object named “Stan”.

Bound methods are typically used when one section of a program wishes to instruct
another section of the program to invoke a particular method on a particular object.
For examples of such a scenario, see the discussion of event handling in Chapter 12.
ActionScript’s event-handling system makes extensive use of bound methods.

Continuing with this chapter’s instance-method theme, the next section describes
how instance methods can modify an object’s state.

68 | Chapter 3: Instance Methods Revisited

Using Methods to Examine and Modify an Object’s State
Earlier we learned that it’s good object-oriented practice to declare instance vari-
ables private, meaning that they cannot be read or modified by code outside of the
class in which they are defined. Good object-oriented practice dictates that, rather
than allow external code to modify instance variables directly, we should instead
define instance methods for examining or changing an object’s state.

For example, earlier, we gave our VirtualPet class an instance variable named
currentCalories. The currentCalories variable conceptually describes the state of
each pet’s hunger. To allow external code to reduce the pet’s hunger level, we could
make currentCalories publicly accessible. External code could then set the pet’s
hunger state to any arbitrary value, as shown in the following code:

somePet.currentCalories = 5000;

The preceding approach, however, is flawed. If external code can modify
currentCalories directly, then the VirtualPet class has no way to ensure that the
value assigned to that variable is legal, or sensible. For example, external code might
assign currentCalories 1000000, causing the pet to live for hundreds of years with-
out getting hungry. Or external code might assign currentCalories a negative value,
which might cause the program to malfunction.

To prevent these problems, we should declare currentCalories as private (as we did
earlier in our VirtualPet class). Rather than allowing external code to modify
currentCalories directly, we instead provide one or more public instance methods
that can be used to change each pet’s state of hunger in a legitimate way. Our exist-
ing VirtualPet class already provides a method, eat(), for reducing a pet’s hunger.
However, the eat() method allows any number of calories to be added to
currentCalories. Let’s now update the VirtualPet class’s eat() method so that it pre-
vents the value of currentCalories from exceeding 2,000. Here’s the original code for
the eat() method:

public function eat (numberOfCalories) {
 currentCalories += numberOfCalories;
}

To restrict currentCalories’s value to a maximum of 2,000, we simply add an if
statement to the eat() method, as follows:

public function eat (numberOfCalories) {
 // Calculate the proposed new total calories for this pet
 var newCurrentCalories = currentCalories + numberOfCalories;

 // If the proposed new total calories for this pet is greater
 // than the maximum allowed (which is 2000)...
 if (newCurrentCalories > 2000) {
 // ...set currentCalories to its maximum allowed value (2000)
 currentCalories = 2000;
 } else {
 // ...otherwise, increase currentCalories by the specified amount

Using Methods to Examine and Modify an Object’s State | 69

 currentCalories = newCurrentCalories;
 }
}

The VirtualPet class’s eat() method provides a safe means for external code to mod-
ify a given VirtualPet object’s hunger. However, thus far, the VirtualPet class does
not provide a means for external code to determine how hungry a given VirtualPet
object is. To give external code access to that information, let’s define a method,
getHunger(), which returns the number of calories a VirtualPet object has left, as a
percentage. Here’s the new method:

public function getHunger () {
 return currentCalories / 2000;
}

We now have methods for retrieving and modifying a VirtualPet object’s current
state of hunger (getHunger() and eat()). In traditional object-oriented terminology, a
method that retrieves the state of an object is known as an accessor method, or more
casually, a getter method. By contrast, a method that modifies the state of an object is
known as a mutator method, or more casually, a setter method. However, in Action-
Script 3.0, the term “accessor method” refers to a special variety of method that is
invoked using variable read- and write-syntax, as described later in the section “Get
and Set Methods.” As noted earlier, to avoid confusion in this book, we’ll avoid
using the traditional terms accessor, mutator, getter, and setter. Instead, we’ll use the
unofficial terms retriever method and modifier method when discussing accessor
methods and mutator methods. Furthermore, we’ll use the terms “get method” and
“set method” only when referring to ActionScript’s special automatic methods.

For a little more practice with retriever and modifier methods, let’s update the
VirtualPet class again. Previously, to retrieve and assign a VirtualPet object’s name,
we accessed the petName variable directly, as shown in the following code:

somePet.petName = "Erik";

The preceding approach, however, could prove problematic later in our program. It
allows petName to be assigned a very long value that might not fit on screen when we
display the pet’s name. It also allows petName to be assigned an empty string (""),
which would not appear on screen at all. To prevent these problems, let’s make
petName private, and define a modifier method for setting a pet’s name. Our modifier
method, setName(), imposes a maximum name length of 20 characters and rejects
attempts to set petName to an empty string (""). Here’s the code:

public function setName (newName) {
 // If the proposed new name has more than 20 characters...
 if (newName.length > 20) {
 // ...truncate it using the built-in String.substr() method,
 // which returns the specified portion of the string on which
 // it is invoked
 newName = newName.substr(0, 20);
 } else if (newName == "") {
 // ...otherwise, if the proposed new name is an empty string,

70 | Chapter 3: Instance Methods Revisited

 // then terminate this method without changing petName
 return;
 }

 // Assign the new, validated name to petName
 petName = newName;
}

Now that we’ve made petName private, we need to provide a retriever method
through which external code can access a VirtualPet object’s name. We’ll name our
retriever method, getName(). For now, getName() will simply return the value of
petName. (Returning an instance variable’s value is often all a retriever method does.)
Here’s the code:

public function getName () {
 return petName;
}

The getName() method is currently very simple, but it gives our program flexibility.
For example, in the future, we may decide we want to make pet names gender-spe-
cific. To do so, we simply update getName(), as follows (the following hypothetical
version of getName() assumes that VirtualPet defines an instance variable, gender,
indicating the gender of each pet):

public function getName () {
 if (gender == "male") {
 return "Mr. " + petName;
 } else {
 return "Mrs. " + petName;
 }
}

Example 3-2 shows the new code for the VirtualPet class, complete with the
getName() and setName() methods. For the sake of simplicity, the instance method
getAge() and the instance variable creationTime have been removed from the
VirtualPet class.

Example 3-2. The VirtualPet class

package zoo {
 internal class VirtualPet {
 private var petName;
 private var currentCalories = 1000;

 public function VirtualPet (name) {
 petName = name;
 }

 public function eat (numberOfCalories) {
 var newCurrentCalories = currentCalories + numberOfCalories;
 if (newCurrentCalories > 2000) {
 currentCalories = 2000;
 } else {
 currentCalories = newCurrentCalories;

Using Methods to Examine and Modify an Object’s State | 71

Here’s a sample use of our new getName() and setName() methods:

package zoo {
 public class VirtualZoo {
 private var pet;

 public function VirtualZoo () {
 pet = new VirtualPet("Stan");
 // Assign the pet's old name to the local variable oldName
 var oldName = pet.getName();
 // Give the pet a new name
 pet.setName("Marcos");
 }
 }
}

By using a modifier method to mediate variable-value assignments, we can develop
applications that respond gracefully to runtime problems by anticipating and han-
dling illegal or inappropriate values. But does that mean each and every instance
variable access in a program should happen through a method? For example, con-
sider our VirtualPet constructor method:

public function VirtualPet (name) {
 petName = name;
}

 }
 }

 public function getHunger () {
 return currentCalories / 2000;
 }

 public function setName (newName) {
 // If the proposed new name has more than 20 characters...
 if (newName.length > 20) {
 // ...truncate it
 newName = newName.substr(0, 20);
 } else if (newName == "") {
 // ...otherwise, if the proposed new name is an empty string,
 // then terminate this method without changing petName
 return;
 }

 // Assign the new, validated name to petName
 petName = newName;
 }

 public function getName () {
 return petName;
 }
 }
}

Example 3-2. The VirtualPet class (continued)

72 | Chapter 3: Instance Methods Revisited

Now that we have a method for setting petName, should we update the VirtualPet
constructor method as follows?

public function VirtualPet (name) {
 setName(name);
}

The answer depends on the circumstances at hand. Generally speaking, it’s quite rea-
sonable to access private variables directly within the class that defines them. How-
ever, when a variable’s name or role is likely to change in the future, or when a
modifier or retriever method provides special services during variable access (such as
error checking), it pays to use the method everywhere, even within the class that
defines the variables. For example, in the preceding updated VirtualPet constructor
method, it’s wise to set petName through setName() because setName() guarantees
that the supplied name is neither too long nor too short. That said, in cases where
speed is a factor, direct variable access may be prudent (accessing a variable directly
is always faster than accessing it through a method).

Programmers who prefer the style of direct variable access but still want the benefits
of retriever and modifier methods, typically use ActionScript’s automatic get and set
methods, discussed next.

Get and Set Methods
In the previous section we learned about retriever and modifier methods, which are
public methods that retrieve and modify an object’s state. Some developers consider
such methods cumbersome. They argue that:

pet.setName("Jeff");

is more awkward than:

pet.name = "Jeff";

In our earlier study, we saw that direct variable assignments such as pet.name = "Jeff"
aren’t ideal object-oriented practice and can lead to invalid variable assignments. To
bridge the gap between the convenience of variable assignment and the safety of
retriever and modifier methods, ActionScript supports get and set methods. These
methods are invoked using variable retrieval- and assignment-syntax.

To define a get method, we use the following general syntax:

function get methodName () {
statements

}

where the keyword get identifies the method as a get method, methodName is the
method’s name, and statements is zero or more statements executed when the
method is invoked (one of which is expected to return the value associated with
methodName).

Get and Set Methods | 73

To define a set method, we use the following general syntax:

function set methodName (newValue) {
statements

}

where the set keyword identifies the method as a set method, methodName is the
method’s name, newValue receives the value assigned to an internal instance variable,
and statements is zero or more statements executed when the method is invoked.
The statements are expected to determine and internally store the value associated
with methodName. Note that in a set method body, the return statement must not be
used to return a value (but can be used on its own to terminate the method). Set
methods have an automatic return value, discussed later.

Get and set methods have a unique style of being invoked that does not require use
of the function call operator, (). A get method, x(), on an object, obj, is invoked as
follows:

obj.x;

rather than:

obj.x();

A set method, y(), on an object, obj, is invoked as follows:

obj.y = value;

rather than:

obj.y(value);

where value is the first (and only) argument passed to y().

Get and set methods, therefore, appear to magically translate variable access into
method calls. As an example, let’s (temporarily) add a get method named name() to
our VirtualPet class. Here’s the code for the method:

public function get name () {
 return petName;
}

With the get method name() in place, all attempts to retrieve the value of the
instance variable name actually invoke the get method. The get method’s return value
appears as though it were the value of the name variable. For example, the following
code invokes the get method name() and assigns its return value to the variable
oldName:

var oldName = pet.name;

Now let’s (temporarily) add a set method named name() to our VirtualPet class.
Here’s the code for the method:

public function set name (newName) {
 // If the proposed new name has more than 20 characters...
 if (newName.length > 20) {

74 | Chapter 3: Instance Methods Revisited

 // ...truncate it
 newName = newName.substr(0, 20);
 } else if (newName == "") {
 // ...otherwise, if the proposed new name is an empty string,
 // then terminate this method without changing petName
 return;
 }

 // Assign the new, validated name to petName
 petName = newName;
}

With the set method name() in place, attempts to assign the value of the instance
variable name invoke the set method. The value used in the name assignment state-
ment is passed to the set method, which stores it internally in the private variable
petName. For example, the following code invokes the set method name(), which
stores “Andreas” internally in petName:

pet.name = "Andreas";

With a get and a set method named name() defined, the name variable becomes an
external façade only; it does not exist as a variable in the class but can be used as
though it did. You can, therefore, think of instance variables that are backed by get
and set methods (such as name) as pseudo-variables.

It is illegal to create an actual variable with the same name as a get or
set method. Attempts to do so result in a compile-time error.

When a set method is called, it always invokes its corresponding get method and
returns the get method’s return value. This allows a program to use the new value
immediately after setting it. For example, the following code shows a fragment of a
fictitious music player application. It uses a set method call to tell the music player
which song to play first. It then immediately plays that song by calling start() on the
return value of the firstSong assignment.

// Invoke start() on new Song("dancehit.mp3")--the return value
// of the set method firstSong()
(musicPlayer.firstSong = new Song("dancehit.mp3")).start();

While convenient in some cases, the return-value feature of set methods imposes lim-
its on get methods: specifically, get methods should never perform tasks beyond
those required to retrieve their internal variable value. For example, a get method
should not implement a global counter that tracks how many times a variable has
been accessed. The automatic invocation of the get method by the set method would
tarnish the counter’s record keeping.

A get/set pseudo-variable can be made read-only by declaring a get
method without declaring a set method.

Handling an Unknown Number of Parameters | 75

Choosing between retriever/modifier methods and get/set methods is a matter of
personal taste. This book, for example, does not use get/set methods, but you should
expect to see them used by other programmers and in some documentation.

Moving on, to complete our study of instance methods, we’ll learn how to handle an
unknown number of parameters. The following discussion requires a prior knowl-
edge of arrays (ordered lists of values), which we haven’t covered yet. If you are new
to arrays, you should skip this section for now and return to it after you have read
Chapter 11.

The techniques described in the next section apply not only to
instance methods, but also static methods and functions, which we’ll
study in the coming chapters.

Handling an Unknown Number of Parameters
In Chapter 1, we learned that it is illegal to call a method without supplying argu-
ments for all required parameters. It is also illegal to call a method with more than
the required number of arguments.

To define a method that accepts an arbitrary number of arguments, we use the ...(rest)
parameter. The ...(rest) parameter defines an array to hold any arguments passed to a
given method. It can be used on its own or in combination with named parameters.
When used on its own, the ...(rest) parameter has the following general form:

function methodName (...argumentsArray) {
}

In the preceding code, methodName is the name of a method (or function), and
argumentsArray is the name of a parameter that will be assigned an automatically
created array of all arguments received by the method. The first argument (the left-
most argument in the call expression) is stored at index 0 and is referred to as
argumentsArray[0]. Subsequent arguments are stored in order, proceeding to the
right—so, the second argument is argumentsArray[1], the third is argumentsArray[2],
and so on.

The ...(rest) parameter allows us to create very flexible functions that operate on
an arbitrary number of values. For example, the following code shows a method that
finds the average value of any numbers it received as arguments:

public function getAverage (...numbers) {
 var total = 0;

 for (var i = 0; i < numbers.length; i++) {
 total += numbers [i];
 }

 return total / numbers.length;
}

76 | Chapter 3: Instance Methods Revisited

Note that the preceding getAverage() method works with numeric arguments only.
To protect getAverage() from being called with nonnumeric arguments, we could use
the is operator, discussed in the section “Upcasting and Downcasting” in Chapter 8.

The ...(rest) parameter can also be used in combination with named parameters.
When used with other parameters, the ...(rest) parameter must be the last parame-
ter in the parameter list. For example, consider the following method, initializeUser(),
used to initialize a user in a hypothetical social-networking application. The method
defines a single required parameter, name, followed by a ...(rest) parameter named
hobbies:

public function initializeUser (name, ...hobbies) {
}

When invoking initializeUser(), we must supply an argument for the name parame-
ter, and we can optionally also supply an additional comma-separated list of hob-
bies. Within the method body, name is assigned the value of the first argument passed
to the method, and hobbies is assigned an array of all remaining arguments passed to
initializeUser(). For example, if we issue the following method invocation:

initializeUser("Hoss", "video games", "snowboarding");

then name is assigned the value "Hoss", and hobbies is assigned the value ["video
games", "snowboarding"].

Up Next: Class-Level Information and Behavior
We’re now finished our coverage of instance methods and instance variables. As we
learned in Chapter 1, instance methods and instance variables define the behavior
and characteristics of the objects of a class. In the next chapter, we’ll learn how to
create behavior and manage information that pertains not to individual objects, but
to an entire class.

77

Chapter 4 CHAPTER 4

Static Variables and Static Methods5

In Chapter 1, we learned how to define the characteristics and behavior of an object
using instance variables and instance methods. In this chapter, we’ll learn how to
manage information and create functionality that pertains to a class, itself, rather
than its instances.

Static Variables
Over the past several chapters, we’ve had a fair bit of practice working with instance
variables, which are variables associated with a particular instance of a class. Static
variables, by contrast, are variables associated with a class itself, rather than a partic-
ular instance of that class. Static variables are used to keep track of information that
relates logically to an entire class, as opposed to information that varies from
instance to instance. For example, a class representing a dialog box might use a static
variable to specify the default size for new dialog box instances, or a class represent-
ing a car in a racing game might use a static variable to specify the maximum speed
of all car instances.

Like instance variables, static variables are created using variable definitions within
class definitions, but static variable definitions must also include the static attribute,
as shown in the following generalized code:

class SomeClass {
 static var identifier = value;
}

As with instance variables, access-control modifiers can be used to control the acces-
sibility of static variables in a program. The access-control modifiers available for
static-variable definitions are identical to those available for instance-variable defini-
tions—public, internal, protected, and private. When no modifier is specified, internal
(package-wide access) is used. When a modifier is specified, it is typically placed
before the static attribute, as shown in the following code:

class SomeClass {
 private static var identifier = value;
}

78 | Chapter 4: Static Variables and Static Methods

To access a static variable, we provide the name of the class that defines the variable,
followed by a dot (.), followed by the name of the variable, as shown in the follow-
ing generalized code:

SomeClass.identifier = value;

Within the class that defines the variable, identifier can also be used on its own
(without the leading class name and dot). For example, in a class, A, that defines a
static variable v, the expression A.v is identical to the expression v. Nevertheless, to
distinguish static variables from instance variables, many developers (and this book)
include the leading class name even when it is not strictly required.

Static variables and instance variables of the same name can coexist within a class. If a
class, A, defines an instance variable named v, and a static variable, also named v, then
the identifier v on its own refers to the instance variable, not the static variable. The
static variable can be accessed only by including the leading class name, as in A.v. The
instance variable is, therefore, said to shadow the static variable.

Now let’s add some static variables to our VirtualPet class. As we just learned, static
variables are used to keep track of information that relates logically to an entire class
and does not vary from instance to instance. There are already two such pieces of
information in our VirtualPet class: the maximum length of a pet’s name and the
maximum number of calories a pet can consume. To track that information, we’ll
add two new static variables: maxNameLength and maxCalories. Our variables are not
required outside the VirtualPet class, so we’ll define them as private. The following
code shows the maxNameLength and maxCalories definitions, with the rest of the
VirtualPet class code omitted in the interest of brevity:

package zoo {
 internal class VirtualPet {
 private static var maxNameLength = 20;
 private static var maxCalories = 2000;

 // Remainder of class not shown...
 }
}

With our maxNameLength and maxCalories variables in place, we can now update the
getHunger(), eat(), and setName() methods to use those variables. Example 4-1
shows the latest version of the VirtualPet class, complete with static variables.
Changes since the previous version are shown in bold. Notice that, by convention,
the class’s static variables are listed before the class’s instance variables.

Example 4-1. The VirtualPet class

package zoo {
 internal class VirtualPet {
 private static var maxNameLength = 20;
 private static var maxCalories = 2000;

Static Variables | 79

In Example 4-1, notice that the maxNameLength and maxCalories variables help central-
ize our code. For example, previously, to update the maximum allowed number of
characters in a name, we would have had to change the number 20 in two places
within the setName method—a process that is both time-consuming and prone to
error. Now, to update the maximum allowed number of characters, we simply
change the value of maxNameLength, and the entire class updates automatically.

 private var petName;
 // Give each pet 50% of the maximum possible calories to start with.
 private var currentCalories = VirtualPet.maxCalories/2;

 public function VirtualPet (name) {
 setName(name);
 }

 public function eat (numberOfCalories) {
 var newCurrentCalories = currentCalories + numberOfCalories;
 if (newCurrentCalories > VirtualPet.maxCalories) {
 currentCalories = VirtualPet.maxCalories;
 } else {
 currentCalories = newCurrentCalories;
 }
 }

 public function getHunger () {
 return currentCalories / VirtualPet.maxCalories;
 }

 public function setName (newName) {
 // If the proposed new name has more than maxNameLength characters...
 if (newName.length > VirtualPet.maxNameLength) {
 // ...truncate it
 newName = newName.substr(0, VirtualPet.maxNameLength);
 } else if (newName == "") {
 // ...otherwise, if the proposed new name is an empty string,
 // then terminate this method without changing petName
 return;
 }

 // Assign the new, validated name to petName
 petName = newName;
 }

 public function getName () {
 return petName;
 }
 }
}

Example 4-1. The VirtualPet class (continued)

80 | Chapter 4: Static Variables and Static Methods

Unexplained literal values such as the number 20 in the previous ver-
sion of setName() are known as “magic values” because they do some-
thing important, but their purpose is not self-evident. Avoid using
magic values in your code. In many cases, static variables can be used
to keep track of values that would otherwise be “magic.”

Static variables are often used to maintain settings whose values should not change
once a program has started. To prevent a variable’s value from changing, we define
that variable as a constant, as discussed in the next section.

Constants
A constant is a static variable, instance variable, or local variable with a value that,
once initialized, remains fixed for the remainder of the program. To create a con-
stant, we use standard variable-definition syntax, but with the keyword const instead
of var. By convention, constants are named with all capital letters. To create a con-
stant static variable, we use the following generalized code directly within a class
body:

static const IDENTIFIER = value

To create a constant instance variable, we use the following generalized code directly
within a class body:

const IDENTIFIER = value

To create a constant local variable, we use the following generalized code within a
method or function:

const IDENTIFIER = value

In the preceding three code examples, IDENTIFIER is the name of the constant, and
value is the variable’s initial value. For constant static variables and constant local
variables, once value has been assigned by the variable initializer, it can never be
reassigned.

For constant instance variables, if the program is compiled in strict mode, once value
has been assigned by the variable initializer, it can never be reassigned. If the pro-
gram is compiled in standard mode, after value has been assigned by the variable ini-
tializer, the variable’s value can also be assigned within the constructor function of
the class containing the variable definition, but not thereafter. (We’ll learn the differ-
ence between strict mode and standard mode compilation in Chapter 7.)

Constants are typically used to create static variables whose fixed values define the
options for a particular setting in a program. For example, suppose we’re building an
alarm clock program that triggers a daily alarm. The alarm has three modes: visual (a
blinking icon), audio (a buzzer), or both audio and visual. The alarm clock is repre-
sented by a class named AlarmClock. To represent the three alarm modes, the

Constants | 81

AlarmClock class defines three constant static variables: MODE_VISUAL, MODE_AUDIO,
and MODE_BOTH. Each constant is assigned a numeric value corresponding to its mode.
Mode 1 is considered “visual mode,” mode 2 is considered “audio mode,” and mode
3 is considered “both visual and audio mode.” The following code shows the defini-
tions for the mode constants:

public class AlarmClock {
 public static const MODE_VISUAL = 1;
 public static const MODE_AUDIO = 2;
 public static const MODE_BOTH = 3;
}

To keep track of the current mode for each AlarmClock instance, the alarm clock
class defines an instance variable, mode. To set the mode of an AlarmClock object, we
assign one of the mode constants’ values (1, 2, or 3) to the instance variable mode.
The following code sets the default mode for new AlarmClock objects to audio-only
(mode 2):

public class AlarmClock {
 public static const MODE_VISUAL = 1;
 public static const MODE_AUDIO = 2;
 public static const MODE_BOTH = 3;

 private var mode = AlarmClock.MODE_AUDIO;
}

When it comes time to signal an alarm, the AlarmClock object takes the appropriate
action based on its current mode. The following code shows how an AlarmClock
object would use the mode constants to determine which action to take:

public class AlarmClock {
 public static const MODE_VISUAL = 1;
 public static const MODE_AUDIO = 2;
 public static const MODE_BOTH = 3;

 private var mode = AlarmClock.MODE_AUDIO;

 private function signalAlarm () {
 if (mode == MODE_VISUAL) {
 // Display icon
 } else if (mode == MODE_AUDIO) {
 // Play sound
 } else if (mode == MODE_BOTH) {
 // Display icon and play sound
 }
 }
}

Note that in the preceding code, the mode constants are not technically necessary.
Strictly speaking, we could accomplish the same thing with literal numeric values
(magic values). However, the constants make the purpose of the numeric values
much easier to understand. For comparison, the following code shows the

82 | Chapter 4: Static Variables and Static Methods

AlarmClock class implemented without constants. Notice that, without reading the
code comments, the meaning of the three mode values cannot easily be determined.

public class AlarmClock {
 private var mode = 2;

 private function signalAlarm () {
 if (mode == 1) {
 // Display icon
 } else if (mode == 2) {
 // Play sound
 } else if (mode == 3) {
 // Display icon and play sound
 }
 }
}

Now let’s move on to the counterpart of static variables: static methods.

Static Methods
In the preceding section we learned that static variables are used to track information
that relates to an entire class. Similarly static methods define functionality that relate to
an entire class, not just an instance of that class. For example, the Flash runtime API
includes a class named Point that represents a Cartesian point with an x-coordinate
and a y-coordinate. The Point class defines a static method, polar(), which generates a
Point object based on a given polar point (i.e., a distance and an angle). Conceptually,
converting a polar point to a Cartesian point is a general service that relates to Carte-
sian points in general, not to a specific Point object. Therefore, it is defined as a static
method.

Like instance methods, static methods are created using function definitions within
class definitions, but static method definitions must also include the static attribute,
as shown in the following generalized code:

class SomeClass {
 static function methodName (identifier1 = value1,

identifier2 = value2,
 ...

identifiern = valuen) {
 }
}

As with instance methods, access-control modifiers can control the accessibility of
static methods in a program. The access-control modifiers available for static-meth-
ods definitions are identical to those available for instance-method definitions—
namely: public, internal, protected, and private. When no modifier is specified,
internal (package-wide access) is used. When a modifier is specified, it is typically
placed before the static attribute, as shown in the following code:

Static Methods | 83

class SomeClass {
 public static function methodName (identifier1 = value1,

identifier2 = value2,
 ...

identifiern = valuen) {
 }
}

To invoke a static method, we use the following general code:

SomeClass.methodName(value1, value2,...valuen)

In the preceding code, SomeClass is the class within which the static method is
defined, methodName is the name of the method, and value1, value2,...valuen is a list
of zero or more method arguments. Within the class that defines the method,
methodName can be used on its own (without the leading class name and dot). For
example, in a class, A, that defines a static method m, the expression A.m() is identi-
cal to the expression m(). Nevertheless, to distinguish static methods from instance
methods, many developers (and this book) include the leading class name even when
it is not strictly required.

Some classes exist solely to define static methods. Such classes group related func-
tionality together, but objects of the class are never instantiated. For example, the
built-in Mouse class exists solely to define the static methods show() and hide() (used
to make the system pointer visible or invisible). Those static methods are accessed
through Mouse directly (as in, Mouse.hide()), not through an instance of the Mouse
class. Objects of the mouse class are never created.

Static methods have two limitations that instance methods do not. First, a class
method cannot use the this keyword. Second, a static method cannot access the
instance variables and instance methods of the class in which it is defined (unlike
instance methods, which can access static variables and static methods in addition to
instance variables and other instance methods).

In general, static methods are used less frequently than static variables. Our virtual
zoo program does not use static methods at all. To demonstrate the use of static
methods, let’s return to the email validation scenario presented earlier in Chapter 2.
In that scenario, we created a loop to detect whether or not an email address con-
tains the @ character. Now let’s imagine that our application has grown large enough
to warrant the creation of a utility class for working with strings. We’ll call the util-
ity class StringUtils. The StringUtils class is not meant to be used to create objects;
instead, it is merely a collection of static methods. As an example, we’ll define one
static method, contains(), which returns a Boolean value indicating whether a speci-
fied string contains a specified character. Here’s the code:

public class StringUtils {
 public function contains (string, character) {
 for (var i:int = 0; i <= string.length; i++) {
 if (string.charAt(i) == character) {
 return true;

84 | Chapter 4: Static Variables and Static Methods

 }
 }
 return false;
 }
}

The following code shows how our application would use the contains() method to
check whether an email address contains the @ character:

StringUtils.contains("me@moock.org", "@");

Of course, in a real application, the email address would be supplied by the user and
then contains() would determine whether or not to submit a form. The following
code demonstrates a more realistic situation:

if (StringUtils.contains(userEmail, "@")) {
 // Code here would submit the form
} else {
 // Code here would display an "Invalid data" message to the user
}

In addition to the static methods we create ourselves, ActionScript automatically cre-
ates one static method, known as the class initializer, for every class. Let’s take a
look.

The Class Initializer
When ActionScript defines a class at runtime, it automatically creates a method
named the class initializer and executes that method. In this class initializer, Action-
Script places all of the class’s static variable initializers and all class-level code that is
not a variable definition or a method definition.

The class initializer offers an opportunity to perform one-time setup tasks when a
class is defined, perhaps by invoking methods or accessing variables that are exter-
nal to the current class. For example, suppose we’re creating an email reader applica-
tion, and we want its visual appearance to match the operating system’s graphical
style. To determine which graphical theme the mail reader should use, the applica-
tion’s main class, MailReader, checks the current operating system in its class initial-
izer and sets a corresponding static variable, theme. The theme variable dictates the
graphical theme used throughout the application. The following code shows the
class initializer for MailReader. To check the operating system, MailReader uses the
static variable, os, defined by the built-in flash.system.Capabilities class.

package {
 import flash.system.*;

 public class MailReader {
 static var theme;
 if (Capabilities.os == "MacOS") {
 theme = "MAC";
 } else if (Capabilities.os == "Linux") {

Class Objects | 85

 theme = "LINUX";
 } else {
 theme = "WINDOWS";
 }
 }
}

Code in the class initializer runs in interpreted mode, and is not compiled by the JIT
compiler. Because JIT-compiled code generally executes much more quickly than
interpreted code, you should consider moving processor-intensive code out of the
class initializer when performance is a priority.

Class Objects
Earlier we learned that each static method and static variable is accessed through the
class that defines it. For example, to access the static variable maxCalories, which is
defined by the VirtualPet class, we use the following code:

VirtualPet.maxCalories

In the preceding code, the use of the class name VirtualPet is not merely a matter of
syntax; VirtualPet actually refers to an object that defines the variable maxCalories.
The object referenced by VirtualPet is an automatically created instance of the built-
in Class class.

Every class in ActionScript is represented at runtime by an instance of the Class class.
From a programmer’s perspective, Class objects are used primarily to access the
static variables and static methods of a class. However, like other objects, Class
objects are values that can be assigned to variables, and passed to or returned from
methods and functions. For example, the following revised version of our VirtualZoo
class assigns the Class object representing the VirtualPet class to a variable, vp, and
then uses that variable to create a VirtualPet object:

package zoo {
 public class VirtualZoo {
 private var pet;

 public function VirtualZoo () {
 var vp = VirtualPet;
 pet = new vp("Stan");
 }
 }
}

The preceding technique is used when one .swf file wishes to access another .swf
file’s classes, and when embedding external assets (such as images or fonts) in a .swf
file. We’ll study both of those scenarios in Part II of this book.

86 | Chapter 4: Static Variables and Static Methods

We’ve now finished our study of static variables and static methods. Before we move
on to the next chapter, let’s compare some of the terms we’ve learned with those
used in C++ and Java.

C++ and Java Terminology Comparison
The concepts of instance variables, instance methods, static variables, and static
methods are found in most object-oriented languages. For comparison, Table 4-1
lists the equivalent terms used by Java and C++.

On to Functions
We’ve learned that an instance method defines a behavior related to a given object
and a static method defines a behavior related to a given class. In the next chapter,
we’ll study functions, which define standalone behaviors that are not related to any
object or class.

Table 4-1. Terminology comparison

ActionScript Java C++

instance variable field or instance variable data member

instance method method member function

static variable class variable static data member

static method class method static member function

87

Chapter 5 CHAPTER 5

Functions6

A function, or more specifically a function closure, is a discrete set of instructions that
carry out some task, independent of any class or object. Function closures have the
same basic syntax and usage as instance methods and static methods; they are
defined with the function keyword, can define local variables, are invoked with the
parentheses operator, and can optionally return a value. However, unlike instance
methods (which are always associated with an object) and static methods (which are
always associated with a class), function closures are created and used in standalone
form, either as a subtask in a method, or a general utility available throughout a
package or an entire program.

In the strict technical jargon of the ActionScript 3.0 specification, func-
tion closures and methods are both considered types of functions,
where the term function refers generally to a callable object represent-
ing a set of instructions. Thus, a function closure is a function that is
not associated with an object or a class, while a method is a function
that is associated with an object (in the case of instance methods) or a
class (in the case of static methods). However, in common discussion
and most documentation, the term function closure is shortened to
function. Unless you are reading the ActionScript 3.0 specification or a
text that specifically states otherwise, you can safely assume that func-
tion means function closure. In the remainder of this book, the term
function means function closure, except where stated otherwise.

To create a function, we use the following generalized code in one of the following
locations: inside a method, directly inside a package definition, directly outside a
package definition, or within another function. Notice that the code used to define a
function is identical to the code used to define a basic instance method. In fact, when
the following code appears directly within a class body, it creates an instance
method, not a function.

function identifier (param1, param2, ...paramn) {
}

88 | Chapter 5: Functions

In the preceding code, identifier is the name of the function and param1, param2,
...paramn is an optional list of the function’s parameters, which are used exactly
like the method parameters described in Chapter 1. The curly braces ({}) following
the parameter list define the beginning and end of the function body, which con-
tains the statements executed when the function is called.

To invoke a function we use the following generalized code:

theFunction(value1, value2, ... valuen)

In the preceding code, theFunction is a reference to the function being invoked and
value1, value2,...valuen is a list of arguments that are assigned, in order, to
theFunction’s parameters.

Package-Level Functions
To create a function that is available throughout a package or an entire program, we
place a function definition directly within a package body. To make the function
accessible within the package that contains its definition only, we precede the defini-
tion with the access-control modifier internal, as shown in the following code:

package packageName {
 internal function identifier () {
 }
}

To make the function accessible throughout the entire program, we precede the defi-
nition with the access control modifier public, as shown in the following code:

package packageName {
 public function identifier () {
 }
}

If no access-control modifier is specified, ActionScript automatically uses internal.

Adobe’s compilers place two requirements on ActionScript source files
(.as files) that affect package-level functions:

• Every ActionScript source file (.as file) must have exactly one
externally visible definition, which is a class, variable, function,
interface, or namespace that is defined as either internal or public
within a package statement.

• An ActionScript source file’s name must match the name of its
sole externally visible definition.

Hence, while in theory, ActionScript does not place any limitations on
package-level functions, in practice, Adobe’s compilers require each
package-level function to be defined as either internal or public in a
separate .as file with a matching file name. For more information on
compiler limitations, see the section “Compiler Restrictions” in
Chapter 7.

Package-Level Functions | 89

The following code creates a package-level function, isMac(), that returns a Boolean
value indicating whether or not the current operating system is Macintosh OS.
Because the isMac() function is defined with the access-control modifier internal, it
is accessible within the utilities package only. As discussed in the preceding note,
when compiled with an Adobe compiler, the following code would be placed in a
separate .as file named isMac.as.

package utilities {
 import flash.system.*;

 internal function isMac () {
 return Capabilities.os == "MacOS";
 }
}

To make isMac() accessible outside the utilities package, we would change internal
to public, as follows:

package utilities {
 import flash.system.*;

 public function isMac () {
 return Capabilities.os == "MacOS";
 }
}

However, to use isMac() outside the utilities package, we must first import it. For
example, suppose isMac() is part of a larger program with a class named Welcome in
a package named setup. To use isMac() in Welcome, Welcome’s source file would
import utilities.isMac(), as follows:

package setup {
 // Import isMac() so it can be used within this package body
 import utilities.isMac;

 public class Welcome {
 public function Welcome () {
 // Use isMac()
 if (isMac()) {
 // Do something Macintosh-specific
 }
 }
 }
}

Global Functions
Functions defined at the package-level within the unnamed package are known as
global functions because they can be referenced globally, throughout a program,
without the need for the import statement. For example, the following code defines a

90 | Chapter 5: Functions

global function, isLinux(). Because the isLinux() function is defined within the
unnamed package, it is accessible by any code in the same program.

package {
 import flash.system.*;

 public function isLinux () {
 return Capabilities.os == "Linux";
 }
}

The following code revises the preceding section’s Welcome class to use isLinux()
instead of isMac(). Notice that isLinux() need not be imported before being used.

package setup {
 public class Welcome {
 public function Welcome () {
 // Use isLinux()
 if (isLinux()) {
 // Do something Linux-specific
 }
 }
 }
}

Many package-level functions and global functions come built-in to each Flash run-
time. For a list of available functions, see Adobe’s documentation for the appropri-
ate Flash runtime.

Perhaps the most useful built-in global function is the trace() function, which has the
following generalized format:

trace(argument1, argument2, argumentn)

The trace() function is a simple tool for finding errors in a program (i.e., for debug-
ging). It outputs the specified arguments to either a window in the ActionScript
development environment or to a log file. For example, when running a program in
test mode via the Flash authoring tool’s Control ➝ Test Movie command, the output
of all trace() calls appears in the Output panel. Similarly, when running a program in
test mode via Flex Builder 2’s Run ➝ Debug command, the output of all trace() calls
appears in the Console. For information on configuring the debugger version of
Flash Player to send trace() output to a text file, see http://livedocs.macromedia.com/
flex/2/docs/00001531.html.

Nested Functions
When a function definition occurs within a method or another function, it creates a
nested function that is available for use within the containing method or function
only. Conceptually, a function nested in a method or function defines a reusable sub-
task for the exclusive use of the containing method or function. The following code

http://livedocs.macromedia.com/flex/2/docs/00001531.html
http://livedocs.macromedia.com/flex/2/docs/00001531.html

Source-File-Level Functions | 91

shows a generic example of a nested function, b(), within an instance method, a().
The nested function b() can be used within the method a() only; outside of a(), b()
is inaccessible.

// Define method a()
public function a () {
 // Invoke nested function b()
 b();

 // Define nested function b()
 function b () {
 // Function body would be inserted here
 }
}

In the preceding code, notice that the nested function can be invoked anywhere
within the containing method, even before the nested function definition. Referring
to a variable or function before it is defined is known as forward referencing. Fur-
ther, note that access-control modifiers (public, internal, etc.) cannot be applied to
nested functions.

The following code shows a more realistic example of a method containing a nested
function. The method, getRandomPoint() returns a Point object representing a ran-
dom point in a supplied rectangle. To produce the random point, the method uses a
nested function, getRandomInteger(), to calculate the random x- and y-coordinate. In
getRandomInteger(), notice the use of the built-in static methods Math.random() and
Math.floor(). The Math.random() method returns a random floating-point number
equal to or greater than 0 but less than 1. The Math.floor() method removes the frac-
tional portion of a floating-point number. For more information on the static meth-
ods of the Math class, see Adobe’s ActionScript Language Reference.

public function getRandomPoint (rectangle) {
 var randomX = getRandomInteger(rectangle.left, rectangle.right);
 var randomY = getRandomInteger(rectangle.top, rectangle.bottom);

 return new Point(randomX, randomY);

 function getRandomInteger (min, max) {
 return min + Math.floor(Math.random()*(max+1 - min));
 }
}

Source-File-Level Functions
When a function definition occurs at the top-level of a source file, outside any
package body, it creates a function that is available within that specific source file
only. The following generalized code demonstrates. It shows the contents of a
source file, A.as, which contains a package definition, a class definition, and a
source-file-level function definition. Because the function is defined outside the

92 | Chapter 5: Functions

package statement, it can be used anywhere within A.as, but is inaccessible to code
outside of A.as.

package {
 // Ok to use f() here
 class A {
 // Ok to use f() here
 public function A () {
 // Ok to use f() here
 }
 }
}

// Ok to use f() here

function f () {
}

In the preceding code, notice that f()’s definition does not, and must not, include
any access-control modifier (public, internal, etc.).

Access-control modifiers cannot be included in source-file-level func-
tion definitions.

Source-file-level functions are sometimes used to define supporting tasks for a single
class (such as class A in the preceding code). However, because private static meth-
ods can also define supporting tasks for a class, source-file-level functions are rarely
seen in real-world ActionScript programs.

Accessing Definitions from Within a Function
A function’s location in a program governs its ability to access the program’s defini-
tions (e.g., classes, variables, methods, namespaces, interfaces, and other functions).
For a complete description of what can and cannot be accessed from code within
functions, see the section “Function Scope” in Chapter 16.

Note, however, that within a function closure, the this keyword always refers to the
global object, no matter where the function is defined. To access the current object
within a nested function in an instance method, assign this to a variable, as shown
in the following code:

public function m () {
 var currentObject = this;

 function f () {
 // Access to currentObject is granted here
 trace(currentObject); // Displays the object through
 // which m() was invoked
 }
}

Function Literal Syntax | 93

Functions as Values
In ActionScript, every function is represented by an instance of the Function class. As
such, a function can be assigned to a variable, passed to a function, or returned from a
function, just like any other value. For example, the following code defines a function,
a() and then assigns it to the variable b. Notice that the parentheses operator, (), is
omitted; if it were included, the code would simply assign a()’s return value to b.

function a () {
}
var b = a;

Once a function has been assigned to a variable, it can be invoked through that vari-
able using the standard parentheses operator, (). For example, the following code
invokes the function a() through the variable b:

b();

Function values are typically used when creating dynamic classes and objects, as dis-
cussed in the sections “Dynamically Adding New Behavior to an Instance” and
“Using Prototype Objects to Augment Classes” in Chapter 15.

Function Literal Syntax
As with many of ActionScript’s native classes, instances of the Function class can be
created with literal syntax. Function literals have the same syntax as standard func-
tion declarations, except that the function name is omitted. The general form is:

function (param1, param2, ...paramn) {
}

where param1, param2, ...paramn is an optional list of parameters.

To use the function defined by a function literal outside the expression in which the
literal occurs, we can assign it to a variable, as shown in the following code:

var someVariable = function (param1, param2, ...paramn) {
}

Once assigned, the function can then be invoked through that variable, as in:

someVariable(arg1, arg2, ...argn)

For example, the following code uses a function literal to create a function that
squares a number and assigns that function to the variable square:

var square = function (n) {
 return n * n;
}

To invoke the preceding function, we use the following code:

// Squares the number 5 and returns the result
square(5)

94 | Chapter 5: Functions

Function literals are sometimes used with the built-in function flash.utils.setInterval(),
which takes the following form:

setInterval(functionOrMethod, delay)

The setInterval() function starts an interval, which automatically executes a speci-
fied function or method (functionOrMethod) every delay milliseconds. When an
interval is created, it is assigned a number, known as an interval ID, that is returned
by setInterval(). The interval ID can be assigned to a variable so that the interval can
later be stopped with clearInterval(), as shown in the following example code:

// Start the interval, which invokes doSomething() every 50 milliseconds.
// Assign the returned interval ID to the variable intervalID.
var intervalID = setInterval(doSomething, 50);

// ...Some time later in the program, stop invoking doSomething()
clearInterval(intervalID);

For much more sophisticated control over periodic function or
method execution, see the Timer class, covered in the sections “Cus-
tom Events” in Chapter 12 and “Animating with the TimerEvent.
TIMER Event” in Chapter 24.

The following code shows a simple class, Clock, which outputs the debug message
“Tick!” once per second. Notice the use of the function literal and the built-in func-
tions setInterval() and trace().

package {
 import flash.utils.setInterval;

 public class Clock {
 public function Clock () {
 // Execute the function literal once per second
 setInterval(function () {
 trace("Tick!");
 }, 1000);
 }
 }
}

Note that function literals are used for the sake of convenience only. The preceding
code could easily be rewritten with a nested function, as shown here:

package {
 import flash.utils.setInterval;

 public class Clock {
 public function Clock () {
 // Execute tick() once per second
 setInterval(tick, 1000);

 function tick ():void {

Recursive Functions | 95

 trace("Tick!");
 }
 }
 }
}

The nested-function version of the Clock class is arguably easier to read. Function lit-
erals are commonly used when assigning functions to dynamic instance variables, as
described in the section “Dynamically Adding New Behavior to an Instance” in
Chapter 15.

Recursive Functions
A recursive function is a function that calls itself. The following code shows a simple
example of recursion. Every time trouble() runs, it calls itself again:

function trouble () {
 trouble();
}

A recursive function that calls itself unconditionally, as trouble() does, causes infi-
nite recursion (i.e., a state in which a function never stops calling itself). If left
unchecked, infinite recursion would theoretically trap a program in an endless cycle
of function execution. To prevent this from happening, practical recursive func-
tions call themselves only while a given condition is met. One classic use of recur-
sion is to calculate the mathematical factorial of a number, which is the product of
all positive integers less than or equal to the number. For example, the factorial of 3
(written as 3! in mathematical nomenclature) is 3 * 2 * 1, which is 6. The factorial of
5 is 5 * 4 * 3 * 2 * 1, which is 120. Example 5-1 shows a factorial function that uses
recursion.

As usual, there is more than one way to skin a proverbial cat. Using a loop, we can
also calculate a factorial without recursion, as shown in Example 5-2.

Example 5-1. Calculating factorials using recursion

function factorial (n) {
 if (n < 0) {
 return; // Invalid input, so quit
 } else if (n <= 1) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

// Usage:
factorial(3); // Returns: 6
factorial(5); // Returns: 120

96 | Chapter 5: Functions

Examples 5-1 and 5-2 present two different ways to solve the same problem. The
recursive approach says, “The factorial of 6 is 6 multiplied by the factorial of 5. The
factorial of 5 is 5 multiplied by the factorial of 4...” and so on. The nonrecursive
approach loops over the numbers from 1 to n and multiplies them all together into
one big number.

Function recursion is considered elegant because it provides a simple solution—call-
ing the same function repeatedly—to a complex problem. However, repeated func-
tion calls are less efficient than loop iterations. The nonrecursive approach to
calculating factorials is many times more efficient than the recursive approach. The
nonrecursive approach also avoids the Flash runtime’s maximum recursion limit,
which defaults to 1000 but can be set via the compiler argument default-script-
limits.

As we’ll see in Chapter 18, recursion is sometimes used to process the hierarchically
structured content of XML documents.

Using Functions in the Virtual Zoo Program
Let’s apply our new knowledge of functions to our virtual zoo program. (For a
refresher on our program’s existing code, see the VirtualPet class in Example 4-1 in
Chapter 4.)

Recall that when we last saw our virtual zoo program, pets had the ability to eat (i.e.,
gain calories), but not to digest (i.e., lose calories). To give our pets the ability to
digest, we’ll add a new method to the VirtualPet class, named digest(). The digest()
method will subtract calories from the VirtualPet object on which it is invoked. To
simulate digestion over time, we’ll create an interval that invokes digest() once per
second. The amount of calories consumed at each digest() invocation will be deter-
mined by a new static variable, caloriesPerSecond. By default, we’ll set
caloriesPerSecond to 100, allowing a pet to survive a maximum of 20 seconds on a
“full stomach.”

The following code shows the caloriesPerSecond variable definition:

private static var caloriesPerSecond = 100;

Example 5-2. Calculating factorials without recursion

function factorial (n) {
 if (n < 0) {
 return; // Invalid input, so quit
 } else {
 var result = 1;
 for (var i = 1; i <= n; i++) {
 result = result * i;
 }
 return result;
 }
}

Using Functions in the Virtual Zoo Program | 97

The following code shows the digest() method. Notice that because digestion is an
internal task, digest() is declared private.

private function digest () {
 currentCalories -= VirtualPet.caloriesPerSecond;
}

To create the interval that invokes digest() once per second, we use the built-in
setInterval() function. Each pet should start digesting as soon as it is created, so we’ll
put our setInterval() call in the VirtualPet constructor method. We’ll also store
setInterval()’s returned interval ID in a new instance variable, digestIntervalID, so
that we can stop the interval later if necessary.

The following code shows the digestIntervalID variable definition:

private var digestIntervalID;

This code shows the updated VirtualPet constructor:

public function VirtualPet (name) {
 setName(name);

 // Call digest() once per second
 digestIntervalID = setInterval(digest, 1000);
}

Now that a VirtualPet object can digest food, let’s use the global function trace() to
report each pet’s current status during debugging. We’ll issue a status report every
time digest() or eat() runs. Here’s the updated digest() method:

private function digest () {
 currentCalories -= VirtualPet.caloriesPerSecond;

 trace(getName() + " digested some food. It now has " + currentCalories
 + " calories remaining.");
}

Here’s the updated eat() method:

public function eat (numberOfCalories) {
 var newCurrentCalories = currentCalories + numberOfCalories;
 if (newCurrentCalories > VirtualPet.maxCalories) {
 currentCalories = VirtualPet.maxCalories;
 } else {
 currentCalories = newCurrentCalories;
 }

 trace(getName() + " ate some food. It now has " + currentCalories
 + " calories remaining.");
}

If we were to run our virtual zoo program now, we would see the following in the
Output window (Flash authoring tool) or the Console (Flex Builder):

Stan digested some food. It now has 900 calories remaining.
Stan digested some food. It now has 800 calories remaining.

98 | Chapter 5: Functions

Stan digested some food. It now has 700 calories remaining.
Stan digested some food. It now has 600 calories remaining.
Stan digested some food. It now has 500 calories remaining.
Stan digested some food. It now has 400 calories remaining.
Stan digested some food. It now has 300 calories remaining.
Stan digested some food. It now has 200 calories remaining.
Stan digested some food. It now has 100 calories remaining.
Stan digested some food. It now has 0 calories remaining.
Stan digested some food. It now has -100 calories remaining.
Stan digested some food. It now has -200 calories remaining.
Stan digested some food. It now has -300 calories remaining.

Oops. Pets shouldn’t be allowed to have negative calorie values. Instead, pets should
die when currentCalories reaches 0. In our program, we’ll simulate the state of
death in the following ways:

• If currentCalories is 0, the program ignores attempts to increase
currentCalories when eat() is called.

• When currentCalories reaches 0, the program stops the interval that calls digest()
and displays a “pet death” message.

First, let’s take care of the update to the eat() method. A simple conditional should
do the trick; here’s the code:

public function eat (numberOfCalories) {
 // If this pet is dead...
 if (currentCalories == 0) {
 // ...quit this method without modifying currentCalories
 trace(getName() + " is dead. You can't feed it.");
 return;
 }

 var newCurrentCalories = currentCalories + numberOfCalories;
 if (newCurrentCalories > VirtualPet.maxCalories) {
 currentCalories = VirtualPet.maxCalories;
 } else {
 currentCalories = newCurrentCalories;
 }
 trace(getName() + " ate some food. It now has " + currentCalories
 + " calories remaining.");
}

Next, we need to stop calling digest() if currentCalories reaches 0. To do so, we’ll
use flash.utils.clearInterval(). Here’s the code:

private function digest () {
 // If digesting more calories would leave the pet's currentCalories at
 // 0 or less...
 if (currentCalories - VirtualPet.caloriesPerSecond <= 0) {
 // ...stop the interval from calling digest()
 clearInterval(digestIntervalID);
 // Then give the pet an empty stomach
 currentCalories = 0;
 // And report the pet's death

Using Functions in the Virtual Zoo Program | 99

 trace(getName() + " has died.");
 } else {
 // ...otherwise, digest the stipulated number of calories
 currentCalories -= VirtualPet.caloriesPerSecond;

 // And report the pet's new status
 trace(getName() + " digested some food. It now has "
 + currentCalories + " calories remaining.");
 }
}

Example 5-3 shows the complete code for the VirtualPet class, including all the
changes we just made.

Example 5-3. The VirtualPet class

package zoo {
 import flash.utils.setInterval;
 import flash.utils.clearInterval;

 internal class VirtualPet {
 private static var maxNameLength = 20;
 private static var maxCalories = 2000;
 private static var caloriesPerSecond = 100;

 private var petName;
 private var currentCalories = VirtualPet.maxCalories/2;
 private var digestIntervalID;

 public function VirtualPet (name) {
 setName(name);
 digestIntervalID = setInterval(digest, 1000);
 }

 public function eat (numberOfCalories) {
 if (currentCalories == 0) {
 trace(getName() + " is dead. You can't feed it.");
 return;
 }

 var newCurrentCalories = currentCalories + numberOfCalories;
 if (newCurrentCalories > VirtualPet.maxCalories) {
 currentCalories = VirtualPet.maxCalories;
 } else {
 currentCalories = newCurrentCalories;
 }
 trace(getName() + " ate some food. It now has " + currentCalories
 + " calories remaining.");
 }

 public function getHunger () {
 return currentCalories / VirtualPet.maxCalories;
 }

100 | Chapter 5: Functions

Back to Classes
We’ve finished our study of functions in ActionScript. In the next chapter, we’ll
return to the topic of classes, with a specific focus on using inheritance to create rela-
tionships between two or more classes. Once you understand inheritance, we’ll be
able to make our virtual zoo program ready to compile and run.

 public function setName (newName) {
 // If the proposed new name has more than maxNameLength characters...
 if (newName.length > VirtualPet.maxNameLength) {
 // ...truncate it
 newName = newName.substr(0, VirtualPet.maxNameLength);
 } else if (newName == "") {
 // ...otherwise, if the proposed new name is an empty string,
 // then terminate this method without changing petName
 return;
 }

 // Assign the new, validated name to petName
 petName = newName;
 }

 public function getName () {
 return petName;
 }

 private function digest () {
 // If digesting more calories would leave the pet's currentCalories at
 // 0 or less...
 if (currentCalories - VirtualPet.caloriesPerSecond <= 0) {
 // ...stop the interval from calling digest()
 clearInterval(digestIntervalID);
 // Then give the pet an empty stomach
 currentCalories = 0;
 // And report the pet's death
 trace(getName() + " has died.");
 } else {
 // ...otherwise, digest the stipulated number of calories
 currentCalories -= VirtualPet.caloriesPerSecond;

 // And report the pet's new status
 trace(getName() + " digested some food. It now has "
 + currentCalories + " calories remaining.");
 }
 }
 }
}

Example 5-3. The VirtualPet class (continued)

101

Chapter 6 CHAPTER 6

Inheritance7

In object-oriented programming, inheritance is a formal relationship between two or
more classes, wherein one class borrows (or inherits) the variable and method defini-
tions of another class. In the practical, technical sense, inheritance simply lets one
class use the code in another class.

But the term inheritance implies much more than code reuse. Inheritance is as much
an intellectual tool as it is a technical tool. It lets programmers conceptualize a group
of classes in hierarchical terms. In biology, inheritance is a genetic process through
which one living creature passes on traits to another. You are said to have inherited
your mother’s eyes or your father’s nose, even though you don’t look exactly like
either of your parents. In object-oriented programming, inheritance has a similar
connotation. It lets a class look and feel in many ways like another class, while add-
ing its own unique features.

This chapter begins by examining the syntax and general use of inheritance. Once we
understand inheritance on a practical level, we’ll consider its benefits and alterna-
tives. Finally, we’ll apply inheritance to our virtual zoo program.

A Primer on Inheritance
Let’s consider a very simple, abstract example to get a feel for how inheritance works
(we’ll get into practical applications once we cover the basic syntax). Here’s a class
named A, with a single instance method, m(), and a single instance variable, v:

public class A {
 public var v = 10;

 public function m () {
 trace("Method m() was called");
 }
}

102 | Chapter 6: Inheritance

As usual, we can create an instance of class A, invoke method m(), and access vari-
able v like this:

var aInstance = new A();
aInstance.m(); // Displays: Method m() was called
trace(aInstance.v); // Displays: 10

Nothing new so far. Now let’s add a second class, B, that inherits method m() and
variable v from class A. To set up the inheritance relationship between A and B, we
use the extends keyword:

public class B extends A {
 // No methods or variables defined
}

Because class B extends (inherits from) class A, instances of B can automatically use
the method m() and the variable v (even though class B does not define that method
or variable directly):

var bInstance:B = new B();
bInstance.m(); // Displays: Method m() was called
trace(bInstance.v); // Displays: 10

When bInstance.m() is invoked, ActionScript checks to see if class B defines a
method named m(). ActionScript does not find method m() defined in class B, so it
checks B’s superclass (i.e., the class that B extends), for the method. There, in class
A, ActionScript finds m() and invokes it on bInstance.

Notice that class B does not define any methods or variables of its own. In practice,
there isn’t much point in defining a class that doesn’t add anything to the class it
extends; therefore, doing so is usually discouraged. Normally, class B would define
its own methods and/or variables in addition to inheriting A’s methods and vari-
ables. That is, a subclass is really a superset of the features available in its superclass;
the subclass has everything available in the superclass and more. Here is a new ver-
sion of class B, which inherits method m() and variable v from class A, and also
defines its own method, n():

public class B extends A {
 public function n () {
 trace("Method n() was called");
 }
}

Now instances of B can use all the methods and variables of both B and its super-
class, A:

var bInstance = new B();
// Invoke inherited method, defined by class A
bInstance.m(); // Displays: Method m() was called
// Invoke method defined by class B
bInstance.n(); // Displays: Method n() was called
// Access inherited variable
trace(bInstance.v); // Displays: 10

A Primer on Inheritance | 103

Class B is said to specialize class A. It uses the features of class A as a base on which
to build, adding its own features or even—as we’ll see later—overriding A’s features
with versions modified for its own needs. Accordingly, in an inheritance relationship
between two classes, the extended class (in our case, class A) is called the base class,
and the class that does the extending (in our case, class B) is called the derived class.
The terms ancestor and descendant are also sometimes used to refer to the base class
and the derived class, respectively.

Inheritance can (and often does) involve many more than two classes. For example,
even though class B inherits from class A, class B can act as a base class for another
class. The following code shows a third class, C, that extends class B and also defines
a new method, o(). Class C can use all the methods and variables defined by itself or
by any of its ancestors—that is, its superclass (B), or its superclass’s superclass (A).

public class C extends B {
 public function o () {
 trace("Method o() was called");
 }
}

// Usage:
var cInstance = new C();
// Invoke method inherited from A
cInstance.m(); // Displays: Method m() was called
// Invoke method inherited from B
cInstance.n(); // Displays: Method n() was called
// Invoke method defined by C
cInstance.o(); // Displays: Method o() was called
// Access variable inherited from A.
trace(cInstance.v); // Displays: 10

Furthermore, a single superclass can have any number of subclasses (however, a
superclass has no way of knowing which subclasses extend it). The following code
adds a fourth class, D, to our example. Like class B, class D inherits directly from
class A. Class D can use the methods and variables defined by itself and by its super-
class, A.

public class D extends A {
 public function p () {
 trace("Method p() was called");
 }
}

With four classes now in our example, we’ve built up what’s known as an inheritance
tree or class hierarchy. Figure 6-1 shows that hierarchy visually. Note that a single
subclass can’t have more than one direct superclass.

All OOP applications can be depicted with a class diagram such as the one shown in
Figure 6-1. In fact, many developers start their work by creating a class diagram
before writing any code. Class diagrams can be informal—drawn according to a
developer’s personal iconography—or formal, drawn according to a diagramming
specification such as Unified Modeling Language (UML) (see http://www.uml.org).

http://www.uml.org

104 | Chapter 6: Inheritance

Just as we design our own class hierarchies for our OOP applications, ActionScript
also organizes its built-in classes according to a hierarchy. In fact, every class in
ActionScript (both built-in and custom) inherits directly or indirectly from the root
of the built-in hierarchy: Object. The Object class defines some very basic methods
and variables that all classes can use, through inheritance. For example, any class can
use the Object.toString() method, which returns a string representation of an object.

Static Methods and Static Variables Not Inherited
Unlike instance methods and instance variables, a subclass does not inherit its super-
class’s static methods and static variables.

For example, in the following code, we define a static method, s(), in the class A.
The method s() is not inherited by A’s subclass, B, and, therefore, cannot be
accessed as B.s().

public class A {
 public static function s () {
 trace("A.s() was called");
 }
}

public class B extends A {
 public function B () {
 B.s(); // Error! Illegal attempt to access A.s() through B
 }
}

However, within the body of either A or B, static methods and static variables
defined by A can be referred to directly without the class name, as in s() rather than
A.s(). Nevertheless, it’s generally wise to include the class name when referring to
static methods or static variables. When the class name is included, the origin of the
method or variable is clear.

Figure 6-1. A class hierarchy

v
m()

A

n()

B
p()

D

o()

C

Overriding Instance Methods | 105

Overriding Instance Methods
In our study of inheritance so far, we’ve covered reuse, in which a subclass uses its
superclass’s methods and variables, and we’ve covered extension, in which a sub-
class adds its own methods and variables. We’ll now turn to redefinition, in which a
subclass provides an alternative version of a method defined by its superclass. (Bear
in mind that reuse, extension, and redefinition are not mutually exclusive. A sub-
class might employ all three techniques.)

Redefinition lets us customize an existing class for a specific purpose by augmenting,
constraining, or even nullifying one or more of its original behaviors. Redefining a
method is known technically as overriding that method.

ActionScript 3.0 allows instance methods to be redefined but not
instance variables, static variables, or static methods.

To override a superclass’s instance method, we supply an instance method defini-
tion of the same name in the subclass, and precede that definition with the keyword
override. For example, consider the following code, which creates a class, A, with an
instance method, m():

public class A {
 // Declare an instance method in the superclass
 public function m () {
 trace("A's m() was called");
 }
}

Also consider the following code, which creates a class, B, that inherits from A:

// Class B is a subclass of class A
public class B extends A {
}

To override m() in B, we use the following code:

public class B extends A {
 // Override the superclass's method m()
 override public function m () {
 trace("B's m() was called");
 }
}

Notice that B’s version of m() has not only the same name, but also the same access-
control modifier (i.e., public) as A’s version.

An override attempt succeeds only if the overriding version of the
method has the same name, access-control modifier, parameter list,
and return type as the method being overridden. (We’ll learn about
return types in Chapter 8.) Otherwise, an error occurs.

106 | Chapter 6: Inheritance

When m() is invoked on an instance of class A, ActionScript uses A’s definition of
the method. But when m() is invoked on an instance of class B, ActionScript uses B’s
definition of the method instead of class A’s definition:

var aInstance = new A();
aInstance.m(); // Displays: A's m() was called

var bInstance = new B();
bInstance.m(); // Displays: B's m() was called

Let’s consider a more realistic example. Suppose we’re building a geometry program
that depicts rectangles and squares. To handle the rectangles, we create a Rectangle
class, as follows:

public class Rectangle {
 protected var w = 0;
 protected var h = 0;

 public function setSize (newW, newH) {
 w = newW;
 h = newH;
 }

 public function getArea () {
 return w * h;
 }
}

To handle squares, we could create a completely unrelated Square class. But a square
is really just a rectangle with sides of equal width and height. To exploit that similar-
ity, we’ll create a Square class that extends Rectangle but alters the setSize() method
to prevent w and h from being set unless newW equals newH. The constraint applies only
to squares, not to rectangles in general, so it doesn’t belong in the Rectangle class.

Here’s the Square class, showing the overridden setSize() method:

public class Square extends Rectangle {
 override public function setSize (newW, newH) {
 // Here's the constraint introduced by the Square class
 if (newW == newH) {
 w = newW;
 h = newH;
 }
 }
}

When setSize() is invoked on a Square or Rectangle instance, ActionScript uses the
version of the method that matches the actual class of the instance. For example, in
the following code, we invoke setSize() on a Rectangle instance. ActionScript knows
that the instance’s class is Rectangle, so it invokes Rectangle’s version of setSize():

var r = new Rectangle();
r.setSize(4,5);
trace(r.getArea()); // Displays: 20

Overriding Instance Methods | 107

By contrast, in the following code, we invoke setSize() on a Square instance. This
time ActionScript knows that the instance’s class is Square, so it invokes Square’s
version of setSize(), not Rectangle’s version of setSize():

var s = new Square();
s.setSize(4,5);
trace (s.getArea()); // Displays: 0 (The setSize() method prevented the
 // illegal variable assignment.)

In the preceding code, the output of s.getArea()—0—indicates that values of w and h
were not set by the call to s.setSize(); Square’s version of setSize() sets w and h only
when newW and newH are equal.

Invoking an Overridden Instance Method
When a subclass overrides an instance method, the superclass’s version of the
method is not lost. It remains accessible to instances of the subclass via the super
operator, which can invoke an overridden method as follows:

super.methodName(arg1, arg2, ...argn);

In the preceding code, methodName is the name of the overridden method to invoke,
and arg1, arg2, ... argn are the arguments to pass to that method. (We’ll discuss
other uses of super later in this chapter.)

As an example of invoking an overridden method, let’s return to the Square and
Rectangle scenario. In the previous section, our Square.setSize() method needlessly
duplicated the code in the Rectangle.setSize() method. The Rectangle version was:

public function setSize (newW, newH) {
 w = newW;
 h = newH;
}

The Square version of setSize() merely added an if statement:

override public function setSize (newW, newH) {
 if (newW == newH) {
 w = newW;
 h = newH;
 }
}

To avoid the duplication of setting w and h in both methods, we can use super, as
shown in this revised version of Square.setSize():

override public function setSize (newW, newH) {
 if (newW == newH) {
 // Invoke the superclass's setSize() method, on the current instance
 super.setSize(newW, newH);
 }
}

108 | Chapter 6: Inheritance

The Square class’s revised setSize() method checks if newW and newH are equal; if they
are, it invokes Rectangle’s setSize() on the current instance. The Rectangle class’s
setSize() method takes care of setting w and h.

The setSize() method example shows how a subclass can override a method to con-
strain its behavior. A subclass can also override a method to augment its behavior. For
example, the following code creates ScreenRectangle, a subclass of Rectangle that
draws a rectangle to the screen. The ScreenRectangle subclass overrides the setSize()
method, retaining the behavior of the overridden method, but adding a call to draw(),
so the rectangle changes size on screen whenever setSize() is invoked. Here’s the code:

public class ScreenRectangle extends Rectangle {
 override public function setSize (newW, newH) {
 // Call Rectangle's version of setSize()
 super.setSize(newW, newH);

 // Now render the rectangle on screen
 draw();
 }

 public function draw () {
 // Screen-rendering code goes here
 }
}

Overriding can also be used to nullify the behavior of a method. The technique is
straightforward: the subclass’s version of the overridden method simply does noth-
ing. For example, the following code shows a subclass named ReadOnlyRectangle
that disables the Rectangle class’s setSize() method, preventing an instance from
changing size:

public class ReadOnlyRectangle extends Rectangle {
 // This effectively disables the setSize() method
 // for instances of the ReadOnlyRectangle class.
 override public function setSize (newW, newH) {
 // Do nothing
 }
}

Constructor Methods in Subclasses
Now that we’ve studied the behavior of instance methods and instance variables in
relation to inheritance, let’s turn our attention to constructor methods.

Recall that a constructor method initializes the instances of a class by:

• Calling methods that perform setup tasks

• Setting variables on the object being created

Constructor Methods in Subclasses | 109

When a class is extended, the subclass can define a constructor method of its own. A
subclass constructor is expected to:

• Perform setup tasks related to the subclass

• Set variables defined by the subclass

• Invoke the superclass constructor method (sometimes called the
superconstructor)

A subclass constructor method, if provided, is required to invoke its superclass con-
structor, via the keyword super. Furthermore, the superclass constructor invocation
must occur before any instance variable or instance method is accessed. If no such
invocation is provided, the compiler adds a no-argument superclass constructor call
automatically. Finally, super must not be used twice in a constructor method.

Forbidding the use of super after any instance variable or instance method is accessed
has the following benefits:

• Prevents methods from being called on an object that has not yet been initialized

• Prevents variable access on an object that has not yet been initialized

• Prevents variable assignments in the superclass constructor from overwriting
variable assignments in the subclass constructor

Don’t confuse the two forms of the super operator. The first form,
super(), invokes a superclass’s constructor method. The second form,
super.methodName(), invokes a superclass’s method. The first form is
allowed in a constructor method only. The second form is allowed
anywhere in a constructor method or instance method, and can be
used multiple times.

Let’s try using super to invoke a superclass’s constructor method in a simplified situ-
ation. The following code defines a class, A, with an empty constructor method:

public class A {
 public function A () {
 }
}

The following code defines a class, B, which extends A. Within B’s constructor
method, we use super to invoke A’s constructor method:

public class B extends A {
 // Subclass constructor
 public function B () {
 // Invoke superclass's constructor method
 super();
 }
}

110 | Chapter 6: Inheritance

The following two constructor method definitions are functionally synonymous. In
the first case, we call the superclass’s constructor method explicitly; in the second
case, ActionScript calls the superclass’s constructor method implicitly:

public function B () {
 // Invoke superclass's constructor method explicitly
 super();
}

public function B () {
 // No constructor call. ActionScript provides one implicitly
}

If a subclass does not define a constructor method at all, ActionScript automatically
creates one and adds a super call as its only statement. The following two definitions
of the class B are functionally identical; the first is an explicit version of what the
compiler creates automatically in the second:

// Explicitly provide constructor
public class B extends A {
 // Declare a constructor explicitly
 public function B () {
 // Invoke superclass's constructor method explicitly
 super();
 }
}

// Let compiler create default constructor automatically
public class B extends A {
}

A subclass constructor method can (and often does) define different parameters than
its superclass counterpart. For example, our Rectangle class might define a construc-
tor with width and height parameters. And our Square subclass might provide its
own constructor that defines a single side parameter (squares have the same width
and height, so specifying both is redundant). Example 6-1 shows the code.

Example 6-1. The Rectangle and Square constructors

public class Rectangle {
 protected var w = 0;
 protected var h = 0;

 // Rectangle constructor
 public function Rectangle (width, height) {
 setSize(width, height);
 }

 public function setSize (newW, newH) {
 w = newW;
 h = newH;
 }

Constructor Methods in Subclasses | 111

Incidentally, you might wonder whether the Square class’s setSize() method is better
off defining a single side parameter rather than separate width and height parame-
ters. The following version of setSize() demonstrates (notice that the method no
longer needs to check whether newW equals newH):

override public function setSize (side) {
 // Invoke the superclass's setSize() method, on the current instance
 super.setSize(side, side);
}

While the preceding version of setSize() is definitely more appropriate for a Square
class, it would cause an error because it defines fewer parameters than the Rectangle
class’s version of setSize() (remember that the number of parameters defined by an
overriding method must match that of the overridden method). Later, under “Inher-
itance Versus Composition,” we’ll consider an alternate, legal approach for imple-
menting the single-parameter version of setSize() in the Square class.

When defining a subclass’s constructor method, be sure to supply all required argu-
ments to the superclass’s constructor. In the following example, the ColoredBall class
erroneously defines a constructor method that doesn’t supply necessary information
to its superclass’s constructor method:

public class Ball {
 private var r;
 public function Ball (radius) {
 r = radius;
 }
}

public class ColoredBall extends Ball {
 private var c;

 public function getArea () {
 return w * h;
 }
}

public class Square extends Rectangle {
 // Square constructor
 public function Square (side) {
 // Pass the side parameter onto the Rectangle constructor
 super(side, side);
 }

 override public function setSize (newW, newH) {
 if (newW == newH) {
 // Invoke the superclass's setSize() method, on the current instance
 super.setSize(newW, newH);
 }
 }
}

Example 6-1. The Rectangle and Square constructors (continued)

112 | Chapter 6: Inheritance

 // Here's the problematic constructor...
 public function ColoredBall (color) {
 // OOPs! No call to super(). An error will occur here because
 // Ball's constructor requires an argument for the radius parameter
 c = color;
 }
}

Here’s the corrected version of ColoredBall, which supplies the necessary argument
to the Ball constructor’s behavior:

public class ColoredBall extends Ball {
 private var c;

 // All fixed up...
 public function ColoredBall (radius, color) {
 super(radius);
 c = color;
 }
}

Notice that, as a matter of good form, the subclass constructor lists the superclass’s
constructor parameters first (in this case, radius), then the additional subclass con-
structor arguments (in this case, color).

Preventing Classes from Being Extended and Methods
from Being Overridden
To prevent a class from being extended or a method from being overridden, we pre-
cede that class or method definition with the final attribute. For example, the follow-
ing code defines a class, A, that cannot be extended:

final public class A {
}

Because class A is defined with the final attribute, the following attempt to extend A:

public class B extends A {
}

yields this compile-time error:

Base class is final.

Likewise, the following code defines a method, m(), that cannot be overridden:

public class A {
 final public function m () {
 }
}

Subclassing Built-in Classes | 113

Because class m() is defined with the final attribute, the following attempt to over-
ride m():

public class B extends A {
 override public function m () {
 }
}

yields this compile-time error:

Cannot redefine a final method.

The final attribute is used for two reasons in ActionScript:

• In some situations, final methods execute faster than non-final methods. If you
are looking to improve your application’s performance in every possible way, try
making its methods final. Note, however, that in future Flash runtimes, Adobe
expects non-final methods to execute as quickly as final methods.

• Methods that are final help hide a class’s internal details. Making a class or a
method final prevents other programmers from extending the class or overriding
the method for the purpose of examining the class’s internal structure. Such pre-
vention is considered one of the ways to safeguard an application from being
maliciously exploited.

Efficiency and safeguarding aside, the programming community is divided on
whether making methods and classes final is good object-oriented programming
practice. On one hand, some argue that final methods and classes are useful because
they allow a programmer to guarantee that an object has an intended behavior,
rather than an unexpected (and potentially problematic) overridden behavior. On
the other hand, others argue that final methods and classes contradict the general
object-oriented principle of polymorphism, wherein an instance of a subclass can be
used anywhere an instance of its superclass is expected. We’ll learn more about poly-
morphism later in this chapter.

Subclassing Built-in Classes
Just as we can create subclasses of our own custom classes, we can also create sub-
classes of any non-final built-in class, allowing us to implement specialized function-
ality based on an existing ActionScript class. For an example of extending the built-
in Array class, see Programming ActionScript 3.0 ➝ Core ActionScript 3.0 Data
Types and Classes ➝ Working with Arrays ➝ Advanced Topics, in Adobe’s Program-
ming ActionScript 3.0. For an example of extending the built-in Flash runtime class,
Shape, see the section “Custom Graphical Classes” in Chapter 20.

Some built-in ActionScript classes are simply collections of class methods and class
variables—for example, the Math, Keyboard, and Mouse classes exist merely to store
related methods and variables (e.g., Math.random() and Keyboard.ENTER). Such classes
are known as static method libraries, and are typically declared final. Rather than

114 | Chapter 6: Inheritance

extending these classes, you must distribute your own static method libraries sepa-
rately. For example, rather than adding a factorial() method to a subclass of the Math
class, you would create a custom class, say AdvancedMath, to hold your factorial()
method. The AdvancedMath class cannot be related to the Math class via inheritance.

The Theory of Inheritance
So far this chapter has focused mainly on the practical details of using inheritance in
ActionScript. But the theory of why and when to use inheritance runs much deeper
than the technical implementation. Before we conclude, let’s consider some basic
theoretical principles, bearing in mind that a few pages is hardly enough room to do
the topic justice. For a much more thorough consideration of inheritance theory, see
“Using Inheritance Well” (http://archive.eiffel.com/doc/manuals/technology/oosc/
inheritance-design/page.html), an online excerpt from Bertrand Meyer’s illuminating
work Object-Oriented Software Construction (Prentice Hall).

Why Inheritance?
Superficially, the obvious benefit of inheritance is code reuse. Inheritance lets us sep-
arate a core feature set from customized versions of that feature set. Code for the
core is stored in a superclass while code for the customizations is kept neatly in a
subclass. Furthermore, more than one subclass can extend the superclass, allowing
multiple customized versions of a particular feature set to exist simultaneously. If the
implementation of a feature in the superclass changes, all subclasses automatically
inherit the change.

But inheritance also lets us express the architecture of an application in hierarchical
terms that mirror the real world and the human psyche. For example, in the real
world, we consider plants different from animals, but we categorize both as living
things. We consider cars different from planes, but we see both as vehicles. Corre-
spondingly, in a human resources application, we might have an Employee super-
class with Manager, CEO, and Worker subclasses. Or, in a banking application, we
might create a BankAccount superclass with CheckingAccount and SavingsAccount
subclasses. These are canonical examples of one variety of inheritance sometimes
called subtype inheritance, in which the application’s class hierarchy is designed to
model a real-world situation (a.k.a. the domain or problem domain).

However, while the Employee and BankAccount examples make attractive demonstra-
tions of inheritance, not all inheritance reflects the real world. In fact, overemphasiz-
ing real-world modeling can lead to miscomprehension of inheritance and its
subsequent misuse. For example, given a Person class, we might be tempted to create
Female and Male subclasses. These are logical categories in the real world, but if the
application using those classes were, say, a school’s reporting system, we’d be forced
to create MaleStudent and FemaleStudent classes just to preserve the real-world hierar-
chy. In our program, male students do not define any operations differently from

http://archive.eiffel.com/doc/manuals/technology/oosc/inheritance-design/page.html
http://archive.eiffel.com/doc/manuals/technology/oosc/inheritance-design/page.html

The Theory of Inheritance | 115

female students and, therefore, should be used identically. The real-world hierarchy in
this case conflicts with our application’s hierarchy. If we need gender information,
we’re better off creating a single Student class and adding a gender variable to the
Person class. As tempting as it may be, we should avoid creating inheritance struc-
tures based solely on the real world rather than the needs of our program.

Finally, in addition to code reuse and logical hierarchy, inheritance allows types of
objects to be used where a single type is expected. Known as polymorphism, this
important benefit warrants a discussion all its own.

Polymorphism and Dynamic Binding
Polymorphism is a feature of all truly object-oriented languages, wherein an instance
of a subclass can be used anywhere an instance of its superclass is expected. The
word polymorphism itself means literally “many forms”—each single object can be
treated as an instance of its own class or as an instance of any of its superclasses.

Polymorphism’s partner is dynamic binding, which guarantees that a method invoked
on an object will trigger the behavior defined by that object’s actual class.

The canonical example of polymorphism and dynamic binding is a graphics applica-
tion that displays shapes. The application defines a Shape class with an unimple-
mented draw() method:

public class Shape {
 public function draw () {
 // No implementation. In some other languages, draw() would be
 // declared with the abstract attribute, which syntactically
 // forces subclasses of Shape to provide an implementation.
 }
}

The Shape class has several subclasses—a Circle class, a Rectangle class, and a
Triangle class, each of which provides its own definition for the draw() method:

public class Circle extends Shape {
 override public function draw () {
 // Code to draw a Circle on screen, not shown...
 }
}

public class Rectangle extends Shape {
 override public function draw () {
 // Code to draw a Rectangle on screen, not shown...
 }
}

public class Triangle extends Shape {
 override public function draw () {
 // Code to draw a Triangle on screen, not shown...
 }
}

116 | Chapter 6: Inheritance

To add a new shape to the screen, we pass a Circle, Rectangle, or Triangle instance to
the addShape() method of the application’s main class, DrawingApp. Here’s
DrawingApp’s addShape() method:

public function addShape (newShape) {
 newShape.draw();

 // Remainder of method (code not shown) would add the new shape
 // to an internal list of shapes on screen
}

Here’s how we add a Circle shape to the screen:

drawingApp.addShape(new Circle());

The addShape() method invokes the new shape’s draw() method and adds the new
shape to an internal list of shapes on screen. And here’s the key point—addShape()
invokes draw() without knowing (or caring) whether the new shape is a Circle,
Rectangle, or Triangle instance. Through the runtime process of dynamic binding,
ActionScript uses the appropriate implementation of that method. That is, if the
instance is a Circle, ActionScript invokes Circle.draw(); if it’s a Rectangle, Action-
Script invokes Rectangle.draw(); and if it’s a Triangle, ActionScript invokes
Triangle.draw(). Importantly, the specific class of the new shape is not known at
compile time. Hence, dynamic binding is often called late binding: the method call
is bound to a particular implementation “late” (i.e., at runtime).

The key benefit of dynamic binding and polymorphism is containment of changes to
code. Polymorphism lets one part of an application remain fixed even when another
changes. For example, let’s consider how we’d handle the drawing of shapes if poly-
morphism didn’t exist. First, we’d have to use unique names for each version of
draw():

public class Circle extends Shape {
 public function drawCircle () {
 // Code to draw a Circle on screen, not shown...
 }
}

public class Rectangle extends Shape {
 public function drawRectangle () {
 // Code to draw a Rectangle on screen, not shown...
 }
}

public class Triangle extends Shape {
 public function drawTriangle () {
 // Code to draw a Triangle on screen, not shown...
 }
}

Then, within DrawingApp’s addShape() method we’d have to use the is operator to
check the class of each new shape manually and invoke the appropriate draw

The Theory of Inheritance | 117

method, as shown in the following code. An is operation returns the value true if the
specified expression belongs to the specified datatype; otherwise, it returns false.
We’ll study datatypes and the is operator in Chapter 8.

public function addShape (newShape) {
 if (newShape is Circle) {
 newShape.drawCircle();
 } else if (newShape is Rectangle) {
 newShape.drawRectangle();
 } else if (newShape is Triangle) {
 newShape.drawTriangle();
 }

 // Remainder of method (code not shown) would add the new shape
 // to an internal list of shapes on screen
}

That’s already more work. But imagine what would happen if we added 20 new
kinds of shapes. For each one, we’d have to update the addShape() method. In a
polymorphic world, we don’t have to touch the code that invokes draw() on each
Shape instance. As long as each Shape subclass supplies its own valid definition for
draw(), our application will “just work” without other changes.

Polymorphism not only lets programmers collaborate more easily, but it allows them
to use and expand on a code library without requiring access to the library’s source
code. Some argue that polymorphism is object-oriented programming’s greatest con-
tribution to computer science.

Inheritance Versus Composition
In this chapter, we’ve focused most of our attention on one type of inter-object rela-
tionship: inheritance. But inheritance isn’t the only game in town. Composition, an
alternative form of inter-object relationship, often rivals inheritance as an object-ori-
ented design technique. In composition, one class (the front-end class) stores an
instance of another class (the back-end class) in an instance variable. The front-end
class delegates work to the back-end class by invoking methods on that instance.
Here’s the basic approach, shown in generalized code:

// The back end class is analogous to the superclass in inheritance
public class BackEnd {
 public function doSomething () {
 }
}

// The front end class is analogous to the subclass in inheritance
public class FrontEnd {
 // An instance of the back end class is stored in
 // a private instance variable, in this case called be
 private var be;

118 | Chapter 6: Inheritance

 // The constructor creates the instance of the back end class
 public function FrontEnd () {
 be = new BackEnd();
 }

 // This method delegates work to BackEnd's doSomething() method
 public function doSomething () {
 be.doSomething();
 }
}

Notice that the FrontEnd class does not extend the BackEnd class. Composition does
not require or use its own special syntax, as inheritance does. Furthermore, the front-
end class might use a subset of the methods of the back end class, or it might use all
of them, or it might add its own unrelated methods. The method names in the front-
end class might match those exactly in the back-end class, or they might be com-
pletely different. The front-end class can constrain, extend, or redefine the back-end
class’s features, just like a subclass in inheritance.

Earlier we learned how, using inheritance, a Square class could constrain the behav-
ior of a Rectangle class. Example 6-2 shows how that same class relationship can be
implemented with composition instead of inheritance. In Example 6-2, the Rectangle
class is unchanged. But this time, the Square class does not extend Rectangle.
Instead, it defines a variable, r, that contains a Rectangle instance. All operations on
r are filtered through Square’s public methods. The Square class forwards, or dele-
gates, method calls to r. Notice that because the Square class’s setSize() method does
not override the Rectangle class’s setSize() method, its signature need not be compat-
ible with the Rectangle class’s setSize() method. The Square class’s setSize() method
is free to define a single parameter, contrasting with the Rectangle class’s setSize()
method, which defines two parameters.

Example 6-2. An example composition relationship

// The Rectangle class
public class Rectangle {
 protected var w = 0;
 protected var h = 0;

 public function Rectangle (width, height) {
 setSize(width, height);
 }

 public function setSize (newW, newH) {
 w = newW;
 h = newH;
 }

 public function getArea () {
 return w * h;
 }

The Theory of Inheritance | 119

Is-A, Has-A, and Uses-A

In object-oriented language, an inheritance relationship is known colloquially as an
Is-A relationship because an instance of the subclass can be seen literally as being an
instance of the superclass (i.e., the subclass instance can be used wherever a super-
class instance is expected). In our earlier polymorphic example, a Circle instance Is-A
Shape because the Circle class inherits from the Shape class and can, therefore, be
used anywhere a Shape is used.

A composition relationship is known as a “Has-A relationship because the front-end
class maintains an instance of the back-end class. The Has-A relationship should not
be confused with the Uses-A relationship, in which a class instantiates an object of
another class but does not assign it to an instance variable. In a “Uses-A relationship,
the class uses the object and throws it away. For example, a Circle might store its
numeric color in a variable, color (Has-A uint object), but then use a Color object
temporarily to actually set that color on screen (Uses-A Color object).

In Example 6-2, our Square class Has-A Rectangle instance and adds restrictions to it
that effectively turn it into a Square. In the case of Square and Rectangle, the Is-A
relationship seems natural, but the Has-A relationship can also be used. Which begs
the question: which relationship is best?

When to use composition over inheritance

Example 6-2 raises a serious design question. How do you choose between composi-
tion and inheritance? In general, it’s fairly easy to spot a situation in which inherit-
ance is inappropriate. An AlertDialog instance in an application “has an” OK button,
but an AlertDialog instance, itself, “isn’t an” OK button. However, spotting a
situation in which composition is inappropriate is trickier because any time you can

}

// Here's the new Square class
public class Square {
 private var r;

 public function Square (side) {
 r = new Rectangle(side, side);
 }

 public function setSize (side) {
 r.setSize(side, side);
 }

 public function getArea () {
 return r.getArea();
 }
}

Example 6-2. An example composition relationship (continued)

120 | Chapter 6: Inheritance

use inheritance to establish the relationship between two classes, you could use com-
position instead. If both techniques work in the same situation, how can you tell
which is the best option?

If you’re new to object-oriented programming, you may be surprised to hear that
composition is often favored over inheritance as an application design strategy. In
fact, some of the best-known object-oriented design theoreticians explicitly advocate
composition over inheritance (see Design Patterns: Elements of Reusable Object-Ori-
ented Software, Gamma et al., 1995, Addison-Wesley). Hence, conventional wisdom
tells us to at least consider composition as an option even when inheritance seems
obvious. That said, here are some general guidelines to consider when deciding
whether to use inheritance or composition:

• If you want to take advantage of polymorphism, consider using inheritance.

• If a class just needs the services of another class, consider a composition
relationship.

• If a class you’re designing behaves very much like an existing class, consider an
inheritance relationship.

For more advice on choosing between composition and inheritance, read Bill Ven-
ner’s excellent JavaWorld article, archived at his site: http://www.artima.com/
designtechniques/compoinh.html. Mr. Venner offers compelling evidence that, gener-
ally speaking:

• Changing code that uses composition has fewer consequences than changing
code that uses inheritance.

• Code based on inheritance often executes faster than code based on composition.

Abstract Not Supported
Many object-oriented designs require the use of a so-called abstract class. An abstract
class is any class that defines zero or more abstract methods—methods that have a
name, parameters, and a return type but no implementation (i.e., no method body).
A class that wishes to extend an abstract class must either implement all of the super-
class’s abstract methods, or be abstract itself; otherwise, a compile-time error occurs.
Subclasses of an abstract class effectively promise to provide some real code to do a
job the abstract class only describes in theory.

Abstract classes are a common, important part of polymorphic designs. For exam-
ple, in our earlier discussion of polymorphism, we studied a Shape class with Circle,
Rectangle, and Triangle subclasses. Traditionally, the Shape class’s draw() method
would be defined as an abstract method, guaranteeing that:

• Each Shape subclass provides a means of drawing itself to the screen.

• External code can safely call draw() on any Shape subclass (because the com-
piler will not let a class extend Shape without implementing draw()).

http://www.artima.com/designtechniques/compoinh.html
http://www.artima.com/designtechniques/compoinh.html

Using Inheritance in the Virtual Zoo Program | 121

Unfortunately, ActionScript does not support abstract classes or abstract methods.
Instead of defining an abstract method in ActionScript, you should simply define a
method with no code in its body, and document the method as “abstract.” It’s left up
to the programmer (not the compiler) to ensure that the subclasses of a would-be
abstract class implement the appropriate method(s).

In many cases, ActionScript interfaces can be used in place of abstract classes to
enforce a particular object-oriented architecture. See Chapter 9.

We’ve finished our study of inheritance. Let’s close this chapter by applying our new
knowledge to the virtual zoo program.

Using Inheritance in the Virtual Zoo Program
In our virtual zoo program, we’ll use inheritance in two different ways. First, we’ll
use it to define types of food for our pets to eat—replacing our earlier approach of
adding raw calories to pets through the eat() method. Second, we’ll use inheritance
to make our application’s main class, VirtualZoo, displayable on screen.

Creating Types of Pet Food
Until now, our implementation of eating in the virtual zoo program has been overly
simplistic. To make a pet eat, we simply invoke eat() on the desired VirtualPet object
and specify an arbitrary number of calories for the pet to eat. To improve the realism
of our simulation, let’s add types of food to the zoo program.

To keep things simple, we’ll allow our pet to eat only two types of food: sushi and
apples. We’ll represent sushi with a new class, Sushi, and apples with a new class,
Apple. Because the Sushi and Apple classes both conceptually represent food, they
have nearly identical functionality. Hence, in our application, we’ll implement the
functionality needed by both Sushi and Apple in a single superclass, Food. The Sushi
and Apple classes will extend Food and, through inheritance, adopt its features.

The Food class defines four simple methods for retrieving and modifying the name
and calorie value of a given piece of food. Here’s the code:

package zoo {
 public class Food {
 private var calories;
 private var name;

 public function Food (initialCalories) {
 setCalories(initialCalories);
 }

 public function getCalories () {
 return calories;
 }

122 | Chapter 6: Inheritance

 public function setCalories (newCalories) {
 calories = newCalories;
 }

 public function getName () {
 return name;
 }

 public function setName (newName) {
 name = newName;
 }
 }
}

The Apple class sets the default number of calories for a given Apple object, and
defines the food name for all Apple objects. Here’s the code:

package zoo {
 public class Apple extends Food {
 // Set the default number of calories for an Apple object to 100
 private static var DEFAULT_CALORIES = 100;

 public function Apple (initialCalories = 0) {
 // If no calorie value or a negative calorie value was specified
 // for this particular object...
 if (initialCalories <= 0) {
 // ...use the default value
 initialCalories = Apple.DEFAULT_CALORIES;
 }
 super(initialCalories);

 // Set the food name for all Apple objects
 setName("Apple");
 }
 }
}

The Sushi class sets the default number of calories for a given Sushi object, and
defines the food name for all Sushi objects. Here’s the code:

package zoo {
 public class Sushi extends Food {
 private static var DEFAULT_CALORIES = 500;

 public function Sushi (initialCalories = 0) {
 if (initialCalories <= 0) {
 initialCalories = Sushi.DEFAULT_CALORIES;
 }
 super(initialCalories);

 setName("Sushi");
 }
 }
}

Using Inheritance in the Virtual Zoo Program | 123

To enable VirtualPet objects to eat apples and sushi, we need to update the
VirtualPet class’s eat() method. Here’s what the eat() method used to look like:

public function eat (numberOfCalories) {
 if (currentCalories == 0) {
 trace(getName() + " is dead. You can't feed it.");
 return;
 }

 var newCurrentCalories = currentCalories + numberOfCalories;
 if (newCurrentCalories > VirtualPet.maxCalories) {
 currentCalories = VirtualPet.maxCalories;
 } else {
 currentCalories = newCurrentCalories;
 }
 trace(getName() + " ate some food. It now has " + currentCalories
 + " calories remaining.");
}

In the new version of the eat() method, we’ll change the numberOfCalories parame-
ter to foodItem, introducing the logical convention that eat()’s argument must be an
instance of any class that inherits from Food. (Note that Chapter 8 teaches how to
enforce that convention with a datatype declaration.) Within the eat() method, we’ll
calculate newCurrentCalories by adding the calorie value of the food item (i.e.,
foodItem.getCalories()) to the pet’s existing calories (i.e., currentCalories). Finally,
when reporting that the pet ate some food, we’ll use the Food class’s getName()
method to list the name of the food that was eaten. Here’s the updated eat() method:

public function eat (foodItem) {
 if (currentCalories == 0) {
 trace(getName() + " is dead. You can't feed it.");
 return;
 }

 var newCurrentCalories = currentCalories + foodItem.getCalories();
 if (newCurrentCalories > VirtualPet.maxCalories) {
 currentCalories = VirtualPet.maxCalories;
 } else {
 currentCalories = newCurrentCalories;
 }
 trace(getName() + " ate some " + foodItem.getName() + "."
 + " It now has " + currentCalories + " calories remaining.");
}

Now let’s try feeding some sushi and an apple to the pet in the VirtualZoo construc-
tor. Here’s the code:

package zoo {
 public class VirtualZoo {
 private var pet;

 public function VirtualZoo () {
 pet = new VirtualPet("Stan");

124 | Chapter 6: Inheritance

 pet.eat(new Apple()); // Feed Stan an apple
 pet.eat(new Sushi()); // Feed Stan some sushi
 }
 }
}

The Sushi and Apple classes are currently very simple, but they provide the founda-
tion for more sophisticated behavior. For example, now that our zoo program
includes types of food, we could quite easily make pets that like only apples or eat
sushi after 6 p.m. We can also easily customize the behavior of each type of food. As
an example, let’s randomly give 50% of all apples a worm, and make pets reject
apples with worms.

To track whether a given Apple object has a worm, we’ll add a new instance variable
to the Apple class, wormInApple:

private var wormInApple;

Next, within the Apple constructor, we’ll use Math.random() to pick a random num-
ber between 0 and 0.9999.... If the number is equal to or greater than 0.5, we’ll
assign wormInApple the value true, indicating that the Apple object has a worm; oth-
erwise we’ll assign wormInApple the value false, indicating that the Apple object does
not have a worm. Here’s the code:

wormInApple = Math.random() >= .5;

To give other classes a way to check whether an Apple object has a worm, we’ll
define a new public method, hasWorm(), which simply returns the value of
wormInApple. Here’s the code:

public function hasWorm () {
 return wormInApple;
}

Finally, we’ll update the VirtualPet class’s eat() method to make pets reject apples
with worms. Here’s the code, excerpted from the eat() method:

if (foodItem is Apple) {
 if (foodItem.hasWorm()) {
 trace("The " + foodItem.getName() + " had a worm. " + getName()
 + " didn't eat it.");
 return;
 }
}

In the preceding code, notice the use of the is operator, which checks whether an
object is an instance of a specified class or any class that inherits from that class. The
expression foodItem is Apple yields the value true if foodItem refers to an instance of
Apple (or any class that inherits from Apple); otherwise, it yields false. If the
foodItem is an Apple object, and its hasWorm() method returns true, then the eat()
method is terminated without increasing the value of currentCalories.

Beyond types of food, there’s one other use of inheritance in the virtual zoo pro-
gram. Let’s take a look.

Using Inheritance in the Virtual Zoo Program | 125

Preparing VirtualZoo for Onscreen Display
Because ActionScript is used to create graphical content and user interfaces, the main
class of every ActionScript program must extend either the flash.display.Sprite class
or the flash.display.MovieClip class. Both Sprite and MovieClip represent containers
for onscreen graphical content. The MovieClip class is sometimes used when the pro-
gram’s main class is associated with a .fla file (Flash authoring tool document), as
described in Chapter 29. Otherwise, the Sprite class is used.

When a Flash runtime opens a new .swf file, it creates an instance of that .swf file’s
main class and adds that instance to a hierarchical list of objects that are currently
displayed on screen, known as the display list. Once the instance is on the display
list, it can then use the inherited methods of the DisplayObject class (from which
Sprite or MovieClip both descend) to add other graphical content to the screen.

Our virtual zoo program will eventually add graphical content to the screen. But
before it does, we have much to learn about the display list and graphics program-
ming. Part II of this book, explores those topics in great detail. For now, however, in
order to run our program in its current state, we must meet the requirement that the
main class of every ActionScript program must extend either the Sprite class or the
MovieClip class.

Our program contains no Flash authoring tool content, so its main class, VirtualZoo,
extends the Sprite class. Here’s the code:

package zoo {
 import flash.display.Sprite;

 public class VirtualZoo extends Sprite {
 private var pet;

 public function VirtualZoo () {
 pet = new VirtualPet("Stan");
 pet.eat(new Apple());
 pet.eat(new Sushi());
 }
 }
}

We’ve made quite a few changes to our virtual zoo program in this chapter. Let’s
review the code in its entirety.

126 | Chapter 6: Inheritance

Virtual Zoo Program Code
Example 6-3 shows the code for the VirtualZoo class, the program’s main class.

Example 6-4 shows the code for the VirtualPet class, whose instances represent pets
in the zoo.

Example 6-3. The VirtualZoo class

package zoo {
 import flash.display.Sprite;

 public class VirtualZoo extends Sprite {
 private var pet;

 public function VirtualZoo () {
 pet = new VirtualPet("Stan");
 pet.eat(new Apple());
 pet.eat(new Sushi());
 }
 }
}

Example 6-4. The VirtualPet class

package zoo {
 import flash.utils.setInterval;
 import flash.utils.clearInterval;

 internal class VirtualPet {
 private static var maxNameLength = 20;
 private static var maxCalories = 2000;
 private static var caloriesPerSecond = 100;

 private var petName;
 private var currentCalories = VirtualPet.maxCalories/2;
 private var digestIntervalID;

 public function VirtualPet (name) {
 setName(name);
 digestIntervalID = setInterval(digest, 1000);
 }

 public function eat (foodItem) {
 if (currentCalories == 0) {
 trace(getName() + " is dead. You can't feed it.");
 return;
 }

 if (foodItem is Apple) {
 if (foodItem.hasWorm()) {
 trace("The " + foodItem.getName() + " had a worm. " + getName()
 + " didn't eat it.");

Virtual Zoo Program Code | 127

 return;
 }
 }

 var newCurrentCalories = currentCalories + foodItem.getCalories();
 if (newCurrentCalories > VirtualPet.maxCalories) {
 currentCalories = VirtualPet.maxCalories;
 } else {
 currentCalories = newCurrentCalories;
 }
 trace(getName() + " ate some " + foodItem.getName() + "."
 + " It now has " + currentCalories + " calories remaining.");
 }

 public function getHunger () {
 return currentCalories / VirtualPet.maxCalories;
 }

 public function setName (newName) {
 // If the proposed new name has more than maxNameLength characters...
 if (newName.length > VirtualPet.maxNameLength) {
 // ...truncate it
 newName = newName.substr(0, VirtualPet.maxNameLength);
 } else if (newName == "") {
 // ...otherwise, if the proposed new name is an empty string,
 // then terminate this method without changing petName
 return;
 }

 // Assign the new, validated name to petName
 petName = newName;
 }

 public function getName () {
 return petName;
 }

 private function digest () {
 // If digesting more calories would leave the pet's currentCalories at
 // 0 or less...
 if (currentCalories - VirtualPet.caloriesPerSecond <= 0) {
 // ...stop the interval from calling digest()
 clearInterval(digestIntervalID);
 // Then give the pet an empty stomach
 currentCalories = 0;
 // And report the pet's death
 trace(getName() + " has died.");
 } else {
 // ...otherwise, digest the stipulated number of calories
 currentCalories -= VirtualPet.caloriesPerSecond;

 // And report the pet's new status

Example 6-4. The VirtualPet class (continued)

128 | Chapter 6: Inheritance

Example 6-5 shows the code for the Food class, the superclass of the various types of
food that pets eat.

Example 6-6 shows the code for the Apple class, which represents a specific type of
food that pets eat.

 trace(getName() + " digested some food. It now has "
 + currentCalories + " calories remaining.");
 }
 }
 }
}

Example 6-5. The Food class

package zoo {
 public class Food {
 private var calories;
 private var name;

 public function Food (initialCalories) {
 setCalories(initialCalories);
 }

 public function getCalories () {
 return calories;
 }

 public function setCalories (newCalories) {
 calories = newCalories;
 }

 public function getName () {
 return name;
 }

 public function setName (newName) {
 name = newName;
 }
 }
}

Example 6-6. The Apple class

package zoo {
 public class Apple extends Food {
 private static var DEFAULT_CALORIES = 100;
 private var wormInApple;

 public function Apple (initialCalories = 0) {
 if (initialCalories <= 0) {
 initialCalories = Apple.DEFAULT_CALORIES;

Example 6-4. The VirtualPet class (continued)

It’s Runtime! | 129

Finally, Example 6-7 shows the code for the Sushi class, which represents a specific
type of food that pets eat.

It’s Runtime!
With the changes we made to the virtual zoo program in this chapter, our applica-
tion is now ready to compile and run. I hope it is with more than a little excitement
that you precede to the next chapter, where we’ll learn how to run our program after
compiling it with the Flash authoring tool, Flex Builder, or mxmlc.

 }
 super(initialCalories);

 wormInApple = Math.random() >= .5;

 setName("Apple");
 }

 public function hasWorm () {
 return wormInApple;
 }
 }
}

Example 6-7. The Sushi class

package zoo {
 public class Sushi extends Food {
 private static var DEFAULT_CALORIES = 500;

 public function Sushi (initialCalories = 0) {
 if (initialCalories <= 0) {
 initialCalories = Sushi.DEFAULT_CALORIES;
 }
 super(initialCalories);

 setName("Sushi");
 }
 }
}

Example 6-6. The Apple class (continued)

130

Chapter 7CHAPTER 7

Compiling and Running a Program 8

After all our hard work on the virtual zoo program, we are now ready to compile and
run our code. In this chapter, we’ll learn how to compile a program with the Flash
authoring tool, Flex Builder 2, and mxmlc. In each case, we’ll assume that the pro-
gram being compiled resides in the folder /virtualzoo/, and that the source code for
the program (i.e., the .as files) resides in the folder /virtualzoo/src/.

Now let’s do some compiling!

Compiling with the Flash Authoring Tool
To compile the virtual zoo program using the Flash authoring tool, we must first
associate the program’s main class with a .fla file, as described in the following steps:

1. In the Flash authoring tool, select File ➝ New.

2. On the New Document dialog, select Flash File (ActionScript 3.0), then click
OK.

3. Select File ➝ Save As.

4. On the Save As dialog, for Save in, browse to the /virtualzoo/src folder.

5. On the Save As dialog, for File name, enter VirtualZoo.fla, then click OK.

6. On the Properties panel, under Document class, enter zoo.VirtualZoo.

Once the program’s main class has been associated with a .fla file (as described in the
preceding steps), we then select Control ➝ Test Movie to compile the program and
run the resulting .swf file in a test version of Flash Player directly within the Flash
authoring tool. When the program runs in “Test Movie” mode, trace() messages
appear in the Flash authoring tool’s Output panel. (You should see Stan getting
hungry!)

When a program is compiled using Test Movie, the Flash authoring tool generates
a .swf file with a name matching the corresponding .fla file. For example, when we
compile the virtual zoo program using Test Movie, a new file, VirtualZoo.swf,

Compiling with Flex Builder 2 | 131

appears in the /src/ folder. For information on changing the folder in which the
generated .swf file is placed, see the Flash authoring tool’s documentation for the
File ➝ Publish Settings command.

To distribute VirtualZoo.swf over the Web, we would typically embed it in an HTML
page. For details, see the Flash authoring tool’s documentation for the File ➝ Publish
command. To distribute VirtualZoo.swf as a desktop application, we would bundle it
into an installable .air file. For details see the product documentation for Adobe AIR.

Compiling with Flex Builder 2
Before we can compile the virtual zoo program using Flex Builder 2, we must first
make some changes to our code in order to meet the requirements of Flex Builder 2’s
compiler. Flex Builder 2’s compiler stipulates that a program’s main class must
reside in the unnamed package. Currently, our VirtualZoo class resides in the pack-
age zoo, not the unnamed package.

Moving the Main Class to the Unnamed Package
To move VirtualZoo from zoo to the unnamed package, we must follow these steps:

1. Move the file VirtualZoo.as from /virtualzoo/src/zoo to /virtualzoo/src/.

2. In the VirtualZoo.as file, add the following code immediately before the
VirtualZoo class definition statement (this code imports the classes from the zoo
package):

import zoo.*;

3. In the VirtualZoo.as file, remove the package name “zoo” from the package dec-
laration statement. That is, change this code:

package zoo {

to this:
package {

4. In the VirtualPet.as file, change the access-control modifier for the VirtualPet
class from internal to public, as follows (this gives the VirtualZoo class access to
the VirtualPet class):

public class VirtualPet {

Once the preceding changes have been made, we can then compile the program.

Compiling the Program
To compile the virtual zoo program, we first create an ActionScript Project, as
described in the following steps:

1. Select File ➝ New ➝ ActionScript Project.

2. On the New ActionScript Project dialog, for Project name, enter virtualzoo.

132 | Chapter 7: Compiling and Running a Program

3. Under Project Contents, uncheck “Use default location”.

4. Under Project Contents, for Folder, enter (or browse to) the location of the
virtualzoo folder on your hard drive.

5. Click Next.

6. For Main source folder, enter src.

7. For Main application file, enter VirtualZoo.as.

8. Click Finish.

Running the Program
Once the ActionScript Project has been created, we can then follow these steps to
run the virtual zoo program in debugging mode so that trace() messages appear in
the Console panel:

1. In the navigator panel, select any class in the virtual zoo project.

2. Select Run ➝ Debug VirtualZoo. By default, the program will launch in the sys-
tem default web browser.

In the process of compiling the program, Flex Builder 2 generates the following
assets, which it places in an automatically created folder, /virtualzoo/bin/:

• A .swf file named VirtualZoo.swf

• A .swf file named VirtualZoo-debug.swf, used for debugging

• An HTML file named VirtualZoo.html, which embeds VirtualZoo.swf for web
distribution

• An HTML file named VirtualZoo-debug .html, which embeds VirtualZoo-debug.
swf for testing in a web browser

• A series of supporting files for web browser-based detection of Flash Player and
automatic Flash Player installation

To distribute VirtualZoo.swf over the Web, simply place all the files from the /bin/
folder—except for VirtualZoo-debug.html and VirtualZoo-debug.swf—in a folder on
a public web server. To distribute the program as a desktop application, see the
product documentation for Adobe AIR.

Compiling the virtual zoo program as described in this section will
cause a series of compiler warnings such as “var ‘pet’ has no type dec-
laration.” For now, you can simply ignore these warnings. In the next
chapter, we’ll learn why they occur.

Compiling with mxmlc | 133

Compiling with mxmlc
Like Flex Builder 2’s compiler, mxmlc stipulates that a program’s main class must
reside in the unnamed package. Therefore, before compiling the virtual zoo program
with mxmlc, we must first move VirtualZoo from zoo to the unnamed package by
following the steps listed in the earlier section “Moving the Main Class to the
Unnamed Package.”

Next, we must locate the compiler itself, which is named mxmlc.exe. The location of
the compiler varies by version and operating system. Typically, it resides in a folder
called Flex SDK [version]\bin, but you should confirm the location for your com-
puter according to the documentation provided with Flex SDK. For the purposes of
this example, we’ll assume that we’re compiling on Windows XP, and that the com-
piler resides in the following location:

C:\Flex SDK 2\bin\mxmlc.exe

We’ll also assume that our /virtualzoo/ program folder resides in the following
location:

C:\data\virtualzoo\

To compile the virtual zoo program using mxmlc, we follow these steps:

1. From the Windows start menu, open a command prompt by choosing Start ➝

All Programs ➝ Accessories ➝ Command Prompt.

2. At the command prompt, change to the C:\Flex SDK 2\bin\ directory by entering
the following command:

cd C:\Flex SDK 2\bin

3. At the command prompt, enter the following command, then press Enter:
mxmlc C:\data\virtualzoo\src\VirtualZoo.as

In response to the preceding steps, mxmlc compiles the program, and generates a .swf
file named VirtualZoo.swf, which it places in the virtualzoo\src folder. Note that
mxmlc has a wide variety of compilation options; for details, see the documentation
provided with Flex SDK.

To run the VirtualZoo.swf file generated by mxmlc, simply open it in the standalone
version of Flash Player or in a web browser with Flash Player installed. To view the
trace() messages generated by the program, use the debugger version of Flash Player
(included with Flex SDK) and configure it to output trace() messages to a logfile. For
details, see http://livedocs.adobe.com/flex/201/html/logging_125_07.html.

Compiling the virtual zoo program as described in this section will
cause a series of compiler warnings such as “var ‘pet’ has no type dec-
laration.” For now, you can simply ignore these warnings. In the next
chapter, we’ll learn why they occur.

http://livedocs.adobe.com/flex/201/html/logging_125_07.html

134 | Chapter 7: Compiling and Running a Program

Compiler Restrictions
When compiling ActionScript programs with the Flash authoring tool, Flex Builder,
or mxmlc, bear in mind the following compiler restrictions:

• The program’s main class must be public.

• In Flex Builder 2 and mxmlc, the program’s main class must reside in the
unnamed package.

• The program’s main class must extend either Sprite or MovieClip, as discussed in
Chapter 6.

• Every ActionScript source file (.as file) in the program must have exactly one
externally visible definition. An “externally visible definition” is a class, variable,
function, interface, or namespace that is defined as either internal or public
within a package statement.

• An ActionScript source file’s name must match the name of its sole externally
visible definition.

For example, the following source file would be considered illegal because it con-
tains two externally visible classes:

package {
 public class A {
 }

 public class B {
 }
}

Likewise, the following source file would be considered illegal because it does not
contain any externally visible definition.

class C {
}

The Compilation Process and the Classpath
When a .swf file is exported, the ActionScript compiler makes a list of all the classes
that the .swf requires. Specifically, the list of required classes includes:

• All classes referenced directly or indirectly by the program’s main class

• In the case of the Flash authoring tool, all the classes referenced directly or indi-
rectly by the .swf’s source .fla file (i.e., in frame scripts)

The compiler searches the filesystem for source .as files that correspond to all refer-
enced classes, and compiles each source file into the .swf, in bytecode format. The set
of folders in which the compiler searches for .as files is known as the classpath.

Strict-Mode Versus Standard-Mode Compilation | 135

Class files that exist on the filesystem but are not required by the .swf are not compiled
into the .swf, classes that are required but not found cause a compile-time error.

Each ActionScript authoring tool includes some folders in the classpath
automatically and also allows you to specify directories that should be included in
the classpath. For example, the Flash authoring tool automatically includes the
folder containing the .swf ’s source .fla file in a classpath. Likewise, Flex Builder 2
and mxmlc both automatically include the folder containing the program’s main
class in the classpath. For instructions on including other folders in the classpath, see
the appropriate product’s documentation.

The classpath is sometimes also referred to as the build path or the source path.

Strict-Mode Versus Standard-Mode Compilation
ActionScript offers two different modes for compiling a program: strict mode and
standard mode. In strict mode, the compiler reports more errors than in standard
mode. The extra strict-mode errors are intended to help programmers locate poten-
tial sources of problems in a program before the program actually runs. Strict mode
is, therefore, enabled by default in all of Adobe’s compilers. Programmers who wish
to use ActionScript’s dynamic features (as described in Chapter 15,), or who simply
prefer to solve problems (i.e., debug) at runtime rather than at compile time can
choose to compile using standard mode.

The following questionable acts of programming will cause a compiler error in strict
mode, but not in standard mode:

• Supplying the wrong number or types of parameters to a function (see
Chapter 8)

• Defining two variables or methods with the same name

• Accessing methods and variables that are not defined at compile time (but might
be defined at runtime using the techniques described in Chapter 15)

• Assigning a value to a nonexistent instance variable of an object whose class is
not dynamic

• Assigning a value to a constant variable anywhere other than the variable’s ini-
tializer or, for instance variables, the constructor method of the class containing
the variable’s definition

• Attempting to delete (via the delete operator) an instance method, instance vari-
able, static method, or static variable

• Comparing two incompatibly typed expressions (see the section “Compatible
Types” in Chapter 8)

136 | Chapter 7: Compiling and Running a Program

• Assigning a value to a type-annotated variable where the value is not a member
of the declared type (for exceptions to this rule, see the section “Strict Mode’s
Three Special Cases” in Chapter 8)

• Referring to nonexistent packages

Enabling Standard-Mode Compilation in Flex Builder 2
To enable standard-mode compilation for a project in Flex Builder 2, follow these
steps:

1. In the Navigator, select the project folder.

2. Select Project ➝ Properties.

3. Under ActionScript Compiler, uncheck “Enable strict type checking.”

Enabling Standard-Mode Compilation in the Flash Authoring Tool
To enable standard-mode compilation for a document in the Flash authoring tool,
follow these steps:

1. Select File ➝ Publish Settings.

2. On the Publish Settings dialog, on the Flash tab, click the Settings button.

3. On the ActionScript 3.0 Settings dialog, under Errors, uncheck Strict Mode.

To enable standard-mode compilation when compiling with mxmlc, set the com-
piler option strict to false.

The Fun’s Not Over
We’ve now compiled and run our virtual zoo program, but our program isn’t done
yet. To make the zoo fully interactive, complete with graphics and buttons for feed-
ing pets, we need to continue our study of ActionScript essentials. In the next chap-
ter, we’ll learn how ActionScript’s type-checking system helps detect common errors
in a program.

137

Chapter 8 CHAPTER 8

Datatypes and Type Checking9

So far, we’ve developed our virtual zoo program without making a single coding
error. Error-free development happens in training courses and books—and nowhere
else. In real-world development, programmers make errors all the time. For exam-
ple, when invoking eat() on a VirtualPet object, a programmer might make a typo-
graphical error, such as the following (notice the extra “t”):

pet.eatt(new Sushi())

Or, a programmer might make a mistaken assumption about the capabilities of an
object. For example, a programmer might mistakenly attempt to invoke a method
named jump() on a VirtualPet object, even though VirtualPet defines no such
method:

pet.jump()

In both the preceding cases, when the program runs in the debugger version of a
Flash runtime, ActionScript will generate a reference error, indicating that the pro-
gram attempted to reference a variable or method that doesn’t exist.

Errors that occur at runtime are known as exceptions. We’ll study
exceptions and the techniques for handling them in Chapter 13.

When an error occurs in a program you’re writing, you should be happy. Errors indi-
cate the precise location and cause of something in your program that would likely
cause a malfunction without your attention. For example, in response to the earlier
“eatt()” typo, the debugger version of a Flash runtime would display an alert dialog
containing the following message:

ReferenceError: Error #1069: Property eatt not found on
 zoo.VirtualPet and there is no default value.
 at VirtualZoo$iinit()[C:\data\virtualzoo\src\VirtualZoo.as:8]

The error message tells us not only the name of the file in which the error occurred,
but also the specific line of code containing the error. Now that’s service. (Notice

138 | Chapter 8: Datatypes and Type Checking

that the error message uses the term property to mean “variable or method,” as dis-
cussed in Chapter 1 under “Members and Properties.”)

As useful as runtime errors are, they have a potential drawback. They occur only
when the erroneous line of code actually runs. Therefore, in a very large program, a
runtime error might take a long time to surface. For example, in an adventure game
that takes 10 hours to complete, an error in the final stage would take 10 hours of
game-play to surface!

Luckily, rather than waiting for reference errors to occur at runtime, we can tell the
compiler to report them at compiletime, before a program ever runs. To do so, we
use type annotations in combination with strict mode compilation.

Datatypes and Type Annotations
In ActionScript, the term datatype means, simply, “a set of values.” ActionScript
defines three fundamental datatypes: Null, void, and Object. The Null and void
datatypes each include a single value only—null and undefined, respectively (null
and undefined are discussed in the later section “null and undefined”). The Object
datatype includes all instances of all classes.

In addition to the three fundamental datatypes (Null, void, and Object), each and
every built-in or custom class constitutes a unique datatype whose set of values
includes its direct instances and instances of its descendant classes. For example, the
Food class from our virtual zoo program constitutes a datatype whose set of values
includes all instances of Food and all instances of Apple and Sushi (because Apple and
Sushi both inherit from Food). Thus, an Apple instance and a Sushi instance are both
said to belong to the Food datatype.

But the Apple class and the Sushi class each also constitute their own datatype. For
example, the set of values in the Apple datatype includes all Apple instances and all
instances of any class that inherits from Apple. Likewise, the set of values in the Sushi
datatype includes all Sushi instances and all instances of any class that inherits from
Sushi. Thus, in addition to belonging to the Food datatype, an Apple instance also
belongs to the Apple datatype. But an Apple instance does not belong to the Sushi
datatype because Sushi does not inherit from Apple. In the same way, a Sushi
instance belongs to the Food and Sushi datatypes, but does not belong to the Apple
datatype because Sushi does not inherit from Apple. Finally, while an Apple instance
and a Sushi instance both belong to the Food datatype, a Food instance does not
belong to either the Apple or Sushi datatypes because the Food class does not inherit
from the Apple or Sushi classes.

Datatypes and Type Annotations | 139

Notice the important distinction between a given class and the
datatype that it represents. The set of values that belong to the class
includes the class’s instances only. But the set of values that belong to
the class’s datatype includes the class’s instances and instances of its
descendant classes.

Just as each class constitutes a datatype, each interface also constitutes a datatype.
The set of values in an interface’s datatype includes every instance of every class that
implements the interface, and every instance of every class that inherits from a class
that implements the interface. We haven’t studied interfaces yet, so we’ll defer our
examination of interfaces as datatypes until Chapter 9.

Given two datatypes A and B, where the class (or interface) represented by B inherits
from the class (or interface) represented by A, A is referred to as a supertype of B.
Conversely, B is referred to as a subtype of A. For example, Food is considered a
supertype of Apple, while Apple is considered a subtype of Food.

Compatible Types
Because a given class can, through inheritance, use all the nonprivate instance mem-
bers of its superclass (or superinterface), a given subtype is considered compatible
with any of its supertypes. For example, the Apple datatype is considered compatible
with the Food datatype because it is a subtype of Food.

The opposite, however, is not true. A class cannot use any of the instance members
defined by its descendant classes. Hence, a given supertype is considered incompati-
ble with any of its subtypes. For example, the Food datatype is considered incompati-
ble with the Apple datatype because Food is not a subtype of Apple.

Conceptually, the subtype is considered compatible with the supertype because a
program can treat an instance of the subtype as though it were an instance of the
supertype. For example, a program can treat any Apple instance as though it were a
Food instance—perhaps by invoking the Food class’s getCalories() method on it.

// Create a new Apple instance
var apple = new Apple();

// Legally invoke getCalories() on the Apple instance
apple.getCalories();

By comparison, the supertype is considered incompatible with the subtype because a
program cannot treat an instance of the supertype as though it were an instance of
the subtype. For example, a program cannot invoke the Apple class’s hasWorm()
method on a Food instance:

// Create a new Food instance
var food = new Food(200);

140 | Chapter 8: Datatypes and Type Checking

// The following line causes a reference error because the Food class
// has no access to the hasWorm() method
food.hasWorm(); // Error!

Detecting Type Mismatch Errors with Type Annotations
A type annotation (or, synonymously, a type declaration) is a suffix that constrains
the datatype of a variable, parameter, or function return value. The general syntax
for a type annotation is a colon (:) followed by a datatype, as in:

:type

For example, a variable definition with a type annotation has the following general-
ized form:

var identifier:type = value;

In the preceding code, the type must be the name of a class or interface (represent-
ing the datatype), or the special symbol * (indicating “untyped”).

A function or method definition with a parameter type annotation and a return type
annotation has the following generalized form:

function identifier (param:paramType):returnType {
}

In the preceding code, the parameter type annotation is the specified paramType and
the colon (:) that precedes it; the return type annotation is the specified returnType
and the colon (:) that precedes it. The paramType must be one of the following:

• The name of a class or interface (representing the datatype)

• The special symbol, * (indicating “untyped”)

The returnType must be one of the following:

• The name of a class or interface (representing the datatype)

• The special symbol, * (indicating “untyped”)

• The special “no-return” type annotation, void (indicating that the function does
not return a value)

ActionScript 2.0 programmers should note that Void is no longer capi-
talized in ActionScript 3.0.

A type annotation for a variable, parameter, or function result constrains the value of
that variable, parameter, or result to the specified type. The means by which the
value is constrained depends on the compilation mode used to compile the code
(recall that strict mode is the default compilation mode for Adobe compilers).

Datatypes and Type Annotations | 141

In both standard mode and strict mode, if the value belongs to the specified
datatype, then the assignment or return attempt succeeds.

If the value does not belong to the specified datatype, then in strict mode, the com-
piler generates an error (known as a type mismatch error), and refuses to compile the
code. In standard mode, the code compiles, and at runtime ActionScript attempts to
convert the value to the specified datatype. If the specified datatype is one of the
built-in classes String, Boolean, Number, int, or uint (known as the primitive types)
then the conversion proceeds according to the rules described in the section “Con-
version to Primitive Types,” later in this chapter. Otherwise, the conversion fails, and
ActionScript generates a runtime type mismatch error. In formal terms, automatic
runtime-conversion is known as coercion.

For example, the following code defines a variable, meal, of type Food, and assigns
that variable an instance of the Apple class:

var meal:Food = new Apple();

In both strict mode and standard mode, the preceding code compiles successfully
because Apple extends Food, so instances of Apple belong to the Food datatype.

By contrast, the following code assigns meal an instance of the VirtualPet class:

var meal:Food = new VirtualPet("Lucky");

In strict mode, the preceding code causes a type mismatch error because VirtualPet
instances do not belong to the Food datatype. Therefore, the code fails to compile.

In standard mode, the preceding code compiles happily. However, because the value
(the VirtualPet instance) does not belong to the variable’s datatype (Food), Action-
Script attempts to coerce (i.e., convert) the value to the variable’s datatype at run-
time. In this case, the variable’s datatype is not one of the primitive types, so the
conversion fails, and ActionScript generates a runtime type mismatch error.

Let’s look at another example. The following code defines a variable, petHunger, of
type int, and assigns that variable an instance of the VirtualPet class:

var pet:VirtualPet = new VirtualPet("Lucky");
var petHunger:int = pet;

In strict mode, the preceding code causes a type mismatch error because VirtualPet
instances do not belong to the int datatype. Hence, the code fails to compile.

In standard mode, the preceding code compiles happily. However, because the value
(the VirtualPet instance) does not belong to the variable’s datatype (int), Action-
Script attempts to convert the value to the variable’s datatype at runtime. In this
case, the variable’s datatype is one of the primitive types, so the conversion proceeds
according to the rules described in the section “Conversion to Primitive Types,” later
in this chapter. Hence, after the code runs, petHunger has the value 0.

142 | Chapter 8: Datatypes and Type Checking

Of course, assigning the value 0 to petHunger was likely not the intention of the pre-
ceding code. More likely, the programmer simply forgot to invoke getHunger() on
the VirtualPet instance, as in:

var pet:VirtualPet = new VirtualPet("Lucky");
var petHunger:int = pet.getHunger();

Strict mode faithfully warned us of the problem, but standard mode did not. Instead,
standard mode assumed that because petHunger’s datatype was int, we wanted to
convert the VirtualPet object to the int type. For our purposes, that assumption was
incorrect, and resulted in an unexpected value in our program.

Some programmers consider standard mode’s lenience convenient, particularly in
simple programs. In more complex programs, however, standard mode’s flexibility
often leaves would-be errors unreported, leading to difficult-to-diagnose bugs.

The remainder of this book assumes that all code is compiled in strict
mode and supplies type annotations for all variables, parameters, and
return values.

Untyped Variables, Parameters, Return Values, and
Expressions
A variable or parameter whose definition includes a type annotation is said to be a
typed variable or typed parameter. Likewise, a function definition that includes a
return-type annotation is said to have a typed return value. Furthermore, an expres-
sion that refers to a typed variable or a typed parameter, or calls a function with
typed return value is known as a typed expression.

Conversely, a variable or parameter whose definition does not include a type annota-
tion is said to be an untyped variable or untyped parameter. Likewise, a function defi-
nition that does not include a return-type annotation is said to have an untyped return
value. An expression that refers to an untyped variable or an untyped parameter, or
calls a function with an untyped return value is known as a untyped expression.

Untyped variables, parameters, and return values are not constrained to a specific
datatype (as typed variables, parameters, and return values are). For example, an
untyped variable can be assigned a Boolean value on one line, and a VirtualPet object
on another without error:

var stuff = true;
stuff = new VirtualPet("Edwin"); // No error

ActionScript does not generate type-mismatch errors for untyped vari-
ables, parameters, and return values.

Strict Mode’s Three Special Cases | 143

Programmers wishing to explicitly indicate that a variable, parameter, or return value
is intentionally untyped can use the special type annotation, :*. For example, the fol-
lowing code defines an explicitly untyped variable, totalCost:

var totalCost:* = 9.99;

The following code defines the same variable, but this time it is implicitly untyped:

var totalCost = 9.99;

Implicitly untyped variables, parameters, and return values, are typically used when
an entire program does not use type annotations, preferring to handle any type errors
at runtime. Explicitly untyped variables, parameters, and return values are typically
used when a strict-mode program wishes to specify individual cases where multiple
data types are allowed. The :* type annotation prevents an untyped variable from
generating a “missing type annotation” warning. For details, see the upcoming sec-
tion “Warnings for Missing Type Annotations.”

Strict Mode’s Three Special Cases
There are three situations in which the compiler ignores type mismatch errors in
strict mode, deferring possible type errors until runtime:

• When an untyped expression is assigned to a typed variable or parameter, or
returned from a function with a declared return type

• When any expression is assigned to a typed variable or parameter whose
declared type is Boolean, or returned from a function whose declared return type
is Boolean

• When any numeric value is used where an instance of a different numeric type is
expected

Let’s look at each of the preceding cases with an example. First, we’ll create an
untyped variable, pet, and assign the value of that variable to a typed variable, d:

var pet:* = new VirtualPet("Francis");
pet = new Date();
var d:Date = pet;

Because pet can contain any type of value, on line 3, the compiler cannot determine
whether pet’s value belongs to the datatype Date. To determine whether the value in
pet belongs to the datatype Date, the code must be executed, not just compiled.
Once the code is actually executing, ActionScript can then determine the result of
the assignment attempt. In the case of the preceding code, the value in pet (assigned
on line 2) does indeed belong to the datatype Date (even though pet’s value on line 1
was originally incompatible with Date). Hence, the assignment proceeds without
causing an error.

144 | Chapter 8: Datatypes and Type Checking

Next, consider the following code which defines a variable, b, of type Boolean, and
assigns b an integer value, 5:

var b:Boolean = 5;

Even though the value 5 does not belong to the Boolean datatype, the compiler does
not generate a type mismatch error. Instead, it assumes that the programmer wishes
to convert the value 5 to the Boolean datatype (according to the rules described in
the later section “Conversion to Primitive Types”) and issues a warning to that effect.
This lenience can cut down on the amount of code in a program. For example, sup-
pose the VirtualPet class’s getHunger() method’s return type were declared as
Number. A program could then create a variable indicating whether a pet is alive or
dead using the following code:

var isAlive:Boolean = somePet.getHunger();

According to the rules described in the section “Conversion to Primitive Types,” the
number 0 converts to the value false, while all other numbers convert to the value
true. Hence, if getHunger() returns anything other than 0, isAlive is set to true; oth-
erwise, isAlive is set to false (the pet is dead when it has no calories left).

For comparison, here’s the alternative, slightly longer code that would be necessary if
the compiler enforced type checking for variables of type Boolean (rather than allow-
ing a runtime conversion):

var isAlive:Boolean = somePet.getHunger() > 0;

Finally, consider the following code that defines a variable, xCoordinate, of type int,
and assigns xCoordinate a Number value, 4.6459:

var xCoordinate:int = 4.6459;

Even though the value 4.6459 does not belong to the int datatype, the compiler does
not generate a type mismatch error. Instead, the compiler assumes that you wish to
convert the value 4.6459 to the int datatype (according to the rules described in the
section “Conversion to Primitive Types”). This lenience allows easy interoperation
between ActionScript’s numeric data types with minimal fuss.

Warnings for Missing Type Annotations
As we’ve seen over the past several sections, ActionScript’s strict compilation mode
provides a valuable way to detect program errors as early as possible. Not surpris-
ingly, in an effort to write problem-free code, many developers rely heavily on strict
mode’s compile-time type checking. However, as we learned in the earlier section
“Untyped Variables, Parameters, Return Values, and Expressions,” strict-mode’s
type-mismatch errors are reported for typed variables, parameters, and return values
only. Any time a type annotation is accidentally omitted, the programmer loses the
benefit of strict mode’s compile-time type checking.

Detecting Reference Errors at Compile Time | 145

Luckily, Adobe’s ActionScript compilers offer a warning mode in which missing type
annotations are reported at compiletime. Developers can use those warnings to help
locate accidentally omitted type annotations. In Flex Builder 2 and mxmlc, warnings
for missing type annotations are enabled by default. In the Flash authoring tool, type
annotation warnings must be enabled manually, using the following steps:

1. Using a text editor, in the Flash CS3 installation folder, under /en/Configuration/
ActionScript 3.0/, open EnabledWarnings.xml.

2. Locate the following line:
<warning id="1008" enabled="false" label="kWarning_NoTypeDecl">
 Missing type declaration.</warning>

3. Change enabled="false" to enabled="true".

4. Save EnabledWarnings.xml.

Note that missing type-annotation warnings are issued for implicitly untyped vari-
ables, parameters, and return values only. Missing type-annotation warnings are not
issued for explicitly untyped variables, parameters, and return values (i.e., those that
use the special type annotation, :*).

Detecting Reference Errors at Compile Time
At the beginning of this chapter, we learned that an attempt to access a nonexistent
variable or method results in a reference error. When a program is compiled in stan-
dard mode, reference errors are not reported by the compiler. Instead, when the pro-
gram runs in the debugger version of a Flash runtime, reference errors manifest as
runtime exceptions. By contrast, when a program is compiled in strict mode, refer-
ences to nonexistent variables or methods made through typed expressions are
reported by the compiler, and cause compilation to fail.

For example, the following code creates a variable, pet, of type VirtualPet, and
assigns that variable an instance of the VirtualPet class:

var pet:VirtualPet = new VirtualPet("Stan");

Next, the following code attempts to access a nonexistent method, eatt(), through
the typed variable pet:

pet.eatt(new Sushi());

In standard mode, the preceding code compiles, but generates a runtime reference
error. In strict mode, the preceding code generates the following compile-time
reference error and fails to compile.

1061: Call to a possibly undefined method eatt through a
 reference with static type zoo:VirtualPet.

Service with a smile.

146 | Chapter 8: Datatypes and Type Checking

Note, however, that the compiler does not report reference errors made through
untyped expressions. Furthermore, references to nonexistent variables and methods
made through instances of dynamic classes (such as Object) do not generate refer-
ence errors of any kind; instead, such references yield the value undefined. For more
information on dynamic classes, see Chapter 15.

Here’s a type-annotation bonus: in Flex Builder and the Flash author-
ing tool, type annotations for variables, parameters, and return values
activate code hints. A code hint is a handy pop-up menu that lists the
properties and methods of objects as you write them in your code.

Casting
In the preceding section, we learned that in strict mode, the compiler reports refer-
ence errors at compiletime. To detect reference errors, the compiler relies on type
annotations. For example, suppose the compiler encounters a method reference
made through a typed variable. To determine whether the reference is valid, the com-
piler checks for the method’s definition in the class or interface specified by the vari-
able’s type annotation. If the class or interface does not define the referenced
method, the compiler generates a reference error.

Notice that it is the class or interface specified by the type annota-
tion—not the actual class of the value—that determines whether the
reference error occurs.

Consider the following code, in which the hasWorm() method is invoked on an
Apple object through a variable of type Food:

var meal:Food = new Apple();
meal.hasWorm(); // Attempt to call hasWorm() on meal

When compiling the preceding code in strict mode, the compiler must decide
whether the hasWorm() method can be invoked on meal’s value. To do so, the com-
piler checks to see whether the Food class (i.e., the class specified by meal’s type
annotation) defines hasWorm(). The Food class defines no such method, so the com-
piler generates a reference error. Of course, by looking at the code, we know that
meal’s value (an Apple object) supports the hasWorm() method. But compiler doesn’t.
ActionScript must wait until runtime to learn that the variable’s value is actually an
Apple object.

Solution? Use a cast operation to force the compiler to allow the preceding hasWorm()
invocation. A cast operation tells the compiler to treat a given expression as though it
belongs to a specified datatype. A cast operation has the following generalized form:

type(expression)

Casting | 147

In the preceding code, type is any datatype, and expression is any expression. The
operation is said to “cast the expression to the specified type.” For example, the fol-
lowing code casts the expression meal to the Apple datatype before invoking
hasWorm() on meal’s value:

Apple(meal).hasWorm()

No matter what the actual value of meal, the compiler believes that the datatype of
the expression meal is Apple. Therefore, when deciding whether the hasWorm()
method can be invoked on meal’s value, the compiler checks to see whether the
Apple class—not the Food class—defines hasWorm(). The Apple class does define
hasWorm(), so the compiler generates no errors.

However, a cast operation is not merely a compile-time mechanism; it also has a run-
time behavior. At runtime, if the expression resolves to an object that belongs to the
specified type, then ActionScript simply returns that object. But if the expression
resolves to an object that does not belong to the specified type, then the cast opera-
tion has one of two results. If the specified type is not a primitive type, the cast oper-
ation causes a runtime error; otherwise, the object is converted to the specified type
(according to the rules listed in the section “Conversion to Primitive Types”) and the
converted value is returned.

For example, in the following code, the runtime value of meal belongs to the Apple
datatype, so the cast operation on line 2 simply returns the Apple object referenced
by meal:

var meal:Food = new Apple();
Apple(meal); // At runtime, returns the Apple object

By comparison, in the following code, the runtime value of meal does not belong to
the VirtualPet datatype, and VirtualPet is not a primitive type, so the cast operation
on line 2 causes a type error:

var meal:Food = new Apple();
VirtualPet(meal); // At runtime, causes a type error

Finally, in the following code, the runtime value of meal does not belong to the Boolean
datatype, but Boolean is a primitive type, so the cast operation on line 2 converts meal’s
value to the specified type, and returns the result of that conversion (true):

var meal:Food = new Apple();
Boolean(meal); // At runtime, returns the value true

Avoiding Unwanted Type Mismatch Errors
So far, we’ve learned that cast operations can be used to avoid unwanted compile-
time reference errors. Similarly, cast operations can be used to avoid unwanted type-
mismatch errors.

148 | Chapter 8: Datatypes and Type Checking

As an example, imagine a program that converts a supplied Fahrenheit temperature
to Celsius. The value of the Fahrenheit temperature is entered into a text field, which
is represented by an instance of the built-in TextField class. To retrieve the input
value, we access the text variable of the TextField instance, as shown in the follow-
ing code:

var fahrenheit:Number = inputField.text;

As it stands, the preceding code causes a type mismatch error because the text vari-
able’s datatype is String. To avoid that error, we use a cast operation, as follows:

var fahrenheit:Number = Number(inputField.text);

At runtime, the preceding cast converts the string value in inputField.text to a
Number that is then assigned to fahrenheit.

Upcasting and Downcasting
Casting an object to one of its supertypes (superclass or superinterface) is known as
an upcast. For example, the following operation is considered an upcast because
Food is a supertype of Apple:

Food(new Apple())

Conversely, casting an object to one of its subtypes (subclass or subinterface) is
known as a downcast because it casts the object’s type to a type further down the
type hierarchy. The following operation is considered a downcast because Apple is a
subtype of Food:

Apple(new Food())

An upcast is said to “widen” the object’s type because a supertype is more general-
ized than its subtype. A downcast is said to “narrow” the object’s type because a sub-
type is more specialized than its supertype.

An upcast is also described as a safe cast because it never generates a runtime error.
As we learned earlier, an instance of a subtype can always be safely treated as an
instance of any of its supertypes because it is guaranteed (through inheritance) to
have all of its supertypes’ non-private instance methods and variables.

Conversely, a downcast is described as an unsafe cast because it has the potential to
cause a runtime error. To guarantee that a downcast operation will not generate a
runtime error, we must first check whether the object in question is actually an
instance of the target datatype before performing the cast. To check the datatype of
an object, we use the is operator, which has the following form:

expression is type

In the preceding code, expression is any expression, and type is any class or inter-
face (and must not be undefined or null). An is operation returns the value true if the
specified expression belongs to the specified type; otherwise, it returns false.

Casting | 149

The following code uses the is operator to guarantee that a downcast operation will
not generate a runtime error:

var apple:Food = new Apple();
if (apple is Apple) {
 Apple(apple).hasWorm();
}

In the preceding code, the statement block of the conditional statement will execute
only if the variable apple refers to an object belonging to the Apple type. Hence, the
cast operation Apple(apple) can never generate an error because it executes only
when apple’s value belongs to the Apple type.

Using the as Operator to Cast to Date and Array
For legacy reasons, the cast syntax described in the preceding sections cannot be
used to cast a value to the built-in Date or Array classes. The result of the expression
Date(someValue) is identical to new Date().toString() (which returns a string repre-
senting the current time). The result of the expression Array(someValue) is identical
to new Array(someValue) (which creates a new Array object with someValue as its first
element).

To cast an expression to either the Date class or the Array classes, we use the as
operator, which has the same behavior as a cast operation, except that it returns the
value null in all cases where a cast operation would generate a runtime error. An as
operation has the following form:

expression as type

In the preceding code, expression is any expression, and type is any class or inter-
face (and must not be undefined or null). An as operation returns the value of
expression if the specified expression belongs to the specified type; otherwise, it
returns null.

For example, in the following code, the expression (meal as Apple) has the same
result as the cast operation Apple(meal):

var meal:Food = new Apple();
(meal as Apple).hasWorm();

The following code uses the as operator to “cast” an Array object to the Array
datatype so it can be assigned to a variable of type Array.

public function output (msg:Object):void {
 if (msg is String) {
 trace(msg);
 }

 if (msg is Array) {
 var arr:Array = msg as Array; // "Cast" to Array here
 trace(arr.join("\n"));
 }
}

150 | Chapter 8: Datatypes and Type Checking

The following code shows the result of passing an example Array object to output():

var numbers:Array = [1,2,3]
output(numbers);

// Output:
1
2
3

Conversion to Primitive Types
In the preceding section we learned that when an expression is cast to a primitive
type to which it does not belong, then that expression is converted to the specified
type. For example, consider the following code, which casts a Date object to the
primitive datatype Boolean:

Boolean(new Date())

Because Boolean is a primitive type, and the Date object does not belong to the
Boolean type, ActionScript converts the Date object to the Boolean type. The result is
the Boolean value true (see Table 8-5).

Cast operations are sometimes used not to tell the compiler the type of a given
expression but to convert that expression to a primitive datatype.

A cast operation can convert any value to a particular primitive type.

For example, the following code converts a floating-point number (a number with a
fractional value) to an integer (a number with no fractional value):

int(4.93)

The result of the preceding cast operation is the integer 4. Likewise, the following
code converts the Boolean value true to the integer 1, and the Boolean value false to
the integer 0:

int(true); // Yields 1
int(false); // Yields 0

The preceding technique might be used to reduce the size of data transmitted to a
server when submitting a series of Boolean options.

Table 8-1 shows the results of converting various datatypes to the Number type.

Conversion to Primitive Types | 151

Table 8-2 shows the results of converting various datatypes to the int type.

Table 8-3 shows the results of converting various datatypes to the uint type.

Table 8-1. Conversion to Number

Original data Result after conversion

undefined NaN (the special numeric value “Not a Number,” which represents invalid numeric data).

null 0

int The same number

uint The same number

Boolean 1 if the original value is true; 0 if the original value is false

Numeric string Equivalent numeric value if string is composed only of base-10 or base-16 numbers, whitespace,
exponent, decimal point, plus sign, or minus sign (e.g., “-1.485e2” becomes -148.5)

Empty string 0

“Infinity” Infinity

“-Infinity” -Infinity

Other strings NaN

Object NaN

Table 8-2. Conversion to int

Original data Result after conversion

undefined 0

null 0

Number or uint An integer in the range -231 through 231-1, out of range values are brought into range using the
algorithm listed in section 9.5 of the Standard ECMA-262, Third Edition

Boolean 1 if the original value is true; 0 if the original value is false

Numeric string Equivalent numeric value, converted to signed-integer format

Empty string 0

“Infinity” 0

“-Infinity” 0

Other strings 0

Object 0

Table 8-3. Conversion to uint

Original data Result after conversion

undefined 0

null 0

Number or int An integer in the range 0 through 231-1, out of range values are brought into range using the algo-
rithm listed in section 9.6 of the Standard ECMA-262, Third Edition

Boolean 1 if the original value is true; 0 if the original value is false

152 | Chapter 8: Datatypes and Type Checking

Table 8-4 shows the results of converting various datatypes to the String type.

Table 8-5 shows the results of converting various datatypes to the Boolean type.

Numeric string Equivalent numeric value, converted to unsigned-integer format

Empty string 0

“Infinity” 0

“-Infinity” 0

Other strings 0

Object 0

Table 8-4. Conversion to String

Original data Result after conversion

undefined “undefined”

null “null”

Boolean “true” if the original value was true; “false” if the original value was false.

NaN “NaN”

0 “0”

Infinity “Infinity”

-Infinity “-Infinity”

Other numeric value String equivalent of the number. For example, 944.345 becomes “944.345”.

Object The value that results from calling toString() on the object. By default, the toString() method of an
object returns “[object className]”, where className is the object’s class. The toString()
method can be overridden to return a more useful result. For example, toString() of a Date object
returns the time in human-readable format, such as: “Sun May 14 11:38:10 EDT 2000”), while
toString() of an Array object returns comma-separated list of element values.

Table 8-5. Conversion to Boolean

Original data Result after conversion

undefined false

null false

NaN false

0 false

Infinity true

-Infinity true

Other numeric value true

Nonempty string true

Empty string (“”) false

Object true

Table 8-3. Conversion to uint (continued)

Original data Result after conversion

null and undefined | 153

Default Variable Values
When a variable is declared without a type annotation and without an initial value,
then its initial value is automatically set to the value undefined (the sole value of the
datatype void). When a variable is declared with a type annotation but no initial
value, then its initial value is automatically set to a default value for its specified
datatype.

Table 8-6 lists the default values, by datatype, for variables in ActionScript.

null and undefined
Earlier we learned that, the Null and void datatypes each include a single value
only—null and undefined, respectively. Now that we have studied datatypes and
type annotations, let’s consider the difference between those two values.

Both null and undefined conceptually represent the absence of data. The null value
represents the absence of data for variables, parameters, and return values with a
specified type annotation set to anything but Boolean, int, uint, and Number. For
example, the following code creates a typed instance variable, pet, of type VirtualPet.
Before the variable is explicitly assigned a value in the program, its value is null.

package {
 import flash.display.Sprite;
 import zoo.*;

 public class VirtualZoo extends Sprite {
 private var pet:VirtualPet;

 public function VirtualZoo () {
 trace(pet); // Displays: null
 }
 }
}

By contrast, the undefined value represents the absence of data for variables,
parameters, and return values without a specified type annotation. For example, the

Table 8-6. Default variable values

Datatype Default value

String null

Boolean false

int 0

uint 0

Number NaN

All other types null

154 | Chapter 8: Datatypes and Type Checking

following code creates an object with two dynamic instance variables, city and
country. When assigning the country variable an initial value, the code uses
undefined to indicate that country does not yet have a meaningful value.

var info = new Object();
info.city = "Toronto";
info.country = undefined;

The undefined value also represents the complete absence of a variable or method on
an object whose class is defined as dynamic. For example, the following attempt to
access a nonexistent variable through the object referenced by info yields undefined:

trace(info.language); // Displays: undefined

We’ll learn more about ActionScript’s dynamic features and the undefined value in
Chapter 15.

Datatypes in the Virtual Zoo
Now that we’ve learned all about datatypes, let’s add type annotations to our virtual
zoo program. Example 8-1 shows the updated code for the VirtualZoo class, the pro-
gram’s main class.

Example 8-2 shows the code for the VirtualPet class, whose instances represent pets
in the zoo. Notice the cast operation in the eat() method, discussed in the earlier sec-
tion “Upcasting and Downcasting.”

Example 8-1. The VirtualZoo class

package {
 import flash.display.Sprite;
 import zoo.*;

 public class VirtualZoo extends Sprite {
 private var pet:VirtualPet;

 public function VirtualZoo () {
 pet = new VirtualPet("Stan");
 pet.eat(new Apple());
 pet.eat(new Sushi());
 }
 }
}

Example 8-2. The VirtualPet class

package zoo {
 import flash.utils.setInterval;
 import flash.utils.clearInterval;

 public class VirtualPet {
 private static var maxNameLength:int = 20;

Datatypes in the Virtual Zoo | 155

 private static var maxCalories:int = 2000;
 private static var caloriesPerSecond:int = 100;

 private var petName:String;
 private var currentCalories:int = VirtualPet.maxCalories/2;
 private var digestIntervalID:int;

 public function VirtualPet (name:String):void {
 setName(name);
 digestIntervalID = setInterval(digest, 1000);
 }

 public function eat (foodItem:Food):void {
 if (currentCalories == 0) {
 trace(getName() + " is dead. You can't feed it.");
 return;
 }

 if (foodItem is Apple) {
 // Note the cast to Apple
 if (Apple(foodItem).hasWorm()) {
 trace("The " + foodItem.getName() + " had a worm. " + getName()
 + " didn't eat it.");
 return;
 }
 }

 var newCurrentCalories:int = currentCalories + foodItem.getCalories();
 if (newCurrentCalories > VirtualPet.maxCalories) {
 currentCalories = VirtualPet.maxCalories;
 } else {
 currentCalories = newCurrentCalories;
 }
 trace(getName() + " ate some " + foodItem.getName() + "."
 + " It now has " + currentCalories + " calories remaining.");
 }

 public function getHunger ():Number {
 return currentCalories / VirtualPet.maxCalories;
 }

 public function setName (newName:String):void {
 // If the proposed new name has more than maxNameLength characters...
 if (newName.length > VirtualPet.maxNameLength) {
 // ...truncate it
 newName = newName.substr(0, VirtualPet.maxNameLength);
 } else if (newName == "") {
 // ...otherwise, if the proposed new name is an empty string,
 // then terminate this method without changing petName
 return;
 }

Example 8-2. The VirtualPet class (continued)

156 | Chapter 8: Datatypes and Type Checking

Example 8-3 shows the code for the Food class, the superclass of the various types of
food that pets eat.

 // Assign the new, validated name to petName
 petName = newName;
 }

 public function getName ():String {
 return petName;
 }

 private function digest ():void {
 // If digesting more calories would leave the pet's currentCalories at
 // 0 or less...
 if (currentCalories - VirtualPet.caloriesPerSecond <= 0) {
 // ...stop the interval from calling digest()
 clearInterval(digestIntervalID);
 // Then give the pet an empty stomach
 currentCalories = 0;
 // And report the pet's death
 trace(getName() + " has died.");
 } else {
 // ...otherwise, digest the stipulated number of calories
 currentCalories -= VirtualPet.caloriesPerSecond;

 // And report the pet's new status
 trace(getName() + " digested some food. It now has "
 + currentCalories + " calories remaining.");
 }
 }
 }
}

Example 8-3. The Food class

package zoo {
 public class Food {
 private var calories:int;
 private var name:String;

 public function Food (initialCalories:int) {
 setCalories(initialCalories);
 }

 public function getCalories ():int {
 return calories;
 }

 public function setCalories (newCalories:int):void {
 calories = newCalories;
 }

Example 8-2. The VirtualPet class (continued)

Datatypes in the Virtual Zoo | 157

Example 8-4 shows the code for the Apple class, which represents a specific type of
food that pets eat.

Finally, Example 8-5 shows the code for the Sushi class, which represents a specific
type of food that pets eat.

 public function getName ():String {
 return name;
 }

 public function setName (newName:String):void {
 name = newName;
 }
 }
}

Example 8-4. The Apple class

package zoo {
 public class Apple extends Food {
 private static var DEFAULT_CALORIES:int = 100;
 private var wormInApple:Boolean;

 public function Apple (initialCalories:int = 0) {
 if (initialCalories <= 0) {
 initialCalories = Apple.DEFAULT_CALORIES;
 }
 super(initialCalories);

 wormInApple = Math.random() >= .5;

 setName("Apple");
 }

 public function hasWorm ():Boolean {
 return wormInApple;
 }
 }
}

Example 8-5. The Sushi class

package zoo {
 public class Sushi extends Food {
 private static var DEFAULT_CALORIES:int = 500;

 public function Sushi (initialCalories:int = 0) {
 if (initialCalories <= 0) {
 initialCalories = Sushi.DEFAULT_CALORIES;
 }
 super(initialCalories);

Example 8-3. The Food class (continued)

158 | Chapter 8: Datatypes and Type Checking

More Datatype Study Coming Up
In this chapter, we learned how to use datatypes to help identify and resolve poten-
tial problems in a program. In the next chapter, we’ll conclude our general explora-
tion of datatypes by studying interfaces. Like classes, interfaces are used to create
custom datatypes.

 setName("Sushi");
 }
 }
}

Example 8-5. The Sushi class (continued)

159

Chapter 9 CHAPTER 9

Interfaces10

An interface is an ActionScript language construct that defines a new datatype, much
as a class defines a datatype. However, whereas a class both defines a datatype and
provides the implementation for it, an interface defines a datatype in abstract terms
only, and provides no implementation for that datatype. That is, a class doesn’t just
declare a bunch of methods and variables, it also supplies concrete behavior; the
method bodies and variable values that make the class actually do something. An
interface, instead of providing its own implementation, is adopted by one or more
classes that agree to provide the implementation. Instances of a class that provides an
implementation for an interface belong both to the class’s datatype and to the
datatype defined by the interface. As a member of multiple datatypes, the instances
can then play multiple roles in an application.

Don’t confuse the term interface, as discussed in this chapter, with
other uses of the word. In this chapter, “interface” refers to an Action-
Script language construct, not a graphical user interface (GUI) or the
public API of a class, sometimes also called an interface in general
object-oriented programming theory.

Unless you’re familiar with interfaces already, theoretical descriptions of them can be
hard to follow, so let’s dive right into an example.

The Case for Interfaces
Suppose we’re creating a logging class, Logger, that reports status messages (“log
entries”) for a program as it runs. Many classes receive the Logger’s status messages
and respond to them in different ways. For example, one class, LogUI, displays log
messages on screen; another class, LiveLog, alerts a live support technician via a net-
worked administration tool; yet another class, LogTracker, adds log messages to a
database for statistics tracking. To receive log messages, each class defines an update()
method. To send a message to objects of each interested class, the Logger class
invokes the update() method.

160 | Chapter 9: Interfaces

That all seems logical enough so far, but what happens if we forget to define the
update() method in the LogUI class? The status message will be sent, but LogUI
objects won’t receive it. We need a way to guarantee that each log recipient defines
the update() method.

To make that guarantee, suppose we add a new requirement to our program: any
object that wants to receive log messages from Logger must be an instance of a
generic LogRecipient class (which we’ll provide) or an instance of one of
LogRecipient’s subclasses. In the LogRecipient class, we implement the update()
method in a generic way—by simply displaying the log message using trace():

public class LogRecipient {
 public function update (msg:String):void {
 trace(msg);
 }
}

Now any class that wishes to receive log messages from Logger simply extends
LogRecipient and if specialized behavior is wanted, overrides LogRecipient’s update()
method, providing the desired behavior. For example, the following class,
LogTracker, extends LogRecipient and overrides update(), providing database-
specific behavior:

public class LogTracker extends LogRecipient {
 // Override LogRecipient's update()
 override public function update (msg:String):void {
 // Send problem report to database. Code not shown...
 }
}

Back in the Logger class, we define a method, addRecipient(), that registers an object
to receive log messages. The basic code for addRecipient() follows. Notice that only
instances of the LogRecipient class and its subclasses can be passed to addRecipient():

public class Logger {
 public function addRecipient (lr:LogRecipient):Boolean {
 // Code here should register lr to receive status messages,
 // and return a Boolean value indicating whether registration
 // succeeded (code not shown).
 }
}

If an object passed to addRecipient() is not of type LogRecipient, then the compiler
generates a type mismatch error. If the object is an instance of a LogRecipient sub-
class that doesn’t implement update(), at least the generic update() (defined by
LogRecipient) will execute.

Sounds reasonable, right? Almost. But there’s a problem. What if a class wishing to
receive events from LogRecipient already extends another class? For example, sup-
pose the LogUI class extends flash.display.Sprite:

public class LogUI extends Sprite {

Interfaces and Multidatatype Classes | 161

 public function update (msg:String):void {
 // Display status message on screen, code not shown...
 }
}

In ActionScript, a single class cannot extend more than one class. The LogUI class
already extends Sprite, so it can’t also extend LogRecipient. Therefore, instances of
LogUI can’t register to receive status messages from Logger. What we really need in
this situation is a way to indicate that LogUI instances actually belong to two
datatypes: LogUI and LogRecipient.

Enter...interfaces!

Interfaces and Multidatatype Classes
In the preceding section, we created the LogRecipient datatype by creating a
LogRecipient class. That approach forces every Logger message-recipient to be an
instance of either LogRecipient or a LogRecipient subclass. To loosen that restriction,
we can define the LogRecipient datatype by creating a LogRecipient interface rather
than a LogRecipient class. That way, instances of any class that formally agrees to
provide an implementation for update() can register for log messages. Let’s see how
this works.

Syntactically, an interface is simply a list of methods. For example, the following code
creates an interface named LogRecipient that contains a single method, update().
(Notice that, like classes, interfaces can be defined as either public or internal.)

public interface LogRecipient {
 function update(msg:String):void;
}

Once an interface has been defined, any number of classes can use the keyword
implements to enter into an agreement with it, promising to define the methods it
contains. Once such a promise has been made, the class’s instances are considered
members of both the class’s datatype and the interface’s datatype.

For example, to indicate that the LogUI class agrees to define the method update()
(defined by the LogRecipient interface), we use the following code:

class LogUI extends Sprite implements LogRecipient {
 public function update (msg:String):void {
 // Display status message on screen, code not shown...
 }
}

Instead of extending the LogRecipient class, the LogUI class extends Sprite and
implements the LogRecipient interface. Because LogUI implements LogRecipient, it
must define an update() method. Otherwise, the compiler generates the following
error:

Interface method update in namespace LogRecipient not implemented by class LogUI.

162 | Chapter 9: Interfaces

Because LogUI promises to implement LogRecipient’s methods, LogUI instances can
be used anywhere the LogRecipient datatype is required. Instances of LogUI effec-
tively belong to two datatypes: LogUI and LogRecipient. Thus, despite the fact that
LogUI extends Sprite, LogUI instances still belong to the LogRecipient type and can
be passed safely to Logger’s addRecipient() method. (Wow, Ron, that’s amazing! It’s
a pasta maker and a juicer!)

Compiler errors are the key to the entire interface system. They guarantee that a class
lives up to its implementation promises, which allows external code to use it with the
confidence that it will behave as required. That confidence is particularly important
when designing an application that will be extended by another developer or used by
third parties.

Now that we have a general idea of what interfaces are and how they’re used, let’s
get down to some syntax details.

Interface Syntax and Use
Recall that an interface defines a new datatype without implementing any of the
methods of that datatype. Thus, to create an interface, we use the following syntax:

interface SomeName {
 function method1 (param1:datatype,...paramn:datatype):returnType;
 function method2 (param1:datatype,...paramn:datatype):returnType;
 ...
 function methodn (param1:datatype,...paramn:datatype):returnType;
}

where SomeName is the name of the interface, method1, ...methodn are the methods in
the interface, param1:datatype, ...paramn:datatype are the parameters of the meth-
ods, and returnType is the datatype of each method’s return value.

In interfaces, method declarations do not (and must not) include curly
braces. The following method declaration causes a compile-time error
in an interface because it includes curly braces:

function method1 (param:datatype):returnType {
}

The error generated is:

Methods defined in an interface must not have a body.

All methods declared in an interface must not include an access-control modifier.
Variable definitions are not allowed in ActionScript interfaces; neither can interface
definitions be nested. However, interfaces can include get and set methods, which
can be used to simulate variables (from the perspective of the code using the meth-
ods). Like class definitions, interface definitions can be placed directly within a
package statement or outside of any package statement, but nowhere else.

Interface Syntax and Use | 163

As we saw in the preceding section, a class that wishes to adopt an interface’s
datatype must agree to implement that interface’s methods. To form such an agree-
ment, the class uses the implements keyword, which has the following syntax:

class SomeName implements SomeInterface {
}

In the preceding code, SomeName is the name of the class that promises to implement
SomeInterface’s methods, and SomeInterface is the name of the interface. The
SomeName class is said to “implement the SomeInterface interface.” Note that
implements must always come after any extends clause that might also be present.
Furthermore, if you specify a class instead of an interface after the implements key-
word, the compiler generates this error:

An interface can only extend other interfaces, but ClassName is a class.

The class SomeName must implement all methods defined by SomeInterface, otherwise
a compile-time error such as the following occurs:

Interface method methodName in namespace InterfaceName not
 implemented by class ClassName.

The implementing class’s method definitions must be public and must match the
interface’s method definitions exactly, including number of parameters, parameter
types, and return type. If any of those aspects differs between the interface and the
implementing class, the compiler generates the following error:

Interface method methodName in namespace InterfaceName is
 implemented with an incompatible signature in class ClassName.

A class can legally implement more than one interface by separating interface names
with commas, as follows:

class SomeName implements SomeInterface, SomeOtherInterface {
}

in which case, instances of the class SomeName belongs to all three of the following
datatypes: SomeName, SomeInterface, and SomeOtherInterface. If a class implements
two interfaces that define a method by the same name, but with different signatures
(i.e., method’s name, parameter list, and return type), the compiler generates an
error indicating that one of the methods was not implemented properly.

If, on the other hand, a class implements two interfaces that define a method by the
same name and with the exact same signature, no error occurs. The real question is
whether the class can provide the services required by both interfaces within a single
method definition. In most cases, the answer is no.

Once an interface has been implemented by one or more classes, add-
ing new methods to it will cause compile-time errors in those imple-
menting classes (because the classes won’t define the new methods)!
Hence, you should think carefully about the methods you want in an
interface and be sure you’re confident in your application’s design
before you commit it to code.

164 | Chapter 9: Interfaces

If a class declares that it implements an interface, but that interface cannot be found
by the compiler, the following error occurs:

Interface InterfaceName was not found.

Interface Naming Conventions
Like classes, interfaces should be named with an initial capital letter so they’re easy
to identify as datatypes. Most interfaces are named after the additional ability they
describe. For example, suppose an application contains a series of classes that repre-
sent visual objects. Some of the objects can be repositioned; others cannot. In our
design, objects that can be repositioned must implement an interface named
Moveable. Here is a theoretical ProductIcon class that implements Moveable:

public class ProductIcon implements Moveable {
 public function getPosition ():Point {
 }
 public function setPosition (pos:Point):void {
 }
}

The interface name, Moveable, indicates the specific capability that the interface adds
to a class. An object might be a piece of clip art or a block of text, but if it imple-
ments Moveable, it can be repositioned. Other similar names might be Storable,
Killable, or Serializable. Some developers also preface interface names with an “I,” as
in IMoveable, IKillable, and ISerializable.

Interface Inheritance
As with classes, an interface can use the extends keyword to inherit from another
interface. For example, the following code shows an interface, IntA, that extends
another interface, IntB. In this setup, interface IntB is known as the subinterface, and
interface IntA is known as the superinterface.

public interface IntA {
 function methodA ():void;
}
public interface IntB extends IntA {
 function methodB ():void;
}

Classes that implement interface IntB must provide definitions for both methodA()
and methodB(). Interface inheritance lets us define a type hierarchy much as we
would with class inheritance, but without accompanying method implementations.

ActionScript interfaces also support multiple interface inheritance; that is, an inter-
face can extend more than one interface. For example, consider the following three
interface definitions:

public interface IntC {
 function methodC ():void;
}

Another Multiple-Type Example | 165

public interface IntD {
 function methodD ():void;
}

public interface IntE extends IntC, IntD {
 function methodE ():void;
}

Because IntE extends both IntC and IntD, classes that implement interface IntE must
provide definitions for methodC(), methodD(), and methodE().

Marker Interfaces
Interfaces need not contain any methods at all to be useful. Occasionally, empty
interfaces, called marker interfaces, are used to “mark” (designate) a class as having
some feature. Requirements for the marked classes (classes implementing the marker
interface) are provided by the documentation for the marker interface. For example,
the Flash runtime API includes a marker interface, IBitmapDrawable, which desig-
nates a class as eligible for drawing into a BitmapData object. The BitmapData class
will draw only those classes that implement IBitmapDrawable (even though
IBitmapDrawable does not actually define any methods). The IBitmapDrawable
interface is simply used to “approve” a given class for drawing into a bitmap. Here’s
the source code for the IBitmapDrawable interface:

package flash.display {
 interface IBitmapDrawable {
 }
}

Another Multiple-Type Example
In our earlier logging example, we learned that a class can inherit from another class
while also implementing an interface. Instances of the subclass belong to both the
superclass’s datatype and the interface’s datatype. For example, instances of the ear-
lier LogUI class belonged to both the Sprite and LogRecipient datatypes because
LogUI inherited from Sprite and implemented LogRecipient. Let’s take a closer look
at this important architectural structure with a new example.

The following discussion requires a prior knowledge of arrays (ordered
lists of values), which we haven’t covered yet. If you are new to arrays,
you should skip this section for now and return to it after you have
read Chapter 11.

Suppose we’re creating an application that stores objects on a server via a server-side
script. Each stored object’s class is responsible for providing a method, serialize(),
that can return a string-representation of its instances. The string representation is
used to reconstitute a given object from scratch.

166 | Chapter 9: Interfaces

One of the classes in the application is a simple Rectangle class with width, height,
fillColor, and lineColor instance variables. To represent Rectangle objects as
strings, the Rectangle class implements a serialize() method that returns a string of
the following format:

"width=value|height=value|fillColor=value|lineColor=value"

To store a given Rectangle object on the server, we invoke serialize() on the object and
send the resulting string to our server-side script. Later, we can retrieve that string and
use it to create a new Rectangle instance matching the original’s size and colors.

To keep things simple for this example, we’ll presume that every stored object in the
application must store only variable names and values. We’ll also presume that no
variable values are, themselves, objects that would need serialization.

When the time comes to save the state of our application, an instance of a custom
StorageManager class performs the following tasks:

• Gathers objects for storage

• Converts each object to a string (via serialize())

• Transfers the objects to disk

In order to guarantee that every stored object can be serialized (i.e., converted to a
string), the StorageManager class rejects any instances of classes that do not belong
to the Serializable datatype. Here’s an excerpt from the StorageManager class that
shows the method an object uses to register for storage—addObject() (notice that
only instances belonging to the Serializable type can be passed to addObject()):

package {
 public class StorageManager {
 public function addObject (o:Serializable):void {
 }
 }
}

The Serializable datatype is defined by the interface Serializable, which contains a
single method, serialize(), as follows:

package {
 public interface Serializable {
 function serialize():String;
 }
}

To handle the serialization process, we create a class, Serializer, which implements
Serializable. The Serializer class provides the following general methods for serializ-
ing any object:

setSerializationObj()
Specifies which object to serialize

setSerializationVars()
Specifies which of the object’s variables should be serialized

Another Multiple-Type Example | 167

setRecordSeparator()
Specifies the string to use as a separator between variables

serialize()
Returns a string representing the object

Here’s the class listing for Serializer:

package {
 public class Serializer implements Serializable {
 private var serializationVars:Array;
 private var serializationObj:Serializable;
 private var recordSeparator:String;

 public function Serializer () {
 setSerializationObj(this);
 }

 public function setSerializationVars (vars:Array):void {
 serializationVars = vars;
 }

 public function setSerializationObj (obj:Serializable):void {
 serializationObj = obj;
 }

 public function setRecordSeparator (rs:String):void {
 recordSeparator = rs;
 }

 public function serialize ():String {
 var s:String = "";
 // Notice that the loop counts down to 0, and performs the
 // iterator update (decrementing i) within the loop's test expression
 for (var i:int = serializationVars.length; --i >= 0;) {
 s += serializationVars[i]
 + "=" + String(serializationObj[serializationVars[i]]);
 if (i > 0) {
 s += recordSeparator;
 }
 }
 return s;
 }
 }
}

To use the Serializer class’s serialization services, a class can simply extend Serializer.
By extending Serializer directly, the extending class inherits both the Serializable
interface and the Serializer class’s implementation of that interface.

Notice the general structure of our serialization system: Serializer implements
Serializable, providing a generalized implementation for other classes to use via
inheritance. But classes can still choose to implement Serializable directly, supplying
their own custom behavior for the serialize() method.

168 | Chapter 9: Interfaces

For example, the following code shows a Point class that defines x and y variables,
which need to be serialized. The Point class extends Serializer and uses Serializer’s
services directly.

package {
 public class Point extends Serializer {
 public var x:Number;
 public var y:Number;

 public function Point (x:Number, y:Number) {
 super();

 setRecordSeparator(",");
 setSerializationVars(["x", "y"]);

 this.x = x;
 this.y = y;
 }
 }
}

Code that wishes to save a Point instance to disk simply calls serialize() on that
instance, as follows:

var p:Point = new Point(5, 6);
trace(p.serialize()); // Displays: y=6,x=5

Notice that the Point class does not implement Serializable directly. It extends
Serializer, which in turn implements Serializable.

The Point class does not extend any other class, so it’s free to extend Serializer. How-
ever, if a class wants to use Serializer but already extends another class, it must use
composition instead of inheritance. That is, rather than extending Serializer, the
class implements Serializable directly, stores a Serializer object in an instance vari-
able, and forwards serialize() method calls to that object. For example, here’s the
Rectangle class mentioned earlier. It extends a Shape class but uses Serializer via
composition (refer specifically to the sections in bold):

// The Shape superclass
package {
 public class Shape {
 public var fillColor:uint = 0xFFFFFF;
 public var lineColor:uint = 0;

 public function Shape (fillColor:uint, lineColor:uint) {
 this.fillColor = fillColor;
 this.lineColor = lineColor;
 }
 }
}

// The Rectangle class
package {
 // The Rectangle subclass implements Serializable directly

Another Multiple-Type Example | 169

 public class Rectangle extends Shape implements Serializable {
 public var width:Number = 0;
 public var height:Number = 0;
 private var serializer:Serializer;

 public function Rectangle (fillColor:uint, lineColor:uint) {
 super(fillColor, lineColor)

 // Here is where the composition takes place
 serializer = new Serializer();
 serializer.setRecordSeparator("|");
 serializer.setSerializationVars(["height", "width",
 "fillColor", "lineColor"]);
 serializer.setSerializationObj(this);
 }

 public function setSize (w:Number, h:Number):void {
 width = w;
 height = h;
 }

 public function getArea ():Number {
 return width * height;
 }

 public function serialize ():String {
 // Here is where the Rectangle class forwards the serialize()
 // invocation to the Serializer instance stored in serializer
 return serializer.serialize();
 }
 }
}

As with the Point class, code that wishes to store a Rectangle instance simply invokes
serialize() on that instance. Through composition, the invocation is forwarded to the
Serializer instance stored by the Rectangle class. Here is an example of its use:

var r:Rectangle = new Rectangle(0xFF0000, 0x0000FF);
r.setSize(10, 15);
// Displays: lineColor=255|fillColor=16711680|width=10|height=15
trace(r.serialize());

If a class would rather implement its own custom serialize() method instead of using
the generic one provided by Serializer, then the class simply implements the Serializable
interface directly, providing the serialize() method definition and body itself.

Separating the Serializable datatype’s interface from its implementation allows any
class to flexibly choose from among the following options when providing an imple-
mentation for the serialize() method:

• Extend Serializer

• Use Serializer via composition

• Provide its own serialize() method directly

170 | Chapter 9: Interfaces

If the class does not already extend another class, it can extend Serializer (this option
involves the least work). If the class already extends another class, it can still use
Serializer via composition (this option is the most flexible). Finally, if the class needs
its own special serialization routine, it can implement Serializable directly (this
option involves the most work but may be required by the situation at hand).

The flexibility of the preceding structure led Sun Microsystems to formally recom-
mend that, in a Java application, any class that is expected to be subclassed should
be an implementation of an interface. As such, it can be subclassed directly, or it can
be used via composition by a class that inherits from another class. Sun’s recommen-
dation is also sensible for large-scale ActionScript applications.

Figure 9-1 shows the generic structure of a datatype whose implementation can be
used via either inheritance or composition.

Figure 9-2 shows the structure of the specific Serializable, Point, and Rectangle
example.

Figure 9-1. Multiple datatype inheritance via interfaces

SomeAbstractType
(Abstract datatype

definition)

SomeConcreteType
(Datatype implementation)

SomeOtherType
(Unrelated class)

SomeConcreteSubtype
(SomeAbstractType used

via inheritance)

SomeOtherSubtype
(SomeAbstractType used

via composition)

SomeConcreteType Instance

implements

extendsextends implementsstores

interface

class

More Essentials Coming | 171

More Essentials Coming
Having covered classes, objects, inheritance, datatypes, and interfaces, we’ve now
finished our study of the basic concepts of object-oriented programming. In the
remainder of Part I, we’ll explore a variety of other fundamental topics in Action-
Script. But the object-oriented concepts we’ve studied will never be far behind.
Object-oriented programming is the true foundation of ActionScript. The concepts
presented in remainder of this book will all build and rely upon that foundation.

Up next, an overview of ActionScript’s statements and operators.

Figure 9-2. Multiple datatype inheritance Serializable example

Serializable
(Abstract datatype

definition)

Serializer
(Datatype implementation)

Shape
(Unrelated class)

Point
(Serializer used
via inheritance)

Rectangle
(Serializer used

via composition)

Serializer Instance

implements

extendsextends implementsstores

interface

class

172

Chapter 10CHAPTER 10

Statements and Operators 11

This chapter provides a reference-style overview of ActionScript’s statements and
operators—many of which we’ve already seen in this book. Rather than discussing
each statement and operator in isolation, this book teaches the use of statements and
operators in the context of other programming topics. Accordingly, this chapter lists
many crossreferences to discussion and usage examples found elsewhere in this
book. For information on operators not covered in this book, see Adobe’s Action-
Script Language Reference.

Statements
Statements are one kind of directive, or basic program instruction, consisting of a key-
word (command name reserved for use by the ActionScript language) and, typically, a
supporting expression.

Table 10-1 lists ActionScript’s statements, their syntax, and purpose.

Table 10-1. ActionScript statements

Statement Usage Description

break break Aborts a loop or switch statement. See Chapter 2.

case case expression:
substatements

Identifies a statement to be executed conditionally
in a switch statement. See Chapter 2.

continue continue; Skips the remaining statements in the current loop
and begins the next iteration at the top of the loop.
See Adobe documentation.

default default:
substatements

Identifies the statement(s) to execute in a switch
statement when the test expression does not match
any case clauses. See Chapter 2.

do-while do {
substatements

} while (expression);

A variation of a while loop that ensures at least one
iteration of the loop is performed. See Chapter 2.

Statements | 173

for for (init; test; update) {
statements

}

Executes a statement block repetitively (a for loop).
It is synonymous with a while loop but places the
loop initialization and update statements together
with the test expression at the top of the loop. See
Chapter 2.

for-in for (variable in object) {
statements

}

Enumerates the names of the dynamic instance
variables of an object or an array’s elements. See
Chapter 15.

for-each-in for each
(variableOrElementValue in
object) {
statements

}

Enumerates the values of an object’s dynamic
instance variables or an array’s elements. See
Chapter 15.

if-else if-else if (expression) {
substatements

} else if (expression) {
substatements

} else {
substatements

}

Executes one or more statements, based on a
condition or a series of conditions. See Chapter 2.

label label: statement
label: statements

Associates a statement with an identifier. Used with
break or continue. See Adobe documentation.

return return;
return expression;

Exits and optionally returns a value from a function.
See Chapter 5.

super super(arg1, arg2, ...argn)
super.method(arg1, arg2, ..
.argn)

Invokes a superclass’s constructor method or
overridden instance method. See Chapter 6.

switch switch (expression) {
substatements

}

Executes specified code, based on a condition or a
series of conditions (alternative to if-else if-else). See
Chapter 2.

throw throw expression Issues a runtime exception (error). See Chapter 13.

try/catch/finally try {
 // Code that might
 // generate an exception
} catch (error:ErrorType1) {
 // Error-handling code
 // for ErrorType1.
} catch (error:ErrorTypeN) {
 // Error-handling code
 // for ErrorTypeN.
} finally {
 // Code that always
executes
}

Wraps a block of code to respond to potential run-
time exceptions. See Chapter 13.

while while (expression) {
substatements

}

Executes a statement block repetitively (a while
loop). See Chapter 2.

with with (object) {
substatements

}

Executes a statement block in the scope of a given
object. See Chapter 16.

Table 10-1. ActionScript statements (continued)

Statement Usage Description

174 | Chapter 10: Statements and Operators

Operators
An operator is a symbol or keyword that manipulates, combines, or transforms data.
For example, the following code uses the multiplication operator (*) to multiply 5
times 6:

5 * 6;

Though each operator has its own specialized task, all operators share a number of
general characteristics. Before we consider the operators individually, let’s see how
they behave generally.

Operators perform actions using the data values (operands) supplied. For example,
in the operation 5 * 6, the numbers 5 and 6 are the operands of the multiplication
operator (*).

Operations can be combined to form complex expressions. For example:

((width * height) - (Math.PI * radius * radius)) / 2

When expressions become very large, consider using variables to hold interim results
for both convenience and clarity. Remember to name your variables descriptively.
For example, the following code has the same result as the preceding expression but
is much easier to read:

var radius:int = 10;
var height:int = 25;
var circleArea:Number = (Math.PI * radius * radius);
var cylinderVolume:Number = circleArea * height;

Number of Operands
Operators are sometimes categorized according to how many operands they take (i.e.,
require or operate on). Some ActionScript operators take one operand, some take two,
and one even takes three:

–x // One operand
x * y // Two operands
(x == y) ? "true result" : "false result" // Three operands

Single-operand operators are called unary operators; operators that take two
operands are called binary operators; operators that take three operands are called
ternary operators. For our purposes, we’ll look at operators according to what they
do, not the number of operands they take.

Operator Precedence
Operators’ precedence determines which operation is performed first in an expres-
sion with multiple operators. For example, when multiplication and addition occur
in the same expression, multiplication is performed first:

4 + 5 * 6 // Yields 34, because 4 + 30 = 34

Operators | 175

The expression 4 + 5 * 6 is evaluated as “4 plus the product of 5 * 6” because the *
operator has higher precedence than the + operator.

Similarly, when the less-than (<) and concatenation (+) operators occur in the same
expression, concatenation is performed first. For example, suppose we want to com-
pare two strings and then display the result of that comparison during debugging.
Without knowing the precedence of the < and + operators, we might mistakenly use
the following code:

trace("result: " + "a" < "b");

Due precedence of the < and + operators, the preceding code yields the value:

false

whereas we were expecting it to yield:

result: true

To determine the result of the expression "result: " + "a" < "b", ActionScript per-
forms the concatenation operation first (because + has a higher precedence than <).
The result of concatenating “result: ” with “a” is a new string, “result: a”. Action-
Script then compares that new string with “b”, which yields false because the first
character in “result: a” is alphabetically greater than “b”.

When in doubt, or to ensure a different order of operation, use parentheses, which
have the highest precedence:

"result: " + ("a" < "b") // Yields: "result: true"
(4 + 5) * 6 // Yields 54, because 9 * 6 = 54

Even if not strictly necessary, parentheses can make a complicated expression more
readable. The expression:

x > y || y == z // x is greater than y, or y equals z

may be difficult to comprehend without consulting a precedence table. It’s a lot eas-
ier to read with parentheses added:

(x > y) || (y == z) // Much better!

The precedence of each operator is listed later in Table 10-2.

Operator Associativity
As we’ve just seen, operator precedence indicates the pecking order of operators:
those with a higher precedence are executed before those with a lower precedence.
But what happens when multiple operators occur together and have the same level of
precedence? In such a case, we apply the rules of operator associativity, which indi-
cate the direction of an operation. Operators are either left-associative (performed
left to right) or right-associative (performed right to left). For example, consider this
expression:

b * c / d

176 | Chapter 10: Statements and Operators

The * and / operators are left-associative, so the * operation on the left (b * c) is per-
formed first. The preceding example is equivalent to:

(b * c) / d

In contrast, the = (assignment) operator is right-associative, so the expression:

a = b = c = d

says, “assign d to c, then assign c to b, then assign b to a,” as in:

a = (b = (c = d))

Unary operators are right-associative; binary operators are left-associative, except for
the assignment operators, which are right-associative. The conditional operator (?:)
is also right-associative. Operator associativity is fairly intuitive, but if you’re getting
an unexpected value from a complex expression, add extra parentheses to force the
desired order of operations. For further information on operator associativity in
ActionScript, see Adobe’s documentation.

Datatypes and Operators
The operands of most operators are typed. In strict mode, if a value used for an oper-
and does not match that operand’s datatype, the compiler generates a compile-time
error and refuses to compile the code. In standard mode, the code compiles, and at
runtime, if the operand’s type is a primitive type, ActionScript converts the value to
the operand’s datatype (according to the rules described in Chapter 8, in the section
“Conversion to Primitive Types”). If the operand’s type is not a primitive type,
ActionScript generates a runtime error.

For example, in strict mode, the following code causes a type mismatch error
because the datatype of the division (/) operator’s operands is Number, and the value
"50" does not belong to the Number datatype:

"50" / 10

In standard mode, the preceding code does not cause a compile-time error. Instead,
at runtime, ActionScript converts the String value "50" to the Number datatype,
yielding 50, and the entire expression has the value 5.

To compile the preceding code without causing an error in strict mode, we must cast
the String value to the required datatype, as follows:

Number("50") / 10

Some operators’ operands are untyped, which allows the result of the operation to be
determined at runtime based on the datatypes of the supplied values. The + opera-
tor, for example, performs addition when used with two numeric operands, but it
performs concatenation when either operand is a string.

The datatypes of each operator’s operands are listed in Adobe’s ActionScript Lan-
guage Reference.

Operators | 177

Operator Overview
Table 10-2 lists ActionScript’s operators, their precedence value, a brief description,
and a typical example of their use. Operators with the highest precedence (at the top
of the table) are executed first. Operators with the same precedence are performed in
the order they appear in the expression, usually from left to right, unless the associa-
tivity is right to left.

Note that with the exception of the E4X operators, this book does not provide
exhaustive reference information for ActionScript’s operators. For details on a spe-
cific operator, consult Adobe’s ActionScript Language Reference. For information on
the bitwise operators, see the article “Using Bitwise Operators in ActionScript” at
http://www.moock.org/asdg/technotes/bitwise.

http://www.moock.org/asdg/technotes/bitwise

178

T
ab

le
10

-2
.A

ct
io

nS
cr

ip
t o

pe
ra

to
rs

Op
er

at
or

Pr
ec

ed
en

ce
De

sc
rip

tio
n

Ex
am

pl
e

.
15

M
ul

tip
le

 u
se

s:

•
Ac

ce
ss

es
 a

va
ria

bl
e o

r m
et

ho
d

•
Se

pa
ra

te
s p

ac
ka

ge
 n

am
es

 fr
om

 cl
as

s n
am

es
 an

d
ot

he
r p

ac
ka

ge
na

m
es

•
Ac

ce
ss

es
 ch

ild
re

n
of

 an
XM

L o
rX

M
LL

ist
 o

bj
ec

t (
E4

X)

//
 A
cc
es
s
a
va
ri
ab
le

pr
od
uc
t.
pr
ic
e

//
 R
ef
er
en
ce
 a
 c
la
ss

fl
as
h.
di
sp
la
y.
Sp
ri
te

//
 A
cc
es
s
an
 X
ML
 c
hi
ld
 e
le
me
nt

no
ve
l.
TI
TL
E

[]
15

M
ul

tip
le

 u
se

s:

•
In

iti
al

ize
s a

n
ar

ra
y

•
Ac

ce
ss

es
 an

 ar
ra

y e
le

m
en

t
•

Ac
ce

ss
es

 a
va

ria
bl

e o
r m

et
ho

d
us

in
g

an
y e

xp
re

ss
io

n
th

at
 yi

el
ds

 a
st

rin
g

•
Ac

ce
ss

es
 ch

ild
re

n
or

 at
tri

bu
te

s o
f a

n
XM

L o
rX

M
LL

ist
 o

bj
ec

t (
E4

X)

//
 I
ni
ti
al
iz
e
an
 a
rr
ay

["
ap
pl
e"
,
"o
ra
ng
e"
,
"p
ea
r"
]

//
 A
cc
es
s
fo
ur
th
 e
le
me
nt
 o
f
an
 a
rr
ay

li
st
[3
]

//
 A
cc
es
s
a
va
ri
ab
le

pr
od
uc
t[
"p
ri
ce
"]

//
 A
cc
es
s
an
 X
ML
 c
hi
ld
 e
le
me
nt

no
ve
l[
"T
IT
LE
"]

(
)

15
M

ul
tip

le
 u

se
s:

•
Sp

ec
ifi

es
 a

cu
st

om
 o

rd
er

 o
f o

pe
ra

tio
ns

 (p
re

ce
de

nc
e)

•
In

vo
ke

s a
 fu

nc
tio

n
or

 m
et

ho
d

•
Co

nt
ai

ns
 an

 E4
X

fil
te

rin
g

pr
ed

ica
te

//
 F
or
ce
 a
dd
it
io
n
be
fo
re
 m
ul
ti
pl
ic
at
io
n

(5
 +
 4
)
*
2

//
 I
nv
ok
e
a
fu
nc
ti
on

tr
ac
e(

)
//
 F
il
te
r
an
 X
ML
Li
st

st
af
f.
*.
(S
AL
AR
Y
<=
 3
50
00
)

@
15

Ac
ce

ss
es

 X
M

L a
ttr

ib
ut

es
//
 R
et
ri
ev
e
al
l
at
tr
ib
ut
es
 o
f
no
ve
l

no
ve
l.
@*

::
15

Se
pa

ra
te

s a
 q

ua
lif

ie
r n

am
es

pa
ce

 fr
om

 a
na

m
e

//
 Q
ua
li
fy
 o
ra
ng
e
wi
th
 n
am
es
pa
ce
 f
ru
it

fr
ui
t:
:o
ra
ng
e

..
15

Ac
ce

ss
es

 X
M

L d
es

ce
nd

an
ts

//
 R
et
ri
ev
e
al
l
de
sc
en
da
nt
 e
le
me
nt
s

//
 o
f
lo
an
 n
am
ed
 D
IR
EC
TO
R

lo
an
..
DI
RE
CT
OR

{x
:y
}

15
Cr

ea
te

s a
 n

ew
 o

bj
ec

t a
nd

 in
iti

al
ize

s i
ts

 d
yn

am
ic

va
ria

bl
es

//
 C
re
at
e
an
 o
bj
ec
t
wi
th
 d
yn
am
ic
 v
ar
ia
bl
es
,

//
 w
id
th
 a
nd
 h
ei
gh
t

{w
id
th
:3
0,
 h
ei
gh
t:
5}

ne
w

15
Cr

ea
te

s a
n

in
st

an
ce

 o
f a

 cl
as

s
//
 C
re
at
e
Te
xt
Fi
el
d
in
st
an
ce

ne
w
Te
xt
Fi
el
d(

)

179

<t
ag
><
ta
g/
>

15
De

fin
es

 an
 X

M
L e

le
m

en
t

//
 C
re
at
e
an
 X
ML
 e
le
me
nt
 n
am
ed
 B
OO
K

<B
OO
K>
Es
se
nt
ia
l
Ac
ti
on
Sc
ri
pt
 3
.0
</
BO
OK
>

x+
+

14
Ad

ds
 o

ne
 to

x
an

d
re

tu
rn

sx
’s

fo
rm

er
 va

lu
e (

po
st

fix
 in

cr
em

en
t)

//
 I
nc
re
as
e
i
by
 1
,
an
d
re
tu
rn
 i

i+
+

x–
–

14
Su

bt
ra

ct
s o

ne
 fr

om
x

an
d

re
tu

rn
sx

’s
fo

rm
er

 va
lu

e (
po

st
fix

 d
ec

re
m

en
t)

//
 D
ec
re
as
e
i
by
 1
,
an
d
re
tu
rn
 i

i-
-

++
x

14
Ad

ds
 o

ne
 to

x
an

d
re

tu
rn

sx
’s

ne
w

 va
lu

e (
pr

ef
ix

in
cr

em
en

t)
//
 I
nc
re
as
e
i
by
 1
,
an
d
re
tu
rn
 t
he
 r
es
ul
t

++
i

––
x

14
Su

bt
ra

ct
s o

ne
 fr

om
x

an
d

re
tu

rn
sx

’s
ne

w
 va

lu
e (

pr
ef

ix
de

cr
em

en
t)

//
 D
ec
re
as
e
i
by
 1
,
an
d
re
tu
rn
 t
he
 r
es
ul
t

--
i

–
14

Sw
itc

he
s t

he
 o

pe
ra

nd
’s

sig
n

(p
os

iti
ve

 b
ec

om
es

 n
eg

at
ive

, a
nd

 n
eg

at
ive

be
co

m
es

 p
os

iti
ve

)
va
r
a:
in
t
=
10
;

//
 A
ss
ig
n
-1
0
to
 b

va
r
b:
in
t
=
-b
;

~
14

Pe
rfo

rm
s a

 b
itw

ise
 N

OT
//
 C
le
ar
 b
it
 2
 o
f
op
ti
on
s

op
ti
on
s
&=
 ~
4;

!
14

Re
tu

rn
s t

he
 B

oo
le

an
 o

pp
os

ite
 o

f i
ts

 si
ng

le
 o

pe
ra

nd
//
 I
f
un
de
r1
8'
s
va
lu
e
is
 n
ot
 t
ru
e,

//
 e
xe
cu
te
 c
on
di
ti
on
al
 b
od
y

if
 (
!u
nd
er
18
)
{

tr
ac
e(
"Y
ou
 c
an
 a
pp
ly
 f
or
 a
 c
re
di
t
ca
rd
")

}

de
le
te

14
M

ul
tip

le
 u

se
s:

•
Re

m
ov

es
 th

e v
al

ue
 o

f a
n

ar
ra

y e
le

m
en

t
•

Re
m

ov
es

 an
 o

bj
ec

t’s
 d

yn
am

ic
in

st
an

ce
 va

ria
bl

e
•

Re
m

ov
es

 an
 X

M
L e

le
m

en
t o

r a
ttr

ib
ut

e

//
 C
re
at
e
an
 a
rr
ay

va
r
ge
nd
er
s:
Ar
ra
y
=
["
ma
le
",
"f
em
al
e"
]

//
 R
em
ov
e
th
e
fi
rs
t
el
em
en
t'
s
va
lu
e

de
le
te
 g
en
de
rs
[0
];

//
 C
re
at
e
an
 o
bj
ec
t

va
r
o:
Ob
je
ct
 =
 n
ew
 O
bj
ec
t(

);
o.
a
=
10
;

//
 R
em
ov
e
dy
na
mi
c
in
st
an
ce
 v
ar
ia
bl
e
a

de
le
te
 o
.a
;

//
 R
em
ov
e
th
e
<T
IT
LE
>
el
em
en
t
fr
om
 t
he
 X
ML

//
 o
bj
ec
t
re
fe
re
nc
ed
 b
y
no
ve
l

de
le
te
 n
ov
el
.T
IT
LE
;

T
ab

le
10

-2
.A

ct
io

nS
cr

ip
t o

pe
ra

to
rs

 (
co

nt
in

ue
d)

Op
er

at
or

Pr
ec

ed
en

ce
De

sc
rip

tio
n

Ex
am

pl
e

180

ty
pe
of

14
Re

tu
rn

s a
 si

m
pl

e s
tri

ng
 d

es
cr

ip
tio

n
of

 va
rio

us
 ty

pe
s o

f o
bj

ec
ts

. U
se

d
fo

r
ba

ck
w

ar
ds

 co
m

pa
tib

ili
ty

 w
ith

 A
ct

io
nS

cr
ip

t 1
.0

 an
d

Ac
tio

nS
cr

ip
t 2

.0
on

ly.

//
 R
et
ri
ev
e
st
ri
ng
 d
es
cr
ip
ti
on
 o
f
35
's
 t
yp
e

ty
pe
of
 3
5

vo
id

14
Re

tu
rn

s t
he

 va
lu

e u
nd

ef
in

ed
va
r
o:
Ob
je
ct
 =
 n
ew
 O
bj
ec
t(

);
o.
a
=
10
;

//
 C
om
pa
re
 u
nd
ef
in
ed
 t
o
th
e
va
lu
e
of
 o
.a

if
 (
o.
a
==
 v
oi
d)
 {

tr
ac
e(
"o
.a
 d
oe
s
no
t
ex
is
t,
 o
r
ha
s
no
 v
al
ue
")
;

}

*
13

M
ul

tip
lie

s t
w

o
nu

m
be

rs
//
 C
al
cu
la
te
 f
ou
r
ti
me
s
si
x

4
*
6

/
13

Di
vid

es
 le

ft
op

er
an

d
by

 ri
gh

t o
pe

ra
nd

//
 C
al
cu
la
te
 3
0
di
vi
de
d
by
 5

30
 /
 5

%
13

Re
tu

rn
s t

he
 re

m
ai

nd
er

 (i
.e

.,
m

od
ul

us
) t

ha
t r

es
ul

ts
 w

he
n

th
e l

ef
t o

pe
r-

an
d

is
di

vid
ed

 b
y t

he
 ri

gh
t o

pe
ra

nd
//
 C
al
cu
la
te
 r
em
ai
nd
er
 o
f
14
 d
iv
id
ed
 b
y
4

14
 %
 4

+
12

M
ul

tip
le

 u
se

s:

•
Ad

ds
 tw

o
nu

m
be

rs
•

Co
m

bi
ne

s(
co

nc
at

en
at

e)
 tw

o
st

rin
gs

•
Co

m
bi

ne
s (

co
nc

at
en

at
e)

 tw
o

XM
L o

r X
M

LL
ist

 o
bj

ec
ts

//
 C
al
cu
la
te
 2
5
pl
us
 1
0

25
 +
 1
0

//
 C
om
bi
ne
 "
He
"
an
d
"l
lo
"
to
 f
or
m
"H
el
lo
"

"H
e"
 +
 "
ll
o"

//
 C
om
bi
ne
 t
wo
 X
ML
 o
bj
ec
ts

<J
OB
>P
ro
gr
am
me
r<
/J
OB
>
+
<A
GE
>5
2<
/A
GE
>

–
12

Su
bt

ra
ct

s r
ig

ht
 o

pe
ra

nd
 fr

om
 le

ft
op

er
an

d
//
 S
ub
tr
ac
t
2
fr
om
 1
2

12
 -
 2

<<
11

Pe
rfo

rm
s a

 b
itw

ise
 le

ft
sh

ift
//
 S
hi
ft
 9
 f
ou
r
bi
ts
 t
o
th
e
le
ft

9
<<
 4

>>
11

Pe
rfo

rm
s a

 b
itw

ise
 si

gn
ed

 ri
gh

t s
hi

ft
//
 S
hi
ft
 8
 o
ne
 b
it
 t
o
th
e
ri
gh
t

8
>>
 1

>>
>

11
Pe

rfo
rm

s a
 b

itw
ise

 u
ns

ig
ne

d
rig

ht
 sh

ift
//
 S
hi
ft
 8
 o
ne
 b
it
 t
o
th
e
ri
gh
t,
 f
il
li
ng

//
 v
ac
at
ed
 b
it
s
wi
th
 z
er
os

8
>>
>
1

T
ab

le
10

-2
.A

ct
io

nS
cr

ip
t o

pe
ra

to
rs

 (
co

nt
in

ue
d)

Op
er

at
or

Pr
ec

ed
en

ce
De

sc
rip

tio
n

Ex
am

pl
e

181

<
10

Ch
ec

ks
 if

 th
e l

ef
t o

pe
ra

nd
 is

 le
ss

 th
an

 th
e r

ig
ht

 o
pe

ra
nd

. D
ep

en
di

ng
up

on
 th

e e
va

lu
at

io
n

of
 th

e o
pe

ra
nd

s,
re

tu
rn

s t
ru
e

or
fa
ls
e.

//
 C
he
ck
 i
f
5
is
 l
es
s
th
an
 6

5
<
6

//
 C
he
ck
 i
f
"a
"
ha
s
a
lo
we
r
ch
ar
ac
te
r
co
de
 p
oi
nt

//
 t
ha
n
"z
"

"a
"
<
"z
"

<=
10

Ch
ec

ks
 if

 th
e l

ef
t o

pe
ra

nd
 is

 le
ss

 th
an

 o
r e

qu
al

 to
 th

e r
ig

ht
 o

pe
ra

nd
.

De
pe

nd
in

g
on

 th
e e

va
lu

at
io

n
of

 th
e o

pe
ra

nd
s,

re
tu

rn
s t
ru
e

or
fa
ls
e.

//
 C
he
ck
 i
f
10
 i
s
le
ss
 t
ha
n
or
 e
qu
al
 t
o
5

10
 <
=
5

//
 C
he
ck
 i
f
"C
"
ha
s
a
lo
we
r
ch
ar
ac
te
r
co
de
 p
oi
nt

//
 t
ha
n
"D
",
 o
r
th
e
sa
me
 c
od
e
po
in
t
as
 "
D"

"C
"
<=
 "
D"

>
10

Ch
ec

ks
 if

 th
e l

ef
t o

pe
ra

nd
 is

 g
re

at
er

 th
an

 th
e r

ig
ht

 o
pe

ra
nd

. D
ep

en
di

ng
up

on
 th

e e
va

lu
at

io
n

of
 th

e o
pe

ra
nd

s,
re

tu
rn

st
ru
e

or
fa
ls
e.

//
 C
he
ck
 i
f
5
is
 g
re
at
er
 t
ha
n
6

5
>
6

//
 C
he
ck
 i
f
"a
"
ha
s
a
hi
gh
er
 c
ha
ra
ct
er
 c
od
e
po
in
t

//
 t
ha
n
"z
"

"a
"
>
"z
"

>=
10

Ch
ec

ks
 if

 th
e l

ef
t o

pe
ra

nd
 is

 g
re

at
er

 th
an

 o
r e

qu
al

 to
 th

e r
ig

ht
 o

pe
ra

nd
.

De
pe

nd
in

g
on

 th
e e

va
lu

at
io

n
of

 th
e o

pe
ra

nd
s,

re
tu

rn
s t
ru
e

or
fa
ls
e.

//
 C
he
ck
 i
f
10
 i
s
gr
ea
te
r
th
an
 o
r
eq
ua
l
to
 5

10
 >
=
5

//
 C
he
ck
 i
f
"C
"
ha
s
a
hi
gh
er
 c
ha
ra
ct
er
 c
od
e
po
in
t

//
 t
ha
n
"D
",
 o
r
th
e
sa
me
 c
od
e
po
in
t
as
 "
D"

"C
"
>=
 "
D"

as
Ch

ec
ks

if
th

el
ef

to
pe

ra
nd

be
lo

ng
st

ot
he

da
ta

ty
pe

sp
ec

ifi
ed

by
th

er
ig

ht
op

er
an

d.
 If

 ye
s,

re
tu

rn
s t

he
 o

bj
ec

t;
ot

he
rw

ise
 re

tu
rn

s n
ul

l
va
r
d:
Da
te
 =
 n
ew
 D
at
e(

)
//
 C
he
ck
 i
f
d'
s
va
lu
e
be
lo
ng
s
to

//
 t
he
 D
at
e
da
ta
ty
pe

d
as
 D
at
e

is
Ch

ec
ks

if
th

el
ef

to
pe

ra
nd

be
lo

ng
st

ot
he

da
ta

ty
pe

sp
ec

ifi
ed

by
th

er
ig

ht
op

er
an

d.
 If

 ye
s,

re
tu

rn
s t

he
tr
ue

; o
th

er
w

ise
 re

tu
rn

sf
al
se

.
va
r
a:
Ar
ra
y
=
ne
w
Ar
ra
y(

)
//
 C
he
ck
 i
f
a'
s
va
lu
e
be
lo
ng
s
to

//
 t
he
 A
rr
ay
 d
at
at
yp
e

a
is
 A
rr
ay

in
Ch

ec
ks

 if
 an

 o
bj

ec
t h

as
 a

sp
ec

ifi
ed

 p
ub

lic
 in

st
an

ce
 va

ria
bl

e o
r p

ub
lic

in
st

an
ce

m
et

ho
d.

De
pe

nd
in

go
n

th
ee

va
lu

at
io

n
of

th
eo

pe
ra

nd
s,

re
tu

rn
s

tr
ue

 o
rf
al
se

.

va
r
d:
Da
te
 =
 n
ew
 D
at
e(

)
//
 C
he
ck
 i
f
d'
s
va
lu
e
ha
s
a
pu
bl
ic
 v
ar
ia
bl
e
or

//
 p
ub
li
c
me
th
od
 n
am
ed
 g
et
Mo
nt
h

"g
et
Mo
nt
h"
 i
n
d

T
ab

le
10

-2
.A

ct
io

nS
cr

ip
t o

pe
ra

to
rs

 (
co

nt
in

ue
d)

Op
er

at
or

Pr
ec

ed
en

ce
De

sc
rip

tio
n

Ex
am

pl
e

182

in
st
an
ce
of

10
Ch

ec
ks

 if
 th

e l
ef

t o
pe

ra
nd

’s
pr

ot
ot

yp
e c

ha
in

 in
clu

de
s t

he
 ri

gh
t o

pe
ra

nd
.

De
pe

nd
in

g
on

 th
e e

va
lu

at
io

n
of

 th
e o

pe
ra

nd
s,

re
tu

rn
s t
ru
e

or
fa
ls
e.

va
r
s:
Sp
ri
te
 =
 n
ew
 S
pr
it
e(

)
//
 C
he
ck
 i
f
s'
s
va
lu
e'
s
pr
ot
ot
yp
e
ch
ai
n

//
 i
nc
lu
de
s
Di
sp
la
yO
bj
ec
t

s
in
st
an
ce
of
 D
is
pl
ay
Ob
je
ct

==
9

Ch
ec

ks
 w

he
th

er
 tw

o
ex

pr
es

sio
ns

 ar
e c

on
sid

er
ed

 eq
ua

l (
eq

ua
lit

y)
.

De
pe

nd
in

g
on

 th
e e

va
lu

at
io

n
of

 th
e o

pe
ra

nd
s,

re
tu

rn
s t
ru
e

or
fa
ls
e.

//
 C
he
ck
 w
he
th
er
 t
he
 e
xp
re
ss
io
n
"h
i"
 i
s
eq
ua
l
to

//
 t
he
 e
xp
re
ss
io
n
"h
el
lo
"

"h
i"
 =
=
"h
el
lo
"

!=
9

Ch
ec

ks
w

he
th

er
tw

oe
xp

re
ss

io
ns

ar
ec

on
sid

er
ed

no
te

qu
al

(in
eq

ua
lit

y)
.

De
pe

nd
in

g
up

on
 th

e e
va

lu
at

io
n

of
 th

e o
pe

ra
nd

s,
re

tu
rn

st
ru
e

or
fa

ls
e.

//
 C
he
ck
 w
he
th
er
 t
he
 e
xp
re
ss
io
n
3
is
 n
ot
 e
qu
al
 t
o

//
 t
he
 e
xp
re
ss
io
n
3

3
!=
 3

==
=

9
Ch

ec
ks

w
he

th
er

tw
oe

xp
re

ss
io

ns
ar

ec
on

sid
er

ed
eq

ua
lw

ith
ou

td
at

at
yp

e
co

nv
er

sio
n

fo
rp

rim
iti

ve
ty

pe
s(

st
ric

te
qu

al
ity

).
De

pe
nd

in
g

on
th

ee
va

lu
-

at
io

n
of

 th
e o

pe
ra

nd
s,

re
tu

rn
s t
ru
e

or
fa
ls
e.

//
 C
he
ck
 w
he
th
er
 t
he
 e
xp
re
ss
io
n
"3
"
is
 e
qu
al
 t
o

//
 t
he
 e
xp
re
ss
io
n
3.
 T
hi
s
co
de
 c
om
pi
le
s
in

//
 s
ta
nd
ar
d
mo
de
 o
nl
y.

"3
"
==
=
3

!=
=

9
Ch

ec
ks

 w
he

th
er

 tw
o

ex
pr

es
sio

ns
 ar

e c
on

sid
er

ed
 n

ot
 eq

ua
l w

ith
ou

t
da

ta
ty

pe
 co

nv
er

sio
n

fo
r p

rim
iti

ve
 ty

pe
s (

st
ric

t e
qu

al
ity

).
De

pe
nd

in
g

on
th

e e
va

lu
at

io
n

of
 th

e e
xp

re
ss

io
n,

 re
tu

rn
s t
ru
e

or
fa
ls
e.

//
 C
he
ck
 w
he
th
er
 t
he
 e
xp
re
ss
io
n
"3
"
is
 n
ot
 e
qu
al
 t
o

//
 t
he
 e
xp
re
ss
io
n
3.
 T
hi
s
co
de
 c
om
pi
le
s
in

//
 s
ta
nd
ar
d
mo
de
 o
nl
y.

"3
"
==
=
3

&
8

Pe
rfo

rm
s a

 b
itw

ise
 A

ND
//
 C
om
bi
ne
 b
it
s
of
 1
5
an
d
4
us
in
g
bi
tw
is
e
AN
D

15
 &
 4

^
7

Pe
rfo

rm
s a

 b
itw

ise
 X

OR
//
 C
om
bi
ne
 b
it
s
of
 1
5
an
d
4
us
in
g
bi
tw
is
e
XO
R

15
 ^
 4

|
6

Pe
rfo

rm
s a

 b
itw

ise
 O

R
//
 C
om
bi
ne
 b
it
s
of
 1
5
an
d
4
us
in
g
bi
tw
is
e
OR

15
 |
 4

&&
5

Co
m

pa
re

s t
w

o
ex

pr
es

sio
ns

 u
sin

g
a l

og
ica

lA
ND

 o
pe

ra
tio

n.
 If

 th
e l

ef
t

op
er

an
d

is
fa
ls
e

or
 co

nv
er

ts
 to

fa
ls
e,

 &
&

re
tu

rn
s t

he
 le

ft
op

er
an

d;
ot

he
rw

ise
 &

&
re

tu
rn

s t
he

 ri
gh

t o
pe

ra
nd

.

va
r
va
li
dU
se
r:
Bo
ol
ea
n
=
tr
ue
;

va
r
va
li
dP
as
sw
or
d:
Bo
ol
ea
n
=
fa
ls
e;

//
 C
he
ck
 i
f
bo
th
 v
al
id
Us
er
 a
nd
 v
al
id
Pa
ss
wo
rd

//
 a
re
 t
ru
e

if
 (
va
li
dU
se
r
||
 v
al
id
Pa
ss
wo
rd
)
{

//
 D
o
lo
gi
n.
..

}

T
ab

le
10

-2
.A

ct
io

nS
cr

ip
t o

pe
ra

to
rs

 (
co

nt
in

ue
d)

Op
er

at
or

Pr
ec

ed
en

ce
De

sc
rip

tio
n

Ex
am

pl
e

183

||
4

Co
m

pa
re

s t
w

o
ex

pr
es

sio
ns

 u
sin

g
a l

og
ica

lO
R

op
er

at
io

n.
 If

 th
e l

ef
t o

pe
r-

an
d

is
tr
ue

 o
r c

on
ve

rts
 to

tr
ue

, |
| r

et
ur

ns
 th

e l
ef

t o
pe

ra
nd

; o
th

er
w

ise
||

re
tu

rn
s t

he
 ri

gh
t o

pe
ra

nd
.

va
r
pr
om
ot
io
na
lD
ay
:B
oo
le
an
 =
 f
al
se
;

va
r
re
gi
st
er
ed
Us
er
:B
oo
le
an
 =
 f
al
se
;

//
 C
he
ck
 i
f
ei
th
er
 p
ro
mo
ti
on
al
Da
y
or
 r
eg
is
te
re
dU
se
r

//
 i
s
tr
ue

if
 (
pr
om
ot
io
na
lD
ay
 |
|
re
gi
st
er
ed
Us
er
)
{

//
 S
ho
w
pr
em
iu
m
co
nt
en
t.
..

}

?:
3

Pe
rfo

rm
s a

 si
m

pl
e c

on
di

tio
na

l. I
f t

he
 fi

rst
 o

pe
ra

nd
 is
tr
ue

 o
r c

on
ve

rts
to
tr
ue

, t
he

 va
lu

e o
f t

he
 se

co
nd

 o
pe

ra
nd

 is
 ev

al
ua

te
d

an
d

re
tu

rn
ed

.
Ot

he
rw

ise
, t

he
 va

lu
e o

f t
he

 th
ird

 o
pe

ra
nd

 is
 ev

al
ua

te
d

an
d

re
tu

rn
ed

.

//
 I
nv
ok
e
on
e
of
 t
wo
 m
et
ho
ds
 b
as
ed
 o
n

//
 w
he
th
er
 s
ou
nd
Mu
te
d
is
 t
ru
e

so
un
dM
ut
ed
 ?
 d
is
pl
ay
Vi
su
al
Al
ar
m(
)
:
pl
ay
Au
di
oA
la
rm
(
)

=
2

As
sig

ns
 a

va
lu

e t
o

a v
ar

ia
bl

e o
r a

rra
y e

le
m

en
t

//
 A
ss
ig
n
36
 t
o
va
ri
ab
le
 a
ge

va
r
ag
e:
in
t
=
36
;

//
 A
ss
ig
n
a
ne
w
ar
ra
y
to
 v
ar
ia
bl
e
se
as
on
s

va
r
se
as
on
s:
Ar
ra
y
=
ne
w
Ar
ra
y(

);
//
 A
ss
ig
n
"w
in
te
r"
 t
o
fi
rs
t
el
em
en
t
of
 s
ea
so
ns

se
as
on
s[
0]
 =
 "
wi
nt
er
";

+=
2

Ad
ds

 (o
r c

on
ca

te
na

te
s)

 an
d

re
as

sig
ns

//
 A
dd
 1
0
to
 n
's
 v
al
ue

n
+=
 1
0;
 /
/
sa
me
 a
s
n
=
n
+
10
;

//
 A
dd
 a
n
ex
cl
am
at
io
n
ma
rk
 t
o
th
e
en
d
of
 m
sg

ms
g
+=
 "
!"

//
 A
dd
 a
n
<A
UT
HO
R>
 t
ag
 a
ft
er
 t
he
 f
ir
st
 <
AU
TH
OR
>

//
 t
ag
 c
hi
ld
 o
f
no
ve
l

no
ve
l.
AU
TH
OR
[0
]
+=
 <
AU
TH
OR
>D
av
e
Lu
xt
on
</
AU
TH
OR
>;

–=
2

Su
bt

ra
ct

s a
nd

 re
as

sig
ns

//
 S
ub
tr
ac
t
10
 f
ro
m
n'
s
va
lu
e

n
-=
 1
0;
 /
/
sa
me
 a
s
n
=
n
-
10
;

*=
2

M
ul

tip
lie

s a
nd

 re
as

sig
ns

//
 M
ul
ti
pl
y
n'
s
va
lu
e
by
 1
0

n
*=
 1
0;
 /
/
sa
me
 a
s
n
=
n
*
10
;

/=
2

Di
vid

es
 an

d
re

as
sig

ns
//
 D
iv
id
e
n'
s
va
lu
e
by
 1
0

n
/=
 1
0;
 /
/
sa
me
 a
s
n
=
n
/
10
;

%=
2

Pe
rfo

rm
s m

od
ul

o
di

vis
io

n
an

d
re

as
sig

ns
//
 A
ss
ig
n
n%
4
to
 n

n
%=
 4
;
//
 s
am
e
as
 n
 =
 n
 %
 4
;

T
ab

le
10

-2
.A

ct
io

nS
cr

ip
t o

pe
ra

to
rs

 (
co

nt
in

ue
d)

Op
er

at
or

Pr
ec

ed
en

ce
De

sc
rip

tio
n

Ex
am

pl
e

184

<<
=

2
Sh

ift
s b

its
 le

ft
an

d
re

as
sig

ns
//
 S
hi
ft
 n
's
 b
it
s
tw
o
pl
ac
es
 t
o
th
e
le
ft

n
<<
=
2;
 /
/
sa
me
 a
s
n
=
n
<<
 2
;

>>
=

2
Sh

ift
s b

its
 ri

gh
t a

nd
 re

as
sig

ns
//
 S
hi
ft
 n
's
 b
it
s
tw
o
pl
ac
es
 t
o
th
e
ri
gh
t

n
>>
=
2;
 /
/
sa
me
 a
s
n
=
n
>>
 2
;

>>
>=

2
Sh

ift
s b

its
 ri

gh
t (

un
sig

ne
d)

 an
d

re
as

sig
ns

//
 S
hi
ft
 n
's
 b
it
s
tw
o
pl
ac
es
 t
o
th
e
ri
gh
t,
 f
il
li
ng

//
 v
ac
at
ed
 b
it
s
wi
th
 z
er
os

n
>>
>=
 2
;
//
 s
am
e
as
 n
 =
 n
 >
>>
 2
;

&=
2

Pe
rfo

rm
s b

itw
ise

 A
ND

 an
d

re
as

sig
ns

//
 C
om
bi
ne
 n
's
 b
it
s
wi
th
 4
 u
si
ng
 b
it
wi
se
 A
ND

n
&=
 4
 /
/
sa
me
 a
s
n
=
n
&
4;

^=
2

Pe
rfo

rm
s b

itw
ise

 X
OR

 an
d

re
as

sig
ns

//
 C
om
bi
ne
 n
's
 b
it
s
wi
th
 4
 u
si
ng
 b
it
wi
se
 X
OR

n
^=
 4
 /
/
sa
me
 a
s
n
=
n
^
4;

|=
2

Pe
rfo

rm
s b

itw
ise

 O
R

an
d

re
as

sig
ns

//
 C
om
bi
ne
 n
's
 b
it
s
wi
th
 4
 u
si
ng
 b
it
wi
se
 O
R

n
|=
 4
 /
/
sa
me
 a
s
n
=
n
|
4;

,
1

Ev
al

ua
te

s l
ef

t o
pe

ra
nd

, t
he

n
rig

ht
 o

pe
ra

nd
//
 I
ni
ti
al
iz
e
an
d
in
cr
em
en
t
tw
o
lo
op
 c
ou
nt
er
s

fo
r
(v
ar
 i
:i
nt
 =
 0
,
j:
in
t
=
10
;
i
<
5;
 i
++
,
j+
+)
 {

//
 i
 c
ou
nt
s
fr
om
 0
 t
hr
ou
gh
 4

//
 j
 c
ou
nt
s
fr
om
 1
0
th
ro
ug
h
14

}

T
ab

le
10

-2
.A

ct
io

nS
cr

ip
t o

pe
ra

to
rs

 (
co

nt
in

ue
d)

Op
er

at
or

Pr
ec

ed
en

ce
De

sc
rip

tio
n

Ex
am

pl
e

Up Next: Managing Lists of Information | 185

Up Next: Managing Lists of Information
This chapter covered some of ActionScript’s basic built-in programming tools. In the
next chapter, we’ll study another essential ActionScript tool: arrays. Arrays are used
to manage lists of information.

186

Chapter 11CHAPTER 11

Arrays 12

Arrays store and manipulate ordered lists of information and are, therefore, a funda-
mental tool in sequential, repetitive programming. We use arrays to do everything
from storing user input, to generating pull-down menus, to keeping track of enemy
spacecraft in a game. Practically speaking, an array is just a list of items, like your
grocery list or the entries in your checkbook ledger. The items just happen to be
ActionScript values.

What Is an Array?
An array is a data structure that can encompass multiple individual data values in an
ordered list. Here is a simple example showing two separate strings, followed by an
array that contains two strings:

"cherries" // A single string
"peaches" // Another string
["oranges", "apples"] // A single array containing two strings

An array can contain any number of items, including items of different types. An
array can even contain other arrays. Here is a simple example showing an array that
contains both strings and numbers. It might represent your shopping list, showing
how many of each item you intend to buy:

["oranges", 6, "apples", 4, "bananas", 3];

Though an array can keep track of many values, it’s important to recognize that the
array itself is a single data value. Arrays are represented as instances of the Array
class. As such, an array can be assigned to a variable or used as part of a complex
expression:

// Assign an array to a variable
var product:Array = ["ladies downhill skis", 475];

// Pass that array to a function
display(product);

Creating Arrays | 187

The Anatomy of an Array
Each item in an array is called an array element, and each element has a unique
numeric position (index) by which we can refer to it.

Array Elements
Like a variable, each array element can be assigned any value. An entire array, then,
is akin to a collection of sequentially named variables, but instead of each item hav-
ing a different name, each item has an element number (the first element is number
0, not number 1). To manipulate the values in an array’s elements, we ask for them
by number.

Array Element Indexing
An element’s position in the array is known as its index. We use an element’s index
to set or retrieve the element’s value or to work with the element in various ways.
Some of the array-handling methods, for example, use element indexes to specify
ranges of elements for processing.

We can also insert and delete elements from the beginning, end, or even middle of an
array. An array can have gaps (that is, some elements can be empty). We can have
elements at positions 0 and 4, without requiring anything in positions 1, 2, and 3.
Arrays with gaps are called sparse arrays.

Array Size
At any point during its life span, a given array has a specific number of elements
(both empty and occupied). The number of elements in an array is called the array’s
length, which we’ll discuss later in this chapter.

Creating Arrays
To create a new array, we use an array literal or the new operator (i.e., new Array()).

Creating Arrays with Array Literals
In an array literal, square brackets demarcate the beginning and end of the array.
Inside the square brackets, the values of the array’s elements are specified as a
comma-separated list. Here’s the general syntax:

[expression1, expression2, expression3]

188 | Chapter 11: Arrays

The expressions are resolved and then assigned to the elements of the array being
defined. Any valid expression can be used, including function calls, variables, liter-
als, and even other arrays (an array within an array is called a nested array or a two-
dimensional array).

Here are a few examples:

// Simple numeric elements
[4, 5, 63];

// Simple string elements
 ["apple", "orange", "pear"]

// Numeric expressions with an operation
[1, 4, 6 + 10]

// Variable values and strings as elements
[firstName, lastName, "tall", "skinny"]

// A nested array literal
["month end days", [31, 30, 28]]

Arrays in Other Programming Languages
Almost every high-level computer language supports arrays or array-like entities. That
said, there are differences in the ways arrays are implemented across different lan-
guages. For example, many languages do not allow arrays to contain differing types of
data. In many languages, an array can contain numbers or strings, but not both in the
same array. Interestingly, in C, there is no primitive string datatype. Instead, C has a
single-character datatype named char; strings are considered a complex datatype and
are implemented as an array of chars.

In ActionScript, the size of an array changes automatically as items are added or
removed. In many languages, the size of an array must be specified when the array is
first declared or dimensioned (i.e., when memory is allocated to hold the array’s data).

Languages differ as to what happens when a program attempts to access an element
whose index is outside the bounds (limits) of the array. ActionScript adds elements if
a program attempts to set a value for an element beyond the existing bounds of the
array. If a program attempts to access an element by an index outside the array bounds,
ActionScript returns undefined, whereas C, for example, pays no attention to whether
the element number is valid. It lets the program retrieve and set elements outside the
bounds of the array, which usually results in the access of meaningless data that is not
part of the array, or causes other data in memory to be overwritten (C gives you plenty
of rope with which to hang yourself).

Referencing Array Elements | 189

Creating Arrays with the new Operator
To create an array with the new operator, we use the following generalized code:

new Array(arguments)

The result of the preceding code depends on the number and type of arguments sup-
plied to the Array constructor. When more than one argument is supplied, or when a
single nonnumeric argument is supplied, each argument becomes one of the element
values in the new array. For example, the following code creates an array with three
elements:

new Array("sun", "moon", "earth")

When exactly one numeric argument is supplied to the Array() constructor, it cre-
ates an array with the specified number of empty placeholder elements (creating such
an array with an array literal is cumbersome). For example, the following code cre-
ates an array with 14 empty elements:

new Array(14)

Arguments passed to the Array() constructor can be any legal expression, including
compound expressions. For example, the following code creates an array whose first
element is an 11 and second element is 50:

var x:int = 10;
var y:int = 5;
var numbers:Array = new Array(x + 1, x * y);

For direct comparison, the following code creates the arrays from the previous sec-
tion, but using the new operator instead of array literals:

new Array(4, 5, 63)
new Array("apple", "orange", "pear")
new Array(1, 4, 6 + 10)
new Array(firstName, lastName, "tall", "skinny")
new Array("month end days", new Array(31, 30, 28))

Referencing Array Elements
Once we’ve created an array, we’ll inevitably want to retrieve or change the value of
its elements. To do so, we use the array access operator, [].

Retrieving an Element’s Value
To access an individual element, we provide a reference to the array followed by the
element’s index within square brackets, as follows:

theArray[elementNumber]

In the preceding code, theArray is a reference to the array (usually a variable with an
array as a value), and elementNumber is an integer specifying the element’s index. The

190 | Chapter 11: Arrays

first element is number 0, and the last element number is 1 less than the array’s
length. Specifying an element number greater than the last valid element number
causes ActionScript to return undefined (because the specified index is outside the
bounds of the array).

Let’s try retrieving some element values. The following code creates an array using an
array literal, and assigns it to the variable trees:

var trees:Array = ["birch", "maple", "oak", "cedar"];

The following code assigns the value of the first element of trees (“birch”) to a vari-
able, firstTree:

var firstTree:String = trees[0];

The following code assigns the third element’s value (“oak”) to the variable
favoriteTree (remember that indexes start at 0, so index 2 is the third element!)

var favoriteTree:String = trees[2];

Now here’s the fun part. Because we can specify the index of an element as any
number-yielding expression, we can use variables or complex expressions just as eas-
ily as we use numbers to specify an element index. For example, the following code
assigns the fourth element’s value (“cedar”) to the variable lastTree:

var i = 3;
var lastTree:String = trees[i];

We can even use call expressions that have numeric return values as array indexes.
For example, the following code sets randomTree to a randomly chosen element of
trees by calculating a random number between 0 and 3:

var randomTree:String = trees[Math.floor(Math.random() * 4)];

Nice. You might use a similar approach to pick a random question from an array of
trivia questions or to pick a random card from an array that represents a deck of cards.

Note that accessing an array element is very similar to accessing a variable value.
Array elements can be used as part of any complex expression, as follows:

var ages:Array = [12, 4, 90];
var totalAge:Number = ages[0] + ages[1] + ages[2]; // Sum the array

Summing the values of an array’s elements manually isn’t exactly the paragon of
optimized code. Later, we’ll see a much more convenient way to access an array’s
elements sequentially.

Setting an Element’s Value
To set an element’s value, we use arrayName[elementNumber] as the left-side operand
of an assignment expression. The following code demonstrates:

// Make an array
var cities:Array = ["Toronto", "Montreal", "Vancouver", "Waterloo"];
// cities is now: ["Toronto", "Montreal", "Vancouver", "Waterloo"]

Determining the Size of an Array | 191

// Set the value of the array's first element
cities[0] = "London";
// cities becomes ["London", "Montreal", "Vancouver", "Waterloo"]

// Set the value of the array's fourth element
cities[3] = "Hamburg";
// cities becomes ["London", "Montreal", "Vancouver", "Hamburg"]

// Set the value of the array's third element
cities[2] = 293.3; // Notice that the datatype change is not a problem
// cities becomes ["London", "Montreal", 293.3, "Hamburg"]

Note that we can use any nonnegative numeric expression as the index when setting
an array element:

var i:int = 1;
// Set the value of element i
cities[i] = "Tokyo";
// cities becomes ["London", "Tokyo", 293.3, "Hamburg"]

Determining the Size of an Array
All arrays come with an instance variable named length, which indicates the current
number of elements in the array (including undefined elements). To access an array’s
length variable, we use the dot operator, like so:

theArray.length

Here are a few examples:

var list:Array = [34, 45, 57];
trace(list.length); // Displays: 3

var words:Array = ["this", "that", "the other"];
trace(words.length); // Displays: 3

var cards:Array = new Array(24); // Note the single numeric argument
 // used with the Array() constructor
trace(cards.length); // Displays: 24

The length of an array is always 1 greater than the index of its last element. For
example, an array with elements at indexes 0, 1, and 2 has a length of 3. And an
array with elements at indexes 0, 1, 2, and 50 has a length of 51. 51? Yes, 51. Even
though indexes 3 through 49 are empty, they still contribute to the length of the
array. The index of the last element of an array is always theArray.length – 1
(because index numbers begin at 0, not 1). Therefore, to access the last element of
theArray, we use the following code:

theArray[theArray.length – 1]

If we add and remove elements, the array’s length variable is updated to reflect our
changes. In fact, we can even set the length variable to add or remove elements at the
end of an array. This is in contrast to the String class’s length variable, which is read-
only. Shortening the length of an array removes elements beyond the new length.

192 | Chapter 11: Arrays

Using an array’s length variable, we can create a loop that accesses all the elements
of an array. Looping through an array’s elements is a fundamental task in program-
ming. To get a sense of what’s possible when we combine loops and arrays, study
Example 11-1, which hunts through a soundtracks array to find the location of the
element with the value “hip hop.”

Let’s extend Example 11-1 into a generalized search method that can check any array
for any matching element. The method will return the position within the array where
the element was found or -1 if it was not found. Example 11-2 shows the code.

Here’s how to use our new search method to check whether or not “Dan” is one of
the names in our userNames array, which is a hypothetical array of authorized user-
names:

if (searchArray(userNames, "Dan") == -1) {
 trace("Sorry, that username wasn't found");
} else {
 trace("Welcome to the game, Dan.");
}

The searchArray() method demonstrates the code required to loop
through an array’s elements but is not intended for use in a real pro-
gram. To search for a given element’s index in a real program, you
should use the Array class’s indexOf() and lastIndexOf() methods.

Example 11-1. Searching an array

// Create an array
var soundtracks:Array = ["electronic", "hip hop",
 "pop", "alternative", "classical"];

// Check each element to see if it contains "hip hop"
for (var i:int = 0; i < soundtracks.length; i++) {
 trace("Now examining element: " + i);
 if (soundtracks[i] == "hip hop") {
 trace("The location of 'hip hop' is index: " + i);
 break;
 }
}

Example 11-2. A generalized array-searching function

public function searchArray (theArray:Array, searchElement:Object):int {
 // Check each element to see if it contains searchElement
 for (var i:int = 0; i < theArray.length; i++) {
 if (theArray[i] == searchElement) {
 return i;
 }
 }
 return -1;
}

Adding Elements to an Array | 193

The remainder of this chapter explains more about the mechanics of manipulating
arrays, including the use of Array methods.

Adding Elements to an Array
To add elements to an array, we use one of the following techniques:

• Specify a value for a new element at an index equal to or greater than the array’s
length

• Increase the array’s length variable

• Invoke push(), unshift(), splice() or concat() on the array

The following sections discuss these techniques in detail.

Adding New Elements Directly
To add a new element to an existing array at a specific index, we simply assign a
value to that element. The following code demonstrates:

// Create an array, and assign it three values
var fruits:Array = ["apples", "oranges", "pears"];

// Add a fourth value
fruits[3] = "tangerines";

The new element does not need to be placed immediately after the last element of the
array. If we place the new element more than one element beyond the end of the
array, ActionScript automatically creates undefined elements for the intervening
indexes:

// Leave indexes 4 to 38 empty
fruits[39] = "grapes";

trace(fruits[12]); // Displays: undefined

If the element already exists, it will be replaced by the new value. If the element
doesn’t exist, it will be added.

Adding New Elements with the length Variable
To extend an array without assigning values to new elements, we can simply increase
the length variable, and ActionScript will add enough elements to reach that length:

// Create an array with three elements
var colors = ["green", "red", "blue"];
// Add 47 empty elements, numbered 3 through 49, to the array
colors.length = 50;

You can use this approach to create a number of empty elements to hold some data
you expect to accumulate, such as student test scores. Even though the elements are

194 | Chapter 11: Arrays

empty, they can still be used to indicate that an expected value has not yet been
assigned. For example, a loop that displays test scores on screen could generate
default output, “No Score Available,” for empty elements.

Adding New Elements with Array Methods
We can use Array methods to handle more complex element-addition operations.

The push() method

The push() method appends one or more elements to the end of an array. It automat-
ically appends the data after the last numbered element of the array, so there’s no
need to worry about how many elements already exist. The push() method can also
append multiple elements to an array at once. The push() method has the following
general form:

theArray.push(item1, item2,...itemn);

In the preceding code, theArray is a reference to an Array object, and item1, item2,
...itemn is a comma-separated list of items to be appended to the end of the array
as new elements. Here are some examples:

// Create an array with two elements
var menuItems:Array = ["home", "quit"];

// Add an element
menuItems.push("products");
// menuItems becomes ["home", "quit", "products"]

// Add two more elements
menuItems.push("services", "contact");
// menuItems becomes ["home", "quit", "products", "services", "contact"]

The push() method returns the new length of the updated array (i.e., the value of the
length variable):

var list:Array = [12, 23, 98];
trace(myList.push(28, 36));
// Appends 28 and 36 to list and displays: 5

Note that the items added to the list can be any expression. The expression is
resolved before being added to the list:

var temperature:int = 22;
var sky:String = "sunny";
var weatherListing:Array = new Array();

// Add 22 and "sunny" to the array
weatherListing.push(temperature, sky);

The unshift() method

The unshift()method is much like push(), but it adds one or more elements to the
beginning of the array, bumping all existing elements up to make room (i.e., the

Adding Elements to an Array | 195

indexes of existing elements increase to accommodate the new elements at the begin-
ning of the array). The unshift() method has the following general form:

theArray.unshift(item1, item2,...itemn);

In the preceding code, theArray is a reference to an Array object, and item1, item2,
...itemn is a comma-separated list of items to be added to the beginning of the
array as new elements. Note that multiple items are added in the order that they are
supplied. Here are some examples:

var versions:Array = new Array();
versions[0] = 6;
versions.unshift(5); // versions is now [5, 6]
versions.unshift(2,3,4); // versions is now [2, 3, 4, 5, 6]

The unshift() method, like push(), returns the length of the newly enlarged array.

Pushing, Popping, and Stacks
The push() method takes its name from a programming concept called a stack. A stack
can be thought of as a vertical array, like a stack of dishes. If you frequent cafeterias or
restaurants with buffets, you should be familiar with the spring-loaded racks that hold
plates for the customers. When clean dishes are added, they are literally pushed onto
the top of the stack, and the older dishes sink lower into the rack. When a customer
pops a dish from the top of the stack, she is removing the dish that was most recently
pushed onto the stack. This is known as a last-in-first-out (LIFO) stack and is typically
used for things like history lists. For example, if you hit the Back button in your
browser, it will take you to the previous web page you visited. If you hit the Back but-
ton again, you’ll be brought to the page before that, and so on. This is achieved by
pushing the URL of each page you visit onto the stack and popping it off when the Back
button is clicked.

LIFO stacks can also be found in real life. The last person to check her luggage on an
airplane usually receives her luggage first when the plane lands, because the luggage is
unloaded in the reverse order from which it was loaded. The early bird who checked
his luggage first must wait the longest at the luggage conveyor belt after the plane
lands. A first-in-first-out (FIFO) stack is more egalitarian; it works on a first-come-first-
served basis. A FIFO stack is like the line at your local bank. Instead of taking the last
element in an array, a FIFO stack deals with the first element in an array next. It then
deletes the first element in the array, and all the other elements “move up,” just as you
move up in line when the person in front of you is “deleted” (i.e., either she is served
and then leaves, or she chooses to leave in disgust because she is tired of waiting).
Therefore, the word push generally implies that you are using a LIFO stack, whereas
the word append implies that you are using a FIFO stack. In either case, elements are
added to the “end” of the stack; the difference lies in which end of the array holds the
element that is taken for the next operation.

196 | Chapter 11: Arrays

The splice() method

The splice() method can add elements to, or remove elements from, an array. It is
typically used to insert elements into the middle of an array (later elements are
renumbered to make room) or to delete elements from the middle of an array (later
elements are renumbered to close the gap). When splice() performs both tasks in a
single invocation, it effectively replaces some elements with new elements (though
not necessarily with the same number of elements). The splice() method has the fol-
lowing general form:

theArray.splice(startIndex, deleteCount, item1, item2,...itemn)

In the preceding code, theArray is a reference to an Array object; startIndex is a
number that specifies the index at which element removal and optional insertion
should commence (remember that the first element’s index is 0); deleteCount is an
optional argument that dictates how many elements should be removed (including
the element at startIndex). When deleteCount is omitted, every element after and
including startIndex is removed. The optional item1, item2, ...itemn parameters
are items to be added to the array as elements starting at startIndex.

Example 11-3 shows the versatility of the splice() method.

Example 11-3. Using the splice() array method

// Make an array...
var months:Array = new Array("January", "Friday",
 "April", "May", "Sunday", "Monday", "July");
// Hmmm. Something's wrong with our array. Let's fix it up.
// First, let's get rid of "Friday".
months.splice(1,1);
 // months is now:
 // ["January", "April", "May", "Sunday", "Monday", "July"]

// Now, let's add the two months before "April".
// Note that we won't delete anything here (deleteCount is 0).
months.splice(1, 0, "February", "March");
 // months is now:
 // ["January", "February", "March", "April",
 // "May", "Sunday", "Monday", "July"]

// Finally, let's remove "Sunday" and "Monday" while inserting "June".
months.splice(5, 2, "June");
 // months is now:
 // ["January", "February", "March", "April", "May", "June", "July"]

// Now that our months array is fixed, let's trim it
// so that it contains only the first quarter of the year,
// by deleting all elements starting with index 3 (i.e., "April").
months.splice(3); // months is now: ["January", "February", "March"]

Removing Elements from an Array | 197

The splice() method returns an array of the elements it removes. Thus it can be used
to extract a series of elements from an array:

var letters:Array = ["a", "b", "c", "d"];
trace(letters.splice(1, 2)); // Displays: "b,c"
 // letters is now ["a", "d"]

If no elements are removed, splice() returns an empty array (that is, an array with no
elements).

The concat() method

The concat() method combines two or more arrays into a single, new array, which it
returns. The concat() method has the following general form:

origArray.concat(elementList)

The concat() method appends the elements contained in elementList, one by one, to
the end of origArray and returns the result as a new array, leaving origArray
untouched. Normally, we store the returned array in a variable. Here, simple num-
bers are used as the items to be added to the array:

var list1:Array = new Array(11, 12, 13);
var list2:Array = list1.concat(14, 15); // list2 becomes
 // [11, 12, 13, 14, 15]

In the following example, we use concat() to combine two arrays:

var guests:Array = ["Panda", "Dave"];
var registeredPlayers:Array = ["Gray", "Doomtrooper", "TRK9"];
var allUsers:Array = registeredPlayers.concat(guests);
// allUsers is now: ["Gray", "Doomtrooper", "TRK9", "Panda", "Dave"]

Notice that concat() broke apart, or “flattened” the guests array when adding it to
allUsers; that is, each element of the guests array was added to allUsers individu-
ally. However, concat() does not flatten nested arrays (elements that are themselves
arrays within the main array), as you can see from the following code:

var x:Array = [1, 2, 3];
var y:Array = [[5, 6], [7, 8]];
var z:Array = x.concat(y); // Result is [1, 2, 3, [5, 6], [7, 8]].
 // Elements 0 and 1 of y were not "flattened"

Removing Elements from an Array
To remove elements from an array, we use one of the following techniques:

• Delete the specific element with the delete operator

• Decrease the array’s length variable

• Invoke push(), unshift(),or splice() on the array

The following sections discuss these techniques in detail.

198 | Chapter 11: Arrays

Removing Elements with the delete Operator
The delete operator sets an array element to undefined, using the following syntax:

delete theArray[index]

In the preceding code, theArray is a reference to an array, and index is the number or
name of the element whose value should be set to undefined. The name delete is,
frankly, misleading. It does not remove the numbered element from the array; it
merely sets the target element’s value to undefined. A delete operation, therefore, is
identical to assigning the undefined value to an element. We can verify this by check-
ing the length variable of an array after deleting one of its elements:

var list = ["a", "b", "c"];
trace(list.length); // Displays: 3
delete list[2];
trace(list.length); // Still displays 3...the element at index 2 is
 // undefined instead of "c", but it still exists

To truly delete elements, use splice() (to delete them from the middle of an array), or
use shift() and pop() (to delete them from the beginning or end of an array).

Removing Elements with the length Variable
To delete elements from the end of the array (i.e., truncate the array), we can set the
array’s length variable to a number smaller than the current length:

var toppings:Array = ["pepperoni", "tomatoes",
 "cheese", "green pepper", "broccoli"];
toppings.length = 3;
trace(toppings); // Displays: "pepperoni,tomatoes,cheese"
 // We trimmed elements 3 and 4 (the last two)

Removing Elements with Array Methods
Arrays come equipped with several built-in methods for removing elements. We’ve
already seen how splice() can delete a series of elements from the middle of an array.
The pop() and shift() methods are used to prune elements from the end or begin-
ning of an array.

The pop() method

The pop() method is the antithesis of push(): it removes the last element of an array.
The syntax of pop() is simple:

theArray.pop()

I don’t know why, but I always think that “popping” an array is kinda funny. Any-
way, pop() decrements the array’s length by 1 and returns the value of the element it
removed. For example:

Checking the Contents of an Array with the toString() Method | 199

var numbers:Array = [56, 57, 58];
trace(numbers.pop()); // Displays: 58 (the value of the popped element)
 // numbers is now [56, 57]

As we saw earlier, pop() is often used in combination with push() to perform LIFO
stack operations.

The shift() method

Remember unshift(), the method we used to add an element to the beginning of an
array? Meet its alter ego, shift(), which removes an element from the beginning of an
array:

theArray.shift()

Not as funny as pop(). Oh well.

Like pop(), shift() returns the value of the element it removes. The remaining
elements all move up in the pecking order toward the beginning of the array. For
example:

var sports:Array = ["quake", "snowboarding", "inline skating"];
trace(sports.shift()); // Displays: quake
 // sports is now ["snowboarding", "inline skating"]
trace(sports.shift()); // Displays: snowboarding
 // sports is now ["inline skating"]

Because shift() truly deletes an element, it is more useful than delete for removing the
first element of an array.

The splice() method

Earlier we saw that splice() can both remove elements from and add elements to an
array. Because we’ve already looked at splice() in detail, we won’t reexamine it here.
However, for reference, the following code specifically demonstrates splice()’s
element-removal capabilities:

var letters:Array = ["a", "b", "c", "d", "e", "f"];
// Remove elements 1, 2, and 3, leaving ["a", "e", "f"]
letters.splice(1, 3);
// Remove elements 1 through the end leaving just ["a"]
letters.splice(1);

Checking the Contents of an Array with the toString()
Method
The toString() method, common to all objects, returns a string representation of the
object upon which it is invoked. In the case of an Array object, the toString() method

200 | Chapter 11: Arrays

returns a list of the array’s elements, converted to strings and separated by commas.
The toString() method can be called explicitly, as follows:

theArray.toString()

Typically, however, toString() isn’t used explicitly; rather, it is invoked automati-
cally whenever theArray is used in a string context. For example, the expression
trace(theArray) outputs a list of comma-separated element values during debug-
ging; trace(theArray) is equivalent to trace(theArray.toString()). The toString()
method is often helpful during debugging when we need a quick, unformatted look
at the elements of an array. For example:

var sites = ["www.moock.org", "www.adobe.com", "www.oreilly.com"];
trace("The sites array is " + sites);

Note that the join() method offers greater formatting flexibility than toString(). For
details, see Adobe’s ActionScript Language Reference.

Multidimensional Arrays
So far, we’ve limited our discussion to one-dimensional arrays, which are akin to a
single row or a single column in a spreadsheet. But what if we want to create the
equivalent of a spreadsheet with both rows and columns? We need a second dimen-
sion. ActionScript natively supports only one-dimensional arrays, but we can simu-
late a multidimensional array by creating arrays within arrays. That is, we can create
an array that contains elements that are themselves arrays (sometimes called nested
arrays).

The simplest type of multidimensional array is a two-dimensional array, in which
elements are organized conceptually into a grid of rows and columns; the rows are
the first dimension of the array, and the columns are the second.

Using a practical example, let’s consider how a two-dimensional array works. Sup-
pose we’re processing an order that contains three products, each with a quantity
and a price. We want to simulate a spreadsheet with three rows (one for each prod-
uct) and two columns (one for the quantity and one for the price). We create a sepa-
rate array for each row, with each row’s elements representing the values in each
column:

var row1:Array = [6, 2.99]; // Quantity 6, Price 2.99
var row2:Array = [4, 9.99]; // Quantity 4, Price 9.99
var row3:Array = [1, 59.99]; // Quantity 1, Price 59.99

Next, we place the rows into a container array named spreadsheet:

var spreadsheet:Array = [row1, row2, row3];

Now we can find the total cost of the order by multiplying the quantity and price of
each row and adding them all together. We access a two-dimensional array’s ele-
ments using two indexes (one for the row and one for the column). The expression

On to Events | 201

spreadsheet[0], for example, represents the first row’s two-column array. Hence, to
access the second column in the first row of spreadsheet, we use spreadsheet[0][1]
(which yields 2.99). Here’s how to calculate the total price of the items in
spreadsheet:

// Create a variable to store the total cost of the order.
var total:Number;

// Now find the cost of the order. For each row, multiply the columns
// together, and add that to the total.
for (var i:int = 0; i < spreadsheet.length; i++) {
 total += spreadsheet[i][0] * spreadsheet[i][1];
}

trace(total); // Displays: 117.89

On to Events
This chapter offered an introduction to arrays but is by no means exhaustive. The
Array class offers many useful methods for reordering and sorting array elements, fil-
tering elements, converting elements to strings, and extracting arrays from other
arrays. For details, see the Array class in Adobe’s ActionScript Language Reference.

Our next topic of study is event handling—a built-in system for managing communi-
cation between objects.

202

Chapter 12CHAPTER 12

Events and Event Handling 13

In general terms, an event is a noteworthy runtime occurrence that has the potential
to trigger a response in a program. In ActionScript, events can be broken into two
categories: built-in events, which describe changes to the state of the runtime envi-
ronment, and custom events, which describe changes to the state of a program. For
example, a built-in event might be the clicking of the mouse or the completion of a
file-load operation. By contrast, a custom event might be the ending of a game or the
submission of an answer in a quiz.

Events are ubiquitous in ActionScript. In fact, in a pure ActionScript program, once
the main-class constructor method has finished executing, all subsequent code is
triggered by events. Accordingly, ActionScript supports a rich event architecture that
provides the foundation for both built-in and custom events.

ActionScript’s event architecture is based on the W3C Document
Object Model (DOM) Level 3 Events Specification, available at http://
www.w3.org/TR/DOM-Level-3-Events.

This chapter teaches the fundamentals of ActionScript’s event architecture, covering
both how to respond to built-in events and how to implement custom events in an
ActionScript program. Note, however, that this chapter covers event fundamentals
only. Later, in Chapter 21, we’ll study how ActionScript’s event architecture caters
to display objects (objects that represent onscreen content). Then, in Chapter 22,
we’ll examine a variety of specific built-in user-input events.

ActionScript Event Basics
In order to handle (respond to) events in an ActionScript program, we use event lis-
teners. An event listener is a function or method that registers to be executed when a
given event occurs. Event listeners are so named because they conceptually wait
(listen) for events to happen. To notify a program that a given event has occurred,

http://www.w3.org/TR/DOM-Level-3-Events
http://www.w3.org/TR/DOM-Level-3-Events

ActionScript Event Basics | 203

ActionScript executes any and all event listeners that have registered for that event.
The notification process is known as an event dispatch.

When a given event dispatch is about to begin, ActionScript creates an object—
known as the event object—that represents the event. The event object is always an
instance of the Event class or one of its descendants. All event listeners executed dur-
ing the event dispatch are passed a reference to the event object as an argument.
Each listener can use the event object’s variables to access information relating to the
event. For example, a listener for an event representing mouse activity might use the
variables of the event object to determine the location of the mouse pointer at the
time of the event.

Every type of event in ActionScript—whether built-in or custom—is given a string
name. For example, the name of the “mouse click” event type is “click.” During an
event dispatch, the name of the event being dispatched can be retrieved via the type
variable of the event object passed to every listener.

Each event dispatch in ActionScript has an event target, which is the object to which
the event conceptually pertains. For example, for input events, the event target is
typically the object that was manipulated (clicked on, typed into, moved over, etc.).
Likewise, for network events, the event target is typically the object that instigated
the network operation.

To respond to a given event, listeners typically register with the event target. Accord-
ingly, all event target objects are instances of a class that inherits from the
EventDispatcher class or that implements the IEventDispatcher interface. The
EventDispatcher class provides methods for registering and unregistering event listen-
ers (addEventListener() and removeEventListener(), respectively).

In Chapter 21, we’ll learn that when the event target is a display object (an object that
can be displayed on screen), event listeners can also register with the event target’s
display ancestors (i.e., objects that visually contain the event target). For now, how-
ever, we’ll concentrate solely on nondisplayable event-target objects.

Registering an Event Listener for an Event
The general process for responding to an event in ActionScript is as follows:

1. Determine the name of the event’s event type.

2. Determine the datatype of the event object representing the event.

3. Create an event listener to respond to the event. The event listener must define a
single parameter matching the datatype of the event object from Step 2.

4. Use EventDispatcher class’s instance method addEventListener() to register the
event listener with the event target (or, any display ancestor of the event target).

5. Sit back and wait for the event to occur.

204 | Chapter 12: Events and Event Handling

Let’s apply the preceding steps to an example: registering for the built-in “complete”
event.

Step 1: Determine the event type’s name

Flash client runtimes offer a wide range of built-in event types, representing every-
thing from user input to network and sound activity. Each event type’s name is
accessible via a constant of the Event class or one of its descendants. For example,
the constant for the “operation complete” event type is Event.COMPLETE, whose value
is the string name “complete.” Likewise, the constant for the “mouse pressed” event
type is MouseEvent.MOUSE_DOWN, whose value is the string name “mouseDown.”

In order to respond to a given built-in event type, we must first find the constant that
represents it. In Adobe’s ActionScript Language Reference, event constants are listed
under the Events heading for any class that supports events (i.e., inherits from
EventDispatcher). Hence, to find the constant for a given built-in event, we check the
Events heading in the documentation for the class to which the event pertains.

For example, suppose we’re loading an external text file using the URLLoader class,
and we want to execute some code when the file finishes loading. We check the
Events heading of the URLLoader class to see if the appropriate “done loading” event
is available. Under the Events heading we find an entry for the “complete” event that
seems to suit our purpose. Here’s what the “complete” event entry looks like:

complete event

Event object type: flash.events.Event

Event.type property = flash.events.Event.COMPLETE

Dispatched after all the received data is decoded and placed in the data property of the
URLLoader object. The received data may be accessed once this event has been dis-
patched.

The “Event.type property” tells us the constant for the “complete” event—flash.
events.Event.COMPLETE. We’ll use that constant when registering for the “complete”
event, as shown in bold in the following generic code:

theURLLoader.addEventListener(Event.COMPLETE, someListener);

From now on, when referring to any built-in event, we’ll use the event
constant (e.g., Event.COMPLETE) rather than the string-literal name (e.g.,
“complete”). While slightly verbose, this style promotes developer
familiarity with the event constants actually used in ActionScript
programs.

Step 2: Determine the event object’s datatype

Now that we’ve determined our event type’s name (Event.COMPLETE), we must deter-
mine the datatype of its event object. Once again, we use the “complete” event entry
under the URLLoader class in Adobe’s ActionScript Language Reference. The “Event

ActionScript Event Basics | 205

object type” subheading of the “complete” entry (shown in the previous section) tells
us the datatype of Event.COMPLETE’s Event object—flash.events.Event.

Step 3: Create the event listener

Now that we know the constant and event object datatype for our event (Event.COMPLETE
and Event, respectively), we can create our event listener. Here’s the code:

private function completeListener (e:Event):void {
 trace("Load complete");
}

Notice that our listener defines a parameter (e) that will receive the event object at event-
dispatch time. The parameter’s datatype matches the datatype for the Event.COMPLETE
event, as determined in Step 2.

By convention, all event listeners have a return type of void. Furthermore, event lis-
teners that are methods are typically declared private so that they cannot be invoked
by code outside of the class in which they are defined.

While there is no standard for naming event listener functions or methods, event lis-
teners in this book are named using the format eventNameListener, where eventName
is the string name of the event (in our example, “complete”).

Step 4: Register for the event

With our event listener now defined, we’re ready to register for the event. Recall that
we’re loading an external text file using an instance of the URLLoader class. That
instance will be our event target (because it initiates the load operation that eventu-
ally results in the Event.COMPLETE event). The following code creates the URLLoader
instance:

var urlLoader:URLLoader = new URLLoader();

And the following code registers our listener, completeListener(), with our event tar-
get, urlLoader, for Event.COMPLETE events:

urlLoader.addEventListener(Event.COMPLETE, completeListener);

The first argument to addEventListener() specifies the name of the event type for
which we are registering. The second argument to addEventListener() provides a ref-
erence to the listener being registered.

Here’s the complete method signature for addEventListener():

addEventListener(type, listener, useCapture, priority, useWeakReference)

The first two parameters (type and listener) are required; the remaining parameters
are optional. We’ll study priority and useWeakReference later in this chapter, and
we’ll study useCapture in Chapter 21.

206 | Chapter 12: Events and Event Handling

Step 5: Wait for the event to occur

We’ve now created an event listener for the Event.COMPLETE event, and registered it
with the event target. To make the Event.COMPLETE event occur, in turn causing the
execution of completeListener(), we initiate a file-load operation, as follows:

urlLoader.load(new URLRequest("someFile.txt"));

When someFile.txt finishes loading, ActionScript dispatches an Event.COMPLETE event
targeted at urlLoader, and completeListener() executes.

Example 12-1 shows the code for the preceding five steps in the context of a func-
tional class, FileLoader.

For practice, let’s now register two more events.

Two More Event Listener Registration Examples
When the code in Example 12-1 runs, if the Flash client runtime cannot find
someFile.txt, it dispatches an IOErrorEvent.IO_ERROR event targeted at urlLoader.
Let’s register for that event so that our application can handle load failures grace-
fully. We’ll start by creating a new event listener, ioErrorListener(), as follows:

private function ioErrorListener (e:Event):void {
 trace("Error loading file.");
}

Next, we register ioErrorListener() with urlLoader for IOErrorEvent.IO_ERROR events:

urlLoader.addEventListener(IOErrorEvent.IO_ERROR, ioErrorListener);

Example 12-1. Registering for Event.COMPLETE events

package {
 import flash.display.*;
 import flash.net.*;
 import flash.events.*;

 public class FileLoader extends Sprite {
 public function FileLoader () {
 // Create the event target
 var urlLoader:URLLoader = new URLLoader();
 // Register the event listener
 urlLoader.addEventListener(Event.COMPLETE, completeListener);
 // Start the operation that will trigger the event
 urlLoader.load(new URLRequest("someFile.txt"));
 }

 // Define the event listener
 private function completeListener (e:Event):void {
 trace("Load complete");
 }
 }
}

ActionScript Event Basics | 207

Nice and simple.

Example 12-2 shows our new IOErrorEvent.IO_ERROR code in the context of the
FileLoader class.

Now let’s try responding to a completely different built-in Flash client runtime event,
Event.RESIZE. The Event.RESIZE event is dispatched whenever a Flash runtime is in
“no-scale” mode, and the application window changes width or height. The event
target for Event.RESIZE events is the Flash client runtime’s Stage instance. We’ll
access that instance through the stage variable of our application’s main class,
ResizeMonitor. (If you’re not familiar with the Stage instance, for now simply think
of it as representing the Flash client runtime’s display area. We’ll study the Stage
class in more detail in Chapter 20.)

Here’s the code:

package {
 import flash.display.*;
 import flash.net.*;
 import flash.events.*;

 public class ResizeMonitor extends Sprite {
 public function ResizeMonitor () {
 // Use "no-scale" mode. (Otherwise, the content
 // scales automatically when the application window is resized, and
 // no Event.RESIZE events are dispatched.)
 stage.scaleMode = StageScaleMode.NO_SCALE;

Example 12-2. Registering for IOErrorEvent.IO_ERROR events

package {
 import flash.display.*;
 import flash.net.*;
 import flash.events.*;

 public class FileLoader extends Sprite {
 public function FileLoader () {
 var urlLoader:URLLoader = new URLLoader();
 urlLoader.addEventListener(Event.COMPLETE, completeListener);
 urlLoader.addEventListener(IOErrorEvent.IO_ERROR, ioErrorListener);
 urlLoader.load(new URLRequest("someFile.txt"));
 }

 private function completeListener (e:Event):void {
 trace("Load complete");
 }

 private function ioErrorListener (e:Event):void {
 trace("Error loading file.");
 }
 }
}

208 | Chapter 12: Events and Event Handling

 // Register resizeListener() with the Stage instance for
 // Event.RESIZE events.
 stage.addEventListener(Event.RESIZE, resizeListener);
 }

 // Define the event listener, executed whenever the Flash runtime
 // dispatches the Event.RESIZE event
 private function resizeListener (e:Event):void {
 trace("The application window changed size!");
 // Output the new Stage dimensions to the debugging console
 trace("New width: " + stage.stageWidth);
 trace("New height: " + stage.stageHeight);
 }
 }
}

Notice that within the resizeListener() function, stage is directly accessible, just as it
is within the ResizeMonitor constructor method.

When an event listener is an instance method, it retains full access to
the methods and variables of its instance. See “Bound Methods” in
Chapter 3.

Unregistering an Event Listener for an Event
To stop an event listener from receiving event notifications, we unregister it using the
EventDispatcher class’s instance method removeEventListener(), which has the fol-
lowing general form:

eventTargetOrTargetAncestor.removeEventListener(type, listener, useCapture)

In most cases, only the first two parameters (type and listener) are required; we’ll
study useCapture in Chapter 21.

To reduce memory and processor usage, event listeners should always
be unregistered when they are no longer needed in a program.

The following code demonstrates the use of removeEventListener(); it stops
mouseMoveListener() from receiving notification of MouseEvent.MOUSE_MOVE events
targeted at the Stage instance:

stage.removeEventListener(MouseEvent.MOUSE_MOVE, mouseMoveListener);

For more information on important event-related memory issues, see the section
“Event Listeners and Memory Management” later in this chapter.

Accessing the Target Object | 209

Event Vocabulary Review
The following list of terms reviews the key event vocabulary we’ve encountered so
far:

Event
Conceptually, something that has happened (some “asynchronous occur-
rence”), such as a mouse click or the completion of a load operation. Each event
is identified by an event name, which is typically accessible via a constant. Con-
stants for the built-in events are defined either by the Event class or by the Event
subclass most closely related to the event.

Event object
An object representing a specific single occurrence of an event. The event
object’s class determines what information about the event is available to event
listeners. All event objects are instances either of the Event class or of one of its
subclasses.

Event target
The object to which the event conceptually pertains. Acts as the destination
object of a dispatched event, as determined uniquely by each type of event.
Every event target (and target ancestor in the case of targets on the display list)
can register event listeners to be notified when an event occurs.

Event listener
A function or method registered to receive event notification from an event tar-
get (or from an event target’s ancestor in the case of targets on the display list).

Event dispatching
Sending notification of the event to the event target, which triggers registered lis-
teners. (If the target is on the display list, the event dispatch proceeds through
the event flow, from the root of the display list to the target, and, for bubbling
events, back to the root. (See Chapter 21 for information on the display list and
the event flow.) Event dispatching is also known as event propagation.

Looking ahead, here’s a little more event vocabulary that we’ll encounter in future
event-handling discussions: listeners executed in response to an event are said to
have been triggered by that event. Once a triggered listener has finished executing, it
is said to have processed the event. Once all of an object’s listeners have processed a
given event, the object itself is said to have finished processing the event.

Now that we’re familiar with the basics of events and event handling, let’s take a
deeper look at a variety of specific event-handling topics.

Accessing the Target Object
During every event dispatch, the Event object passed to every event listener defines a
target variable that provides a reference to the target object. Hence, to access the tar-

210 | Chapter 12: Events and Event Handling

get of an event dispatch, we use the following general event-listener code, which sim-
ply outputs the event target’s String value during debugging:

public function someListener (e:SomeEvent):void {
 // Access the target of the event dispatch
 trace(e.target);
}

Programs typically use the Event class’s instance variable target to control the target
object in some way. For example, recall the code we used to respond to the comple-
tion of a file-load operation (shown in Example 12-1):

package {
 import flash.display.*;
 import flash.net.*;
 import flash.events.*;

 public class FileLoader extends Sprite {
 public function FileLoader () {
 var urlLoader:URLLoader = new URLLoader();
 urlLoader.addEventListener(Event.COMPLETE, completeListener);
 urlLoader.load(new URLRequest("someFile.txt"));
 }

 private function completeListener (e:Event):void {
 trace("Load complete");
 }
 }
}

In the preceding code, within the completeListener() function, we might want to
access the urlLoader object in order to retrieve the content of the loaded file. Here’s
the code we’d use (notice that, for added type safety, we cast target to URLLoader—
the actual datatype of the target object):

private function completeListener (e:Event):void {
 var loadedText:String = URLLoader(e.target).data;
}

After the preceding code runs, loadedText’s value is the contents of the loaded text
file (someFile.txt).

Example 12-3 provides another example of accessing an event’s target object, this
time for a target object that is on the display list. In the example, we set a text field’s
background color to red when it has focus. To access the TextField, the
focusInListener() method uses the Event class’s instance variable target variable.

Example 12-3 uses several techniques that we haven’t yet covered—
creating text, focusing an object, working with the display list, and the
event flow. We’ll study each of those topics in Part II of this book. If
you are new to display programming, consider skipping this example
and returning to it after you have read Part II.

Accessing the Target Object | 211

Reader exercise: try adding a FocusEvent.FOCUS_OUT listener to Example 12-3 that
changes the text field’s background color to white.

Example 12-3. Accessing the target object

package {
 import flash.display.*;
 import flash.events.*;
 import flash.text.*;

 // Changes a text field's background color to red when focused
 public class HighlightText extends Sprite {

 // Constructor
 public function HighlightText () {
 // Create a Sprite object
 var s:Sprite = new Sprite();
 s.x = 100;
 s.y = 100;

 // Create a TextField object
 var t:TextField = new TextField();
 t.text = "Click here";
 t.background = true;
 t.border = true;
 t.autoSize = TextFieldAutoSize.LEFT;

 // Put the TextField in the Sprite
 s.addChild(t);

 // Add the Sprite to this object's display hierarchy
 addChild(s);

 // Register to be notified when the user focuses any of the Sprite
 // object's descendants (in this case, there's only one descendant:
 // the TextField, t)
 s.addEventListener(FocusEvent.FOCUS_IN, focusInListener);
 }

 // Listener executed when one of the Sprite object's descendants
 // is focused
 public function focusInListener (e:FocusEvent):void {
 // Displays: Target of this event dispatch: [object TextField]
 trace("Target of this event dispatch: " + e.target);

 // Set the text field's background to red. Notice that, for added type
 // safety, we cast Event.target to TextField-—the actual datatype of
 // the target object.
 TextField(e.target).backgroundColor = 0xFF0000;
 }
 }
}

212 | Chapter 12: Events and Event Handling

Accessing the Object That Registered the Listener
During every event dispatch, the Event object passed to every event listener defines a
currentTarget variable that provides a reference to the object with which the event
listener registered. The following general event-listener code demonstrates; it out-
puts the String value of the object with which someListener() registered:

public function someListener (e:SomeEvent):void {
 // Access the object with which this event listener registered
 trace(e.currentTarget);
}

For events targeted at nondisplay objects, the value of the Event class’s instance vari-
able currentTarget is always equal to target (because listeners always register with
the event target). For example, returning once again to the FileLoader class from
Example 12-1, if we check the value of both e.currentTarget and e.target within
completeListener(), we find that those two variables refer to the same object:

package {
 import flash.display.*;
 import flash.net.*;
 import flash.events.*;

 public class FileLoader extends Sprite {
 public function FileLoader () {
 var urlLoader:URLLoader = new URLLoader();
 urlLoader.addEventListener(Event.COMPLETE, completeListener);
 urlLoader.load(new URLRequest("someFile.txt"));
 }

 private function completeListener (e:Event):void {
 trace(e.currentTarget == e.target); // Displays: true
 }
 }
}

However, as we’ll learn in Chapter 21, for events targeted at display objects in a dis-
play hierarchy, listeners can register both with the event target and with the event
target’s display ancestors. For event listeners registered with an event target’s display
ancestor, currentTarget refers to that display ancestor, while target refers to the
event target object.

For example, suppose a Sprite object that contains a TextField object registers a
MouseEvent.CLICK event listener, clickListener(). When the user clicks the text field, a
MouseEvent.CLICK event is dispatched, and clickListener() is triggered. Within
clickListener(), currentTarget refers to the Sprite object, while target refers to the
TextField object.

Programs typically use currentTarget to control the object that registered a listener in
some way. As an applied example, let’s revise the focusInListener() function from
Example 12-3. This time, when the TextField object is focused, our new

Preventing Default Event Behavior | 213

focusInListener() function will display a blue oval behind the text field. The blue oval
is drawn in the Sprite object, which is accessed via currentTarget.

public function focusInListener (e:FocusEvent):void {
 // Set the text field's background to red
 TextField(e.target).backgroundColor = 0xFF0000;

 // Obtain a reference to the Sprite object
 var theSprite:Sprite = Sprite(e.currentTarget);

 // Draw the ellipse in the Sprite object
 theSprite.graphics.beginFill(0x0000FF);
 theSprite.graphics.drawEllipse(-10, -10, 75, 40);
}

Preventing Default Event Behavior
Some events in ActionScript are associated with a side effect known as a default
behavior. For example, the default behavior of a TextEvent.TEXT_INPUT event is text
being added to the target text field. Likewise, the default behavior for a MouseEvent.
MOUSE_DOWN event targeted at a SimpleButton object displays the button’s “down
state” graphic.

In some cases, events with a default behavior offer the option to prevent that behav-
ior programmatically. Events with a default behavior that can be prevented are said
to be cancelable. For example, the TextEvent.TEXT_INPUT event is cancelable, as are
FocusEvent.KEY_FOCUS_CHANGE and FocusEvent.MOUSE_FOCUS_CHANGE.

To prevent the default behavior for a cancelable event, we invoke the Event class’s
instance method preventDefault() on the Event object passed to any listener regis-
tered for that event. For example, in the following code, we prevent the default
behavior for all TextEvent.TEXT_INPUT events targeted at the text field t. Instead of
allowing the user-entered text to appear in the text field, we simply add the letter “x”
to the text field.

package {
 import flash.display.*;
 import flash.text.*;
 import flash.events.*;

 // Changes all user-entered text to the character "x"
 public class InputConverter extends Sprite {
 private var t:TextField;

 public function InputConverter () {
 // Create the text field
 t = new TextField();
 t.border = true;
 t.background = true;
 t.type = TextFieldType.INPUT
 addChild(t);

214 | Chapter 12: Events and Event Handling

 // Register for the TextEvent.TEXT_INPUT event
 t.addEventListener(TextEvent.TEXT_INPUT, textInputListener);
 }

 // Listener executed when the TextEvent.TEXT_INPUT event occurs
 private function textInputListener (e:TextEvent):void {
 // Show what the user tried to enter
 trace("Attempted text input: " + e.text);

 // Stop the user-entered text from appearing in the text field
 e.preventDefault();

 // Add the letter "x" to the text field instead of
 // the user-entered text
 t.appendText("x");
 }
 }
}

To determine whether a given event has default behavior that can be canceled, check
the value of Event class’s instance variable cancelable within a listener registered for
that event. For built-in events, see also the event’s entry in Adobe ActionScript Lan-
guage Reference.

To determine whether an event currently being dispatched has had its default behav-
ior prevented, check the return value of the Event class’s instance method
isDefaultPrevented() within a listener registered for that event.

Note that just like built-in events, custom events can define default behavior that
can be canceled via preventDefault(). For more information and example code, see
the section “Preventing Default Behavior for Custom Events” later in this chapter.

For another example showing how to use preventDefault() with the
TextEvent.TEXT_INPUT event, see Example 22-8 in Chapter 22.

Event Listener Priority
By default, when multiple event listeners are registered for a single event type with a
given object, those listeners are triggered in the order in which they registered. For
example, in the following code two event listeners—completeListenerA() and
completeListenerB()—register with urlLoader for the Event.COMPLETE event. When the
Event.COMPLETE event occurs, completeListenerA() executes before completeListenerB()
because completeListenerA() registered before completeListenerB().

package {
 import flash.display.*;
 import flash.net.*;
 import flash.events.*;

 public class FileLoader extends Sprite {
 public function FileLoader () {

Event Listener Priority | 215

 var urlLoader:URLLoader = new URLLoader();
 // Registration order determines execution order
 urlLoader.addEventListener(Event.COMPLETE, completeListenerA);
 urlLoader.addEventListener(Event.COMPLETE, completeListenerB);
 urlLoader.load(new URLRequest("someFile.txt"));
 }

 private function completeListenerA (e:Event):void {
 trace("Listener A: Load complete");
 }

 private function completeListenerB (e:Event):void {
 trace("Listener B: Load complete");
 }
 }
}

To alter the default order in which event listeners are triggered, we can use the
addEventListener() method’s priority parameter, shown in the following generic
code:

addEventListener(type, listener, useCapture, priority, useWeakReference)

The priority parameter is an integer indicating the order in which the event listener
being registered should be triggered, relative to other listeners registered for the same
event with the same object. Listeners registered with a higher priority are triggered
before listeners registered with a lower priority. For example, a listener registered
with priority 3 will be triggered before a listener registered with priority 2. When
two listeners are registered with the same priority, they are executed in the order in
which they were registered. When priority is not specified, it defaults to 0.

The following code demonstrates the general use of the priority parameter; it forces
completeListenerB() to execute before completeListenerA() even though completeListenerA()
registers before completeListenerB().

package {
 import flash.display.*;
 import flash.net.*;
 import flash.events.*;

 public class FileLoader extends Sprite {
 public function FileLoader () {
 var urlLoader:URLLoader = new URLLoader();
 // Priority parameter determines execution order
 urlLoader.addEventListener(Event.COMPLETE,
 completeListenerA,
 false,
 0);
 urlLoader.addEventListener(Event.COMPLETE,
 completeListenerB,
 false,
 1);
 urlLoader.load(new URLRequest("someFile.txt"));
 }

216 | Chapter 12: Events and Event Handling

 private function completeListenerA (e:Event):void {
 trace("Listener A: Load complete");
 }

 private function completeListenerB (e:Event):void {
 trace("Listener B: Load complete");
 }
 }
}

The priority parameter is rarely needed, but can prove useful in specific situations.
For example, an application framework might use a high priority listener to perform
initialization on a loaded application before other listeners have a chance to execute.
Or a testing suite might use a high priority listener to disable other listeners that would
otherwise interfere with a given test (see the section “Stopping an Event Dispatch” in
Chapter 21).

Use caution when altering event listener execution order. Programs
that depend on an execution order are prone to error because event lis-
tener priorities are volatile, difficult to maintain, and make source
code more difficult to follow.

Event Listeners and Memory Management
As we’ve seen throughout this chapter, ActionScript’s event architecture is based on
two key participants: the listener (either a function or a method) and the object with
which that listener registers. Each object that registers a listener for a given event
keeps track of that listener by assigning a reference to it in an internal array known as
a listener list. For example, in the following code (repeated from Example 12-1) the
completeListener() method registers with urlLoader for Event.COMPLETE events. As a
result, urlLoader’s internal listener list gains a reference to completeListener().

package {
 import flash.display.*;
 import flash.net.*;
 import flash.events.*;

 public class FileLoader extends Sprite {
 public function FileLoader () {
 var urlLoader:URLLoader = new URLLoader();
 // Register completeListener()
 urlLoader.addEventListener(Event.COMPLETE, completeListener);
 urlLoader.load(new URLRequest("someFile.txt"));
 }

 private function completeListener (e:Event):void {
 trace("Load complete");
 }
 }
}

Event Listeners and Memory Management | 217

By default, any object that has a reference to a listener maintains that reference until
the listener is explicitly unregistered via the removeEventListener() method. Further-
more, the object maintains its reference to the listener even when no other refer-
ences to the listener remain in the program. The following simple class,
AnonymousListener, demonstrates. It creates an anonymous function and registers
that function for MouseEvent.MOUSE_MOVE events with the Flash client runtime’s Stage
instance. Even though the AnonymousListener class has no references to the anony-
mous function, the function is permanently retained by the Stage instance, and con-
tinues to be triggered every time the MouseEvent.MOUSE_MOVE occurs, long after the
AnonymousListener constructor method exits.

package {
 import flash.display.*;
 import flash.events.*;

 public class AnonymousListener extends Sprite {
 public function AnonymousListener () {
 // Adds an anonymous function to the Stage instance's
 // listener list
 stage.addEventListener(MouseEvent.MOUSE_MOVE,
 function (e:MouseEvent):void {
 trace("mouse move");
 });

 }
 }
}

In the preceding code, the anonymous function is permanently stranded in the Stage
instance’s listener list. The program cannot unregister the anonymous function
because it has no reference to that function.

Stranded listeners are a potential source of serious memory waste and
can cause other problematic side effects in ActionScript programs.

Let’s consider an applied example demonstrating the potential risks of stranding lis-
teners, and ways to avoid those risks.

Suppose we’re building a butterfly-catching game in which the player catches butter-
flies by touching them with the mouse. Butterflies try to avoid being caught by flying
away from the mouse pointer. The application’s main class is ButterflyGame. Each
butterfly is represented by an instance of the Butterfly class. To manage butterfly
movement, the game uses a central Timer object that triggers a TimerEvent.TIMER
event every 25 milliseconds. Each Butterfly object registers a listener with the central
Timer object, and calculates a new position for itself every time a TimerEvent.TIMER
event occurs.

218 | Chapter 12: Events and Event Handling

Here’s the code for the Butterfly class:

package {
 import flash.display.*;
 import flash.events.*;
 import flash.utils.*;

 public class Butterfly extends Sprite {
 // Each Butterfly object receives a reference to the central
 // timer through the gameTimer constructor parameter
 public function Butterfly (gameTimer:Timer) {
 gameTimer.addEventListener(TimerEvent.TIMER, timerListener);
 }

 private function timerListener (e:TimerEvent):void {
 trace("Calculating new butterfly position...");
 // Calculate new butterfly position (code not shown)
 }
 }
}

And here’s the code for the ButterflyGame class, highly simplified to isolate the but-
terfly creation and removal code. In this version of the code, the game contains one
butterfly only.

package {
 import flash.display.*;
 import flash.utils.*;

 public class ButterflyGame extends Sprite {
 private var timer:Timer;
 private var butterfly:Butterfly;

 public function ButterflyGame () {
 // The game timer
 timer = new Timer(25, 0);
 timer.start();
 addButterfly();
 }

 // Adds the butterfly to the game
 public function addButterfly ():void {
 butterfly = new Butterfly(timer);
 }

 // Removes the butterfly from the game
 public function removeButterfly ():void {
 butterfly = null;
 }
 }
}

To add the butterfly to the game, ButterflyGame uses the following code:

butterfly = new Butterfly(timer);

Event Listeners and Memory Management | 219

When that code runs, the Butterfly constructor runs, and the Butterfly object’s
timerListener() method registers with gameTimer for TimerEvent.TIMER events.

When the player catches the butterfly, ButterflyGame removes the Butterfly object
from the program using the following code:

butterfly = null;

However, even though the preceding code removes ButterflyGame’s reference to the
Butterfly object, gameTimer’s listener list retains its reference to the Butterfly object’s
timerListener() method—and, by extension, to the Butterfly object itself. Further-
more, timerListener() continues to execute every time a TimerEvent.TIMER occurs.
The Butterfly object, hence, continues to consume memory and processor time, and
has the potential to trigger unexpected or unwanted side effects in the program. To
avoid these problems, when we remove a Butterfly object from our game, we must
first unregister its timerListener() method for TimerEvent.TIMER events.

In order to facilitate TimerEvent.TIMER event unregistration, let’s add a new variable,
gameTimer, and a new method, destroy(), to the Butterfly class. The central game
timer is assigned to the gameTimer variable. The destroy() method unregisters
timerListener() for TimerEvent.TIMER events. Here’s the updated Butterfly class, with
additions shown in bold:

package {
 import flash.display.*;
 import flash.events.*;
 import flash.utils.*;

 public class Butterfly extends Sprite {
 private var gameTimer:Timer;

 public function Butterfly (gameTimer:Timer) {
 this.gameTimer = gameTimer;
 this.gameTimer.addEventListener(TimerEvent.TIMER, timerListener);
 }

 private function timerListener (e:TimerEvent):void {
 trace("Calculating new butterfly position...");
 // Calculate new butterfly position (code not shown)
 }

 public function destroy ():void {
 gameTimer.removeEventListener(TimerEvent.TIMER, timerListener);
 }
 }
}

In the ButterflyGame class’s instance method removeButterfly(), we invoke destroy()
before removing the reference to the Butterfly object, as follows:

public function removeButterfly ():void {
 butterfly.destroy();

220 | Chapter 12: Events and Event Handling

 butterfly = null;
}

By invoking destroy() before removing the Butterfly object from the game, we pre-
vent timerListener() from being stranded in the Timer object’s listener list.

When you register an event listener with an object, be sure your pro-
gram also eventually unregisters that listener.

Weak Listener References
In the preceding section we learned that, by default, an object that registers a listener
for a given event maintains a reference to that listener until it is explicitly unregistered
for that event—even when no other references to the listener remain in the program.
This default behavior can, however, be altered with addEventListener()’s
useWeakReference parameter.

This topic requires a prior understanding of garbage collection in
ActionScript, which is covered in Chapter 14.

Registering a listener with useWeakReference set to true prevents that listener from
becoming stranded in the listener list of the object with which it registered. For
example, suppose an object, O, registers a listener, L, for an event, E, with
useWeakReference set to true. Further suppose that the only reference the program
has to L is the one held by O. Normally, L would be held by O until L is unregistered
for the event E. However, because L originally registered with useWeakReference set to
true, and because O holds the only remaining reference to L in the program, L imme-
diately becomes eligible for garbage collection. Subsequently, the garbage collector,
at its discretion, can choose to automatically remove L from O’s listener list, and
delete it from memory.

To demonstrate useWeakReference, let’s return to the AnonymousListener class. Recall
that AnonymousListener creates an anonymous function and registers that function
for MouseEvent.MOUSE_MOVE events with the Flash client runtime’s Stage instance. This
time, however, when we register the function for MouseEvent.MOUSE_MOVE events, we
set useWeakReference set to true.

package {
 import flash.display.*;
 import flash.events.*;

 public class AnonymousListener extends Sprite {
 public function AnonymousListener () {
 // Add an anonymous function to the Stage instance's
 // listener list

Custom Events | 221

 stage.addEventListener(MouseEvent.MOUSE_MOVE,
 function (e:MouseEvent):void {
 trace("mouse move");
 },
 false,
 0,
 true);

 }
 }
}

When the preceding code runs, the program’s only reference to the anonymous func-
tion is the one held by the Stage instance. Because the anonymous function was reg-
istered with useWeakReference set to true, it immediately becomes eligible for garbage
collection. Hence, the garbage collector, at its discretion, can subsequently choose to
automatically remove the anonymous function from the Stage instance’s listener list,
and delete it from memory.

Of course, just because the anonymous function is eligible for garbage collection
does not mean it will be garbage collected. In fact, in the case of the preceding sim-
ple example, the function will likely not be garbage collected because the application
does not use enough memory to trigger a garbage collection. As a result, the func-
tion will continue to be executed anytime a MouseEvent.MOUSE_MOVE event dispatch
targets the Stage instance, even though theoretically it could be garbage collected at
any time. Hence, in general, useWeakReference should not be relied on as a way to
automatically remove event listeners. As a best practice, simply avoid stranding event
listeners.

A previous note can’t be emphasized enough, so it bears repeating:

When you register an event listener with an object, be sure your pro-
gram also eventually unregisters that listener.

So far in this chapter we’ve worked exclusively with ActionScript’s built-in events.
Now let’s consider how to implement our own custom events in a program.

Custom Events
Dispatching a new custom event in ActionScript is as simple as extending the
EventDispatcher class, giving the new event a name, and invoking the
EventDispatcher class’s instance method dispatchEvent(). To learn how to create
custom events in a program, we’ll study two examples: first, an event in a game, and
then an event for a user interface widget.

222 | Chapter 12: Events and Event Handling

To target an event dispatch at an instance of a class that already
extends a class another, use the composition approach discussed in
Chapter 9: implement the IEventDispatcher interface directly, and use
EventDispatcher’s services via composition rather than inheritance.

A Custom “gameOver” Event
Suppose we’re creating a general framework for video game development. The
framework includes the following two classes: Game, which handles the basic needs
of any video game; and Console, which represents a launchpad from which to start
new games. The Console class instantiates a Game object whenever a new game is
started. Each Game class instance created by the Console class is the target of a cus-
tom “gameOver” event, which is dispatched when a game ends.

In order to allow Game objects to act as event targets, the Game class extends
EventDispatcher, as follows:

package {
 import flash.events.*;

 public class Game extends EventDispatcher {
 }
}

The Game class also defines a constant, Game.GAME_OVER, whose value is the name of
the custom event: gameOver. By convention, event constants are written with all
capital letters, and words separated by an underscore, as in GAME_OVER. Custom event
constants are typically defined either by the event target class (in this case, Game) or,
if an Event subclass is used, by that Event subclass (as shown in our upcoming wid-
get example). Our present game example does not include an Event subclass, so we
define the event constant for gameOver in the Game class, as follows:

package {
 import flash.events.*;

 public class Game extends EventDispatcher {
 public static const GAME_OVER:String = "gameOver";
 }
}

When a game is over, the Game object calls the endGame() method, which resets the
game environment and prepares for the possibility of a new game. Here’s the
endGame() method:

package {
 import flash.events.*;

 public class Game extends EventDispatcher {
 public static const GAME_OVER:String = "gameOver";

Custom Events | 223

 private function endGame ():void {
 // Perform game-ending duties (code not shown)
 }
 }
}

When all game-ending duties are complete, endGame() uses dispatchEvent() to dis-
patch a Game.GAME_OVER event signaling the end of the game:

package {
 import flash.events.*;

 public class Game extends EventDispatcher {
 public static const GAME_OVER:String = "gameOver";

 private function endGame ():void {
 // Perform game-ending duties (code not shown)...

 // ...then ask ActionScript to dispatch an event indicating that
 // the game is over
 dispatchEvent(new Event(Game.GAME_OVER));
 }
 }
}

Note that because dispatchEvent() is invoked on the Game object, that object is the
target of the event.

The object on which dispatchEvent() is invoked is the event target.

The dispatchEvent() method shown in the preceding code takes a single parameter—
an Event object representing the event being dispatched. The Event constructor,
itself, it takes three parameters—type, bubbles, and cancelable as shown in the fol-
lowing generalized code:

Event(type, bubbles, cancelable)

In most cases, however, only the first argument, type, is needed; it specifies the string
name of the event (in our case, Game.GAME_OVER). The bubbles parameter is used when
the event target is a display object only; it indicates whether the event flow should
include a bubbling phase (true) or not (false). (See the section “Custom Events and
the Event Flow” in Chapter 21.) The cancelable parameter is used to create custom
events with preventable default behavior, as discussed later, in the section “Prevent-
ing Default Behavior for Custom Events.”

To register an event listener for our custom Game.GAME_OVER event, we use
addEventListener(), just as we would when registering for a built-in event. For exam-
ple, suppose that, when a game ends, we want the Console class to display a dialog
box that gives the player the option to return to the launchpad or to play the current

224 | Chapter 12: Events and Event Handling

game again. In the Console class, we detect the ending of a game by registering for
Game.GAME_OVER events, as follows:

package {
 import flash.display.*;
 import flash.events.*;

 public class Console extends Sprite {

 // Constructor
 public function Console () {
 var game:Game = new Game();
 game.addEventListener(Game.GAME_OVER, gameOverListener);
 }

 private function gameOverListener (e:Event):void {
 trace("The game has ended!");
 // Display "back to console" UI (code not shown)
 }
 }
}

Notice that the datatype of the event object passed to gameOverListener() matches
the datatype of the event object originally passed to dispatchEvent() in the Game
class’s instance method endGame() (shown in the previous code).

When creating a listener for a custom event, set the datatype of the lis-
tener’s parameter to match the datatype of the event object originally
passed to dispatchEvent().

Example 12-4 shows the code for our custom Game.GAME_OVER event in its entirety,
and adds a timer that forces a call to endGame(), simulating the ending of an actual
game. (For details on the Timer class, see Adobe’s ActionScript Language Reference.)

Example 12-4. A custom “gameOver” event

// The Game class (the event target)
package {
 import flash.events.*;
 import flash.utils.*; // Required for the Timer class

 public class Game extends EventDispatcher {
 public static const GAME_OVER:String = "gameOver";

 public function Game () {
 // Force the game to end after one second
 var timer:Timer = new Timer(1000, 1);
 timer.addEventListener(TimerEvent.TIMER, timerListener);
 timer.start();
 // A nested function that is executed one second after this object
 // is created
 function timerListener (e:TimerEvent):void {

Custom Events | 225

Now let’s take a look at another example, an event for a user interface widget.

A Custom “toggle” Event
Suppose we’re creating a toggle-switch widget with an on and off state. Our toggle
switch is represented by the ToggleSwitch class. Whenever the switch is toggled on or
off, we dispatch a custom event named “toggle.”

In the preceding section, the event object for our custom Game.GAME_OVER event was
an instance of the built-in Event class. This time, our custom event will be
represented by its own class, ToggleEvent. The ToggleEvent class has the following
two purposes:

• Define the constant for the toggle event (ToggleEvent.TOGGLE)

• Define a variable, isOn, which listeners use to determine the state of the target
ToggleSwitch object

 endGame();
 }
 }

 private function endGame ():void {
 // Perform game-ending duties (code not shown)...

 // ...then ask ActionScript to dispatch an event indicating that
 // the game is over
 dispatchEvent(new Event(Game.GAME_OVER));
 }
 }
}

// The Console class (registers a listener for the event)
package {
 import flash.display.*;
 import flash.events.*;

 public class Console extends Sprite {

 // Constructor
 public function Console () {
 var game:Game = new Game();
 game.addEventListener(Game.GAME_OVER, gameOverListener);
 }

 private function gameOverListener (e:Event):void {
 trace("The game has ended!");
 // Display "back to console" UI (code not shown)
 }
 }
}

Example 12-4. A custom “gameOver” event (continued)

226 | Chapter 12: Events and Event Handling

The code for the ToggleEvent class follows. Note that every custom Event subclass
must override both clone() and toString(), providing versions of those methods that
account for any custom variables in the subclass (e.g., isOn).

The toggle switch code in this section focuses solely on the implementation of the
toggle event; the code required to create interactivity and graphics is omitted.

package {
 import flash.events.*;

 // A class representing the custom "toggle" event
 public class ToggleEvent extends Event {
 // A constant for the "toggle" event type
 public static const TOGGLE:String = "toggle";

 // Indicates whether the switch is now on or off
 public var isOn:Boolean;

 // Constructor
 public function ToggleEvent (type:String,
 bubbles:Boolean = false,
 cancelable:Boolean = false,
 isOn:Boolean = false) {
 // Pass constructor parameters to the superclass constructor
 super(type, bubbles, cancelable);

 // Remember the toggle switch's state so it can be accessed within
 // ToggleEvent.TOGGLE listeners
 this.isOn = isOn;
 }

 // Every custom event class must override clone()
 public override function clone():Event {
 return new ToggleEvent(type, bubbles, cancelable, isOn);
 }

 // Every custom event class must override toString(). Note that
 // "eventPhase" is an instance variable relating to the event flow.
 // See Chapter 21.
 public override function toString():String {
 return formatToString("ToggleEvent", "type", "bubbles",
 "cancelable", "eventPhase", "isOn");
 }
 }
}

Next, let’s turn to the ToggleSwitch class, which represents the toggle switch. The
ToggleSwitch class’s sole method, toggle(), changes the state of the toggle switch, and
then dispatches a ToggleEvent.TOGGLE event indicating that the switch’s state has
changed. The following code shows the ToggleSwitch class. Notice that the
ToggleSwitch class extends Sprite, which provides support for onscreen display. As a

Custom Events | 227

descendant of EventDispatcher, the Sprite class also provides the required event-
dispatching capabilities:

package {
 import flash.display.*;
 import flash.events.*;

 // Represents a simple toggle-switch widget
 public class ToggleSwitch extends Sprite {
 // Remembers the state of the switch
 private var isOn:Boolean;

 // Constructor
 public function ToggleSwitch () {
 // The switch is off by default
 isOn = false;
 }

 // Turns the switch on if it is currently off, or off if it is
 // currently on
 public function toggle ():void {
 // Toggle the switch state
 isOn = !isOn;

 // Ask ActionScript to dispatch a ToggleEvent.TOGGLE event, targeted
 // at this ToggleSwitch object
 dispatchEvent(new ToggleEvent(ToggleEvent.TOGGLE,
 true,
 false,
 isOn));
 }
 }
}

To demonstrate the use of the ToggleEvent.TOGGLE event, let’s create a simple exam-
ple class, SomeApp. The SomeApp class defines a method, toggleListener(), and regis-
ters it with a ToggleSwitch object for ToggleEvent.TOGGLE events. For demonstration
purposes, the SomeApp class also programmatically toggles the switch on, triggering
a ToggleEvent.TOGGLE event.

package {
 import flash.display.*;

 // A generic application that demonstrates the use of the custom
 // ToggleEvent.TOGGLE event
 public class SomeApp extends Sprite {
 // Constructor
 public function SomeApp () {
 // Create a ToggleSwitch
 var toggleSwitch:ToggleSwitch = new ToggleSwitch();
 // Register for ToggleEvent.TOGGLE events
 toggleSwitch.addEventListener(ToggleEvent.TOGGLE,
 toggleListener);

228 | Chapter 12: Events and Event Handling

 // Toggle the switch (normally the switch would be toggled by the
 // user, but for demonstration purposes, we toggle
 // it programmatically)
 toggleSwitch.toggle();
 }

 // Listener executed whenever a ToggleEvent.TOGGLE event occurs
 private function toggleListener (e:ToggleEvent):void {
 if (e.isOn) {
 trace("The ToggleSwitch is now on.");
 } else {
 trace("The ToggleSwitch is now off.");
 }
 }
 }
}

Now that we have some experience implementing custom events, let’s consider an
advanced scenario: a custom event type with a default behavior.

Preventing Default Behavior for Custom Events
In the earlier section, “Preventing Default Event Behavior,” we saw that some built-in
events are associated with a default behavior. For example, the TextEvent.TEXT_INPUT
event is associated with the default behavior of adding text to a text field. We also
saw that, for built-in events that are classified as cancelable, the default behavior can
be prevented using the Event class’s instance method preventDefault() method.

Custom events can also be associated with custom default behavior that can likewise
be prevented via preventDefault(). A custom event’s default behavior is entirely pro-
gram determined and implemented. The general approach for implementing events
associated with preventable default behavior is as follows:

1. At event-dispatch time, create an event object representing the event, making
sure to set the Event constructor’s cancelable parameter to true.

2. Use dispatchEvent() to dispatch the event.

3. After dispatchEvent() completes, use the Event class’s instance method
isDefaultPrevented() to check whether any listeners requested the prevention of
the default behavior.

4. If the event object’s isDefaultPrevented() method returns false, then proceed
with the default behavior; otherwise, do not carry out the default behavior.

Here’s the generic code for implementing an event with a preventable default
behavior:

// Create the event object, with the desired values for type and
// bubbles. Set cancelable (the third parameter) to true.
var e:Event = new Event(type, bubbles, true);

Custom Events | 229

// Dispatch the event
dispatchEvent(e);

// Check whether any listeners requested the prevention of the
// default behavior. If no listener called preventDefault()...
if (!e.isDefaultPrevented()) {
 // ...then carry out the default behavior
}

Let’s apply these steps to an example that builds on the toggle switch example. Sup-
pose we’re using our toggle switch widget in a control-panel application that assigns
different privileges to its users depending on their status. Guest users are prevented
from using some of the switches in the panel, while administrative users are allowed
to use all switches in the panel.

To accommodate the different user levels in the application, we define a new toggle
switch event type: ToggleEvent.TOGGLE_ATTEMPT. The ToggleEvent.TOGGLE_ATTEMPT
occurs anytime the user attempts to turn a toggle switch on or off. The default
behavior associated with the ToggleEvent.TOGGLE_ATTEMPT event is the toggling of the
switch.

For the sake of simplicity, we’ll assume that our toggle switch can only be turned on
or off via a mouse click (not via the keyboard). Whenever the user clicks the toggle
switch, we dispatch a ToggleEvent.TOGGLE_ATTEMPT. Then, if no listener prevents the
default behavior, we carry out the toggle request. Here’s the relevant code:

private function clickListener (e:MouseEvent):void {
 // The user has attempted to turn the switch on or off, so ask
 // ActionScript to dispatch a ToggleEvent.TOGGLE_ATTEMPT event,
 // targeted at this ToggleSwitch object. First create the event object...
 var toggleEvent:ToggleEvent =
 new ToggleEvent(ToggleEvent.TOGGLE_ATTEMPT,
 true,
 true);
 // ... then request the event dispatch
 dispatchEvent(toggleEvent);

 // The ToggleEvent.TOGGLE_ATTEMPT event dispatch is now complete.
 // If no listener prevented the default event behavior...
 if (!toggleEvent.isDefaultPrevented()) {
 // ...then toggle the switch
 toggle();
 }
}

In our control-panel application, we register a ToggleEvent.TOGGLE_ATTEMPT listener
for every ToggleSwitch object. Within that listener, we evaluate the user’s status. For
restricted switches, if the user is a guest, we prevent the default behavior. Here’s the
code:

// Listener executed whenever a ToggleEvent.TOGGLE_ATTEMPT event occurs
private function toggleAttemptListener (e:ToggleEvent):void {

230 | Chapter 12: Events and Event Handling

 // If the user is a guest...
 if (userType == UserType.GUEST) {
 // ...deny the attempted use of the toggle switch
 e.preventDefault();
 }
}

Example 12-5 shows the control-panel application in its entirety, complete with a
fully functioning, albeit simple, graphical version of the toggle switch widget. The
comments will guide you through the code.

Example 12-5. The control panel application classes

// The ToggleEvent class
package {
 import flash.events.*;

 // A class representing the custom "toggle" event
 public class ToggleEvent extends Event {
 // A constant for the "toggle" event type
 public static const TOGGLE:String = "toggle";

 // A constant for the "toggleAttempt" event type
 public static const TOGGLE_ATTEMPT:String = "toggleAttempt";

 // Indicates whether the switch is now on or off
 public var isOn:Boolean;

 // Constructor
 public function ToggleEvent (type:String,
 bubbles:Boolean = false,
 cancelable:Boolean = false,
 isOn:Boolean = false) {
 // Pass constructor parameters to the superclass constructor
 super(type, bubbles, cancelable);

 // Remember the toggle switch's state so it can be accessed within
 // ToggleEvent.TOGGLE listeners
 this.isOn = isOn;
 }

 // Every custom event class must override clone()
 public override function clone():Event {
 return new ToggleEvent(type, bubbles, cancelable, isOn);
 }

 // Every custom event class must override toString().
 public override function toString():String {
 return formatToString("ToggleEvent", "type", "bubbles",
 "cancelable", "eventPhase", "isOn");
 }
 }
}

Custom Events | 231

// The ToggleSwitch class
package {
 import flash.display.*;
 import flash.events.*;

 // Represents a simple toggle-switch widget with preventable default
 // behavior
 public class ToggleSwitch extends Sprite {
 // Remembers the state of the switch
 private var isOn:Boolean;
 // Contains the toggle switch graphics
 private var icon:Sprite;

 // Constructor
 public function ToggleSwitch () {
 // Create the Sprite to contain the toggle switch graphics
 icon = new Sprite();
 addChild(icon);

 // Set the switch to off by default
 isOn = false;
 drawOffState();

 // Register to be notified when the user clicks the switch graphic
 icon.addEventListener(MouseEvent.CLICK, clickListener);
 }

 // Listener executed when the user clicks the toggle switch
 private function clickListener (e:MouseEvent):void {
 // The user has attempted to turn the switch on or off, so ask
 // ActionScript to dispatch a ToggleEvent.TOGGLE_ATTEMPT event,
 // targeted at this ToggleSwitch object. First create the event
 // object...
 var toggleEvent:ToggleEvent =
 new ToggleEvent(ToggleEvent.TOGGLE_ATTEMPT,
 true, true);
 // ...then request the event dispatch
 dispatchEvent(toggleEvent);

 // The ToggleEvent.TOGGLE_ATTEMPT event dispatch is now complete.
 // If no listener prevented the default event behavior...
 if (!toggleEvent.isDefaultPrevented()) {
 // ...then toggle the switch
 toggle();
 }
 }

 // Turns the switch on if it is currently off, or off if it is
 // currently on. Note that the switch can be toggled programmatically,
 // even if the user does not have privileges to toggle it manually.
 public function toggle ():void {
 // Toggle the switch state
 isOn = !isOn;

Example 12-5. The control panel application classes (continued)

232 | Chapter 12: Events and Event Handling

 // Draw the matching graphic for the new switch state
 if (isOn) {
 drawOnState();
 } else {
 drawOffState();
 }

 // Ask ActionScript to dispatch a ToggleEvent.TOGGLE event, targeted
 // at this ToggleSwitch object
 var toggleEvent:ToggleEvent = new ToggleEvent(ToggleEvent.TOGGLE,
 true, false, isOn);
 dispatchEvent(toggleEvent);
 }

 // Draws the graphics for the off state
 private function drawOffState ():void {
 icon.graphics.clear();
 icon.graphics.lineStyle(1);
 icon.graphics.beginFill(0xFFFFFF);
 icon.graphics.drawRect(0, 0, 20, 20);
 }

 // Draws the graphics for the on state
 private function drawOnState ():void {
 icon.graphics.clear();
 icon.graphics.lineStyle(1);
 icon.graphics.beginFill(0xFFFFFF);
 icon.graphics.drawRect(0, 0, 20, 20);
 icon.graphics.beginFill(0x000000);
 icon.graphics.drawRect(5, 5, 10, 10);
 }
 }
}

// The ControlPanel class (the application's main class)
package {
 import flash.display.*;

 // A generic application that demonstrates the prevention of
 // default behavior for custom events
 public class ControlPanel extends Sprite {
 // Set this application user's privilege level. In this example, only
 // users with UserType.ADMIN privileges can use the toggle switch.
 private var userType:int = UserType.GUEST;

 // Constructor
 public function ControlPanel () {
 // Create a ToggleSwitch
 var toggleSwitch:ToggleSwitch = new ToggleSwitch();
 // Register for ToggleEvent.TOGGLE_ATTEMPT events
 toggleSwitch.addEventListener(ToggleEvent.TOGGLE_ATTEMPT,
 toggleAttemptListener);

Example 12-5. The control panel application classes (continued)

Type Weakness in ActionScript’s Event Architecture | 233

Now that we’ve covered custom events in ActionScript, let’s turn our attention to
two final advanced event topics.

Type Weakness in ActionScript’s Event Architecture
ActionScript’s listener-based event architecture involves many different partici-
pants—the event listener, the object that registers the listener, the event target, the
event object, and the event name. A given event dispatch (and response) succeeds
only when those participants interoperate properly. In order for the participants to
interoperate properly, the following basic assumptions must be met:

• The event type for which the listener registered must exist

• The listener, itself, must exist

 // Register for ToggleEvent.TOGGLE events
 toggleSwitch.addEventListener(ToggleEvent.TOGGLE,
 toggleListener);
 // Add the toggle switch to this object's display hierarchy
 addChild(toggleSwitch);
 }

 // Listener executed whenever a ToggleEvent.TOGGLE_ATTEMPT event occurs
 private function toggleAttemptListener (e:ToggleEvent):void {
 // If the user is a guest...
 if (userType == UserType.GUEST) {
 // ...deny the attempted use of the toggle switch
 e.preventDefault();
 }
 }

 // Listener executed whenever a ToggleEvent.TOGGLE event occurs
 private function toggleListener (e:ToggleEvent):void {
 if (e.isOn) {
 trace("The ToggleSwitch is now on.");
 } else {
 trace("The ToggleSwitch is now off.");
 }
 }
 }
}

// The UserType class
package {
 // Defines constants representing levels of user privilege for the
 // control panel application
 public class UserType {
 public static const GUEST:int = 0;
 public static const ADMIN:int = 1;
 }
}

Example 12-5. The control panel application classes (continued)

234 | Chapter 12: Events and Event Handling

• The listener must know how to handle the event object dispatched when the
event occurs

• The object that registered the listener must support the specified event type

When a listener registers with an object for an event, it enters into a datatype-based
contract that guarantees the first three of the preceding four assumptions. If that con-
tract is not upheld, ActionScript generates a datatype error. For example, consider
the following event-listener registration and definition code, which includes three
intentional event-listener-contract violations (shown in bold):

urlLoader.addEventListener(Event.COMPLTE, completeListenr);

private function completeListener (e:MouseEvent):void {
 trace("Load complete");
}

The event-listener contract violations in the preceding code are as follows:

• The constant Event.COMPLTE has a typo: it is missing an “E.” ActionScript gener-
ates an error warning the programmer that the event type for which the listener
is attempting to register does not exist.

• The event listener name, completeListenr, has a typo: another missing “e.”
ActionScript generates an error warning the programmer that the listener being
registered does not exist.

• The datatype specified for completeListener()’s first parameter is MouseEvent,
which does not match the datatype of the event object for a Event.COMPLETE
event. At event dispatch time, ActionScript generates an error warning the pro-
grammer that the listener cannot handle the dispatched event object.

If we were to change the preceding code to address its three datatype errors, the
event dispatch and response would proceed successfully.

The datatype-based contract between an event listener and the object
that registers that listener helps us ensure that our event-response code
runs properly.

However, the contract between a listener and the object that registers that listener
has a weakness: it does not guarantee that the object supports the specified event
type. For example, consider the following code, which registers a listener with
urlLoader for TextEvent.TEXT_INPUT events:

urlLoader.addEventListener(TextEvent.TEXT_INPUT, textInputListener);

Even though, in practical terms, we can safely assume that a URLLoader object will
never be the target of a TextEvent.TEXT_INPUT event, the preceding code does not
generate an error. In ActionScript, listeners can register for events by any name. For
example, the following nonsensical code is also legal:

urlLoader.addEventListener("dlrognw", dlrognwListener);

Type Weakness in ActionScript’s Event Architecture | 235

While it may seem self-evident that urlLoader will never be the target of an event
named “dlrognw,” it is actually possible for a program to cause such an event to be
dispatched. The following code demonstrates:

urlLoader.dispatchEvent(new Event("dlrognw"));

To account for the possibility that a program might target an event dispatch of any
event type at any object, ActionScript intentionally does not enforce the concept of
“supported events.” This flexibility is the subject of some debate because it leads to
potentially difficult-to-diagnose bugs in code. For example, suppose we use the
Loader class to load an external image, as follows:

var loader:Loader = new Loader();
loader.load(new URLRequest("image.jpg"));

Also suppose we assume that loader will be the target of load-progress events for the
loading asset (much as a URLLoader object is the target of load-progress events for a
loading asset). We, therefore, attempt to handle the Event.COMPLETE event for our
loading asset by registering directly with the Loader object, as follows:

loader.addEventListener(Event.COMPLETE, completeListener);

When we run our code, we’re surprised to find that even though no errors occur,
completeListener() is never triggered. Because no errors are generated, we have no
immediate way to diagnose the problem in our code. The ensuing research and
debugging costs us time and, in all likelihood, no small amount of frustration. Only
by consulting Adobe’s documentation do we find the problem: Loader objects, in
fact, are not the target of load-progress events; instead, load-progress events must be
handled through each Loader object’s LoaderInfo instance, as follows:

loader.contentLoaderInfo.addEventListener(Event.COMPLETE, completeListener);

In the future, ActionScript might allow classes to declare the events they support,
and corresponding compiler warnings for attempts to register for unsupported
events. In the meantime, by overriding the addEventListener() method, classes that
implement custom events can optionally throw a custom error when listeners register
for unsupported events, as shown in the following code:

public override function addEventListener(eventType:String,
 handler:Function,
 capture:Boolean = false,
 priority:int = 0,
 weakRef:Boolean = false):void {
 // The canDispatchEvent() method (not shown) checks the specified
 // eventType against the class's list of supported events, and
 // returns a Boolean indicating whether the specified and eventType is
 // a supported event
 if(canDispatchEvent(eventType)) {
 // The event is supported, so proceed with registration
 super.addEventListener(eventType, handler, capture, priority, weakRef);

236 | Chapter 12: Events and Event Handling

 } else {
 // The event is not supported, so throw an error
 throw new Error(this + " does not support events of type '"
 + eventType + "'");
 }
}

The moral of the story is: be extra cautious when registering a listener for an event.
Always ensure that the object with which the listener is registered actually supports
the required event.

Now let’s consider one last event-architecture issue: event handling in applications
comprised of .swf files from different Internet domains. The following section
requires a basic understanding of .swf-file-loading techniques, covered in Chapter 28.

Handling Events Across Security Boundaries
In the upcoming Chapter 19, we’ll study a variety of scenarios in which security
restrictions prevent one .swf file from cross-scripting (programmatically controlling)
another. When two .swf files are prevented from cross-scripting each other due to
Flash Player security restrictions, they are subject to the following important event-
handling limitations:

• Event listeners in one .swf file are forbidden from registering for events with
objects in the other .swf file.

• When an event-dispatch targets an object in a display hierarchy, any objects
inaccessible to the target’s .swf file are not included in the event flow.

Fortunately, the preceding limitations can be completely circumvented using the
flash.system.Security class’s static method, allowDomain(). Let’s consider two exam-
ples showing how allowDomain() can be used to circumvent each of the preceding
limitations.

For information on loading .swf files see Chapter 28.

Module.swf Listener Registers with Main.swf Object
Suppose a .swf file from one site (site-a.com/Main.swf) loads a .swf file from another
site (site-b.com/Module.swf). Further suppose that Module.swf defines a listener that
wishes to register with an object created by Main.swf. To permit the registration,
Main.swf must execute the following line of code before Module.swf registers the
listener:

Security.allowDomain("site-b.com");

The preceding line of code allows all .swf files from site-b.com (including Module.swf)
to register listeners with any object created by Main.swf.

site-a.com/Main.swf
site-b.com/Module.swf
site-b.com

Handling Events Across Security Boundaries | 237

Main.Swf Listener Receives Notification for an Event Targeted at a
Module.swf Display Object
Continuing with the “Main.swf loads Module.swf” scenario from the preceding sec-
tion, suppose Main.swf ’s main class instance adds the Loader object containing
Module.swf to its display hierarchy, as follows:

package {
 import flash.display.*;
 import flash.net.*;
 import flash.events.*;

 public class Main extends Sprite {
 private var loader:Loader;

 public function Main() {
 loader = new Loader();
 loader.load(new URLRequest("http://site-b.com/Module.swf"));
 // Add the Loader object containing Module.swf to this object's
 // display hierarchy
 addChild(loader);
 }
 }
}

Also suppose that Main.swf ’s main class instance wishes to be notified any time an
object in Module.swf is clicked. Accordingly, Main.swf ’s main class instance regis-
ters a listener with loader for MouseEvent.CLICK events, as follows:

package {
 import flash.display.*;
 import flash.net.*;
 import flash.events.*;

 public class Main extends Sprite {
 private var loader:Loader;

 public function Main() {
 loader = new Loader();
 loader.load(new URLRequest("http://site-b.com/Module.swf"));
 addChild(loader);
 loader.addEventListener(MouseEvent.CLICK, clickListener);
 }

 private function clickListener (e:MouseEvent):void {
 trace("Module.swf was clicked");
 }
 }
}

However, because Main.swf and Module.swf are from different Internet domains,
security limitations prevent clickListener() from being triggered by MouseEvent.CLICK
events targeted at loader’s display descendants (i.e., display objects in Module.swf).

238 | Chapter 12: Events and Event Handling

To circumvent this limitation, Module.swf ’s main-class constructor includes the fol-
lowing code:

Security.allowDomain("site-a.com");

After the preceding line of code runs, Main.swf (and all .swf files from site-a.com) are
trusted by Module.swf, so Main.sw f’s main class instance is included in the event
flow when the Flash client runtime dispatches MouseEvent.CLICK events targeted at
objects in Module.swf. As a result, clickListener() is triggered anytime an object in
Module.swf is clicked.

For complete information on allowDomain() and Flash Player secu-
rity, see the section “Creator Permissions (allowDomain())” in
Chapter 19.

Note that calling allowDomain() does more than just permit event handling across
security boundaries: it gives all .swf files from the permitted domain full license to
cross-script the .swf file in which the allowDomain() invocation occurs. But there’s
an alternative to allowDomain()’s broad-based permissions.

An Alternative to allowDomain(): Shared Events
In some cases, .swf files from different domains may wish to share events without
allowing full cross-scripting privileges. To account for such situations, Flash Player
provides the LoaderInfo class’s instance variable sharedEvents. The sharedEvents
variable is a simple, neutral object through which two .swf files can pass events to
each other, regardless of security restrictions. The technique allows event-based
inter-.swf communication without security concessions but involves more code than
the allowDomain() alternative.

Let’s explore sharedEvents through an example scenario. Suppose Tommy runs a fire-
works company with a Flash-based promotional web site, www.blast.ca. Tommy hires
a contractor, Derek, to produce a self-contained mouse effect that randomly generates
animated firework explosions behind the mouse pointer. Derek creates a .swf file,
MouseEffect.swf, containing the effect, and posts it at www.dereksflasheffects.com/
MouseEffect.swf. Derek tells Tommy to load MouseEffect.swf into his application,
www.blast.ca/BlastSite.swf. Derek and Tommy agree that MouseEffect.swf should be
hosted at www.dereksflasheffects.com so that Derek can easily update the file without
requiring any changes to Tommy’s web site.

Tommy asks Derek to make MouseEffect.swf stop generating explosions when the
mouse pointer leaves Flash Player’s display area. Derek thinks that’s a sensible idea
and starts writing the appropriate code. Normally, in order to detect the mouse’s
departure from Flash Player’s display area, code in MouseEffect.swf would register for
Event.MOUSE_LEAVE events with the Stage instance. However, because MouseEffect.swf
and BlastSite.swf come from different domains, MouseEffect.swf does not have access

site-a.com
www.blast.ca
www.dereksflasheffects.com/MouseEffect.swf
www.dereksflasheffects.com/MouseEffect.swf
www.dereksflasheffects.com

Handling Events Across Security Boundaries | 239

to the Stage instance. Tommy decides that, rather than give MouseEffect.swf full
access to BlastSite.swf, he’ll simply forward all Event.MOUSE_LEAVE events to
MouseEffect.swf via sharedEvents.

Example 12-6 shows the relevant event-forwarding code from BlastSite.swf.

Example 12-7 shows the relevant event-handling code from MouseEffect.swf:

Example 12-6. Forwarding an event through sharedEvents

package {
 import flash.display.*;
 import flash.net.*;
 import flash.events.*;
 import flash.system.*;

 public class BlastSite extends Sprite {
 private var loader:Loader;

 public function BlastSite () {
 // Load MouseEffect.swf
 loader = new Loader();
 loader.load(
 new URLRequest("http://www.dereksflasheffects.com/MouseEffect.swf"));
 addChild(loader);

 // Register for Event.MOUSE_LEAVE events
 stage.addEventListener(Event.MOUSE_LEAVE, mouseLeaveListener);
 }

 // When Event.MOUSE_LEAVE occurs...
 private function mouseLeaveListener (e:Event):void {
 // ...forward it to MouseEffect.swf
 loader.contentLoaderInfo.sharedEvents.dispatchEvent(e);
 }
 }
}

Example 12-7. Handling an Event Targeted at sharedEvents

package {
 import flash.display.Sprite;
 import flash.events.*;

 public class MouseEffect extends Sprite {
 public function MouseEffect () {
 // Register for Event.MOUSE_LEAVE with sharedEvents
 loaderInfo.sharedEvents.addEventListener(Event.MOUSE_LEAVE,
 mouseLeaveListener);
 }

 // Handles Event.MOUSE_LEAVE events targeted at sharedEvents
 private function mouseLeaveListener (e:Event):void {
 trace("MouseEffect.mouseLeaveListener() was invoked...");
 // Stop the explosions effect here...
 }

240 | Chapter 12: Events and Event Handling

Derek gets paid and puts the money towards a trip to Japan. Tommy is happy with
the explosion effect, although he’s not sure it has increased his sales.

What’s Next?
We’re making good progress in our study of ActionScript fundamentals. If you’ve
read and understood the concept in the past 12 chapters, you now have enough
knowledge of ActionScript to start learning about most Flash client runtime APIs. So
it’s time to choose your own adventure. If you want to continue exploring Action-
Script’s core features, head on to Chapter 13, where we’ll learn to write code that
recovers from runtime error conditions. If, on the other hand, you’d prefer to learn
how to use ActionScript to display content on screen, then skip ahead to Part II.

 }
}

Example 12-7. Handling an Event Targeted at sharedEvents (continued)

241

Chapter 13 CHAPTER 13

Exceptions and Error Handling14

In this chapter, we’ll explore ActionScript’s system for generating and responding to
runtime errors—or exceptions. In ActionScript, errors can be generated both by the
Flash runtime and by the program that is executing. Errors generated by the Flash
runtime are known as built-in errors; errors generated by a program are known as
custom errors. In a program, we can respond to, or handle, any error (whether built-
in or custom) using the try/catch/finally statement; we can generate an error via the
throw statement.

To learn how to generate and respond to errors in a program, we’ll revisit our virtual
zoo program.

This chapter’s updates to the virtual zoo program are the last we’ll
make until the end of this book. To complete the virtual zoo program
we must discuss display programming and mouse input, both of
which are covered in Part II. After you read Part II, consult the “The
Final Virtual Zoo,” (Appendix) to see how to add graphics and inter-
activity to the virtual zoo program.

The Exception-Handling Cycle
Recall that the VirtualPet class defines a setName() method that sets the petName vari-
able of VirtualPet instances. As a refresher, here’s the relevant VirtualPet class code
(portions of the class that do not pertain to setting the petName variable are omitted):

public class VirtualPet {
 private var petName:String;

 public function setName (newName:String):void {
 // If the proposed new name has more than maxNameLength characters...
 if (newName.length > VirtualPet.maxNameLength) {
 // ...truncate it
 newName = newName.substr(0, VirtualPet.maxNameLength);
 } else if (newName == "") {
 // ...otherwise, if the proposed new name is an empty string,

242 | Chapter 13: Exceptions and Error Handling

 // then terminate this method without changing petName
 return;
 }

 // Assign the new, validated name to petName
 petName = newName;
 }
}

The setName() method checks whether a new pet name has a legal number of char-
acters before changing the petName variable. If the new pet name is not valid, the
change is not made; otherwise, the change is allowed.

Let’s revise the setName() method so that it generates an exception (signals an error)
when the newName parameter is passed an illegal number of characters. Later we’ll
write some error-recovery code to handle setName()’s new exception.

To generate an exception in our code, we use the throw statement, which takes the
following form:

throw expression

In the preceding code, expression is a data value that describes some unusual or
problematic situation. Using throw to signal an error is sometimes referred to as
“throwing an exception.” ActionScript allows any value to act as the expression of a
throw statement. For example, the expression value could be the string literal “Some-
thing went wrong!” or it could be a numeric error code. However, as a best practice,
Adobe recommends using an instance of the built-in Error class (or one of its sub-
classes) as the value of expression. The Error class is a standard class for represent-
ing error conditions in a program. Its instance variable message is used to describe an
error.

The throw statement halts all currently executing code and passes expression to a
special section of code known as a catch block that will respond to, or handle, the
problem. Before we consider how catch blocks works, let’s rewrite setName() so that
it generates an exception with a throw statement when an invalid petName is received.
Here’s the code:

public function setName (newName:String):void {
 // If the proposed new name has an illegal number of characters...
 if (newName.length > VirtualPet.maxNameLength || newName == "") {
 // ...generate an error
 throw new Error("Invalid pet name specified.");
 }

 // Assign the new valid name to petName
 petName = newName;
}

In our revised setName() method, when the value of newName is illegal, we use throw
to halt the method’s execution rather than simply truncating the name as we did

The Exception-Handling Cycle | 243

previously. We also supply a description of the problem—“Invalid pet name speci-
fied”—as an argument to the Error constructor, indicating what went wrong. The
Error constructor assigns that description to the new Error object’s message variable.

If setName() encounters no problems with newName, then the method completes nor-
mally, and the code that called it can rest assured that it performed its job success-
fully. Otherwise, a catch block must handle the problem. A catch block is part of a
larger statement known as the try/catch/finally statement. The try/catch/finally state-
ment provides a backup plan for code that might throw an exception. Here’s the gen-
eral structure of a typical try/catch/finally statement:

try {
 // Code here might generate an exception
} catch (e:type) {
 // Code here deals with the problem
} finally {
 // Code here executes whether or not code in the try block
 // throws an exception
}

In the preceding code, the keyword try tells ActionScript that we’re about to execute
some code that might generate an exception. The catch block handles exceptions
generated by the try block. Code in the catch block executes if, and only if, code in
the try block generates an exception. Code in the finally block always executes after
either the try block or the catch block has finished. The finally block of a try/catch/
finally statement typically contains cleanup code that must execute whether or not
an exception occurs in the corresponding try block.

Notice the typical structure:

• The try block executes code that might throw an exception.

• Code in the try block uses the throw statement to indicate any errors.

• If no error is thrown in the try block, then the try block executes in full, and the
program skips the catch block.

• If an error is thrown in the try block, the try block is aborted, and the catch
block executes. The catch block deals with any errors that occur in the try block.

• The finally block executes

In many cases, the finally block is not required, and is, therefore, omitted. In the
coming examples, we’ll omit the finally block. Later in the section “The finally
Block,” we’ll study a finally block example.

When the catch block is executed, it receives the expression of the throw statement
as a parameter. In the catch block, we can use that expression to help diagnose the
error thrown by the try block. Metaphorically, the code that encounters a problem
throws an exception (passes an Error object) to the catch block, which receives it as a
parameter (catches it).

244 | Chapter 13: Exceptions and Error Handling

We’ll find out what happens if an error is never caught later in the sec-
tion “Uncaught Exceptions,” later in this chapter.

Here’s an example try/catch/finally statement.

try {
 somePet.setName("James");
 // If we get this far, no exception occurred; proceed as planned.
 trace("Pet name set successfully.");
} catch (e:Error) {
 // ERROR! Invalid data. Display a warning.
 trace("An error occurred: " + e.message);
}

When we invoke pet.setName() within the preceding try block, if setName()’s throw
statement doesn’t execute (if no error occurs), then the subsequent statements in the
try block execute normally, and the program skips the catch block entirely. But if
setName() throws an exception, the program immediately skips to and executes the
catch block. Within the catch block, the value of the parameter e is the Error object
from the throw statement in setName(). In the preceding example, the code in the
catch block simply displays that Error object’s message variable during debugging.
But in a more sophisticated application, the catch block might attempt to recover
from the error, perhaps by displaying a dialog box requesting that the user supply a
valid name.

Handling Multiple Types of Exceptions
The exception example from the preceding section was simplistic. What happens if
our method generates more than one kind of error? Are they all sent to the same
catch block? Well, that’s up to the developer; they certainly could be, but it’s more
typical and better practice for different kinds of errors to be handled by separate
catch blocks. Let’s examine why.

Suppose we want a finer-grained set of error messages in our setName() method: one
for general invalid data, one for a name that’s too short, and one for a name that’s
too long. The body of our revised setName() method might look like this:

if (newName.indexOf(" ") == 0) {
 // Names can't start with a space...
 throw new Error("Invalid pet name specified.");
} else if (newName == "") {
 throw new Error("Pet name too short.");
} else if (newName.length > VirtualPet.maxNameLength) {
 throw new Error("Pet name too long.");
}

Handling Multiple Types of Exceptions | 245

To handle the three possible error messages in our new setName() message, we
might be tempted to code our try/catch/finally statement as follows:

try {
 somePet.setName("somePetName");
 // If we get this far, no exception occurred; proceed as planned.
 trace("Pet name set successfully.");
} catch (e:Error) {
 switch (e.message) {
 case "Invalid pet name specified.":
 trace("An error occurred: " + e.message);
 trace("Please specify a valid name.");
 break;

 case "Pet name too short.":
 trace("An error occurred: " + e.message);
 trace("Please specify a longer name.");
 break;

 case "Pet name too long.":
 trace("An error occurred: " + e.message);
 trace("Please specify a shorter name.");
 break;
 }
}

Admittedly, that code does work, but it’s fraught with problems. First, and most
serious, the errors are distinguished from one another only by the text in a string that
is hidden within the VirtualPet class. Each time we want to check what kind of errors
might occur in setName(), we have to look inside the VirtualPet class and find the
error message strings. Using message strings for error identification across multiple
methods and classes is highly prone to human error and makes our code difficult to
maintain. Second, the switch statement itself is hard to read. We’re not much farther
ahead than we would be if we had used, say, numeric error codes instead of formal
exceptions.

Fortunately, there’s a formal (and elegant) way to handle multiple exception types.
Each try block can have any number of supporting catch blocks. When an exception
is thrown in a try block that has multiple catch blocks, ActionScript executes the
catch block whose parameter’s datatype matches the datatype of the value originally
thrown.

Here’s the general syntax of a try statement with multiple catch blocks:

try {
 // Code that might generate an exception.
} catch (e:ErrorType1) {
 // Error-handling code for ErrorType1.
} catch (e:ErrorType2) {
 // Error-handling code for ErrorType2.
} catch (e:ErrorTypen) {
 // Error-handling code for ErrorTypen.
}

246 | Chapter 13: Exceptions and Error Handling

If a throw statement in the preceding try block were to throw an expression of type
ErrorType1, then the first catch block would be executed. For example, the follow-
ing code causes the first catch block to execute:

throw new ErrorType1();

If a throw statement were to pass an expression of type ErrorType2, then the second
catch clause would be executed, and so on. As we learned earlier, in ActionScript the
throw statement expression can belong to any datatype. However, remember that, as
a best practice, most programs throw instances of the Error class or one of its sub-
classes only.

If we want to throw multiple kinds of exceptions in an application, we define an
Error subclass for each kind of exception. It is up to you as the developer to decide
what level of granularity you require (i.e., to what degree you need to differentiate
among different error conditions).

Determining Exception Type Granularity
Should you define an Error subclass for each and every error condition? Typically,
no, you won’t need that level of granularity because in many cases multiple error
conditions can be treated in the same way. If you don’t need to differentiate among
multiple error conditions, you can group them together under a single custom Error
subclass. For example, you might define a single Error subclass named
InvalidInputException to handle a wide range of input problems.

That said, you should define a separate Error subclass for each error condition that
you want to distinguish from other possible conditions. To help you understand
when you should create a new subclass for a given error condition and to demon-
strate how to group multiple conditions into a single subclass, let’s return to the
setName() method.

Earlier we generated three exceptions from the setName() method. All three excep-
tions used the generic Error class. Here’s the code again:

if (newName.indexOf(" ") == 0) {
 // Names can't start with a space...
 throw new Error("Invalid pet name specified.");
} else if (newName == "") {
 throw new Error("Pet name too short.");
} else if (newName.length > VirtualPet.maxNameLength) {
 throw new Error("Pet name too long.");
}

In the preceding code, to differentiate VirtualPet exceptions from all other excep-
tions in our application, we used the Error class’s message variable, which, as we just
learned, made our exceptions awkward to use and prone to human error. A better
way to set VirtualPet-related data errors apart from other errors in our application is
to define a custom Error subclass, VirtualPetNameException, as follows:

Handling Multiple Types of Exceptions | 247

// Code in VirtualPetNameException.as:
package zoo {
 public class VirtualPetNameException extends Error {
 public function VirtualPetNameException () {
 // Pass an error message to the Error constructor, to be
 // assigned to this object's message variable
 super("Invalid pet name specified.");
 }
 }
}

With our VirtualPetNameException class in place, our setName() method can throw
its very own type of error, as follows:

public function setName (newName:String):void {
 if (newName.indexOf(" ") == 0) {
 throw new VirtualPetNameException();
 } else if (newName == "") {
 throw new VirtualPetNameException();
 } else if (newName.length > VirtualPet.maxNameLength) {
 throw new VirtualPetNameException();
 }

 petName = newName;
}

Notice that the preceding method definition throws the same error type
(VirtualPetNameException) for all three VirtualPet-related error conditions. As devel-
opers of the VirtualPet class, we now face the crux of the error-granularity issue. We
must decide not only how distinguishable we want VirtualPet error messages to be
from other application errors, but also how distinguishable we want those errors to
be from one another. We have the following options:

Option 1: Use a single VirtualPet error class.
In this option, we leave the preceding setName() method definition as it is. As
we’ll see shortly, this option lets us distinguish VirtualPet errors from other
generic errors in the program, but it does not help us distinguish internally
among the three varieties of VirtualPet-related errors (invalid data, too short a
pet name, and too long a pet name).

Option 2: Simplify code, but still use a single VirtualPet error class.
In this option, we modify the setName() method so it checks for all three error
conditions using a single if statement. This option is the same as the previous
option, but uses cleaner code.

Option 3: Use debugging messages to distinguish among errors.
In this option, we add configurable debugging messages to the
VirtualPetNameException class. This option adds slightly more granularity than
the previous two options but only for the sake of the developer and only during
debugging.

248 | Chapter 13: Exceptions and Error Handling

Option 4: Create a custom exception class for each error condition.
In this option, we create two custom VirtualPetNameException subclasses,
VirtualPetInsufficientDataException and VirtualPetExcessDataException. This
option provides the most granularity; it lets a program respond independently to
the three varieties of VirtualPet-related errors using formal branching logic.

Let’s consider the preceding options in turn.

Options 1 and 2: Using a single custom-exception type

Our first option is to accept the preceding setName() definition, which throws the
same error type (VirtualPetNameException) for all three VirtualPet-related error con-
ditions. Because the method uses VirtualPetNameException and not Error to throw
exceptions, VirtualPet exceptions are already distinguishable from other generic
exceptions. Users of the setName() method can use code such as the following to
discriminate between VirtualPet-related errors and other generic errors:

try {
 // This call to setName() will generate a VirtualPetNameException.
 somePet.setName("");
 // Other statements in this try block might generate other generic errors.
 // For demonstration purposes, we'll throw a generic error directly.
 throw new Error("A generic error.");
} catch (e:VirtualPetNameException) {
 // Handle VirtualPet name errors here.
 trace("An error occurred: " + e.message);
 trace("Please specify a valid name.");
} catch (e:Error) {
 // Handle all other errors here.
 trace("An error occurred: " + e.message);
}

For many applications, the level of error granularity provided by
VirtualPetNameException is enough. In such a case, we should at least rewrite the
setName() method so that it doesn’t contain redundant code (throwing the
VirtualPetNameException three times). Here’s the rewritten code (which was Option
2 in our earlier list):

public function setName (newName:String):void {
 if (newName.indexOf(" ") == 0
 || newName == ""
 || newName.length > VirtualPet.maxNameLength) {
 throw new VirtualPetNameException();
 }

 petName = newName;
}

Handling Multiple Types of Exceptions | 249

Rewriting code to improve its structure without changing its behavior
is known as refactoring.

Option 3: Using configurable debugging messages

Option 3 adds configurable debugging messages to the VirtualPetNameException
class. Options 1 and 2 let us distinguish a VirtualPet exception from other excep-
tions in the application but didn’t help us distinguish a “too long” exception from a
“too short” exception. If you feel that it’s difficult to debug a VirtualPet name prob-
lem without knowing whether a VirtualPet object’s name is too big or too small, you
can adjust the VirtualPetNameException class so that it accepts an optional descrip-
tion (the equivalent of a proverbial “note to self”). Here’s the adjusted
VirtualPetNameException class:

package zoo {
 public class VirtualPetNameException extends Error {
 // Provide a constructor that allows a custom message to be supplied,
 // but uses the default error message when no custom message is supplied
 public function VirtualPetNameException (
 message:String = "Invalid pet name specified.") {
 super(message);
 }
 }
}

To make use of our adjusted VirtualPetNameException class in setName(), we revert
to our setName() code used in Option 1 and add debugging error messages, as
follows:

public function setName (newName:String):void {
 if (newName.indexOf(" ") == 0) {
 // The default error message is fine in this case,
 // so don't bother specifying a custom error message.
 throw new VirtualPetNameException();
 } else if (newName == "") {
 // Here's the custom "too short" error message.
 throw new VirtualPetNameException("Pet name too short.");
 } else if (newName.length > VirtualPet.maxNameLength) {
 // Here's the custom "too long" error message.
 throw new VirtualPetNameException("Pet name too long.");
 }

 petName = newName;
}

Now that setName() supplies custom error messages, we’ll have an easier time
debugging a VirtualPet problem because we’ll know more information when an error
occurs. Our use of the setName() method has not changed, but we’re better
informed when something goes wrong, as shown next:

250 | Chapter 13: Exceptions and Error Handling

try {
 // This call to setName() will generate a VirtualPetNameException.
 somePet.setName("");
} catch (e:VirtualPetNameException) {
 // Handle VirtualPet name errors here.
 // In this case, the helpful debugging output is:
 // An error occurred: Pet name too short.
 trace("An error occurred: " + e.message);
} catch (e:Error) {
 // Handle all other errors here.
 trace("An error occurred: " + e.message);
}

Option 4: Multiple custom VirtualPetNameException subclasses

Option 3 added configurable debugging messages to the VirtualPetNameException
class. It helped us investigate a problem in our code during development, but it
doesn’t help the program take independent action to recover from individual
VirtualPet errors. To allow the program to execute independent code branches based
on the type of VirtualPet error thrown, we need custom VirtualPetNameException
subclasses, which is Option 4.

If you want a program to differentiate among error conditions, imple-
ment a separate Error subclass for each one. Don’t rely on the message
variable alone to implement program branching logic. If your custom
Error subclass defines a constructor that accepts an error message, you
should use that message for debugging only, not for branching logic.

To independently differentiate among the VirtualPet class’s three error conditions, we’ll cre-
ate three Error subclasses: VirtualPetNameException, VirtualPetInsufficientDataException,
and VirtualPetExcessDataException. The VirtualPetNameException class extends Error
directly. The VirtualPetInsufficientDataException and VirtualPetExcessDataException
classes both extend VirtualPetNameException because we want to differentiate these
specific error types from a more general invalid data exception.

Here’s the source code for our three VirtualPetError subclasses:

// Code in VirtualPetNameException.as:
package zoo {
 public class VirtualPetNameException extends Error {
 public function VirtualPetNameException (
 message:String = "Invalid pet name specified.") {
 super(message);
 }
 }
}

// Code in VirtualPetInsufficientDataException.as:
package zoo {
 public class VirtualPetInsufficientDataException
 extends VirtualPetNameException {

Handling Multiple Types of Exceptions | 251

 public function VirtualPetInsufficientDataException () {
 super("Pet name too short.");
 }
 }
}

// Code in VirtualPetExcessDataException.as:
package zoo {
 public class VirtualPetExcessDataException
 extends VirtualPetNameException {
 public function VirtualPetExcessDataException () {
 super("Pet name too long.");
 }
 }
}

Each class specifies the value of its message variable directly and does not allow it to
be customized on a per-use basis. When catching any of the preceding VirtualPet
exceptions, our program will use the exception’s datatype (not the message variable)
to distinguish between the three kinds of exceptions.

Now that we have three exception types, let’s update our setName() method to
throw those types. Here’s the code:

public function setName (newName:String):void {
 if (newName.indexOf(" ") == 0) {
 throw new VirtualPetNameException();
 } else if (newName == "") {
 throw new VirtualPetInsufficientDataException();
 } else if (newName.length > VirtualPet.maxNameLength) {
 throw new VirtualPetExcessDataException();
 }

 petName = newName;
}

Notice that we do not pass any error description to the various VirtualPet exception
constructors. Once again, the description of each exception is set by each custom
Error subclass using its message variable.

With each VirtualPet exception represented by its own class, the errors that can be
generated by the setName() method are well-known to programmers working with
VirtualPet instances. The exception types are visible outside the VirtualPet class,
exposed appropriately to programmers working on the application. Just by glancing
at the application class hierarchy, the programmer can determine the exceptions that
relate to the VirtualPet class. Furthermore, if the programmer mistakenly uses the
wrong name for an exception, the compiler generates a datatype error.

Now let’s see how to add branching logic to our code based on the types of excep-
tions that can be generated by setName(). Pay close attention to the datatype of each
catch block parameter and the placement of each catch block.

252 | Chapter 13: Exceptions and Error Handling

try {
 b.setName("somePetName");
} catch (e:VirtualPetExcessDataException) {
 // Handle "too long" case.
 trace("An error occurred: " + e.message);
 trace("Please specify a shorter name.");
} catch (e:VirtualPetInsufficientDataException) {
 // Handle "too short" case.
 trace("An error occurred: " + e.message);
 trace("Please specify a longer name.");
} catch (e:VirtualPetNameException) {
 // Handle general name errors.
 trace("An error occurred: " + e.message);
 trace("Please specify a valid name.");
}

In the preceding code, if the setName() method generates a
VirtualPetExcessDataException, the first catch block executes. If setName() gener-
ates a VirtualPetInsufficientDataException, the second catch block executes. And if
setName() generates a VirtualPetNameException, the third catch block executes.
Notice that the error datatypes in the catch blocks progress from specific to general.
When an exception is thrown, the catch block executed is the first one that matches
the datatype of the exception.

Hence, if we changed the datatype of the first catch block parameter to
VirtualPetNameException, the first catch block would execute for all three kinds of
exceptions! (Remember, VirtualPetNameException is the superclass of both
VirtualPetInsufficientDataException and VirtualPetExcessDataException, so they are
considered matches for the VirtualPetNameException datatype.) In fact, we could
prevent all of the catch blocks from executing simply by adding a new first catch
block with a parameter datatype of Error:

try {
 b.setName("somePetName");
} catch (e:Error) {
 // Handle all errors. No other catch blocks will ever execute.
 trace("An error occurred:" + e.message);
 trace("The first catch block handled the error.");
} catch (e:VirtualPetExcessDataException) {
 // Handle "too long" case.
 trace("An error occurred: " + e.message);
 trace("Please specify a shorter name.");
} catch (e:VirtualPetInsufficientDataException) {
 // Handle "too short" case.
 trace("An error occurred: " + e.message);
 trace("Please specify a longer name.");
} catch (e:VirtualPetNameException) {
 // Handle general name errors.
 trace("An error occurred: " + e.message);
 trace("Please specify a valid name.");
}

Exception Bubbling | 253

Obviously, the addition of the first catch clause in the preceding code is self-defeating,
but it does illustrate the hierarchical nature of exception handling. By placing a very
generic catch block at the beginning of the catch list, we can handle all errors in a single
location. Conversely, by placing a very generic catch block at the end of the catch list, we
can provide a safety net that handles any errors not caught by earlier catch blocks. For
example, in the following code, the final catch block executes only if the try block gener-
ates an exception that doesn’t belong to the VirtualPetExcessDataException,
VirtualPetInsufficientDataException, or VirtualPetNameException datatypes:

try {
 b.setName("somePetName");
} catch (e:VirtualPetExcessDataException) {
 // Handle overflow.
 trace("An error occurred: " + e.message);
 trace("Please specify a smaller value.");
} catch (e:VirtualPetInsufficientDataException) {
 // Handle under zero.
 trace("An error occurred: " + e.message);
 trace("Please specify a larger value.");
} catch (e:VirtualPetNameException) {
 // Handle general dimension errors.
 trace("An error occurred: " + e.message);
 trace("Please specify a valid dimension.");
} catch (e:Error) {
 // Handle any errors that don't qualify as VirtualPetNameException errors.
}

Remember, error granularity is a choice. In Option 4 we created a custom Error sub-
class for each variety of exception generated by the VirtualPet class. This approach
gives our program the greatest ability to respond independently to different types of
errors. But such flexibility is not necessarily required in many situations. Let the
needs of your program’s logic dictate how granular you make your errors.

Exception Bubbling
In ActionScript, an exception can be thrown anywhere in a program, even on a frame
in a timeline script! Given that an exception can be thrown anywhere, how does
ActionScript find the corresponding catch block to handle it? And what if no catch
block exists? These mysteries are resolved through the magic of exception bubbling.
Let’s follow along a bubbly ride with ActionScript as it encounters a throw state-
ment in a program. During the following dramatization, ActionScript’s musings are
shown in code comments.

When a throw statement executes, ActionScript immediately stops normal program
flow and looks for an enclosing try block. For example, here’s a throw statement:

// ActionScript: Hmm. A throw statement.
// Is there an enclosing try block for it?
throw new Error("Something went wrong");

254 | Chapter 13: Exceptions and Error Handling

If the throw statement is enclosed in a try block, ActionScript next tries to find a
catch block whose parameter’s datatype matches the datatype of the value thrown (in
this case, Error):

// ActionScript: Great, I found a try block.
// Is there a matching catch block?
try {
 throw new Error("Something went wrong");
}

If a matching catch block is found, ActionScript transfers program control to that
block:

try {
 throw new Error("Something went wrong");
// ActionScript: Found a catch block whose parameter datatype is Error!
// The hunt's over. I'll execute this catch block now...
} catch (e:Error) {
 // Handle problems...
}

But if a matching catch block cannot be found or if the throw statement did not
appear within a try block in the first place, then ActionScript checks whether the
throw statement occurred within a method or function. If the throw statement
occurred in a method or function, ActionScript searches for a try block around the
code that invoked the method or function. The following code demonstrates how
ActionScript reacts when, within a method, it encounters a throw statement that has
no enclosing try block:

public function doSomething ():void {
 // ActionScript: Hmm. No try block here.
 // I'll check who called this method.
 throw new Error("Something went wrong");
}

If the code that invoked the method or function is enclosed in a try block, Action-
Script looks for a matching catch block there and, if it finds a match, executes it. The
following code demonstrates an exception thrown out of a method and caught where
the method is invoked (i.e., one level up the call stack):

public class ProblemClass {
 public function doSomething ():void {
 // ActionScript: Hmm. No try block here.
 // I'll check who called this method.
 throw new Error("Something went wrong");
 }
}

public class ErrorDemo extends Sprite {
 public function ErrorDemo () {
 // ActionScript: Aha, here's who called doSomething(). And here's
 // an enclosing try block with a catch block whose
 // parameter datatype is Error! My work's done. catch

Exception Bubbling | 255

 // block, please execute now...
 try {
 var problemObject:ProblemClass = new ProblemClass();
 problemObject.doSomething();
 } catch (e:Error) {
 // Handle problems...
 trace("Exception caught in ErrorDemo, thrown by doSomething().");
 }
 }
}

The call stack is the list of functions and methods currently being exe-
cuted by ActionScript at any given point in a program. The list
includes the functions and methods in the reverse order from which
they were called, from top to bottom. When a function is immediately
below another function in the call stack, then the lower function was
invoked by the higher. The lowest function in the call stack is the
function currently executing.

In Flex Builder and the Flash authoring tool, you can use the debug-
ger to view the call stack for the current program, as described in
Adobe’s documentation.

In the preceding code, an exception thrown by a method was caught by a try/catch
block enclosing the method call statement. However, if no try block is found around
the function or method caller, ActionScript searches up the entire call stack for a try
block with a matching catch block. The following code shows a method throwing an
error that is caught two levels up the call stack:

public class ProblemClass {
 public function doSomething ():void {
 // ActionScript: Hmm. No try block here.
 // I'll check who called this method.
 throw new Error("Something went wrong");
 }
}

public class NormalClass {
 public function NormalClass () {
 // ActionScript: Aha, here's who called doSomething(). But still
 // no try block here. I'll check who called this method.
 var problemObject:ProblemClass = new ProblemClass();
 problemObject.doSomething();
 }
}

public class ErrorDemo extends Sprite {
 public function ErrorDemo () {
 // ActionScript: Aha! Found a try block that has a catch block whose
 // parameter's datatype is Error! My work's done.
 // catch block, please execute now...
 try {

256 | Chapter 13: Exceptions and Error Handling

 var normalObject:NormalClass = new NormalClass();
 } catch (e:Error) {
 // Handle problems...
 trace("Exception caught in ErrorDemo.");
 }
 }
}

Notice that ActionScript finds the try/catch block despite the fact that it surrounds
not the error-throwing code, nor the caller of the error-throwing method, but the
caller of the method that called the error-throwing method!

The following code shows the preceding bubbling example in the context of our vir-
tual pet program. In the following code listing, for brevity, only the pet-naming code
is shown. Comments in the code describe how the exception bubbles.

package {
 import flash.display.Sprite;
 import zoo.*;

 public class VirtualZoo extends Sprite {
 private var pet:VirtualPet;

 public function VirtualZoo () {
 try {
 // This code attempts to give a pet a name that is too long.
 // As a result, the setName() method throws an error.
 // However, the exception is not caught in the VirtualPet
 // constructor (where setName() is called). Instead, the exception
 // is caught here, where the VirtualPet constructor was
 // called (i.e., two levels up the call stack).
 pet = new VirtualPet("Bartholomew McGillicuddy");
 } catch (e:Error) {
 trace("An error occurred: " + e.message);
 // If attempting to create a VirtualPet object causes an exception,
 // then the object won't be created. Hence, we create a new
 // VirtualPet object here with a known-to-be-valid name.
 pet = new VirtualPet("Unnamed Pet");
 }
 }
 }
}

package zoo {
 public class VirtualPet {
 public function VirtualPet (name:String):void {
 // Even though the setName() method is called here, exceptions thrown
 // by setName() are not handled here. They are handled up the call
 // stack, by the code that created this VirtualPet object.
 setName(name);
 }

 public function setName (newName:String):void {
 // Exceptions thrown in this method are not handled here. They are

Exception Bubbling | 257

 // handled two-levels up the call stack, by the code that created
 // this VirtualPet object.
 if (newName.indexOf(" ") == 0) {
 throw new VirtualPetNameException();
 } else if (newName == "") {
 throw new VirtualPetInsufficientDataException();
 } else if (newName.length > VirtualPet.maxNameLength) {
 throw new VirtualPetExcessDataException();
 }

 petName = newName;
 }
 }
}

Uncaught Exceptions
We’ve seen a number of scenarios in which we’ve caught various errors. But what
happens if ActionScript never finds a catch block that can handle a thrown excep-
tion? If no eligible catch block is found anywhere in the call stack, then ActionScript
aborts execution of all code currently remaining in the call stack. In addition, if the
program is running in the debugger version of the Flash runtime, the error is
reported via either a dialog box, the Output panel (Flash authoring tool), or the Con-
sole panel (Flex Builder). Execution of the program then resumes normally.

The following code demonstrates a method that throws an error that is never caught:

public class ProblemClass {
 public function doSomething ():void {
 // ActionScript: Hmm. No try block here.
 // I'll check who called this method.
 throw new Error("Something went wrong");
 }
}

public class ErrorDemo extends Sprite {
 public function ErrorDemo () {
 // ActionScript: Aha, here's who called doSomething(). But still
 // no try block here. Hmm. I searched all the way to the top, and found
 // no try block. If this Flash runtime is a debugger version, I'll
 // report the problem. Maybe the programmer will know what to do.
 var problemObject:ProblemClass = new ProblemClass();
 problemObject.doSomething();
 }
}

As we’ve just seen, because exceptions bubble up the call stack, it’s not necessary for a
method to catch its own exceptions. And it’s not even necessary for the caller of a
method to catch its exceptions. The exception can legally be caught at any level in the
call stack. Any method can delegate exception handling to the code that calls it. That
said, it’s bad form and harmful to a program to throw an exception and then never

258 | Chapter 13: Exceptions and Error Handling

catch it. You should always catch exceptions or, having encountered an uncaught
exception, revise your code so that the exception isn’t thrown in the first place.

The finally Block
So far, we’ve discussed only the try and catch blocks in the try/catch/finally state-
ment. As we’ve seen, a try block contains code that might throw an exception, and a
catch block contains code that executes in response to a thrown exception. The
finally block, by comparison, contains code that always executes, whether or not
code in the try block throws an exception.

The finally block is placed once (and only once) as the last block in a try/catch/finally
statement. For example:

try {
 // substatements
} catch (e:ErrorType1) {
 // Handle ErrorType1 exceptions.
} catch (e:ErrorTypen) {
 // Handle ErrorTypen exceptions.
} finally {
 // This code always executes, no matter how the try block exits.
}

Misplacing the finally block causes a compile-time error.

In the preceding code, the finally block executes in one of these four circumstances:

• Immediately after the try block completes without errors

• Immediately after a catch block handles an exception generated in the try block

• Immediately before an uncaught exception bubbles up

• Immediately before a return, continue, or break statement transfers control out of
the try or catch blocks

The finally block of a try/catch/finally statement typically contains cleanup code that
must execute whether or not an exception occurs in the corresponding try block. For
example, suppose we’re creating a space shooter game, and we define a class,
SpaceShip, to represent spaceships in the game. The SpaceShip class has a method,
attackEnemy(), which performs the following tasks:

• Sets the spaceship’s current target

• Fires on that target

• Clears the current target (by setting the SpaceShip object’s currentTarget
variable to null)

In our hypothetical application, we’ll assume that the first two of the preceding tasks
might generate an exception. Further, we’ll assume that the attackEnemy() method
doesn’t handle those exceptions itself; instead, it passes them up to the calling

The finally Block | 259

method. Regardless of whether an exception is generated, the attackEnemy() method
must set the currentTarget variable to null.

Here’s what the attackEnemy() method would look like if we coded it with a catch
statement (i.e., without using finally):

public function attackEnemy (enemy:SpaceShip):void {
 try {
 setCurrentTarget(enemy);
 fireOnCurrentTarget();
 } catch (e:Error) {
 // Clear the current target if an exception occurs.
 setCurrentTarget(null);
 // Pass the exception up to the calling method.
 throw e;
 }
 // Clear the current target if no exception occurs.
 setCurrentTarget(null);
}

Notice that we must duplicate the statement, setCurrentTarget(null). We place it
both in the catch block and after the try/catch statement, guaranteeing that it will run
whether or not there’s an exception in the try block. However, duplicating the state-
ment is error prone. In the preceding method, a programmer could have easily for-
gotten to clear the current target after the try/catch block.

If we change our strategy by clearing the current target in a finally block, we remove
the redundancy in the preceding code:

public function attackEnemy (enemy:SpaceShip):void {
 try {
 setCurrentTarget(enemy);
 fireOnCurrentTarget();
 } finally {
 setCurrentTarget(null);
 }
}

In the revised version, the finally block clears the current target whether there’s an
exception or not. Because both situations are handled, we no longer have any need for
a catch block; we can simply let the exception bubble up to the calling method
automatically.

You might be wondering why we need the finally block at all. That is, why not just
use the following code?

// This code might look decent, but there's a problem. Can you spot it?
public function attackEnemy (enemy:SpaceShip):void {
 setCurrentTarget(enemy);
 fireOnCurrentTarget();
 setCurrentTarget(null);
}

260 | Chapter 13: Exceptions and Error Handling

Remember that when an exception is thrown, program control is transferred to the
nearest suitable catch block in the call stack. Hence, if fireOnCurrentTarget() throws
an exception, control transfers out of attackEnemy(), never to return, and
setCurrentTarget(null) would never execute. By using a finally block, we guarantee
that setCurrentTarget(null) executes before the exception bubbles up.

The attackEnemy() method example reflects the most common use of finally in mul-
tithreaded languages like Java, where a program can have multiple sections of code
executing simultaneously. In Java, the following general structure is commonplace; it
guards against the possibility that an object busy with a task might be inappropri-
ately altered by another object during the execution of that task:

// Set a state indicating this object's current task.
// External objects should check this object's state
// before accessing or manipulating this object.
doingSomething = true;
try {
 // Perform the task.
 doSomething();
} finally {
 // Unset the "in-task" state (whether or not
 // the task generated an exception).
 doingSomething = false;
}

In ActionScript, the preceding state-management code is effectively unnecessary
because the language is single-threaded, so no external object will ever attempt to
alter the state of an object while it is busy executing a method. Therefore, finally is
used much more rarely in ActionScript than it is in multithreaded languages. How-
ever, it can still be used for organizational purposes, to contain code that performs
cleanup duties after other code has executed.

Nested Exceptions
So far we’ve used only single-level try/catch/finally statements, but exception-han-
dling logic can also be nested. A try/catch/finally statement can appear inside the try,
catch, or finally block of another try/catch/finally statement. This hierarchical nest-
ing allows any block in a try/catch/finally statement to execute code that might, itself,
throw an error.

For example, suppose we were writing a multiuser, web-based message board sys-
tem. We define the following classes: BulletinBoard, the application’s main class;
GUIManager, which manages the user interface; and User, which represents a user
on the board. We give BulletinBoard a method, populateUserList(), which displays
the list of current active users. The populateUserList() method splits its work into
two stages: first it retrieves an instance of a List class from the application’s
GUIManager instance. The List class represents an onscreen user list. Then

Nested Exceptions | 261

populateUserList() populates that List instance with users from a supplied array of
User instances. These two stages can both potentially generate an exception, so a
nested try/catch/finally structure is used in the populateUserList() method. Let’s take
a closer look at this nested structure.

During the first stage of populateUserList(), if the List instance isn’t available, a
UserListNotFound exception is thrown by the GUIManager. The UserListNotFound
exception is caught by the outer try/catch/finally statement.

If, on the other hand, the List instance is available, the populateUserList() method
proceeds with stage two, during which a loop populates the List instance with users
from the supplied array. For each iteration through the loop, if the current user’s ID
cannot be found, the User.getID() method throws a UserIdNotSet exception. The
UserIdNotSet exception is caught by the nested try/catch/finally statement.

Here’s the code:

public function populateUserList (users:Array):void {
 try {
 // Start stage 1...get the List instance.
 // If getUserList() throws an exception, the outer catch executes.
 var ulist:List = getGUIManager().getUserList();
 // Start stage 2...populate the List.
 for (var i:Number = 0; i < users.length; i++) {
 try {
 var thisUser:User = User(users[i]);
 // If getID() throws an exception, the nested catch executes.
 // If not, the user is added to the List instance via addItem().
 ulist.addItem(thisUser.getName(), thisUser.getID());
 } catch (e:UserIdNotSet) {
 trace(e.message);
 continue; // Skip this user.
 }
 }
 } catch (e:UserListNotFound) {
 trace(e.message);
 }
}

Now that we’ve had a look at a specific nested exception example, let’s consider how
nested exceptions are handled in general.

If an exception occurs in a try block that is nested within another try block, and the
inner try block has a catch block that can handle the exception, then the inner catch
block is executed, and the program resumes at the end of the inner try/catch/finally
statement.

try {
 try {
 // Exception occurs here.
 throw new Error("Test error");
 } catch (e:Error) {

262 | Chapter 13: Exceptions and Error Handling

 // Exception is handled here.
 trace(e.message); // Displays: Test error
 }
 // The program resumes here.
} catch (e:Error) {
 // Handle exceptions generated by the outer try block.
}

If, on the other hand, an exception occurs in a try block that is nested within another
try block, but the inner try block does not have a catch block that can handle the
exception, then the exception bubbles up to the outer try/catch/finally statement
(and, if necessary, up the call stack) until a suitable catch block is found, or the
exception is not caught. If the exception is caught somewhere in the call stack, the
program resumes at the end of the try/catch/finally statement that handled the excep-
tion. Note that in the following code example (and subsequent examples), the hypo-
thetical error datatype SomeSpecificError is a placeholder used to force the thrown
exception to not be caught. In order to test the code example in your own code,
you’d have to create a subclass of Error called SomeSpecificError.

try {
 try {
 // Exception occurs here.
 throw new Error("Test error");
 } catch (e:SomeSpecificError) {
 // Exception is not handled here.
 trace(e.message); // Never executes because the types don't match.
 }
} catch (e:Error) {
 // Exception is handled here.
 trace(e.message); // Displays: Test error
}
// The program resumes here, immediately after the outer catch block
// has handled the exception.

If an exception occurs in a try block that is nested within a catch block, and the inner
try block does not have a catch block that can handle the exception, then the search
for a matching catch block begins outside the outer try/catch/finally statement:

try {
 // Outer exception occurs here.
 throw new Error("Test error 1");
} catch (e:Error) {
 // Outer exception handled here.
 trace(e.message); // Displays: Test error 1
 try {
 // Inner exception occurs here.
 throw new Error("Test error 2");
 } catch (e:SomeSpecificError) {
 // Inner exception is not handled here.
 trace(e.message); // Never executes because the types don't match.
 }
}

Nested Exceptions | 263

// The search for a matching catch block for the
// inner exception starts here.

Last, if an exception occurs in a try block that is nested within a finally block, but a
prior exception is already in the process of bubbling up the call stack, then the new
exception is handled before the prior exception continues to bubble up.

// This method throws an exception in a finally block.
public function throwTwoExceptions ():void {
 try {
 // Outer exception occurs here. Because there is no catch block for this
 // try block, the outer exception starts to bubble up,
 // out of this method.
 throw new Error("Test error 1");
 } finally {
 try {
 // Inner exception occurs here. The inner exception is
 // handled before the outer exception actually bubbles up.
 throw new Error("Test error 2");
 } catch (e:Error) {
 // Inner exception is handled here.
 trace("Internal catch: " + e.message);
 }
 }
}

// Elsewhere, within another method that calls the preceding method.
try {
 throwTwoExceptions();
} catch (e:Error) {
 // The outer exception, which has bubbled up from throwTwoExceptions(),
 // is handled here.
 trace("External catch: " + e.message);
}

// Output (notice that the inner exception is caught first):
Internal catch: Test error 2
External catch: Test error 1

If, in the preceding example, the exception thrown in the finally block had never
been caught, then ActionScript would have reported the error during debugging, and
aborted all other code in the call stack. As a result, the original, outer exception
would have been discarded along with all code in the call stack. The following code
demonstrates the preceding principle. It throws an uncaught exception from a finally
statement. As a result, the exception thrown by the outer try block is discarded.

try {
 // Outer exception occurs here.
 throw new Error("Test error 1");
} finally {
 try {
 // Inner exception occurs here.
 throw new Error("Test error 2");

264 | Chapter 13: Exceptions and Error Handling

 } catch (e:SomeSpecificError) {
 // Inner exception is not handled here.
 trace("internal catch: " + e.message); // Never executes because
 // the types don't match.
 }
}
// The search for a matching catch block for the inner exception starts
// here. If no match is ever found, then the inner exception is reported
// during debugging, and the bubbling of the outer exception is aborted.

The preceding code demonstrates the effect of an uncaught exception in one sce-
nario, but once again, it’s not appropriate to allow an exception to go uncaught. In
the preceding case, we should either catch the exception or revise our code so that
the exception isn’t thrown in the first place.

Control-Flow Changes in try/catch/finally
As we’ve seen throughout this chapter, the throw statement changes the flow of a
program. When ActionScript encounters a throw statement, it immediately stops
what it’s doing and transfers program control to eligible catch and finally blocks.
However, it is also quite legal for those catch and finally blocks to change program
flow again via return (in the case of a method or function) or break or continue (in
the case of a loop). Furthermore, a return, break, or continue statement can also
appear in a try block.

To learn the rules of flow changes in the try/catch/finally statement, let’s look at how
the return statement affects program flow in a try, catch, and finally block. The fol-
lowing code examples contain a function, changeFlow(), which demonstrates a con-
trol flow in various hypothetical situations.

Example 13-1 shows a return statement in a try block, placed before an error is
thrown. In this case, the method returns normally, and no error is ever thrown or
handled. However, before the method returns, the finally block is executed. Note
that you’re unlikely to see code exactly like Example 13-1 in the real world. In most
applied cases, the return statement would occur in a conditional statement and exe-
cute in response to some specific condition in the program.

Example 13-1. Using return in try, before throw

public function changeFlow ():void {
 try {
 return;
 throw new Error("Test error.");
 } catch (e:Error) {
 trace("Caught: " + e.message);
 } finally {
 trace("Finally executed.");
 }
 trace("Last line of method.");

Control-Flow Changes in try/catch/finally | 265

Example 13-2 shows a return statement in a try block, placed after an error is
thrown. In this case, the return statement is never executed because an error is
thrown before it is reached. Once the error is caught and the try/catch/finally com-
pletes, execution resumes after the try/catch/finally statement, and the method exits
at the end of the method body. Again, Example 13-2 demonstrates a principle but is
atypical of real-world code, which would normally throw the error based on some
condition.

Example 13-3 shows a return statement in a catch block. In this case, the return state-
ment executes when the work of error handling is done, and the code after the try/
catch/finally statement never executes. However, as usual, before the method returns,
the finally block is executed. Unlike Examples 13-1 and 13-2, this code is typical of a
real-world scenario in which a method is aborted due to the occurrence of an error.

}

// Output when changeFlow() is invoked:
Finally executed.

Example 13-2. Using return in try, after throw

public function changeFlow ():void {
 try {
 throw new Error("Test error.");
 return;
 } catch (e:Error) {
 trace("Caught: " + e.message);
 } finally {
 trace("Finally executed.");
 }
 trace("Last line of method.");
}

// Output when changeFlow() is invoked:
Caught: Test error.
Finally executed.
Last line of method.

Example 13-3. Using return in catch

public function changeFlow ():void {
 try {
 throw new Error("Test error.");
 } catch (e:Error) {
 trace("Caught: " + e.message);
 return;
 } finally {
 trace("Finally executed.");
 }
 trace("Last line of function.");

Example 13-1. Using return in try, before throw (continued)

266 | Chapter 13: Exceptions and Error Handling

Due to a known bug, the code in Examples 13-2 and 13-3 causes a
stack underflow in Flash Player 9. Adobe expects to fix the problem in
a future version of Flash Player.

Example 13-4 shows a return statement in a finally block. In this case, the return
statement executes when the finally block executes (as we learned earlier, a finally
block executes when its corresponding try block completes in one of the following
ways: without errors; with an error that was caught; with an error that was not
caught; or due to a return, break, or continue statement). Notice that the return state-
ment in Example 13-4 prevents any code in the method beyond the try/catch/finally
statement from executing. You might use a similar technique to quit out of a method
after invoking a block of code, whether or not that code throws an exception. In
such a case, you’d typically surround the entire try/catch/finally block in a condi-
tional statement (otherwise the remainder of the method would never execute!).

If a return statement occurs in a finally block after a return has already
been issued in the corresponding try block, then the return in the
finally block replaces the return already in progress.

}

// Output when changeFlow() is invoked:
Caught: Test error.
Finally executed.

Example 13-4. Using return in finally

public function changeFlow ():void {
 try {
 throw new Error("Test error.");
 } catch (e:Error) {
 trace("Caught: " + e.message);
 } finally {
 trace("Finally executed.");
 return;
 }
 trace("Last line of method."); // Not executed.
}

// Output when changeFlow() is invoked:
Caught: Test error.
Finally executed.

Example 13-3. Using return in catch (continued)

Handling a Built-in Exception | 267

Handling a Built-in Exception
At the very beginning of this chapter, we learned that we can respond to both built-
in and custom errors using the try/catch/finally statement. So far, the errors we’ve
handled have all been custom errors. To close this chapter, let’s examine a try/catch/
finally statement that handles a built-in error.

Suppose we’re building a chat application in which the user is asked to specify a port
number when connecting to the chat server. We assign the specified port number to
a variable named userPort. Then, we use the Socket class to attempt to connect to
the specified port. In some cases, the connection will fail due to security limitations.
To indicate that a security limitation has been breached when a connection attempt
is made, the Flash runtime throws a SecurityError. Therefore, when attempting to
make a connection, we wrap the connection code in the try block. If the connection
fails due to security reasons, we display an error message to the user indicating what
went wrong.

var socket:Socket = new Socket();
try {
 // Attempt to connect to the specified port
 socket.connect("example.com", userPort);
} catch (e:SecurityError) {
 // Code here displays message to the user
}

For a list of circumstances that can cause socket connection failures,
see the Socket class’s connect() method in Adobe’s ActionScript Lan-
guage Reference.

Error Events for Problem Conditions
In the preceding section, we saw how to handle an exception caused by an illegal
socket-connection attempt. But not all error conditions in ActionScript result in
exceptions. Problems that occur asynchronously (i.e., after some time passes) are
reported via error events, not exceptions. For example, if we attempt to load a file,
ActionScript must first asynchronously check to see if that file exists. If the file does
not exist, ActionScript dispatches an IOErrorEvent.IO_ERROR event. To handle the
problem, the code that instigated the load operation must register a listener for the
IOErrorEvent.IO_ERROR event. If no listener is registered for that event, then a run-
time error occurs. For an error event-handling example, see the examples in the sec-
tion “Two More Event Listener Registration Examples” in Chapter 12.

268 | Chapter 13: Exceptions and Error Handling

More Gritty Work Ahead
Exceptions are not the most glamorous aspect of programming. It’s usually more fun
to build something than to diagnose what went wrong with it. Nevertheless,
exception handling is an important part of any program’s development. In the com-
ing chapter, we’ll study another similarly gritty topic, garbage collection. Garbage
collection helps prevent a program from running out of system memory.

269

Chapter 14 CHAPTER 14

Garbage Collection15

Every time a program creates an object, ActionScript stores it in system memory (for
example, in RAM). As a program creates hundreds, thousands, or even millions of
objects, it slowly occupies more and more memory. To prevent system memory from
being fully depleted, ActionScript automatically removes objects from memory when
they are no longer needed by the program. The automatic removal of objects from
memory is known as garbage collection.

Eligibility for Garbage Collection
In an ActionScript program, an object becomes eligible for garbage collection as soon
as it becomes unreachable. An object is unreachable when it cannot be accessed
directly or indirectly through at least one garbage collection root. The most signifi-
cant garbage collection roots in ActionScript are as follows:

• Package-level variables

• Local variables of a currently executing method or function

• Static variables

• Instance variables of the program’s main class instance

• Instance variables of an object on the Flash runtime display list

• Variables in the scope chain of a currently executing function or method

For example, consider the following version of the VirtualZoo class from our zoo
program. Notice that in this version, the VirtualPet object created in the VirtualZoo
constructor is not assigned to a variable.

package {
 import flash.display.Sprite;
 import zoo.*;

 public class VirtualZoo extends Sprite {
 public function VirtualZoo () {
 new VirtualPet("Stan");

270 | Chapter 14: Garbage Collection

 }
 }
}

In the preceding code, when the VirtualZoo constructor runs, the expression new
VirtualPet("Stan") creates a new VirtualPet object. After that object is created, how-
ever, it cannot be accessed via any variable. As a result, it is considered unreachable
and immediately becomes eligible for garbage collection.

Next, consider the following version of the VirtualZoo class. Focus on the construc-
tor method body, shown in bold:

package {
 import flash.display.Sprite;
 import zoo.*;

 public class VirtualZoo extends Sprite {
 public function VirtualZoo () {
 var pet:VirtualPet = new VirtualPet("Stan");
 }
 }
}

As before, when the preceding VirtualZoo constructor runs, the expression new
VirtualPet("Stan") creates a new VirtualPet object. However, this time the
VirtualPet object is assigned to a local variable, pet. Throughout the VirtualZoo con-
structor, the VirtualPet object can be accessed via that local variable, so it is not eligi-
ble for garbage collection. However, as soon as the VirtualZoo constructor finishes
running, the variable pet expires, and the VirtualPet object can no longer be accessed
via any variable. As a result, it becomes unreachable and eligible for garbage collec-
tion.

Next, consider the following version of the VirtualZoo class:

package {
 import flash.display.Sprite;
 import zoo.*;

 public class VirtualZoo extends Sprite {
 private var pet:VirtualPet;

 public function VirtualZoo () {
 pet = new VirtualPet("Stan");
 }
 }
}

In the preceding code, when the VirtualZoo constructor runs, the expression new
VirtualPet("Stan") again creates a new VirtualPet object. This time, however, the
VirtualPet object is assigned to an instance variable of the program’s main class. As
such, it is considered reachable, and therefore not eligible for garbage collection.

Eligibility for Garbage Collection | 271

Now consider the following version of the VirtualZoo class (again, focus on the bold
sections):

package {
 import flash.display.Sprite;
 import zoo.*;

 public class VirtualZoo extends Sprite {
 private var pet:VirtualPet;

 public function VirtualZoo () {
 pet = new VirtualPet("Stan");
 pet = new VirtualPet("Tim");
 }
 }
}

As before, line 1 of the preceding constructor creates a VirtualPet object and assigns
it to the instance variable, pet. However, line 2 of the preceding constructor method
then creates another VirtualPet object and also assigns it to the instance variable, pet.
The second assignment replaces pet’s first value (i.e., the pet “Stan”) with a new
value (i.e., the pet “Tim”). As a result, the VirtualPet object named “Stan” becomes
unreachable, and eligible for garbage collection. Note that we could have also made
the VirtualPet object named “Stan” unreachable by assigning null (or any other legal
value) to pet, as in:

pet = null;

Finally, consider the following version of the VirtualZoo class, which defines two
instance variables, pet1 and pet2:

package {
 import flash.display.Sprite;
 import zoo.*;

 public class VirtualZoo extends Sprite {
 private var pet1:VirtualPet;
 private var pet2:VirtualPet;

 public function VirtualZoo () {
 pet1 = new VirtualPet("Stan");
 pet2 = pet1;
 pet1 = null;
 pet2 = null;
 }
 }
}

As before, line 1 of the preceding constructor creates a VirtualPet object; for conve-
nience, let’s call it “Stan.” Line 1 also assigns Stan to the instance variable, pet1. Line
2 then assigns that same object to the instance variable, pet2. After line 2 is finished
executing, and before line 3 executes, the program can access Stan through both pet1

272 | Chapter 14: Garbage Collection

and pet2, so Stan is not eligible for garbage collection. When line 3 executes, pet1’s
value is replaced with the value null, so Stan can no longer be accessed through pet1.
However, Stan can still be accessed through pet2, so it is still not eligible for garbage
collection. Finally, line 4 executes, and pet2’s value is replaced with the value null.
As a result, Stan can no longer be accessed through any variable. Poor Stan is
unreachable, and officially becomes eligible for garbage collection.

There are two special cases in ActionScript where an object that is
reachable becomes eligible for garbage collection. For details, see the
section “Weak Listener References” in Chapter 12, and “Events and
Event Handling” and the Dictionary class in Adobe’s ActionScript
Language Reference.

Incremental Mark and Sweep
In the preceding section, we learned that an object becomes eligible for garbage col-
lection (automatic removal from memory) when it is unreachable. But we didn’t
learn exactly when unreachable objects are removed from memory. In an ideal
world, objects would be removed from memory immediately upon becoming
unreachable. However, in practice, removing unreachable objects immediately
would be very time consuming and would cause most nontrivial programs to run
slowly or become unresponsive. Accordingly, ActionScript does not remove unreach-
able objects from memory immediately. Instead, it checks for and removes unreach-
able objects only periodically, during garbage collection cycles.

ActionScript’s unreachable-object removal strategy is known as incremental mark
and sweep garbage collection. Here’s how it works: when the Flash runtime starts, it
asks the operating system to set aside, or allocate, an arbitrary amount of memory in
which to store the objects of the currently running program. As the program runs, it
accumulates objects in memory. At any given time, some of the program’s objects
will be reachable, and others might not be reachable. If the program creates enough
objects, ActionScript will eventually decide to perform a garbage collection cycle.
During the cycle, all objects in memory are audited for “reachability.” All reachable
objects are said to be marked for keeping, and all unreachable objects are said to be
swept (removed) from memory. However, for a large program, the process of audit-
ing objects for reachability can be time-consuming. Accordingly, ActionScript breaks
garbage collection cycles into small chunks, or increments, which are interwoven
with the program’s execution. ActionScript also uses deferred reference counting to
help improve garbage collection performance. For information on deferred reference
counting, see “The Memory Management Reference: Beginner’s Guide: Recycling,”
at http://www.memorymanagement.org/articles/recycle.html#reference.deferred.

ActionScript’s garbage collection cycles are typically triggered when the amount of
memory required to store a program’s objects approaches the amount of memory

http://www.memorymanagement.org/articles/recycle.html#reference.deferred

Disposing of Objects Intentionally | 273

currently allocated to the Flash runtime. However, ActionScript makes no guarantee
as to when its garbage collection cycles will occur. Furthermore, the programmer
cannot force ActionScript to perform a garbage collection cycle.

Disposing of Objects Intentionally
In ActionScript, there is no direct way to remove an object from system memory. All
object-removal happens indirectly, through the automatic garbage collection system.

However, while a program cannot remove an object from system memory, it can at
least make an object eligible for removal by eliminating all program references to it.
To eliminate all references to an object, we must manually remove it from any arrays
that contain it and assign null (or some other value) to any variable that references it.

Making an object eligible for garbage collection does not immediately remove that
object from memory. It simply gives ActionScript authorization to remove the object
when and if a garbage collection cycle occurs.

Note, however, that creating and then removing objects from memory is often less
efficient than reusing objects.

Wherever possible, you should strive to reuse objects rather than dis-
pose them.

Returning, once again, to the virtual zoo program, consider the following code. It
feeds a pet five apples.

package {
 import flash.display.Sprite;
 import zoo.*;

 public class VirtualZoo extends Sprite {
 private var pet:VirtualPet;

 public function VirtualZoo () {
 pet = new VirtualPet("Stan");
 pet.eat(new Apple());
 pet.eat(new Apple());
 pet.eat(new Apple());
 pet.eat(new Apple());
 pet.eat(new Apple());
 }
 }
}

Notice that each time the preceding code feeds the pet, it creates a new Apple
instance and passes that instance to the eat() method. Each time the eat() method
completes, all references to the Apple instance it was passed are lost, so the Apple

274 | Chapter 14: Garbage Collection

instance becomes eligible for garbage collection. Now consider what would happen
if we were to feed the pet 1,000 Apple objects. Our program would incur the process-
ing cost not only of creating the Apple objects but also of garbage collecting them. To
avoid that cost, we’re better off creating a single, reusable Apple object, and using
that single object any time the pet eats an apple. The following code demonstrates by
feeding the pet the same Apple object five times:

package {
 import flash.display.Sprite;
 import zoo.*;

 public class VirtualZoo extends Sprite {
 private var pet:VirtualPet;
 private var apple:Apple;

 public function VirtualZoo () {
 pet = new VirtualPet("Stan");
 apple = new Apple();

 pet.eat(apple);
 pet.eat(apple);
 pet.eat(apple);
 pet.eat(apple);
 pet.eat(apple);
 }
 }
}

The preceding pet-feeding code incurs the cost of a single object-creation and incurs
no garbage collection cost whatsoever. That’s much more efficient than our earlier
approach of creating and garbage collecting a new Apple object for each eat()
method invocation!

Deactivating Objects
We’ve learned that removing all references to an object makes that object eligible for
garbage collection. However, even after an object becomes eligible for garbage collec-
tion, it continues to exist in memory until ActionScript decides to “sweep” it away
during a garbage collection cycle. After the object becomes eligible for garbage col-
lection, but before it is actually removed from system memory, the object continues
to receive events and, in the case of Function objects, can still be triggered by
setInterval().

For example, imagine a slideshow application that uses a class, ImageLoader, to load
images from a server at regular intervals. The code for the ImageLoader class is as
follows:

package {
 import flash.events.*;
 import flash.utils.*;

Deactivating Objects | 275

 public class ImageLoader {
 private var loadInterval:int;

 public function ImageLoader (delay:int = 1000) {
 loadInterval = setInterval(loadImage, delay);
 }

 public function loadImage ():void {
 trace("Now loading image...");
 // Image-loading code not shown
 }
 }
}

Further imagine that the application’s main class, SlideShow, implements code to
start and stop the slideshow. To start the slideshow, SlideShow creates an
ImageLoader instance that manages image loading. The ImageLoader instance is
stored in the instance variable imgLoader, as follows:

imgLoader = new ImageLoader();

To stop or pause a slideshow, SlideShow discards the ImageLoader instance, as
follows:

imgLoader = null;

When imgLoader is set to null, the ImageLoader instance becomes eligible for gar-
bage collection. However, until the instance is actually removed from system mem-
ory, the setInterval()-based load operation in the ImageLoader instance continues
executing on a regular basis. The following very simple class demonstrates. It creates
and then immediately discards an ImageLoader instance. But even after imgLoader is
set to null, the message “Now loading image...” continues to appear in the debug-
ging console, once per second.

package {
 import flash.display.*;

 public class SlideShow extends Sprite {
 private var imgLoader:ImageLoader;
 public function SlideShow () {
 // Create and immediately discard an ImageLoader instance
 imgLoader = new ImageLoader();
 imgLoader = null;
 }
 }
}

If the memory required by the slideshow application never becomes significant
enough to trigger a garbage collection cycle, then the setInterval()-based load opera-
tion in the ImageLoader instance will execute indefinitely. The unnecessary execu-
tion of code in the discarded ImageLoader instance wastes system and network
resources, and could cause undesired side effects in the slideshow program.

276 | Chapter 14: Garbage Collection

To avoid unnecessary code execution in discarded objects, a program should always
deactivate objects before discarding them. Deactivating an object means putting the
object in an idle state where nothing in the program can cause it to execute code. For
example, to deactivate an object, we might perform any or all of the following tasks:

• Unregister the object’s methods for events

• Stop all timers and intervals

• Stop the playhead of timelines (for instances of movie clips created in the Flash
authoring tool)

• Deactivate any objects that would become unreachable if the object, itself,
became unreachable

To allow objects to be deactivated, any class whose instances register for events or
uses timers should provide a public method for deactivating instances.

For example, our preceding ImageLoader class should have provided a method to
stop its interval. Let’s add such a method now and call it dispose(). The name
dispose() is arbitrary; it could also be called kill(), destroy(), die(), clean(), disable(),
deactivate(), or anything else. Here’s the code:

package {
 import flash.events.*;
 import flash.utils.*;

 public class ImageLoader {
 private var loadInterval:int;

 public function ImageLoader (delay:int = 1000) {
 loadInterval = setInterval(loadImage, delay);
 }

 public function loadImage ():void {
 trace("Now loading image...");
 // Image-loading code not shown
 }

 public function dispose ():void {
 clearInterval(loadInterval);
 }
 }
}

Any code that creates an ImageLoader instance would then be required to invoke
ImageLoader.dispose() before discarding it, as follows:

package {
 import flash.display.*;

 public class SlideShow extends Sprite {
 private var imgLoader:ImageLoader;
 public function SlideShow () {

Garbage Collection Demonstration | 277

 // Create and immediately discard an ImageLoader instance
 imgLoader = new ImageLoader();
 imgLoader.dispose();
 imgLoader = null;
 }
 }
}

Garbage Collection Demonstration
Example 14-1 shows a very simple program that demonstrates garbage collection at
work. The program creates a Sprite object that displays a message repeatedly in the
debugging output console. Because the Sprite object is reachable only via a local vari-
able, it becomes eligible for garbage collection immediately after the program’s main
class constructor completes. Meanwhile, the program also runs a timer that repeat-
edly creates objects, occupying system memory. When enough system memory is
consumed, the garbage collector runs. During garbage collection, the original Sprite
object is removed from memory, and its messages stop appearing in the debugging
output console.

Example 14-1. Garbage collection demonstration

package {
 import flash.display.*;
 import flash.text.*;
 import flash.utils.*;
 import flash.events.*;
 import flash.system.*;

 public class GarbageCollectionDemo extends Sprite {
 public function GarbageCollectionDemo () {
 // This Sprite object is garbage collected after enough memory
 // is consumed
 var s:Sprite = new Sprite();
 s.addEventListener(Event.ENTER_FRAME, enterFrameListener);

 // Repeatedly create new objects, occupying system memory
 var timer:Timer = new Timer(1, 0);
 timer.addEventListener(TimerEvent.TIMER, timerListener);
 timer.start();
 }

 private function timerListener (e:TimerEvent):void {
 // Create an object to take up some system memory. Could be
 // any object, but TextField objects are nice and meaty.
 new TextField();
 }

 // This function is executed until the Sprite object is
 // garbage collected
 private function enterFrameListener (e:Event):void {

278 | Chapter 14: Garbage Collection

On to ActionScript Backcountry
Garbage collection is an immensely important part of ActionScript programming.
You should consider memory management in every ActionScript program you write.
If you create an object, you should decide whether that object is needed for the entire
lifespan of the program. If not, you should add code that deactivates and then dis-
poses of the object.

For more general information on garbage collection in programming languages, see
“Garbage collection (computer science)” in Wikipedia, The Free Encyclopedia at
http://en.wikipedia.org/wiki/Garbage_collection_(computer_science), and The Mem-
ory Management Reference, at http://www.memorymanagement.org.

For a series of self-published articles on garbage collection in ActionScript 3.0 by
Grant Skinner, see http://www.gskinner.com/blog/archives/2006/06/as3_resource_ma.
html and http://gskinner.com/talks/resource-management/.

In the next chapter, we’ll explore some of ActionScript’s less commonly used tools
for altering the structure of classes and objects at runtime.

 // Display the amount of memory occupied by this program
 trace("System memory used by this program: " + System.totalMemory);
 }
 }
}

Example 14-1. Garbage collection demonstration (continued)

http://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
http://www.memorymanagement.org
http://www.gskinner.com/blog/archives/2006/06/as3_resource_ma.html
http://www.gskinner.com/blog/archives/2006/06/as3_resource_ma.html
http://gskinner.com/talks/resource-management/

279

Chapter 15 CHAPTER 15

Dynamic ActionScript16

ActionScript was originally conceived of as a language for adding basic program-
matic behavior to content created manually in the Flash authoring tool. In early ver-
sions of ActionScript, most code was intended to be written in short scripts that
implemented limited functionality compared with the code required to create a com-
plex desktop application. As such, ActionScript’s original feature set stressed flexibil-
ity and simplicity over formality and sophistication.

ActionScript originally allowed the structure of all classes and even all individual
objects to be modified dynamically at runtime. For example, at runtime, a program
could:

• Add new instance methods or instance variables to any class

• Add new instance methods or instance variables to any single, specific object

• Create a new class entirely from scratch

• Change a given class’s superclass

With the advent of ActionScript 3.0, Flash Player 9, Adobe AIR, and Flex, the Flash
platform has evolved to a stage where the complexity of an ActionScript-based pro-
gram may well rival the complexity of a full-featured desktop application. Accord-
ingly, as a language, ActionScript has taken on many of the formal structures
required for large-scale application development—structures such as a formal class
keyword an inheritance syntax, formal datatypes, a built-in event framework, excep-
tion handling, and built-in XML support. Nevertheless, ActionScript’s dynamic fea-
tures remain available in the language and still constitute an important part of
ActionScript’s internal makeup.

This chapter explores ActionScript’s dynamic programming techniques. Note, how-
ever, that the flexibility inherent in dynamic ActionScript programming limits or
removes most of the benefits of type checking we studied in Chapter 8. As a result,
most complex programs use the features described in this chapter only sparingly, if
at all. For example, in the over 700 classes defined by the Flex framework, there are
approximately only 10 uses of dynamic programming techniques. That said, even if

280 | Chapter 15: Dynamic ActionScript

you never intend to use dynamic programming in your code, the information
presented in this chapter will improve your understanding ActionScript’s internal
workings.

For our first dynamic programming technique, we’ll study dynamic instance vari-
ables—instance variables added to an individual object at runtime.

Dynamic Instance Variables
The very beginning of this book compared writing an ActionScript program to
designing and building an airplane. The comparison likened the airplane’s blue-
prints to ActionScript’s classes, and the actual parts in a specific physical airplane to
ActionScript’s objects. In that analogy, a single individual airplane is guaranteed to
have the same structure as all other airplanes because all airplanes are based on the
same blueprint. By comparison, all instances of a given class are guaranteed to have
the same structure because they are based on the same class.

But what if the owner of a specific airplane mounts a custom light on the top of his
airplane? That airplane now has a specific characteristic not shared by all other air-
planes. In ActionScript, “adding a new light to an individual airplane” is analogous
to adding a new instance variable to a single, specific object without adding that light
to any other instance of that object’s class. Such an instance variable is known as a
dynamic instance variable. When contrasted with dynamic instance variables, “regu-
lar” instance variables are referred to as fixed variables.

Dynamic instance variables can be added to instances of classes defined with the
attribute dynamic only (such classes are referred to as dynamic classes). Dynamic
instance variables cannot be added to instances of classes that are not defined with
the attribute dynamic (such classes are referred to as sealed classes). A subclass of a
dynamic class is not considered dynamic unless its definition also includes the
dynamic attribute.

The following code creates a new class, Person, which might represent a person in a
statistics program that tracks demographics. Because Person is declared with the
attribute dynamic, dynamic instance variables can be added to any individual Person
object at runtime.

dynamic public class Person {
}

Once a class has been defined as dynamic, we can add a new dynamic instance vari-
able to any instance of that class via a standard variable assignment statement. For
example, the following code adds a dynamic instance variable, eyeColor, to a Person
object:

var person:Person = new Person();
person.eyeColor = "brown";

Dynamic Instance Variables | 281

As we learned in Chapter 8, if the Person class were not declared dynamic, the pre-
ceding code would cause a reference error because the Person class does not define
an instance variable named eyeColor. However, in this case, the Person class is
declared dynamic. As a result, when ActionScript encounters the attempt to assign a
value to the nonexistent instance variable eyeColor, rather than reporting an error, it
simply creates a dynamic instance variable named eyeColor, and assigns it the speci-
fied value (“brown”). In the preceding code, notice that the dynamic instance vari-
able definition does not, and must not, include a datatype definition or an access-
control modifier.

All dynamic instance variables are untyped and public.

The following code, which attempts to include a datatype definition when creating
eyeColor, causes a compile-time error:

person.eyeColor:String = "brown"; // Error! :String is not allowed here

To retrieve the value of a dynamic instance variable, we use a standard variable
access expression as shown in the following code:

trace(person.eyeColor); // Displays: brown

If the specified instance variable (dynamic or not dynamic) does not exist, Action-
Script returns the value undefined, as shown in the following code:

trace(person.age); // Displays undefined because the person object
 // has no instance variable named age

ActionScript’s most significant use of dynamic instance variables occurs in the Flash
authoring tool, where each animated timeline is represented by a subclass of the
built-in MovieClip class. In the Flash authoring tool, automatically generated sub-
classes of MovieClip are dynamic so that programmers can define new variables on
manually created movie clip instances. For details on this technique, and other time-
line-scripting techniques, see Chapter 29.

Dynamic instance variables are sometimes used to create a simple “lookup table,” as
discussed later in the section “Using Dynamic Instance Variables to Create Lookup
Tables.”

Remember that allowing a program to be modified dynamically can lead to hard-to-
diagnose problems. For example, when a class is defined as dynamic in order to sup-
port dynamic instance variables, then legitimate reference errors made through that
class’s instances can easily go unnoticed (because referencing an instance variable
that does not exist generates neither a compile-time error nor a runtime error). The
only way to know for sure whether the dynamically modified program works is to
run it and observe its behavior. Such observation is time-consuming and prone to

282 | Chapter 15: Dynamic ActionScript

human error, so most programmers avoid using dynamic variables in complex pro-
grams.

ActionScript takes longer to access a dynamic instance variable than it
does to access a fixed variable. Where performance is a concern, avoid
using dynamic instance variables.

Processing Dynamic Instance Variables with for-each-in and for-in
Loops
The for-each-in loop provides easy access to the values of an object’s dynamic
instance variables (or an array’s elements). It takes the general form:

for each (variableOrElementValue in someObject) {
statements

}

The statements of a for-each-in loop run once for each dynamic instance variable or
array element of someObject. During each iteration of the loop, the value of the vari-
able or element being iterated over (enumerated) is assigned to the variable
variableOrElementValue. Code within the body of the loop then has the opportunity
to operate on that value in some way.

For example, consider the object definition and subsequent for-each-in loop shown
in the following code. Note that the built-in Object class is declared dynamic, and,
hence, supports dynamic instance variables.

var info:Object = new Object();
info.city = "Toronto";
info.country = "Canada";

for each (var detail:* in info) {
 trace(detail);
}

The preceding loop runs twice, once for each of the two dynamic instance variables
of the object referenced by info. The first time the loop runs, the variable detail is
assigned the value “Toronto” (i.e., the value of the city variable). The second time
the loop runs, detail has the value “Canada” (i.e., the value of the country variable).
So the output of the loop is:

Toronto
Canada

Dynamic Instance Variables | 283

In most cases, the order in which for-each-in and for-in loops enumer-
ate an object’s variables is not guaranteed. There are two exceptions:
variables of XML and XMLList instances are enumerated in ascending
sequential order according to their numeric variable names (i.e., docu-
ment order for XML objects; see Chapter 18). For all other types of
objects, the enumeration order used by for-each-in and for-in loops
might vary across different versions of ActionScript or different Flash
runtimes. Therefore, you should not write code that depends on a for-
each-in or for-in loop’s enumeration order unless you are processing
XML data.

The following code shows a for-each-in loop used to access the values of an array’s
elements:

var games:Array = ["Project Gotham Racing",
 "Shadow of the Colossus",
 "Legend of Zelda"];

for each (var game:* in games) {
 trace(game);
}

The preceding loop runs three times, once for each of the three elements in the games
array. The first time the loop runs, the variable game is assigned the value “Project
Gotham Racing” (i.e., the first element’s value). The second time the loop runs, game
has the value “Shadow of the Colossus.” And the third time it has the value “Legend
of Zelda.” So the output of the loop is:

Project Gotham Racing
Shadow of the Colossus
Legend of Zelda

The for-each-in loop is a companion for the ActionScript for-in loop. Whereas the
for-each-in loop iterates over variable values, the for-in loop iterates over variable
names. For example, the following for-in loop lists the names of dynamic instance
variables of the object referenced by info:

for (var detailName:* in info) {
 trace(detailName);
}
// Output:
city
country

Notice that the preceding code outputs the names of the variables city and country,
not the values. To access the values of those properties, we could use the [] operator,
as discussed in the later section “Dynamic References to Variables and Methods.” The
following code demonstrates:

for (var detailName:* in info) {
 trace(info[detailName]);
}

284 | Chapter 15: Dynamic ActionScript

// Output:
Toronto

Canada

To prevent a dynamic instance variable from being included in for-in and for-each-in
loops, use the Object class’s setPropertyIsEnumerable() method, as shown in the fol-
lowing code:

info.setPropertyIsEnumerable("city", false);

for (var detailName:* in info) {
 trace(info[detailName]);
}
// Outputs: Canada
// (the "city" variable was not processed by the for-in loop)

We’ll see the for-each-in loop used in a practical situation in the later section, under
“Using Dynamic Instance Variables to Create Lookup Tables.”

Dynamically Adding New Behavior to an Instance
Having just learned how to create dynamic instance variables, you might wonder
whether ActionScript also supports dynamic instance methods—adding a new
instance method to a single, specific object without adding it to any other instances
of that object’s class. In fact, there is no formal means of adding a true instance
method to an object dynamically. However, by assigning a function closure to a
dynamic instance variable, we can emulate the effect of giving an individual object a
new method (for a refresher on the term function closure, see Chapter 5). The follow-
ing code demonstrates the general approach:

someObject.someDynamicVariable = someFunction;

In the preceding code, someObject is an instance of a dynamic class,
someDynamicVariable is the name of a dynamic instance variable (which can be a new
variable or an existing variable), and someFunction is a reference to a function clo-
sure. Typically, someFunction is supplied using a function literal, as shown in the fol-
lowing code:

someObject.someDynamicVariable = function (param1, param2, ...paramn) {
 // Function body
}

Once someFunction has been assigned to the dynamic instance variable, it can be
invoked through the object, exactly like a regular instance method, as shown in the
following code:

someObject.someDynamicVariable(value1, value2, ...valuen);

Dynamically Adding New Behavior to an Instance | 285

To demonstrate the preceding generic syntax, let’s return to the info example from
the preceding section:

var info:Object = new Object();
info.city = "Toronto";
info.country = "Canada";

Suppose we want to give the object referenced by info a new behavior—the ability to
format and return its details as a string. We create a new instance variable,
getAddress, to which we assign the desired formatting function, as follows:

info.getAddress = function ():String {
 return this.city + ", " + this.country;
}

To invoke the function, we use the following code:

trace(info.getAddress());

Notice that within the body of the function assigned to getAddress, we can use the
keyword this to access the variables and methods of the object through which the
function was invoked. In fact, in the case of function closures, the variables and
methods of the object through which the function was invoked cannot be accessed
without the keyword this. For example, suppose we omit this from the getAddress()
function definition, as follows:

info.getAddress = function ():String {
 return city + ", " + country;
}

When searching for the variables city and country, ActionScript does not automati-
cally consider instance variables of the object referenced by info. Therefore, the pre-
ceding code causes an error (unless other variables by the name city and country
actually exist higher up in the getAddress() function’s scope chain).

If the assignment of a function to an object’s instance variable occurs within that
object’s class, then the function can access the object’s private, protected, internal,
and public variables and methods. If the assignment occurs within a subclass of the
object’s class, then the function can access the object’s protected, internal, and public
variables and methods only. If the assignment occurs within the same package as the
object’s class, then the function can access the object’s internal and public variables
and methods only. If the assignment occurs in a different package than the object’s
class, then the function can access the object’s public variables and methods only.

For example, consider the following code, which creates a dynamic class, Employe:

dynamic public class Employee {
 public var startDate:Date;
 private var age:int;
}

The following code assigns a function to a dynamic instance variable, doReport, of an
Employee instance. The assignment occurs outside the Employee class, but within a

286 | Chapter 15: Dynamic ActionScript

class in the same package as the Employee class. As a result, the function can access
the Employee object’s internal and public variables, but not its protected or private
variables.

public class Report {
 public function Report (employee:Employee) {
 // Assign a function to doReport
 employee.doReport = function ():void {
 trace(this.startDate); // Access to public variable allowed
 trace(this.age); // Access to private variable denied
 }
 }
}

Dynamic References to Variables and Methods
Because dynamic instance variable names are often not known until runtime, Action-
Script provides a way to specify a variable’s name using an arbitrary string expres-
sion. The following code shows the general approach:

someObject[someExpression]

In the preceding code, someObject is a reference to the object whose variable is being
accessed, and someExpression is any expression that yields a string (indicating that
variable’s name). The preceding code can be used both to assign a value to a variable
and to retrieve a variable’s value.

For example, the following code assigns the value “Toronto” to a variable whose
name is specified by the literal string expression “city”:

var info:Object = new Object();
info["city"] = "Toronto";

The following code assigns the value “Canada” to a variable whose name is specified
by the literal string expression “country”:

info["country"] = "Canada";

The following code retrieves the value of the variable whose name is specified by the
identifier expression, detail:

var detail:String = "city";
trace(info[detail]); // Displays: Toronto

When ActionScript encounters the code, info[detail], it first determines the value
of detail, which is “city,” and then looks up the variable named “city” of the object
referenced by info.

The syntactic rules for identifiers don’t apply to variables created using the [] opera-
tor. For example, the following code creates a dynamic instance variable whose name
starts with a number:

var info:Object = new Object();
info["411"] = "Information Line";

Using Dynamic Instance Variables to Create Lookup Tables | 287

Using the dot (.) operator to create the same variable causes an error because it vio-
lates the syntactic rules for identifiers:

var info:Object = new Object();
info.411 = "Information Line"; // ERROR! Identifiers must not start
 // with a number

Note that the preceding technique can be used to access any kind of variable or
method, not just dynamic instance variables; but it’s most commonly used with
dynamic instance variables. The next section shows dynamic references used in an
applied situation: creating a lookup table.

Using Dynamic Instance Variables to Create Lookup
Tables
A lookup table is a data structure that maps a set of names to a corresponding set of
values. For example, the following pseudocode shows a lookup table representing
the courses of a meal:

appetizer: tortilla chips
maincourse: bean burrito
dessert: cake

To represent the lookup table using dynamic instance variables, we would use the
following code:

var meal:Object = new Object();
meal.appetizer = "tortilla chips";
meal.maincourse = "bean burrito";
meal.dessert = "cake";

Now let’s consider a more involved scenario. Imagine an inventory application for a
bookstore in which the user can browse books by ISBN number. Information for
each book is loaded from an external server. To minimize communication with the
server, the application loads the information for 500 books at a time. For the sake of
simplicity, we’ll assume that each book’s information takes the form of a single
string, in the following format:

"Price: $19.99. Title: Path of the Paddle"

To store the loaded book information in ActionScript, we create an instance of the
Object class, which will act as a lookup table for the books:

var bookList:Object = new Object();

As each book’s information is loaded, we assign it to a new dynamic instance vari-
able of the preceding bookList object. Each variable’s name corresponds to a book’s
ISBN number, preceded by the string “isbn”. For example, the variable for a book
with the ISBN number 155209328X would be named isbn155209328X. The following

288 | Chapter 15: Dynamic ActionScript

code demonstrates how we would create a given book’s dynamic instance variable if
we knew its ISBN number in advance:

bookList.isbn155209328X = "Price: $19.95. Title: Path of the Paddle";

In the real application, however, we won’t know a book’s ISBN number until it is
loaded from the server. Hence, we must define each book’s dynamic-instance vari-
able name dynamically, based on data loaded at runtime. For the sake of demonstra-
tion, let’s create a variable, bookData, whose value represents the data as it would be
loaded from the server. In this simplified example, each book’s ISBN number and
details are separated with a single tilde character (~). Meanwhile, entire books are
separated from each other by two tilde characters (~~).

var bookData:String = "155209328X~Price: $19.95. Title: Path of the Paddle"
 + "~~"
 + "0072231726~Price: $24.95. Title: High Score!";

To convert the loaded book data from a string to an array of books for processing,
we use the String class’s split() method, as follows:

var bookDataArray:Array = bookData.split("~~");

To convert the array of books to a lookup table, we use the following code:

// Create a variable to track each book's information as it is processed
var book:Array;

// Loop once for every item in the array of books
for (var i:int = 0; i < bookDataArray.length; i++) {
 // Convert the current item in the array from a string to its
 // own array. For example, the string:
 // "155209328X~Price: $19.95. Title: Path of the Paddle"
 // becomes the array:
 // ["155209328X", "Price: $19.95. Title: Path of the Paddle"]
 book = bookDataArray[i].split("~");

 // Create a dynamic instance variable whose name matches the ISBN number
 // of the current item in the array of books, and assign that variable
 // the description of the current item in the array. Note that the ISBN
 // number is book[0], while the description is book[1].
 bookList["isbn" + book[0]] = book[1];
}

Once we’ve added all 500 books to the bookList object, each with its own dynamic
instance variable, the user can then select a book to view by entering its ISBN num-
ber in a text-input field, isbnInput. Here’s how we would display the user’s selected
book during debugging:

trace(bookList["isbn" + isbnInput.text]);

Here’s how we would display the user’s selected book on screen in a text field refer-
enced by bookDescription:

bookDescription.text = bookList["isbn" + isbnInput.text];

Using Functions to Create Objects | 289

To list all of the books in the bookList object, we would use a for-each-in loop, as
follows:

for each (var bookInfo:* in bookList) {
 // Display the value of the dynamic instance variable currently
 // being processed
 trace(bookInfo);
}

The preceding loop produces the following debugging output:

Price: $19.95. Title: Path of the Paddle
Price: $24.95. Title: High Score!

Making Lookup Tables with Object Literals
For the sake of convenience, to create a lookup table whose content is limited and
known in advance, we can use an object literal. An object literal creates a new
instance of the Object class from a series of comma-separated dynamic-variable
name/value pairs, enclosed in curly braces. Here’s the general syntax:

{varName1:varValue1, varName2:varValue2,...varNameN:varValueN}

For example, the following code creates an Object instance with a dynamic instance
variable named city (whose value is “Toronto”), and a dynamic instance variable
named country (whose value is “Canada”):

var info:Object = {city:"Toronto", country:"Canada"};

The preceding code is identical to the following code:

var info:Object = new Object();
info.city = "Toronto";
info.country = "Canada";

If there were only two books in the preceding section’s book-inventory application,
we might have used the following object literal to create the bookList lookup table:

var bookList:Object = {
 isbn155209328X:"Price: $19.95. Title: Path of the Paddle",
 isbn0072231726:"Price: $24.95. Title: High Score!"
 };

Using Functions to Create Objects
As we’ve seen throughout this book, most objects in ActionScript are created using
classes. However, it is also possible to create objects using standalone function clo-
sures. The following code shows the basic approach. It uses an example function,
Employee(), to create an object:

// Create the function
function Employee () {
}

290 | Chapter 15: Dynamic ActionScript

// Use the function to create an object, and assign that
// object to the variable, worker
var worker = new Employee();

Notice that the variable worker is untyped. From a datatype perspective, the object
referenced by worker is an instance of the Object class. There is no Employee class, so
there is no Employee datatype. The following code, therefore, causes an error
(because the Employee datatype does not exist):

// ERROR!
var worker:Employee = new Employee();

A function closure used to create an object is referred to as a constructor function (not
to be confused with a constructor method, which is part of a class definition). In
ActionScript 3.0, standalone functions declared at the package-level cannot be used
as constructor functions. Hence, the preceding code would have to appear within a
method, in code outside of a package statement or in a frame script on a timeline in
the Flash authoring tool. For the sake of brevity, however, this section shows all con-
structor functions outside the required containing method or frame script.

All objects created from constructor functions are implicitly dynamic. Hence, a con-
structor function can use the this keyword to add new dynamic instance variables to
an object at creation time. Dynamic instance variables created in a constructor func-
tion are typically assigned values passed to the function as arguments. The following
code demonstrates:

function Employee (age, salary) {
 // Define dynamic instance variables
 this.age = age;
 this.salary = salary;
}

// Pass arguments to use as the values of
// this object's dynamic instance variables
var worker = new Employee(25, 27000);
trace(worker.age); // Displays: 25

To allow objects created via a particular constructor function to share information
and behavior, ActionScript defines a special static variable named prototype on every
function. A function’s prototype variable references an object (known as the func-
tion’s prototype object) whose dynamic instance variables can be accessed through
any object created by that function. Initially, ActionScript assigns every function’s
prototype variable an instance of the generic Object class. By adding dynamic
instance variables to that object, we can create information and behavior that is
shared by all objects created from a particular function.

For example, the following code adds a dynamic instance variable, company, to the
Employee() function’s prototype object:

Employee.prototype.company = "AnyCorp";

Using Prototype Objects to Augment Classes | 291

As a result, any object created from the Employee() function can access company as
though it were its own dynamic instance variable:

var worker = new Employee(25, 27000);
trace(worker.company); // Displays: AnyCorp

In the preceding code, when ActionScript realizes that the object created from the
Employee() function (worker) does not have an instance variable or instance method
named “company,” it then checks whether Employee.prototype defines a dynamic
instance variable by that name. The Employee.prototype object does define such a
variable, so ActionScript uses it as though it were the worker object’s own variable.

If, on the other hand, the worker object defined its own variable named company, then
that variable would be used instead of the Employee.prototype object’s variable. The
following code demonstrates:

var worker = new Employee(25, 27000);
worker.company = "CarCompany";
trace(worker.company); // Displays: CarCompany (not AnyCorp)

Using the technique we learned in the section “Dynamically Adding New Behavior to
an Instance,” we can assign a function to a dynamic instance variable of any con-
structor function’s prototype object. The function can then be used by any object cre-
ated from that constructor function.

For example, the following code defines a dynamic instance variable, getBonus, on
the Employee() function’s prototype object and assigns that variable a function that
calculates and returns an annual bonus:

Employee.prototype.getBonus = function (percentage:int):Number {
 // Return a bonus based on a specified percentage of the
 // employee's salaray
 return this.salary * (percentage/100);
}

As a result, all objects created from the Employee() function can use the getBonus()
function as though it were assigned to their own dynamic instance variable:

var worker = new Employee(25, 27000);
trace(worker.getBonus(10)); // Displays: 2700

Using Prototype Objects to Augment Classes
We’ve learned that ActionScript defines a special static variable named prototype on
every function. Using the prototype variable of a given function, we can share infor-
mation and behavior among all objects created from that function.

Just as ActionScript defines a prototype variable on every function, it also defines a
static prototype variable on every class. Using the static prototype variable, we can
add shared information and behavior to all instances of a given class at runtime.

292 | Chapter 15: Dynamic ActionScript

For example, the following code defines a new dynamic instance variable, isEmpty,
on the built-in String class’s prototype object and assigns that variable a function.
The function returns true when a string has no characters in it; otherwise the func-
tion returns false:

String.prototype.isEmpty = function () {
 return (this == "") ? true : false;
};

To invoke the function isEmpty() on a String object, we use the following code:

var s1:String = "Hello World";
var s2:String = "";

trace(s1.isEmpty()); // Displays: false
trace(s2.isEmpty()); // Displays: true

However, the previous code example—and this entire technique—has a problem:
the dynamic instance variable isn’t added until runtime; therefore, the compiler has
no idea that it exists and will generate an error if it is used in strict mode. For exam-
ple, in strict mode, the code in the preceding example yields this error:

Call to a possibly undefined method isEmpty through a reference with static type
String.

In order to refer to isEmpty() in strict mode without causing a compile-time error,
we must use a dynamic reference, as shown in the following code:

s1["isEmpty"]()

On the other hand, if the String class were declared dynamic, then the original
approach (i.e., s1.isEmpty()) would not generate an error.

Note that fixed variables and methods are always preferred over prototype variables.
In the preceding example, if the String class already defined an instance method or
instance variable named isEmpty, then all references to isEmpty would refer to that
instance variable or instance method—not to dynamic instance variable on the String
class’s prototype object.

The Prototype Chain
In the preceding sections, we learned that a prototype object can be used to share
information and behavior with the objects created from a particular constructor
function or class. In fact, the reach of a given prototype object goes beyond the
objects created from the function or class to which it is attached.

In the case of a class, the dynamic instance variables defined on the class’s prototype
object can be accessed not just through the class’s instances but also through the
instances of the class’s descendants. The following generic code demonstrates:

// Create a simple class, A
dynamic public class A {

The Prototype Chain | 293

}

// Create another simple class, B, that extends A
dynamic public class B extends A {
}

// Create an application's main class
public class Main extends Sprite {
 public function Main () {
 // Add a dynamic instance variable to class A's prototype object
 A.prototype.day = "Monday";

 // Access A.prototype.day through an instance of B
 var b:B = new B();
 trace(b.day); // Displays: "Monday"
 }
}

In the case of a function, the dynamic instance variables defined on the function’s
prototype object can be accessed not just through any object created from that func-
tion but also through any object whose prototype chain includes that function’s pro-
totype object.

Let’s explore how prototype chains work through an example. Suppose we create a
function, Employee(), just as we did earlier, whose prototype object has a dynamic
instance variable named company:

function Employee () {
}
Employee.prototype.company = "AnyCorp";

Any object created from Employee() can access company through Employee()’s proto-
type object. Nothing new so far. Now suppose we create another function, Manager():

function Manager () {
}

Suppose also that we wish to give objects created from Manager() access to company
through Employee()’s prototype object. To do so, we assign an object created from
Employee() to Manager()’s prototype variable.

Manager.prototype = new Employee();

Now, let’s consider what happens when we access the name “company” through an
object created from the Manager() function, as follows:

var worker = new Manager();
trace(worker.company);

When the preceding code runs, ActionScript checks whether the worker object has
an instance variable or instance method named “company.” The worker object does
not have an instance variable or instance method by that name, so ActionScript then
checks whether the Manager() function’s prototype object defines a dynamic
instance variable named “company.” The Manager() function’s prototype object is,

294 | Chapter 15: Dynamic ActionScript

itself, an object created from the Employee() function. However, objects created
from the Employee() function do not define a dynamic instance variable named
“company.” Hence, ActionScript next checks whether the Employee() function’s
prototype object defines a dynamic instance variable named “company.” The
Employee() function’s prototype object does define such a variable, so ActionScript
uses it as though it were the worker object’s own variable.

Here’s the trail ActionScript follows to find “company”:

1. Search worker for company. Not found.

2. Search Manager.prototype for company. Not found.

3. Manager.prototype was created from Employee(), so search Employee.prototype
for company. Found!

The list of prototype objects ActionScript searches when attempting to resolve a vari-
able’s value is known as the prototype chain. Prior to ActionScript 3.0, the prototype
chain was the primary mechanism for sharing reusable behavior among various kinds
of objects. As of ActionScript 3.0, class inheritance plays that role.

Note the following limitations imposed on the prototype chain in ActionScript 3.0:

• An object assigned to a function’s prototype variable must, itself, be an object
created from a function or an instance of the Object class (instances of other
classes are not allowed).

• The value of a class’s prototype variable is set automatically by ActionScript and
cannot be reassigned.

Onward!
In most mid- to large-scale projects, the dynamic techniques we learned in this chap-
ter play only a minor role. Nevertheless, an understanding of ActionScript’s dynamic
programming features should increase your overall comfort with the language. In a
similar way, knowledge of scope, the topic of the next chapter, will increase your
confidence as an ActionScript programmer (but might not get you asked out on any
dates). Scope governs the availability and life span of a program’s definitions.

295

Chapter 16 CHAPTER 16

Scope17

A scope is a physical region of a program in which code executes. In ActionScript
there are five possible scopes:

• A function body

• An instance method body

• A static method body

• A class body

• Everywhere else (i.e., global scope)

At any specific point in the execution of a program, the availability of variables, func-
tions, classes, interfaces, and namespaces is governed by the scope of the code cur-
rently being executed. For example, code in a function can access that function’s
local variables because it executes inside the function’s scope. By contrast, code out-
side the function cannot access the function’s local variables because it executes out-
side the function’s scope.

In ActionScript, scopes can be nested. For example, a function might be nested in an
instance method, which, itself, is nested in a class body:

public class SomeClass {
 public function someMethod ():void {
 function someNestedFunction ():void {
 // This function's scope is nested inside someMethod()'s scope,
 // which is nested inside SomeClass's scope
 }
 }
}

When one scope is nested within another, the definitions (i.e., variables, functions,
classes, interfaces, and namespaces) available to the enclosing scope become avail-
able to the nested scope. For example, a function nested inside an instance method
can access that method’s local variables. The entire list of nested scopes surrounding
the code currently being executed is known as the scope chain.

296 | Chapter 16: Scope

This chapter describes the availability of variables, functions, classes, interfaces, and
namespaces within ActionScript’s various scopes.

Note that in addition to the definitions listed as “accessible” in each of the following
sections, the public definitions of an external package can also be made visible in a
given scope via the import directive. For details, see the section “Object Creation
Example: Adding a Pet to the Zoo” in Chapter 1.

In combination, a definition’s location and access-control modifier governs its acces-
sibility throughout a program. For reference, Table 16-1 lists the accessibility of defi-
nitions according to their location and access-control modifier.

Global Scope
Code placed directly outside a package body or at the top-level of a package body
resides in the global scope. In other words:

package {
 // Code here is in the global scope
}
// Code here is also in the global scope

Code in the global scope can access the following definitions:

• Functions, variables, classes, interfaces, and namespaces defined at the top level
of the unnamed package

• Functions, variables, classes, interfaces, and namespaces defined outside of any
package, but in the same source (.as) file

In other words:

package {
 // Definitions here are accessible to all code in the global scope

Table 16-1. Definition accessibility by location and access-control modifier

Definition Accessibility

Definition outside of any package Accessible within containing source file only

Definition in the unnamed package Accessible to entire program

Public definition in a named package Accessible within the package containing the definition and any-
where the definition is imported

Internal definition in a named package Accessible within the package containing the definition only

Public method or variable Accessible anywhere the containing class can be accessed

Internal method or variable Accessible within the containing class’s package

Protected method or variable Accessible within the containing class and its descendant classes

Private method or variable Accessible within the containing class only

Definition in instance method, static method, or function Accessible within the containing method or function, and all of its
nested functions

Class Scope | 297

}
// Definitions here are accessible to all code in the same source file

Note that code placed at the top-level of a named package body can also access the
definitions placed at the top-level of that package. Those definitions are accessible
because within a named package, ActionScript automatically opens the namespace
corresponding to that package (see Chapter 17). In other words:

package somePackage {
 // Definitions here are automatically accessible to
 // all code in somePackage
}

Class Scope
Code placed at the top-level of a class body resides in that class’s scope. Here’s the
code:

package {
 public class SomeClass {
 // Code here is in the someClass scope
 }
}

Remember that code placed at the top-level of a class body is wrapped
in an automatically created static method (the class initializer), which
executes when ActionScript defines the class at runtime. See the sec-
tion “The Class Initializer” in Chapter 4.

Via the scope chain, code in a classs scope can access the following definitions:

• All definitions available to code in the global scope

Additionally, code in a class’s scope can access the following definitions:

• Static methods and static variables defined by the class

• Static methods and static variables defined by the class’s ancestors, if any (i.e.,
superclass, superclass’s superclass, etc.)

In other words:

package {
 public class SomeClass extends SomeParentClass {
 // Static variables and static methods defined here are
 // accessible througout SomeClass
 }
}

package {
 public class SomeParentClass {
 // Static variables and static methods defined here are

298 | Chapter 16: Scope

 // accessible througout SomeClass
 }
}

Remember that even though a class can access its ancestors’ static variables and
methods, static variables and methods are not inherited. See the section “Static
Methods and Static Variables Not Inherited” in Chapter 6.

Static Method Scope
Code placed in a static method body resides in that method’s scope. To demon-
strate:

package {
 public class SomeClass {
 public static function staticMeth () {
 // Code here is in the staticMeth scope
 }
 }
}

Via the scope chain, code in a static method’s scope can access these definitions:

• All definitions available to code in the global scope

• All definitions available to code in the scope of the class containing the static
method definition

Additionally, code in a static method’s scope can access the following definition:

• All local variables, nested functions, and namespaces defined within the static
method

In other words:

package {
 public class SomeClass extends SomeParentClass {
 public static function staticMeth () {
 // Local variables, nested functions, and namespaces defined here
 // are accessible throughout staticMeth
 }
 }
}

Instance Method Scope
Code placed in an instance method body resides in that method’s scope. Here’s the
code:

package {
 public class SomeClass {
 public function instanceMeth () {
 // Code here is in the instanceMeth scope

Function Scope | 299

 }
 }
}

Via the scope chain, code in an instance method’s scope can access these definitions:

• All definitions available to code in the global scope

• All definitions available to code in the scope of the class containing the instance
method definition

Additionally, code in an instance method’s scope can access these definitions:

• All instance methods and instance variables of the object through which the
instance method was invoked (subject to the limitations imposed by access-con-
trol modifiers)

• All local variables, nested functions, and namespaces defined within the instance
method

The following code demonstrates:

package {
 public class SomeClass extends SomeParentClass {
 public function instanceMeth () {
 // 1) All instance methods and instance variables of the current
 // object (i.e., this) are accessible throughout instanceMeth()
 // (subject to the limitations imposed by access-control modifiers)

 // 2) Local variables, nested functions, and namespaces defined here
 // are accessible throughout instanceMeth()
 }
 }
}

Function Scope
Code placed in a function body resides in that function’s scope. The specific list of
definitions available to code in a function’s scope depends on the location of that
function in the program.

Code in a function defined at the package-level or outside any package can access the
following definitions:

• All definitions available to code in the global scope

• All local variables, nested functions, and namespaces defined within the function

Code in a function defined within a static method can access these definitions:

• All definitions available to code in the global scope

• All definitions available to code in the scope of the static method

• All local variables, nested functions, and namespaces defined within the function

300 | Chapter 16: Scope

Code in a function defined within an instance method can access the following
definitions:

• All definitions available to code in the global scope

• All definitions available to code in the scope of the instance method

• All local variables, nested functions, and namespaces defined within the function

Code in a function defined within another function can access these definitions:

• All definitions available to code in the global scope

• All definitions available to code in the enclosing function

• All local variables, nested functions, and namespaces defined within the function

Scope Summary
The following code summarizes ActionScript available scopes:

package {
 // Code here is in the global scope

 public class SomeClass {
 // Code here is in the SomeClass scope

 public static function staticMeth ():void {
 // Code here is in the staticMeth scope
 }

 public function instanceMeth ():void {
 // Code here is in the instanceMeth scope

 function nestedFunc ():void {
 // Code here is in the nestedFunc scope
 }
 }
 }
}
// Code here is in the global scope

The Internal Details
Internally, ActionScript uses a list of objects to keep track of the definitions in the
scope chain. The objects used to track the definitions of each scope are as follows:

Global scope
The global object (an object created automatically by ActionScript to hold global
definitions)

Class scope
The class’s Class object (and the Class objects of the class’s ancestors)

The Internal Details | 301

Static method scope
The class’s Class object (and the Class objects of the class’s ancestors)

Instance method scope
The current object (this) and an activation object (an activation object is an
object created and stored internally by ActionScript and maintains the local vari-
ables and parameters of function or method)

Function scope
An activation object

When ActionScript encounters an identifier expression in an program, it searches for
that identifier among the objects in the scope chain. For example, consider the fol-
lowing code:

package {
 public class SomeClass {
 public function instanceMeth ():void {
 function nestedFunc ():void {
 trace(a);
 }
 }
 }
}
var a:int = 15;

In the preceding code, when ActionScript encounters the identifier a, it begins a search
for the value of that identifier with nestedFunc()’s activation object. But nestedFunc()
does not define any local variables or parameters named a, so ActionScript next
searches for a on the current object (i.e., the object through which instanceMeth() was
invoked). But SomeClass does not define or inherit an instance method or instance
variable named a, so ActionScript next searches for a on SomeClass’s class object. But
SomeClass does not define a static method or static variable named a, so ActionScript
next searches for a on the class object of SomeClass’s superclass—which is Object. But
Object does not define a static method or static variable named a, so ActionScript next
searches for a on the global object. There, ActionScript finds a, and determines its
value to be 15. With a’s value in hand, ActionScript then outputs 15 during debug-
ging. Quite a lot of work for li’l ’ol a!

Here are the objects ActionScript searched for a, in the order they were searched:

• nestedFunc()’s activation object

• The object through which instanceMeth() was invoked

• SomeClass’s class object

• Object’s class object

• The global object

If a is not found on the global object, ActionScript reports a reference error.

302 | Chapter 16: Scope

Note that in the preceding example, a is defined on the global object but is accessi-
ble in the source file that contains a’s definition only.

Variables defined outside a package definition are accessible within
the containing source file only.

Now that we know all about the scope chain, let’s close this chapter with a quick
look at ActionScript’s only tool for manipulating the scope chain directly—the with
statement.

Expanding the Scope Chain via the with Statement
The with statement provides a shorthand way to refer to the variables and methods
of an object without having to specify the object’s name repeatedly. A with state-
ment takes the general form:

with (object) {
 substatements
}

When an identifier is referenced within a with statement block, object is checked for
the specified name—before the remainder of the scope chain is consulted. In other
words, with temporarily adds object to the end of ActionScript’s internal list of
objects in the scope chain.

For example, to refer to the built-in Math class’s PI variable, we normally use the fol-
lowing code:

Math.PI;

But using the with statement, we can to refer to the built-in Math class’s PI variable
without the preceding reference to the Math class:

with (Math) { // Execute statements in the context of Math
 trace(PI); // Displays: 3.1459... (because PI is defined on Math)
}

Some developers find the with statement convenient when writing code that makes
repeated references to a particular object’s variables and methods.

On to Namespaces | 303

On to Namespaces
In this chapter we learned how ActionScript manages the availability of definitions in
different scopes. In the next chapter, we’ll learn to use namespaces to manage the
visibility of definitions. Note that namespaces are an important part of Action-
Script’s internal makeup but are typically used in custom code in advanced situa-
tions only. Newer programmers may wish to skip the next chapter and proceed
directly to Chapter 18.

304

Chapter 17CHAPTER 17

Namespaces 18

In very general terms, a namespace is a set of names that contains no duplicates. That
is, within the set, each name is unique. For example, in English, the names of fruits
could be considered a namespace because each fruit has its own unique name—
apple, pear, orange, and so on. Likewise, the names of colors could be considered a
namespace because each color has its own unique name—blue, green, orange, and
so on.

Notice that the name “orange” appears in both groups of names. The name “orange”
itself is not unique, it is unique only within each group. Depending on whether
you’re talking about a fruit or a color, the same name, “orange,” refers to two differ-
ent things. That’s the purpose of namespaces. They let the same name (identifier)
have different meanings depending on the context in which it is used.

When applied to programming, this “same name, different meaning” feature of
namespaces offers two general benefits:

• It helps programmers avoid name conflicts

• It lets a program’s behavior adapt to the current context

Over the course of this chapter, we’ll explore the many nooks and crannies of
namespaces in ActionScript. Try not to let the various details distract you from the
relative simplicity of namespaces. Fundamentally, namespaces are nothing more
than a two-part naming system. They are used to distinguish one group of names
from another, much like an area code distinguishes one phone number from other
phone numbers around the world.

Namespace Vocabulary
In this chapter, we’ll encounter quite a few new namespace-related terms. Below
you’ll find some of the most important ones listed for quick reference. Skim the list
quickly now for familiarity and return to it whenever you need a refresher during the

ActionScript Namespaces | 305

upcoming discussions. The remainder of this chapter covers each of these terms in
much greater depth.

local name
The local part of a qualified identifier; that is, the name being qualified by the
namespace. For example, “orange” in fruit::orange.

namespace name
The uniquely identifying name of a namespace, in the form of a uniform
resource identifier (URI). In ActionScript, the namespace name is accessible via
the Namespace class’s instance variable uri. In XML, the namespace name is
accessible via the xmlns attribute.

namespace prefix
An alias to the namespace name. Namespace prefixes are used in XML only, but
can be accessed in ActionScript via the Namespace class’s prefix variable for the
sake of E4X operations.

namespace identifier
The identifier used for a namespace in an ActionScript namespace definition. For
example, fruit in the following namespace definition:

namespace fruit = "http://www.example.com/games/kidsgame/fruit";

open namespace
A namespace that has been added to the set of open namespaces via the use
namespace directive.

open namespaces
The set of namespaces ActionScript consults when attempting to resolve unqual-
ified references.

qualifier namespace
The namespace that qualifies a variable or method definition or the namespace
identifier in a qualified identifier.

qualified identifier
A two-part ActionScript identifier that includes a namespace identifier and a
local name, separated by two colons. For example, fruit::orange.

ActionScript Namespaces
In ActionScript, a namespace is a qualifier for the name of a variable, method, XML
tag, or XML attribute. A qualifier limits, or “qualifies” the meaning of an identifier,
giving us the ability to say in code “this orange variable is a fruit, not a color” or “this
search() method applies to Japanese language searching, not English” or “this
<TABLE> tag describes HTML page layout, not a piece of furniture.”

306 | Chapter 17: Namespaces

Using ActionScript namespaces to qualify variable and method names we can:

• Prevent naming conflicts (see the section “Namespaces for Access-Control Modi-
fiers”)

• Implement custom levels of method and variable visibility across an entire pro-
gram, independent of the program’s package structure (see the mx_internal
namespace example, in the section “Example: Framework-Internal Visibility”)

• Implement permission-based access control wherein classes must request access
to variables and methods (see Example 17-5 in the section “Example: Permis-
sion-Based Access Control”)

• Implement multiple “modes” in a program (see Example 17-7 in the section
“Example: Program Modes”)

ActionScript namespaces also provide direct access to XML namespaces in XML doc-
uments. For coverage of XML namespaces in ActionScript see the section “Working
with XML Namespaces” in Chapter 18.

Before we get to applied namespace examples, let’s look at the basic concepts and
syntax involved in using ActionScript namespaces. Over the next few introductory
sections we’ll create two namespaces: fruit and color, then use the fruit and color

C++ Namespaces Versus ActionScript Namespaces
Even though some of ActionScript’s namespace syntax is similar to C++’s namespace
syntax, namespaces are used differently in ActionScript than they are in C++.

In C++, a namespace is a syntactic container, just as packages are in ActionScript and
Java. In C++, an identifier is considered “in” a given namespace only if it physically
resides in that namespace’s statement block. For example, in the following code, the
variable a is in the namespace n because of the physical placement of the variable’s dec-
laration within the namespace statement:

namespace n {
 int a;
}

C++ namespaces are, therefore, used primarily to prevent naming conflicts between
physical sections of code and to restrict one section of code from accessing another.

By contrast, in ActionScript, a namespace can include any variable or method, regard-
less of physical code structure. ActionScript namespaces define visibility rules for
methods and variables that transcend the structural limits (classes and packages) of a
program.

C++ programmers looking for the equivalent of C++ namespaces in ActionScript
should investigate ActionScript packages, covered in Chapter 1. There is no direct ana-
log for ActionScript namespaces in C++.

Creating Namespaces | 307

namespaces to qualify the definitions of two variables, and finally refer to those
variables using so-called “qualified identifiers.” Along the way, we’ll progress
towards a simple example application: a child’s learn-to-read game. Let’s get started.

Creating Namespaces
To create a namespace, we must give it a name. The name of each namespace—
known formally as the namespace name—is a string that, by convention, specifies a
uniform resource identifier, or URI. The URI uniquely identifies the namespace
among all other namespaces in a program and potentially even among any program
in the world.

The term URI refers to the generalized resource-identification stan-
dard of which the familiar Internet address standard, URL, is a sub-
type. See http://www.ietf.org/rfc/rfc2396.txt.

ActionScript’s use of URIs as namespace names is based on the stan-
dard set by the World Wide Web Consortium (W3C) in their
“Namespaces in XML” recommendation. See http://www.w3.org/TR/
xml-names11.

The first step in creating a namespace, then, is to decide on a URI to use as its name.

Choosing the Namespace URI
Typically, the URI used as a namespace name is a URL within the control of the
organization producing the code. For example, my web site is www.moock.org, so for
a new namespace name, I might use a URI generally structured like this:

http://www.moock.org/app/namespace

For the child’s game that we’re going to build, we’ll use the following URIs for the
namespaces fruit and color:

http://www.example.com/games/kidsgame/fruit
http://www.example.com/games/kidsgame/color

Note that the URI need not—and generally does not—exist online. The URI is used
only to identify the namespace; it is not a web page address, or an XML document
address, or any other online resource. Any URI is allowed, but using a URL from
your own web site as the namespace name minimizes the likelihood that other orga-
nizations will use the same name.

Defining the Namespace
Once we’ve settled on a URI to use as the namespace name, we create the namespace
using the namespace keyword, followed by the namespace’s identifier, then an equal
sign, and finally the namespace name (the URI):

http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/xml-names11
http://www.w3.org/TR/xml-names11
www.moock.org

308 | Chapter 17: Namespaces

namespace identifier = URI;

The namespace identifier is the name of the ActionScript constant to which the
namespace value is assigned (where the namespace value is an instance of the
Namespace class automatically generated by the preceding statement). The URI is the
namespace name.

For example, to create a namespace with the identifier fruit and the URI "http://
www.example.com/games/kidsgame/fruit", we use:

namespace fruit = "http://www.example.com/games/kidsgame/fruit";

To create a namespace with the identifier color and the URI "http://www.example.
com/games/kidsgame/color", we use:

namespace color = "http://www.example.com/games/kidsgame/color";

Notice that no datatype declaration is required or allowed. The implicit datatype of
the namespace identifier is always Namespace. Namespaces can be defined any-
where variables can be defined, namely:

• In the top level of a package definition

• In the top level of a class definition

• In a function or method

• On a movie clip timeline in a .fla file

In practice, namespaces are nearly always defined at the top level of a package or
class definition (unless they’re used for XML, as discussed in Chapter 18). For now,
we’ll define all our namespaces at the package level.

To create a package-level namespace for use throughout a program, place the
namespace definition in a separate file, with the extension .as, and a name that
exactly matches the namespace identifier’s name, as in the following for the fruit
namespace:

// File fruit.as
package kidsgame {
 namespace fruit = "http://www.example.com/games/kidsgame/fruit";
}

and for the color namespace:

// File color.as
package kidsgame {
 namespace color = "http://www.example.com/games/kidsgame/color";
}

In the later section “Namespace Accessibility,” we’ll study examples of namespaces
defined at the class or function level. Namespaces defined in a movie clip timeline
are treated as though they were defined at the class level in the class representing the
containing movie clip (for more information on timeline-level definitions, see the sec-
tion “Variable and Function Definitions in Frame Scripts” in Chapter 29.)

Creating Namespaces | 309

Explicit Versus Implicit URIs
So far, all our namespace definitions have included an explicit URI, such as the one
shown in bold in the following namespace definition:

namespace fruit = "http://www.example.com/games/kidsgame/fruit";

But when a namespace declaration does not explicitly provide a namespace name
(URI), ActionScript automatically generates one. For example, the following
namespace definition provides no URI, so ActionScript automatically creates one:

package {
 namespace ns1;
}

To prove it, we can display the automatically generated URI for the namespace ns1
like this:

namespace ns1;
trace(ns1.uri); // Displays: ns1

The Namespace class’s instance method toString() also returns the value of the
instance variable uri, so the trace() call can be shortened to:

trace(ns1); // Also displays: ns1

However, it’s generally wise to specify a URI when defining namespaces because
explicit URIs are universally identifiable in any context, even across multiple .swf
files, whereas automatically generated URIs are not. In this chapter, we’ll provide an
explicit URI for all namespaces.

As a best practice, always provide a URI for each namespace
definition.

Namespace Terminology Review
In just a few short pages we’ve encountered quite a lot of new terminology. Let’s
review.

• A namespace name is a URI that identifies a namespace.

• The Namespace class represents a namespace in an object-oriented way.

• A namespace value is an instance of the Namespace class.

• A namespace identifier is the name of an ActionScript constant that refers to a
namespace value.

Generally speaking, the complexity of these terms can be captured by the simple
term “namespace.” For example, in this book, we often use the simple phrase, “the
namespace fruit,” in place of the more technically precise phrase, “the namespace

310 | Chapter 17: Namespaces

"http://www.example.com/games/kidsgame/fruit" that is represented by a Namespace
object referenced by the identifier fruit.”

For the sake of easier reading, we’ll normally use the simpler, if less precise, phrase
“the namespace fruit.” Nevertheless, the distinction between a namespace name
and a namespace identifier is important to some of the ensuing discussion, so you
should familiarize yourself with the preceding terminology.

Using a Namespace to Qualify Variable and Method
Definitions
Now that we’ve defined the fruit and color namespaces, we can use them to specify
the so-called qualifier namespace for new methods and variables. The qualifier
namespace is the namespace within which the variable or method name is unique.

To specify the qualifier namespace for a new variable or method, we use that
namespace’s identifier as an attribute of the variable or method definition, as
follows:

// Specify the qualifier namespace for a variable
namespaceIdentifier var propName:datatype = optionalInitialValue;

// Specify the qualifier namespace for a method
namespaceIdentifier function methodName (params):ReturnType {
 statements
}

The following rules apply to the namespaceIdentifier:

• It must be accessible to the scope where the variable or method is defined, as dis-
cussed later in the section “Namespace Accessibility.”

• It cannot be a literal value; specifically it cannot be a string literal containing a
namespace name (URI).

• It must be a compile-time constant.

These three rules effectively mean that the namespaceIdentifier can only be a
namespace identifier created with the namespace keyword, and specifically cannot be
a variable that refers to a namespace value. (We’ll learn about variables that refer to
namespace values later in the section “Assigning and Passing Namespace Values.”)

Here’s how to specify the qualifier namespace fruit for an instance variable named
orange:

fruit var orange:String = "Round citrus fruit";

And here’s how to specify the qualifier namespace color for an instance variable also
named orange:

color var orange:String = "Color obtained by mixing red and yellow";

Using a Namespace to Qualify Variable and Method Definitions | 311

It’s legal and common to use one qualifier namespace to qualify many different vari-
ables, providing that each variable’s name is unique in that namespace (that’s the
whole idea!). For example, here’s another variable, purple, also qualified by the
namespace color:

color var purple:String = "Color obtained by mixing red and blue";

When multiple variables and methods are qualified by the same namespace, n, those
variables and methods can be thought of as forming a logical group. From a theoreti-
cal point of view, then, it is natural to say that a variable or method “belongs to” or
“is in” its declared namespace. However, on a technical level, an ActionScript
“namespace” is not a data structure that physically contains variables or methods.
Namespaces are not data containers, nor arrays. Namespaces serve only to qualify
names. To avoid confusion, from now on, we’ll use the phrase “the namespace n
qualifies the variable name p” rather than “the variable name p belongs to the
namespace n” or “the variable name p is in the namespace n.”

Namespaces do not contain names; they simply qualify them.

Note that multiple namespaces cannot be specified for a single variable or method
definition. Each definition can include a single qualifier namespace only. For exam-
ple, this code is not legal:

// Attempt to specify two namespaces for a single definition.
fruit color var orange:String; // Yields the following error:
 // Only one namespace attribute
 // may be used per definition

User-Defined Namespace Attributes in the Top-Level of a Class
Only
In the previous section we learned how to use our own namespaces as attributes for
method and variable definitions. In fact, that’s the only place a user-defined
namespace can legally be used as an attribute of a definition.

User-defined namespaces can be used as attributes within the top level
of a class definition only.

If you attempt to use a user-defined namespace as an attribute of a definition any-
where else, you’ll receive the following error:

A user-defined namespace attribute can only be used at the top level of a class
definition.

312 | Chapter 17: Namespaces

Specifically, this means you cannot specify a user-defined namespace for the defini-
tion of a class, package-level variable, package-level function, local variable, or
nested function. The following definitions are illegal:

// Illegal class definition. Namespace color not allowed here!
color class Picker {
}

public function doSomething ():void {
 // Illegal local variable definition. Namespace color not allowed here!
 color var tempSwatch;
}

package p {
 // Illegal package-level variable definition.
 // Namespace color not allowed here!
 color var favorites:Array;
}

By contrast, namespaces built-in to ActionScript can be used as attributes of a defini-
tion wherever ActionScript specifically allows it. For example, as we’ll learn in the
later section “Namespaces for Access-Control Modifiers,” the access-control modifi-
ers (public, internal, protected, and private) are built-in namespaces, and two of them
(public and internal) can be used at the package level.

Right, back to our code. We’ve now seen how to create two namespaces and three
variables qualified by those namespaces, as follows:

// Create two namespaces
package kidsgame {
 namespace fruit = "http://www.example.com/games/kidsgame/fruit";
}

package kidsgame {
 namespace color = "http://www.example.com/games/kidsgame/color";
}

// Elsewhere, within a class, create three variables
fruit var orange:String = "Round citrus fruit";
color var orange:String = "Color obtained by mixing red and yellow";
color var purple:String = "Color obtained by mixing red and blue";

Next we’ll learn how to refer to those variables using qualified identifiers.

Qualified Identifiers
So far all the identifiers we’ve encountered in this book have been so-called simple
identifiers—identifiers with “simple” one-part names such as box, height, and border.
But in order to work with namespaces we must use qualified identifiers. A qualified
identifier is a special type of identifier that includes both a name and a namespace

Qualified Identifiers | 313

that qualifies that name. Accordingly, qualified identifiers have two parts instead of
just one:

• The local name (the name that is unique within the specified namespace)

• The qualifier namespace (the namespace within which the local name is unique)

In ActionScript code, qualified identifiers are written as follows,

qualifierNamespace::localName

where the local name and qualifier namespace are joined together with the name-
qualifier operator, written as two colons (::). The qualifierNamespace must be either
a namespace identifier or a variable with a namespace as a value. We’ll learn about
assigning namespaces to variables in the later section “Assigning and Passing
Namespace Values.” The qualifierNamespace cannot, however, be a literal string that
is the namespace name (URI).

Let’s take a look at a real-life example of a qualified identifier. First, recall our earlier
definition of the variable orange qualified by the namespace fruit:

fruit var orange:String = "Round citrus fruit";

Here’s how we refer to that variable with a qualified identifier:

fruit::orange

Likewise, here’s the qualified identifier for the variable with the local name orange
qualified by the namespace color:

color::orange

In the preceding examples, notice that the local names are the same (orange), but the
qualifier namespace is different. ActionScript uses the qualifier namespace to distin-
guish between the two local names. Qualified identifiers are used exactly like simple
identifiers in ActionScript; they just happen to include a qualifier namespace. The
format qualifierNamespace::localName applies to method and variable names alike:

someNamespace::p // Access variable p
someNamespace::m() // Invoke method m()

A reference to a qualified identifier through an object uses the familiar dot operator,
as follows:

someObject.qualifierNamespace::localName

For example, this code accesses someObj’s variable p, which is qualified by
someNamespace:

someObj.someNamespace::p

And this code invokes someObj’s method m(), which is qualified by someNamespace:

someObj.someNamespace::m()

314 | Chapter 17: Namespaces

Expanded Names
We’ve just learned that a qualified identifier is a two-part name that includes a quali-
fier namespace and a local name:

qualifierNamespace::localName

The qualifierNamespace in a qualified identifier is a reference to a Namespace object
whose uri variable identifies the namespace name.

An expanded name, by comparison, is a two-part name that includes a literal
namespace name (URI) and a local name. Expanded names are used for documenta-
tion purposes only, never in code, and are typically written in the following format:

{namespaceName}localName

For example, once again consider the definition of the namespace fruit:

namespace fruit = "http://www.example.com/games/kidsgame/fruit";

And consider the definition of the variable orange, which is qualified by the
namespace fruit:

fruit var orange:String = "Round citrus fruit";

In code, we refer to that variable using the qualified identifier fruit::orange. How-
ever, in documentation, we may wish to discuss that variable in reference to its
actual namespace name, rather than its namespace identifier. We can do so using the
following expanded name:

{http://www.example.com/games/kidsgame/fruit}orange

Expanded names are rarely used in this book, but are relatively common in the docu-
mentation of XML namespaces. If you do not use XML namespaces, simply be aware
that the syntax {namespaceName}localName is a documentation convention only, not a
supported form of code.

A Functional Namespace Example
Let’s put our new knowledge of namespaces to work in a simplified program.
Example 17-1 contains the beginnings of an application we’ll develop over the com-
ing sections—a child’s word-recognition game. In the game, the player is shown a
picture of either a color or a fruit, and asked to choose its name from a list of
options. Figure 17-1 depicts two different screens in the game.

For now, each item in the game will be represented by a variable whose value is a
string description. We’ll define the catalog of all item variables in a class called
Items.Using namespaces, we’ll separate the “fruit” variables from the “color” vari-
ables; fruit variable names will be qualified by the fruit namespace, and color vari-
able names will be qualified by the color namespace.

A Functional Namespace Example | 315

Take a look at the code in Example 17-1, then we’ll review it.

In the preceding code, we start by defining the game’s namespaces. We define the
namespace fruit in the file fruit.as, as follows:

package {
 namespace fruit = "http://www.example.com/games/kidsgame/fruit";
}

Then we define the namespace color in the file color.as, as follows:

package {
 namespace color = "http://www.example.com/games/kidsgame/color";
}

We create each namespace at the package level so that it can be accessed by any class
in the application.

Figure 17-1. A child’s learn-to-read game

Example 17-1. Kids Game: a functional namespace example

// File fruit.as
package {
 namespace fruit = "http://www.example.com/games/kidsgame/fruit";
}

// File color.as
package {
 namespace color = "http://www.example.com/games/kidsgame/color";
}

// File Items.as
package {
 public class Items {
 fruit var orange:String = "Round citrus fruit";
 color var orange:String = "Color obtained by mixing red and yellow";

 public function Items () {
 trace(fruit::orange);
 trace(color::orange);
 }
 }
}

Orange

Purple

Orange

Apple

316 | Chapter 17: Namespaces

Next we define the class Items in the file Items.as. In Items, we define two variables,
both of which have the local name orange. For the first variable, we specify the quali-
fier namespace fruit; for the second we specify the qualifier namespace color.

package {
 public class Items {
 fruit var orange:String = "Round citrus fruit";
 color var orange:String = "Color obtained by mixing red and yellow";
 }
}

Finally, to test that our code is working so far, in the Items constructor method we
use the trace() function to display the value of both orange variables. To distinguish
one orange variable from the other, we use the qualified identifiers fruit::orange and
color::orange.

package {
 public class Items {
 fruit var orange:String = "Round citrus fruit";
 color var orange:String = "Color obtained by mixing red and yellow";

 public function Items () {
 trace(fruit::orange); // Displays: Round citrus fruit
 trace(color::orange); // Displays: Color obtained by
 // mixing red and yellow
 }
 }
}

Can you guess what would happen if we modified the preceding Items constructor to
access the simple identifier orange, without including any qualifier namespace, as
follows:

public function Items () {
 trace(orange); // What happens here?
}

The answer is that the following compile-time error occurs:

Access of undefined property orange.

The compiler cannot find a variable or method (i.e., a “property”) by the name orange
because no variable or method with the simple identifier orange exists in the scope of
the Items constructor method. The variables fruit::orange and color::orange are
qualified by namespaces, so they are invisible to our attempt to reference them with
an unqualified identifier. That said, in the later section “Open Namespaces and the
use namespace Directive,” we’ll learn a shortcut for referring to qualified identifiers
without including the qualifier namespace.

Example 17-1 obviously doesn’t show a fully functional game, but it should give you
a sense of basic namespace syntax and usage. We’ll finish making our game later in
this chapter.

Namespace Accessibility | 317

At this early state of our game’s development, you might wonder if, rather than using
namespaces, we should simply define variables with longer names, such as
orangeFruit and orangeColor. Or you might wonder if we should separate the two
kinds of “oranges” by assigning them to individual arrays, as in:

var fruitList:Array = ["orange", "apple", "banana"];
var colorList:Array = ["orange", "red", "blue"];

Those are valid considerations. In fact, at our current level of simplicity, we would
indeed be better served with arrays or longer variable names. But don’t lose faith in
namespaces yet; we’re building towards more compelling usage scenarios.

Namespace Accessibility
Like variable and method definitions, namespace definitions can be modified by the
access-control modifiers public, internal, protected, and private. Taken in combina-
tion, the location of a namespace definition and the access-control modifier of that
definition determine where the resulting namespace identifier can be used.

Here are some general rules to help you decide where to define your namespaces:

• When you need a namespace throughout a program or across a group of classes,
define it at the package level.

• When you need a namespace to define the visibility of variables and methods
within a single class only, define it at the class level.

• When you need a namespace only temporarily within a function, and you know
the URI of the namespace, but you cannot access that namespace directly, define
it at the function level.

Let’s look at some examples, starting with namespaces defined at the package level.

Accessibility of Package-Level Namespace Definitions
In the following code, we define a namespace identifier, fruit, in the package
kidsgame:

package kidsgame {
 public namespace fruit = "http://www.example.com/games/kidsgame/fruit";
}

Because fruit is declared at the package level with the access-control modifier public,
it can be used to qualify any variable or method in the program. Of course, code out-
side the kidsgame package would have to import the namespace fruit before using it,
as in:

package anyPackage {
 // Import the fruit namespace
 import kidsgame.fruit;

318 | Chapter 17: Namespaces

 public class AnyClass {
 // Ok to use fruit here now that it has been imported
 fruit var banana:String = "Long yellow fruit";
 }
}

Now let’s set the accessibility of the namespace color to package-only using the
access-control modifier internal:

package kidsgame {
 internal namespace color = "http://www.example.com/games/kidsgame/color";
}

When a namespace identifier is defined as internal at the package level, it can be used
within the containing package only. The following code demonstrates.

package kidsgame {
 public class Items {
 // Ok to use color here. This use of the color namespace is valid
 // it occurs within the kidsgame package
 color var green:String = "Color obtained by mixing blue and yellow";
 }
}

package cardgame {
 import kidsgame.color;
 public class CardGame {
 // Illegal.
 // The color namespace can be used in the kidsgame package only.
 color var purple:String = "Color obtained by mixing blue and red";
 }
}

Package-level namespaces can be defined as public or internal, but not private nor
protected. Further, if the access modifier for a package-level namespace definition is
omitted, then internal is assumed. For example, this code:

package kidsgame {
 // Explicitly internal
 internal namespace fruit;
}

is the same as this code:

package kidsgame {
 // Implicitly internal
 namespace fruit;
}

Next, let’s consider the class-level case.

Accessibility of Class-Level Namespace Definitions
A namespace identifier defined as private in a class is accessible throughout that class
only, not in subclasses or any other external code:

Namespace Accessibility | 319

public class A {
 private namespace n = "http://www.example.com/n";

 // Fine. Namespace identifier n is accessible here.
 n var someVariable:int;
}

public class B extends A {
 // Error. Namespace identifier n is not accessible here.
 n var someOtherVariable:int;
}

We can use a private namespace in a class to implement a permission-based access
control system, as discussed in the later section “Example: Permission-Based Access
Control.”

A namespace identifier defined as protected, internal, or public in a class is directly
accessible throughout that class and its subclasses but not directly accessible in any
other external code. Contrast this with a package-level public namespace definition,
which creates a namespace identifier that can be accessed directly throughout a pro-
gram. The following code demonstrates:

public class A {
 public namespace n = "http://www.example.com/n";

 // Fine. Namespace identifier n is directly accessible here.
 n var someVariable:int;
}

public class B extends A {
 // Fine. Namespace identifier n is directly accessible here.
 n var someOtherVariable:int;
}

public class C {
 // Error. Namespace identifier n is not directly accessible here.
 // (But n would be accessible if defined at the package level.)
 n var yetAnotherVariable:int;
}

Note that while a namespace identifier defined as internal or public in a class is
directly accessible throughout that class and its subclasses only, the Namespace
object referenced by the namespace identifier can still be accessed using static-
variable syntax.

For example, to access the Namespace object referenced by the namespace identifier
n in the preceding code, we would use the expression: A.n. Static-variable style access
to Namespace objects is subject to the normal restrictions imposed on protected,
internal, and public static variables. For example, in the preceding code, because n is
declared as public, the expression A.n is valid in any code that has access to the class
A. If n were declared as internal, then the reference A.n would be valid within the

320 | Chapter 17: Namespaces

containing package only. If n were declared as protected, then the reference A.n
would be valid within the class A and its subclasses only.

However, references to namespaces made through a class (such as A.n) cannot be
used as an attribute of a variable or method definition. The following syntax is ille-
gal because an attribute of a variable or method definition must be a compile-time
constant value:

A.n var p:int; // Illegal. A.n is not a compile-time constant.

So, if we can’t use A.n to qualify definitions, what can we use A.n for? Stay tuned,
we’ll learn the answer to that question soon in the section “Assigning and Passing
Namespace Values.”

Now let’s consider one final namespace accessibility topic: namespace definitions in
methods and functions.

Accessibility of Function-Level Namespace Definitions
Like other function-level definitions, a namespace identifier defined at the function
level cannot take any access-control modifiers (i.e., cannot be defined as public,
private, etc.) and is accessible in the scope of that function only:

public function doSomething ():void {
 // This is illegal
 private namespace n = "http://www.example.com/n";
}

Furthermore, local variables and nested function definitions cannot take namespaces
as attributes:

public function doSomething ():void {
 // This is also illegal
 namespace n = "http://www.example.com/n";
 n var someLocalVariable:int = 10;
}

Hence, namespace identifiers defined in a function can be used to form qualified
identifiers only. (The following code assumes that the namespace n has already been
declared elsewhere and has been used to qualify the instance variable someVariable.)

public function doSomething ():void {
 // This is legal
 namespace n = "http://www.example.com/n";
 trace(n::someVariable);
}

Function-level namespace definitions are used only in the rare circumstance in which
a namespace that is required temporarily by a function cannot be accessed directly
but the namespace URI is known. For example, a function that processes an XML
fragment containing qualified element names might use code such as the following:

public function getPrice ():void {

Qualified-Identifier Visibility | 321

 namespace htmlNS = "http://www.w3.org/1999/xhtml";
 output.text = htmlNS::table.htmlNS::tr[1].htmlNS::td[1].price;
}

For coverage of XML namespaces, see Chapter 18.

Qualified-Identifier Visibility
Perhaps you noticed that none of the qualified-identifier definitions in this book
include any access-control modifiers (public, internal, protected, or private). We’ve
seen plenty of this:

fruit var orange:String = "Round citrus fruit";

But none of this (note the addition of the access-control modifier private):

private fruit var orange:String = "Round citrus fruit";

And for good reason: it is illegal to use access-control modifiers with definitions that
include a qualifier namespace. For example, the following code:

private fruit var orange:String;

yields the error:

Access specifiers not allowed with namespace attributes

But if access-control modifiers are illegal, then what governs the accessibility of a
qualified identifier? Answer: the accessibility of the identifier’s qualifier namespace.

The accessibility of the qualifier namespace in a qualified identifier
determines that identifier’s accessibility. If the qualifier namespace is
visible in a given scope, then the qualified identifier is also visible.

For example, in the expression gameitems.fruit::orange, the variable fruit::orange
is accessible if and only if the namespace fruit is accessible in the scope where the
expression occurs. The accessibility of the variable fruit::orange is entirely deter-
mined by the accessibility of the namespace fruit.

Example 17-2 demonstrates qualified identifier visibility with generic code.

Example 17-2. Qualified identifier visibility demonstration

// Create namespace n, set to package-only visibility, in package one
package one {
 internal namespace n = "http://www.example.com/n";
}

// Create variable n::p in class A, package one
package one {
 public class A {
 n var p:int = 1;
 }

322 | Chapter 17: Namespaces

Comparing Qualified Identifiers
Two namespaces are considered equal if, and only if, they have the same namespace
name (URI). For example, to determine whether the namespaces in the qualified
identifiers fruit::orange and color::orange are equal, ActionScript does not check
whether the characters “fruit” in the first identifier match the characters “color” in
second. Instead, ActionScript checks whether the Namespace instance referred to by
fruit and the Namespace instance referred to by color have a matching uri variable
value. If fruit.uri equals color.uri, then the namespaces are considered equal.

Therefore, when we write the following comparison:

trace(fruit::orange == color::orange);

ActionScript performs this comparison (notice the use of expanded names, dis-
cussed in the earlier section “Expanded Names”):

{http://www.example.com/games/kidsgame/fruit}orange
 == {http://www.example.com/games/kidsgame/color}orange

Hence, even though two qualified identifiers may look different on the surface, they
might be the same, leading to perhaps surprising name conflicts. For example, in the
following code, the attempted definition of the variable ns2::p is considered a

}

// Because namespace n's visibility is internal, the
// variable n::p is accessible anywhere within the package one
package one {
 public class B {
 public function B () {
 var a:A = new A();
 trace(a.n::p); // OK
 }
 }
}

// But the variable n::p is not accessible to code outside of
// package one
package two {
 import one.*;

 public class C {
 public function C () {
 var a:A = new A();
 trace(a.n::p); // Illegal because n is internal to package one, and
 // is, therefore, not accessible within package two
 }
 }
}

Example 17-2. Qualified identifier visibility demonstration (continued)

Assigning and Passing Namespace Values | 323

compile-time error because a variable with the expanded name {http://www.example.
com/general}p already exists:

namespace ns1 = "http://www.example.com/general"
namespace ns2 = "http://www.example.com/general"
ns1 var p:int = 1;
ns2 var p:int = 2; // Error! Duplicate variable definition!

Even though the identifiers ns1 and ns2 are different, the variables ns1::p and ns2::p
are considered identical because they have the same expanded name ({http://www.
example.com/general}p).

Note that namespace names (URIs) are compared as strings, and case sensitivity mat-
ters. So, whereas two URIs that differ in case only would be considered the same by a
web browser, ActionScript considers them different. The following two URIs are
considered different by ActionScript because “example” is not capitalized in the first
but is capitalized in the second:

namespace ns1 = "http://www.example.com"
namespace ns2 = "http://www.Example.com"
trace(ns1 == ns2); // Displays: false

Assigning and Passing Namespace Values
Because every namespace is represented by an instance of the Namespace class,
namespaces can be assigned to variables or array elements, passed to methods,
returned from methods, and generally used like any other object. This flexibility
lets us:

• Pass a namespace from one scope to another

• Choose between multiple namespaces dynamically at runtime

These activities are critical to namespace usage in ActionScript. Let’s see how.

Assigning a Namespace Value to a Variable
To assign a namespace value to a variable, we use the same assignment syntax we’d
use with any other value. For example, the following code assigns the namespace
value in fruit to the variable currentItemType (recall that a namespace value is a
Namespace object):

// File fruit.as
package {
 namespace fruit = "http://www.example.com/games/kidsgame/fruit";
}

// File Items.as
package {
 public class Items {
 // Assign the value in fruit to currentItemType

324 | Chapter 17: Namespaces

 private var currentItemType:Namespace = fruit;
 }
}

A variable referencing a Namespace object can be used to form a qualified identifier.
For example, consider the following variable definition:

fruit var orange:String = "Round citrus fruit";

To refer to that variable, we can use either the expression fruit::orange or the
expression currentItemType::orange. By changing the value of currentItemType to
some other namespace, we can dynamically adjust the meaning of the identifier
currentItemType::orange, and of all other methods and variables qualified by
currentItemType across an entire program. If we organize groups of methods and
variables with namespaces, we can use dynamic namespace selection to switch
between operational modes in the program.

For example, suppose we’re writing an instant messaging application with two
modes represented by corresponding namespaces, offline and online. The applica-
tion defines two versions of a method named sendMessage()—one to use in online
mode and one to use in offline mode.

online sendMessage (msg:String):void {
 // Send message now...
}

offline sendMessage (msg:String):void {
 // Queue message and send later...
}

The application keeps track of the currently active mode using a variable,
currentMode. Whenever the server connection is established or lost, currentMode is
updated.

private function connectListener (e:Event):void {
 currentMode = online;
}

private function closeListener (e:Event):void {
 currentMode = offline;
}

All calls to sendMessage() use currentMode as a qualifier namespace, as shown in the
following code:

currentMode::sendMessage("yo dude");

By updating the currentMode variable, the application dynamically switches between
the two versions of sendMessage(), depending on the connection status.

In the later section “Example: Program Modes,” we’ll revisit the concept of
namespaces as modes in a Japanese/English dictionary example that switches
between different search modes.

Assigning and Passing Namespace Values | 325

Just remember that while a variable can be used to specify the namespace of a quali-
fied identifier, variables cannot be used to specify the namespace for a variable or
method definition. The third line of the following code:

namespace fruit;
var currentItemType:Namespace = fruit;
currentItemType var orange:String = "Round citrus fruit";

yields this error:

Namespace was not found or is not a compile-time constant.

Similarly, variables cannot be used to specify the namespace in a use namespace
directive. We’ll cover the use namespace directive in the later section “Open
Namespaces and the use namespace Directive.”

Namespaces as Method Arguments and Return Values
In addition to being assigned to variables and array elements, namespace values can
be passed to and returned from methods. For example, the following code defines a
method, doSomething(), that accepts a namespace value as an argument:

public function doSomething (n:Namespace):void {
 trace(n);
}

This code passes the namespace fruit to the method doSomething():

doSomething(fruit);

A namespace might be passed to a method in order to send one part of a program’s
context to another. For example, a shopping cart application might pass the
namespace currentLocale to a Checkout class that would then dynamically select the
appropriate currency and time-sensitive greeting based on the user’s location.

This code defines a method, getNamespace() that returns the namespace fruit:

public function getNamespace ():Namespace {
 return fruit;
}

A namespace might be returned from a method in order to grant the caller privileged
access to restricted variables and methods. For a full example of returning a
namespace from a method as part of permission-based access control, see the section
“Example: Permission-Based Access Control,” later in this chapter.

A Namespace Value Example
Now that we’ve studied how namespace values work in theory, let’s revisit our ear-
lier child’s game example to see how namespace values can be used in an actual
application. Recall that the game is a reading exercise in which the player tries to
identify a randomly chosen color or fruit. The first version of the game code
(Example 17-1) showed a single, extremely simplified section of the game. In this

326 | Chapter 17: Namespaces

updated version, we’ll make the game fully functional, providing a deeper look at
how namespaces help manage multiple sets of data.

Skim the code in Example 17-3 for familiarity. In the example, namespaces are used
within the Items and KidsGame classes only, so you should focus most of your
attention on those classes. For information on the techniques used to generate the user
interface in the example, see Part II. A detailed analysis follows the example listing.

Example 17-3. Kids Game: a namespace value example

// File fruit.as
package {
 public namespace fruit = "http://www.example.com/games/kidsgame/fruit";
}

// File color.as
package {
 public namespace color = "http://www.example.com/games/kidsgame/color";
}

// File Items.as
package {
 // A simple data-storage class containing the Item objects for the game.
 public class Items {
 // The fruits
 fruit var orange:Item = new Item("Orange", "fruit-orange.jpg", 1);
 fruit var apple:Item = new Item("Apple", "fruit-apple.jpg", 2);

 // The colors
 color var orange:Item = new Item("Orange", "color-orange.jpg", 3);
 color var purple:Item = new Item("Purple", "color-purple.jpg", 4);

 // Arrays that track complete sets of items (i.e., all the fruits, or
 // all the colors)
 fruit var itemSet:Array = [fruit::orange, fruit::apple];
 color var itemSet:Array = [color::orange, color::purple];

 // An array of namespaces representing the types of the item
 // sets in the game
 private var itemTypes:Array = [color, fruit];

 // Returns all the fruit items in the game
 fruit function getItems ():Array {
 return fruit::itemSet.slice(0);
 }

 // Returns all the color items in the game
 color function getItems ():Array {
 return color::itemSet.slice(0);
 }

 // Returns the list of available item types in the game
 public function getItemTypes ():Array {

Assigning and Passing Namespace Values | 327

 return itemTypes.slice(0);
 }
 }
}

// File KidsGame.as
package {
 import flash.display.*;
 import flash.events.*;
 import flash.utils.*;

 // The main application class for a child's learn-to-read game
 // demonstrating the basic usage of namespaces in ActionScript.
 // The player is shown a picture of a color or a fruit, and asked to
 // choose its name from a list of options.
 public class KidsGame extends Sprite {
 private var gameItems:Items; // The list of all items in the game
 private var thisQuestionItem:Item; // The item for each question
 private var questionScreen:QuestionScreen; // The user interface

 // Constructor
 public function KidsGame() {
 // Retrieve the game items (the fruits and colors which the user must
 // name)
 gameItems = new Items();
 // Display the first question
 newQuestion();
 }

 // Creates and displays a new random game question
 public function newQuestion ():void {
 // Get the full list of item types (an array of namespaces)
 var itemTypes:Array = gameItems.getItemTypes();
 // Pick a random item type (one of the namespaces in itemTypes)
 var randomItemType:Namespace = itemTypes[Math.floor(
 Math.random()*itemTypes.length)];

 // Retrieve the randomly chosen item set
 var items:Array = gameItems.randomItemType::getItems();

 // Randomly pick the item for this question from the item set
 thisQuestionItem = items[Math.floor(Math.random()*items.length)];

 // Remove the previous question, if there was one
 if (questionScreen != null) {
 removeChild(questionScreen);
 }

 // Display the new question
 questionScreen = new QuestionScreen(this, items, thisQuestionItem);
 addChild(questionScreen);
 }

Example 17-3. Kids Game: a namespace value example (continued)

328 | Chapter 17: Namespaces

 // Handles a player's guess
 public function submitGuess (guess:int):void {
 trace("Guess: " + guess + ", Correct: " + thisQuestionItem.id);
 if (guess == thisQuestionItem.id) {
 questionScreen.displayResult("Correct!");
 // Disable the answer buttons while the
 // player waits for the next question.
 questionScreen.disable();
 // Wait 3 seconds then show another question.
 var timer:Timer = new Timer(3000, 1);
 timer.addEventListener(TimerEvent.TIMER, doneResultDelay);
 timer.start();
 } else {
 questionScreen.displayResult("Incorrect. Please try again.");
 }
 }

 // Makes a new question after the previous question is finished.
 private function doneResultDelay (e:TimerEvent):void {
 newQuestion();
 }
 }
}

// File Item.as
package {
 // A simple data container that tracks an item's information.
 public class Item {
 // The item's name (for example, "apple")
 public var name:String;
 // The URL from which to load an image representing the item
 public var src:String;
 // A unique identifier for the item, used to evaluate player guesses
 public var id:int;

 // Constructor
 public function Item (name:String, src:String, id:int) {
 this.name = name;
 this.src = src;
 this.id = id;
 }
 }
}

// File QuestionScreen.as
package {
 import flash.events.*;
 import flash.display.*;
 import flash.text.*;
 import flash.net.*;

Example 17-3. Kids Game: a namespace value example (continued)

Assigning and Passing Namespace Values | 329

 // Creates the user interface for a question
 public class QuestionScreen extends Sprite {
 private var status:TextField;
 private var game:KidsGame;
 private var items:Array;
 private var thisQuestionItem:Item;

 // Constructor
 public function QuestionScreen (game:KidsGame,
 items:Array,
 thisQuestionItem:Item) {
 // Keep a reference to the main game engine
 this.game = game;

 // Assemble question data
 this.items = items;
 this.thisQuestionItem = thisQuestionItem;

 // Put the question on screen
 makeQuestion();
 }

 // Creates and displays a question's interface
 public function makeQuestion ():void {
 // Display the graphic for the item
 var imgLoader:Loader = new Loader();
 addChild(imgLoader);
 imgLoader.load(new URLRequest(thisQuestionItem.src));

 // Add a selection of clickable words for the player to choose
 // from. For the sake of simplicity, we'll display the name of every
 // item in the item set.
 var wordButton:WordButton;
 for (var i:int = 0; i < items.length; i++) {
 wordButton = new WordButton();
 wordButton.setButtonText(items[i].name);
 wordButton.setID(items[i].id);
 wordButton.y = 110 + i*(wordButton.height + 5);
 wordButton.addEventListener(MouseEvent.CLICK, clickListener);
 addChild(wordButton);
 }

 // Create a text field in which to display question status
 status = new TextField();
 status.autoSize = TextFieldAutoSize.LEFT;
 status.y = wordButton.y + wordButton.height + 10;
 status.selectable = false;
 addChild(status);
 }

 // Displays a message in the status field
 public function displayResult (msg:String):void {

Example 17-3. Kids Game: a namespace value example (continued)

330 | Chapter 17: Namespaces

 status.text = msg;
 }

 // Displays user input for this question
 public function disable ():void {
 // Disables mouse events for all children of this Sprite.
 mouseChildren = false;
 }

 // Responds to the clicking of a word button
 private function clickListener (e:MouseEvent):void {
 // The player's guess is the item id associated with
 // the WordButton object, as set in makeQuestion().
 game.submitGuess(e.target.getID());
 }
 }
}

// File WordButton.as
package {
 import flash.text.*;
 import flash.display.*;

 // Represents a clickable word on screen (i.e., an available choice for
 // a question). The ID indicates the item id of the player's
 // guess (see Item.id).
 public class WordButton extends Sprite {
 private var id:int; // The ID of the item this button represents
 private var t:TextField;

 // Constructor
 public function WordButton () {
 t = new TextField();
 t.autoSize = TextFieldAutoSize.LEFT;
 t.border = true;
 t.background = true;
 t.selectable = false;
 addChild(t);

 buttonMode = true;
 mouseChildren = false;
 }

 // Assigns the text to display on the button
 public function setButtonText (text:String):void {
 t.text = text;
 }

 // Assigns the ID of the item this button represents
 public function setID (newID:int):void {
 id = newID;
 }

Example 17-3. Kids Game: a namespace value example (continued)

Assigning and Passing Namespace Values | 331

Done skimming the code? Great, let’s examine it in more detail. You probably
noticed that the namespace definitions in the game haven’t changed at all since
Example 17-1. However, the Items class has changed substantially and there are sev-
eral new classes, including:

• KidsGame—the main application class

• Item—provides information about a particular game item

• QuestionScreen—builds the each question’s user interface

• WordButton—represents a clickable word on screen

Because our present focus is namespaces, we’ll examine the Items and KidsGame
classes only; study of the remaining classes is left as an exercise for the reader.

Let’s start by looking at how Items has been updated since Example 17-1. First,
we’ve added two new item variables, fruit::apple and color::purple. These new
variables give the fruit and color item categories a total of two items each—orange
and apple for the fruits, and orange and purple for the colors. We’ve also replaced
Example 17-1’s simple item descriptions (such as “Round citrus fruit”) with
instances of the Item class. The Item instances track the item’s name, image URL,
and ID. The following code shows the updated item variables. As in Example 17-1,
each variable is qualified by a namespace corresponding to the variety of item.

fruit var orange:Item = new Item("Orange", "fruit-orange.jpg", 1);
fruit var apple:Item = new Item("Apple", "fruit-apple.jpg", 2);

color var orange:Item = new Item("Orange", "color-orange.jpg", 3);
color var purple:Item = new Item("Purple", "color-purple.jpg", 4);

Next, the Items class also adds two arrays to manage the items as groups. Each array
maintains a complete list of its group’s items (either the fruits or the colors). The
arrays are assigned to variables with the same local name (itemSet) but qualified by
different namespaces (fruit and color).

fruit var itemSet:Array = [fruit::orange, fruit::apple];
color var itemSet:Array = [color::orange, color::purple];

To give other classes access to the different item sets in the game, Items defines two
methods with the same local name, getItems(), but qualified by different
namespaces, fruit and color. Each getItems() method returns a copy of the item set
that corresponds to its namespace. Hence, the appropriate item-set can be accessed
dynamically based on the current question type (either color or fruit).

 // Returns the ID of the item this button represents
 public function getID ():int {
 return id;
 }
 }
}

Example 17-3. Kids Game: a namespace value example (continued)

332 | Chapter 17: Namespaces

fruit function getItems ():Array {
 // Return the fruits.
 return fruit::itemSet.slice(0);
}

color function getItems ():Array {
 // Return the colors.
 return color::itemSet.slice(0);
}

Finally, Items defines the variable itemTypes and a corresponding accessor method
getItemTypes(). The itemTypes variable maintains a list of all the different varieties of
items in the game. Our game has only two varieties—fruit and color—but more
could easily be added. Each item variety corresponds to a namespace, so itemTypes is
an array of namespaces. The getItemTypes() method returns a copy of that array, giv-
ing external code a central location from which to obtain the official list of item types
in the game.

// The itemTypes variable
private var itemTypes:Array = [color, fruit];

// The getItemTypes() method
public function getItemTypes ():Array {
 return itemTypes.slice(0);
}

That’s it for the changes to Items. Now let’s turn to the new main application class,
KidsGame. In contrast with the Items class, KidsGame never uses the namespace
identifiers fruit and color directly. Instead, it refers to those namespaces via the
Items class’s instance method getItemTypes().

The KidsGame class’s gameItems variable provides KidsGame with access to the game
data, in the form of an Items object. Meanwhile, the KidsGame class’s newQuestion()
method generates a new question based on the data in gameItems. The newQuestion()
method contains the majority of the namespace code we’re interested in, so let’s look
at it line-by-line.

Recall that each question displays an item from one of the predetermined item sets
maintained by the Items class (fruit::itemSet or color::itemSet). Accordingly, the
first task in newQuestion() is to randomly choose the item set for the question being
generated. We start by retrieving the entire array of possible item sets (i.e.,
namespaces) from the Items class, using gameItems.getItemTypes():

var itemTypes:Array = gameItems.getItemTypes();

Then we randomly choose a namespace from the resulting array. For convenience,
we assign the chosen namespace to a local variable, randomItemType.

var randomItemType:Namespace = itemTypes[Math.floor(
 Math.random()*itemTypes.length)];

Notice that randomItemType’s datatype is Namespace because it refers to a namespace
value. Once an item set (namespace) for the question has been chosen, we must

Assigning and Passing Namespace Values | 333

retrieve the array of actual items in that set. To retrieve the appropriate array of items
(either fruits or colors), we invoke the method that corresponds to our chosen
namespace—either Items’s fruit::getItems() or Items’s color::getItems(). But instead
of referring to the method we want directly, we dynamically generate the method’s
qualified identifier using the randomItemType variable to specify the namespace, like
this:

gameItems.randomItemType::getItems()

The returned array is assigned to a local variable, items:

var items:Array = gameItems.randomItemType::getItems();

In the preceding method call, notice that the behavior of the program
is determined by the context of the program. This can be thought of as
a kind of polymorphism, one based not on class inheritance but on the
arbitrary groups of methods and variables delineated by namespaces.

With our array of items cheerfully in hand, we can get on with the everyday work of
putting a question on screen. First we randomly pick the item to display from among
the array of items:

thisQuestionItem = items[Math.floor(Math.random()*items.length)];

Then we put the item image and text choices for the chosen item on screen using the
QuestionScreen class:

// Remove the previous question, if there was one
if (questionScreen != null) {
 removeChild(questionScreen);
}

// Display the new question
questionScreen = new QuestionScreen(this, items, thisQuestionItem);
addChild(questionScreen);

Here’s another look at the newQuestion() method. Pay special attention to its use of
namespace values as you review it one last time.

public function newQuestion ():void {
 // Get the full list of item types (an array of namespaces)
 var itemTypes:Array = gameItems.getItemTypes();
 // Pick a random item type (one of the namespaces in itemTypes)
 var randomItemType:Namespace = itemTypes[Math.floor(
 Math.random()*itemTypes.length)];

 // Retrieve the randomly chosen item set
 var items:Array = gameItems.randomItemType::getItems();

 // Randomly pick the item for this question from the item set
 thisQuestionItem = items[Math.floor(Math.random()*items.length)];

 // Remove the previous question, if there was one

334 | Chapter 17: Namespaces

 if (questionScreen != null) {
 removeChild(questionScreen);
 }

 // Display the new question
 questionScreen = new QuestionScreen(this, items, thisQuestionItem);
 addChild(questionScreen);
}

The remainder of the code in Example 17-3 relates to game logic and user interface
creation, which are not our present focus. As mentioned earlier, you should study
the rest of the code on your own. For information on user interface coding tech-
niques, see Part II of this book.

Well that was a nice, practical example. And there are more examples coming, but
first we have to cover two more fundamental namespace concepts: open namespaces
and namespaces for access-control modifiers.

Open Namespaces and the use namespace Directive
Remember the simple Items class from Example 17-1?

package {
 public class Items {
 fruit var orange:String = "Round citrus fruit";
 color var orange:String = "Color obtained by mixing red and yellow";

 public function Items () {
 trace(fruit::orange);
 trace(color::orange);
 }
 }
}

As we learned earlier, one way to access the orange variables in the preceding code is
to use qualified identifiers, as in:

trace(fruit::orange); // Displays: Round citrus fruit
trace(color::orange); // Displays: Color obtained by
 // mixing red and yellow

But, for the sake of convenience, ActionScript also provides another tool for access-
ing variables qualified by a namespace: the use namespace directive. The use
namespace directive adds a given namespace to the so-called open namespaces for a
particular scope of a program. The open namespaces is the set of namespaces Action-
Script consults when attempting to resolve unqualified references. For example, if
namespace n is in the open namespaces, and ActionScript encounters an unqualified
reference to a variable p, then ActionScript will automatically check for the existence
of n::p.

Here’s the general form of the use namespace directive:

Open Namespaces and the use namespace Directive | 335

use namespace namespaceIdentifier

where namespaceIdentifier is the namespace identifier that should be added to the
set of open namespaces. Note that namespaceIdentifier must be a compile-time con-
stant, so it cannot be a variable that references a namespace value.

Let’s see how use namespace works by referring directly to the local name orange
after adding the namespace fruit to the set of open namespaces in the preceding
Items constructor (this is also described as “opening the namespace fruit”).

public function Items () {
 use namespace fruit;
 trace(orange);
}

Because we added fruit to the open namespaces, when ActionScript encounters the
code:

trace(orange);

it automatically checks to see if the qualified identifier fruit::orange exists. In our
example, that identifier does exist, so it is used in place of orange. In other words, in
the Items constructor, this code:

trace(fruit::orange); // Displays: Round citrus fruit

has the same result as this code:

use namespace fruit;
trace(orange); // Displays: Round citrus fruit

Open Namespaces and Scope
Each scope of an ActionScript program maintains a separate list of open namespaces.
A namespace opened in a given scope will be open for that entire scope, including
nested scopes but will not be open in other scopes. The opened namespace is avail-
able even prior to the occurrence of the use namespace statement (however, the best
practice is to place the use namespace directive at the top of the enclosing code
block).

Recall that “scope” means “region of a program.” In ActionScript, a
unique scope is defined for each package, class, and method. Condi-
tionals and loops do not have their own scope.

Example 17-4 uses generic code to demonstrate two separate scopes and their sepa-
rate list of open namespaces. Comments will guide you through the code.

Example 17-4. Open namespace demo

public class ScopeDemo {
 // Create a namespace.
 private namespace n1 = "http://www.example.com/n1";

336 | Chapter 17: Namespaces

Because an open namespace remains open in nested scopes, we can open a
namespace at the class or package level in order to use it throughout the entire class
or package statement. Note, however, that once a namespace is opened, it cannot be
“closed.” There is no “unuse namespace” directive, and no way to remove a
namespace from the open namespaces in a particular scope.

 // Create two variables qualfied by the namespace n1.
 n1 var a:String = "a";
 n1 var b:String = "b";

 // Constructor
 public function ScopeDemo () {
 // Call a method that accesses the variable n1::a.
 showA();
 }

 public function showA ():void {
 // This unqualified reference a matches the fully qualified
 // identifier n1::a because the following line opens the namespace n1.
 trace(a); // OK!

 // Open namespace n1.
 use namespace n1;

 // Unqualified reference a again matches n1::a.
 trace(a); // OK!

 // Create a nested function.
 function f ():void {
 // The namespace n1 is still open in nested scopes...
 trace(a); // OK! Matches n1::a.
 }

 // Call the nested function.
 f();
 }

 public function showB ():void {
 // The following code makes a misguided attempt to access n1::b.
 // The namespace n1 is open in the scope of showA() only, not showB(),
 // so the attempt fails. Furthermore, no variable with the simple
 // identifier b exists in the scope of showB(), so the compiler
 // generates the following error:
 // Attempted access of inaccessible property b through a reference
 // with static type ScopeDemo.
 trace(b); // ERROR!
 }
}

Example 17-4. Open namespace demo (continued)

Open Namespaces and the use namespace Directive | 337

Opening Multiple Namespaces
It’s perfectly legal to open multiple namespaces in the same scope. For example, here
are four variables divided into two namespaces (the variables are excerpted from the
Items class in Example 17-3):

fruit var orange:Item = new Item("Orange", "fruit-orange.jpg", 1);
fruit var apple:Item = new Item("Apple", "fruit-apple.jpg", 2);
color var orange:Item = new Item("Orange", "color-orange.jpg", 3);
color var purple:Item = new Item("Purple", "color-purple.jpg", 4);

Suppose we add a method to the Items class, showItems(), to display all game items.
In showItems(), we can open both the fruit and color namespaces, and then refer to
fruit::apple and color::purple without specifying a qualifier namespace:

public function showItems ():void {
 use namespace fruit;
 use namespace color;
 // Look mom! No namespaces!
 trace(apple.name); // Displays: Apple
 trace(purple.name); // Displays: Purple
}

Let’s consider how this works. Earlier we learned that open namespaces means “the set
of namespaces ActionScript consults when attempting to resolve unqualified refer-
ences.” If multiple namespaces are open in a given scope, then ActionScript examines
them all for each and every unqualified reference in that scope. For example, in
showItems(), the fruit and color namespaces are both open. Therefore, when Action-
Script encounters the unqualified reference apple it looks for both fruit::apple and
color::apple. In apple’s case, the unqualified reference matches fruit::apple but does
not match color::apple. Because apple matches only one qualified identifier (namely,
fruit::apple), that qualified identifier is used in place of the unqualified reference,
apple.

But what happens if we use an unqualified reference, such as orange, that matches
two qualified identifiers:

public function showItems ():void {
 use namespace fruit;
 use namespace color;
 // Matches fruit::orange and color::orange--what happens here?
 trace(orange);
}

When an unqualified reference matches a name in more than one open namespace, a
runtime error occurs. The preceding code yields the following error:

Ambiguous reference to orange.

338 | Chapter 17: Namespaces

Due to a bug in some Adobe ActionScript compilers, the preceding
error might go unreported.

If we open both the fruit and color namespaces, then we must use the qualified
identifiers fruit::orange or color::orange to refer to our orange variables unambigu-
ously, as follows:

public function showItems ():void {
 use namespace fruit;
 use namespace color;

 trace(apple); // Displays: Apple
 trace(purple); // Displays: Purple

 // Both fruit and color are open so references to orange
 // must be fully qualified.
 trace(fruit::orange);
 trace(color::orange);
}

Namespaces for Access-Control Modifiers
Just as we use namespaces to control variable and method visibility in our own pro-
grams, so ActionScript uses namespaces to control the visibility of every variable and
method in every program! Remember the four access-control modifiers in Action-
Script—public, internal, protected, private? ActionScript, itself, enforces those visibil-
ity rules using namespaces. For example, from ActionScript’s perspective, the
variable definition:

class A {
 private var p:int;
}

means “create a new variable p qualified by the class A’s private namespace.”

In each scope, ActionScript implicitly opens the appropriate namespaces for the vari-
ous access-control modifiers. For example, in every scope ActionScript always adds
the global public namespace to the set of open namespaces. At the top level of a
package, ActionScript also adds that package’s internal and public namespaces. In
code within a class that resides in a package, ActionScript also adds the class’s
private and protected namespaces. The set of open namespaces, then, includes not
just user-opened namespaces, but also the access-control namespaces that are implic-
itly opened by ActionScript in each scope.

You cannot use the use namespace directive to open one of the access-
control namespaces explicitly. ActionScript opens the access-control
namespaces automatically according to the current scope.

Namespaces for Access-Control Modifiers | 339

The access-control modifier namespaces determine the accessibility of identifiers and
prevent naming conflicts. For example, in the following code, a superclass, Parent,
and a subclass, Child, each define a private variable with the same name:
description. The Parent class’s description variable is not accessible to code within
the Child class because description is qualified by the Parent class’s private
namespace, which is not open in the scope of the Child class. As a result, the vari-
able names do not conflict.

package p {
 public class Parent {
 private var description:String = "A Parent object";
 public function Parent () {
 trace(description);
 }
 }
}

package p {
 public class Child extends Parent {
 private var description:String = "A Child object";
 public function Child () {
 trace(description); // No conflict
 }
 }
}

But if we change the access modifier for the Parent class’s description variable to
protected, a conflict arises. Let’s consider exactly why. First let’s change the access
modifier for description to protected:

public class Parent {
 protected var description:String = "A Parent object";
}

Now let’s pretend we’re ActionScript attempting to run the code in the Child class
constructor. We enter the constructor and encounter a reference to the identifier
description. In order to resolve that identifier, we must check for it in the open
namespaces. And what are the open namespaces in the Child class constructor? As
we just learned, in code within a class that resides in a package, ActionScript opens
the class’s private and protected namespaces, the package’s internal and public
namespaces, and the global public namespace. So the open namespaces are:

• The Child class’s private namespace

• The Child class’s protected namespace (which qualifies all members inherited
from the direct superclass)

• The package p’s internal namespace

• The package p’s public namespace

• The global public namespace

• All explicitly opened custom namespaces

340 | Chapter 17: Namespaces

When ActionScript checks for description in the open namespaces, it finds two
matches: Child’s private::description and Child’s protected::description. As we
learned in the previous section, when an unqualified reference matches a name in
more than one open namespace, an ambiguous-reference error occurs. Furthermore,
when multiple names are qualified by different implicitly opened namespaces, a defi-
nition-conflict error occurs. In the case of description, the specific conflict error is:

A conflict exists with inherited definition Parent.description
in namespace protected.

If you create conflicting method and variable names in your code, ActionScript will
describe the conflict in relation to the namespace where the conflict occurred. For
example, the following code:

package {
 import flash.display.*;
 public class SomeClass extends Sprite {
 private var prop:int;
 private var prop:int; // Illegal duplicate property definition
 }
}

yields the following error:

A conflict exists with definition prop in namespace private.

(Actually, due to a compiler bug in Flex Builder 2 and Flash CS3, the preceding mes-
sage erroneously reads “namespace internal” whereas it should read “namespace
private.”)

Likewise, the following code:

package {
 import flash.display.*;
 public class SomeClass extends Sprite {
 private var x;
 }
}

yields the following error (because—as we can learn by reading Adobe’s Action-
Script Language Reference—DisplayObject already defines the public variable x):

A conflict exists with inherited definition flash.display:DisplayObject.x in
namespace public.

Import Opens Public Namespaces
Note that technically, importing a package, as in:

import somePackage.*;

opens the public namespace of the imported package. However, it does not open the
internal namespace of the imported package. Even when a package is imported, its
internal identifiers remain inaccessible to outside code.

Applied Namespace Examples | 341

Applied Namespace Examples
This chapter’s introduction cited four practical scenarios for namespace use:

• Prevent naming conflicts

• Framework-level member visibility

• Permission-based access control

• Program modes

In the preceding section we learned how namespaces prevent naming conflicts. In
this section we’ll explore each of the remaining three scenarios with a real-world
example.

Example: Framework-Internal Visibility
Our first applied namespace example comes from Adobe’s Flex framework, a library
of user interface components and utilities for rich Internet application development.

The Flex framework contains a lot of code—hundreds of classes in dozens of pack-
ages. Some methods and variables in those classes must be accessible across differ-
ent packages but are still considered internal to the overall framework. This presents
a dilemma: if the methods and variables are declared public, then code outside the
framework will have unwanted access to them, but if they are declared internal, they
cannot be shared across packages.

To address this issue, the Flex framework defines the namespace mx_internal, and
uses it to qualify methods and variables that should not be used outside the frame-
work but must be accessible across different packages within the framework.

Here’s the declaration of the mx_internal namespace:

package mx.core {
 public namespace mx_internal =
 "http://www.adobe.com/2006/flex/mx/internal";
}

Let’s look at a specific mx_internal example from the Flex framework.

To work with grids of data, such as would be required in a spreadsheet applica-
tion, the Flex framework provides the DataGrid component. The DataGrid class
resides in the mx.controls package. Helper classes for DataGrid live in a separate
package: mx.controls.gridclasses. To make communication as efficient as possi-
ble between the DataGrid and its helper classes, DataGrid accesses some of its
helper classes’ internal variables directly rather than via publicly accessible getter
methods. These internal variables, however, should not be used by classes outside
the Flex framework, so they are qualified by the mx_internal namespace. For
example, the helper class mx.controls.gridclasses.DataGridColumn tracks the index
of a column in the variable mx_internal::colNum.

342 | Chapter 17: Namespaces

// File DataGridColumn.as
mx_internal var colNum:Number;

To retrieve the column index, the DataGrid class first opens the mx_internal
namespace:

use namespace mx_internal;

and then accesses mx_internal::colNum directly, as shown in this setter method
excerpt:

// File DataGrid.as
public function set columns(value:Array):void {
 // Initialise "colNum" on all columns
 var n:int = value.length;
 for (var i:int = 0; i < n; i++) {
 var column:DataGridColumn = _columns[i];
 column.owner = this;

 // Access mx_internal::colNum directly. (Remember that the
 // mx_internal namespace is open, so column.colNum is equivalent
 // to column.mx_internal::colNum.)
 column.colNum = i;
 }
 // Remainder of method not shown
}

Classes outside the framework use the public method getColumnIndex() to retrieve
the column index instead of accessing mx_internal::colNum directly.

Intent is 9/10 of the law. Placing variables or methods in the mx_internal namespace
certainly reduces their immediate visibility, but it does not technically restrict code
outside the Flex framework from accessing them. Any developer who knows the URI
of the mx_internal namespace can use it to access any of the variables or methods
qualified by mx_internal.

The goal of mx_internal, however, is not to technically secure variables and methods
against developer use. Rather, it is to erect a bold warning sign indicating that the
variables and methods are not for external use and might change without warning or
cause erratic behavior if accessed by code outside the Flex framework.

Example: Permission-Based Access Control
Our second namespace example demonstrates a custom form of access control
where a class defines a group of methods and variables that only designated classes
can access. Here are the participants in this example:

The sheltered class
The class that grants access to its restricted methods and variables

The restricted methods and variables
The group of methods and variables to which access is limited

Applied Namespace Examples | 343

The authorized classes
Classes that are granted access to the restricted methods and variables

Here’s the basic code for the sheltered class:

package {
 // This is the sheltered class.
 public class ShelteredClass {
 // The namespace restricted qualifies variables and
 // methods to which access is restricted.
 private namespace restricted;

 // This is the array of authorized classes. In this
 // example there is only one authorized class: Caller.
 private var authorizedClasses:Array = [Caller];

 // This is a restricted variable.
 // It can be accessed by authorized classes only.
 restricted var secretData:String = "No peeking";

 // This is a restricted method.
 // It can be accessed by authorized classes only.
 restricted function secretMethod ():void {
 trace("Restricted method secretMethod() called");
 }
 }
}

The sheltered class keeps an array of the authorized classes. It also defines a private
namespace to qualify its restricted methods and variables. The namespace is private
so that other classes cannot access it directly. Additionally, the URI for the
namespace is automatically generated so that it cannot be discovered and used out-
side the class. Finally, the sheltered class defines the restricted variables and meth-
ods themselves.

To access a restricted method or variable (e.g., secretData or secretMethod()), a pro-
spective class must obtain the proverbial keys to the front door. That is, it must
retrieve a reference to the namespace that qualifies the restricted methods and vari-
ables. But the sheltered class will grant that reference only if the prospective class—
lets call it the “caller class”—is in the authorizedClasses array.

In our example, the caller class will ask ShelteredClass for a reference to the restricted
namespace using ShelteredClass’s instance method getRestrictedNamespace(). The
getRestrictedNamespace() method accepts an instance of the caller class as an argu-
ment. If the caller instance is authorized, getRestrictedNamespace() returns a reference
to the restricted namespace. Otherwise, getRestrictedNamespace() returns null, indi-
cating to the caller that access to the restricted methods and variables is denied. Here’s
the code for the getRestrictedNamespace() method:

344 | Chapter 17: Namespaces

public function getRestrictedNamespace
 (callerObject:Object):Namespace {
 // Check to see if the callerObject is in the authorizedClasses array.
 for each (var authorizedClass:Class in authorizedClasses) {
 // If the caller object is an instance of an authorized class...
 if (callerObject is authorizedClass) {
 // ...pass back a reference to the restricted namespace (the
 // keys to the front door)
 return restricted;
 }
 }
 // The caller object is not an instance of
 // an authorized class, so abort
 return null;
}

Example 17-5 shows the code for ShelteredClass in its entirety, complete with the
getRestrictedNamespace() method.

Example 17-5. The ShelteredClass class

package {
 // This is the sheltered class
 public class ShelteredClass {
 // The namespace restricted qualifies variables and
 // methods to which access is restricted
 private namespace restricted;

 // This is the array of authorized classes. In this
 // example there is only one authorized class: Caller.
 private var authorizedClasses:Array = [Caller];

 // This is a restricted variable.
 // It can be accessed by authorized classes only
 restricted var secretData:String = "No peeking";

 // This is a restricted method.
 // It can be accessed by authorized classes only
 restricted function secretMethod ():void {
 trace("Restricted method secretMethod() called");
 }

 public function getRestrictedNamespace
 (callerObject:Object):Namespace {
 // Check to see if the callerObject is in the authorizedClasses array.
 for each (var authorizedClass:Class in authorizedClasses) {
 // If the caller object is an instance of an authorized class...
 if (callerObject is authorizedClass) {
 // ...pass back a reference to the restricted namespace (the
 // keys to the front door)
 return restricted;
 }
 }
 // The caller object is not an instance of
 // an authorized class, so abort

Applied Namespace Examples | 345

Now let’s look at Caller, a class that wishes to access ShelteredClass’s restricted
methods and variables. Having already seen the authorizedClasses array in
ShelteredClass, we know that Caller is a legal class. In our example, Caller is also the
main application class, so it extends Sprite. The Caller class creates an instance of
ShelteredClass in its constructor method and assigns that instance to the variable
shelteredObject.

package {
 import flash.display.*;

 public class Caller extends Sprite {
 private var shelteredObject:ShelteredClass;

 public function Caller () {
 shelteredObject = new ShelteredClass();
 }
 }
}

To invoke secretMethod() on ShelteredClass, a Caller object must first retrieve a refer-
ence to the restricted namespace. To do so, the Caller object passes itself to
getRestrictedNamespace() and assigns the result (either restricted or null) to a vari-
able, key, for later use.

var key:Namespace = shelteredObject.getRestrictedNamespace(this);

Then, before calling secretMethod(), Caller first checks whether key refers to a valid
namespace. If it does, then Caller uses key as the namespace when invoking
secureMethod():

if (key != null) {
 shelteredObject.key::secureMethod();
}

For convenience, our Caller class wraps the code that calls secretMethod() in a
method named callSecretMethod():

public function callSecretMethod ():void {
 var key:Namespace = shelteredObject.getRestrictedNamespace(this);
 if (key != null) {
 shelteredObject.key:: secretMethod();
 }
}

Example 17-6 shows the entire code for the Caller class, including callSecretMethod()
and another convenience method, displaySecret(), which accesses the restricted vari-
able secretData using the same basic technique.

 return null;
 }
 }
}

Example 17-5. The ShelteredClass class (continued)

346 | Chapter 17: Namespaces

Example: Program Modes
Our last example is an electronic dictionary that translates from Japanese to English
and vice versa. The dictionary demonstrates program modes—perhaps the area of
namespace programming in ActionScript with the greatest potential. When in “Japa-
nese mode,” the dictionary returns English translations for Japanese queries; when in
“English mode,” the dictionary returns Japanese translations for English queries.
Each mode is represented by a namespace—japanese for Japanese-to-English mode
and english for English-to-Japanese mode.

Here are the participants in this example:

japanese
A namespace for Japanese-specific variables and methods

english
A namespace for English-specific variables and methods

QueryManager class
Performs searches for words

SearchOptions class
Contains the basic options for a search operation

Example 17-6. The Caller class

package {
 import flash.display.*;

 public class Caller extends Sprite {

 private var shelteredObject:ShelteredClass;

 public function Caller () {
 shelteredObject = new ShelteredClass();
 callSecretMethod();
 displaySecret();
 }

 public function callSecretMethod ():void {
 var key:Namespace = shelteredObject.getRestrictedNamespace(this);
 if (key != null) {
 shelteredObject.key::secretMethod();
 }
 }

 public function displaySecret ():void {
 var key:Namespace = shelteredObject.getRestrictedNamespace(this);
 if (key != null) {
 trace(shelteredObject.key::secretData);
 }
 }
 }
}

Applied Namespace Examples | 347

JapaneseSearchOptions class
Contains options specific to a Japanese search operation

EnglishSearchOptions class
Contains options specific to an English search operation

JEDictionary class
The main application class

Let’s look at these participants one at a time, bearing in mind that this example is
not fully functional, and uses placeholder code where actual database searches
would occur.

We’ll start with the japanese and english namespace definitions, whose code should
be familiar by now:

package {
 public namespace english = "http://www.example.com/jedict/english";
}

package {
 public namespace japanese = "http://www.example.com/jedict/japanese";
}

Next comes the QueryManager class, which defines two methods to look up a word,
japanese::search() and english::search(). The appropriate search method is invoked
depending on the current mode of the program. Each search method accepts an
options argument that specifies search options in the form of either a
JapaneseSearchOptions or an EnglishSearchOptions object, respectively. Later, in the
JEDictionary class, we’ll see that the search options are selected according to the cur-
rent program mode. Here’s the code for QueryManager:

package {
 public class QueryManager {

 japanese function search (word:String,
 options:JapaneseSearchOptions):Array {
 trace("Now searching for '" + word + "'.\n"
 + " Match type: " + options.getMatchType() + "\n"
 + " English language variant: " + options.getEnglishVariant());

 // Code here (not shown) would search the Japanese-to-English
 // dictionary and return the results, but we'll just return a
 // hard-coded list of results as a proof-of-concept:
 return ["English Word 1", "English Word 2", "etc"];
 }

 english function search (word:String,
 options:EnglishSearchOptions):Array {
 trace("Now searching for '" + word + "'.\n"
 + " Match type: " + options.getMatchType() + "\n"
 + " Use kanji in results: " + options.getKanjiInResults());

 // Code here (not shown) would search the English-to-Japanese

348 | Chapter 17: Namespaces

 // dictionary and return the results, but we'll just return a
 // hard-coded list of results as a proof-of-concept:
 return ["Japanese Word 1", "Japanese Word 2", "etc"];
 }
 }
}

Now let’s examine the three search-options classes: SearchOptions and its two sub-
classes, JapaneseSearchOptions and EnglishSearchOptions. The SearchOptions class
specifies how the program should look for the requested search string, either using
an “exact match” (the matching word must be identical to the search string), a
“starts-with match” (all matching words must start with the search string), or a “con-
tains match” (all matching words must contain the search string).

The different types of matches are represented by the constants MATCH_EXACT, MATCH_
STARTSWITH, and MATCH_CONTAINS. The match type for a given search can be set and
retrieved via the methods setMatchType() and getMatchType(). Here’s the
SearchOptions class:

package {
 public class SearchOptions {
 public static const MATCH_EXACT:String = "Exact";
 public static const MATCH_STARTSWITH:String = "StartsWith";
 public static const MATCH_CONTAINS:String = "Contains";

 private var matchType:String;

 public function SearchOptions () {
 // Default to exact matching.
 setMatchType(SearchOptions.MATCH_EXACT);
 }

 public function getMatchType ():String {
 return matchType;
 }

 public function setMatchType (newMatchType:String):void {
 matchType = newMatchType;
 }
 }
}

The JapaneseSearchOptions class extends SearchOptions, adding options relevant to
Japanese-to-English searches only—namely, whether results should be returned in
U.S. English or U.K. English. These two English variants are represented by the con-
stants ENGLISH_UK and ENGLISH_US. The English variant for a given search can be set
and retrieved via the methods setEnglishVariant() and getEnglishVariant().

package {
 public class JapaneseSearchOptions extends SearchOptions {
 public static const ENGLISH_UK:String = "EnglishUK";
 public static const ENGLISH_US:String = "EnglishUS";

Applied Namespace Examples | 349

 private var englishVariant:String;

 public function JapaneseSearchOptions () {
 setEnglishVariant(JapaneseSearchOptions.ENGLISH_UK);
 }

 public function getEnglishVariant ():String {
 return englishVariant;
 }

 public function setEnglishVariant (newEnglishVariant:String):void {
 englishVariant = newEnglishVariant;
 }
 }
}

Like JapaneseSearchOptions, the EnglishSearchOptions class extends SearchOptions,
adding options relevant to English-to-Japanese searches only—namely, whether
results should be returned in kanji (a ideographic character set) or hiragana (a pho-
netic character set). The character set for a given search can be set and retrieved via
the methods setKanjiInResults() and getKanjiInResults():

package {
 public class EnglishSearchOptions extends SearchOptions {
 private var kanjiInResults:Boolean = false;

 public function getKanjiInResults ():Boolean {
 return kanjiInResults;
 }

 public function setKanjiInResults (newKanjiInResults:Boolean):void {
 kanjiInResults = newKanjiInResults;
 }
 }
}

Finally let’s turn to JEDictionary, the application’s main class, where most of the
namespace magic happens. Skim the class code in Example 17-7, then we’ll study it
line by line.

Example 17-7. The JEDictionary class

package {
 import flash.display.Sprite;

 public class JEDictionary extends Sprite {
 private var queryMan:QueryManager;

 japanese var options:JapaneseSearchOptions;
 english var options:EnglishSearchOptions;

 private var lang:Namespace;

350 | Chapter 17: Namespaces

To begin, the application’s main class, JEDictionary extends Sprite:

public class JEDictionary extends Sprite {

To perform searches, JEDictionary creates a QueryManager instance, which it assigns
to the variable queryMan:

private var queryMan:QueryManager;

Next, JEDictionary creates two variables, both with the local name options, but qual-
ified by the japanese and english namespaces. These hold the search options that
will be passed to the QueryManager class’s instance method search(). Notice that
their datatypes correspond to the type of search being performed:

japanese var options:JapaneseSearchOptions;
english var options:EnglishSearchOptions;

 public function JEDictionary() {
 queryMan = new QueryManager();

 japanese::options = new JapaneseSearchOptions();
 japanese::options.setMatchType(SearchOptions.MATCH_STARTSWITH);
 japanese::options.setEnglishVariant(JapaneseSearchOptions.ENGLISH_US);

 english::options = new EnglishSearchOptions();
 english::options.setMatchType(SearchOptions.MATCH_CONTAINS);
 english::options.setKanjiInResults(true);

 // Do a Japanese search...
 setModeJapaneseToEnglish();
 findWord("sakana");

 // Do an English search...
 setModeEnglishToJapanese();
 findWord("fish");
 }

 public function findWord (word:String):void {
 var words:Array = queryMan.lang::search(word, lang::options);
 trace(" Words found: " + words);
 }

 public function setModeEnglishToJapanese ():void {
 lang = english;
 }

 public function setModeJapaneseToEnglish ():void {
 lang = japanese;
 }
 }
}

Example 17-7. The JEDictionary class (continued)

Applied Namespace Examples | 351

Then comes the definition of the important lang variable, which refers to the
namespace corresponding to the current dictionary mode (either Japanese or
English):

private var lang:Namespace;

That’s it for JEDictionary’s variables; now let’s examine its methods:
setModeEnglishtoJapanese(), setModeJapaneseToEnglish(), and findWord(). The
setModeEnglishtoJapanese() and setModeJapaneseToEnglish() methods activate the
different modes of the dictionary by setting the variable lang to the english
namespace or japanese namespace, respectively:

public function setModeEnglishToJapanese ():void {
 lang = english;
}

public function setModeJapaneseToEnglish ():void {
 lang = japanese;
}

The findWord() method uses QueryManager to perform a dictionary lookup using
the appropriate search() method. The call to search() is the most important line of
code in our dictionary example:

queryMan.lang::search(word, lang::options)

Notice that the namespace (the program mode) determines both the type of search to
perform (the behavior) and the type of options to be used for that search (the data).
When lang is set to japanese, then japanese::search() is invoked and passed a
JapaneseSearchOptions object. When lang is set to english, then english::search() is
invoked and passed an EnglishSearchOptions object.

The result of the search() invocation is assigned to the local variable words and then
displayed in a debugging message:

public function findWord (word:String):void {
 var words:Array = queryMan.lang::search(word, lang::options);
 trace(" Words found: " + words);
}

For demonstration purposes, the JEDictionary constructor method performs two
example dictionary searches (though, in a full-featured application, dictionary
searches would normally be performed in response to user input). Searches are car-
ried out by the application’s QueryManager instance, which is created in the con-
structor, as follows:

queryMan = new QueryManager();

Default options for all Japanese-to-English searches and English-to-Japanese searches
are also set in the constructor:

japanese::options = new JapaneseSearchOptions();
japanese::options.setMatchType(SearchOptions.MATCH_STARTSWITH);

352 | Chapter 17: Namespaces

japanese::options.setEnglishVariant(JapaneseSearchOptions.ENGLISH_US);

english::options = new EnglishSearchOptions();
english::options.setMatchType(SearchOptions.MATCH_CONTAINS);
english::options.setKanjiInResults(true);

To perform a search, the constructor sets the dictionary mode, then passes the search
string to the JEDictionary class’s instance method findWord():

// Do a Japanese search...
setModeJapaneseToEnglish();
findWord("sakana");

// Do an English search...
setModeEnglishToJapanese();
findWord("fish");

According to the current dictionary mode, the appropriate search() method is called,
and the appropriate search options are used.

And that completes our dictionary! And it also completes our study of namespaces.
Remember you can download the source code for the dictionary application and
other examples from this chapter at http://www.moock.org/eas3/examples.

Final Core Topics
We’re almost finished with our exploration of the core ActionScript language. The
coming two chapters cover two final subjects: creating and manipulating XML-based
data and Flash Player security restrictions.

http://www.moock.org/eas3/examples

353

Chapter 18 CHAPTER 18

XML and E4X19

Since Flash Player 5, ActionScript has included tools for working with XML-
structured data. In ActionScript 1.0 and ActionScript 2.0, XML data was created and
manipulated with the variables and methods of the built-in XML class (e.g.,
firstChild, nextSibling, appendChild(), etc.). The XML class was based on the
W3C Document Object Model, or DOM, a standard for interacting with XML docu-
ments programmatically (see http://www.w3.org/DOM).

As of ActionScript 3.0, the toolset for creating and manipulating XML has been com-
pletely overhauled. ActionScript 3.0 implements ECMAScript for XML (“E4X”), an
official ECMA-262 language extension for working with XML as a native datatype.
E4X seeks to improve the usability and flexibility of working with XML in ECMA-
262-based languages (including ActionScript and JavaScript).

Understanding XML Data as a Hierarchy
Before we can learn to manipulate XML data with E4X, we must first understand the
general principle of XML as hierarchical data. Both the legacy XML class and E4X
treat XML data as a hierarchical tree in which each element and text block is consid-
ered a tree node (i.e., a branch or a leaf). For example, consider the XML fragment in
Example 18-1. (An XML fragment is a section of XML excerpted from an XML
document.)

Example 18-1. An example XML fragment

<BOOK ISBN="0141182806">
 <TITLE>Ulysses</TITLE>
 <AUTHOR>Joyce, James</AUTHOR>
 <PUBLISHER>Penguin Books Ltd</PUBLISHER>
</BOOK>

http://www.w3.org/DOM

354 | Chapter 18: XML and E4X

The elements <BOOK>, <TITLE>, <AUTHOR>, and <PUBLISHER>, and the text “Ulysses”,
“Joyce, James”, and “Penguin Books Ltd” are all considered nodes on the tree, as
depicted in Figure 18-1.

The element <BOOK> is the root of the tree—known as the root node of the XML data
structure. Every well-formed XML document must have an all-encompassing root
element, such as <BOOK>, that contains every other element.

When a node is contained by another node, the contained node is said to be a child
of the containing node; conversely, the containing node is known as the child node’s
parent. In our example, the <TITLE> element is a child of <BOOK>, and <BOOK> is
<TITLE>’s parent.

Perhaps surprisingly, <TITLE> is not the first child of <BOOK>; it is the second. The first
child is actually the so-called insignificant whitespace (the new line and two spaces) in
the XML source code between the <BOOK> and <TITLE> tags. In E4X, insignificant
whitespace means any of the following four formatting characters: space (\u0020),
carriage return (\u000D), line feed (\u000A), and tab (\u0009). In an XML tree, text
blocks—even ones that contain whitespace only—are considered nodes on the tree.
Accordingly, the <BOOK> element has not three children but seven, four of which are
so-called whitespace nodes (text nodes that contain insignificant whitespace only).

The <BOOK> node’s seven children are known as siblings of one another because they
reside on the same level in the hierarchy. For example, we say that <TITLE>’s next sib-
ling is a whitespace node, and <AUTHOR>’s previous sibling is another whitespace node.
You can see how the text nodes get in the way when moving from sibling to sibling
in a hierarchy. Fortunately, by default, whitespace nodes are ignored by the E4X
parser. E4X lets us treat <AUTHOR> as <TITLE>’s next sibling, which is what we want in

Figure 18-1. An example XML hierarchy

<BOOK>

<TITLE>

<AUTHOR>

<PUBLISHER> “Penguins Books Ltd”

“Joyce, James”

“Ulysses”

whitespace

whitespace

whitespace

whitespace

Representing XML Data in E4X | 355

most cases. You won’t have to process whitespace nodes yourself in E4X unless you
specifically want to (see the XML class’s instance variable ignoreWhitespace, dis-
cussed in the later section “Converting an XML Element to a String”).

On the last tier in the hierarchy, we find that the <TITLE>, <AUTHOR>, and <PUBLISHER>
nodes each have a single text-node child: "Ulysses", "Joyce, James", and "Penguin
Books Ltd", respectively. The text nodes are the last nodes in the tree.

The text contained by an element in XML source code is considered a
child node of that element in the corresponding XML tree hierarchy.

We’ve now finished examining the XML tree for Example 18-1, but we still haven’t
learned where the attributes fit into the hierarchy. You might expect <BOOK>’s ISBN
attribute to be depicted as a child node called ISBN. But in practice, an attribute is not
considered a child of the element that defines it, but rather a characteristic of that ele-
ment. We’ll learn how attributes are accessed in E4X in the later section “Accessing
Attributes.”

Now that we’ve learned how XML data can be thought of as a conceptual hierarchy,
we can explore how XML is represented, created, and manipulated using E4X
techniques.

Representing XML Data in E4X
In E4X, XML data is represented by one of two native ActionScript datatypes, XML
and XMLList and their corresponding classes, also named XML and XMLList.

Due to the introduction of the E4X XML datatype, the legacy XML
class from ActionScript 1.0 and ActionScript 2.0 has been renamed to
XMLDocument in ActionScript 3.0 and moved to the flash.xml
package.

Each XML instance represents one of the following five possible kinds of XML con-
tent, known as node kinds:

• An element

• An attribute

• A text node

• A comment

• A processing instruction

If an XML element has any child elements (e.g., <BOOK>’s child <AUTHOR>) or child text
nodes (e.g., <TITLE>’s child “Ulysses"), those children are wrapped in an XMLList by

356 | Chapter 18: XML and E4X

their parent XML instance. Each XMLList instance is an arbitrary collection of one or
more XML instances. For example, an XMLList might be any of the following:

• A series of attributes or elements returned by a search

• A group of XML fragments, each with its own root element

• A collection of the text nodes in a document

• A collection of the comments in a document

• A collection of the processing instructions in a document

The child nodes of an XML element are always wrapped in an XMLList. Even if
an element has only one child (say, just a text node), that child is still wrapped in
an XMLList. If an XML element has any attributes, comments, or processing
instructions, those are likewise wrapped in an XMLList by the parent XML
instance. However, comments and processing instructions are, by default,
ignored by the E4X parser. (To prevent them from being ignored, set the static
variables XML.ignoreComments and XML.ignoreProcessingInstructions to false.)

Let’s look at an example showing how an XML fragment would be represented by
instances of XML and XMLList classes in E4X. Recall the XML source code from
Example 18-1:

<BOOK ISBN="0141182806">
 <TITLE>Ulysses</TITLE>
 <AUTHOR>Joyce, James</AUTHOR>
 <PUBLISHER>Penguin Books Ltd</PUBLISHER>
</BOOK>

From the E4X perspective, the element <BOOK> in the preceding code is represented
by an XML instance. That XML instance contains two XMLList instances—one for
<BOOK>’s attributes and the other for its child elements. The <BOOK> element has only
one attribute, so the XMLList for <BOOK>’s attributes contains one XML instance only
(representing the attribute ISBN). The XMLList for <BOOK>’s child elements contains
three XML instances, representing the three elements <TITLE>, <AUTHOR>, and
<PUBLISHER>. Each of those XML instances, itself, has an XMLList containing exactly
one XML instance representing, respectively, the child text nodes "Ulysses", "Joyce,
James", and "Penguin Books Ltd". Figure 18-2 summarizes. In the figure, each item in
the <BOOK> hierarchy is labeled with a letter (A through M) so it can be referenced
easily in the coming sections.

Now let’s put some of the preceding theory into practice by creating the <BOOK> frag-
ment from Example 18-1 using E4X techniques.

Creating XML Data with E4X | 357

Creating XML Data with E4X
To create the <BOOK> XML fragment from Example 18-1 via E4X, we have three gen-
eral options:

• Use the XML constructor to create a new XML instance, and then create the
remainder of the fragment programmatically using the techniques covered in
later section “Changing or Creating New XML Content.”

• Use the XML constructor to create a new XML instance, and then import the
fragment from an externally loaded file, as discussed in the later section “Load-
ing XML Data.”

• Write our XML data in literal form, just like a string or a number, anywhere lit-
erals are allowed by ActionScript.

For now, we’ll use the third approach—creating the XML fragment with an XML lit-
eral. Example 18-2 demonstrates; it assigns a literal XML value (the XML fragment
from Example 18-1) to the variable novel.

Figure 18-2. The <BOOK> fragment, represented in E4X

Example 18-2. Assigning an XML literal to a variable

var novel:XML = <BOOK ISBN="0141182806">
 <TITLE>Ulysses</TITLE>
 <AUTHOR>Joyce, James</AUTHOR>
 <PUBLISHER>Penguin Books Ltd</PUBLISHER>
 </BOOK>;

XML
(ISBN=“0141182806”)

XML
(<TITLE>)

XML
(<AUTHOR>)

XML
(<PUBLISHER>)

XML List
(Child nodes)

XML List
(Child nodes)

XML List
(Child nodes)

XML
(Ulysses)

XML
(Joyxe, James)

XML
(Penguin Books Ltd)

XML List
(Attributes)

XML List
(Child nodes)

XML
(<BOOK>)

A

B

C F I

D G J

E H K

L

M XML instance (element)

XML instance (attribute)

XMLList instance

XML instance (text node)

358 | Chapter 18: XML and E4X

When the preceding code runs, ActionScript generates a new E4X XML instance rep-
resenting the literal XML fragment and assigns it to the variable novel.

To view the XML source code for an XML instance (such as the one
referenced by novel), use the XML class’s instance method
toXMLString(), as in:

trace(novel.toXMLString());

The toXMLString() method is covered later in the section “Convert-
ing XML and XMLList to a String.”

Notice that the line breaks and quotation marks in the preceding XML literal are per-
fectly normal. ActionScript knows they are part of the XML data, and interprets
them as such. Where possible, ActionScript even converts certain reserved charac-
ters to XML entities. For details see the section “Using XML Entities for Special
Characters.”

ActionScript also allows dynamic expressions to be used within an XML literal so
that element names, attribute names, attribute values, and element content can be
generated programmatically. To specify a dynamic expression within an XML literal,
surround it in curly braces ({ }). For example, the following code specifies the name
of the <BOOK> tag dynamically:

var elementName:String = "BOOK";
var novel:XML = <{elementName}/>;

The following code presents a slightly exaggerated example that creates the same
XML hierarchy as that shown in Example 18-2, but dynamically specifies all element
names, attribute names, attribute values, and element contents.

var rootElementName:String = "BOOK";
var rootAttributeName:String = "ISBN";
var childElementNames:Array = ["TITLE", "AUTHOR", "PUBLISHER"];
var bookISBN:String = "0141182806";
var bookTitle:String = "Ulysses";
var bookAuthor:String = "Joyce, James";
var bookPublisher:String = "Penguin Books Ltd";
var novel:XML = <{rootElementName} {rootAttributeName}={bookISBN}>
 <{childElementNames[0]}>{bookTitle}</{childElementNames[0]}>
 <{childElementNames[1]}>{bookAuthor}</{childElementNames[1]}>
 <{childElementNames[2]}>{bookPublisher}</{childElementNames[2]}>
 </{rootElementName}>;

Note that because the characters { } are used to delimit a dynamic expression, they
are not allowed in some parts of an XML literal. Specifically, within an element
name, an attribute name, or element content, the entities { and } must be
used to represent { and }, respectively. However, { and } can be used in literal form
within an attribute value, a CDATA section, a processing instruction, or a comment.

Accessing XML Data | 359

Now that we have a variable, novel, defined in Example 18-2 that references the
XML fragment from Example 18-1, let’s see how its various parts can be accessed
using E4X coding techniques.

Accessing XML Data
E4X offers two general sets of tools for accessing data in an XML hierarchy:

• The XML and XMLList content-access methods (attribute(), attributes(), child(),
children(), comments(), descendants(), elements(), parent(), processingInstructions(),
and text())

• Variable-style access with the dot (.), descendant (..), and attribute (@)
operators

Variable-style access is offered as a convenience to the programmer and always
equates to one of the methods of either the XML or XMLList classes. However, the
two approaches do not overlap completely; the following types of content must be
accessed using the appropriate method of the XML or XMLList class:

• An XML instance’s parent (accessed via parent())

• Comments (accessed via comments())

• Processing instructions (accessed via processingInstructions())

• Elements or attributes whose names include characters considered illegal in an
ActionScript identifier (accessed via attribute(), child(), descendants(), or
elements())

Continuing with our <BOOK> example, let’s take a look at some of the most common
ways to access XML data.

Accessing the Root XML Node
In Example 18-2 we assigned the XML fragment from Example 18-1 to the variable
novel. To access the root <BOOK> element of that fragment (item A in Figure 18-2) we
refer to it as, simply, novel. For example, the following code passes the <BOOK> ele-
ment (and, by extension, all its children) to the hypothetical addToOrder() method:

addToOrder(novel);

Notice that the <BOOK> element is not named. That is, we write addToOrder(novel),
not either of the following:

addToOrder(novel.BOOK); // Wrong.
addToOrder(novel.child("BOOK")); // Also wrong.

The preceding two examples mistakenly treat the <BOOK> element as though it were a
child of novel, which is not. We’ll learn how to access child elements in the next
section.

360 | Chapter 18: XML and E4X

Note that there is no direct way to access the root node relative to any given child.
However, we can use the XML class’s instance method parent() (covered later) to
ascend a tree recursively to its root, as shown in Example 18-3.

Accessing Child Nodes
To access the XMLList representing <BOOK>’s child nodes (item B in Figure 18-2), we
use the XML class’s instance method children(), which takes no arguments. For
example:

novel.children() // Returns an XMLList representing <BOOK>'s child nodes

Alternatively, we can access <BOOK>’s child nodes using E4X’s more convenient
properties wildcard (*). For example:

novel.* // Also returns an XMLList, representing <BOOK>'s child nodes

To access a specific child in an XMLList we use the familiar array-element access
operator, []. For example, to access the <BOOK> element’s second child, <AUTHOR>
(item D in Figure 18-2), we use:

novel.children()[1] // A reference to <BOOK>'s second child node

or:

novel.*[1] // Also a reference to <BOOK>'s second child node

Although there is no firstChild or lastChild variable in E4X (as there is in the leg-
acy XMLDocument class), the first child in a list of child nodes can be accessed as
follows:

theNode.children()[0]

And the last child in a list of child nodes can be accessed as follows:

theNode.children()[theNode.children().length()-1]

However, accessing a child node according to its position in a list can be cumber-
some, and has, therefore, been deemphasized by E4X. In E4X, child nodes are typi-
cally accessed by their element names rather than their position. To access child

Example 18-3. A custom root-access method

// Returns the root of an XML hierarchy, relative to a given child
public function getRoot (childNode:XML):XML {
 var parentNode:XML = childNode.parent();
 if (parentNode != null) {
 return getRoot(parentNode);
 } else {
 return childNode;
 }
}

// Usage:
getRoot(someChild);

Accessing XML Data | 361

nodes by name, we use the XML class’s instance method child(), which returns an
XMLList of all child elements matching a specified name. For example, to retrieve an
XMLList of all children of <BOOK> named "AUTHOR", we use:

novel.child("AUTHOR") // Returns all child elements of <BOOK> named "AUTHOR"

Alternatively, we can access child nodes by name using E4X’s more convenient vari-
able-access syntax. The following code has the identical result as the preceding code
but uses E4X’s more convenient variable-access syntax:

novel.AUTHOR // Also returns all child elements of <BOOK> named "AUTHOR"

If <BOOK> contained two <AUTHOR> elements, then novel.AUTHOR would return an
XMLList with two XML instances, representing those elements. To access the first
element, we would use novel.AUTHOR[0]. To access the second element, we would
use novel.AUTHOR[1], as shown in the following code:

var novel:XML = <BOOK>
 <AUTHOR>Jacobs, Tom</AUTHOR>
 <AUTHOR>Schumacher, Jonathan</AUTHOR>
 </BOOK>;

novel.AUTHOR[0]; // Access <AUTHOR>Jacobs, Tom</AUTHOR>
novel.AUTHOR[1]; // Access <AUTHOR>Schumacher, Jonathan</AUTHOR>

Of course, the <BOOK> element from Example 18-1 contains only one child named
"AUTHOR", so the XMLList returned by the expression novel.AUTHOR has just one XML
instance (representing the lone <AUTHOR> element). To access that <AUTHOR> element,
we could use this code:

novel.AUTHOR[0] // A reference to the <AUTHOR> instance

However (and this is the exciting part!), in most cases we don’t have to include the
[0]. In order to make node access more convenient, E4X implements special behav-
ior for XMLList objects that have only one XML instance (as our example novel.
AUTHOR does). When an XML method is invoked on an XMLList with only one XML
instance, the method invocation is automatically forwarded to that XML instance. By
forwarding the method invocation, E4X lets the programmer treat an XMLList with
only one XML instance as though it were that instance. As the E4X specification puts
it, E4X “intentionally blurs the distinction between an individual XML object and an
XMLList containing only that object.”

For example, suppose we want to change the <AUTHOR> element’s name from "AUTHOR"
to "WRITER". We could use this code, which explicitly refers to the <AUTHOR> instance:

novel.AUTHOR[0].setName("WRITER");

But we would typically use this more convenient code, which implicitly refers to
the <AUTHOR> instance by omitting the array-element access (the [0] following
novel.AUTHOR):

novel.AUTHOR.setName("WRITER");

362 | Chapter 18: XML and E4X

When we invoke setName() directly on the XMLList returned by novel.AUTHOR,
ActionScript recognizes that the list has only one XML instance (<AUTHOR>) and auto-
matically forwards the setName() invocation to that instance. As a result, the name
of the sole element contained by novel.AUTHOR is changed from "AUTHOR" to
"WRITER".

In most cases, this sleight-of-hand performed by ActionScript makes XML code eas-
ier to write and more intuitive to read. However, some caution is required when
using this technique. For example, the following code invokes setName() on an
XMLList with more than one XML instance:

var novel:XML = <BOOK>
 <AUTHOR>Jacobs, Tom</AUTHOR>
 <AUTHOR>Schumacher, Jonathan</AUTHOR>
 </BOOK>;
novel.AUTHOR.setName('WRITER');

When the preceding code runs, ActionScript generates the following runtime error:

The setName method works only on lists containing one item.

The act of treating an XMLList with only one XML instance as though it were that
instance is an important and often misunderstood aspect of E4X programming, so
we’ll return to this topic several times over the course of this chapter.

Accessing Text Nodes
As we learned in the earlier section “Understanding XML Data as a Hierarchy,” the
text contained by an element is represented as a node in an XML hierarchy. For
example, in the following XML fragment (repeated from Example 18-2) the text
"Ulysses" is a text node. It is represented by an XML instance whose node kind is
“text,” as are the text nodes "Joyce, James", and "Penguin Books Ltd".

var novel:XML = <BOOK ISBN="0141182806">
 <TITLE>Ulysses</TITLE>
 <AUTHOR>Joyce, James</AUTHOR>
 <PUBLISHER>Penguin Books Ltd</PUBLISHER>
 </BOOK>;

We access text nodes in different ways depending on our needs. When we need to
reference a text node as an XML instance, we must use the child-node access syntax
discussed in the previous section. For example, to access the text "Ulysses", which is
<TITLE>’s first child, we can use this code:

novel.TITLE.children()[0] // A reference to the text node Ulysses

Or, alternatively, we can use the properties wildcard to do the same thing:

novel.TITLE.*[0] // Also a reference to the text node Ulysses

Accessing XML Data | 363

Both of the preceding examples return an XML object (not a string) that represents
the element text "Ulysses". We can invoke XML methods on that object, just as we
can with any XML object. For example:

novel.TITLE.*[0].parent() // Reference to the <TITLE> element
novel.TITLE.*[0].nodeKind() // Returns the string "text"
novel.TITLE.*[0].toString() // Returns the string "Ulysses"

However, if we simply want to access the content of a text node as a String, not an
XML instance, we can use the XML class’s instance method toString() on its parent ele-
ment. For elements such as <TITLE> that contain one child text node only (with no
other interspersed elements), toString() returns the text of that child node, omitting the
parent element’s start and end tags. Hence, the expression novel.TITLE.toString()
yields the string "Ulysses":

trace(novel.TITLE.toString()); // Displays: Ulysses

As you’re mulling over the preceding line of code, remember that it is actually a
shorthand version of:

trace(novel.TITLE[0].toString()); // Displays: Ulysses

The shorthand expression novel.TITLE.toString() returns "Ulysses" because
ActionScript recognizes that the XMLList referred to by novel.TITLE has only one
XML instance (<TITLE>) and automatically forwards the toString() invocation to that
instance.

When accessing the content of a text node as a String, we can typically omit the
explicit call to toString() because ActionScript invokes toString() automatically
whenever a nonstring value is used where a string is expected. For example, the
trace() function expects a string as an argument, so instead of explicitly invoking
toString(), as in:

trace(novel.TITLE.toString()); // Displays: Ulysses

we can let ActionScript invoke it implicitly:

trace(novel.TITLE); // Also displays: Ulysses

Likewise, when assigning the content of the text node Ulysses to a variable of type
String, instead of this fully explicit code:

var titleName:String = novel.TITLE[0].toString();

we can use, simply:

var titleName:String = novel.TITLE;

Now that’s snazzy. And it’s also the typical way to retrieve the text contained by an
element in E4X.

For text nodes that are interspersed with other elements, we can use the XML class’s
instance method text() to retrieve the text nodes not contained by elements. To

364 | Chapter 18: XML and E4X

illustrate how this works, let’s temporarily add a <DESCRIPTION> element to <BOOK>, as
follows:

var novel:XML = <BOOK ISBN="0141182806">
 <TITLE>Ulysses</TITLE>
 <AUTHOR>Joyce, James</AUTHOR>
 <PUBLISHER>Penguin Books Ltd</PUBLISHER>
 <DESCRIPTION>A very thick book.</DESCRIPTION>
 </BOOK>;

The <DESCRIPTION> element contains both element and text child nodes:

• A (text node)

• very (element node with a child text node)

• thick book. (text node)

To retrieve an XMLList with the two text nodes A and thick book., we use:

novel.DESCRIPTION.text()

To access those text nodes, we use the array-element access operator:

trace(novel.DESCRIPTION.text()[0]); // Displays: A
trace(novel.DESCRIPTION.text()[1]); // Displays: thick book.

The text() method can also be used to retrieve the text nodes from an entire
XMLList, not just a single XML element. For example, suppose we have an XMLList
representing the children of the <BOOK> element from Example 18-2 (as it existed
before we added the <DESCRIPTION> element):

novel.*

To place the text nodes from each of those children into an XMLList for easy pro-
cessing, such as for the creation of a user interface, we use:

novel.*.text()

Once again, to access the text nodes, we use the array-element access operator:

trace(novel.*.text()[0]); // Displays: Ulysses
trace(novel.*.text()[1]); // Displays: Joyce, James
trace(novel.*.text()[2]); // Displays: Penguin Books Ltd

However, the XMLList class’s instance method text() is less useful when applied to a
list of elements that contain both text and element child nodes. For any node that
contains both text and element child nodes (such as the <DESCRIPTION> node), only
the first child text node is returned; other children are ignored. For example:

var novel:XML = <BOOK ISBN="0141182806">
 <TITLE>Ulysses</TITLE>
 <AUTHOR>Joyce, James</AUTHOR>
 <PUBLISHER>Penguin Books Ltd</PUBLISHER>
 <DESCRIPTION>A very thick book.</DESCRIPTION>
 </BOOK>;

trace(novel.*.text()[3]); // Displays: A

Accessing XML Data | 365

 // The other child nodes, very and
 // thick book., are ignored.

Accessing Parent Nodes
To access a node’s parent node, we use the XML class’s instance method parent(),
which takes no arguments. For example, suppose a variable, pub, has a reference to
the <PUBLISHER> element from Example 18-2.

var pub:XML = novel.PUBLISHER[0];

To access <PUBLISHER>’s parent (which is <BOOK>), we use:

pub.parent()

The parent() method can also be used successively to access any ancestor node, as
shown in the following code:

// Create a 3-tier XML hierarchy.
var doc:XML = <grandparent><parent><child></child></parent></grandparent>;

// Assign a reference to <child>
var kid:XML = doc.parent.child[0];

// Use parent() successively to access <grandparent> from <child>
var grandparent:XML = kid.parent().parent();

Unlike children() and child(), the XML class’s instance method
parent() method has no alternative variable-access syntax.

When used on an XMLList instance, the parent() method returns null unless all
items in the list have the same parent, in which case that parent is returned. For
example, in the following code, we retrieve an XMLList representing the <BOOK> ele-
ment’s three children, and then invoke parent() on that list. Because the three chil-
dren have the same parent, that parent is returned.

var bookDetails:XMLList = novel.*;
var book:XML = bookDetails.parent(); // Returns the <BOOK> element

Invoking parent() on an XMLList with a single XML instance is identical to invoking
parent() on that instance itself. For example, the following two lines of code are
identical:

novel.PUBLISHER[0].parent() // Accesses <BOOK>
novel.PUBLISHER.parent() // Also accesses <BOOK>

When parent() is invoked on an XML instance that represents an attribute, it returns
the element on which the attribute is defined. The following code demonstrates,
using an attribute-access technique that we haven’t yet covered (but will very
shortly):

novel.@ISBN.parent() // Returns the <BOOK> element

366 | Chapter 18: XML and E4X

Accessing Sibling Nodes
As we learned in the section “Understanding XML Data as a Hierarchy,” a sibling
node is a node that resides directly beside another node on a given level of an XML
hierarchy. For example, in our familiar <BOOK> hierarchy, <TITLE> is the previous sib-
ling of <AUTHOR> and <PUBLISHER> is the next sibling of <AUTHOR>.

var novel:XML = <BOOK ISBN="0141182806">
 <TITLE>Ulysses</TITLE> <!--Previous sibling-->
 <AUTHOR>Joyce, James</AUTHOR>
 <PUBLISHER>Penguin Books Ltd</PUBLISHER> <!--Next sibling-->
 </BOOK>;

In E4X there is no built-in support for moving between sibling nodes in an XML
hierarchy. The DOM-based nextSibling, previousSibling variables are not part of
the E4X API. However, the next sibling of any given node can be deduced using the
following code, provided that the node has a valid parent node:

someNode.parent().*[someNode.childIndex()+1];

And the previous sibling can be found using the following code:

someNode.parent().*[someNode.childIndex()-1];

For example, the following code accesses <AUTHOR>’s previous and next siblings:

var author:XML = novel.AUTHOR[0];
// Previous sibling
trace(author.parent().*[author.childIndex()-1]); // Displays: Ulysses
// Next sibling
trace(author.parent().*[author.childIndex()+1]); // Displays:
 // Penguin Books Ltd

Example 18-4 wraps the code for accessing a node’s previous sibling in a custom
method. Notice that the method adds code to check that the specified node actually
has a previous sibling before returning it.

Example 18-4. A custom previousSibling() method

public function previousSibling (theNode:XML):XML {
 // Make sure the node actually has a previous sibling before
 // attempting to return it
 if (theNode.parent() != null && theNode.childIndex() > 0) {
 return theNode.parent().*[theNode.childIndex()-1];
 } else {
 return null;
 }
}

// Usage:
previousSibling(someNode);

Accessing XML Data | 367

Example 18-5 defines nextSibling(), the companion custom method to the
previousSibling() method defined in Example 18-4. Notice that the method adds
code to check that the specified node actually has a next sibling before returning it.

E4X reduces the emphasis on accessing siblings due to its increased
focus on accessing elements by name. For example, to access the
<TITLE> element in E4X, we would typically use, simply, novel.TITLE,
not author.parent().*[author.childIndex()-1]).

Accessing Attributes
To access an XMLList representing all of an element’s attributes, we use the XML
class’s instance method attributes(), which takes no arguments, and has the general
form:

someElement.attributes()

For example, the following code returns an XMLList representing <BOOK>’s attributes
(item L in Figure 18-2):

novel.attributes()

Alternatively, we can access an XMLList representing an element’s attributes using
the more convenient E4X attributes wildcard (@*), which is written as:

someElement.@* // Returns an XMLList representing
 // all of someElement's attributes

For example, the following code, which is equivalent to novel.attributes(), returns
an XMLList representing <BOOK>’s attributes (again, item L in Figure 18-2):

novel.@*

As with elements, attributes in an XMLList can be accessed using the array-access
operator ([]). For example, the following code accesses the first, and only, attribute
of the <BOOK> element, ISBN (item M in Figure 18-2):

novel.attributes()[0]

Example 18-5. A custom nextSibling() method

public function nextSibling (theNode:XML):XML {
 if (theNode.parent() != null
 && theNode.childIndex() < theNode.parent().children().length()-1) {
 return theNode.parent().*[theNode.childIndex()+1];
 } else {
 return null;
 }
}

// Usage:
nextSibling(someNode);

368 | Chapter 18: XML and E4X

The following code also accesses <BOOK>’s first attribute (again, ISBN), but uses E4X’s
attributes wildcard syntax:

novel.@*[0]

However, neither novel.@*[0] nor novel.attributes()[0] represents typical E4X
code. In E4X, it’s rare to access attributes according to their order in an XML docu-
ment. Normally, attributes are accessed by name, using either the attribute() method
or E4X’s more convenient variable-access syntax. The general form for accessing an
attribute by name using the attribute() method is:

someElement.attribute("attributeName")

The preceding code returns an XMLList containing the attribute named
attributeName of the element someElement. For example, the following code returns
an XMLList that contains one XML instance, representing <BOOK>’s ISBN attribute
(item M in Figure 18-2):

novel.attribute("ISBN")

Here’s the equivalent form for accessing an attribute by name using variable-access
syntax is:

someElement.@attributeName

For example, the following also returns an XMLList that contains one XML instance,
representing <BOOK>’s ISBN attribute, but uses variable-access syntax:

novel.@ISBN

Like child(), attribute() returns an XMLList of XML instances matching a given
name. However, because it is an error for two or more attributes of the same ele-
ment to have the same name, the XMLList returned by attribute() always contains
one XML instance only (representing the attribute by the specified name).

To access the XML instance contained by the XMLList returned by novel.@ISBN, we
could use:

novel.@ISBN[0]

But, when invoking an XML method on that instance, we normally omit the array-
access operation ([0]), as in:

novel.@ISBN.someXMLMethod()

We can omit [0] because, as we learned earlier, when an XML method is invoked on
an XMLList with only one XML instance, the method invocation is automatically
forwarded to that XML instance. For example, the following explicit code:

novel.@ISBN[0].parent() // Returns the <BOOK> node

is equivalent to the following implicit code:

novel.@ISBN.parent() // Also returns the <BOOK> node

Accessing XML Data | 369

That said, XML instances representing attributes never have children, and, hence,
have no need for the majority of the XML class’s methods. Instead, an XML instance
representing an attribute is used nearly exclusively for the simple attribute value it
represents. To access the value of an attribute, we use the XML class’s instance
method toString(). For example, the following code assigns the value of <BOOK>’s ISBN
attribute to the variable bookISBN using fully explicit code:

var bookISBN:String = novel.@ISBN[0].toString();

But remember, we can invoke toString() directly on novel.@ISBN (rather than on
novel.@ISBN[0]) because it is an XMLList with only one XML instance. Here is the
shorter, more typical code:

var bookISBN:String = novel.@ISBN.toString(); // Removed [0]

But we can make the preceding line of code shorter still. The XML class is dynamic.
Hence, we can use ActionScript’s automatic datatype conversion to convert the value
of any XML instance’s variables to a string. (ActionScript’s datatype conversion rules
are described in Chapter 8.) Here’s the technique:

var bookISBN:String = novel.@ISBN;

In the preceding code, novel is an instance of a dynamic class (XML). Hence, when
we assign its ISBN variable to the typed variable bookISBN, ActionScript defers type
checking until runtime. At runtime, because bookISBN’s datatype is a primitive type
(String), ISBN’s value is automatically converted to that primitive type.

Pretty handy. And it works for converting to other primitive datatypes, too. For
example, the following code converts the ISBN attribute value to a number simply by
assigning it to a variable whose datatype is Number:

var bookISBN:Number = novel.@ISBN;

When working with attributes, remember that an attribute’s value is always type
String, even if it contains what appears to be another type of data. To be used as a
datatype other than String, that value must be converted either explicitly or implic-
itly. To avoid unwelcome surprises, stay mindful of the rules for datatype conver-
sion, covered in Chapter 8. In particular, remember that the string value "false"
converts to the Boolean value true! When working with attributes that contain
Boolean information, it’s, therefore, easier to use string comparisons than it is to
convert to the Boolean datatype. For example, the following code adds a new
attribute, INSTOCK, to the <BOOK> element, indicating whether or not the book is cur-
rently in stock. To print a message indicating the availability of the book, we com-
pare novel.@INSTOCK to the string "false" rather than convert novel.@INSTOCK to a
Boolean value. As a precaution, we also convert the attribute value to all lowercase
before making the comparison.

370 | Chapter 18: XML and E4X

When comparing attributes, remember that attributes are always
strings and that comparisons are case-sensitive.

var novel:XML = <BOOK ISBN="0141182806" INSTOCK="false">
 <TITLE>Ulysses</TITLE>
 <AUTHOR>Joyce, James</AUTHOR>
 <PUBLISHER>Penguin Books Ltd</PUBLISHER>
 </BOOK>;

// Compare to the string "false" instead of converting to Boolean
if (novel.@INSTOCK.toLowerCase() == "false") {
 trace("Not Available!");
} else {
 trace("Available!");
}

Accessing Comments and Processing Instructions
The final two kinds of nodes we can access in E4X are comments and processing
instructions. XML comments take the for:

<!--Comment text goes here-->

and XML processing instructions take the form:

<?someTargetApp someData?>

These two ancillary forms of data can be accessed using the XML class’s instance
methods comments() and processingInstructions(). Both methods return an XMLList
representing all direct children of an element that are either comments or processing
instructions, respectively. However, by default, the E4X parser ignores both com-
ments and processing instructions. In order to make the comments of an XML docu-
ment or fragment accessible, we must set XML.ignoreComments to false before parsing
the data, as in:

XML.ignoreComments = false;

Similarly, in order to make the processing instructions of an XML document or frag-
ment accessible, we must set XML.ignoreProcessingInstructions to false before pars-
ing the data, as in:

XML.ignoreProcessingInstructions = false;

Note that both XML.ignoreComments and XML.ignoreProcessingInstructions are static
variables, set through the XML class, not an individual XML instance. Once set,
XML.ignoreComments and XML.ignoreProcessingInstructions affect all future XML
parsing operations.

Example 18-6 adds two comments and two processing instructions to the <BOOK> exam-
ple, and demonstrates how to access them. Notice that XML.ignoreProcessingInstructions

Accessing XML Data | 371

and XML.ignoreComments are set to false before the XML literal is assigned to the variable
novel. Notice also that even though the comments and processing instructions are inter-
spersed within <BOOK>’s children, comments() and processingInstructions() ignore the other
children, and return a clean list of the comments and processing instructions.

To obtain an XMLList representing all comments and processing instructions within
an entire XML tree (not just within the direct children of a node), use the descen-
dants operator in combination with the properties wildcard, as follows:

var tempRoot:XML = <tempRoot/>;
tempRoot.appendChild(novel);
trace(tempRoot..*.comments()[0]); // First comment in the document

We’ll study the preceding technique more closely in the later section “Traversing
XML Trees.”

Accessing Attributes and Elements Whose Names Contain
Reserved Characters
When an attribute or element name contains a character that is considered illegal in
an ActionScript identifier (e.g., a hyphen), that attribute or element cannot be
accessed using the dot operator. Instead, we must use the attribute() method, the
child() method, or the [] operator. For example:

var saleEndsDate:XML = <DATE TIME-ZONE="PST">February 1, 2006</DATE>
trace(saleEndsDate.@TIME-ZONE); // ILLEGAL! Don't do this.
trace(saleEndsDate.attribute("TIME-ZONE")); // Legal. Do do this.
trace(saleEndsDate.@["TIME-ZONE"]); // Also Legal.

Example 18-6. Accessing comments and processing instructions

XML.ignoreComments = false;
XML.ignoreProcessingInstructions = false;

// Create an XML fragment that contains both
// comments and processing instructions
var novel:XML = <BOOK ISBN="0141182806">
 <!--Hello world-->
 <?app1 someData?>
 <TITLE>Ulysses</TITLE>
 <AUTHOR>Joyce, James</AUTHOR>
 <?app2 someData?>
 <PUBLISHER>Penguin Books Ltd</PUBLISHER>
 <!--Goodbye world-->
 </BOOK>

trace(novel.comments()[0]); // <!--Hello world-->
trace(novel.comments()[1]); // <!--Goodbye world-->
trace(novel.processingInstructions()[0]); // <?app1 someData?>
trace(novel.processingInstructions()[1]); // <?app2 someData?>

372 | Chapter 18: XML and E4X

In the specific case of the illegal code saleEndsDate.@TIME-ZONE, ActionScript treats
the hyphen as a subtraction operation, and interprets the expression to mean
saleEndsDate.@TIME minus ZONE! In all likelihood, no variable (or method) named
ZONE exists, and ActionScript will generate the following error message:

Access of undefined property 'ZONE'

However, if a variable named ZONE did exist, its value would be subtracted from the
empty XMLList object represented by saleEndsDate.@TIME, and no error would
occur! Without any error message, the failed reference to saleEndsDate.@TIME-ZONE
would be very difficult to track down. Given that the attribute saleEndsDate.@TIME
does not exist, we would ideally like ActionScript to generate a “nonexistent
attribute” error, but unfortunately the version of the E4X specification implemented
by ActionScript 3.0 stipulates that references to nonexistent attributes should return
an empty XMLList object rather than causing an error. Future versions of Action-
Script may improve this situation.

We’ve now covered the basics of accessing XML data. Before we continue our study
of E4X, let’s return one more time to the important topic of treating an XMLList
instance as though it were an XML instance.

Treating XMLList as XML, Revisited
Earlier we learned that in E4X, a reference to an XMLList with only one XML
instance can be treated as though it were that instance. For example, we saw that the
expression:

novel.AUTHOR[0].setName("WRITER");

was equivalent to the expression:

novel.AUTHOR.setName("WRITER"); // Removed [0]

The two are equivalent because novel.AUTHOR refers to an XMLList with a single XML
instance (the element <AUTHOR>).

Treating an XMLList instance as though it were an XML instance enables much of
E4X’s convenience and usability, but also introduces some potentially confusing sub-
tleties, particularly when used in combination with automatic string conversion.
Let’s take a deeper look at this issue.

Suppose we’re building a user interface for an online book store in which each book
is represented by an XML fragment matching the structure of our ongoing <BOOK>
example. When the user chooses a book from the store, the corresponding author’s
name appears onscreen.

In our code, we create a method, displayAuthor(), that handles the display of the
author’s name. In our first attempt to code the displayAuthor() method, we require
that the name of the author be supplied as a string:

Accessing XML Data | 373

public function displayAuthor (name:String):void {
 // authorField refers to a TextField instance in which to
 // display the author name
 authorField.text = name;
}

When the user chooses a book, we retrieve the name of the author for that book
from the <AUTHOR> element and pass it to the displayAuthor() method like this:

displayAuthor(novel.AUTHOR);

That statement is pleasingly simple and intuitive, but as we’ve learned in this chap-
ter, there’s a lot going on behind the scenes. As a review, let’s dissect how it works.
First, ActionScript passes novel.AUTHOR to the displayAuthor() method as the value of
the name parameter. The name parameter’s datatype is String, so ActionScript auto-
matically attempts to convert novel.AUTHOR to a string using:

novel.AUTHOR.toString()

By default, calling toString() on an object yields a string in the format [object
ClassName], but novel.AUTHOR is an XMLList instance, and XMLList overrides
toString() with custom behavior. Specifically, the XMLList version of toString() rec-
ognizes that novel.AUTHOR contains only one item, and, therefore, returns the result of
calling XML’s toString() on that item. So the invocation, novel.AUTHOR.toString(), is
automatically redirected to novel.AUTHOR[0].toString(). And what is the return
value of novel.AUTHOR[0].toString()? As we learned earlier, the answer hinges on
the fact that novel.AUTHOR[0] represents a simple XML element that does not con-
tain any child elements. For an XML element that contains no other elements,
XML’s toString() returns the child text node of that element, as a string, with the
containing tags removed. So novel.AUTHOR[0].toString() returns "Joyce, James"
(not "<AUTHOR>Joyce, James</AUTHOR>") as the final value passed to displayAuthor().
In summary:

• Passing novel.AUTHOR to a parameter of type String forces an implicit conversion
of novel.AUTHOR to a string.

• novel.AUTHOR is converted to a string via novel.AUTHOR.toString().

• novel.AUTHOR.toString() automatically returns novel.AUTHOR[0].toString()
because novel.AUTHOR is an XMLList with only one item.

• novel.AUTHOR[0].toString() returns the text contained by the <AUTHOR> element
("Joyce, James") as per the implementation of XML’s toString() (see the later
section “Converting XML and XMLList to a String”).

After all is said and done, the expression:

displayAuthor(novel.AUTHOR);

results in:

displayAuthor("Joyce, James");

which is what we intuitively expected in the first place.

374 | Chapter 18: XML and E4X

Most of the time, we can ignore the preceding complexity because E4X, in unscien-
tific terms, “does what it looks like it will do.” But there are times where we must
understand the E4X autopilot in order to take manual control. For example, sup-
pose we decide that our bookstore should display not just the name, but also the
birth date of each author. We modify our XML structure to include the birth date as
a child of the <AUTHOR> element, as shown in the following code:

var novel:XML = <BOOK ISBN="0141182806">
 <TITLE>Ulysses</TITLE>
 <AUTHOR>
 <NAME>Joyce, James</NAME>
 <BIRTHDATE>February 2 1882</BIRTHDATE>
 </AUTHOR>
 <PUBLISHER>Penguin Books Ltd</PUBLISHER>
</BOOK>

Accordingly, we modify the displayAuthor() method so that it accepts the entire
<AUTHOR> element as a parameter, and retrieves the author name and birth date from
the <NAME> and <BIRTHDATE> child elements directly:

public function displayAuthor (author:XML):void {
 authorField.text = "Name: " + author.NAME
 + " Birthdate: " + author.BIRTHDATE;
}

In the preceding code, notice that the parameter datatype has changed from String to
XML. If we now attempt to pass novel.AUTHOR to the displayAuthor() method, we
receive a type mismatch error at runtime because ActionScript cannot implicitly
convert novel.AUTHOR (which is an XMLList) to an instance of the XML class:

displayAuthor(novel.AUTHOR); // TypeError: Error #1034: Type Coercion
 // failed: cannot convert XMLList to XML

To fix the error, we must refer to the XML instance representing <AUTHOR> explicitly
when passing it to displayAuthor(), as in:

displayAuthor(novel.AUTHOR[0]); // Pass the lone XML instance
 // in novel.AUTHOR to displayAuthor()

Notice the important difference: when we want to access the text contained by the
<AUTHOR> element as a String, we can rely on E4X’s automatic behavior; but when we
want to access the actual XML instance representing the <AUTHOR> element, we must
refer to that instance explicitly.

Now suppose later, we’re asked to modify our store to handle books with multiple
authors. Once again we alter our XML structure, this time to accommodate multiple
<AUTHOR> elements. Example 18-7 contains a sample XML fragment showing the new
structure (the authors’ birth dates are fabricated).

Example 18-7. A multiple-author <BOOK> fragment

var oopBook:XML = <BOOK ISBN="0596007124">
 <TITLE>Head First Design Patterns</TITLE>

Accessing XML Data | 375

To handle the new XML structure, we modify displayAuthor() so that it accepts an
XMLList representing multiple <AUTHOR> elements (instead of the previous single
<AUTHOR> element). The new version of displayAuthor() uses the for-each-in state-
ment to iterate over the <AUTHOR> elements (we’ll study for-each-in in the later sec-
tion “Processing XML with for-each-in and for-in”).

public function displayAuthor (authors:XMLList):void {
 for each (var author:XML in authors) {
 authorField.text += "Name: " + author.NAME
 + ", Birthdate: " + author.BIRTHDATE + "\n";
 }
}

To pass a list of the <AUTHOR> elements to displayAuthor(), we use the following code:

displayAuthor(oopBook.AUTHOR);

The preceding line of code matches our original approach, which was:

displayAuthor(novel.AUTHOR);

But this time, the XMLList is passed directly to the displayAuthor() method without
any conversion because the receiving parameter’s datatype is XMLList not String.
Again, notice the difference: when passing an XMLList object to a function, if we
want to convert the list to a String, we specify String as the datatype of the receiving
parameter and let E4X’s automatic behavior work its magic; but if we want to pre-
serve the datatype of the list, we must specify XMLList as the datatype of the receiv-
ing parameter. Both the reference itself (oopBook.author) and the datatype of the
receiving parameter (authors) affect the behavior of the code.

Table 18-1 reviews the results of passing the various E4X expressions we’ve just stud-
ied to parameters of various datatypes.

 <AUTHOR>
 <NAME>Eric Freeman</NAME>
 <BIRTHDATE>January 1 1970</BIRTHDATE>
 </AUTHOR>
 <AUTHOR>
 <NAME>Elisabeth Freeman</NAME>
 <BIRTHDATE>January 1 1971</BIRTHDATE>
 </AUTHOR>
 <AUTHOR>
 <NAME>Kathy Sierra</NAME>
 <BIRTHDATE>January 1 1972</BIRTHDATE>
 </AUTHOR>
 <AUTHOR>
 <NAME>Bert Bates</NAME>
 <BIRTHDATE>January 1 1973</BIRTHDATE>
 </AUTHOR>
 <PUBLISHER>O'Reilly Media, Inc</PUBLISHER>
</BOOK>;

Example 18-7. A multiple-author <BOOK> fragment (continued)

376 | Chapter 18: XML and E4X

Don’t panic. E4X is well thought out. Don’t let its automatic behavior distress you.
Most of the time it will serve you well. However, when accessing XML nodes using
variable-access syntax (the dot operator), bear the following potential points of con-
fusion in mind:

• parentNode.childNodeName is equivalent to parentNode.child(childNodeName) and
always refers to an XMLList instance, not an XML instance.

• When an XMLList instance has one XML instance only, XML methods can be
invoked on it; the XMLList instance automatically forwards the invocations to
the XML instance.

• To obtain an object reference to an XML instance contained by parentNode.
childNodeName, you must use the form parentNode.childNodeName[index], even if
the XML instance you want is the only item in the XMLList (in which case it is
referred to as parentNode.childNodeName[0]).

• If an XML element contains text only (and does not contain child elements), con-
verting it to a string yields the text it contains, stripped of enclosing tags (e.g.,
converting <TITLE>Ulysses</TITLE> to a string yields "Ulysses" not "<TITLE>
Ulysses</TITLE>").

• If an XML element contains text and contains child elements, converting it to a
string yields the element’s source code, complete with tags. For example,
converting:

<AUTHOR>Joyce, <FIRSTNAME>James</FIRSTNAME></AUTHOR>

to a string yields:
"<AUTHOR>Joyce, <FIRSTNAME>James</FIRSTNAME></AUTHOR>"

not:
Joyce, James

When in doubt, consider using the methods of the XML class to access the content
you’re interested in. The explicit names of the XML class’s methods are sometimes
easier to understand, though more verbose.

Table 18-1. Review: E4X expressions and results

Expression Parameter datatype Result

novel.AUTHOR String “Joyce, James”

novel.AUTHOR XML Type mismatch error (can’t convert XMLList to XML)

novel.AUTHOR[0] String “Joyce, James”

novel.AUTHOR[0] XML XML instance representing the <AUTHOR> element

oopBook.AUTHOR String String containing XML source code for the four <AUTHOR> elements

oopBook.AUTHOR XMLList XMLList with four XML instances representing the four <AUTHOR>
elements

Processing XML with for-each-in and for-in | 377

Processing XML with for-each-in and for-in
XML-structured documents often contain data sets that need to be processed system-
atically. For example, an XML document might contain population information for
the countries of the world, or points on a map, or the costs of items in an order.
Whatever the data, the basic approach is the same—each item must be examined
and used in some uniform way by the application. In order to make XML-formatted
information easy to process, E4X adds a new kind of loop to ActionScript called the
for-each-in loop.

The for-each-in loop, which we first saw in Chapter 15, provides easy access to the
values of an object’s dynamic instance variables or an array’s elements. Recall the
generalized syntax for a for-each-in loop:

for each (variableOrElementValue in someObject) {
statements

}

We can use the preceding syntax to process XML instances in an XMLList just as
easily as we process an array’s elements or an object’s dynamic instance variables.
Example 18-8 demonstrates.

The for-each-in loop in Example 18-8 runs three times, once for each child node in
the XMLList returned by novel.*. The first time the loop runs, the variable child is
assigned a reference to <BOOK>’s first child node (i.e., the XML instance representing
<TITLE>). The second time the loop runs, child is assigned a reference to <BOOK>’s sec-
ond child node (the XML instance representing <AUTHOR>). The third time the loop
runs, child is assigned a reference to <BOOK>’s third child node (the XML instance
representing <PUBLISHER>). So the output of the loop is:

Ulysses
Joyce, James
Penguin Books Ltd

Example 18-9 presents a more involved scenario—calculating the total cost of a cus-
tomer order. The comments will guide you through the code.

Example 18-8. Using for-in-each to process XML instances

var novel:XML = <BOOK ISBN="0141182806">
 <TITLE>Ulysses</TITLE>
 <AUTHOR>Joyce, James</AUTHOR>
 <PUBLISHER>Penguin Books Ltd</PUBLISHER>
 </BOOK>;

for each (var child:XML in novel.*) {
 trace(child);
}

378 | Chapter 18: XML and E4X

Here is the output of the code from Example 18-9:

Here is your order:
3 Trinket(s). $9.99 each.
1 Gadget(s). $149.99 each.

Example 18-9. Calculating an order total

// Create the order. Normally the order would be generated programmatically
// in response to user input, but we hard code it for this example.
var order:XML = <ORDER>
 <ITEM SKU="209">
 <NAME>Trinket</NAME>
 <PRICE>9.99</PRICE>
 <QUANTITY>3</QUANTITY>
 </ITEM>

 <ITEM SKU="513">
 <NAME>Gadget</NAME>
 <PRICE>149.99</PRICE>
 <QUANTITY>1</QUANTITY>
 </ITEM>

 <ITEM SKU="374">
 <NAME>Toy</NAME>
 <PRICE>39.99</PRICE>
 <QUANTITY>2</QUANTITY>
 </ITEM>
</ORDER>

// Create a text field in which to display the order details.
var outField:TextField = new TextField();
outField.width = 300;
outField.height = 300;
outField.text = "Here is your order:\n";
addChild(outField);

// Set the initial total cost to 0.
var total:Number = 0;

// This loop runs once for every <ITEM> element.
for each (var item:XML in order.*) {
 // Display the details for this item in the outField text field.
 outField.text += item.QUANTITY
 + " " + item.NAME + "(s)."
 + " $" + item.PRICE + " each.\n";

 // Add the cost of this item to the total cost of the order.
 // Notice that the quantity and price values are automatically
 // converted to numbers by the multiplication operation.
 total += item.QUANTITY * item.PRICE;
}

// Display the total cost of the order.
outField.appendText("TOTAL: " + total);

Accessing Descendants | 379

2 Toy(s). $39.99 each.
TOTAL: 259.94

Here’s one final example, showing how we can manipulate the order’s content using
a for-each-in loop. It assigns the same value to all <PRICE> elements from
Example 18-9:

// Big SALE! Everything's $1!
for each (var item:XML in order.*) {
 item.PRICE = 1;
}

We’ll learn more about changing the content of an XML element later in the section
“Changing or Creating New XML Content.”

Be careful not to mistakenly assume that the XML instances in an XMLList have vari-
able names matching their XML element names. Instead, like array elements, the
XML instances in an XMLList are arranged in order, and have their numeric posi-
tion as variable names. The following code uses a for-in loop to demonstrate. Notice
that the variable names are 0, 1, and 2, not “ITEM”. The names 0, 1, and 2 represent
each XML instance’s numeric position in the XMLList returned by order.*.

for (var childName:String in order.*) {
 trace(childName);
}
Output:
0
1
2

For more information on the for-each-in and for-in statements, see
Chapter 15.

Accessing Descendants
We’ve now had plenty of practice accessing the child nodes of an XML element.
Next let’s consider how to access not just an element’s child nodes, but also its so-
called descendant nodes. An element’s descendants are all the nodes it contains, at
any level of the XML hierarchy (i.e., grandchild nodes, great-grandchild nodes and so
on).

For example, consider the XML fragment in Example 18-10, representing a book and
movie loan transaction from a library.

Example 18-10. A library loan record

var loan:XML = <LOAN>
 <BOOK ISBN="0141182806" DUE="1136091600000">
 <TITLE>Ulysses</TITLE>
 <AUTHOR>Joyce, James</AUTHOR>

380 | Chapter 18: XML and E4X

In the preceding example, the <LOAN> element’s descendants include:

• The direct children: <BOOK> and the two <DVD> elements

• The grandchildren: every <TITLE>, <AUTHOR>, <PUBLISHER>, and <DIRECTOR> element

• The great-grandchildren: every text node contained by the <TITLE>, <AUTHOR>,
<PUBLISHER>, and <DIRECTOR> elements

To access an element’s descendants we use the E4X descendant operator (..), which
is used as follows:

theElement..identifier

A descendant-access expression returns an XMLList representing all descendants of
theElement whose names match identifier. For example, the following expression
yields an XMLList that has two XML instances, representing the two <DIRECTOR>
elements from Example 18-10.

loan..DIRECTOR

Notice that the <DIRECTOR> elements are not direct children of the <LOAN> element;
they are grandchildren. The descendant operator gives us direct, easy access to nodes
anywhere in an XML hierarchy. For example, to retrieve a list of all <TITLE> elements
in the library loan record, we use:

loan..TITLE

To print the titles of all items being loaned, we can use code such as the following:

trace("You have borrowed the following items:");
for each (var title:XML in loan..TITLE) {
 trace(title);
}

// Output:
You have borrowed the following items:

 <PUBLISHER>Penguin Books Ltd</PUBLISHER>
 </BOOK>

 <DVD ISBN="0790743086" DUE="1136610000000">
 <TITLE>2001 A Space Odyssey</TITLE>
 <DIRECTOR>Stanley Kubrick</DIRECTOR>
 <PUBLISHER>Warner Home Video</PUBLISHER>
 </DVD>

 <DVD ISBN="078884461X" DUE="1137214800000">
 <TITLE>Spirited Away</TITLE>
 <DIRECTOR>Hayao Miyazaki</DIRECTOR>
 <PUBLISHER>Walt Disney Video</PUBLISHER>
 </DVD>
</LOAN>

Example 18-10. A library loan record (continued)

Accessing Descendants | 381

Ulysses
2001 A Space Odyssey
Spirited Away

That’s super handy!

The expression a.b is a list of all direct child elements of a named b; the
expression a..b is a list of all descendant elements of a named b. The
syntax is intentionally similar the only difference is the depth of the
nodes returned.

The descendant operator also works with attributes. To retrieve a list of descendant
attributes rather than elements, use the following form:

theElement..@attributeName

For example, the following expression yields an XMLList that has three XML
instances, representing the three DUE attributes from Example 18-10.

loan..@DUE

Here’s another handy bit of code:

trace("Your items are due on the following dates:");
for each (var due:XML in loan..@DUE) {
 trace(new Date(Number(due)));
}

// In Eastern Standard Time, the output is:
Your items are due:
Sun Jan 1 00:00:00 GMT-0500 2006
Sat Jan 7 00:00:00 GMT-0500 2006
Sat Jan 14 00:00:00 GMT-0500 2006

To retrieve an XMLList that includes every single node descending from a given ele-
ment, use:

theElement..*

For example, the following code returns an XMLList with all 21 descendants of the
<LOAN> element:

loan..*

Can you identify all 21 descendants? Example 18-11 presents them all, rendered in
comforting ASCII art. Each node’s position in the XMLList returned by loan..* is
indicated in parentheses. (You didn’t forget the text nodes, did you? Remember, they
count as descendants.)

382 | Chapter 18: XML and E4X

To retrieve an XMLList that includes every single attribute defined both on an ele-
ment and on all of its descendants, use:

theElement..@*

For example, the following code returns an XMLList with all attributes defined by
descendants of <LOAN> (there are six total). Note that if <LOAN> defined any attributes
(it doesn’t), they would be included in the list.

loan..@*

The following code prints the attributes returned by loan..@* using a for-each-in
loop. For each attribute, the code shows the attribute name and value, and the con-
tents of its parent’s child <TITLE> element.

for each (var attribute:XML in loan..@*) {
 trace(attribute.parent().TITLE
 + ": " + attribute.name() + "=" + attribute);
}

// Output:
Ulysses: ISBN=0141182806
Ulysses: DUE=1136091600000

Example 18-11. The nodes of loan..*

BOOK (1)
 |-TITLE (2)
 | |-Ulysses (3)
 |
 |-AUTHOR (4)
 | |-Joyce, James (5)
 |
 |-PUBLISHER (6)
 |-Penguin Books Ltd (7)

DVD (8)
 |-TITLE (9)
 | |-2001 A Space Odyssey (10)
 |
 |-AUTHOR (11)
 | |-Stanley Kubrick (12)
 |
 |-DIRECTOR (13)
 |-Warner Home Video (14)

DVD (15)
 |-TITLE (16)
 | |-Spirited Away (17)
 |
 |-AUTHOR (18)
 | |- Hayao Miyazaki (19)
 |
 |-DIRECTOR (20)
 |- Walt Disney Video (21)

Filtering XML Data | 383

2001 A Space Odyssey: ISBN=0790743086
2001 A Space Odyssey: DUE=1136610000000
Spirited Away: ISBN=078884461X
Spirited Away: DUE=1137214800000

To retrieve an XMLList that includes every attribute defined on an element’s descen-
dants, but not on the element itself, use:

theElement..*.@*

or the following more verbose, but less arcane code:

theElement..*.attributes()

In English the preceding code reads “invoke the XMLList class’s instance method
attributes() on the XMLList representing theElement’s descendants.” The result is an
XMLList representing every attribute defined on theElement’s descendants. For a
refresher on attributes() see the earlier section “Accessing Attributes.”

To access attributes or elements whose names contain characters con-
sidered illegal in an ActionScript identifier, we must use the XML
class’s instance method descendants() instead of the descendants oper-
ator. The format theElement..["someName"] is not allowed with the
descendants operator.

The descendants operator is useful on its own, but it becomes indispensable when
combined with E4X’s filtering capabilities. Once you understand the descendants
operator and E4X filtering, you’ll be able to meet nearly all your XML processing
needs quickly and easily. We’ll find out how in the next section.

Filtering XML Data
The E4X filtering predicate operator is a simple but powerful search tool. It can take
any XMLList and return a subset of items from that list based on a specified condi-
tion. (The term predicate is borrowed from the W3C’s XPath Language. See http://
www.w3.org/TR/xpath20/#id-predicates.)

The filtering predicate operator takes the general form:

theXMLList.(conditionExpression)

For each item in theXMLList, the conditionExpression is executed once. If the
conditionExpression yields true for an item, that item is added to an XMLList that is
returned after all items have been processed. Note that during each execution of the
conditionExpression, the current item is temporarily added to the front of the scope
chain, allowing the item’s child elements and attributes to be referenced directly by
name within the expression.

http://www.w3.org/TR/xpath20/#id-predicates
http://www.w3.org/TR/xpath20/#id-predicates

384 | Chapter 18: XML and E4X

The filtering predicate operator is extremely intuitive to use. Let’s take a look at a
new XML fragment and do some filtering! Example 18-12, the new fragment, repre-
sents a company’s staff list.

Now for our first filtering operation: suppose we want a list of the employees with
James Porter as a manager. We can filter the list of <EMPLOYEE> elements from
Example 18-12 like this:

// First obtain an XMLList object representing all <EMPLOYEE> elements
var allEmployees:XMLList = staff.*;

// Now filter the list of <EMPLOYEE> elements
var employeesUnderJames:XMLList = allEmployees.(MANAGER == "James Porter");

The expression allEmployees.(MANAGER == "James Porter") returns an XMLList of all
items in allEmployees whose <MANAGER> element contains the text “James Porter.”
You have to love the simplicity and readability of E4X. Just remember that the pre-
ceding line of code works because each item in allEmployees is added to the scope
chain each time that (MANAGER == "James Porter") is evaluated. So every time the
expression (MANAGER == "James Porter") runs, it has the following conceptual mean-
ing, expressed in pseudocode:

if (currentEmployee.MANAGER == "James Porter")
 add currentEmployee to results

For comparison, here is some actual ActionScript code that does the same thing as
the expression allEmployees.(MANAGER == "James Porter"):

Example 18-12. An employee list

var staff:XML = <STAFF>
 <EMPLOYEE ID="501" HIRED="1090728000000">
 <NAME>Marco Crawley</NAME>
 <MANAGER>James Porter</MANAGER>
 <SALARY>25000</SALARY>
 <POSITION>Designer</POSITION>
 </EMPLOYEE>

 <EMPLOYEE ID="500" HIRED="1078462800000">
 <NAME>Graham Barton</NAME>
 <MANAGER>James Porter</MANAGER>
 <SALARY>35000</SALARY>
 <POSITION>Designer</POSITION>
 </EMPLOYEE>

 <EMPLOYEE ID="238" HIRED="1014699600000">
 <NAME>James Porter</NAME>
 <MANAGER>Dorian Schapiro</MANAGER>
 <SALARY>55000</SALARY>
 <POSITION>Manager</POSITION>
 </EMPLOYEE>
</STAFF>

Filtering XML Data | 385

var resultList:XMLList = new XMLList();
var counter:int = 0;
for each (var employee:XML in allEmployees) {
 if (employee.MANAGER == "James Porter") {
 resultList[counter] = employee;
 counter++;
 }
}

Let’s look at some more examples that demonstrate how to access the information in
Example 18-12 based on a variety of conditions. The following expression returns a
list of employees with a salary less than or equal to $35,000.

staff.*.(SALARY <= 35000)

The next expression returns a list of employees with a salary between $35,000 and
$50,000:

staff.*.(SALARY >= 35000 && SALARY <= 50000)

This expression returns a list of the designers in the company:

staff.*.(POSITION == "Designer")

This one returns a list of employees whose ID number is 238 (it so happens that
there’s only one, but it’s still wrapped in an XMLList instance).

staff.*.(@ID == "238")

Here we retrieve a list of employees hired in the year 2004 (to represent time, we use
the standard milliseconds-from-1970 format used by the Date class):

staff.*.(@HIRED >= 1072933200000 && @HIRED <= 1104555600000)

Finally, we print the date on which Graham was hired:

// In Eastern Standard Time, displays: Fri Mar 5 00:00:00 GMT-0500 2004
trace(new Date(Number(staff.*.(NAME == "Graham Barton").@HIRED)));

Fun, ain’t it? Predicates are great!

To filter a list where not every item has a given attribute or child ele-
ment, we must use hasOwnProperty() to check for the existence of
that attribute or child before filtering on it. Otherwise, a reference
error occurs. For example, the following code returns every element in
someDocument that has a color attribute set to “red”:

someDocument..*.(hasOwnProperty("@color") && @color == "red")

We’ve now seen lots of ways to access various specific nodes or groups of nodes
within an XML document. Next up: using tree traversal to access not just some of
the nodes in a document, but every node in a document.

386 | Chapter 18: XML and E4X

Traversing XML Trees
In general programming terms, to traverse means to access every node in a data
structure and process it in some way. Tree traversal means using a recursive algo-
rithm to traverse the nodes of a tree structure.

In DOM-based XML implementations (such as the legacy flash.xml.XMLDocument
class), programmers often write custom code to traverse XML trees when searching
for information. For example, a human resources program might include traversal
code that searches through an XML document looking for all employees classified as
managers or all employees in a certain salary bracket. As we saw in the previous sec-
tion, such custom tree-traversal code is largely unnecessary in E4X because most
searches can be performed using E4X’s descendants and filtering predicate opera-
tors. However, there are still some situations in which a tree must be traversed, even
in E4X. Fortunately, the E4X code for doing so is trivial.

In E4X, we can use the descendants operator in combination with the properties
wildcard to retrieve an XMLList containing every descendant node for a given ele-
ment, as follows:

someElement..* // Returns a list containing
 // all of someElement's descendants

And we can use the for-each-in statement to iterate over every item in an XMLList.
By combining these techniques, we can easily traverse every node in an XML tree as
follows:

for each (var child:XML in someElement..*) {
 // Process child...
}

Note, however, that the preceding code does not strictly conform to the classic defi-
nition of tree traversal because it never accesses the root of the hierarchy
(someElement). In situations that require the root node to be processed along with its
children, simply add the root node to another XML instance temporarily, as in:

var tempRoot:XML = <root/>;
tempRoot.appendChild(someElement);
for each (var child:XML in tempRoot..*) {
 // Process child...
}

Let’s look at a simple real-world traversal example. Suppose we’re creating a blog
posting system that allows users to contribute responses that can include HTML
markup. In order to make the responses XHTML-compliant, we want to convert all
tag names found in user responses to lowercase. Here’s an example of a response
that includes problematic uppercase and mixed case tag names:

var message:XML = <message>
HEY! I just wanted to say that your site is so cool!!
You should visit mine sometime.
</message>;

Changing or Creating New XML Content | 387

Here’s the tree traversal code that converts every element and attribute name in the
preceding XML fragment to lowercase:

for each (var child:XML in message..*) {
 // If the node is an element...
 if (child.nodeKind() == "element") {
 // ...change its name to lowercase.
 child.setName(child.name().toString().toLowerCase());
 // If the node has any attributes, change their names to lowercase.
 for each (var attribute:XML in child.@*) {
 attribute.setName(attribute.name().toString().toLowerCase());
 }
 }
}

Here is the new XML resulting from the preceding code, with all tag and attribute
names converted to lowercase:

<message>
HEY!I just wanted to say that your site is so cool!!
You should visit mine sometime.
</message>

We’ve spent most of this chapter exploring how to access content in an existing
XML document. Next we’ll consider how to add to and change that content.

Changing or Creating New XML Content
In E4X, most common additions and modifications to an existing XML instance can
be achieved using simple assignment statements. E4X assignments, however, have
different results depending on the type of value being assigned and the target of the
assignment. Let’s look at the various scenarios one at a time.

Changing the Contents of an Element
To change the contents of an XML element, we assign that element any value other
than an XMLList or XML object. The value is converted to a string and replaces the
element’s content. Recall our <BOOK> fragment:

var novel:XML = <BOOK ISBN="0141182806">
 <TITLE>Ulysses</TITLE>
 <AUTHOR>Joyce, James</AUTHOR>
 <PUBLISHER>Penguin Books Ltd</PUBLISHER>
</BOOK>

To change the contents of the <TITLE> element from "Ulysses" to "The Sun Also
Rises", we use:

novel.TITLE[0] = "The Sun Also Rises";

388 | Chapter 18: XML and E4X

But remember that E4X lets us treat an XMLList like an XML object wherever possi-
ble, so because the XMLList returned by novel.TITLE has a single XML instance only,
we can use this more convenient code:

novel.TITLE = "The Sun Also Rises"; // Removed [0]

However, if the XMLList returned by novel.TITLE had more than one <TITLE> ele-
ment, the assignment would have a different meaning, as described in the later sec-
tion “Assigning Values to an XMLList.” (If you need a refresher on the difference
between novel.TITLE[0] and novel.TITLE, see the earlier section, “Treating XMLList
as XML, Revisited.”)

Now let’s change the author and publisher of the book too:

novel.AUTHOR = "Hemingway, Ernest";
novel.PUBLISHER = "Scribner";

Alternatively, the content of an element can be changed using the XML class’s
instance method setChildren(). For example:

novel.TITLE.setChildren("The Sun Also Rises");

Changing an Attribute Value
To change an XML attribute value, simply assign the attribute any new value in an
assignment statement. The new value is converted to a string and then replaces the
attribute’s existing value. For example, the following code changes the ISBN attribute
value from "0141182806" to "0684800713":

novel.@ISBN = "0684800713";

In the preceding assignment, using a string rather than a number as the new value
preserves the leading zero.

If the value assigned to the attribute is an XMLList containing attributes, the
attribute values in the XMLList are concatenated into a single string separated by
spaces, which is then assigned to the attribute. This slightly unusual behavior can be
used to collect a group of attributes into a single attribute. For example:

var books:XML = <BOOKS>
 <BOOK ISBN="0141182806"/>
 <BOOK ISBN="0684800713"/>
 <BOOK ISBN="0198711905"/>
 </BOOKS>;

var order:XML = <ORDER ITEMS=""/>;
order.@ITEMS = books.*.@ISBN;

// Yields:
<ORDER ITEMS="0141182806 0684800713 0198711905"/>

Changing or Creating New XML Content | 389

Replacing an Entire Element
To replace an XML element with new elements, we assign either an XMLList or
XML object to that element. For example, in the following code, the <DIV> element
replaces the <P> element:

var doc:XML = <DOC>
 <P ALIGN="CENTER">E4X is fun</P>
 </DOC>;
doc.P = <DIV>E4X is convenient</DIV>;

// Yields:
<DOC>
 <DIV>E4X is convenient</DIV>
</DOC>

The content of an element can also be changed using the XML class’s instance
method replace(). For example:

// Same as: doc.P = <DIV>E4X is convenient</DIV>
doc.replace("P", <DIV>E4X is convenient</DIV>);

Note that when an XML element is replaced by content from another document, the
new content is a copy of, not a reference to, the other document’s content. For exam-
ple, consider the following two XML fragments:

var user1:XML = <USERDETAILS>
 <LOGIN>joe</LOGIN>
 <PASSWORD>linuxRules</PASSWORD>
 </USERDETAILS>;

var user2:XML = <USERDETAILS>
 <LOGIN>ken</LOGIN>
 <PASSWORD>default</PASSWORD>
 </USERDETAILS>;

We can replace the <PASSWORD> element of user2 with the <PASSWORD> element of user1
as follows:

user2.PASSWORD = user1.PASSWORD;

After the replacement, the two <PASSWORD> elements have the same content:

trace(user1.PASSWORD[0] == user2.PASSWORD[0]); // Displays: true

But they do not refer to the same XML instance:

trace(user1.PASSWORD[0] === user2.PASSWORD[0]); // Displays: false

For information on the difference between the preceding two equality expressions,
see the later section “Determining Equality in E4X.”

390 | Chapter 18: XML and E4X

Adding New Attributes and Elements
We can add new attributes and elements to a document using the same assignment
syntax we use to modify and replace existing attributes and elements.

In E4X, when a value is assigned to an attribute or element that does not already
exist, ActionScript automatically adds the specified attribute or element to the docu-
ment. As an example, let’s rebuild our <BOOK> fragment from scratch. We’ll start with
an empty <BOOK> element:

var novel:XML = <BOOK/>;

Next, we add the ISBN attribute:

novel.@ISBN = "0141182806";

Finally, we add the <TITLE>, <AUTHOR>, and <PUBLISHER> elements:

novel.TITLE = "Ulysses";
novel.AUTHOR = "Joyce, James";
novel.PUBLISHER = "Penguin Books Ltd";

For each assignment, the new element is appended to the <BOOK> tag as its new last
child. So the result of the preceding code is the following XML fragment:

<BOOK ISBN="0141182806">
 <TITLE>Ulysses</TITLE>
 <AUTHOR>Joyce, James</AUTHOR>
 <PUBLISHER>Penguin Books Ltd</PUBLISHER>
</BOOK>

Assignment syntax can also be used to add a nested XML structure with a single
assignment. For example, suppose we want to add the following nested content to
the <BOOK> element, describing the novel’s setting:

<SETTING>
 <CITY>Dublin</CITY>
 <COUNTRY>Ireland</COUNTRY>
</SETTING>

To do so, we would use the following code:

novel.SETTING.CITY = "Dublin";
novel.SETTING.COUNTRY = "Ireland";

At runtime, when ActionScript executes the first statement, it recognizes that neither
the <SETTING> nor the <CITY> elements are already in the document, and, hence, cre-
ates them both. When ActionScript executes the second statement, it sees that the
<SETTING> element already exists, and, therefore, doesn’t recreate it. Instead, Action-
Script simply adds the <COUNTRY> element to the existing <SETTING> element. Here’s
the resulting XML:

<BOOK ISBN="0141182806">
 <TITLE>Ulysses</TITLE>
 <AUTHOR>Joyce, James</AUTHOR>
 <PUBLISHER>Penguin Books Ltd</PUBLISHER>

Changing or Creating New XML Content | 391

 <SETTING>
 <CITY>Dublin</CITY>
 <COUNTRY>Ireland</COUNTRY>
 </SETTING>
</BOOK>

We can use a similar approach to represent the setting information in a single ele-
ment, of the following format:

<SETTING CITY="Dublin" COUNTRY="Ireland"/>

To do so, we simply assign the desired attributes the desired values, as in:

novel.SETTING.@CITY = "Dublin";
novel.SETTING.@COUNTRY = "Ireland";

//Yields:
<BOOK ISBN="0141182806">
 <TITLE>Ulysses</TITLE>
 <AUTHOR>Joyce, James</AUTHOR>
 <PUBLISHER>Penguin Books Ltd</PUBLISHER>
 <SETTING CITY="Dublin" COUNTRY="Ireland"/>
</BOOK>

In this section we’ve learned that assigning a value to an element that does not
already exist causes that element to be added to the document. But what if we want
to add an element by the same name as an existing element? For example, how
would we add multiple <AUTHOR> elements to the <BOOK> element? The answers to that
question is covered next. As you read over the following sections, notice the use of
the additive operator (+), which creates a new XMLList from a series of XML or
XMLList instances. The additive operator takes the form:

XMLOrXMLListInstance1 + XMLOrXMLListInstance2

It returns a new XMLList instance that contains a flattened list of all XML instances
in XMLOrXMLListInstance1 and XMLOrXMLListInstance2.

Adding a new child after all existing children

To add a new last child to an existing element, use one of the following techniques:

parent.insertChildAfter(parent.*[parent.*.length()-1], <newchild/>)

or:

parent.*[parent.*.length()-1] = parent.*[parent.*.length()-1] + <newchild/>

or:

parent.appendChild(<newchild/>)

For example, the following code adds a new <DESCRIPTION> element to <BOOK>, imme-
diately following the existing <PUBLISHER> element:

var novel:XML = <BOOK ISBN="0141182806">
 <TITLE>Ulysses</TITLE>
 <AUTHOR>Joyce, James</AUTHOR>

392 | Chapter 18: XML and E4X

 <PUBLISHER>Penguin Books Ltd</PUBLISHER>
</BOOK>

novel.insertChildAfter(novel.*[novel.*.length()-1],
 <DESCRIPTION>A modern classic</DESCRIPTION>);

The preceding line is synonymous with the following code, which replaces <BOOK>’s
last child (<PUBLISHER>) with an XMLList containing <BOOK>’s last child (<PUBLISHER>)
and the <DESCRIPTION> element:

novel.*[novel.*.length()-1] = novel.*[novel.*.length()-1]
 + <DESCRIPTION>A modern classic</DESCRIPTION>;

For the sake of easier comprehension, here’s the preceding line again, in pseudocode:

// PSEUDO-CODE:
<PUBLISHER> = <PUBLISHER> + <DESCRIPTION>A modern classic</DESCRIPTION>

We can write the same thing more succinctly (in real ActionScript code) as follows:

novel.*[novel.*.length()-1] += <DESCRIPTION>A modern classic</DESCRIPTION>;

But here is the most convenient approach:

novel.appendChild(<DESCRIPTION>A modern classic</DESCRIPTION>);

Adding a new child after a specific existing child

To add a new child after a specific existing child, use one of the following techniques:

parent.insertChildAfter(parent.existingChild[n], <newchild/>)

or:

parent.existingChild[n] = parent.existingChild[n] + <newchild/>

or:

parent.*[childIndex] = parent.*[childIndex] + <newchild/>

For example, the following code adds a second <AUTHOR> element to <BOOK>, immedi-
ately following the existing <AUTHOR> element:

novel.insertChildAfter(novel.AUTHOR[0], <AUTHOR>Dave Luxton</AUTHOR>);

insertChildAfter() requires an XML instance (not an XMLList instance!) as its first
argument, so we must make direct reference to the XML instance novel.AUTHOR[0].

For a refresher on the difference between XML and XMLList instances,
see the earlier section “Treating XMLList as XML, Revisited.”

As an alternative to the insertChildAfter() approach, we can use the following code:

novel.AUTHOR[0] = novel.AUTHOR[0] + <AUTHOR>Dave Luxton</AUTHOR>;

Or, more succinctly:

novel.AUTHOR[0] += <AUTHOR>Dave Luxton</AUTHOR>;

Changing or Creating New XML Content | 393

Here is yet another synonymous approach:

// Add a new XML element after novel's second child
novel.*[1] = novel.*[1] + <AUTHOR>Dave Luxton</AUTHOR>;

Again, the preceding line can be written more succinctly as,

novel.*[1] += <AUTHOR>Dave Luxton</AUTHOR>;

Adding a new child before a specific existing child

To add a new child before a specific existing child, use one of these techniques:

parent.insertChildBefore(parent.existingChild[n], <newchild/>)
// or
parent.existingChild[n] = parent.existingChild[n] + <newchild/>
// or
parent.*[childIndex] = parent.*[childIndex] + <newchild/>

For example, the following code adds a new <PRICE> element to our book, immedi-
ately following the first <AUTHOR> element:

novel.insertChildBefore(novel.AUTHOR[0], <PRICE>19.99</PRICE>);

As with insertChildAfter(), note that insertChildBefore() requires an XML instance
(not an XMLList instance!) as its first argument.

The preceding line is synonymous with:

novel.AUTHOR = <PRICE>19.99</PRICE> + novel.AUTHOR;

Here is yet another synonymous approach:

// Add a new XML element before novel's second child
novel.*[1] = <PRICE>19.99</PRICE> + novel.*[1];

Adding a new child before all existing children

To add a new element as the first child of an existing element, use any of the follow-
ing techniques:

parent.insertChildBefore(parent.*[0], <newchild/>)
// or
parent.*[0] = <newchild/> + parent.*[0]
// or
parent.prependChild(<newchild/>)

For example, the following code adds a new <PAGECOUNT> element to our book, imme-
diately preceding the existing <TITLE> element:

novel.insertChildBefore(novel.*[0], <PAGECOUNT>1040</PAGECOUNT>);

The preceding line is synonymous with:

novel.*[0] = <PAGECOUNT>1040</PAGECOUNT> + novel.*[0];

Here is the most convenient approach:

novel.prependChild(<PAGECOUNT>1040</PAGECOUNT>);

394 | Chapter 18: XML and E4X

Deleting Elements and Attributes
To remove an element or attribute from a document, use the delete operator as follows:

delete elementOrAttribute

For example, the following code removes the ISBN attribute from the <BOOK> element:

delete novel.@ISBN;

The following code removes the <TITLE> element from the <BOOK> element:

delete novel.TITLE;

Here’s how to delete all children contained by an element:

delete novel.*; // Removes <TITLE>, <AUTHOR>, and <PUBLISHER>
 // from the original XML fragment.

The same technique can be used to remove the text content of an element:

delete novel.TITLE.*; // Removes "Ulysses"
 // from the original XML fragment.

Here’s how to delete all attributes of an element:

delete novel.@*; // Removes all attributes (in this case, ISBN)

References to Parts of a Document Are Not Live
As you change or add new content to an XML object, bear in mind that any updates
you make will not be reflected by variables that refer to part of that document. For
example, the following code creates a variable, children, that a refers to <BOOK>’s
child nodes:

var novel:XML = <BOOK ISBN="0141182806">
 <TITLE>Ulysses</TITLE>
 <AUTHOR>Joyce, James</AUTHOR>
 <PUBLISHER>Penguin Books Ltd</PUBLISHER>
</BOOK>

var children:XMLList = novel.*;

If we now remove the <PUBLISHER> element, the change is made to the original docu-
ment, but is not reflected by the children variable:

// Remove <PUBLISHER>
delete novel.PUBLISHER;
trace(novel); // Displays: <BOOK ISBN="0141182806">
 // <TITLE>Ulysses</TITLE>
 // <AUTHOR>Joyce, James</AUTHOR>
 // </BOOK>

trace(children); // Displays: <TITLE>Ulysses</TITLE>
 // <AUTHOR>Joyce, James</AUTHOR>
 // <PUBLISHER>Penguin Books Ltd</PUBLISHER>
 // <PUBLISHER> is still there!

Future versions of E4X may support live references to parts of a document.

Changing or Creating New XML Content | 395

Using XML Entities for Special Characters
E4X implements special treatment and rules for certain punctuation characters when
they appear in an XML literal or XML assignment. Table 18-2 explains how to
include these characters in an XML document in ActionScript. The left column of
the table lists the characters, while the remaining columns show the code required to
include these characters, in four different contexts. For reference, the following code
shows an example of each of the four types of contexts (the context is represented by
someText):

// Text of an attribute literal
var xml:XML = <someElement someAttribute="someText"/>

// Text assigned to an attribute
xml.@someOtherAttribute = "someText"

// Text node in an element literal
var xml:XML = <someElement>someText</someElement>

// Text node assigned to an element
xml.someOtherElement = "someText";

* In these contexts, the newline sequence \n is automatically converted to the entity
.
** To include ' within an attribute value delimited by ', use the escape sequence '.
*** The sequence \n can be used if the element value is computed. For example: var val:String = "Newlines \n are \n okay \n here!";
var paragraph:XML = <p>{val}</p>;
**** Unlike in strings, in an XML literal, the backslash (\) character is never interpreted as the beginning of an escape sequence.

Note that although the characters > and & can be used in literal form anywhere in an
XML literal, when ActionScript encounters them in a text node while parsing XML,
it automatically converts them to the entities > and &, respectively. Likewise,
when ActionScript encounters & in an attribute value while parsing XML, it automat-
ically converts it to the entity &. However, when used in a string context, those
entities will be converted back to their original characters. To view the text node

Table 18-2. Assignments of special punctuation characters

Character
Text of an
attribute literal

Text assigned to an
attribute

Text node in an
element literal

Text node assigned
to an element

\ \\ \\ **** \\

& & & & &

" " \" or " " \"

' '** ' ' '

< < < < <

> > > > >

Newline (\n) Unsupported* Unsupported* Unsupported*,*** \n

{ { { { {

} } } } }

396 | Chapter 18: XML and E4X

with its entities intact, use the XML class’s instance method toXMLString(). The fol-
lowing code illustrates:

var p:XML = <p>&></p>;
trace(p.toString()); // Displays: &>
trace(p.toXMLString()); // Displays: <p>&></p>

Finally, note also that although the ' character can be used to delimit an attribute
value in an XML literal, it is converted to the " character during parsing. The
following code illustrates:

var p:XML = <p align='left'/>;
trace(p.toXMLString()); // Displays: <p align="left"/>

Assigning Values to an XMLList
As we learned in the section “Changing the Contents of an Element,” there’s no dif-
ference between assigning a value to an XMLList with a single XML instance and
assigning that value to the instance directly. However, assigning a value to an
XMLList with more than one XML instance can have a variety of different results.
Depending on the type of value being assigned and the type of XML instances in the
list, the list might be changed or even replaced entirely.

Assignment to an XMLList instance has only one typical usage scenario: replacing
the children of a parent element with a new XML element or list of elements. For
example, the following code replaces <DOC>’s two <P> children with a single <P>
element:

var doc:XML = <DOC TOPIC="Code Tips" AUTHOR="Colin">
 <P>Errors are your friends</P>
 <P>Backup often</P>
 </DOC>;

doc.* = <P>Practice coding everyday</P>;

// Yields:
<DOC TOPIC="Code Tips" AUTHOR="Colin">
 <P>Practice coding everyday</P>
</DOC>

Assigning a value to an XMLList is uncommon, and therefore, not exhaustively cov-
ered in this book. Readers interested in grotesque acts of programming—such as
attempting to assign a list of processing instructions to a list of attributes—are left to
explore such indecency on their own.

Loading XML Data | 397

Loading XML Data
For instructive purposes, most XML examples in this chapter have been written in
literal form. However, in real applications it’s much more common to load XML
from an external source.

To load external XML data into an XML instance, follow these general steps:

1. Create a URLRequest object describing the location of the external XML (either a
file or a server-side script that returns XML).

2. Create a URLLoader object, and use its load() method to load the XML.

3. Wait for the XML to load.

4. Pass the loaded XML to the constructor of a new XML instance.

While a full discussion of the URLRequest and URLLoader classes is beyond the
scope of this chapter, Example 18-13 demonstrates the code required to load XML
data into an XML instance. The class in the example, XMLLoader, extends Sprite so
that it can be compiled as an application’s main class for testing. For information on
the URLRequest and URLLoader classes see Adobe’s ActionScript Language Refer-
ence. For information on event handling, see Chapter 12.

Example 18-13. Loading external XML

package {
 import flash.display.*;
 import flash.events.*;
 import flash.net.*;

 // Demonstrates the code required to load external XML
 public class XMLLoader extends Sprite {
 // The variable to which the loaded XML will be assigned
 private var novel:XML;
 // The object used to load the XML
 private var urlLoader:URLLoader;

 // Constructor
 public function XMLLoader () {
 // Specify the location of the external XML
 var urlRequest:URLRequest = new URLRequest("novel.xml");
 // Create an object that can load external text data
 urlLoader = new URLLoader();
 // Register to be notified when the XML finishes loading
 urlLoader.addEventListener(Event.COMPLETE, completeListener);
 // Load the XML
 urlLoader.load(urlRequest);
 }

 // Method invoked automatically when the XML finishes loading
 private function completeListener(e:Event):void {
 // The string containing the loaded XML is assigned to the URLLoader

398 | Chapter 18: XML and E4X

Note that all ActionScript load operations, including that shown in Example 18-13,
are subject to Flash Player’s security limitations. For complete information on secu-
rity considerations, see Chapter 19.

Working with XML Namespaces
XML uses namespaces to prevent name conflicts in markup, with the ultimate goal
of allowing markup from different XML-based vocabularies to coexist peacefully in a
single document. ActionScript supports namespaces both as part of E4X and as a
general programming tool. This section describes how to work with namespaces
using E4X syntax but assumes prior knowledge of the concepts expressed by the
W3C definition of namespaces in XML. For an introduction to namespaces in XML,
see the following online resources:

Ronald Bourret’s “XML Namespaces FAQ”:
http://www.rpbourret.com/xml/NamespacesFAQ.htm

“Namespaces in XML 1.1” (W3C recommendation):
http://www.w3.org/TR/xml-names11/

“Plan to use XML namespaces, Part 1,” by David Marston:
http://www-128.ibm.com/developerworks/library/x-nmspace.html

For information on the non-XML uses of namespaces in ActionScript programming,
see Chapter 17.

Accessing Namespace-Qualified Elements and Attributes
We’ve already learned how to access elements and attributes not qualified by a
namespace. To learn the additional techniques required to access elements and
attributes qualified by a namespace, let’s look at a new XML fragment example,
shown in Example 18-14. The fragment depicts part of a hypothetical furniture cata-
log. As you read the example, pay attention to the following namespace-related
items:

• The namespace URI http://www.example.com/furniture, and its companion pre-
fix shop

• The default namespace, http://www.w3.org/1999/xhtml

 // object's data variable (i.e., urlLoader.data). To create a new XML
 // instance from that loaded string, we pass it to the XML constructor
 novel = new XML(urlLoader.data);
 trace(novel.toXMLString()); // Display the loaded XML, now converted
 // to an XML object
 }
 }
}

Example 18-13. Loading external XML (continued)

http://www.rpbourret.com/xml/NamespacesFAQ.htm
http://www.w3.org/TR/xml-names11/
http://www-128.ibm.com/developerworks/library/x-nmspace.html

Working with XML Namespaces | 399

• Three elements qualified by the namespace http://www.example.com/furniture:
<shop:table>, <shop:desc>, and <shop:price>

• One attribute qualified by the namespace http://www.example.com/furniture:
shop:id

Example 18-14 is primarily an XHTML document intended to be rendered by web
browsers, but it also contains markup representing items in the furniture catalog.
The furniture markup gives the document semantic structure, allowing it to be pro-
cessed by clients other than a web browser. The catalog uses a namespace to disam-
biguate XHTML markup from furniture markup. As a result, the element <table>
can represent, on one hand, a piece of furniture and, on the other, the graphical lay-
out of a web page—all without name conflicts.

To access the elements and attributes qualified by the namespaces in Example 18-14,
we must first obtain a reference to those namespaces. To obtain a reference to the
namespace http://www.example.com/furniture, we invoke the XML class’s instance
method namespace() on the document’s root node, passing the prefix "shop" as an
argument. As a result, the namespace() method returns a Namespace object repre-
senting the namespace http://www.example.com/furniture. We assign that object to
the variable shopNS for later use.

var shopNS:Namespace = catalog.namespace("shop");

Alternatively, if we know the namespace’s URI, we can create a reference to the
Namespace using the Namespace constructor:

var shopNS:Namespace = new Namespace("http://www.example.com/furniture");

Example 18-14. Using namespaces in a furniture catalog

var catalog:XML = <html xmlns:shop="http://www.example.com/furniture"
 xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Catalog</title>
 </head>
 <body>
 <shop:table shop:id="4875">
 <table border="1">
 <tr align="center">
 <td>Item</td>
 <td>Price</td>
 </tr>
 <tr align="left">
 <td><shop:desc>3-legged Coffee Table</shop:desc></td>
 <td><shop:price>79.99</shop:price></td>
 </tr>
 </table>
 </shop:table>
 </body>
</html>

400 | Chapter 18: XML and E4X

To retrieve a reference to the default namespace, we invoke the namespace() method
on the document’s root node without passing any namespace prefix:

var htmlNS:Namespace = catalog.namespace();

Alternatively, if we know the namespace’s URI, we can create a reference to the
default Namespace using the Namespace constructor:

var htmlNS:Namespace = new Namespace("http://www.w3.org/1999/xhtml");

The inScopeNamespaces() and namespaceDeclarations() methods can also be used to
access the namespaces in a document. For details see Adobe’s ActionScript Lan-
guage Reference.

In E4X, XML namespace attributes are not represented as attributes (i.e.,
cannot be accessed via attributes() or someElement.@*). Instead, the
namespace declarations for an element are accessed via the XML class’s
instance method namespaceDeclarations().

Once we have a Namespace reference, we can access namespace-qualified elements
and attributes, using qualified names, which have the following general format:

theNamespace::elementLocalName
theNamespace::@attributeLocalName

For example, here’s the qualified name of <shop:price> in ActionScript:

shopNS::price

Notice the use of the name-qualifier operator (::), which separates the namespace
name from the local name.

Here’s how to access the element <body>, which is qualified by the default namespace
(http://www.w3.org/1999/xhtml):

catalog.htmlNS::body

To access the element <shop:table>, which is a child of <body>, we use:

catalog.htmlNS::body.shopNS::table

To access the attribute shop:id, we use:

catalog.htmlNS::body.shopNS::table.@shopNS::id

To access the element <shop:price> we could use this nightmarish code:

catalog.htmlNS::body.shopNS::table.htmlNS::table.htmlNS::tr[
 1].htmlNS::td[1].shopNS::price

But we’ll sleep a little easier if we take advantage of the descendants operator (..) in
two places, as in:

catalog..shopNS::table..shopNS::price

Still, the repetition of shopNS:: is a bit irritating. We can save some keystrokes by
asking ActionScript to automatically qualify all unqualified element and attribute

Working with XML Namespaces | 401

names with a namespace of our choosing. To do so, we use the default XML
namespace statement, which takes the form:

default xml namespace = namespaceOrStringURI

For example, the following code causes ActionScript to automatically qualify all
unqualified element and attribute names with the namespace http://www.example.
com/furniture:

default xml namespace = shopNS;

Subsequent to issuing that statement, the namespace http://www.example.com/
furniture is implied in all unqualified element and attribute references, so we can
reduce this code:

catalog..shopNS::table..shopNS::price

to this:

catalog..table..price

It’s like a massage and a hot bath!

Due to a bug in Flash Player 9, the preceding example code
(catalog..table..price) yields undefined the first time it runs.

In a more complete example, the catalog document would likely contain more than
one <shop::table> element. To access a specific table we’d have to use the filtering
predicate, as in:

catalog..table.(@id == 4875)..price

Example 18-15 shows the code we would use to access and display information
about all of the tables in the catalog.

As with element and attribute names, we can use the properties wildcard (*) with
namespaces. For example, the following code returns an XMLList representing all
<table> elements in all namespaces:

catalog..*::table

To retrieve all descendants at every level in all namespaces or in no namespace, use:

theXMLObj..*::* // elements
theXMLObj..@*::* // attributes

Example 18-15. Showing the tables in the catalog

var shopNS:Namespace = catalog.namespace("shop");
default xml namespace = shopNS;
for each (var table:XML in catalog..table) {
 trace(table..desc + ": " + table..price);
}

402 | Chapter 18: XML and E4X

To retrieve all children in all namespaces or in no namespace, use:

theXMLObj.*::* // elements
theXMLObj.@*::* // attributes

Creating Namespace-Qualified Elements and Attributes
To create elements and attributes that are qualified by namespaces, we combine the
qualified-names syntax covered in the previous section with the creation techniques
covered in the earlier section “Changing or Creating New XML Content.”

Before we can create namespace-qualified names, we must create (or obtain) a refer-
ence to a Namespace object. For example, the following code creates two Namespace
objects and assigns them to the variables htmlNS and shopNS for later use in qualified
names:

var htmlNS:Namespace = new Namespace("html",
 "http://www.w3.org/1999/xhtml");
var shopNS:Namespace = new Namespace("shop",
 "http://www.example.com/furniture");

When creating an entire document rather than a single element or attribute, it’s cus-
tomary and convenient to use a default namespace, which is specified using the
default XML namespace statement. For example, the following code sets the default
namespace to http://www.w3.org/1999/xhtml:

default xml namespace = htmlNS;

Once the default namespace has been established, all subsequently created elements
(but not attributes) without an explicit namespace are automatically qualified by the
default namespace. For example, the following code creates an element with the
local name “html”; it has no explicit namespace, so it is automatically qualified by
the default namespace (http://www.w3.org/1999/xhtml):

var catalog:XML = <html/>;

The XML source code generated by the previous line is:

<html xmlns="http://www.w3.org/1999/xhtml" />

To add a namespace declaration to a given element, we use the XML class’s instance
method addNamespace(). For example, the following code adds a new namespace
declaration to the preceding element:

catalog.addNamespace(shopNS);

The resulting XML source code is:

<html xmlns:shop="http://www.example.com/furniture"
 xmlns="http://www.w3.org/1999/xhtml" />

You probably recognize the preceding element as the first line of code in the catalog
document from Example 18-14. Let’s build the rest of that document. Here are the
<head> and <title> tags. Their names are automatically qualified by the default
namespace (http://www.w3.org/1999/xhtml).

Working with XML Namespaces | 403

catalog.head.title = "Catalog";

Next up, the <shop:table> element and its shop:id attribute. Both of those items
have names qualified by the namespace http://www.example.com/furniture. The XML
source code we want to generate looks like this:

<shop:table shop:id="4875">

The ActionScript code we use to generate it is:

catalog.body.shopNS::table = "";
catalog.body.shopNS::table.@shopNS::id = "4875";

The preceding code should be very familiar. Except for the namespace qualifier
syntax, shopNS::, it’s identical to the code we used earlier to create elements and
attributes. The namespace qualifier simply specifies the namespace for the local
names table and id. Example 18-16 uses the same technique to generate the rest of
the catalog document. In the example, notice the following line of code:

catalog.body.shopNS::table.table.tr.td[1] = "Price";

That line creates a new element named “td” immediately following the existing ele-
ment at catalog.body.shopNS::table.table.tr.td[0].

Example 18-16. Creating the furniture catalog

// Create the namespaces
var htmlNS:Namespace = new Namespace("html",
 "http://www.w3.org/1999/xhtml");
var shopNS:Namespace = new Namespace("shop",
 "http://www.example.com/furniture");
// Set the default namespace
default xml namespace = htmlNS;

// Create the root element
var catalog:XML = <html/>;

// Add the furniture namespace to the root element
catalog.addNamespace(shopNS);

// Create the remainder of the document
catalog.head.title = "Catalog";
catalog.body.shopNS::table = "";
catalog.body.shopNS::table.@shopNS::id = "4875";
catalog.body.shopNS::table.table = "";
catalog.body.shopNS::table.table.@border = "1";
catalog.body.shopNS::table.table.tr.td = "Item";
catalog.body.shopNS::table.table.tr.td[1] = "Price";
catalog.body.shopNS::table.table.tr.@align = "center";
catalog.body.shopNS::table.table.tr[1] = "";
catalog.body.shopNS::table.table.tr[1].@align = "left";
catalog.body.shopNS::table.table.tr[1].td.shopNS::desc =
 "3-legged Coffee Table";
catalog.body.shopNS::table.table.tr[1].td[1] = "";
catalog.body.shopNS::table.table.tr[1].td[1].shopNS::price = "79.99";

404 | Chapter 18: XML and E4X

We’ve now finish studying all of the major topics in E4X. The remainder of this
chapter covers two supplementary subjects: XML conversion and equality.

Converting XML and XMLList to a String
As we’ve seen throughout this chapter, E4X implements custom rules for converting
XML and XMLList instances to a string. For reference and review, this section
describes E4X’s XML-to-string and XMLList-to-string conversion rules. Remember
that an XML instance can represent five different kinds of content: an element, an
attribute, a text node, a comment, or a processing instruction. We’ll consider the
conversion rules for each kind separately, but we’ll start with XMLList-to-string con-
version in preparation for the subsequent discussion.

Converting XMLList to a String
When an XMLList has only one XML instance, the result of XMLList’s toString() is
exactly the same as the result of calling toString() on that one instance. For example,
in the following code, the title variable refers to an XMLList whose single XML
instance represents the <TITLE> element. Converting title to a string yields Ulysses,
exactly as if toString() had been invoked on the single XML instance directly:

var novel:XML = <BOOK ISBN="0141182806">
 <TITLE>Ulysses</TITLE>
 <AUTHOR>Joyce, James</AUTHOR>
 <PUBLISHER>Penguin Books Ltd</PUBLISHER>
 </BOOK>

// Create an XMLList with only one XML instance
var title:XMLList = novel.TITLE;
// Convert the XMLList to a string, and display that string.
trace(title); // Displays: Ulysses

When an XMLList has more than one XML instance, XMLList’s toString() returns
the result of calling toXMLstring() on each XML instance and concatenating those
strings together, each on its own line. For example, in the following code, the
XMLList object assigned to details has three XML instances representing the three
elements <TITLE>, <AUTHOR>, and <PUBLISHER>:

// Create an XMLList with three XML instances
var details:XMLList = novel.*;

Converting details to a string yields the source XML code for <TITLE>, <AUTHOR>, and
<PUBLISHER>:

// Convert the XMLList to a string, and display that string
trace(details); // Displays:
 // <TITLE>Ulysses</TITLE>
 // <AUTHOR>Joyce, James</AUTHOR>
 // <PUBLISHER>Penguin Books Ltd</PUBLISHER>

Converting XML and XMLList to a String | 405

Converting an XML Element to a String
For XML instances that represent elements, XML’s toString() has one of two results,
depending on the content of that element. If an element contains child elements,
then XML’s toString() returns XML source code for the element and its children, for-
matted according to the settings of XML.ignoreWhitespace, XML.prettyPrinting, and
XML.prettyIndent. For example, in the following code the element <BOOK> has three
child elements (<TITLE>, <AUTHOR>, and <PUBLISHER>):

var novel:XML = <BOOK ISBN="0141182806">
 <TITLE>Ulysses</TITLE>
 <AUTHOR>Joyce, James</AUTHOR>
 <PUBLISHER>Penguin Books Ltd</PUBLISHER>
 </BOOK>;

Because the element <BOOK> has child elements, converting it to a string yields XML
source code:

trace(novel.toString()); // Displays:
 // <BOOK ISBN="0141182806">
 // <TITLE>Ulysses</TITLE>
 // <AUTHOR>Joyce, James</AUTHOR>
 // <PUBLISHER>Penguin Books Ltd</PUBLISHER>
 // </BOOK>;

For an element that contains no child elements, XML’s toString() returns the text
contained by that element, omitting the element’s start and end tags. For example,
the following code converts the <TITLE> element to a string. The result is Ulysses, not
<TITLE>Ulysses</TITLE>.

trace(novel.TITLE.toString()); // Displays: Ulysses

If we want to retrieve a string including the text node and its containing tags, we use
XML’s toXMLString(), as in:

trace(novel.TITLE.toXMLString()); // Displays: <TITLE>Ulysses</TITLE>

Notice how E4X’s string conversion rules for XML elements change the way leaf text
nodes are accessed in ActionScript. In ActionScript 1.0 and ActionScript 2.0, text
nodes were accessed using the variable XML class’s instance variable firstChild
(which, in ActionScript 3.0, is now the XMLDocument class’s instance variable
firstChild). For example, the legacy equivalent to the E4X statement:

trace(novel.TITLE.toString());

would be:

trace(novel.firstChild.firstChild.firstChild);

In E4X, the text of an element that contains no child elements can be accessed
directly via its containing element’s name when used in a string context. Here are
two more E4X examples (this time, we’ve omitted the explicit call to toString()

406 | Chapter 18: XML and E4X

because ActionScript automatically invokes toString() on any argument passed to
trace()):

trace(novel.AUTHOR); // Displays: Joyce, James
trace(novel.PUBLISHER); // Displays: Penguin Books Ltd

And here is a direct comparison between legacy text node access and E4X text node
access:

// E4X text node access
var msg:XML = <GREETING>
 <TO>World</TO>
 <FROM>J. Programmer</FROM>
 <MESSAGE>Hello</MESSAGE>
 </GREETING>
trace(msg.TO); // Displays: World
trace(msg.FROM); // Displays: J. Programmer
trace(msg.MESSAGE); // Displays: Hello

// Legacy text node access
var msgDoc:XMLDocument = new XMLDocument("<GREETING>"
 + "<TO>World</TO>"
 + "<FROM>J. Programmer</FROM>"
 + "<MESSAGE>Hello</MESSAGE>"
 + "</GREETING>");
trace(msgDoc.firstChild.firstChild.firstChild); // Displays: World
trace(msgDoc.firstChild.childNodes[1].firstChild); // Displays:
 // J. Programmer
trace(msgDoc.firstChild.childNodes[2].firstChild); // Displays: Hello

Converting an Attribute to a String
For XML instances that represent attributes, XML’s toString() returns the attribute
value only, not the entire attribute definition. For example, the following code con-
verts the preceding <BOOK> element’s ISBN attribute to a string. The result is
0141182806 not ISBN='0141182806'.

trace(novel.@ISBN.toString()); // Displays: 0141182806

Converting Comments and Processing-Instructions to Strings
When XML’s toString() is called on an XML instance that represents a comment or a
processing instruction, the entire comment or processing instruction is returned:

XML.ignoreComments = false;
XML.ignoreProcessingInstructions = false;

// Create an XML fragment that contains both a comment and a processing
// instruction (shown in bold)
var novel:XML = <BOOK ISBN="0141182806">
 <!--This is a comment-->
 <?someTargetApp someData?>
 <TITLE>Ulysses</TITLE>

Determining Equality in E4X | 407

 <AUTHOR>Joyce, James</AUTHOR>
 <PUBLISHER>Penguin Books Ltd</PUBLISHER>
 </BOOK>;

// Convert the comment to a string.
// Displays: <!--This is a comment-->
trace(novel.comments()[0].toString());

// Convert the processing instruction to a string.
// Displays: <?someTargetApp someData?>
trace(novel.processingInstructions()[0].toString());

Determining Equality in E4X
The following sections describe ActionScript’s special rules for determining the
equality of XML, XMLList, QName, and Namespace objects. Note, however, that the
following sections apply to the equality operator (==) only, not to the strict equality
(===) operator. E4X does not modify the semantics of the strict equality operator.
Specifically, the strict equality operator considers two instances of XML, XMLList,
QName (qualified name), or Namespace equal if, and only if, they point to the same
object reference.

XML Equality
Two XML instances representing elements are considered equal by the equality oper-
ator (==) if the XML hierarchy they represent is identical. For example, in the follow-
ing code, the variables x1 and x2 point to different object references but are
considered equal because they represent the same XML hierarchy.

var x1:XML = <a>;
var x2:XML = <a>;
trace(x1 == x2); // Displays: true

By default, E4X ignores whitespace nodes, so two XML instances representing ele-
ments are considered equal when they have the same markup even if they have dif-
ferent formatting. For example, in the following code the XML source code for the
XML instance in x1 contains no whitespace nodes, while the XML source code for
the XML instance in x2, contains two whitespace nodes; despite this difference, the
instances are still considered equal because the whitespace is ignored, so the XML
hierarchies are the same.

var x1:XML = <a>;
var x2:XML = <a>

 ;
trace(x1 == x2); // Still displays: true

However, if we force ActionScript not to ignore whitespace nodes prior to parsing,
then the XML instances will not be considered not equal, as shown next:

408 | Chapter 18: XML and E4X

XML.ignoreWhitespace = false; // Don't ignore whitespace nodes
var x1:XML = <a>;
var x2:XML = <a>

 ;
trace(x1 == x2); // Now displays: false

An XML instance representing an element is considered equal to an XML instance
representing an attribute if the element contains no child elements and the text con-
tained by the element matches the attribute value. For example, in the following
code, the QUANTITY attribute is considered equal to the <COST> element because <COST>
has no child elements and contains text that matches QUANTITY’s value:

var product:XML = <PRODUCT QUANTITY="1"><COST>1</COST></PRODUCT>;
trace(product.@QUANTITY == product.COST); // Displays: true

Similarly, an XML instance representing an element is considered equal to an XML
instance representing a text node if the element contains no child elements, and the
text it contains matches the text node’s value. For example, in the following code, the
text node contained by <COST> is considered equal to the element <QUANTITY> because
<QUANTITY> has no child elements and contains text that matches the <COST>’s child text
node’s value:

var product:XML = <PRODUCT>
 <COST>1</COST>
 <QUANTITY>1</QUANTITY>
 </PRODUCT>;
trace(product.COST.*[0] == product.QUANTITY); // Displays: true

In all other cases, if the node kind of two XML instances is different, the two are not
considered equal. If the node kind is the same, the two are considered equal if:

• The node kind is “attribute,” and the attribute values are the same.

• The node kind is “text,” and the text of the node is the same.

• The node kind is “comment,” and the text between the comments start and end
delimiters (<!-- and -->) is the same.

• The node kind is “processing-instruction,” and the text between the processing
instruction start and end delimiters (<? and ?>) is the same.

XMLList Equality
To determine whether two XMLList instances are equal, ActionScript compares each
of the instances they contain, in order, using the rules for XML equality discussed in
the preceding section. If any item in the first XMLList instance is considered not equal
to any corresponding item in the second XMLList instance, then the two XMLList
instances are not equal. For example, in the following code the XMLList returned by
msg1.* is considered equal to msg2.* because each XML instance in msg1.* is equal to
an XML instance in the corresponding position in msg2.*:

Determining Equality in E4X | 409

var msg1:XML = <GREETING>
 <TO>World</TO>
 <FROM>J. Programmer</FROM>
 <MESSAGE>Hello</MESSAGE>
 </GREETING>;

var msg2:XML = <GREETING>
 <TO>World</TO>
 <FROM>J. Programmer</FROM>
 <MESSAGE>Hello</MESSAGE>
 </GREETING>;

trace(msg1.* == msg2.*); // Displays: true

A comparison between an XML instance and an XMLList with only one XML
instance is treated as a direct comparison between the two XML instances:

trace(msg1.FROM == msg2.*[1]); // Displays: true

This means that the equality operator (==) considers an XMLList containing only one
XML instance equal to that instance!

trace(msg1.FROM == msg1.FROM[0]); // Displays: true

To distinguish an XMLList containing only one XML instance from the instance it
contains, use the strict equality operator (===):

trace(msg1.FROM === msg1.FROM[0]); // Displays: false

QName Equality
The QName class represents an element or attribute name qualified by a namespace.
Two QName instances are considered equal if their namespace name and local
names both match (i.e., if they have identical values for the uri and localName vari-
ables). For example, the following code creates a QName object using the QName
constructor and compares it to a QName object retrieved from an XML document.
The two QName objects have the same namespace name and local name, so they are
considered equal.

var product:XML = <someCorp:PRODUCT
 xmlns:someCorp="http://www.example.com/someCorp">
 <someCorp:PRICE>99.99</someCorp:PRICE>
 </someCorp:PRODUCT>;

var someCorp:Namespace = product.namespace("someCorp");
var qn1:QName = new QName("http://www.example.com/someCorp", "PRICE");
var qn2:QName = product.someCorp::PRICE.name();

trace(qn1 == qn2); // Displays: true

410 | Chapter 18: XML and E4X

Namespace Equality
The Namespace class represents the qualifier part of a qualified name. Two
Namespace objects are considered equal if, and only if, they have the same
namespace name (i.e., if their uri variables have the same value), regardless of their
prefix. For example, the following code creates a Namespace object using the
Namespace constructor and compares it to a Namespace object retrieved from an
XML document. The two Namespace objects have the same URI, so they are consid-
ered equal, despite the fact that they have different prefixes.

var product:XML = <someCorp:PRODUCT
 xmlns:someCorp="http://www.example.com/someCorp">
 <someCorp:PRICE>99.99</someCorp:PRICE>
 </someCorp:PRODUCT>;
var ns1:Namespace = product.namespace("someCorp");
var ns2:Namespace = new Namespace("sc", "http://www.example.com/someCorp");
trace(ns1 == ns2); // Displays: true

More to Learn
This chapter has covered the majority of E4X’s core functionality, but completely
exhaustive coverage is beyond the scope of this book. For further study, see the
methods and variables of the XML an XMLList classes in Adobe’s ActionScript Lan-
guage Reference. For deep technical details, consider reading the E4X specification at
http://www.ecma-international.org/publications/standards/Ecma-357.htm.

Up next, we’ll explore Flash Player security restrictions. If researching Flash Player
security isn’t your idea of a good time, you might want to consider skipping ahead to
Part II, where we’ll learn how to display things on screen. Just remember that
Chapter 19 is there to help if you find yourself faced with security errors during
development.

http://www.ecma-international.org/publications/standards/Ecma-357.htm

411

Chapter 19 CHAPTER 19

Flash Player Security Restrictions20

To protect data from being transferred to unauthorized destinations without appro-
priate permission, Flash Player scrutinizes all requests to load or access external
resources, or interact with other .swf files or HTML files. Each request a .swf file
makes for an external resource (a resource not compiled into the .swf file making the
request) is rejected or approved based on the following factors:

• The ActionScript operation used to access the resource

• The security status of the .swf file performing the request

• The location of the resource

• The explicit access-permissions set for the resource as determined by either the
resource’s creator or distributor

• The explicit access-permissions granted by the user (e.g., permission to connect
to the user’s camera or microphone)

• The type of Flash Player running the .swf file (e.g., plug-in version, standalone
version, Flash authoring tool test version)

In the preceding list, and throughout this chapter, the following terms have the fol-
lowing meanings:

Resource distributor
The party that delivers a given resource. Typically a server operator such as a
web site administrator or socket server administrator.

Resource creator
The party that actually authors the resource. For .swf files, the resource creator is
the ActionScript developer that compiles the .swf.

User
The user of the computer on which Flash Player is running.

This chapter explains Flash Player security restrictions in general terms, and then
explores how security specifically affects loading content and accessing external data.

412 | Chapter 19: Flash Player Security Restrictions

This chapter covers security restrictions in one specific Flash runtime:
Flash Player (both the web browser add-on, and standalone player ver-
sions). For information on security limitations imposed by other Flash
runtimes (e.g., Adobe AIR and Flash Lite), see Adobe’s
documentation.

What’s Not in This Chapter
Before we start, let’s be clear: security is a deep topic. Complete coverage of Flash
Player security is beyond the scope of this book. Moreover, this chapter covers secu-
rity features designed to protect users of Flash content in general but does not dis-
cuss the development of secure applications such as e-commerce web sites. For much
more information on security—including secure-application development topics
such as using Secure Sockets Layer (SSL), coding custom encryption algorithms, and
guarding data streamed over RTMP—see the following key resources:

• Adobe’s documentation, under Programming ActionScript 3.0 ➝ Flash Player
APIs ➝ Flash Player Security

• Adobe’s Security Topic Center at http://www.adobe.com/devnet/security/

• Adobe’s security white paper at: http://www.adobe.com/go/fp9_0_security

• Deneb Meketa’s “Security Changes in Flash Player 8,” which primarily covers local
security, at: http://www.adobe.com/devnet/flash/articles/fplayer8_security.html

• Deneb Meketa’s “Security Changes in Flash Player 7,” which primarily covers
policy files, at: http://www.adobe.com/devnet/flash/articles/fplayer_security.html

• Adobe’s Flash Player Help, which covers security settings available to users, at:
http://www.adobe.com/support/documentation/en/flashplayer/help/index.html

Now let’s explore how Flash Player security affects loading content and accessing
external data.

The Local Realm, the Remote Realm, and Remote
Regions
As we’ll see throughout this chapter, ActionScript often bases security restrictions on
the locations of .swf files and external resources. When evaluating a location from a
security perspective, ActionScript makes a distinction between resources in remote
locations and resources in local locations. In this chapter, we’ll use the term remote
realm when referring to the logical group of all possible remote locations, such as the
Internet. Correspondingly, we’ll use the term local realm when referring to the logi-
cal group of all possible local locations. A local location is any location that the user
of the computer on which Flash Player is running can access using either the file:

http://www.adobe.com/devnet/security/
http://www.adobe.com/go/fp9_0_security
http://www.adobe.com/devnet/flash/articles/fplayer8_security.html
http://www.adobe.com/devnet/flash/articles/fplayer_security.html
http://www.adobe.com/support/documentation/en/flashplayer/help/index.html

Security-Sandbox-Types | 413

protocol (typically used to access the local filesystem) or a universal naming conven-
tion (UNC) path (typically used to access computers on a local area network).

The remote realm is, itself, further divided into distinct regions delimited conceptu-
ally by resource distributor. We’ll call these distributor-delimited regions remote
regions. Specifically, a remote region is any one of the following:

• An Internet domain

• An Internet subdomain

• An IP address that points to a computer in the remote realm

Hence, according to the preceding list:

• sitea.com is a different remote region than siteb.com

• games.example.com is a different remote region than finances.example.com

• 192.150.14.120 is a different remote region than 205.166.76.26

• 192.150.14.120 is a different remote region than adobe.com, even though
192.150.14.120 resolves to adobe.com (because Flash Player considers
numerically specified IP addresses distinct from their equivalent domain
names)

The terms remote realm, local realm, and remote region are not cur-
rently part of Adobe’s official security vocabulary. They are used by
this book for expository purposes only.

Security-Sandbox-Types
ActionScript assigns a security status known as a security-sandbox-type to every .swf
file opened by or loaded into Flash Player. There are four possible security-sandbox-
types: remote, local-with-filesystem, local-with-networking, and local-trusted. Each
security-sandbox-type defines a distinct set of rules that governs a .swf file’s ability to
perform external operations. Specifically, the types of external operations a security-
sandbox-type can potentially prohibit include:

• Loading content

• Accessing content as data

• Cross-scripting

• Loading data

• Connecting to a socket

• Sending data to an external URL

• Accessing the user’s camera and microphone

• Accessing local shared objects

• Uploading or downloading files selected by the user

adobe.com
adobe.com

414 | Chapter 19: Flash Player Security Restrictions

• Scripting an HTML page from a .swf file and vice versa

• Connecting to a LocalConnection channel

In this chapter, we’ll see how each security-sandbox-type governs the first five of the
preceding types of external operations. To learn how security-sandbox-types govern
the remaining types of external operations, see Adobe’s documentation, under
Programming ActionScript 3.0 ➝ Flash Player APIs ➝ Flash Player Security. Note that
when an operation fails due to Flash Player security restrictions, ActionScript either
generates a SecurityError or dispatches a SecurityErrorEvent.SECURITY_ERROR event.
For details on handling security error conditions, see the section “Handling Security
Violations,” near the end of this chapter.

How Security-Sandbox-Types Are Assigned
To determine a given .swf file’s security-sandbox-type, ActionScript first considers
the location from which the .swf file was loaded or opened. All .swf files from the
remote realm are assigned the security-sandbox-type remote. By contrast, .swf files
from the local realm are assigned one of the remaining three security-sandbox-
types—local-trusted, local-with-networking, or local-with-filesystem. The specific
security-sandbox-type assigned to a local .swf file depends on two factors:

• Whether the .swf file was compiled with network support (see the section
“Choosing a Local Security-Sandbox-Type,” later in this chapter)

• Whether the .swf file is explicitly trusted (a .swf file is said to be explicitly trusted
if it is opened from a trusted local location; see the section “Granting Local
Trust,” later in this chapter)

All .swf files from the local realm that are explicitly trusted are assigned the security-
sandbox-type local-trusted. Likewise, executable projector files (i.e., standalone files
containing a .swf file and a particular version of Flash Player) are always trusted.

All .swf files from the local realm that are not explicitly trusted are assigned either the
security-sandbox-type local-with-networking (for .swf files compiled with network
support) or the security-sandbox-type local-with-filesystem (for .swf files compiled
without network support).

For brevity in this chapter, we’ll refer to .swf files whose security-sandbox-type is
remote as remote .swf files. Likewise, we’ll use the terms local-with-filesystem .swf file,
local-with-networking .swf file, and local-trusted .swf file when referring to .swf files
whose security-sandbox-type is local-with-filesystem, local-with-networking, and
local-trusted, respectively.

As a rule, local-with-networking .swf files have more access to the remote realm than
to the local realm. By contrast, local-with-filesystem .swf files have more access to the
local realm than to the remote realm.

Security Generalizations Considered Harmful | 415

To check a .swf file’s security-sandbox-type at runtime, retrieve the
value of the flash.system.Security.sandboxType variable from within
that .swf file.

Because Flash Player assigns all .swf files from the remote realm a security-sandbox-
type of remote, developers creating .swf content for the Web must always work
within the limitations of the remote security-sandbox-type. By contrast, developers
creating .swf content intended to be loaded or opened locally can use compiler set-
tings, configuration files, installers, and instructions to choose between the three
local security-sandbox-types. By choosing a security-sandbox-type, developers creat-
ing local .swf content effectively select a logical set of external-access capabilities for
their content. In the upcoming sections we’ll explore how security-sandbox-types
govern a .swf file’s external-access capabilities, then we’ll take a closer look at the
mechanisms for, and rationale behind, selecting from among the three local security-
sandbox-types.

Security Generalizations Considered Harmful
Over the remainder of this chapter, we’ll study specific operations and specific secu-
rity limitations in precise detail. When describing security rules, this book is careful
not to generalize at the expense of the accuracy because security generalizations are
often the source of frustrating misconceptions. During your study of Flash Player
security, you should likewise be wary of forming overly general impressions. Be
mindful that when documentation or third-party resources generalize about Flash
Player security, they could be underemphasizing important exceptions. For exam-
ple, the following statement is mostly true, and, therefore, makes a tempting general-
ization:

A .swf file whose security-sandbox-type is local-with-filesystem has full access to the
local realm.

However, there are many notable exceptions to that statement, including:

• local-with-filesystem .swf files cannot connect to sockets.

• local-with-filesystem .swf files cannot load local-with-networking .swf files.

• local-with-filesystem .swf files cannot access the data of local-trusted .swf files
without creator permissions.

• Accessing the user’s camera and microphone requires the user’s permission.

• Users can disable or limit any .swf file’s ability to store data in local shared
objects.

In order to avoid confusion, when you face a security issue in your development,
always focus on specifics. Determine the specific operation you wish to perform, this
security-sandbox-type of your .swf file, and the specific limitations that security-

416 | Chapter 19: Flash Player Security Restrictions

sandbox-type imposes on the operation you are performing. Once you have this
information, you can confidently decide how to work within or around any security
limitations.

This chapter does not cover every single security limitation imposed
by ActionScript. To determine the limitations ActionScript places on
any operation not covered in this chapter, consult that operation’s
entry in Adobe’s ActionScript Language Reference.

Now let’s explore how each of the four security-sandbox-types govern loading con-
tent, accessing content as data, cross-scripting, and loading data.

Restrictions on Loading Content, Accessing Content as
Data, Cross-Scripting, and Loading Data
Most developers encounter ActionScript’s security system for the first time when an
operation they expect to succeed is blocked for security reasons. In this section, we’ll
study four of the most-often blocked external operations: loading content, accessing
content as data, cross-scripting, and loading data. After defining each, we’ll look at
the circumstances under which these common operations are blocked.

Loading Content
Loading content means retrieving any external resource in order to subsequently dis-
play or play it. Conceptually, loading-content operations enable developers to
present external content to the user, even in cases where ActionScript’s security rules
restrict programmatic access to that content’s data.

The ActionScript methods considered to be “loading-content” operations from a
security perspective are listed in the leftmost column of Table 19-1.

For convenience, this chapter occasionally uses the term content resources when
referring to resources loaded using one of the methods listed in Table 19-1. Note,
however, that it is the specific method used to load the resource—not the file type of
the resource—that makes an external operation a loading-content operation. For
example, loading a JPEG using the Loader class’s instance method load() is consid-

Table 19-1. Content-loading operations

Content-loading method Type of content Specific file formats supported by Flash Player 9

flash.display.Loader.load() Image, Adobe Flash JPEG, GIF, PNG, SWF

flash.media.Sound.load() Audio MP3

flash.net.NetStream.play() Progressive Video FLV

Restrictions on Loading Content, Accessing Content as Data, Cross-Scripting, and Loading Data | 417

ered a loading-content operation, but loading the very same JPEG over a binary
socket or using the URLLoader class’s instance method load() is not considered a
content load operation. The distinction is important because different security rules
apply to different categories of operations.

Accessing Content as Data
Accessing content as data means reading the internal information of a content
resource—for example, reading the pixels of a bitmap or the spectrum of a sound.
Table 19-2 presents the ActionScript methods considered “accessing-content-as-data”
operations from a security perspective.

Cross-Scripting
Cross-scripting means accessing a loaded .swf file programmatically. Many Action-
Script operations can be used to cross-script a .swf file, including, but not limited to:

• Using the Loader class’s instance variable content to retrieve the object repre-
senting the loaded .swf file

• Accessing the loaded .swf file’s variables

• Calling the loaded .swf file’s methods

• Referencing a class defined by the loaded .swf file

• Using the BitmapData class’s instance method draw() to copy the loaded .swf
file’s pixels to a BitmapData object

Other cross-scripting operations can be found in Adobe’s ActionScript Language
Reference, which explicitly notes any security restrictions that apply to each Action-
Script operation.

Loading Data
In a general sense, the term “loading data” could be used to describe a wide variety
of Flash Player load operations, including downloading files from a server via the
FileReference class’s instance method download(), loading objects with Flash Remot-

Table 19-2. Accessing content as data, example operations

Operation Description

Access an image via the Loader class’s instance
variable content

Retrieve the ActionScript Bitmap object representing a loaded
image

Invoke the BitmapData class’s instance method draw() Copy the pixels of a display asset to a BitmapData object

Invoke the SoundMixer class’s instance method
computeSpectrum()

Copy the current sound wave data to a ByteArray

Access the Sound class’s instance variable id3 Read a sound’s ID3 metadata

418 | Chapter 19: Flash Player Security Restrictions

ing, loading binary data over a Socket object, and so on. However, for the purposes
of the current discussion (and the remainder of this chapter), loading data means
either:

• Loading external text, binary data, or variables using the URLLoader class’s
instance method load()

• Loading data using the URLStream class’s instance method load()

To determine the limitations ActionScript places on data load opera-
tions not covered in this chapter, consult Adobe’s ActionScript Lan-
guage Reference.

For the URLLoader class’s instance method load(), the format of the loaded data
(text, binary, or variables) is determined by the URLLoader class’s instance variable
dataFormat variable. Typical text file formats include XML, TXT, and HTML. Typi-
cal binary data formats include images, .swf files, and serialized objects encoded in
ActionScript Message Format (AMF); however, binary data can be any file or con-
tent loaded into a ByteArray for processing in raw binary format. Variables come in
one format only: URL-encoded variables loaded as name/value pairs from an exter-
nal text file or script.

Note that, similar to content loading, the specific method used to load the
resource—not the file type of the resource—makes an external operation a loading-
data operation. For example, loading a .swf file using URLLoader’s load() method is
considered a loading-data operation; loading that same .swf file using Loader’s load()
method is considered a loading-content operation.

Restrictions on Loading Content, Accessing Content as Data,
Loading Data, and Cross-Scripting
Now that we understand specifically what constitutes loading content, accessing
content as data, cross-scripting, and loading data, let’s look at how each of Flash
Player’s four security-sandbox-types limits those operations.

The upcoming four tables—Tables 19-3, 19-4, 19-5, and 19-6—catalog the circum-
stances under which each security-sandbox-type allows and prohibits loading con-
tent, accessing content as data, cross-scripting, and loading data. Each table presents
the specific regulations enforced by a single security-sandbox-type, indicating
whether the external operations listed in the leftmost column are allowed or prohib-
ited when used to access the resources listed in the remaining columns. As indicated
in the tables, some operations are allowed by creator or distributor permission only.
Creator permission means a .swf file contains the appropriate call to the Security
class’s static method allowDomain() (or, in rare cases, to allowInsecureDomain()).
Distributor permission means the resource distributor has made the appropriate

Restrictions on Loading Content, Accessing Content as Data, Cross-Scripting, and Loading Data | 419

cross-domain policy file available. For more information, see the sections “Creator
Permissions (allowDomain())” and “Distributor Permissions (Policy Files),” later in
this chapter.

As Table 19-3 through Table 19-6 reveal, loading content is allowed in more situa-
tions than accessing content as data, cross-scripting, or loading data. For example,
an application might be permitted to load and display a bitmap image but be denied
access to that image’s underlying pixel data. Likewise, an application might be per-
mitted to load and display an external .swf file but require permission to cross-script
that .swf file.

Note that Tables 19-3 through 19-6 cover permissions for a single direction of com-
munication only, a .swf file loads or accesses an external resource. The tables do not
cover the reverse direction of communication in which a loaded .swf file communi-
cates with the .swf file that loaded it. For information on bidirectional communica-
tion between .swf files, see Adobe’s documentation, under Programming
ActionScript 3.0 ➝ Flash Player APIs ➝ Flash Player Security ➝ Cross-scripting.

Table 19-3 lists the regulations imposed by the remote security-sandbox-type. In
the table, the phrase “.swf ’s region of origin” means the remote region from which
the .swf file was opened or loaded. For example, if hiscores.swf is loaded from the
remote location http://coolgames.com/hiscores.swf, then hiscores.swf’s region of ori-
gin is coolgames.com (for details on remote regions, see the earlier section “The
Local Realm, the Remote Realm, and Remote Regions”).

Table 19-3 illustrates the following key remote security-sandbox-type rules:

• Loading-content, accessing-content-as-data, cross-scripting, and loading-data
operations cannot be used with resources from the local realm.

• All resources from the entire remote realm can be loaded as content.

• Loading-content, accessing-content-as-data, cross-scripting, and loading-data
operations can be used with all resources from the .swf file’s region of origin.

• Remote realm resources outside the .swf ’s region of origin can be accessed as
data or loaded as data if the appropriate distributor permission is granted.

• Remote realm .swf files outside the .swf ’s region of origin can be cross-scripted if
the appropriate creator permission is granted.

Table 19-3. Remote sandbox, selected authorized, and prohibited operations

Operation Local realm
Remote realm resources from
.swf ’s region of origin

Remote realm resources outside
.swf ’s region of origin

Loading content Prohibited Allowed Allowed

Accessing content as data Prohibited Allowed Allowed by distributor permission
only

Cross-scripting Prohibited Allowed Allowed by creator permission only

http://coolgames.com/hiscores.swf
coolgames.com

420 | Chapter 19: Flash Player Security Restrictions

Table 19-4 lists the regulations imposed by the local-with-filesystem security-sand-
box-type. The table illustrates the following key local-with-filesystem security-sand-
box-type rules:

• Loading-content, accessing-content-as-data, cross-scripting, and loading-data
operations cannot be used with resources from the remote realm.

• Loading-content, accessing-content-as-data, and loading-data operations can be
used with all non-.swf resources from the local realm.

• Loading local-with-networking .swf files is strictly prohibited.

• Loading and cross-scripting other local-with-filesystem .swf files is allowed.

• Cross-scripting local-trusted .swf files requires creator permission.

Table 19-5 lists the regulations imposed by the local-with-networking security-
sandbox-type. The table illustrates the following key local-with-networking security-
sandbox-type rules:

• Loading-content operations can be used with resources from the remote realm.

• Loading-data and accessing-content-as-data operations can be used with remote-
realm resources if the appropriate distributor permission is granted.

• Loading-content operations can be used with non-.swf resources from the local
realm.

• Loading-data and accessing-content-as-data operations cannot be used with
resources from the local realm.

• Loading local-with-filesystem .swf files is strictly prohibited.

Loading data Prohibited Allowed Allowed by distributor permission
only

Table 19-4. Local-with-filesystem sandbox, selected authorized, and prohibited operations

Operation

Non-.swf
resources in the
local realm

local-with-
filesystem .swf
files

local-with-
networking .swf
files

local-trusted
.swf files

Remote-
realm
resources

Loading content Allowed Allowed Prohibited Allowed Prohibited

Accessing content as
data

Allowed n/a n/a n/a Prohibited

Cross-scripting n/a Allowed Prohibited Allowed by
creator permis-
sion only

Prohibited

Loading data Allowed n/a n/a n/a Prohibited

Table 19-3. Remote sandbox, selected authorized, and prohibited operations (continued)

Operation Local realm
Remote realm resources from
.swf ’s region of origin

Remote realm resources outside
.swf ’s region of origin

Restrictions on Loading Content, Accessing Content as Data, Cross-Scripting, and Loading Data | 421

• Loading and cross-scripting other local-with-networking .swf files is allowed.

• Cross-scripting local-trusted .swf files or remote .swf files requires creator
permission.

Table 19-6 lists the regulations imposed by the local-trusted security-sandbox-type.
The table illustrates the only local-trusted security-sandbox-type rule:

• Loading-content, accessing content as data, cross-scripting, and loading-data
operations can be used with any resource from both the local and remote realms

The local trusted security-sandbox-type gives a .swf file the greatest possible level of
freedom Flash Player offers.

We’ve now seen how four types of operations are regulated by each of the four
security-sandbox-types. Before we move to other security topics, let’s look at one last
type of operation: connecting to a socket.

Table 19-5. Local-with-networking sandbox, selected authorized, and prohibited operations

Operation

Non-.swf
resources in the
local realm

local-with-
filesystem .swf
files

local-with-
networking .swf
files

local-trusted
.swf files

Remote-realm
resources

Loading content Allowed Prohibited Allowed Allowed Allowed

Accessing con-
tent as data

Prohibited n/a n/a n/a Allowed by dis-
tributor permis-
sion only

Cross-scripting n/a Prohibited Allowed Allowed by
creator permis-
sion only

Allowed by
creator
permission only

Loading data Prohibited n/a n/a n/a Allowed by
distributor
permission only

Table 19-6. Local-trusted sandbox, selected authorized, and prohibited operations

Operation

Non-.swf
resources in the
local realm

local-with-
filesystem .swf
files

local-with-
networking .swf
files

local-trusted
.swf files

Remote-realm
resources

Content loading Allowed Allowed Allowed Allowed Allowed

Accessing
content as data

Allowed n/a n/a n/a Allowed

Cross-scripting n/a Allowed Allowed Allowed Allowed

Data loading Allowed n/a n/a n/a Allowed

422 | Chapter 19: Flash Player Security Restrictions

Socket Security
In ActionScript, socket connections are made with the XMLSocket, Socket, and
NetConnection classes. Table 19-7 and Table 19-8 list the specific locations and ports
to which the XMLSocket and Socket methods can open socket connections. The
tables do not cover the NetConnection class, which is used with Adobe Flash Media
Server and Adobe Flex. For information on NetConnection security, see the docu-
mentation for those products.

In both Table 19-7 and Table 19-8, distributor permission means the socket-server
operator has made the appropriate cross-domain policy file available; see the sec-
tion“Distributor Permissions (Policy Files),” later in this chapter.

Table 19-7 describes whether a remote .swf file can make a socket connection to the
four locations listed.

Table 19-8 describes whether a .swf file with the security-sandbox-type in the left-
most column can make a socket connection to the locations listed in the remaining
columns.

Example Security Scenarios
To give the information we’ve studied so far a practical context, let’s look at a few
examples where Flash Player’s security system prevents data from being retrieved by
an unauthorized party. Each scenario presents the technique a hacker would use to
access data if there were no Flash Player security and then describes how Flash
Player’s security system prevents the hacker from accessing the target data.

Table 19-7. Remote sandbox authorized and prohibited socket connections

Local realm, any port

Remote realm, within
.swf’s region of origin,
port 1024 and higher

Remote realm, within
.swf’s region of origin,
port 1023 and lower

Remote realm, outside
.swf ’s region of origin,
any port

Allowed by distributor
permission only

Allowed Allowed by distributor
permission only

Allowed by distributor
permission only

Table 19-8. Local sandboxes authorized and prohibited socket connections

Security-sandbox-type Local realm, any port Remote realm, any port

Local-with-filesystem Prohibited Prohibited

Local-with-networking Allowed by distributor permission only Allowed by distributor permission only

Local-trusted Allowed Allowed

Example Security Scenarios | 423

Snoopy Email Attachment—Without Flash Player Security
Joe Hacker wants to perform an identity theft on Dave User. Joe knows that Dave
reports his taxes using ABCTax software on Microsoft Windows. Joe does a little
research, and finds that ABCTax keeps each year’s tax return information in an XML
file stored in the following location: c:\ABCTax\taxreturn.xml. If Joe can get that file,
he can use the information it contains to open a bank account and apply for credit
cards in Dave’s name. So Joe sends Dave an email with a harmless looking anima-
tion, cartoon.swf, as an attachment. Dave opens the email and watches the cartoon in
a web browser on his local machine. Without Dave’s knowledge, cartoon.swf secretly
uses URLLoader.load() to retrieve taxreturn.xml from the local filesystem. Then,
cartoon.swf uses flash.net.sendToURL() to upload taxreturn.xml to Joe’s web site.

Joe gets a credit card in Dave’s name and buys a Nintendo Wii with lots of great
games.

Snoopy Email Attachment—With Flash Player Security
As before, Joe sends Dave an email with a harmless looking animation, cartoon.swf, as
an attachment. Dave opens the email and watches the cartoon in a web browser on his
local machine. Because cartoon.swf is opened from the local realm, Flash Player checks
whether the cartoon.swf file was compiled with network support. Let’s first suppose
that cartoon.swf was compiled without network support. In that case, Flash Player
assigns cartoon.swf the local-with-filesystem security-sandbox-type. As before, cartoon.
swf secretly uses URLLoader.load() to retrieve taxreturn.xml from the local filesystem.
According to Table 19-4, cartoon.swf is allowed to load that local data. Then, cartoon.
swf attempts to use flash.net.sendToURL() to upload taxreturn.xml to Joe’s web site,
but the attempt is blocked because local-with-filesystem .swf files are not allowed to
perform flash.net.sendToURL() operations. (Our earlier tables didn’t specifically cover
the security restrictions for flash.net.sendToURL(), but as mentioned earlier, you can
determine the security restrictions that apply to any method in the Flash Player API by
consulting Adobe’s ActionScript Language Reference.)

Now let’s suppose that cartoon.swf was compiled with network support. In that case,
Flash Player assigns cartoon.swf the local-with-networking security-sandbox-type. As
before, cartoon.swf attempts to secretly use URLLoader.load() to retrieve taxreturn.xml
from the local filesystem. But the attempt is blocked because, per Table 19-5, local-
with-networking .swf files cannot use data-load operations with resources from the
local realm.

Joe has to buy his own Nintendo Wii.

424 | Chapter 19: Flash Player Security Restrictions

Internal Corporate Information—Without Flash Player Security
Joe Hacker wants some insider information for a stock deal. Joe used to work at
WYZ Corporation. WYZ Corporation’s public web site is www.wyzcorp.com. Joe left
WYZ on good terms, so WYZ has hired him on contract to update the company pro-
file, profile.swf, on www.wyzcorp.com. Joe knows that WYZ is planning to release an
important product that will affect the company’s stock price. Joe also knows that
WYZ Corporation keeps its future product release dates on an internal web site that
is behind the company firewall, at the following location: strategy.wyzcorp.com/
releasedates.html. If Joe can secretly obtain the new product’s release date, he can
buy WYZ stock the day before the product ships and sell it at a profit later.

So Joe adds some code to profile.swf that uses URLLoader.load() to attempt to load
the file: strategy.wyzcorp.com/releasedates.html. An employee of WYZ then views the
company’s profile at, www.wyzcorp.com/profile.swf. Because the employee’s com-
puter is behind the firewall, it has access to strategy.wyzcorp.com, so the attempt to
load releasedates.html succeeds! Without the employee’s knowledge, profile.swf uses
flash.net.sendToURL() to upload releasedates.html to Joe’s web site.

WYZ’s stock takes off, and Joe retires to a life of painting and urban exploration.

Internal Corporate Information—With Flash Player Security
As before, Joe posts profile.swf to www.wyzcorp.com, and profile.swf uses URLLoader.
load() to attempt to load the file: strategy.wyzcorp.com/releasedates.html. An
employee of WYZ then views the company’s profile at, www.wyzcorp.com/profile.swf.
Because profile.swf is opened from the remote realm, ActionScript assigns it the
remote security-sandbox-type. When www.wyzcorp.com/profile.swf attempts to load
strategy.wyzcorp.com/releasedates.html, the attempt is blocked because, per
Table 19-3, a remote .swf file cannot use data-load operations with resources outside
its remote region of origin.

Joe hopes to get a gig making banner ads for WYZ’s new product so he can pay next
month’s rent.

Cross-Web Site Information—Without Flash Player Security
Joe Hacker wants to steal some bank account information. Joe works at Hipster Ad
Agency, which produces advertising for ReallyHuge Bank. ReallyHuge Bank has an
online banking application posted at www.reallyhugebank.com/bank.swf. The bank.swf
application loads advertising from www.hipsteradagency.com/ad.swf. Joe has looked at
bank.swf with a .swf decompiler, and knows the variables in which bank.swf stores its
users’ bank account numbers and passwords. Maliciously, Joe adds code to ad.swf that
reads those variables from its parent, bank.swf and then uses flash.net.sendToURL() to

Choosing a Local Security-Sandbox-Type | 425

send the stolen information to Joe’s web site. Whenever a bank.swf user logs into an
account, Joe receives the account number and password.

Joe donates a mysteriously large amount of money to Greenpeace.

Cross-Web Site Information—With Flash Player Security
As before, Joe adds code to ad.swf that reads those variables from its parent, bank.swf.
A user launches www.reallyhugebank.com/bank.swf, and bank.swf loads Joe’s ill-inten-
tioned www.hipsteradagency.com/ad.swf. Because ad.swf is opened from the remote
realm, ActionScript assigns it the remote security-sandbox-type. When ad.swf
attempts to read bank.swf ’s variables, the attempt is blocked because, per Table 19-3,
a remote .swf file cannot use data-load operations with resources outside its remote
region of origin.

Joe donates a modest amount of money to Greenpeace.

Choosing a Local Security-Sandbox-Type
We now have a good understanding of the safeguards provided by each security-
sandbox-type. We’ve also seen that .swf files opened or loaded from remote realm
locations are always assigned the remote security-sandbox-type, and that .swf files
opened or loaded from local realm locations are assigned one of three local security-
sandbox-types. Now let’s take a closer look at the mechanisms involved in choosing
between those three local security-sandbox-types. Each of the following three sec-
tions presents a scenario in which a developer uses one of the three local security-
sandbox-types. Each scenario describes both the rationale for, and mechanism for
choosing, each security-sandbox-type.

Compiling a Local-with-Filesystem .swf File
Susan is developing a calendar application, calendar.swf, to be posted on a hotel’s web
site. The calendar loads holiday information from an external XML file, holiday.xml.
The application is near complete, so Susan needs to send it to her client for review.
Even though calendar.swf will eventually be posted on a web site, the client wants to
demonstrate it to a variety of people at the hotel. The client won’t always have an Inter-
net connection available during demonstrations. Hence, Susan sends both calendar.swf
file and holiday.xml to the client.

In order to allow calendar.swf to load holiday.xml from the local filesystem during
the client’s demonstrations, Susan compiles calendar .swf with the -use-network
compiler flag set to false. Depending on the authoring tool Susan is using, she uses
different mechanisms to set the -use-network compiler flag. In Flex Builder 2, Susan
follows these steps to set the -use-network compiler flag to false:

426 | Chapter 19: Flash Player Security Restrictions

1. In the Navigator panel, Susan selects the project folder for the calendar
application.

2. On the Project Menu, she chooses Properties.

3. On the Properties dialog, she chooses ActionScript Compiler.

4. Under Additional compiler arguments, she enters: -use-network=false.

5. To confirm the setting, Susan clicks OK.

In Flash authoring tool, Susan follows these steps to set the -use-network compiler
flag to false:

1. On the File menu, Susan chooses Publish Settings.

2. On the Publish Settings dialog, she chooses the Flash tab.

3. In the Local playback security pulldown-menu she chooses Access local files
only.

4. To confirm the setting, Susan clicks OK.

When using the Flex SDK command-line compiler, Susan specifies the value of the
-use-network flag as an argument to mxmlc. Here is the command Susan issues
when she’s working on Microsoft Windows:

mxmlc.exe -use-network=false -file-specs c:\projects\calendar\Calendar.as
-output c:\projects\calendar\bin\Calendar.swf

Compiling a Local-with-Networking .swf File
Dorian is making a video game, race.swf, for her company’s web site. Visitors to the
web site can play the game online and submit their high scores. Dorian wants to
make a downloadable version of the game available for people to play when they are
not connected to the Internet. When the user is not connected, the downloadable
game will retain the user’s high score in a local shared object and submit the score to
the high-score server the next time the user connects to the Internet.

Dorian knows that the general public prefers not to run executable files from
unknown sources, so she chooses to make her game available as a downloadable
.swf file rather than an executable projector. To allow the game to connect to the
high-score server when running as a local .swf file, Dorian compiles race.swf with
the -use-network compiler flag set to true.

To set the -use-network flag, Dorian uses the exact same techniques that Susan used
in the preceding calendar.swf scenario but specifies the value true instead of false
when setting -use-network. When using Flash, for “Local playback security,” Dorian
chooses “Access network only” instead of “Access local files only.”

Choosing a Local Security-Sandbox-Type | 427

Granting Local Trust
Colin is making an administrator tool, admin.swf, for a socket server application.
The admin.swf file is intended to run either on the same domain as the socket server
or on the server administrator’s local filesystem. The administrator tool connects to a
remote socket server and does not load any local files, so Colin compiles it as a local-
with-networking .swf file.

The administrator tool’s first screen presents a simple server name and password
login form. When the user logs in, the administrator tool offers to remember the
server’s password. If the user accepts the offer, the administrator tool stores the pass-
word in a local shared object. Next time the user logs in, the administrator tool auto-
matically populates the login form’s password text field.

During development, Colin suddenly realizes that because admin.swf is a local-with-
networking .swf file, other local-with-networking .swf files on the same computer as
admin.swf will be permitted to load admin.swf and read the password out of the text
field!

To prevent this possible breach of security, Colin wisely decides that admin.swf must
be assigned the local-trusted security-sandbox-type. If admin.swf ’s security-sandbox-
type is local-trusted, then other local-with-networking .swf files will not be able to
read the password text field.

To make admin.swf a local trusted .swf file, Colin writes an installer that designates
admin.swf ’s location as a trusted location by placing a configuration file in the local
machine’s Global Flash Player Trust directory. Following ActionScript’s official for-
mat for local-trust configuration files, the configuration file contains only a single
line of text: the local filesystem location of admin.swf. As a result, when Flash Player
loads admin.swf from that specified location, it sets admin.swf ’s security-sandbox-
type to local-trusted.

For complete coverage of creating and managing local-trust configura-
tion files, see Adobe’s documentation, under Programming Action-
Script 3.0 ➝ Flash Player APIs ➝ Flash Player Security ➝ Overview of
permission controls ➝ Administrative user controls.

Colin also recognizes that users of the administration tool might want to move
admin.swf to arbitrary new locations. To allow the user to move admin.swf to a new
location without losing its local-trusted status, Colin includes the instructions in the
administration tool’s documentation (see sidebar).

The socket-server-administration-tool scenario just presented demonstrates the two
available mechanisms for classifying a local .swf file as trusted: configuration files on
the computer running Flash Player (which Colin’s installer provided) and the Flash
Player Settings Manager (accessed by the user). For complete coverage of the Flash

428 | Chapter 19: Flash Player Security Restrictions

Player Settings Manager, see Adobe’s documentation, under Programming Action-
Script 3.0 ➝ Flash Player APIs ➝ Flash Player Security ➝ Overview of permission con-
trols ➝ User controls.

Note that if Flash Player is running when trust is granted (via either configuration
files or the Flash Player Settings Manager), the new trust status for the affected .swf
file(s) does not come into effect until Flash Player is restarted. For the plug-in and
ActiveX control versions of Flash Player “restarting” means shutting down all
instances of Flash Player—even those in other browser windows!

Developers Automatically Trusted
To simplify the testing of local content that is intended for web deployment, Adobe’s
Flex Builder 2 automatically grants trust to projects under development. To grant
trust, it adds a path entry for each project’s output folder (typically, /bin/) to the
flexbuilder.cfg file in the User Flash Player Trust directory. Likewise, the Flash
authoring tool’s Test Movie-mode Player automatically trusts all local-realm .swf files
it opens or loads.

Consequently, when loading assets during development, you might not encounter
security violations that would affect your enduser. For example, a .swf file in a
project’s /bin/ folder would be allowed to load a local file, even if it has network-only
permissions.

To test your application as your end user will see it, be sure to run it in its target envi-
ronment. For example, for web-based applications, be sure to test over the Web. For
nontrusted local applications created in Flex Builder 2, test from a local nontrusted
directory (the system desktop is typically a nontrusted directory). For nontrusted local
applications created in the Flash authoring tool, use File ➝ Publish Preview ➝ HTML
to preview in a browser (the Flash authoring tool does not automatically trust content
previewed in a browser).

Moving admin.swf to a Custom Location
Before moving admin.swf to a new location, be sure to register it as a local-trusted .swf
file by following these steps:

1. Open the online Flash Player Settings Manager by browsing to the following
web page:
http://www.macromedia.com/support/documentation/en/flashplayer/help/
 settings_manager04.html

2. Under Global Security Settings ➝ Always trust files in these locations, click Edit
locations ➝ Add location.

3. Enter or browse to the location you wish to trust.

Distributor Permissions (Policy Files) | 429

During testing you should always explicitly verify that your applica-
tion’s security-sandbox-type matches the security-sandbox-type you
intend to use during deployment.

To check a .swf file’s security-sandbox-type at runtime, retrieve the value of the
flash.system.Security.sandboxType variable from within that .swf file.

To manually verify which directories are trusted on a given computer, consult the
trust files in the User Flash Player Trust directory and the Global Flash Player Trust
directory, and the online Flash Player Settings Manager at: http://www.adobe.com/
support/documentation/en/flashplayer/help/index.html.

To remove trust for a Flex Builder 2 project (thus simulating the end-user experience
for nontrusted applications), delete the appropriate path entry in the flexbuilder.cfg
file in the User Flash Player Trust directory. Note, however, that because Flex
Builder 2 automatically restores the flexbuilder.cfg file when it creates a new project,
you will have to delete the path entry every time you create or import a project. For
the location of the User and Global trust directories, see Adobe’s documentation,
under Programming ActionScript 3.0 ➝ Flash Player APIs ➝ Flash Player Security ➝

Overview of permission controls.

Default Local Security-Sandbox-Type
Both Flex Builder 2 and the command line compiler mxmlc set the -use-network com-
piler flag to true when it is not specified. Hence, by default, when a .swf file compiled
with either Flex Builder 2 or mxmlc runs in the local realm in any nontrusted location,
it will be assigned the local-with-networking security-sandbox-type.

By perhaps surprising contrast, the Flash authoring tool’s default value for the “Local
playback security” publishing option is “Access local files only.” Therefore, by
default, when a .swf file compiled with the Flash authoring tool runs in the local
realm in any nontrusted location, it will be assigned the local-with-filesystem secu-
rity-sandbox-type.

To avoid confusion, always explicitly specify your desired value for the -use-network
compiler flag and the Flash authoring tool’s “Local playback security” publishing
option.

Distributor Permissions (Policy Files)
Throughout this chapter, we’ve seen plenty of ways in which Flash Player’s security
system restricts a .swf file’s access to foreign resources. Now let’s examine how, in
some cases, a resource distributor can use distributor permissions to override those
restrictions.

http://www.adobe.com/support/documentation/en/flashplayer/help/index.html
http://www.adobe.com/support/documentation/en/flashplayer/help/index.html

430 | Chapter 19: Flash Player Security Restrictions

Recall that a “resource distributor” is the party that delivers a resource
from a given remote region. For example, a web site administrator and
a socket-server administrator are both resource distributors.

As the party responsible for a given remote region’s resources, a resource distributor
can grant .swf files from foreign origins access to those resources. To grant .swf files
access to a given set of resources, a resource distributor uses a special permission
mechanism known as a policy file. A policy file is a simple XML document that con-
tains a list of trusted .swf file origins. In general terms, a policy file gives .swf files
from its list of trusted origins access to resources that would otherwise be inaccessi-
ble due to Flash Player’s security restrictions.

The types of operations a policy file can potentially authorize are:

• Accessing content as data

• Loading data

• Connecting to a socket

• Import loading (discussed separately in the later section “Import Loading”)

A policy file cannot authorize cross-scripting operations. For informa-
tion on authorizing cross-scripting, see the section “Creator Permis-
sions (allowDomain()).”

Typically, policy files are used to enable interoperation between different remote
regions. For example, a policy file might give http://site-a.com/map.swf permission to
read the pixels of http://site-b.com/satellite-image.jpg or permission to load http://site-
b.com/map-data.xml.

Per Table 19-3, Table 19-5, Table 19-7, and Table 19-8, a policy file can give a .swf
file access to otherwise inaccessible resources in the following situations:

• When a remote .swf file attempts to perform an accessing-content-as-data opera-
tion on a remote-realm resource outside its region of origin

• When a remote .swf file attempts to perform a loading-data operation on a
remote-realm resource outside its region of origin

• When a local-with-networking .swf file attempts to perform an accessing-con-
tent-as-data operation on a remote-realm resource

• When a local-with-networking .swf file attempts to perform a loading-data opera-
tion on a remote-realm resource

• When a remote .swf file attempts to connect to a socket within its region of
origin, but below port 1024

• When a remote .swf file attempts to connect to a socket outside its region of
origin

Distributor Permissions (Policy Files) | 431

• When a local-with-networking .swf file attempts to connect to a socket in the
remote realm

The upcoming sections explore how a resource distributor can use a policy file to
authorize access to resources in each of the preceding situations.

For additional policy-file coverage, see Adobe’s documentation, under Programming
ActionScript 3.0 ➝ Flash Player APIs ➝ Flash Player Security ➝ Overview of permis-
sion controls ➝ Web Site controls (cross-domain policy files).

In Flash Player 6, policy files were used to allow cross-domain com-
munication only, and were, therefore, called cross-domain policy files.
Since Flash Player 7.0.19.0, policy files have also been used to allow
socket connections to low-range ports. To reflect this broader pur-
pose, this book uses the shorter term policy file, but you should expect
to see the original term, cross-domain policy file, in other
documentation.

Authorizing Loading-Data and Accessing-Content-as-Data
Operations
To grant .swf files from a given set of origins authorization to perform loading-data
or accessing-content-as-data operations on a given set of remote resources, follow
these general steps:

1. Create a policy file.

2. Post the policy file within the same remote region (i.e., domain or IP address) as
the resource to which authorization is being granted.

The next two sections cover the preceding steps in detail. Once we’ve studied how to
create and post policy files, we’ll examine the process by which a .swf file obtains
permission from a policy file to perform loading-data and accessing-content-as-data
operations.

Creating the policy file

To create a policy file, follow these steps:

1. Create a new text file.

2. Add a list of the desired authorized origins to the policy file, using Adobe’s offi-
cial policy-file syntax.

3. Save the text file.

Adobe’s official policy-file syntax is XML-based and has the following structure:

<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy
 SYSTEM "http://www.adobe.com/xml/dtds/cross-domain-policy.dtd">

432 | Chapter 19: Flash Player Security Restrictions

<cross-domain-policy>
 <allow-access-from domain="domainOrIP"/>
</cross-domain-policy>

where domainOrIP specifies the domain name or IP address of an authorized origin. A
.swf file loaded from an authorized origin is permitted to perform loading-data and
accessing-content-as-data operations on a given set of resources. As we’ll learn in the
next section, the specific set of resources to which a policy file grants access is deter-
mined by the location from which the policy file is served.

Any number of <allow-access-from> tags can be included in a policy file. For exam-
ple, the following policy file defines three authorized origins: example1.com,
example2.com, and example3.com.

<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy
 SYSTEM "http://www.adobe.com/xml/dtds/cross-domain-policy.dtd">
<cross-domain-policy>
 <allow-access-from domain="example1.com"/>
 <allow-access-from domain="example2.com"/>
 <allow-access-from domain="example3.com"/>
</cross-domain-policy>

Within the value of the domain attribute, the * character indicates a wildcard. For
example, the following policy file authorizes example1.com and any subdomain of
example1.com, no matter how deeply nested (e.g., games.example1.com, driving.
games.example1.com, and so on):

<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy
 SYSTEM "http://www.adobe.com/xml/dtds/cross-domain-policy.dtd">
<cross-domain-policy>
 <allow-access-from domain="*.example1.com"/>
</cross-domain-policy>

When used on its own, the * character authorizes all origins:

<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy
 SYSTEM "http://www.adobe.com/xml/dtds/cross-domain-policy.dtd">
<cross-domain-policy>
 <allow-access-from domain="*"/>
</cross-domain-policy>

To include the local realm as an authorized origin, a policy file must explicitly trust
all origins by specifying * (any origin) for the domain attribute. Hence, a web site
wishing to make XML files loadable by local-with-networking .swf files must specify *
for the domain attribute.

Posting the policy file

Once a policy file has been created, it must be posted within the same remote region
(i.e., domain or IP address) as the resource to which access is being granted. For

Distributor Permissions (Policy Files) | 433

example, if the policy file grants access to content at www.example.com, then the
policy file must also be posted at www.example.com.

The set of resources to which a policy file grants access is determined by the specific
location at which it is posted. When a policy file is posted in the root directory of a
web site, it grants access to the entire web site. For example, a policy file posted at
http://www.example.com grants access to all content at www.example.com.

When a policy file is posted in a subdirectory of a web site, it grants access to that
directory and its child subdirectories only. For example, a policy file posted at http:
//www.example.com/assets grants access to all content in the /assets/ directory and
its subdirectories, but does not grant access to content in the root directory of
www.example.com, nor to any other subdirectory on www.example.com.

To help automate the loading of policy files, ActionScript defines a default name and
location for policy files. Any policy file that is named crossdomain.xml and is placed
in the root directory of a web site is said to reside in the default policy file location,
and is known as the web site’s default policy file. As we’ll learn in the next two sec-
tions, placing a policy file in the default policy file location reduces the amount of
code required to obtain that policy file’s permissions.

Obtaining a policy file’s permission to load data

When a web site has a default policy file authorizing a given remote region, .swf files
from that remote region can load data from that web site by simply performing the
desired loading-data operation. For example, suppose site-a.com has the following
default policy file, which authorizes site-b.com and www.site-b.com:

<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy
 SYSTEM "http://www.adobe.com/xml/dtds/cross-domain-policy.dtd">
<cross-domain-policy>
 <allow-access-from domain="www.site-b.com"/>
 <allow-access-from domain="site-b.com"/>
</cross-domain-policy>

To load http://site-a.com/assets/file.xml, any .swf file from www.site-b.com or site-b.com
would use the following code:

var urlloader:URLLoader = new URLLoader();
urlloader.load(new URLRequest("http://site-a.com/assets/file.xml"));

Because site-a.com’s policy file is in the default location, Flash Player finds it auto-
matically and allows file.xml to load.

On the other hand, if a web site’s policy file is posted in a nondefault location, .swf
files from authorized remote regions must manually load that policy file before
attempting to load data from that web site. To manually load a policy file, we use the
Security class’s static method loadPolicyFile(), which has the following general form:

Security.loadPolicyFile("http://domainOrIP/pathToPolicyFile");

434 | Chapter 19: Flash Player Security Restrictions

In the preceding generalized code, domainOrIP is the domain or IP address at which
the policy file is posted, and pathToPolicyFile is the location of the policy file on that
server. Note that, as mentioned earlier, Flash Player considers numerically specified
IP addresses distinct from their equivalent domain names.

For example, suppose site-c.com posts the following policy file at http://site-c.com/
assets/policy.xml; the policy file authorizes site-d.com and www.site-d.com.

<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy
 SYSTEM "http://www.adobe.com/xml/dtds/cross-domain-policy.dtd">
<cross-domain-policy>
 <allow-access-from domain="www.site-d.com"/>
 <allow-access-from domain="site-d.com"/>
</cross-domain-policy>

To load http://site-c.com/assets/file.xml, any .swf file from www.site-d.com or site-d.com
would use the following code:

// Load policy file first
Security.loadPolicyFile("http://site-c.com/assets/policy.xml");
// Then perform the load operation
var urlloader:URLLoader = new URLLoader();
urlloader.load(new URLRequest("http://site-c.com/assets/file.xml"));

Notice that the preceding code issues the loading-data command immediately after
issuing the policy-file-loading command. Flash Player automatically waits for the
policy file to load before proceeding with the loading-data operation.

Once a policy file has been loaded via Security.loadPolicyFile(), its authorization
remains in effect for all future loading-data operations issued by the .swf file. For
example, the following code manually loads a policy file, and then performs two load
operations that both rely on that policy file’s authorization:

// Load policy file once
Security.loadPolicyFile("http://site-c.com/assets/policy.xml");
// Perform two authorized load operations
var urlloader1:URLLoader = new URLLoader();
urlloader1.load(new URLRequest("http://site-c.com/assets/file1.xml"));
var urlloader2:URLLoader = new URLLoader();
urlloader2.load(new URLRequest("http://site-c.com/assets/file2.xml"));

Let’s consider a practical example showing how a policy file posted in a web site’s
subdirectory might be used in a real-world situation. Suppose Graham runs a free
stock-information web site, stock-feeds-galore.com. Graham stores his latest stock
feed in an XML file, in the following location:

stock-feeds-galore.com/latest/feed.xml

Graham wants to make the contents of the /latest/ directory publicly accessible to all
Flash files from any origin but does not want to make the entire web site accessible.

Distributor Permissions (Policy Files) | 435

Hence, Graham posts the following policy file, named policy.xml, in the /latest/ direc-
tory (notice the use of the domain wildcard, *):

<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy
 SYSTEM "http://www.adobe.com/xml/dtds/cross-domain-policy.dtd">
<cross-domain-policy>
 <allow-access-from domain="*"/>
</cross-domain-policy>

Graham then posts a notice on stock-feeds-galore.com telling ActionScript develop-
ers that the location of the policy file is:

stock-feeds-galore.com/latest/policy.xml

Meanwhile, James is creating a stock-ticker application, stockticker.swf, which he
intends to post at his web site, www.some-news-site.com. James’ application loads
Graham’s stock feed. Because www.stock-feeds-galore.com’s policy file is not in the
default location, James must load the policy file before loading the stock feed. Here’s
the code James uses to load Graham’s policy file:

Security.loadPolicyFile("http://stock-feeds-galore.com/latest/policy.xml")

After issuing the request to load the policy file, James uses a URLLoader object to
load the feed.xml file, as follows:

var urlLoader:URLLoader = new URLLoader();
urlLoader.load(new URLRequest(
 "http://stock-feeds-galore.com/latest/feed.xml"));

In response, Flash Player loads http://stock-feeds-galore.com/latest/policy.xml, finds
the required authorization within that policy file, and then proceeds with the load-
ing of feed.xml.

Now that we’ve seen how to obtain a policy file’s permission to load data, let’s
explore how to obtain a policy file’s permission to perform an accessing-content-as-
data operation.

Obtaining a policy file’s permission to access content as data

The code we use to obtain a policy file’s permission to access content as data varies
according to the type of data being accessed. To obtain a policy file’s permission to
access an image as data, follow these steps:

1. If the policy file is not in the default location, load it with Security.loadPolicyFile()
(as discussed in the previous section).

2. Create a LoaderContext object, and set its checkPolicyFile variable to true.

3. Load the desired image with Loader.load(); for Loader.load()’s context parame-
ter, pass the LoaderContext object from Step 2.

4. Once the image has loaded, perform the accessing-content-as-data operation.

For example, suppose site-a.com posts the following policy file at http://site-a.com/
assets/policy.xml; the policy file authorizes site-b.com and www.site-b.com.

436 | Chapter 19: Flash Player Security Restrictions

<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy
 SYSTEM "http://www.adobe.com/xml/dtds/cross-domain-policy.dtd">
<cross-domain-policy>
 <allow-access-from domain="www.site-b.com"/>
 <allow-access-from domain="site-b.com"/>
</cross-domain-policy>

To access http://site-a.com/assets/image.jpg as data, any .swf file from www.site-b.com
or site-b.com would use the following code:

// Step 1: The policy file is not in the default location,
// so load it manually.
Security.loadPolicyFile("http://site-a.com/assets/policy.xml");

// Step 2: Create a LoaderContext object and set
// its checkPolicyFile variable to true.
var loaderContext = new LoaderContext();
loaderContext.checkPolicyFile = true;

// Step 3: Load the image. Pass the LoaderContext object to Loader.load().
theLoader.load(new URLRequest("http://site-a.com/assets/image.jpg"),
 loaderContext);

// Step 4: Later, once the application has verified that the image
// has finished loading, access the image as data
trace(theLoader.content);

To obtain a policy file’s permission to access a foreign sound as data, follow these
steps:

1. If the policy file is not in the default location, load it with Security.loadPolicyFile()
(as discussed in the preceding section).

2. Create a SoundLoaderContext object, and set its checkPolicyFile variable to true.

3. Load the desired sound with the Sound class’s instance method load(). For load()’s
context parameter, pass the SoundLoaderContext object from Step 2.

4. Once the sound has sufficiently loaded (as determined by using the Sound class’s
load-progress events), perform the authorized accessing-content-as-data
operation.

For example, suppose site-c.com has the following default policy file, which autho-
rizes site-d.com and www.site-d.com:

<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy
 SYSTEM "http://www.adobe.com/xml/dtds/cross-domain-policy.dtd">
<cross-domain-policy>
 <allow-access-from domain="www.site-d.com"/>
 <allow-access-from domain="site-d.com"/>
</cross-domain-policy>

To access http://site-c.com/sounds/song.mp3 as data, any .swf file from www.site-d.
com or site-d.com would use the following code:

Distributor Permissions (Policy Files) | 437

// Step 1: The policy file is in the default location, so no need to
// manually load it

// Step 2: Create a SoundLoaderContext object and set
// its checkPolicyFile variable to true.
var soundLoaderContext = new SoundLoaderContext();
soundLoaderContext.checkPolicyFile = true;

// Step 3: Load the sound. Pass the SoundLoaderContext object
// to Loader.load().
theSound.load(new URLRequest("http://example.com/sounds/song.mp3"),

// Step 4: Later, once the application has verified that the sound's
// ID3 data loaded (as indicated by the Event.ID3 event), access the
// sound as data
trace(theSound.id3);

Note that setting either the LoaderContext or the SoundLoaderContext class’s
instance variable checkPolicyFile to true does not determine whether an asset is
loaded. When either Loader’s load() or SoundLoader’s load() method runs, the asset
is always loaded, even when no policy file authorizes the requesting .swf file’s region
of origin; however, if code in that .swf file later attempts to access the loaded asset as
data, Flash Player will throw a SecurityError exception.

Let’s look at a real-world example showing how a web site’s default policy file might
be used to authorize an accessing-content-as-data operation.

Remember Graham’s stock-feeds-galore.com web site? It’s doing so well that Graham
finds himself with some time on his hands. He decides to experiment with Action-
Script bitmap programming and creates a facial-recognition application that can
automatically add a funny party hat to any photo of a person’s face. Graham’s pretty
pleased with himself.

Graham’s friend Andy runs a lottery corporation with a promotional web site,
www.lotterylotterylottery.com. Andy sees Graham’s party-hat application and
decides it would make a good marketing campaign. In the campaign, lottery win-
ners post their photos to photos.lotterylotterylottery.com. The main site, www.
lotterylotterylottery.com, then picks a random photo for the home page, showing a
lottery winner wearing a party hat. Andy hires Graham to produce the code for the
campaign.

Graham puts his facial-recognition application, partyhat.swf, on www.lotterylotterylottery.
com. He then writes a Perl script, randompic.pl, that returns a random photo (.jpg file) from
photos.lotterylotterylottery.com. He places randompic.pl in photos.lotterylotterylottery.com/
cgi-bin.

The partyhat.swf file from www.lotterylotterylottery.com needs access to the pixels of
loaded photos from photos.lotterylotterylottery.com. To authorize that access,

438 | Chapter 19: Flash Player Security Restrictions

Graham places the following policy file in the root of photos.lotterylotterylottery.com
and names it crossdomain.xml:

<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy
 SYSTEM "http://www.adobe.com/xml/dtds/cross-domain-policy.dtd">
<cross-domain-policy>
 <allow-access-from domain="www.lotterylotterylottery.com"/>
 <allow-access-from domain="lotterylotterylottery.com"/>
</cross-domain-policy>

Notice that Graham is careful to include both www.lotterylotterylottery.com and
lotterylotterylottery.com in the policy file. That way, partyhat.swf will function prop-
erly when loaded from either of those URLs. Graham is also careful to exclude the
domain “*” because his policy applies to specific domains only, not to the entire
world.

To load a photo, Graham uses the following code. (Notice that Security.loadPolicyFile()
is not needed because Graham posted the policy file in the default policy file location.)

var loaderContext = new LoaderContext();
loaderContext.checkPolicyFile = true;
loader.load(
 new URLRequest("http://photos.lotterylotterylottery.com/randompic.pl"),
 loaderContext);

In response, Flash Player loads http://photos.lotterylotterylottery.com/crossdomain.xml,
finds the required authorization within that policy file, loads the photo returned by
randompic.pl, and then allows partyhat.swf to access to the pixels of the loaded photo.

Once the photo is loaded, partyhat.swf safely accesses the loaded photo. For
example, here’s the code Graham uses to run the partyhat.swf method that adds
the party hat to the loaded photo (notice that the loaded image’s Bitmap object,
loader.content, is referenced by permission):

addHat(loader.content);

Now that we’ve seen how to use a policy file to authorize loading-data and accessing-
content-as-data operations, let’s explore how to use a policy file to authorize socket
connections.

Using a Policy File to Authorize Socket Connections
To authorize socket connections with a policy file follow these general steps:

1. Create the policy file.

2. Serve the policy file via a socket server or an HTTP server running on the same
domain or IP as the desired socket connection.

The next three sections cover the preceding steps in detail.

Distributor Permissions (Policy Files) | 439

Create the policy file

Policy files that grant permission to perform socket connections have the same basic
syntax as policy files that grant permission to perform loading-data and accessing-
content-as-data operations. However, in policy files that grant permission to per-
form socket connections, the <allow-access-from> tag includes an additional
attribute, to-ports, as shown in the following code:

<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy
 SYSTEM "http://www.adobe.com/xml/dtds/cross-domain-policy.dtd">
<cross-domain-policy>
 <allow-access-from domain="domainOrIP" to-ports="ports"/>
</cross-domain-policy>

The to-ports attribute specifies the ports to which a .swf file from domainOrIP is
authorized to connect. The ports can be listed individually (separated by commas),
or in ranges (separated by the - character). For example, the following policy file
grants the following permissions:

• .swf files from example1.com can connect to ports 9100 and 9200.

• .swf files from example2.com can connect to ports 10000 through 11000.
<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy
 SYSTEM "http://www.adobe.com/xml/dtds/cross-domain-policy.dtd">
<cross-domain-policy>
 <allow-access-from domain="example1.com" to-ports="9100,9200"/>
 <allow-access-from domain="example2.com" to-ports="10000-11000"/>
</cross-domain-policy>

Within the value of to-ports, the * character acts as a wildcard; when a policy file is
retrieved over a socket on a port less than 1024, * indicates that access to any port is
authorized; when a policy file is retrieved over a socket on a port greater than or
equal to 1024, * indicates that access to any port greater than or equal to 1024 is
authorized.

Because ports under 1024 are considered sensitive, a policy file served
over port 1024 or greater can never authorize access to ports below
1024, even if those ports are listed specifically.

For example, if the following policy file is served on port 2000, it grants .swf files
from example3.com permission to connect to all ports greater than or equal to 1024.

<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy
 SYSTEM "http://www.adobe.com/xml/dtds/cross-domain-policy.dtd">
<cross-domain-policy>
 <allow-access-from domain="example3.com" to-ports="*"/>
</cross-domain-policy>

440 | Chapter 19: Flash Player Security Restrictions

But when the very same policy file is served on port 1021 (which is less than 1024), it
grants .swf files from example3.com permission to connect to any port.

Therefore, to grant .swf files from any location permission to connect to any port, we
would serve the following policy file on a port below 1024:

<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy
 SYSTEM "http://www.adobe.com/xml/dtds/cross-domain-policy.dtd">
<cross-domain-policy>
 <allow-access-from domain="*" to-ports="*"/>
</cross-domain-policy>

When a policy file is retrieved over a socket, to-ports is mandatory; if it is not speci-
fied, access is not granted to any port.

Now that we know how to create a policy file that authorizes a socket connection,
let’s examine how a .swf file can obtain that policy file’s authorization.

Socket-based policy-file retrieval

Policy files that authorize socket connections can be served either directly over a
socket or via HTTP. Policy files served over a socket must be served on the same
domain or IP as the desired socket connection, either on the same port as the desired
socket connection, or on a different port. In either case, the server running on the
port over which the policy file is served must communicate with Flash Player using a
very simple policy-file-retrieval protocol. The protocol consists of a single tag,
<policy-file-request/>, which Flash Player sends over the socket when it wishes to
load a policy file authorizing a socket connection. In response, the socket server is
expected to send Flash Player the text of the policy file in ASCII format, plus a zero
byte (i.e., the ASCII null character), and then close the connection.

Hence, custom servers that wish to handle both policy file requests and normal
communications over the same port must implement code to respond to policy-file
requests as well as code to manage normal socket communications. When a server
handles policy file requests and normal communications over the same port, .swf
files from authorized regions can connect to that server by performing the desired
socket connection operation. For example, suppose a multiuser game server run-
ning at site-a.com is designed to handle both game communication and policy file
requests over port 3000. The game server’s policy file authorizes www.site-b.com
and site-b.com, as follows:

<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy
 SYSTEM "http://www.adobe.com/xml/dtds/cross-domain-policy.dtd">
<cross-domain-policy>
 <allow-access-from domain="www.site-b.com" to-ports="3000"/>
 <allow-access-from domain="site-b.com" to-ports="3000"/>
</cross-domain-policy>

Distributor Permissions (Policy Files) | 441

To connect to port 3000 at site-a.com, any .swf file loaded from www.site-b.com or
site-b.com would use the following code:

var socket:Socket = new Socket();
try {
 socket.connect("site-a.com", 3000);
} catch (e:SecurityError) {
 trace("Connection problem!");
 trace(e.message);
}

When the preceding code runs, before the requested connection to port 3000 is
allowed, Flash Player automatically makes a separate connection to port 3000 and
sends a <policy-file-request/> message to the game server. The game server
responds with site-a.com’s policy file and then closes the connection. That policy file
contains the connecting .swf file’s origin as an authorized region, so the original
socket connection is then allowed to proceed. In all, two separate connections are
made: one for the policy file, and, subsequently, one for the original socket-
connection request.

In some situations, it might not be practical or possible for a server to respond to a
Flash Player policy-file request. For example, a .swf file might wish to connect to an
existing SMTP mail server that does not understand the meaning of the instruction
<policy-file-request/>. To authorize the connection, the mail server administrator
must make a policy file available via a different port at the same domain or IP
address as the mail server. The server at that different port can be an extremely sim-
ple socket server that merely listens for connections, receives <policy-file-request/>
instructions, returns a policy file in response, and then closes the connection.

When a policy file is served on a different port than the desired socket connection (as
is the case in our mail server example), .swf files from authorized regions must load
that policy file manually before requesting the desired socket connection. To load a
policy file manually from an arbitrary port, we use the following general code:

Security.loadPolicyFile("xmlsocket://domainOrIP:portNumber");

where domainOrIP is the domain or IP address of the server, and portNumber is the
port number over which to retrieve the policy file. Once again, Flash Player consid-
ers numerically specified IP addresses distinct from their equivalent domain names.
In the preceding code, notice the mandatory use of the special xmlsocket:// proto-
col. The protocol name, “xmlsocket,” describes the type of connection used to
retrieve the policy file, not the type of connection the policy file authorizes.

A policy file loaded using the xmlsocket:// protocol authorizes con-
nections made via both Socket and XMLSocket, not just XMLSocket.

442 | Chapter 19: Flash Player Security Restrictions

Once a manual request to load a policy file has been issued, a follow-up request to con-
nect to the desired port can immediately be issued. For example, suppose site-c.com runs
a simple policy file server on port 1021, and that site-c’s policy file authorizes site-d.com
and www.site-d.com to connect to port 25. Here’s the policy file:

<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy
 SYSTEM "http://www.adobe.com/xml/dtds/cross-domain-policy.dtd">
<cross-domain-policy>
 <allow-access-from domain="www.site-d.com" to-ports="25"/>
 <allow-access-from domain="site-d.com" to-ports="25"/>
</cross-domain-policy>

To connect to port 25 at site-c.com, any .swf file loaded from site-d.com or www.
site-d.com would use the following code. Notice that the .swf file requests the
socket connection to port 25 immediately after issuing the request to load the pol-
icy file over port 1021. Flash Player patiently waits for the policy file to load before
proceeding with the connection to port 25.

// Load the policy file manually
Security.loadPolicyFile("xmlsocket://site-c.com:1021");
var socket:Socket = new Socket();
try {
 // Attempt the connection (immediately after policy file has
 // been requested)
 socket.connect("site-c.com", 25);
} catch (e:SecurityError) {
 trace("Connection problem!");
 trace(e.message);
}

When the preceding code runs, before allowing the requested connection to port 25,
Flash Player makes a separate connection to port 1021 and sends a <policy-file-
request/> message to the server listening on that port. The server on port 1021
responds with site-c.com’s policy file and then closes the connection. That policy file
contains the connecting .swf file’s origin as an authorized region, so the connection to
port 25 is then allowed to proceed.

Now let’s take a look at an alternative way to authorize a socket-connection: HTTP-
based policy files.

HTTP-based policy-file retrieval

Prior to Flash Player 7.0.19.0, Flash Player required policy files authorizing socket
connections to be served over HTTP. Primarily for backwards compatibility, Action-
Script 3.0 continues to support the authorization of socket connections by policy
files served over HTTP. However, in order to authorize a socket connection, a policy
file served via HTTP must meet the following requirements:

• It must be named crossdomain.xml.

• It must reside in the web server’s root directory.

Distributor Permissions (Policy Files) | 443

• It must be served over port 80 at the domain or IP address of the desired socket
connection.

• In ActionScript 3.0, it must be manually loaded via Security.loadPolicyFile().

Furthermore, policy files served via HTTP do not use the to-ports attribute; instead,
they simply grant access to all ports greater than or equal to 1024.

A policy file served via HTTP cannot authorize socket connections to
ports under 1024. (However, note that due to a bug, this rule was not
enforced prior to Flash Player Version 9.0.28.0.)

To gain an HTTP-based policy file’s permission to perform a given socket connec-
tion, we must manually load that policy file before attempting the connection, as
shown in the following general code:

Security.loadPolicyFile("http://domainOrIP/crossdomain.xml");

In the preceding code, domainOrIP is the exact domain or IP address of the desired
socket connection.

Once a request to load a policy file over HTTP has been issued, a follow-up request to
connect to the desired port can immediately be issued. For example, suppose site-a.com
has the following policy file posted on a web server at http://site-a.com/crossdomain.xml;
the policy file authorizes site-b.com and www.site-b.com:

<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy
 SYSTEM "http://www.adobe.com/xml/dtds/cross-domain-policy.dtd">
<cross-domain-policy>
 <allow-access-from domain="www.site-b.com"/>
 <allow-access-from domain="site-b.com"/>
</cross-domain-policy>

To connect to port 9100 at site-a.com, any .swf file loaded from site-b.com or
www.site-b.com would use the following code.

// Request policy file via HTTP before making connection attempt
Security.loadPolicyFile("http://site-a.com/crossdomain.xml");
var socket:Socket = new Socket();
try {
 // Attempt connection (immediately after policy file has
 // been requested)
 socket.connect("site-a.com", 9100);
} catch (e:SecurityError) {
 trace("Connection problem!");
 trace(e.message);
}

When the preceding code runs, before allowing the requested connection to port
9100, Flash Player loads site-c.com’s policy file over HTTP. That policy file contains

444 | Chapter 19: Flash Player Security Restrictions

the connecting .swf file’s origin as an authorized region, so the connection to port
9100 is then allowed to proceed.

We’re now finished studying the ways in which a resource distributor can give for-
eign .swf files permission to load data, access content as data, and connect to sock-
ets. In the next section, we’ll continue our study of Flash Player’s permission
mechanisms, examining how a .swf file’s creator can grant cross-scripting permis-
sions to .swf files from foreign origins.

Creator Permissions (allowDomain())
We’ve just learned that distributor permissions are used to authorize accessing-con-
tent-as-data, loading-data, and socket-connection operations. Distributor permis-
sions are so named because they must be put in place by the distributor of the
resource to which they grant access.

By contrast, creator permissions are permissions put in place by the creator of a .swf
file rather than its distributor. Creator permissions are more limited than distributor
permissions; they affect cross-scripting and HTML-to-SWF scripting operations
only.

This book does not cover HTML-to-SWF-scripting operations. For details
on security and HTML-to-SWF scripting, see the entries for the Security
class’s static methods allowDomain() and allowInsecureDomain() in
Adobe’s ActionScript Language Reference.

Unlike distributor permissions, which are served independently of the content to
which they grant access, creator permissions are issued from within .swf files. By call-
ing Security.allowDomain() in a .swf file, a developer can grant .swf files from for-
eign origins permission to cross-script that .swf file. For example, if app.swf includes
the following line of code:

Security.allowDomain("site-b.com");

then any .swf file loaded from site-b.com can cross-script app.swf. Furthermore,
because the call to allowDomain() occurs within a .swf file, the permissions granted
are effective no matter where that .swf file is posted.

In contrast to distributor permissions, creator permissions travel with
the .swf file in which they occur.

The allowDomain() method has the following general form:

Security.allowDomain("domainOrIP1", "domainOrIP2",..."domainOrIPn")

Creator Permissions (allowDomain()) | 445

where "domainOrIP1", "domainOrIP2",..."domainOrIPn" is a list of strings containing
the domain names or IP addresses of authorized origins. A .swf file loaded from an
authorized origin can perform cross-scripting operations on the .swf file that invoked
allowDomain().

As with policy files, the * character indicates a wildcard. For example, the following
code authorizes all origins (i.e., any .swf file from any origin can cross-script the .swf
file that contains the following line of code):

Security.allowDomain("*");

To include the local realm as an authorized origin, allowDomain() must specify *
(any origin) as an authorized domain. For example, a .swf file wishing to allow cross-
scripting by local-with-networking .swf files must specify * as an authorized domain.

However, when used with allowDomain(), the * character cannot be used as a sub-
domain wildcard. (This contrasts, somewhat confusingly, with policy file wildcard
usage.) For example, the following code does not authorize all subdomains of
example.com:

// Warning: Do not use this code! Subdomain wildcards are not supported.
Security.allowDomain("*.example.com");

Once an allowDomain() invocation completes, any .swf file from an authorized ori-
gin can immediately perform authorized operations. For example, suppose a televi-
sion network maintains a generic animation player application posted at www.
sometvnetwork.com. The animation player loads animations in .swf-format from
animation.sometvnetwork.com. To control the playback of the loaded animations,
the animation player invokes basic MovieClip methods (play(), stop(), etc.) on them.
Because the animation player and the animations it loads originate from different
subdomains, the animation player must obtain permission to invoke MovieClip
methods on the animations. Each animation’s main class constructor, hence,
includes the following line of code, which gives the animation player the permission
it needs:

Security.allowDomain("www.sometvnetwork.com", "sometvnetwork.com");

Notice that because the animation player can be opened via www.sometvnetwork.com or
sometvnetwork.com, the animation files grant permission to both domains. To load the ani-
mations, the animation player uses the following code:

var loader:Loader = new Loader();
loader.load(
 new URLRequest("http://animation.sometvnetwork.com/animationName.swf"));

As soon as each animation’s main class constructor method runs, the animation
player can immediately begin controlling the loaded animation.

446 | Chapter 19: Flash Player Security Restrictions

To ensure that cross-scripting permissions are applied immediately
after a .swf file initializes, call Security.allowDomain() within that .swf
file’s main class constructor method.

A .swf file can determine whether it is currently authorized to cross-script a loaded .swf
file by checking the childAllowsParent variable of the loaded .swf file’s LoaderInfo
object.

For more information on loading .swf files, see Chapter 28. For information on
invoking movie clip methods on loaded .swf files, see the section “Compile-time
Type Checking for Runtime-Loaded Assets” in Chapter 28.

Allowing .swf Files Served Over HTTP to Cross-Script .swf Files
Served Over HTTPS
When a .swf file is served over HTTPS, Flash Player prevents allowDomain() call
from granting authorization to non-HTTPS origins. However, developers wishing to
authorize non-HTTPS origins from a .swf file served over HTTPS can, with due cau-
tion, use Security.allowInsecureDomain().

Authorizing a non-HTTPS origin from a .swf file loaded over HTTPS is
considered dangerously insecure and is strongly discouraged.

The syntax and usage of allowInsecureDomain() is identical to that of allowDomain(), as
discussed in the previous section. The allowInsecureDomain() method is different only in
its ability to authorize non-HTTPS origins from a .swf file served over HTTPS. In the vast
majority of situations, you should use allowDomain() rather than allowInsecureDomain()
when issuing creator permissions. For a description of the special situations that call for
the use of allowInsecureDomain(), see Security.allowInsecureDomain() in Adobe’s
ActionScript Language Reference.

Import Loading
In Chapter 28, we’ll see how a parent .swf file can load a child .swf file in a spe-
cial way that lets the parent use the child’s classes directly, as though they were
defined by the parent. The technique requires that the parent .swf file import the
child .swf file’s classes into its application domain. Here’s the basic code required
in the parent .swf file (notice the use of the LoaderContext class’s instance vari-
able applicationDomain):

var loaderContext:LoaderContext = new LoaderContext();
loaderContext.applicationDomain = ApplicationDomain.currentDomain;
var loader:Loader = new Loader();

Import Loading | 447

loader.load(new URLRequest("child.swf"), loaderContext);

When the preceding code runs, the attempt to import the child’s classes into the par-
ent’s application domain will be blocked by Flash Player’s security system in the fol-
lowing situations:

• If the parent .swf file and the child .swf file are loaded from different remote
regions in the remote realm

• If the parent .swf file is loaded from the local realm and has a different security-
sandbox-type than the child .swf file

In the first of the preceding cases, the distributor of the child .swf file can use a pol-
icy file to give the parent .swf file permission to import the child .swf file’s classes.
The steps required by the child .swf file’s distributor and the parent .swf file’s creator
are as follows:

1. The child .swf file’s distributor must post a policy file authorizing the parent .swf
file’s origin, as shown in the earlier section, “Distributor Permissions (Policy
Files).”

2. If the policy file is not in the default location, the parent must load it manually
with Security.loadPolicyFile(), again, per the earlier section, “Distributor Permis-
sions (Policy Files).”

3. When loading the child .swf file, the parent .swf file must pass load() a
LoaderContext object whose securityDomain variable is set to flash.system.
SecurityDomain.currentDomain.

For example, suppose site-a.com has the following default policy file, which autho-
rizes site-b.com and www.site-b.com:

<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy
 SYSTEM "http://www.adobe.com/xml/dtds/cross-domain-policy.dtd">
<cross-domain-policy>
 <allow-access-from domain="www.site-b.com"/>
 <allow-access-from domain="site-b.com"/>
</cross-domain-policy>

Now suppose site-b.com/parent.swf wants to import site-a.com/child.swf ’s classes
into its application domain. To do so, site-b.com/parent.swf uses the following code
(notice that Security.loadPolicyFile() is not used because the policy file is in the
default policy file location):

var loaderContext:LoaderContext = new LoaderContext();
loaderContext.applicationDomain = ApplicationDomain.currentDomain;
loaderContext.securityDomain = SecurityDomain.currentDomain;
loader.load(new URLRequest("http://site-a.com/child.swf"), loaderContext);

Using the securityDomain variable to gain distributor permission to import a .swf
file’s classes into an application domain (as shown in the preceding code) is known
as import loading.

448 | Chapter 19: Flash Player Security Restrictions

Note that when a given .swf file, a.swf, uses import loading to load another .swf
file, b.swf, Flash Player treats b.swf as though it were first copied to, and then
loaded directly from a.swf’s server. Hence, b.swf adopts a.swf ’s security privileges,
and b.swf ’s original security relationship with its actual origin is annulled. For
example, b.swf file loses the ability to access resources from its actual origin via rel-
ative URLs. Hence, when using import loading, always test whether the loaded .
swf file continues to function as desired once loaded.

Import loading is not required in the following situations because the parent .swf file
is inherently permitted to import the child .swf file’s classes into its application
domain:

• A local .swf imports classes from another local .swf with the same security-sand-
box-type.

• A remote .swf imports classes from another remote .swf from the same remote
region.

For a full discussion of accessing classes in loaded .swf files, see the section “Com-
pile-time Type Checking for Runtime-Loaded Assets” in Chapter 28 and see
Chapter 31.

Handling Security Violations
Throughout this chapter we’ve seen a variety of security rules that govern a .swf file’s
ability to perform various ActionScript operations. When an operation fails because
it violates a security rule, ActionScript 3.0 either throws a SecurityError exception or
dispatches a SecurityErrorEvent.SECURITY_ERROR.

A SecurityError exception is thrown when an operation can immediately be judged
to be in violation of a security rule. For example, if a local-with-filesystem .swf file
attempts to open a socket connection, ActionScript immediately detects a security
violation and throws a SecurityError exception.

By contrast, a SecurityErrorEvent.SECURITY_ERROR event is dispatched when, after
waiting for some asynchronous task to complete, ActionScript deems an operation in
violation of a security rule. For example, when a local-with-networking .swf file uses
the URLLoader class’s instance method load() to load a file from the remote realm,
ActionScript must asynchronously check for a valid policy file authorizing the load
operation. If the policy-file check fails, ActionScript dispatches a
SecurityErrorEvent.SECURITY_ERROR event (note, not a SecurityError exception).

In the debug version of Flash Player, uncaught SecurityError exceptions and unhan-
dled SecurityErrorEvent.SECURITY_ERROR events are easy to spot; every time one
occurs, Flash Player launches a dialog box explaining the problem. By stark con-
trast, in the release version of Flash Player, uncaught SecurityError exceptions and
unhandled SecurityErrorEvent.SECURITY_ERROR events cause a silent failure that can
be extremely difficult to diagnose.

Handling Security Violations | 449

To ensure that no security violation goes unnoticed, always test code
in the debug version of Flash Player.

To handle security errors, we use the try/catch/finally statement. To handle
SecurityErrorEvent.SECURITY_ERROR events, we use event listeners. For example, the
following code generates a SecurityError by attempting to open a socket connection
to a port above 65535. When the error occurs, the code adds a failure message to an
onscreen TextField, output.

var socket:Socket = new Socket();
try {
 socket.connect("example.com", 70000);
} catch (e:SecurityError) {
 output.appendText("Connection problem!\n");
 output.appendText(e.message);
}

Similarly, by attempting to load a datafile from a web site that does not have a policy
file, a local-with-networking .swf file containing the following code would cause a
SecurityErrorEvent.SECURITY_ERROR event. Before attempting the load operation, the
code registers an event listener that executes when the SecurityErrorEvent.SECURITY_
ERROR is dispatched.

var urlloader:URLLoader = new URLLoader();
// Register event listener
urlloader.addEventListener(SecurityErrorEvent.SECURITY_ERROR,
 securityErrorListener);
// Perform security violation
urlloader.load(new URLRequest("http://www.example.com/index.xml"));

As of the printing of this book, example.com does not have a policy file
posted in the default location, and the preceding code, therefore,
causes a SecurityErrorEvent.SECURITY_ERROR event.

The event listener for the preceding SecurityErrorEvent.SECURITY_ERROR event,
shown next, adds a failure message to an onscreen TextField, output:

private function securityErrorListener (e:SecurityErrorEvent):void {
 output.appendText("Loading problem!\n");
 output.appendText(e.text);
}

To determine whether a given operation can potentially generate a SecurityError
exception or cause a SecurityErrorEvent.SECURITY_ERROR event, consult that opera-
tion’s entry in Adobe’s ActionScript Language Reference. Each operation’s entry lists
potential SecurityError exceptions under the heading “Throws” and potential
SecurityErrorEvent.SECURITY_ERROR events under the heading “Events.”

450 | Chapter 19: Flash Player Security Restrictions

In most cases, the class that defines the operation that generates a
SecurityErrorEvent.SECURITY_ERROR event is also the class with which event listeners
should be registered. For example, the URLLoader class defines the load() opera-
tion, which has the potential to cause SecurityErrorEvent.SECURITY_ERROR events.
Event listeners that handle SecurityErrorEvent.SECURITY_ERROR events caused by the
URLLoader class’s instance method load(), are registered with the URLLoader
instance on which load() is invoked. The following code demonstrates:

// When using URLLoader, register for events with the URLLoader instance.
var urlloader:URLLoader = new URLLoader();
urlloader.addEventListener(SecurityErrorEvent.SECURITY_ERROR,
 securityErrorListener);

However, in some cases, the class that defines the operation that generates a
SecurityErrorEvent.SECURITY_ERROR event is not also the class with which event lis-
teners should be registered. For example, the Loader class defines the load() opera-
tion, which has the potential to cause SecurityErrorEvent.SECURITY_ERROR events.
But event listeners that handle those events must be registered with the LoaderInfo
instance associated with the load() operation—not with the Loader instance on
which load() was invoked. Again, the following code demonstrates:

// When using Loader, register for events with the LoaderInfo instance.
var loader:Loader = new Loader();
loader.contentLoaderInfo.addEventListener(SecurityErrorEvent.SECURITY_ERROR,
 securityErrorListener);

To determine the class with which SecurityErrorEvent.SECURITY_ERROR event listen-
ers should be registered for any given operation, see Adobe’s ActionScript Language
Reference. Specifically, look under the class description for the class that defines the
operation causing the SecurityErrorEvent.SECURITY_ERROR event.

Security Domains
This section is intended to equip you with a basic understanding of the term security
domain and its casual equivalent security sandbox, which is commonly used in
Adobe’s documentation and other third-party resources. For reasons described in the
next section this book avoids the use of both terms.

Taken in combination, a given .swf file and the logical set of resources which that .swf
file can freely access via accessing-content-as-data, loading-data, and cross-scripting
operations (per Table 19-3 through Table 19-6) conceptually form a group known as a
security domain. From the perspective of a .swf file from each of the four security-sand-
box-types, Table 19-9 lists the constituents of that .swf file’s security domain.

Don’t confuse security-sandbox-type with security domain. A security-
sandbox-type is a .swf file’s general security status, while a security
domain is a logical set of resources. A .swf file’s security-sandbox-type
actually determines its security domain, much as an employee’s corpo-
rate rank might determine the accessible areas of a company building.

Security Domains | 451

For the purposes of discussion, security domains are often described in regional
terms, as a metaphorical safe zone. Therefore, a .swf file might be said to belong to,
reside in, or be placed in its security domain. Likewise, a resource might be described
as accessible to a .swf file because it belongs to that .swf file’s security domain.

There are only four security-sandbox-types, but for each security-sandbox-type
there are many security domains. For example, every .swf file in the remote realm
has the same security-sandbox-type: remote. But a remote .swf file from site-a.com
and a remote .swf file from site-b.com are part of two different security domains (one
for site-a.com and one for site-b.com). Likewise, every .swf file in a trusted location
of the local realm has the same security-sandbox-type: local-trusted. But two local-
trusted .swf files from different corporate LANs are part of two different security
domains (one for each LAN).

Adobe’s documentation often uses the term security domain (and its casual equiva-
lent security sandbox) when describing the resources that a .swf file can and cannot
access.

Ambiguous Use of the Term “Sandbox”
As we learned in the previous section, both third-party literature on Flash Player
security and Adobe’s documentation often use the term security sandbox or even
simply sandbox as a casual equivalent of the formal term security domain. Further-
more, in some rare cases, third-party literature and Adobe’s documentation also use
the term security sandbox as a casual equivalent of the term security-sandbox-type.

When reading security-related documentation outside this book, be
aware that the term “sandbox” is normally used to mean security
domain, and might, in some cases, be used to mean security-sandbox-
type.

To avoid similar confusion, this book forgoes the use of the casual terms security
sandbox and sandbox entirely, and uses the official term security domain only when
absolutely necessary (for example, when discussing the built-in SecurityDomain

Table 19-9. Security domains by security-sandbox-type

.swf file’s security-sandbox-type Security domain constituents

Remote • Non-.swf resources from the .swf ’s region of origin
• .swf files from the .swf ’s region of origin

Local-with-filesystem • Non-.swf resources in the local realm
• local-with-filesystem .swf files in the local realm

Local-with-networking • local-with-networking .swf files in the local realm

Local-trusted • All non-.swf resources in the local and remote realms
• local-trusted .swf files in the local realm

452 | Chapter 19: Flash Player Security Restrictions

class). Rather than use those terms, this book always describes a .swf file’s security
status relative to its security-sandbox-type. This book also lists the resources a .swf
file can access explicitly, rather than using the general term security domain to
describe a logical group of accessible resources.

For example, consider the following sentence from Adobe’s Programming Action-
Script 3.0 ➝ Flash Player APIs ➝ Flash Player Security ➝ Security sandboxes ➝ Local
sandboxes:

Local files that are registered as trusted are placed in the local-trusted sandbox.

In the vocabulary preferred by this book, the preceding excerpt would read:

Local files that are registered as trusted are assigned a security-sandbox-type of local-
trusted.

Next, consider this sentence, this time from Adobe’s Programming ActionScript 3.0
➝ Flash Player APIs ➝ Flash Player Security ➝ Accessing loaded media as data:

By default, a SWF file from one security sandbox cannot obtain pixel data or audio
data from graphic or audio objects rendered or played by loaded media in another
sandbox.

In the vocabulary preferred by this book, the preceding excerpt would read:

By default, a SWF file from one security domain cannot obtain pixel data or audio data
from graphic or audio objects rendered or played by loaded media outside that security
domain.

In Adobe’s documentation and third-party sources, if the meaning of the term “sand-
box” seems ambiguous, focus on the security-sandbox-type being discussed and the
operation being allowed or prohibited. If all else fails, simply attempt to perform the
operation you wish to perform, and rely on compiler and runtime security error mes-
sages to determine if the operation is allowed. However, to be sure you encounter all
possible security error messages, follow the guidance provided earlier in the section
“Developers Automatically Trusted” and test in the debug version of Flash Player.
Also remember that you can check a .swf file’s security-sandbox-type at runtime via
the flash.system.Security.sandboxType variable. Knowing a .swf file’s security-sand-
box-type will help you identify the security restrictions placed on that .swf file by
Flash Player.

Two Common Security-Related Development Issues
Over the course of this chapter we’ve studied a variety of security restrictions and
permissions systems. Let’s finish our study of Flash Player security by looking at two
security scenarios that commonly occur in the typical ActionScript development pro-
cess: accessing Internet subdomains and accessing the Loader class’s instance vari-
able content. Each scenario presents a limitation and the corresponding workaround
for that limitation.

Two Common Security-Related Development Issues | 453

Accessing Internet Subdomains
Earlier in Table 19-3, we learned that a remote .swf can load data from its remote
region of origin only. In the section “The Local Realm, the Remote Realm, and
Remote Regions,” we also learned that two different Internet subdomains, such as
www.example.com and games.example.com are considered different remote
regions. Hence, a .swf loaded from http://example.com can load any datafile posted
at http://example.com, but cannot load datafiles posted on any other domain,
including subdomains such as games.example.com. Perhaps surprisingly, this
means that a .swf file loaded from http://example.com cannot use an absolute URL
to access a file posted on www.example.com. To grant a .swf file loaded from
example.com permission to load assets from www.example.com, use a policy file, as
described in the earlier section “Distributor Permissions (Policy Files).”

The following steps describe how the owner of example.com would supply a policy
file allowing .swf files accessed via example.com to load datafiles from www.example.
com, and vice versa.

1. Create a new text file named crossdomain.xml.

2. Open crossdomain.xml in a text editor.

3. Add the following XML code to the file:
<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy
 SYSTEM "http://www.adobe.com/xml/dtds/cross-domain-policy.dtd">
<cross-domain-policy>
 <allow-access-from domain="www.example.com" />
 <allow-access-from domain="example.com" />
</cross-domain-policy>

4. Save crossdomain.xml.

5. Upload crossdomain.xml to the root directory of example.com (i.e., so that the
file can be accessed at http://example.com/crossdomain.xml).

Accessing the Loader Class’s Instance Variable Content
When an external display asset is loaded using a Loader object, an instance of the
loaded asset is placed in the Loader object’s content variable. As we learned in the
earlier section “Accessing Content as Data,” accessing the content variable is consid-
ered either an accessing-content-as-data operation (if the object contained by content
is an image) or a cross-scripting operation (if the object contained by content is a .swf
file’s main-class instance). Therefore, according to the security-sandbox-type restric-
tions covered in Table 19-3, Table 19-4, and Table 19-5, accessing a loaded asset
using content without appropriate permission will cause a security error in the fol-
lowing situations:

454 | Chapter 19: Flash Player Security Restrictions

• When a remote .swf file uses content to access a resource that originates from a
different remote region

• When a local-with-networking .swf file uses content to access a resource that
originates from the remote realm

• When a local-with-networking .swf file uses content to access a local-trusted .swf
file

• When a local-with-filesystem .swf file uses content to access a local-trusted .swf
file

If you face any of the preceding situations in your code, you should consider whether
you can avoid using content entirely. If your application needs only to display the
loaded asset on screen, then access to content is not required. To display a loaded
asset onscreen without accessing content, simply add its Loader object—rather than
the value of content—directly to the display list. For details and example code, see
the section “Displaying the Loaded Asset On Screen” in Chapter 28.

Note however, that in the following situations, content is required, and the appropri-
ate creator or distributor permissions must be in place to avoid security violations:

• When the .swf file that loaded the asset needs access to the asset’s data—for
example, to read the pixels of a bitmap image

• When the .swf file that loaded the asset needs to cross-script the loaded asset

• When the loaded asset must be accessed directly as an object—for example,
when the object representing the loaded asset must be passed to a method that
expects an Bitmap object as an argument

For more information on the Loader class, see Chapter 28. For more information on
the display list, see Chapter 20.

On to Part II!
Over the past 19 chapters, we’ve examined most of ActionScript’s core concepts. In
Part II, we’ll turn our attention to a specific part of the Flash runtime API known as
the display API. There are lots of code examples and real-world programming scenar-
ios to come, so get ready to apply your hard-earned knowledge of the core Action-
Script language!

PART II

II.Display and Interactivity

Part II explores techniques for displaying content on screen and responding to input
events. Topics covered include the Flash runtime display API, hierarchical event han-
dling, mouse and keyboard interactivity, animation, vector graphics, bitmap
graphics, text, and content loading operations.

When you complete Part II, you will be ready to add graphical content and interac-
tivity to your own applications.

Chapter 20, The Display API and the Display List

Chapter 21, Events and Display Hierarchies

Chapter 22, Interactivity

Chapter 23, Screen Updates

Chapter 24, Programmatic Animation

Chapter 25, Drawing with Vectors

Chapter 26, Bitmap Programming

Chapter 27, Text Display and Input

Chapter 28, Loading External Display Assets

457

Chapter 20 CHAPTER 20

The Display API and the Display List21

One of the primary activities of ActionScript programming is displaying things on
the screen. Accordingly, the Flash platform provides a wide range of tools for creat-
ing and manipulating graphical content. These tools can be broken into two general
categories:

• The Flash runtime display API, a set of classes for working with interactive visual
objects, bitmaps, and vector content

• Ready-made user interface components:

• The Flex framework’s UI component set, a sophisticated collection of cus-
tomizable user-interface widgets built on top of the display API

• The Flash authoring tool’s UI component set, a collection of user-interface
widgets with a smaller file size, lower memory usage, and fewer features
than Flex framework’s UI component set

The display API is built directly into all Flash runtimes and is, therefore, available to
all .swf files. The display API is designed for producing highly customized user inter-
faces or visual effects, such as those often found in motion graphics and games. This
chapter focuses entirely on the display API.

The Flex framework’s UI component set is part of the Flex framework, an external
class library included with Adobe Flex Builder and also available in standalone form
for free at: http://www.adobe.com/go/flex2_sdk. The Flex framework’s UI component
set is designed for building applications with relatively standard user interface con-
trols (scrollbars, pull-down menus, data grids, etc.). The Flex framework’s interface
widgets are typically used in MXML applications, but can also be included in prima-
rily ActionScript-based applications. For details on using the Flex framework in
ActionScript, see Chapter 30.

The Flash authoring tool’s UI component set is designed for use with .swf files cre-
ated in the Flash authoring tool, and for situations where file size and low memory
usage are more important than advanced component features such as data binding
and advanced styling options. The Flash authoring tool’s UI component set and the

http://www.adobe.com/go/flex2_sdk

458 | Chapter 20: The Display API and the Display List

Flex framework’s UI component set share a very similar API, allowing developers to
reuse knowledge when moving between the two component sets.

In Flash Player 8 and older, ActionScript provided the following four basic building
blocks for creating and managing visual content:

Movie clip
A container for graphical content, providing interactivity, primitive drawing,
hierarchical layout, and animation feature

Text field
A rectangular region containing a formatted text

Button
An input control representing a very simple interactive “push button”

Bitmap (introduced in Flash Player 8)
A graphic in bitmap-format

The preceding items continue to be available in the display API, but the classes repre-
senting them in ActionScript 3.0 (MovieClip, TextField, SimpleButton, and Bitmap)
have been enhanced and revised, and situated logically within a larger context.

Display API Overview
In ActionScript, all graphical content is created and manipulated using the classes in
the display API. Even the interface widgets in the Flex framework and Flash author-
ing tool component sets use the display API as a graphical foundation. Many display
API classes directly represent a specific type of on-screen graphical content. For
example, the Bitmap class represents bitmap graphics, the Sprite class represents
interactive graphics, and the TextField class represents formatted text. For the pur-
poses of discussion, we’ll refer to classes that directly represent on-screen content
(and superclasses of such classes) as core display classes. The remaining classes in the
display API define supplementary graphical information and functionality but do
not, themselves, represent on-screen content. For example, the CapStyle and
JointStyle classes define constants representing line-drawing preferences, while the
Graphics and BitmapData classes define a variety of primitive drawing operations.
We’ll refer to these nondisplay classes as supporting display classes. Whether core or
supporting, most of the display API classes reside in the package flash.display.

The core display classes, shown in Figure 20-1, are arranged in a class hierarchy that
reflects three general tiers of functionality: display, user interactivity, and contain-
ment. Accordingly, the three central classes in the display API are: DisplayObject,
InteractiveObject, and DisplayObjectContainer. Those three classes cannot be instan-
tiated directly but rather provide abstract functionality that is applied by various con-
crete subclasses.

Display API Overview | 459

As discussed in Chapter 6, ActionScript 3.0 does not support true abstract classes.
Hence, in Figure 20-1, DisplayObject, InteractiveObject, and DisplayObjectContainer
are listed not as abstract classes, but as abstract-style classes. However, despite this
technicality, for the sake of brevity in the remainder of this chapter, we’ll use the
shorter term “abstract” when referring to the architectural role played by
DisplayObject, InteractiveObject, and DisplayObjectContainer.

DisplayObject, the root of the core-display class hierarchy, defines the display API’s
first tier of graphical functionality: on-screen display. All classes that inherit from
DisplayObject gain a common set of fundamental graphical characteristics and capa-
bilities. For example, every descendant of DisplayObject can be positioned, sized,
and rotated with the variables x, y, width, height, and rotation. More than just a
simple base class, DisplayObject is the source of many sophisticated capabilities in
the display API, including (but not limited to):

• Converting coordinates (see the DisplayObject class’s instance methods
localToGlobal() and globalToLocal() in Adobe’s ActionScript Language
Reference)

• Checking intersections between objects and points (see the DisplayObject class’s
instance methods hitTestObject() and hitTestPoint() in Adobe’s ActionScript
Language Reference)

Figure 20-1. Core-display class hierarchy

DisplayObject

InteractiveObject MorphShape StaticTextShape

DisplayObjectContainer SimpleButtonTextField

Sprite

MovieClip

LoaderStage

BitmapVideo

Concrete display class

Authoring-tool only content

Abstract-style class

460 | Chapter 20: The Display API and the Display List

• Applying filters, transforms, and masks (see the DisplayObject class’s instance
variables filters, transform, and mask in Adobe’s ActionScript Language
Reference)

• Scaling disproportionately for “stretchy” graphical layouts (see the DisplayObject
class’s instance variable scale9grid in Adobe’s ActionScript Language Reference)

Note that this book occasionally uses the informal term “display object” to mean any
instance of a class descending from the DisplayObject class.

DisplayObject’s direct concrete subclasses—Video, Bitmap, Shape, MorphShape, and
StaticText—represent the simplest type of displayable content: basic on-screen
graphics that cannot receive input or contain nested visual content. The Video class
represents streaming video. The Bitmap class renders bitmap graphics created and
manipulated with the supporting BitmapData class. The Shape class provides a sim-
ple, lightweight canvas for vector drawing. And the special MorphShape and
StaticText classes represent, respectively, shape tweens and static text created in the
Flash authoring tool. Neither MorphShape nor StaticText can be instantiated with
ActionScript.

DisplayObject’s only abstract subclass, InteractiveObject, establishes the second tier
of functionality in the display API: interactivity. All classes that inherit from
InteractiveObject gain the ability to respond to input events from the user’s mouse
and keyboard. InteractiveObject’s direct concrete subclasses—TextField and
SimpleButton—represent two distinct kinds of interactive graphical content. The
TextField class represents a rectangular area for displaying formatted text and receiv-
ing text-based user input. The SimpleButton class represents Button symbols created
in the Flash authoring tool and can also quickly create interactive buttons via Action-
Script code. By responding to the input events broadcast by the TextField or
SimpleButton, the programmer can add interactivity to an application. For example,
a TextField instance can be programmed to change background color in response to
a FocusEvent.FOCUS_IN event, and a SimpleButton instance can be programmed to
submit a form in response to a MouseEvent.CLICK event.

InteractiveObject’s only abstract subclass, DisplayObjectContainer, is the base of the
third and final functional tier in the display API: containment. All classes that inherit
from DisplayObjectContainer gain the ability to physically contain any other
DisplayObject instance. Containers are used to group multiple visual objects so they
can be manipulated as one. Any time a container is moved, rotated, or transformed,
the objects it contains inherit that movement, rotation, or transformation. Likewise,
any time a container is removed from the screen, the objects it contains are removed
with it. Furthermore, containers can be nested within other containers to create hier-
archical groups of display objects. When referring to the objects in a display hierar-
chy, this book use standard tree-structure terminology; for example, an object that
contains another object in a display hierarchy is referred to as that object’s parent,
while the contained object is referred to as the parent’s child. In a multilevel display

Display API Overview | 461

hierarchy, the objects above a given object in the hierarchy are referred to as the
object’s ancestors. Conversely, the objects below a given object in the hierarchy are
referred to as the object’s descendants. Finally, the top-level object in the hierarchy
(the object from which all other objects descend) is referred to as the root object.

Don’t confuse the ancestor objects and descendant objects in a dis-
play hierarchy with the ancestor classes and descendant classes in an
inheritance hierarchy. For clarity, this book occasionally uses the
terms “display ancestors” and “display descendants” when referring to
ancestor objects and descendant objects in a display hierarchy.

DisplayObjectContainer’s subclasses—Sprite, MovieClip, Stage, and Loader—each
provide a unique type of empty containment structure, waiting to be filled with con-
tent. Sprite is the centerpiece of the container classes. As a descendant of both the
InteractiveObject the DisplayObjectContainer classes, Sprite provides the perfect foun-
dation for building custom user interface elements from scratch. The MovieClip class
is an enhanced type of Sprite that represents animated content created in the Flash
authoring tool. The Stage class represents the Flash runtime’s main display area (the
viewable region within the borders of the application window). Finally, the Loader
class is used to load external graphical content locally or over the Internet.

Prior to ActionScript 3.0, the MovieClip class was used as an all-pur-
pose graphics container (much like ActionScript 3.0’s Sprite class is
used). As of ActionScript 3.0, MovieClip is used only to control
instances of movie clip symbols created in the Flash authoring tool.
Because ActionScript 3.0 does not provide a way to create timeline ele-
ments such as frames and tweens, there is no need to create new
empty movie clips at runtime in ActionScript 3.0. Instead, all program-
matically created graphics should be instances of the appropriate core
display class (Bitmap, Shape, Sprite, TextField, etc.).

The display API provides a vast amount of functionality, dispersed over hundreds of
methods and variables. While this book covers many of them, our focus in the com-
ing chapters is on fundamental concepts rather than methodical coverage of each
method and variable. For a dictionary-style reference to the display API, see Adobe’s
ActionScript Language Reference.

Extending the Core-Display Class Hierarchy
While in many cases. the core display classes can productively be used without any
modification, most nontrivial programs extend the functionality of the core display
classes by creating subclasses suited to a custom purpose. For example, a geometric
drawing program might define Ellipse, Rectangle, and Triangle classes that extend the
Shape class. Similarly, a news viewer might define a Heading class that extends

462 | Chapter 20: The Display API and the Display List

TextField, and a racing game might define a Car class that extends Sprite. In fact, the
user interface widgets in the Flex framework are all descendants of the Sprite class. In
the chapters ahead, we’ll encounter many examples of custom display classes. As
you learn more about the core display classes, start thinking about how you could
add to their functionality; ActionScript programmers are expected and encouraged to
expand and enhance the core display classes with custom code. For more informa-
tion, see the section “Custom Graphical Classes,” later in this chapter.

The Display List
As we’ve just discussed, the core display classes represent the types of graphical con-
tent available in ActionScript. To create actual graphics from those theoretical types,
we create instances of the core display classes and then add those instances to the
display list. The display list is the hierarchy of all graphical objects currently dis-
played by the Flash runtime. When a display object is added to the display list and is
positioned in a visible area, the Flash runtime renders that display object’s content to
the screen.

The root of the display list is an instance of the Stage class, which is automatically
created when the Flash runtime starts. This special, automatically created Stage
instance serves two purposes. First, it acts as the outermost container for all graphi-
cal content displayed in the Flash runtime (i.e., it is the root of the display list). Sec-
ond, it provides information about, and control over, the global characteristics of the
display area. For example, the Stage class’s instance variable quality indicates the
rendering quality of all displayed graphics; scaleMode indicates how graphics scale
when the display area is resized; and frameRate indicates the current preferred frames
per second for all animations. As we’ll see throughout this chapter, the Stage
instance is always accessed relative to some object on the display list via the
DisplayObject class’s instance variable stage. For example, if output_txt is a
TextField instance currently on the display list, then the Stage instance can be
accessed using output_txt.stage.

The Display List | 463

Prior to ActionScript 3.0, the Stage class did not contain objects on the
display list. Furthermore, all Stage methods and variables were
accessed via the Stage class directly, as in:

trace(Stage.align);

In ActionScript 3.0, Stage methods and variables are not accessed
through the Stage class, and there is no global point of reference to the
Stage instance. In ActionScript 3.0, the preceding line of code causes
the following error:

Access of possibly undefined property 'align' through a
reference with static type 'Class'

To avoid that error, access the Stage instance using the following
approach:

trace(someDisplayObj.stage.align);

where someDisplayObj is an object currently on the display list.
ActionScript 3.0’s Stage architecture allows for the future possibility of
multiple Stage instances and also contributes to Flash Player’s security
(because unauthorized externally-loaded objects have no global point
of access to the Stage instance).

Figure 20-2 depicts the state of the display list for an empty Flash runtime before any
.swf file has been opened. The left side of the figure shows a symbolic representation
of the Flash runtime, while the right side shows the corresponding display list hierar-
chy. When the Flash runtime is empty, the display list hierarchy contains one item
only (the lone Stage instance). But we’ll soon add more!

When an empty Flash runtime opens a new .swf file, it locates that .swf file’s main
class, creates an instance of it, and adds that instance to the display list as the Stage
instance’s first child.

Recall that a .swf file’s main class must inherit from either Sprite or
MovieClip, both of which are descendants of DisplayObject. Tech-
niques for specifying a .swf file’s main class are covered in Chapter 7.

Figure 20-2. The display list for an empty Flash runtime

Display List

Stage
instance

Flash Player

Stage
instance

464 | Chapter 20: The Display API and the Display List

The .swf file’s main class instance is both the program entry point and the first visual
object displayed on screen. Even if the main class instance does not create any graph-
ics itself, it is still added to the display list, ready to contain any graphics created by
the program in the future. The main class instance of the first .swf file opened by the
Flash runtime plays a special role in ActionScript; it determines certain global envi-
ronment settings, such as relative-URL resolution and the type of security restric-
tions applied to external operations.

In honor of its special role, the main-class instance of the first .swf file
opened by the Flash runtime is sometimes referred to as the “stage
owner.”

Let’s consider an example that shows how the stage owner is created. Suppose we
start the standalone version of Flash Player and open a .swf file named GreetingApp.
swf, whose main class is GreetingApp. If GreetingApp.swf contains the class
GreetingApp only, and GreetingApp creates no graphics, then Flash Player’s display
list will contain just two items: the Stage instance and a GreetingApp instance (con-
tained by the Stage instance). Figure 20-3 demonstrates.

Once an instance of a .swf file’s main class has been added to the Stage instance, a
program can add new content to the screen by following these general steps:

1. Create a displayable object (i.e., an instance of any core display class or any class
that extends a core display class).

2. Invoke the DisplayObjectContainer class’s instance method addChild() on either
the Stage instance or the main-class instance, and pass addChild() the display-
able object created in Step 1.

Let’s try out the preceding general steps by creating the GreetingApp class, then add-
ing a rectangle, a circle, and a text field to the display list using addChild(). First,
here’s the skeleton of the GreetingApp class:

package {
 import flash.display.*;
 import flash.text.TextField;

Figure 20-3. The display list for GreetingApp.swf

Flash Player

Stage
instance

Display List

Stage
instance

GreetingApp.swf ’s
GreetingApp instance

GreetingApp.swf ’s
GreetingApp instance

The Display List | 465

 public class GreetingApp extends Sprite {
 public function GreetingApp () {
 }
 }
}

Our GreetingApp class will use the Shape and Sprite classes, so it imports the entire
flash.display package in which those classes reside. Likewise, GreetingApp will use
the TextField class, so it imports flash.text.TextField.

Notice that, by necessity, GreetingApp extends Sprite. GreetingApp must extend
either Sprite or MovieClip because it is the program’s main class.

In ActionScript 3.0, a .swf file’s main class must extend either Sprite or
MovieClip, or a subclass of one of those classes.

In cases where the main class represents the root timeline of a .fla file, it should
extend MovieClip; in all other cases, it should extend Sprite. In our example,
GreetingApp extends Sprite because it is not associated with a .fla file. It is intended
to be compiled as a standalone ActionScript application.

Now let’s create our rectangle and circle in GreetingApp’s constructor method. We’ll
draw both the rectangle and the circle inside a single Shape object. Shape objects
(and all graphical objects) are created with the new operator, just like any other kind
of object. Here’s the code we use to create a new Shape object:

new Shape()

Of course, we’ll need to access that object later in order to draw things in it, so let’s
assign it to a variable, rectAndCircle:

var rectAndCircle:Shape = new Shape();

To draw vectors in ActionScript, we use the supporting display class, Graphics. Each
Shape object maintains its own Graphics instance in the instance variable graphics.
Hence, to draw a rectangle and circle inside our Shape object, we invoke the appro-
priate methods on rectAndCircle.graphics. Here’s the code:

// Set line thickness to one pixel
rectAndCircle.graphics.lineStyle(1);

// Draw a blue rectangle
rectAndCircle.graphics.beginFill(0x0000FF, 1);
rectAndCircle.graphics.drawRect(125, 0, 150, 75);

// Draw a red circle
rectAndCircle.graphics.beginFill(0xFF0000, 1);
rectAndCircle.graphics.drawCircle(50, 100, 50);

466 | Chapter 20: The Display API and the Display List

For more information on vector drawing in ActionScript 3.0, see
Chapter 25.

Vector drawing operations are not limited to the Shape class. The Sprite class also
provides a Graphics reference via its instance variable graphics, so we could have cre-
ated a Sprite object to hold the rectangle and circle rather than a Shape object. How-
ever, because each Sprite object requires more memory than each Shape object, we’re
better off using a Shape object when creating vector graphics that do not contain
children or require interactivity.

Strictly speaking, if we wanted to incur the lowest possible memory overhead in the
GreetingApp example, we would draw our shapes directly inside the GreetingApp
instance (remember GreetingApp extends Sprite, so it supports vector drawing). The
code would look like this:

package {
 import flash.display.*;
 public class GreetingApp extends Sprite {
 public function GreetingApp () {
 graphics.lineStyle(1);

 // Rectangle
 graphics.beginFill(0x0000FF, 1);
 graphics.drawRect(125, 0, 150, 75);

 // Circle
 graphics.beginFill(0xFF0000, 1);
 graphics.drawCircle(50, 100, 50);
 }
 }
}

That code successfully draws the rectangle and circle on screen but is less flexible
than placing them in a separate Shape object. Placing drawings in a Shape object
allows them to be moved, layered, modified, and removed independent of other
graphical content in the application. For example, returning to our earlier approach
of drawing in a Shape instance (rectAndCircle), here’s how we’d move the shapes to
a new position:

// Move rectAndCircle to the right 125 pixels and down 100 pixels
rectAndCircle.x = 125;
rectAndCircle.y = 100;

Notice that at this point in our code, we have a display object, rectAndCircle, that
has not yet been added to the display list. It’s both legal and common to refer to and
manipulate display objects that are not on the display list. Display objects can be
added to and removed from the display list arbitrarily throughout the lifespan of a
program and can be programmatically manipulated whether they are on or off the

The Display List | 467

display list. For example, notice that the preceding positioning code occurs before
rectAndCircle has even been placed on the display list! Each display object main-
tains its own state regardless of the parent it is attached to—indeed, regardless of
whether it is attached to the display list at all. When and if rectAndCircle is eventu-
ally added to a display container, it is automatically placed at position (125, 100) in
that container’s coordinate space. If rectAndCircle is then removed from that con-
tainer and added to a different one, it is positioned at (125, 100) of the new con-
tainer’s coordinate space.

Each display object carries its characteristics with it when moved from
container to container, or even when removed from the display list
entirely.

Now the moment we’ve been waiting for. To actually display our rectangle and cir-
cle on screen, we invoke addChild() on the GreetingApp instance within the
GreetingApp constructor and pass along a reference to the Shape instance in
rectAndCircle.

// Display rectAndCircle on screen by adding it to the display list
addChild(rectAndCircle);

Flash Player consequently adds rectAndCircle to the display list, as a child of the
GreetingApp instance.

As a Sprite subclass, GreetingApp is a descendant of
DisplayObjectContainer, and, thus, inherits the addChild() method
and the ability to contain children. For a refresher on the display API
class hierarchy, refer back to Figure 20-1.

Wow, displaying things on screen is fun! Let’s do it again. Adding the following code
to the GreetingApp constructor causes the text “Hello world” to appear on screen:

// Create a TextField object to contain some text
var greeting_txt:TextField = new TextField();

// Specify the text to display
greeting_txt.text = "Hello world";

// Position the TextField object
greeting_txt.x = 200;
greeting_txt.y = 300;

// Display the text on screen by adding greeting_txt to the display list
addChild(greeting_txt);

Once an object has been added to a display container, that container can be accessed
via the DisplayObject class’s instance variable parent. For example, from within the

468 | Chapter 20: The Display API and the Display List

GreetingApp constructor, the following code is a valid reference to the GreetingApp
instance:

greeting_txt.parent

If a display object is not currently on the display list, its parent variable has the
value null.

Example 20-1 shows the code for GreetingApp in its entirety.

Example 20-1. Graphical “Hello world”

package {
 import flash.display.*;
 import flash.text.TextField;

 public class GreetingApp extends Sprite {
 public function GreetingApp() {
 // Create the Shape object
 var rectAndCircle:Shape = new Shape();

 // Set line thickness to one pixel
 rectAndCircle.graphics.lineStyle(1);

 // Draw a blue rectangle
 rectAndCircle.graphics.beginFill(0x0000FF, 1);
 rectAndCircle.graphics.drawRect(125, 0, 150, 75);

 // Draw a red circle
 rectAndCircle.graphics.beginFill(0xFF0000, 1);
 rectAndCircle.graphics.drawCircle(50, 100, 50);

 // Move the shape to the right 125 pixels and down 100 pixels
 rectAndCircle.x = 125;
 rectAndCircle.y = 100;

 // Show rectAndCircle on screen by adding it to the display list
 addChild(rectAndCircle);

 // Create a TextField object to contain some text
 var greeting_txt:TextField = new TextField();

 // Specify the text to display
 greeting_txt.text = "Hello world";

 // Position the text
 greeting_txt.x = 200;
 greeting_txt.y = 300;

 // Show the text on screen by adding greeting_txt to the display list
 addChild(greeting_txt);
 }
 }
}

The Display List | 469

Figure 20-4 shows the graphical results of the code in Example 20-1. As in the previ-
ous two figures, on-screen graphics are depicted on the left, with the corresponding
Flash Player display list hierarchy shown on the right.

Containers and Depths
In the previous section, we gave GreetingApp two display children (rectAndCircle
and greeting_txt). On screen, those two children were placed in such a way that
they did not visually overlap. If they had overlapped, one would have obscured the
other, based on the depths of the two objects. A display object’s depth is an integer
value that determines how that object overlaps other objects in the same display
object container. When two display objects overlap, the one with the greater depth
position (the “higher” of the two) obscures the other (the “lower” of the two). All
display objects in a container, hence, can be thought of as residing in a visual stack-
ing order akin to a deck of playing cards, counted into a pile starting at zero. The
lowest object in the stacking order has a depth position of 0, and the highest object
has a depth position equal to the number of child objects in the display object con-
tainer, minus one (metaphorically, the lowest card in the deck has a depth position
of 0, and the highest card has a depth position equal to the number of cards in the
deck, minus one).

ActionScript 2.0’s depth-management API allowed “unoccupied”
depths. For example, in a container with only two objects, one object
might have a depth of 0 and the other a depth of 40, leaving depths 1
through 39 unoccupied. In ActionScript 3.0’s depth-management API,
unoccupied depths are no longer allowed or necessary.

Display objects added to a container using addChild() are assigned depth positions
automatically. Given an empty container, the first child added via addChild() is
placed at depth 0, the second is placed at depth 1, the third is placed at depth 2, and

Figure 20-4. The display list for GreetingApp

Flash Player

Stage
instance

GreetingApp.swf ’s
GreetingApp instance

Display List

Stage
instance

GreetingApp.swf ’s
GreetingApp instance

Shape
instance

TextField
instance

Shape instance
rectAndCircle

TextField instance
greeting_txt

Hello world

470 | Chapter 20: The Display API and the Display List

so on. Hence, the object most recently added via addChild() always appears visually
on top of all other children.

As an example, let’s continue with the GreetingApp program from the previous sec-
tion. This time we’ll draw the circle and rectangle in their own separate Shape
instances so they can be stacked independently. We’ll also adjust the positions of the
circle, rectangle, and text so that they overlap. Here’s the revised code (this code and
other samples in this section are excerpted from GreetingApp’s constructor method):

// The rectangle
var rect:Shape = new Shape();
rect.graphics.lineStyle(1);
rect.graphics.beginFill(0x0000FF, 1);
rect.graphics.drawRect(0, 0, 75, 50);

// The circle
var circle:Shape = new Shape();
circle.graphics.lineStyle(1);
circle.graphics.beginFill(0xFF0000, 1);
circle.graphics.drawCircle(0, 0, 25);
circle.x = 75;
circle.y = 35;

// The text message
var greeting_txt:TextField = new TextField();
greeting_txt.text = "Hello world";
greeting_txt.x = 60;
greeting_txt.y = 25;

Now let’s try adding the rectangle, circle, and text as GreetingApp children, in differ-
ent sequences. This code adds the rectangle, then the circle, then the text:

addChild(rect); // Depth 0
addChild(circle); // Depth 1
addChild(greeting_txt); // Depth 2

As shown in Figure 20-5, the rectangle was added first, so it appears underneath the
circle and the text; the circle was added next, so it appears on top of the rectangle
but underneath the text; the text was added last, so it appears on top of both the cir-
cle and the rectangle.

The following code changes the sequence, adding the circle first, then the rectangle,
then the text. Figure 20-6 shows the result. Notice that simply changing the sequence
in which the objects are added changes the resulting display.

Figure 20-5. Rectangle, circle, text

Hello world

The Display List | 471

addChild(circle); // Depth 0
addChild(rect); // Depth 1
addChild(greeting_txt); // Depth 2

Here’s one more example. The following code adds the text first, then the circle,
then the rectangle. Figure 20-7 shows the result.

addChild(greeting_txt); // Depth 0
addChild(circle); // Depth 1
addChild(rect); // Depth 2

To retrieve the depth position of any object in a display object container, we use the
DisplayObjectContainer class’s instance method getChildIndex():

trace(getChildIndex(rect)); // Displays: 2

To add a new object at a specific depth position, we use the DisplayObjectContainer
class’s instance method addChildAt() (notice: addChildAt() not addChild()). The
addChildAt() method takes the following form:

theContainer.addChildAt(theDisplayObject, depthPosition)

The depthPosition must be an integer between 0 and theContainer.numChildren,
inclusive.

If the specified depthPosition is already occupied by an existing child, then
theDisplayObject is placed behind that existing child (i.e., the depth positions of all
display objects on or above that depth increases by one to make room for the new
child).

Repeat this addChildAt() mnemonic to yourself: “If the depth is occu-
pied, the new child goes behind.”

To add a new object above all existing children, we use:

theContainer.addChildAt(theDisplayObject, theContainer.numChildren)

Figure 20-6. Circle, rectangle, text

Figure 20-7. Text, circle, rectangle

Hello world

Hello world

472 | Chapter 20: The Display API and the Display List

which is synonymous with the following:

theContainer.addChild(theDisplayObject)

Typically, addChildAt() is used in combination with the DisplayObjectContainer
class’s instance method getChildIndex() to add an object below an existing child in a
given container. Here’s the general format:

theContainer.addChildAt(newChild, theContainer.getChildIndex(existingChild))

Let’s try it out by adding a new triangle behind the circle in GreetingApp as it existed
in its most recent incarnation, shown in Figure 20-7.

Here’s the code that creates the triangle:

var triangle:Shape = new Shape();
triangle.graphics.lineStyle(1);
triangle.graphics.beginFill(0x00FF00, 1);
triangle.graphics.moveTo(25, 0);
triangle.graphics.lineTo(50, 25);
triangle.graphics.lineTo(0, 25);
triangle.graphics.lineTo(25, 0);
triangle.graphics.endFill();
triangle.x = 25;
triangle.y = 10;

And here’s the code that makes triangle a new child of GreetingApp, beneath the
existing object, circle (notice that both addChildAt() and getChildIndex() are
implicitly invoked on the current GreetingApp object). Figure 20-8 shows the results.

addChildAt(triangle, getChildIndex(circle));

As we learned recently, when a new object is added at a depth position occupied by
an existing child, the depth positions of the existing child and of all children above it
are incremented by 1. The new object then adopts the depth position that was
vacated by the existing child. For example, prior to the addition of triangle, the
depths of GreetingApp’s children were:

greeting_txt 0
circle 1
rect 2

Upon adding triangle, circle’s depth position changes from 1 to 2, rect’s depth
position changes from 2 to 3, and triangle takes depth 1 (circle’s former depth).
Meanwhile, greeting_txt’s depth position is unaffected because it was below

Figure 20-8. New triangle child

Hello world

The Display List | 473

circle’s depth from the beginning. Here are the revised depths after the addition of
triangle:

greeting_txt 0
triangle 1
circle 2
rect 3

To change the depth of an existing child, we can swap that child’s depth position
with another existing child via the DisplayObjectContainer class’s instance methods
swapChildren() or swapChildrenAt(). Or, we can simply set that child’s depth
directly using the DisplayObjectContainer class’s instance method setChildIndex().

The swapChildren() method takes the following form:

theContainer.swapChildren(existingChild1, existingChild2);

where existingChild1 and existingChild2 are both children of theContainer. The
swapChildren() method exchanges the depths of existingChild1 and existingChild2.
In natural English, the preceding code means, “put existingChild1 at the depth cur-
rently occupied by existingChild2, and put existingChild2 at the depth currently
occupied by existingChild1.”

The swapChildrenAt() method takes the following form:

theContainer.swapChildrenAt(existingDepth1, existingDepth2);

where existingDepth1 and existingDepth2 are both depths occupied by children of
theContainer. The swapChildrenAt() method exchanges the depths of the children at
existingDepth1 and existingDepth2. In natural English, the preceding code means,
“put the child currently at existingDepth1 at existingDepth2, and put the child cur-
rently at existingDepth2 at existingDepth1.”

The setChildIndex() method takes the following form:

theContainer.setChildIndex(existingChild, newDepthPosition);

where existingChild is a child of theContainer. The newDepthPosition must be a
depth position presently occupied by a child object of theContainer. That is,
setChildIndex() can only rearrange the positions of existing child objects; it cannot
introduce new depth positions. The newDepthPosition parameter of setChildIndex()
is typically deduced by invoking getChildIndex() on an existing child, as in:

theContainer.setChildIndex(existingChild1,
 theContainer.getChildIndex(existingChild2));

which means, “put existingChild1 at the depth currently occupied by
existingChild2.”

Note that when an object’s depth is increased to a new position via setChildIndex()
(i.e., the object is moved higher), the depth of all objects between the old position
and the new position is decreased by 1, thus filling the vacant position left by the
moved object. Consequently, the moved object appears in front of the object for-
merly at the new position. For example, continuing with the latest version of

474 | Chapter 20: The Display API and the Display List

GreetingApp (as shown previously in Figure 20-8), let’s change greeting_txt’s depth
position from 0 to 2. Prior to executing the following code, depth position 2 is held
by circle.

setChildIndex(greeting_txt, getChildIndex(circle));

When greeting_txt moves to depth position 2, the depth positions of circle and
triangle are reduced to 1 and 0, respectively, so greeting_txt appears in front of
them both. See Figure 20-9.

By contrast, when an object’s depth is decreased to a new position via setChildIndex()
(i.e., the object is moved lower), the depth position of all objects at or above the new
position is increased by 1, thus making room for the new object. Consequently, the
moved object appears behind the object formerly at the new position (exactly as if the
object had been added with addChildAt()). Notice the important difference between
moving an object to a higher depth versus moving it to a lower depth.

An object moved to a higher depth appears in front of the object at the
target position, but an object moved lower appears behind the object
at the target position.

For example, continuing from Figure 20-9, let’s change rect’s depth position from 3
to 1 (where 1 is the depth currently held by circle):

setChildIndex(rect, getChildIndex(circle));

When rect moves to depth position 1, the depth positions of circle and greeting_txt
are increased to 2 and 3, respectively, so rect appears behind them both (see
Figure 20-10).

To move on object to the top of all objects in a given container, use:

theContainer.setChildIndex(existingChild, theContainer.numChildren-1)

Figure 20-9. Moving the text higher

Figure 20-10. Moving the rectangle lower

Hello world

Hello world

The Display List | 475

For example, the following code moves the triangle to the top of GreetingApp’s chil-
dren (the following code occurs within the GreetingApp class, so theContainer is
omitted and implicitly resolves to this, the current object):

setChildIndex(triangle, numChildren-1);

Figure 20-11 shows the results.

The setChildIndex() method is easy to understand if you think of a
DisplayObjectContainer’s children as being modeled after a deck of cards, as dis-
cussed earlier. If you move a card from the bottom of the deck to the top, the other
cards all move down (i.e., the card that used to be just above the bottom card is now,
itself, the new bottom card). If you move a card from the top of the deck to the bot-
tom, the other cards all move up (i.e., the card that used to be the bottom card is
now one above the new bottom card).

Removing Assets from Containers
To remove an object from a display object container, we use the
DisplayObjectContainer class’s instance method removeChild(), which takes the fol-
lowing form:

theContainer.removeChild(existingChild)

where theContainer is a container that currently contains existingChild. For exam-
ple, to remove the triangle from GreetingApp we’d use:

removeChild(triangle);

Alternatively, we can remove a child based on its depth using removeChildAt(),
which takes the following form:

theContainer.removeChildAt(depth)

After removeChild() or removeChildAt() runs, the removed child’s parent variable is
set to null because the removed child has no container. If the removed child was on
the display list before the call to removeChild() or removeChildAt(), it is removed
from the display list. If the removed child was visible on screen before the call to
removeChild() or removeChildAt(), it is also removed from the screen. If the removed
child is, itself, a DisplayObjectContainer with its own children, those children are
also removed from the screen.

Figure 20-11. Triangle moved to front

Hello world

476 | Chapter 20: The Display API and the Display List

Removing Assets from Memory
It’s important to note that the removeChild() and removeChildAt() methods dis-
cussed in the previous section do not necessarily cause the removed object to be
purged from memory; they only remove the object from the parent
DisplayObjectContainer object’s display hierarchy. If the removed object is refer-
enced by a variable or array element, it continues to exist and can be re-added to
another container at a later time. For example, consider the following code, which
creates a Shape object, assigns it to the variable rect, and then adds it to parent’s dis-
play hierarchy:

var rect:Shape = new Shape();
rect.graphics.lineStyle(1);
rect.graphics.beginFill(0x0000FF, 1);
rect.graphics.drawRect(0, 0, 75, 50);
parent.addChild(rect);

If we now use removeChild() to remove the Shape object from parent, rect contin-
ues to refer to the Shape object:

parent.removeChild(rect);
trace(rect); // Displays: [object Shape]

As long as the rect variable exists, we can use it to re-add the Shape object to
parent’s display hierarchy, as follows:

parent.addChild(rect);

To completely remove a display object from a program, we must both remove it from
the screen using removeChild() and also remove all references to it. To remove all
references to the object, we must manually remove it from every array that contains
it and assign null (or some other value) to every variable that references it. Once all
references to the object have been removed, the object becomes eligible for garbage
collection and will eventually be removed from memory by ActionScript’s garbage
collector.

However, as discussed in Chapter 14, even after all references to an object have been
removed, that object continues to be active until the garbage collector deletes it from
memory. For example, if the object has registered listeners for the Event.ENTER_FRAME
event, that event will still trigger code execution. Likewise, if the object has started
timers using setInterval() or the Timer class, those timers will still trigger code execu-
tion. Similarly, if the object is a MovieClip instance that is playing, its playhead will
continue to advance, causing any frame scripts to execute.

While an object is waiting to be garbage collected, event listeners, tim-
ers, and frame scripts can cause unnecessary code execution, resulting
in memory waste or undesired side effects.

The Display List | 477

To avoid unnecessary code execution when removing a display object from a pro-
gram, be sure that, before releasing all references to the object, you completely dis-
able it. For more important details on disabling objects, see Chapter 14.

Always disable display objects before discarding them.

Removing All Children
ActionScript does not provide a direct method for removing all of an object’s chil-
dren. Hence, to remove every display child from a given object, we must use a while
loop or a for loop. For example, the following code uses a while loop to remove all
children of theParent from the bottom up. First, the child at depth 0 is removed,
then the depth of all children is reduced by 1, then the new child at depth 0 is
removed, and the process repeats until there are no children left.

// Remove all children of theParent
while (theParent.numChildren > 0) {
theParent.removeChildAt(0);

}

The following code also removes all children of theParent, but from the top down. It
should be avoided because it is slower than the preceding approach of removing chil-
dren from the bottom up.

while (theParent.numChildren > 0) {
theParent.removeChildAt(theParent.numChildren-1);

}

The following code removes all children, from the bottom up, using a for loop
instead of a while loop:

for (;numChildren > 0;) {
theParent.removeChildAt(0);

}

If you must remove children from the top down (perhaps because you need to pro-
cess them in that order before removal), be careful never to use a loop that incre-
ments its counter instead of decrementing it. For example, never use code like this:

// WARNING: PROBLEM CODE! DO NOT USE!
for (var i:int = 0; i < theParent.numChildren; i++) {
theParent.removeChildAt(i);

}

What’s wrong with the preceding for loop? Imagine theParent has three children: A,
B, and C, positioned at depths 0, 1, and 2, respectively:

Children Depths
 A 0
 B 1
 C 2

478 | Chapter 20: The Display API and the Display List

When the loop runs the first time, i is 0, so A is removed. When A is removed, B and
C’s depth is automatically reduced by 1, so B’s depth is now 0 and C’s depth is now 1:

Children Depths
 B 0
 C 1

When the loop runs for the second time, i is 1, so C is removed. With C removed,
theParent.numChildren becomes 1, so the loop ends because i is no longer less than
theParent.numChildren. But B was never removed (sneaky devil)!

Reparenting Assets
In ActionScript 3.0, it’s perfectly legal and common to remove a child from one
DisplayObjectContainer instance and move it to another. In fact, the mere act of add-
ing an object to a container automatically removes that object from any container it
is already in.

To demonstrate, Example 20-2 presents a simple application, WordHighlighter, in
which a Shape object (assigned to the variable bgRect) is moved between two Sprite
instances (assigned to the variables word1 and word2). The Sprite instances contain
TextField instances (assigned to the variables text1 and text2) that display the words
Products and Services. The Shape is a rounded rectangle that serves to highlight the
word currently under the mouse pointer, as shown in Figure 20-12. When the mouse
hovers over one of the TextField instances, the Shape object is moved to the Sprite
containing that TextField.

We haven’t yet covered the mouse-event handling techniques used in Example 20-2.
For information on handling input events, see Chapter 22.

Figure 20-12. Moving an object between containers

Example 20-2. Moving an object between containers

package {
 import flash.display.*;
 import flash.text.*;
 import flash.events.*;

 public class WordHighlighter extends Sprite {
 // The first word
 private var word1:Sprite;
 private var text1:TextField;

 // The second word
 private var word2:Sprite;
 private var text2:TextField;

Products Services

The Display List | 479

As it stands, the code in Example 20-2 always leaves one of the text fields high-
lighted. To remove the highlight when the mouse moves away from both text fields,
we would first register both text fields to receive the MouseEvent.MOUSE_OUT event:

text1.addEventListener(MouseEvent.MOUSE_OUT, mouseOutListener);
text2.addEventListener(MouseEvent.MOUSE_OUT, mouseOutListener);

 // The highlight shape
 private var bgRect:Shape;

 public function WordHighlighter () {
 // Create the first TextField and Sprite
 word1 = new Sprite();
 text1 = new TextField();
 text1.text = "Products";
 text1.selectable = false;
 text1.autoSize = TextFieldAutoSize.LEFT;
 word1.addChild(text1)
 text1.addEventListener(MouseEvent.MOUSE_OVER, mouseOverListener);

 // Create the second TextField and Sprite
 word2 = new Sprite();
 text2 = new TextField();
 text2.text = "Services";
 text2.selectable = false;
 text2.autoSize = TextFieldAutoSize.LEFT;
 word2.x = 75;
 word2.addChild(text2)
 text2.addEventListener(MouseEvent.MOUSE_OVER, mouseOverListener);

 // Add the Sprite instances to WordHighlighter's display hierarchy
 addChild(word1);
 addChild(word2);

 // Create the Shape (a rounded rectangle)
 bgRect = new Shape();
 bgRect.graphics.lineStyle(1);
 bgRect.graphics.beginFill(0xCCCCCC, 1);
 bgRect.graphics.drawRoundRect(0, 0, 60, 15, 8);
 }

 // Invoked when the mouse pointer moves over a text field.
 private function mouseOverListener (e:MouseEvent):void {
 // If the TextField's parent Sprite does not already contain
 // the shape, then move it there. DisplayObjectContainer.contains()
 // returns true if the specified object is a descendant
 // of the container.
 if (!e.target.parent.contains(bgRect)) {
 e.target.parent.addChildAt(bgRect, 0);
 }
 }
 }
}

Example 20-2. Moving an object between containers (continued)

480 | Chapter 20: The Display API and the Display List

Then, we would implement code to remove the rectangle in response to MouseEvent.
MOUSE_OUT:

private function mouseOutListener (e:MouseEvent):void {
 // If the highlight is present...
 if (e.target.parent.contains(bgRect)) {
 // ...remove it
 e.target.parent.removeChild(bgRect);
 }
}

Traversing Objects in a Display Hierarchy
To traverse objects in a display hierarchy means to systematically access some or all
of a container’s child objects, typically to manipulate them in some way.

To access the direct children of a container (but not grandchildren or any other
descendant children), we use a loop statement. The loop iterates over each depth
position in the container. Within the loop body, we access each child according to its
depth using the DisplayObjectContainer class’s instance method getChildAt(). The
following code shows the general technique; it displays the string value of all objects
contained by theContainer:

for (var i:int=0; i < theContainer.numChildren; i++) {
 trace(theContainer.getChildAt(i).toString());
}

Example 20-3 shows a more concrete, if whimsical, application of display object chil-
dren traversal. It creates 20 Shape instances containing rectangles and then uses the
preceding traversal technique to rotate those instances when the mouse is clicked.
The traversal code is shown in bold. (In upcoming chapters, we’ll study both the vec-
tor-drawing techniques and mouse-event-handling techniques used in the example.)

Example 20-3. Rotating rectangles

package {
 import flash.display.*;
 import flash.events.*;

 public class RotatingRectangles extends Sprite {
 public function RotatingRectangles () {
 // Create 20 rectangles
 var rects:Array = new Array();
 for (var i:int = 0; i < 20; i++) {
 rects[i] = new Shape();
 rects[i].graphics.lineStyle(1);
 rects[i].graphics.beginFill(Math.floor(Math.random()*0xFFFFFF), 1);
 rects[i].graphics.drawRect(0, 0, 100, 50);
 rects[i].x = Math.floor(Math.random()*500);
 rects[i].y = Math.floor(Math.random()*400);
 addChild(rects[i]);
 }

The Display List | 481

To access not just the direct children of a container, but all of its descendants, we
combine the preceding for loop with a recursive function. Example 20-4 shows the
general approach.

The following function, rotateChildren(), applies the generalized code from
Example 20-4. It randomly rotates all the descendants of a specified container (not
just the children). However, notice the minor change in the approach from
Example 20-4: rotateChildren() only rotates noncontainer children.

public function rotateChildren (container:DisplayObjectContainer):void {
 for (var i:int = 0; i < container.numChildren; i++) {
 var thisChild:DisplayObject = container.getChildAt(i);
 if (thisChild is DisplayObjectContainer) {
 rotateChildren(DisplayObjectContainer(thisChild));
 } else {
 thisChild.rotation = Math.floor(Math.random()*360);
 }
 }
}

 // Register for mouse clicks
 stage.addEventListener(MouseEvent.MOUSE_DOWN, mouseDownListener);
 }

 // Rotates rectangles when the mouse is clicked
 private function mouseDownListener (e:Event):void {
 // Rotate each of this object's display children randomly.
 for (var i:int=0; i < numChildren; i++) {
 getChildAt(i).rotation = Math.floor(Math.random()*360);
 }
 }
 }
}

Example 20-4. Recursive display list tree traversal

public function processChildren (container:DisplayObjectContainer):void {
 for (var i:int = 0; i < container.numChildren; i++) {
 // Process the child here. For example, the following line
 // prints this child's string value as debugging output.
 var thisChild:DisplayObject = container.getChildAt(i);
 trace(thisChild.toString());

 // If this child is, itself, a container, then process its children.
 if (thisChild is DisplayObjectContainer) {
 processChildren(DisplayObjectContainer(thisChild));
 }
 }
}

Example 20-3. Rotating rectangles (continued)

482 | Chapter 20: The Display API and the Display List

Manipulating Objects in Containers Collectively
In the earlier section “Display API Overview,” we learned that child objects automat-
ically move, rotate, and transform when their ancestors are moved, rotated, and
transformed. We can use this feature to perform collective visual modifications to
groups of objects. To learn how, let’s create two rectangular Shape instances in a
Sprite instance:

// Create two rectangles
var rect1:Shape = new Shape();
rect1.graphics.lineStyle(1);
rect1.graphics.beginFill(0x0000FF, 1);
rect1.graphics.drawRect(0, 0, 75, 50);

var rect2:Shape = new Shape();
rect2.graphics.lineStyle(1);
rect2.graphics.beginFill(0xFF0000, 1);
rect2.graphics.drawRect(0, 0, 75, 50);
rect2.x = 50;
rect2.y = 75;

// Create the container
var group:Sprite = new Sprite();

// Add the rectangles to the container
group.addChild(rect1);
group.addChild(rect2);

// Add the container to the main application
someMainApp.addChild(group);

Figure 20-13 shows the result.

Now let’s move, scale, and rotate the container, as follows:

group.x = 40;
group.scaleY = .15;
group.rotation = 15;

The modifications affect the child Shape instances, as shown in Figure 20-14.

Figure 20-13. Two rectangles in a container

The Display List | 483

A container’s transformations also affect children added after the transformations are
applied. For example, if we now add a third rectangular Shape to group, that Shape is
moved, scaled, and rotated according to group’s existing transformations:

// Create a third rectangle
var rect3:Shape = new Shape();
rect3.graphics.lineStyle(1);
rect3.graphics.beginFill(0x00FF00, 1);
rect3.graphics.drawRect(0, 0, 75, 50);
rect3.x = 25;
rect3.y = 35;
group.addChild(rect3);

Figure 20-15 shows the result.

At any time, we can remove or change the container’s transformation, and all chil-
dren will be affected. For example, the following code restores the container to its
original state:

group.scaleY = 1;
group.x = 0;
group.rotation = 0;

Figure 20-16 shows the result. Notice that the third rectangle now appears in its true
dimensions and position.

Color and coordinate transformations made to a container via the DisplayObject
class’s instance variable transform are also inherited by its descendants. For exam-
ple, the following code applies a black color transformation to group, causing all
three rectangles to be colored solid black.

Figure 20-14. Move, scale, and rotate

Figure 20-15. A third rectangle

484 | Chapter 20: The Display API and the Display List

import flash.geom.ColorTransform;
var blackTransform:ColorTransform = new ColorTransform();
blackTransform.color = 0x000000;
group.transform.colorTransform = blackTransform;

For complete details on the types of color and coordinate transforma-
tions available in ActionScript, see flash.geom.Transform in Adobe’s
ActionScript Language Reference.

Transformations made to nested containers are compounded. For example, the fol-
lowing code places a rectangle in a Sprite that is nested within another Sprite. Both
Sprite instances are rotated 45 degrees. As a result, the rectangle appears rotated on
screen by 90 degrees (45 + 45).

// Create a rectangle
var rect1:Shape = new Shape();
rect1.graphics.lineStyle(1);
rect1.graphics.beginFill(0x0000FF, 1);
rect1.graphics.drawRect(0, 0, 75, 50);

var outerGroup:Sprite = new Sprite();
var innerGroup:Sprite = new Sprite();

innerGroup.addChild(rect1);
outerGroup.addChild(innerGroup);
innerGroup.rotation = 45;
outerGroup.rotation = 45;

Descendant Access to a .swf File’s Main Class Instance
In ActionScript 3.0, the display descendants of a .swf file’s main class instance can
retrieve a reference to that instance via the DisplayObject class’s instance variable
root. For example, consider Example 20-5, which shows a .swf file’s main class, App.
When the code runs, ActionScript automatically creates an App instance and runs its
constructor. Within the constructor, two App instance descendants (a Sprite object
and a Shape object) use root to access the App instance.

Figure 20-16. Transformations removed

The Display List | 485

When an object is on the display list but is not a descendant of a .swf file’s main class
instance, its root variable returns a reference to the Stage instance. For example, the
following code modifies the App class from Example 20-5 so that the Sprite object
and its child Shape object are added directly to the Stage instance. Because the Sprite
and Shape objects are not descendants of a .swf file’s main class instance, their root
variables refer to the Stage instance.

package {
 import flash.display.*;
 import flash.geom.*;

 public class App extends Sprite {
 public function App () {
 var rect:Shape = new Shape();
 rect.graphics.lineStyle(1);
 rect.graphics.beginFill(0x0000FF, 1);
 rect.graphics.drawRect(0, 0, 75, 50);
 var sprite:Sprite = new Sprite();
 sprite.addChild(rect);
 // Add child to Stage instance, not this App instance
 stage.addChild(sprite);

 trace(rect.root); // Displays: [object Stage]
 trace(sprite.root); // Displays: [object Stage]
 }
 }
}

Example 20-5. Descendant access to a .swf file’s main class instance

package {
 import flash.display.*;
 import flash.geom.*;

 public class App extends Sprite {
 public function App () {
 // Make the descendants...
 var rect:Shape = new Shape();
 rect.graphics.lineStyle(1);
 rect.graphics.beginFill(0x0000FF, 1);
 rect.graphics.drawRect(0, 0, 75, 50);
 var sprite:Sprite = new Sprite();
 sprite.addChild(rect);
 addChild(sprite);

 // Use DisplayObject.root to access this App instance
 trace(rect.root); // Displays: [object App]
 trace(sprite.root); // Displays: [object App]
 }
 }
}

486 | Chapter 20: The Display API and the Display List

For objects that are on the display list but are not descendants of a .swf
file’s main-class instance, the DisplayObject class’s instance variable
root is synonymous with its instance variable stage.

In the first .swf file opened by a Flash runtime, the root variable of display objects
that are not on the display list has the value null.

In .swf files loaded by other .swf files, the root variable is set as follows:

• For display objects that are display descendants of the main class instance, the
root variable refers to that instance, even if the main class instance is not on the
display list.

• For display objects that are not display descendants of the main class instance
and are not on the display list, the root variable has the value null.

The rebirth of _root

In ActionScript 2.0 and older versions of the language, the global _root variable
referred to the top-level movie clip of the current _level. Prior to ActionScript 3.0, con-
ventional wisdom held that _root should be avoided because its meaning was volatile
(the object to which it referred changed when loading a .swf file into a movie clip).

In ActionScript 3.0, the DisplayObject class’s instance variable root replaces the glo-
bal _root variable. DisplayObject’s root variable does not suffer from its predeces-
sor’s volatility and is considered a clean, safe member of the display API.

Longtime ActionScript programmers who are used to avoiding the
legacy _root variable should feel neither fear nor guilt when using the
DisplayObject class’s instance variable root in ActionScript 3.0.

Whither _level0?

In ActionScript 1.0 and 2.0, the loadMovieNum() function was used to stack external .
swf files on independent Flash Player levels. Each level was referred to using the for-
mat: _leveln, where n indicated the level’s numeric order in the level stack. As of
ActionScript 3.0, the concept of levels has been completely removed from the Flash
runtime API.

The closest analogue to levels in ActionScript 3.0 is the Stage instance’s children.
However, whereas in ActionScript 1.0 and 2.0, external .swf files could be loaded
directly onto a _level, in ActionScript 3.0, external .swf files cannot be loaded
directly into the Stage instance’s child list. Instead, to add an external .swf file to the
Stage instance’s child list, we must first load that .swf file via a Loader object and
then move it to the Stage instance via stage.addChild(), as follows:

Containment Events | 487

var loader:Loader = new Loader();
loader.load(new URLRequest("newContent.swf"));
stage.addChild(loader);

Furthermore, it is no longer possible to remove all content in Flash Player by unload-
ing _level0. Code such as the following is no longer valid:

// Clear all content in Flash Player. Deprecated in ActionScript 3.0.
unloadMovieNum(0);

The closest ActionScript 3.0 replacement for unloadMovieNum(0) is:

stage.removeChildAt(0);

Using stage.removeChildAt(0) removes the Stage instance’s first child from the dis-
play list but does not necessarily remove it from the program. If the program main-
tains other references to the child, the child will continue to exist, ready to be re-
added to some other container. As shown in the earlier section “Removing Assets
from Memory,” to completely remove a display object from a program, we must
both remove it from its container and remove all references to it. Furthermore,
invoking stage.removeChildAt(0) affects the Stage instance’s first child only; other
children are not removed from the display list (contrast this with ActionScript 1.0
and 2.0, where invoking unloadMovieNum(0) removed all content from all _levels).
To remove all children of the Stage instance, we use the following code within the
object that currently resides at depth 0 of the Stage instance:

while (stage.numChildren > 0) {
 stage.removeChildAt(stage.numChildren-1);
 // When the last child is removed, stage is set to null, so quit
 if (stage == null) {
 break;
 }
}

Likewise, the following legacy code—which clears Flash Player of all content and
then places newConent.swf on _level0—is no longer valid:

loadMovieNum("newContent.swf", 0);

And there is no ActionScript 3.0 equivalent. However, future versions of Action-
Script might re-introduce the ability to clear a Flash runtime of all content, replacing
it with a new external .swf file.

Containment Events
Earlier we learned how to use the addChild() and addChildAt() methods to add a
new display child to a DisplayObjectContainer object. Recall the general code:

// The addChild() method
someContainer.addChild(newChild)

// The addChildAt() method
someContainer.addChild(newChild, depth)

488 | Chapter 20: The Display API and the Display List

We also learned that existing child display objects can be removed from a
DisplayObjectContainer object via the removeChild() and removeChildAt() methods.
Again, recall the following general code:

// The removeChild() method
someContainer.removeChild(childToRemove)
// The removeChildAt() method
someContainer.removeChildAt(depthOfChildToRemove)

Finally, we learned that an existing child display object can be removed from a con-
tainer by moving that child to another container via either addChild() and
addChildAt(). Here’s the code:

// Add child to someContainer
someContainer.addChild(child)

// Remove child from someContainer by moving it to someOtherContainer
someOtherContainer.addChild(child)

Each of these child additions and removals is accompanied by a built-in Flash run-
time event—either Event.ADDED or Event.REMOVED. The following three sections
explore how these two events are used in display programming.

The following sections require a good understanding of ActionScript’s
hierarchical event dispatch system, as discussed in Chapter 21. If you
are not yet thoroughly familiar with hierarchical event dispatch, read
Chapter 21 before continuing with the following sections.

The Event.ADDED and Event.REMOVED Events
When a new child display object is added to a DisplayObjectContainer object,
ActionScript dispatches an Event.ADDED event targeted at the new child. Likewise,
when an existing child display object is removed from a DisplayObjectContainer
object, ActionScript dispatches an Event.REMOVED event targeted at the removed child.

As discussed in Chapter 21, when an event dispatch targets an object in a display
hierarchy, that object and all of its ancestors are notified of the event. Hence, when
the Event.ADDED event occurs, the added child, its new parent container, and all
ancestors of that container are notified that the child was added. Likewise, when the
Event.REMOVED event occurs, the removed child and its old parent container and all
ancestors of that container are notified that the child is about to be removed. There-
fore the Event.ADDED and Event.REMOVED events can be used in two different ways:

• A DisplayObjectContainer instance can use the Event.ADDED and Event.REMOVED
events to detect when it has gained or lost a display descendant.

• A DisplayObject instance can use the Event.ADDED and Event.REMOVED events to
detect when it has been added to or removed from a parent container.

Containment Events | 489

Let’s take a look at some generalized code that demonstrates the preceding scenar-
ios, starting with a container detecting a new descendant.

We’ll start by creating two Sprite objects: one to act as a container and the other as a
child:

var container:Sprite = new Sprite();
var child:Sprite = new Sprite();

Next we create a listener method, addedListener(), to register with container for
Event.ADDED events:

private function addedListener (e:Event):void {
 trace("Added was triggered");
}

Then we register addedListener() with container:

container.addEventListener(Event.ADDED, addedListener);

Finally, we add child to container:

container.addChild(child);

When the preceding code runs, the Flash runtime dispatches an Event.ADDED event
targeted at child. As a result, because container is a display ancestor of child, the
addedListener() function that we registered with container is triggered during the
event’s bubbling phase (for more on bubbling, see Chapter 21) .

When the Event.ADDED event triggers an event listener during the cap-
ture phase or the bubbling phase, we know that the object with which
the listener registered has a new display descendant.

Now let’s add a new child to child, making container a proud grandparent:

var grandchild:Sprite = new Sprite();
child.addChild(grandchild);

When the preceding code runs, the Flash runtime again dispatches an Event.ADDED
event, this time targeted at grandchild, and addedListener() is again triggered during
the bubbling phase. Because the listener is triggered during the bubbling phase, we
know that container has a new descendant, but we’re not sure whether that descen-
dant is a direct child of container. To determine whether the new descendant is a
direct child of container, we check if the child’s parent variable is equal to the
container object, as follows:

private function addedListener (e:Event):void {
 // Remember that Event.currentTarget refers to the object
 // that registered the currently executing listener--in
 // this case, container. Remember also that Event.target
 // refers to the event target, in this case grandchild.
 if (DisplayObject(e.target.parent) == e.currentTarget) {
 trace("A direct child was added");

490 | Chapter 20: The Display API and the Display List

 } else {
 trace("A descendant was added");
 }
}

Continuing with our example, let’s make container feel like a kid again by adding it
(and, by extension, its two descendants) to the Stage instance:

stage.addChild(container);

When the preceding code runs, the Flash runtime dispatches an Event.ADDED event
targeted at container. Once again, addedListener() is triggered—this time during the
target phase, not the bubbling phase. Because the listener is triggered during the tar-
get phase, we know that container, itself, has been added to a parent container.

When the Event.ADDED event triggers an event listener during the tar-
get phase, we know that the object with which the listener registered
was added to a parent container.

To distinguish between container gaining a new descendant and container, itself,
being added to a parent container, we examine the current event phase, as follows:

private function addedListener (e:Event):void {
 // If this listener was triggered during the capture or bubbling phases...
 if (e.eventPhase != EventPhase.AT_TARGET) {
 // ...then container has a new descendant
 trace("new descendant: " + e.target);
 } else {
 // ...otherwise, container was added to a new parent
 trace("new parent: " + DisplayObject(e.target).parent);
 }
}

Now let’s turn to the Event.REMOVED event. It works just like the Event.ADDED event,
but is triggered by object removals rather than additions:

The following code registers an Event.REMOVED listener, named removedListener(),
with container for the Event.REMOVED event:

container.addEventListener(Event.REMOVED, removedListener);

Now let’s remove a descendant from the container object:

child.removeChild(grandchild)

When the preceding code runs, the Flash runtime dispatches an Event.REMOVED event
targeted at grandchild, and removedListener() is triggered during the bubbling
phase.

Next, the following code removes container, itself, from the Stage instance:

stage.removeChild(container)

Containment Events | 491

When the preceding code runs, the Flash runtime dispatches an Event.REMOVED event
targeted at container, and removedListener() is triggered during the target phase.

Just as with addedListener(), within removedListener() we can distinguish between
container losing a descendant and container, itself, being removed from its parent
container by examining the current event phase, as follows:

private function removedListener (e:Event):void {
 // If this listener was triggered during the capture or bubbling phases...
 if (e.eventPhase != EventPhase.AT_TARGET) {
 // ...then a descendant is about to be removed from container
 trace("a descendant was removed from container: " + e.target);
 } else {
 // ...otherwise, container is about to be removed from its parent
 trace("container is about to be removed from its parent: "
 + DisplayObject(e.target).parent);
 }
}

For reference, Example 20-6 presents the preceding Event.ADDED and Event.REMOVED
example code within the context of a test class, ContainmentEventDemo. We’ll study
real-world containment-event examples over the next two sections.

Example 20-6. Containment events demonstrated

package {
 import flash.display.*;
 import flash.events.*;

 public class ContainmentEventDemo extends Sprite {
 public function ContainmentEventDemo () {
 // Create Sprite objects
 var container:Sprite = new Sprite();
 var child:Sprite = new Sprite();
 var grandchild:Sprite = new Sprite();

 // Start listening for Event.ADDED and Event.REMOVED events
 container.addEventListener(Event.ADDED, addedListener);
 container.addEventListener(Event.REMOVED, removedListener);

 // Add child to container
 container.addChild(child); // Triggers addedListener() during
 // the bubbling phase

 // Add grandchild to child
 child.addChild(grandchild); // Triggers addedListener() during
 // the bubbling phase

 // Add container to Stage
 stage.addChild(container); // Triggers addedListener() during
 // the target phase

 // Remove grandchild from child

492 | Chapter 20: The Display API and the Display List

A Real-World Containment-Event Example
Now that we’ve seen how the Event.ADDED and Event.REMOVED events work in theory,
let’s consider how they can be used in a real application. Suppose we’re writing a class,
IconPanel, that manages the visual layout of graphical icons. The IconPanel class is
used as one of the parts of a larger window component in a windowing interface. Any
time a new icon is added to, or removed from, an IconPanel object, that object exe-
cutes an icon-layout algorithm. To detect the addition and removal of child icons, the
IconPanel object registers listeners for the Event.ADDED and Event.REMOVED events.

Example 20-7 shows the code for the IconPanel class, simplified to illustrate the use
of Event.ADDED and Event.REMOVED. Notice that the Event.ADDED and Event.REMOVED

 child.removeChild(grandchild) // Triggers removedListener() during
 // the bubbling phase

 // Remove container from Stage
 stage.removeChild(container) // Triggers removedListener() during
 // the target phase
 }

 // Handles Event.ADDED events
 private function addedListener (e:Event):void {
 if (e.eventPhase != EventPhase.AT_TARGET) {
 trace("container has a new descendant: " + e.target);
 } else {
 trace("container was added to a new parent: "
 + DisplayObject(e.target).parent);
 }
 }

 // Handles Event.REMOVED events
 private function removedListener (e:Event):void {
 if (e.eventPhase != EventPhase.AT_TARGET) {
 trace("a descendant was removed from container: " + e.target);
 } else {
 trace("container was removed from its parent: "
 + DisplayObject(e.target).parent);
 }
 }
 }
}

// Running ContainmentEventDemo produces the following output:
container has a new descendant: [object Sprite]
container has a new descendant: [object Sprite]
container was added to a new parent: [object Stage]
a descendant was removed from container: [object Sprite]
container was removed from its parent: [object Stage]

Example 20-6. Containment events demonstrated (continued)

Containment Events | 493

event listeners execute icon-layout code when the IconPanel gains or loses a new
direct child only. No layout code is executed in the following situations:

• When an IconPanel object gains or loses a descendant that is not a direct child

• When an IconPanel object, itself, is added to a parent container

The ADDED_TO_STAGE and REMOVED_FROM_STAGE Events
As discussed in the previous two sections, the Event.ADDED and Event.REMOVED events
occur when a DisplayObject instance is added to, or removed from, a
DisplayObjectContainer instance. The Event.ADDED and Event.REMOVED events do not,
however, indicate whether a given object is currently on the display list. To detect
when a DisplayObject instance is added to, or removed from, the display list, we use
the Event.ADDED_TO_STAGE and Event.REMOVED_FROM_STAGE events, both of which were
added to the display API with the release of Flash Player 9.0.28.0.

When a display object (or one of its ancestors) is added to the display list, the Flash
runtime dispatches an Event.ADDED_TO_STAGE event targeted at that object. Con-
versely, when a display object (or one of its ancestors) is about to be removed from

Example 20-7. Arranging icons in the IconPanel class

package {
 import flash.display.*;
 import flash.events.*;

 public class IconPanel extends Sprite {
 public function IconPanel () {
 addEventListener(Event.ADDED, addedListener);
 addEventListener(Event.REMOVED, removedListener);
 }

 public function updateLayout ():void {
 // Execute layout algorithm (code not shown)
 }

 // Handles Event.ADDED events
 private function addedListener (e:Event):void {
 if (DisplayObject(e.target.parent) == e.currentTarget) {
 updateLayout();
 }
 }

 // Handles Event.REMOVED events
 private function removedListener (e:Event):void {
 if (DisplayObject(e.target.parent) == e.currentTarget) {
 updateLayout();
 }
 }
 }
}

494 | Chapter 20: The Display API and the Display List

the display list, the Flash runtime dispatches an Event.REMOVED_FROM_STAGE event tar-
geted at that object.

Unlike the Event.ADDED and Event.REMOVED events, Event.ADDED_TO_
STAGE and Event.REMOVED_FROM_STAGE events do not bubble. To receive
an Event.ADDED_TO_STAGE or Event.REMOVED_FROM_STAGE event through
an object’s ancestor, register with that ancestor for the event’s capture
phase.

The generalized code required to register a listener with a DisplayObject instance for
the Event.ADDED_TO_STAGE event is as follows:

theDisplayObject.addEventListener(Event.ADDED_TO_STAGE,
 addedToStageListener);

The generalized event-listener code required for an Event.ADDED_TO_STAGE listener is:

private function addedToStageListener (e:Event):void {
}

The generalized code required to register a listener with a DisplayObject instance for
the Event.REMOVED_FROM_STAGE event is as follows:

theDisplayObject.addEventListener(Event.REMOVED_FROM_STAGE,
 removedFromStageListener);

The generalized event-listener code required for an Event.REMOVED_FROM_STAGE lis-
tener is:

private function removedFromStageListener (e:Event):void {
}

Display objects typically use the Event.ADDED_TO_STAGE event to ensure that the
Stage object is accessible before using its methods, variables, or events. For exam-
ple, suppose we’re creating a class, CustomMousePointer, that represents a cus-
tom mouse pointer. Our CustomMousePointer class extends the Sprite class so
that its instances can be added to the display list. In the class, we want to register
with the Stage instance for the MouseEvent.MOUSE_MOVE event so that we can keep
the custom mouse pointer’s position synchronized with the system mouse
pointer’s position. However, when a new CustomMousePointer object is created, it
is initially not on the display list, so it has no access to the Stage instance and can-
not register for the MouseEvent.MOUSE_MOVE event. Instead, the
CustomMousePointer object must wait to be notified that it has been added to the
display list (via the Event.ADDED_TO_STAGE event). Once the CustomMousePointer
object is on the display list, its stage variable refers to the Stage instance, and it
can safely register for the MouseEvent.MOUSE_MOVE event. The following code shows
the relevant Event.ADDED_TO_STAGE excerpt from the CustomMousePointer class.
For the full CustomMousePointer class code listing, see the section “Finding the
Mouse Pointer’s Position” in Chapter 22.

Containment Events | 495

package {
 public class CustomMousePointer extends Sprite {
 public function CustomMousePointer () {
 // Ask to be notified when this object is added to the display list
 addEventListener(Event.ADDED_TO_STAGE, addedToStageListener);
 }

 // Triggered when this object is added to the display list
 private function addedToStageListener (e:Event):void {
 // Now its safe to register with the Stage instance for
 // MouseEvent.MOUSE_MOVE events
 stage.addEventListener(MouseEvent.MOUSE_MOVE, mouseMoveListener);
 }
 }
}

Custom Event.ADDED_TO_STAGE and Event.REMOVED_FROM_STAGE events

The initial release of Flash Player 9 did not offer either the Event.ADDED_TO_STAGE
event or the Event.REMOVED_FROM_STAGE events. However, using the original display
API and a little ingenuity, we can manually detect when a given object has been
added to or removed from the display list. To do so, we must monitor the state of
that object’s ancestors using the Event.ADDED and Event.REMOVED events.

Example 20-8, which follows shortly, shows the approach. In the example, the cus-
tom StageDetector class monitors a display object to see when it is added to, or
removed from, the display list. When the object is added to the display list,
StageDetector broadcasts the custom StageDetector.ADDED_TO_STAGE event. When the
object is removed from the display list, StageDetector broadcasts the custom
StageDetector.REMOVED_FROM_STAGE event.

The StageDetector class’s custom ADDED_TO_STAGE and REMOVED_FROM_STAGE events can
be used without any knowledge or understanding of the code in the StageDetector
class. However, the StageDetector class serves as an interesting summary of the dis-
play list programming techniques we’ve seen in this chapter, so let’s take a closer
look at how it works.

In the StageDetector class, the object being monitored for ADDED_TO_STAGE and
REMOVED_FROM_STAGE events is assigned to the watchedObject variable. The root of
watchedObject’s display hierarchy is assigned to the watchedRoot variable. The gen-
eral approach taken by StageDetector to detect whether watchedObject is on the dis-
play list is as follows:

• Monitor the watchedRoot for Event.ADDED and Event.REMOVED events.

• Any time watchedRoot is added to a DisplayObjectContainer object, check if
watchedObject is now on the display list (watchedObject is on the display list if its
stage variable is non-null.) If watchedObject is now on the display list, dispatch
the StageDetector.ADDED_TO_STAGE event. If it’s not, start monitoring the new
watchedRoot for Event.ADDED and Event.REMOVED events.

496 | Chapter 20: The Display API and the Display List

• While watchedObject is on the display list, if the watchedRoot or any of the
watchedRoot’s descendants are removed from a DisplayObjectContainer object,
then check if the removed object is an ancestor of watchedObject. If the removed
object is a watchedObject ancestor, dispatch the StageDetector.REMOVED_FROM_
STAGE event, and start monitoring the watchedObject’s new display hierarchy root
for Event.ADDED and Event.REMOVED events.

The code for the StageDetector class follows.

Example 20-8. Custom ADDED_TO_STAGE and REMOVED_FROM_STAGE events

package {
 import flash.display.*;
 import flash.events.*;

 // Monitors a specified display object to see when it is added to or
 // removed from the Stage, and broadcasts the correspoding custom events
 // StageDetector.ADDED_TO_STAGE and StageDetector.REMOVED_FROM_STAGE.

 // USAGE:
 // var stageDetector:StageDetector = new StageDetector(someDisplayObject);
 // stageDetector.addEventListener(StageDetector.ADDED_TO_STAGE,
 // addedToStageListenerFunction);
 // stageDetector.addEventListener(StageDetector.REMOVED_FROM_STAGE,
 // removedFromStageListenerFunction);
 public class StageDetector extends EventDispatcher {
 // Event constants
 public static const ADDED_TO_STAGE:String = "ADDED_TO_STAGE";
 public static const REMOVED_FROM_STAGE:String = "REMOVED_FROM_STAGE";

 // The object for which ADDED_TO_STAGE and REMOVED_FROM_STAGE events
 // will be generated
 private var watchedObject:DisplayObject = null;

 // The root of the display hierarchy that contains watchedObject
 private var watchedRoot:DisplayObject = null;

 // Flag indicating whether watchedObject is currently on the
 // display list
 private var onStage:Boolean = false;

 // Constructor
 public function StageDetector (objectToWatch:DisplayObject) {
 // Begin monitoring the specified object
 setWatchedObject(objectToWatch);
 }

 // Begins monitoring the specified object to see when it is added to or
 // removed from the display list
 public function setWatchedObject (objectToWatch:DisplayObject):void {
 // Track the object being monitored
 watchedObject = objectToWatch;

Containment Events | 497

 // Note whether watchedObject is currently on the display list
 if (watchedObject.stage != null) {
 onStage = true;
 }

 // Find the root of the display hierarchy containing the
 // watchedObject, and register with it for ADDED/REMOVED events.
 // By observing where watchedObject's root is added and removed,
 // we'll determine whether watchedObject is on or off the
 // display list.
 setWatchedRoot(findWatchedObjectRoot());
 }

 // Returns a reference to the object being monitored
 public function getWatchedObject ():DisplayObject {
 return watchedObject;
 }

 // Frees this StageDetector object's resources. Call this method before
 // discarding a StageDetector object.
 public function dispose ():void {
 clearWatchedRoot();
 watchedObject = null;
 }

 // Handles Event.ADDED events targeted at the root of
 // watchedObject's display hierarchy
 private function addedListener (e:Event):void {
 // If the current watchedRoot was added...
 if (e.eventPhase == EventPhase.AT_TARGET) {
 // ...check if watchedObject is now on the display list
 if (watchedObject.stage != null) {
 // Note that watchedObject is now on the display list
 onStage = true;
 // Notify listeners that watchedObject is now
 // on the display list
 dispatchEvent(new Event(StageDetector.ADDED_TO_STAGE));
 }
 // watchedRoot was added to another container, so there's
 // now a new root of the display hierarchy containing
 // watchedObject. Find that new root, and register with it
 // for ADDED and REMOVED events.
 setWatchedRoot(findWatchedObjectRoot());
 }
 }

 // Handles Event.REMOVED events for the root of
 // watchedObject's display hierarchy
 private function removedListener (e:Event):void {
 // If watchedObject is on the display list...
 if (onStage) {
 // ...check if watchedObject or one of its ancestors was removed

Example 20-8. Custom ADDED_TO_STAGE and REMOVED_FROM_STAGE events (continued)

498 | Chapter 20: The Display API and the Display List

 var wasRemoved:Boolean = false;
 var ancestor:DisplayObject = watchedObject;
 var target:DisplayObject = DisplayObject(e.target);
 while (ancestor != null) {
 if (target == ancestor) {
 wasRemoved = true;
 break;
 }
 ancestor = ancestor.parent;
 }

 // If watchedObject or one of its ancestors was removed...
 if (wasRemoved) {
 // ...register for ADDED and REMOVED events from the removed
 // object (which is the new root of watchedObject's display
 // hierarchy).
 setWatchedRoot(target);

 // Note that watchedObject is not on the display list anymore
 onStage = false;

 // Notify listeners that watchedObject was removed from the Stage
 dispatchEvent(new Event(StageDetector.REMOVED_FROM_STAGE));
 }
 }
 }

 // Returns the root of the display hierarchy that currently contains
 // watchedObject
 private function findWatchedObjectRoot ():DisplayObject {
 var watchedObjectRoot:DisplayObject = watchedObject;
 while (watchedObjectRoot.parent != null) {
 watchedObjectRoot = watchedObjectRoot.parent;
 }
 return watchedObjectRoot;
 }

 // Begins listening for ADDED and REMOVED events targeted at the root of
 // watchedObject's display hierarchy
 private function setWatchedRoot (newWatchedRoot:DisplayObject):void {
 clearWatchedRoot();
 watchedRoot = newWatchedRoot;
 registerListeners(watchedRoot);
 }

 // Removes event listeners from watchedRoot, and removes
 // this StageDetector object's reference to watchedRoot
 private function clearWatchedRoot ():void {
 if (watchedRoot != null) {
 unregisterListeners(watchedRoot);
 watchedRoot = null;
 }
 }

Example 20-8. Custom ADDED_TO_STAGE and REMOVED_FROM_STAGE events (continued)

Custom Graphical Classes | 499

In Chapter 22, we’ll see the custom StageDetector.ADDED_TO_STAGE and
StageDetector.REMOVED_FROM_STAGE events used in the CustomMousePointer class.

We’ve now finished our look at the container API. Now let’s consider one last short,
but fundamental display programming topic: custom graphical classes.

Custom Graphical Classes
We’ve drawn lots of rectangles, circles, and triangles in this chapter. So many, that
some of the examples we’ve studied have had a distinct “code smell”: their code was
repetitive, and therefore error-prone.

Learn more about code smell (common signs of potential problems in
code) at http://xp.c2.com/CodeSmell.html.

To promote reuse and modularity when working with primitive shapes, we can move
repetitive drawing routines into custom classes that extend the Shape class. Let’s
start with a custom Rectangle class, using an extremely simple approach that pro-
vides a very limited set of stroke and fill options, and does not allow the rectangle to
be changed once drawn. Example 20-9 shows the code. (We’ll expand on the
Rectangle class’s features in Chapter 25.)

 // Registers ADDED and REMOVED event listeners with watchedRoot
 private function registerListeners (target:DisplayObject):void {
 target.addEventListener(Event.ADDED, addedListener);
 target.addEventListener(Event.REMOVED, removedListener);
 }

 // Unregisters ADDED and REMOVED event listeners from watchedRoot
 private function unregisterListeners (target:DisplayObject):void {
 target.removeEventListener(Event.ADDED, addedListener);
 target.removeEventListener(Event.REMOVED, removedListener);
 }
 }
}

Example 20-9. Rectangle, a simple shape subclass

package {
 import flash.display.Shape;

 public class Rectangle extends Shape {
 public function Rectangle (w:Number,
 h:Number,
 lineThickness:Number,
 lineColor:uint,
 fillColor:uint) {

Example 20-8. Custom ADDED_TO_STAGE and REMOVED_FROM_STAGE events (continued)

http://xp.c2.com/CodeSmell.html

500 | Chapter 20: The Display API and the Display List

Because Rectangle extends Shape, it inherits the Shape class’s graphics variable, and
can use it to draw the rectangular shape.

To create a new Rectangle, we use the following familiar code:

var rect:Rectangle = new Rectangle(100, 50, 3, 0xFF0000, 0x0000FF);

Because Shape is a DisplayObject descendant, Rectangle inherits the ability to be
added to the display list (as does any descendant of DisplayObject), like this:

someContainer.addChild(rect);

As a descendant of DisplayObject, the Rectangle object can also be positioned,
rotated, and otherwise manipulate like any other displayable object. For example, here
we set the Rectangle object’s horizontal position to 15 and vertical position to 30:

rect.x = 15;
rect.y = 30;

And the fun doesn’t stop at rectangles. Every class in the display API can be
extended. For example, an application could extend the TextField class when dis-
playing a customized form of text. Example 20-10 demonstrates, showing a TextField
subclass that creates a hyperlinked text header.

Here’s how we might use the ClickableHeading class in an application:

var head:ClickableHeading = new ClickableHeading(
 "Essential ActionScript 3.0",
 "http://www.moock.org/eas3");
addChild(head);

 graphics.lineStyle(lineThickness, lineColor);
 graphics.beginFill(fillColor, 1);
 graphics.drawRect(0, 0, w, h);
 }
 }
}

Example 20-10. ClickableHeading, a TextField subclass

package {
 import flash.display.*;

 public class ClickableHeading extends TextField {
 public function ClickableHeading (headText:String, URL:String) {
 html = true;
 autoSize = TextFieldAutoSize.LEFT;
 htmlText = "" + headText + "";
 border = true;
 background = true;
 }
 }
}

Example 20-9. Rectangle, a simple shape subclass (continued)

Go with the Event Flow | 501

Figure 20-17 shows the resulting on-screen content. When the example runs in a
Flash runtime, the text is linked to the companion web site for this book.

We’ll see lots more examples of display subclasses in the upcoming chapters. As you
conceive of the visual assets required by your applications, consider the possibility of
extending an existing display class rather than writing classes from scratch.

Go with the Event Flow
By now, you should feel relatively comfortable creating displayable content and add-
ing it to the screen. Many of the examples in this book rely heavily on the fundamen-
tals that were covered in this chapter, so you’ll have plenty of opportunities to review
and expand on what you’ve learned. In the next chapter, we’ll learn how Action-
Script 3.0’s event architecture caters to objects on the display list.

Figure 20-17. A ClickableHeading instance

Essential ActionScript 3.0

502

Chapter 21CHAPTER 21

Events and Display Hierarchies 22

In Chapter 12, we studied ActionScript’s built-in event architecture in general terms.
In this chapter, we’ll take a closer look at how that event architecture specifically
caters to objects in display hierarchies.

ActionScript’s system of dispatching events through an object hierar-
chy, as described in this chapter, is based on the W3C Document
Object Model (DOM) Level 3 Events Specification, available at http://
www.w3.org/TR/DOM-Level-3-Events.

Hierarchical Event Dispatch
As we saw in Chapter 12, when ActionScript dispatches an event targeted at an
object that is not part of a display hierarchy, that target is the sole object notified of
the event. For example, when a Sound object’s sound finishes playing, ActionScript
dispatches an Event.COMPLETE event targeted at the associated SoundChannel object.
The SoundChannel object is not part of a display hierarchy, so it is the sole object
notified that the event occurred.

By contrast, when ActionScript dispatches an event targeted at an object that is part
of a display hierarchy, that target and all of its display hierarchy ancestors are noti-
fied that the event occurred. For example, if a Sprite object contains a TextField
object, and the user clicks the TextField object, both the TextField object (the event
target) and the Sprite object (the event target’s ancestor) are notified that the mouse
click occurred.

ActionScript’s hierarchical event dispatch system enables every display object con-
tainer to register event listeners that handle events targeted at its descendant display
objects. For example, a Sprite representing a dialog box might register a listener that
handles mouse click events targeted at a nested “OK button” control. Or a Sprite
representing a login form might register a listener that handles focus events targeted
at nested input fields. This centralized architecture helps reduce code repetition, par-

http://www.w3.org/TR/DOM-Level-3-Events
http://www.w3.org/TR/DOM-Level-3-Events

Event Dispatch Phases | 503

ticularly for code that responds to user input events. In the later section “Using the
Event Flow to Centralize Code,” we’ll study a code example that demonstrates the
benefits of centralized event handling. But first, let’s cover the basics of hierarchical
event dispatch and registration.

In this chapter, the terms “ancestor” and “descendant” refer primarily
to objects in a display hierarchy, not to superclasses and subclasses in
an inheritance hierarchy. To avoid confusion, this chapter sometimes
uses the informal terms “display ancestor” and “display descendant”
when referring to ancestor objects and descendant objects in a display
hierarchy.

Event Dispatch Phases
As we just learned, when ActionScript dispatches an event targeted at an object in a
display hierarchy, it notifies not just that target but also its display ancestors. The
process by which the target and its ancestors are notified of the event is broken into
three distinct phases. In the first phase of the event dispatch, known as the capture
phase, each of the target’s ancestors is notified that the event has occurred. Once the
target object’s ancestors have all been notified of the event, then the second phase of
the event dispatch, known as the target phase, begins. During the target phase,
ActionScript notifies the target object that the event occurred.

For some event types, the event dispatch ends once the target phase is complete. For
other event types, the event dispatch continues into a third phase, known as the bub-
bling phase. During the bubbling phase, the ancestors of the target object are noti-
fied that the target successfully received the event notification. Events with a
bubbling phase are known as bubbling events; events without a bubbling phase are
known as nonbubbling events.

The four event types Event.ACTIVATE, Event.DEACTIVATE, Event.ENTER_FRAME,
and Event.RENDER, have a target phase only. All other event dispatches tar-
geted at an object in a display hierarchy have a capture phase and a target
phase. Some event types also have a bubbling phase.

The order in which objects are notified of an event during an event dispatch is gov-
erned by the event phase. During the capture phase, ancestors are notified in an order
that starts from the root of the target’s display hierarchy and proceeds down through
each descendant to the target’s direct parent. During the target phase, the target, itself
is notified. During the bubbling phase, ancestors are notified in the opposite order of
the capture phase, from the target’s direct parent up to the root of the hierarchy. The
process by which event notification passes down through a target’s ancestors (capture
phase), to the target (target phase), and then back up through the target’s ancestors
(bubbling phase) is known as the event flow. As event notification passes through event
flow, the event is said to propagate from object to object.

504 | Chapter 21: Events and Display Hierarchies

Let’s consider a simple event-flow example. Suppose the Stage instance contains a
Sprite object that contains a TextField object, as depicted in Figure 21-1. As
Figure 21-1 shows, the root of the TextField object’s display hierarchy is the Stage
instance, and the TextField’s direct parent is the Sprite object.

Now further suppose that the user enters some text into the TextField, causing the
Flash runtime to dispatch a TextEvent.TEXT_INPUT event targeted at the TextField
object. Because the TextField object is part of a display hierarchy, the event passes
through the event flow. During the first phase of the event dispatch (the capture
phase), the Stage instance, then the Sprite instance are notified of the event. During the
second phase of the dispatch (the target phase), the TextField itself is notified of the
event. Finally, during the third phase of the dispatch (the bubbling phase), the Sprite
instance, then the Stage instance are notified that the target received event notification.
In all, five event notifications are carried out during the TextEvent.TEXT_INPUT event-
dispatch, as depicted in Figure 21-2.

Figure 21-1. A sample display hierarchy

Figure 21-2. Event flow for the TextEvent.TEXT_INPUT event

Stage instance

Sprite object

TextField object

Stage instance

Sprite object

TextField object

Stage
instance
notified

Sprite
object

notified

Stage
instance
notified

Sprite
object

notified

TextField object notified

Target Phase

Capture
Phase

Bubbling
Phase

Event Listeners and the Event Flow | 505

Event Listeners and the Event Flow
As we’ve just seen, during an event dispatch targeted at a given display object, that
object’s display ancestors receive event notification during the capture phase and
potentially also during the bubbling phase (if the event is a bubbling event).
Accordingly, when we register a listener with an event target’s ancestor we must
indicate whether that listener should be triggered during the capture phase or the
bubbling phase.

To register a listener with an event target’s ancestor for the capture phase of an event
dispatch, we set addEventListener()’s third parameter, useCapture, to true, as in:

theAncestor.addEventListener(theEvent, theListener, true)

The preceding line of code causes theListener() to be executed whenever Action-
Script dispatches theEvent targeted at one of theAncestor’s descendants, before that
descendant receives notification of the event.

To register a listener with an event target’s ancestor for the bubbling phase of an
event dispatch, we set addEventListener()’s third parameter to false, as in:

theAncestor.addEventListener(theEvent, theListener, false)

Alternatively, because useCapture’s default value is false, we can simply omit the
useCapture argument, as in:

theAncestor.addEventListener(theEvent, theListener)

The preceding line of code causes theListener() to be executed whenever Action-
Script dispatches theEvent targeted at one of theAncestor’s descendants, after that
descendant receives notification of the event.

For brevity over the remainder of this chapter, we’ll use the unofficial
term ancestor listener to mean “an event listener registered with an
event target’s display ancestor.” Likewise, we’ll use the term target lis-
tener to mean “an event listener registered directly with an event target.”

When registering an ancestor listener for a nonbubbling event, we always register for
the capture phase (i.e., set useCapture to true); otherwise, the listener will not be
triggered. When registering an ancestor listener for a bubbling event, we choose
either capture-phase notification (useCapture set to true) or bubbling-phase notifica-
tion (useCapture set to false), or both, according to the needs of the application.

The capture phase gives ancestor listeners a chance to process an event before the
event target’s listeners have responded to it. Typically, capture phase listeners are
used to conditionally stop an event from ever reaching its target. For example, a
panel widget with an “enabled” state and a “disabled” state might use a capture-
phase listener to prevent the panel’s descendants from receiving mouse events when
the panel is disabled. (We’ll learn how to stop events in the later section “Stopping
an Event Dispatch.”)

506 | Chapter 21: Events and Display Hierarchies

By contrast, the bubbling phase gives ancestor listeners a chance to process an event
after the event target’s listeners have responded to it. Typically, the bubbling phase is
used to respond to changes in the state of the target object before the program
continues, and before the screen is updated. For example, a panel widget containing
draggable icons might use a bubbling-phase listener to trigger automatic icon-
alignment after a specific icon has been dragged.

Unlike ancestor listeners, listeners registered with an event target can be triggered
during a single phase only—the target phase. To register a listener with an event tar-
get for the target phase of an event dispatch, we register that listener using
addEventListener() with useCapture set to false—exactly as if we were registering an
ancestor listener for notification during the bubbling phase. The following general-
ized code shows the approach:

theEventTarget.addEventListener(theEvent, theListener, false)

Or, simply:

theEventTarget.addEventListener(theEvent, theListener)

The preceding line of code causes theListener() to be executed whenever Action-
Script dispatches theEvent targeted at theEventTarget, after theEventTarget’s ances-
tors receive capture-phase notification of the event.

When registering an event listener directly with an event target for
target-phase notification, the useCapture parameter should always be
either set to false or omitted. Otherwise, the listener will never be
triggered.

The following sections present a variety of useCapture examples and discuss several
phase-specific event-registration topics.

Registering an Ancestor Listener for the Capture Phase
As we’ve just learned, to register a given ancestor listener for capture-phase event
notification, we set addEventListener()’s useCapture parameter to true, as in:

theAncestor.addEventListener(theEvent, theListener, true)

Now let’s apply that code to a working example. For a sample display hierarchy,
we’ll use the scenario depicted earlier in Figure 21-1, where the Stage instance con-
tains a Sprite object that contains a TextField object. Example 21-1 shows the code
we use to create the hierarchy.

Example 21-1. A sample display hierarchy

// Create the Sprite
var theSprite:Sprite = new Sprite();

// Create the TextField
var theTextField:TextField = new TextField();

Event Listeners and the Event Flow | 507

Now suppose we want to register a function, textInputListener(), with theSprite for
TextEvent.TEXT_INPUT events. Here’s the textInputListener() function:

private function textInputListener (e:TextEvent):void {
 trace("The user entered some text");
}

We want textInputListener() to be triggered during the capture phase (i.e., before the
TextField is notified), so we use the following code to register it:

theSprite.addEventListener(TextEvent.TEXT_INPUT, textInputListener, true)

The preceding line of code causes textInputListener() to be executed whenever
ActionScript dispatches a TextEvent.TEXT_INPUT event targeted at theTextField,
before theTextField receives notification of the event.

Registering an Ancestor Listener for the Bubbling Phase
Recall that to register a given ancestor listener for bubbling-phase event notification,
we set addEventListener()’s useCapture parameter to false, as in:

theAncestor.addEventListener(theEvent, theListener, false)

Continuing again with our TextField from Example 21-1, suppose we want to regis-
ter textInputListener() with theSprite for TextEvent.TEXT_INPUT events, and we want
textInputListener() to be triggered during the bubbling phase (i.e., after the TextField
is notified). We use the following code:

theSprite.addEventListener(TextEvent.TEXT_INPUT, textInputListener, false)

Or, we could do the same thing by omitting the useCapture parameter value entirely:

theSprite.addEventListener(TextEvent.TEXT_INPUT, textInputListener)

The preceding line of code causes textInputListener() to be executed whenever
ActionScript dispatches a TextEvent.TEXT_INPUT event targeted at theTextField, but
after theTextField receives notification of the event.

Note that if the TextEvent.TEXT_INPUT event were a nonbubbling event, then
textInputListener() would never be triggered. It’s worth repeating what we learned
earlier: if an ancestor listener registers for a nonbubbling event with useCapture either

theTextField.text = "enter input here";
theTextField.autoSize = TextFieldAutoSize.LEFT;
theTextField.type = TextFieldType.INPUT;

// Add the TextField to the Sprite
theSprite.addChild(theTextField);

// Add the Sprite to the Stage instance. Note that someDisplayObject must
// be on the display list in order to access the Stage instance.
someDisplayObject.stage.addChild(theSprite);

Example 21-1. A sample display hierarchy (continued)

508 | Chapter 21: Events and Display Hierarchies

omitted or set to false, then that listener will never be triggered. In order for an
ancestor listener to be triggered when a nonbubbling event is dispatched, it must reg-
ister for the capture phase by setting useCapture to true.

To determine whether an event is a bubbling or nonbubbling event, we can either:

• Consult the event’s entry in Adobe’s ActionScript Language Reference.

• Handle the event with an event listener during either the capture or target
phases, and check the bubbles variable of the Event object passed to the listener.
If bubbles is true, then the event bubbles; otherwise, the event does not bubble.

The following code shows the latter technique:

// Register a function, clickListener(), with the Stage instance for
// MouseEvent.CLICK events. Note that someDisplayObject must be on the
// display list in order to access the Stage instance.
someDisplayObject.stage.addEventListener(MouseEvent.CLICK, clickListener);

// ...later in the code, define clickListener()
private function clickListener (e:MouseEvent):void {
 // When the event occurs, check if it is a bubbling event
 if (e.bubbles) {
 trace("The MouseEvent.CLICK event is a bubbling event.");
 } else {
 trace("The MouseEvent.CLICK event is a non-bubbling event.");
 }
}

For convenient reference, Adobe’s ActionScript Language Reference lists the value of
the Event class’s instance variable bubbles under all built-in event entries. As a gen-
eral rule, most built-in events targeted at display objects bubble.

Registering an Ancestor Listener for Both the Capture Phase and
the Bubbling Phase
To specify that an ancestor listener should be triggered both during the capture
phase and the bubbling phase (i.e., before and after the target receives the event noti-
fication), we must register that listener twice—once with useCapture set to true and
once with useCapture set to false. For example, returning to our TextField scenario,
suppose we want to register our textInputListener() listener with theSprite for
TextEvent.TEXT_INPUT events, and we want textInputListener() to be triggered during
both the capture phase and the bubbling phase. We use the following code:

theSprite.addEventListener(TextEvent.TEXT_INPUT, textInputListener, true)
theSprite.addEventListener(TextEvent.TEXT_INPUT, textInputListener, false)

If an ancestor listener wishes to be triggered during both the capture
phase and the bubbling phase of an event dispatch, it must register for
the event twice.

Event Listeners and the Event Flow | 509

Registering a Listener with the Event Target
Recall that to register a target listener for target-phase notification, we set
addEventListener()’s useCapture parameter to false, as in:

theEventTarget.addEventListener(theEvent, theListener, false)

Hence, in our ongoing TextField scenario, to register textInputListener() with
theTextField for TextEvent.TEXT_INPUT events, we use the following code:

theTextField.addEventListener(TextEvent.TEXT_INPUT,
 textInputListener,

false)

or, simply:

theTextField.addEventListener(TextEvent.TEXT_INPUT, textInputListener)

The preceding code causes textInputListener() to be executed whenever ActionScript
dispatches a TextEvent.TEXT_INPUT event targeted at theTextField. The
textInputListener() method executes after the Stage instance and theSprite have
received capture-phase notification, but before the Stage instance and theSprite
receive bubbling-phase notification.

The Dual Purpose of the useCapture Parameter
As shown in the preceding two sections, addEventListener()’s useCapture parameter
is set to false in two different circumstances:

• When registering an ancestor listener to be triggered during the bubbling phase

• When registering a target listener to be triggered during the target phase

Therefore, when a listener registers for an event with useCapture set to false, that lis-
tener will be triggered when the event is dispatched, and either of the following is
true:

• The event target is the object with which the listener registered (in this case, the
listener is triggered during the target phase).

• The event target is a descendant of the object with which the listener registered
(In this case, the listener is triggered during the bubbling phase, after that
descendant has processed the event).

For example, the following code registers clickListener() with the Stage instance for
MouseEvent.CLICK events:

someDisplayObject.stage.addEventListener(MouseEvent.CLICK,
 clickListener,
 false);

510 | Chapter 21: Events and Display Hierarchies

Because useCapture is false, clickListener() will be triggered in both of the following
situations:

• When the user clicks the display area (in which case the Flash runtime dis-
patches an event targeted at the Stage instance).

• When the user clicks any on-screen display object (in which case the Flash run-
time dispatches an event targeted at the clicked object, which is always a descen-
dant of the Stage instance).

Notice that although clickListener() registered with a single object (the Stage
instance), at runtime clickListener() might be triggered by event dispatches targeted
at that object or at that object’s descendants! Therefore, in some cases, a listener
function must include code to ignore event dispatches in which it has no interest.
We’ll study the code required to ignore event dispatches in the later section “Distin-
guishing Events Targeted at an Object from Events Targeted at That Object’s
Descendants.”

Removing Event Listeners
When unregistering an event listener from an object in a display hierarchy, we must
indicate whether that listener originally registered to be triggered during the capture
phase or during the target or bubbling phases. To do so, we use removeEventListener(
)’s third parameter, useCapture, which mirrors addEventListener()’s useCapture param-
eter.

If the listener being unregistered was originally registered for the capture phase (i.e.,
with addEventListener()’s useCapture parameter set to true), we must unregister it
with removeEventListener()’s useCapture parameter set to true. If the listener was
originally registered to be triggered during the target or bubbling phases (i.e., with
addEventListener()’s useCapture parameter set to false), we must unregister it with
removeEventListener()’s useCapture parameter set to false.

When unregistering a listener, always set removeEventListener()’s
useCapture parameter to match the value used for useCapture when
addEventListener() was originally invoked.

For example, in the following code, we register clickListener() with someDisplayObject
for the capture phase by specifying true as the value of addEventListener()’s useCapture
parameter:

someDisplayObject.addEventListener(MouseEvent.CLICK,
 clickListener,

true);

Accordingly, when unregistering clickListener() from someDisplayObject, we must
specify true as the value of removeEventListener()’s useCapture parameter:

Using the Event Flow to Centralize Code | 511

someDisplayObject.removeEventListener(MouseEvent.CLICK,
 clickListener,

true);

When unregistering an event listener that has registered twice with the same object
(to be triggered during both the capture phase and the target or bubbling phases),
then we must, likewise, invoke removeEventListener() twice. For example, the fol-
lowing code registers a MouseEvent.CLICK listener twice with the Stage instance, to be
triggered during both the capture phase and the target or bubbling phases:

someDisplayObject.stage. addEventListener(MouseEvent.CLICK,
 clickListener,

true);
someDisplayObject.stage.addEventListener(MouseEvent.CLICK,
 clickListener,

false);

The following code removes both preceding MouseEvent.CLICK event listeners.
Because clickListener() was registered separately for both the capture phase and the
target or bubbling phases, it must also unregister separately for those phases.

someDisplayObject.stage.removeEventListener(MouseEvent.CLICK,
 clickListener,

true);
someDisplayObject.stage.removeEventListener(MouseEvent.CLICK,
 clickListener,

false);

Each listener registration performed with addEventListener() is treated
separately, requiring its own removeEventListener() invocation for
unregistration.

Now that were familiar with the basics of the event flow, let’s look at an example
showing how it can help centralize code in a real-world application.

Using the Event Flow to Centralize Code
If you’re waiting for room in a fully booked hotel, it’s easier to ask the hotel man-
ager to tell you when a vacancy opens up than it is to ask every guest in the hotel to
tell you when they leave. Likewise, when handling event dispatches, it’s often more
efficient to register event listeners with a display object container than it is to register
with each of its descendants.

For example, suppose we’re building a simple checkbox control, comprised of the
following two classes:

• CheckBox, a Sprite subclass that acts as a container for the entire control

• CheckBoxIcon, a Sprite subclass that represents the checkbox’s graphical icon

512 | Chapter 21: Events and Display Hierarchies

At runtime, each CheckBox instance creates two child objects: a CheckBoxIcon
instance for the checkbox’s icon and a TextField instance for the checkbox’s text
label. For reference, let’s call the main CheckBox instance container and its two chil-
dren icon and label. Figure 21-3 shows our checkbox control.

We want our checkbox to be easy to use, so we design it to toggle on or off when the
user clicks either the checkbox icon or the checkbox label. Accordingly, in our imple-
mentation, we must detect mouse-click events targeted at both icon and label. To
do so, we could register a separate mouse-click listener with each of those objects.
However, registering two event listeners would increase development time and, due
to the repetition of near-identical event registration code, increase the potential for
bugs in our checkbox. To avoid repetitive code, we can instead handle all mouse-
click events through a single listener registered with container. Because container is
a display ancestor of both icon and label, it is informed any time the Flash runtime
dispatches a mouse-click event targeted at either of those objects. Whenever
container’s mouse-click listener runs, we know that either the icon or the label was
clicked, and we can toggle the checkbox on or off in response.

Example 21-2 shows the code for our example checkbox, with event-handling sec-
tions in bold.

Figure 21-3. Objects in the Checkbox control

Example 21-2. Handling a Checkbox’s events hierarchically

// File CheckBox.as
package {
 import flash.display.*;
 import flash.events.*;
 import flash.text.*;

 // A very simple checkbox widget
 public class CheckBox extends Sprite {
 private var label:TextField; // The checkbox's text label
 private var icon:CheckBoxIcon; // The checkbox's graphical icon
 private var checked:Boolean; // Flag indicating whether the
 // checkbox is currently checked
 // Constructor
 public function CheckBox (msg:String) {
 // When first created, the checkbox is not checked
 checked = false;

 // Create the graphical icon
 icon = new CheckBoxIcon();

Click here

icon
(CheckBoxIcon instance)

label
(TextField instance)

container
(CheckBox instance)

Using the Event Flow to Centralize Code | 513

 // Create the text label
 label = new TextField();
 label.text = msg;
 label.autoSize = TextFieldAutoSize.LEFT;
 label.selectable = false;

 // Position the text label next to the graphical icon
 label.x = icon.x + icon.width + 5;

 // Add the label and icon to this object as display children
 addChild(icon);
 addChild(label);

 // Start listening for mouse click event dispatches targeted at this
 // object or any of its children (i.e., the label or the icon)
 addEventListener(MouseEvent.CLICK, clickListener);
 }

 // Handles mouse click events. This method runs whenever either the
 // label or the icon is clicked.
 private function clickListener (e:MouseEvent):void {
 if (checked) {
 icon.uncheck();
 checked = false;
 } else {
 icon.check();
 checked = true;
 }
 }
 }
}

// File CheckBoxIcon.as
package {
 import flash.display.*;

 // The graphical icon for a checkbox widget
 public class CheckBoxIcon extends Sprite {

 // Constructor
 public function CheckBoxIcon () {
 uncheck();
 }

 // Draws a checkbox icon in the "checked" state
 public function check ():void {
 graphics.clear();
 graphics.lineStyle(1);
 graphics.beginFill(0xFFFFFF);
 graphics.drawRect(0, 0, 15, 15);
 graphics.endFill();

Example 21-2. Handling a Checkbox’s events hierarchically (continued)

514 | Chapter 21: Events and Display Hierarchies

We’ve now covered the basics of ActionScript’s hierarchical-event-dispatch system,
but there are several more topics left to explore. Let’s soldier on.

Determining the Current Event Phase
As we learned in the earlier section “Registering an Ancestor Listener for Both the
Capture Phase and the Bubbling Phase,” by invoking addEventListener() twice, we
can register a single event-listener function to be executed during both the capture
phase and bubbling phases of an event dispatch. Similarly, in the section “The Dual
Purpose of the useCapture Parameter,” we learned that when an event listener is reg-
istered with useCapture set to false, that listener might be triggered during the target
phase or during the bubbling phase of an event dispatch. Hence, when an event-lis-
tener function is executed in response to an event, the current event phase is not
always known. Accordingly, ActionScript provides the Event class’s instance vari-
able eventPhase, which can be used within an event listener function to deduce the
current event phase.

The eventPhase variable indicates whether the current event dispatch is in the cap-
ture phase, the target phase, or the bubbling phase. When the event dispatch is in
the capture phase, eventPhase is set to EventPhase.CAPTURING_PHASE, indicating that

 graphics.lineTo(15, 15);
 graphics.moveTo(0, 15);
 graphics.lineTo(15, 0);
 }

 // Draws a checkbox icon in the "unchecked" state
 public function uncheck ():void {
 graphics.clear();
 graphics.lineStyle(1);
 graphics.beginFill(0xFFFFFF);
 graphics.drawRect(0, 0, 15, 15);
 }
 }
}

// File CheckBoxDemo.as (a main class that uses the CheckBox class)
package {
 import flash.display.Sprite;

 // Demonstrates the use of the CheckBox class
 public class CheckboxDemo extends Sprite {
 public function CheckboxDemo() {
 var c:CheckBox = new CheckBox("Click here");
 addChild(c);
 }
 }
}

Example 21-2. Handling a Checkbox’s events hierarchically (continued)

Determining the Current Event Phase | 515

the target object has not yet received event notification. When the event dispatch is
in the target phase, eventPhase is set to EventPhase.AT_TARGET, indicating that the tar-
get object is currently processing the event. When the event dispatch is in the bub-
bling phase, eventPhase is set to EventPhase.BUBBLING_PHASE, indicating that the
target object has finished processing the event.

Typically, the EventPhase.CAPTURING_PHASE, EventPhase.AT_TARGET, and EventPhase.
BUBBLING_PHASE constants have the integer values 1, 2, and 3, respectively, but those
values are considered subject to change, and should never be used directly. Instead,
to determine the current event phase within an event listener function, always com-
pare the eventPhase variable to the EventPhase class constants. For example, always
use code like this:

private function someListener (e:Event):void {
 if (e.eventPhase == EventPhase.AT_TARGET) {
 // This listener was triggered during the target phase...
 }
}

And never use code like this:

private function someListener (e:Event):void {
 // Bad code! Never use the EventPhase constant values directly!
 if (e.eventPhase == 2) {
 // This listener was triggered during the target phase...
 }
}

The following code demonstrates the general use of the eventPhase variable. First,
the code adds a TextField object to the Stage instance. Then the code registers
clickListener() with the Stage instance for capture-phase MouseEvent.CLICK event noti-
fication. Finally, the code registers clickListener() with the Stage instance for target-
phase and bubbling-phase MouseEvent.CLICK event notification.

When clickListener() executes, it outputs the current phase. Notice that the current
phase is determined by comparing eventPhase to the three EventPhase class
constants.

var t:TextField = new TextField();
t.text = "click here";
t.autoSize = TextFieldAutoSize.LEFT;
stage.addChild(t);

// Register for capture phase
stage.addEventListener(MouseEvent.CLICK, clickListener, true);

// Register for target or bubbling phase
stage.addEventListener(MouseEvent.CLICK, clickListener, false);

// ...elsewhere in the class
private function clickListener (e:MouseEvent):void {
 var phase:String;

516 | Chapter 21: Events and Display Hierarchies

 switch (e.eventPhase) {
 case EventPhase.CAPTURING_PHASE:
 phase = "Capture";
 break;

 case EventPhase.AT_TARGET:
 phase = "Target";
 break;

 case EventPhase.BUBBLING_PHASE:
 phase = "Bubbling";
 break;
 }
 trace("Current event phase: " + phase);
}

When the preceding code runs, if the user clicks the TextField object, the Flash run-
time dispatches a MouseEvent.CLICK event targeted at the TextField object, and the
output of the preceding code is:

Current event phase: Capture
Current event phase: Bubbling

(Remember, clickListener() registered with the Stage instance for both the capture
phase and the bubbling phase, so it is triggered twice during event dispatches that
target the Stage instance’s descendants.)

On the other hand, if the user clicks the display area, the Flash runtime dispatches a
MouseEvent.CLICK event targeted at the Stage object, and the output of the preceding
code is:

Current event phase: Target

As discussed in the next section, the eventPhase variable is typically used to differen-
tiate between events targeted at an object and events targeted at that object’s descen-
dants. Less commonly, the eventPhase variable is used to distinguish the capture
phase from the bubbling phase within ancestor listeners that are registered for both
of those phases.

Distinguishing Events Targeted at an Object from
Events Targeted at That Object’s Descendants
When the eventPhase variable of the Event object passed to a listener function is set
to EventPhase.AT_TARGET, we know that the event dispatch is targeted at the object
with which the listener registered. On the other hand, when eventPhase is set to
either EventPhase.CAPTURING_PHASE or EventPhase.BUBBLING_PHASE, we know that the
event dispatch is targeted at a descendant of the object with which the listener
registered.

Distinguishing Events Targeted at an Object from Events Targeted at That Object’s Descendants | 517

Therefore, a listener can use the following code to ignore events targeted at descen-
dants of the object with which it registered:

private function someListener (e:SomeEvent):void {
 if (e.eventPhase == EventPhase.AT_TARGET) {
 // Code here is executed only when the object that registered this
 // listener is the event target.
 }
}

We can use the preceding technique to write code that responds to input received by
a given object but not by any of its descendants. For example, imagine an applica-
tion in which the Stage instance contains many buttons, text fields, and other input-
receiving objects. To respond to mouse clicks when they occur over vacant areas of
the Stage instance only, we use the following code:

// Register with the Stage instance for MouseEvent.CLICK events.
// As a result, clickListener() will be invoked when *any* object
// on the display list is clicked.
stage.addEventListener(MouseEvent.CLICK, clickListener);

// ...elsewhere, define the MouseEvent.CLICK event listener
private function clickListener (e:MouseEvent):void {
 // If this listener was triggered during the target phase...
 if (e.eventPhase == EventPhase.AT_TARGET) {
 // ...then the Stage instance was clicked. Proceed with
 // "Stage instance was clicked" response code.
 }
}

To create an event listener that ignores events targeted at the object with which it
registered, we use the following code:

private function someListener (e:SomeEvent):void {
 if (e.eventPhase != EventPhase.AT_TARGET) {
 // Code here is executed only when the object that registered this
 // listener is a descendant of the event target.
 }
}

For example, the following listener responds to mouse clicks that occur over any
object on the display list, but not over a vacant area of the Stage instance:

// Register with the Stage instance for MouseEvent.CLICK events
stage.addEventListener(MouseEvent.CLICK, clickListener);

// ...elsewhere, define the MouseEvent.CLICK event listener
private function clickListener (e:SomeInputEvent):void {
 // If this listener was not triggered during the target phase...
 if (e.eventPhase != EventPhase.AT_TARGET) {
 // ...then the target must be a descendant of the Stage instance.
 // Hence, the mouse must have clicked some object on the display list
 // other than the Stage instance.
 }
}

518 | Chapter 21: Events and Display Hierarchies

Now let’s move on to the next hierarchical-event-dispatch topic: stopping an event
dispatch.

Stopping an Event Dispatch
At any point during the event flow, every event listener—including those registered
with the target object and those registered with its ancestors—can put a stop to the
entire event dispatch. Stopping an event’s dispatch is referred to as consuming the
event.

To stop an event dispatch, we invoke the Event class’s instance method
stopImmediatePropagation() or stopPropagation() on the Event object passed to a lis-
tener function. The stopImmediatePropagation() method stops the event dispatch
immediately, without allowing any remaining listeners to be triggered; the
stopPropagation() method stops the event dispatch after ActionScript triggers the
remaining listeners registered with object currently being notified of the event.

For example, suppose we have a Sprite, container, that contains a TextField, child:

var container:Sprite = new Sprite();
var child:TextField = new TextField();
child.text = "click here";
child.autoSize = TextFieldAutoSize.LEFT;
container.addChild(child);

Further suppose we have three event listener functions: containerClickListenerOne(),
containerClickListenerTwo(), and childClickListener(). Register containerClickListenerOne()
and containerClickListenerTwo() with container for MouseEvent.CLICK event notification
during the capture phase:

container.addEventListener(MouseEvent.CLICK,
 containerClickListenerOne,
 true);
container.addEventListener(MouseEvent.CLICK,
 containerClickListenerTwo,
 true);

Then we register childClickListener() with child for MouseEvent.CLICK event notifica-
tion during the target phase:

child.addEventListener(MouseEvent.CLICK, childClickListener, false);

Under normal circumstances, when the user clicks child, all three event listeners are trig-
gered—two during the capture phase, and one during the target phase. If, however,
containerClickListenerOne() consumes the event using stopImmediatePropagation(), then
neither containerClickListenerTwo() nor childClickListener() is triggered.

public function containerClickListenerOne (e:MouseEvent):void {
 // Prevent containerClickListenerTwo() and childClickListener() from
 // receiving the event
 e.stopImmediatePropagation();
}

Stopping an Event Dispatch | 519

On the other hand, if containerClickListenerOne() consumes the event using
stopPropagation() rather than stopImmediatePropagation(), then container’s
remaining MouseEvent.CLICK event listeners are triggered before the event dispatch
stops. Hence, containerClickListenerTwo() receives the event, but
childClickListener() does not.

public function containerClickListenerOne (e:MouseEvent):void {
 // Prevent just childClickListener() from receiving the event
 e.stopPropagation();
}

Note that the preceding example relies on containerClickListenerOne() being regis-
tered before containerClickListenerTwo(). For information on the order in which
event listeners are triggered, see Chapter 12.

Events are typically consumed in order to stop or override a program’s normal
response to an event. For example, suppose a Sprite subclass, ToolPanel, contains a
group of interface controls, each of which accepts user input. The ToolPanel class
has two operational states: enabled and disabled. When a ToolPanel object is dis-
abled, the user should not be able to interact with any of its nested interface controls.

To implement the “disabled” state, each ToolPanel object registers a method,
clickListener(), for capture-phase MouseEvent.CLICK event notification. When a
ToolPanel object is disabled, the clickListener() method stops all click events from
reaching child Tool objects. Example 21-3 shows the ToolPanel class, greatly simpli-
fied to emphasize its event consumption code (shown in bold). In the example, the
ToolPanel class’s child interface controls are instances of a generic Tool class that is
not shown. In a real application, however, the controls might be buttons or menus or
any other form of interactive tool.

Example 21-3. Consuming an event

package {
 import flash.display.Sprite;
 import flash.events.*;

 public class ToolPanel extends Sprite {
 private var enabled:Boolean;

 public function ToolPanel () {
 enabled = false;

 var tool1:Tool = new Tool();
 var tool2:Tool = new Tool();
 var tool3:Tool = new Tool();

 tool2.x = tool1.width + 10;
 tool3.x = tool2.x + tool2.width + 10;

 addChild(tool1);
 addChild(tool2);

520 | Chapter 21: Events and Display Hierarchies

In typical application development, the stopPropagation() method is used much
more frequently than the stopImmediatePropagation() method. Nevertheless, the
stopImmediatePropagation() method is used in the following situations:

• When a target object wishes to prevent its own listeners from being triggered by
an event

• When a program wishes to prevent all listeners from responding to a given event

Let’s consider an example for each of the preceding situations, starting with a target
object that prevents its own listeners from being triggered by an event. Imagine a
space-shooter game that includes the following classes:

• GameManager, a class that manages gameplay

• PlayerShip, a class that represents the player’s spacecraft

The GameManager defines a custom event, GameManager.SHIP_HIT, which is dis-
patched when an enemy’s missile hits the player’s ship. Each GameManager.SHIP_HIT
event dispatch is targeted at the PlayerShip object. The PlayerShip object registers
two listeners to respond to GameManager.SHIP_HIT events. One listener plays an explo-
sion animation, and the other plays an explosion sound.

When the player dies, a new player ship is created, and that ship is invincible for five
seconds. While the ship is invincible, the PlayerShip object’s GameManager.SHIP_HIT
listeners should not play the “damaged-ship” animation or sound.

To prevent the GameManager.SHIP_HIT listeners from executing when the ship is invin-
cible, the PlayerShip class registers a third listener, hitListener(), designed to con-
sume GameManager.SHIP_HIT events based on the current ship status (invincible or not
invincible). The hitListener() method is registered in PlayerShip’s constructor, with a
priority of int.MAX_VALUE, as follows:

 addChild(tool3);

 // Register with this object for MouseEvent.CLICK event notification
 // during the capture phase
 addEventListener(MouseEvent.CLICK, clickListener, true);
 }

 private function clickListener (e:MouseEvent):void {
 // If this ToolPanel object is disabled...
 if (!enabled) {
 // ...then stop this click event from reaching this ToolPanel
 // object's descendants
 e.stopPropagation();
 trace("Panel disabled. Click event dispatch halted.");
 }
 }
 }
}

Example 21-3. Consuming an event (continued)

Stopping an Event Dispatch | 521

public class PlayerShip {
 public function PlayerShip () {
 addEventListener(GameManager.HIT, hitListener, false, int.MAX_VALUE);
 }
}

In Chapter 12 we learned that, by default, an object’s event listeners are triggered
according to the order in which they were registered. We also learned that this
default “trigger order” can be superceded by addEventListener()’s priority
parameter.

Because hitListener() is registered in the PlayerShip constructor with the highest pos-
sible priority, it is always the first of PlayerShip’s GameManager.SHIP_HIT listeners exe-
cuted. When the PlayerShip object is not invincible, and a GameManager.SHIP_HIT
event occurs, hitListener() does nothing. But when the PlayerShip object is invinci-
ble, and a GameManager.SHIP_HIT event occurs, hitListener() first consumes the event,
and then dispatches a new event, PlayerShip.HIT_DEFLECTED. Listeners registered for
PlayerShip.HIT_DEFLECTED then play a special animation and sound indicating that
the ship was not damaged.

The code for hitListener() follows; notice the use of the stopImmediatePropagation()
method:

private function hitListener (e:Event):void {
 if (invincible) {
 // Prevent other PlayerShip listeners from receiving event notification
 e.stopImmediatePropagation();
 // Broadcast a new event
 dispatchEvent(new Event(PlayerShip.HIT_DEFLECTED, true));
 }
}

In the preceding PlayerShip scenario, note that although the PlayerShip object can
prevent its own GameManager.SHIP_HIT listeners from being triggered, it cannot pre-
vent GameManager.SHIP_HIT listeners registered with its display ancestors from being
triggered. Specifically, any listeners registered for the capture phase with the
PlayerShip object’s display ancestors will always be notified of the GameManager.SHIP_
HIT event even if the PlayerShip object consumes it. However, after the PlayerShip
object consumes the GameManager.SHIP_HIT event, its ancestors do not receive notifi-
cation during the bubbling phase.

Now let’s turn to the second stopImmediatePropagation() scenario, in which a pro-
gram wishes to prevent all listeners from responding to a given event. Suppose we’re
writing a set of user-interface components that automatically change to an inactive
state when the Flash runtime loses operating-system focus, and change to an active
state when the Flash runtime gains operating-system focus. In order to detect the
gaining or losing of operating system focus, our components register listeners for the
built-in events Event.ACTIVATE and Event.DEACTIVATE (for details on Event.ACTIVATE
and Event.DEACTIVATE, see Chapter 22).

522 | Chapter 21: Events and Display Hierarchies

Now further suppose we’re writing a testing application to stress test our compo-
nents. Our stress-test application programmatically triggers the components’ interac-
tive behavior. In our test, we must ensure that the built-in Event.DEACTIVATE event
does not make the test components inactive; otherwise, our test application will not
be able to trigger them programmatically. Hence, in our test application’s main class
constructor, we register an Event.DEACTIVATE listener with the Stage instance. That
listener uses stopImmediatePropagation() to consume all built-in Event.DEACTIVATE
events, as follows.

private function deactivateListener (e: Event):void {
 e.stopImmediatePropagation();
}

Because our test application consumes all Event.DEACTIVATE events, the components
never receive Event.DEACTIVATE notifications, and, hence, never become inactive in
response to the Flash runtime losing system focus. The administrator of the test
application can then focus and defocus the Flash runtime while the test runs with-
out interfering with the test application’s ability to control the components
programmatically.

Event Priority and the Event Flow
When an event listener registers with an object in a display hierarchy, the priority
parameter affects the trigger order of listeners registered with that object only. The
priority parameter does not, and cannot, alter the order in which objects in the
event flow are notified.

There is no way to force a listener of one object in the event flow to be
triggered before or after a listener of another object in the same event
flow.

For example, suppose a Sprite object contains a TextField object. The Sprite object
registers a MouseEvent.CLICK listener, spriteClickListener(), with useCapture set to
false and priority set to 2:

theSprite.addEventListener(MouseEvent.CLICK, spriteClickListener, false, 2)

Likewise, the TextField object registers a MouseEvent.CLICK listener, textClickListener(),
with useCapture set to false and priority set to 1:

theTextField.addEventListener(MouseEvent.CLICK, textClickListener, false, 1)

When the user clicks the TextField object, the Flash runtime dispatches a
MouseEvent.CLICK event targeted at the TextField object. In response,
textClickListener() is triggered during the target phase, before spriteClickListener(),
which is triggered during the bubbling phase. The two event listeners are triggered

Display-Hierarchy Mutation and the Event Flow | 523

according to the order of the event flow, even though spriteClickListener() registered
with a higher priority than textClickListener().

For more information on event priority, see Chapter 12.

Display-Hierarchy Mutation and the Event Flow
Immediately before ActionScript dispatches a given event, it predetermines the entire
event flow for that dispatch based on the current state of the event target’s display
hierarchy. That is, the list of objects that will be notified of the event, and the order
in which those objects will be notified, is predetermined before the event dispatch
begins. Once the event dispatch begins, objects are notified of the event according to
that predetermined order—even if the structure of the target object’s display hierar-
chy is modified by event listeners during the event dispatch.

For example, suppose we have a TextField instance contained by a Sprite instance
that is, itself, contained by the Stage instance. Further suppose we register a listener,
stageClickListener(), with the Stage instance for capture-phase MouseEvent.CLICK
event notification, as shown in the following code:

stage.addEventListener(MouseEvent.CLICK, stageClickListener, true);

Finally, suppose that the registered stageClickListener() function contains code that
removes the TextField object from its Sprite object parent, as follows:

private function stageClickListener (e:MouseEvent):void {
 // If the TextField object was clicked...
 if (e.target == textField) {
 // ...remove it
 removeChild(textField);
 textField = null;
 }
}

When the user clicks the text field, ActionScript dispatches a MouseEvent.CLICK event
targeted at the TextField object. Before the dispatch begins, ActionScript predeter-
mines the entire event flow, as follows:

CAPTURE PHASE: (1) Stage object
 (2) Sprite object
TARGET PHASE: (3) TextField object
BUBBLING PHASE: (4) Sprite object
 (5) Stage object

When the event dispatch begins, ActionScript first notifies the Stage object of the
event (1). That notification triggers the Stage object’s listener, stageClickListener(),
which removes the TextField object from the display list. Next, even though the
Sprite object is now no longer an ancestor of the TextField object, ActionScript noti-
fies the Sprite object of the event (2). Then, even though the TextField object is no
longer on the display list, ActionScript notifies the TextField object of the event (3).

524 | Chapter 21: Events and Display Hierarchies

Finally, during the bubbling phase, ActionScript again notifies the Sprite object (4)
and the Stage object (5) of the event. Even though the display hierarchy containing
the event target was modified during the event dispatch, the event still propagates
through the entire predetermined event flow.

Once the event flow is established for a given event dispatch, it is fixed
for the duration of that dispatch.

Example 21-4 shows the code for the preceding scenario in the context of an exam-
ple class, DisappearingTextField. In the example, an instance of the custom class
DisappearingTextField (a Sprite subclass) plays the role of the preceding scenario’s
Sprite object.

Example 21-4. The immutable event flow

package {
 import flash.display.*;
 import flash.events.*;
 import flash.text.*;

 public class DisappearingTextField extends Sprite {
 private var textField:TextField;
 public function DisappearingTextField () {
 // Create the TextField object
 textField = new TextField();
 textField.text = "Click here";
 textField.autoSize = TextFieldAutoSize.LEFT;

 // Add the TextField object to the DisappearingTextField object
 addChild(textField);

 // Register with the Stage instance for MouseEvent.CLICK events
 stage.addEventListener(MouseEvent.CLICK, stageClickListener, true);

 // To prove that the TextField object receives MouseEvent.CLICK event
 // notification even after it is removed from this
 // DisappearingTextField instance, we register a listener with the
 // TextField object for MouseEvent.CLICK events
 textField.addEventListener(MouseEvent.CLICK, textFieldClickListener);
 }

 // This function runs when the user clicks any object on the
 // display list
 private function stageClickListener (e:MouseEvent):void {
 // If the TextField object was clicked...
 if (e.target == textField) {
 // ...remove it
 removeChild(textField);
 textField = null;
 }
 }

Display-Hierarchy Mutation and the Event Flow | 525

Event Listener List Mutation
As we’ve just learned, when a given event occurs, ActionScript notifies the appropri-
ate objects according to the predetermined order of the event flow. In turn, when
each object receives notification of the event, its event listeners are triggered. The
specific list of listeners that are triggered by a given event notification is determined
immediately before that notification occurs. Once the notification has begun, that
listener list cannot be altered.

For example, consider a MouseEvent.CLICK event dispatch targeted at a Sprite object
that is contained by the Stage instance. The event flow comprises three event notifi-
cations, as follows:

CAPTURE PHASE: (1) Stage object notified
TARGET PHASE: (2) Sprite object notified
BUBBLING PHASE: (3) Stage object notified

Suppose that, during the first notification (1), code in a Stage listener registers a new
MouseEvent.CLICK listener with the Sprite object. Because the event has not yet propa-
gated to the Sprite object, the new listener will be triggered during the second notifi-
cation (2).

Now further suppose that, during the first notification (1), code in a Stage listener
registers a new MouseEvent.CLICK listener with the Stage instance, for bubbling-phase
notification. Because the first notification (1) has already begun, the Stage instance’s
list of listeners has already been frozen, so the new listener is not triggered during the
first notification (1). However, the new listener is triggered later in the event flow,
during the third notification (3).

Finally, suppose that, during the second notification (2), code in a Sprite listener unreg-
isters an existing MouseEvent.CLICK listener from the Sprite object. Because the second
notification (2) has already begun, its list of listeners has already been frozen, so the
removed listener is still triggered during the second notification. Of course, if another
MouseEvent.CLICK event were dispatched, the removed listener would not be triggered.

At any point during a given event dispatch, the list of listeners being
triggered during the current notification cannot be modified, but the
list of listeners to be triggered by notifications that occur later in the
event flow can be modified.

 // This function runs when the user clicks the TextField object
 private function textFieldClickListener (e:MouseEvent):void {
 // By now, stageClickListener() has removed the TextField object,
 // but this listener is still triggered.
 trace("textFieldClickListener triggered");
 }
 }
}

Example 21-4. The immutable event flow (continued)

526 | Chapter 21: Events and Display Hierarchies

Custom Events and the Event Flow
ActionScript’s hierarchical event system applies to all event-dispatches targeted dis-
play objects—even those event dispatches instigated manually by the programmer.
When a custom event dispatch targets an object in a display hierarchy, the ancestors
of that target object are notified of the event.

The generalized code shown in Example 21-5 demonstrates how, just like built-in
events, custom events propagate through the event flow. In the example, a test class,
CustomEventDemo instructs ActionScript to dispatch a custom event targeted at a
Sprite object on the display list.

In response to the dispatchEvent() invocation in Example 21-5, ActionScript dis-
patches a CustomEventDemo.SOME_EVENT event into the event flow, targeted at sprite.
The event flow is as follows:

Stage instance
 |
 |-> CustomEventDemo object
 |
 |-> Sprite object

Example 21-5. A custom event dispatched through the event flow

package {
 import flash.display.*;
 import flash.events.*;
 import flash.text.*;

 public class CustomEventDemo extends Sprite {
 public static const SOME_EVENT:String = "SOME_EVENT";

 public function CustomEventDemo () {
 var sprite:Sprite = new Sprite();
 addChild(sprite);

 // Register someEventListener() with the Stage instance for
 // CustomEventDemo.SOME_EVENT notification.
 stage.addEventListener(CustomEventDemo.SOME_EVENT, someEventListener);

 // Dispatch a CustomEventDemo.SOME_EVENT event to an object on
 // the display list. Set the Event constructor's second parameter
 // to true so the event bubbles.
 sprite.dispatchEvent(new Event(CustomEventDemo.SOME_EVENT, true));
 }

 private function someEventListener (e:Event):void {
 trace("SOME_EVENT occurred.");
 }
 }
}

Custom Events and the Event Flow | 527

During the capture phase, the CustomEventDemo.SOME_EVENT event dispatch propagates
from the Stage instance to the CustomEventDemo object. During the target phase, the
event propagates to the Sprite object. Finally, during the bubbling phase, the event
propagates back to the CustomEventDemo object and then back to the Stage instance.
When the Stage instance receives event notification during the bubbling phase,
someEventListener() is triggered. Even though CustomEventDemo.SOME_EVENT is a custom
event, it still propagates through the event flow.

As with the built-in events, ActionScript’s hierarchical event architecture can help
centralize code that responds to custom events. For example, suppose we’re build-
ing an online ordering system with a shopping-basket widget that contains select-
able product icons. The shopping-basket widget is represented by an instance of the
custom class, ShoppingBasket. Likewise, each product icon is represented by an
instance of the custom class, Product. The Product instances are display children of
the ShoppingBasket instance. The ShoppingBasket instance has a title bar that dis-
plays the name of the currently selected product.

When the user selects a product icon in the shopping-basket widget, our application
dispatches a custom Product.PRODUCT_SELECTED event targeted at the corresponding
Product instance. Because the ShoppingBasket instance is an ancestor of all Product
instances, it is notified every time the Product.PRODUCT_SELECTED event is dispatched.
Hence, to keep the ShoppingBasket instance’s title bar synchronized with the cur-
rently selected product, we simply register a single Product.PRODUCT_SELECTED lis-
tener—productSelectedListener()—with the ShoppingBasket instance. When
productSelectedListener() is triggered, we know a product has been selected, so we
update the shopping-basket’s title bar with the name of the newly selected product.

Examples 21-6 and 21-7 show the ShoppingBasket and Product classes. The com-
ments will guide you through the code. Event-related sections are shown in bold.

Example 21-6. The ShoppingBasket class

package {
 import flash.display.*;
 import flash.text.*;
 import flash.events.*;

 // An online shopping basket that can visually contain Product objects.
 public class ShoppingBasket extends Sprite {
 // The on-screen title bar for the shopping basket panel
 private var title:TextField;
 // An array of the products in this basket
 private var products:Array;
 // The currently selected product
 private var selectedProduct:Product;

 // Constructor
 public function ShoppingBasket () {
 // Create a new empty array to hold Product objects
 products = new Array();

528 | Chapter 21: Events and Display Hierarchies

 // Create the on-screen title bar
 title = new TextField();
 title.text = "No product selected";
 title.autoSize = TextFieldAutoSize.LEFT;
 title.border = true;
 title.background = true;
 title.selectable = false;
 addChild(title);

 // Start listening for Product.PRODUCT_SELECTED event dispatches
 // targeted at child Product objects.
 addEventListener(Product.PRODUCT_SELECTED, productSelectedListener);
 }

 // Adds a new Product object to the shopping basket
 public function addProduct (product:Product):void {
 // Create a new product and add it to the products array
 products.push(product);
 // Add the new product to this object's display hierarchy
 addChild(products[products.length-1]);

 // Now that there's a new product, reposition all products
 updateLayout();
 }

 // A very simple product-layout algorithm that sorts all products
 // into a single horizontal line in the order they were added, from left
 // to right
 public function updateLayout ():void {
 var totalX:Number = 0;
 for (var i:int = 0; i < products.length; i++) {
 products[i].x = totalX;
 totalX += products[i].width + 20; // 20 is the gutter width
 products[i].y = title.height + 20; // 20 is the gutter height
 }
 }

 // Responds to Product.PRODUCT_SELECTED event dispatches targeted at
 // child Product objects. When a product is selected, this method
 // updates the shopping basket's title bar to match the selected
 // product's name.
 private function productSelectedListener (e:Event):void {
 // Remember the selected product in case we need to reference it
 // in future
 selectedProduct = Product(e.target);

 // Update the shopping basket's title
 title.text = selectedProduct.getName();
 }
 }
}

Example 21-6. The ShoppingBasket class (continued)

Custom Events and the Event Flow | 529

Example 21-7 shows the code for the Product class.

Example 21-7. The Product class

package {
 import flash.display.*;
 import flash.events.*;
 import flash.text.*;

 // A product icon that can be placed in a ShoppingBasket object using
 // ShoppingBasket.addProduct(). In this simplified version, the icon is
 // simply a text field with no corresponding graphical icon.
 public class Product extends Sprite {
 // An event constant for the custom PRODUCT_SELECTED event
 public static const PRODUCT_SELECTED:String = "PRODUCT_SELECTED";
 // The on-screen label showing the product's name
 private var label:TextField;
 // The product's name
 private var productName:String;

 // Constructor
 public function Product (productName:String) {
 // Record the product's name
 this.productName = productName;

 // Create the on-screen label
 label = new TextField();
 label.text = productName;
 label.autoSize = TextFieldAutoSize.LEFT;
 label.border = true;
 label.background = true;
 label.selectable = false;
 addChild(label);

 // Start listening for mouse clicks. By registering for
 // MouseEvent.CLICK events with this object, we'll receive
 // notification any time its children (e.g., the label) are clicked.
 addEventListener(MouseEvent.CLICK, clickListener);
 }

 // Returns the product's name
 public function getName ():String {
 return productName;
 }

 // Handles MouseEvent.CLICK events. In this example, simply clicking a
 // product selects it, and causes the Product.PRODUCT_SELECTED event to
 // be dispatched. In a more complete implementation, other factors
 // might be involved. For example, products might be selectable
 // via the keyboard, and selection might be disabled during a
 // transaction with the server.
 private function clickListener (e:MouseEvent):void {
 // Notify all registered listeners that this product was selected.
 // Thanks to ActionScript's hierarchical event dispatch system,
 // by dispatching a custom event targeted at this object, we trigger

530 | Chapter 21: Events and Display Hierarchies

Example 21-8 presents a very simple application demonstrating the basic usage of
the ShoppingBasket and Product classes from Example 21-6 and Example 21-7.

On to Input Events
We’ve now studied pretty much everything there is to know about the core work-
ings of ActionScript’s hierarchical event system. In the next chapter, we’ll put our
new theoretical knowledge into practice as we explore Flash Player’s built-in user-
input events.

 // not only this object's Product.PRODUCT_SELECTED listeners, but also
 // Product.PRODUCT_SELECTED listeners registered with the
 // ShoppingBasket instance.
 dispatchEvent(new Event(Product.PRODUCT_SELECTED, true));
 }
 }
}

Example 21-8. A ShoppingBasket demo

package {
 import flash.display.Sprite;

 public class ShoppingBasketDemo extends Sprite {
 public function ShoppingBasketDemo () {
 var basket:ShoppingBasket = new ShoppingBasket();
 basket.addProduct(new Product("Nintendo Wii"));
 basket.addProduct(new Product("Xbox 360"));
 basket.addProduct(new Product("PlayStation 3"));
 addChild(basket);
 }
 }
}

Example 21-7. The Product class (continued)

531

Chapter 22 CHAPTER 22

Interactivity23

In this chapter, we’ll see how to add interactivity to an application by responding to
Flash Player’s input events. Specifically, we’ll explore five different categories of
input events:

• Mouse events

• Focus events

• Keyboard events

• Text events

• Flash Player-level events

For each of the preceding event categories, we’ll consider the specific events offered
by Flash Player’s API and the code required to handle those events.

The descriptions of the events covered in this chapter apply specifically to Flash
Player (both the browser add-on and standalone versions) but are also generally
applicable to any Flash runtime that supports mouse and keyboard input (such as
Adobe AIR). When working with other Flash runtimes, be sure to consult the appro-
priate documentation for information on input events. For official reference material
covering Flash Player’s input events, see Adobe’s ActionScript Language Reference
under the Constants heading of the Event class and its subclasses. Also see the
Events heading under the TextField, DisplayObject, InteractiveObject, and Stage
classes.

Before we start our examination of specific input events, let’s take a quick look at
some general rules that govern all input events:

InteractiveObject instances only
Input-event notifications are sent to instances of classes that inherit from
InteractiveObject only (Sprite, TextField, Stage, Loader, MovieClip, SimpleButton
and subclasses of those classes.) Other types of objects are not notified of input
events, even if those objects are on the display list. For example, instances of the
Shape class can be placed on the display list, but the Shape class does not inherit

532 | Chapter 22: Interactivity

from InteractiveObject, so Shape instances do not receive input-event notifica-
tions. If a Shape object visually overlaps a TextField object, and the user clicks
the Shape object, then the TextField object—not the Shape object—will be the
target of the resulting mouse-click event. To handle interaction with a Shape or
Bitmap object, place that object in a container (Sprite or MovieClip) and register
with that container for input events.

Display list objects only
Objects that are not on the display list when Flash Player dispatches a given
input event cannot receive notification of that event.

Default behavior
Some input events trigger a native response by Flash Player, known as a default
behavior. For example, moving the mouse pointer over a SimpleButton instance
causes that instance to display its “overstate” graphic. In some cases, Flash
Player’s default behavior can be prevented using the Event class’s instance
method preventDefault(). For details see the section“Preventing Default Event
Behavior” in Chapter 12.

Now on to the events!

Mouse-Input Events
Flash Player dispatches mouse-input events when the user manipulates the system
pointing device. Examples of pointing devices that can trigger mouse-input events
include: a mouse, a trackball, a laptop touchpad, a laptop pointing stick, and a sty-
lus. For convenience, however, this book uses the catch-all term “mouse” when
referring to the system pointing device. The following types of mouse manipulations
can trigger mouse-input events:

• Pressing or releasing the primary mouse button

• Moving the mouse pointer

• Using mouse’s scrolling device (e.g., spinning the mouse wheel)

Notice that “right-clicking” (i.e., pressing the secondary mouse button) is not
included in the preceding list. Flash Player generates mouse input events for the pri-
mary mouse button only. However, Flash Player’s standard context menu, which is
accessed via a secondary mouse-button click, is customizable; for details, see the
ContextMenu class in Adobe’s ActionScript Language Reference.

Flash Player’s Built-in Mouse Events
Table 22-1 lists Flash Player’s built-in mouse-event types. For each type of event, the
“Event type” column lists the MouseEvent-class constant that indicates the event
type’s official string name. The “Description” column describes the specific user
action that triggers the event. The “Target” column lists the object that serves as the

Mouse-Input Events | 533

event target when the event is dispatched. The “Default behavior” column lists Flash
Player’s native response to the event. The “Bubbles” column indicates whether the
event has a bubbling phase. The “Datatype of object passed to listener function” col-
umn specifies the datatype of the object passed to the listener function that handles
the event. Finally, the “Notes” column lists important information regarding the
event’s use.

Spend a little time getting to know Flash Player’s mouse events by perusing
Table 22-1. Here are a few general issues to bear in mind as you review the table:

System focus
The following events are triggered even when Flash Player does not have system
focus: MouseEvent.MOUSE_MOVE, MouseEvent.MOUSE_OVER, MouseEvent.MOUSE_OUT,
MouseEvent.ROLL_OVER, and MouseEvent.ROLL_OUT. All other mouse events are trig-
gered when Flash Player has system focus only.

Location matters
With one exception, mouse events are not dispatched when the user manipu-
lates the mouse outside Flash Player’s display area. The exception: if the user
presses the primary mouse button within Flash Player’s display area and then
releases it outside Flash Player’s display area, MouseEvent.MOUSE_UP is dis-
patched. To be notified when the mouse pointer leaves Flash Player’s display
area, register for the Event.MOUSE_LEAVE event, as discussed in the later section
“Flash Player-Level Input Events.”

Vector graphics ignored in main-class instance
Mouse interactions with vector content drawn via the instance variable graphics
of a .swf file’s main class do not trigger mouse events. However, mouse interac-
tions with vector content drawn via the instance variable graphics of any other
instance of InteractiveObject or its subclasses do trigger mouse events.

Default behavior not cancelable
Flash Player’s default behavior cannot be prevented for any type of mouse event.

Immediate screen updates
To refresh the screen immediately after handling any mouse event, use the
MouseEvent class’s instance method updateAfterEvent(). For complete details,
see the section “Post-event Screen Updates” in Chapter 23.

534

T
ab

le
22

-1
.F

la
sh

 P
la

ye
r

m
ou

se
 e

ve
nt

s

Ev
en

t t
yp

e
De

sc
rip

tio
n

Ta
rg

et
De

fa
ul

t b
eh

av
io

r
Bu

bb
le

s
Da

ta
ty

pe
of

bj
ec

tp
as

se
d

to
 li

st
en

er
 fu

nc
tio

n
No

te
s

Mo
us
eE
ve
nt
.M
OU
SE
_D
OW
N

Pr
im

ar
y m

ou
se

 b
ut

to
n

de
pr

es
se

d
w

hi
le

 m
ou

se
po

in
te

r i
s o

ve
r F

la
sh

Pl
ay

er
’s

di
sp

la
y a

re
a.

Th
e

In
te

ra
cti

ve
Ob

jec
t

un
de

r t
he

 m
ou

se
po

in
te

r w
he

n
th

e
m

ou
se

 b
ut

to
n

w
as

de
pr

es
se

d

If
ta

rg
et

 is
 a

Sim
pl

eB
ut

to
n,

do
wn
St
at
e

is
di

s-
pl

ay
ed

. I
f t

ar
ge

t i
s

Te
xt

Fie
ld

 w
ith

 se
le

c-
tio

n
en

ab
le

d,
 se

le
c-

tio
n

be
gi

ns
. N

ot
ca

nc
el

ab
le

.

Ye
s

M
ou

se
Ev

en
t

Mo
us
eE
ve
nt
.M
OU
SE
_U
P

Pr
im

ar
y m

ou
se

 b
ut

to
n

re
le

as
ed

 w
hi

le
 m

ou
se

po
in

te
r i

s o
ve

r F
la

sh
Pl

ay
er

’s
di

sp
la

y a
re

a.

Th
e

In
te

ra
cti

ve
Ob

jec
t

un
de

r t
he

 m
ou

se
po

in
te

r w
he

n
th

e
m

ou
se

 b
ut

to
n

is
re

le
as

ed

If
ta

rg
et

 is
 a

Sim
pl

eB
ut

to
n,

 it
s

ov
er
St
at
e

is
di

s-
pl

ay
ed

. I
f t

ar
ge

t i
s a

Te
xt

Fie
ld

 w
ith

 se
le

c-
tio

n
en

ab
le

d,
 se

le
c-

tio
n

en
ds

. N
ot

ca
nc

el
ab

le
.

Ye
s

M
ou

se
Ev

en
t

Mo
us
eE
ve
nt
.C
LI
CK

Pr
im

ar
y m

ou
se

 b
ut

to
n

de
pr

es
se

d
an

d
th

en
re

le
as

ed
 o

ve
r t

he
 sa

m
e

In
te

ra
cti

ve
Ob

jec
t.

Or
, t

he
us

er
 ac

tiv
at

es
 a

Sim
pl

eB
ut

to
n,

Sp
rit

e,
or

M
ov

ieC
lip

 in
st

an
ce

 vi
a

th
e s

pa
ce

 o
r E

nt
er

 ke
y.

Se
e t

he
 se

ct
io

n
“F

oc
us

Ev
en

ts
 la

te
r i

n
th

is
ch

ap
-

te
r.

Th
e

In
te

ra
cti

ve
Ob

jec
t

th
at

 w
as

 cl
ick

ed
 o

r
ac

tiv
at

ed

No
ne

Ye
s

M
ou

se
Ev

en
t

535

Mo
us
eE
ve
nt
.D
OU
BL
E_
CL
IC
K

Tw
o
Mo
us
eE
ve
nt
.

CL
IC
K

ev
en

ts
 o

cc
ur

 in
ra

pi
ds

uc
ce

ss
io

no
ve

rt
he

sa
m

eI
nt

er
ac

tiv
eO

bj
ec

t.

Th
e

In
te

ra
cti

ve
Ob

jec
t

th
at

 w
as

 d
ou

bl
e-

cli
ck

ed

If
ta

rg
et

 is
 a

Te
xt

Fie
ld

 w
ith

 se
le

c-
tio

n
en

ab
le

d,
 th

e
w

or
d

un
de

r t
he

po
in

te
r i

s s
el

ec
te

d.

Ye
s

M
ou

se
Ev

en
t

•
Tr

ig
ge

re
d

on
ly

if
th

e
pr

og
ra

m
m

er
 fi

rs
t s

et
s t

he
ta

rg
et

’s
do
ub
le
Cl
ic
kE
na
bl
ed

va
ria

bl
e t

o
tr
ue
.

•
In

 a
do

ub
le

-c
lic

k
se

qu
en

ce
, t

he
 fi

rs
t c

lic
k

tri
gg

er
s M
ou
se
Ev
en
t.

CL
IC
K;

 th
e s

ec
on

d
tri

g-
ge

rs
M.
ou
se
Ev
en
t.

DO
UB
LE
_C
LI
CK

.
•

Do
ub

le
-c

lic
k s

pe
ed

 is
op

er
at

in
g-

sy
st

em
 d

et
er

-
m

in
ed

.

Mo
us
eE
ve
nt
.M
OU
SE
_M
OV
E

M
ou

se
 p

oi
nt

er
 m

ov
ed

w
hi

le
 o

ve
r F

la
sh

 P
la

ye
r’s

di
sp

la
y a

re
a.

Th
e

In
te

ra
cti

ve
Ob

jec
t

un
de

r t
he

 m
ou

se
po

in
te

r w
he

n
th

e
m

ou
se

 p
oi

nt
er

m
ov

ed

If
ta

rg
et

 is
 a

Te
xt

Fie
ld

 b
ei

ng
se

le
ct

ed
,s

el
ec

tio
ni

s
up

da
te

d.
 N

ot
 ca

n-
ce

la
bl

e.

Ye
s

M
ou

se
Ev

en
t

Mo
us
eE
ve
nt
.M
OU
SE
_O
VE
R

M
ou

se
 p

oi
nt

er
 m

ov
ed

on
to

 a
di

sp
la

y o
bj

ec
t.

Th
e

In
te

ra
cti

ve
Ob

jec
t

on
to

 w
hi

ch
 th

e
m

ou
se

 p
oi

nt
er

m
ov

ed

W
he

n
ta

rg
et

 is
 a

Sim
pl

eB
ut

to
n,

 if
 p

ri-
m

ar
y m

ou
se

 b
ut

to
n

is
do

w
n,
up
St
at
e

is
di

sp
la

ye
d;

 if
 p

ri-
m

ar
y m

ou
se

 b
ut

to
n

is
up

, o
ve
rS
ta
te

is
di

sp
la

ye
d.

 N
ot

ca
nc

el
ab

le
.

Ye
s

M
ou

se
Ev

en
t

•
No

t t
rig

ge
re

d
fo

rS
ta

ge
in

st
an

ce
.

•
Us

e M
ou
se
Ev
en
t.

re
la
te
dO
bj
ec
t

to
ac

ce
ss

 th
e

In
te

ra
cti

ve
Ob

jec
t p

re
vi-

ou
sly

 u
nd

er
 th

e m
ou

se
po

in
te

r.

T
ab

le
22

-1
.F

la
sh

 P
la

ye
r

m
ou

se
 e

ve
nt

s
(c

on
ti

nu
ed

)

Ev
en

t t
yp

e
De

sc
rip

tio
n

Ta
rg

et
De

fa
ul

t b
eh

av
io

r
Bu

bb
le

s
Da

ta
ty

pe
of

bj
ec

tp
as

se
d

to
 li

st
en

er
 fu

nc
tio

n
No

te
s

536

Mo
us
eE
ve
nt
.M
OU
SE
_O
UT

M
ou

se
po

in
te

rm
ov

ed
of

f
of

 a
di

sp
la

y o
bj

ec
t.

Th
e

In
te

ra
cti

ve
Ob

jec
t

of
f o

f w
hi

ch
 th

e
m

ou
se

 p
oi

nt
er

m
ov

ed

If
ta

rg
et

 is
 a

Sim
pl

eB
ut

to
n,

up
St
at
e

is
di

s-
pl

ay
ed

. N
ot

 ca
nc

el
-

ab
le

.

Ye
s

M
ou

se
Ev

en
t

•
No

t t
rig

ge
re

d
fo

rS
ta

ge
in

st
an

ce
.

•
Us

e M
ou
se
Ev
en
t.

re
la
te
dO
bj
ec
t

to
ac

ce
ss

 th
e

In
te

ra
cti

ve
Ob

jec
t n

ow
un

de
r t

he
 m

ou
se

 p
oi

nt
er

.

Mo
us
eE
ve
nt
.R
OL
L_
OV
ER

M
ou

se
 p

oi
nt

er
 m

ov
ed

on
to

 a
gi

ve
n

In
te

ra
cti

ve
Ob

jec
t o

r o
ne

of
 it

s d
es

ce
nd

an
ts

.

Th
e

In
te

ra
cti

ve
Ob

jec
t

th
at

 re
gi

st
er

ed
 th

e
ev

en
t l

ist
en

er
be

in
g

ex
ec

ut
ed

No
ne

No
M

ou
se

Ev
en

t
•

No
t t

rig
ge

re
d

fo
rS

ta
ge

in
st

an
ce

.
•

Us
e M

ou
se
Ev
en
t.

re
la
te
dO
bj
ec
t

to
ac

ce
ss

 th
e

In
te

ra
cti

ve
Ob

jec
t p

re
vi-

ou
sly

 u
nd

er
 th

e m
ou

se
po

in
te

r.

Mo
us
eE
ve
nt
.R
OL
L_
OU
T

M
ou

se
 p

oi
nt

er
 h

ad
 p

re
-

vio
us

ly
m

ov
ed

 o
nt

o
a

gi
ve

nI
nt

er
ac

tiv
eO

bj
ec

to
r

on
e o

f i
ts

 d
es

ce
nd

an
ts

,
bu

ti
sn

ol
on

ge
ro

ve
rt

ha
t

di
sp

la
y o

bj
ec

t o
r a

ny
 o

f
its

 d
es

ce
nd

an
ts

.

Th
e

In
te

ra
cti

ve
Ob

jec
t

th
at

 re
gi

st
er

ed
 th

e
ev

en
t l

ist
en

er
be

in
g

ex
ec

ut
ed

No
ne

No
M

ou
se

Ev
en

t
•

No
t t

rig
ge

re
d

fo
rS

ta
ge

in
st

an
ce

.
•

Us
e M

ou
se
Ev
en
t.

re
la
te
dO
bj
ec
t

to
ac

ce
ss

 th
e

In
te

ra
cti

ve
Ob

jec
t n

ow
un

de
r t

he
 m

ou
se

 p
oi

nt
er

.

Mo
us
eE
ve
nt
.M
OU
SE
_W
HE
EL

M
ou

se
’s

sc
ro

lli
ng

 d
ev

ice
us

ed
 w

hi
le

 Fl
as

h
Pl

ay
er

ha
s s

ys
te

m
 fo

cu
s.

Th
e

In
te

ra
cti

ve
Ob

jec
t

un
de

r t
he

 m
ou

se
po

in
te

r w
he

n
th

e
sc

ro
lli

ng
 d

ev
ice

w
as

 u
se

d

If
ta

rg
et

 is
 a

Te
xt

Fie
ld

, it
 sc

ro
lls

.
No

t c
an

ce
la

bl
e v

ia
th

eE
ve

nt
 cl

as
s’s

in
st

an
ce

 m
et

ho
d

pr
ev

en
tD

ef
au

lt(
),

bu
t s

ee
 N

ot
es

co
lu

m
n.

Ye
s

M
ou

se
Ev

en
t

•
To

 p
re

ve
nt

 sc
ro

lli
ng

 fo
r

te
xt

 fi
el

ds
, s

et
 ta

rg
et

’s
mo
us
eW
he
el
En
ab
le
d

to
fa
ls
e.

T
ab

le
22

-1
.F

la
sh

 P
la

ye
r

m
ou

se
 e

ve
nt

s
(c

on
ti

nu
ed

)

Ev
en

t t
yp

e
De

sc
rip

tio
n

Ta
rg

et
De

fa
ul

t b
eh

av
io

r
Bu

bb
le

s
Da

ta
ty

pe
of

bj
ec

tp
as

se
d

to
 li

st
en

er
 fu

nc
tio

n
No

te
s

Mouse-Input Events | 537

Registering for Mouse Events
Here’s the general procedure for registering an event listener for a mouse event:

1. Based on the “Description” column in Table 22-1, find the constant for the
desired event type in “Event type” column.

2. Create a listener function with a single parameter whose datatype is MouseEvent.

3. Consult the “Target” column in Table 22-1 to determine the event’s target
object.

4. Finally, register the function from Step 3 with either the event target (for target
phase notification) or with one of the event target’s ancestors (for capture or
bubbling phase notification). Most mouse events are handled by listeners regis-
tered with the event target (i.e., the object that conceptually received the input).

Let’s apply the preceding steps to an example. Suppose we want to register a listener
function to be notified when the following TextField object is clicked:

var theTextField:TextField = new TextField();
theTextField.text = "Click here";
theTextField.autoSize = TextFieldAutoSize.LEFT;
theTextField.border = true;
theTextField.background = true;
theTextField.selectable = false;

Here are the steps to follow:

1. Based on the “Description” column in Table 22-1, we determine that the event
constant for mouse clicking is MouseEvent.CLICK.

2. Next, we create a function, clickListener(), that will be notified of MouseEvent.CLICK
events. We’re careful to set clickListener()’s parameters datatype to MouseEvent.

private function clickListener (e:MouseEvent):void {
 trace("Mouse was clicked");

}

3. Next, according to the “Target” column in Table 22-1, we find that the target of
a MouseEvent.CLICK event dispatch is the InteractiveObject that was clicked. We
want to know when the theTextField is clicked, so we’ll need to register our
event listener with either theTextField or one of its display ancestors.

4. For this example, we’ll register clickListener() directly with the target TextField
object, theTextField, as follows:

theTextField.addEventListener(MouseEvent.CLICK, clickListener);

As a result of following the preceding steps, our clickListener() method executes
whenever the user clicks theTextField. Example 22-1 shows the code from the pre-
ceding steps in the context of a simple class, ClickableText.

538 | Chapter 22: Interactivity

That was pretty painless. Let’s try another example. The following code registers
mouseMoveListener() to be executed whenever the mouse moves while the mouse
pointer is over the Sprite object referenced by the variable triangle.

// Create the triangle
var triangle:Sprite = new Sprite();
triangle.graphics.lineStyle(1);
triangle.graphics.beginFill(0x00FF00, 1);
triangle.graphics.moveTo(25, 0);
triangle.graphics.lineTo(50, 25);
triangle.graphics.lineTo(0, 25);
triangle.graphics.lineTo(25, 0);
triangle.graphics.endFill();
triangle.x = 200;
triangle.y = 100;

// Register with triangle for MouseEvent.MOUSE_MOVE events
triangle.addEventListener(MouseEvent.MOUSE_MOVE, mouseMoveListener);

// ...elsewhere in the class, define the listener
private function mouseMoveListener (e:MouseEvent):void {
 trace("mouse move");
}

As the preceding code shows, listeners can register for mouse events with an object
that is not on the display list. However, such listeners will not be triggered unless or
until the object is subsequently added to the display list.

Example 22-1. Handling the MouseEvent.CLICK event

package {
 import flash.display.*;
 import flash.text.*;
 import flash.events.*;

 public class ClickableText extends Sprite {
 public function ClickableText () {
 var theTextField:TextField = new TextField();
 theTextField.text = "Click here";
 theTextField.autoSize = TextFieldAutoSize.LEFT;
 theTextField.border = true;
 theTextField.background = true;
 theTextField.selectable = false;
 addChild(theTextField);

 theTextField.addEventListener(MouseEvent.CLICK, clickListener);
 }

 private function clickListener (e:MouseEvent):void {
 trace("Mouse was clicked");
 }
 }
}

Mouse-Input Events | 539

An object cannot receive input-event notification unless it is on the
display list.

Example 22-2 puts the preceding triangle code in the context of a .swf file’s main
class, MouseMotionSensor. In the example, triangle is added to the display list so it
can receive mouse-event notifications.

The basic listener-definition and event-registration code shown in Example 22-2 can
be applied to any event in Table 22-1.

Reader exercise: Try adding new code to Example 22-2 that registers event listeners for
each of the events listed in Table 22-1. Use the listener-definition and event-registration
code for the MouseEvent.MOUSE_MOVE event as a template. To help get you started, here’s
the code required to register an event listener for the MouseEvent.MOUSE_DOWN event (the
first event listed in Table 22-1):

// Add this event-registration code to the class constructor
triangle.addEventListener(MouseEvent.MOUSE_DOWN, mouseDownListener);

Example 22-2. Handling MouseEvent.MOUSE_MOVE over a triangle

package {
 import flash.display.*;
 import flash.events.*;

 public class MouseMotionSensor extends Sprite {
 public function MouseMotionSensor () {
 // Create the triangle
 var triangle:Sprite = new Sprite();
 triangle.graphics.lineStyle(1);
 triangle.graphics.beginFill(0x00FF00, 1);
 triangle.graphics.moveTo(25, 0);
 triangle.graphics.lineTo(50, 25);
 triangle.graphics.lineTo(0, 25);
 triangle.graphics.lineTo(25, 0);
 triangle.graphics.endFill();
 triangle.x = 200;
 triangle.y = 100;

 // Add the triangle to the display list
 addChild(triangle);

 // Register with triangle for MouseEvent.MOUSE_MOVE events
 triangle.addEventListener(MouseEvent.MOUSE_MOVE, mouseMoveListener);
 }

 private function mouseMoveListener (e:MouseEvent):void {
 trace("mouse move");
 }
 }
}

540 | Chapter 22: Interactivity

// Add this listener-definition code to the class body
private function mouseDownListener (e:MouseEvent):void {
 trace("mouse down");
}

Mouse Events and Overlapping Display Objects
By default, when a mouse event occurs over two or more overlapping
InteractiveObject instances, Flash Player targets the event at the visually front-most
instance only. Objects behind the front-most object are not notified of the event.

For example, if a TextField object visually overlaps a Sprite object, and the user clicks
the TextField object, then Flash Player dispatches a MouseEvent.CLICK event targeted
at the TextField object only. The Sprite object is not notified that the mouse click
occurred.

Example 22-3 shows a simple application that demonstrates the preceding “TextField
over Sprite” scenario. The application’s main class, ClickSensor, registers a
MouseEvent.CLICK listener, clickListener(), with a Sprite object, circle. The Sprite
object is partially obscured by a TextField object, textfield. When clickListener() is
triggered, it moves circle 10 pixels to the right.

Example 22-3. A mouse event listener registered with a partially obscured object

package {
 import flash.display.*;
 import flash.events.*;
 import flash.text.*;

 public class ClickSensor extends Sprite {
 public function ClickSensor () {
 // Create the circle
 var circle:Sprite = new Sprite();
 circle.graphics.beginFill(0x999999, 1);
 circle.graphics.lineStyle(1);
 circle.graphics.drawEllipse(0, 0, 100, 100);

 // Create the TextField object
 var textfield:TextField = new TextField();
 textfield.text = "Click here";
 textfield.autoSize = TextFieldAutoSize.LEFT;
 textfield.x = 30;
 textfield.y = 30;
 textfield.border = true;
 textfield.background = true;

 // Add circle to the display list
 addChild(circle);
 // Add textfield to the display list, in front of circle
 addChild(textfield);

Mouse-Input Events | 541

Figure 22-1 shows the output of the code in Example 22-3.

When the ClickSensor application runs, if the user clicks the visible portion of
circle, then circle moves to the right. But if the user clicks a portion of circle that
is obscured by textfield, then circle does not receive the MouseEvent.CLICK notifica-
tion and, hence, does not move to the right.

It is, however, possible to force textfield to ignore all mouse events, thus allowing
circle to detect mouse clicks even where it is obscured by textfield. To force
textfield to ignore all mouse events, we set its mouseEnabled variable to false, as
follows:

textfield.mouseEnabled = false;

If the preceding line of code were added to ClickSensor’s constructor method, then
all mouse clicks over any portion of circle, whether visible or not, would cause
circle to move to the right.

When an InteractiveObject instance’s mouseEnabled variable is set to false, it receives
no mouse-input event notifications. Instead, mouse event dispatches are targeted at
the next highest mouse-enabled InteractiveObject instance on the display list.

Finding the Mouse Pointer’s Position
As we learned earlier, when Flash Player triggers a mouse-event listener-function, it
passes that function a MouseEvent object. That MouseEvent object indicates the
mouse pointer’s current position with the following instance variables:

• localX and localY

• stageX and stageY

 // Register to be notified when the user clicks circle
 circle.addEventListener(MouseEvent.CLICK, clickListener);
 }

 // Handles MouseEvent.CLICK events targeted at circle.
 private function clickListener (e:MouseEvent):void {
 trace("User clicked: " + e.target);
 DisplayObject(e.target).x += 10;
 }
 }
}

Figure 22-1. ClickSensor output

Example 22-3. A mouse event listener registered with a partially obscured object (continued)

Click here

542 | Chapter 22: Interactivity

The localX and localY variables give the mouse pointer’s position in the event tar-
get’s coordinate space (i.e., relative to the event target’s top left corner). Meanwhile,
the stageX and stageY variables give mouse pointer’s position in the Stage instance’s
coordinate space (i.e., relative to the Stage instance’s top left corner).

Example 22-4 demonstrates the use of localX, localY, stageX, and stageY. In the
example, we create a TextField object, add it directly to the Stage instance, and then
position it at coordinate (100, 100). When the user clicks the TextField object, we
output the location of the mouse pointer relative to both the TextField object (i.e.,
the event target) and the Stage instance. For example, if the user clicks 10 pixels to
the right and 20 pixels down from the TextField object’s top left corner, then the out-
put is:

Position in TextField's coordinate space: (10, 20)
Position in Stage instance's coordinate space: (110, 120)

Here’s the code:

Example 22-4. Finding the mouse pointer’s position

package {
 import flash.display.*;
 import flash.events.*;
 import flash.text.*;

 public class MousePositionChecker extends Sprite {
 public function MousePositionChecker () {
 // Create the TextField
 var textfield:TextField = new TextField();
 textfield.text = "Click here";
 textfield.autoSize = TextFieldAutoSize.LEFT;
 textfield.x = 100;
 textfield.y = 100;

 // Add textfield to the display list, as a direct child of
 // the Stage instance
 stage.addChild(textfield);

 // Register with textfield for click events
 textfield.addEventListener(MouseEvent.CLICK, clickListener);
 }

 // When textfield is clicked, display the mouse pointer position
 private function clickListener (e:MouseEvent):void {
 // Mouse pointer position relative to the TextField object
 trace("Position in TextField's coordinate space: ("
 + e.localX + ", " + e.localY + ")");
 // Mouse pointer position relative to the Stage instance
 trace("Position in Stage instance's coordinate space: ("
 + e.stageX + ", " + e.stageY + ")");
 }
 }
}

Mouse-Input Events | 543

By updating the position of an object in response to changes in the mouse position,
we can make that object appear to follow the mouse. Example 22-5 shows the
ActionScript 3.0 code for a custom mouse pointer. The example combines many of
the techniques we learned so far in this book. In particular, the example relies on the
StageDetector class covered in the section “Custom Event.ADDED_TO_STAGE and
Event.REMOVED_FROM_STAGE events” in Chapter 20. The example also
includes two techniques we haven’t yet learned about: coordinate conversion and
post-event screen updates. Crossreferences to supporting information are supplied in
the code comments.

Example 22-5. A custom mouse pointer

package {
 import flash.display.*;
 import flash.ui.*;
 import flash.events.*;
 import flash.geom.*;

 // A display class that replaces the mouse pointer with a new graphic.
 // When a CustomMousePointer object is added to the display list,
 // it automatically hides the system pointer and begins following
 // its location. When a CustomMousePointer object is removed from the
 // display list, it automatically restores the system mouse pointer.
 public class CustomMousePointer extends Sprite {
 // Constructor
 public function CustomMousePointer () {
 // Create a blue triangle to use as the custom mouse pointer
 graphics.lineStyle(1);
 graphics.beginFill(0x0000FF, 1);
 graphics.lineTo(15, 5);
 graphics.lineTo(5, 15);
 graphics.lineTo(0, 0);
 graphics.endFill();

 // Register to be notified when this object is added to or removed
 // from the display list (requires the custom helper class,
 // StageDetector)
 var stageDetector:StageDetector = new StageDetector(this);
 stageDetector.addEventListener(StageDetector.ADDED_TO_STAGE,
 addedToStageListener);
 stageDetector.addEventListener(StageDetector.REMOVED_FROM_STAGE,
 removedFromStageListener);
 }

 // Handles StageDetector.ADDED_TO_STAGE events
 private function addedToStageListener (e:Event):void {
 // Hide the system mouse pointer
 Mouse.hide();

 // Register to be notified when the system mouse pointer moves
 // over, or leaves Flash Player's display area
 stage.addEventListener(MouseEvent.MOUSE_MOVE, mouseMoveListener);

544 | Chapter 22: Interactivity

 stage.addEventListener(Event.MOUSE_LEAVE, mouseLeaveListener);
 }

 // Handles StageDetector.REMOVED_FROM_STAGE events
 private function removedFromStageListener (e:Event):void {
 // Show the system mouse pointer
 Mouse.show();

 // Unregister for mouse events with the Stage instance
 stage.removeEventListener(MouseEvent.MOUSE_MOVE, mouseMoveListener);
 stage.removeEventListener(Event.MOUSE_LEAVE, mouseLeaveListener);
 }

 // Handles Event.MOUSE_LEAVE events
 private function mouseLeaveListener (e:Event):void {
 // When the mouse leaves Flash Player's display area, hide the
 // custom pointer. Otherwise, the custom mouse pointer and the system
 // mouse pointer will be shown on the screen at the same time. Spooky.
 visible = false;
 }

 // Handles MouseEvent.MOUSE_MOVE events
 private function mouseMoveListener (e:MouseEvent):void {
 // When the mouse moves, update the position of the custom mouse
 // pointer to match the position of the system mouse pointer.
 // (For information on converting points between coordinate spaces,
 // see DisplayObject.globalToLocal() in Adobe's ActionScript
 // Language Reference).
 var pointInParent:Point = parent.globalToLocal(new Point(e.stageX,
 e.stageY));
 x = pointInParent.x;
 y = pointInParent.y;

 // Request post-event screen update so that the animation of the
 // pointer is as smooth as possible. For details on
 // MouseEvent.updateAfterEvent(), see Chapter 23, Screen Updates.
 e.updateAfterEvent();

 // The MouseEvent.MOUSE_MOVE has fired, so the system pointer
 // must be within Flash Player's display area. Therefore, make sure
 // the custom mouse pointer is visible (it might have been hidden
 // because the system pointer left Flash Player's display area).
 // This code is unfortunate here--it rightfully belongs in an
 // Event.MOUSE_ENTER event, but no such event exists in
 // Flash Player 9.
 if (!visible) {
 visible = true;
 }
 }
 }
}

Example 22-5. A custom mouse pointer (continued)

Mouse-Input Events | 545

Example 22-6 shows a simple example class that demonstrates the use of the
CustomMousePointer class shown in Example 22-5.

Reader exercise: Try following the thread of execution that starts in the
CustomMousePointerDemo constructor from Example 22-6 and ends with the invo-
cation of the CustomMousePointer class’s instance method addedToStageListener()
method. You should eventually find yourself mentally executing the code in the
StageDetector class from Chapter 20, which will help you become more intimate
with the display API and the display list. To help you get started, here are the first
seven steps in the execution thread:

1. Create a new CustomMousePointer object.

2. Run constructor method for the CustomMousePointer object created in Step 1.

3. Draw a blue triangle in the CustomMousePointer object.

4. Create a new StageDetector object, passing the CustomMousePointer object to its
constructor.

5. Invoke StageDetector object’s setWatchedObject() method, passing the
CustomMousePointer object as its only argument.

6. Assign the CustomMousePointer object to the StageDetector object’s
watchedObject instance variable.

7. The watchedObject.stage variable is null (because the CustomMousePointer
object is not currently on the display list), so set the StageDetector object’s
onStage variable to false.

You can take over from here...have fun!

Example 22-6. A demonstration class showing the use of CustomMousePointer

package {
 import flash.display.*;

 // Demonstrates the use of the CustomMousePointer class
 public class CustomMousePointerDemo extends Sprite {
 private var pointer:CustomMousePointer;

 // Constructor
 public function CustomMousePointerDemo () {
 // Create a new CustomMousePointer object and add it to the display
 // list. The act of adding the CustomMousePointer object to the
 // display list automatically replaces the system mouse pointer with
 // the CustomMousePointer object.
 pointer = new CustomMousePointer();
 addChild(pointer);
 }
 }
}

546 | Chapter 22: Interactivity

Mentally executing code is a good way to understand how a program
works and a nutritious part of a healthy programming diet.

Handling Mouse Events “Globally”
Flash Player defines no truly global mouse events. However, by registering for mouse
events with the Stage instance, we can handle mouse interaction no matter where it
occurs within Flash Player’s display area. For example, the following code registers
mouseMoveListener() with the Stage instance for MouseEvent.MOUSE_MOVE events:

package {
 import flash.display.*;
 import flash.events.*;

 public class GlobalMouseMotionSensor extends Sprite {
 public function GlobalMouseMotionSensor () {
 stage.addEventListener(MouseEvent.MOUSE_MOVE, mouseMoveListener);
 }

 private function mouseMoveListener (e:MouseEvent):void {
 trace("The mouse moved.");
 }
 }
}

When the preceding code runs, any time the mouse moves anywhere over Flash
Player’s display area, Flash Player dispatches a MouseEvent.MOUSE_MOVE event, trigger-
ing mouseMoveListener().

Let’s look at another “global” mouse-event handling example. To detect every mouse
press in an application, we use the following code:

package {
 import flash.display.*;
 import flash.events.*;

 public class GlobalMouseDownSensor extends Sprite {
 public function GlobalMouseDownSensor () {
 stage.addEventListener(MouseEvent.MOUSE_DOWN, mouseDownListener);
 }

 private function mouseDownListener (e:MouseEvent):void {
 trace("The primary mouse button was pressed.");
 }
 }
}

When the preceding code runs, any time the primary mouse button is pressed while
the mouse pointer is over Flash Player’s display area, Flash Player dispatches a
MouseEvent.MOUSE_DOWN event, triggering mouseDownListener().

Mouse-Input Events | 547

When a mouse-button press occurs over an “empty” region of Flash Player’s display
area (i.e., where no program-created display object resides), the event is targeted at
the Stage instance. When a mouse-button press occurs over any other display object,
the event is targeted at that object. Hence, by checking the event target within
mouseDownListener(), we can write code that responds specifically to mouse-button
presses over empty regions of Flash Player’s display area. The following application,
CircleClicker, demonstrates the technique. When the user clicks an empty region of
Flash Player’s display area, CircleClicker draws a randomly sized and colored circle.
But when the user clicks a circle, CircleClicker removes that circle from the screen.

package {
 import flash.display.*;
 import flash.events.*;

 public class CircleClicker extends Sprite {
 public function CircleClicker () {
 stage.addEventListener(MouseEvent.CLICK, clickListener);
 }

 private function clickListener (e:MouseEvent):void {
 // If the event target is the Stage instance
 if (e.target == stage) {
 // ...draw a circle
 drawCircle(e.stageX, e.stageY);
 } else {
 // ... otherwise, the event target must be a Sprite object
 // containing a circle, so remove it
 removeChild(DisplayObject(e.target));
 }
 }

 public function drawCircle (x:int, y:int):void {
 var randomColor:int = Math.floor(Math.random()*0xFFFFFF);
 var randomSize:int = 10 + Math.floor(Math.random()*150);
 var circle:Sprite = new Sprite()
 circle.graphics.beginFill(randomColor, 1);
 circle.graphics.lineStyle();
 circle.graphics.drawEllipse(0, 0, randomSize, randomSize);
 circle.x = x-randomSize/2;
 circle.y = y-randomSize/2;
 addChild(circle);
 }
 }
}

Note that, for security reasons, a loaded .swf file might be prevented from accessing
Flash Player’s Stage instance. In such situations, to handle mouse events “globally,”
use the techniques covered in Chapter 12, in the section “Handling Events Across
Security Boundaries.”

Now let’s turn our attention to another type of input events—those triggered by
focus changes.

548 | Chapter 22: Interactivity

Focus Events
When an object has keyboard focus, it acts as the logical recipient of all keyboard
input and becomes the target of all keyboard-input event dispatches. An object can
gain keyboard focus either programmatically (via the Stage class’s instance variable
focus) or through user interaction, via the mouse, the Tab key, or the arrow keys.
However, in order to gain keyboard focus, an object must be an instance of a class
that inherits from InteractiveObject. Furthermore, in Flash Player, only one object
can have keyboard focus at a time.

For brevity, the term “keyboard focus” is normally shortened to
“focus.”

Focusing Objects Programmatically
To focus an object programmatically, we assign that object to the Stage instance’s
focus variable.

For example, the following code creates a Sprite object and then immediately focuses
it (it assumes that someDisplayContainer is on the display list):

var rect:Sprite = new Sprite();
rect.graphics.lineStyle(1);
rect.graphics.beginFill(0x0000FF);
rect.graphics.drawRect(0, 0, 150, 75);
someDisplayContainer.addChild(rect);
someDisplayContainer.stage.focus = rect;

When the preceding code runs, rect gains focus, and, hence, becomes the target of
all keyboard input event dispatches.

Focusing Objects with the Keyboard
To focus an object via the keyboard, the user presses the Tab key or arrow keys.
However, in order for an object to receive focus via those keys, it must be part of
Flash Player’s tab order. The tab order is the set of all objects on the display list that
can potentially receive focus via the keyboard. The tab order also determines the
sequence in which objects receive focus when the user presses the Tab key.

There are two distinct tab orders in Flash Player: the automatic tab order and the
custom tab order. The automatic tab order is Flash Player’s default tab order, used
when no custom tab order is defined. The automatic tab order includes the following
objects:

Focus Events | 549

• Instances of TextField that are on the display list and have their type variable set
to TextFieldType.INPUT

• Instances of Sprite or MovieClip that are on the display list and have their
buttonMode variable set to true or their tabEnabled variable set to true

• Instances of SimpleButton that are on the display list

When the automatic tab order is in use, and the user presses the Tab key, focus
moves away from the currently focused object to the next object in the automatic tab
order. The sequence of Flash Player’s automatic tab order is determined by the loca-
tions of the objects it contains, proceeding visually from left to right, then top to bot-
tom (regardless of the position of those objects in the display hierarchy).

In contrast to the automatic tab order, the custom tab order is a program-defined tab-
order including an arbitrary sequence of objects whose tabIndex variable is set to a
nonnegative integer. The following types of objects can be included in the custom
tab order:

• Instances of TextField whose type variable is set to TextFieldType.INPUT

• Instances of Sprite, MovieClip, or SimpleButton

When at least one object currently on the display list has a tabIndex variable set to 0
or greater, the custom tab order is used, and pressing the Tab key causes objects to
be focused according to their tabIndex value, from lowest to highest. For example, if
the currently focused object has a tabIndex value of 2, and the Tab key is pressed,
then the object with tabIndex 3 is focused. If the Tab key is pressed again, the object
with tabIndex 4 is focused, and so on. If two objects have the same tabIndex value,
the object with the lower depth comes first in the tab order. Objects without an
explicitly assigned tabIndex value are excluded from the tab order.

Regardless of whether the automatic tab order or the custom tab order is currently in
use, when an instance of the Sprite, MovieClip, or SimpleButton class is focused with
the Tab key, then the user can subsequently use the four arrow keys to change focus
to an object located in a specific direction (up, down, left, or right).

To exclude an object from the automatic or custom tab order, we set its tabEnabled
variable to false. Objects with _visible set to false are automatically excluded from
the tab order. To exclude all of a given display-object container’s descendants from
the automatic or custom tab order, we set its tabChildren variable to false.

By default, Flash Player displays a yellow rectangle around Sprite, MovieClip, or
SimpleButton instances when they are focused via the keyboard. To disable the yel-
low rectangle for an individual object, we set its focusRect variable to false. To
disable the yellow rectangle for all objects, we set the Stage instance’s stageFocusRect
variable to false. Note that the value of the stageFocusRect variable is not reflected
by the focusRect variable of individual objects. However, setting an individual
object’s focusRect variable overrides the stageFocusRect variable’s setting.

550 | Chapter 22: Interactivity

Focusing Objects with the Mouse
Just as the user can assign keyboard focus using the Tab key or the arrow keys, the
user can also assign focus by clicking an object with the primary mouse button.
However, by default, only SimpleButton and TextField instances can be focused with
the mouse. To allow the user to focus a Sprite or MovieClip instance with the mouse,
we use one of the following approaches:

• Set the instance’s buttonMode variable to true (while ensuring that its tabEnabled
variable is not explicitly set to false)

• Set the instance’s tabEnabled variable to true

• Assign a nonnegative integer to the instance’s tabIndex variable (while ensuring
that its tabEnabled variable is not explicitly set to false)

For example, the following code creates a Sprite object that receives keyboard focus
when clicked:

var rect:Sprite = new Sprite();
rect.graphics.lineStyle(1);
rect.graphics.beginFill(0x0000FF);
rect.graphics.drawRect(0, 0, 150, 75);
rect.tabEnabled = true;

To prevent an object from being focused with the mouse, we set its mouseEnabled
variable to false. To prevent a display object container’s descendants from being
focused with the mouse, we set that container’s mouseChildren variable to false.

An object cannot be focused with the mouse if its mouseEnabled vari-
able is set to false, or the object is a display descendant of a container
with the mouseChildren variable set to false.

Furthermore, when the tabEnabled variable of a Sprite, MovieClip, or SimpleButton
instance is explicitly set to false, then that instance cannot be focused with the
mouse. Likewise, when a Sprite, MovieClip, or SimpleButton instance is a descendant
of a container whose tabChildren variable is set to false, then that instance cannot
be focused with the mouse. However, due to a Flash Player bug, a TextField object
whose tabEnabled variable is explicitly set to false can still be focused with the
mouse. Likewise, due to the same bug, a TextField object that is a descendant of a
container whose tabChildren variable is set to false can still be focused with the
mouse.

Handling descendant focus through a single ancestor

To instruct ActionScript to treat a display object container and all of its descendants
as a group that can receive focus via a single mouse click, follow these steps:

Focus Events | 551

1. Enable mouse-based focusing for the container by setting the container’s
buttonMode or tabEnabled variable to true or by setting its tabIndex variable to a
nonnegative integer.

2. Disable mouse interaction for the container’s children by setting the container’s
mouseChildren variable to false.

Flash Player’s Focus Events
When an application’s keyboard focus changes to a new object (as described in the
previous three sections), Flash Player dispatches one or more focus events describing
the change. Table 22-2 lists Flash Player’s built-in focus-event types. For each type of
event, the “Event type” column lists the FocusEvent-class constant that indicates the
event type’s official string name. The “Description” column describes the specific
user action that triggers the event. The “Target” column lists the object that serves as
the event target when the event is dispatched. The “Default behavior” column lists
Flash Player’s native response to the event. The “Bubbles” column indicates whether
the event has a bubbling phase. Finally, the “Datatype of object passed to listener
function” column specifies the datatype of the object passed to the listener function
that handles the event.

552

T
ab

le
22

-2
.F

la
sh

 P
la

ye
r

fo
cu

s
ev

en
ts

Ev
en

t t
yp

e
De

sc
rip

tio
n

Ta
rg

et
De

fa
ul

t b
eh

av
io

r
Bu

bb
le

s

Da
ta

ty
pe

 o
f o

bj
ec

t
pa

ss
ed

 to
 li

st
en

er
fu

nc
tio

n

Fo
cu
sE
ve
nt
.F
OC
US
_I
N

Fo
cu

s h
as

 b
ee

n
ga

in
ed

by
 a

gi
ve

n
ob

je
ct

.
Th

e o
bj

ec
t t

ha
t g

ai
ne

d
fo

cu
s.

(U
se

 th
e

Fo
cu

sE
ve

nt
 cl

as
s’s

 in
st

an
ce

 va
ria

bl
e

re
la
te
dO
bj
ec
t

to
 ac

ce
ss

 th
e o

bj
ec

t
th

at
 lo

st
 fo

cu
s,

if
an

y)
.

No
ne

Ye
s

Fo
cu

sE
ve

nt

Fo
cu
sE
ve
nt
.F
OC
US
_O
UT

Fo
cu

s h
as

 b
ee

n
lo

st
 b

y a
gi

ve
n

ob
je

ct
.

Th
e o

bj
ec

t t
ha

t l
os

t f
oc

us
. (

Us
e t

he
Fo

cu
sE

ve
nt

 cl
as

s’s
 in

st
an

ce
 va

ria
bl

e
re
la
te
dO
bj
ec
t

to
 ac

ce
ss

 th
e o

bj
ec

t
th

at
 g

ai
ne

d
fo

cu
s,

if
an

y)
.

No
ne

Ye
s

Fo
cu

sE
ve

nt

Fo
cu
sE
ve
nt
.K
EY
_F
OC
US
_C
HA
NG
E

Us
er

 h
as

 at
te

m
pt

ed
 to

ch
an

ge
 fo

cu
s v

ia
 th

e
ke

yb
oa

rd
.

Th
e c

ur
re

nt
ly

fo
cu

se
d

ob
je

ct
. (

Us
e t

he
Fo
cu
sE
ve
nt

 cl
as

s’s
 in

st
an

ce
 va

ria
bl

e
re
la
te
dO
bj
ec
t

to
 ac

ce
ss

 th
e o

bj
ec

t
th

e u
se

r i
s a

tte
m

pt
in

g
to

 fo
cu

s)
.

Fla
sh

 P
la

ye
r c

ha
ng

es
th

e f
oc

us
. C

an
 b

e
ca

nc
el

ed
 vi

a t
he

Ev
en

t
cla

ss
’s

in
st

an
ce

m
et

ho
d

pr
ev

en
tD

ef
au

lt(
).

Ye
s

Fo
cu

sE
ve

nt

Fo
cu
sE
ve
nt
.M
OU
SE
_F
OC
US
_C
HA
NG
E

Us
er

 h
as

 at
te

m
pt

ed
 to

ch
an

ge
 fo

cu
s v

ia
 th

e
m

ou
se

.

Th
e c

ur
re

nt
ly

fo
cu

se
d

ob
je

ct
. (

Us
e t

he
Fo
cu
sE
ve
nt

 cl
as

s’s
 in

st
an

ce
 va

ria
bl

e
re
la
te
dO
bj
ec
t

to
 ac

ce
ss

 th
e o

bj
ec

t
th

e u
se

r i
s a

tte
m

pt
in

g
to

 fo
cu

s)
.

Fla
sh

 P
la

ye
r c

ha
ng

es
th

e f
oc

us
. C

an
 b

e c
an

-
ce

le
d

via
 th

eE
ve

nt
cla

ss
’s

in
st

an
ce

m
et

ho
d

pr
ev

en
tD

ef
au

lt(
).

Ye
s

Fo
cu

sE
ve

nt

Focus Events | 553

As Table 22-2 indicates, the FocusEvent.FOCUS_IN and FocusEvent.FOCUS_OUT events are
used to detect when an object has gained or lost focus. By the time those two events are
dispatched, the change in focus has already occurred. By contrast, the FocusEvent.KEY_
FOCUS_CHANGE and FocusEvent.MOUSE_FOCUS_CHANGE events are used to detect when an
object is about to gain or lose focus, but has not yet gained or lost it. An application
typically uses the FocusEvent.KEY_FOCUS_CHANGE and FocusEvent.MOUSE_FOCUS_CHANGE
events to prevent the user from changing focus via the keyboard or mouse, perhaps in
order to force the user to interact with a specific part of the interface, such as a modal
dialog box.

As with mouse events, Flash Player defines no truly global focus events. However, by
registering for focus events with the Stage instance, we can handle all focus changes
that occur within Flash Player. Example 22-7 demonstrates the technique, showing
an application that creates two TextField objects, and sets their background color to
green whenever they are focused.

Example 22-7. Handling focus events globally

package {
 import flash.display.*;
 import flash.events.*;
 import flash.text.*;

 public class GlobalFocusSensor extends Sprite {
 public function GlobalFocusSensor () {
 // Create text fields
 var field1:TextField = new TextField();
 field1.width = 100;
 field1.height = 30;
 field1.border = true;
 field1.background = true;
 field1.type = TextFieldType.INPUT;

 var field2:TextField = new TextField();
 field2.width = 100;
 field2.height = 30;
 field2.y = 50;
 field2.border = true;
 field2.background = true;
 field2.type = TextFieldType.INPUT;

 // Add text fields to the display list
 addChild(field1);
 addChild(field2);

 // Register for FocusEvent.FOCUS_IN events
 stage.addEventListener(FocusEvent.FOCUS_IN, focusInListener);
 }

 // Handle all FocusEvent.FOCUS_IN events in this application
 private function focusInListener (e:FocusEvent):void {

554 | Chapter 22: Interactivity

Focus events can also be handled by listeners registered with the event target or with
any of the event target’s display ancestors. Example 22-8 shows an application that
creates an input TextField that, once focused, cannot be unfocused until at least
three characters have been entered. Similar code is often found in applications that
validate input entered via fill-in forms, such as a login screen or a product order
form.

 // Set the background color of the focused TextField object to green
 TextField(e.target).backgroundColor = 0xFF00FF00;

 // Set the background color of the TextField object that lost focus
 // to white
 if (e.relatedObject is TextField) {
 TextField(e.relatedObject).backgroundColor = 0xFFFFFFFF;
 }
 }
 }
}

Example 22-8. Handling focus events for a particular object

package {
 import flash.display.*;
 import flash.events.*;
 import flash.text.*;

 // Demonstrates how to handle FocusEvent.FOCUS_IN events for a single
 // object. Creates a TextField that, once focused, cannot be unfocused
 // until at least three characters have been entered.
 public class ObjectFocusSensor extends Sprite {
 private var namefield:TextField;
 private var passfield:TextField;

 public function ObjectFocusSensor () {
 // Create text fields
 namefield = new TextField();
 namefield.width = 100;
 namefield.height = 30;
 namefield.border = true;
 namefield.background = true;
 namefield.type = TextFieldType.INPUT;

 passfield = new TextField();
 passfield.width = 100;
 passfield.height = 30;
 passfield.y = 50;
 passfield.border = true;
 passfield.background = true;
 passfield.type = TextFieldType.INPUT;

Example 22-7. Handling focus events globally (continued)

Keyboard-Input Events | 555

Keyboard-Input Events
Flash Player dispatches keyboard-input events when the user presses or releases the
keys on a keyboard. Broadly speaking, keyboard input events are typically used to
trigger a response from either the application as a whole or from a specific interface
element. For example, pressing the “S” key might trigger a global “save user data”
command while pressing the Down Arrow key might select an item in a specific
menu component.

Keyboard-input events that trigger application-wide commands are typically han-
dled globally, by listeners registered with Flash Player’s Stage instance. By contrast,
keyboard-input events that trigger a specific interface-element response are typically
handled by listeners registered with the object that currently has keyboard focus.

Flash Player’s keyboard-input events are intended for use when devel-
oping keyboard-controlled applications but are not suitable for
responding to textual input in TextField objects. To respond to tex-
tual input, use the TextEvent.TEXT_INPUT event, described later in the
section “Text-Input Events.”

Table 22-3 lists Flash Player’s built-in keyboard-event types. For each type of event,
the “Event type” column lists the KeyboardEvent-class constant that indicates the
event type’s official string name. The “Description” column describes the specific
user action that triggers the event. The “Target” column lists the object that serves as
the event target when the event is dispatched. The “Default behavior” column lists

 // Add text fields to the display list
 addChild(namefield);
 addChild(passfield);

 // Register for focus change events
 namefield.addEventListener(FocusEvent.MOUSE_FOCUS_CHANGE,
 focusChangeListener);
 namefield.addEventListener(FocusEvent.KEY_FOCUS_CHANGE,
 focusChangeListener);
 }

 // Handles all focus change events targeted at namefield
 private function focusChangeListener (e:FocusEvent):void {
 if (e.target == namefield && namefield.text.length < 3) {
 trace("Name entered is less than three characters long");
 e.preventDefault();
 }
 }
 }
}

Example 22-8. Handling focus events for a particular object (continued)

556 | Chapter 22: Interactivity

Flash Player’s native response to the event. Unlike mouse events and focus events,
keyboard events have no default behavior. The “Bubbles” column indicates whether
the event has a bubbling phase. Finally, the “Datatype of object passed to listener
function” column specifies the datatype of the object passed to the listener function
that handles the event.

Note that keyboard events are not dispatched unless Flash Player has system focus. To be
notified when Flash Player gains or loses system focus, register for the Event.ACTIVATE
and Event.DEACTIVATE events (described later in the section “Flash Player-Level Input
Events”).

Global Keyboard-Event Handling
As with mouse events and focus events, Flash Player defines no truly global key-
board events. However, by registering for keyboard events with the Stage instance,
we can handle all keyboard interaction whenever it occurs while Flash Player has sys-
tem focus. Example 22-9 demonstrates the technique, showing a simplified class that
displays a debugging message whenever a key is pressed.

Table 22-3. Flash Player Keyboard Events

Event type Description Target
Default
behavior Bubbles

Datatype of
object passed to
listener
function

KeyboardEvent.KEY_DOWN Key depressed Either the
InteractiveObject
with keyboard
focus or, if no
object is focused,
the Stage
instance

None Yes KeyboardEvent

KeyboardEvent.KEY_UP Key released Either the
InteractiveObject
with keyboard
focus or, if no
object is focused,
the Stage
instance

None Yes KeyboardEvent

Example 22-9. Handling keyboard events globally

package {
 import flash.display.*;
 import flash.events.*;

 public class GlobalKeyboardSensor extends Sprite {
 public function GlobalKeyboardSensor () {
 // Register to be notified whenever a key is pressed

Keyboard-Input Events | 557

Object-Specific Keyboard-Event Handling
As described in Table 22-3, when no object has keyboard focus, the Stage instance is
the target of all keyboard event dispatches. By contrast, when an InteractiveObject
instance has keyboard focus, that instance is the target of all keyboard events dis-
patched by Flash Player.

Hence, to respond to keyboard input that is directed at a particular object, we regis-
ter listeners with that object. Example 22-10 demonstrates, showing an application
that creates two Sprite objects, rect1 and rect2. When rect1 is focused, and a key is
pressed, the application moves rect1 to the right. When rect2 is focused, and a key
is pressed, the application rotates rect2.

 stage.addEventListener(KeyboardEvent.KEY_DOWN, keyDownListener);
 }

 // This function is invoked whenever a key is pressed while
 // Flash Player has system focus
 private function keyDownListener (e:KeyboardEvent):void {
 trace("A key was pressed.");
 }
 }
}

Example 22-10. Handling keyboard events for a particular object

package {
 import flash.display.*;
 import flash.events.*;

 public class ObjectKeyboardSensor extends Sprite {
 public function ObjectKeyboardSensor () {
 // Create the rectangles
 var rect1:Sprite = new Sprite();
 rect1.graphics.lineStyle(1);
 rect1.graphics.beginFill(0x0000FF);
 rect1.graphics.drawRect(0, 0, 75, 75);
 rect1.tabEnabled = true;

 var rect2:Sprite = new Sprite();
 rect2.graphics.lineStyle(1);
 rect2.graphics.beginFill(0x0000FF);
 rect2.graphics.drawRect(0, 0, 75, 75);
 rect2.x = 200;
 rect2.tabEnabled = true;

 // Add the rectangles to the display list
 addChild(rect1);
 addChild(rect2);

Example 22-9. Handling keyboard events globally (continued)

558 | Chapter 22: Interactivity

Now that we know how to detect when the user presses or releases a key on the key-
board, let’s explore how to determine which key was pressed or released.

Determining the Most Recently Pressed or Released Key
Flash Player assigns an arbitrary numeric identifier, known as a key code, to all
detectable keys on the keyboard. To determine the key code for the most recently
pressed or released key, we retrieve the value of the KeyboardEvent class’s instance
variable keyCode within a KeyboardEvent.KEY_UP or KeyboardEvent.KEY_DOWN listener
function, as shown in Example 22-11.

 // Register rectangles for keyboard events
 rect1.addEventListener(KeyboardEvent.KEY_DOWN, rect1KeyDownListener);
 rect2.addEventListener(KeyboardEvent.KEY_DOWN, rect2KeyDownListener);
 }

 // Executed when rect1 has focus and a key is pressed
 private function rect1KeyDownListener (e:KeyboardEvent):void {
 Sprite(e.target).x += 10;
 }

 // Executed when rect2 has focus and a key is pressed
 private function rect2KeyDownListener (e:KeyboardEvent):void {
 Sprite(e.target).rotation += 10;
 }
 }
}

Example 22-11. Retrieving a pressed key’s key code

package {
 import flash.display.*;
 import flash.events.*;
 import flash.text.*;

 // Displays the key code for any key pressed.
 public class KeyViewer extends Sprite {
 private var keyoutput:TextField;
 public function KeyViewer () {
 keyoutput = new TextField();
 keyoutput.text = "Press any key...";
 keyoutput.autoSize = TextFieldAutoSize.LEFT;
 keyoutput.border = true;
 keyoutput.background = true;
 addChild(keyoutput);

 stage.addEventListener(KeyboardEvent.KEY_DOWN, keyDownListener);
 }

Example 22-10. Handling keyboard events for a particular object (continued)

Keyboard-Input Events | 559

To detect the pressing or releasing of a specific key, we compare that key’s key code
to the value of the KeyboardEvent class’s instance variable keyCode within a
KeyboardEvent.KEY_UP or KeyboardEvent.KEY_DOWN listener function. For example, the
following KeyboardEvent.KEY_DOWN listener function detects the pressing of the Escape
key by comparing its key code, 27, to the value of keyCode.

private function keyDownListener (e:KeyboardEvent):void {
 if (e.keyCode == 27) {
 trace("The Escape key was pressed");
 }
}

The key codes for all control keys and numeric keypad keys can be accessed via con-
stants of the flash.ui.Keyboard class. Hence, the preceding code would normally be
written as follows (notice the use of the Keyboard class’s static variable ESCAPE in
place of the literal value 27):

import flash.ui.Keyboard;
private function keyDownListener (e:KeyboardEvent):void {
 if (e.keyCode == Keyboard.ESCAPE) {
 trace("The Escape key was pressed");
 }
}

Key codes are language and operating-system dependent.

For a list of the key codes for the keys on a U.S. English keyboard, see:
http://livedocs.macromedia.com/flash/8/main/00001686.html.

When writing expressions that detect the pressing or releasing of a key that is not
included among the flash.ui.Keyboard constants, always follow these steps:

1. Run the KeyViewer application from Example 22-11 on a computer with the
operating system and keyboard of the target user.

2. Press the desired key.

3. Record the returned key code in a constant.

4. Use the constant from Step 3 when detecting the pressing or releasing of the
desired key.

 private function keyDownListener (e:KeyboardEvent):void {
 // Display the key code for the key that was pressed
 keyoutput.text = "The key code for the key you pressed is: "
 + e.key code;
 }
 }
}

Example 22-11. Retrieving a pressed key’s key code (continued)

http://livedocs.macromedia.com/flash/8/main/00001686.html

560 | Chapter 22: Interactivity

For example, suppose we wish to detect the pressing of the “A” key on a computer
running Mac OS with a U.S. English keyboard. We run KeyViewer and press the A
key. In response, the KeyViewer application displays the key code 65. We then
record that key code in a constant of a custom class, perhaps named KeyConstants,
as follows:

public static const A_KEY:int = 65;

Then, to detect the pressing of the A key, we use the following code:

private function keyDownListener (e:KeyboardEvent):void {
 if (e.keyCode == KeyConstants.A_KEY) {
 trace("The A key was pressed");
 }
}

The following code shows the technique in the context of an extremely simple test
application:

package {
 import flash.display.*;
 import flash.events.*;

 public class AKeySensor extends Sprite {
 //
 public static const A_KEY:int = 65;

 public function AKeySensor () {
 stage.addEventListener(KeyboardEvent.KEY_DOWN, keyDownListener);
 }

 private function keyDownListener (e:KeyboardEvent):void {
 if (e.keyCode == AKeySensor.A_KEY) {
 trace("The A key was pressed");
 }
 }
 }
}

Note that the KeyboardEvent class’s instance variable keyCode is not supported when an
input method editor (IME) is in use. For information on IMEs, see the flash.system.IME
class in Adobe’s ActionScript Language Reference and Flash Player APIs ➝ Client System
Environment ➝ IME class in Adobe’s Programming ActionScript 3.0.

Multilocation keys

On some keyboards, certain individual key codes represent keys that occur in multiple
places on the keyboard. For example, on a computer running Microsoft Windows with
a U.S. English keyboard, the key code 16 represents both the left Shift key and the right
Shift key; the key code 17 represents both the left Control key and the right Control
key; and the key code 13 represents both the main Enter key and the numeric keypad’s
Enter key. To distinguish between these multiposition keys, we use the KeyboardEvent

Keyboard-Input Events | 561

class’s instance variable keyLocation, whose value indicates a logical position,
expressed as one of the four constants defined by the flash.ui.KeyLocation class (LEFT,
NUM_PAD, RIGHT, and STANDARD). The following code demonstrates the technique, show-
ing a KeyboardEvent.KEY_DOWN listener function that outputs one debugging message for
the pressing of the left Shift key and another for the pressing of the right Shift key:

private function keyDownListener (e:KeyboardEvent):void {
 if (e.keyCode == Keyboard.SHIFT) {
 if (e.keyLocation == KeyLocation.LEFT) {
 trace("The left Shift key was pressed");
 } else if (e.keyLocation == KeyLocation.RIGHT) {
 trace("The right Shift key was pressed");
 }
 }
}

Detecting Multiple Simultaneous Key Presses
To detect the pressing of the Shift key or the Control key (Command key on
Macintosh) in combination with any other key, we use the KeyboardEvent class’s
instance variables shiftKey and ctrlKey within a KeyboardEvent.KEY_DOWN listener
function. For example, the following simple application detects the pressing of the
key combination Control+S (Command+S on Macintosh):

package {
 import flash.display.*;
 import flash.events.*;

 public class CtrlSSensor extends Sprite {
 public static const S_KEY:int = 83;

 public function CtrlSSensor () {
 stage.addEventListener(KeyboardEvent.KEY_DOWN, keyDownListener);
 }

 private function keyDownListener (e:KeyboardEvent):void {
 if (e.keyCode == CtrlSSensor.S_KEY
 && e.ctrlKey == true) {
 trace("Ctrl+S was pressed");
 }
 }
 }
}

In the standalone and web browser plug-in versions of Flash Player,
ActionScript cannot detect the pressing of the Alt key (or, for that mat-
ter, the F10 key).

To detect the simultaneous pressing of two or more arbitrary keys other than the
Shift key and the Control key, we must manually track each key’s current state. The

562 | Chapter 22: Interactivity

following code demonstrates the technique, showing an application that displays a
debugging message when the Left arrow key and the Up arrow key are both down.
Similar code might be used to steer a car or a spaceship diagonally in a video game.

package {
 import flash.display.*;
 import flash.events.*;
 import flash.ui.*;

 // Detects the simultaneous pressing of the Up Arrow and Left Arrow keys
 public class UpLeftSensor extends Sprite {
 // Tracks the state of the Up Arrow key
 // (true when pressed; false otherwise)
 private var upPressed:Boolean;
 // Tracks the state of the Left Arrow key
 // (true when pressed; false otherwise)
 private var leftPressed:Boolean;

 public function UpLeftSensor () {
 // Register for keyboard events
 stage.addEventListener(KeyboardEvent.KEY_DOWN, keyDownListener);
 stage.addEventListener(KeyboardEvent.KEY_UP, keyUpListener);
 }

 // Handles KeyboardEvent.KEY_DOWN events
 private function keyDownListener (e:KeyboardEvent):void {
 // Make a note of whether the Up Arrow key or Left Arrow
 // key was pressed
 if (e.keyCode == Keyboard.UP) {
 upPressed = true;
 } else if (e.keyCode == Keyboard.LEFT) {
 leftPressed = true;
 }

 // If the Up Arrow key and the Left Arrow key are both pressed...
 if (upPressed && leftPressed) {
 // ...take some application-specific action, such as steering a
 // spaceship diagonally and up and to the left
 trace("Up Arrow key and Left Arrow key are both pressed");
 }
 }

 // Handles KeyboardEvent.KEY_UP events
 private function keyUpListener (e:KeyboardEvent):void {
 // Make a note of whether the Up Arrow key or Left Arrow
 // key was released
 if (e.keyCode == Keyboard.UP) {
 upPressed = false;
 } else if (e.keyCode == Keyboard.LEFT) {
 leftPressed = false;
 }
 }
 }
}

Keyboard-Input Events | 563

Mouse Events and Modifier Keys
Just as ActionScript offers a convenient way to check whether the Shift or Control
keys are down during a keyboard-input event dispatch, ActionScript also enables you
to check whether the Shift or Control keys are down during a mouse-input event dis-
patch. To determine whether the Shift key or the Control key is depressed during a
mouse-input event dispatch, we use the MouseEvent class’s instance variables
shiftKey and ctrlKey within a listener function registered for the event. For exam-
ple, the following code outputs a debugging message when a mouse click occurs
while the Shift key is depressed. Similar code might be used in a drawing program to
constrain the dragging of an object to the horizontal or vertical axis.

package {
 import flash.display.*;
 import flash.events.*;

 public class ControlClickSensor extends Sprite {
 public function ControlClickSensor () {
 stage.addEventListener(MouseEvent.CLICK, clickListener);
 }

 private function clickListener (e:MouseEvent):void {
 if (e.shiftKey) {
 trace("Shift+click detected");
 }
 }
 }
}

Determining the Character Associated with a Key
Earlier we learned how to determine the key code for the most recently pressed or
released key. To retrieve the actual character associated with the most recently
pressed or released key, we check the value of the KeyboardEvent class’s instance
variable charCode within a KeyboardEvent.KEY_UP or KeyboardEvent.KEY_DOWN listener
function.

When a U.S. English keyboard is used, charCode indicates the ASCII character code
of the character that logically corresponds to the most recently pressed or released
key. In some cases, the charCode value for a single key has two potential values,
depending on whether or not the Shift key is depressed. For example, the character
code for the key marked “S” on a U.S. English keyboard is 115 when the Shift key is
not depressed, but 83 when Shift is depressed. For keys that display characters with
no ASCII value, KeyboardEvent.charCode has the value 0.

When a non-U.S. English keyboard is used, charCode indicates the ASCII character
code for the equivalent key on a U.S. English keyboard. For example, on a Japanese
keyboard, the key in the U.S. English “A” position displays the glyph , but

564 | Chapter 22: Interactivity

charCode still returns either 97 or 65 (ASCII’s “a” and “A”, respectively)—not 12385
(the Unicode code point for).

To convert a character code into an actual string, we use the String class’s instance
method fromCharCode(). Example 22-12 demonstrates the technique by updating
the KeyViewer class (presented earlier in Example 22-11) to display the character
associated with the most recently pressed key.

The result of running the KeyViewer application from Example 22-12 and pressing
the key marked “S” on a U.S. English keyboard is:

The key code for the key you pressed is: 83
The character code for the key you pressed is: 115
The character for the key you pressed is: s

The result of running the KeyViewer application from Example 22-12 and pressing
the Shift key in combination with the key marked “S” on a U.S. English keyboard is:

The key code for the key you pressed is: 83
The character code for the key you pressed is: 83
The character for the key you pressed is: S

Example 22-12. Retrieving a pressed key’s key code and character code

package {
 import flash.display.*;
 import flash.events.*;
 import flash.text.*;
 import flash.ui.*;

 // Displays the key code and character code for any key pressed.
 public class KeyViewer extends Sprite {
 private var keyoutput:TextField;
 public function KeyViewer () {
 keyoutput = new TextField();
 keyoutput.text = "Press any key...";
 keyoutput.autoSize = TextFieldAutoSize.LEFT;
 keyoutput.border = true;
 keyoutput.background = true;
 addChild(keyoutput);

 stage.addEventListener(KeyboardEvent.KEY_DOWN, keyDownListener);
 }

 private function keyDownListener (e:KeyboardEvent):void {
 keyoutput.text = "The key code for the key you pressed is: "
 + e.keyCode + "\n";
 keyoutput.appendText("The character code for the key you pressed is: "
 + e.charCode + "\n");
 keyoutput.appendText("The character for the key you pressed is: "
 + String.fromCharCode(e.charCode));
 }
 }
}

Text-Input Events | 565

As with the KeyboardEvent class’s instance variable keyCode, charCode is not sup-
ported when an input method editor is in use, and is not intended as a means of
receiving textual input. To retrieve textual input, we use the TextEvent.TEXT_INPUT
event in conjunction with a TextField object, as described in the next section.

Text-Input Events
Flash Player dispatches text-input events in the following situations:

• When the user adds new text to an input text field

• When the user activates an “event:”-protocol hypertext link in a text field (by
clicking the link)

• When a text field is scrolled, either programmatically or by the user

Table 22-4 lists Flash Player’s built-in text-input fsevent types. For each type of
event, the “Event Type” column lists the class constant that indicates the event type’s
official string name. The “Description” column describes the specific user action that
triggers the event. The “Target” column lists the object that serves as the event tar-
get when the event is dispatched. The “Default behavior” column lists Flash Player’s
native response to the event. The “Bubbles” column indicates whether the event has
a bubbling phase. Finally, the “Datatype of object passed to listener function” col-
umn specifies the datatype of the object passed to the listener function that handles
the event.

566

T
ab

le
22

-4
.F

la
sh

 P
la

ye
r

te
xt

-i
np

ut
 e

ve
nt

s

Ev
en

t T
yp

e
De

sc
rip

tio
n

Ta
rg

et
De

fa
ul

t b
eh

av
io

r
Bu

bb
le

s
Da

ta
 Ty

pe
 o

f O
bj

ec
t P

as
se

d
to

Li
st

en
er

 Fu
nc

tio
n

Te
xt
Ev
en
t.
TE
XT
_I
NP
UT

Us
er

 h
as

 at
te

m
pt

ed
 to

 ad
d

ne
w

te
xt

 to
 an

 in
pu

t t
ex

t f
ie

ld
.

Th
eT

ex
tF

iel
do

bj
ec

tt
ow

hi
ch

th
eu

se
ri

sa
tte

m
pt

in
gt

oa
dd

ne
w

 te
xt

Th
et

ex
ti

sa
dd

ed
to

th
et

ex
t

fie
ld

. T
hi

s d
ef

au
lt

be
ha

vio
r

ca
n

be
 ca

nc
el

ed
 vi

a t
he

Ev
en

t c
la

ss
’s

in
st

an
ce

m
et

ho
d

pr
ev

en
tD

ef
au

lt(
).

Ye
s

Te
xt

Ev
en

t

Ev
en
t.
CH
AN
GE

Ne
w

te
xt

ad
de

d
to

an
in

pu
tt

ex
t

fie
ld

 b
y t

he
 u

se
r.

Th
eT

ex
tF

iel
do

bj
ec

tt
ow

hi
ch

th
e n

ew
 te

xt
 w

as
 ad

de
d

No
ne

Ye
s

Ev
en

t

Ev
en
t.
SC
RO
LL

Te
xt

fie
ld

sc
ro

lle
d

pr
og

ra
m

m
at

i-
ca

lly
 o

r b
y t

he
 u

se
r.

Th
eT

ex
tF

iel
do

bj
ec

tt
ha

tw
as

sc
ro

lle
d

No
ne

No
Ev

en
t

Te
xt
Ev
en
t.
LI
NK

“e
ve

nt
:”-

pr
ot

oc
ol

hy
pe

rte
xt

lin
k

ac
tiv

at
ed

.
Th

eT
ex

tF
iel

d
ob

je
ct

 co
nt

ai
n-

in
g

th
e a

ct
iva

te
d

lin
k

No
ne

Ye
s

Te
xt

Ev
en

t

Text-Input Events | 567

Like mouse events, keyboard events, and focus events, a text-input event can be han-
dled by listeners registered with the event target or with any of that target’s display
ancestors. In the coming sections, however, we’ll focus solely on using listeners regis-
tered with the event target.

Let’s take a closer look at the four events in Table 22-4.

The TextEvent.TEXT_INPUT and Event.CHANGE Events
The TextEvent.TEXT_INPUT and Event.CHANGE events let us detect new text input from
the user. Specifically, the following techniques for entering text can trigger the
TextEvent.TEXT_INPUT and Event.CHANGE events:

• Pressing a key on the keyboard

• Pasting text via keyboard shortcuts or Flash Player’s built-in context menu
(accessed via a secondary mouse click)

• Speaking into speech recognition software

• Composing text content with an input method editor

The TextEvent.TEXT_INPUT event indicates that the user is attempting to add new text
to an input text field and provides the application with an opportunity to either
thwart or allow that attempt. The TextEvent.TEXT_INPUT event offers a convenient
way to accessing the text content being added to a text field before it is actually
added to that text field. By contrast, the Event.CHANGE event indicates that a user’s
attempt to add new text to an input text field has succeeded, and that Flash Player
has finished updating the text field’s content accordingly.

The generalized code required to register a listener with a TextField object for the
TextEvent.TEXT_INPUT event is as follows:

theTextField.addEventListener(TextEvent.TEXT_INPUT, textInputListener);

The generalized event-listener code required for a TextEvent.TEXT_INPUT listener is:

private function textInputListener (e:TextEvent):void {
}

To prevent user-entered text from appearing in a TextField, we use the Event class’s
instance method preventDefault(), as follows:

private function textInputListener (e:TextEvent):void {
 // Stop user-entered text from appearing
 e.preventDefault();
}

To access the text entered by the user, we use the TextEvent class’s instance variable
text, as follows:

private function textInputListener (e:TextEvent):void {
 // Output a debugging message showing the user-entered text
 trace(e.text);
}

568 | Chapter 22: Interactivity

The TextEvent.TEXT_INPUT event might be used to auto-format user input in a fill-in
form application, as shown in Example 22-13. In the example, all text entered into
an input text field is converted to uppercase. Similar code might be used in the “ship-
ping address” section of an online product-order form.

Now let’s turn to the Event.CHANGE event. The generalized code required to register a
listener with a TextField object for the Event.CHANGE event is as follows:

theTextField.addEventListener(Event.CHANGE, changeListener);

The generalized event listener code required for an Event.CHANGE listener is:

private function changeListener (e:Event):void {
}

Example 22-13. Converting user input to uppercase

package {
 import flash.display.*;
 import flash.events.*;
 import flash.text.*;

 public class UppercaseConverter extends Sprite {
 private var inputfield:TextField;

 public function UppercaseConverter () {
 inputfield = new TextField();
 inputfield.text = "";
 inputfield.width = 150;
 inputfield.height = 30;
 inputfield.border = true;
 inputfield.background = true;
 inputfield.type = TextFieldType.INPUT;
 addChild(inputfield);

 // Register with inputfield for TextEvent.TEXT_INPUT events
 inputfield.addEventListener(TextEvent.TEXT_INPUT, textInputListener);
 }

 // Triggered whenever the user attempts to add new text to inputfield
 private function textInputListener (e:TextEvent):void {
 // Prevent the user-supplied text from being added to the text field
 e.preventDefault();
 // Add the equivalent uppercase character to the text field
 inputfield.replaceText(inputfield.caretIndex,
 inputfield.caretIndex,
 e.text.toUpperCase());
 // Set the insertion point (caret) to the end of the new text, so
 // the user thinks they entered the text
 var newCaretIndex:int = inputfield.caretIndex + e.text.length;
 inputfield.setSelection(newCaretIndex, newCaretIndex);
 }
 }
}

Text-Input Events | 569

The Event.CHANGE event might be used to synchronize the content of two text fields,
as shown in Example 22-14. The example shows an excerpt from a hypothetical
panel widget containing labeled photos. For simplicity, the example includes one
photo label only, without its corresponding image. The code uses Event.CHANGE to
keep the panel’s title bar updated to match the name of the currently selected photo.
For review, the code also uses the FocusEvent.FOCUS_IN and FocusEvent.FOCUS_OUT
events to update the panel title when the user changes focus in the application.

Example 22-14. Synchronizing two TextField objects

package {
 import flash.display.*;
 import flash.events.*;
 import flash.text.*;

 public class PhotoPanel extends Sprite {
 private static const defaultTitle:String =
 "Photo Viewer [No photo selected]";
 private static const defaultPhotoName:String =
 "Enter Photo Name Here";

 private var title:TextField;
 private var photoname:TextField;

 public function PhotoPanel () {
 // Create the TextField object for the panel's title bar
 title = new TextField();
 title.text = PhotoPanel.defaultTitle;
 title.width = 350;
 title.height = 25;
 title.border = true;
 title.background = true;
 title.selectable = false;
 addChild(title);

 // Create a title TextField object for an individual photo
 photoname = new TextField();
 photoname.text = PhotoPanel.defaultPhotoName;
 photoname.width = 150;
 photoname.height = 30;
 photoname.x = 100;
 photoname.y = 150;
 photoname.border = true;
 photoname.background = true;
 photoname.type = TextFieldType.INPUT
 addChild(photoname);

 // Register with photoname for Event.CHANGE events
 photoname.addEventListener(Event.CHANGE, changeListener);

 // Register with photoname for focus in and out events

570 | Chapter 22: Interactivity

 photoname.addEventListener(FocusEvent.FOCUS_IN, photoFocusInListener);
 photoname.addEventListener(FocusEvent.FOCUS_OUT,
 photoFocusOutListener);

 // Register with the stage for focus out events
 stage.addEventListener(FocusEvent.FOCUS_OUT, panelFocusOutListener);
 }

 // Triggered whenever new text is added to photoname
 private function changeListener (e:Event):void {
 // The photo's name changed, so update title to match photoname's text
 if (photoname.text.length == 0) {
 title.text = "Photo Viewer [Unnamed Photo]";
 } else {
 title.text = "Photo Viewer [" + photoname.text + "]";
 }
 }

 // Triggered whenever photoname gains focus
 private function photoFocusInListener (e:FocusEvent):void {
 // If the photo hasn't been named yet...
 if (photoname.text == PhotoPanel.defaultPhotoName) {
 // ...clear the photoname text field so the user can enter a name
 photoname.text = "";
 // Update the panel title to indicate that an unnamed photo is
 // selected
 title.text = "Photo Viewer [Unnamed Photo]";
 } else {
 // ...the selected photo already has a name, so update the panel
 // title to display that name
 title.text = "Photo Viewer [" + photoname.text + "]";
 }
 }

 // Triggered whenever photoname loses focus
 private function photoFocusOutListener (e:FocusEvent):void {
 // If the user didn't enter a name for the photo...
 if (photoname.text.length == 0) {
 // ...set the photo's name to the default value
 photoname.text = PhotoPanel.defaultPhotoName;
 }
 }

 // Triggered whenever any object loses focus
 private function panelFocusOutListener (e:FocusEvent):void {
 // If no object is currently focused...
 if (e.relatedObject == null) {
 // ...set the panel title to the default value
 title.text = PhotoPanel.defaultTitle;
 }
 }
 }
}

Example 22-14. Synchronizing two TextField objects (continued)

Text-Input Events | 571

The Event.SCROLL Event
The Event.SCROLL event is triggered when any of the following variables changes on a
TextField object: scrollH, scrollV, maxscrollH, or maxscrollV. In other words, the
Event.SCROLL event indicates that one of the following changes has occurred to the
text field:

• The text field has been scrolled vertically or horizontally (either by the user or
programmatically via the scrollH or scrollV variables).

• The text field has new content that changes its maximum vertical or horizontal
scrolling range.

• A change in the dimensions of the text field has changed the text field’s maxi-
mum vertical or horizontal scrolling range.

The generalized code required to register a listener with a TextField object for the
Event.SCROLL event is as follows:

theTextField.addEventListener(Event.SCROLL, scrollListener);

The generalized event listener code required for a Event.SCROLL listener is:

private function scrollListener (e: Event):void {
}

Typically, the Event.SCROLL event is used to synchronize a scrollbar interface with the
content of a text field, as shown in Example 22-15. The scrollbar in the example has
the following features:

• Can be applied to any TextField object

• Can be dragged by the mouse to scroll a text field vertically

• Automatically updates in response to changes in the text field’s size, content, or
scroll position

For the sake of simplicity, however, the scrollbar does not include up and down
scrolling buttons. Example 22-15 uses many of the techniques we’ve learned in this
chapter and also contains some techniques that we have not yet studied; where
appropriate, crossreferences to supplemental topics are provided.

Example 22-15. Using Event.SCROLL in a scrollbar implementation

package {
 import flash.display.*;
 import flash.text.*;
 import flash.events.*;
 import flash.utils.*;
 import flash.geom.*;

 // A simple draggable scrollbar that automatically updates its size
 // in response to changes in the size of a specified text field.
 // Usage:
 // var theTextField:TextField = new TextField();
 // someContainer.addChild(theTextField);

572 | Chapter 22: Interactivity

 // var scrollbar:ScrollBar = new ScrollBar(theTextField);
 // someContainer.addChild(scrollbar);
 public class ScrollBar extends Sprite {
 // The text field to which this scrollbar is applied
 private var t:TextField;
 // The current height of the text field. If the text field's height
 // changes, we update the height of this scrollbar.
 private var tHeight:Number;
 // The background graphic for the scrollbar
 private var scrollTrack:Sprite;
 // The scrollbar's draggable "scroll thumb"
 private var scrollThumb:Sprite;
 // The scrollbar's width
 private var scrollbarWidth:int = 15;
 // The minimum height of the scrollbar's scroll thumb
 private var minimumThumbHeight:int = 10;
 // A flag indicating whether the user is currently dragging the
 // scroll thumb
 private var dragging:Boolean = false;
 // A flag indicating whether the scrollbar should be redrawn at the next
 // scheduled screen update
 private var changed:Boolean = false;

 // Constructor.
 // @param textfield The TextField object to which to apply
 // this scrollbar.
 public function ScrollBar (textfield:TextField) {
 // Retain a reference to the TextField to which this
 // scrollbar is applied
 t = textfield;
 // Remember the text field's height so that we can track it for
 // changes that require a scrollbar redraw.
 tHeight = t.height;

 // Create the scrollbar background
 scrollTrack = new Sprite();
 scrollTrack.graphics.lineStyle();
 scrollTrack.graphics.beginFill(0x333333);
 scrollTrack.graphics.drawRect(0, 0, 1, 1);
 addChild(scrollTrack);

 // Create the draggable scroll thumb on the scrollbar
 scrollThumb = new Sprite();
 scrollThumb.graphics.lineStyle();
 scrollThumb.graphics.beginFill(0xAAAAAA);
 scrollThumb.graphics.drawRect(0, 0, 1, 1);
 addChild(scrollThumb);

 // Register an Event.SCROLL listener that will update the scrollbar
 // to match the current scroll position of the text field
 t.addEventListener(Event.SCROLL, scrollListener);

Example 22-15. Using Event.SCROLL in a scrollbar implementation (continued)

Text-Input Events | 573

 // Register with scrollThumb for mouse down events, which will trigger
 // the dragging of the scroll thumb
 scrollThumb.addEventListener(MouseEvent.MOUSE_DOWN,mouseDownListener);

 // Register to be notified when this object is added to or removed
 // from the display list (requires the custom helper class,
 // StageDetector). When this object is added to the display list,
 // register for stage-level mouse move and mouse up events that
 // will control the scroll thumb's dragging operation.
 var stageDetector:StageDetector = new StageDetector(this);
 stageDetector.addEventListener(StageDetector.ADDED_TO_STAGE,
 addedToStageListener);
 stageDetector.addEventListener(StageDetector.REMOVED_FROM_STAGE,
 removedFromStageListener);

 // Register to be notified each time the screen is about to be
 // updated. Before each screen update, we check to see whether the
 // scrollbar needs to be redrawn. For information on the
 // Event.ENTER_FRAME event, see Chapter 24.
 addEventListener(Event.ENTER_FRAME, enterFrameListener);

 // Force an initial scrollbar draw.
 changed = true;
 }

 // Executed whenever this object is added to the display list
 private function addedToStageListener (e:Event):void {
 // Register for "global" mouse move and mouse up events
 stage.addEventListener(MouseEvent.MOUSE_UP, mouseUpListener);
 stage.addEventListener(MouseEvent.MOUSE_MOVE, mouseMoveListener);
 }

 // Executed whenever this object is removed from the display list
 private function removedFromStageListener (e:Event):void {
 // Unregister for "global" mouse move and mouse up events
 stage.removeEventListener(MouseEvent.MOUSE_UP, mouseUpListener);
 stage.removeEventListener(MouseEvent.MOUSE_MOVE, mouseMoveListener);
 }

 // Executed once for each screen update. This method checks
 // whether any changes in the text field's scroll position, content,
 // or size have occurred since the last time the scrollbar was drawn.
 // If so, we redraw the scrollbar. By performing this "draw or not"
 // check once per screen-update only, we eliminate redundant calls to
 // updateScrollbar(), and we also avoid some Flash Player timing issues
 // with TextField.maxScrollV.
 private function enterFrameListener (e:Event):void {
 // If the text field has changed height, request a redraw of the
 // scrollbar
 if (t.height != tHeight) {
 changed = true;
 tHeight = t.height;

Example 22-15. Using Event.SCROLL in a scrollbar implementation (continued)

574 | Chapter 22: Interactivity

 // The height has changed, so stop any dragging operation in
 // progress. The user will have to click again to start dragging
 // the scroll thumb once the scroll bar has been redrawn.
 if (dragging) {
 scrollThumb.stopDrag();
 dragging = false;
 }
 }

 // If the scrollbar needs redrawing...
 if (changed) {
 // ...call the scrollbar drawing routine
 updateScrollbar();
 changed = false;
 }
 }

 // Handles Event.SCROLL events
 private function scrollListener (e:Event):void {
 // In certain cases, when lines are removed from a text field,
 // Flash Player dispatches two events: one for the reduction in
 // maxScrollV (dispatched immediately) and one for the reduction in
 // scrollV (dispatched several screen updates later). In such cases,
 // the scrollV variable temporarily has an erroneous value that
 // is greater than maxScrollV. As a workaround, we ignore the event
 // dispatch for the change in maxScrollV, and wait for the event
 // dispatch for the change in scrollV (otherwise, the rendered
 // scrollbar would temporarily not match the text field's actual
 // content).
 if (t.scrollV > t.maxScrollV) {
 return;
 }

 // If the user is not currently dragging the scrollbar's scroll
 // thumb, then note that this scrollbar should be redrawn at the next
 // scheduled screen update. (If the user is dragging the scroll thumb,
 // then the scroll change that caused this event was the result of
 // dragging the scroll thumb to a new position, so there's no need to
 // update the scrollbar because the scroll thumb is already in the
 // correct position.)
 if (!dragging) {
 changed = true;
 }
 }

 // Sets the size and position of the scrollbar's background and scroll
 // thumb in accordance with the associated text field's size and
 // content. For information on the TextField variables scrollV,
 // maxScrollV, and bottomScrollV, see Adobe's ActionScript Language
 // Reference.
 public function updateScrollbar ():void {
 // Set the size and position of the scrollbar background.

Example 22-15. Using Event.SCROLL in a scrollbar implementation (continued)

Text-Input Events | 575

 // This code always puts the scrollbar on the right of the text field.
 scrollTrack.x = t.x + t.width;
 scrollTrack.y = t.y;
 scrollTrack.height = t.height;
 scrollTrack.width = scrollbarWidth;

 // Check the text field's number of visible lines
 var numVisibleLines:int = t.bottomScrollV - (t.scrollV-1);
 // If some of the lines in the text field are not currently visible...
 if (numVisibleLines < t.numLines) {
 // ... make the scroll thumb visible
 scrollThumb.visible = true;
 // Now set the scroll thumb's size
 // The scroll thumb's height is the percentage of lines showing,
 // times the text field's height
 var thumbHeight:int = Math.floor(t.height *
 (numVisibleLines/t.numLines));
 // Don't set the scroll thumb height to anything less
 // than minimumThumbHeight
 scrollThumb.height = Math.max(minimumThumbHeight, thumbHeight);
 scrollThumb.width = scrollbarWidth;

 // Now set the scroll thumb's position
 scrollThumb.x = t.x + t.width;
 // The scroll thumb's vertical position is the number lines the
 // text field is scrolled, as a percentage, times the height of
 // the "gutter space" in the scrollbar (the gutter space is the
 // height of the scroll bar minus the height of the scroll thumb).
 scrollThumb.y = t.y + (scrollTrack.height-scrollThumb.height)
 * ((t.scrollV-1)/(t.maxScrollV-1));
 } else {
 // If all lines in the text field are currently visible, hide the
 // scrollbar's scroll thumb
 scrollThumb.visible = false;
 }
 }

 // Sets the text field's vertical scroll position to match the relative
 // position of the scroll thumb
 public function synchTextToScrollThumb ():void {
 var scrollThumbMaxY:Number = t.height-scrollThumb.height;
 var scrollThumbY:Number = scrollThumb.y-t.y;
 t.scrollV = Math.round(t.maxScrollV
 * (scrollThumbY/scrollThumbMaxY));
 }

 // Executed when the primary mouse button is depressed over the scroll
 // thumb
 private function mouseDownListener (e:MouseEvent):void {
 // Start dragging the scroll thumb. (The startDrag() method is
 // inherited from the Sprite class.)

Example 22-15. Using Event.SCROLL in a scrollbar implementation (continued)

576 | Chapter 22: Interactivity

Example 22-16 shows a simple example class that demonstrates the use of the
ScrollBar class shown in Example 22-15.

 var bounds:Rectangle = new Rectangle(t.x + t.width,
 t.y,
 0,
 t.height-scrollThumb.height);
 scrollThumb.startDrag(false, bounds);
 dragging = true;
 }

 // Executes when the primary mouse button is released (anywhere over, or
 // even outside of, Flash Player's display area)
 private function mouseUpListener (e:MouseEvent):void {
 // If the scroll thumb is being dragged, update the text field's
 // vertical scroll position, then stop dragging the scroll thumb
 if (dragging) {
 synchTextToScrollThumb();
 scrollThumb.stopDrag();
 dragging = false;
 }
 }

 // Executes when the mouse pointer is moved (anywhere over Flash
 // Player's display area)
 private function mouseMoveListener (e:MouseEvent):void {
 // If the scroll thumb is being dragged, set the text field's vertical
 // scroll position to match the relative position of the scroll thumb
 if (dragging) {
 synchTextToScrollThumb();
 }
 }
 }
}

Example 22-16. A demonstration class showing the use of scrollBar

package {
 import flash.display.*;
 import flash.text.*;
 import flash.events.*;
 import flash.utils.*;

 // Demonstrates the use of the ScrollBar class
 public class ScrollBarDemo extends Sprite {
 public function ScrollBarDemo () {
 // Create a TextField
 var inputfield:TextField = new TextField();
 // Seed the text field with some initial content
 inputfield.text = "1\n2\n3\n4\n5\n6\n7\n8\n9";
 inputfield.height = 50;
 inputfield.width = 100;

Example 22-15. Using Event.SCROLL in a scrollbar implementation (continued)

Text-Input Events | 577

The TextEvent.LINK Event
The TextEvent.LINK event is used to trigger ActionScript code in response to the
clicking of a hypertext link in a TextField. The TextEvent.LINK event occurs when the
user clicks a hypertext link whose URL starts with the pseudoprotocol “event.”

For an introduction to using hypertext links in ActionScript text fields,
see Chapter 27.

The generalized code required to create a hypertext link that triggers ActionScript
code is as follows:

theTextField.htmlText = "linkText";

In the preceding code, theTextField is the TextField object that contains the link, and
linkText is the text that appears on screen for the user to click. When the user clicks
linkText, Flash Player executes all listeners registered with theTextField or its dis-
play ancestors for the TextEvent.LINK event. Each listener is passed a TextEvent
object whose text variable’s value is the supplied linkContent string. The
linkContent string typically identifies an ActionScript operation to be carried out
when the link is clicked.

The generalized code required to register a listener with a TextField object for the
TextEvent.LINK event is as follows:

theTextField.addEventListener(TextEvent.LINK, linkListener);

The generalized event listener code required for a TextEvent.LINK listener function is:

private function linkListener (e:TextEvent):void {
}

Using the preceding generalized code as a guide, let’s create an example hypertext
link that starts a game when clicked. Here’s the code for the link: notice that the sup-
plied linkContent indicates the name of the operation the link triggers: “startGame.”

 inputfield.border = true;
 inputfield.background = true;
 inputfield.type = TextFieldType.INPUT;
 inputfield.multiline = true;
 addChild(inputfield);

 // Create a scrollbar, and associate it with the TextField
 var scrollbar:ScrollBar = new ScrollBar(inputfield);
 addChild(scrollbar);
 }
 }
}

Example 22-16. A demonstration class showing the use of scrollBar (continued)

578 | Chapter 22: Interactivity

var t:TextField = new TextField();
t.htmlText = "Play now!";
t.autoSize = TextFieldAutoSize.LEFT;
addChild(t);

Next, the following code registers linkListener() with the preceding TextField object, t,
for TextEvent.LINK events:

t.addEventListener(TextEvent.LINK, linkListener);

Finally, the following code shows the linkListener() method, which is executed when
the link is clicked. Within the linkListener() method, we perform the operation spec-
ified by the supplied linkContent string, which we access via the TextEvent class’s
instance variable text.

private function linkListener (e:TextEvent):void {
 var operationName:String = e.text;
 if (operationName == "startGame") {
 startGame();
 }
}

Now let’s try creating a hypertext link that not only triggers an ActionScript opera-
tion but also passes an argument to that operation. The code for the hypertext link
follows. Notice that this time the supplied linkContent indicates the name of the
operation (displayMsg) and an argument (hello world), separated by an arbitrary
delimiter (a comma).

var t:TextField = new TextField();
t.htmlText = "click here";
t.autoSize = TextFieldAutoSize.LEFT;
addChild(t);

Next, the following code registers linkListener() with the preceding TextField object, t,
for TextEvent.LINK events:

t.addEventListener(TextEvent.LINK, linkListener);

Finally, the following code shows the linkListener() method, where we use the String
class’s instance method split() to separate the operation name (displayMsg) from the
argument (hello world).

private function linkListener (e:TextEvent):void {
 var linkContent:Array = e.text.split(",");
 var operationName:String = linkContent[0];
 var argument:String = linkContent[1];

 if (operationName == "displayMsg") {
 displayMsg(argument);
 }
}

Text-Input Events | 579

Unlike in JavaScript, arbitrary ActionScript code cannot be included
within an <A> tag’s HREF attribute.

Example 22-17 shows the TextEvent.LINK event used in a hypothetical chat applica-
tion, in which the user can request a private chat by clicking any username in the
chat text field. Example 22-17 is highly simplified in order to focus on the use of
TextEvent.LINK; it does not show any code relating to actually receiving or sending
messages.

Example 22-17. Using the TextEvent.LINK to make usernames clickable

package {
 import flash.display.*;
 import flash.text.*;
 import flash.events.*;

 // Demonstrates the use of the TextEvent.LINK event in a simplified
 // chat room example with clickable user names.
 public class ChatRoom extends Sprite {
 // A text field containing chat messages
 private var messages:TextField;

 public function ChatRoom () {
 // Create a text field with 'event:' protocol links
 messages = new TextField();
 messages.multiline = true;
 messages.autoSize = TextFieldAutoSize.LEFT;
 messages.border = true;
 messages.background = true;
 // Supply sample chat messages with clickable user names
 messages.htmlText =
 "Andy says: What's up?
"
 + "Mike says: I'm busy...
"
 + "Andy says: Ok see you later";
 addChild(messages);

 // Register with the 'messages' TextField object for
 // TextEvent.LINK events
 messages.addEventListener(TextEvent.LINK, linkListener);
 }

 // Executed any time the user clicks an 'event:' protocol link in
 // the 'messages' TextField object
 private function linkListener (e:TextEvent):void {
 // The content of e.text is the full string that follows "event:" in
 // the href attribute. For example, "privateChat,user1". Here we
 // split that text into an operation ("privateChat") the
 // corresponding argument ("user1").
 var requestedCommand:Array = e.text.split(",");
 var operationName:String = requestedCommand[0];
 var argument:String = requestedCommand[1];

580 | Chapter 22: Interactivity

Flash Player-Level Input Events
As we’ve seen throughout this chapter, the majority of Flash Player’s input events are
triggered by user interaction with specific objects on the display list. However, Flash
Player also supports a small set of events that are triggered by user interaction with
the Flash Player application, itself. We’ll refer to these “application events” as Flash
Player-level input events. Flash Player-level input events are dispatched in the follow-
ing situations:

• When the Flash Player’s display area is resized

• When the mouse pointer moves out of Flash Player’s display area

• When the Flash Player application gains or loses operating-system focus (the
standalone version of Flash Player gains system focus when the application win-
dow is focused; the web browser plug-in version of Flash Player gains system
focus when the user clicks Flash Player’s display area or—where supported—the
user navigates to the embedded Flash Player object with the keyboard)

Table 22-5 lists the Flash Player-level input-event types. For each type of event, the
“Event type” column lists the Event-class constant that indicates the event type’s offi-
cial string name. The “Description” column describes the specific user action that
triggers the event. The “Target” column lists the object that serves as the event tar-
get when the event is dispatched. The “Default behavior” column lists Flash Player’s
native response to the event (Flash Player-level input-event types have no default
behavior). The “Bubbles” column indicates whether the event has a bubbling phase.
The “Datatype of object passed to listener function” column specifies the datatype of
the object passed to the listener function that handles the event. Finally, the “Notes”
column lists important information regarding the event’s use.

 // If the operation requested is a private chat request, invoke
 // the requestPrivateChat() method.
 if (operationName == "privateChat") {
 requestPrivateChat(argument);
 }
 }

 // Sends a private chat invitation to the specified user
 private function requestPrivateChat (userID:String):void {
 trace("Now requesting private chat with " + userID);
 // Networking code not shown...
 }
 }
}

Example 22-17. Using the TextEvent.LINK to make usernames clickable (continued)

581

L
et

’s
 t

ak
e

a
cl

os
er

 lo
ok

 a
t

th
e

fo
ur

 e
ve

nt
s

in
 T

ab
le

22
-5

.

T
ab

le
22

-5
.P

la
ye

r-
le

ve
l I

np
ut

 E
ve

nt
s

Ev
en

t t
yp

e
De

sc
rip

tio
n

Ta
rg

et
De

fa
ul

t
be

ha
vi

or
Bu

bb
le

s

Da
ta

ty
pe

 o
f

ob
je

ct
 p

as
se

d
to

lis
te

ne
r f

un
ct

io
n

No
te

s

Ev
en
t.
AC
TI
VA
TE

Fla
sh

 P
la

ye
r g

ai
ns

sy
st

em
 fo

cu
s.

Th
e d

isp
la

y o
bj

ec
t t

ha
t

re
gi

st
er

ed
 th

e e
ve

nt
 lis

-
te

ne
r

No
ne

Ye
s

Ev
en

t
Tr

ig
ge

re
d

ev
en

 w
he

n
ta

rg
et

 is
 n

ot
on

 d
isp

la
y l

ist
.

Ev
en
t.
DE
AC
TI
VA
TE

Fla
sh

Pl
ay

er
lo

se
ss

ys
-

te
m

 fo
cu

s.
Th

e d
isp

la
y o

bj
ec

t t
ha

t
re

gi
st

er
ed

 th
e e

ve
nt

 lis
-

te
ne

r

No
ne

Ye
s

Ev
en

t
Tr

ig
ge

re
d

ev
en

 w
he

n
ta

rg
et

 is
 n

ot
on

 d
isp

la
y l

ist

Ev
en
t.
RE
SI
ZE

Fla
sh

 P
la

ye
r’s

 d
isp

la
y

ar
ea

 re
siz

ed
.

Th
eS

ta
ge

 in
st

an
ce

No
ne

Ye
s

Ev
en

t

Ev
en
t.
MO
US
E_
LE
AV
E

M
ou

se
po

in
te

rm
ov

es
ou

t o
f F

la
sh

 P
la

ye
r’s

di
sp

la
y a

re
a.

Th
eS

ta
ge

 in
st

an
ce

No
ne

Ye
s

Ev
en

t
Th

er
e i

s n
o

co
m

pa
ni

on
 Ev

en
t.

M
OU

SE
_E

NT
ER

 ev
en

t.
Us

e
M

ou
se

Ev
en

t.M
OU

SE
_M

OV
E t

o
de

te
ct

 re
-e

nt
ry

.

582 | Chapter 22: Interactivity

The Event.ACTIVATE and Event.DEACTIVATE Events
The Event.ACTIVATE and Event.DEACTIVATE events are typically used to develop appli-
cations that enable or disable themselves in response to Flash Player gaining or los-
ing operating-system focus. For example, in response to Flash Player losing
application focus, an application might mute all sounds, dismiss an open menu, or
pause an in-progress animation.

Unlike the other input events we’ve studied so far, the Event.ACTIVATE and
Event.DEACTIVATE events have no capture phase and no bubbling phase.
Instead, Event.ACTIVATE and Event.DEACTIVATE can be handled by listeners reg-
istered with any instance of any class that inherits from EventDispatcher (note:
not just classes that inherit from DisplayObject). Furthermore, when a listener
function is registered for Event.ACTIVATE or Event.DEACTIVATE events with a dis-
play object, it is triggered even when that object is not on the display list.

Example 22-18 demonstrates the basic use of Event.ACTIVATE and Event.DEACTIVATE,
showing an application that starts a “rotating rectangle” animation when Flash
Player gains system focus, and stops the animation when Flash Player loses system
focus. (We’ll study animation techniques in Chapter 24).

Example 22-18. Responding to Event.ACTIVATE and Event.DEACTIVATE

package {
 import flash.display.*;
 import flash.utils.*;
 import flash.events.*;

 public class Spinner extends Sprite {
 private var timer:Timer;
 private var rect:Sprite;

 public function Spinner () {
 // Create a rectangle graphic
 rect = new Sprite();
 rect.x = 200;
 rect.y = 200;
 rect.graphics.lineStyle(1);
 rect.graphics.beginFill(0x0000FF);
 rect.graphics.drawRect(0, 0, 150, 75);
 addChild(rect);

 // Register to be notified when Flash Player gains or loses
 // system focus
 addEventListener(Event.ACTIVATE, activateListener);
 addEventListener(Event.DEACTIVATE, deactivateListener);

 // Create a timer to use for animation
 timer = new Timer(50, 0);
 timer.addEventListener(TimerEvent.TIMER, timerListener);
 }

Flash Player-Level Input Events | 583

The Event.RESIZE Event
The Event.RESIZE event is typically used when developing applications with
“stretchy” content, where the size of interface elements is automatically adjusted to
fit the available space in Flash Player’s display area.

The Event.RESIZE event is triggered when Flash Player’s Stage instance’s scaleMode
variable is set to StageScaleMode.NO_SCALE and the dimensions of Flash Player’s dis-
play area change. The dimensions change when either:

• The Standalone Player is resized by the user or in response to an
fscommand("fullscreen", "true") call.

• The user resizes a browser window containing a .swf file embedded using per-
centage values for the <OBJECT> or <EMBED> tags’ HEIGHT or WIDTH attributes.

The following HTML code shows how to embed a .swf file, app.swf, using percent-
age values for the <OBJECT> and <EMBED> tags’ WIDTH attributes. Notice that one dimen-
sion is set to a fixed pixel size (HEIGHT="75"), while the other is set to a percentage
(WIDTH="100%").

<OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
codebase="http://fpdownload.macromedia.com/get/flashplayer/current/swflash.cab"
 WIDTH="100%"
 HEIGHT="75">
 <PARAM NAME="movie" VALUE="app.swf">
 <EMBED src="app.swf"
 WIDTH="100%"
 HEIGHT="75"
 TYPE="application/x-shockwave-flash"
 PLUGINSPAGE="http://www.adobe.com/go/getflashplayer">
 </EMBED>
</OBJECT>

 // Rotates the rectangle graphic
 private function timerListener (e:TimerEvent):void {
 rect.rotation += 10;
 }

 // Handles Event.ACTIVATE events
 private function activateListener (e:Event):void {
 // Start rotating the rectangle graphic
 timer.start();
 }

 // Handles Event.DEACTIVATE events
 private function deactivateListener (e:Event):void {
 // Stop rotating the rectangle graphic
 timer.stop();
 }
 }
}

Example 22-18. Responding to Event.ACTIVATE and Event.DEACTIVATE (continued)

584 | Chapter 22: Interactivity

Listeners for the Event.RESIZE event must be registered with Flash Player’s Stage
instance, as shown in the following code. Notice the mandatory setting of scaleMode
to StageScaleMode.NO_SCALE.

package {
 import flash.display.*;
 import flash.events.*;

 public class ResizeSensor extends Sprite {
 public function ResizeSensor () {
 stage.scaleMode = StageScaleMode.NO_SCALE;
 stage.addEventListener(Event.RESIZE, resizeListener);
 }

 private function resizeListener (e:Event):void {
 trace("Flash Player was resized");
 }
 }
}

Example 22-19 expands on the preceding code, showing how to position a Sprite
object, rect, in the top-right corner of Flash Player’s display area every time Flash
Player is resized. Notice that the example application triggers its initial layout code
manually because Event.RESIZE is not triggered when a .swf file first loads into Flash
Player.

Example 22-19. A stretchy layout

package {
 import flash.display.*;
 import flash.events.*;

 // Positions a Sprite object, rect, in the top-right corner of Flash
 // Player's display area every time a Flash Player is resized
 public class StretchyLayout extends Sprite {
 private var rect:Sprite;
 public function StretchyLayout () {
 // Create a rectangle graphic and add it to the display list
 rect = new Sprite();
 rect.graphics.lineStyle();
 rect.graphics.beginFill(0x0000FF);
 rect.graphics.drawRect(0, 0, 150, 75);
 addChild(rect);

 // Prevent content scaling
 stage.scaleMode = StageScaleMode.NO_SCALE;
 // Position the .swf file at the top-left corner of Flash Player's
 // display area
 stage.align = StageAlign.TOP_LEFT;
 // Register for Event.RESIZE events
 stage.addEventListener(Event.RESIZE, resizeListener);

Flash Player-Level Input Events | 585

The Event.MOUSE_LEAVE Event
The Event.MOUSE_LEAVE event is typically used to disable or remove mouse-reactive
content when the mouse pointer leaves Flash Player’s display area. For example, in
an application that hides the system mouse pointer in order to replace it with a cus-
tom mouse-pointer graphic (as shown earlier in Example 22-5), the custom mouse-
pointer graphic is hidden when the mouse pointer leaves Flash Player’s display area.

As with the Event.RESIZE event, listeners for the Event.MOUSE_LEAVE event must be
registered with Flash Player’s Stage instance. The following code shows the basic
code required to handle Event.MOUSE_LEAVE events:

package {
 import flash.display.*;
 import flash.events.*;

 public class MouseLeaveSensor extends Sprite {
 public function MouseLeaveSensor () {
 // Register for Event.MOUSE_LEAVE events
 stage.addEventListener(Event.MOUSE_LEAVE, mouseLeaveListener);
 }

 // Handle Event.MOUSE_LEAVE events
 private function mouseLeaveListener (e:Event):void {
 trace("The mouse has left the building.");
 }
 }
}

 // Manually trigger initial layout code
 positionRectangle();
 }

 // Handles Event.RESIZE events
 private function resizeListener (e:Event):void {
 positionRectangle();
 }

 // Positions rect in top-right corner of Flash Player's display area
 private function positionRectangle ():void {
 rect.x = stage.stageWidth - rect.width;
 rect.y = 0;
 }
 }
}

Example 22-19. A stretchy layout (continued)

586 | Chapter 22: Interactivity

From the Program to the Screen
Over the past few chapters we’ve seen lots of techniques for creating visual content
and modifying it in response to user interaction. In the next chapter, we’ll examine
how Flash runtimes automatically update the screen to reflect the current display-
content in a program. Once we’re familiar with the Flash runtime screen-update sys-
tem, we’ll move on to Chapter 24, where we’ll use the screen-update cycle to create
programmatic animation.

587

Chapter 23Chapter 23 CHAPTER 23

Screen Updates24

Conceptually speaking, all screen updates in ActionScript can be separated into two
categories: those that occur at regular intervals (scheduled updates), and those that
occur immediately following the execution of certain event listener functions (post-
event updates). Regardless of the category, all screen updates are automated. In
ActionScript there is no general, arbitrary means of requesting an immediate screen
update. Instead, new visual content created programmatically or manually in the
Flash authoring tool is rendered automatically by a scheduled or post-event update.
This chapter investigates ActionScript’s two varieties of screen updates.

While most of this book focuses on pure ActionScript code rather than specific .swf
authoring tools, the following discussion requires some basic knowledge of the Flash
authoring tool’s timeline and timeline-scripting techniques. If you are unfamiliar
with the Flash authoring tool, you should read Chapter 29 before continuing with
this chapter.

Scheduled Screen Updates
In ActionScript, screen updates are inexorably linked to the Flash runtime’s anima-
tion capabilities. Even pure ActionScript applications created with Flex Builder 2 or
the mxmlc command-line compiler are governed by the Flash runtime’s animation-
centric screen-update system.

The Flash runtime’s screen-update system is designed to accommodate the Flash
authoring tool’s model for creating scripted animated content. In the Flash author-
ing tool, animated content is produced manually as a series of frames on a timeline,
exactly like the frames in a physical filmstrip. Each visual frame can be associated
with a block of code known as a frame script. In very general terms, when the Flash
runtime plays an animation that was created in the Flash authoring tool, it adheres to
the following screen-update cycle:

1. Execute current frame’s code.

2. Update screen.

588 | Chapter 23: Screen Updates

3. Go to next frame.

4. Repeat.

For example, suppose we have a three-frame-long animation, created in the Flash
authoring tool, and each frame has a frame script. The general process by which the
Flash runtime plays the animation is as follows:

1. Execute Frame 1’s frame script.

2. Display Frame 1’s content.

3. Execute Frame 2’s frame script.

4. Display Frame 2’s content.

5. Execute Frame 3’s frame script.

6. Display Frame 3’s content

At Steps 1, 3, and 5, each frame script might create new visual content or modify
existing visual content. Therefore, a more accurate description of the preceding ani-
mation-playback steps would be:

1. Execute Frame 1’s frame script.

2. Display Frame 1’s content and render visual output of Frame 1’s frame script.

3. Execute Frame 2’s frame script.

4. Display Frame 2’s content and render visual output of Frame 2’s frame script.

5. Execute Frame 3’s frame script.

6. Display Frame 3’s content and render visual output of Frame 3’s frame script.

In the preceding list, notice that before rendering the visual output of a given frame
script, the Flash runtime always finishes executing that script in its entirety.

The Flash runtime never interrupts a frame script in order to update
the screen.

The speed with which the preceding six steps are performed is determined by the
Flash runtime’s frame rate, which is measured in number of frames per second. For
example, suppose the frame rate for the preceding animation is set to a very slow 1
frame per second. Further suppose that each frame script takes exactly 100 milllisec-
onds (ms) to execute and that each frame’s content takes exactly 50 milliseconds
(ms) to render. Relative to the starting of the animation, the theoretical times at
which the preceding six steps would be performed are as follows:

0ms: Begin executing Frame 1's frame script
100ms: Finish executing Frame 1's frame script
1000ms: Begin rendering Frame 1's content and frame-script output
1050ms: Finish rendering Frame 1's content and frame-script output

Scheduled Screen Updates | 589

1051ms: Begin executing Frame 2's frame script
1151ms: Finish executing Frame 2's frame script
2000ms: Begin rendering Frame 2's content and frame-script output
2050ms: Finish rendering Frame 2's content and frame-script output

2051ms: Begin executing Frame 3's frame script
2151ms: Finish executing Frame 3's frame script
3000ms: Begin rendering Frame 3's content and frame-script output
3050ms: Finish rendering Frame 3's content and frame-script output

Notice that after each frame script has finished executing, the Flash runtime does not
immediately update the screen. Instead, it renders the script’s output at the next
scheduled frame-render time. The Flash runtime’s screen updates can, therefore, be
thought of as scheduled screen updates because they occur according to the preset
schedule dictated by the frame rate.

Hence, an even more accurate description of the preceding animation-playback steps
would be:

1. Execute Frame 1’s frame script.

2. Wait until the next scheduled frame-render time.

3. Display Frame 1’s content and render visual output of Frame 1’s frame script.

4. Execute Frame 2’s frame script.

5. Wait until the next scheduled frame-render time.

6. Display Frame 2’s content and render visual output of Frame 2’s frame script.

7. Execute Frame 3’s frame script.

8. Wait until the next scheduled frame-render time.

9. Display Frame 3’s content and render visual output of Frame 3’s frame script.

Now let’s suppose Frame 1’s frame script registers an event-listener function,
clickListener(), with the Stage instance for MouseEvent.CLICK events. Every time
clickListener() runs, it draws a red line to the current mouse pointer position. Here’s
the code for Frame 1’s frame script:

import flash.events.*;
import flash.display.*;

stage.addEventListener(MouseEvent.CLICK, clickListener);

function clickListener (e:MouseEvent):void {
 graphics.lineStyle(2, 0xFF0000);
 graphics.lineTo(e.stageX, e.stageY);
}

Immediately after Frame 1’s frame script executes, clickListener() becomes eligible
for MouseEvent.CLICK event notification.

Now suppose the user clicks the Flash runtime’s display area 500 ms after the anima-
tion starts playing (i.e., during the wait period described in Step 2 of the preceding
list). The clickListener() method executes immediately, but the visual output of

590 | Chapter 23: Screen Updates

clickListener() is not rendered until the next scheduled frame-render time. At the
next frame-render time, the visual output of clickListener() is rendered along with
Frame 1’s content and Frame 1’s frame-script output.

Hence, an even more accurate description of the preceding animation-playback steps
would be:

1. Execute Frame 1’s frame script.

2. Wait until the next scheduled frame-render time. While waiting, if any events
are triggered, execute associated event listeners.

3. Display Frame 1’s content; render visual output of Frame 1’s frame script; ren-
der visual output of any event listeners executed during Step 2.

4. Execute Frame 2’s frame script.

5. Wait until the next scheduled frame-render time. While waiting, if any events
are triggered, execute associated event listeners.

6. Display Frame 2’s content; render visual output of Frame 2’s frame script; ren-
der visual output of any event listeners executed during Step 5.

7. Execute Frame 3’s frame script.

8. Wait until the next scheduled frame-render time. While waiting, if any events
are triggered, execute associated event listeners.

9. Display Frame 3’s content; render visual output of Frame 3’s frame script; ren-
der visual output of any event listeners executed during Step 8.

The preceding steps reflect the Flash runtime’s default screen-update
behavior. However, for certain event types, the Flash runtime can be
forced to update the screen more immediately. For details, see the sec-
tion “Post-Event Screen Updates,” later in this chapter.

Now suppose that Frame 2’s content is identical to Frame 1’s content, that Frame 2’s
frame script does not generate any visual output, and that no event listeners are trig-
gered between Frame 1 and Frame 2. In such a case, the Flash runtime does not rer-
ender the display area. Instead, when the frame-render time for Frame 2 arrives, the
Flash runtime merely checks whether the screen needs updating. Frame 2 has no
visual changes, so the screen is not rerendered.

Hence, a still more accurate description of the preceding animation-playback steps
would be:

1. Execute Frame 1’s frame script.

2. Wait until the next scheduled frame-render time. While waiting, if any events
are triggered, execute all registered event listeners.

3. At frame-render time, check if the screen needs updating. The screen needs
updating if any of the following is true:

Scheduled Screen Updates | 591

• Frame 1 contains changes to the contents of the Stage made manually in the
Flash authoring tool.

• Code in Frame 1’s frame script created new visual content or modified exist-
ing visual content.

• Code in a listener function executed during Step 2 created new visual con-
tent or modified existing visual content.

4. If necessary, update the screen to reflect all changes detected in Step 3.

5. Repeat Steps 1-4 for Frames 2 and 3.

For reference in the remainder of this chapter, and in the following chapter, we’ll
refer to the screen-update check that occurs at Step 3 as a scheduled screen-update
check. Each time the Flash runtime performs a scheduled screen-update check, it dis-
patches the Event.ENTER_FRAME event (even when the screen is not actually updated).
By responding to the Event.ENTER_FRAME event, objects can perform recurring tasks
synchronized with each screen-update opportunity. In Chapter 24, we’ll learn how
to use the Event.ENTER_FRAME event to create animated content entirely through code.

Ready for one last hypothetical scenario? Suppose we remove Frames 2 and 3 from
our animation, leaving Frame 1 only. As before, Frame 1’s frame script defines the
MouseEvent.CLICK event listener, clickListener(). Once Frame 1’s content and frame-
script output has been rendered (Step 4 in the preceding list), the animation has fin-
ished playing. Nevertheless, in order to allow for continued event-processing, the
Flash runtime’s screen-update cycle must remain active. Therefore, for a .swf file that
contains a single-frame only, the screen-update cycle is as follows (the following
steps apply equally to a multiframe .swf file that is simply paused on Frame 1):

1. Execute Frame 1’s frame script.

2. Wait until the next scheduled frame-render time. While waiting, if any events
are triggered, execute all registered event listeners.

3. At frame-render time, check if the screen needs updating. The screen needs
updating if any of the following is true:

• Frame 1 contains changes to the contents of the Stage made manually in the
Flash authoring tool.

• Code in Frame 1’s frame script created new visual content or modified exist-
ing visual content.

• Code in a listener function executed during Step 2 created new visual con-
tent or modified existing visual content.

4. If necessary, update the screen to reflect all changes detected in Step 3.

5. Wait until the next scheduled frame-render time. While waiting, if any events
are triggered, execute all registered event listeners.

6. At frame-render time, check if the screen needs updating. The screen needs
updating if code in a listener function executed during Step 5 created new visual
content or modified existing visual content.

592 | Chapter 23: Screen Updates

7. If necessary, update the screen to reflect all changes detected in Step 6.

8. Repeat Steps 5 through 7.

Steps 5 through 8 in the preceding list repeat indefinitely as long as the .swf file is
running in the Flash runtime, thus binding all subsequent code execution to the
frame-rate-based screen-update cycle.

In Chapter 20, we learned that when an empty Flash runtime opens a new .swf file, it
locates that .swf file’s main class, creates an instance of it, and adds that instance to
the display list as the Stage instance’s first child. For pure ActionScript programs,
immediately after the main class instance’s constructor method completes, the screen
is updated. All subsequent screen updates occur in accordance with the frame-rate-
based screen-update cycle presented in Steps 5 through 8 of the preceding list. For
example, consider the following extremely simple drawing program, which empha-
sizes screen updates by setting the frame rate to one frame per second:

package {
 import flash.display.*;
 import flash.events.*;

 public class SimpleScribble extends Sprite {
 public function SimpleScribble () {
 stage.frameRate = 1;
 graphics.moveTo(stage.mouseX, stage.mouseY);
 stage.addEventListener(MouseEvent.MOUSE_MOVE, mouseMoveListener);
 }

 private function mouseMoveListener (e:MouseEvent):void {
 graphics.lineStyle(2, 0xFF0000);
 graphics.lineTo(e.stageX, e.stageY);
 }
 }
}

The SimpleSribble constructor method creates no graphical content but does register
a listener, mouseMoveListener(), for the MouseEvent.MOUSE_MOVE event. Whenever the
mouse moves, mouseMoveListener() draws a line to the current mouse position.
However, that line is not actually displayed on screen until the next scheduled screen
update, which occurs once per second. Hence, once every second, the Flash runtime
updates the screen with a series of lines showing the mouse pointer’s path through
the display area since the last screen update. For a smoother drawing effect, we could
increase the frame rate to 30 frames per second, or we could force immediate screen
updates using the techniques described in the later section “Post-Event Screen
Updates.”

Scheduled Screen Updates | 593

Let’s review some key points covered so far:

• ActionScript’s screen-update system is fully automated.

• For pure ActionScript applications, the frame rate can be thought of as the num-
ber of times per second the Flash runtime automatically checks to see if the
screen needs updating. For example, if the Flash runtime’s frame rate is 1, then
all visual changes made by a program will automatically be rendered once per
second; if the frame rate is 10, then visual changes will automatically be ren-
dered 10 times per second (every 100 ms).

• If the frame rate is very low (say, in the range of 1–10 frames per second), then
there may be noticeable delays between the execution of code that generates
visual output and the rendering of that output to the screen.

• Each time the Flash runtime performs a scheduled screen-update check, it dis-
patches the Event.ENTER_FRAME event.

• Flash Player will never interrupt the execution of a block of code in order to
update the screen.

The last of the preceding points is critically important, so let’s examine it more
closely.

No Screen Updates Within Code Blocks
As we learned in the preceding section, the Flash runtime will never interrupt the
execution of a block of code in order to update the screen. Before a scheduled screen
update can occur, all functions in the call stack and all code on the current frame
must finish executing. Likewise, before a post-event screen update can occur, the
event listener within which updateAfterEvent() is invoked must finish executing.

In fact, even when a screen update is scheduled to occur at a given time, that update
will be delayed if code is still executing. Screen updates and code execution are
mutually exclusive tasks for the Flash runtime; they always occur in succession,
never simultaneously.

As a rule of thumb, always remember that in ActionScript, the screen can never be
updated between two lines of code. For example, the following function, displayMsg(),
creates a TextField and sets its horizontal position twice; first to 50, then to 100:

public function displayMsg ():void {
 var t:TextField = new TextField();
 t.text = "Are we having fun yet?";
 t.autoSize = TextFieldAutoSize.LEFT;
 addChild(t);
 t.x = 50;
 t.x = 100;
}

594 | Chapter 23: Screen Updates

When displayMsg() executes, the screen will not and cannot be updated between the
last two lines in the function. As a result, the TextField never appears on screen at
horizontal position 50. Instead, the function is completed in its entirety before the
screen is rendered, and the TextField appears at horizontal position 100. Even
though the value of x actually does change briefly to 50, the visual result of that
change is never rendered to the screen.

In some cases, code execution can delay screen updates for many seconds, up to a
maximum determined by the max-execution-time compiler option, which is set to 15
seconds by default. Any script that does not complete within the amount of time speci-
fied by max-execution-time generates a ScriptTimeoutError exception. For information
on handling ScriptTimeoutError exceptions, see flash.errors.ScriptTimeoutError in
Adobe’s ActionScript Language Reference.

To avoid ScriptTimeoutError exceptions, all code must be designed to complete exe-
cution within the limit set by the max-execution-time compiler option. To perform a
task that requires more than the allowed time limit, break it into segments that can
complete within the amount of time specified by max-execution-time, and then use a
Timer to orchestrate the execution of those segments.

Setting the Frame Rate
Flash Player’s frame rate can be set in one of three ways:

• Using the mxmlc compiler argument default-frame-rate

• Using the Document Properties dialog in the Flash authoring tool

• Using the Stage class’s instance variable frameRate within a running .swf file

The first .swf file loaded into the Flash runtime establishes the initial frame rate for
all .swf files subsequently loaded.

Regardless of how the frame rate is set, it is observed by all subsequently loaded .swf
files (overriding their own specified frame rate). However, once the first .swf file has
been loaded, the Flash runtime’s designated frame rate can be reassigned via the
Stage class’s instance variable frameRate, which accepts values in the range of .01
(one frame every 100 seconds) to 1,000 (1,000 frames per second). For example, the
following class sets the frame rate to 150 frames per second:

package {
 import flash.display.*;
 public class SetFrameRate extends Sprite {
 public function SetFrameRate () {
 stage.frameRate = 150;
 }
 }
}

Scheduled Screen Updates | 595

While the frame rate can be set through any object with access to the Stage instance,
display objects cannot run at independent frame rates. All objects on the display list
are rendered at the same time, according to the Flash runtime’s single frame rate.

Prior to ActionScript 3.0, the Flash runtime’s frame rate could not be
changed programmatically.

Designated Frame Rate Versus Actual Frame Rate
Even though the Flash runtime performs scheduled screen updates according to the
frame rate, the number of screen updates that can actually be achieved per second
(the actual frame rate) is often less than the frame rate specified by the programmer
(the designated frame rate). The actual frame rate varies greatly depending on factors
such as the speed of the computer, available system resources, the physical refresh
rate of the display device, and the complexity of the content running in the Flash
runtime. Therefore, the designated frame rate should be thought of as a speed limit.
The actual frame rate will never exceed the designated frame rate but will fall short of
it under some conditions.

Flash Player cannot always achieve the designated frame rate.

To determine the current designated frame rate, we examine the Stage class’s
instance variable frameRate. For example, the following class displays the designated
frame rate in a TextFiel:.

package {
 import flash.display.*;
 import flash.text.*;

 public class ShowFrameRate extends Sprite {
 public function ShowFrameRate () {
 var t:TextField = new TextField();
 t.autoSize = TextFieldAutoSize.LEFT;
 t.text = stage.frameRate.toString();
 addChild(t);
 }
 }
}

To determine the actual frame rate, we use the Event.ENTER_FRAME event to measure the
elapsed time between the Flash runtime’s scheduled screen-update checks. Example 23-1

596 | Chapter 23: Screen Updates

demonstrates the technique. We’ll take a closer look at the Event.ENTER_FRAME event in
Chapter 24.

The actual frame rate is often much slower in the debugging version of
the Flash runtime than it is in the release version.

Post-Event Screen Updates
In the previous section, we learned that scheduled screen updates automatically
occur at intervals governed by the frame rate. We also learned that visual changes
made by event listeners are not rendered until the next scheduled screen-update
time. At a typical frame rate of 24 frames per second, the delay between the execu-
tion of an event listener and the rendering of its visual output is typically impercepti-
ble. However, for visual changes that are triggered by mouse and keyboard input,

Example 23-1. Measuring the actual frame rate

package {
 import flash.display.*;
 import flash.events.*;
 import flash.utils.*;
 import flash.text.*;

 public class FrameRateMeter extends Sprite {
 private var lastFrameTime:Number;
 private var output:TextField;

 public function FrameRateMeter() {
 output = new TextField();
 output.autoSize = TextFieldAutoSize.LEFT;
 output.border = true;
 output.background = true;
 output.selectable = false;
 addChild(output);

 addEventListener(Event.ENTER_FRAME, enterFrameListener);
 }

 private function enterFrameListener (e:Event):void {
 var now:Number = getTimer();
 var elapsed:Number = now - lastFrameTime;
 var framesPerSecond:Number = Math.round(1000/elapsed);
 output.text = "Time since last frame: " + elapsed
 + "\nExtrapolated actual frame rate: " + framesPerSecond
 + "\nDesignated frame rate: " + stage.frameRate;
 lastFrameTime = now;
 }
 }
}

Post-Event Screen Updates | 597

even slight delays can make an application feel jittery or sluggish. Accordingly,
ActionScript gives every mouse and keyboard event listener function the special abil-
ity to trigger a post-event screen update. A post-event screen update is an update that
occurs immediately following the dispatch of an event, ahead of the next scheduled
update.

To request a post-event screen update in response to a mouse event, we invoke
MouseEvent.updateAfterEvent() on the MouseEvent object passed to any mouse
event listener function. For example, the following code triggers a post-event screen
update in response to a MouseEvent.MOUSE_MOVE event:

private function mouseMoveListener (e:MouseEvent):void {
 e.updateAfterEvent(); // Trigger update
}

To request a post-event screen update in response to a keyboard event, we invoke
KeyboardEvent.updateAfterEvent() on the KeyboardEvent object passed to any key-
board event listener function. For example, the following code triggers a post-event
screen update in response to a KeyboardEvent.KEY_DOWN event:

private function keyDownListener (e:KeyboardEvent):void {
 e.updateAfterEvent(); // Trigger update
}

In both cases, invoking updateAfterEvent() causes the Flash runtime to update the
screen immediately following the dispatch of the event, ahead of the next scheduled
screen update. However, even though the post-event screen update occurs ahead of
the next scheduled screen update, it does not occur until after all event listeners trig-
gered during the event dispatch have completed executing.

As with scheduled screen updates, the Flash runtime never interrupts
the execution of a block of code to perform a post-event screen
update.

For an example of updateAfterEvent() used in a real-world scenario, see the custom
mouse pointer class, CustomMousePointer, in Chapter 22, in the section “Finding the
Mouse Pointer’s Position.” The CustomMousePointer class draws a blue triangle in a
Sprite representing the mouse pointer and uses a MouseEvent.MOUSE_MOVE event lis-
tener to make that Sprite follow the mouse. Within the mouseMoveListener()
method, updateAfterEvent() is used to trigger a post-event screen update that ensures
smooth pointer animation, no matter what the frame rate.

Here is the mouseMoveListener() method from the CustomMousePointer class; notice
the updateAfterEvent() invocation, shown in bold:

private function mouseMoveListener (e:MouseEvent):void {
 // When the mouse moves, update the position of the custom mouse
 // pointer to match the position of the system mouse pointer
 var pointInParent:Point = parent.globalToLocal(new Point(e.stageX,

598 | Chapter 23: Screen Updates

 e.stageY));
 x = pointInParent.x;
 y = pointInParent.y;

 // Request post-event screen update so that the animation of the
 // pointer is as smooth as possible
 e.updateAfterEvent();

 // Make sure the custom mouse pointer is visible (it might have been
 // hidden because the system pointer left Flash Player's display area).
 if (!visible) {
 visible = true;
 }
}

Note that when the Flash runtime updates the screen in response to
updateAfterEvent(), it renders not just the changes made by the event listener func-
tion that requested the update but all visual changes since the last screen update.

Post-Event Updates for Timer Events
To allow the screen to be updated immediately following the passage of some arbi-
trary amount of time, ActionScript provides the TimerEvent.updateAfterEvent()
method, which forces a post-event screen update after a TimerEvent.TIMER event.

The TimerEvent.updateAfterEvent() method is used within TimerEvent.TIMER event
listener functions, in exactly the same way that MouseEvent.updateAfterEvent() and
KeyboardEvent.updateAfterEvent() are used within mouse and keyboard event lis-
tener functions.

To demonstrate the use of TimerEvent.updateAfterEvent(), let’s create an exagger-
ated example that triggers a TimerEvent.TIMER event 10 times more frequently than
the Flash runtime’s frame rate. We start by setting the frame rate to one frame per
second:

stage.frameRate = 1;

Next, we create a Timer object that dispatches a TimerEvent.TIMER event every 100
ms (10 times a second):

var timer:Timer = new Timer(100, 0);

Next, we register a listener function, timerListener(), with timer for TimerEvent.TIMER
events, as follows:

timer.addEventListener(TimerEvent.TIMER, timerListener);

Then we start the timer:

timer.start();

Within the timerListener() function, we draw a rectangle and place it in a random
position on the screen. To ensure that the rectangle appears immediately after the

Post-Event Screen Updates | 599

TimerEvent.TIMER event dispatch completes (rather than at the next scheduled screen
update), we use TimerEvent.updateAfterEvent() to request a post-event screen
update. Here’s the code for timerListener():

private function timerListener (e:TimerEvent):void {
 // Create the rectangle
 var rect:Sprite = new Sprite();
 rect.graphics.lineStyle(1);
 rect.graphics.beginFill(0x0000FF);
 rect.graphics.drawRect(0, 0, 150, 75);
 rect.x = Math.floor(Math.random()*stage.stageWidth);
 rect.y = Math.floor(Math.random()*stage.stageHeight);

 // Add the rectangle to the screen
 addChild(rect);

 // Request a post-event screen update
 e.updateAfterEvent();
}

As a result of the preceding call to TimerEvent.updateAfterEvent(), visual changes
made within timerListener() are rendered approximately every 100 ms, rather than
once per second.

For reference, the following code shows our preceding timer scenario in the context
of a class, RandomRectangles:

package {
 import flash.display.*;
 import flash.events.*;
 import flash.utils.*;

 public class RandomRectangles extends Sprite {
 public function RandomRectangles () {
 stage.frameRate = 1;
 var timer:Timer = new Timer(100, 0);
 timer.start();
 timer.addEventListener(TimerEvent.TIMER, timerListener);
 }

 private function timerListener (e:TimerEvent):void {
 var rect:Sprite = new Sprite();
 rect.graphics.lineStyle(1);
 rect.graphics.beginFill(0x0000FF);
 rect.graphics.drawRect(0, 0, 150, 75);
 rect.x = Math.floor(Math.random()*stage.stageWidth);
 rect.y = Math.floor(Math.random()*stage.stageHeight);

 addChild(rect);

 e.updateAfterEvent()
 }
 }
}

600 | Chapter 23: Screen Updates

In Chapter 24, we’ll continue our study of the Timer class, using it to create motion
and other forms of animation.

ActionScript 2.0’s setInterval() can also use updateAfterEvent() to trig-
ger a post-event screen update, but flash.utils.Timer is preferred over
setInterval() because it offers the ability to start and stop timed events,
and to notify multiple listeners of timed events. Consider avoiding
setInterval() in ActionScript 3.0.

Automatic Post-Event Screen Updates
In Flash Player 9, certain button-style interactions with objects of any class that
inherits from Sprite will trigger an automatic post-event screen update (exactly as
though the programmer had invoked updateAfterEvent()). Specifically, the following
interactions will trigger an automatic post-event screen update:

• Moving the mouse over or off of an instance of a class that inherits from Sprite

• Pressing or releasing the primary mouse button while the mouse pointer is over
an instance of a class that inherits from Sprite

• Using the spacebar or Enter key to activate an instance of a class that inherits
from Sprite

In future versions of Flash Player, there is a small potential that this
special automated screen-update behavior will apply to SimpleButton
objects only. Accordingly, you might want to avoid relying on it in
your code.

Redraw Region
As we learned earlier in the section “Scheduled Screen Updates,” the Flash runtime
updates the screen only when necessary (that is, when visual content has been
changed or added). More specifically, when the Flash runtime updates the screen, it
renders only those areas that have changed since the last update. For example, con-
sider an animation with two frames, in which the first frame contains a circle, and
the second contains the same circle but also adds a triangle. When the Flash runtime
renders the second frame, it redraws the rectangular area containing the triangle but
doesn’t redraw the circle. The rectangular area encompassing all content that has
changed is known as the redraw region (sometimes referred to in graphics program-
ming as the dirty rectangle).

In debugging versions of the Flash runtime, the redraw region can be
shown by right-clicking the Player window and choosing Show
Redraw Regions.

Optimization with the Event.RENDER Event | 601

Optimization with the Event.RENDER Event
The Event.RENDER event is a specialized type of screen-update event used in advanced
situations where graphics performance is critical. Its primary purpose is to let the
programmer defer the execution of all custom drawing routines until the precise
moment before the screen is rendered, thus eliminating duplicate drawing-routine
execution. Unlike all other built-in Flash runtime events, the Event.RENDER event
must be requested manually by the programmer. The Flash runtime dispatches the
Event.RENDER event when the following two conditions are both true:

• The Flash runtime is about to check if the screen needs updating (whether due
to a frame passing or an updateAfterEvent() call).

• The programmer has invoked stage.invalidate(). (stage.invalidate() is the pro-
grammer’s way of asking the Flash runtime to dispatch the Event.RENDER event
the next time a screen-update check occurs).

Let’s consider an example showing how the Event.RENDER event can be used to
improve performance. Suppose we’re creating an Ellipse class that represents an on-
screen ellipse shape. For the sake of simplicity, assume that the ellipse is always filled
white, with a black, 1 pixel-thick outline. Our Ellipse class has two responsibilities:

• It must manage the conceptual data for an ellipse (i.e., store the ellipse width
and height).

• It must draw an onscreen ellipse based on the conceptual ellipse and redraw the
onscreen ellipse if the conceptual ellipse changes.

Given the preceding responsibilities, Example 23-2 shows how we might create the
Ellipse class if performance were no concern:

Example 23-2. A simple Ellipse class

package {
 import flash.display.Shape;

 public class Ellipse extends Shape {
 private var w:Number;
 private var h:Number;

 public function Ellipse (width:Number, height:Number) {
 w = width;
 h = height;
 draw();
 }

 public function setWidth (newWidth:Number):void {
 w = newWidth;
 draw();
 }

602 | Chapter 23: Screen Updates

Notice that there are three places in the Ellipse class where the conceptual ellipse
changes: the setWidth() method, the setHeight() method, and the Ellipse constructor
method. In order to maintain parity between the conceptual ellipse and the on-
screen ellipse, we must ensure that the onscreen ellipse is redrawn in each of those
three places. The code in Example 23-2 takes a brute force approach to meeting that
parity requirement; it simply invokes draw() every time getWidth(), getHeight(), or
the Ellipse constructor method is executed. Of course, if those functions are invoked
multiple times within the same screen-update cycle, draw() is invoked redundantly.
The following code demonstrates:

var e:Ellipse = new Ellipse (100, 200); // draw() invoked here
e.setWidth(25); // draw() invoked again here
e.setHeight(50); // draw() invoked again here

When the preceding three lines of code run, the draw() method is invoked three
times, but the screen displays the results of the final invocation only. The first two
invocations are redundant and wasteful. In a simple application, the redundancy is
imperceptible, and therefore, can arguably be tolerated. However, in complex appli-
cations, a similar redundancy might cause drawing routines to execute wastefully
hundreds or thousands of times, potentially resulting in serious performance
problems.

To remove the redundancy in Ellipse, we must change its drawing strategy. Instead
of invoking draw() every time the conceptual ellipse changes, we’ll defer invoking
draw() until the screen updates. This new strategy will make the Ellipse class more
complicated but will improve its performance.

 public function getWidth ():Number {
 return w;
 }

 public function setHeight (newHeight:Number):void {
 h = newHeight;
 draw();
 }

 public function getHeight ():Number {
 return h;
 }

 private function draw ():void {
 graphics.lineStyle(1);
 graphics.beginFill(0xFFFFFF, 1);
 graphics.drawEllipse(0, 0, w, h);
 }
 }
}

Example 23-2. A simple Ellipse class (continued)

Optimization with the Event.RENDER Event | 603

The first step in implementing the new “single-draw()” strategy is removing the calls
to draw() from setWidth(), setHeight(), and the constructor method. Instead of exe-
cuting draw() directly, those functions will instead invoke stage.invalidate(), which
forces the Flash runtime to dispatch the Event.RENDER event the next time it checks if
the screen needs updating. Then, from within an Event.RENDER listener function,
we’ll invoke draw(). Example 23-3 presents the revised Ellipse class, with the
changes from Example 23-2 shown in bold. Note that draw() need not be invoked
when the Ellipse object is not on the display list, so stage.invalidate() is invoked
when the Ellipse object is on the display list only. To determine whether the Ellipse
object is on the display list, we check the value of that object’s inherited instance
variable stage. When stage is null, the Ellipse object is not on the display list.

An object that requests an Event.RENDER event notification will receive
that notification even when it is not on the display list.

Note that at this interim stage in our development, the Ellipse class is not currently
functional because it does not yet register for Event.RENDER events; we’ll handle that
task soon.

Example 23-3. The revised Ellipse class, part 1

package {
 import flash.display.Shape;

 public class EllipseInterim extends Shape {
 private var w:Number;
 private var h:Number;

 public function EllipseInterim (width:Number, height:Number) {
 w = width;
 h = height;

 // If this object is on the display list...
 if (stage != null) {
 // ...request an Event.RENDER dispatch
 stage.invalidate();
 }
 }

 public function setWidth (newWidth:Number):void {
 w = newWidth;

 if (stage != null) {
 stage.invalidate();
 }
 }

604 | Chapter 23: Screen Updates

To make renderListener() execute when the Flash runtime dispatches Event.RENDER,
we must register renderListener() with the Stage instance for Event.RENDER events.
However, when an Ellipse object is not on the display list, its instance variable stage
is set to null, and, therefore, cannot be used for event registration. To circumvent
this issue, the Ellipse class will define event listener functions—
addedToStageListener() and removedFromStageListener()—that listen for the cus-
tom events StageDetector.ADDED_TO_STAGE and StageDetector.REMOVED_FROM_STAGE.
The StageDetector.ADDED_TO_STAGE event is dispatched when an object is added to
the display list, at which point the Ellipse class will register renderListener() for the
Event.RENDER event. The StageDetector.REMOVED_FROM_STAGE event is dispatched when
an object is removed from the display list, at which point the Ellipse class will unreg-
ister renderListener() for Event.RENDER events.

Example 23-4 presents the revised Ellipse class, again with changes shown in bold.
Notice that the addedToStageListener() method invokes stage.invalidate(), guaran-
teeing that any changes made to an Ellipse object while it is not on the display list are
rendered when it is added to the display list.

 public function getWidth ():Number {
 return w;
 }

 public function setHeight (newHeight:Number):void {
 h = newHeight;

 if (stage != null) {
 stage.invalidate();
 }
 }

 public function getHeight ():Number {
 return h;
 }

 // Event listener triggered when the screen is about to be updated and
 // stage.invalidate() has been called
 private function renderListener (e:Event):void {
 draw();
 }

 private function draw ():void {
 graphics.clear();
 graphics.lineStyle(1);
 graphics.beginFill(0xFFFFFF, 1);
 graphics.drawEllipse(0, 0, w, h);
 }
 }
}

Example 23-3. The revised Ellipse class, part 1 (continued)

Optimization with the Event.RENDER Event | 605

Example 23-4 relies on the custom events StageDetector.ADDED_TO_
STAGE and StageDetector.REMOVED_FROM_STAGE, dispatched by the cus-
tom class, StageDetector. For a full discussion of StageDetector, see the
section “The ADDED_TO_STAGE and REMOVED_FROM_STAGE
Events” in Chapter 20.

Example 23-4. The revised Ellipse class, part 2

package {
 import flash.display.Shape;
 import flash.events.*;

 public class EllipseInterim extends Shape {
 private var w:Number;
 private var h:Number;

 public function EllipseInterim (width:Number, height:Number) {
 // Register for notification when this
 // object is added to, or removed from, the display list
 var stageDetector:StageDetector = new StageDetector(this);
 stageDetector.addEventListener(StageDetector.ADDED_TO_STAGE,
 addedToStageListener);
 stageDetector.addEventListener(StageDetector.REMOVED_FROM_STAGE,
 removedFromStageListener);

 w = width;
 h = height;

 if (stage != null) {
 stage.invalidate();
 }
 }

 public function setWidth (newWidth:Number):void {
 w = newWidth;

 if (stage != null) {
 stage.invalidate();
 }
 }

 public function getWidth ():Number {
 return w;
 }

 public function setHeight (newHeight:Number):void {
 h = newHeight;

 if (stage != null) {
 stage.invalidate();
 }
 }

606 | Chapter 23: Screen Updates

The Ellipse class shown in Example 23-4 is now fully functional, but it still suffers
from two significant redundancies.

First, the addedToStageListener() method always calls stage.invalidate() whenever an
Ellipse object is added to the display list. This triggers a redraw even in cases where
one is not necessary because the conceptual ellipse was not changed while offscreen.

Second, remember that the Event.RENDER event occurs whenever any object, not just
the current object, calls stage.invalidate(). Hence, in its current state, renderListener()
would invoke draw() any time any object in the application calls stage.invalidate(). In
an application with many objects, this redundancy could cause serious performance
problems.

To address these two final issues, we’ll make one last set of changes to the Ellipse class,
adding new logic that tracks whether or not the ellipse needs redrawing when
addedToStageListener() and renderListener() are triggered. First, we’ll add a new

 public function getHeight ():Number {
 return h;
 }

 // Event listener triggered when this shape is added to the display list
 private function addedToStageListener (e:Event):void {
 // Register to be notified of screen updates
 stage.addEventListener(Event.RENDER, renderListener);

 // Make sure changes made to this object while it was off-screen
 // are rendered when it is added to the display list.
 stage.invalidate();
 }

 // Event listener triggered when this shape
 // is removed from the display list
 private function removedFromStageListener (e:Event):void {
 // No need to receive screen-update events when the object isn't
 // on the display list
 stage.addEventListener(Event.RENDER, renderListener);
 }

 private function renderListener (e:Event):void {
 draw();
 }

 private function draw ():void {
 graphics.clear();
 graphics.lineStyle(1);
 graphics.beginFill(0xFFFFFF, 1);
 graphics.drawEllipse(0, 0, w, h);
 }
 }
}

Example 23-4. The revised Ellipse class, part 2 (continued)

Optimization with the Event.RENDER Event | 607

instance variable, changed, that indicates whether the Ellipse needs to be redrawn the
next time the screen is updated. Then, to set and unset changed, and to check its sta-
tus, we’ll add three new methods: setChanged(), clearChanged(), and hasChanged().
Finally, we’ll set changed to true any time the ellipse changes (i.e., any time setWidth(),
setHeight(), or the constructor method is invoked). Example 23-5 shows the final
Ellipse class, with modifications shown in bold and comments inserted to guide you
through the code. As mentioned earlier, the class shown in Example 23-5 is definitely
more complex than the original, unoptimized version from Example 23-2. But in appli-
cations that demand maximum graphical performance, the deferred-rendering
approach used in Example 23-5 is indispensable. For a more extensive library of shape
classes that use deferred rendering, see Chapter 25.

Example 23-5. The final, optimized ellipse class

package {
 import flash.display.Shape;
 import flash.events.*;

 public class Ellipse extends Shape {
 private var w:Number;
 private var h:Number;
 private var changed:Boolean;

 public function Ellipse (width:Number, height:Number) {
 // Register for notification when this
 // object is added to the display list
 var stageDetector:StageDetector = new StageDetector(this);
 stageDetector.addEventListener(StageDetector.ADDED_TO_STAGE,
 addedToStageListener);
 stageDetector.addEventListener(StageDetector.REMOVED_FROM_STAGE,
 removedFromStageListener);

 // Set the width and height
 w = width;
 h = height;

 // Note that the object has changed
 setChanged();
 }

 public function setWidth (newWidth:Number):void {
 w = newWidth;
 setChanged();
 }

 public function getWidth ():Number {
 return w;
 }

 public function setHeight (newHeight:Number):void {
 h = newHeight;
 setChanged();
 }

608 | Chapter 23: Screen Updates

 public function getHeight ():Number {
 return h;
 }

 // Notes that something about this shape has changed
 private function setChanged ():void {
 changed = true;
 if (stage != null) {
 stage.invalidate();
 }
 }

 // Notes that the most recent changes have been rendered
 private function clearChanged ():void {
 changed = false;
 }

 // Indicates whether or not there are changes to this shape
 // that have not yet been rendered
 protected function hasChanged ():Boolean {
 return changed;
 }

 // Event listener triggered when this shape is added to the display list
 private function addedToStageListener (e:Event):void {
 // Register to be notified of screen updates
 stage.addEventListener(Event.RENDER, renderListener);

 // If the object was changed while off the display list,
 // draw those changes at the next render opportunity. But if the
 // object hasn't changed since the last time it was on the display
 // list, then there's no need to draw it.
 if (hasChanged()) {
 stage.invalidate();
 }
 }

 // Event listener triggered when this shape
 // is removed from the display list
 private function removedFromStageListener (e:Event):void {
 // No need to receive screen-update events when the object isn't
 // on the display list
 stage.addEventListener(Event.RENDER, renderListener);
 }

 // Event listener triggered when the screen is about to be updated and
 // stage.invalidate() has been called
 private function renderListener (e:Event):void {
 // Call draw if there are unrendered changes to this shape.
 // If another object triggers a render event, but this object hasn't
 // changed, then this object won't be redrawn.
 if (hasChanged()) {

Example 23-5. The final, optimized ellipse class (continued)

Let’s Make It Move! | 609

Let’s Make It Move!
Now that we’re familiar with the Flash runtime’s screen-update system, we’re ready
to learn how to write code that relies on it to create animation and motion. Sound
fun? See you at the next chapter.

For some additional reading on the Flash runtime’s screen-update sys-
tem, see Flash Player engineer Tinic Uro’s blog post, at: http://www.
kaourantin.net/2006/05/frame-rates-in-flash-player.html.

 draw();
 }
 }

 private function draw ():void {
 graphics.clear();
 graphics.lineStyle(1);
 graphics.beginFill(0xFFFFFF, 1);
 graphics.drawEllipse(0, 0, w, h);
 }
 }
}

Example 23-5. The final, optimized ellipse class (continued)

http://www.kaourantin.net/2006/05/frame-rates-in-flash-player.html
http://www.kaourantin.net/2006/05/frame-rates-in-flash-player.html

610

Chapter 24CHAPTER 24

Programmatic Animation 25

This chapter discusses the basic techniques for creating animation with Action-
Script. It focuses on integrating animation code with the Flash runtime’s automatic
screen updates. It does not, however, cover advanced animation topics, such as pro-
gramming physics-based motion, motion on a path, collision detection, bitmap ani-
mation effects, or color transformations.

No Loops
To create animation with ActionScript, we change visual content repeatedly over
time, producing the illusion of movement. For example, to animate a TextField
object horizontally across the screen, we would repeatedly increase, or decrease, its
instance variable x. In some programming languages, the natural mechanism for
repeatedly altering an instance variable is a loop statement. Consequently, program-
mers who are new to ActionScript might expect to create animation using a while
loop, such as the one shown in the following code:

public class TextAnimation extends Sprite {
 public function TextAnimation () {
 // Create a TextField
 var t:TextField = new TextField();
 t.text = "Hello";
 t.autoSize = TextFieldAutoSize.LEFT;
 addChild(t);

 // Update the TextField's horizontal position repeatedly, and stop
 // when it reaches x-coordinate 300
 while (t.x <= 300) {
 t.x += 10;
 }
 }
}

The preceding while loop increments a TextField object’s instance variable x repeat-
edly, but as an attempt to produce animation it has a fatal flaw: each time the body

Animating with the ENTER_FRAME Event | 611

of the loop executes, the screen is not updated. With each iteration of the loop, the
TextField’s horizontal location is updated, but the visual effect of that change is not
rendered to the screen. The screen is rendered only after the last iteration of the loop
has completed, and the TextAnimation constructor function exits. Hence, by the
time the screen is rendered, the TextField is already situated at x-coordinate 300.

In ActionScript, loop statements cannot be used to produce anima-
tion. Remember, the screen can never be updated within a block of
code. See the section “No Screen Updates Within Code Blocks” in
Chapter 23.

In ActionScript, animation is produced not with loops, but by repeatedly calling
functions that make visual changes and then exit, allowing the screen to update.
There are two mechanisms for repeatedly calling such functions: the Event.ENTER_
FRAME event and the TimerEvent.TIMER event.

Animating with the ENTER_FRAME Event
The Flash runtime dispatches the Event.ENTER_FRAME event every time it performs a
scheduled screen-update check (as described in Chapter 23). Any function that regis-
ters to receive Event.ENTER_FRAME notifications is executed repeatedly, at a frequency
determined by the current Flash runtime frame rate. Visual changes made by any
Event.ENTER_FRAME listener function are rendered after it exits.

A function can register to receive Event.ENTER_FRAME notifications from any
DisplayObject instance, whether or not that instance is currently on the display list.
As an example, let’s use the Event.ENTER_FRAME event to implement the animation
discussed in the previous section, in which a TextField moves across the screen hori-
zontally to x-coordinate 300. We start by creating a class, TextAnimation, which cre-
ates a TextField object and then adds it to the display list.

public class TextAnimation extends Sprite {
 private var t:TextField;

 public function TextAnimation () {
 // Create a TextField
 t = new TextField();
 t.text = "Hello";
 t.autoSize = TextFieldAutoSize.LEFT;
 addChild(t);
 }
}

Next, we create an Event.ENTER_FRAME listener function, moveTextRight(), which
moves the TextField t to the right by 10 pixels. Invoking moveTextRight() repeat-
edly will produce the animation effect. Notice that because moveTextRight() is an

612 | Chapter 24: Programmatic Animation

Event.ENTER_FRAME listener function, it defines a single, required, parameter whose
datatype is Event.

public function moveTextRight (e:Event):void {
 t.x += 10;
}

Finally, within TextAnimation’s constructor function, we register moveTextRight() for
Event.ENTER_FRAME events. Once moveTextRight() is registered as an Event.ENTER_FRAME
listener function, it will be invoked repeatedly in time with the Flash runtime’s frame
rate. The new code is shown in bold:

public function TextAnimation () {
 // Create a TextField
 t = new TextField();
 t.text = "Hello";
 t.autoSize = TextFieldAutoSize.LEFT;
 addChild(t);

 // Register moveTextRight() for Event.ENTER_FRAME event notifications
 addEventListener(Event.ENTER_FRAME, moveTextRight);
}

Example 24-1 shows the TextAnimation class, complete with its moveTextRight()
method.

When Example 24-1 runs, each time the Flash runtime performs a scheduled screen-
update check, it dispatches an Event.ENTER_FRAME event. In response, moveTextRight()
executes, and the Flash runtime updates the screen. Over time, the repeated execution of
moveTextRight() makes the TextField object animate across the screen. However, so far,
moveTextRight() moves the TextField t to the right infinitely. To prevent the TextField

Example 24-1. Animating a TextField horizontally

public class TextAnimation extends Sprite {
 private var t:TextField;

 public function TextAnimation () {
 // Create a TextField
 t = new TextField();
 t.text = "Hello";
 t.autoSize = TextFieldAutoSize.LEFT;
 addChild(t);

 // Register moveTextRight() for Event.ENTER_FRAME event notifications
 addEventListener(Event.ENTER_FRAME, moveTextRight);
 }

 public function moveTextRight (e:Event):void {
 t.x += 10;
 }
}

Animating with the ENTER_FRAME Event | 613

from moving beyond x-coordinate 300, we must modify the moveTextRight() method
so that it adds 10 to t.x only when t.x is less than or equal to 300, as follows.

public function moveTextRight (e:Event):void {
 // Add 10 to t.x only when t.x is less than or equal to 300
 if (t.x <= 300) {
 t.x += 10;
 // Prevent t.x from overshooting 300
 if (t.x > 300) {
 t.x = 300;
 }
 }
}

The preceding code accomplishes the goal of halting the TextField at x-coordinate
300 but also wastefully allows moveTextRight() to continue executing after the
TextField has reached its destination. To eliminate unnecessary function calls, we
unregister moveTextRight() for Event.ENTER_FRAME events when the TextField reaches
x-coordinate 300. Here’s the code:

public function moveTextRight (e:Event):void {
 if (t.x <= 300) {
 t.x += 10;
 if (t.x > 300) {
 t.x = 300;
 }
 } else {
 // Stop listening for the Event.ENTER_FRAME event
 removeEventListener(Event.ENTER_FRAME, moveTextRight);
 }
}

Now that moveTextRight() has been modified to listen for Event.ENTER_FRAME events
only when necessary, our simple TextAnimation class is complete. Example 24-2
shows the final code.

Example 24-2. Animating a TextField horizontally to x-coordinate 300

package {
 import flash.display.*;
 import flash.events.*;
 import flash.text.*;

 public class TextAnimation extends Sprite {
 private var t:TextField;

 public function TextAnimation () {
 // Create a TextField
 t = new TextField();
 t.text = "Hello";
 t.autoSize = TextFieldAutoSize.LEFT;
 addChild(t);

614 | Chapter 24: Programmatic Animation

Notice that in Example 24-2, the animation of one object (the TextField) is managed
by another object (the TextAnimation class). The structure of “one object animating
another” is typical in applications with centralized animation management. In such
applications, a single class acts as the director of all animations in the application,
registering a single method for Event.ENTER_FRAME notifications and invoking anima-
tion routines on all subordinate objects. By contrast, in an application with decen-
tralized animation management, individual classes control their own animation
independently by defining their own Event.ENTER_FRAME event listener methods. For
comparison, Example 24-3 shows a TextField subclass, TextTo300, which—as in our
previous example—animates to x-coordinate 300 but does so of its own accord.
Notice that TextTo300 defines start() and stop() methods that can be used to play
and pause the animation.

 // Register moveTextRight() for Event.ENTER_FRAME event notifications
 addEventListener(Event.ENTER_FRAME, moveTextRight);
 }

 public function moveTextRight (e:Event):void {
 if (t.x <= 300) {
 t.x += 10;
 if (t.x > 300) {
 t.x = 300;
 }
 } else {
 // Stop listening for Event.ENTER_FRAME notifications
 // when the TextField reaches its destination
 removeEventListener(Event.ENTER_FRAME, moveTextRight);
 }
 }
 }
}

Example 24-3. Decentralized animation management

package {
 import flash.display.*;
 import flash.events.*;
 import flash.text.*;

 public class TextTo300 extends TextField {
 public function TextTo300 () {
 }

 public function moveTextRight (e:Event):void {
 if (x <= 300) {
 x += 10;
 if (t.x > 300) {
 t.x = 300;
 }
 } else {
 stop();

Example 24-2. Animating a TextField horizontally to x-coordinate 300 (continued)

Animating with the ENTER_FRAME Event | 615

The following code shows a .swf file’s main class that uses the TextTo300 class from
Example 24-3:

package {
 import flash.display.*;
 import flash.text.*;

 public class TextAnimation extends Sprite {
 private var t:TextTo300;

 public function TextAnimation () {
 // Create a TextTo300 instance
 t = new TextTo300();
 t.text = "Hello";
 t.autoSize = TextFieldAutoSize.LEFT;
 addChild(t);

 // Start the animation
 t.start();
 }
 }
}

Frame Rate’s Effect on Event.ENTER_FRAME Animations
Because the Event.ENTER_FRAME event is synchronized to the frame rate, a higher
frame rate will cause Event.ENTER_FRAME listener functions to be triggered more fre-
quently than a lower frame rate. Hence, if we’re moving an object around the screen
with an Event.ENTER_FRAME listener function, an increase in frame rate can mean an
increase in the speed of the animation.

For example, when we programmed the movement of the TextField t in the previous
section, we implicitly specified its velocity in relation to the frame rate. Our code
says, “With each frame that passes, move t 10 pixels to the right”:

ball_mc._x += 10;

 }
 }

 public function start ():void {
 // Start playing the animation
 addEventListener(Event.ENTER_FRAME, moveTextRight);
 }

 public function stop ():void {
 // Pause the animation
 removeEventListener(Event.ENTER_FRAME, moveTextRight);
 }
 }
}

Example 24-3. Decentralized animation management (continued)

616 | Chapter 24: Programmatic Animation

Consequently, t’s velocity is dependent on the frame rate. If the frame rate is 12
frames per second, then t moves 120 pixels per second. If the frame rate is 30 frames
per second, t moves 300 pixels per second!

When developing scripted animations, it’s tempting to calculate the distance to
move an item in relation to the designated frame rate. For example, if the desig-
nated frame rate is 20 frames per second, and we want an item to move 100 pixels
per second, we might naturally expect to set the speed of the object to 5 pixels per
frame (5 pixels × 20 frames per second = 100 pixels per second).

There are two serious flaws to this approach:

• Any time we wish to change the designated frame rate, we must update all code
that calculates speed based on that frame rate.

• As discussed in Chapter 23, the Flash runtime does not always achieve the desig-
nated frame rate. If the computer is too slow to render frames fast enough to
keep up with the designated frame rate, the animation slows down. This slow-
down can even vary depending on the system load; if other programs are run-
ning or if Flash is performing some processor-intensive task, the frame rate may
drop for only a short period and then resume its normal pace.

In some cases, an animation that plays back at slightly different speeds can be
deemed acceptable. But when visual accuracy matters or when we’re concerned with
the responsiveness of, say, an action game, it’s much more appropriate to calculate
the distance to move an object based on elapsed time rather than relative to the des-
ignated frame rate. For more information, see the section “Velocity-Based Anima-
tion,” later in this chapter.

Animating with the TimerEvent.TIMER Event
In the previous section, we learned how to use Event.ENTER_FRAME to create anima-
tions synchronized with the Flash runtime’s frame rate. In this section, we’ll see
how to synchronize animations with an arbitrary time interval, specified using the
flash.utils.Timer class.

The Timer class is a general utility class for executing code after a specified time
interval. Each Timer object dispatches TimerEvent.TIMER events at a programmer-
specified frequency. Functions wishing to be executed at that frequency register with
the Timer object for TimerEvent.TIMER events.

The Timer class does not guarantee the frequency with which its lis-
tener functions are executed. If the system or the Flash runtime is busy
at the time a Timer is scheduled to execute its listener functions, the
execution will be delayed. For information on accounting for these
delays in an animation, see the section “Velocity-Based Animation.”

Animating with the TimerEvent.TIMER Event | 617

The general steps required to use the Timer class are as follows:

1. Create a new Timer object:
var timer:Timer = new Timer();

2. Set the frequency with which TimerEvent.TIMER events should be triggered, in
milliseconds. For example, the following code sets the frequency to 100 millisec-
onds (10 TimerEvent.TIMER event dispatches per second):

timer.delay = 100;

3. Set the total number of TimerEvent.TIMER events to be triggered. For example,
the following code tells timer to dispatch a total of five TimerEvent.TIMER events.

timer.repeatCount = 5;

The special value 0 indicates no limit (trigger TimerEvent.TIMER events forever or
until told to stop):

timer.repeatCount = 0; // Unlimited TimerEvent.TIMER events

4. Create one or more functions to be invoked periodically in response to the Timer
object’s TimerEvent.TIMER events. Functions registered for TimerEvent.TIMER
events must define a single parameter whose datatype is TimerEvent.

function timerListener (e:TimerEvent):void {
 // Code here will execute when triggered by a TimerEvent.TIMER event
}

5. Register the function(s) created in Step 4 with the Timer object for TimerEvent.TIMER
events:

timer.addEventListener(TimerEvent.TIMER, timerListener);

6. Use the Timer class’s instance method start() to start the timer. Once the timer
is started, it begins dispatching TimerEvent.TIMER events according to the speci-
fied delay and repeatCount.

timer.start();

As an alternative to Steps 2 and 3 in the preceding list, delay and repeatCount can be
set through Timer’s constructor parameters, as in:

var timer:Timer = new Timer(100, 5); // Sets delay to 100, repeatCount to 5

The following code applies the preceding steps to a simple practical situation: dis-
playing the word “GO!” after a three-second delay. Notice that the Timer construc-
tor function’s second argument is 1, indicating that only one TimerEvent.TIMER event
will be dispatched. Similar code might be used at the beginning of a timed quiz or
racing game.

package {
 import flash.display.*;
 import flash.events.*;
 import flash.utils.*;
 import flash.text.*;

 public class Race extends Sprite {
 private var startMsg:TextField;

618 | Chapter 24: Programmatic Animation

 public function Race () {
 // Execute TimerEvent.TIMER listeners once after 3 seconds
 var timer:Timer = new Timer(3000, 1);
 timer.addEventListener(TimerEvent.TIMER, timerListener);
 timer.start();

 startMsg = new TextField();
 startMsg.autoSize = TextFieldAutoSize.LEFT;
 startMsg.text = "Get Ready!";
 addChild(startMsg);
 }

 private function timerListener (e:TimerEvent):void {
 startMsg.text = "GO!";
 }
 }
}

Now that we’re comfortable with the Timer class in general, let’s use it to recreate
the TextAnimation class from Example 24-2, this time using a Timer object for ani-
mation instead of Event.ENTER_FRAME. As before, we start by creating the class con-
structor and properties. This time we add a new instance variable, timer, that will
refer to our Timer object.

public class TextAnimation extends Sprite {
 private var t:TextField;
 private var timer:Timer;

 public function TextAnimation () {
 // Create a TextField
 t = new TextField();
 t.text = "Hello";
 t.autoSize = TextFieldAutoSize.LEFT;
 addChild(t);
 }
}

Next, within the TextAnimation constructor, we create a Timer object, set to gener-
ate TimerEvent.TIMER events every 50 milliseconds (i.e., 20 times a second). After cre-
ating the Timer object, we invoke its start() method so that it begins generating
TimerEvent.TIMER events.

public function TextAnimation () {
 // Create a TextField
 t = new TextField();
 t.text = "Hello";
 t.autoSize = TextFieldAutoSize.LEFT;
 addChild(t);

 timer = new Timer(50, 0);
 timer.start();
}

Animating with the TimerEvent.TIMER Event | 619

Next, we create our listener function, moveTextRight(), which moves the TextField t to
the right by 10 pixels until t reaches x-coordinate 300. This time, moveTextRight() lis-
tens for TimerEvent.TIMER events rather than Event.ENTER_FRAME events, so it defines a
single, required, parameter whose datatype is TimerEvent.

public function moveTextRight (e:TimerEvent):void {
}

As before, we want to stop the animation when t reaches x-coordinate 300. To do
so, we invoke the Timer object’s stop() method, which stops the generation of
TimerEvent.TIMER events:

public function moveTextRight (e:TimerEvent):void {
 if (t.x <= 300) {
 t.x += 10;
 if (t.x > 300) {
 t.x = 300;
 }
 } else {
 // Stop the timer when the TextField reaches its destination
 timer.stop();
 }
}

To force a screen update immediately after moveTextRight() exits, we use the
TimerEvent class’s instance method updateAfterEvent(). (For complete coverage of
updateAfterEvent(), see Chapter 23.)

public function moveTextRight (e:TimerEvent):void {
 if (t.x <= 300) {
 t.x += 10;
 if (t.x > 300) {
 t.x = 300;
 }
 e.updateAfterEvent(); // Update the screen after this function exits
 } else {
 // Stop the timer when the TextField reaches its destination
 timer.stop();
 }
}

Finally, we register moveTextRight() with the Timer object for TimerEvent.TIMER
events. We perform the registration immediately before starting the timer, in the
TextAnimation constructor, as follows:

public function TextAnimation () {
 // Create a TextField
 t = new TextField();
 t.text = "Hello";
 t.autoSize = TextFieldAutoSize.LEFT;
 addChild(t);

620 | Chapter 24: Programmatic Animation

 timer = new Timer(50, 0);
 timer.addEventListener(TimerEvent.TIMER, moveTextRight);
 timer.start();
}

Example 24-4 shows the complete code for the Timer-based version of
TextAnimation.

For another comparison between Timer-based animation and Event.ENTER_FRAME-
based animation, Example 24-5 shows the analogous Timer version of the TextTo300
class shown earlier Example 24-3.

Example 24-4. Animating a TextField horizontally to x-coordinate 300, timer version

package {
 import flash.display.*;
 import flash.events.*;
 import flash.utils.*;
 import flash.text.*;

 public class TextAnimation extends Sprite {
 private var t:TextField;
 private var timer:Timer;

 public function TextAnimation () {
 // Create a TextField
 t = new TextField();
 t.text = "Hello";
 t.autoSize = TextFieldAutoSize.LEFT;
 addChild(t);

 timer = new Timer(50, 0);
 timer.addEventListener(TimerEvent.TIMER, moveTextRight);
 timer.start();
 }

 public function moveTextRight (e:TimerEvent):void {
 if (t.x <= 300) {
 t.x += 10;
 if (t.x > 300) {
 t.x = 300;
 }
 e.updateAfterEvent(); // Update the screen following this function
 } else {
 // Stop the timer when the TextField reaches its destination
 timer.stop();
 }
 }
 }
}

Animating with the TimerEvent.TIMER Event | 621

Example 24-6 shows another Timer-based animation example; it’s ActionScript 3.0’s
version of an old friend: blinking text.

Example 24-5. TextTo300, timer version

package {
 import flash.display.*;
 import flash.events.*;
 import flash.utils.*;
 import flash.text.*;

 public class TextTo300 extends TextField {
 private var timer:Timer;

 public function TextTo300 () {
 timer = new Timer(50, 0);
 timer.addEventListener(TimerEvent.TIMER, moveTextRight);
 }

 public function moveTextRight (e:Event):void {
 if (x <= 300) {
 x += 10;
 if (t.x > 300) {
 t.x = 300;
 }
 } else {
 stop();
 }
 }

 public function start ():void {
 // Start playing the animation
 timer.start();
 }

 public function stop ():void {
 // Pause the animation
 timer.stop();
 }
 }
}

Example 24-6. It lives!

package {
 import flash.display.TextField;
 import flash.util.Timer;
 import flash.events.*;

 public class BlinkText extends TextField {
 private var timer:Timer;

 public function BlinkText (delay:Number = 1000) {
 timer = new Timer(delay, 0);

622 | Chapter 24: Programmatic Animation

Frame Rate’s Effect on Timer
Although the Timer class may seem to provide a completely arbitrary way to execute
a function after a given time period, it is, perhaps surprisingly, still dependent on the
Flash runtime’s frame rate. A TimerEvent.TIMER event can occur at most 10 times for
every scheduled screen-update check (i.e., 10 times the frame rate). For example,
given a frame rate of 1 frame per second, a TimerEvent.TIMER event can occur only
every 100 ms at most, even when a smaller delay value is specified for a Timer object.
At 10 frames per second, a TimerEvent.TIMER event can occur 100 times per second
(every 10 ms). At 100 frames per second, a TimerEvent.TIMER event can occur 1,000
times per second (every 1 ms).

When a TimerEvent.TIMER event is set to run less often than the frame rate, it will
execute after the interval time has expired, at the next scheduled screen update. To
request an update before the next scheduled update, use the TimerEvent class’s
instance method updateAfterEvent(), as discussed in Chapter 23.

 timer.addEventListener(TimerEvent.TIMER, timerListener);
 timer.start();
 }

 private function timerListener (e:TimerEvent):void {
 // If this object is currently visible, make it invisible; or, if this
 // object is currently invisible, make it visible.
 visible = !visible;
 e.updateAfterEvent();
 }

 public function setDelay (newDelay:Number):void {
 timer.delay = newDelay;
 }

 public function startBlink ():void {
 timer.start();
 }

 public function stopBlink ():void {
 visible = true;
 timer.stop();
 }
 }
}

Example 24-6. It lives! (continued)

Choosing Between Timer and Event.ENTER_FRAME | 623

Choosing Between Timer and Event.ENTER_FRAME
As we’ve just seen, the Timer class and the Event.ENTER_FRAME event can both be used
to produce animation. So which one is right for your family? Here are the major fac-
tors to consider:

Frame rate is subject to change
When a .swf file is loaded by another application, the frame rate of that applica-
tion might be vastly different than the .swf file’s designated frame rate, poten-
tially causing the .swf ’s animations to play too quickly or too slowly. The loaded
.swf file can, of course, set the frame rate, but that change in frame rate might
cause undesirable playback behavior in the parent application. The Timer class
offers some frame-rate independence (subject to the limitations discussed in the
earlier section “Frame Rate’s Effect on Timer”).

Using many Timer objects requires more memory
In decentralized animation management architectures, using a separate Timer to
control the animation of each object requires more memory than would be
required by the analogous Event.ENTER_FRAME implementation.

Using many Timer objects can cause excessive screen update requests
In decentralized animation management architectures, using a separate Timer in
conjunction with updateAfterEvent() to control the animation of each object
leads to multiple independent requests for screen updates, possibly leading to
performance problems.

Based on those factors, here are the recommended best practices:

• In applications that must synchronize the display of programmatic content with
the display of frame-based content created manually in the Flash authoring tool,
use Event.ENTER_FRAME.

• In applications where variations in the Flash runtime’s frame rate must be miti-
gated, use a single Timer object to orchestrate all animations, and use velocity
based animation (see the section “Velocity-Based Animation”).

• When variations in the Flash runtime’s frame rate are considered acceptable, use
Event.ENTER_FRAME (because the code for Event.ENTER_FRAME-based animation is
generally simpler than its Timer-based equivalent).

• Avoid using individual Timer objects to animate individual display objects.
Where possible, use a single Timer object to orchestrate all animations. That
said, if you want to update different objects different times, individual Timer
objects can be appropriate.

624 | Chapter 24: Programmatic Animation

A Generalized Animator
In many examples presented so far in this chapter, the code for creating a visual
object and the code for animating that object has been combined in the same class.
In real-world applications, it’s wiser and more typical to externalize animation code
and reuse it across multiple classes.

The simple Animator class shown in Example 24-7 demonstrates one possible
way to abstract animation features away from objects being animated. Each
Animator instance can move a specified DisplayObject to a given position within
a given amount of time. Note that Example 24-7 focuses on the class structure
used to externalize animation code. The Animator class does not, therefore, pro-
vide sophisticated animation capabilities. For more advanced animation fea-
tures, consider using the Flex framework’s mx.effects.Tween class or Flash CS3’s
fl.transitions.Tween and fl.motion.Animator classes.

The Animator class listing follows. Comments will guide you through the code.

Example 24-7. A generalized animation utility class

package {
 import flash.display.*;
 import flash.events.*;
 import flash.utils.*;

 // A very simple animation class that demonstrates how to separate
 // animation duties from an object being animated
 public class Animator extends EventDispatcher {
 // Refers to the object being animated
 private var target:DisplayObject;
 // Each time an animation starts we record its start time in startTime
 private var startTime:Number;
 // The duration of an animation, in milliseconds
 private var duration:Number;
 // Each time an animation starts we record the target's start
 // position in startX and startY
 private var startX:Number;
 private var startY:Number;
 // Each time an animation starts we record the difference between the
 // starting position and the end position in deltaX and deltaY
 private var deltaX:Number;
 private var deltaY:Number;

 // The constructor function accepts a reference to the object that
 // will be animated
 public function Animator (target:DisplayObject) {
 this.target = target;
 }

 // Starts an animation that moves the target object from its current
 // position to the specified new position (toX, toY), over

A Generalized Animator | 625

 // 'duration' milliseconds
 public function animateTo (toX:Number, toY:Number,
 duration:Number):void {
 // Remember where the target was when this animation started
 startX = target.x;
 startY = target.y;

 // Calculate the difference between the target's starting position
 // and final destination
 deltaX = toX - target.x;
 deltaY = toY - target.y;
 startTime = getTimer();

 // Remember how long this animation should take
 this.duration = duration;

 // Begin listening for Event.ENTER_FRAME events. Each time a
 // scheduled screen-update occurs, we'll update the position of
 // the target object
 target.addEventListener(Event.ENTER_FRAME, enterFrameListener);
 }

 // Handles Event.ENTER_FRAME events.
 private function enterFrameListener (e:Event):void {
 // Calculate the time elapsed since the animation started
 var elapsed:Number = getTimer()-startTime;
 // Calculate how much time has passed in the animation, as a
 // percentage of its total duration
 var percentDone:Number = elapsed/duration;
 // If the animation is not yet complete...
 if (percentDone < 1) {
 // ...update the position of the target object
 updatePosition(percentDone);
 } else {
 // ...otherwise place the target object at its final destination,
 // and stop listening for Event.ENTER_FRAME events
 updatePosition(1);
 target.removeEventListener(Event.ENTER_FRAME, enterFrameListener);
 }
 }

 // Sets the position of the target object to a percentage of the
 // distance between the animation start point and end point
 private function updatePosition (percentDone:Number):void {
 target.x = startX + deltaX*percentDone;
 target.y = startY + deltaY*percentDone;
 }
 }
}

Example 24-7. A generalized animation utility class (continued)

626 | Chapter 24: Programmatic Animation

The SlidingText class shown next, in Example 24-8, demonstrates the use of the
Animator class. Each SlidingText object is a text field that can be animated to a
position.

The Flex framework includes text components that can be animated
and styled with many customizable effects. For more information, see
mx.controls.Text and mx.controls.TextArea in Adobe’s Flex 2 Lan-
guage Reference.

The AnimationLibDemo class shown, in Example 24-9 demonstrates how to use both
the Animator class and the SlidingText class. It creates a circle that moves to the
mouse pointer position when the Flash runtime’s display area is clicked. It also ani-
mates the text “Hello” to position (300, 0), one last riveting time.

Example 24-8. A sliding text class

package {
 import flash.text.*;

 public class SlidingText extends TextField {
 private var animator:Animator;

 public function SlidingText (toX:Number, toY:Number, duration:Number) {
 animator = new Animator(this);
 slideTo(toX, toY, duration);
 }

 public function slideTo (toX:Number, toY:Number, duration:Number):void {
 animator.animateTo(toX, toY, duration);
 }
 }
}

Example 24-9. An Animator demo

package {
 import flash.display.*;
 import flash.events.*;
 import flash.text.*;

 // Demonstrates the use of the Animator class
 public class AnimationLibDemo extends Sprite {
 private var circleAnimator:Animator;

 public function AnimationLibDemo () {
 // Create a message that animates to position (300, 0) over
 // the course of one second (1000 ms)
 var welcome:SlidingText = new SlidingText(300, 0, 1000);
 welcome.text = "Welcome!";
 welcome.autoSize = TextFieldAutoSize.LEFT;
 addChild(welcome);

Velocity-Based Animation | 627

When creating user interface controls with animated effects, consider
extending the Flex framework’s mx.core.UIComponent class rather
than creating a custom animation library. The UIComponent class
comes equipped with an extensive toolset for adding effects to custom
user interface controls.

Velocity-Based Animation
In the Flash runtime, the specific timing of both scheduled screen-update checks and
TimerEvent.TIMER events is not guaranteed. The Event.ENTER_FRAME event often exe-
cutes later than the time scheduled by the designated frame rate, and TimerEvent.TIMER
events often occur later than the time specified by a Timer object’s delay variable.

These delays can result in unpredictable animation. To guarantee that a given object
will travel a specified distance in a specified amount of time, we must set its position
according to its velocity (i.e., its rate of speed in a particular direction).
Example 24-10 shows the basic technique.

 // Create a circle to animate
 var circle:Shape = new Shape();
 circle.graphics.lineStyle(10, 0x666666);
 circle.graphics.beginFill(0x999999);
 circle.graphics.drawCircle(0, 0, 25);
 addChild(circle);

 // Create an Animator to animate the circle
 circleAnimator = new Animator(circle);

 // Register for mouse clicks
 stage.addEventListener(MouseEvent.MOUSE_DOWN, mouseDownListener);
 }

 // When the user clicks the stage, animate the
 // circle to the point that was clicked.
 private function mouseDownListener (e:MouseEvent):void {
 // Convert the point from the Stage instance's coordinate system
 // to this AnimationLibDemo instance's coordinate system
 var mousePt:Point = globalToLocal(new Point(e.stageX, e.stageY));
 circleAnimator.animateTo(mousePt.x, mousePt.y, 500);
 }
 }
}

Example 24-10. Calculating position based on velocity

package {
 import flash.display.*;
 import flash.events.*;
 import flash.utils.*;

Example 24-9. An Animator demo (continued)

628 | Chapter 24: Programmatic Animation

The Animator class shown earlier in Example 24-7 likewise uses velocity to guarantee
that the object it animates will travel a specified distance in a specified amount of time.

Moving On to Strokes ’n’ Fills
Over the past few chapters, we’ve spent most of our time working with interactivity
and animation. Over the next several chapters, we’ll change our focus to the cre-
ation of three specific kinds of visual content: vectors, bitmaps, and text fields.

 // Moves an object a specified number of pixels per second, no matter what
 // the frame rate
 public class Animation extends Sprite {
 private var distancePerSecond:int = 50; // Pixels to move per second
 private var now:int; // The current time
 private var then:int; // The last screen-update time
 private var circle:Shape; // The object to animate

 public function Animation () {
 // Create the object to animate
 circle = new Shape();
 circle.graphics.beginFill(0x0000FF, 1);
 circle.graphics.lineStyle(1);
 circle.graphics.drawEllipse(0, 0, 25, 25);
 addChild(circle);

 // Initialize timestamps
 then = getTimer();
 now = then;

 // Register for notification of scheduled screen-update checks
 addEventListener(Event.ENTER_FRAME, enterFrameListener);
 }

 // Handles Event.ENTER_FRAME events
 private function enterFrameListener (e:Event):void {
 // Calculate how much time has passed since the last move
 then = now;
 now = getTimer();
 var elapsed:int = now - then;
 var numSeconds:Number = elapsed / 1000;

 // Calculate the amount move based on the amount of time that
 // has passed since the last move
 var moveAmount:Number = distancePerSecond * numSeconds;

 // Move the object. In this case, the object's direction is 0 degrees.
 circle.x += moveAmount;
 }
 }
}

Example 24-10. Calculating position based on velocity (continued)

629

Chapter 25 CHAPTER 25

Drawing with Vectors26

In ActionsScript, primitive vectors, lines, and shapes are drawn via the Graphics
class. However, the Graphics class is never instantiated directly; instead, each Action-
Script class that supports programmatic vector drawing creates a Graphics instance
automatically and provides access to it via the instance variable graphics. The dis-
play classes that support vector drawing are Sprite, MovieClip, and Shape.

Shape objects consume less memory than Sprite and MovieClip
objects. Hence, to conserve memory, vector content should be drawn
in Shape objects whenever the containment and interactive capabili-
ties of the Sprite and MovieClip classes are not required.

Graphics Class Overview
As shown in Table 25-1, the Graphics class’s drawing tools can be broken down into
five general categories: drawing lines, drawing shapes (also known as fills), defining
line styles, moving the drawing pen, and removing graphics.

Conceptually, lines and curves are drawn in ActionScript by a theoretical “draw-
ing pen.” For all new Sprite, MovieClip, and Shape objects, the pen starts out at
position (0,0). As lines and curves are drawn (via lineTo() and curveTo()), the pen

Table 25-1. Graphics class overview

Purpose Graphics method

Drawing lines curveTo(), lineTo()

Drawing shapes beginBitmapFill(), beginFill(), beginGradientFill(),
drawCircle(), drawEllipse(), drawRect(), drawRoundRect(),
drawRoundRectComplex(), endFill()

Defining line styles lineGradientStyle(), lineStyle()

Moving the drawing pen moveTo()

Removing graphics clear()

630 | Chapter 25: Drawing with Vectors

moves around the object’s coordinate space, resting at the end point of the last line
or curve drawn. The pen’s current position always indicates the starting point of
the next line or curve to be drawn. To arbitrarily set the starting point of a line or
curve, we use the moveTo() method, which “picks up” the drawing pen and moves
it to a new position without drawing a line to the specified point.

Drawing Lines
To draw straight lines we use the lineTo() method, which draws a line from the cur-
rent drawing pen position to a specified point (x, y). For example, the following code
creates a new Sprite object and draws a line in it from (0, 0) to (25, 35):

var canvas:Shape = new Shape();
canvas.graphics.lineTo(25, 35);
addChild(canvas);

However, if you try that code as is, you may be surprised to find that no line appears
on screen! By default, all lines and shapes drawn have no stroke. To cause a stroke to
appear, we must use the lineStyle() method, which sets the visual stroke characteris-
tics (thickness, color, etc.) for all lines and shapes subsequently drawn. For refer-
ence, here is the method signature for lineStyle(), showing the visual options
available and their default values. Consult Adobe’s ActionScript Language Reference
for details on each parameter.

lineStyle(thickness:Number = 1.0,
 color:uint = 0,
 alpha:Number = 1.0,
 pixelHinting:Boolean = false,
 scaleMode:String = "normal",
 caps:String = null,
 joints:String = null,
 miterLimit:Number = 3)

The lineStyle() method must be invoked explicitly for each new Sprite, MovieClip,
and Shape object, or no stroke will appear (although filled regions can still be drawn
without a stroke).

Let’s look at a few examples showing various ways to modify the line style of canvas.
The following code clears the line style (subsequent lines, curves, and fills are not
stroked):

canvas.graphics.lineStyle()

The following code sets the line style to 1 pixel-thick, solid black:

canvas.graphics.lineStyle(1)

The following code sets the line style to 1 pixel-thick, solid green:

canvas.graphics.lineStyle(1, 0x00FF00)

Drawing Lines | 631

The following code sets the line style to 2 pixels thick, 50% transparent green:

canvas.graphics.lineStyle(1, 0x00FF00, 50)

Now let’s draw a line from (0, 0) to (25, 35), as before, but this time we'll apply a 3
pixel-thick blue stroke, causing the line to appear on screen:

var canvas:Shape = new Shape();
canvas.graphics.lineStyle(3, 0x0000FF); // Apply blue stroke
canvas.graphics.lineTo(25, 35);
addChild(canvas);

Note that if the preceding line were drawn in a Sprite or MovieClip containing child
display objects, it would appear behind those objects.

Child display objects are always displayed in front of their parent and,
hence, always obscure vector content drawn with ActionScript in that
parent.

For example, the following code adds a TextField object to a new Sprite object and
then draws a line in that Sprite object. The TextField object obscures the line because
the TextField object is the Sprite object’s child.

// Create the Sprite and put it on screen
var container:Sprite = new Sprite();
addChild(container);

// Create the TextField
var msg:TextField = new TextField();
msg.text = "Hello";
msg.border = true;
msg.background = true;
msg.autoSize = TextFieldAutoSize.LEFT;
container.addChild(msg);

// Draw the line
container.graphics.lineStyle(3, 0x0000FF);
container.graphics.lineTo(25, 35);

Figure 25-1 shows the result of the preceding code.

Content drawn via graphics in a Sprite or MovieClip always appears
behind (i.e., is obscured by) any child objects of that Sprite or
MovieClip.

Figure 25-1. Vector content behind a TextField

Hello

632 | Chapter 25: Drawing with Vectors

When drawing multiple lines, each line’s stroke style can be set individually by call-
ing lineStyle() before drawing each line. For example, the following code draws a
square with progressively thicker lines, colored black, red, green, and blue:

var canvas:Shape = new Shape();
canvas.graphics.lineStyle(1, 0x000000);
canvas.graphics.lineTo(100, 0);
canvas.graphics.lineStyle(5, 0xFF0000);
canvas.graphics.lineTo(100, 100);
canvas.graphics.lineStyle(10, 0x00FF00);
canvas.graphics.lineTo(0, 100);
canvas.graphics.lineStyle(15, 0x0000FF);
canvas.graphics.lineTo(0, 0);
addChild(canvas);

Figure 25-2 shows the results.

Notice the end of the lines (known as the line caps) in Figure 25-2 are rounded by
default. To select square caps instead of round ones, use the lineStyle() method’s
caps parameter. For example, the following code creates a 10 pixel-thick green line
with square caps:

canvas.graphics.lineStyle(10, 0x00FF00, 1, false,
 LineScaleMode.NORMAL, CapsStyle.SQUARE);

A thickness of 0 sets the stroke to hairline (a one-pixel line that does not increase in
thickness when the object is scaled up or the Flash runtime’s display area is zoomed
in). Other line-scaling options can be set via the lineStyle() method’s scaleMode
parameter.

To turn the stroke off completely, set thickness to undefined or call lineStyle() with
no parameters. For example:

canvas.graphics.lineStyle(undefined); // Turn off lines in canvas
canvas.graphics.lineStyle(); // Same thing

To move the drawing pen without drawing any line at all, use moveTo(). For exam-
ple, suppose we want to draw a single straight line from (100,100) to (200, 200) in a
new Shape object. We first move the pen from (0,0) to (100,100) using moveTo()
and then draw a line from there to (200,200) using lineTo(), as follows:

var canvas:Shape = new Shape(); // Create the Shape to draw in
canvas.graphics.lineStyle(1); // Set the stroke to 1 point, black
canvas.graphics.moveTo(100, 100); // Move the pen without drawing a line
canvas.graphics.lineTo(200, 200); // Draw the line (this also moves the pen)

Figure 25-2. Lines of varying thicknesses

Drawing Curves | 633

Drawing Curves
To draw curved lines we use the curveTo() method, which has this signature:

curveTo(controlX:Number, controlY:Number, anchorX:Number, anchorY:Number)

The curveTo() method draws a quadratic Bézier curve from the current drawing pen
position to the point (anchorX, anchorY) using an off-curve control point of (controlX,
controlY). The curve tangents at each endpoint run in the direction of the line from
the endpoint to the control point. The Bézier curve is contained in the convex hull of
its three control points.

Conceptually speaking, the straight line that would run from the pen position to the
end point (anchorX, anchorY) is pulled by the control point (controlX, controlY) to
make a curve. If any of curveTo()’s arguments are missing, the operation fails
silently, and the position of the drawing pen remains unchanged. As with lineTo(),
the stroke characteristics of the curve (thickness, color, alpha, etc.) are determined
by the most recent call to lineStyle().

The following code draws a four-point black curve from the drawing pen’s default
position (0, 0) to the anchor point (100, 0) using the control point (50, 100). The
resulting curve is shown in Figure 25-3.

var canvas:Shape = new Shape();
addChild(canvas);

canvas.graphics.lineStyle(4); // Set the stroke to 4-point, black
canvas.graphics.curveTo(50, 100, 100, 0); // Draw the curve

After a curve is drawn, the drawing pen remains at the end point of the curve. Hence,
multiple calls to curveTo() and/or lineTo() can be used to draw complex curves or
closed shapes, such as circles and polygons, as discussed in the next section.

Figure 25-3. A quadratic Bézier curve

(0, 0)
pen position

(100, 0)
anchor point

(50, 100)
control point

634 | Chapter 25: Drawing with Vectors

Curves drawn on fractional pixels often appear blurry. To sharpen
blurry, antialiased lines, set lineStyle()’s pixelHinting parameter to
true.

Sometimes it is more convenient to specify three points on a curve rather than two
anchor points and a control point. The following code defines a custom
curveThrough3Pts() method that accepts three points as arguments and draws a qua-
dratic curve that passes through them. The second point is assumed to be halfway
along the curve in time (t = .5):

// Adapted from Robert Penner's drawCurve3Pts() method
public function curveThrough3Pts (g:Graphics,startX:Number, startY:Number,
 throughX:Number, throughY:Number,
 endX:Number, endY:Number) {
 var controlX:Number = (2 * throughX) - .5 * (startX + endX);
 var controlY:Number = (2 * throughY) - .5 * (startY + endY);
 g.moveTo(startX, startY);
 g.curveTo(controlX, controlY, endX, endY);
}

// Usage
var canvas:Shape = new Shape();
addChild(canvas);
canvas.graphics.lineStyle(2, 0x0000FF);
curveThrough3Pts(canvas.graphics, 100, 100, 150, 50, 200, 100);

For more information on curve mathematics in ActionScript, see Jim Armstrong’s
“TechNotes,” at http://www.algorithmist.net/technotes.html.

Drawing Shapes
To draw an arbitrary shape (i.e., to paint a color into the geometric area between
three or more points), follow these steps:

1. Choose the starting point of the shape (either the default (0,0) or a point speci-
fied via moveTo()).

2. Start the shape with the beginBitmapFill(), beginFill(), or beginGradientFill()
method.

3. Draw the shape’s outline with a series of lineTo() and/or curveTo() calls, the last
of which should end at the starting point specified in Step 1.

4. Close the shape with endFill().

The beginFill() method fills the shape with a solid color; the beginGradientFill()
method fills the shape with a gradient (a blend between two or more colors); and the
beginBitmapFill() method fills a shape with the specified bitmap (tiled if desired).

http://www.algorithmist.net/technotes.html

Drawing Shapes | 635

For example, the following code draws a red triangle with a five pixel-thick black
outline. Notice that the default start point (0, 0) matches the endpoint:

var triangle:Shape = new Shape();
triangle.graphics.beginFill(0xFF0000, 1);
triangle.graphics.lineStyle(20);
triangle.graphics.lineTo(125, 125); // Draw a line down and right
triangle.graphics.lineTo(250, 0); // Draw a line up and right
triangle.graphics.lineTo(0, 0); // Draw a line left
triangle.graphics.endFill();
addChild(triangle);

Figure 25-4 shows the result of the preceding code.

Notice that the corners of the triangle in Figure 25-4 are rounded. To set the render-
ing style for corners, we use lineStyle()’s joints parameter. For example, the follow-
ing code changes the corner-rendering style to “mitered” by assigning the constant
JointStyle.MITER to the joints parameter:

triangle.graphics.lineStyle(20, 0, 1, false, LineScaleMode.NORMAL,
 CapsStyle.ROUND, JointStyle.MITER);

Figure 25-5 shows the result; pay special attention to the new corners of the triangle.

To draw various kinds of rectangles and ellipses, the Graphics class provides the fol-
lowing convenience methods: drawCircle(), drawEllipse(), drawRect(),
drawRoundRect(), and drawRoundRectComplex(). The “round rect” methods draw
rectangles with rounded corners. All of the shape-drawing convenience methods are
used with the familiar lineStyle() and beginFill() methods. However, it is not neces-
sary to call endFill() after drawing the shape because each convenience method does
so automatically.

Figure 25-4. A triangle

Figure 25-5. Triangle with mitered joints

636 | Chapter 25: Drawing with Vectors

The following code shows the general use of the shape drawing methods. It uses
drawRect() to draw a blue rectangle with a black one-pixel outline:

var canvas:Shape = new Shape();
addChild(canvas);

// Set line thickness to one pixel
canvas.graphics.lineStyle(1);
// Set the fill color to blue
canvas.graphics.beginFill(0x0000FF);
// Draw the shape
canvas.graphics.drawRect(0, 0, 150, 75);
// Notice no call to endFill() here

Removing Vector Content
To remove all vector drawings in an object, we use the Graphics class’s instance
method clear(). For example:

var canvas:Shape = new Shape();
// Draw a line
canvas.graphics.lineStyle(3, 0x0000FF); // Apply blue stroke
canvas.graphics.lineTo(25, 35);
addChild(canvas);

// Erase the line
canvas.graphics.clear();

When the clear() method is invoked, the object’s line style reverts to undefined (no
stroke). After calling clear(), lineStyle() must be called again, or no stroke will appear
on lines and shapes. Calling clear() also resets the drawing pen position to (0, 0).
Note that clear() affects vector content in a single object only; if that object is a
Sprite or MovieClip instance, clear() does not erase any vector content in its chil-
dren, nor does it remove them.

The following code draws a single line with a random stroke style every 250 millisec-
onds. It uses clear() to erase the previously drawn line.

package {
 import flash.display.*;
 import flash.utils.*;
 import flash.events.*;

 public class RandomLines extends Sprite {

 private var s:Shape;

 public function RandomLines () {
 s = new Shape();
 addChild(s);

Example: An Object-Oriented Shape Library | 637

 var t:Timer = new Timer(250);
 t.addEventListener(TimerEvent.TIMER, timerListener);
 t.start();
 }

 private function timerListener (e:TimerEvent):void {
 s.graphics.clear();
 s.graphics.lineStyle(random(1, 10), random(0, 0xFFFFFF));
 s.graphics.moveTo(random(0, 550), random(0, 400));
 s.graphics.lineTo(random(0, 550), random(0, 400));
 }

 // Returns a number in the range of minVal to maxVal, inclusive
 public function random (minVal:int, maxVal:int):int {
 return minVal + Math.floor(Math.random() * (maxVal + 1 - minVal));
 }
 }
}

Reader exercise: For comparison, try removing the call to clear() on line 1 of the
timerListener() method.

Example: An Object-Oriented Shape Library
The graphical content created by the built-in shape drawing methods (drawEllipse(),
drawRect(), etc.) does not correspond to any object, and cannot be changed or
removed independently once drawn. In ActionScript, there are no classes that give
object-oriented access to corresponding onscreen shapes. This section shows one
way to address that shortcoming, showing an example implementation of a small
class library for creating and manipulating shapes as objects.

The classes in our example shape library are as follows: BasicShape, Rectangle,
Ellipse, Star, and Polygon. BasicShape is the base class of the library. It extends the
built-in Shape class, which provides a lightweight, basic surface on which to draw
shapes. The BasicShape class manages stroke and fill styles for all shapes and deter-
mines when a shape needs to be drawn. Instances of the remaining classes represent
geometric shapes that can be added to, and removed from, the display list. Each
shape class implements its own specific drawing routine. Once a shape object is cre-
ated, its stroke, fill, and outline can be updated freely.

The following six examples put many of the techniques we’ve studied in this book
into practice—especially those covered in this chapter. Pay close attention to the
numerous comments; they will guide you through the code.

638 | Chapter 25: Drawing with Vectors

Example 25-1 shows the BasicShape class, an abstract-style class that defines the
basic functionality of all shapes in the class library. Its main features are imple-
mented in the following methods:

• setStrokeStyle() and setFillStyle(): Store the visual characteristics of the shape

• draw(): Renders the shape but delegates specific line plotting to drawShape(), an
abstract method implemented by subclasses

• setChanged(), clearChanged(), and hasChanged(): Track whether the shape has
changed since the last time it was rendered

• requestDraw(), addedListener(), removedListener(), and renderListener(): In
combination, these methods determine when a shape needs to be drawn

Example 25-1. The BasicShape class

package org.moock.drawing {
 import flash.display.*;
 import flash.events.*;
 import flash.errors.IllegalOperationError;

 // Base class for displayable geometric shapes
 public class BasicShape extends Shape {
 // Fill style
 protected var fillColor:Number = 0xFFFFFF;
 protected var fillAlpha:Number = 1;

 // Line style. Use mitered joints instead of round (the ActionScript
 // default). All other defaults match ActionScript's defaults.
 protected var lineThickness:Number = 1;
 protected var lineColor:uint = 0;
 protected var lineAlpha:Number = 1;
 protected var linePixelHinting:Boolean = false;
 protected var lineScaleMode:String = LineScaleMode.NORMAL;
 protected var lineJoints:String = JointStyle.MITER;
 protected var lineMiterLimit:Number = 3;

 // Flag indicating that the object needs redrawing. Prevents this
 // object from being redrawn in cases where some other object
 // triggers a RENDER event.
 protected var changed:Boolean = false;

 // Constructor
 public function BasicShape () {
 // Register to be notified when this object is added to or removed
 // from the display list (requires the custom helper class,
 // StageDetector)
 var stageDetector:StageDetector = new StageDetector(this);
 stageDetector.addEventListener(StageDetector.ADDED_TO_STAGE,
 addedToStageListener);
 stageDetector.addEventListener(StageDetector.REMOVED_FROM_STAGE,
 removedFromStageListener);
 }

Example: An Object-Oriented Shape Library | 639

 // Sets the visual characteristics of the line around the shape
 public function setStrokeStyle (thickness:Number = 1,
 color:uint = 0,
 alpha:Number = 1,
 pixelHinting:Boolean = false,
 scaleMode:String = "normal",
 joints:String = "miter",
 miterLimit:Number = 10):void {
 lineThickness = thickness;
 lineColor = color;
 lineAlpha = alpha;
 linePixelHinting = pixelHinting;
 lineScaleMode = scaleMode;
 lineJoints = joints;
 lineMiterLimit = miterLimit;

 // The line style has changed, so ask to be notified of the
 // next screen update. At that time, redraw the shape.
 setChanged();
 }

 // Sets the visual characteristics of the shape's fill
 public function setFillStyle (color:uint = 0xFFFFFF,
 alpha:Number = 1):void {
 fillColor = color;
 fillAlpha = alpha;

 // The fill style has changed, so ask to be notified of the
 // next screen update. At that time, redraw the shape.
 setChanged();
 }

 // Creates the shape's graphics, delegating specific line-drawing
 // operations to individual BasicShape subclasses. For the sake of
 // performance, draw() is called only when the stage broadcasts
 // an Event.RENDER event.
 private function draw ():void {
 // Delete all graphics in this object.
 graphics.clear();
 // Line cap style doesn't matter for a
 // closed shape, so pass null for that argument.
 graphics.lineStyle(lineThickness, lineColor, lineAlpha,
 linePixelHinting, lineScaleMode, null,
 lineJoints, lineMiterLimit);
 graphics.beginFill(fillColor, fillAlpha);
 drawShape(); // Call drawing routine, implemented by subclass
 graphics.endFill();

 // Make a note that the most recent changes have been rendered.
 clearChanged();
 }

Example 25-1. The BasicShape class (continued)

640 | Chapter 25: Drawing with Vectors

 // Draws the actual lines for each type of shape. Must be implemented
 // by all BasicShape subclasses.
 protected function drawShape ():void {
 // Prevent this abstract-style method from being invoked directly
 throw new IllegalOperationError("The drawShape() method can be "
 + "invoked on BasicShape subclasses only.")
 }

 // Notes that something about this shape has changed, if the shape
 // is currently on stage, causes it to be drawn at the next render
 // opportunity
 protected function setChanged ():void {
 changed = true;
 requestDraw();
 }

 // Notes that the most recent changes have been rendered
 protected function clearChanged ():void {
 changed = false;
 }

 // Indicates whether or not there are changes to this shape
 // that have not yet been rendered
 protected function hasChanged ():Boolean {
 return changed;
 }

 // If this shape is on screen, requestDraw() causes it to be drawn
 // the next time the screen is updated
 protected function requestDraw ():void {
 if (stage != null) {
 stage.invalidate();
 }
 }

 // Event listener triggered when this shape is added to the display list
 private function addedToStageListener (e:Event):void {
 // Register to be notified of screen updates
 stage.addEventListener(Event.RENDER, renderListener);

 // If the object was changed while off the display list,
 // draw those changes at the next render opportunity. But if the
 // object hasn't changed since the last time it was on the display
 // list, then there's no need to draw it.
 if (hasChanged()) {
 requestDraw();
 }
 }

 // Event listener triggered when this shape
 // is removed from the display list
 private function removedFromStageListener (e:Event):void {

Example 25-1. The BasicShape class (continued)

Example: An Object-Oriented Shape Library | 641

Example 25-2 shows the Ellipse class, a BasicShape subclass. Notice that the specific
code for drawing an ellipse is contained by the drawShape() method. Furthermore,
setting the size of an Ellipse object does not immediately cause the ellipse to be
drawn. Instead, when setSize() is invoked, the object calls setChanged(), indicating
that it needs to be redrawn the next time the Flash runtime renders the screen.

 // No need to listen for Event.RENDER events when the object isn't
 // on the display list
 stage.removeEventListener(Event.RENDER, renderListener);
 }

 // Event listener triggered when the screen is about to be updated and
 // stage.invalidate() has been called.
 private function renderListener (e:Event):void {
 // Call draw if there are unrendered changes to this shape.
 // If another object triggers a render event, but this object hasn't
 // changed, then this object won't be redrawn.
 if (hasChanged()) {
 draw();
 }
 }
 }
}

Example 25-2. The Ellipse class

package org.moock.drawing {
 // Represents an ellipse that can be drawn to the screen
 public class Ellipse extends BasicShape {
 // The width and height of the ellipse
 protected var w:Number;
 protected var h:Number;

 // Constructor
 public function Ellipse (width:Number = 100, height:Number = 100) {
 super();
 setSize(width, height);
 }

 // The ellipse drawing routine
 override protected function drawShape ():void {
 graphics.drawEllipse(0, 0, w, h);
 }

 // Sets the width and height of the ellipse
 public function setSize (newWidth:Number, newHeight:Number):void {
 w = newWidth;
 h = newHeight;

Example 25-1. The BasicShape class (continued)

642 | Chapter 25: Drawing with Vectors

Example 25-3 shows the Polygon class, another BasicShape subclass. Polygon can
draw any multisided shape. As such, it acts as the superclass for specific types of
polygons, such as Rectangle and Star. Like Ellipse, Polygon supplies its own specific
drawing routine in the drawShape() method. Any time a Polygon object’s points are
set (via setPoints()), it calls setChanged(), indicating that it needs to be redrawn the
next time the Flash runtime renders the screen.

 // Setting the width and height of the ellipse changes its shape,
 // so it must be redrawn at the next render opportunity.
 setChanged();
 }
 }
}

Example 25-3. The Polygon class

package org.moock.drawing {
 // Represents a polygon that can be drawn to the screen
 public class Polygon extends BasicShape {
 // The polygon's points.
 // To reduce memory consumption, the points are stored in two integer
 // arrays rather than one array of flash.geom.Point objects.
 private var xpoints:Array;
 private var ypoints:Array;

 // Constructor
 public function Polygon (xpoints:Array = null, ypoints:Array = null) {
 super();
 setPoints(xpoints, ypoints);
 }

 // The polygon drawing routine
 override protected function drawShape ():void {
 // Draw lines to each point in the polygon
 graphics.moveTo(xpoints[0], ypoints[0]);
 for (var i:int = 1; i < xpoints.length; i++) {
 graphics.lineTo(xpoints[i], ypoints[i]);
 }
 // Close the shape by returning to the first point
 graphics.lineTo(xpoints[0], ypoints[0]);
 }

 // Assigns the polygon's points
 public function setPoints (newXPoints:Array, newYPoints:Array):void {
 if (newXPoints == null || newYPoints == null) {
 return;
 }

 if (newXPoints.length != newYPoints.length) {
 throw new Error("setPoints() requires a matching "
 + "number of x and y points");
 }

Example 25-2. The Ellipse class (continued)

Example: An Object-Oriented Shape Library | 643

Example 25-4 shows the Rectangle class, a Polygon subclass. The Rectangle class is
similar in structure to the Ellipse class but relies on drawing routine in the Polygon
class’s instance method drawShape() rather than providing its own.

Example 25-5 shows the last class in the library: Star class, another Polygon sub-
class. Like Rectangle, the Star class relies on Polygon’s drawShape() to plot its out-
line. The visual characteristics of each Star object are assigned via the setStar()
method.

 xpoints = newXPoints;
 ypoints = newYPoints;

 // Assigning new points to the polygon changes its shape,
 // so it must be redrawn at the next render opportunity.
 setChanged();
 }
 }
}

Example 25-4. The Rectangle class

package org.moock.drawing {
 // Represents a rectangle that can be drawn to the screen
 public class Rectangle extends Polygon {
 // The width and height of the rectangle
 protected var w:Number;
 protected var h:Number;

 // Constructor
 public function Rectangle (width:Number = 100, height:Number = 100) {
 super();
 setSize(width, height);
 }

 // Sets the width and height of the rectangle
 public function setSize (newWidth:Number, newHeight:Number):void {
 w = newWidth;
 h = newHeight;

 // Translate the width and height into points on the polygon
 setPoints([0,w,w,0],[0,0,h,h]);
 }
 }
}

Example 25-5. The Star class

package org.moock.drawing {
 // Represents a star shape that can be drawn to the screen
 public class Star extends Polygon {
 // Constructor

Example 25-3. The Polygon class (continued)

644 | Chapter 25: Drawing with Vectors

 public function Star (numTips:int,
 innerRadius:Number,
 outerRadius:Number,
 angle:Number = 0) {
 super();
 setStar(numTips, innerRadius, outerRadius, angle);
 }

 // Sets the physical characteristics of the star.
 // Based on Ric Ewing's ActionScript 1.0 drawing methods, available at:
 // http://www.adobe.com/devnet/flash/articles/adv_draw_methods.html
 // numTips Number of tips (must be 3 or more)
 // innerRadius Radius of the base of the tips
 // outerRadius Radius of the summit of the tips
 // angle Starting angle in degrees (defaults to 0)
 public function setStar (numTips:int,
 innerRadius:Number,
 outerRadius:Number,
 angle:Number = 0):void {
 // Calculate the polygon points of the star
 if (numTips > 2) {
 // Initialize variables
 var pointsX:Array = [];
 var pointsY:Array = [];
 var centerX:Number = outerRadius;
 var centerY:Number = outerRadius;
 var step:Number, halfStep:Number,
 startAngle:Number, dx:Number, dy:Number;
 // Calculate distance between tips
 step = (Math.PI*2)/numTips;
 halfStep = step/2;
 // Calculate starting angle in radians
 startAngle = (angle/180)*Math.PI;
 // Set starting point
 pointsX[0] = centerX+(Math.cos(startAngle)*outerRadius);
 pointsY[0] = centerY-(Math.sin(startAngle)*outerRadius);
 // Add remaining points
 for (var i:int=1; i <= numTips; i++) {
 dx = centerX+Math.cos(startAngle+(step*i)-halfStep)*innerRadius;
 dy = centerY-Math.sin(startAngle+(step*i)-halfStep)*innerRadius;
 pointsX.push(dx);
 pointsY.push(dy);
 dx = centerX+Math.cos(startAngle+(step*i))*outerRadius;
 dy = centerY-Math.sin(startAngle+(step*i))*outerRadius;
 pointsX.push(dx);
 pointsY.push(dy);
 }
 // Store the star's calculated points
 setPoints(pointsX,pointsY);
 }
 }
 }
}

Example 25-5. The Star class (continued)

Example: An Object-Oriented Shape Library | 645

Finally, Example 25-6 shows the ShapeRandomizer class, which demonstrates the use
of the shape library classes shown in the previous five examples. ShapeRandomizer’s
constructor method creates four shapes. Clicking the stage randomly modifies the
stroke, fill, and outline of those shapes.

Example 25-6. The ShapeRandomizer class

package {
 import flash.display.Sprite;
 import flash.events.MouseEvent;

 import org.moock.drawing.*;

 // An org.moock.drawing library demo. Creates random shapes when the
 // mouse clicks the stage.
 public class ShapeRandomizer extends Sprite {

 // The shapes
 private var rect:Rectangle;
 private var ell:Ellipse;
 private var poly:Polygon;
 private var star:Star;

 // Constructor
 public function ShapeRandomizer () {
 // Create a rectangle
 rect = new Rectangle(50, 100);
 rect.setStrokeStyle(1, 0xFF0000);
 rect.setFillStyle(0x0000FF);

 // Create an ellipse
 ell = new Ellipse(250, 50);
 ell.setStrokeStyle(2, 0xFFFF00);
 ell.setFillStyle(0xED994F);

 // Create a triangle (i.e., a 3-sided Polygon)
 poly = new Polygon([0, 50, 100], [50, 0, 50]);
 poly.setStrokeStyle(4, 0x333333);
 poly.setFillStyle(0x00FF00);

 // Create a star
 star = new Star(5, 30, 80);
 star.setStrokeStyle(4, 0x666666);
 star.setFillStyle(0xFF0000);

 // Add the shapes to the display list
 addChild(rect);
 addChild(ell);
 addChild(poly);
 addChild(star);

 // Register for mouse clicks
 stage.addEventListener(MouseEvent.MOUSE_DOWN, mouseDownListener);
 }

646 | Chapter 25: Drawing with Vectors

Figure 25-6 shows one set of random shapes produced by the ShapeRandomizer
class.

 // Event listener triggered when the mouse clicks Flash Player's
 // display area
 private function mouseDownListener (e:MouseEvent):void {
 // Randomly change the shapes
 rect.width = random(1, 300);
 rect.height = random(1, 300);
 rect.setStrokeStyle(random(1, 10), random(0, 0xFFFFFF));
 rect.setFillStyle(random(0, 0xFFFFFF), Math.random());

 ell.width = random(1, 300);
 ell.height = random(1, 300);
 ell.setStrokeStyle(random(1, 10), random(0, 0xFFFFFF));
 ell.setFillStyle(random(0, 0xFFFFFF), Math.random());

 poly.setPoints([random(1, 300), random(1, 300), random(1, 300)],
 [random(1, 300), random(1, 300), random(1, 300)]);
 poly.setStrokeStyle(random(1, 10), random(0, 0xFFFFFF));
 poly.setFillStyle(random(0, 0xFFFFFF), Math.random());

 star.setStar(random(3, 15), random(10, 20), random(30, 80));
 star.setStrokeStyle(random(1, 10), random(0, 0xFFFFFF));
 star.setFillStyle(random(0, 0xFFFFFF), Math.random());
 }

 // Returns a number in the range of minVal to maxVal, inclusive
 public function random (minVal:int, maxVal:int):int {
 return minVal + Math.floor(Math.random() * (maxVal + 1 - minVal));
 }
 }
}

Figure 25-6. Shapes produced by ShapeRandomizer

Example 25-6. The ShapeRandomizer class (continued)

From Lines to Pixels | 647

From Lines to Pixels
In this chapter, we learned how to create and manipulate vector-based graphical con-
tent. In the next chapter, we’ll see how to create and manipulate bitmap-based graph-
ical content.

For further vector graphics study, see the Graphics class documenta-
tion in Adobe’s ActionScript Language Reference.

648

Chapter 26CHAPTER 26

Bitmap Programming 27

In programming terms, a bitmap image is an image stored in bitmap data format.
The bitmap data format treats an image as a rectangular grid of pixels, where each
pixel in the grid is assigned a number that indicates its color. For example, in bit-
map data format, an image with a width and height of 16 pixels would be stored as
a list of 256 numbers, each indicating a specific color. Figure 26-1 demonstrates,
showing a 16 × 16-pixel image magnified to reveal its individual pixels. The right
side of the figure shows the grid position and color values of three sample pixels in
the image. Notice that positions on the grid are zero-based, so the top-left pixel’s
coordinate is (0, 0), while the bottom-right pixel’s coordinate is (15, 15).

In this chapter, we’ll explore a sampling of common bitmap programming tech-
niques. Bear in mind, however, that exhaustive coverage of bitmap programming in
ActionScript could well fill a book of its own. For further study, consult Adobe’s
ActionScript Language Reference.

Figure 26-1. An example bitmap image

Pixel Color Values | 649

The BitmapData and Bitmap Classes
In ActionScript, the BitmapData class represents bitmap-formatted image data such
as that in Figure 26-1. Each BitmapData instance contains a list of pixel color values,
and instance variables width and height that governs how those pixels are arranged
on screen. Using the BitmapData class, we can create the data for a completely new
bitmap image, or examine and modify the data of any existing bitmap image, includ-
ing externally loaded bitmap images.

The BitmapData class provides a wide range of tools for setting and retrieving the
color value of a given pixel or group of pixels, and for producing common graphic
effects such as blur or drop shadow. As we’ll see later, the BitmapData class can even
be used to create animated effects and to perform bitmap-based collision detection.
To use most of BitmapData’s tools, we must understand the format ActionScript
uses to describe a pixel’s color value, discussed in the next section.

As the name suggests, a BitmapData object is not, itself, an image; it is only the
bitmap-formatted data representing an image. To create an actual on-screen image
based on the information in a BitmapData object, we must pair that object with an
instance of the Bitmap class, as described in the later section “Creating a New Bitmap
Image.” The Bitmap class is a DisplayObject descendant that wraps a BitmapData
object for on-screen display.

When working with a bitmap image, we use the Bitmap class to
manipulate the image as a display object, and the BitmapData class to
manipulate the image’s underlying pixel data.

By separating image display (Bitmap) from data storage (BitmapData), Action-
Script’s bitmap architecture lets many different Bitmap objects simultaneously dis-
play the same BitmapData object, each with its own display characteristics (i.e.,
different scale, rotation, cropping, filters, transforms, and transparency).

Before we learn how to create a new bitmap image, let’s take a quick look at how col-
ors are represented in ActionScript.

Pixel Color Values
In ActionScript, the color values of pixels in bitmaps are stored in 32-bit unsigned
integers, providing a vast range of 4,294,967,296 possible color values. Each individ-
ual color value in a BitmapData object is conceptually made up of four separate
numbers, representing four different color components—Alpha (i.e., transparency),
Red, Green, and Blue. These four components are known as color channels. The
amount of each channel in a given color ranges from 0 to 255. Accordingly, in
binary, each channel occupies 8 of the 32 bits in the color value, as follows: Alpha,

650 | Chapter 26: Bitmap Programming

bits 24–31 (the most significant byte); Red, bits 16–23; Green, bits 8–15; and Blue,
bits 0–7. The higher the value of Red, Green, or Blue, the more each color contrib-
utes to the final color. If all three RGB channels are equal, the result is a shade of
gray; if they are all 0, the result is black; if they are all 255, the result is white. This
32-bit color format allows for a possible 16,777,216 colors, each with a separate
Alpha level between 0 (transparent) and 255 (opaque).

For example, pure red is described by the following channel values:

Alpha: 255, Red: 255, Green: 0, Blue: 0

Those values correspond to the following bit settings in a 32-bit unsigned integer
color value (shown with spaces separating the four bytes):

11111111 11111111 00000000 00000000

In decimal, the preceding integer value reads:

4294901760

Of course, when presented as a single decimal number, the different channels in a
color value are not obvious. Hence, for the sake of legibility, pixel color values are
typically written in the hexadecimal form 0xAARRGGBB, where AA, RR, GG, and BB are
each two-digit hex numbers representing Alpha, Red, Green and Blue. For example,
the preceding pure red color value (A:255, R:255, G:0, B:0) is written in hexadeci-
mal as:

0xFFFF0000 // Much easier to read!

For comparison, Figure 26-2 shows the image in Figure 26-1, but this time with the
color values of the three sample pixels broken down into their respective color chan-
nels, written in hexadecimal.

Figure 26-2. A bitmap image with hexadecimal color values

Pixel Color Values | 651

For a primer on hexadecimal numbers, see http://www.moock.org/
asdg/technotes/basePrimer.

To retrieve the value of a single channel from a 32-bit color value, we can use the
right shift and bitwise AND operators together, as follows:

var colorValue:uint = 0xFFFFCC99; // A sample color
var alpha:uint = (colorValue >> 24) & 0xFF; // Isolate the Alpha channel
var red:uint = (colorValue >> 16) & 0xFF; // Isolate the Red channel
var green:uint = (colorValue >> 8) & 0xFF; // Isolate the Green channel
var blue:uint = colorValue & 0xFF; // Isolate the Blue channel

trace(alpha, red, green, blue); // Displays: 255 255 204 153

For a primer on bitwise operations, see the online tech note at http://
www.moock.org/asdg/technotes/bitwise.

While numbers cannot be modified directly, we can achieve the effect of setting the
value of a single channel in an existing 32-bit color value through binary combina-
tions. First, we clear the desired channel’s byte in the existing color value; then we
combine the resulting number with a new color channel value. The following code
shows the technique; it produces a number that is the effective result of inserting the
hex value AA into an existing color value:

var colorValue:uint = 0xFFFFCC99; // A sample color
// Clear the red byte in the original color value, and assign
// the result back to colorValue
colorValue &= 0xFF00FFFF;
// Combine colorValue with the new red value
colorValue |= (0xAA<<16);
trace(colorValue.toString(16)); // Displays: ffaacc99

Take a closer look at the last line of the code:

trace(colorValue.toString(16)); // Displays: ffaacc99

That code generates a hexadecimal string for a numeric color value by invoking the
toString() method on the value with the radix parameter set to 16. The hexadecimal
string is easier to read than its numeric decimal equivalent. However, as a means of
making a color value human-readable, toString() is imperfect because it omits all
leading zeros. For example, given the number:

var n:uint = 0x0000CC99;

the expression, n.toString(16) returns cc99, omitting the four leading zeros. To
improve the legibility of color values during debugging, we can write custom code
such as that shown in Example 26-1. Example 26-1 shows a class for working with
color values, Pixel. The Pixel class wraps binary operations into convenient methods

http://www.moock.org/asdg/technotes/basePrimer
http://www.moock.org/asdg/technotes/basePrimer
http://www.moock.org/asdg/technotes/bitwise
http://www.moock.org/asdg/technotes/bitwise

652 | Chapter 26: Bitmap Programming

such as setRed() and setAlpha(). Its methods can retrieve and set the individual color
channels in a color value, and generate strings describing color values in various
human-readable formats. The Pixel class is available online at http://www.moock.org/
eas3/examples.

Example 26-1. The Pixel class

package {
 public class Pixel {
 private var value:uint; // The pixel's color value

 public function Pixel (n1:uint, n2:int=0, n3:int=0, n4:int=0) {
 if (arguments.length == 1) {
 value = n1;
 } else {
 value = n1<<24 | n2<<16 | n3<<8 | n4;
 }
 }

 public function setAlpha (n:int):void {
 if (n < 0 || n > 255) {
 throw new RangeError("Supplied value must be in the range 0-255.");
 }
 value &= (0x00FFFFFF);
 value |= (n<<24);
 }

 public function setRed (n:int):void {
 if (n < 0 || n > 255) {
 throw new RangeError("Supplied value must be in the range 0-255.");
 }
 value &= (0xFF00FFFF);
 value |= (n<<16);
 }

 public function setGreen (n:int):void {
 if (n < 0 || n > 255) {
 throw new RangeError("Supplied value must be in the range 0-255.");
 }
 value &= (0xFFFF00FF);
 value |= (n<<8);
 }

 public function setBlue (n:int):void {
 if (n < 0 || n > 255) {
 throw new RangeError("Supplied value must be in the range 0-255.");
 }
 value &= (0xFFFFFF00);
 value |= (n);
 }

 public function getAlpha ():int {
 return (value >> 24) & 0xFF;
 }

http://www.moock.org/eas3/examples
http://www.moock.org/eas3/examples

Pixel Color Values | 653

 public function getRed ():int {
 return (value >> 16) & 0xFF;
 }

 public function getGreen ():int {
 return (value >> 8) & 0xFF;
 }

 public function getBlue ():int {
 return value & 0xFF;
 }

 public function toString ():String {
 return toStringARGB();
 }

 public function toStringARGB (radix:int = 16):String {
 var s:String =
 "A:" + ((value >> 24)&0xFF).toString(radix).toUpperCase()
 + " R:" + ((value >> 16)&0xFF).toString(radix).toUpperCase()
 + " G:" + ((value >> 8)&0xFF).toString(radix).toUpperCase()
 + " B:" + (value&0xFF).toString(radix).toUpperCase();

 return s;
 }

 public function toStringAlpha (radix:int = 16):String {
 return ((value >> 24)&0xFF).toString(radix).toUpperCase();
 }

 public function toStringRed (radix:int = 16):String {
 return ((value >> 16)&0xFF).toString(radix).toUpperCase();
 }

 public function toStringGreen (radix:int = 16):String {
 return ((value >> 8)&0xFF).toString(radix).toUpperCase();
 }

 public function toStringBlue (radix:int = 16):String {
 return (value&0xFF).toString(radix).toUpperCase();
 }
 }
}

// Usage examples:
var p:Pixel = new Pixel(0xFFFFCC99); // A sample color
p.setRed(0xAA);
trace(p); // Displays: A:FF R:AA G:CC B:99
trace(p.getRed()); // Displays: 170
trace(p.toStringRed()); // Displays: AA

var p2:Pixel = new Pixel(0x33,0x66,0x99,0xCC);
trace(p2.toStringARGB(10)); // Displays: A:51 R:102 G:153 B:204

Example 26-1. The Pixel class (continued)

654 | Chapter 26: Bitmap Programming

Creating a New Bitmap Image
To create and display a brand new bitmap image, follow these steps:

1. Create a BitmapData object.

2. Set the BitmapData object’s pixel colors as desired.

3. Associate the BitmapData object with a Bitmap object.

4. Add the Bitmap object to the display list.

Let’s try it out!

Our goal is to display a 10 × 10 blue square centered on a 20 × 20 green background.
First, we’ll create the BitmapData object using the following general code:

new BitmapData(width, height, transparent, fillColor)

The width and height parameters indicate the pixel dimensions of the image, which
have a maximum value of 2880. The image dimensions cannot be changed after the
BitmapData object is created. The transparent parameter indicates whether the
image should support per-pixel transparency (i.e., whether the Alpha channel of
each pixel’s color value can be set to anything less than 255). If the image does not
need to be transparent, then transparent should be set to false because the Flash
runtime renders opaque bitmaps faster than transparent ones. Finally, the fillColor
parameter indicates the color value that is initially assigned to all pixels in the image.

The image we want to create is 20 × 20 pixels square, does not require transparency,
and has a green background. Hence, to create our BitmapData object, we use the fol-
lowing code:

// 0xFF00FF00 means Alpha: 255, Red: 0, Green: 255, Blue: 0
var imgData:BitmapData = new BitmapData(20, 20, false, 0xFF00FF00);

Next, we need to set the color of a 10 × 10 square region of pixels to blue. The
BitmapData class offers a variety of tools for setting pixel colors: setPixel(),
setPixel32(), setPixels(), fillRect(), and floodFill(). The fillRect() method suits our
purpose perfectly; it sets a specified rectangular region of pixels to a specified color.
Our specified Rectangle is 10 pixels wide and high, with a top-left corner coordinate
of (5, 5). As a result, all the pixels in the bitmap from (5, 5) to (14, 14), inclusive, will
be colored blue.

imgData.fillRect(new Rectangle(5, 5, 10, 10), 0xFF0000FF);

We’ve now finished setting the color of pixels in our BitmapData object and are
ready to associate it with a Bitmap object for on-screen display. We can associate a
BitmapData object with a Bitmap object in two ways: by passing it to the Bitmap
constructor or by assigning it to the instance variable bitmapData of an existing
Bitmap object. The following code shows both approaches:

// Pass the BitmapData object to the Bitmap constructor
var bmp:Bitmap = new Bitmap(imgData);

Creating a New Bitmap Image | 655

// Assign the BitmapData object to bitmapData
var bmp:Bitmap = new Bitmap();
bmp.bitmapData = imgData;

Once the BitmapData object is associated with a Bitmap object, adding that Bitmap
object to the display list displays the image described by the BitmapData object.://
Display the image on screen

addChild(bmp);

In summary, here is the code required to create and display a new bitmap image con-
taining a 10 × 10 blue square centered on a 20 × 20 green background:

var imgData:BitmapData = new BitmapData(20, 20, false, 0xFF00FF00);
imgData.fillRect(new Rectangle(5, 5, 10, 10), 0xFF0000FF);
var bmp:Bitmap = new Bitmap(imgData);
addChild(bmp);

Figure 26-3 shows the result of the preceding code.

As mentioned earlier, many different Bitmap objects can simultaneously display rep-
resentations of the same BitmapData object. For example, the following code uses
our imgData object as the source for two different Bitmap objects. The first Bitmap
object presents the imgData without alteration, while the second Bitmap object is
rotated and scaled.

var imgData:BitmapData = new BitmapData(20, 20, false, 0xFF00FF00);
imgData.fillRect(new Rectangle(5, 5, 10, 10), 0xFF0000FF);

var bmp1:Bitmap = new Bitmap(imgData);
addChild(bmp1);

var bmp2:Bitmap = new Bitmap(imgData);
bmp2.rotation = 45;
bmp2.x = 50;
bmp2.scaleX = 2; // 200%
bmp2.scaleY = 2; // 200%
addChild(bmp2);

Figure 26-4 shows the result.

Figure 26-3. A bitmap image from scratch

Figure 26-4. Two bitmaps with the same BitmapData source

656 | Chapter 26: Bitmap Programming

Note that transformations applied to a Bitmap object do not affect its associated
BitmapData object. The actual pixel data stored in a BitmapData object cannot
directly be transformed (i.e., rotated, scaled, or moved). It is, however, possible to
transform pixel data in the process of copying it to a new BitmapData object. For
details, see the section “Copying Graphics to a BitmapData Object,” later in this
chapter.

Loading an External Bitmap Image
In the previous section, we learned how to create a brand new bitmap. Now let’s try
loading an existing bitmap image from disk. The types of bitmap images that can be
loaded and displayed are: JPEG, GIF, and PNG.

Externally loaded JPEG images can be in progressive or nonprogres-
sive format. Animated GIF images do not animate; only their first
frame is displayed.

External bitmaps can be loaded in two ways: at runtime, using the Loader class, or at
compile time, using the [Embed] metadata tag. For reference, Examples 26-2 and 26-3
present sample code showing both techniques; for much deeper coverage, see
Chapter 28.

Example 26-2 shows how to load a bitmap named photo.jpg at runtime. The code
assumes that both the bitmap file and the .swf file loading the bitmap file are in the
same directory.

Example 26-2. Loading a bitmap at runtime

package {
 import flash.display.*;
 import flash.events.*;
 import flash.net.*;

 // A simple example showing how to load an image
 public class BitmapLoader extends Sprite {
 private var loader:Loader; // The bitmap loader

 public function BitmapLoader() {
 // Create the loader
 loader = new Loader();

 // Register to be notified when the bitmap has been loaded
 // and initialized
 loader.contentLoaderInfo.addEventListener(Event.INIT,
 initListener);

 // Load the bitmap
 loader.load(new URLRequest("photo.jpg"));
 }

Loading an External Bitmap Image | 657

Notice that once a bitmap has loaded, its pixel data can be accessed via the Bitmap
class’s instance variable bitmapData, as follows (note the cast to Bitmap, which is
required when compiling in strict mode; see Chapter 8):

Bitmap(loader.content).bitmapData

Example 26-3 shows how to embed a bitmap named photo.jpg at compile time. The
code assumes that both the class file embedding the bitmap and the bitmap file are in
the same directory.

The [Embed] metadata tag shown in Example 26-3 is supported by Flex
Builder 2 and the standalone compiler mxmlc, but not Flash CS3. It
requires the use of the Flex compiler-support library, flex.swc. For full
details, see the section “Embedding Display Assets at CompileTime”
in Chapter 28.

 // Triggered when the bitmap has been loaded and initialized
 private function initListener (e:Event):void {
 // Add the loaded bitmap to display list
 addChild(loader.content);

 // Retrieve the color value for
 // the top-left pixel in the loaded bitmap
 trace(Bitmap(loader.content).bitmapData.getPixel(0, 0));
 }
 }
}

Example 26-3. Embedding a bitmap at compile time

package {
 import flash.display.*;
 import flash.events.*;
 import mx.core.BitmapAsset;

 public class BitmapEmbedder extends Sprite {
 // Embed the bitmap
 [Embed(source="photo.jpg")]
 private var Photo:Class;

 public function BitmapEmbedder () {
 // Create an instance of the embedded bitmap
 var photo:BitmapAsset = new Photo();
 addChild(photo);
 trace(photo.bitmapData.getPixel(0, 0));
 }
 }
}

Example 26-2. Loading a bitmap at runtime (continued)

658 | Chapter 26: Bitmap Programming

As in Example 26-2, the pixel data for the embedded bitmap can be accessed via
bitmapData, as follows (this time, no cast is required because photo’s datatype is a
descendent of Bitmap):

photo.bitmapData

Examining a Bitmap
Having learned how to create and load a new bitmap, we can now explore the tools
for examining the pixels of an existing bitmap.

To retrieve the complete 32-bit integer color value of any pixel in a bitmap, we use
the BitmapData class’s instance method getPixel32(), which takes the following
form:

theBitmapDataObject.getPixel32(x, y)

where theBitmapDataObject is the BitmapData instance from which the pixel color
value will be retrieved, and x and y are the horizontal and vertical location of the
pixel whose color value will be retrieved. For example, the following code creates a
blue square bitmap, then displays the color value of its top-left pixel (i.e., the pixel at
coordinates (0, 0)):

var imgData:BitmapData = new BitmapData(20, 20, false, 0xFF0000FF);
trace(imgData.getPixel32(0, 0)); // Displays: 4278190335

The pixel’s color value is a large number (4278190335) because the alpha channel’s
value is 255, so the bits in the color value’s most significant byte are all 1’s:

11111111 00000000 00000000 11111111

In decimal format, the individual channels in a color value returned by getPixel32()
are indecipherable. Hence, for debugging purposes, code such as that shown in the
earlier Pixel class must be used to extract human-readable channel values from the
number returned by getPixel32():

// Displays: A:FF R:0 G:0 B:FF
trace(new Pixel(imgData.getPixel32(0, 0)));

Note that the Alpha channel value for pixels in nontransparent bitmaps is always
255, even when a different Alpha value is assigned. For example, the following code
creates a blue square, nontransparent bitmap, and sets the Alpha channel of all of its
pixels to 0x33. Because the bitmap is nontransparent, the Alpha channel assignment
is ignored:

var imgData:BitmapData = new BitmapData(20, 20, false, 0x330000FF);
trace(imgData.getPixel32(0, 0)); // Displays: 4278190335
 // (Alpha is 0xFF, not 0x33)

The alpha value of pixels can be set in transparent bitmaps only (i.e., bitmaps
created with the value true passed to the transparent parameter of the BitmapData
constructor). For example, the following code again creates a blue square bitmap but

Examining a Bitmap | 659

this time enables transparency. Because the bitmap is transparent, the assignment of
0x33 to the Alpha channel succeeds.

var imgData:BitmapData = new BitmapData(20, 20, true, 0x330000FF);
trace(imgData.getPixel32(0, 0)); // Displays: 855638271
 // (Alpha is 0x33)

getPixel32() Versus getPixel()
To provide a convenient way to retrieve a pixel’s color value without its Alpha chan-
nel information, ActionScript offers the BitmapData class’s instance method
getPixel(). The getPixel() method takes the exact same form as getPixel32() and also
returns 32-bit integer color value. However, unlike getPixel32(), getPixel() sets the
Alpha channel bits in the returned integer to 0. That is, a call to getPixel() produces
the exact same result as the expression:

theBitmapDataObject.getPixel32() & 0x00FFFFFF

The actual Alpha channel of the pixel in the bitmap is unaffected; only the number
returned is altered. For example, recall the blue square bitmap from the preceding
section:

var imgData:BitmapData = new BitmapData(20, 20, false, 0xFF0000FF);

When we retrieve the color value of the top-left pixel in that bitmap using getPixel(),
we receive the value 255 because the bits in the Alpha channel have been set to 0
(contrast 255 with 4278190335, the earlier value returned by getPixel32()):

trace(imgData.getPixel(0, 0)); // Displays: 255

The getPixel() method should be used only to retrieve the combined value of the Red,
Green, and Blue channels as a single number. When retrieving a color value in order to
process one or more channels individually, use getPixel32(). The getPixel32() method
is the appropriate method to use in the majority of color-processing situations.

The getPixel32() method returns a 32-bit integer containing the entire
4-channel color value for a given pixel. The getPixel() method returns
a 32-bit integer containing the Red, Green, and Blue channel values for
a given pixel, and an Alpha channel of 0.

Transparency’s Effect on Color-Value Retrieval
Due to the Flash runtime’s internal rendering architecture, pixel color values in
transparent images cannot be retrieved reliably using getPixel32(), getPixel(), or any
other means. For the sake of rendering performance, when the Flash runtime stores a
pixel color value in a BitmapData object, it converts that value to an internal format
known as a premultiplied color value. A premultiplied color value combines a color’s
Alpha channel value with its Red, Green, and Blue channels. For example, if the orig-
inal color’s Alpha channel is 50% of 255, then the premultiplied color value stores

660 | Chapter 26: Bitmap Programming

50% of 255 for the Alpha channel, and 50% of the original Red value, 50% of the
original Green value, and 50% of the original Blue value. As a result, the original val-
ues assigned to the Red, Green, and Blue channels are lost. When pixel color values
are retrieved from a transparent image, ActionScript automatically converts them
from premultiplied format to the standard (unmultiplied) ARGB format we’ve used
throughout this chapter, resulting in a loss of precision. In many cases, the con-
verted, unmultiplied value does not exactly match the original color value assigned
to the pixel. For example, the following code creates a new BitmapData object in
which every pixel is pure white, and fully transparent (i.e., the alpha channel is 0):

var imgData:BitmapData = new BitmapData(20, 20, true, 0x00FFFFFF);

When we retrieve the color value of any pixel from the preceding bitmap, the result
is 0 (i.e., all four channels have the value 0):

trace(imgData.getPixel32(0, 0)); // Displays: 0

The original values of 255 for the Red, Green, and Blue channels, have been lost.

Hence, programs wishing to store, and then later retrieve, transparent pixel color val-
ues without data loss should do so by storing those values in a ByteArray. As a gen-
eral rule, transparent pixel color values should be considered irretrievable once
written to a bitmap:

By contrast, nontransparent pixel color values are safely retrievable, without risk of
data loss:

// Retrieve a pixel from a nontransparent image
var imgData:BitmapData = new BitmapData(20, 20, false, 0xFFFFFFFF);
trace(imgData.getPixel32(0, 0)); // Displays: 4294967295
 // (original data was preserved)

As the following code shows, the color value of any pixel whose Alpha channel is set
to 255 is preserved across assignment and retrieval operations, even if the pixel is
stored in a transparent bitmap:

// Retrieve a pixel with Alpha set to 255, from a transparent image
var imgData:BitmapData = new BitmapData(20, 20, true, 0xFFFFFFFF);
trace(imgData.getPixel32(0, 0)); // Displays: 4294967295
 // (original data was preserved)

ColorPicker: A getPixel32() Example
Now that we understand how to retrieve a pixel’s color value, let’s apply our knowl-
edge to a real-world situation. Suppose we’re building an online application for cre-
ating party invitations. Users of the application select a photo to place on the front of
the invitation and choose a matching color for the text on the invitation. To allow
the user to experiment with different colors, the application provides a special form
of color picker; when the user moves the mouse over the chosen image, the color of
the text on the invitation automatically changes to match the color of the pixel

Examining a Bitmap | 661

currently under the mouse pointer. Example 26-4 shows the code for the color
picker, with an example image, sunset.jpg. Study the comments to see how the color
value under the mouse pointer is retrieved.

Example 26-4. An image-based color picker

package {
 import flash.display.*;
 import flash.events.*;
 import flash.text.*;
 import flash.net.*;

 // Sets the color of a TextField to match the color of a selected
 // pixel in an image.
 public class ColorPicker extends Sprite {
 private var img:Bitmap; // The Bitmap object
 private var imgContainer:Sprite; // Container for the Bitmap object
 private var t:TextField; // The TextField that will be colored

 // Constructor method
 public function ColorPicker() {
 // Create the TextField and add it to
 // the ColorPicker's display hierarchy
 t = new TextField();
 t.text = "Please come to my party...";
 t.autoSize = TextFieldAutoSize.LEFT;
 addChild(t);

 // Load the image
 var loader:Loader = new Loader();
 loader.contentLoaderInfo.addEventListener(Event.INIT,
 initListener);
 loader.load(new URLRequest("sunset.jpg"));
 }

 // Invoked when the image has initialized
 private function initListener (e:Event):void {
 // Obtain a reference to the loaded Bitmap object
 img = e.target.content;
 // Put the loaded bitmap in a Sprite so we can detect mouse
 // interaction with it
 imgContainer = new Sprite();
 imgContainer.addChild(img);
 // Add the Sprite to the ColorPicker's display hierarchy
 addChild(imgContainer);
 imgContainer.y = 30;
 // Start listening for mouse movement
 imgContainer.addEventListener(MouseEvent.MOUSE_MOVE,
 mouseMoveListener);
 }

662 | Chapter 26: Bitmap Programming

Retrieving the Color of a Region of Pixels
The BitmapData class’s instance methods getPixel32() and getPixel() are used to
retrieve the color value of an individual pixel. By contrast, the BitmapData class’s
instance method getPixels() method is used to retrieve the color values of an entire
rectangular region of pixels. The getPixels() method might be used in any of the fol-
lowing scenarios:

• When passing a region of a bitmap between sections of a program

• When using a custom algorithm to process a section of a bitmap

• When sending part or all of a bitmap to a server in raw binary format

The getPixels() method takes the following general form:

theBitmapDataObject.getPixels(rect)

where theBitmapDataObject is the BitmapData object whose pixel color values will be
returned, and rect is a flash.geom.Rectangle object describing the region of pixels to
retrieve. The getPixels() method returns a ByteArray of 32-bit integer color values.
The ByteArray is a flat list of color values for the pixels in the specified rectangular
region, assembled from left to right, and top to bottom. For example, consider the
following diagram of a 4 × 4 bitmap, whose pixels, for the sake of discussion, are
labeled A through P:

A B C D
E F G H
I J K L
M N O P

Recalling that the upper-left corner pixel in a bitmap resides at coordinate (0,0), if we
use getPixels() to retrieve the rectangular region of pixels from (2, 1) through (3, 3),
then the returned ByteArray will contain the following pixels in the following order:

G, H, K, L, O, P

Notice that the ByteArray is a flat, one-dimensional list, and does not include any
information about the dimensions or position of the rectangular region from which
the pixels originated. Therefore, to reconstitute a bitmap from pixels in a ByteArray
in the same rectangular order as they originated, we must have independent access to
the width, height, and position of the original rectangle. Information about the origi-
nal rectangle might be assigned to a variable or even added to the ByteArray itself.

 // Invoked when the mouse moves over the Sprite containing the image
 private function mouseMoveListener (e:MouseEvent):void {
 // Set the text color to the pixel currently under the mouse
 t.textColor = img.bitmapData.getPixel32(e.localX, e.localY);
 }
 }
}

Example 26-4. An image-based color picker (continued)

Examining a Bitmap | 663

To practice using getPixels(), let’s copy a rectangular region from one bitmap to
another. First, we make the two BitmapData objects. The first is a 20 × 20 blue
square, and the second is a 30 × 30 green square:

var blueSquare:BitmapData = new BitmapData(20, 20, false, 0xFF0000FF);
var greenSquare:BitmapData = new BitmapData(30, 30, false, 0xFF00FF00);

Next, we define the rectangular region of pixels we want to retrieve from the green
square. The rectangle is positioned at coordinate (5,5) and is 10 pixels wide and
high.

var rectRegion:Rectangle = new Rectangle(5, 5, 10, 10);

Now we retrieve the green pixels:

var greenPixels:ByteArray = greenSquare.getPixels(rectRegion);

To write the green pixels into the blue square, we’ll use the BitmapData class’s
instance method setPixels() method. However, before we call setPixels(), we must
set the ByteArray’s file pointer to 0, so that setPixels() starts reading pixel color val-
ues from the beginning of the list:

greenPixels.position = 0;

Now we can read the pixels from the greenPixels ByteArray into the blueSquare
BitmapData object:

blueSquare.setPixels(rectRegion, greenPixels);

To verify that everything worked out as expected, we display the two bitmaps on
screen:

var blueBmp:Bitmap = new Bitmap(blueSquare);
var greenBmp:Bitmap = new Bitmap(greenSquare);
addChild(blueBmp);
addChild(greenBmp);
greenBmp.x = 40;

Figure 26-5 shows the results.

When copying pixels between two bitmaps, if the rectangle being copied is the same
size in the source and the destination (as it was in the previous example), we can use
the BitmapData class’s convenient instance method copyPixels() rather than the
combination of getPixels() and setPixels(). Other built-in BitmapData instance meth-
ods that offer convenient access to typical copy operations include copyChannel(),
clone(), merge(), and draw(). For details, see the section “Copying Graphics to a Bit-
mapData Object” later in this chapter.

Figure 26-5. Pixels copied from a ByteArray

664 | Chapter 26: Bitmap Programming

Other Examination Tools
In this section we learned how to examine the pixels of a BitmapData object using
getPixel32(), getPixel(), and getPixels(). The BitmapData class also offers several
other, more specialized, tools for examining pixels:

compare()
Checks the difference between pixels in two bitmap images

getColorBoundsRect()
Determines which area of a bitmap image contains a given color

hitTest()
Detects whether the pixels in a bitmap overlap a given point, rectangle, or other
bitmap image

For complete details on the preceding methods, see the BitmapData class in Adobe’s
ActionScript Language Reference.

Modifying a Bitmap
The basic tools for assigning new colors to the pixels of an existing bitmap exactly
mirror those for examining a bitmap. They are: setPixel32(), setPixel(), and
setPixels(). The setPixel32() method assigns a new 4-channel color value to a pixel as
a 32-bit unsigned integer. It takes the following form:

thatBitmapDataObject.setPixel32(x, y, color)

where theBitmapDataObject is the BitmapData instance containing the pixel whose
color value will be changed, x and y are the horizontal and vertical location of that
pixel, and color is the new color value to assign to the pixel. For example, the fol-
lowing code creates a blue, square bitmap, and then sets the color value of its top-left
pixel to white:

var imgData:BitmapData = new BitmapData(20, 20, false, 0xFF0000FF);
imgData.setPixel32(0, 0, 0xFFFFFFFF);

By contrast, the setPixel() method, which takes the same general form as setPixel32(),
sets only the Red, Green, and Blue channels of a pixel’s color value, leaving the pixel’s
original Alpha channel unaltered. For example, the following code creates a partially
transparent blue, square bitmap, and then sets the color value of its top-left pixel to
white. Because setPixel() is used instead of setPixel32(), the top left pixel retains its
original Alpha channel value (0x66):

var imgData:BitmapData = new BitmapData(20, 20, true, 0x660000FF);
imgData.setPixel(0, 0, 0xFFFFFF);

After the setPixel() operation completes, the top-left pixel’s color value is
0x66FFFFFF.

Modifying a Bitmap | 665

Any Alpha channel value specified in the number passed to setPixel() is ignored. For
example, in the following code, we assign a pixel value using a number that specifies
an Alpha channel of CC; nevertheless, after the operation, the top-left pixel’s color
value is still 0x66FFFFFF:

imgData.setPixel(0, 0, 0xCCFFFFFF);

Improve Performance with BitmapData.lock()
By default, Bitmap instances that reference a given BitmapData object are notified
every time setPixel32() or setPixel() is called on that object. When setPixel32() or
setPixel() are used in rapid succession within the same frame cycle—such as when
setting the color of every pixel in a bitmap—these notifications can reduce perfor-
mance. To improve performance, we can use the BitmapData class’s instance
method lock().

Calling lock() on a BitmapData object forces ActionScript to not notify dependent
Bitmap objects when executing setPixel32() or setPixel(). Hence, before using
setPixel32() or setPixel() in rapid succession, always call lock(). After calling lock(),
assign all desired pixel color values; then call the BitmapData() class’s instance
method unlock(). Calling unlock() instructs ActionScript to notify all dependent
Bitmap objects as necessary. Example 26-5 demonstrates the approach. The example
uses a loop to assign a random color to every pixel in a 500 × 500 BitmapData object.
Notice the call to lock() before the loop and unlock() after the loop, shown in bold.

In tests, when running Example 26-5 in the release version of Flash Player on a com-
puter with a Pentium 4 2.6-GHz processor, a single iteration of the loop takes
approximately 100 ms. Without lock(), a single iteration takes approximately 125
ms. That is, code runs approximately 20% faster when lock() is used.

Example 26-5. Using BitmapData.lock() to improve performance

// Create the bitmap
var imgData:BitmapData = new BitmapData(500, 500, true, 0x00000000);
var bmp:Bitmap = new Bitmap(imgData);

// Invoke lock()
imgData.lock();

// Set pixel color-values
var color:uint;
for (var i:int = 0; i < imgData.height ; i++) {
 for (var j:int = 0; j < imgData.width; j++) {
 color = Math.floor(Math.random()*0xFFFFFFFF);
 imgData.setPixel32(j, i, color);
 }
}

// Invoke unlock()
imgData.unlock();

666 | Chapter 26: Bitmap Programming

When measuring Flash runtime performance, always be sure to test in
the release version, not in the debug version. The release version is
often more than two times faster than the debug version.

ScribbleAS3: A setPixel32() Example
Setting the color of a pixel in a bitmap has many practical applications—from cus-
tom effects, to photo correction, to dynamic interface generation. Let’s take a look at
just one practical application for setPixel32(): a simple drawing program.
Example 26-6 presents an ActionScript 3.0 adaptation of the venerable classic, Scrib-
ble. The code creates an empty bitmap onto which the user draws with the mouse.
Whenever the mouse moves with the primary mouse button depressed, the code
draws a black pixel on the empty bitmap.

Example 26-6. A very simple drawing program, ScribbleAS3

package {
 import flash.display.*;
 import flash.events.*;
 import flash.ui.*;
 import flash.geom.*;

 // A basic drawing application. Draws a single dot on a
 // BitmapData object every time the MouseEvent.MOUSE_MOVE event
 // occurs while the primary mouse button is depressed.
 public class ScribbleAS3 extends Sprite {
 // The on-screen bitmap
 private var canvas:Bitmap;
 // Contains the bitmap, providing interactivity
 private var canvasContainer:Sprite;
 // Line around the bitmap
 private var border:Shape;
 // Indicates whether the mouse is currently depressed
 private var isDrawing:Boolean = false;

 // Constructor
 public function ScribbleAS3 () {
 createCanvas();
 registerForInputEvents();

 // Prevent the app from resizing
 stage.scaleMode = StageScaleMode.NO_SCALE;
 }

 // Creates the empty bitmap object where drawing will occur
 private function createCanvas (width:int = 200, height:int = 200):void {
 // Define the BitmapData object that will store the pixel
 // data for the user's drawing
 var canvasData:BitmapData = new BitmapData(width, height,
 false, 0xFFFFFFFF);

Modifying a Bitmap | 667

 // Create a new displayable Bitmap, used to render the
 // canvasData object
 canvas = new Bitmap(canvasData);

 // Create a Sprite to contain the Bitmap. The Bitmap class doesn't
 // support input events; hence, put it in a Sprite so the user
 // interact with it.
 canvasContainer = new Sprite();
 // Add the canvas bitmap to the canvasContainer Sprite
 canvasContainer.addChild(canvas);

 // Add the canvasContainer Sprite (and the Bitmap it contains) to
 // the this object's display hierarchy
 addChild(canvasContainer);

 // Make a border around the drawing surface.
 border = new Shape();
 border.graphics.lineStyle(1, 0xFF000000);
 border.graphics.drawRect(0, 0, width, height);
 addChild(border);
 }

 // Registers for the required mouse and keyboard events
 private function registerForInputEvents ():void {
 // Register for mouse down and movement events from canvasContainer
 canvasContainer.addEventListener(MouseEvent.MOUSE_DOWN,
 mouseDownListener);
 canvasContainer.addEventListener(MouseEvent.MOUSE_MOVE,
 mouseMoveListener);

 // Register for mouse up and key events from the Stage (i.e.,
 // globally). Use the Stage because a mouse up event should always
 // exit drawing mode, even if it occurs while the mouse pointer is
 // not over the drawing. Likewise, the spacebar should always clear
 // the drawing, even when canvasContainer isn't focused.
 stage.addEventListener(MouseEvent.MOUSE_UP, mouseUpListener);
 stage.addEventListener(KeyboardEvent.KEY_DOWN, keyDownListener);
 }

 // Sets the color of a specified pixel
 public function drawPoint (x:int, y:int, color:uint = 0xFF000000):void {
 canvas.bitmapData.setPixel32(x, y, color);
 }

 // Responds to MouseEvent.MOUSE_DOWN events
 private function mouseDownListener (e:MouseEvent):void {
 // Set a flag indicating that the primary
 // mouse button is currently down
 isDrawing = true;
 // Draw a dot where the mouse was clicked.
 drawPoint(e.localX, e.localY);
 }

Example 26-6. A very simple drawing program, ScribbleAS3 (continued)

668 | Chapter 26: Bitmap Programming

Assigning the Color of a Region of Pixels
The setPixel32() and setPixel() methods are used to set the color value of an individ-
ual pixel. By contrast, the BitmapData class’s instance method setPixels() method is
used to set the color values of an entire rectangular region of pixels.

The setPixels() method takes the following general form:

theBitmapDataObject.setPixels(rect, pixelByteArray)

where theBitmapDataObject is the BitmapData object whose pixel color values will be
assigned, rect is a flash.geom.Rectangle object describing the region of pixels to assign,
and pixelByteArray is a ByteArray of unsigned 32-bit integers specifying the color val-
ues to be assigned. The setPixels() method fills the specified rectangular region from
left to right and top to bottom, starting with the color value pixelByteArray located at
the current file pointer position (i.e., at pixelByteArray.position).

 // Responds to MouseEvent.MOUSE_MOVE events
 private function mouseMoveListener (e:MouseEvent):void {
 // Draw a dot when the mouse moves over the drawing
 // while the primary mouse button is depressed
 if (isDrawing) {
 // Use localX and localY to obtain pointer position relative to
 // the canvasContainer.
 drawPoint(e.localX, e.localY);

 // Update the screen immediately following the execution of
 // this event listener function
 e.updateAfterEvent();
 }
 }

 // Responds to MouseEvent.MOUSE_UP events
 private function mouseUpListener (e:MouseEvent):void {
 // Set a flag indicating that the primary mouse button is currently up
 isDrawing = false;
 }

 // Responds to KeyboardEvent.KEY_DOWN events
 private function keyDownListener (e:KeyboardEvent):void {
 // Clear the drawing when the spacebar is pressed. To clear the
 // drawing, we set all pixels to the color white.
 if (e.charCode == Keyboard.SPACE) {
 canvas.bitmapData.fillRect(new Rectangle(0, 0,
 canvas.width,
 canvas.height),
 0xFFFFFFFF);
 }
 }
 }
}

Example 26-6. A very simple drawing program, ScribbleAS3 (continued)

Modifying a Bitmap | 669

For example, consider the following diagram of a 4 × 4 bitmap, whose pixels, for the
sake of discussion, are labeled A through P:

A B C D
E F G H
I J K L
M N O P

And consider the following diagram of a byte array containing six 32-bit unsigned
integer color values, labeled C1 through C6:

C1 C2 C3 C4 C5 C6

Recalling that the upper-left corner pixel in a bitmap resides at coordinate (0,0), if we
use setPixels() to fill the rectangular region of pixels from (1, 0) through (3, 1) with
the preceding byte array, then the bitmap will subsequently look like this:

A C1 C2 C3
E C4 C5 C6
I J K L
M N O P

Let’s try the same thing in code. First, we’ll create a 4 × 4-pixel red square:

var imgData:BitmapData = new BitmapData(4, 4, false, 0xFFFF0000);

Now, we’ll create a byte array containing six color values, all green. For demonstra-
tion purposes, we create the byte array manually, but normally, the byte array would
be created programmatically, perhaps by calling getPixels() or by running a custom
algorithm that outputs color values.

var byteArray:ByteArray = new ByteArray();
byteArray.writeUnsignedInt(0xFF00FF00);
byteArray.writeUnsignedInt(0xFF00FF00);
byteArray.writeUnsignedInt(0xFF00FF00);
byteArray.writeUnsignedInt(0xFF00FF00);
byteArray.writeUnsignedInt(0xFF00FF00);
byteArray.writeUnsignedInt(0xFF00FF00);

Next, we set the position at which setPixels() should start reading color values from
the byte array. We want setPixels() to begin reading at the beginning of the byte
array, so we set the ByteArray class’s instance variable position to 0:

byteArray.position = 0;

Finally, we fill the rectangular region in the bitmap with the colors from the byte
array:

imgData.setPixels(new Rectangle(1,0,3,2), byteArray);

Notice that the position and size of the Rectangle passed to setPixels()
is specified using top-left coordinate and width/height, not top-left
coordinate and bottom-right coordinate.

670 | Chapter 26: Bitmap Programming

Note that if the pixelByteArray ends before the specified rectangular region is filled,
ActionScript throws an EOFError. For example, if we increase the size of the preced-
ing rectangular region from 3 × 2 (6 pixels) to 3 × 3 (9 pixels):

imgData.setPixels(new Rectangle(1,0,3,3), byteArray);

then the following error occurs:

Error: Error #2030: End of file was encountered.

The preceding error would also occur if we had forgotten to set the position of the
ByteArray to zero after creating it (which is a much more common programming
mistake than specifying the wrong size of rectangle or providing an insufficient num-
ber of color values).

Before calling setPixels(), always remember to set the position of the
specified input byte array.

The setPixels() method is typically used to generate a bitmap image based on serial-
ized binary data retrieved from an external source such as a server or a local shared
object.

Other Manipulation Tools
In this section we learned how to change the pixels of a BitmapData object using
setPixel32(), setPixel(), and setPixels(). The BitmapData class also offers several
other, more specialized, tools for manipulating pixels:

fillRect()
Sets a rectangular region of pixels to a specified color

floodFill()
For a given pixel, p, assigns a specified color to all surrounding pixels that match
p’s color (similar to the paint bucket tool found in many graphics programs)

scroll()
Repositions all pixels in a bitmap by a given horizontal and vertical amount

For complete details on the preceding methods, see the BitmapData class in Adobe’s
ActionScript Language Reference.

The BitmapData class also supports various filters, effects, and copy operations that
can be used to manipulate a bitmap’s pixels. For details, see the sections “Copying
Graphics to a BitmapData Object” and “Applying Filters and Effects,” later in this
chapter.

Modifying a Bitmap | 671

Resizing a Bitmap
When a Bitmap object that references a BitmapData object is resized using either
scaleX and scaleY, or width and height, the bitmap will appear to have changed size
on screen, but the underlying BitmapData object will not have changed. To truly
change the size of the underlying BitmapData object, we must resample it using the
BitmapData class’s instance method draw() (to resample means to change the num-
ber of pixels in an image). The general technique is as follows:

1. Retrieve a reference to the original BitmapData object.

2. Draw a scaled version of the original BitmapData object into a new BitmapData
object.

3. Associate the original Bitmap object with the new, scaled BitmapData object.

Example 26-7 demonstrates the preceding steps.

In the next section, we’ll learn more about the draw() method.

Example 26-7. Resampling a bitmap

// Retrieve a temporary reference to the original BitmapData object
var originalBitmapData:BitmapData = originalBitmap.bitmapData;

// Set the amount by which to scale the bitmap
var scaleFactor:Number = .5;

// Calculate the new dimensions of the scaled bitmap
var newWidth:int = originalBitmapData.width * scaleFactor;
var newHeight:int = originalBitmapData.height * scaleFactor;

// Create a new BitmapData object, sized to hold the scaled bitmap
var scaledBitmapData:BitmapData = new BitmapData(newWidth, newHeight,
 originalBitmapData.transparent);

// Create a transformation matrix that will scale the bitmap
var scaleMatrix:Matrix = new Matrix();
matrix.scale(scaleFactor, scaleFactor);

// Draw the scaled bitmap into the new BitmapData object
scaledBitmapData.draw(originalBitmapData, matrix);

// Replace the original BitmapData object with the
// new, scaled BitmapData object
originalBitmap.bitmapData = scaledBitmapData;

672 | Chapter 26: Bitmap Programming

Copying Graphics to a BitmapData Object
Pixel color values can be copied to a BitmapData object from one of two sources:
another BitmapData object, or any DisplayObject instance.

To copy any DisplayObject instance to a BitmapData object, we use the draw()
method, which copies the color values from a source object to a destination
BitmapData object. As part of the copying process, pixels written to the BitmapData
object can be transformed, blended, and smoothed.

To copy color values from another BitmapData object, we can use either draw() or
any of the following BitmapData-specific methods:

copyPixels()
Copies the color values from a rectangular region of pixels in a source
BitmapData object to a destination BitmapData object. The source and destina-
tion can be the same, allowing pixels to be copied from one area to another
within the same image.

copyChannel()
Copies a single color channel from a rectangular region of pixels in a source
BitmapData object to a destination BitmapData object. The source and destina-
tion can be the same, allowing one channel to be copied into another channel
within the same image.

clone()
Creates a new BitmapData object by duplicating an existing BitmapData object.

merge()
Blends the channels of two BitmapData objects together, producing a new image
in which one image appears superimposed over the other. The source and desti-
nation BitmapData object can be the same, allowing two channels of the same
image to be blended.

In this section, we’ll focus on draw() and copyPixels(). For details on the other copy-
ing methods, see the BitmapData class in Adobe’s ActionScript Language Reference.

The BitmapData Class’s Instance Method draw()
The draw() method has the following general form:

destinationBitmapData.draw(source, transformMatrix, colorTransform, blendMode,
clipRect, smoothing)

where destinationBitmapData is the BitmapData object into which the pixels will be
drawn, and the parameters to draw() are as follows:

Copying Graphics to a BitmapData Object | 673

source
The DisplayObject or BitmapData instance that will be drawn into
destinationBitmapData. This is draw()’s only required parameter. Note that if
source is a DisplayObject, its transformations are not included when it is drawn
into destinationBitmapData. However, source’s transformations can be manu-
ally included by passing source.transform.matrix as draw()’s transformMatrix
parameter and source.transform.colorTransform as draw()’s colorTransform
parameter. Alternatively, destinationBitmapData can be associated with a Bitmap
object whose instance variable transform refers to source.transform.

transformMatrix
An optional Matrix object describing any translation (i.e., change in position), scal-
ing, rotation, and skew that should be applied to the pixels being drawn into
destinationBitmapData. For information on using a Matrix object to perform graphi-
cal transformations, see Adobe’s ActionScript Language Reference, under the Matrix
class, and Adobe’s Programming ActionScript 3.0, under Flash Player APIs ➝ Work-
ing with Geometry ➝ Using Matrix objects. For a general primer on matrix trans-
forms, see http://windowssdk.msdn.microsoft.com/en-us/library/ms536397.aspx and
http://www.senocular.com/flash/tutorials/transformmatrix. Note that it is the devel-
oper’s responsibility to ensure that destinationBitmapData is large enough to accom-
modate the transformed source. The Flash Player 9 API does not provide any way to
predict the size of the transformed source. Future Flash runtimes may include such a
feature, perhaps in the form of a “generateTransformRect()” method (designed after
the existing generateFilterRect() method). To voice your support for such a method,
visit http://www.adobe.com/cfusion/mmform/index.cfm?name=wishform.

colorTransform
An optional ColorTransform object describing any color adjustments that should
be applied to the pixels being drawn into destinationBitmapData. Color transfor-
mations are specified independently for each color channel using either a multi-
plier (a number by which the existing channel value will be multiplied) or an
offset (a number that will be added to the existing channel value), or both. For
information on using a ColorTransform object to perform graphical transforma-
tions, see Adobe’s ActionScript Language Reference, under the ColorTransform
class.

blendMode
An optional constant of the BlendMode class, indicating the type of blending that
should be applied to the pixels being drawn into destinationBitmapData. Blending
means using equations to combine the color values of the source object with the
display objects behind it, typically producing a superimposing effect. Supported
blend modes include BlendMode.MULTIPLY, BlendMode.SCREEN, BlendMode.HARDLIGHT,
and many others that will be familiar to Adobe Photoshop users. ActionScript’s
blend mode implementation is based on the W3C SVG standard (see http://www.
w3.org/TR/2003/WD-SVG12-20030715/#compositing), and Jens Gruschel’s
research, published at http://www.pegtop.net/delphi/articles/blendmodes. For a

http://windowssdk.msdn.microsoft.com/en-us/library/ms536397.aspx
http://www.senocular.com/flash/tutorials/transformmatrix
http://www.adobe.com/cfusion/mmform/index.cfm?name=wishform
http://www.w3.org/TR/2003/WD-SVG12-20030715/#compositing
http://www.w3.org/TR/2003/WD-SVG12-20030715/#compositing
http://www.pegtop.net/delphi/articles/blendmodes

674 | Chapter 26: Bitmap Programming

description and image illustrating each available blend mode, see Adobe’s
ActionScript Language Reference, under the DisplayObject class’s instance vari-
able blendMode.

clipRect
An optional Rectangle object indicating the rectangular region of
destinationBitmapData into which source will be drawn.

smoothing
An optional Boolean indicating whether bitmap smoothing should be applied
during the drawing operation. This parameter has an effect only when source is a
BitmapData object and the specified transformMatrix causes scaling or rotation.
In such a case, when smoothing is true, source is rendered into
destinationBitmapData using ActionScript’s bitmap-smoothing algorithm. When
smoothing is false, source is rendered into destinationBitmapData without any
smoothing. An image rendered with smoothing looks less “jagged” or “pixe-
lated” than an image rendered without smoothing. Figure 26-6 demonstrates,
showing a small source image (top), scaled up by a factor of 3 using a Matrix
object, with smoothing applied (left) and smoothing not applied (right).

Rendering a bitmap with smoothing takes longer than rendering it without
smoothing. For the fastest possible performance, set smoothing to false; for the
best possible image quality, set smoothing to true. The smoothing parameter
affects the single draw() operation in progress only; it does not govern whether
smoothing is applied to the destinationBitmapData in the future.

The draw() method is typically used for the following purposes:

• To combine multiple display objects into a single bitmap

• To rasterize vector content (i.e., convert vectors to a bitmap) for the sake of per-
forming some effect

Let’s look at an example of each case. First, we’ll create two vector shapes—a rectan-
gle and an ellipse—and draw them both into a single BitmapData object.
Example 26-8 shows the code.

Figure 26-6. Bitmap smoothing

Copying Graphics to a BitmapData Object | 675

Vector shapes need not be on the display list in order to be drawn into
a BitmapData object. It is perfectly normal to create vector objects off
screen simply for the sole purpose of being copied to a bitmap (as
shown in Examples 26-8 and 26-9).

Figure 26-7 shows the bitmap image resulting from the preceding code, zoomed for
the sake of close examination. Notice that ActionScript antialiases the ellipse, so it
blends into the existing rectangle.

Content drawn into a BitmapData object is antialiased against the
existing background in the bitmap.

Next, we’ll use draw() to rasterize a TextField so that we can apply a pixel-level dis-
solve effect to it. Example 26-9 shows the code.

Example 26-8. Display objects composited into a bitmap

// Make the rectangle
var rect:Shape = new Shape();
rect.graphics.beginFill(0xFF0000);
rect.graphics.drawRect(0,0,25,50);

// Make the ellipse
var ellipse:Shape = new Shape();
ellipse.graphics.beginFill(0x0000FF);
ellipse.graphics.drawEllipse(0,0,35,25);

// Make the BitmapData object. It will play the role of
// a drawing canvas, so we assign it to a variable named canvas.
var canvas:BitmapData = new BitmapData(100, 100, false, 0xFFFFFFFF);

// Draw the vector rectangle on to the bitmap
canvas.draw(rect);

// Draw the vector ellipse on to the bitmap. Use a transformation
// matrix to place the ellipse at coordinate (10, 10) within the
// BitmapData object.
var matrix:Matrix = new Matrix();
matrix.translate(10, 10);
canvas.draw(ellipse, matrix);

// Associate the BitmapData object with a Bitmap object so it can
// be displayed on screen
var bmp:Bitmap = new Bitmap(canvas);
addChild(bmp);

676 | Chapter 26: Bitmap Programming

Figure 26-7. Display objects composited into a bitmap

Example 26-9. Rasterizing, then dissolving a TextField

package {
 import flash.display.*;
 import flash.utils.*;
 import flash.events.*;
 import flash.geom.*;
 import flash.text.*;

 public class DissolveText extends Sprite {
 // Variables used for the dissolve effect
 private var randomSeed:int = Math.floor(Math.random() * int.MAX_VALUE);
 private var destPoint:Point = new Point(0, 0);
 private var numberOfPixels:int = 10;
 private var destColor:uint = 0xFF000000;

 // The BitmapData object into which the text will be drawn
 private var bitmapData:BitmapData;
 // A timer used to repeatedly invoke pixelDissolve()
 private var t:Timer;

 // Constructor
 public function DissolveText () {
 // Create the text
 var txt:TextField = new TextField();
 txt.text = "Essential ActionScript 3.0";
 txt.autoSize = TextFieldAutoSize.LEFT;
 txt.textColor = 0xFFFFFF;

 // Make the BitmapData object, sized to accommodate the text
 bitmapData = new BitmapData(txt.width, txt.height, false, destColor);
 // Draw the text into the BitmapData object
 bitmapData.draw(txt);

 // Associate the BitmapData object with a Bitmap object so it can
 // be displayed on screen
 var bitmap:Bitmap = new Bitmap(bitmapData);
 addChild(bitmap);

 // Start repeatedly invoking pixelDissolve()
 t = new Timer(10);
 t.addEventListener(TimerEvent.TIMER, timerListener);
 t.start();
 }

Copying Graphics to a BitmapData Object | 677

The draw() method is also used to rasterize vector content for the sake of improved
performance. For example, recall the simple ScribbleAS3 drawing program pre-
sented earlier in Example 26-6. That program draws dots wherever the mouse moves
but does not connect those dots with lines. One way to connect the dots with lines
would be to use the Graphics class’s instance method lineTo(), which draws a vector
line between two points. However, using vectors to draw lines introduces a perfor-
mance limitation: the user could potentially draw enough lines to make the applica-
tion unresponsive (due to limits in the Flash runtime’s vector renderer). To solve this
problem, we can draw lines using lineTo() into an off-screen Shape instance. After
each line is drawn, we copy it from the Shape object to a BitmapData object and then
clear the drawing in the Shape instance. Because only one vector line exists at a time,
the application never becomes unresponsive. Example 26-10 shows the code, some
of which will be familiar from Example 26-6. Pay special attention to the drawLine()
method, shown in bold.

 // Handles TimerEvent.TIMER events
 private function timerListener (e:TimerEvent):void {
 dissolve();
 }

 // Performs the dissolve
 public function dissolve():void {
 // Call pixelDissolve() to dissolve the specified number of pixels,
 // and remember the returned random seed for next time. Using the
 // returned random seed ensures a smooth dissolve.
 randomSeed = bitmapData.pixelDissolve(bitmapData,
 bitmapData.rect,
 destPoint,
 randomSeed,
 numberOfPixels,
 destColor);
 // Stop the dissolve when all pixels are the target color (i.e.,
 // when the width and height of the region in which the target color
 // does not exist are both 0)
 var coloredRegion:Rectangle =
 bitmapData.getColorBoundsRect(0xFFFFFFFF, destColor, false);
 if (coloredRegion.width == 0 && coloredRegion.height == 0) {
 t.stop();
 }
 }
 }
}

Example 26-10. ScribbleAS3, off-screen vector version

package {
 import flash.display.*;
 import flash.events.*;
 import flash.ui.*;
 import flash.geom.*;

Example 26-9. Rasterizing, then dissolving a TextField (continued)

678 | Chapter 26: Bitmap Programming

 // A basic drawing application. This version draws a vector off screen
 // and then copies that vector to a bitmap surface, thus avoiding
 // the performance degradation associated with drawing too many vectors.
 public class ScribbleAS3_VectorV2 extends Sprite {
 private var canvas:Bitmap;; // The on-screen bitmap canvas
 private var virtualCanvas:Shape; // The off-screen vector canvas
 private var canvasContainer:Sprite; // Contains the bitmap,
 // providing interactivity
 private var isDrawing:Boolean = false; // Indicates whether the mouse
 // is currently depressed
 private var border:Shape; // Line around the bitmap
 private var lastX:int; // Most recently clicked x-position
 private var lastY:int; // Most recently clicked y-position

 // Constructor
 public function ScribbleAS3_VectorV2 () {
 createCanvas();
 registerForInputEvents();

 // Prevent the app from resizing.
 stage.scaleMode = StageScaleMode.NO_SCALE;
 }

 // Creates the on-screen bitmap canvas and off-screen vector canvas
 private function createCanvas (width:int = 200, height:int = 200):void {
 // Create a new off-screen object into which individual
 // vector lines are drawn before being copied to canvasData
 virtualCanvas = new Shape();

 // Define the data object that will store the actual pixel
 // data for the user's drawing. Lines are copied from virtualCanvas
 // to this object.
 var canvasData:BitmapData = new BitmapData(width,
 height, false, 0xFFFFFFFF);

 // Create a new displayable Bitmap, used to render the
 // canvasData object
 canvas = new Bitmap(canvasData);

 // Create a Sprite to contain the Bitmap. The Bitmap class
 // doesn't broadcast input events, so put it in a Sprite so the
 // user can interact with it.
 canvasContainer = new Sprite();
 canvasContainer.addChild(canvas);

 // Add the canvasContainer Sprite (and the Bitmap it contains) to
 // this object's display hierarchy
 addChild(canvasContainer);

Example 26-10. ScribbleAS3, off-screen vector version (continued)

Copying Graphics to a BitmapData Object | 679

 // Put a border around the drawing surface.
 border = new Shape();
 border.graphics.lineStyle(1);
 border.graphics.drawRect(0, 0, width, height);
 addChild(border);
 }

 // Registers for the required mouse and keyboard events
 private function registerForInputEvents ():void {
 // Register for mouse down and movement events from canvasContainer
 canvasContainer.addEventListener(MouseEvent.MOUSE_DOWN,
 mouseDownListener);
 canvasContainer.addEventListener(MouseEvent.MOUSE_MOVE,
 mouseMoveListener);

 // Register for mouse up and key events from the Stage (i.e.,
 // globally). Use the Stage because a mouse up event should always
 // exit drawing mode, even if it occurs while the mouse pointer is
 // not over the drawing. Likewise, the spacebar should always clear
 // the drawing, even when canvasContainer isn't focused.
 stage.addEventListener(MouseEvent.MOUSE_UP, mouseUpListener);
 stage.addEventListener(KeyboardEvent.KEY_DOWN, keyDownListener);
 }

 // Sets the color of a specified pixel. Use this for drawing a single
 // pixel because Graphics.lineTo() won't draw a single pixel
 public function drawPoint (x:int, y:int, color:uint = 0xFF000000):void {
 // Set the color of the specified pixel
 canvas.bitmapData.setPixel(x, y, color);
 }

 // Draws a vector line in virtualCanvas, then copies that line's bitmap
 // representation to canvasData (which is accessed via
 // canvas.bitmapData)
 public function drawLine (x1:int, y1:int, x2:int, y2:int,
 color:uint = 0xFF000000):void {
 // Draw line in virtualCanvas
 virtualCanvas.graphics.clear();
 virtualCanvas.graphics.lineStyle(1, 0x000000, 1, true,
 LineScaleMode.NORMAL, CapsStyle.NONE);
 virtualCanvas.graphics.moveTo(x1, y1);
 virtualCanvas.graphics.lineTo(x2, y2);
 // Copy line to canvasData
 canvas.bitmapData.draw(virtualCanvas);
 }

 // Responds to MouseEvent.MOUSE_DOWN events
 private function mouseDownListener (e:MouseEvent):void {
 // Set a flag indicating that the primary
 // mouse button is currently down
 isDrawing = true;
 // Remember the point clicked so we can draw a line to it if

Example 26-10. ScribbleAS3, off-screen vector version (continued)

680 | Chapter 26: Bitmap Programming

 // the mouse moves
 lastX = e.localX;
 lastY = e.localY;
 // Draw a dot where the mouse was clicked
 drawPoint(e.localX, e.localY);
 }

 // Responds to MouseEvent.MOUSE_MOVE events
 private function mouseMoveListener (e:MouseEvent):void {
 // Draw a line when the mouse moves over the drawing
 // while the primary mouse button is depressed
 if (isDrawing) {
 // Use localX and localY to obtain pointer position relative to
 // the canvasContainer.
 var thisX:int = e.localX;
 var thisY:int = e.localY;

 // Draw a line to the new mouse location
 drawLine(lastX, lastY, thisX, thisY);

 // Remember the last mouse position for next time
 lastX = thisX;
 lastY = thisY;

 // Update the screen immediately following the execution of
 // this event listener function
 e.updateAfterEvent();
 }
 }

 // Responds to MouseEvent.MOUSE_UP events
 private function mouseUpListener (e:MouseEvent):void {
 // Set a flag indicating that the primary mouse button is currently up
 isDrawing = false;
 }

 // Responds to KeyboardEvent.KEY_DOWN events
 private function keyDownListener (e:KeyboardEvent):void {
 // Clear the drawing when the spacebar is pressed. To clear the
 // drawing, we set all pixels to the color white.
 if (e.charCode == Keyboard.SPACE) {
 canvas.bitmapData.fillRect(new Rectangle(0, 0,
 canvas.width, canvas.height),
 0xFFFFFFFF);
 }
 }
 }
}

Example 26-10. ScribbleAS3, off-screen vector version (continued)

Copying Graphics to a BitmapData Object | 681

How draw() handles Alpha channel values

When a transparent source BitmapData object is copied to a transparent destination
bitmap data object using draw(), the Alpha channels of the two BitmapData objects
are merged together on a per-pixel level, using the BlendMode.SCREEN algorithm,
which is:

(sourceAlpha * (256-destinationAlpha) / 256) + destinationAlpha

When two Alpha values being combined are both between 1 and 254, the result is a
more opaque Alpha value than either of the original Alpha values. Wherever the
source being drawn is transparent, the destination BitmapData retains its original
Alpha channel value. Wherever the destination is transparent, the new destination
Alpha channel value is entirely replaced with the source Alpha channel value.

To completely replace the Alpha channel values in the destination BitmapData object
with those from the source BitmapData object (instead of merging the two), use
copyPixels() rather than draw(). See the upcoming section, “The BitmapData Class’s
Instance Method copyPixels().”

No arbitrary screen captures

Note that it is not possible to take a screen capture of an arbitrary rectangular region
of the screen via ActionScript. ActionScript can only copy display objects to bitmap
format. ActionScript’s closest analog to screen capturing the display area is to use the
Stage instance as draw()’s source parameter, as in:

var canvas:BitmapData = new BitmapData(100, 100, false, 0xFFFFFFFF);
canvas.draw(someDisplayObject.stage);

where someDisplayObject is a DisplayObject instance on the display list. The preced-
ing code will produce a bitmap containing every object currently on the display list,
with the following caveats:

• The .swf file’s background color is not copied to the bitmap.

• If any objects on the display list are inaccessible due to security restrictions, they
are not copied to the bitmap, and a SecurityError exception is thrown.

The BitmapData Class’s Instance Method copyPixels()
Like draw(), copyPixels() is used to copy pixel color values from a source object to a
destination BitmapData object. However, unlike draw()—which can copy pixel data
from any DisplayObject instance or BitmapData object—copyPixels() can copy pixel
data from BitmapData objects only. The copyPixels() method is used for its speed
and convenience. In casual testing, copyPixels() operations proved to be 25% to
300% faster than equivalent draw() operations.

682 | Chapter 26: Bitmap Programming

For best possible performance when copying pixel color values
between two BitmapData objects, use copyPixels(), not draw().

In addition to being faster than draw(), the copyPixels() method provides the devel-
oper with easy access to the following operations:

• Placing pixels from the source at a specific point in the destination

• Combining one bitmap with another bitmap’s Alpha channel

• Overwriting the Alpha channel of a destination bitmap when copying pixels to it

Even though all three of the preceding operations can also be accomplished using
draw() in combination with other BitmapData methods, copyPixels() is normally
preferred due to its convenience.

The copyPixels() method has the following form:

destinationBitmapData.copyPixels(sourceBitmapData, sourceRect, destPoint,
alphaBitmapData, alphaPoint, mergeAlpha)

where destinationBitmapData is the BitmapData object into which the pixels will be
drawn, and the parameters to draw() are as follows:

sourceBitmapData
The BitmapData instance that will be copied to destinationBitmapData. The
sourceBitmapData and destinationBitmapData object can be the same, allowing
pixels to be copied from one area to another within the same image.

sourceRect
A Rectangle object specifying the region of sourceBitmapData that will be copied
into destinationBitmapData. To copy the entire sourceBitmapData object, use
sourceBitmapData.rect. When alphaBitmapData is supplied, this parameter also
specifies the width and height of the rectangular region within alphaBitmapData
whose Alpha channel will be copied into destinationBitmapData.

destPoint
A Point object specifying the top-left corner of the rectangular region within
destinationBitmapData where the copied pixels will be placed.

alphaBitmapData
An optional BitmapData object, separate from sourceBitmapData, whose Alpha
channel values will become the new Alpha channel values of the pixels written to
destinationBitmapData. The height and width of the specific rectangular region
whose Alpha channel will be copied into destinationBitmapData are specified by
sourceRect.

Using this parameter, we can combine the RGB channels from one bitmap
(sourceBitmapData) with the Alpha channel of another bitmap (alphaBitmapData).
Such a technique could be used, for example, to produce an irregular, aged effect

Copying Graphics to a BitmapData Object | 683

on photographs in an electronic scrapbook application. Each photograph would
be stored in its own BitmapData object, while the feathered edge would be
stored as an Alpha channel in a single, reusable BitmapData object. Using
copyPixel()’s alphaBitmapData parameter, the Alpha channel of the feathered
edge bitmap would be combined with the photographs at runtime.

alphaPoint
A Point object specifying the top-left corner of the rectangular region within
alphaBitmapData from which Alpha channel values will be retrieved. The width
and height of the rectangular region are specified by sourceRect.

mergeAlpha
A Boolean indicating whether, during the copy operation, the Alpha channels of
destinationBitmapData and sourceBitmapData should be combined (true) or the
Alpha channel of sourceBitmapData should completely replace the existing
destinationBitmapData Alpha channel (false). This parameter has an effect only
when both destinationBitmapData and sourceBitmapData are transparent bit-
maps. The default value is false, meaning that sourceBitmapData’s Alpha chan-
nel completely replaces the existing destinationBitmapData’s Alpha channel. The
algorithm used to combine the Alpha channels matches that discussed in the ear-
lier section “How draw() handles Alpha channel values.”

The copyPixels() method is the method of choice for moving pixels between two
BitmapData objects. Moving pixels between bitmaps is a common operation in
graphics applications and video games. Let’s look at a couple of examples.

First, let’s practice the basic syntax of copyPixels() by creating a blue square and a
red square, and copying a portion of the blue square to the red square.

// Create the squares (20x20 pixels each)
var redSquare:BitmapData = new BitmapData(20, 20, true, 0xFFFF0000);
var blueSquare:BitmapData = new BitmapData(20, 20, true, 0xFF0000FF);

// Define the rectangular region that will be copied from
// blueSquare to redSquare
var sourceRect:Rectangle = new Rectangle(5, 5, 10, 5);

// Define the point at which the rectangular region from
// blueSquare will be placed into redSquare
var destPoint:Point = new Point(0,0);

// Copy the pixels
redSquare.copyPixels(blueSquare, sourceRect, destPoint);

// Associate the redSquare BitmapData object with a Bitmap
// object for on-screen display
var b:Bitmap = new Bitmap(redSquare);
addChild(b);

684 | Chapter 26: Bitmap Programming

Example 26-11 presents another example—aging a photograph, as discussed earlier
under the alphaBitmapData parameter description. The comments will guide you
through the code. Pay special attention to the makeScrapbookImage() method.

Example 26-11. An aged photograph effect

package {
 import flash.display.*;
 import flash.events.*;
 import flash.geom.*;
 import flash.net.*;

 public class ScrapbookImage extends Sprite {
 private var numLoaded:int = 0;
 private var photoLoader:Loader; // The photo loader
 private var borderLoader:Loader; // The borter loader

 // Constructor
 public function ScrapbookImage () {
 // Load the photograph
 photoLoader = new Loader();
 photoLoader.contentLoaderInfo.addEventListener(Event.INIT,
 initListener);
 photoLoader.load(new URLRequest("photo.jpg"));

 // Load the border
 borderLoader = new Loader();
 borderLoader.contentLoaderInfo.addEventListener(Event.INIT,
 initListener);
 borderLoader.load(new URLRequest("border.png"));
 }

 // Handles Event.INIT events for the loaded images
 private function initListener (e:Event):void {
 numLoaded++;
 if (numLoaded == 2) {
 makeScrapbookImage();
 }
 }

 // Combines the border image with the photo image to produce
 // the aged photograph effect
 public function makeScrapbookImage ():void {
 // Retrieve the BitmapData object for the photograph
 var photoData:BitmapData = Bitmap(photoLoader.content).bitmapData;
 // Retrieve the BitmapData object for the border
 var borderData:BitmapData = Bitmap(borderLoader.content).bitmapData;
 // Create a BitmapData object that will hold the final
 // photograph image
 var scrapbookImage:BitmapData = new BitmapData(borderData.width,
 borderData.height,
 true,
 0xFFFFFFFF);

Copying Graphics to a BitmapData Object | 685

Figure 26-8 shows the result of the code from Example 26-11. The original image
appears on the left and the “aged” image appears on the right.

The images and code for Example 26-11 are available online at http://www.moock.
org/eas3/examples.

The copyPixels() method also offers an efficient way to reuse a collection of pixel val-
ues. For example, in 2D video games, backgrounds are often dynamically generated
from a small group of ready-made bitmap graphics known as tiles. As the player moves
around the world, the program displays the appropriate set of background tiles. Using
copyPixels(), each tile is copied from a reusable BitmapData object to the on-screen
background image. While full discussion of a tiled-background system is beyond the
scope of this book, a fully functional ActionScript tile example can be downloaded
from this book’s companion web site, at http://www.moock.org/eas3/examples.

 // Copy the pixels from the photograph, while applying the
 // border's Alpha channel
 scrapbookImage.copyPixels(photoData,
 borderData.rect,
 new Point(0,0),
 borderData,
 new Point(0,0),
 true);

 // Associate the scrapbookImage BitmapData object with a Bitmap
 // object for on-screen display
 var b:Bitmap = new Bitmap(scrapbookImage);
 addChild(b);
 b.x = 100;
 b.y = 75;
 }
 }
}

Figure 26-8. An aged photograph effect

Example 26-11. An aged photograph effect (continued)

http://www.moock.org/eas3/examples
http://www.moock.org/eas3/examples
http://www.moock.org/eas3/examples

686 | Chapter 26: Bitmap Programming

Applying Filters and Effects
To produce graphical effects, we can choose from the following wide range of tools
provided by the BitmapData class:

colorTransform()
Adjusts colors using a ColorTransform object, which provides a basic interface
for simple color transformations. (For more complex control over color transfor-
mations, use the ColorMatrixFilter class.)

applyFilter()

Modifies a bitmap using a preset filter effect such as drop shadow or blur. See
the section “Applying Filters.”

noise()
Fills a bitmap with random color values in configurable ranges. Figure 26-9
shows an image generated by the noise() method.

perlinNoise()
Fills a bitmap with a random organic-style pattern of color values. Figure 26-10
shows an image generated by the perlinNoise() method. The result of
perlinNoise() is not normally used directly; it is typically combined with other
filters to produce simulated waves, flames, clouds, water, wood grain, and land-
scapes. For a general discussion of Perlin noise, see Ken Perlin’s introductory lec-
ture at http://www.noisemachine.com/talk1. For an ActionScript example
showing how to use perlinNoise() to create a wood texture, see http://www.
connectedpixel.com/blog/texture/wood. For a marble texture, see http://www.
connectedpixel.com/blog/texture/marble.

Figure 26-9. A noise-filled bitmap

http://www.moock.org/eas3/examples
http://www.noisemachine.com/talk1
http://www.connectedpixel.com/blog/texture/wood
http://www.connectedpixel.com/blog/texture/wood
http://www.connectedpixel.com/blog/texture/marble
http://www.connectedpixel.com/blog/texture/marble

Applying Filters and Effects | 687

paletteMap()
Replaces colors in an image with colors from a lookup table or another image.

pixelDissolve()
When used repeatedly in an animation, produces fade effect between two
images, or fades an image to a specific color, pixel by pixel (for example of an
image-to-color fade, see Example 26-9).

threshold()
Convert pixels in a given color-range to a specific new color value.

While each of the preceding methods offers a wealth of graphical possibilities, in this
section, we’ll focus on the tool with perhaps the most general usefulness, applyFilter().
For details on the other effects methods, see the BitmapData class in Adobe’s Action-
Script Language Reference.

Applying Filters
To provide programmers with a convenient way to apply common graphics effects to
a bitmap image, ActionScript’s provides a selection of built-in graphics filters.

The filters discussed in this section can be applied permanently to a
BitmapData object on the pixel level but can also dynamically be
applied to, and removed from, any display object. For details, see the
DisplayObject class’s instance variable filters in Adobe’s Action-
Script Language Reference.

Each built-in filter is represented by its own class in the flash.filters package. For
example, the blur filter, which makes a bitmap look blurry, is represented by the
flash.filters.BlurFilter class.

Some filters are easy to use even for developers without any graphics programming
experience. These include: bevel, blur, drop shadow, and glow, represented by the
classes BevelFilter (and its gradient variety, GradientBevelFilter), BlurFilter,
DropShadowFilter, and GlowFilter (and its gradient variety, GradientGlowFilter).

Figure 26-10. A Perlin-noise-filled bitmap

688 | Chapter 26: Bitmap Programming

Other filters require an existing understanding of fundamental graphics program-
ming techniques, such as convolution, displacement, and color matrices. These
include: matrix convolution, displacement mapping, and color matrix transforma-
tions, represented by the classes ConvolutionFilter, DisplacementMapFilter, and
ColorMatrixFilter.

Whatever the type of filter, the technique for applying a filter to a bitmap in Action-
Script is the same:

1. Create an instance of the desired filter class.

2. Pass the filter instance to the applyFilter() method.

For example, to apply a blur filter to a bitmap, we create an instance of the BlurFilter
class, using the following general format:

new BlurFilter(blurX, blurY, quality)

where blurX and blurY indicate the distance to blur each pixel, horizontally and verti-
cally, and quality indicates the rendering quality of the effect, expressed using one of
the three constants of the BitmapFilterQuality class.

The following code creates a medium quality blur effect that spans 15 pixels both
vertically and horizontally:

var blurFilter:BlurFilter =
 new BlurFilter(15, 15, BitmapFilterQuality.MEDIUM);

Once the filter has been created, we apply it to a BitmapData object using the follow-
ing code:

destinationBitmapData.applyFilter(sourceBitmapData, sourceRect, destPoint, filter);

where destinationBitmapData is the BitmapData object into which the filtered pixels
will be drawn, and the parameters to draw() are as follows:

sourceBitmapData
The BitmapData object to which the filter will be applied. The sourceBitmapData
and destinationBitmapData object can be the same, allowing a filter to be applied
directly to a single BitmapData object.

sourceRect
A Rectangle object specifying the region of sourceBitmapData to which the filter will
be applied. To apply the filter to an entire bitmap, use sourceBitmapData.rect.

destPoint
A Point object specifying the position within destinationBitmapData where the
filtered pixels will be placed. Note that the destPoint corresponds to the top-left
corner of the specified sourceRect, not to the top-left corner of the region of pix-
els affected by the filter operation. See the discussion of generateFilterRect() that
follows.

Applying Filters and Effects | 689

filter
The filter object to apply; for example, an instance of one of the following
classes: BevelFilter, GradientBevelFilter, BlurFilter, DropShadowFilter,
GlowFilter, GradientGlowFilter, ConvolutionFilter, DisplacementMapFilter, or
ColorMatrixFilter.

For example, the following code applies the BlurFilter object we made earlier to an
entire BitmapData object:

bitmapData.applyFilter(bitmapData, bitmapData.rect, new Point(0,0), blurFilter);

Figure 26-11 shows the result of applying a 15 × 15 BlurFilter to an image.

When a filter is applied to a bitmap, the resulting bitmap is often larger than the
original. For example, applying a drop-shadow filter may produce a shadow that
falls outside the bounds of the original bitmap. In order to accommodate the full
effect of a filter, we must be sure to draw the filtered pixels into a bitmap large
enough to hold them. To determine the size of a bitmap that will be large enough to
accommodate a filter effect, we use the BitmapData class’s instance method
generateFilterRect(). The generateFilterRect() method returns a Rectangle object
indicating the area of pixels that will be affected by a given filter operation. The
general form of generateFilterRect() is:

sourceBitmapData.generateFilterRect(sourceRect, filter)

The generateFilterRect() method returns a Rectangle object indicating the area of pix-
els that would be affected if the specified filter object (filter) were applied to the
specified rectangular region (sourceRect) of the specified BitmapData object
(sourceBitmapData).

The generateFilterRect() method does not actually apply the filter it
simply indicates the area of pixels that would be affected by the filter if
it were applied.

Figure 26-11. A blur filter applied

690 | Chapter 26: Bitmap Programming

Let’s try using generateFilterRect() in practice. Our goal is to produce a bitmap that
has a drop-shadow effect applied. First, we create the original bitmap, with no drop-
shadow effect applied. The original bitmap is a 20 × 20 gray square.

var origBitmap:BitmapData = new BitmapData(20, 20, false, 0xFFDDDDDD);

Next, we create the DropShadowFilter object. The DropShadowFilter constructor has
the following form:

DropShadowFilter(distance:Number=4.0, angle:Number=45, color:uint=0,
alpha:Number=1.0, blurX:Number=4.0, blurY:Number=4.0,
strength:Number=1.0, quality:int=1, inner:Boolean=false,

 knockout:Boolean = false, hideObject:Boolean = false)

For details on the various DropShadowFilter constructor parameters, see Adobe’s
ActionScript Language Reference, under DropShadowFilter. Here’s our
DropShadowFilter object:

var dsFilter:DropShadowFilter = new DropShadowFilter(4, 45, 0,
 1, 10, 10,
 2, BitmapFilterQuality.MEDIUM);

Next, we use generateFilterRect() to determine how big our original bitmap will be
after the DropShadowFilter is applied:

var filterRect:Rectangle = origBitmap.generateFilterRect(origBitmap.rect,
 dsFilter);

Now we can create an appropriately sized new bitmap into which to draw the origi-
nal bitmap with the drop-shadow filter applied. Notice that we specify the height
and width of the new bitmap using the results supplied by generateFilterRect()
(shown in bold):

var finalBitmap:BitmapData = new BitmapData(filterRect.width,
filterRect.height, true);

The destination BitmapData object for a drop-shadow filter effect
must be transparent.

Now that we have a source bitmap, a DropShadowFilter object, and an appropri-
ately sized destination bitmap, we can apply our drop-shadow filter, as follows:

finalBitmap.applyFilter(origBitmap, origBitmap.rect,
 new Point(-filterRect.x, -filterRect.y),
 dsFilter);

In the preceding code, notice that the supplied destPoint offsets the filtered pixels by
an amount equal to the distance that the filter effect extends above and to the left of
the supplied sourceRect. In our example, the filter effect is applied to the entire bit-
map, so the top-left corner of the sourceRect is at coordinate (0, 0). The blur of the
drop shadow extends above the original bitmap by 9 pixels and to the left of the

Applying Filters and Effects | 691

original bitmap by 9 pixels. Hence, the x-coordinate of the generated filter rectangle
is –9, and the y-coordinate of the generated filter rectangle is –9. To move the top-
left corner of the filtered pixels down and to the right (to the top-left corner of the fil-
tered bitmap), we specify a destPoint that negates the values of the filter rectangle’s x
and y coordinates:

new Point(-filterRect.x, -filterRect.y)

For review, here is the drop-shadow code in its entirety:

var origBitmap:BitmapData = new BitmapData(20, 20, false, 0xFFDDDDDD);
var dsFilter:DropShadowFilter = new DropShadowFilter(4, 45, 0,
 1, 10, 10,
 2, BitmapFilterQuality.MEDIUM);
var filterRect:Rectangle = origBitmap.generateFilterRect(origBitmap.rect,
 dsFilter);
var finalBitmap:BitmapData = new BitmapData(filterRect.width,
 filterRect.height, true);
finalBitmap.applyFilter(origBitmap, origBitmap.rect,
 new Point(-filterRect.x, -filterRect.y),
 dsFilter);

Figure 26-12 shows the results of the preceding code.

Now that we understand the basics of using filters, let’s revisit Example 26-11 to
improve the aged photograph effect. Example 26-12 shows the new code. The gen-
eral creation and application of filters in the example should now be familiar. How-
ever, the example introduces the use of a specific filter we haven’t explored:
ColorMatrixFilter. A ColorMatrixFilter alters the colors in a bitmap using a matrix
transformation, producing effects such as brightness, contrast, saturation adjust-
ments, and hue rotation. The example shows how to use ColorMatrixFilter in its raw
state, but at least two developers offer freely available code for performing common
matrix transformations:

Mario Klingemann’s ColorMatrix Class
http://www.quasimondo.com/archives/000565.php

Grant Skinner’s ColorMatrix Class
http://www.gskinner.com/blog/archives/2005/09/flash_8_source.html

For background information on color matrix transformations, see Using Matrices for
Transformations, Color Adjustments, and Convolution Effects in Flash, by Phil Chung,
at http://www.adobe.com/devnet/flash/articles/matrix_transformations_04.html.

Figure 26-12. A drop-shadow filter applied

http://www.quasimondo.com/archives/000565.php
http://www.gskinner.com/blog/archives/2005/09/flash_8_source.html
http://www.adobe.com/devnet/flash/articles/matrix_transformations_04.html

692 | Chapter 26: Bitmap Programming

Example 26-12. An aged photograph effect, now with filters

package {
 import flash.display.*;
 import flash.events.*;
 import flash.geom.*;
 import flash.net.*;
 import flash.filters.*;

 public class ScrapbookImage extends Sprite {
 private var numLoaded:int = 0;
 private var photoLoader:Loader; // The photo loader
 private var borderLoader:Loader; // The borter loader

 public function ScrapbookImage () {
 // Load the photograph
 photoLoader = new Loader();
 photoLoader.contentLoaderInfo.addEventListener(Event.INIT,
 initListener);
 photoLoader.load(new URLRequest("photo.jpg"));

 // Load the border
 borderLoader = new Loader();
 borderLoader.contentLoaderInfo.addEventListener(Event.INIT,
 initListener);
 borderLoader.load(new URLRequest("border.png"));
 }

 // Handles Event.INIT events for the loaded images
 private function initListener (e:Event):void {
 numLoaded++;
 // When those images have loaded, apply the effect
 if (numLoaded == 2) {
 makeScrapbookImage();
 }
 }

 // Combines the border image with the photo image to produce
 // the aged photograph effect
 public function makeScrapbookImage ():void {
 // Retrieve the BitmapData object for the photograph
 var photoData:BitmapData = Bitmap(photoLoader.content).bitmapData;
 // Retrieve the BitmapData object for the border
 var borderData:BitmapData = Bitmap(borderLoader.content).bitmapData;
 // Create a BitmapData object that will hold the final
 // photograph image
 var tempBitmapData:BitmapData = new BitmapData(borderData.width,
 borderData.height,
 true,
 0x00000000);

 // Copy the pixels from the photograph, while applying the
 // border's Alpha channel

Applying Filters and Effects | 693

 tempBitmapData.copyPixels(photoData,
 borderData.rect,
 new Point(0,0),
 borderData,
 new Point(0,0),
 false);

 // A ColorMatrixFilter that will increase brightness
 var brightnessOffset:int = 70;
 var brightnessFilter:ColorMatrixFilter = new ColorMatrixFilter(
 new Array(1,0,0,0,brightnessOffset,
 0,1,0,0,brightnessOffset,
 0,0,1,0,brightnessOffset,
 0,0,0,1,0));

 // A blur filter to make the image look fuzzy
 var blurFilter:BlurFilter = new BlurFilter(1, 1);

 // A drop shadow filter to make the image look like it's on paper
 var dropShadowFilter:DropShadowFilter = new DropShadowFilter(4, 35,
 0x2E2305, .6, 5, 12, 4, BitmapFilterQuality.MEDIUM);

 // Calculate the area required to display the image
 // and its drop shadow
 var filteredImageRect:Rectangle = tempBitmapData.generateFilterRect(
 tempBitmapData.rect, dropShadowFilter);

 // Create a BitmapData object that will hold the final image
 var scrapbookImage:BitmapData =
 new BitmapData(filteredImageRect.width,
 filteredImageRect.height,
 true,
 0xFFFFFFFF);

 // Apply the ColorMatrixFilter, which increases the brightness
 tempBitmapData.applyFilter(tempBitmapData,
 tempBitmapData.rect,
 new Point(0,0),
 brightnessFilter);

 // Apply the BlurFilter
 tempBitmapData.applyFilter(tempBitmapData,
 tempBitmapData.rect,
 new Point(0,0),
 blurFilter);

 // Apply the DropShadowFilter
 scrapbookImage.applyFilter(tempBitmapData,
 tempBitmapData.rect,
 new Point(-filteredImageRect.x,
 -filteredImageRect.y),
 dropShadowFilter);

Example 26-12. An aged photograph effect, now with filters (continued)

694 | Chapter 26: Bitmap Programming

Figure 26-13 shows the result of the code from Example 26-12.

Freeing Memory Used by Bitmaps
Every pixel in every BitmapData object occupies a little bit of system memory—four
bytes to be precise (one byte for each color channel). Though the memory used by
each pixel is insignificant on its own, pixels can collectively add up to form a signifi-
cant memory demand. Hence, to reduce the amount of memory required by the
Flash runtime when working with bitmaps, every ActionScript program should
ensure that all BitmapData objects become eligible for garbage collection when they
are no longer required.

To make a given BitmapData object eligible for garbage collection, either remove all
references to it or remove all references to objects that reference it. Either way, the
memory used by the BitmapData object will automatically be freed by the garbage
collector in a future mark-and-sweep cycle.

To immediately free the memory occupied by the pixels of the BitmapData object
(rather than waiting for the garbage collector to free it), use the BitmapData class’s

 // Associate the scrapbookImage BitmapData object with a Bitmap
 // object for on-screen display
 var b:Bitmap = new Bitmap(scrapbookImage);
 addChild(b);
 b.x = 100;
 b.y = 75;
 }
 }
}

Figure 26-13. An aged photograph effect, now with filters

Example 26-12. An aged photograph effect, now with filters (continued)

Words, Words, Words | 695

instance method dispose(). For example, the following code creates a BitmapData
object that consumes 1600 bytes (20 pixels wide × 20 pixels high × 4 bytes per pixel):

var imgData:BitmapData = new BitmapData(20, 20, false, 0xFF00FF00);

To immediately free the 1600 bytes of memory, we use dispose(), as follows:

imgData.dispose(); // Free memory used by imgData

The dispose() method frees the memory consumed by imgData’s pixel information,
but does not immediately free the memory consumed by the imgData object, itself.
The imgData object’s memory is freed according to the normal garbage collection
cycle.

Once dispose() has been invoked on a BitmapData object, that object can no longer
be used. Accessing its methods and variables generates an ArgumentError exception.

The dispose() method can be useful for controlling memory consumed by functions
or loops that use a bitmap only temporarily, as might be the case when generating a
filtered image by combining multiple temporary images.

Words, Words, Words
We’ve spent the preceding two chapters creating images to display on screen. In the
next chapter, we’ll learn how to create text to display on screen.

696

Chapter 27CHAPTER 27

Text Display and Input 28

Flash Player offers an extensive, sophisticated API for working with text. In this
chapter we’ll look at some of its key features: creating and displaying text, format-
ting text, and handling text input.

The information presented in this chapter applies specifically to Flash Player (both
the browser add-on and standalone versions) but is also generally applicable to any
Flash runtime that supports full-featured text display and input, such as Adobe AIR.
Note, however, that unlike Flash Player, Adobe AIR provides full-featured HTML
and CSS support, analogous to that found in web browsers such as Microsoft
Internet Explorer and Mozilla Firefox. When working with other Flash runtimes, be
sure to consult the appropriate documentation for information on text support.

The centerpiece of Flash Player’s text API is the TextField class, which provides con-
trol over text displayed on screen.

In this book (and in most ActionScript documentation), the term “text
field,” refers, in a general sense, to a given text field on screen and its
corresponding ActionScript TextField instance. Meanwhile, the phrase
“a TextField object” refers more specifically to the ActionScript object
that controls a text field.

Before we start creating and working with text, let’s take a quick look at the core
classes in Flash Player’s text API, listed in Table 27-1. The text API’s feature set can
be broken into the following general categories:

• Controlling on-screen text

• Formatting text

• Setting FlashType text-rendering options

• Managing fonts (e.g, determining available fonts)

• Retrieving text metrics (measurements)

• Supplying constant values

Text Display and Input | 697

Table 27-1 presents a brief overview of each class in the text API, categorized accord-
ing to the preceding general categories. All classes in the text API reside in the pack-
age flash.text. Note that this chapter offers a good introduction to ActionScript’s text
API but does not cover all its features exhaustively. The text API is vast. For further
study, be sure to explore the flash.text package in Adobe’s ActionScript Language
Reference. Furthermore, for additional and more specialized control over text, con-
sider using the Label, Text, TextArea, and TextInput components provided by the
Flex framework or the Label, TextArea, and TextInput components provided by the
Flash authoring tool.

Table 27-1. Text API overview

Purpose Class Description

Controlling on-screen text TextField Represents the following types of text
fields:

• Text fields created with ActionScript
code

• Text fields of type “dynamic” or
“input,” created in the Flash
authoring tool

StaticText Represents text fields of type “static”,
created in the Flash authoring tool.

TextSnapshot A string containing the text of all static
text fields in a given
DisplayObjectContainer instance.

Formatting text TextFormat A simple data class representing char-
acter-formatting information.

StyleSheet Represents a style sheet that specifies
character-formatting information.
Based on the W3C’s Cascading style
sheet Level 1 (CSS1) specification.

Setting FlashType rendering options CSMSettings A simple data class used to provide
Flash Player’s FlashType text renderer
with custom antialiasing settings for
rendering a particular font at a particu-
lar size. Used with the TextRenderer
class’s static method
setAdvancedAntiAliasingTable().

TextRenderer Controls rendering settings for Flash
Player’s FlashType text renderer.

Managing fonts Font Provides access to the list of fonts avail-
able on the system or embedded in .swf
files, and registers runtime-loaded fonts.

Retrieving text measurements TextLineMetrics Describes measurements for a single
line of text in a text field.

698 | Chapter 27: Text Display and Input

Table 27-2 presents a brief overview of text-API classes whose purpose is simply to
provide access to special values via class constants.

Now that we have a general familiarity of the tools available in the text API, let’s
make some text!

Supplying constant values AntiAliasType, FontStyle, FontType,
GridFitType, TextColorType,
TextDisplayMode, TextFieldAutoSize,
TextFieldType, TextFormatAlign

These classes define constants used to
specify various variable and parameter
values in the text API. For details, see
Table 27-2.

Table 27-2. Text API constant-value classes

Purpose Class Description

Constants used when choosing a
text renderer

AntiAliasType Defines constants that describe types of antialiasing. Used
with the TextField class’s instance variable
antiAliasType.

Constants used when setting
FlashType rendering options

FontStyle Defines constants that describe font variations (e.g., bold,
italic). Used with the TextRenderer class’s static method
setAdvancedAntiAliasingTable() and the Font class’s
instance variable fontStyle.

GridFitType Defines constants that describe types of pixel-grid fitting.
Used with the TextField class’s instance variable
gridFitType.

TextColorType Defines constants that describe types of text color (“dark” or
“light”). Used with the TextRenderer class’s static method
setAdvancedAntiAliasingTable().

TextDisplayMode Defines constants that describe types of subpixel anti-
aliasing. Used with the TextRenderer class’s static variable
displayMode.

Constants used when setting
text field options

TextFieldAutoSize Defines constants that describe automatic sizing options.
Used with the TextField class’s instance variable
autoSize.

TextFieldType Defines constants that describe types of text fields
(“dynamic” or “input”). Used with the TextField class’s
instance variable type.

Constants used when retrieving
font lists

FontType Defines constants that describe types of font locations
(“device” or “embedded”). Used with the Font class’s
static method enumerateFonts().

Constants used when setting
text alignment

TextFormatAlign Defines constants that describe types of text alignment
(i.e., “center”, “left”, “right”, or “justify”). Used with the
TextFormat class’s instance variable align.

Table 27-1. Text API overview (continued)

Purpose Class Description

Creating and Displaying Text | 699

Creating and Displaying Text
To display text with ActionScript, we first create a TextField object. The TextField
object represents a rectangular text container that can be displayed on screen and
filled with formatted text via code or user input. For example, the following code cre-
ates a TextField object and assigns it to the variable t:

var t:TextField = new TextField();

After creating a TextField object, we use the TextField class’s instance variable text to
specify the text to display. For example, the following code specifies “Hello world”
as the text to display in t:

t.text = "Hello world";

Finally, to display the text field on screen, we pass the TextField object to the
addChild() or addChildAt() method of any DisplayObjectContainer that is currently
on the display list. For example, assuming someContainer is on the display list, the
following code causes the text field t to appear on screen:

someContainer.addChild(t);

Example 27-1 shows the preceding code in the context of a demonstration class,
HelloWorld. In the example, notice that we import the TextField class (along with all
classes in the flash.text package) before using it.

The result of the code from Example 27-1 is shown in Figure 27-1. The figure shows
the text as it would appear by default on Windows XP; we’ll cover fonts and format-
ting later in this chapter.

Example 27-1. Displaying text

package {
 import flash.display.*;
 import flash.text.*; // Import TextField and other classes
 // in the flash.text package

 public class HelloWorld extends Sprite {
 public function HelloWorld () {
 // Create a TextField object
 var t:TextField = new TextField();

 // Specify the text to display
 t.text = "Hello world";

 // Add the TextField object to the display list
 addChild(t);
 }
 }
}

700 | Chapter 27: Text Display and Input

While the preceding figure shows the text in the text field, it does not show the text
field’s rectangular display region. By default, a text field’s rectangular display region
is set to 100 pixels wide by 100 pixels high. Figure 27-2 revises Figure 27-1 to show a
dashed line representing the text field’s rectangular display region.

The width and height of a text field’s rectangular display region can be set explicitly
using the TextField class’s instance variables width and height. For example, the fol-
lowing code sets t’s rectangular display region’s width to 200 and height to 50:

t.width = 200;
t.height = 50;

Figure 27-3 shows the result of the changes made by the preceding code, again using
a dashed line to represent the text field’s rectangular display region.

By default, a text field’s rectangular display region is not visible on screen. However,
we can make it visible by setting one or both of the TextField class’s instance vari-
ables background and border to true. The background variable specifies whether to fill
the text field’s rectangular display region with a solid color, while the border vari-
able specifies whether to draw a 1-pixel-thick line around the text field’s rectangular
display region. The color of the background and border is specified by assigning 24-
bit RGB color values to backgroundColor and borderColor.

Example 27-2 updates our HelloWorld class to display t’s rectangular display region
with a dark gray border and a light gray background. The new code is shown in bold.

Figure 27-1. A text field

Figure 27-2. A text field and its rectangular display region

Figure 27-3. Custom size for a text field’s rectangular display region

Hello world

Hello world

Hello world

Creating and Displaying Text | 701

The result of the code from Example 27-2 is shown in Figure 27-4.

Word Wrapping
By default, when the width of the text in a text field exceeds the width of the text
field’s rectangular display area, the excess text is hidden from view. For example, the
following code sets t’s text to a string that is wider than 100 pixels in the default font
on Windows XP:

t.text = "Hello world, how are you?";

The result is shown in Figure 27-5.

Example 27-2. Displaying text with a border and background

package {
 import flash.display.*;
 import flash.text.*; // Import TextField and other classes
 // in the flash.text package

 public class HelloWorld extends Sprite {
 public function HelloWorld () {
 var t:TextField = new TextField(); // Create TextField object
 t.text = "Hello world"; // Set text to display
 t.background = true; // Turn on background
 t.backgroundColor = 0xCCCCCC; // Set background color to light gray
 t.border = true; // Turn on border
 t.borderColor = 0x333333; // Set order color to dark gray

 addChild(t); // Add text field to the display list
 }
 }
}

Figure 27-4. A text field with a border and background

Figure 27-5. Excess text hidden from view

Hello world

Hello world, how ar

702 | Chapter 27: Text Display and Input

To prevent text that exceeds the width of a text field’s rectangular display area from
being hidden, we can enable automatic line-breaking in a text field by setting the
TextField class’s instance variable wordWrap to true. When automatic line-breaking is
enabled, long lines of text soft wrap—that is, any line that is wider than the text
field’s rectangular display region will automatically flow onto the following line. For
example, this code enables automatic line-breaking for the TextField object t:

t.wordWrap = true;

The result is shown in Figure 27-6.

Word wrapping is a display feature only; no carriage return or newline character
appears in the source text where wrapping occurs. If wordWrap is true, changing the
text field’s width causes long lines to soft wrap at a different point (i.e., the text
reflows). Hard returns can be added to a text field using the "\n" escape sequence or,
in HTML text, the
 tag. (We’ll study the use of HTML in text fields later in this
chapter, in the section “Formatting Text with HTML.”)

Don’t confuse wordWrap with multiline (covered later in the section
“Formatting Text with HTML” and “Text Field Input”). The
multiline variable affects the ability of HTML and user input to cause
line breaks, while wordWrap dictates whether ActionScript performs
automatic line-breaking.

Automatic Resizing
To force a text field’s rectangular display region to automatically resize to match the
size of the text field’s text, we use the TextField class’s instance variable autoSize.
Setting autoSize to anything other than TextFieldAutoSize.NONE (the default) ensures
that a text field will always be large enough to display its assigned text.

The autoSize variable overrides any absolute sizes specified by a
TextField object’s height or width.

The autoSize variable has four possible values: TextFieldAutoSize.NONE,
TextFieldAutoSize.LEFT, TextFieldAutoSize.RIGHT, and TextFieldAutoSize.CENTER.
These values dictate the direction in which the text field should expand or contract

Figure 27-6. Automatic line-breaking

Hello world, how
are you?

Creating and Displaying Text | 703

to fit its text, where NONE means don’t resize, LEFT means keep the left side anchored
and resize right, RIGHT means keep the right side anchored and resize left, and CENTER
means resize evenly on both sides. In the latter three cases, where word wrapping or
hard line breaks occur, the text field’s bottom border will also resize to accommo-
date multiple lines in the text.

Example 27-3 creates a text field whose rectangular display region resizes on the
right and, where line breaks occur, on the bottom.

The result of the code from Example 27-3 is shown in Figure 27-7. Compare
Figure 27-7 with the earlier Figure 27-5, which showed a text field that uses neither
automatic resizing nor word wrap.

Now suppose we add a line break to t’s text, as follows (the line break is inserted
using the character sequence "\n"):

t.text = "Hello world." + "\n" + "How are you?";

Figure 27-8 shows the resulting text field. Notice that ActionScript automatically
resizes the text field’s rectangular display region to perfectly accommodate the text
by expanding both the right and bottom borders.

Example 27-3. Resizable right and bottom borders

package {
 import flash.display.*;
 import flash.text.*;

 public class HelloWorld extends Sprite {
 public function HelloWorld () {
 var t:TextField = new TextField();
 t.text = "Hello world, how are you?";
 t.background = true;
 t.backgroundColor = 0xCCCCCC;
 t.border = true;
 t.borderColor = 0x333333;

 // Make t's rectangular display region automatically resize to
 // accommodate t.text.
 t.autoSize = TextFieldAutoSize.LEFT;

 addChild(t);
 }
 }
}

Figure 27-7. Resizable right and bottom borders

Hello world, how are you?

704 | Chapter 27: Text Display and Input

Setting wordWrap to true and autoSize to anything but TextFieldAutoSize.NONE results
in a text field whose bottom border automatically expands or contracts, but whose
left, right, and top borders remained fixed. Example 27-4 demonstrates, showing a
text field with a resizable bottom border.

The result of the code in Example 27-4 is shown in Figure 27-9. Notice that the rect-
angular display container’s width is fixed at 100 pixels (the default), but the bottom
border expands to accommodate wrapped text.

To create a text field with an expandable bottom border and a fixed
width, set autoSize to anything but TextFieldAutoSize.NONE, and set
wordWrap to true.

Figure 27-8. Resizable right and bottom borders, with line break

Example 27-4. Resizable bottom border only

package {
 import flash.display.*;
 import flash.text.*;

 public class HelloWorld extends Sprite {
 public function HelloWorld () {
 var t:TextField = new TextField();
 t.text = "Hello world, how are you?";
 t.background = true;
 t.backgroundColor = 0xCCCCCC;
 t.border = true;
 t.borderColor = 0x333333;

 // In combination, the following two lines make t's bottom border
 // automatically resize to accommodate t.text.
 t.autoSize = TextFieldAutoSize.LEFT;
 t.wordWrap = true;

 addChild(t);
 }
 }
}

Figure 27-9. Resizable bottom border only

Hello world.
How are you?

Hello world, how
are you?

Modifying a Text Field’s Content | 705

Rotated, Skewed, and Transparent Text Requires Embedded Fonts
By default, Flash Player does not render rotated or skewed text fields to the screen.
For example, if we were to add the following text field to the display list, the text
“Hello world” would not appear on screen because the text field is rotated:

var t:TextField = new TextField();
t.text = "Hello world";
t.rotation = 30; // Rotate text

Likewise, if we were to add the following text field to the display list, the text “Hello
world” would not appear on screen because the text field is skewed:

var t:TextField = new TextField();
t.text = "Hello world";
t.transform.matrix = new Matrix(1, 1, 0, 1); // Skew text

Also by default, Flash Player renders all text fields at full opacity, even when they are
set to transparent via the TextField class’s instance variable alpha. For example, if we
were to add the following text field to the display list, the text “Hello world” would
appear fully opaque, even though the text field’s alpha percentage is set to 20%:

var t:TextField = new TextField();
t.text = "Hello world";
t.alpha = .2;

Flash Player renders accurate rotation, skew, and transparency for text fields that use
embedded fonts only. For information on rendering text using embedded fonts, see
the section “Fonts and Text Rendering,” later in this chapter.

Modifying a Text Field’s Content
Once a text field’s text content has been set, it can be reassigned via the text vari-
able. For example, the following code creates a TextField object and sets it text con-
tent to “Hello”:

var t:TextField = new TextField();
t.text = "Hello";

The following code completely reassigns t’s text to the string “Goodbye”:

t.text = "Goodbye";

To add new text following a text field’s existing text (rather than completely reassigning
the text field’s text), we use either the TextField class’s instance method appendText() or
the += operator. For example, the following code adds the string “...hope to see you
again!” to the text “Goodbye”:

t.appendText("...hope to see you again!");

After the preceding line of code executes, t.text has the value:

"Goodbye...hope to see you again!"

706 | Chapter 27: Text Display and Input

The appended text adopts the formatting of the last character in the text field, and
any existing text retains its original formatting. If the text field contains no text when
appendText() is called, the appended text is formatted with the text field’s default
text format.

For information on text formatting and the default text format, see the
next section, “Formatting Text Fields.”

Like the preceding code, the following code adds new text at the end of a text field’s
existing text, but does so with the += operator rather than appendText():

t.text += " Come again soon.";

Unlike appendText(), the += operator resets the formatting of all text in the text field
to the default text format. The += operator is also much slower than appendText(),
and should, therefore, be avoided.

To replace an arbitrary sequence of characters in a text field with a new sequence of
characters, we use the TextField class’s instance method replaceText(), which has the
following general form:

theTextField.replaceText(beginIndex, endIndex, newText)

The replaceText() method deletes the characters in theTextField from beginIndex to
endIndex-1, and replaces them with newText. The new amalgamated value is reflected
by theTextField.text.

For example, the following code replaces the characters “bcd” in the text “abcde”
with the new text “x”:

var t:TextField = new TextField();
t.text = "abcde";
t.replaceText(1, 4, "x");
trace(t.text); // Displays: axe

If beginIndex and endIndex are equal, the newText is inserted immediately before the
specified beginIndex. For example, the following code inserts the character “s”
immediately before the character “t”:

var t:TextField = new TextField();
t.text = "mat";
t.replaceText(2, 2, "s");
trace(t.text); // Displays: mast

The remainder of this section describes formatting issues related to
replaceText() and requires an understanding of the text formatting
techniques discussed in the next section.

Modifying a Text Field’s Content | 707

The formatting of text inserted via replaceText() varies according to the supplied val-
ues for beginIndex and endIndex. When beginIndex and endIndex are different, the
inserted text adopts the formatting of the character after the inserted text (i.e., the
character at endIndex). Any existing text retains its original formatting. For example,
consider the following code, which creates a text field that displays the word “lunch-
time,” with the characters “time” formatted in bold:

var boldFormat:TextFormat = new TextFormat();
boldFormat.bold = true;

var t:TextField = new TextField();
t.text = "lunchtime";
t.setTextFormat(boldFormat, 5, 9); // Bold the word "time"

The resulting output is:

lunchtime

If we now use replaceText() to replace the word “lunch” with the word “dinner,” as
follows:

t.replaceText(0, 5, "dinner"); // Replace "lunch" with "dinner"

then the word “dinner” is formatted in bold, matching the formatting of the charac-
ter at endIndex (“t”). The resulting output is:

dinnertime

To insert text in a new format, rather than adopt the existing format of the text field,
we use replaceText() to assign the new text, then immediately assign the desired for-
mat to the new text. For example, the following code again replaces the word
“lunch” with the word “dinner,” but this time also formats the newly added text:

t.replaceText(0, 5, "dinner"); // Replace "lunch" with "dinner"
var regularFormat:TextFormat = new TextFormat();
regularFormat.bold = false;
t.setTextFormat(regularFormat, 0, 6); // Un-bold the word dinner

The output of the preceding code is:

dinnertime

When replaceText()’s beginIndex and endIndex arguments are both 0, text is inserted
at the beginning of the text field, and the inserted text adopts the text field’s default
text format. Any existing text retains its original formatting.

When beginIndex and endIndex are equal, and are both greater than 0, the inserted text
adopts the formatting of the character immediately preceding the inserted text (i.e., the
character at endIndex-1). Any existing text retains its original formatting. For example,
the following code once again creates a text field that displays the word “lunchtime,”
with “time” in bold:

var boldFormat:TextFormat = new TextFormat();
boldFormat.bold = true;

708 | Chapter 27: Text Display and Input

var t:TextField = new TextField();
t.text = "lunchtime";
t.setTextFormat(boldFormat, 5, 9); // Bold the word "time"

This time, we insert the text “break” immediately before the character “t”:

t.replaceText(5, 5, "break"); // Insert "break" before "t"

Because the character at endIndex-1 (“h”) is not formatted in bold, the word “break”
is also not formatted in bold, and the resulting output is:

lunchbreaktime

Now let’s take a closer look at text formatting techniques.

Formatting Text Fields
ActionScript provides three different tools for applying text formatting: the flash.text.
TextFormat class, HTML, and the flash.text.StyleSheet class. All three tools offer con-
trol over the following paragraph and character formatting options, but use different
syntax:

Paragraph-level formatting
Alignment, indentation, bullets, leading (line spacing, pronounced “led-ing”),
tab stops

Character-level formatting
Font face, font size, font weight (bold or normal), font color, font style (italic or
normal), kerning, letter spacing (tracking), text underline, hypertext links

Paragraph-level formatting applies to entire paragraphs, where a paragraph is defined
as a span of text delimited by line breaks (\n,
, or <P>). By contrast, character-
level formatting applies to arbitrary spans of individual characters, delimited using
text indices or HTML or XML tags.

The TextFormat class offers detailed programmatic control over text formatting and
is typically used when generating textual output dynamically. The StyleSheet class
helps separate formatting instructions from formatted content and is typically used
when formatting large bodies of HTML or XML content. HTML formatting instruc-
tions offer a simple, intuitive way to format text, but pollute text content with for-
matting markup. HTML is typically used when convenience is more important than
flexibility, as might be the case when formatting text in an application prototype or
when formatting short runs of text that are guaranteed not to change over the course
of a project.

The TextFormat class is fully compatible and interchangeable with
HTML-based formatting instructions. However, the StyleSheet class is
compatible with neither the TextFormat class nor HTML-based for-
matting instructions. Text fields that use style sheets can be formatted
with instances of the StyleSheet class only.

Formatting Text Fields | 709

The following sections discuss the general usage of TextFormat objects, HTML, and
StyleSheet objects. Each section shows examples of common formatting operations.
For coverage of each individual formatting option, see the following entries in
Adobe’s ActionScript Language Reference:

• TextFormat class

• TextField class’s instance variable htmlText

• StyleSheet class

Assigning a value to a TextField object’s text variable removes any
custom formatting associated with the field. Use the TextField class’s
instance method replaceText() to add text to a field while retaining its
formatting.

Formatting Text with the TextFormat Class
The general process for applying text formatting using the TextFormat class is as
follows:

1. Create a TextFormat object.

2. Set the TextFormat object’s variables to reflect the desired formatting.

3. Apply the format to one or more characters using the TextField class’s instance
method setTextFormat().

Let’s apply the preceding steps to an example. Our goal is to format all the text in a
text field using the font Arial, size 20 pt, in bold.

In ActionScript, all font sizes are specified in pixels. A font size mea-
surement of 20 pt is interpreted by Flash Player to mean 20 pixels.

We’ll start our formatting code by creating a text field that will automatically resize
to fit our formatted text:

var t:TextField = new TextField();
t.text = "ActionScript is fun!";
t.autoSize = TextFieldAutoSize.LEFT;

Next, we’ll create the TextFormat object:

var format:TextFormat = new TextFormat();

Then, we’ll set the font, size, and bold variables of our text field object to our
desired values: "Arial", 20, and true, as follows:

format.font = "Arial";
format.size = 20;
format.bold = true;

710 | Chapter 27: Text Display and Input

Taken in combination, the TextFormat object’s variables describe a formatting style
that can be applied to a given character or span of characters. The available variables
are listed in the next section, “Available TextFormat variables.”

Once we’ve created a TextFormat object and set its variables, we can then apply the
format to a character or span of characters using setTextFormat(), which takes the
following form:

theTextField.setTextFormat(textFormat, beginIndex, endIndex)

In the preceding generalized code, theTextField is the text field whose text will be
formatted, and textFormat is the TextFormat object containing formatting instruc-
tions. The beginIndex parameter is an optional integer indicating the index of the
first character whose formatting will be set by textFormat. The endIndex parameter is
an optional integer indicating the index of the character after the last character
whose formatting will be set by textFormat.

When beginIndex and endIndex are both supplied, setTextFormat() formats the span
of characters from beginIndex to endIndex-1 according to the variables of textFormat.
When beginIndex is supplied but endIndex is not supplied, setTextFormat() formats
the single character at beginIndex according to the variables of textFormat. When
neither beginIndex nor endIndex are supplied, setTextFormat() formats all characters
in theTextField according to the variables of textFormat. Any textFormat variable
whose value is set to null has no affect on the formatting of the target span of charac-
ters (the existing formatting for the variable in question is retained).

Let’s try using setTextFormat() to format the characters in our example text field, t.
Here’s the code:

t.setTextFormat(format);

For review, Example 27-5 shows the complete code required to format all the text in
a text field using the font Arial, 20 pt, bold.

The result of the code in Example 27-5 is shown in Figure 27-10.

Example 27-5. Formatting a text field

// Create the text field
var t:TextField = new TextField();
t.text = "ActionScript is fun!";
t.autoSize = TextFieldAutoSize.LEFT;

// Create the TextFormat object and set its variables
var format:TextFormat = new TextFormat();
format.font = "Arial";
format.size = 20;
format.bold = true;

// Apply the format
t.setTextFormat(format);

Formatting Text Fields | 711

Now suppose we want to format all the text in our text field using Arial, 20 pt, but
we want the word “fun” only in bold. We need two TextFormat objects, one for the
general font settings and one for the specific bold setting. Example 27-6 shows the
code (note the use of the beginIndex and endIndex parameters in the second call to
setTextFormat()):

Notice that sequential formatting is not destructive; formatting changes are applied
only for variables that are set, so in the second call to setTextFormat() the word
“fun” retains its font face (Arial) and size (20), and gains the formatting option bold.

Now that we’ve seen how to apply a format, let’s briefly consider the complete list of
formatting options available through the TextFormat class.

Available TextFormat variables

Tables 27-3 and 27-4 list the character and paragraph-level formatting variables of
the TextFormat class. Skim over the tables for general familiarity. For detailed
descriptions of each variable, see the TextFormat class entry in Adobe’s ActionScript
Language Reference.

Table 27-3 lists the TextFormat variables used to set character-level formatting
options.

Figure 27-10. Text formatted with a TextFormat object

Example 27-6. Two formats

// Create the text field
var t:TextField = new TextField();
t.text = "ActionScript is fun!";
t.autoSize = TextFieldAutoSize.LEFT;

// Create the TextFormat object for the general font settings
var fontFormat:TextFormat = new TextFormat();
fontFormat.font = "Arial";
fontFormat.size = 20;

// Create the TextFormat object for the specific bold setting
var boldFormat:TextFormat = new TextFormat();
boldFormat.bold = true;

// Apply the general font settings to the entire text field
t.setTextFormat(fontFormat);

// Apply the specific bold settings to the word fun only
t.setTextFormat(boldFormat, 16, 19);

ActionScript is fun!

712 | Chapter 27: Text Display and Input

Table 27-4 lists the TextFormat variables used to set paragraph-level formatting
options.

Of all of the variables listed in the preceding two tables, the TextFormat class’s
instance variable font bears special attention. Its value specifies the name of a font,
as a string. As we’ll learn later in the section “Fonts and Text Rendering,” develop-
ers can instruct Flash Player to display text using fonts installed on the end user’s
local system (known as device fonts) or fonts included with a .swf file (known as
embedded fonts). Accordingly, the font variable must specify either the name of a
font on the local system or the name of a font embedded in a .swf file. For device
fonts only, ActionScript also offers three special font names—“_sans,” “_serif,” and
“_typewriter”—which can be used to indicate that text should be rendered in the
default sans-serif, serif, or monospace font for the local system. For example,

Table 27-3. Character-level TextFormat variables

Variable Description

bold Boolean; specifies bold character display

color Specifies character color as a 24-bit integer (e.g., 0xFF0000)

font Specifies the font

italic Boolean; specifies italicized character display

kerning Boolean; specifies whether to automatically kern character pairs

letterSpacing Specifies the distance between letters (tracking), in pixels

size Specifies character font size, in points (1/72 inch)

target Specifies the window or frame for a hypertext link

underline Boolean; specifies underlined character display

url Specifies a hypertext link

Table 27-4. Paragraph-level TextFormat variables

Variable Description

align Specifies horizontal paragraph alignment (left, right, center, or justify), using one of the
TextFormatAlign class constants

blockIndent Specifies the distance, in pixels, a paragraph is indented from the text field’s left border

bullet Specifies whether to add bullets to paragraphs

indent Specifies the distance, in pixels, a paragraph’s first line is indented from the text field’s left border

leading Specifies the amount of vertical space, in pixels, between lines of text

leftMargin Specifies the horizontal distance, in pixels, between the left border of the text field and the left edge
of a paragraph

rightMargin Specifies the horizontal distance, in pixels, between the right border of the text field and the right
edge of a paragraph

tabStops Specifies horizontal tab stops, in pixels

Formatting Text Fields | 713

specifying “_sans” as a font name when using device fonts results in the font Arial on
Microsoft Windows XP and Helvetica on MacOS X in the United States.

We’ll learn more about specifying font names later in this chapter. For the purposes
of the current discussion, we’ll assume text is displayed using fonts installed on the
end user’s local system (device fonts), and we’ll use names of fonts installed on
Microsoft’s Windows XP operating system.

Embedded font warning: Bold and italic require separate fonts

Note that when text formatted in bold or italic is rendered using embedded fonts, the
bold and italic variations of the appropriate font(s) must be made available to Flash
Player as embedded fonts. For example, consider the following code, which creates a
text field containing the words “hello” and “world,” with “hello” formatted in Courier
New and “world” formatted in Courier New, bold:

// Create the text field
var t:TextField = new TextField();
t.text = "hello world";

// Create TextFormat objects
var fontFormat:TextFormat = new TextFormat();
fontFormat.font = "Courier New";
var boldFormat:TextFormat = new TextFormat();
boldFormat.bold = true;

// Apply formatting
t.setTextFormat(fontFormat, 0, 11);
t.setTextFormat(boldFormat, 6, 11);

In order to render the preceding text field using embedded fonts, Flash Player must
be given access to embedded versions of both Courier New and Courier New Bold.
For complete details, see the section “Using bold and italic with embedded fonts,”
later in this chapter.

setTextFormat() does not apply to future text assignments

The setTextFormat() method can be used to format a text field’s text only after that
text has been added to the text field. For example, in the following code, we mistak-
enly invoke setTextFormat() before assigning the text we intend to format:

// Create the text field
var t:TextField = new TextField();
t.autoSize = TextFieldAutoSize.LEFT;

// Create the TextFormat object and set its variables
var format:TextFormat = new TextFormat();
format.font = "Arial";
format.size = 20;
format.bold = true;

714 | Chapter 27: Text Display and Input

// Apply the format
t.setTextFormat(format);

// Assign the text
t.text = "ActionScript is fun!";

When the setTextFormat() method is invoked in the preceding code, t does not yet
contain any text, so the attempt to apply formatting has no effect. The correct code is:

// Create the text field
var t:TextField = new TextField();
t.autoSize = TextFieldAutoSize.LEFT;

// Create the TextFormat object and set its variables
var format:TextFormat = new TextFormat();
format.font = "Arial";
format.size = 20;
format.bold = true;

// Assign the text
t.text = "ActionScript is fun!";

// Apply the format
t.setTextFormat(format);

When formatting text with setTextFormat(), always assign the text
before formatting it.

For information on applying formatting to a text field before assigning its text, see
the upcoming section, “Default formatting for text fields.”

Applying paragraph-level formatting

To apply any of the paragraph-level formatting shown earlier in Table 27-4, we must
apply the format to the first character in a paragraph (recall that in ActionScript, a
paragraph is defined as a span of text delimited by line breaks).

For example, consider the following code, which first creates a text field with two
paragraphs, and then creates a TextFormat object that specifies a paragraph-level for-
matting option, center alignment:

// Create the text field
var t:TextField = new TextField();
t.width = 300;
t.border = true;
// The paragraphs are separated by a single line break (represented by
// the escape sequence "\n")
t.text = "This is paragraph one.\nThis is paragraph two.";

// Create the TextFormat object
var alignFormat:TextFormat = new TextFormat();
alignFormat.align = TextFormatAlign.CENTER;

Formatting Text Fields | 715

To set the alignment for the first paragraph in the text field only, we apply the for-
mat to the first character in the first paragraph, which resides at index 0:

t.setTextFormat(alignFormat, 0);

To set the alignment for the second paragraph only, we apply the format to the first
character in the second paragraph, which resides at index 23:

t.setTextFormat(alignFormat, 23);

To set the alignment for a range of paragraphs, we apply the format using beginIndex
and endIndex arguments that include the desired paragraphs:

t.setTextFormat(alignFormat, 0, 24);

When word wrapping is enabled, if any paragraph wraps to the next line, the speci-
fied format range must include the subsequent line’s first character; otherwise, the
format will not apply to the wrapped line. Hence, for best results when applying
paragraph-level formatting to a paragraph in a text field that has wrapping enabled,
always apply the format to the entire span of characters in the paragraph. To dynam-
ically determine the beginning and end indices of the characters in a paragraph, use
the TextField class’s instance methods getFirstCharInParagraph() and
getParagraphLength(). For example, the following code uses getParagraphLength()
to dynamically determine the beginning and end indices of the two paragraphs in the
text field from the preceding example code. The code then uses those indices to
apply alignment formatting to the entire span of characters in the second paragraph.

// Create the text field
var t:TextField = new TextField();
t.width = 100;
t.border = true;
t.wordWrap = true;
t.text = "This is paragraph one.\nThis is paragraph two.";

// Create TextFormat object
var alignFormat:TextFormat = new TextFormat();
alignFormat.align = TextFormatAlign.CENTER;

// Determine paragraph start and end indices
var firstParagraphStart:int = 0;
var firstParagraphEnd:int = t.getParagraphLength(firstParagraphStart)-1;
var secondParagraphStart:int = firstParagraphEnd+1;
var secondParagraphEnd:int = secondParagraphStart
 + t.getParagraphLength(secondParagraphStart)-1;

// Apply formatting
t.setTextFormat(alignFormat, secondParagraphStart, secondParagraphEnd);

716 | Chapter 27: Text Display and Input

Retrieving formatting information for a span of characters

To examine the existing formatting of one or more characters already in a field, we
use the TextField class’s instance method getTextFormat(). The getTextFormat()
method returns a TextFormat object whose variables describe the formatting of the
specified characters. The general form of getTextFormat() is as follows:

theTextField.getTextFormat(beginIndex, endIndex)

When getTextFormat() is invoked with one integer argument, or if endIndex is equal
to beginIndex+1, the returned TextFormat object reflects the formatting for the single
character at beginIndex. For example, here we apply a format to the first four charac-
ters of a text field, and then we check the font of the first character:

// Create the text field
var t:TextField = new TextField();
t.width = 100;
t.border = true;
t.wordWrap = true;
t.text = "What time is it?";

// Create a TextFormat object with a font variable of "Arial"
var arialFormat:TextFormat = new TextFormat();
arialFormat.font = "Arial";

// Apply the format to the word 'What', characters 0 to 3 (inclusive)
t.setTextFormat(arialFormat, 0, 4);

// Retrieve a TextFormat object for the first character
var firstCharFormat:TextFormat = t.getTextFormat(0);

// Check the font variable
trace(firstCharFormat.font); // Displays: Arial

When getTextFormat() is invoked with two integer arguments, the returned
TextFormat object represents the formatting for the span of characters from
beginIndex to endIndex–1. And when getTextFormat() is invoked with no arguments,
the returned TextFormat object represents the formatting for all the characters in the
field.

If a specific format (e.g., font, bold, or italic) is not the same for all characters in a
specified span, the corresponding variable of the TextFormat object for that span will
be null. Continuing with our example, if we retrieve a TextFormat object for the
entire text of t, we find that variables shared by all characters return nonnull values:

// Retrieve a TextFormat object for all characters in theField_txt
var allCharsFormat:TextFormat = t.getTextFormat();

// Now check whether all the characters are bold
trace(allCharsFormat.bold); // Displays: false

But variables that vary between characters return null:

// Check the font for all characters
trace(allCharsFormat.font); // Displays: null (the font is not uniform)

Formatting Text Fields | 717

The first four characters in t have a different font than the remaining characters, so
no single font variable value can accurately describe the entire span; hence, font is
set to null.

Note that changes to a TextFormat object returned by getTextFormat() do not have
any effect on the text of theTextField unless the TextFormat object is subsequently
reapplied with setTextFormat(). For example, on its own, the following assignment
of the font variable has no effect on t:

allCharsFormat.font = "Courier New";

But when we add a call to setTextFormat(), the change is applied:

// Applies the "Courier New" font to the whole text field
t.setTextFormat(allCharsFormat);

Default formatting for text fields

Whenever new text is added to a text field, whether programmatically or through
user input, ActionScript formats it with the default text format for the text field. The
text field’s default text format is an internal TextFormat object that specifies how
new text should be formatted when no explicit formatting is specified.

However, a text field’s default text format is not static; it dynamically adjusts itself to
match the formatting of text at the insertion point (also known as the caret position).
Accordingly, when the user inputs new text after a given character in a text field, that
character’s format determines the format of the new text. Likewise, as we learned
earlier, when replaceText() is used to add new text to a text field, the new text takes
on the formatting of either the character following the new text (if any existing text
was deleted) or the character preceding the new text (if no existing text was deleted).

In general, the default text format should not be thought of as a developer tool for
formatting new text added to a text field but rather as ActionScript’s internal means
of determining the formatting for new text added to a text field. To format new text
in a given format, use setTextFormat() after the text is added. For example, consider
the following code, which creates a text field whose text is all bold:

var t:TextField = new TextField();
t.width = 400;
t.text = "This is bold text.";
var boldFormat:TextFormat = new TextFormat();
boldFormat.bold = true;
t.setTextFormat(boldFormat);

Normally, any new text added to t would automatically also be formatted in bold.
For example, the following new text is formatted in bold:

t.appendText(" This is bold too.");

718 | Chapter 27: Text Display and Input

To add new nonbold text to t, we must apply a nonbold format after appending the
text, as follows:

// Add the text
t.appendText(" This isn't bold.");

// Immediately format the new text in non-bold. Notice that the
// indices of the first and last characters of the new text are
// retrieved dynamically via String.indexOf() and TextField.length.
var regularFormat:TextFormat = new TextFormat();
regularFormat.bold = false;
t.setTextFormat(regularFormat,
 t.text.indexOf("This isn't bold."),
 t.length);

A similar approach for formatting new text added by the user is shown in the later
section “Text Field Input.”

Even though the default text format is primarily an internal ActionScript tool, devel-
opers can use it in one important way: to set the formatting of an empty text field.
The format for an empty TextField object is specified by assigning a TextFormat
object to the TextField object’s defaultTextFormat variable, as follows:

// Create the text field
var t:TextField = new TextField();
t.width = 300;

// Create the TextFormat object
var defaultFormat:TextFormat = new TextFormat();
defaultFormat.size = 20;
defaultFormat.color = 0xFF0000;
defaultFormat.font = "Verdana";

// Assign the TextFormat object to t's defaultTextFormat variable
t.defaultTextFormat = defaultFormat;

Once an empty TextField object’s defaultTextFormat is assigned, all future text added
to the text field, whether programmatically or through user input, will be formatted
according to that defaultTextFormat—unless new custom formatting is applied to the
characters in the text field. For example, the following code adds new text to t; the
new text is automatically formatted in 20 pt red Verdana (per t.defaultTextFormat):

t.text = "This is 20 pt red Verdana";

Once custom formatting has been applied to the characters in the text field, future
text added to the text field will be formatted to match the formatting of text at the
insertion point.

Now that we’re familiar with the basics of formatting text using the TextFormat
class, let’s move on to formatting text with HTML.

Formatting Text Fields | 719

Formatting Text with HTML
To apply formatting to a text field using HTML, we follow these general steps:

1. Create a TextField object.

2. Create a string of text containing HTML-based formatting instructions using
ActionScript’s limited set of HTML formatting tags.

3. Assign the HTML-formatted text to the TextField object’s htmlText variable. Any
HTML-formatted text assigned to the htmlText variable is displayed as format-
ted text on screen.

Let’s apply the preceding steps to an example. Our goal is to format all the text in a
text field using the font Arial, size 20 pt, in bold (as we did earlier with a TextFormat
object).

We’ll start by creating a text field that will automatically resize to fit our formatted
text:

var t:TextField = new TextField();
t.autoSize = TextFieldAutoSize.LEFT;

Next, we’ll create our formatted text string using the tag and tag:

var message:String = ""
 + "ActionScript is fun!";

Finally, we assign the HTML string to t’s htmlText variable:

t.htmlText = message;

The result is shown in Figure 27-11.

Often, HTML text is assigned directly to the htmlText variable, as shown in the fol-
lowing code:

t.htmlText = ""
 + "ActionScript is fun!";

Using HTML we can apply any of the formatting options available through the
TextFormat class. Table 27-5 lists ActionScript’s supported set of HTML tags and
attributes, complete with cross references to equivalent TextFormat class variables.
For additional information on ActionScript HTML support, see the entry for
TextField class’s instance variable htmlText in Adobe’s ActionScript Language
Reference.

Figure 27-11. Text formatted with HTML

ActionScript is fun!

720 | Chapter 27: Text Display and Input

Unlike the Flash Player plug-in and standalone Flash Player, Adobe
AIR includes a full-featured HTML parser and renderer, capable of
handling the full range of HTML, CSS, and JavaScript normally used
with web browsers.

Note that when style sheets are not in use, Flash Player automatically adds HTML
markup to htmlText if the HTML source assigned to htmlText does not fully describe
the text field’s formatting. For example, the following code sets htmlText without
using any <P> or tags:

var t:TextField = new TextField();
t.htmlText = "This field contains HTML!";

When we examine the value of t.htmlText, we find that <P> and tags have
been added:

trace(t.htmlText);
// Displays:
<P ALIGN="LEFT"><FONT FACE="Times New Roman" SIZE="12" COLOR="#000000"
LETTERSPACING="0" KERNING="0">This field contains HTML!</P>

Now let’s look at ActionScript’s supported set of HTML tags and attributes in Table 27.5.

Table 27-5. ActionScript’s supported HTML tags

Tag Description Attributes Description

Equivalent
TextFormat instance
variable

<A> Specifies a hypertext
link

HREF Specifies the destina-
tion of a hypertext link

url

TARGET Specifies the window
or frame for a hyper-
text link

target

 Specifies bold character
display

None bold

 Causes a line break in a
body of text; function-
ally equivalent to the \
n escape sequence

None None

 Specifies font informa-
tion

FACE Specifies the font
name

font

SIZE Specifies the font size,
in points

size

Formatting Text Fields | 721

COLOR Specifies the font
color, as a 24-bit inte-
ger hexadecimal num-
ber preceded by the
pound sign (#). For
example, red is
#FF0000

color

KERNING Specifies whether to
kern character pairs (1
means kern, 0 means
don’t kern)

kerning

LETTERSPACING Specifies the distance
between letters (i.e.,
the tracking), in pixels

lettterSpacing

<I> Specifies italic character
display

None italic

<IMAGE> Specifies a display asset
to embed in the text
field

SRC The location of the
asset (image, .swf file,
or movie clip symbol)
to embed in the text
field

None

WIDTH The optional width of
the embedded asset

None

HEIGHT The optional height of
the embedded asset

None

ALIGN The optional horizon-
tal alignment of the
embedded asset

None

HSPACE The optional horizon-
tal space surrounding
the embedded asset

None

VSPACE The optional vertical
space surrounding the
embedded asset

None

ID Specifies an optional
identifier by which the
embedded asset can
be referenced via the
TextField class’s
instance method
getImageReference()

None

Table 27-5. ActionScript’s supported HTML tags (continued)

Tag Description Attributes Description

Equivalent
TextFormat instance
variable

722 | Chapter 27: Text Display and Input

CHECKPOLICYFILE Specifies whether a
policy file should be
checked before the
asset is accessed as
data (see Chapter 19)

None

 Specifies a paragraph
displayed with a pre-
ceding bullet; note that
the bullet cannot be
modified, and that no
 or is
required

None bullet

<P> Specifies a paragraph ALIGN Specifies horizontal
paragraph alignment
(left, right, center, or
justify)

align

CLASS Specifies the CSS class,
for use with style
sheets

None

 Marks an arbitrary span
of text so it can be for-
matted with a style
sheet

CLASS Specifies the CSS class,
for use with style
sheets

None

<TEXTFORMAT> Specifies formatting
information for a span
of text

LEFTMARGIN Specifies the horizon-
tal distance, in pixels,
between the left bor-
der of the text field
and the left edge of a
paragraph

leftMargin

RIGHTMARGIN Specifies the horizon-
tal distance, in pixels,
between the right bor-
der of the text field
and the right edge of a
paragraph

rightMargin

BLOCKINDENT Specifies the distance,
in pixels, a paragraph
is indented from the
text field’s left border

blockIndent

INDENT Specifies the distance,
in pixels, a paragraph’s
first line is indented
from the text field’s
left border

indent

Table 27-5. ActionScript’s supported HTML tags (continued)

Tag Description Attributes Description

Equivalent
TextFormat instance
variable

Formatting Text Fields | 723

Generally speaking, the usage of the HTML tags in ActionScript listed in Table 27-5
matches that found in common web browsers. That said, there are some significant
differences between the use of HTML in ActionScript and the use of HTML in web
browsers, as follows:

• The <TABLE> tag is not supported; use tab stops to simulate HTML tables.

• In ActionScript, HTML is used primarily for formatting, and HTML content is
not organized using the web-browser document metaphor. Therefore, the <HTML>
and <BODY> tags are not required (but the <BODY> tag can optionally be used when
formatting HTML with style sheets).

• Unsupported tags are ignored, although their text content is preserved.

• Flash requires quotes around the values assigned to tag attributes. See the sec-
tion “Quoting attribute values.”

• Hypertext links are not underlined automatically in Flash and must be under-
lined manually using the <U> tag or the CSS text-decoration variable.

• The tag does not support multilevel bullets or the (numbered list) tag.

• Unterminated <P> tags do not cause line breaks in Flash Player as they do in reg-
ular HTML. Closing </P> tags are required by Flash Player in order for line
breaks to be added.

• In Flash Player, <P> causes a single line break, exactly like
, whereas in web
browsers, <P> traditionally causes a double line break.

• The <P> and
 tags do not cause a line break in text fields whose multiline
variable is set to false. Furthermore, multiline is set to false by default.
Hence, set multiline to true when using <P> and
.

• Hypertext links can be used to execute ActionScript code. For details, see the
section “Hypertext Links,” later in this chapter.

• The NAME attribute of the <A> tag is not supported by Flash Player, so internal
links within a body of text are not possible.

• In Flash, anchor tags are not added to the tab order and are therefore not acces-
sible via the keyboard.

LEADING Specifies the amount
of vertical space, in
pixels, between lines
of text

leading

TABSTOPS Specifies horizontal
tab stops, in pixels

tabStops

<U> Specifies underlined
character display

None underline

Table 27-5. ActionScript’s supported HTML tags (continued)

Tag Description Attributes Description

Equivalent
TextFormat instance
variable

724 | Chapter 27: Text Display and Input

Entity support

ActionScript’s supported special character entities are listed in Table 27-6. Wherever
an entity appears in a text field’s htmlText variable, Flash Player displays the corre-
sponding character on screen. Numeric entities such as ™ (trademark sym-
bol) are also supported.

Quoting attribute values

Outside Flash Player, HTML attribute values may be quoted with single quotes, dou-
ble quotes, or not at all. The following tags are all valid in most web browsers:

<P ALIGN=RIGHT>
<P ALIGN='RIGHT'>
<P ALIGN="RIGHT">

But in Flash Player, unquoted attribute values are not allowed. For example, the syn-
tax <P ALIGN=RIGHT> is illegal in ActionScript. However, both single and double
quotes may be used to delimit attribute values. When composing text field values
that include HTML attributes, use one type of quote to demarcate the string itself
and another to demarcate attribute values. For example, these examples are both
valid:

t.htmlText = "<P ALIGN='RIGHT'>hi there</P>";
t.htmlText = '<P ALIGN="RIGHT">hi there</P>';

However, this example would cause an error because double quotation marks are
used to demarcate both the string and the attribute:

// ILLEGAL! Do not use!
t.htmlText = "<P ALIGN="RIGHT">hi there</P>";

Interactions between the text and htmlText variables

Because the TextField variables text and htmlText can both assign the textual con-
tent of a text field, care must be taken when using those variables in combination.

When HTML tags are assigned to htmlText, the value of text will be that of htmlText,
but with all HTML tags stripped out. For example, here we assign some HTML to a
text field’s htmlText variable:

Table 27-6. Supported entities

Entity Character represented

< <

> >

& &

" “

' ‘

 nonbreaking space

Formatting Text Fields | 725

var t:TextField = new TextField();
t.htmlText = '<P ALIGN="LEFT">' +
 + '<FONT FACE="Times New Roman" SIZE="12" COLOR="#000000" '
 + 'LETTERSPACING="0" KERNING="0">This field contains HTML!'
 + '</P>';

After the assignment, htmlText has the value:

<P ALIGN="LEFT"><FONT FACE="Times New Roman" SIZE="12" COLOR="#000000"
LETTERSPACING="0" KERNING="0">This field contains HTML!</P>

But text has the value:

This field contains HTML!

Take heed that successive assignments to htmlText and text overwrite each other.
That is, assigning a new value to text overwrites the value of htmlText and vice versa.
By contrast, successive concatenations (not reassignments) do not overwrite each
other. For example, the following code assigns some HTML content to htmlText,
then concatenates a string to that content via the text variable:

var t:TextField = new TextField();
t.htmlText = "hello";
t.text += " world";

After the concatenation, the value of htmlText is:

<P ALIGN="LEFT"><FONT FACE="Times New Roman" SIZE="12" COLOR="#000000"
LETTERSPACING="0" KERNING="0">hello world</P>

As the preceding code shows, concatenating text to htmlText resets the text field’s
formatting. When we assigned the value “world” to text, Flash removed the tag
we originally assigned to htmlText! Hence, mixing text and htmlText assignments is
generally not recommended.

HTML tags assigned directly to the TextField class’s instance variable text are never
interpreted as HTML; they are always displayed verbatim. For example, the follow-
ing code assigns a string including HTML tags to text and then concatenates a plain
string to that content via the htmlText variable:

var t:TextField = new TextField();
t.text = "world";
t.htmlText += "hello";

After the concatenation, the value of htmlText is as follows:

<P ALIGN="LEFT"><FONT FACE="Times New Roman" SIZE="12" COLOR="#000000"
LETTERSPACING="0" KERNING="0">worldhello</P>

Notice that the < and > characters in the tag were converted to the HTML enti-
ties < and >.

726 | Chapter 27: Text Display and Input

Unrecognized tags and attributes

Like web browsers, Flash Player ignore tags and attributes it does not recognize. For
example, if we were to assign the following value to htmlText:

<P>Please fill in and print this form</P>
<FORM><INPUT TYPE="TEXT"></FORM>
<P>Thank you!</P>

The output would be:

Please fill in and print this form

Thank you!

The <FORM> and <INPUT> elements are not supported by Flash Player so both are
ignored (in fact, the unknown tags are stripped from htmlText!)

Similarly, if we use container elements such as <TD>, the content is preserved but the
markup is ignored. For example, in the following code:

theTextField.htmlText = "<TABLE><TR><TD>table cell text</TD></TR></TABLE>";

outputs the following line without table formatting:

table cell text

However, if a tag is not terminated, the entire text that follows is considered part of
the tag and will not display on screen. For example, given the following assignment:

theTextField.htmlText = "We all know that 5 < 20. That's obvious.";

Flash Player displays:

We all know that 5

To include a < character in an HTML text field, use the entity < as follows:

theTextField.htmlText = "We all know that 5 < 20. That's obvious.";

Flash Player displays:

We all know that 5 < 20. That’s obvious.

For more information on including HTML source code in an HTML text field, see
http://moock.org/asdg/technotes/sourceInHtmlField/

We’ve now seen how to format a text field using the TextFormat class and HTML.
Now let’s look at the last tool for formatting text, the StyleSheet class.

Formatting Text with the StyleSheet Class
ActionScript’s StyleSheet class is used to format text fields using style sheets. Its func-
tionality is based on a very limited subset of the W3C’s Cascading style sheets, Level
1 Recommendation (CSS1).

Formatting Text Fields | 727

This section assumes a prior understanding of basic CSS concepts. If
you are new to CSS, you should read the following introductions to
CSS before continuing:

• http://www.w3.org/TR/CSS21/intro.html

• http://www.w3.org/MarkUp/Guide/Style

But bear in mind that ActionScript does not support the full range of
features in the W3C recommendation.

As described in the W3C’s CSS recommendation, a stylesheet is a collection of rules
that specify the presentation of a document. Each rule describes the style for a partic-
ular element in an HTML or XML document. The following code shows an example
rule that specifies the font color red for <H1> elements:

h1 { color: #FF0000 }

Within that rule, the selector (h1) indicates the element to which the style should be
applied. The declaration block ({ color: #FF0000 }) contains one or more declara-
tions describing the style that should be applied to the selected element. Each decla-
ration (color: #FF0000) contains a style property (color) and a value (#FF0000).

Selectors are not case-sensitive, but style property names are.

Here’s a simple style sheet that contains two rules, one for <p> elements and one for
 elements:

p {
 font-family: sans-serif
 font-size: 12px;
}

li {
 font-family: serif
 font-size: 10px;
 margin-left: 10px;
}

In ActionScript 3.0, a style sheet such as that shown in the preceding code is repre-
sented by an instance of the StyleSheet class. Using the methods of the StyleSheet
class, we can create a new style sheet programmatically or parse an existing external
style sheet. To associate a StyleSheet object with a particular TextField object, we
assign it to that TextField object’s styleSheet variable (covered later). Each text field
can be associated with a single StyleSheet object only, in stark contrast to CSS1,
where multiple style sheets can be associated with a single HTML or XML
document.

http://www.w3.org/TR/CSS21/intro.html
http://www.w3.org/MarkUp/Guide/Style

728 | Chapter 27: Text Display and Input

The specific properties available for use in an ActionScript style sheet are listed in
Table 27-7. ActionScript supports only those W3C style properties that map to the
formatting options of the TextFormat class. Compared to the full range of properties
defined by the W3C, ActionScript’s set of supported properties is extremely limited.

Style sheets can be used to add formatting to both XML elements and HTML ele-
ments. However, among the HTML elements that Flash Player uses for formatting
(see Table 27-5), only <P>, , and <A> tags can be formatted with style sheets.
Other built-in tags (e.g., and <I>) always perform their intended HTML-format-
ting duty, and cannot be formatted with style sheets. Furthermore, <P> and
always display as block elements, even when instructed to display as inline elements
by a style sheet.

To add formatting to the various interactive states of a hypertext link, use the follow-
ing pseudo class selectors: a:link, a:hover, and a:active. For example, the following

Table 27-7. Supported CSS style properties

Style property name Description

color Specifies the font color, as a 24-bit integer hexadecimal number preceded by the pound sign
(#). For example, red is #FF0000.

display Specifies whether the element should be hidden (none), followed by an automatic line break
(block) or not followed by an automatic line break (inline).

font-family Specifies the device or embedded font name.

font-size Specifies the font size, in pixels.

font-style Specifies italicized character display (italic) or normal character display (normal,
default).

font-weight Specifies bold character display (bold) or normal character display (normal, default).

kerning Specifies whether character pairs should be automatically kerned (true) or not (false,
default). This property is an unofficial extension to the W3C set of supported style properties.

leading Specifies the amount, in pixels, of vertical space between lines of text. This property is an unof-
ficial extension to the W3C set of supported style properties. Compare with the W3C property
line-height.

letter-spacing Specifies the distance, in pixels, between letters (i.e., the tracking).

margin-left Specifies the horizontal distance, in pixels, between the left border of the text field and the left
edge of a paragraph.

margin-right Specifies the horizontal distance, in pixels, between the right border of the text field and the
right edge of a paragraph.

text-align Specifies horizontal paragraph alignment (left—the default—right, center, or
justify).

text-decoration Specifies graphical embellishments added to the text. Supported values in ActionScript are
underline and none (the default).

text-indent Specifies the distance, in pixels, a paragraph’s first line is indented from the text field’s left
border (exactly like the TextFormat class’s instance variable indent).

Formatting Text Fields | 729

rule specifies that hypertext links should be underlined when under the mouse
pointer:

a:hover {
 text-decoration: underline;
}

Style sheets give developers the critically important ability to separate style informa-
tion from content, and to apply a single style definition to multiple bodies of con-
tent. However, in ActionScript, style sheets have many limitations that diminish their
potential usefulness. Before we learn how to format text using style sheets, let’s
peruse those limitations.

Notable style sheet limitations in ActionScript

By design, Flash Player provides a minimal style sheet implementation only, intended
as a style sheet–inspired interface for setting text field formatting options. As a result,
Flash Player’s style sheet support lacks several important features found in the
W3C’s CSS recommendation. Readers accustomed to working with CSS and HTML
should stay mindful of the following Flash Player limitations:

• All lengths are expressed in pixels. The relative unit em is not supported, and
points are treated as pixels.

• Each text field can be associated with one style sheet at a time only. Flash Player
style sheets do not “cascade.”

• Reassigning a text field’s style sheet does not cause the text field to be rendered
in the newly assigned style sheet (for a workaround, see the example following
this list).

• The margin-top and margin-bottom properties are not supported.

• Elements cannot be arbitrarily displayed as list items. The display property value
list-item is not supported. Furthermore, list-item markers (i.e., bullets) cannot
be customized, even for the built-in HTML element.

• Flash Player supports basic type selectors and class selectors only. All other
varieties of selectors are not supported. Furthermore, type selectors and class
selectors cannot be combined (e.g., the following selector is illegal in Flash
Player: p.someCustomClass). If a style sheet contains a descendant selector, the
entire style sheet is ignored and no formatting is applied.

• When a style sheet is assigned to a text field, that text field’s text content cannot
be modified via replaceText(), appendText(), replaceSelText() or user input.

To change a text field’s style sheet, first assign the desired StyleSheet object to
styleSheet, then assign htmlText to itself, as follows:

t.styleSheet = someNewStyleSheet;
t.htmlText = t.htmlText;

730 | Chapter 27: Text Display and Input

Note, however, that the new style sheet must set all style properties set by the old
style sheet; otherwise, any unset old style property values will be retained.

Now that we’re familiar with the general features and limitations of Flash Player’s
style sheets, let’s see them in action. The following two sections describe how to
apply a style sheet to a text field, first using a programmatically created style sheet,
then using a style sheet loaded from an external .css file.

Formatting text with a programmatically created style sheet

To format text with a programmatically created style sheet, follow these general
steps:

1. Create one or more generic objects representing rule declaration blocks.

2. Create a StyleSheet object.

3. Use the StyleSheet class’s instance method setStyle() to create one or more rules
based on the declaration blocks created in Step 1.

4. Use the TextField class’s instance variable styleSheet to register the StyleSheet
object with the desired TextField object.

5. Assign the desired HTML or XML content to the TextField object’s htmlText
variable.

Always register the StyleSheet object (Step 4) before assigning the
HTML or XML content (Step 5). Otherwise, the style sheet will not be
applied to the content.

Let’s apply the preceding steps to an example. Our goal is to format all the text in a
text field using the font Arial, size 20 pt, in bold (as we did earlier with the
TextFormat class and with HTML). Once again, the text we’ll be formatting is the
following simple HTML fragment:

<p>ActionScript is fun!</p>

In our style sheet, we’ll define a rule that tells Flash Player to display the content of
all <P> tags in Arial, size 20 pt, bold. The declaration block for our rule is a simple
generic object with dynamic instance variable names matching CSS-style properties
and variable values specifying corresponding CSS-style values. Here’s the code:

// Create the object that will serve as the declaration block
var pDeclarationBlock:Object = new Object();

// Assign style properties
pDeclarationBlock.fontFamily = "Arial"
pDeclarationBlock.fontSize = "20";
pDeclarationBlock.fontWeight = "bold";

In the preceding code, notice that when style sheets are created programmatically,
the format for CSS property names changes slightly: hyphens are removed and

Formatting Text Fields | 731

characters following hyphens are capitalized. For example, font-family becomes
fontFamily.

Now that we have our declaration block ready, we’ll create the StyleSheet object.
Here’s the code:

var styleSheet:StyleSheet = new StyleSheet();

To create the <P> tag rule, we use the StyleSheet class’s instance method setStyle().
The setStyle() method creates a new style rule, based on two parameters: a selector
name (as a String), and a declaration block (as an Object), as shown in the following
generic code:

theStyleSheet.setStyle("selector", declarationBlock);

Accordingly, here’s the code for our <P> tag rule:

styleSheet.setStyle("p", pDeclarationBlock);

Our style sheet is now complete. Next we’ll create the text field to format. The fol-
lowing code creates the text field and assigns our StyleSheet object to its styleSheet
variable:

var t:TextField = new TextField();
t.width = 200
t.styleSheet = styleSheet;

Finally, we assign the htmlText to be formatted:

t.htmlText = "<p>ActionScript is fun!</p>";

Example 27-7 shows the code for our formatted text field in its entirety.

Example 27-7. Text Formatted with a programmatically created style sheet

// Create the declaration block
var pDeclarationBlock:Object = new Object();
pDeclarationBlock.fontFamily = "Arial"
pDeclarationBlock.fontSize = "20";
pDeclarationBlock.fontWeight = "bold";

// Create the stylesheet
var styleSheet:StyleSheet = new StyleSheet();

// Create the rule
styleSheet.setStyle("p", pDeclarationBlock);

// Create the text field
var t:TextField = new TextField();
t.width = 200

// Assign the stylesheet
t.styleSheet = styleSheet;

// Assign the HTML code to be styled
t.htmlText = "<p>ActionScript is fun!</p>";

732 | Chapter 27: Text Display and Input

The result of the code in Example 27-7 is identical to the result shown earlier in Fig-
ures 27-10 and 27-11.

Class selectors

To apply a style to one specific variety of paragraph rather than all paragraphs, we
use a CSS class selector. For example, suppose we want to draw special attention to
important notes in a document. We place the notes in <p> tags with the class
attribute set to the custom value specialnote, as follows:

<p class='specialnote'>Set styleSheet before htmlText!</p>

Then, we create a rule for that specialnote class using a class selector, as follows:

styleSheet.setStyle(".specialnote", specialnoteDeclarationBlock);

As in CSS, an ActionScript class selector is made up of a period followed by the
desired class attribute value (in our case, specialnote).

Example 27-8 revises our earlier style sheet example to demonstrate the use of CSS
class selectors in ActionScript.

The result of the code in Example 27-8 is shown in Figure 27-12.

Example 27-8. Formatting applied to a specific class of paragraph

var specialnoteDeclarationBlock:Object = new Object();
specialnoteDeclarationBlock.fontFamily = "Arial"
specialnoteDeclarationBlock.fontSize = "20";
specialnoteDeclarationBlock.fontWeight = "bold";

var styleSheet:StyleSheet = new StyleSheet();
styleSheet.setStyle(".specialnote", specialnoteDeclarationBlock);

// Create the text field
var t:TextField = new TextField();
t.width = 300;
t.wordWrap = true;
t.multiline = true;
t.styleSheet = styleSheet;
t.htmlText = "<p>Always remember...</p>"
 + "<p class='specialnote'>Set styleSheet before htmlText!</p>"
 + "<p>Otherwise, the stylesheet will not be applied.</p>";

Figure 27-12. Formatting applied to a specific class of paragraph

Always remember...

Set styleSheet before
html Text!
Otherwise, the stylesheet will not be applied.

Formatting Text Fields | 733

Formatting XML tags with CSS

To apply a style to a specific variety of content, we can create a custom XML tag for
that content. For example, rather than describing a special note as a class of para-
graph (as we did in the preceding section), we could instead create a completely new
XML tag, as follows:

<specialnote>Set styleSheet before htmlText!</specialnote>

To apply a style rule to the <specialnote> tag, we use a normal type selector (with no
leading period), as follows:

styleSheet.setStyle("specialnote", specialnoteDeclarationBlock);

And to specify that our <specialnote> tag should behave like a paragraph, we set the
display variable to block in the <specialnote> rule. Example 27-9 shows the com-
plete code for styling a custom XML tag, with noteworthy differences from our pre-
ceding class-selector code shown in bold.

The result of the code shown in Example 27-9 is identical to that shown in
Figure 27-12.

Formatting text with an externally loaded style sheet

To format text with an externally loaded style sheet, follow these general steps:

1. Create a style sheet in an external .css file.

2. Use the URLLoader class to load the .css file.

3. Once the .css file has loaded, create a StyleSheet object.

4. Use the StyleSheet class’s instance method parseCSS() to import the rules from
the .css file into the StyleSheet object.

Example 27-9. Formatting XML content with a style sheet

var specialnoteDeclarationBlock:Object = new Object();
specialnoteDeclarationBlock.fontFamily = "Arial"
specialnoteDeclarationBlock.fontSize = "20";
specialnoteDeclarationBlock.fontWeight = "bold";
specialnoteDeclarationBlock.display = "block";

var styleSheet:StyleSheet = new StyleSheet();
styleSheet.setStyle("specialnote", specialnoteDeclarationBlock);

var t:TextField = new TextField();
t.width = 300;
t.wordWrap = true;
t.multiline = true;
t.styleSheet = styleSheet;
t.htmlText = "<p>Always remember...</p>"
 + "<specialnote>Set styleSheet before htmlText!</specialnote>"
 + "<p>Otherwise, the stylesheet will not be applied.</p>";

734 | Chapter 27: Text Display and Input

5. Use the TextField class’s instance variable styleSheet to register the StyleSheet
object with the desired TextField object.

6. Assign the desired HTML or XML content to the TextField object’s htmlText
variable.

Let’s apply the preceding steps to an example. Our goal is, once again, to create an
application that formats all the text in a text field using the font Arial, size 20 pt, in
bold. As before, the text we’ll be formatting is the following simple HTML fragment:

<p>ActionScript is fun!</p>

We start by adding the following CSS rule to a text file named styles.css:

p {
 font-family: Arial;
 font-size: 20px;
 font-weight: bold;
}

Next we create our application’s main class, StyleSheetLoadingDemo.
StyleSheetLoadingDemo uses a URLLoader object to load styles.css, as follows:

package {
 import flash.display.*;
 import flash.text.*;
 import flash.events.*;
 import flash.net.*;

 public class StyleSheetLoadingDemo extends Sprite {
 public function StyleSheetLoadingDemo () {
 // Load styles.css
 var urlLoader:URLLoader = new URLLoader();
 urlLoader.addEventListener(Event.COMPLETE, completeListener);
 urlLoader.load(new URLRequest("styles.css"));
 }

 private function completeListener (e:Event):void {
 // Code here is executed when styles.css finishes loading
 }
 }
}

When styles.css has finished loading, completeListener() executes. Within
completeListener(), we create a new StyleSheet object and import the rules from
styles.css into it, as follows:

private function completeListener (e:Event):void {
 var styleSheet:StyleSheet = new StyleSheet();
 styleSheet.parseCSS(e.target.data);
}

Fonts and Text Rendering | 735

Once the rules have been imported into the StyleSheet object, we create our TextField
object, register our style sheet, then assign the text to be styled, as follows:

var t:TextField = new TextField();
t.width = 200;
t.styleSheet = styleSheet;
t.htmlText = "<p>ActionScript is fun!</p>";

Example 27-10 shows the code for the StyleSheetLoadingDemo class in its entirety.

The result of the code in Example 27-10 is identical to the result shown earlier in Fig-
ures 27-10 and 27-11.

We’ve now finished our study of ActionScript’s text formatting techniques. In the
next section, we’ll study several issues relating to font rendering and the use of fonts
in a .swf file.

Fonts and Text Rendering
By default, Flash Player displays text using device fonts. Device fonts are fonts that
are installed on the end user’s system. When Flash Player displays text with a device
font, it completely delegates the text-rendering process to the local environment (i.e.,

Example 27-10. Text formatted with an external style sheet

package {
 import flash.display.*;
 import flash.text.*;
 import flash.events.*;
 import flash.net.*;

 public class StyleSheetLoadingDemo extends Sprite {
 public function StyleSheetLoadingDemo () {
 var urlLoader:URLLoader = new URLLoader();
 urlLoader.addEventListener(Event.COMPLETE, completeListener);
 urlLoader.load(new URLRequest("styles.css"));
 }

 private function completeListener (e:Event):void {
 var styleSheet:StyleSheet = new StyleSheet();
 styleSheet.parseCSS(e.target.data);

 var t:TextField = new TextField();
 t.width = 200;
 t.styleSheet = styleSheet;
 t.htmlText = "<p>ActionScript is fun!</p>";

 addChild(t);
 }
 }
}

736 | Chapter 27: Text Display and Input

operating system). For example, consider the following simple HelloWorld applica-
tion, which creates a text field formatted with the font Arial:

package {
 import flash.display.*;
 import flash.text.*;

 public class HelloWorld extends Sprite {
 public function HelloWorld () {
 var fontFormat:TextFormat = new TextFormat();
 fontFormat.font = "Arial";

 var t:TextField = new TextField();
 t.text = "Hello world";
 t.setTextFormat(fontFormat);

 addChild(t);
 }
 }
}

When that code runs, Flash Player adds t to the display list, and prepares to update
the screen. To display the characters “Hello world,” Flash Player passes the string
“Hello world” to the operating system’s text renderer, and asks it to render those char-
acters using the system font “Arial.” The operating system then renders the characters
directly to Flash Player’s frame buffer. For example, on Microsoft Windows XP, the
string “Hello world” is rendered using Microsoft’s ClearType renderer.

If the preceding HelloWorld application runs on two different computers with two
different operating systems, those computers may have two different native text ren-
derers, and perhaps even two different versions of the font Arial. Hence, even when
the required font is available, the character that appears on screen may look quite
different from computer to computer. Additionally, using cacheAsBitmap or filters
can subtly change text-rendering behavior. For example, if a TextField object is
placed in a Sprite object whose cacheAsBitmap variable is true, Windows XP will use
normal antialiasing instead of ClearType.

If a font specified for a given character is not installed on the end user’s operating sys-
tem, Flash Player will automatically ask the operating system to render the character
in an appropriate substitute font. For example, if the font for a given character is set to
Verdana, and that character is displayed on the default installation of MacOS X
(which does not include Verdana), then the character will be rendered in the default
sans-serif font, Helvetica. Hence, depending on the availability of fonts on the end-
user’s operating system, text rendered in device fonts on two different computers with
two different operating systems might have a drastically different appearance.

When device fonts are used, text display varies by operating system
and, for the plug-in version of Flash Player, by web browser.

Fonts and Text Rendering | 737

If no font is specified at all for a given character, the local renderer renders the char-
acter in an arbitrary default font of Flash Player’s choosing. For example, on
Microsoft Windows XP, the default font is Times New Roman.

To eliminate differences in text rendering across computers and devices, Flash Player
enables developers to embed font outlines in a .swf file. Text that is rendered using
embedded font outlines is guaranteed to have a very similar appearance across var-
ied computers, operating systems, and devices. However, this consistency comes at a
price; embedding outlines for a complete Roman font typically adds 20 to 30 KB to a
.swf file (Asian fonts can be much larger). Device fonts, by contrast, do not increase a
.swf file’s size at all. Hence, device fonts are typically used when small file size is
more important than visual integrity, and embedded font outlines are typically used
when visual integrity is more important than small file size.

To use an embedded font we must first embed that font’s outlines and then enable
embedded fonts for the desired text field(s) at runtime. When embedded fonts are
enabled for a text field, that text field is rendered by either Flash Player’s standard
vector renderer or the specialized FlashType renderer, not the local environment’s
text renderer. Note that every variation of a font style must be embedded individu-
ally. If a text field uses embedded versions of Courier New in bold, italic, and bold
italic, then we must embed all three font variations, or the text will not display cor-
rectly. Underline is not considered a font variation, nor is font size or color.

The technique for embedding font outlines at compile time varies for different devel-
opment tools. The following two sections explain how to embed fonts in the Flash
authoring tool and Flex Builder 2.0 or the mxmlc command line compiler. Each sec-
tion describes how to embed an example font, Verdana. Once a font’s outlines are
embedded in a .swf file, they can be used to format text, as described in the section
“Formatting Text with an Embedded Font.”

Embedding Font Outlines in the Flash Authoring Tool
To embed Verdana outlines in the Flash authoring tool, follow these steps:

1. Select Window ➝ Library.

2. From the pop-up Options menu in the upper-right corner of the panel, select
New Font. The Font Symbol Properties dialog box appears.

3. Under Font, select Verdana.

4. Under Name, enter “Verdana” (this is a cosmetic name, used in the Library
only).

5. Click OK.

6. In the Library, select the Verdana font symbol.

7. From the pop-up Options menu, select Linkage.

738 | Chapter 27: Text Display and Input

8. In the Linkage Properties dialog box, under Linkage, select Export For
ActionScript.

9. The Class box should automatically be set to Verdana. If not, enter Verdana in
the Class box. This class name is used when loading fonts at runtime, as dis-
cussed in the later section “Loading Fonts at Runtime.”

10. Click OK.

The Flash authoring tool can embed the outlines for any font it dis-
plays in the Font Symbol Properties dialog’s Font menu.

To export a font without antialiasing, add the following step to the preceding proce-
dure, between Steps 2 and 3:

• In the Font Symbol Properties dialog box, (Step 2) select “Bitmap text,” and then
choose a font size.

When “Bitmap text” is selected, the compiler snaps shapes to whole pixels when cal-
culating glyph outlines. The result is a crisp vector shape for each glyph at the desig-
nated size, with no antialiasing applied. For best results when using “Bitmap text,”
always set the font size of text formatted with the embedded font to match the font
size selected in the Font Symbols Properties dialog box. Also avoid scaling text for-
matted with the embedded font.

The “Bitmap text” option is not available in Flex Builder 2 or mxmlc.

Embedding Font Outlines in Flex Builder 2 and mxmlc
To embed font outlines in a Flex Builder 2 ActionScript project or with the standal-
one compiler, mxmlc, we use the [Embed] metadata tag. To use [Embed], we must give
the compiler access to the Flex compiler-support library, flex.swc. By default, all Flex
Builder 2 projects automatically include flex.swc in the ActionScript library path, so
in Flex Builder 2, the techniques covered in this section work without any special
compiler configuration.

Assets embedded using the [Embed] metadata tag, including fonts, can be embedded
at the variable level or the class level. However, variable-level font embedding is
more convenient than class-level font embedding, so fonts are rarely embedded at
the class level.

For more information on the [Embed] metadata tag, see Chapter 28.

Fonts and Text Rendering | 739

The generalized code required to embed a font at the variable level in a Flex Builder 2
ActionScript Project or with mxmlc is as follows:

[Embed(source="pathToFont",
 fontFamily="fontName")]
private var className:Class;

In the preceding code, which must occur within a class body, pathToFont specifies
the path to a font file on the local filesystem, fontName is an arbitrary name by which
the font will be referenced in the application, and className is the name of the vari-
able that will refer to the class that represents the embedded font. (The class that rep-
resents the font is used only when loading fonts at runtime, as discussed in the later
section “Loading Fonts at Runtime.”)

For example, the following code shows how to embed font outlines for the font Ver-
dana on Windows XP. Notice that the pathToFont must use forward slashes, but is
not case-sensitive.

[Embed(source="c:/windows/fonts/verdana.ttf",
 fontFamily="Verdana")]
private var verdana:Class;

When the preceding code runs, ActionScript automatically generates a class repre-
senting the embedded font asset and assigns that class to the variable verdana.

The [Embed] metadata tag can be used to embed TrueType fonts only.

In simple cases, the code that embeds a font resides in the same class that uses that
font to format text. Example 27-11 demonstrates, showing a simple class,
HelloWorldVerdana, that displays the text “Hello world” formatted using an embed-
ded font. (We’ll learn more about formatting text with embedded fonts in the next
section.)

Example 27-11. Hello World, in Verdana

package {
 import flash.display.*;
 import flash.text.*;

 public class HelloWorldVerdana extends Sprite {
 // Embed the font Verdana
 [Embed(source="c:/windows/fonts/verdana.ttf",
 fontFamily="Verdana")]
 private var verdana:Class;

 public function HelloWorldVerdana () {
 var t:TextField = new TextField();
 t.embedFonts = true;
 // Format text using the font Verdana

740 | Chapter 27: Text Display and Input

In more complex applications with multiple embedded fonts, a single central class is
typically responsible for all font embedding—thus keeping font-embedding code
separate from text-formatting code. Example 27-12 demonstrates, showing two
classes: FontEmbedder, which embeds a font, and HelloWorld, a main class that for-
mats text with the font embedded by FontEmbedder. Notice that HelloWorld, by
necessity, makes reference to FontEmbedder, forcing FontEmbedder and its fonts to
be compiled into the .swf file.

For comparison, Example 27-13 demonstrates how to embed a font at the class level.
Notice that the class that uses the embedded font must reference the class that
embeds the font.

 t.htmlText = "Hello world";
 addChild(t);
 }
 }
}

Example 27-12. Embedding fonts centrally

// The FontEmbedder class
package {
 // Embeds the fonts for this application
 public class FontEmbedder {
 [Embed(source="c:/windows/fonts/verdana.ttf",
 fontFamily="Verdana")]
 private var verdana:Class;
 }
}

// The HelloWorld class
package {
 import flash.display.*;
 import flash.text.*;

 public class HelloWorld extends Sprite {
 // Make a reference to the class that embeds the fonts for this
 // application. This reference causes the class and, by extension, its
 // fonts to be compiled into the .swf file.
 FontEmbedder;

 public function HelloWorld () {
 var t:TextField = new TextField();
 t.embedFonts = true;
 t.htmlText = "Hello world";
 addChild(t);
 }
 }
}

Example 27-11. Hello World, in Verdana (continued)

Fonts and Text Rendering | 741

Note that due to a bug in Flex Builder 2 and mxmlc, fonts embedded
with the [Embed] syntax discussed in this section cannot be kerned.
However, fonts embedded using the Flash authoring tool can be
kerned. When kerning is required in an application compiled with
Flex Builder 2 or mxmlc, embed the desired font in a .swf file using the
Flash authoring tool, then load that font dynamically (see the section
“Loading Fonts at Runtime”).

Now that we’ve seen how to embed fonts using both the Flash authoring tool and
the [Embed] metadata tag, let’s examine how to format text with embedded fonts.

Formatting Text with an Embedded Font
To format a given TextField object with embedded fonts, we must first set that
object’s embedFonts variable to true. Setting embedFonts to true tells Flash Player to

Example 27-13. Class-level font embedding

// The font-embedding class
package {
 import flash.display.*;
 import mx.core.FontAsset;

 [Embed(source="c:/windows/fonts/verdana.ttf", fontFamily="Verdana")]
 public class Verdana extends FontAsset {
 }
}

// The class that uses the embedded fonts
package {
 import flash.display.*;
 import flash.text.*;

 public class HelloWorld extends Sprite {
 // Make a reference to the class that embeds the font. This reference
 // causes the class and, by extension, its font to be compiled into
 // the .swf file.
 Verdana;

 // Constructor
 public function HelloWorld () {
 var t:TextField = new TextField();
 t.embedFonts = true;
 t.htmlText = "Hello world";
 addChild(t);
 }
 }
}

742 | Chapter 27: Text Display and Input

use embedded fonts when rendering the text field’s content. The following code
demonstrates:

// Create a TextField object
var t:TextField = new TextField();

// Tell Flash Player to use embedded fonts when rendering t's content
t.embedFonts = true;

Setting embedFonts to true does not cause any fonts to be added to
a .swf file; it merely indicates that the text field should be rendered
with embedded fonts if they are available.

The embedFonts variable must be set separately for each text field that uses a particu-
lar font, even if multiple text fields use the same font. However, file size is not
affected when multiple text fields use the same embedded font: only one copy of the
font is downloaded with the .swf file.

Once we have set the TextField object’s embedFonts variable to true, we then set the
font for the text field using the TextFormat class’s instance variable font, the
tag’s face attribute, or the CSS fontFamily property, as discussed in the earlier sec-
tion “Formatting Text Fields.” For example:

// Set the font with a TextFormat object
var format:TextFormat = new TextFormat();
format.font = "fontName";
var t:TextField = new TextField();
t.embedFonts = true;
t.defaultTextFormat = format;
t.text = "hello world";

// Or set the font with HTML
var t:TextField = new TextField();
t.embedFonts = true;
t.htmlText = "Hello world";

// Or set the font with CSS
var styleSheet:StyleSheet = new StyleSheet();
var pStyle:Object = new Object();
pStyle.fontFamily = "fontName";
styleSheet.setStyle("p", pStyle);
var t:TextField = new TextField();
t.embedFonts = true;
t.styleSheet = styleSheet; // Assign styleSheet before assigning htmlText!
t.htmlText = "<p>hello world</p>";

In the preceding code, fontName specifies the name of an embedded font, as defined
by the tool used to compiled the .swf file in which the font is embedded.

Fonts and Text Rendering | 743

For fonts embedded using the [Embed] metadata tag, fontName must match the string
value specified for the fontFamily parameter of the [Embed] tag used to embed the
font.

For fonts embedded via the Flash authoring tool, fontName must match the name that
appears in the Font menu of the Font Symbol Properties dialog box used to embed
the font (see Step 3 in the earlier section, “Embedding Font Outlines in the Flash
Authoring Tool”). For fonts embedded with the Bitmap text option selected,
fontName must match the following pattern:

nameInFontMenu_sizeInFontMenupt_variationCode

In the preceding pattern, nameInFontMenu is the name that appears in the Font menu
of the Font Symbol Properties dialog box, sizeInFontMenu is the font size selected in
the Font Symbol Properties dialog box, and variationCode is one of st (standard), b
(bold), i (italic), or bi (bold italic), matching the selected variation in the Font Sym-
bol Properties dialog box.

The preceding pattern applies to Flash CS3 and Flash Player 9 but may
change in the future. That said, for backwards compatibility, hypo-
thetical future versions of Flash Player will continue to support the
preceding pattern.

Table 27-8 presents several examples of the preceding fontName pattern required
when the Bitmap text option is selected.

Notice that the general technique for specifying a character’s font is the same
whether the text rendered is rendered with a device font or an embedded font. In the
case of device fonts, the supplied font name must match the name of a font installed
on the end user’s system. In the case of embedded fonts, the supplied font name
must match the name of an embedded font.

Using bold and italic with embedded fonts

To use the bold, italic, or bold-italic variations of a font in a TextField object whose
embedFonts variable is set to true, we must embed those variations separately. For
example, if we use Arial bold, Arial italic, and Arial bold italic in a TextField object
whose embedFonts variable is set to true, then we must embed all three Arial font
variations.

Table 27-8.

Name in font menu Font variation Font size Example fontName value

Verdana Standard 12 Verdana_12pt_st

Verdana Bold 12 Verdana_12pt_b

Verdana Italic 12 Verdana_12pt_i

Verdana Bold Italic 12 Verdana_12pt_bi

744 | Chapter 27: Text Display and Input

Each variation of a font embedded via the Flash authoring tool must be assigned a
unique class name in the Font Symbol Properties dialog box. Likewise, each varia-
tion of a font embedded via the [Embed] metadata tag must correspond to its own
variable (for variable-level embeds) or class (for class-level embeds). Furthermore,
each variation of a given font must specify the same value for the [Embed] tag’s
fontFamily parameter, and must use the appropriate font-variation parameter (either
fontWeight or fontStyle) to specify the variation being embedded.

For example, the following code embeds the bold and italic variations of Verdana.
The bold variation of the font specifies a fontFamily of “Verdana” and a fontWeight
of “bold.” The italic variation of the font specifies a fontFamily of “Verdana” and a
fontStyle of “italic.” Notice that the source parameter for each embed statement
specifies the location of the font file containing the appropriate font variation
(verdanab.ttf and verdanai.ttf, respectively).

[Embed(source="c:/windows/fonts/verdanab.ttf",
 fontFamily="Verdana",
 fontWeight="bold")]
private var verdanaBold:Class;

[Embed(source="c:/windows/fonts/verdanai.ttf",
 fontFamily="Verdana",
 fontStyle="italic")]
private var verdanaItalic:Class;

For reference, Example 27-14 shows the code required to embed and use the regular
and bold variations of the font Verdana.

Example 27-14. Embedding multiple font variations

// The font-embedding class
package {
 public class FontEmbedder {
 // Embed regular variation
 [Embed(source="c:/windows/fonts/verdana.ttf",
 fontFamily="Verdana")]
 private var verdana:Class;

 // Embed bold variation
 [Embed(source="c:/windows/fonts/verdanab.ttf",
 fontFamily="Verdana",
 fontWeight="bold")]
 private var verdanabold:Class;
 }
}

// The class that uses the embedded fonts
package {
 import flash.display.*;
 import flash.text.*;

Fonts and Text Rendering | 745

Loading Fonts at Runtime
Imagine we’re building a travel booking application in which the user can book air
transportation, accommodation, and ground transportation. Each booking section
has its own design that uses its own fonts. In some cases, users book air transporta-
tion only, and completely skip the accommodation-booking and ground-transporta-
tion-booking sections of the application.

To speed up the initial loading of our travel application, we can defer loading fonts
until they are actually required by the application. Immediately before the user
accesses each booking section, we load the fonts required by that section. Thus,
users that access only one section load the fonts required for that section only, and
do not have to wait for other sections’ fonts to load before using the application.

To load fonts at runtime, follow these general steps:

1. Embed the font(s) in a .swf file (using the techniques covered in the earlier sec-
tions “Embedding Font Outlines in the Flash Authoring Tool” and “Embedding
Font Outlines in Flex Builder 2 and mxmlc”).

2. In the .swf file that embeds the font, use the Font class’s static method
registerFont() to add the font to the global font list.

3. Load the .swf file with the embedded font.

Let’s apply the preceding steps to an example. We’ll start by creating a .swf file,
Fonts.swf, that embeds Verdana (regular) and Verdana (bold) using the [Embed]
metadata tag. Here’s the code for Fonts.swf file’s main class:

package {
 import flash.display.*;
 import flash.text.*;

 // Embed fonts for use by any .swf file that loads this file
 public class Fonts extends Sprite {

 public class HelloWorld extends Sprite {
 // Force FontEmbedder and, by extension, its fonts to be compiled into
 // the .swf file.
 FontEmbedder;

 public function HelloWorld () {
 var t:TextField = new TextField();
 t.embedFonts = true;
 // Use two variations of Verdana (normal, and bold)
 t.htmlText = "Hello world";

 addChild(t);
 }
 }
}

Example 27-14. Embedding multiple font variations (continued)

746 | Chapter 27: Text Display and Input

 [Embed(source="c:/windows/fonts/verdana.ttf",
 fontFamily="Verdana")]
 private var verdana:Class;

 [Embed(source="c:/windows/fonts/verdanab.ttf",
 fontFamily="Verdana",
 fontWeight="bold")]
 private var verdanaBold:Class;
 }
}

Next, we must add our embedded fonts to the global font list. To do so we use the
Font class’s static method registerFont(), which takes a single parameter, font. The
font parameter expects a reference to the Font class that represents the font to be
added to the global font list. Once a font is added to the global font list, it can be
used by any .swf file running in Flash Player.

In the preceding code, the classes representing our two Verdana font variations are
assigned to the variables verdana and verdanaBold. Hence, to add those fonts to the
global font list, we pass the value of those variables to the registerFont() method, as
follows:

Font.registerFont(verdana);
Font.registerFont(verdanaBold);

To ensure that our fonts are added to the global font list as soon as they load, we
invoke registerFont() within the Fonts class constructor, as follows:

package {
 import flash.display.*;
 import flash.text.*;

 // Embed fonts for use by any .swf file that loads this file
 public class Fonts extends Sprite {
 [Embed(source="c:/windows/fonts/verdana.ttf",
 fontFamily="Verdana")]
 private var verdana:Class;

 [Embed(source="c:/windows/fonts/verdanab.ttf",
 fontFamily="Verdana",
 fontWeight="bold")]
 private var verdanaBold:Class;

 // Constructor
 public function Fonts () {
 // Register this class's embedded fonts in the global font list
 Font.registerFont(verdana);
 Font.registerFont(verdanaBold);
 }
 }
}

Fonts and Text Rendering | 747

If we had embedded our fonts using Font symbols in the Flash authoring tool, we
would have added the preceding registerFont() calls to the first frame of the main
timeline, and we would have passed registerFont() the font classes listed in the Class
box of the Linkage Properties dialog box for each embedded Font symbol (see Step 8
in the section “Embedding Font Outlines in the Flash Authoring Tool”).

Next, we compile Fonts.swf and load it at runtime using the Loader class. As soon as
Fonts.swf finishes loading, its fonts immediately become available for use by any
other .swf file running in Flash Player. Example 27-15 shows an example class that
loads and then uses the fonts embedded in Fonts.swf.

For complete information on loading .swf files, see Chapter 28.

Example 27-15. Using loaded fonts

package {
 import flash.display.*;
 import flash.text.*;
 import flash.events.*;
 import flash.net.*;

 // This class demonstrates how to format text using loaded fonts.
 // The fonts, themselves, are embedded in the file Fonts.swf,
 // shown earlier.
 public class HelloWorld extends Sprite {
 public function HelloWorld () {
 // Load the .swf file that contains the embedded fonts
 var loader:Loader = new Loader();
 loader.contentLoaderInfo.addEventListener(Event.INIT, initListener);
 loader.load(new URLRequest("Fonts.swf"));
 }

 // Executed when Fonts.swf has initialized, and its fonts are available
 private function initListener (e:Event):void {
 // For debugging, show the available embedded fonts
 showEmbeddedFonts();

 // The font has loaded, so now display the formatted text
 outputMsg();
 }

 // Displays text formatted with the embedded fonts
 private function outputMsg ():void {
 // Create the text field
 var t:TextField = new TextField();
 t.embedFonts = true; // Tell ActionScript to render this
 // text field using embedded fonts
 // Use two variations of Verdana (normal, and bold)
 t.htmlText = "Hello world";

748 | Chapter 27: Text Display and Input

Most browsers cache .swf files, so applications comprised of multi-
ple .swf files can achieve an overall reduction in load time by loading
fonts from a single .swf file at runtime.

Missing Fonts and Glyphs
Earlier we learned that when a text field is rendered using device fonts, if a given
character’s font is not installed on the end user’s operating system, Flash Player will
automatically ask the operating system to render the character in an appropriate sub-
stitute font.

By contrast, when a text field is rendered using embedded fonts and a given charac-
ter’s font is not available in the list of embedded fonts, Flash Player first attempts to
render the character using any available variation of the specified font. For example,
consider the following code, which uses two variations of the font Verdana:

var t:TextField = new TextField();
t.embedFonts = true;
t.htmlText = "Hello world";

Notice that the font for the word “Hello” is set to Verdana, normal variation, while
the font for the word “world” is set to Verdana, bold variation. At runtime, if the
embedded font Verdana, bold-variation is not available, but the embedded font Ver-
dana, normal-variation is available, then the text “Hello world” will be rendered
entirely in Verdana, normal-variation. If, however, neither the normal variation nor
the bold variation of Verdana is available, then the character is not rendered at all,
and no text appears on screen!

 // Add the text field to the display list
 addChild(t);
 }

 // Outputs a list of the currently available embedded fonts
 public function showEmbeddedFonts ():void {
 trace("========Embedded Fonts========");

 var fonts:Array = Font.enumerateFonts();
 fonts.sortOn("fontName", Array.CASEINSENSITIVE);
 for (var i:int = 0; i < fonts.length; i++) {
 trace(fonts[i].fontName + ", " + fonts[i].fontStyle);
 }
 }
 }
}

Example 27-15. Using loaded fonts (continued)

Determining Font Availability | 749

When using embedded fonts, if the text in your application mysteri-
ously goes missing or appears in the wrong font variation, chances are
the required fonts are not available. To determine which fonts are avail-
able at runtime, use the Font class’s static method enumerateFonts(), as
discussed in the section “Determining Font Availability.”

When embedded fonts are in use, and a text field contains a character whose glyph is
not available in the specified font, that character is not rendered. By contrast, when
device fonts are in use, and a text field contains a character whose glyph is not avail-
able in the specified font, Flash Player will automatically search the system for a sub-
stitute font containing the missing glyph. If such a font is found, the character will be
rendered in the substitute font. If no font is found, then the character is not
rendered.

When a program supplies no formatting information for a TextField object whose
embedFonts variable is set to true, Flash Player attempts to render that object’s con-
tent using an embedded font whose name matches the name of the default font for
the current environment (“Times New Roman” on Microsoft Windows). If no such
embedded font exists, then the text is not rendered.

Determining Font Availability
To determine the list of device fonts and embedded fonts available at runtime, use
the Font class’s static method enumerateFonts(). The enumerateFonts() method
returns an array of Font objects, each of which represents an available device font or
embedded font. The enumerateFonts() method defines a single Boolean parameter,
enumerateDeviceFonts, which dictates whether the returned array includes device
fonts. By default, enumerateDeviceFonts is false, so the array returned by
enumerateFonts() does not include device fonts. Each Font object in the returned
array defines the following variables describing the font it represents:

fontName
Indicates the name of the font. For device fonts, fontName is the name that
appears in the system font list. For fonts embedded in the Flash authoring tool,
fontName is the name that appears in the Font menu of the Font Symbol Proper-
ties dialog box used to embed the font. For fonts embedded using the [Embed]
metadata tag, fontName is the string value specified for the fontFamily parameter
of the [Embed] tag used to embed the font.

fontStyle
Indicates the font variation (regular, bold, italic, or bold-italic) as one of the fol-
lowing four ActionScript constants: FontStyle.REGULAR, FontStyle.BOLD,
FontStyle.ITALIC, FontStyle.BOLD_ITALIC.

750 | Chapter 27: Text Display and Input

fontType
Indicates whether the font is an embedded font or a device font. This variable
refers to one of the following two ActionScript constants: FontType.EMBEDDED, or
FontType.DEVICE.

Example 27-16 demonstrates how to generate an alphabetical list of all available
embedded fonts.

Example 27-17 demonstrates how to generate an alphabetical list of all available
device fonts.

Example 27-18 demonstrates how to generate an alphabetical list of all available
embedded and device fonts.

The enumerateFonts() function can be used to allow the user to choose an applica-
tion’s fonts, or to select a fallback font automatically, as shown in Example 27-19.

Example 27-16. Listing all embedded fonts

var fonts:Array = Font.enumerateFonts();
fonts.sortOn("fontName", Array.CASEINSENSITIVE);
for (var i:int = 0; i < fonts.length; i++) {
 trace(fonts[i].fontName + ", " + fonts[i].fontStyle);
}

Example 27-17. Listing all device fonts

var fonts:Array = Font.enumerateFonts(true);
fonts.sortOn("fontName", Array.CASEINSENSITIVE);
for (var i:int = 0; i < fonts.length; i++) {
 if (fonts[i].fontType == FontType.DEVICE) {
 trace(fonts[i].fontName + ", " + fonts[i].fontStyle);
 }
}

Example 27-18. Listing all embedded and device fonts

var fonts:Array = Font.enumerateFonts(true);
fonts.sortOn("fontName", Array.CASEINSENSITIVE);
for (var i:int = 0; i < fonts.length; i++) {
 trace(fonts[i].fontType + ": "
 + fonts[i].fontName + ", " + fonts[i].fontStyle);
}

Example 27-19. Automatically selecting a fallback font

package {
 import flash.display.*;
 import flash.text.*;

 public class FontFallbackDemo extends Sprite {
 public function FontFallbackDemo () {
 var format:TextFormat = new TextFormat();

Determining Glyph Availability | 751

Determining Glyph Availability
To determine whether a specific embedded font has a glyph for a specific character
or set of characters, we use the Font class’s instance method hasGlyphs(). When pro-
vided with a string argument, the hasGlyphs() method returns a Boolean value indi-
cating whether the font has all the glyphs required to display that string.

The Font class’s instance method hasGlyphs() works with embedded
fonts only. There is no way to determine whether a given device font
has a glyph for a specific character.

To use the hasGlyphs() method, we must first obtain a reference to the Font object
for the font in question. To do so, we use a for loop to search the array returned by
enumerateFonts(). For example, the following code retrieves a reference to the Font
object for the font Verdana, and assigns it to the variable font:

var fontName:String = "Verdana";
var font:Font;
var fonts:Array = Font.enumerateFonts(true);
for (var i:int = 0; i < fonts.length; i++) {
 if (fonts[i].fontName == fontName) {

 // Assigns the first font available
 format.font = getFont(["ZapfChancery", "Verdana", "Arial", "_sans"]);

 var t:TextField = new TextField();
 t.text = "ActionScript is fun!";
 t.autoSize = TextFieldAutoSize.LEFT;
 t.setTextFormat(format)

 addChild(t);
 }

 // Given a list of fonts, returns the name of the first font in the list
 // that is available either as an embedded font or a device font
 public function getFont (fontList: Array):String {
 var availableFonts:Array = Font.enumerateFonts(true);
 for (var i:int = 0; i < fontList.length; i++) {
 for (var j:int = 0; j < availableFonts.length; j++) {
 if (fontList[i] == Font(availableFonts[j]).fontName) {
 return fontList[i];
 }
 }
 }
 return null;
 }
 }
}

Example 27-19. Automatically selecting a fallback font (continued)

752 | Chapter 27: Text Display and Input

 font = fonts[i];
 break;
 }
}

Once a reference to the desired Font object has been obtained, we can then use
hasGlyphs() to check if the corresponding font has the glyphs required to display a
given string. For example, the following code checks if the font Verdana can display
the English string “Hello world”:

trace(font.hasGlyphs("Hello world")); // Displays: true

The following code checks if the font Verdana can display the Japanese string
“ ”:

trace(font.hasGlyphs()); // Displays: false

Embedded-Text Rendering
Perhaps surprisingly, for TextField objects with embedFonts set to true, Flash Player
offers two different text-rendering modes. These modes are known somewhat generi-
cally as normal mode and advanced mode.

In normal mode, Flash Player renders text with the standard vector-renderer that is
used to render all vector shapes in a .swf file. The standard vector-renderer draws
text with an antialiasing algorithm that executes quickly and produces smooth-look-
ing lines. Text rendered with the standard vector-renderer is typically considered
clear and legible at medium to large font sizes (approximately 16 point and greater),
but fuzzy and illegible at small font sizes (12 point and smaller).

In advanced mode, Flash Player renders text with a specialized text-renderer known
as FlashType. FlashType is a licensed implementation of the Saffron Type System,
created by Mitsubishi Electric Research Laboratories (MERL). The FlashType ren-
derer is specifically designed to clearly render the types of shapes commonly found in
fonts at small sizes. Currently, FlashType generates better results for Western fonts
than Asian fonts. However, Asian text rendered with FlashType is still generally
clearer than text rendered with Flash Player’s standard vector renderer. Text ren-
dered with the FlashType renderer is typically considered more legible than text ren-
dered with Flash Player’s standard vector-renderer. At small font sizes, FlashType
also renders text faster than Flash Player’s standard vector-renderer. However, at
large font sizes, FlashType takes significantly longer to render text than Flash
Player’s standard vector-renderer.

For background information on the Saffron Type System, see Mitsub-
ishi’s official Saffron project overview at http://www.merl.com/projects/
ADF-Saffron, and Ronald Perry’s technical presentation notes for Saf-
fron at http://www.merl.com/people/perry/SaffronOverview.ppt.

http://www.merl.com/projects/ADF-Saffron
http://www.merl.com/projects/ADF-Saffron
http://www.merl.com/people/perry/SaffronOverview.ppt

Embedded-Text Rendering | 753

Developers can choose between Flash Player’s two text-rendering modes dynami-
cally at runtime, on a per-text field basis. To tell Flash Player to render a given
TextField object using the standard vector-renderer, set that object’s antiAliasType
to AntiAliasType.NORMAL. For example, the following code creates a TextField object,
and then tells Flash Player to render it with embedded fonts using the standard vec-
tor-renderer. Notice that in addition to setting the value of antiAliasType, the code
sets the TextField object’s embedFonts variable to true; Flash Player’s text-rendering
modes apply to text rendered with embedded fonts only.

// Create the TextField object
var t:TextField = new TextField();

// Tell Flash Player to render this text field with embedded fonts
t.embedFonts = true;

// Tell Flash Player to use the standard vector-renderer when rendering
// this text field
t.antiAliasType = AntiAliasType.NORMAL;

By contrast, the following code creates a TextField object and then tells Flash Player
to render it with embedded fonts using the FlashType renderer:

// Create the TextField object
var t:TextField = new TextField();

// Tell Flash Player to render this text field with embedded fonts
t.embedFonts = true;

// Tell Flash Player to use the FlashType renderer when rendering
// this text field
t.antiAliasType = AntiAliasType.ADVANCED;

The default value of antiAliasType is AntiAliasType.NORMAL (standard vector-
renderer).

By default, Flash Player renders TextField objects whose embedFonts
variable is true using the standard vector-renderer.

Figure 27-13 shows the English alphabet rendered in 10-point Verdana using both
FlashType (left) and the standard vector-renderer (right). On screen, the alphabet
rendered using FlashType is considerably more legible than the alphabet rendered
using Flash Player’s standard vector-renderer.

For reference, Example 27-20 shows the code used to produce the demonstration
alphabets shown in Figure 27-13.

754 | Chapter 27: Text Display and Input

For best text-animation quality use the standard vector-renderer (set
antiAliasType to AntiAliasType.NORMAL). For best legibility, use the
FlashType renderer (set antiAliasType to AntiAliasType.ADVANCED).

Note that FlashType rendering is automatically disabled when text is skewed or
flipped.

Figure 27-13. FlashType versus Flash Player’s standard vector-renderer

Example 27-20. FlashType versus Flash Player’s standard vector-renderer

package {
 import flash.display.*;
 import flash.text.*;

 public class FlashTypeDemo extends Sprite {
 // Forward slashes are required, but case doesn't matter.
 [Embed(source="c:/windows/fonts/verdana.ttf",
 fontFamily="Verdana")]
 private var verdana:Class;

 public function FlashTypeDemo () {
 // FlashType
 var t:TextField = new TextField();
 t.width = 200;
 t.embedFonts = true;
 t.htmlText = ""
 + "abcdefghijklmnopqrstuvwxyz";
 t.antiAliasType = AntiAliasType.ADVANCED;
 addChild(t);

 // Standard vector-renderer
 var t2:TextField = new TextField();
 t2.width = 200;
 t2.embedFonts = true;
 t2.htmlText = ""
 + "abcdefghijklmnopqrstuvwxyz";
 t2.antiAliasType = AntiAliasType.NORMAL;
 addChild(t2);
 t2.x = 180;
 }
 }
}

FlashType Standard
Vecto-Renderer

abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz

Text Field Input | 755

Tweaking the FlashType Renderer
The attractiveness and legibility of text is highly subjective. ActionScript offers a vari-
ety of advanced tools for fine-tuning the specific behavior of the FlashType renderer.

While a complete discussion of the FlashType renderer’s optional settings is beyond
the scope of this book, for the sake of familiarity, Table 27-9 lists the available tools
and their basic purpose. For further study, see each item’s entry in Adobe’s Action-
Script Language Reference.

Now let’s change our focus from formatting and fonts to receiving input through text
fields.

Text Field Input
Text fields can receive a variety of forms of user input, including text entry, text
selection, hypertext-link activation, keyboard focus, scrolling, and mouse interac-
tion. In this section, we’ll study text entry, text selection, and hypertext links. For
information on keyboard focus, scrolling, and mouse interaction, see Chapter 22.

Table 27-9. Variables and methods used to set FlashType options

Variable or method Description

TextField’s instance variable sharpness Sets the sharpness of the text field’s text to an integer value
between–400 (blurry) and 400 (sharp).

TextField’s instance variable thickness Sets the thickness of the lines in a text field’s text to an inte-
ger value between–200 (thin) and 200 (thick). Setting a text
field’s thickness to a high value gives a bold appearance
to its text.

TextField’s instance variable gridFitType Sets pixel-level grid-fitting options that affect the legibility of
text at different alignments (left, center, and right). Grid fit-
ting is a technique that positions the stems of a displayed
glyph on whole pixels to improve its readability.

TextRenderer’s static variable displayMode Instructs FlashType’s antialiasing algorithm to favor either
LCD or CRT screens. This setting applies globally to all text
rendered by the FlashType renderer.

TextRenderer’s static variable maxLevel Sets the quality level of adaptively sampled distance fields
(part of FlashType’s internal structure for describing glyph
outlines). This setting applies globally to all text rendered by
the FlashType renderer (but Flash Player automatically
increases this setting for any individual glyph rendered at a
font size over 64 pixels). Higher values reduce performance.

TextRenderer’s static method setAdvancedAntiAliasingTable() Assigns values that precisely determine the weight and
sharpness of a specific font at a specific size, style, and color
type (“light” or “dark”).

756 | Chapter 27: Text Display and Input

Text Entry
Each text field’s ability to receive user input is governed by the value of its type vari-
able. By default, for text fields created with ActionScript, the instance variable type is
set to TextFieldType.DYNAMIC, meaning that text can be modified through Action-
Script but not by the user. To allow a text field to receive user input, we must set
type to TextFieldType.INPUT, as shown in the following code:

var t:TextField = new TextField();
t.type = TextFieldType.INPUT;

When a TextField object’s type variable is set to TextFieldType.INPUT, the user can
add text to or delete text from the text field. The user’s modifications are automati-
cally reflected by the text and htmlText variables.

To be notified when a text field’s text is modified by the user, we can register with that
text field for TextEvent.TEXT_INPUT and Event.CHANGE events. The TextEvent.TEXT_INPUT
event is dispatched when the user attempts to change the text of the text field, before
the text and htmlText variables are updated. The Event.CHANGE event is dispatched after
the text and htmlText variables have been updated in response to user input. For com-
plete details on TextEvent.TEXT_INPUT and Event.CHANGE, see Chapter 22.

By default, users are not allowed to enter line breaks into text fields. To allow the
user to enter line breaks (for example by pressing the Enter key or Return key), set
multiline to true, as shown in the following code:

var t:TextField = new TextField();
t.type = TextFieldType.INPUT;
t.multiline = true;

To restrict the set of characters that the user can enter into a text field, use the
TextField class’s instance variable restrict. For example, the following text field
allows numeric text entry only, as might be required for a credit-card input field:

var t:TextField = new TextField();
t.width = 200;
t.height = 20;
t.border = true;
t.background = true;
t.type = TextFieldType.INPUT;
t.restrict = "0-9";

To limit the number of characters the user can enter into a text field, use the
TextField class’s instance variable maxChars. For example, the following text field
allows eight characters only, as might be required for the name field of a login form:

var t:TextField = new TextField();
t.width = 100;
t.height = 20;
t.border = true;
t.background = true;
t.type = TextFieldType.INPUT;
t.maxChars = 8;

Text Field Input | 757

To specify that characters should be obscured for screen privacy, use the TextField
class’s instance variable displayAsPassword. When displayAsPassword is true, all
characters are displayed as asterisks (*). For example, the words “hi there” are dis-
played as “********”. This allows users to enter text without casual onlookers seeing it.
The following code demonstrates a text field that obscures characters, as might be
required for the password field of a login form:

var t:TextField = new TextField();
t.width = 100;
t.height = 20;
t.border = true;
t.background = true;
t.type = TextFieldType.INPUT;
t.displayAsPassword = true;

Formatting user input

By default, new text entered by the user automatically adopts the formatting of the
character before the insertion point or the character at index 0 if the new text is
inserted before index 0. If the text field was previously empty, the new text is format-
ted according to the text field’s default text format (which is set via
defaultTextFormat, as discussed in the earlier section “Default formatting for text
fields”).

To override the automatic formatting applied to new text input, follow these steps:

1. Intercept the input with the TextEvent.TEXT_INPUT event.

2. Manually insert equivalent text.

3. Add formatting to the manually inserted text.

Example 27-21 demonstrates the technique in an example class,
FormattedInputDemo. Comments will guide you through the code.

Example 27-21. Formatting user input

package {
 import flash.display.*;
 import flash.text.*;
 import flash.events.*;

 public class FormattedInputDemo extends Sprite {
 public function FormattedInputDemo () {
 // Create the TextFormat objects
 var boldFormat:TextFormat = new TextFormat();
 boldFormat.bold = true;
 var italicFormat:TextFormat = new TextFormat();
 italicFormat.italic = true;

 // Create the text field
 var t:TextField = new TextField();
 t.text = "lunchtime";

758 | Chapter 27: Text Display and Input

Text Selection
By default, the text in all programmatically created text fields can be selected by the
user. To disable user-selection for a text field, set selectable to false. Normally, a
text field’s selection is shown only when the text field is focused; to force a text
field’s selection to be shown even when that text field does not have focus, set
alwaysShowSelection to true. In Flash Player 9, the color of the selection highlight
cannot be set; future versions of Flash Player might support configurable selection-
highlight color.

 // Format the word "lunch" with italics
 t.setTextFormat(italicFormat, 0, 5);
 // Format the word "time" with bold
 t.setTextFormat(boldFormat, 5, 9);
 t.type = TextFieldType.INPUT;

 // Register with t for TextEvent.TEXT_INPUT events
 t.addEventListener(TextEvent.TEXT_INPUT, textInputListener);

 // Add the text field to the display list
 addChild(t);
 }

 // Triggered whenever the user attempts to add new text to t
 private function textInputListener (e:TextEvent):void {
 // Retrieve a reference to the text field that received text input
 var t:TextField = TextField(e.target);

 // Prevent the user-supplied text from being added to the text field
 e.preventDefault();

 // Add the user-supplied text manually. This way, the TextField
 // object's text variable is forced to update immediately, allowing
 // us to format the new text within this function.
 t.replaceText(t.caretIndex, t.caretIndex, e.text);

 // Set the format for the new text
 var regularFormat:TextFormat = new TextFormat();
 regularFormat.bold = false;
 regularFormat.italic = false;
 t.setTextFormat(regularFormat,
 t.caretIndex,
 t.caretIndex+e.text.length)

 // Set the insertion point to the end of the new text, so
 // the user thinks they entered the text
 var newCaretIndex:int = t.caretIndex + e.text.length;
 t.setSelection(newCaretIndex, newCaretIndex);
 }
 }
}

Example 27-21. Formatting user input (continued)

Text Fields and the Flash Authoring Tool | 759

To determine the index of the first selected character in a text field, use the TextField
class’s instance variable selectionBeginIndex. To determine the index of the last
selected character in a text field, use the TextField class’s instance variable
selectionEndIndex. To determine the position of the insertion point (caret), use the
TextField class’s instance variable caretIndex. To programmatically select characters
in a text field or set the insertion point, use the TextField class’s instance method
setSelection().

Note that Flash Player does not include any events to indicate when a text field’s
selection changes. To detect changes in a text field’s selection, poll the value of
selectionBeginIndex and selectionEndIndex.

To replace the current selection with new text, as might be required in an applica-
tion with word processor-style text editing, use the TextField class’s instance method
replaceSelectedText(). Note, however, that replaceSelectedText() works only when a
text field has focus or has alwaysShowSelection set to true. The replaceSelectedText()
method is a convenience version of the replaceText() method we studied in the ear-
lier section “Modifying a Text Field’s Content.” replaceSelectedText() behaves
exactly like replaceText() except that it automatically sets the beginIndex and
endIndex parameters to match the current selection.

Hypertext Links
To add a hypertext link to a text field, we use the TextFormat class’s instance vari-
able url or the HTML anchor tag, <A>. Typically, hypertext links are used to open
specified resources at specified URLs. For example, the following code creates a text
field containing a hypertext link that, when activated, causes Flash Player to open
O’Reilly’s web site in the system’s default browser.

var t:TextField = new TextField();
t.htmlText = "To visit O'Reilly's web site, "
 + "click here";
t.autoSize = TextFieldAutoSize.LEFT;

However, hypertext links can also be used to trigger ActionScript code execution.
For complete details, see the section“The TextEvent.LINK Event” in Chapter 22.

We’re almost done with our study of text fields. But before we move on to the next
chapter, let’s briefly consider how text fields created manually in the Flash authoring
tool are represented in ActionScript.

Text Fields and the Flash Authoring Tool
In the Flash authoring tool, text fields can be created manually using the Text tool.
Each manually created text field is set to one of three author-time text field types:
static text, dynamic text, or input text. At runtime, each manually created text field is
represented in ActionScript by an object that matches its author-time text field type.

760 | Chapter 27: Text Display and Input

Text fields of type “static text” are represented by StaticText instances. Text fields of
type “dynamic text” are represented by TextField instances with type set to
TextFieldType.DYNAMIC. Text fields of type “input text” are represented by TextField
instances with type set to TextFieldType.INPUT.

The text content of text fields of type “static text” can be read at runtime through
ActionScript code but cannot be modified. By contrast, the text content of text fields
of type “dynamic text” or “input text” can be both read and modified. Hence, Flash
authors should choose the static text type when a text field’s content does not need
to be modified at runtime. To create text fields whose content can be modified at
runtime Flash authors should choose the dynamic text or input text types.

To access all the text in all the static text fields in a given DisplayObjectContainer
instance, use the TextSnapshot class (whose primary purpose is enabling character
selection across multiple individual StaticText objects).

Text fields that are static text type cannot be created with Action-
Script code; the StaticText and TextSnapshot classes exist solely to pro-
vide programmatic access to these text fields created in the Flash
authoring tool.

Just as ActionScript programmers can choose text-rendering options at runtime,
Flash authors can use the Properties panel to select the rendering mode for text fields
at compile-time. The Flash authoring tool rendering options (and their ActionScript
equivalents) are listed in Table 27-10.

Table 27-10. Flash authoring tool text rendering options

Properties panel setting Description ActionScript equivalent

Use device fonts Rely on the local playback environment
to render text using fonts installed on
the end user’s system.

Set embedFonts to false.

Bitmap text (no antialias) When “Bitmap text” is selected, the
compiler snaps shapes to whole pixels
when calculating glyph outlines (so the
font does not appear antialiased). At
runtime, those glyph outlines are ren-
dered by Flash Player’s built-in vector
renderer, not FlashType.

Embed font using Flash authoring
tool’s “Bitmap text” option, then set
embedFonts to false. Not avail-
able when compiling with Flex Builder
2 or mxmlc.

Antialias for animation Render text using Flash Player’s stan-
dard vector-renderer.

Set antiAliasType to
AntiAliasType.NORMAL.

Antialias for readability Render text using the FlashType ren-
derer, with default settings.

Set antiAliasType to
AntiAliasType.ADVANCED.

Custom antialias Render text with the FlashType ren-
derer, with custom settings.

Set antiAliasType to
AntiAliasType.ADVANCED, and
apply custom settings using the tech-
niques described in the earlier section
“Tweaking the FlashType Renderer.”

Loading . . . Please Wait . . . | 761

Loading . . . Please Wait . . .
Over the past eight chapters, we’ve learned a great deal about creating and manipu-
lating visual content using the display API. In the next chapter, we’ll finish our study
of display programming with a deep look at ActionScript’s tools for loading external
display assets.

762

Chapter 28CHAPTER 28

Loading External Display Assets 29

In ActionScript, there are three ways to programmatically add an external display
asset to an application:

• Use the flash.display.Loader class to load the asset at runtime

• Use the flash.net.Socket class in combination with the Loader class’s instance
method loadBytes() to load the asset at runtime over a direct TCP/IP socket

• Use the [Embed] metadata tag to include the asset from the local filesystem at
compile-time

The Loader and Socket classes are built-in to the Flash runtime API, while the
[Embed] metadata tag requires the Flex framework. All three approaches support the
following display asset formats:

• SWF (compiled Flash applications)

• JPEG, GIF, or PNG (bitmap images)

Additionally, the [Embed] metadata tag supports SVG-formatted display assets.

The Loader class replaces the following ActionScript 2.0 loading tools:

• MovieClipLoader class

• loadMovie() and loadMovieNum()

• global functionsMovieClip class’s instance methods loadMovie()
and loadMovieNum()

In this chapter, we’ll learn how to use Loader, Socket, and [Embed] to load external
display assets. For information on loading fonts, see Chapter 27. For information on
loading XML, see Chapter 18. For information on loading other nondisplay assets,
such as variables, binary data, or sound, see the URLLoader, URLStream, and Sound
class entries in Adobe’s ActionScript Language Reference.

Using Loader to Load Display Assets at Runtime | 763

Using Loader to Load Display Assets at Runtime
The Loader class loads an external display asset at runtime. The asset can be
retrieved over HTTP or from the local filesystem. There are three basic steps to using
the Loader class:

1. Create the flash.display.Loader instance.

2. Create a flash.net.URLRequest instance that specifies the asset’s location.

3. Pass the URLRequest instance to the Loader instance’s load() method.

Over the next few sections we’ll create an example class, SunsetViewer, that dem-
onstrates the preceding steps in detail. Our example class will load a single bit-
map image, sunset.jpg. Once we’re comfortable with the basics of loading an
asset, we’ll then examine how to monitor the progress of a load operation using
the flash.display.LoaderInfo class. Finally, we’ll consider the code required to
access the loaded asset and add it to the display list.

Load operations are subject to Flash Player security limitations. For
complete coverage, see Chapter 19.

In our SunsetViewer example, we’ll presume that the application .swf file,
SunsetViewer.swf, will be posted to a web site in the same directory as the image
we’re loading, sunset.jpg.

Creating the Loader Instance
As we just learned, the first step in loading any display asset at runtime using Loader
is creating a Loader instance. The Loader instance manages the load operation and
provides access to the loaded asset. We’ll create our Loader instance in
SunsetViewer’s constructor method and assign it to an instance variable named
loader, as shown in Example 28-1.

Example 28-1. Creating the Loader instance

package {
 import flash.display.*;

 public class SunsetViewer extends Sprite {
 private var loader:Loader;

 public function SunsetViewer () {
 loader = new Loader(); // Create the Loader instance
 }
 }
}

764 | Chapter 28: Loading External Display Assets

Specifying the Asset’s Location
To load an external display asset using a Loader instance, we must specify the asset’s
location with a flash.net.URLRequest object. Each individual URLRequest object
describes the location of a single external resource, either on the network or the local
filesystem. To create a URLRequest object that specifies an asset’s location, use the fol-
lowing general code, which assigns the asset’s location to the instance variable url:

var urlRequest:URLRequest = new URLRequest();
urlRequest.url = "theAssetURL";

Alternatively, the asset’s location can be passed to the URLRequest constructor, as:

var url:URLRequest = new URLRequest("theAssetURL");

In both cases, theAssetURL is a string containing a standard URL. For example:

new URLRequest("http://www.example.com/image.jpg");

The set of network protocols allowed in the theAssetURL is dependent on the operat-
ing system. For example, http://, https://, and ftp:// are all supported by
Windows, Macintosh, and UNIX, but a request for Windows help content (ms-its:)
might be supported on Windows only. For security reasons, Flash Player might also
block some protocols. However, Adobe does not currently publish a list of blocked
protocols. Furthermore, ActionScript does not generate any security error messages
relating specifically to protocol blocking. Hence, when working with unusual proto-
cols, be aware that load operations involving some unusual protocols may fail silently.

In addition to specifying a URL, each URLRequest object can also provide supple-
mentary information for requesting a resource over HTTP. To specify an HTTP
request’s header, method, POST data, query string, and MIME content type, simply
set the appropriate URLRequest variables, as documented in Adobe’s ActionScript
Language Reference. For example, to specify an HTTP request’s headers, set the
URLRequest class’s instance variable, requestHeaders.

An asset’s location can be specified as an absolute or relative URL. However, note
that Flash Player’s system for resolving relative URLs varies depending on how Flash
Player is launched:

• If Flash Player is launched in order to display a .swf file embedded in a web page
via the <OBJECT> or <EMBED> tag, then all relative URLs are resolved in rela-
tion to that web page—not in relation to any .swf file. Further, if the web page
was opened locally, relative URLs are resolved locally; if the web page was
opened over the Internet, relative URLs are resolved over the Internet.

• If Flash Player is launched as a standalone application or by browsing directly to
a .swf file in a Flash-enabled web browser, then all relative URLs are resolved in
relation to the first .swf file opened by Flash Player—known as the stage owner.
Further, if the stage owner was opened locally, relative URLs are resolved
locally; if the stage owner was opened over the Internet, relative URLs are
resolved over the Internet.

Using Loader to Load Display Assets at Runtime | 765

Even if the first .swf file opened by Flash Player is removed from the
stage, it is still considered the stage owner and still governs relative-
URL resolution.

Let’s consider a relative-URL example that demonstrates the preceding two relative-
URL-resolution systems. Suppose we embed an application, SunsetViewer.swf, on a
web page, SunsetViewer.html, and we store those two files in the following separate
directories:

/viewer/SunsetViewer.html
/viewer/assets/SunsetViewer.swf

Suppose also that from SunsetViewer.swf we want to load an image, sunset.jpg, which
also resides in the /assets/ directory:

/viewer/assets/sunset.jpg

If we expect the user to view SunsetViewer.swf by browsing to the web page
SunsetViewer.html, then we must compose our relative URL in relation to the web
page, as follows:

new URLRequest("assets/sunset.jpg");

However, if we expect the user to browse directly to SunsetViewer.swf, then we
would compose our relative URL in relation to the .swf file, not the web page, as
follows:

new URLRequest("sunset.jpg");

When distributing content for playback in Flash Player, compose all
relative URLs according to how you expect your users to launch Flash
Player.

Even when a .swf file loads another .swf file that, itself, loads external assets, relative
URLs are still resolved in relation to either the stage owner (in the case of a direct
launch) or the web page containing the embedded Flash Player (in the case of a web
page launch).

For example, suppose we open a hypothetical application, SlideShow.swf, directly in
Flash Player. Next suppose SlideShow.swf loads the preceding SunsetViewer.swf exam-
ple. In such a case, all relative URLs in SunsetViewer.swf would have to be composed
relative to SlideShow.swf (notice: not relative to SunsetViewer.swf!). Similarly, if
SlideShow.swf were viewed via a web page, then all relative URLs in SunsetViewer.swf
would have to be composed relative to that web page.

You can completely avoid the issue of varying relative URL-resolution
by storing all .html files, .swf files, and external-display-asset files in
the same directory.

766 | Chapter 28: Loading External Display Assets

Now let’s return to our example SunsetViewer class. Earlier, in Example 28-1 we cre-
ated a Loader instance. Example 28-2 updates the SunsetViewer class, adding code
that creates a request for the relative URL “sunset.jpg”. As mentioned earlier, for the
sake of our example, we’ll assume that sunset.jpg is stored in the same directory as
SunsetViewer.swf, thus avoiding any relative-URL complexity.

Now that we’ve specified the location of sunset.jpg, let’s actually load it.

Starting the Load Operation
So far, we’ve created a Loader object and a URLRequest object. Now we’ll put them
together to load an asset. To start a load operation, we pass our URLRequest
instance to the Loader instance’s load() method, as shown in Example 28-3.

Example 28-2. Specifying the asset’s location

package {
 import flash.display.*;
 import flash.net.URLRequest; // Import the URLRequest class

 public class SunsetViewer extends Sprite {
 private var loader:Loader;

 public function SunsetViewer () {
 loader = new Loader();
 // Specify asset location as "sunset.jpg"
 var urlRequest:URLRequest = new URLRequest("sunset.jpg");
 }
 }
}

Example 28-3. Starting the load operation

package {
 import flash.display.*;
 import flash.net.URLRequest;

 public class SunsetViewer extends Sprite {
 private var loader:Loader;

 public function SunsetViewer () {
 loader = new Loader();
 var url:URLRequest = new URLRequest("sunset.jpg");
 // Start the load operation
 loader.load(url);
 }
 }
}

Using Loader to Load Display Assets at Runtime | 767

So in summary, here’s the basic code required to load an external display asset at
runtime:

var loader:Loader = new Loader();
var url:URLRequest = new URLRequest("assetURL");
loader.load(url);

where assetURL is the location of the asset to load. It’s also legitimate and common
to combine the preceding second and third lines into one, as in:

var loader:Loader = new Loader();
loader.load(new URLRequest("assetURL"));

To cancel an in-progress load operation, use the Loader class’s
instance method close().

Once an asset has started loading, we’ll eventually want to access it and then display
it on screen. The next two sections cover those tasks.

Accessing the Loaded Asset
Before a loaded asset can safely be accessed, ActionScript must first initialize it. Dur-
ing the initialization phase, ActionScript instantiates the asset, adds it to the Loader
object that loaded it, and performs any tasks required to ready the asset for use.

The instantiation stage of the initialization process varies for different types of assets:

• For bitmaps, instantiation occurs when the external file has completely loaded.
At that time, the loaded pixel data is automatically placed in a BitmapData
object, which is then associated with a new Bitmap object. The Bitmap object
represents the loaded image.

• For .swf files, instantiation occurs when all assets and classes on frame 1 (includ-
ing the .swf ’s main class) have been received. At that time, ActionScript creates
an instance of the .swf ’s main class and executes its constructor. The main class
instance represents the loaded .swf file.

For the sake of the following discussion, we’ll refer to the instantiated
object (either the Bitmap object or the instance of the .swf ’s main
class) as the asset object.

Once the loaded asset has been instantiated, the asset object is automatically added
to the Loader object. The asset object is the Loader object’s first, and only allowed,
child. If the asset is a .swf file, any code on its first frame executes immediately after
its main class instance is added to the Loader object.

768 | Chapter 28: Loading External Display Assets

After the asset object has been added to the Loader object, and all initialization is
complete, the Flash runtime dispatches an Event.INIT event. When Event.INIT
occurs, the asset is considered ready for use. Any code that needs to access a loaded
asset should, therefore, be executed only after Event.INIT occurs.

Do not attempt to access a loading asset before Event.INIT occurs.

Listeners wishing to be notified when the Event.INIT event occurs must register with
the asset object’s LoaderInfo object—not the Loader object that originally invoked
load(). The LoaderInfo object is a separate object that provides information about a
loaded asset. Each Loader instance provides a reference to its loading asset’s
LoaderInfo object via the instance variable contentLoaderInfo. Hence, to register an
event listener for a given asset’s Event.INIT event, we use the following general code:

theLoader.contentLoaderInfo.addEventListener(Event.INIT, initListener);

where theLoader is the Loader object loading the asset, and initListener is a refer-
ence to the function that will handle the Event.INIT event. Once Event.INIT occurs,
the loaded asset can safely be accessed via the Loader object’s content variable or
getChildAt() method, as in:

theLoader.content
theLoader.getChildAt(0)

Notice the 0 in getChildAt(0). The asset is the Loader object’s only child, so it
resides at depth index 0.

The following code shows an Event.INIT event listener that sets the position of an
asset that has been loaded and initialized. In order to demonstrate the two different
ways of accessing the loaded asset, the code sets the horizontal position using the
content variable and the vertical position using getChildAt(0).

private function initListener (e:Event):void {
theLoader.content.x = 50;
theLoader.getChildAt(0).y = 75;

}

Alternatively, a loaded asset can be accessed through the Event object passed to the
Event.INIT listener function. An Event object passed to an Event.INIT listener defines
a target variable that refers to the asset’s LoaderInfo object. And each LoaderInfo
object references its corresponding asset via the instance variable content. Hence,
within an Event.INIT listener function, a reference to the loaded asset can be
retrieved using the expression theEvent.target.content. For example, the following
code sets the horizontal position of a loaded asset to 100:

private function initListener (e:Event):void {
 e.target.content.x = 100;
}

Using Loader to Load Display Assets at Runtime | 769

When accessing loaded assets, beware that, because an asset is not added to its
Loader until it has sufficiently loaded, invoking theLoader.getChildAt(0) before a
load operation commences causes an error. (Recall that a bitmap asset is not added
to its Loader until after the external file has completely loaded. A .swf asset is not
added to its Loader until after all assets and classes on the first frame, including the
.swf ’s main class, have been received.)

Likewise, before a load operation commences, the content variable contains the
value null. The following code demonstrates:

// Start a load operation
var loader:Loader = new Loader();
loader.load(new URLRequest("sunset.jpg"));

// Immediately attempt to access the loading asset
// before the load operation completes
trace(loader.getChildAt(0)); // RangeError: Error #2006:
 // The supplied index is out of bounds.
trace(loader.content); // Displays: null

Even once a load operation has started, if an asset has not sufficiently loaded, access-
ing either content or getChildAt(0) causes the following error:

Error: Error #2099: The loading object is not sufficiently loaded
 to provide this information.

The lesson, once again, is: do not attempt to access a loading asset before Event.INIT
occurs. In fact, the reverse is also true: before accessing its parent Loader object, code
in a loaded .swf file’s main class should wait for Event.INIT to occur. In particular,
code in the constructor of a loaded .swf file’s main class does not have access to the
parent Loader object. That said, code placed in the first frame of a loaded .swf file’s
timeline (in the Flash authoring tool) can access the parent Loader object (before
Event.INIT occurs).

Let’s apply our new asset-access knowledge to the SunsetViewer class. Example 28-4
shows how to access the loaded sunset.jpg from an Event.INIT listener function. It
displays the height, width, and rotation of the loaded image using the asset-access
techniques covered in this section.

Example 28-4. Accessing the loaded asset

package {
 import flash.display.*;
 import flash.net.URLRequest;
 import flash.events.*;

 public class SunsetViewer extends Sprite {
 private var loader:Loader;

 public function SunsetViewer () {
 loader = new Loader();

770 | Chapter 28: Loading External Display Assets

To use the methods and variables of the Bitmap class, the MovieClip
class, or a .swf file’s main class with a loaded asset, follow the
techniques covered in the later section “Compile-Time Type-Check-
ing for Runtime-Loaded Assets.”

Displaying the Loaded Asset On Screen
Once an asset is ready to be accessed, it is also ready to be added to the display list
for on-screen display. To add a loaded asset to the display list, we use the
DisplayObjectContainer class’s instance method addChild(), just as we would when
adding any other display object to the display list. Example 28-5 adds the Bitmap
object representing sunset.jpg to the main application class, SunsetViewer.

 // Register for Event.INIT
 loader.contentLoaderInfo.addEventListener(Event.INIT, initListener);
 var urlRequest:URLRequest = new URLRequest("sunset.jpg");
 loader.load(urlRequest);
 }

 // Listener invoked when Event.INIT occurs
 private function initListener (e:Event):void {
 // Access asset in three different ways
 trace(loader.content.width);
 trace(loader.getChildAt(0).height);
 trace(e.target.content.rotation);
 }
 }
}

Example 28-5. Adding an asset to the display list

package {
 import flash.display.*;
 import flash.net.URLRequest;
 import flash.events.*;

 public class SunsetViewer extends Sprite {
 private var loader:Loader;

 public function SunsetViewer () {
 loader = new Loader();
 loader.contentLoaderInfo.addEventListener(Event.INIT, initListener);
 var urlRequest:URLRequest = new URLRequest("sunset.jpg");
 loader.load(urlRequest);
 }

 private function initListener (e:Event):void {
 addChild(loader.content); // Add Bitmap object to SunsetViewer
 }
 }
}

Example 28-4. Accessing the loaded asset (continued)

Using Loader to Load Display Assets at Runtime | 771

Adding a loaded asset object to a new DisplayObjectContainer as shown in
Example 28-5 automatically removes that asset from its original parent Loader
object. To demonstrate, let’s add some code to Example 28-5’s initListener()
method. The added code checks how many children loader has, both before and
after the loaded asset (sunset.jpg) is added to SunsetViewer. Notice that after the asset
is moved, loader has no child display objects.

private function initListener (e:Event):void {
 trace(loader.numChildren); // Displays: 1 (the lone child is the asset)
 addChild(loader.content);
 trace(loader.numChildren); // Displays: 0 (because the asset was moved)
}

An alternative technique for displaying a loaded asset on screen is to add the asset’s
Loader object, rather than the asset object, to the display list. The Loader class, itself,
is a descendent of DisplayObject, so it can be added to any DisplayObjectContainer
directly. Once again, let’s revise the initListener() method from Example 28-5. This
time we’ll add loader to SunsetViewer directly. In so doing, we implicitly make the
Bitmap object representing sunset.jpg a grandchild of SunsetViewer.

private function initListener (e:Event):void {
 addChild(loader); // Add loader and its child asset to the display list
}

In fact, a Loader object can be added to the display list before any load operation
starts. When a display asset is subsequently loaded, it is automatically added to the
Loader object and, by extension, to the display list. Example 28-6 demonstrates. It
adds loader to the display list before loading sunset.jpg. After sunset.jpg is instanti-
ated and initialized, it is added to loader and—because loader is already on the dis-
play list—appears on screen. Therefore, no Event.INIT event listener is required.

Example 28-6. Adding a Loader to the display list

package {
 import flash.display.*;
 import flash.net.URLRequest;

 public class SunsetViewer extends Sprite {
 private var loader:Loader;

 public function SunsetViewer () {
 loader = new Loader();
 addChild(loader);
 var urlRequest:URLRequest = new URLRequest("sunset.jpg");
 loader.load(urlRequest);
 }
 }
}

772 | Chapter 28: Loading External Display Assets

Hence, the simplest possible way to load a display asset and display it on screen is:

var loader:Loader = new Loader();
addChild(loader);
loader.load(new URLRequest(theAssetURL));

The preceding three lines of code work for many simple situations, but in cases
where the loaded asset must be managed separately from its Loader object, or where
the timing for displaying the loaded asset must be managed manually, the code
shown earlier in Example 28-5 is more appropriate.

We’ve now learned how to load and display an external asset, but there’s often a
noticeable delay between those two operations while the asset downloads. Next we’ll
learn how to use the LoaderInfo class to display the progress of a download
operation.

Displaying Load Progress
To display the progress of an asset-load operation we follow four general steps:

1. Before loading the asset, create a visual load-progress indicator (e.g., a text field
or “loading bar”).

2. When the load operation starts, add the progress indicator to the display list.

3. As the asset loads, update the state of the progress indicator (much to the user’s
delight).

4. When the load operation completes, remove the progress indicator from the
screen.

Let’s see how the preceding steps work in practice by adding a simple text-based
load-progress indicator to our SunsetViewer class.

We’ll start by giving SunsetViewer a new instance variable, progressOutput, which
refers to a standard TextField object. The progressOutput text field will display load-
progress information.

private var progressOutput:TextField;

Next, we’ll give SunsetViewer two new methods: createProgressIndicator() and load().
The first new method, createProgressIndicator(), creates the progressOutput TextField.
We’ll invoke createProgressIndicator() from SunsetViewer’s constructor. Here’s the
code:

private function createProgressIndicator ():void {
 progressOutput = new TextField();
 progressOutput.autoSize = TextFieldAutoSize.LEFT;
 progressOutput.border = true;
 progressOutput.background = true;
 progressOutput.selectable = false;
 progressOutput.text = "LOADING...";
}

Using Loader to Load Display Assets at Runtime | 773

The second new method, load(), will add progressOutput to the display list and start
the asset-load operation. Any time a load operation is requested via load(),
progressOutput will be placed on screen; any time a load operation completes,
progressOutput will be removed from the screen. This architecture lets SunsetViewer
reuse the same TextField object when displaying load-progress information. Here’s
the code for load():

private function load (urlRequest:URLRequest):void {
 // Start the load operation
 loader.load(urlRequest);
 // If progressOutput isn't already a descendant of this object...
 if (!contains(progressOutput)) {
 // ...add it
 addChild(progressOutput);
 }
}

During loading, we’ll listen for the ProgressEvent.PROGRESS event, which indicates
that a new portion of sunset.jpg has arrived and provides the latest load-progress
information. Each time the ProgressEvent.PROGRESS event occurs, we’ll update
progressOutput. The ProgressEvent.PROGRESS event is targeted at our loading asset’s
LoaderInfo object. As we learned earlier, an asset’s LoaderInfo object can be accessed
via the Loader class’s instance variable contentLoaderInfo. Hence, to register to
receive ProgressEvent.PROGRESS notifications, we use the following code:

loader.contentLoaderInfo.addEventListener(ProgressEvent.PROGRESS,
 progressListener);

In the preceding code, progressListener is a reference to the function we want to run
when the ProgressEvent.PROGRESS event occurs. The progressListener function is
passed a ProgressEvent object whose variables indicate:

• The file size of the loading asset (bytesTotal)

• The number of bytes that have been received so far (bytesLoaded)

The following code shows the progressListener function for our SunsetViewer class;
notice how it retrieves load progress information from the ProgressEvent object, e:

private function progressListener (e:ProgressEvent):void {
 // Update progress indicator. 1 Kb is 1024 bytes, so divide by
 // 1024 to convert output to Kb.
 progressOutput.text = "LOADING: "
 + Math.floor(e.bytesLoaded / 1024)
 + "/" + Math.floor(e.bytesTotal / 1024) + " KB";
}

When an asset has been received in its entirety, the Flash runtime dispatches an
Event.COMPLETE event targeted at the asset’s LoaderInfo object. When Event.COMPLETE
occurs, we can remove the progress indicator (progressOutput) from the display list.

774 | Chapter 28: Loading External Display Assets

To register with our loading asset’s LoaderInfo object for Event.COMPLETE events, we
use the following code:

loader.contentLoaderInfo.addEventListener(Event.COMPLETE,
 completeListener);

where completeListener is a reference to the function we want to run when Event.COMPLETE
occurs. The following code shows the completeListener function. Its job is simply to
remove progressOutput from the display list.

private function completeListener (e:Event):void {
 // Remove progress indicator.
 removeChild(progressOutput);
}

Finally, for the sake of reusability and easier reading, we’ll move our Loader-creation
code and event-registration code into a new method, createLoader(), shown next.
Notice that the code in createLoader() registers not only for ProgressEvent.PROGRESS
and Event.COMPLETE but also for the Event.INIT event discussed in the earlier section
“Accessing the Loaded Asset.” As before, we’ll place our loaded asset on the display
list when Event.INIT occurs. Here’s the code for createLoader():

private function createLoader ():void {
 // Create the Loader
 loader = new Loader();

 // Register for events
 loader.contentLoaderInfo.addEventListener(ProgressEvent.PROGRESS, progressListener);
 loader.contentLoaderInfo.addEventListener(Event.COMPLETE, completeListener);
 loader.contentLoaderInfo.addEventListener(Event.INIT, initListener);
}

Code that removes a progress indicator from the display list (as our
completeListener() does) should always use the Event.COMPLETE event rather than the
Event.INIT event. Be careful not to confuse these two events. Event.INIT expresses a
qualitative state of “asset readiness” while Event.COMPLETE expresses a quantitative
state of download completion. Event.INIT indicates that an asset is ready for use,
even though—in the case of a .swf file—it might still be downloading. By contrast,
Event.COMPLETE indicates that all the bytes in the file containing an asset have been
received.

Use the Event.INIT event to determine when an asset can be safely
accessed. Use the Event.COMPLETE event to determine when a load
operation has finished.

Because some types of assets can be initialized before they are fully loaded, Event.INIT
always occurs before Event.COMPLETE. For example, suppose we’re loading a .swf file
containing a 2,000-frame animation. When the first frame has loaded and been initial-
ized, Event.INIT occurs. At that time, we add the animation to the display list and let it

Using Loader to Load Display Assets at Runtime | 775

play while the .swf continues to load. As the .swf loads, a load-bar indicates download
progress. When the .swf finishes loading, Event.COMPLETE occurs, and we remove the
load-bar from the screen.

Example 28-7 shows our SunsetViewer class once again, this time revised to include
the load-progress-display code covered in this section.

Example 28-7. Displaying load progress

package {
 import flash.display.*;
 import flash.net.URLRequest;
 import flash.events.*
 import flash.text.*;

 public class SunsetViewer extends Sprite {
 private var loader:Loader; // The asset loader
 private var progressOutput:TextField; // The text field in which
 // to display load progress
 // Constructor
 public function SunsetViewer () {
 // Create Loader object and register for events
 createLoader();

 // Create the progress indicator
 createProgressIndicator();

 // Start the load operation
 load(new URLRequest("sunset.jpg"));
 }

 private function createLoader ():void {
 // Create the Loader
 loader = new Loader();

 // Register for events
 loader.contentLoaderInfo.addEventListener(ProgressEvent.PROGRESS,
 progressListener);
 loader.contentLoaderInfo.addEventListener(Event.COMPLETE,
 completeListener);
 loader.contentLoaderInfo.addEventListener(Event.INIT,
 initListener);
 }

 private function createProgressIndicator ():void {
 progressOutput = new TextField();
 progressOutput.autoSize = TextFieldAutoSize.LEFT;
 progressOutput.border = true;
 progressOutput.background = true;
 progressOutput.selectable = false;
 progressOutput.text = "LOADING...";
 }

776 | Chapter 28: Loading External Display Assets

Why not use Event.OPEN?

If you’ve browsed through the Flash runtime API documentation you might have
noticed a convenient-looking event called Event.OPEN, which occurs when a loading
operation commences. In theory, Event.OPEN offers a nice clean place from which to
add a progress indicator to the display list. As we learned earlier, progress-display
code breaks down into four general tasks:

1. Create the progress indicator.

2. Add the progress indicator to the display list.

3. Update the progress indicator.

4. Remove the progress indicator from the display list.

The first operation typically occurs during a setup phase. The remaining three
operations correspond to the three loading events: Event.OPEN, Event.PROGRESS, and
Event.COMPLETE. You might wonder, then, why the SunsetViewer class in
Example 28-7 added progressOutput to the display list in the load() method rather
than in an Event.OPEN listener.

private function load (urlRequest:URLRequest):void {
 loader.load(urlRequest);

 private function load (urlRequest:URLRequest):void {
 loader.load(urlRequest);
 if (!contains(progressOutput)) {
 addChild(progressOutput);
 }
 }

 // Listener invoked whenever data arrives
 private function progressListener (e:ProgressEvent):void {
 // Update progress indicator.
 progressOutput.text = "LOADING: "
 + Math.floor(e.bytesLoaded / 1024)
 + "/" + Math.floor(e.bytesTotal / 1024) + " KB";
 }

 private function initListener (e:Event):void {
 addChild(loader.content); // Add loaded asset to display list
 }

 // Listener invoked when the asset has been fully loaded
 private function completeListener (e:Event):void {
 // Remove progress indicator.
 removeChild(progressOutput);
 }
 }
}

Example 28-7. Displaying load progress (continued)

Using Loader to Load Display Assets at Runtime | 777

 if (!contains(progressOutput)) {
 // Why do this here...
 addChild(progressOutput);
 }
}

private function openListener (e:Event):void {
 if (!contains(progressOutput)) {
 // ...rather than here?
 addChild(progressOutput);
 }
}

In fact, an Event.OPEN listener would theoretically be a good place to add
progressOutput to the display list. Unfortunately, in practice, idiosyncratic browser
behavior complicates the use of Event.OPEN, so this book avoids its use. For com-
plete details, see the later section “Environment-specific behavior for load failures.”

So far we’ve learned how to load an external asset, display it on screen, and show its
load progress to the user. Now let’s study the code required to recover from load
errors.

Handling Load Errors
As we learned in Chapter 19, any time an attempt to load an asset fails due to secu-
rity restrictions, Flash Player either throws a SecurityError exception or dispatches a
SecurityErrorEvent.SECURITY_ERROR. Any time an attempt to load an asset fails for
any other reason, ActionScript dispatches an IOErrorEvent.IO_ERROR event targeted at
the asset’s LoaderInfo object. By handling that event, we can attempt to recover from
any nonsecurity-related load failure. For example, we might write code in an
IOErrorEvent.IO_ERROR listener that asks the user to check for a faulty Internet
connection.

Let’s add load-error handling code to our SunsetViewer class. To register to be noti-
fied when IOErrorEvent.IO_ERROR occurs, we use the now-familiar code:

loader.contentLoaderInfo.addEventListener(IOErrorEvent.IO_ERROR,
 ioErrorListener);

where ioErrorListener is a reference to the function that will handle the event. The
following code shows the ioErrorListener function. In our SunsetViewer applica-
tion, ioErrorListener() simply displays an error message to the user in the
progressOutput text field.

// Listener invoked when a load error occurs
private function ioErrorListener (e:IOErrorEvent):void {
 progressOutput.text = "LOAD ERROR";
}

778 | Chapter 28: Loading External Display Assets

Unlike other loading events, when Flash Player dispatches an IOErrorEvent.IO_ERROR
event targeted at a LoaderInfo object, but no listener function is registered to handle
it, ActionScript generates a runtime error. For example:

Error #2044: Unhandled IOErrorEvent:. text=Error #2035: URL Not Found.

Of course, like all runtime error events, the “Unhandled IOErrorEvent” error is dis-
played in the debug version of Flash Player only. In the release version of Flash
Player, ActionScript does not display load errors to the user; instead, ActionScript
expects application code to respond to the error as it sees fit.

Example 28-8 updates SunsetViewer one last time, showing the class in its final state,
complete with load-error handling code. The new code is shown in bold.

Example 28-8. The final SunsetViewer, with load-error handling

package {
 import flash.display.*;
 import flash.net.URLRequest;
 import flash.events.*
 import flash.text.*;

 public class SunsetViewer extends Sprite {
 private var loader:Loader;
 private var progressOutput:TextField;

 public function SunsetViewer () {
 createLoader();
 createProgressIndicator();
 load(new URLRequest("sunset.jpg"));
 }

 private function createLoader ():void {
 loader = new Loader();
 loader.contentLoaderInfo.addEventListener(ProgressEvent.PROGRESS,
 progressListener);
 loader.contentLoaderInfo.addEventListener(Event.COMPLETE,
 completeListener);
 loader.contentLoaderInfo.addEventListener(Event.INIT,
 initListener);
 loader.contentLoaderInfo.addEventListener(IOErrorEvent.IO_ERROR,
 ioErrorListener);
 }

 private function createProgressIndicator ():void {
 progressOutput = new TextField();
 progressOutput.autoSize = TextFieldAutoSize.LEFT;
 progressOutput.border = true;
 progressOutput.background = true;
 progressOutput.selectable = false;
 progressOutput.text = "LOADING...";
 }

Using Loader to Load Display Assets at Runtime | 779

Environment-specific behavior for load failures

To perform load operations, the Flash runtime depends on its local environment (i.e.,
the operating system and host application, which is often a web browser). As a result,
some ActionScript loading behaviors are environment-specific. As much as possible,
ActionScript attempts to reduce the programmer’s exposure to environment-specific
behaviors. Nevertheless, in Flash Player 9, there are two load-failure behaviors—pre-
sented in Table 28-1—that are unique to Internet Explorer on Windows, and require
special programmer attention.

 private function load (urlRequest:URLRequest):void {
 loader.load(urlRequest);
 if (!contains(progressOutput)) {
 addChild(progressOutput);
 }
 }

 private function progressListener (e:ProgressEvent):void {
 progressOutput.text = "LOADING: "
 + Math.floor(e.bytesLoaded / 1024)
 + "/" + Math.floor(e.bytesTotal / 1024) + " KB";
 }

 private function initListener (e:Event):void {
 addChild(loader.content);
 }

 private function completeListener (e:Event):void {
 removeChild(progressOutput);
 }

 // Listener invoked when a load error occurs
 private function ioErrorListener (e:IOErrorEvent):void {
 progressOutput.text = "LOAD ERROR";
 }
 }
}

Table 28-1. Internet Explorer-specific load behaviors

Feature Internet Explorer behavior
Standalone player, firefox, and
Adobe AIR behavior

Event.OPEN All load operations trigger the Event.
OPEN event, even those that
eventually fail due to a “file not found”
condition.

The Event.OPEN event is not
triggered for load operations that fail
due to a “file not found.”

IOErrorEvent’s instance variable text When a load operation fails due to a
“file not found” condition, text is set
to “Error #2036: Load Never
Completed.”

When a load operation fails due to a
“file not found” condition, text is set
to “Error #2035: URL Not Found.”

Example 28-8. The final SunsetViewer, with load-error handling (continued)

780 | Chapter 28: Loading External Display Assets

None of the differing behaviors described in Table 28-1 is the “correct” behavior.
Each behavior is simply determined by the Flash runtime’s environment. However,
because the behaviors are not consistent across all environments, care must be taken
when writing code that uses Event.OPEN or the IOErrorEvent class’s instance variable
text. To achieve platform neutrality, follow these two guidelines:

• Never make logical branching decisions based on the value of the IOErrorEvent
class’s instance variable text. Use that variable for debugging purposes only.

• Avoid using Event.OPEN for anything other than debugging.

Let’s consider one example showing why the use of Event.OPEN could cause prob-
lems in an application. Suppose an application uses a custom class, LoadBar, to dis-
play progress for a load operation. The application adds the LoadBar instance to the
display list whenever a load operation starts, from within an Event.OPEN event
listener:

private function openListener (e:Event):void {
 addChild(loadBar);
}

Now suppose the application attempts to load a file that cannot be found. If the
application is viewed in Internet Explorer, openListener() is executed, and the
LoadBar instance appears on screen. But if the application is viewed in any other
browser, openListener() is not executed, and the LoadBar instance does not appear
on screen. In the best case, the developer notices the discrepancy and writes Internet
Explorer-specific code to remove the LoadBar instance from the screen in the event
of a load failure. Such code complicates the application and increases the possibility
of code errors. In the worst case, the developer does not notice the discrepancy, and
in Internet Explorer, the LoadBar is stranded on screen for the lifetime of the applica-
tion. To avoid the problem completely, it’s safest to never use the Event.OPEN event.
Instead, simply follow the approach we took in Example 28-7: add any load progress
indicators to the screen manually before starting load operations.

In future versions of ActionScript, the environment-specific behaviors described in
Table 28-1 might be standardized, eliminating the need to avoid the Event.OPEN
event.

Debugging with HTTPStatusEvent

When an HTTP client requests an asset over HTTP, the HTTP server responds with
a status code indicating how the request was handled. For example, if an HTTP
request succeeds, the HTTP server sends a status code of 200. If an HTTP request
fails, the server sends a failure status describing what went wrong. HTTP-status
codes for load failures often provide more detailed information than ActionScript’s
generic IOErrorEvent.IO_ERROR event, so they are useful for debugging. However,
HTTP-status codes are not supported in all environments.

Compile-Time Type-Checking for Runtime-Loaded Assets | 781

Flash Player plug-ins for Netscape, Mozilla (Firefox), Safari, Opera,
and Internet Explorer (Macintosh version) do not support HTTP-
status codes.

When Flash Player receives an HTTP-status code from the server, it dispatches an
HTTPStatusEvent.HTTP_STATUS event targeted at the loading asset’s LoaderInfo object.
To register to be notified when HTTPStatusEvent.HTTP_STATUS occurs, we use the fol-
lowing code:

theLoader.contentLoaderInfo.addEventListener(HTTPStatusEvent.HTTP_STATUS,
httpStatusListener);

where theLoader is the Loader object loading the asset and httpStatusListener is a
reference to the function that will handle the event. The httpStatusListener func-
tion is passed an HTTPStatusEvent object whose status variable contains the HTTP-
status code. The following code shows a typical httpStatusListener function; notice
how it retrieves the HTTP-status code from the HTTPStatusEvent object, e:

private function httpStatusListener (e:HTTPStatusEvent):void {
 trace("http status: " + e.status);
}

Perhaps surprisingly, Flash Player actually dispatches an HTTPStatusEvent.HTTP_STATUS
for every single load operation, even when Flash Player does not receive an HTTP-sta-
tus code from the server. When no HTTP-status code is received, the value of the
HTTPStatusEvent class’s instance variable status is set to 0. For example, in all of the
following situations, status is set to 0:

• A file is loaded locally or from a non-HTTP source.

• The HTTP server cannot be reached.

• The request URL is malformed.

• The environment does not support HTTP-status codes (e.g., Flash Player is run-
ning in Mozilla Firefox).

We’ve now covered all general tasks relating to loading display assets, at runtime
with a Loader object. The upcoming sections cover issues relating specifically to
using loaded .swf files.

Compile-Time Type-Checking for Runtime-Loaded
Assets
In the earlier section “Accessing the Loaded Asset,” we learned that the Loader
class’s instance variable content refers to an object representing a loaded asset. We
also learned that—depending on which type of asset was loaded—content might
refer to an instance of either the Bitmap class or a .swf file’s main class. Instances of
those disparate classes can legally be assigned to content because its datatype is

782 | Chapter 28: Loading External Display Assets

DisplayObject, and both the Bitmap class and all .swf file main classes inherit from
DisplayObject. As a result, any object assigned to content can be operated on using
the variables and methods of DisplayObject but cannot be operated on using the
more specific variables and methods of either the Bitmap class or a .swf ’s main class.

For example, the following code legally accesses the DisplayObject class’s instance
variable width on an object referenced via content:

// DisplayObject defines width, so no error
loader.content.width

The following code similarly attempts to access the Bitmap class’s instance variable
bitmapData on an object referenced via content. But this time, the code causes a com-
piler error because the DisplayObject class does not define the bitmapData variable.

ERROR: "Access of possibly undefined property bitmapData through a
 reference with static type flash.display:DisplayObject."

loader.content.bitmapData.getPixel(0, 0)

To avoid compile-time errors when referencing Bitmap methods and variables
through content, we cast content to Bitmap, as shown in the following code:

Bitmap(loader.content).bitmapData.getPixel(1, 1);

The cast operation informs the compiler that the loaded asset is an instance of the
Bitmap class, which defines the bitmapData variable.

Likewise, when using MovieClip methods and variables on a loaded .swf file, we cast
content to MovieClip. For example, the following code starts playing a hypothetical
animation by invoking the MovieClip class’s instance method play() on a loaded
asset. The (required) cast operation informs the compiler that the loaded asset is a
descendent of the MovieClip class, and, therefore, supports the play() method.

MovieClip(loader.content).play();

In the same way, when using the custom methods and variables of a loaded .swf file’s
main class, you might naturally expect to cast content to that main class. For exam-
ple, suppose an application, Main.swf loads another application, Module.swf, whose
main class is Module. Further suppose that Module defines a custom method, start().
When Main.swf loads Module.swf, ActionScript automatically creates a Module
instance and assigns it to content. Hence, to invoke start() on the loaded Module
instance, you might expect to use the following cast operation:

Module(loader.content).start();

While the preceding code is conceptually correct, it will actually cause a compile-
time error unless special measures are taken when compiling Main.swf. Let’s con-
sider why.

Suppose we’ve created Main.swf and Module.swf as separate projects in Flex Builder 2.
The two projects are designed as self-contained, independent applications, so they

Compile-Time Type-Checking for Runtime-Loaded Assets | 783

have completely separate code bases, and do not link to each other in any way.
Module.swf ’s project defines the class Module, but Main.swf ’s project has no knowl-
edge of that class. When we build Main.swf, the compiler encounters this code:

Module(loader.content).start()

and cannot resolve the reference to Module within main.swf ’s ActionScript Build
Path. Unable to find Module, the compiler assumes that the expression
Module(loader.content) is a method call. However, no method named Module exists,
so the compiler generates the following datatype error:

1180: Call to a possibly undefined method Module.

There are two ways to address this issue: we can opt-out of compile-time type-check-
ing or we can give the compiler access to the Module class when compiling Main.swf.
The next two sections cover these two options.

Opting Out of Compile-Time Type-Checking
To opt-out of compile-time type-checking when using the custom methods and vari-
ables of a loaded .swf file’s main class, we can either cast loader.content to the
Object datatype, as in:

Object(loader.content).start(); // No compiler error

or, we can assign loader.content to an untyped variable, as in:

var module:* = loader.content;
module.start(); // No compiler error

Alternatively, we can access the loaded object via the expression initEvent.target.content
within an Event.INIT event listener function. The Event class’s instance variable target is
not type-checked at compile-time because target’s datatype is Object.

private function initListener (e:Event):void {
 e.target.content.start(); // No compiler error
}

In each of the preceding cases, when start() is accessed, the compiler does not gener-
ate an error. Instead, our use of loader.content is not type-checked until runtime.
However, as we learned in Chapter 8, opting out of compile-time type-checking
comes at a productivity cost. When type checking is deferred until runtime, errors
are not reported until potential problem code is actually executed, so testing time is
increased.

To avoid increased testing time, we can choose instead to give the compiler access to
the Module class when compiling Main.swf. The next section describes the process in
detail.

784 | Chapter 28: Loading External Display Assets

Give the Compiler Access to the Loaded Class
To avoid compiler errors when casting loader.content to a loaded .swf file’s main
class, we can give ActionScript compile-time access to that class. There are three dif-
ferent techniques for doing so: the source-path technique, the library-path tech-
nique, and the external-library-path technique. Continuing with the Module class
example from the previous section, each technique is covered in the following three
sections. In each case, the compiler is given access to the Module class when compil-
ing Main.swf.

The three techniques covered in the following sections are appropriate in different
situations. Use the source-path technique when both of the following are true:

• An increase in the file size of the overall application is acceptable.

• You are willing to make the source code of the loaded .swf file (Module.swf in
our example) directly available to the author of the accessing .swf file (Main.swf
in our example).

Use the the library-path technique when an increase in the file size of the overall
application is acceptable and one of the following is true:

• You do not wish to make the source code of the loaded .swf file directly avail-
able to the author of the accessing .swf file.

• The time required to compile the accessing .swf file must be minimized.

Use the tthe external-library-path technique when an increase in the overall applica-
tion’s file size is not acceptable.

Note that in all three of the following technique examples, if Main.swf
already contains a class named Module, Main.swf ’s version is used
instead of the Module.swf ’s. To avoid that possibility, always qualify
your class names with a unique package name (as discussed in
Chapter 1).

Add the Module Class File to Main.swf ’s source-path
The first technique for giving the compiler access to the Module class when compil-
ing Main.swf is to add Module’s class file to Main.swf ’s source-path.

The following steps describe the process in Flex Builder 2:

1. In the Navigator panel, select the project folder for the Main.swf application.

2. On the Project Menu, choose Properties.

3. On the Properties dialog, choose ActionScript Build Path.

4. On the Source path tab, click the Add Folder button.

5. On the Add Folder dialog, specify the path to the folder containing Module’s
class file.

Compile-Time Type-Checking for Runtime-Loaded Assets | 785

6. On the Add Folder dialog, click OK.

7. On the Properties dialog, click OK.

The following steps describe the equivalent process for adding Module’s class file to
Main.swf ’s source-path in Flash CS3:

1. Open Main.swf ’s corresponding .fla file, Main.fla. (Note that the steps for cre-
ating Main.fla are not discussed in this section. The file Main.fla is assumed to
be .fla file with its document class set to Main.)

2. Select File ➝ Publish Settings.

3. In the Publish Settings dialog, on the Flash tab, next to “ActionScript version:
ActionScript 3.0,” click the Settings button.

4. On the ActionScript 3.0 Settings dialog, under Classpath, click the plus button
(+), and specify the path to the folder containing Module’s class file.

Once Module’s class file is in main.swf ’s source-path, the compiler will be able to
type-check any reference to Module that occurs in main.swf. The compiler also adds
the bytecode for Module (and all dependent definitions) directly into main.swf,
ensuring that Module will be accessible within Main.swf at runtime. The source-path
technique, hence, increases the overall file size of the application because the Module
class and its dependent definitions are included in both Main.swf and Module.swf.
Furthermore, the source-path technique compiles Module from scratch every time the
Main.swf is built, which can be time-consuming.

Add the Module Class File to Main.swf ’s library-path
The second technique for giving the compiler access to the Module class when com-
piling Main.swf is to create a .swc file containing Module and include that .swc file in
Main.swf ’s library-path.

To create the .swc file containing Module in Flex Builder 2, we use the command-line
component compiler, compc (compc resides in the Flex Builder 2 install directory,
under Flex SDK 2\bin). The general form for compiling a .swc file using compc is:

compc -source-path path_to_definitions -output path_to_swc_file -include-classes
definitionNames

where path_to_definitions is a list of locations in which the compiler should look
for classes and other definitions when creating the .swc file, path_to_swc_file is the
path to the .swc file that will be created, and definitionNames is a list of definitions to
include in the .swc file (the compiler automatically includes all dependent defini-
tions). For example, suppose we’re using Windows XP, and we want to create a .swc
file named module.swc in the folder c:\apps\module\bin\. We want module.swc to
include Module, whose class file resides in the folder c:\apps\module\src. To create
module.swc, we use the following command:

compc -source-path c:\apps\module\src -output c:\apps\module\bin\module.swc -include-
classes Module

786 | Chapter 28: Loading External Display Assets

Note that, despite its name, the compc compiler option -include-classes
can be used to include any kind of definition, not just classes. Future
versions of the compiler may include a more appropriately named option,
-include-definitions.

Now let’s consider the equivalent process for creating a .swc file containing Module
in Flash CS3. Here are the steps:

1. Create a new Flash document (.fla file) named Module.fla.

2. In the Properties panel (Window ➝ Properties), for Document class, enter
Module.

3. Select File ➝ Publish Settings.

4. On the Formats tab, under Type, uncheck HTML.

5. On the Flash tab, under Options, check Export SWC.

6. Click Publish, then click OK.

Once module.swc has been created, we include it in the library-path when compiling
main.swf. To do so in Flex Builder 2, follow these steps:

1. In the Navigator panel, select the project folder for the Main.swf application.

2. On the Project Menu, choose Properties.

3. On the Properties dialog, choose ActionScript Build Path.

4. On the Library path tab, click the Add SWC button.

5. On the Add SWC dialog, specify the path to module.swc.

6. On the Add SWC dialog, click OK.

7. On the Properties dialog, click OK.

In Flash CS3, to include module.swc in the library-path when compiling main.swf,
follow these steps:

1. In the Flash authoring tool installation folder, under Configuration\Components, cre-
ate a new folder named Module. (On Windows XP, the default location for
Configuration\Components is: C:\Program Files\Adobe\Adobe Flash CS3\en\
Configuration\Components. On Mac OS X, the default location for Configuration\
Components is: Macintosh HD:Applications:Adobe Flash CS3:Configuration:
Components).

2. Copy the module.swc file to the Module folder created in Step 1. Copying the
module.swc file to a subfolder of Configuration\Components adds it to the Flash
authoring tool’s Components panel.

3. In the Flash authoring tool, open Components panel (Window ➝ Components).

Compile-Time Type-Checking for Runtime-Loaded Assets | 787

4. Select the pop-up Options menu in the top-right corner of the Components
panel, and choose the Reload option. The folder Module will appear in the Com-
ponents panel.

5. In the Components panel, open the Module folder.

6. Open Main.fla’s Library (Window ➝ Library).

7. Drag the Module component from the Components panel to Main.fla’s Library.

Once module.swc is in Main.swf ’s library-path, the compiler will be able to type-
check any reference to Module that occurs in Main.swf. The compiler also copies the
bytecode for Module (and all dependent classes) directly from module.swc to main.swf,
ensuring that Module will be accessible within Main.swf at runtime. Hence, like the
source-path technique, the library-path technique increases the overall file size of the
application because the Module class and its dependent definitions are included in
both Main.swf and Module.swf. However, because the library-path technique does not
require Module to be compiled from scratch every time the Main.swf is built, building
Main.swf using the library-path technique is typically faster than using the source-path
technique.

Copying precompiled bytecode from a .swc file to a .swf file is faster
than compiling from raw definition files.

Of course, every time the Module class changes, module.swc must, itself, be recre-
ated. Therefore, if Module changes more frequently than Main.swf, the time saved by
copying bytecode directly from module.swc to Main.swf will be fully offset by the
time spent compiling module.swc. In the parlance of our time, your mileage may
vary.

Add the Module Class File to Main.swf ’s external-library-path
The third technique for giving the compiler access to the Module class when compil-
ing Main.swf is to create a .swc file containing Module, and include that .swc file in
the external-library-path when compiling main.swf.

We start this technique by following the instructions from the previous section for
creating the module.swc file. Once module.swc is created, we add it to Main.swf ’s
external-library-path. To do so in Flex Builder 2, follow these steps:

1. In the Navigator panel, select the project folder for the Main.swf application.

2. On the Project Menu, choose Properties.

3. On the Properties dialog, choose ActionScript Build Path.

4. On the Library path tab, click the Add SWC button.

5. On the Add SWC dialog, specify the path to module.swc.

788 | Chapter 28: Loading External Display Assets

6. On the Add SWC dialog, click OK.

7. Under “Build path libraries,” expand module.swc in the tree.

8. Under module.swc, select “Link Type: Merged into code.”

9. Click the Edit button.

10. On the Library Path Item Options dialog, for Link Type, choose External.

11. On the Library Path Item Options dialog, click OK.

12. On the Properties dialog, click OK.

In Flash CS3, to include module.swc in the external-library-path, we simply place it in
the same folder as Main.fla (or in any folder in Main.fla’s classpath) and delete the
Module component from Main.fla’s Library.

Once module.swc is in Main.swf ’s external-library-path, the compiler will be able to
type-check any reference to Module that occurs in Main.swf. However, in contrast to
both the library-path technique and the source-path technique, when Main.swf is
built using the external-library-path technique, the compiler does not copy Module’s
bytecode to Main.swf. Thus, the overall file size of the application is kept to a mini-
mum. However, excluding Module’s bytecode from Main.swf raises a new issue: any
reference to the Module class within Main.swf is unknown to ActionScript at run-
time. Hence, the following code:

Module(loader.content).start()

will cause the following runtime error:

ReferenceError: Error #1065: Variable Module is not defined.

To avoid that error, we must instruct ActionScript to import Module.swf ’s classes
into Main.swf ’s application domain at runtime.

A .swf file’s application domain provides access to its classes. Applica-
tion domains govern how classes and other definitions are shared
among loaded .swf files. For more information, see Adobe’s Program-
ming ActionScript 3.0, under Flash Player APIs ➝ Client System Envi-
ronment ➝ ApplicationDomain class. Also see Chapter 31.

To import Module.swf ’s classes into Main.swf ’s application domain, we use a
LoaderContext object when issuing the request to load Module.swf. Here’s the code
as it would appear in Main.swf ’s main class:

// First, import the ApplicationDomain and LoaderContext classes...
import flash.system.*;

// ...later in the class, use a LoaderContext object to
// import Module.swf's classes and other definitions
// into Main.swf's application domain
loader.load(new URLRequest("Module.swf"),
 new LoaderContext(false, ApplicationDomain.currentDomain));

Compile-Time Type-Checking for Runtime-Loaded Assets | 789

The preceding code makes Module.swf ’s classes (and other definitions) directly
accessible to code in Main.swf—as though Main.swf had, itself, defined them.

Note that if Main.swf and Module.swf are from different remote regions, or if Main.swf
originates from the local realm and has a different security-sandbox-type than Module.
swf, then the attempt to import Module.swf ’s classes into Main.swf ’s application
domain will fail silently. In such a case, the code:

Module(loader.content).start()

will cause the same error that would occur if Module.swf ’s classes had never been
imported into Main.swf ’s application domain—namely:

ReferenceError: Error #1065: Variable Module is not defined.

In certain situations, this security limitation can be avoided using import loading,
wherein Main.swf uses a LoaderContext object to import Module.swf into its security
domain. The following code demonstrates:

var loaderContext:LoaderContext = new LoaderContext();
loaderContext.applicationDomain = ApplicationDomain.currentDomain;
var loader:Loader = new Loader();
loader.load(new URLRequest("Module.swf"), loaderContext);

For complete information on import loading, see the section “Import Loading” in
Chapter 19.

For review and reference, Example 28-9 shows the code for the Main and Module
classes discussed in this section. The code shown presumes that module.swc has
already been created and added to Module.swf ’s external-library-path.

Example 28-9. The Main and Module classes

// The Main class
package {
 import flash.display.*;
 import flash.net.*;
 import flash.events.*;
 import flash.system.*;

 public class Main extends Sprite {
 private var loader:Loader;

 public function Main() {
 loader = new Loader();
 loader.contentLoaderInfo.addEventListener(Event.INIT,
 initListener);
 loader.load(new URLRequest("Module.swf"),
 new LoaderContext(false,
 ApplicationDomain.currentDomain));
 }

 private function initListener (e:Event):void {
 trace("init");

790 | Chapter 28: Loading External Display Assets

We’ve now learned several techniques for accessing the main class of a loaded asset
without causing datatype errors. In the next section, we’ll learn how to safely access
assets created after the first frame in a loaded .swf file.

Accessing Assets in Multiframe .swf Files
In the earlier section “Accessing the Loaded Asset,” we learned that when a .swf file
loads another .swf file, all visual assets and programmatic objects on the loaded .swf
file’s first frame are available as soon as the Event.INIT event occurs. Hence, code in
an Event.INIT event listener can immediately operate on those assets and objects.
However, code within an Event.INIT event listener cannot operate on assets and
objects created on subsequent frames in the loaded .swf file.

Any code wishing to access assets and objects created on or after the second frame of
a loaded .swf file must first verify that those assets and objects exist. There are two
ways to verify that assets and objects in a loaded .swf file exist:

• In the accessing .swf file, use a Timer object to poll for the existence of the asset
or object.

• In the accessing .swf file, register for a custom event that is dispatched by the
loaded .swf file when the asset or object becomes available.

Let’s consider an example for each of the preceding techniques. We’ll again use the
scenario of Main.swf loading Module.swf from the previous section. Suppose
Module.swf has a script on the second frame of its main timeline that creates a
TextField object, t. Main.swf loads Module.swf and wishes to access t. Here’s the
timeline script in Module.swf:

 Module(e.target.content).start();
 }
 }
}

// The Module class
package {
 import flash.display.Sprite;

 public class Module extends Sprite {
 public function Module() {
 }

 public function start ():void {
 trace("Module.start() was invoked...");
 }
 }
}

Example 28-9. The Main and Module classes (continued)

Accessing Assets in Multiframe .swf Files | 791

stop();
var t:TextField = new TextField();
t.text = "hello";
addChild(t);

Example 28-10 shows how Main.swf loads Module.swf and then polls for the exist-
ence of the TextField before using it.

Now suppose again that Main.swf loads Module.swf and wishes to access t.
This time, however, Module.swf ’s main class, Module, broadcasts a custom
event—Module.ASSETS_READY—when t becomes available. Main.swf registers for

Example 28-10. Polling for the existence of a loaded object

package {
 import flash.display.*;
 import flash.events.*;
 import flash.net.*;
 import flash.utils.*;

 public class Main extends Sprite {
 private var loader:Loader;

 public function Main() {
 // Load Module.swf
 loader = new Loader();
 loader.contentLoaderInfo.addEventListener(Event.INIT,
 initListener);
 loader.load(new URLRequest("Module.swf"));
 }

 private function initListener (e:Event):void {
 // The loaded .swf file has been initialized, so start polling for
 // the existence of the TextField.
 var timer:Timer = new Timer(100, 0);
 timer.addEventListener(TimerEvent.TIMER, timerListener);
 timer.start();
 }

 private function timerListener (e:TimerEvent):void {
 // Check whether the loaded .swf file's TextField has been created
 if (loader.content.hasOwnProperty("t")) {
 // The TextField exists now, so we can safely access it
 trace(Object(loader.content).t.text);

 // Stop the timer
 e.target.stop();
 }
 }
 }
}

792 | Chapter 28: Loading External Display Assets

Module.ASSETS_READY and accesses t after the event occurs. Here’s the code for
the Module class, where the event constant is defined:

package {
 import flash.display.MovieClip;

 class Module extends MovieClip {
 // Define the event constant
 public static const ASSETS_READY:String = "ASSETS_READY";
 }
}

And here’s the script on thte second frame of Module.swf ’s main timeline, which dis-
patches the event indicating that t is available:

stop();

var t:TextField = new TextField();
t.text = "hello";
addChild(t);

dispatchEvent(new Event(Module.ASSETS_READY));

Finally, Example 28-11 shows the code for Main.swf’s main class. The example
assumes that ActionScript has not been given compile-time access to the loaded .swf
file’s class definitions. As a result, the code refers to the Module.ASSETS_READY event
by its string name, “ASSETS_READY”:

loader.content.addEventListener("ASSETS_READY", assetsReadyListener);

Likewise, the code casts loader.content to the Object type so that type-checking is
deferred until runtime:

Object(loader.content).t.text

For complete information on type-checking loaded assets, see the section “Compile-
Time Type-Checking for Runtime-Loaded Assets.”

Example 28-11. Handling an event announcing a loaded object’s availability

package {
 import flash.display.*;
 import flash.events.*;
 import flash.net.*;
 import flash.utils.*;

 public class Main extends Sprite {
 private var loader:Loader;

 public function Main() {
 // Load Module.swf
 loader = new Loader();
 loader.contentLoaderInfo.addEventListener(Event.INIT,
 initListener);
 loader.load(new URLRequest("Module.swf"));
 }

Instantiating a Runtime-Loaded Asset | 793

So far, this chapter’s coverage of loaded assets has been restricted to the automati-
cally created asset object referenced by loader.content. Let’s now explore how to
manually create additional new instances of a loaded asset.

Instantiating a Runtime-Loaded Asset
The technique for creating a new instance of a runtime-loaded asset varies according
to whether that asset is a .swf file or a bitmap. The following two sections describe
the instantiation process for both types of assets.

Instantiating a Loaded .swf File
To create a new instance of a loaded .swf file, we must first obtain a reference to that
.swf file’s main class. Once the class reference is obtained, we use the new operator to
create the instance. There are two general approaches for obtaining a reference to a
loaded .swf file’s main class:

• Retrieve a direct reference to the class using the source-path, library-path, or
external-library-path techniques covered in the earlier section “Compile-Time
Type-Checking for Runtime-Loaded Assets.”

• Retrieve a reference to the class using the ApplicationDomain class’s instance
method getDefinition().

Let’s look at examples for both approaches by returning to the “Main.swf loads
Module.swf ” scenario from earlier sections.

Suppose we want to make a new instance of Module.swf in Main.swf. We first make
the Module class directly available to Main.swf by following the source-path tech-
nique, the library-path technique, or the external-library-path technique covered ear-
lier. Reviewing what we’ve already learned, recall that once the Module class is

 private function initListener (e:Event):void {
 // The loaded .swf file has been initialized, so register for
 // the Module.ASSETS_READY event.
 loader.content.addEventListener("ASSETS_READY",
 assetsReadyListener);
 }

 private function assetsReadyListener (e:Event):void {
 // The TextField exists now, so we can safely access it
 trace(Object(loader.content).t.text);
 }
 }
}

Example 28-11. Handling an event announcing a loaded object’s availability (continued)

794 | Chapter 28: Loading External Display Assets

available to Main.swf, we can reference it directly, as shown in the cast operation
excerpted from the Event.INIT event listener in Example 28-9:

private function initListener (e:Event):void {
 trace("init");
 Module(e.target.content).start(); // Direct reference to Module
}

In the same way, to make a new instance of Module, we simply use the new operator:

private function initListener (e:Event):void {
 var moduleObj:Module = new Module();
}

Now suppose that Main.swf does not have compile-time access to Module, but we
still want to make a new instance of Module.swf in Main.swf. In such a situation, we
must retrieve a reference to Module using the ApplicationDomain class’s instance
method getDefinition(). When passed a class name, getDefinition() method returns a
reference to the specified class. The returned reference can be assigned to a variable
of type Class, for use in subsequent instantiation expressions. The following code
shows the general technique:

var SomeClass:Class = someApplicationDomain.getDefinition("SomeClassName");
var obj:Object = new SomeClass();

where someApplicationDomain is a reference to the .swf file’s ApplicationDomain
object, and SomeClassName is the fully qualified, string name of the class to retrieve.
Therefore, in order to retrieve a reference to the Module class from within Main.swf,
we need the following:

• A reference to Module.swf ’s ApplicationDomain object

• The fully qualified name for the Module class

A .swf file’s ApplicationDomain object can be accessed via its LoaderInfo object,
which is accessed via the loaderInfo variable of any DisplayObject instance in the
.swf file. The fully qualified class name for a .swf file’s main class can be deduced
with the help of flash.utils.getQualifiedClassName(). Once Module.swf has
loaded, within Main.swf ’s Event.INIT listener, we can use the following code to
retrieve a reference to Module.swf ’s main class:

var ModuleClassName:String = getQualifiedClassName(e.target.content);
var appDomain:ApplicationDomain =
 e.target.content.loaderInfo.applicationDomain;
// After the following line of code runs, ModuleClass refers
// to Module.swf's main class
var ModuleClass:Class = appDomain.getDefinition(ModuleClassName);

Once we have a reference to the module class, we can use it to create new objects:

var newModule:Object = new ModuleClass();

Instantiating a Runtime-Loaded Asset | 795

As usual, be careful to let a loading .swf file initialize before attempt-
ing to access it; getDefinition() should be used only after the Flash run-
time dispatches the Event.INIT event.

Note that the datatype of newModule in the preceding code is Object, not Module,
because, in this example, Main.swf does not have direct access to Module.swf ’s main
class. Hence, any subsequent access of Module’s methods and variables through
newModule is not type-checked until runtime. If compile-time type checking is
required, use the source-path, library-path, or external-library-path techniques rather
than getDefinition().

Note that the techniques covered in this section apply not only to creating a new
instance of a .swf file but also to creating an instance of any symbol in that .swf file.
For example, suppose we wanted to create an instance of a symbol named Ball, from
Module.swf. We would export Ball for ActionScript, then either of the following:

• Obtain a reference to the exported Ball class using the ApplicationDomain class’s
instance method getDefinition()

• Make the Ball class directly available to Main.swf by following either the source-
path , library-path , or external-library-path technique.

Instantiating a Loaded Image
Unlike .swf file assets, a new copy of a loaded bitmap asset cannot be created with
the new operator. Instead, to create a new copy of a loaded bitmap asset, we must
clone the bitmap’s pixel data and associate the cloned data with a new Bitmap
object.

As we learned earlier, when an image file is loaded, the loaded pixel data is automati-
cally placed in a BitmapData object. To clone a loaded bitmap’s pixel data, we
invoke BitmapData.clone() method on that BitmapData object. The following code
demonstrates. It clones a loaded bitmap’s data and passes the cloned data to the con-
structor of a new Bitmap object. That new Bitmap object is a copy of the loaded bit-
map asset. The loaded asset is, as always, accessed only after the Event.INIT event
has occurred.

private function initListener (e:Event):void {
 // e.target.content is the asset object representing the loaded bitmap
 var newImage:Bitmap = new Bitmap(e.target.content.bitmapData.clone());

 // newImage now has a copy of the loaded bitmap
}

796 | Chapter 28: Loading External Display Assets

Using Socket to Load Display Assets at Runtime
At the beginning of this chapter, we learned that ActionScript provides two different
mechanisms for adding an external display asset to an application at runtime:

• The flash.display.Loader class

• The flash.net.Socket class, used in combination with the Loader class’s instance
method loadBytes()

Now that we’re comfortable with the Loader class, let’s examine how it can be com-
bined with the Socket class to retrieve display assets over a raw TCP/IP socket. The
technique described in this section might be used when loading assets for a socket-
based application such as a multiuser game, or simply to prevent the loaded asset
from appearing in the end user’s cache.

Here’s the general process for retrieving display assets over a raw TCP/IP socket:

1. Connect to a server that can transfer a GIF, PNG, JPEG, or SWF file in binary
format to the Flash runtime.

2. Retrieve the bytes for the desired asset.

3. Convert the loaded bytes to an asset object, suitable for on-screen display.

To accomplish the first two of the preceding steps, we use ActionScript’s flash.net.Socket
class. The Socket class communicates with a server in binary data format (in raw bytes).
To accomplish the final step, we use the Loader class’s instance method loadBytes()
method. The loadBytes() method converts raw bytes to an ActionScript display object.

The following sections describe the preceding process in detail.

Server-Side: Sending the Asset
Using the Socket class, we can retrieve the bytes for a display asset from any server
that knows how to send a GIF, PNG, JPEG, or SWF file in binary format. For exam-
ple, the Socket class can be used to retrieve images from most mail servers, chat serv-
ers, and news servers—all of which typically support image-transfers in binary
format.

Rather than studying how to load an asset from an existing type of server (e.g., mail,
chat, or news), let’s consider the more complete scenario, in which we create not
only the Flash client that retrieves the asset but also the server that sends it. We’ll
call our custom-created server FileSender, and we’ll write it in Java. FileSender’s
behavior is extremely simple: when a client connects, it automatically sends that cli-
ent a single file, followed by the ASCII character 4 (End of Transmission), and then
closes the connection. Notice that FileSender’s behavior is fully automated: the cli-
ent does not need to request the asset from the server, nor send any form of acknowl-
edgment once the asset is received. This architecture allows us to concentrate solely
on the asset-transfer process.

Using Socket to Load Display Assets at Runtime | 797

Example 28-12 shows the Java source code for FileSender, contributed to this book
by Derek Clayton.

Example 28-12. The FileSender server

import java.net.ServerSocket;
import java.net.Socket;
import java.io.IOException;
import java.io.InputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.BufferedOutputStream;

/**
 * FileSender is a simple server that takes a Socket connection
 * and transmits a file after which the connection is closed.
 *
 * Usage: java FileSender [port] [file]
 *
 * [port] = the port on which the server will listen (on all
 * local ip addresses) for connections
 * [filename] = the path to the file that will be transmitted
 *
 */
public class FileSender implements Runnable {
 private int port;
 private File file;
 private String filename;
 private ServerSocket server;
 private Thread thisThread;
 private byte[] bytes;

 public FileSender(int p, String f) {
 port = p;
 filename = f;
 }

 public void start() {
 InputStream is = null;
 try {
 // --- read the file in to our byte array
 file = new File(filename);
 is = new FileInputStream(file);
 bytes = new byte[(int)file.length()+1];
 int offset = 0;
 int byteRead = 0;
 while (offset < bytes.length
 && (byteRead=is.read(bytes, offset, bytes.length-offset))
 >= 0) {
 offset += byteRead;
 }
 bytes[bytes.length-1] = 4;

798 | Chapter 28: Loading External Display Assets

 // --- create the ServerSocket
 server = new ServerSocket(port);
 } catch (Exception e) {
 e.printStackTrace();
 System.exit(1);
 } finally {
 if (is != null) {
 try {
 is.close();
 } catch (Exception e) {
 e.printStackTrace();
 System.exit(1);
 }
 }
 }

 // --- start the Thread which will accept connections
 thisThread = new Thread(this);
 thisThread.start();
 }

 public void run() {
 // --- while the server is active...
 while (thisThread != null) {
 BufferedOutputStream ps = null;
 Socket socket = null;
 try {
 // --- ...accept socket connections
 // (blocks until a connection is made)
 socket = server.accept();

 // --- create the output stream
 ps = new BufferedOutputStream(socket.getOutputStream());

 // --- write the bytes and close the connection
 ps.write(bytes);
 ps.close();
 ps = null;
 socket.close();
 socket = null;
 } catch(Exception e) {
 thisThread = null;
 e.printStackTrace();
 } finally {
 if (ps != null) {
 try {
 ps.close();
 } catch (IOException e) {
 e.printStackTrace();
 System.exit(1);
 }
 }

Example 28-12. The FileSender server (continued)

Using Socket to Load Display Assets at Runtime | 799

The source code for FileSender can be downloaded at: http://moock.
org/eas3/examples.

 if (socket != null) {
 try {
 socket.close();
 } catch (IOException e) {
 e.printStackTrace();
 System.exit(1);
 }
 }
 }
 }

 // --- cleanup the server
 if (server != null) {
 try {
 server.close();
 } catch (IOException e) {
 e.printStackTrace();
 System.exit(1);
 }
 }
 }

 public final static void main(String [] args) {
 // --- check for the proper number of arguments
 if (args.length != 2) {
 System.out.println("usage: java FileSender [port] [file]");
 System.exit(1);
 }

 try {
 // --- set the arguments to their proper type
 int port = Integer.parseInt(args[0]);
 String filename = args[1];

 // --- create and start the FileSender
 // (which will run in its own thread)
 FileSender fs = new FileSender(port, filename);
 fs.start();
 } catch (Exception e) {
 e.printStackTrace();
 System.exit(1);
 }
 }
}

Example 28-12. The FileSender server (continued)

http://moock.org/eas3/examples
http://moock.org/eas3/examples

800 | Chapter 28: Loading External Display Assets

To start FileSender, we issue Java the following command:

java FileSender port filename

where port is the port over which the server will accept connections, and filename is
the name of the file FileSender will send to any connecting client. For example, to
start the server on port 3000 and configure it to send a file named photo.jpg, we issue
Java the following command:

java FileSender 3000 photo.jpg

For information on security limitations governing socket connections, see
Chapter 19.

Client-Side: Receiving the Asset
We’ve just seen the code for a custom Java server that automatically sends a speci-
fied file to any client that connects. Now let’s build a corresponding ActionScript cli-
ent that connects to the server and receives a file.

Unlike many traditional programming languages, ActionScript’s socket communica-
tion system is entirely event-based.

In ActionScript, it is not possible to pause program execution while
waiting for data to arrive over a socket. That is, ActionScript socket
operations are asynchronous, not synchronous.

In ActionScript, data can be read from a socket only after that socket’s
ProgressEvent.SOCKET_DATA event has occurred. The ProgressEvent.SOCKET_DATA
event indicates that some arbitrary amount of new data is available for the client to
read. However, once the client has finished reading the new data, it must again wait
for the next ProgressEvent.SOCKET_DATA event to occur before reading additional data
from the socket. Here’s the general process:

1. Client connects to socket.

2. Socket receives some data.

3. ProgressEvent.SOCKET_DATA event occurs.

4. Client reads all available data.

5. Socket receives more data.

6. ProgressEvent.SOCKET_DATA event occurs.

7. Client reads all available data.

8. Repeat Steps 5 through 7 until socket is closed.

The amount of data that arrives with each ProgressEvent.SOCKET_DATA event is completely
arbitrary. Often, the data available to a client when the ProgressEvent.SOCKET_DATA event
occurs constitutes only part of some larger whole. Therefore, special care must be taken to

Using Socket to Load Display Assets at Runtime | 801

manually assemble all required data before processing it. For example, suppose an image
is sent to a client over a socket. The client might receive the image data in, say, three seg-
ments—each of which triggers a ProgressEvent.SOCKET_DATA event. Client code wishing to
process the image must reassemble the three segments before processing the image as a
whole.

To reassemble small segments of data into a larger whole, a client must manually add
each segment to a temporary byte array (i.e., a “byte buffer”) while the larger whole
loads. The “larger whole” might be a file, an object, a complete instruction, a mail
message, a chat message, or any other logical data structure that must be processed
as a single entity. Each time a new segment arrives, the client checks to see if the
larger whole has fully loaded. If so, the client processes it. If not, the client waits for
more data to arrive. Note, however, that there is no one official way to check
whether some logical body of data has been received in its entirety. Each binary
socket protocol will provide its own means of indicating the completeness of a given
transmission. For example, a server might tell its client how many bytes to expect
before it starts a subsequent transmission, or a client might inspect a loaded byte
stream manually for beginning-of-file and end-of-file markers. In our example client,
we’ll process the loaded display asset when the socket connection is closed by the
server. Closing the socket connection is the server’s (very simple) way of telling our
client that it has finished sending the asset’s data.

Let’s see how all this looks in code. Our simple ActionScript client consists of a sin-
gle class, DisplayAssetLoader. Here are the steps DisplayAssetLoader follows to
receive and display an asset sent by FileSender:

1. Create a Socket object.

2. Register the DisplayAssetLoader object for Socket object’s events.

3. Use the Socket object to connect to the server.

4. When new binary data is received over the socket, place that data in a tempo-
rary buffer.

5. When the socket disconnects, use the Loader class’s instance method loadBytes()
to load the binary data from the temporary buffer into a Loader object.

6. Display the loaded asset object on screen.

Example 28-13 shows the complete code for the DisplayAssetLoader class. A discus-
sion of DisplayAssetLoader’s key features follows the code listing; minor details are
covered by inline code comments.

Example 28-13. The DisplayAssetLoader class

package {
 import flash.display.*;
 import flash.events.*;
 import flash.net.*;
 import flash.text.*;
 import flash.utils.*;

802 | Chapter 28: Loading External Display Assets

 public class DisplayAssetLoader extends Sprite {
 // A constant representing the ASCII character for "end of transmission"
 public static const EOT:int = 4;
 // An on-screen TextField in which to display status messages
 private var statusField:TextField;
 // The socket object over which communication will occur
 private var socket:Socket;
 // A byte buffer in which to place the asset's binary data as it loads
 private var buffer:ByteArray = new ByteArray();
 // The Loader object used to generate the asset from
 // the loaded binary data
 private var loader:Loader;

 // Class constructor
 public function DisplayAssetLoader () {
 // Create the status TextField
 statusField = new TextField();
 statusField.border = true;
 statusField.background = true;
 statusField.width = statusField.height = 350;
 addChild(statusField);

 // Create the socket object
 socket = new Socket();

 // Register for socket events
 socket.addEventListener(Event.CONNECT, connectListener);
 socket.addEventListener(Event.CLOSE, closeListener);
 socket.addEventListener(ProgressEvent.SOCKET_DATA,
 socketDataListener);
 socket.addEventListener(IOErrorEvent.IO_ERROR, ioErrorListener);

 // Tell the user we're about to try connecting to the socket
 out("Attempting connection...");

 // Attempt to connect to the socket
 try {
 socket.connect("localhost", 3000);
 } catch (e:Error) {
 out("Connection problem!\n");
 out(e.message);
 }
 }

 // Handles socket connection events
 private function connectListener (e:Event):void {
 out("Connected! Waiting for data...");
 }

 // Handles newly received data
 private function socketDataListener (e:ProgressEvent):void {
 out("New socket data arrived.");

Example 28-13. The DisplayAssetLoader class (continued)

Using Socket to Load Display Assets at Runtime | 803

 // When new bytes arrive, place them in a buffer for later processing
 socket.readBytes(buffer, buffer.length, socket.bytesAvailable);
 }

 // Handles socket disconnection events. When a disconnection occurs,
 // attempt to generate a display asset from the loaded bytes
 private function closeListener (e:Event):void {
 // First, check if we received the whole asset...
 // Retrieve the last byte in the buffer
 buffer.position = buffer.length - 1;
 var lastByte:int = buffer.readUnsignedByte();
 // If an "end of transmission" byte was never received, the
 // asset's binary data didn't fully arrive, so don't
 // generate the asset
 if (lastByte != DisplayAssetLoader.EOT) {
 return;
 }

 // All clear, we can safely generate an asset from the bytes that
 // were loaded. The last byte in the buffer is not part of the asset,
 // so truncate it.
 buffer.length = buffer.length - 1;

 // Now, create the Loader object that will generate
 // the asset from the loaded bytes
 loader = new Loader();

 // Generate an asset from the loaded bytes
 loader.loadBytes(buffer);

 // Wait for the asset to initialize
 loader.contentLoaderInfo.addEventListener(Event.INIT,
 assetInitListener);
 }

 // Puts the asset on screen when it's done initializing
 private function assetInitListener (e:Event):void {
 addChild(loader.content);
 out("Asset initialized.");
 }

 // Handles I/O errors
 private function ioErrorListener (e:IOErrorEvent):void {
 out("I/O Error: " + e.text);
 }

 // Print status messages to the screen and the debugging console
 private function out (msg:*):void {
 trace(msg);
 statusField.appendText(msg + "\n");
 }
 }
}

Example 28-13. The DisplayAssetLoader class (continued)

804 | Chapter 28: Loading External Display Assets

Let’s look at three key sections of the DisplayAssetLoader class: the creation and con-
nection of the socket, the placing of bytes in a buffer, and the creation of the display
asset from the loaded bytes.

Creating and connecting to the socket

To establish and manage the socket connection, we use a Socket instance, which we
assign to a private variable, socket:

socket = new Socket();

To connect to the socket, we use the Socket class’s instance method connect(). How-
ever, because socket connections can potentially generate security and I/O errors, we
wrap the call to connect() in a try/catch block:

try {
 socket.connect("localhost", 3000);
} catch (e:Error) {
 out("Connection problem!\n");
 out(e.message);
}

Placing bytes in a buffer

As we learned earlier, when new data is received over the socket, the Flash runtime
dispatches the ProgressEvent.SOCKET_DATA event. The target of that event dispatch is
the Socket object that received the data. Hence, to be notified when new data arrives,
we register with socket for the ProgressEvent.SOCKET_DATA event, as follows:

socket.addEventListener(ProgressEvent.SOCKET_DATA, socketDataListener);

Whenever the ProgressEvent.SOCKET_DATA event occurs, the DisplayAssetLoader
class’s instance method socketDataListener() is invoked. Within socketDataListener(),
the Socket class’s instance variable bytesAvailable indicates the number of bytes in the
socket currently available for reading. The socketDataListener() adds the newly
received data to a ByteArray referenced by the variable buffer. To read the new data
into buffer, we use the Socket class’s instance method readBytes(), which takes the
following general form:

theSocket.readBytes(bytes, offset, length)

where theSocket is the Socket object from which the bytes will be read, bytes is a
ByteArray object into which the bytes will written, offset is the position within
bytes at which writing will begin, and length is the number of bytes to read from the
socket. In our case, we want to read all the bytes from the socket and write them into
buffer, starting at the end of buffer. Hence, we use the following code:

socket.readBytes(buffer, buffer.length, socket.bytesAvailable);

Using Socket to Load Display Assets at Runtime | 805

Here’s the full listing for the socketDataListener() method:

private function socketDataListener (e:ProgressEvent):void {
 out("New socket data arrived.");
 socket.readBytes(buffer, buffer.length, socket.bytesAvailable);
}

Creating a display asset from the loaded bytes

Once all of the bytes for an asset have arrived, we can use the Loader class’s instance
method loadBytes() to generate an ActionScript DisplayObject instance from those
bytes. Recall that FileSender indicates that an asset’s data has been sent in full by
simply closing the socket connection. So, we place the code for generating our
DisplayObject instance (the “asset object”) in an Event.CLOSE event listener. To regis-
ter for the Event.CLOSE event with socket, we use the following code:

socket.addEventListener(Event.CLOSE, closeListener);

In the closeListener() function, before generating the DisplayObject instance, we first
check whether the server’s End of Transmission byte (ASCII 4) was received. Recall
that the server sends an End of Transmission byte as the last byte in the data stream.
To retrieve that byte, we use the following code:

buffer.position = buffer.length - 1;
var lastByte:int = buffer.readUnsignedByte();

If the End of Transmission byte was never received, the asset’s binary data didn’t
fully arrive, so the listener function exits:

if (lastByte != DisplayAssetLoader.EOT) {
 return;
}

If the End of Transmission byte was received, we generate the asset object using
loadBytes(). However, before we pass the asset’s bytes to the loadBytes() method, we
must first truncate the End of Transmission byte from the buffer, as follows:

buffer.length = buffer.length - 1;

With the asset’s bytes in hand, we can now generate the asset object:

loader = new Loader();
loader.loadBytes(buffer);

When the preceding code has finished executing, the process of generating the asset
object has been set in motion, but the asset object is not yet accessible. As with the
Loader class’s instance method load(), attempting to access the asset object via
loader.content immediately after invoking loadBytes() yields the value null. There-
fore, we must wait for the Event.INIT to occur before accessing the asset object:

loader.contentLoaderInfo.addEventListener(Event.INIT,
 assetInitListener);

806 | Chapter 28: Loading External Display Assets

When the asset becomes available, we add it to the screen:

private function assetInitListener (e:Event):void {
 addChild(loader.content);
 out("Asset initialzed.");
}

Remember that when the Event.INIT event occurs, the assets and objects created by
the .swf file’s main class constructor or by code on the first frame of the .swf file’s
timeline are accessible, but assets and objects created on or after the second frame
are not accessible. For further instructions on accessing visual assets and objects
created on or after the second frame, see the earlier section, “Accessing Assets in
Multiframe .swf Files.”

Removing Runtime Loaded .swf Assets
To remove a runtime-loaded .swf asset from an application, we must first nullify all
references the application has to the asset and then either nullify all references the
application has to the Loader object that loaded the asset or invoke unload() on the
Loader object that loaded the asset.

However, before we remove the asset from the application, we must disable the asset
and its display children, if any, so that it does not continue to consume system and
network resources once removed.

The typical tasks required to disable a loaded .swf asset are divided between the
application that loaded the asset and the asset itself. The application that loaded the
asset should perform the following tasks before removing the asset:

• If the asset is still loading, the application must stop the load operation. For
example:

try {
 theAssetLoader.close();
} catch (e:*) {}

• As part of nullifying all references to the asset, the application must remove the
asset from all parent DisplayObjectContainer instances. For example:

container.removeChild(theAsset);

The asset, itself, should perform the following tasks before being removed:

• Tell any loaded .swf child assets to disable themselves.

• Stop any sounds from playing.

• Stop the main timeline, if it is currently playing.

• Stop any movie clips that are currently playing.

• Close any connected network objects, such as instances of Loader, URLLoader,
Socket, XMLSocket, LocalConnection, NetConnections, and NetStream.

Embedding Display Assets at CompileTime | 807

• Nullify all references to Camera or Microphone.

• Unregister all event listeners (particularly Event.ENTER_FRAME, and mouse and
keyboard listeners).

• Stop any currently running intervals (via clearInterval()).

• Stop any Timer objects (via the Timer class’s instance method stop()).

The asset should perform the preceding tasks in a custom disposal method invoked
by the application before it removes the asset.

For more information on disabling objects before disposing of them, see the sec-
tion“Deactivating Objects” in Chapter 14. See also Grant Skinner’s online series of
articles, “ActionScript 3.0: Resource Management,” posted at: http://www.gskinner.
com/blog/archives/2006/06/as3_resource_ma.html.

We’ve now learned all the techniques for adding an external asset to an application
at runtime. Next let’s consider how to add an external display asset to an applica-
tion at compile-time.

Embedding Display Assets at CompileTime
To include an external display asset in an ActionScript application at compile-time,
we use the [Embed] metadata tag. This tag adds a specified external asset to a .swf
file, and makes that asset accessible to a program as a user-specified or autogener-
ated class. Instances of the embedded asset are created from that class using Action-
Script’s standard new syntax.

The [Embed] metadata tag is supported by Flex Builder 2 and the com-
mand-line compiler, mxmlc. However, the [Embed] metadata is not
supported by Adobe Flash CS3. Future versions of the Flash author-
ing tool might add support for [Embed].

To use [Embed], we must give the compiler access to the Flex compiler-support
library, flex.swc. By default, all Flex Builder 2 projects automatically include flex.swc
in the ActionScript library path, so in Flex Builder 2, the techniques covered in this
section work without any special compiler configuration.

A Note on File Size and Memory Consumption
Unlike the runtime asset-loading techniques we’ve seen so far in this chapter, embed-
ding a display asset at compile time using the [Embed] metadata tag increases the size
of the .swf file loading the asset and also increases the Flash runtime’s memory
usage. Consequesntly, you should embed an asset at compile time only when you are
certain that the application will definitely need to use that asset. Otherwise, you
should load the asset at runtime if and when it is required. For example, imagine a

http://www.gskinner.com/blog/archives/2006/06/as3_resource_ma.html
http://www.gskinner.com/blog/archives/2006/06/as3_resource_ma.html

808 | Chapter 28: Loading External Display Assets

product catalog application with images of thousands of products and one welcome-
screen image. The welcome-screen image is shown every time the application starts,
and, therefore, could sensibly be embedded using the [Embed] metadata tag. By con-
trast, each product’s image is required only when the user views the product in ques-
tion, and should, therefore, be loaded at runtime and discarded when the user is
finished viewing the product.

Now that we know when to use [Embed] let’s see how to actually use it. The next sec-
tion examines the general code required to use [Embed]. Subsequent sections cover
concrete examples for the general code discussed in the next section.

General [Embed] Syntax
The [Embed] metadata tag can be used either at the instance variable-definition level
or at the class-definition level.

The following code shows the basic use of [Embed] at the variable-definition level:

[Embed(source="pathToFile")]
private var ClassName:Class;

When the preceding code is compiled, the ActionScript compiler automatically gen-
erates a new class representing the external asset located at pathToFile and assigns
that class to the private variable named ClassName. The new class’s superclass is one
of the mx.core - classes for embedding assets. As we’ll see over the upcoming sec-
tions, the specific shim class used varies according to the type of asset being embed-
ded. The pathToFile must specify the asset file’s location using one of the following:

• An absolute reference available locally to the compiler (e.g., c:/assets/photo.jpg)

• A relative reference, composed in relation to the ActionScript source file embed-
ding the asset (e.g., .../images/photo.jpg)

Notice that, because the ClassName variable refers to a class, its datatype is Class.
When a variable refers to a Class object, consider capitalizing the variable name (fol-
lowing the conventional style for class names).

Once the association between the embedded asset and the ClassName variable has
been made, we use the following familiar code to make a new instance of the asset.

new ClassName();

Now let’s turn to the general syntax for using the [Embed] metadata tag at the class-
definition level. The following code shows the basic approach:

[Embed(source="pathToFile")]
public class ClassName extends AssetType {
}

When the preceding code runs, the external asset located at pathToFile is associated
with the class ClassName. The ClassName class must be public and extend AssetType,
which is one of the Flex mx.core shim classes for embedding assets. Later sections

Embedding Display Assets at CompileTime | 809

indicate which specific shim class should be used for the various types of assets that
can be embedded at the class level.

To make a new instance of an asset embedded at the class level, we again use the fol-
lowing standard code:

new ClassName();

Supported Asset Types
When used at either the variable level or the class level, the [Embed] metadata tag
supports the following display-asset types:

• Bitmaps in GIF, JPEG, or PNG format

• SVG files

• Symbols from legacy .swf files (i.e., Flash Player 8 and older)

• Any file as binary data

Additionally, at the variable-definition level only, [Embed] supports the embedding of
entire .swf files of any version.

Note that individual symbols and classes in a Flash Player 9 (or higher) .swf file can-
not be embedded using the [Embed] metadata tag. Instead, individual symbols and
classes must be accessed through one of the following means:

• Embed the symbol or class’s .swf file at the variable level (see the sec-
tion“Embedding Entire .swf Files”), then use the ApplicationDomain class’s
instance method getDefinition() to access the symbol or class (see the section
“Using getDefinition() to Access a Class in an Embedded .swf File”).

• Embed the symbol or class’s .swf file as raw binary data (see the section “Embed-
ding Files as Binary Data”), then use the ApplicationDomain class’s instance
method getDefinition() to access the symbol or class (see the section “Using
getDefinition() to Access a Class in an Embedded .swf File”).

• Link to a .swc file containing the class or symbol (see the earlier section, “Give
the Compiler Access to the Loaded Class”).

In addition to the display assets covered in this section, the [Embed]
metadata tag can be used to embed sounds and fonts.

For information on embedding sounds, see Adobe’s Flex 2 Developer’s Guide, under
Flex Programming Topics ➝ Embedding Assets.

For information on embedding fonts, see the section “Fonts and Text Rendering” in
Chapter 27. Also see Adobe’s Flex 2 Developer’s Guide, under Customizing the User

810 | Chapter 28: Loading External Display Assets

Interface ➝ Using Fonts ➝ Using embedded fonts ➝ Embedded font syntax ➝

Embedding Fonts in ActionScript.

Now that we’ve seen the basic code used for embedding an external asset at compile
time, let’s look at some specific examples.

Embedding Bitmap Images
The following code shows how to embed an image named photo.jpg at the variable level.
The code assumes that both the class file embedding the image and the image file are in
the same directory. When the code runs, ActionScript automatically generates a class
representing the photo.jpg asset and assigns that class to the variable Photo, ready for run-
time instantiation. The autogenerated class extends mx.core.BitmapAsset. Here’s the
code:

[Embed(source="photo.jpg")]
private var Photo:Class;

Next, the following code shows how to embed an image named photo.jpg at the class
level. Again, the class file and the asset file are assumed to be in the same directory.
Notice that, by necessity, the class extends mx.core.BitmapAsset.

package {
 import mx.core.BitmapAsset;

 [Embed(source="photo.jpg")]
 public class Photo extends BitmapAsset {
 }
}

To create a new instance of the embedded image, we use the following code
(whether the image was embedded at the variable level or the class level):

new Photo()

When assigning an instance of the embedded image to a variable, we set that vari-
able’s datatype to either mx.core.BitmapAsset (for variable-level embeds) or Photo
(for class-level embeds):

var photo:BitmapAsset = new Photo(); // Variable level
var photo:Photo = new Photo(); // Class level

Once an instance is created, it can be added to the display list like any other display
object:

addChild(photo);

Note that the [Embed] metadata tag supports scale-9 formatting for embedded bit-
map images. When scale-9 formatting is specified for an embedded bitmap image,
the autogenerated class extends mx.core.SpriteAsset, not mx.core.BitmapAsset. For
complete details on scale-9 formatting and embedded bitmaps, see Adobe’s Flex 2
Developer’s Guide, under Flex Programming Topics ➝ Embedding Assets ➝ Embed-
ding asset types ➝ Using scale-9 formatting with embedded images.

Embedding Display Assets at CompileTime | 811

Embedding SVG
The following code shows how to embed an SVG graphic named line.svg at the vari-
able level. The code assumes that both the class file embedding the SVG graphic and
the SVG graphic file are in the same directory. When the code runs, ActionScript
automatically generates a class representing the line.svg asset, and assigns that class
to the variable SVGLine, ready for runtime instantiation. The autogenerated class
extends mx.core.SpriteAsset. Here’s the code:

[Embed(source="line.svg")]
private var SVGLine:Class;

Next, the following code shows how to embed an SVG graphic named line.svg at the
class level. Again, the class file and the asset file are assumed to be in the same direc-
tory. Notice that, by necessity, the class extends mx.core.SpriteAsset.

package {
 import mx.core.SpriteAsset;

 [Embed(source="line.svg")]
 public class SVGLine extends SpriteAsset {
 }
}

To create a new instance of the embedded SVG graphic, we use the following code
(whether the SVG graphic was embedded at the variable level or the class level):

new SVGLine()

When assigning an instance of the embedded SVG graphic to a variable, we set that
variable’s datatype to mx.core.SpriteAsset (for variable-level embeds) or SVGLine (for
class-level embeds):

var line:SpriteAsset = new SVGLine(); // Variable level
var line: SVGLine = new SVGLine(); // Class level

Once an instance is created, it can be added to the display list like any other display
object:

addChild(line);

Embedding Entire .swf Files
The following code shows how to embed an entire .swf file named App.swf at the
variable level. The code assumes that both the class file embedding the .swf file and
the .swf file, itself, are in the same directory. When the code runs, ActionScript auto-
matically generates a class representing the App.swf asset, and assigns that class to
the variable App, ready for runtime instantiation. The autogenerated class extends
mx.core.MovieClipLoaderAsset. Here’s the code:

[Embed(source="App.swf")]
private var App:Class;

812 | Chapter 28: Loading External Display Assets

Entire .swf files can be embedded at the variable level only.

To create a new instance of the embedded .swf, we use the following code:

new App()

When assigning an instance of the embedded .swf to a variable, we set that vari-
able’s datatype to mx.core.MovieClipLoaderAsset:

var app:MovieClipLoaderAsset = new App();

Once an instance is created, it can be added to the display list like any other display
object:

addChild(app);

Embedding Symbols from Legacy .swf Files
The following code shows how to embed an individual symbol named Ball, from a
Flash Player 8 or older .swf file named fp8app.swf, at the variable level. The code
assumes that both the class file embedding the symbol and the .swf file containing
the symbol are in the same directory. When the code is compiled, the ActionScript
compiler automatically generates a class representing the Ball symbol and assigns
that class to the variable FP8Ball, ready for runtime instantiation. The autogenerated
class extends the mx.core asset class matching the Ball symbol’s type (i.e., one of
MovieClipAsset, TextFieldAsset, ButtonAsset, or, for single-frame movie clips,
SpriteAsset). Here’s the code; note the use of the additional [Embed] parameter,
symbol:

[Embed(source="fp8app.swf", symbol="Ball")]
private var FP8Ball:Class;

Next, the following code shows how to embed an individual symbol named Ball,
from a Flash Player 8 or older .swf file named fp8app.swf, at the class level. Again, the
class file and the asset file are assumed to be in the same directory. In this example,
we’ll assume that the Ball symbol is a movie clip, so the class, by necessity, extends
mx.core.MovieClipAsset.

package {
 import mx.core.MovieClipAsset;

 [Embed(source="fp8app.swf", symbol="Ball")]
 public class FP8Ball extends MovieClipAsset {
 }
}

To create a new instance of the embedded symbol, we use the following code
(whether the symbol was embedded at the variable level or the class level):

new FP8Ball()

Embedding Display Assets at CompileTime | 813

When assigning an instance of the embedded symbol to a variable, if the symbol was
embedded at the variable level, we set that variable’s datatype to the mx.core asset
class matching the symbol type (i.e., one of MovieClipAsset, TextFieldAsset, or
ButtonAsset). For example, our Ball symbol is a movie clip, so FP8Ball instances
should be assigned to variables of type MovieClipAsset.

var fp8ball:MovieClipAsset = new FP8Ball();

If the symbol was embedded at the class level, we set that variable’s datatype to the
class embedding the symbol. For example:

var fp8ball:FP8Ball = new FP8Ball();

Once an instance is created, it can be added to the display list like any other display
object:

addChild(fp8ball);

Embedding Files as Binary Data
The [Embed] metadata tag can be used to embed the binary data (bytes) from any file
into an application as a byte array. The application can then operate on those bytes.
For example, if the embedded binary data is in GIF, JPEG, PNG, or SWF format, the
application can use the Loader class to convert the data to a display asset.

In the following code, we embed a Flash Player 9-format .swf file named fp9app.swf
as binary data, at the variable level. The code assumes that both the class file embed-
ding the binary data and the file containing that data are in the same directory.
When the code runs, ActionScript automatically generates a class representing the
binary data and assigns that class to the variable FP9BinaryData, ready for runtime
instantiation. The autogenerated class extends mx.core.ByteArrayAsset. Here’s the
code; note the use of the additional [Embed] parameter, mimeType:

[Embed(source="fp9app.swf", mimeType="application/octet-stream")]
private var FP9BinaryData:Class;

In the following code, we embed a Flash Player 9-format .swf file named fp9app.swf
as binary data, at the class level. Again, the class file and the asset file are assumed to
be in the same directory. Notice that, by necessity, the class extends mx.core.
ByteArrayAsset.

package {
 import mx.core.ByteArrayAsset;

 [Embed(source="fp9app.swf", mimeType="application/octet-stream")]
 public class FP9BinaryData extends ByteArrayAsset {
 }
}

To create a new instance of the embedded binary data, we use the following code
(whether the data was embedded at the variable level or the class level):

new FP9BinaryData()

814 | Chapter 28: Loading External Display Assets

When assigning an instance of the embedded binary data to a variable, we set that
variable’s datatype to mx.core.ByteArrayAsset (for variable-level embeds) or to the
class embedding the symbol (for class-level embeds):

var fp9binarydata:ByteArrayAsset = new FP9BinaryData(); // Variable level
var fp9binarydata:FP9BinaryData = new FP9BinaryData(); // Class level

Once an instance is created, if the embedded binary data is in GIF, JPEG, PNG, or
SWF format, we can use the Loader class to generate a display asset as follows:

var loader:Loader = new Loader();
loader.loadBytes(fp9binarydata);
addChild(loader);

After the asset initializes, it can be added to the display list using the technique dis-
cussed in the earlier section “Displaying the Loaded Asset On Screen.”

We can use the technique of embedding an asset as binary data to embed XML files
in an application at compile time. Example 28-14 demonstrates.

Using getDefinition() to Access a Class in an Embedded .swf File
As we learned earlier, individual symbols and classes in a Flash Player 9 (or later) .swf
file cannot be embedded using the [Embed] metadata tag. Instead, to access a class or
a symbol’s class in an embedded .swf file, we can link to a .swc file containing the
desired class or symbol’s class, or we can use the ApplicationDomain class’s instance
method getDefinition() to access the desired class or symbol’s class at runtime.

Example 28-14. Embedding XML at compile time

package {
 import flash.display.*;
 import flash.events.*;
 import flash.utils.ByteArray;

 public class EmbedXML extends Sprite {
 [Embed(source="embeds/data.xml", mimeType="application/octet-stream")]
 private var BinaryData:Class;

 public function EmbedXML () {
 // Create a new instance of the embedded data
 var byteArray:ByteArray = new BinaryData();

 // Convert the data instance to XML
 var data:XML = new XML(byteArray.readUTFBytes(byteArray.length));

 // Display the source code for the embedded XML
 trace(data.toXMLString());
 }
 }
}

Embedding Display Assets at CompileTime | 815

When using getDefinition(), we must be sure the .swf file instance has initialized
before we attempt to access its symbols or classes. To do so, we register with the
embedded asset object’s LoaderInfo object for Event.INIT events. Depending on how
the .swf file was embedded, we access LoaderInfo in different ways. If the .swf file
was embedded directly at the variable level, we use the following code to register for
Event.INIT events:

// Instantiate the asset object
var embeddedInstance:MovieClipLoaderAsset = new ClassName();

// Register for Event.INIT
Loader(embeddedInstance.getChildAt(0)).contentLoaderInfo.addEventListener(
 Event.INIT,

initListener);

In the preceding code, ClassName is the variable that refers to the class representing
the embedded .swf file, embeddedInstance is an instance of ClassName, and
initListener is a reference to the function that will execute when the instance is
initialized.

On the other hand, if the .swf file was embedded as binary data, we use the follow-
ing code to register for Event.INIT event notification:

// Instantiate the asset object
var binarydata:ByteArrayAsset = new BinaryData();

// Generate a display object representing the .swf file
var loader:Loader = new Loader();
loader.loadBytes(binarydata);
addChild(loader);

// Register for Event.INIT
loader.contentLoaderInfo.addEventListener(Event.INIT,

initListener);

where BinaryData is the variable that refers to the class representing the embedded .swf
file’s binary data, binarydata is an instance of BinaryData, and initListener is, once
again, a reference to the function that will execute when the .swf file instance is
initialized.

The following code shows an example Event.INIT event listener that retrieves a refer-
ence to a movie-clip symbol’s class named Ball. The code also creates an instance of
the Ball symbol and adds it to the initListener()’s class’s display hierarchy.

private function initListener (e:Event):void {
 // Obtain a reference to the Ball symbol from the embedded .swf file
 var BallSymbol:Class =
 e.target.content.loaderInfo.applicationDomain.getDefinition("Ball");

 // Make a new instance of the Ball symbol
 var ball:MovieClip = MovieClip(new BallSymbol());

816 | Chapter 28: Loading External Display Assets

 // Place the Ball instance on screen
 addChild(ball);
}

An [Embed] Example
For reference, Example 28-15 shows a class that demonstrates the variable-level
[Embed] scenarios discussed in the preceding sections.

Example 28-15. Variable-level embed demonstration class

package {
 import flash.display.*;
 import flash.events.*;
 import mx.core.MovieClipAsset;
 import mx.core.MovieClipLoaderAsset;
 import mx.core.SpriteAsset;
 import mx.core.BitmapAsset;
 import mx.core.ByteArrayAsset;

 public class VariableLevelEmbedDemo extends Sprite {
 [Embed(source="photo.jpg")]
 private var Photo:Class;

 [Embed(source="line.svg")]
 private var SVGLine:Class;

 [Embed(source="fp9app.swf")]
 private var FP9App:Class;

 [Embed(source="fp8app.swf", symbol="Ball")]
 private var FP8Ball:Class;

 [Embed(source="fp9app.swf", mimeType="application/octet-stream")]
 private var FP9BinaryData:Class;

 public function VariableLevelEmbedDemo () {
 // Variable-level bitmap
 var photo:BitmapAsset = new Photo();
 addChild(photo);

 // Variable-level SVG
 var line:SpriteAsset = new SVGLine();
 addChild(line);

 // Variable-level Flash Player 8-format SWF Symbol
 var fp8ball:MovieClipAsset = new FP8Ball();
 addChild(fp8ball);

 // Variable-level Flash Player 9-format SWF
 var fp9app:MovieClipLoaderAsset = new FP9App();
 addChild(fp9app);

Embedding Display Assets at CompileTime | 817

Clean the Project to See Changes
We’ve just seen a variety of ways to embed an external display asset in an applica-
tion. Typically, when an embedded asset’s file is changed, those changes are auto-
matically reflected the next time the associated application is compiled. However, in
Flex Builder 2, changes to assets are occasionally not reflected when recompiling an

 // To access a symbol's class or regular class in the embedded .swf,
 // wait for the embedded .swf file to initialize
 Loader(fp9app.getChildAt(0)).contentLoaderInfo.addEventListener(
 Event.INIT,
 fp9appInitListener);

 // Variable-level binary data (FP9 SWF)
 var fp9binarydata:ByteArrayAsset = new FP9BinaryData();
 var loader:Loader = new Loader();
 loader.loadBytes(fp9binarydata);
 addChild(loader);

 // To access a symbol's class or regular class in the embedded .swf,
 // wait for the embedded .swf file to initialize
 loader.contentLoaderInfo.addEventListener(Event.INIT,
 fp9binarydataInitListener);
 }

 private function fp9appInitListener (e:Event):void {
 // Obtain a reference to the Ball symbol from the embedded .swf file
 var BallSymbol:Class =
 e.target.content.loaderInfo.applicationDomain.getDefinition("Ball");
 // Make a new instance of the Ball symbol
 var ball:MovieClip = MovieClip(new BallSymbol());
 // Position the Ball instance and place it on screen
 ball.x = 220;
 ball.y = 240;
 addChild(ball);
 }

 private function fp9binarydataInitListener (e:Event):void {
 // Obtain a reference to the Ball symbol from the embedded .swf file
 var BallSymbol:Class =
 e.target.content.loaderInfo.applicationDomain.getDefinition("Ball");
 // Make a new instance of the Ball symbol
 var ball:MovieClip = MovieClip(new BallSymbol());
 // Position the Ball instance and place it on screen
 ball.y = 200;
 addChild(ball);
 }
 }
}

Example 28-15. Variable-level embed demonstration class (continued)

818 | Chapter 28: Loading External Display Assets

application. To guarantee that all asset changes are reflected at compile time, clean
the application’s project, as follows:

1. Select Project ➝ Clean.

2. On the Clean dialogue, select the project you wish to clean.

3. Click OK.

On to Part III
We’ve covered a huge number of ActionScript essentials over the last 28 chapters,
and our journey is almost over! In the last section of this book, we’ll examine three
applied ActionScript topics: programming in the Flash authoring tool, gaining access
to the Flex framework with “just enough” MXML, and distributing a group of
classes for use in a parent application.

PART III

III.Applied ActionScript Topics

Part III focuses on ActionScript code-production issues. Topics covered include com-
bining ActionScript with assets created manually in the Flash authoring tool, using
the Flex framework in Flex Builder 2, and creating a custom code library.

When you complete Part III, you will have learned the practical skills required to
create ActionScript applications using the Flash authoring tool and Flex Builder 2.
You will also have learned how to share code with other developers on your team or
in the world at large.

Chapter 29, ActionScript and the Flash Authoring Tool

Chapter 30, A Minimal MXML Application

Chapter 31, Distributing a Class Library

821

Chapter 29 CHAPTER 29

ActionScript and the Flash Authoring Tool30

In Chapter 1, we learned that the Flash authoring tool can be used to combine
ActionScript code with graphics, animation, and multimedia assets. Now that we
have a good understanding of the core ActionScript language, let’s explore the
important links between ActionScript and content created in the Flash authoring
tool.

For the benefit of programmers coming from other languages and
environments, some of the concepts discussed in this chapter are pre-
sented from the perspective of a newcomer to the Flash authoring tool.
Some of the upcoming material will, hence, be review for experienced
Flash users.

You can download the example files discussed in this chapter at http://www.moock.
org/eas3/examples.

The Flash Document
In this book, we’ve created plenty of .swf files using “pure code” (i.e., one or more
ActionScript classes). In the Flash authoring tool, by contrast, .swf files are created
using a visual interface for producing graphics, animation, and interactive multime-
dia content.

To create a .swf file with the Flash authoring tool, we must first create a Flash docu-
ment, or .fla file. A .fla file describes the arrangement of a body of multimedia con-
tent over time. To create a .fla file suitable for use with ActionScript 3.0, follow these
steps:

1. In the Flash authoring tool, select File ➝ New.

2. On the New Document dialog, on the General tab, for Type, select Flash File
(ActionScript 3.0).

3. Click OK.

http://www.moock.org/eas3/examples
http://www.moock.org/eas3/examples

822 | Chapter 29: ActionScript and the Flash Authoring Tool

From a .fla file, we can compile (or export) a corresponding .swf file for playback in a
Flash runtime.

To export to a .swf file for testing in the Flash authoring tool, we use Control ➝ Test
Movie. To export a .swf file for distribution over the Web, we use File ➝ Publish. A .swf
file exported from the Flash authoring tool can also be distributed as a desktop applica-
tion; for information, see the product documentation for Adobe AIR.

Timelines and Frames
Structurally, a .fla file is a hierarchy of one or more animations, each with its own
timeline. A timeline is a linear sequence of frames, akin to a physical filmstrip. Each
frame can contain audio, video, text, vector graphics, bitmap graphics, and program-
matic content.

When a .swf file is exported from a .fla file, the Flash compiler converts the .fla file’s
timelines to Flash file format (SWF), suitable for playback in a Flash client runtime.
When the .swf file plays, the frames from the .fla file’s timelines are displayed in
rapid succession, producing the illusion of animation. The speed at which the Flash
runtime displays frames is governed by the frame rate, which is measured in number
of frames per second. (For more information on the frame rate, see Chapter 23).

While some .fla files contain a single timeline, most contain multiple timelines,
allowing content to be created in discrete parts and combined to form a larger ani-
mation. For example, a scene depicting a car driving down a mountainous road
might include three timelines—one for the mountains passing slowly, one for the
road passing quickly, and one for the car’s wheels spinning.

The first timeline created in a new .fla file is known as the main timeline. The main
timeline forms the foundation of all content subsequently added to the .fla file.

To produce each frame of content in a timeline, we can either import external assets or
create new graphics using Flash’s built-in design tools (e.g., Pencil, Brush, and Text).
The graphics of each frame are placed on a visual workspace known as the Stage.

Don’t confuse the Flash authoring tool’s Stage with ActionScript’s
Stage class: the Flash authoring tool’s Stage is a design workspace,
while ActionScript’s Stage class represents the root object in the Flash
runtime display list.

Figure 29-1 shows a simple .fla file, hello.fla, opened in the Flash authoring tool. The
top half of the figure shows the .fla file’s main timeline, which in this case contains
two frames. The bottom half of the figure shows the Stage, which displays the con-
tent of the selected frame. In this case, the selected frame is the main timeline’s first
frame, as indicated by the thin vertical line running through the frame in the time-
line. That thin line indicates the selected frame and is known as the playhead.

Timelines and Frames | 823

Figure 29-2 shows hello.fla again, this time with Frame 2 of the main timeline
selected. Notice that the position of the playhead, which indicates the selected frame,
has moved to the right. Accordingly, the Stage now shows the content of Frame 2.

Figure 29-1. The hello.fla file, showing Frame 1 of the main timeline

824 | Chapter 29: ActionScript and the Flash Authoring Tool

Keyframes and Regular Frames
The Flash authoring tool defines two types of frames: keyframes and regular frames.
Though Flash animation is not the focus of this book, an understanding of the differ-
ence between keyframes and frames is required when creating frame scripts, covered
in the next section.

A keyframe is a frame whose on-Stage content differs from the preceding frame. To
add a new keyframe to a timeline, we select Insert ➝ Timeline ➝ Keyframe.

A regular frame, by contrast, is a frame that’s on-Stage content is automatically car-
ried over (repeated) from the preceding closest keyframe. To add a new regular frame
to a timeline, we select Insert ➝ Timeline ➝ Frame.

Figure 29-2. The hello.fla file, showing Frame 2 of the main timeline

Timelines and Frames | 825

By adding regular frames to a timeline, we allow time to pass without changing the
image shown on screen. By adding keyframes to a timeline, we can change the con-
tent of the screen (typically in order to produce the effect of animation).

For example, suppose we’re making an animation of a man running to a house, wait-
ing motionless at the front door for a short time, and then running away. While the
man runs to the house, each frame of the animation has different content, so each
frame must be a keyframe. While the man waits at the front door, each frame of the
animation has the same content (because the man is not moving), so each frame can
be a regular frame. While the man runs away from the house, each frame of the ani-
mation again has different content, so each frame must be a keyframe.

Figure 29-3 shows the frames of our running-man animation, greatly reduced to fit in
this book. Frames 1, 2, 3, 8, and 9 are keyframes, each with their own content.
Frames 4 though 7 are regular frames, with content carried forward from Frame 3. In
the figure, the content of Frames 4 through 7 is shown in gray, indicating that it is
carried forward from Frame 3. The figure indicates keyframes with the letter K and
regular frames with the letter R.

Figure 29-4 shows the timeline for our animation as it would appear in the Flash
authoring tool, with Frame 1 selected. Notice that keyframes with content are indi-
cated with a filled circle icon. Keyframes without content, known as blank key-
frames, are indicated with a hollow circle (our animation does not include any blank
keyframes). Regular frames have no circle icon at all. The last regular frame before a
keyframe has a rectangle icon.

For easy reference in the coming sections, we’ll assume that our running-man anima-
tion is saved in a file named runningman.fla.

Now, let’s explore timeline scripting.

Figure 29-3. Keyframes versus regular frames

1 2 3 4 5 6 7 8 9

K KKRKK R R R

826 | Chapter 29: ActionScript and the Flash Authoring Tool

Timeline Scripting
In order to execute code at a designated point in a timeline, we use a frame script.
A frame script is a block of ActionScript code attached to a keyframe in a .fla file’s
timeline.

To add a frame script to a keyframe in a timeline, follow these general steps:

1. Click the desired keyframe in the timeline (select it).

2. Choose Window ➝ Actions to open the Actions panel.

3. Enter the desired code into the Actions panel.

Any code entered into the Actions panel while a keyframe is selected will become
part of that keyframe’s frame script and will be executed just before that keyframe is
rendered in the Flash runtime.

Frame scripts are typically used to control the content present on the frame in which
they occur. We’ll learn more about controlling content using frame scripts later in
this chapter, in the section “Accessing Manually Created Symbol Instances.”

Figure 29-4. The running man timeline

Timeline Scripting | 827

Frame scripts cannot contain the class, package, or interface state-
ments, or the public, internal, private, dynamic, or static attributes, but
are free to include any other ActionScript code.

Programming using frame scripts is sometimes referred to as timeline scripting. Time-
line scripting is the oldest form of ActionScript programming, and indeed was the
only form of ActionScript programming up to the release of ActionScript 2.0 and
Flash Player 7. Arguably, some of the Flash community’s most innovative content
has been born out of the marriage of timeline content and frame scripts.

As an example frame script, let’s add some code to the last frame of the running-man
animation. Our example frame script will open the URL http://moock.org in a new
web browser window. Here’s the code:

import flash.net.*;
var request:URLRequest = new URLRequest("http://moock.org");
navigateToURL(request, "_blank");

Figure 29-5 shows our frame script as it appears in the Actions panel in the Flash
authoring tool. Notice that keyframes with frame scripts are indicated with a small
“a” icon (for ActionScript) in the timeline.

Figure 29-5. A frame script

http://moock.org

828 | Chapter 29: ActionScript and the Flash Authoring Tool

As it stands, our frame script has a problem. By default, the Flash runtime loops ani-
mations (i.e., plays them repeatedly). Hence, our frame script will execute every time
the running-man animation loops, causing multiple browser windows to open. To
fix our frame script, we must use the MovieClip class’s instance method stop()
method to stop the animation from looping, as shown in the following code. We’ll
take a closer look at the MovieClip class’s playback-control methods in the later sec-
tion “Programmatic Timeline Control.”

import flash.net.*;
var request:URLRequest = new URLRequest("http://moock.org");
navigateToURL(request, "_blank");
stop();

In the preceding code, the stop() method is invoked on the ActionScript object that
represents the main timeline. The next section describes precisely how the main
timeline is represented as an object in ActionScript.

Note that frame scripts can refer to any custom class (or other definition) that is
accessible via the document classpath (which is set for each .fla) or global classpath
(which applies to all .fla files). To set the document classpath, use File ➝ Publish Set-
tings ➝ Flash ➝ ActionScript Version: Version 3.0 ➝ Settings ➝ Classpath. To set the
global classpath, use Edit ➝ Preferences ➝ ActionScript ➝ Language ➝ ActionScript
3.0 Settings ➝ Classpath.

The Document Class
From an ActionScript perspective, a .fla file’s main timeline is considered an instance
of the document class, which is specified via File ➝ Publish Settings ➝ Flash ➝ Action-
Script Version ➝ Settings ➝ Document class.

The specified document class must inherit from flash.display.MovieClip if:

• The main timeline contains any frame scripts.

• The document class wishes to control the main timeline programmatically using
MovieClip methods.

• The main timeline’s Stage contains any components with customized parame-
ters and either of the following is true:

• The customized parameters are not identical on all frames of the timeline. For
example, a Button’s label is “OK” on Frame 1 and “Submit” on Frame 2.

• The component does not appear on all frames of the timeline. For example,
a List with a custom data provider appears on Frame 1 but not on Frame 2.

• The main timeline’s Stage contains any components with customized accessibil-
ity properties or Strings Panel content.

Otherwise, the document class need only inherit from flash.display.Sprite.

The Document Class | 829

When specifying the document class for a .fla file, include the fully
qualified class name only; do not include the file extension (.as).

When a document class is specified, but the specified class is not found, the Flash
compiler automatically generates a document class by the specified name. The auto-
matically generated class extends MovieClip.

If a .fla file does not specify a document class, then its document class is assigned
automatically. If the following conditions are all met, the automatically assigned doc-
ument class is flash.display.MovieClip:

• The main timeline’s Stage contains no named instances (see the section“Access-
ing Manually Created Symbol Instances”).

• The main timeline contains no frame scripts.

• The main timeline’s Stage contains no components with customized parameters
that vary across frames.

• The main timeline’s Stage contains no components with customized accessibil-
ity properties or Strings Panel content.

Otherwise, the automatically assigned document class is an automatically generated
MovieClip subclass.

Each of the main timeline’s frame scripts can be thought of as roughly analogous
to an instance method of the document class. Code in a frame script of the main
timeline executes in its own scope, with the same set of access rules applied to
instance methods of the document class. That is, a frame script of the main time-
line can access any definition (variable, method, class, interface, or namespace)
that would be accessible within any of the document class’s instance methods.
Likewise, a frame script of the main timeline can use the keyword this to refer to
the current object (i.e., the document class instance).

As an example, let’s create a document class, RunningMan, for the runningman.fla
file from the preceding section. Because runningman.fla’s main timeline includes a
frame script, the RunningMan class must inherit from MovieClip. In RunningMan,
we’ll define a simple method for opening a URL in a web browser. Here’s the code:

package {
 import flash.display.MovieClip;
 import flash.net.*;

 public class RunningMan extends MovieClip {
 public function goToSite (url:String):void {
 var request:URLRequest = new URLRequest(url);
 navigateToURL(request, "_blank");
 }
 }
}

830 | Chapter 29: ActionScript and the Flash Authoring Tool

To associate the RunningMan class with the running-man animation, we save its
source file in the same directory as runningman.fla, and then follow these steps:

1. Select File ➝ Publish Settings ➝ Flash ➝ ActionScript Version: Version 3.0 ➝

Settings.

2. For Document class, enter RunningMan. (Notice RunningMan, not RunningMan.as.)

3. On the ActionScript 3.0 Settings dialog, click OK.

4. On the Publish Settings dialog, click OK.

Now that the document class for runningman.fla has been set to RunningMan, we
can update the frame script on Frame 9, from the preceding section. The frame
script’s previous code was as follows:

import flash.net.*;
var request:URLRequest = new URLRequest("http://moock.org");
navigateToURL(request, "_blank");
stop();

The following code shows the new frame script for Frame 9. Notice that it refers
directly to the RunningMan class’s instance method goToSite().

goToSite("http://moock.org");
stop();

In the preceding code, stop() refers to the MovieClip class’s instance method stop(),
which is inherited by the RunningMan class. As a descendant of the MovieClip class,
the RunningMan class also has access to all nonprivate methods and variables defined
by EventDispatcher, DisplayObject, InteractiveObject, DisplayObjectContainer, and
Sprite. For example, the following code uses the DisplayObjectContainer class’s
instance method addChild() to add a new text field to the main timeline’s display
hierarchy:

// Code in runningman.fla, frame 9 frame script
import flash.text.*;

// Add a new text field to the main timeline's display hierarchy
var msg:TextField = new TextField();
msg.text = "I guess no one was home...";
msg.autoSize = TextFieldAutoSize.LEFT;
msg.border = true;
msg.background = true;
msg.selectable = false;
addChild(msg);

stop();

In response to the preceding code, the TextField object referenced by msg is added to
the main timeline’s display hierarchy. When we export runningman.swf from
runningman.fla, and then load runningman.swf into the Flash runtime, the text “I
guess no one was home...” appears on screen when the playhead reaches Frame 9.
The text appears on screen because the document class instance of the first .swf file

The Document Class | 831

loaded by the Flash runtime is automatically added to the display list. For plenty of
details, see Chapter 20.

Note that the preceding text field-creation code could have alternatively (and more
appropriately) been added to a RunningMan instance method. Either approach is
technically valid, but as a best practice, you should try to store code in external class
files rather than on frame scripts.

Variable and Function Definitions in Frame Scripts
A variable definition in a frame script on a .fla file’s main timeline creates an instance
variable in that .fla file’s document class. Likewise, a function definition in a frame
script on a .fla file’s main timeline creates an instance method in that .fla file’s docu-
ment class.

Similarly, a variable definition in a frame script on a Movie Clip symbol’s timeline
creates an instance variable in the symbol’s linked class. And a function definition in
a frame script on a Movie Clip symbol’s timeline creates an instance method in the
symbol’s linked class. (We’ll learn about Movie Clip symbols and linked classes in
the next two sections.)

However, take heed that an instance variable created in a frame script is not initialized
until that frame script executes (i.e., the playhead reaches the frame containing the
frame script). For example, consider the following code, showing two frame scripts:

// Frame script on frame 1
trace(n); // Displays: 0

// Frame script on frame 2
var n:int = 10;
trace(n); // Displays: 10

When the first of the preceding two frame scripts runs, the instance variable n has
been defined, but it has not yet been initialized (the = 10 part of the code hasn’t run
yet). As a result, the code trace(n) causes 0 (the default value for variables of type
int) to appear in the Output panel. When the second script runs, the instance vari-
able n has been initialized (set to 10), so the code trace(n) causes 10 to appear in the
Output panel.

By contrast, after a frame script has been executed, any instance variables it defines
can be used for the remainder of the program’s execution. For example, suppose we
add a third frame script to the hypothetical timeline from the preceding code:

// Frame script on frame 3
trace(n); // Displays: 10
gotoAndStop(1);

When the third script runs, the instance variable n still has the value 10, so the code
trace(n) causes 10 to appear in the Output panel. Then, the code gotoAndStop(1)
causes the playhead to move to Frame 1, so Frame 1’s frame script executes for a

832 | Chapter 29: ActionScript and the Flash Authoring Tool

second time. This time, the instance variable n still has the value 10, so the code
trace(n) causes 10 (not 0) to appear in the Output panel.

An instance method created in a frame script can be used even before the playhead
reaches the frame containing the instance method definition.

Symbols and Instances
In the earlier section “Timelines and Frames,” we learned that a .fla file is a hierar-
chy of one or more animations, each with its own timeline. Now that we’ve seen how
to create the main animation in a Flash document, let’s explore nested animations.
In order to create nested animations, we must understand symbols.

In the Flash authoring tool, a symbol is a user-defined reusable animation, button, or
graphic. Symbols are created off-Stage in a special symbol-editing mode. Each .fla file
stores its associated symbols in an asset repository known as the Library. From a sin-
gle symbol, an arbitrary number of copies, or instances, can be created. For example,
to create a sky full of animated twinkling stars, we could create a single star symbol
and then add multiple instances of it to the Stage. Figure 29-6 shows what the star
symbol and its instances might look like in a .fla file. Notice that each star instance is
positioned, scaled, and rotated independently.

By default, when a .swf file is compiled from a .fla file, only those symbols whose
instances are actually used in the document (i.e., appear on Stage) or are exported for
ActionScript (see the section “Instantiating Flash Authoring Symbols via Action-
Script”) are included in the .swf file. Furthermore, each symbol’s content is included

Figure 29-6. The star symbol and star instances

The star symbol in the librarystar instances on the Stage

Symbols and Instances | 833

just once, and then duplicated at runtime as necessary for each instance. Conse-
quently, using symbols and instances (rather than raw graphics) can greatly reduce a
.swf ’s file size.

Types of Symbols
The Flash authoring tool defines three basic types of symbols:

• Movie Clip (for animations with programmatic content)

• Graphic (for nonprogrammatic animations that can be previewed directly in the
Flash authoring tool)

• Button (for simple interactivity)

Graphic symbols cannot be accessed with ActionScript, and Button symbols offer
primitive interactivity that can also be achieved with the Movie Clip symbol or the
Button component. Therefore, in this chapter, we’ll ignore Graphic and Button sym-
bols, and focus exclusively on Movie Clip symbols.

Movie Clip Symbols
A Movie Clip symbol is a self-contained, reusable animation. Each Movie Clip sym-
bol includes its own timeline and Stage, exactly like the main timeline. Furthermore,
instances of Movie Clip symbols can be nested inside each other to produce hierar-
chically structured graphics or animations. For example, a Movie Clip symbol
depicting a cartoon face might contain instances of a separate Movie Clip symbol
depicting animated, blinking eyes.

Figure 29-7 shows a Movie Clip symbol being created in the Flash authoring tool.
The Stage shows the contents of frame 2 of the Movie Clip’s timeline. Note that the
timeline in the figure is not the .fla file’s main timeline, but the separate, indepen-
dent timeline of the star Movie Clip symbol.

834 | Chapter 29: ActionScript and the Flash Authoring Tool

Linked Classes for Movie Clip Symbols
From an ActionScript perspective, each Movie Clip symbol instance in a .fla file is
represented at runtime by an instance of the Sprite class or one of its subclasses. The
class used to represent instances of a specific Movie Clip symbol is known as that
symbol’s linked class. A symbol’s linked class can be specified manually or generated
automatically.

To set the linked class for a Movie Clip symbol, we use the Linkage Properties dia-
log. Note that if any of the following are true, the specified linked class must inherit
from flash.display.MovieClip:

• The symbol’s timeline contains any frame scripts.

• The linked class wishes to control instances of the symbol programmatically,
using MovieClip methods.

Figure 29-7. Editing a Movie Clip symbol

Linked Classes for Movie Clip Symbols | 835

• The symbol’s Stage contains any components with customized parameters and
either of the following is true:

• The customized parameters are not identical on all frames of the timeline. For
example, a Button’s label is “OK” on Frame 1 and “Submit” on Frame 2.

• The component does not appear on all frames of the timeline. For example,
a List with a custom data provider appears on Frame 1 but not on Frame 2.

• The symbol’s Stage contains any components with customized accessibility
properties or Strings Panel content.

Otherwise, the specified linked class need only inherit from flash.display.Sprite.

Here are the steps for specifying the linked class for a for a Movie Clip symbol:

1. Select the symbol in the .fla file’s Library.

2. Select the pop-up Options menu in the top-right corner of the Library panel, and
choose the Linkage option.

3. In the Linkage Properties dialog box, for Linkage, select Export for Action-
Script. Note that selecting Export for ActionScript forces the symbol to be
included in the compiled .swf file, even if no instance of that symbol is used in
the document.

4. In the Linkage Properties dialog box, for Class, enter the fully qualified class name
(i.e., the class name combined with the class’s package, if the class resides in a
package). The class being linked must be available in either the global classpath or
the classpath of the .fla file containing the symbol. When specifying a linked class
name in the Linkage Properties dialog, always leave the Base class field at its
default value, except when linking more than one symbol to a single superclass, as
discussed in the section “Linking Multiple Symbols to a Single Superclass.”

5. Click OK.

In Step 4 of the preceding procedure, if the specified class is not found, the Flash
compiler generates a linked class by the specified name automatically. The automati-
cally generated class extends the specified base class.

If no linked class is specified for a given symbol, then the compiler assigns one auto-
matically. If the following conditions are all met, then the automatically assigned
linked class is MovieClip:

• The symbol’s Stage does not contain any named instances.

• The symbol’s timeline has no frame scripts.

• The symbol’s Stage contains no components with customized parameters that
vary across frames.

• The symbol’s Stage contains no components with customized accessibility prop-
erties or Strings Panel content.

836 | Chapter 29: ActionScript and the Flash Authoring Tool

Otherwise, the automatically assigned linked class is an automatically generated
MovieClip subclass.

Once a symbol is linked to a class, manually created instances of that symbol adopt
the programmatic behaviors defined by the linked class. Conversely, programmati-
cally created instances of the class adopt the audiovisual content of the linked sym-
bol. Thus the symbol and the class are coupled together: the symbol defines the
graphical content, while the class defines the programmatic behavior.

As an example, let’s link our star Movie Clip symbol from the preceding section to a
MovieClip subclass, Star. The Star class will randomly change the transparency
(alpha value) of each star instance every 100 ms. Here’s the code:

package {
 import flash.display.MovieClip;
 import flash.utils.Timer;
 import flash.events.TimerEvent;

 public class Star extends MovieClip {
 private var timer:Timer;

 public function Star () {
 timer = new Timer(100, 0);
 timer.addEventListener(TimerEvent.TIMER, timerListener);
 timer.start();
 }

 private function timerListener (e:TimerEvent):void {
 randomFade();
 }

 private function randomFade ():void {
 // Set alpha to a random floating-point value from 0 up to (but
 // not including) 1. The instance variable alpha is inherited from
 // the DisplayObject class (which is ancestor of MovieClip).
 alpha = Math.random();
 }

 // Provide a means of stopping the timer. As discussed in section
 // "Deactivating Objects" in Chapter 14,
 // external code should use this method before removing a star instance
 // from the program.
 public function dispose ():void {
 timer.stop();
 }
 }
}

To link the Star class to the star Movie Clip symbol, follow these steps:

1. Save the file containing the star symbol as sky.fla.

2. Save the Star class in a text file named Star.as, in the same folder as sky.fla.

Linked Classes for Movie Clip Symbols | 837

3. Select the star symbol in sky.fla’s Library.

4. Select the pop-up Options menu in the top-right corner of the Library panel, and
choose the Linkage option.

5. In the Linkage Properties dialog, for Linkage, select Export for ActionScript.

6. In the Linkage Properties dialog, for Class, enter Star.

7. Click OK.

Figure 29-8 shows the Linkage Properties dialog as it appears after Step 6 in the pre-
ceding procedure.

To create instances of the star symbol in the Flash authoring tool, we drag the sym-
bol name from the Library to the Stage of the main timeline (or to any other sym-
bol’s Stage, but in this case, there are no other symbols in the document).
Figure 29-9 ilustrates the procedure; it shows five star-symbol instances being
dragged to the Stage of the first frame of sky.fla’s main timeline.

Once the star symbol instances are on the main timeline, we can export sky.swf from
sky.fla, and watch the each star’s twinkling motion (defined by the star symbol) and
fading effect (defined by the Star class).

Figure 29-8. Linking the Star symbol to the Star class

838 | Chapter 29: ActionScript and the Flash Authoring Tool

Now that we know how to manually create instances of Movie Clip symbols, let’s
examine how to access and control them.

Accessing Manually Created Symbol Instances
At runtime, every instance of any symbol placed on any timeline in a .fla file auto-
matically becomes a display child of the ActionScript object representing that
timeline.

For example, in the preceding section, we added five star-symbol instances to the
main timeline of sky.fla. As a result, at runtime, those five instances become display
object children of sky.fla’s document-class instance. To prove it, let’s create a docu-
ment class for sky.fla, and use getChildAt() to list the children of the main timeline.
Here’s the code:

package {
 import flash.display.MovieClip;

 public class Sky extends MovieClip {
 public function Sky () {
 for (var i:int=0; i < numChildren; i++) {
 trace("Found child: " + getChildAt(i));

Figure 29-9. Creating instances of the star symbol

Accessing Manually Created Symbol Instances | 839

 }
 }
 }
}

With the preceding document class in place, when sky.swf is exported and played in
the Flash authoring tool’s Test Movie mode, the following output appears in the
Output panel:

Found child: [object Star]
Found child: [object Star]
Found child: [object Star]
Found child: [object Star]
Found child: [object Star]

Code in a .swf file’s document class constructor method can access all
manually placed child assets on the .swf file’s first frame but not on
the second or subsequent frames (because assets on a subsequent
frame are not added as display children until the playhead reaches that
frame).

From an ActionScript perspective, the five star-symbol instances on the main time-
line are instances of the Star class, which inherits from MovieClip. As such, we can
control the stars using the variables and methods of the DisplayObject class (or any
other ancestor of MovieClip). For example, the following code uses the DisplayObject
class’s instance variable x to align the stars along x-coordinate 100:

for (var i:int=0; i < numChildren; i++) {
 getChildAt(i).x = 100;
}

The getChildAt() method shown in the preceding code, however, has a limitation.
Because the depths of individual symbol instances are not readily apparent in the
Flash authoring tool, getChildAt() cannot easily be used to selectively manipulate a
particular symbol instance. To make an individual instance easy to identify and
manipulate through code, we assign it an instance name.

Instance Names
An instance name is a simple string name assigned to a symbol instance. To give a
manually created symbol instance an instance name, we use the Properties panel. For
example, to assign instance names to the star symbol instances from in the preced-
ing section, we follow these steps:

1. Open the Properties panel (Window ➝ Properties).

2. Select a star instance on Stage.

3. For <Instance Name>, enter star1.

4. Repeat Steps 2-3 to assign the remaining sky the instance names star2 through
star5.

840 | Chapter 29: ActionScript and the Flash Authoring Tool

Figure 29-10 shows the Properties panel (bottom of figure) as it appears during Step
3 of the preceding procedure.

A manually created symbol instance with an instance name can be accessed in Action-
Script via the DisplayObjectContainer class’s instance method getChildByName(). For
example, the following code uses getChildByName() to move “star3” (the star whose
instance name is “star3”) to coordinate (0, 0):

package {
 import flash.display.MovieClip;

 public class Sky extends MovieClip {
 public function Sky () {
 getChildByName("star3").x = 0;
 getChildByName("star3").y = 0;
 }
 }
}

Figure 29-10. Naming a star symbol instance

Accessing Manually Created Symbol Instances | 841

An instance’s instance name can be accessed at runtime via the DisplayObject class’s
instance variable name. For example, the following code displays the names of all
instances on the first frame of sky.fla’s main timeline:

for (var i:int=0; i < numChildren; i++) {
 trace(getChildAt(i).name);
}

The instance name of an object can also be changed at runtime by assigning a new
value to that object’s name variable, as in:

someDisplayObject.name = "someName";

However, changing instance names at runtime typically makes code hard to follow,
so you should avoid it in your programs.

Matching Variables for Instance Names
The getChildByName() method from the preceding section successfully provides a
way to access a particular symbol instance, but it’s not particularly convenient. To
make manually created symbol instances easier to access through ActionScript, the
Flash compiler provides two automated services. First, when the compiler encoun-
ters a named instance on a timeline, it automatically assigns that instance to an
instance variable of the same name in the timeline’s document class or linked class.
Second, in certain cases, if the matching instance variable does not already exist in
the timeline’s document class or linked class, the compiler automatically creates it.
Let’s consider these two automated services with an example.

Returning to the sky.fla example from the preceding section, recall that sky.fla’s docu-
ment class is Sky, and that sky.fla’s main timeline contains five star-symbol instances,
named “star1” through “star5.” When the Flash compiler compiles sky.swf, it automat-
ically adds code to the Sky class that assigns those five star instances to five instance
variables, named star1 through star5. The result is the equivalent of adding the fol-
lowing code to the beginning of the Sky class constructor:

package {
 import flash.display.MovieClip;

 public class Sky extends MovieClip {
 public function Sky () {
 star1 = getChildByName("star1");
 star2 = getChildByName("star2");
 star3 = getChildByName("star3");
 star4 = getChildByName("star4");
 star5 = getChildByName("star5");
 }
 }
}

842 | Chapter 29: ActionScript and the Flash Authoring Tool

Of course, in this case, the Sky class does not actually define the variables star1
through star5. Hence, the preceding automated variable assignment has the
potential to cause an error. Whether an error actually occurs depends on a compiler
option called “Automatically declare stage instances,” which is set on a per-.fla basis
under File ➝ Publish Settings ➝ Flash ➝ ActionScript Version ➝ Settings ➝ Stage.
When “Automatically declare stage instances” is enabled (the default), the compiler
not only assigns Stage instances to matching variables, but also automatically
declares those variables. For example, if we enable “Automatically declare stage
instances” for sky.fla, then the compiler automatically declares the instance variables
star1 through star5 in the Sky class. The result is the equivalent of adding the fol-
lowing code to the Sky class (notice that the automatically declared variables are
public):

package {
 import flash.display.MovieClip;

 public class Sky extends MovieClip {
 public var star1:Star;
 public var star2:Star;
 public var star3:Star;
 public var star4:Star;
 public var star5:Star;

 public function Sky () {
 star1 = getChildByName("star1");
 star2 = getChildByName("star2");
 star3 = getChildByName("star3");
 star4 = getChildByName("star4");
 star5 = getChildByName("star5");
 }
 }
}

As a result of the preceding automatically inserted code, within the Sky class, we can
refer to the star instances from sky.fla’s main timeline directly by instance name. For
example, the following code moves “star3” (the star whose instance name is “star3”)
to coordinate (0, 0):

package {
 import flash.display.MovieClip;

 public class Sky extends MovieClip {
 public function Sky () {
 star3.x = 0;
 star3.y = 0;
 }
 }
}

Accessing Manually Created Symbol Instances | 843

Likewise, in any frame script on sky.fla’s main timeline, we can also refer to the star
instances directly by instance name. For example, when placed in sky.fla’s first frame
script, the following code rotates “star5” by 30 degrees:

star5.rotation = 30;

Nifty, eh?

However, in light of the preceding automated behavior, when “Automatically declare
stage instances” is enabled, the programmer must take heed not to define instance
variables whose names collide with symbol instance names. For example, the follow-
ing code defines an instance variable, star1, whose name collides with a symbol
instance from sky.fla’s main timeline:

package {
 import flash.display.MovieClip;

 public class Sky extends MovieClip {
 public var star1:Star;

 public function Sky () {
 }
 }
}

As a result of the instance variable definition in the preceding code, the compiler gen-
erates the following error:

A conflict exists with definition star1 in namespace internal.

By contrast, when “Automatically declare stage instances” is disabled, the compiler
does not declare matching variables for Stage instances. For example, if we disable
“Automatically declare stage instances” for sky.fla, then the compiler does not declare
the instance variables star1 through star5 in the Sky class. However, it still assigns
those variables references to the five star-symbol instances on the main timeline. As a
result, we must supply the matching variable declarations in the Star class, as shown
in the following code. Notice that the variables are, by necessity, declared public.

package {
 import flash.display.MovieClip;

 public class Sky extends MovieClip {
 public var star1:Star;
 public var star2:Star;
 public var star3:Star;
 public var star4:Star;
 public var star5:Star;

 public function Sky () {
 }
 }
}

844 | Chapter 29: ActionScript and the Flash Authoring Tool

Omitting the variable declarations from the preceding code has two possible results,
depending on whether the class is declared with the dynamic attribute (see the sec-
tion “Dynamic Instance Variables” in Chapter 15). If the class is not declared with
the dynamic attribute (as is the case with the Sky class), then the following runtime
error occurs because the compiler’s automatically added assignment statements refer
to nonexistent variables:

ReferenceError: Error #1056: Cannot create property star5 on Sky.

If, on the other hand, the class is declared with the dynamic attribute, then the auto-
matically added assignment statements simply add new dynamic instance variables
(named star1 through star5) to each instance of the class at runtime.

Despite the fact that “Automatically declare stage instances” is
enabled by default, many programmers prefer to disable it. As we just
learned, when “Automatically declare stage instances” is disabled,
nondynamic classes linked to timelines must declare variables match-
ing all named Stage instances. Such explicit declarations make the
variables more obvious in the class that uses them and prevent com-
piler errors when editing the class in other development environments
(such as Flex Builder 2).

Note that automatically generated document classes and automatically generated
linked classes are always compiled with “Automatically declare stage instances”
enabled. Consequently, the named Stage instances of any timeline associated with an
automatically generated document class or an automatically generated linked class
can always be accessed via matching instance variables.

Accessing Manually Created Text
In the preceding sections, we learned three tools for accessing manually created sym-
bol instances through ActionScript:

• The getChildAt() method

• The getChildByName() method

• Automatically assigned instance variables

The same three tools can also be used to access manually created text. In the Flash
authoring tool, text fields are created with the Text Tool. Manually created text
fields of type Dynamic Text or Input Text are represented at runtime by instances of
the flash.text.TextField class. Like symbol instances, Dynamic and Input text fields
become display children of the object representing the timeline that contains them.
Also like symbol instances, Dynamic and Input text fields can be assigned an
instance name that corresponds to an automatically assigned instance variable.

Programmatic Timeline Control | 845

For example, the following steps describe how to move a manually created Dynamic
text field to coordinate (200, 300) using ActionScript:

1. In the Flash authoring tool, create a new .fla file name message.fla.

2. In the Tools panel, select the Text Tool.

3. Click the Stage of the first frame of message.fla’s main timeline.

4. In the text field that appears, enter the text hello.

5. On the Properties panel (Window ➝ Properties), change Static Text to
Dynamic Text.

6. Still on the Properties panel, for <Instance Name>, enter msg.

7. Click the first frame of message.fla’s main timeline (select it).

8. Open the Actions panel (Window ➝ Actions).

9. Enter the following code into the Actions panel:
msg.x = 200;
msg.y = 300;

Programmatic Timeline Control
Now that we know how to access manually created Movie Clip symbol instances,
let’s take a quick look at the tools for controlling the playback of those instances.
The following list describes the most important timeline-control methods and vari-
ables of the MovieClip class. For more information on the MovieClip class, see
Adobe’s ActionScript Language Reference.

play()
Initiates the sequential display of the frames the movie clip’s timeline. Frames
are displayed at a speed dictated by the frame rate, which can be assigned via the
Flash runtime Stage instance’s frameRate variable.

stop()
Halts the playback of a movie clip. But note that even while a movie clip is
stopped, the Flash runtime continues to play sounds, react to user actions, and
process events, including Event.ENTER_FRAME events. Similarly, visual changes
performed in event handlers or via setInterval() or a Timer event are rendered
even when the playhead is stopped. The stop() method merely prevents the
movie clip’s playhead from advancing in the timeline.

gotoAndPlay()
Sends the playhead of the movie clip’s timeline to the specified frame number or
label and then plays the timeline from that point. The state of other movie clips
is not affected. To cause other movie clips to play, invoke play() or
gotoAndPlay() separately on each movie clip.

846 | Chapter 29: ActionScript and the Flash Authoring Tool

gotoAndStop()
Sends the playhead of the movie clip’s timeline to the specified frame number or
label and then halts the playback of the movie clip.

nextFrame()
Moves the playhead of the movie clip’s timeline ahead one frame and stops it
there.

prevFrame()
Moves the playhead of the movie clip’s timeline back one frame and stops it
there.

currentFrame
Yields the frame number at which the playhead of the movie clip currently
resides. Note that the first frame is 1, not 0; therefore, currentFrame ranges from
1 to totalFrames.

currentLabel
Yields a string representing the label of the current frame, as specified in the
Flash authoring tool.

currentLabels
Yields an array containing all the labels of the current timeline.

totalFrames
Yields the number of frames in the movie clip timeline.

Let’s apply some of the preceding methods and variables to our sky.fla document.
All the following examples could be placed either in a method of the Sky class, or
on sky.fla’s main timeline.

The following code displays frame 4 of “star1:”

star1.gotoAndStop(4);

The following code stops the playback of the timeline of “star3:”

star3.stop();

The following code advances the playhead of “star5” by two frames:

star5.gotoAndStop(star5.currentFrame + 2);

The following code stops the playback of the timeline of all star instances on the
main timeline:

for (var i:int=0; i < numChildren; i++) {
 getChildAt(i).stop();
}

Instantiating Flash Authoring Symbols via ActionScript | 847

Instantiating Flash Authoring Symbols via ActionScript
In the earlier section “Linked Classes for Movie Clip Symbols,” we learned that
instances of a symbol can be created manually in the Flash authoring tool by drag-
ging the symbol’s name from the Library to the Stage of a timeline. Instances of sym-
bols that are exported for ActionScript can also be created directly through code,
using the standard new operator.

For example, earlier, we linked the star symbol to the Star class. To create an
instance of the star symbol through code, we use the following expression:

new Star()

To add an instance of the star symbol to the main timeline of sky.swf at runtime, we
would use the following code in either a frame script on the main timeline, or a
method in the Sky class:

var star:Star = new Star();
addChild(star);

The following code creates 50 star instances, and positions them randomly on screen:

var sky:Array = new Array();
for (var i:int = 0; i < 50; i++) {
 sky.push(new Star());
 sky[i].x = Math.floor(Math.random()*550);
 sky[i].y = Math.floor(Math.random()*400);
 addChild(sky[i]);
}

Note that ActionScript code can be used to create instances of any symbol that is
exported for ActionScript, whether or not the symbol has a custom-defined linked
class. That is, the class specified on the Linkage Properties dialog need not be a cus-
tom class (as Star is). As we learned earlier, when the class specified on the Linkage
Properties dialog is not found in the classpath, ActionScript automatically generates it.
The automatically generated class can be used to create instances of the symbol
through code.

For example, suppose we have a Movie Clip symbol named box_symbol, and we
want to create instances of it with ActionScript. Here are the steps we follow:

1. Select box_symbol in the Library.

2. Select the pop-up Options menu in the top-right corner of the Library panel, and
choose the Linkage option.

3. In the Linkage Properties dialog, for Linkage, select Export for ActionScript.

4. In the Linkage Properties dialog, for Class, enter Box.

5. Click OK.

6. By default, the preceding steps will prompt the Flash authoring tool to display a
warning dialog stating “A definition for this class could not be found in the
classpath, so one will be automatically generated in the SWF file on export.”
Click OK to dismiss the warning.

848 | Chapter 29: ActionScript and the Flash Authoring Tool

Once the preceding steps are complete, to create a box_symbol instance, we use the
expression new Box() on any timeline or in any class of the .swf file that contains
box_symbol.

Instance Names for Programmatically Created Display
Objects
As it happens, like manually created instances, display objects created programmati-
cally can also be assigned an instance name via the name variable. For example, the
following code creates a TextField instance, gives it the instance name “price,” adds it
to a container, and then retrieves a reference to it by name.

var t:TextField = new TextField();
t.text = "$99.99";
t.name = "price"
var detailsPage:Sprite = new Sprite();
detailsPage.addChild(t);
trace(detailsPage.getChildByName("price")); // Displays: [object TextField]

The preceding code may appear convenient because it offers a way to access an
object on the display list according to some programmer-determined label, rather
than by object reference or depth position. However, using instance names in this
way is prone to error because ActionScript does not require instance names to be
unique and does not throw an exception for attempts to access nonexistent instance
names. Hence, use of instance names with programmatically created display objects
should be avoided.

Instance names should typically be used only when referring to text
field instances or instances of Library symbols created manually in the
Flash authoring tool.

Programmatically created display objects should always be accessed by reference. For
example, the following code shows two versions of displayPrice(), a hypothetical
method that displays the price of a product. Both of the following versions of the
method display the price in a TextField. In the first version (recommended), the
TextField that will contain the price is passed as an object reference to the method. In
the second version (discouraged), the DisplayObjectContainer containing the
TextField is passed to the method, and the method retrieves a reference to the
TextField by instance name.

// Recommended
public function displayPrice (priceField:TextField, price:Number):void {
 priceField.text = "$" + price;
}

// Discouraged

Linking Multiple Symbols to a Single Superclass | 849

public function displayPrice (orderForm:Sprite, price:Number):void {
 TextField(orderForm.getChildByName("price")).text = "$" + price;
}

Wherever practical, display objects should be made available by reference to depen-
dent parts of a program.

In MXML, a display object’s instance name can be set via the id attribute, and
named display objects can also be accessed by getChildByName(). However, as with
pure ActionScript applications, references are preferred over instance names.

Linking Multiple Symbols to a Single Superclass
In the earlier section “Linked Classes for Movie Clip Symbols,” we learned how to
link a class to a Movie Clip symbol. Now let’s consider how to give many different
Movie Clip symbols the same programmatic behavior by linking those symbols to a
single superclass.

As an example, we’ll create a simple login form with two different graphical inter-
face styles. Such a form might be required in an application that offers its users a
choice of interface designs, or skins. Our forms will look different, but their behav-
ior will be the same.

We’ll start by creating a .fla file, LoginApp.fla, in the Flash authoring tool. In
LoginApp.fla, we’ll create two symbols, one for each graphical style of the login
form. We’ll name the first symbol LoginForm_Style1, and the second symbol
LoginForm_Style2. In each login form symbol, we’ll add two manually created
input text fields (named username and password) and a submit button (named
submitBtn). The submit button is, itself, a hand-drawn instance of a Movie Clip
symbol. Figure 29-11 shows the two login form symbols.

Next, we’ll create a LoginForm class that controls the behavior of the login form
symbols. The LoginForm class responds to submit button clicks and transmits login

Figure 29-11. The login form symbols

LoginForm_Style1

LoginForm_Style2

850 | Chapter 29: ActionScript and the Flash Authoring Tool

information to a server. In this example, we’ll set the compiler option “Automati-
cally declare stage instances” to disabled. Accordingly, within the LoginForm class,
we’ll declare the manually created assets from the login form symbols as instance
variables. The instance variable names—username, password, and submitBtn—match
the instance names of the instances in the login form symbols.

Here’s the code for the LoginForm class:

package {
 import flash.display.*;
 import flash.text.*;
 import flash.events.*;

 public class LoginForm extends MovieClip {
 public var username:TextField;
 public var password:TextField;
 public var submitBtn:SimpleButton;

 public function LoginForm () {
 submitBtn.addEventListener(MouseEvent.CLICK, submitListener);
 }

 private function submitListener (e:MouseEvent):void {
 submit(username.text, password.text);
 }

 public function submit (name:String, pass:String):void {
 trace("Now submitting user: " + name + " with password: " + pass);

 // Now transmit login information to server (code not shown).
 // Typically, the flash.net.URLLoader class is used to send
 // data to a server.
 }
 }
}

Finally, we associate the behavior of the LoginForm class with the login form sym-
bols. However, because a single class cannot be linked to more than one symbol, we
cannot link the LoginForm class directly to the login form symbols. Instead, we must
link each login form symbol to a subclass of the LoginForm class. The following steps
describe the process:

1. Select the LoginForm_Style1 symbol in LoginApp.fla’s Library.

2. Select the pop-up Options menu in the top-right corner of the Library panel, and
choose the Linkage option.

3. In the Linkage Properties dialog box, for Linkage, select Export for ActionScript.

4. In the Linkage Properties dialog box, for Base class, enter LoginForm.

5. In the Linkage Properties dialog box, for Class, enter LoginForm_Style1.

6. Click OK.

The Composition-Based Alternative to Linked Classes | 851

7. By default, the preceding steps will prompt the Flash authoring tool to display a
warning dialog stating “A definition for this class could not be found in the
classpath, so one will be automatically generated in the SWF file on export.”
Click OK on this warning dialog.

8. Select the LoginForm_Style2 symbol in LoginApp.fla’s Library, then repeat Steps
2–6, substituting LoginForm_Style2 for LoginForm_Style1 in Step 6.

In response to the preceding steps, at compile time, the Flash compiler will automati-
cally generate two classes—LoginForm_Style1 and LoginForm_Style2, both of which
extend LoginForm. The compiler will then link the LoginForm_Style1 symbol to the
LoginForm_Style1 class, and the LoginForm_Style2 symbol to the LoginForm_Style2
class. Both symbols, thus, inherit the behavior of the LoginForm class.

The Composition-Based Alternative to Linked Classes
In this chapter, we’ve learned to add behavior to Movie Clip symbols by linking
them to custom classes. As an alternative practice, to give programmatic behavior to
a symbol we can simply create an instance of any custom class on the symbol’s time-
line and then use that instance to control the symbol.

For example, in the preceding section, we associated the login form symbols with the
LoginForm class in order to give the symbols the programmatic ability to submit
information to a server. But arguably, the LoginForm class is not a subtype of
MovieClip. It is, rather, a simple communication utility that happens to take input
from a user interface. As such, it can be (and perhaps should be) defined as a stand-
alone class for use by any symbol that agrees to provide the appropriate inputs.

For the sake of comparison, the following code shows a new version of the
LoginForm class, revised for use as a helper class on a symbol’s timeline. The new
class has a new name, LoginManager, reflecting its new role as a communication util-
ity class. Notice that the new class constructor expects references to user interface
objects that will supply user input.

package {
 import flash.display.*;
 import flash.text.*;
 import flash.events.*;

 public class LoginManager {
 private var username:TextField;
 private var password:TextField;

 public function LoginManager (username:TextField,
 password:TextField,
 submitBtn:SimpleButton) {
 this.username = username;
 this.password = password;
 submitBtn.addEventListener(MouseEvent.CLICK, submitListener);
 }

852 | Chapter 29: ActionScript and the Flash Authoring Tool

 private function submitListener (e:MouseEvent):void {
 submit(username.text, password.text);
 }

 public function submit (name:String, pass:String):void {
 trace("Now submitting user: " + name + " with password: " + pass);

 // Now transmit login information to server (code not shown).
 // Typically, the flash.net.URLLoader class is used to send
 // data to a server.
 }
 }
}

To use the LoginManager class, each of the login form symbols from the preceding
section would define a frame script with the following code (presumably on frame 1,
but in the case of an animated form, perhaps later in the timeline). In the following
code, username, password, and submitBtn are the instance names of the text fields and
button in the login form symbol:

var loginManager:LoginManager = new LoginManager(username,
 password,
 submitBtn);

The difference between the LoginManager approach and the LoginForm approach
from the preceding section is effectively the difference between composition and
inheritance, as discussed in the section “Inheritance Versus Composition” in
Chapter 6. The potential benefits of the composition-based approach are:

• The LoginManager class is free to inherit from any class it chooses, unlike
LoginForm which must inherit from MovieClip.

• The designer of the login form symbol can change the instance names of the
form’s text fields and submit button without affecting the functionality of the
LoginManager class.

Let’s now move to our final Flash authoring tool topic, preloading classes.

Preloading Classes
By default, when the Flash authoring tool compiles a .swf file, it exports all classes in
the .swf file’s first frame. As a result, all classes used in the .swf file must finish load-
ing before the .swf file’s first frame is displayed. Depending on the total size of the
classes included in the .swf file, this loading process can result in a noticeable delay
before the .swf file begins to play.

To avoid the class-loading delay, we can export a .swf file’s classes after Frame 1 in
the main timeline, and then provide a simple timeline script that displays progress
information during the class-loading process.

Preloading Classes | 853

As an example, let’s change our sky.fla file so that the classes it uses aren’t loaded
until Frame 15. Note, however, that a .swf file’s document class—and every class the
document class references, whether directly or indirectly—always loads in Frame 1.
Hence, to prevent the Star class from loading before Frame 1, we must first remove
the instance names from all manually created Star instances and we will delete the
definitions for the variables star1 through star5 from the Sky class code. To remove
instance names, we select each Star instance on Stage and delete its name from the
Properties panel.

The following procedures describe how to load sky.fla’s classes at Frame 15 and dis-
play a loading message while the classes load.

First, follow these steps to instruct Flash to export sky.fla’s classes at Frame 15:

1. Open sky.fla in the Flash authoring tool.

2. Choose File ➝ Publish Settings.

3. In the Publish Settings dialog box, on the Flash tab, next to ActionScript Ver-
sion: Version 3.0, click Settings.

4. In the ActionScript Settings dialog, for Export Classes in Frame, enter 15.

5. Click OK to confirm the ActionScript Settings.

6. Click OK to confirm the Publish Settings.

Next, we add a very basic timeline preloader to sky.fla so that a “Loading” message
appears while the classes load.

The following procedures expect a prior knowledge of timeline layers
and frame labels, but even if you are not familiar with those aspects of
the Flash authoring tool, you should be able to complete the proce-
dures as described.

First, on the main timeline of sky.fla, we double-click Layer 1’s name and change it
to sky. Next, we make the timeline 15 frames long, as follows:

1. On the main timeline, click Frame 1 of the sky layer to select it.

2. Click and hold the keyframe at Frame 1, then drag it to Frame 15 of the timeline.

As a result of extending the timeline as described in the preceding steps, the star
symbol instances that previously appeared on frame 1 will now appear on Frame 15
(where the Star class is loaded).

Next, we’ll add a new layer for code, and call it scripts:

1. Choose Insert ➝ Timeline ➝ Layer.

2. Double-click the new layer’s name, and change it to scripts.

Then, we’ll add a labels layer with two frame labels, loading and main. The labels
designate the application’s loading state and startup point, respectively.

854 | Chapter 29: ActionScript and the Flash Authoring Tool

1. Choose Insert ➝ Timeline ➝ Layer.

2. Double-click the new layer’s name and change it to labels.

3. At Frames 4 and 15 of the labels layer, add a new keyframe (using Insert ➝ Time-
line ➝ Keyframe).

4. With Frame 4 of the labels layer selected, in the Properties panel, under Frame,
change <Frame Label> to loading.

5. With Frame 15 of the labels layer selected, in the Properties panel, under Frame,
change <Frame Label> to main.

Now we’ll add the preloader script to the scripts layer:

1. At Frame 5 of the scripts layer, add a new keyframe (using Insert ➝ Timeline ➝

Keyframe).

2. With Frame 5 of the scripts layer selected, enter the following code in the
Actions panel:

if (framesLoaded == totalFrames) {
 gotoAndStop("main");
} else {
 gotoAndPlay("loading");
}

Finally, we’ll add a loading message that displays while star.fla’s classes load:

1. With Frame 1 of the scripts layer selected, enter the following code into the
Actions panel:

import flash.text.*;

var loadMsg:TextField = new TextField();
loadMsg.text = "Loading...Please wait.";
loadMsg.autoSize = TextFieldAutoSize.LEFT;
loadMsg.border = true;
loadMsg.background = true;
loadMsg.selectable = false;
addChild(loadMsg);

2. At Frame 15 of the scripts layer, add a new keyframe (using Insert ➝ Timeline ➝

Keyframe).

3. With Frame 15 of the scripts layer selected, enter the following code in the
Actions panel:

removeChild(loadMsg);

That’s it! You can test sky.swf using Control ➝ Test Movie. Once in Test Movie
mode, you can watch a simulated download of the .swf by enabling the Bandwidth
Profiler (View ➝ Bandwidth Profiler) and then choosing View ➝ Simulate Download.
Because our Star class is so small, you may have to select a very slow download
speed (such as 200 bytes per second) to see the preloading message. To change the
download speed, choose View ➝ Download Settings.

Up Next: Using the Flex Framework | 855

You can download the preceding sky.fla example at http://www.moock.org/eas3/
examples.

When using the “Export Classes in Frame” compiler option, take note that:

• A .fla file’s document class is always exported in Frame 1, regardless of the speci-
fied value for “Export Classes in Frame.”

• All classes referenced by the document class or referenced in a main timeline
script are exported in Frame 1, regardless of the specified value for “Export
Classes in Frame.”

• If “Automatically declare stage instances” is enabled, and the main timeline’s
Stage contains named instances of a symbol that is linked to a class, then the
linked class will be exported in Frame 1 (because the class is referenced in the
automatic variable declarations for the instances on Stage).

Up Next: Using the Flex Framework
This chapter covered many applied techniques for working with ActionScript code in
the Flash authoring tool. The remaining two chapters of this book are similarly prac-
tical. In the next chapter, we’ll learn how to use the Flex framework’s user interface
components in an ActionScript-centric Flex Builder 2 project. Then, in Chapter 31,
we’ll learn how to share code with other developers.

http://www.moock.org/eas3/examples
http://www.moock.org/eas3/examples

856

Chapter 30CHAPTER 30

A Minimal MXML Application 31

In Chapter 20, we learned that the Flex framework includes a sophisticated collec-
tion of customizable components for creating user interfaces. The Flex framework’s
user interface components are typically used with MXML-based applications, but
can also be used in applications written primarily in ActionScript. For the benefit of
readers who do not wish to use MXML, this chapter describes the bare minimum
steps required to use the Flex framework’s UI components in a Flex Builder 2
project, with as little MXML as possible.

For the record, this chapter has nothing against MXML. In general, MXML is an
excellent tool for creating standardized interfaces deployed to the Flash platform.
This chapter simply caters to situations where either an application’s layout is
entirely programmatically generated or where the developer does not have the time
or interest to learn MXML.

For complete information on MXML and the Flex framework, see Adobe’s docu-
mentation and O’Reilly’s Programming Flex 2 (Kazoun and Lott, 2007).

Users of the Flash authoring tool should note that Flash CS3 includes
its own set of user interface components in the package fl. The Flash
CS3 components can also be used (both technically and legally) in
ActionScript programs compiled with Flex Builder 2 or mxmlc.

The General Approach
Here are the minimal steps for creating an application that uses the Flex frame-
work’s UI components via ActionScript:

1. In Flex Builder 2, create a Flex project.

2. In the new project, define a class with a static method that will act as the appli-
cation’s point of entry.

The General Approach | 857

3. In the project’s main MXML file, add an MXML event property that listens for
the top-level Application instance’s FlexEvent.APPLICATION_COMPLETE event and
invokes the static method from Step 2 in response.

4. In the static method from Step 2, create the desired UI components, and add
them to the Application instance.

The following sections describe the preceding steps in detail.

Create the Flex Project
To create the project for the application, follow these steps:

1. In Flex Builder 2, choose File ➝ New ➝ Flex Project.

2. On the New Flex Project dialog, for “How will your Flex application access
data?,” select Basic, then click Next.

3. For Project name, enter the desired project name, then click Next.

4. For Main source folder, enter src.

5. For Main application file, enter the desired filename, with the extension .mxml.
For example, MinimalMXML.mxml.

6. Click Finish.

In response to the preceding steps, Flex Builder 2 creates a new project whose
Library path automatically includes the file framework.swc, which contains the UI
components.

Once the project has been created, we create the application’s point of entry, as
described in the next section.

Create the Application Point of Entry
Our application’s point of entry is a static method defined by a custom class. In our
example, we’ll name the static method main() and the custom class EntryClass. The
main() method creates the UI component instances and adds them to the top-level
Application instance’s display hierarchy. The top-level Application instance is an
automatically created object that acts as the basis of all MXML application, and pro-
vides access to the display list. Throughout our program, the top-level Application
instance can be accessed via the mx.core.Application class’s static variable,
application.

Example 30-1 shows the code for EntryClass.

Example 30-1. The ActionScript class for a minimal MXML application

package {
 import mx.controls.*;
 import mx.core.*;

858 | Chapter 30: A Minimal MXML Application

Once the EntryClass.main() method has been created, we can invoke it in response
to the top-level Application instance’s FlexEvent.APPLICATION_COMPLETE event, as
described in the next section.

Trigger the Application Point of Entry
In the earlier section “Create the Flex Project,” we specified MinimalMXML.mxml as
our example project’s main application file. As a result, Flex Builder 2 automatically
inserts the following code into that file:

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute">
</mx:Application>

We need to make only one minor change to the preceding MXML code: we must
add an event property that invokes EntryClass.main() when the top-level Application
instance receives FlexEvent.APPLICATION_COMPLETE event notification. The following
bolded code shows the approach:

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute" applicationComplete="EntryClass.main()">
</mx:Application>

In response to the preceding code, when the application has finished initialization, it
will automatically invoke EntryClass.main(), which, in turn, creates the desired UI
component instances. (Look mom, no MXML!)

Let’s apply the general approach covered in the preceding sections to a real example.

 public class EntryClass {
 // Application point of entry
 public static function main ():void {
 // Create Flex framework UI components
 // For example:
 var button:Button = new Button();

 // Add UI components to the screen
 // For example:
 var mxmlApp:Application = Application(Application.application);
 mxmlApp.addChild(button);
 }
 }
}

Example 30-1. The ActionScript class for a minimal MXML application (continued)

A Real UI Component Example | 859

A Real UI Component Example
To demonstrate how to use ActionScript to create and control Flex framework UI
components, we’ll create a simple application that contains only two component
instances: a Button instance and a DataGrid instance. The application simply counts
the number of times the Button instance has been clicked. The DataGrid instance
displays the total click count, and the amount of elapsed time between clicks.

We’ll name our application’s main MXML file MinimalMXML.mxml. We’ll name
the class that defines our program’s point of entry Clickometer.

Here’s the code for MinimalMXML.mxml:

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="vertical" applicationComplete="Clickometer.main()">
</mx:Application>

In the preceding code, notice that the value of the applicationComplete event prop-
erty indicates the method to invoke (Clickometer.main()) when the application has
finished initializing. Notice also that the application uses a “vertical” layout scheme.
For information on layout options, see the Application class’s instance variable
layout in Adobe’s ActionScript Language Reference.

Now here’s the code for the Clickometer class, where the UI components are created:

package {
 import mx.controls.*;
 import mx.core.*;
 import flash.events.*;
 import flash.utils.*;

 public class Clickometer {
 private static var lastClickTime:int = 0;
 private static var numClicks:int = 0;
 private static var grid:DataGrid;
 private static var button:Button;

 // Program entry point
 public static function main ():void {
 // Create a button
 button = new Button();
 button.label = "Click Quickly!";
 button.addEventListener(MouseEvent.CLICK, clickListener);

 // Create a data grid
 grid = new DataGrid();
 grid.dataProvider = new Array();

860 | Chapter 30: A Minimal MXML Application

 // Add visual assets to the screen. Application.application is a
 // reference to the top-level Flex application, a general container
 // for UI components and visual assets.
 var mxmlApp:Application = Application(Application.application);
 mxmlApp.addChild(button);
 mxmlApp.addChild(grid);
 }

 // This method is invoked every time the button is clicked
 private static function clickListener (e:MouseEvent):void {
 var now:int = getTimer();
 var elapsed:int = now - lastClickTime;
 lastClickTime = now;
 numClicks++;
 grid.dataProvider.addItem({Clicks: numClicks, "Time (ms)": elapsed});
 }
 }
}

The preceding example application is available for download at http://www.moock.
org/eas3/examples.

Sharing with Your Friends
Well, there’s only one chapter left in this book. So what’s the last ActionScript essen-
tial? Sharing your clever code with other programmers. To share ActionScript code,
you can simply send that special someone to one or more of your class files. Or, if
you’re more ambitious, you can create an entire class library (i.e., group of classes)
for compile time or runtime inclusion in an application. The final chapter of this
book describes how to create and distribute code using class libraries.

http://www.moock.org/eas3/examples
http://www.moock.org/eas3/examples

861

Chapter 31 CHAPTER 31

Distributing a Class Library32

This chapter discusses three specific techniques for sharing a group of classes (a class
library) among multiple projects and multiple developers. By far the easiest way to
share classes is to simply distribute the source code. We’ll cover this easiest case first,
before we discuss how to share classes without distributing source code, as you
might want to do when selling a professional class library.

The term “class library” is programmer jargon for an arbitrary group
of classes distributed to a team or to the world at large. Don’t confuse
it with a .fla file’s Library or the Flash Library panel. Those terms are
unique to the Flash authoring environment and not part of the cur-
rent discussion.

In ActionScript, a class library can be distributed to other developers simply as a
bunch of source .as files, in a .swf file, or in a .swc file. We’ll cover all three
approaches in this chapter. Note, however, that ActionScript offers a wide range of
options for distributing class libraries; this chapter covers three specific canonical sit-
uations but is not exhaustive. For more information on distributing class libraries,
see the following Adobe documentation:

• Programming ActionScript 3.0 ➝ Flash Player APIs ➝ Client System
Environment ➝ Using the ApplicationDomain class (http://livedocs.macromedia.
com/flex/201/html/18_Client_System_Environment_175_4.html)

• Building and Deploying Flex 2 Applications ➝ Building Flex Applications ➝

Using Runtime Shared Libraries (http://livedocs.macromedia.com/flex/201/html/
rsl_124_1.html)

The example files discussed in this chapter are available at http://www.moock.org/
eas3/examples.

http://livedocs.macromedia.com/flex/201/html/18_Client_System_Environment_175_4.html
http://livedocs.macromedia.com/flex/201/html/18_Client_System_Environment_175_4.html
http://livedocs.macromedia.com/flex/201/html/rsl_124_1.html
http://livedocs.macromedia.com/flex/201/html/rsl_124_1.html
http://www.moock.org/eas3/examples
http://www.moock.org/eas3/examples

862 | Chapter 31: Distributing a Class Library

Sharing Class Source Files
Let’s start with the simplest way to distribute a class library: sharing class source
files.

Suppose you work in a small web shop called Beaver Code, whose web site is http://
www.beavercode.com. You’ve made a class—com.beavercode.effects.TextAnimation—
that creates various text effects. You want to use the TextAnimation class on two sites
you’re working on, Barky’s Pet Supplies and Mega Bridal Depot. Rather than place a
copy of the class file (that is, TextAnimation.as) in each project folder, you store the
class file centrally and merely refer to it from each project. For example, on Windows,
you store TextAnimation.as in the following location:

c:\data\actionscript\com\beavercode\effects\TextAnimation.as

To make the TextAnimation class accessible to both projects, you add the directory
c:\data\actionscript to each project’s classpath (the classpath is discussed in
Chapter 7).

By the same logic, if there were several members on your team, you might think it
would be handy to store your classes on a central server so everyone would be able to
use them by adding the server folder to their project’s classpath. For example, you
might want to store all shared classes on a server called codecentral, as follows:

\\codecentral\com\beavercode\effects\TextAnimation.as

But working directly off the server is highly perilous and not recommended.

If you store your classes on a central server and allow developers to
modify them directly, the developers are liable to overwrite one
another’s changes. Furthermore, if the clock of the server and the
clock of a programmer’s personal computer are not in perfect sync,
then the latest version of the class might not be included in the pro-
gram at compile time. To avoid these problems, you should always use
version control software to manage your class files when working on a
team. Two popular (and free!) options are CVS (see http://www.
cvshome.org) and Subversion (http://subversion.tigris.org).

On large projects, you might also want to automate the .swf export process using a
build tool such as Apache Ant (http://ant.apache.org).

For information on using Ant with Flex Builder 2, see Using Flex Builder 2 ➝

Programming Flex Applications ➝ Building Projects ➝ Advanced build options ➝

Customizing builds with Apache Ant (http://livedocs.macromedia.com/flex/201/html/
build_044_12.html).

To automate .swf export in the Flash authoring tool, you’d have to execute a com-
mand-line JSFL script to tell Flash to create the .swf for each .fla file in your project.

http://www.beavercode.com
http://www.beavercode.com
http://www.cvshome.org
http://www.cvshome.org
http://subversion.tigris.org
http://ant.apache.org
http://livedocs.macromedia.com/flex/201/html/build_044_12.html
http://livedocs.macromedia.com/flex/201/html/build_044_12.html

Distributing a Class Library as a .swc File | 863

Complete coverage of command-line compilation with Flash is outside the scope of
this book, but here’s a quick sample that gives the general flavor of it on Windows:

// Code in exportPetSupplies.jsfl:
// ===============================
// Open the .fla file.
var doc = fl.openDocument("file:///c|/data/projects/pet/petsupplies.fla");
// Export the .swf file.
doc.exportSWF("file:///c|/data/projects/pet/petsupplies.swf", true);
// Quit the Flash authoring tool (optional).
fl.quit(false);

// Command issued on command line from /pet/ directory:
// ==
"[Flash install_folder]\flash.exe" exportPetSupplies.jsfl

For the preceding example command to work, Flash must not be running. After
the command is issued, the compiled petsupplies.swf movie appears in the directory
c:\data\projects\pet.

Distributing a Class Library as a .swc File
When working with a team of offsite developers or publishing a class library for the
world at large, the approach of sharing class files directly can be cumbersome. For
the sake of convenience, Adobe’s ActionScript tools provide the option to wrap a
class library in a single file, known as a .swc file.

The following sections describe first, how to create a .swc file containing a class
library and then how to use classes from that library in an application.

Creating a .swc-Based Class Library in Flex Builder 2
To demonstrate the process of creating a .swc file containing a class library in Flex
Builder 2, we’ll return to the Beaver Code example from the preceding section. Our
class library will be called “beavercore,” and have a main package of com.beavercore.
The package name matches a fictional web site, http://www.beavercore.com, that the
developers at Beaver Code have created to host the beavercore class library.

The following steps describe how to create a .swc file, beavercore.swc, containing the
beavercore class library. For the sake of simplicity, the library contains a single class
only, com.beavercore.effects.TextAnimation.

1. In Flex Builder, select File ➝ New ➝ Flex Library Project.

2. In the New Flex Library Project dialog, for Project name, enter beavercore, then
click Next.

3. For Main source folder, enter src, then click Finish.

http://www.beavercore.com

864 | Chapter 31: Distributing a Class Library

4. With the src folder in the beavercore project selected, choose File ➝ New ➝

Folder. For Folder name, enter com. Repeat this process to create the folder struc-
ture src/com/beavercore/effects.

5. With the effects folder in the beavercore project selected, choose File ➝ New ➝

ActionScript Class.

6. On the New ActionScript Class dialog, for name, enter TextAnimation, then click
Finish.

7. In TextAnimation.as, enter the following code:
package com.beavercore.effects {
 public class TextAnimation {
 public function TextAnimation () {
 trace("Imagine a text effect with great majesty.");
 }

 public function start ():void {
 trace("Effect now starting.");
 }
 }
}

8. In the Navigator panel, select the beavercore project folder, then choose Project ➝

Build Project. (Note that the Build Project command is available only if Project ➝

Build Automatically is not selected. When Build Automatically is selected, skip
Step 8.)

In response to the preceding steps, Flex Builder 2 generates the file beavercore.swc
and places it in the folder /bin/. The file beavercore.swc contains the project’s classes
in compiled form. In our simple example, Flex Builder adds all classes from the
beavercore project to beavercore.swc. In a more complex situation, we could explic-
itly indicate which classes to include or exclude via Project ➝ Properties ➝ Flex
Library Build Path ➝ Classes.

Using a .swc-Based Class Library in Flex Builder 2
Now that we’ve created a .swc-based class library (beavercore.swc), let’s see how to
use it in a project.

Suppose we’re creating a Flash-based web site for Barky’s Pet Supplies in Flex
Builder 2. We want to use the TextAnimation class from the beavercore.swc class
library in the web site. The following steps describe the process:

1. In Flex Builder, select File ➝ New ➝ ActionScript Project.

2. On the New ActionScript Project dialog, for Project name, enter beaver_barkys,
then click Next.

3. For Main source folder, enter src.

4. For Main application file, enter Barkys.

Distributing a Class Library as a .swc File | 865

5. On the Library path tab, click Add SWC.

6. Browse to and select the file beavercore.swc from the preceding section, then
click Finish.

7. In Barkys.as (which opens automatically), enter the following code:
package {
 import flash.display.Sprite;
 import com.beavercore.effects.TextAnimation;

 public class Barkys extends Sprite {
 public function Barkys () {
 var textAni:TextAnimation = new TextAnimation();
 textAni.start();
 }
 }
}

8. In the Navigator panel, select the beaver_barkys project folder, then choose Run
➝ Debug Barkys.

In response to the preceding steps, the compiler generates a .swf file (Barkys.swf)
including the TextAnimation class, and runs that .swf file. The following messages
appear in the Console:

Imagine a text effect with great majesty.
Effect now starting.

Notice that the Barkys class makes direct reference to the TextAnimation class as
though it were actually part of the beaver_barkys project.

Now that we’ve seen how to create and distribute a class library as a .swc file in Flex
Builder 2, let’s examine how to do the same thing in the Flash authoring tool.

Creating a .swc-Based Class Library in the Flash Authoring Tool
The following steps describe how to use the Flash authoring tool to create a class
library named beavercore.swc, that contains a single class, TextAnimation.

1. Create a new folder named beavercore on the filesystem. The beavercore folder
will contain the source files for the class library.

2. In the beavercore folder, create the following subfolder structure: com/
beavercore/effects.

3. In the effects folder, create a new text file named TextAnimation.as.

4. In TextAnimation.as, enter the following code:
package com.beavercore.effects {
 public class TextAnimation {
 public function TextAnimation () {
 trace("Imagine a text effect with great majesty.");
 }

866 | Chapter 31: Distributing a Class Library

 public function start ():void {
 trace("Effect now starting.");
 }
 }
}

5. In the beavercore folder, create a new text file named BeaverCore.as.

6. In BeaverCore.as, enter the following code. Notice that the following BeaverCore
class includes references to the classes (and other definitions) that we want
included in the class library.

package {
 import com.beavercore.effects.*;
 import flash.display.Sprite;

 public class BeaverCore extends Sprite {
 com.beavercore.effects.TextAnimation;
 }
}

7. In the Flash authoring tool, create a new .fla file, and save it as beavercore.fla in
the beavercore folder.

8. In the Properties panel (Window ➝ Properties), for Document class, enter
BeaverCore.

9. Select File ➝ Publish Settings.

10. On the Formats tab, under Type, uncheck HTML.

11. On the Flash tab, under Options, check Export SWC.

12. Click Publish, then click OK.

In response to the preceding steps, Flash generates the file beavercore.swc and places it
in the folder beavercore. The file beavercore.swc contains the classes in compiled form.

Using a .swc-Based Class Library in the Flash Authoring Tool
The following steps describe the process we follow to use the TextAnimation class
from the beavercore.swc class library in a web site for Barky’s Pet Supplies.

1. Create a new folder named barkys on the filesystem. The barkys folder will con-
tain the source files for the web site.

2. In the barkys folder, create a new text file named Barkys.as.

3. In Barkys.as, enter the following code:
package {
 import flash.display.Sprite;
 import com.beavercore.effects.TextAnimation;

 public class Barkys extends Sprite {
 public function Barkys () {
 var textAni:TextAnimation = new TextAnimation();
 textAni.start();

Distributing a Class Library as a .swf File | 867

 }
 }
}

4. In the Flash authoring tool, create a new .fla file, and save it in the barkys folder
as barkys.fla.

5. In the Properties panel (Window ➝ Properties), for Document class, enter
Barkys.

6. In the Flash authoring tool installation folder, under Configuration\Components,
create a new folder named BeaverCode. (On Windows XP, the default location
for Configuration\Components is: C:\Program Files\Adobe\Adobe Flash CS3\en\
Configuration\Components. On Mac OS X, the default location for
Configuration\Components is: Macintosh HD:Applications:Adobe Flash CS3:
Configuration:Components).

7. Copy the beavercore.swc file from the preceding section to the BeaverCode folder
created in Step 6. Copying the beavercore.swc file to a subfolder of
Configuration\Components adds it to the Flash authoring tool’s Components
panel.

8. In the Flash authoring tool, open Components panel (Window ➝ Components).

9. Select the pop-up Options menu in the top-right corner of the Components
panel, and choose the Reload option. The folder BeaverCode will appear in the
Components panel.

10. In the Components panel, open the BeaverCode folder.

11. Open barkys.fla’s Library (Window ➝ Library).

12. Drag the BeaverCore component from the Components panel to barkys.fla’s
Library.

13. Select Control ➝ Test Movie.

In response to the preceding steps, the compiler generates a .swf file (Barkys.swf)
including the TextAnimation class, and runs that .swf file. The following messages
appear in the Output panel:

Imagine a text effect with great majesty.
Effect now starting.

Notice that the Barkys class makes direct reference to the TextAnimation class, just
as it can refer to any class available in the classpath.

Distributing a Class Library as a .swf File
When working with multiple .swf files that use the same class, compiling that class
into every .swf is a waste of space. When file size is a concern, we can prevent such
redundancies by producing a class library in the form of a separate .swf file and load-
ing that .swf file at runtime. Once the library has loaded the first time, it is cached on

868 | Chapter 31: Distributing a Class Library

the end user’s machine and can be reused by other .swf files without being down-
loaded again.

The process of creating and using a .swf-based class library is more
complex than using a .swc-based class library. Consequently, you
should use .swf-based class libraries only when you wish to make your
application’s file size as small as possible.

The following sections describe first, how to create a .swf file containing a class
library, and then how to use classes from that library in an application.

Creating a .swf-Based Class Library in Flex Builder 2
To demonstrate the process of creating a .swf file containing a class library in Flex
Builder 2, we’ll again return to the beavercore example. The following steps describe
how to create a class library, named beavercore.swf, that contains a single class,
TextAnimation (we’ll assume we’re starting from scratch, even though some of the
following steps are repeated from the earlier section “Creating a .swc-Based Class
Library in Flex Builder 2”).

1. In Flex Builder, select File ➝ New ➝ Flex Library Project.

2. In the New Flex Library Project dialog, for Project name, enter beavercore, then
click Next.

3. For Main source folder, enter src, then click Finish.

4. With the src folder in the beavercore project selected, choose File ➝ New ➝

Folder. For Folder name, enter com. Repeat this process to create the folder struc-
ture src/com/beavercore/effects.

5. With the effects folder in the beavercore project selected, choose File ➝ New ➝

ActionScript Class.

6. On the New ActionScript Class dialog, for name, enter TextAnimation, then click
Finish.

7. In TextAnimation.as, enter the following code:
package com.beavercore.effects {
 public class TextAnimation {
 public function TextAnimation () {
 trace("Imagine a text effect with great majesty.");
 }

 public function start ():void {
 trace("Effect now starting.");
 }
 }
}

Flex Builder 2 does not provide a direct way to compile a .swf file from a Flex Library
Project. Hence, we must compile beavercore.swf using the command-line compiler,

Distributing a Class Library as a .swf File | 869

mxmlc. To be able to compile our classes as a .swf, we must create a main class for
that .swf. In that main class, we include references to the classes (and other defini-
tions) that we want included in the class library. The following steps describe the
process on Microsoft Windows.

Compiling a .swf file using mxmlc

1. With the src folder in the beavercore project selected, choose File ➝ New ➝

ActionScript Class.

2. On the New ActionScript Class dialog, for Name, enter Main, then click Finish.

3. In Main.as, enter the following code. The Main class states the names of all
classes (and definitions) to be included in the class library.

package {
 import com.beavercore.effects.*;
 import flash.display.Sprite;

 public class Main extends Sprite {
 com.beavercore.effects.TextAnimation;
 }
}

4. From the Windows start menu, open a command prompt by choosing Start ➝

All Programs ➝ Accessories ➝ Command Prompt.

5. At the command prompt, change to the C:\Program Files\Adobe\Flex Builder 2\
Flex SDK 2\bin directory by entering the following command (note that the loca-
tion of the compiler varies by version and operating system; consult Adobe’s
documentation for details):

cd C:\Program Files\Adobe\Flex Builder 2\Flex SDK 2\bin

6. At the command prompt, enter the following command, then press Enter:
mxmlc path_to_project\src\Main.as -output path_to_project\bin\beavercore.swf

In response to the preceding steps, Flex Builder 2 generates the file beavercore.swf
and places it in the folder /bin/. The beavercore.swf file contains our class library, and
is now ready to be loaded and used by any application at runtime. However, any
application that loads beavercore.swf must also be provided with a .swc file to use for
compile-time type-checking. To create that .swc file, we select the beavercore project
folder in the Navigator panel, then choose Project ➝ Build Project. In response, Flex
Builder 2 generates the file beavercore.swc and places it in the folder /bin/.

Using a .swf-Based Class Library in Flex Builder 2
Now that we’ve created a .swf-based class library (beavercore.swc), let’s see how to
use it in a project.

Suppose we’re using Flex Builder 2 to create the Mega Bridal Depot web site (men-
tioned earlier in this chapter), and we want to use the TextAnimation class from the

870 | Chapter 31: Distributing a Class Library

beavercore.swf class library. We first create the Mega Bridal Depot ActionScript
project and add beavercore.swc to the external library path. Then we load the
beavercore.swf class library at runtime.

The following steps describe the process we follow to create the Mega Bridal Depot
ActionScript project and add beavercore.swc, to the external library path:

1. In Flex Builder, select File ➝ New ➝ ActionScript Project.

2. On the New ActionScript Project dialog, for Project name, enter beaver_
megabridaldepot, then click Next.

3. For Main source folder, enter src.

4. For Main application file, enter MegaBridalDepot.

5. On the Library path tab, click Add SWC.

6. Browse to and select the file beavercore.swc from the preceding section, then
click Finish.

7. Under Build path libraries, select “Link Type: Merged into code,” then click
Edit.

8. On the Library Path Item Options dialog, for Link Type, choose External, then
click OK.

9. On the New ActionScript Project dialog, click Finish.

The preceding steps add beavercore.swc to the Mega Bridal Depot project’s external
library path. As such, the classes and definitions in beavercore.swc are available for
compile-time type-checking but will not be included in the compiled
MegaBridalDepot.swf application. Instead, we must load those classes at runtime.

To load the beavercore.swf class library at runtime, we use the Loader class’s instance
method load(), as discussed in Chapter 28. When loading beavercore.swf, we import
it into MegaBridalDepot.swf ’s application domain so that the classes in beavercore.swf
can be accessed directly, as though they were part of MegaBridalDepot.swf. Note that
in MegaBridalDepot.swf, we must be sure not to access beavercore.swf’s classes before
they are fully loaded (i.e., before the Event.INIT event occurs for the load operation
that loads beavercore.swf).

The following code shows the MegaBridalDepot class, which loads the beavercore.
swf class library at runtime. The code assumes that the beavercore.swf file has been
moved to the same folder as MegaBridalDepot.swf.

package {
 import flash.display.*;
 import flash.net.*;
 import flash.system.*;
 import flash.events.*;
 import com.beavercore.effects.TextAnimation;

 public class MegaBridalDepot extends Sprite {

Distributing a Class Library as a .swf File | 871

 public function MegaBridalDepot () {
 var libLoader:Loader = new Loader();
 libLoader.contentLoaderInfo.addEventListener(
 Event.INIT, initListener);
 libLoader.load(
 new URLRequest("beavercore.swf"),
 new LoaderContext(false, ApplicationDomain.currentDomain));
 }

 private function initListener (e:Event):void {
 var textAni:TextAnimation = new TextAnimation();
 textAni.start();
 }
 }
}

Note that in the preceding libLoader.load() operation, we must be careful not to
load beavercore.swf’s classes into beavercore.swf’s own application domain, as
shown in the following code:

// WRONG! This code loads beavercore.swf's classes into beavercore.swf's
// own application domain, as a child of the system application
// domain. As a result, beavercore.swf's classes cannot be directly accessed
// from within MegaBridalDepot.swf.
libLoader.load(new URLRequest("beavercore.swf"));

The following code, likewise, erroneously loads beavercore.swf ’s classes into its own
application domain, but this time as a child of MegaBridalDepot.swf’s application
domain:

// WRONG! Classes are loaded into beavercore.swf's own application domain.
// This time, even though beavercore.swf's application domain is a child of
// the parent MegaBridalDepot.swf's application domain, code in
// MegaBridalDepot.swf still can't directly access the classes in
// beavercore.swf's application domain. Making MegaBridalDepot.swf's
// application domain the parent of beavercore.swf's application domain
// merely tells beavercore.swf to use MegaBridalDepot.swf's version of any
// classes that are defined by both files.
libLoader.load(new URLRequest("beavercore.swf"),
 new LoaderContext(false,
 new ApplicationDomain(ApplicationDomain.currentDomain)));

For more information on application domains, see Adobe’s Programming Action-
Script 3.0, under Flash Player APIs ➝ Client System Environment ➝ ApplicationDo-
main class.

Now that we’ve seen how to create and distribute a class library as a .swf file in Flex
Builder 2, let’s examine how to do the same thing in the Flash authoring tool.

Creating a .swf-Based Class Library in the Flash Authoring Tool
Happily, the process for creating a .swf-based class library in the Flash authoring tool
is identical to the process for creating a .swc-based class library, as described in the

872 | Chapter 31: Distributing a Class Library

earlier section “Creating a .swc-Based Class Library in the Flash Authoring Tool.” In
fact, publishing a .swc file as described in that section creates both a .swc file contain-
ing the class library and a .swf file containing the class library. The .swf file is placed
in the same folder as the .swc file.

For example, when we published our earlier beavercore class library as a .swc file, the
Flash authoring tool also automatically created beavercore.swf. Like the .swc file,
beavercore.swf was placed in the beavercore folder. The next section describes how
to use the beavercore.swf class library in an application.

Using a .swf-Based Class Library in Flash CS3
The following steps describe the process we follow to use the TextAnimation class
from the beavercore.swf class library in a web site for Mega Bridal Depot.

1. Create a new folder named megabridaldepot on the filesystem. The
megabridaldepot folder will contain the source files for the web site.

2. In the megabridaldepot folder, create a new text file named MegaBridalDepot.as.

3. In MegaBridalDepot.as, enter the following code (for details on the loading tech-
niques used in the following code, see the section “Using a .swf-Based Class
Library in Flex Builder 2”):

package {
 import flash.display.*;
 import flash.net.*;
 import flash.system.*;
 import flash.events.*;
 import com.beavercore.effects.TextAnimation;

 public class MegaBridalDepot extends Sprite {
 public function MegaBridalDepot () {
 var libLoader:Loader = new Loader();
 libLoader.contentLoaderInfo.addEventListener(
 Event.INIT, initListener);
 libLoader.load(
 new URLRequest("beavercore.swf"),
 new LoaderContext(false, ApplicationDomain.currentDomain));
 }

 private function initListener (e:Event):void {
 var textAni:TextAnimation = new TextAnimation();
 textAni.start();
 }
 }
}

4. In the Flash authoring tool, create a new .fla file, and save it in the
megabridaldepot folder as megabridaldepot.fla.

5. In the Properties panel (Window ➝ Properties), for Document class, enter
MegaBridalDepot.

But Is It Really Over? | 873

6. Copy beavercore.swc to the megabridaldepot folder.

7. Copy beavercore.swf to the megabridaldepot folder.

8. Select Control ➝ Test Movie.

Step 6 in the preceding procedure adds beavercore.swc to megabridaldepot.fla’s class-
path, making the classes and definitions in beavercore.swc available for compile-time
type-checking. Note, however, that the classes and definitions in the .swc file are used
for type-checking only and are not included in the exported megabridaldepot.swf. To
include definitions from a .swc file in an exported .swf file, add the .swc to the Library
of the source .fla file, as described in the earlier section “Using a .swc-Based Class
Library in the Flash Authoring Tool.”

Placing a .swc file in a .fla file’s classpath makes the .swc file’s defini-
tions available for compile-time type-checking but does not include
those definitions in the .swf file exported from the .fla file. The result is
equivalent to adding the .swc file to the external library path when
compiling with Flex Builder 2 or mxmlc. ActionScript 2.0 developers
should note that no _exclude.xml file is required; the _exclude.xml file
system is not supported in Flash CS3.

In response to the preceding steps, the compiler generates a .swf file,
MegaBridalDepot.swf and runs that .swf file in Test Movie mode. The
MegaBridalDepot.swf file does not include the TextAnimation class; instead, it loads
it at runtime. Once the class loads, the following messages appear in the Output
panel:

Imagine a text effect with great majesty.
Effect now starting.

With that, our noble mission to share our code is complete. And, as it happens, so is
this book...

But Is It Really Over?
Over the 31 chapters of this book, we’ve explored many different programming tools
and techniques; it’s now up to you to experiment with them. Take what you’ve
learned and explore your own ideas and projects. If you’ve previously spent most of
your time in ActionScript, don’t feel limited to it. Most of the concepts in this book
are applicable to many other languages. Your ActionScript training will serve you
well in Java, C++, Perl, and Visual Basic, just to name a few. Don’t be afraid to ven-
ture into that territory.

874 | Chapter 31: Distributing a Class Library

Programming is an art form. As such, it comes with all the frustrations and elation of
sculpture, writing, painting, or music. And it’s subject to the primary law of creativ-
ity: there is no final destination. Every day that you program, you’ll express some-
thing new and learn more along the way. The process never stops. So while this book
may be over, your journey as a programmer will continue for as long as you write
code.

If you see or do something neat along the way, drop me a note at colin@moock.org.

Thanks for sharing part of your programmer’s journey with me. Happy trails!

mailto:colin@moock.org

875

Appendix APPENDIX

The Final Virtual Zoo

This appendix presents the final code for the virtual zoo program, which is covered
in Part I. This final version uses the techniques we studied in Part II to add graphics
and interactivity to the program.

You can download the code for the virtual zoo program at http://www.
moock.org/eas3/examples.

Note that the code in this version of the virtual zoo has been updated structurally to
reflect real-world design practices. In particular, two new classes have been added:
FoodButton, which represents a simple clickable-text button, and VirtualPetView,
which displays a VirtualPet instance graphically.

The VirtualZoo class has changed in the following significant ways:

• It now creates an instance of VirtualPetView, used to render the pet to the
screen.

• It waits for the VirtualPetView instance to load the required images before start-
ing the pet simulation.

The VirtualPet class has changed in the following significant ways:

• The following constants represent the pet’s physical condition: VirtualPet.
PETSTATE_FULL, VirtualPet.PETSTATE_HUNGRY, VirtualPet.PETSTATE_STARVING, and
VirtualPet.PETSTATE_DEAD.

• The instance variable petState keeps track of the pet’s current physical condition.

• Event listeners are notified of changes in the pet’s physical condition via the
VirtualPet.STATE_CHANGE event.

• Event listeners are notified of changes in the pet’s name via the VirtualPet.NAME_
CHANGE event.

http://www.moock.org/eas3/examples
http://www.moock.org/eas3/examples

876 | Appendix: The Final Virtual Zoo

• To change the number of calories in a pet’s stomach, the VirtualPet class uses
the setCalories() method. When necessary, the setCalories() method changes the
pet’s state via setPetState().

• Changes to the pet’s physical condition are performed via the new setPetState()
method, which triggers a corresponding VirtualPet.STATE_CHANGE event.

• The VirtualPet class uses a Timer object instead of setInterval() to trigger digest()
calls.

• Each VirtualPet object’s life cycle (digestion) can be started and stopped via the
start() and stop() methods.

• The digest() method no longer determines whether or not digesting food will kill
the pet. It delegates that responsibility to setCalories().

• A formal die() method deactivates VirtualPet objects.

Study the following commented code listings carefully. Then, as an exercise, see if
you can add a second pet to the zoo.

Example A-1 shows the code for the VirtualZoo class, the program’s main class.

Example A-1. The VirtualZoo class

package {
 import flash.display.Sprite;
 import zoo.*;
 import flash.events.*;

 // The VirtualZoo class is the main application class. It extends Sprite
 // so that it can be instantiated and added to the display list at
 // program-start time.
 public class VirtualZoo extends Sprite {
 // The VirtualPet instance
 private var pet:VirtualPet;
 // The object that will render the pet to the screen
 private var petView:VirtualPetView;

 // Constructor
 public function VirtualZoo () {
 // Create a new pet, and attempt to give it a name
 try {
 pet = new VirtualPet("Bartholomew McGillicuddy");
 } catch (e:Error) {
 // If attempting to create a VirtualPet object causes an exception,
 // then the object won't be created. Hence, we report the problem
 // and create a new VirtualPet object here with a known-to-be-valid
 // name.
 trace("An error occurred: " + e.message);
 pet = new VirtualPet("Stan");
 }

 // Create the object that will render the pet to the screen
 petView = new VirtualPetView(pet);

The Final Virtual Zoo | 877

Example A-2 shows the code for the VirtualPet class, whose instances represent pets
in the zoo.

 // Register this VirtualZoo object to be notified when the
 // rendering object (the "petView") has finished initializing
 petView.addEventListener(Event.COMPLETE, petViewCompleteListener);
 }

 // An event listener triggered when the VirtualPetView object (petView)
 // has finished initializing
 public function petViewCompleteListener (e:Event):void {
 // Add the view to the display list
 addChild(petView);
 // Begin the pet's life cycle
 pet.start();
 // Feed the pet
 pet.eat(new Sushi());
 }
 }
}

Example A-2. The VirtualPet class

package zoo {
 import flash.utils.*;
 import flash.events.*;

 // The VirtualPet class represents a pet in the zoo. It extends
 // EventDispatcher so that it can be targeted by event dispatches.
 public class VirtualPet extends EventDispatcher {
 // ==STATIC CONSTANTS==
 // VirtualPet-related event types (handled by the VirtualPetView object
 // that displays the pet on screen)
 public static const NAME_CHANGE:String = "NAME_CHANGE";
 public static const STATE_CHANGE:String = "STATE_CHANGE";

 // States representing the pet's current physical condition
 public static const PETSTATE_FULL:int = 0;
 public static const PETSTATE_HUNGRY:int = 1;
 public static const PETSTATE_STARVING:int = 2;
 public static const PETSTATE_DEAD:int = 3;

 // ==STATIC VARIABLES==
 // The maximum length of a pet's name
 private static var maxNameLength:int = 20;
 // The maximum number of calories a pet can have
 private static var maxCalories:int = 2000;
 // The rate at which pets digest food
 private static var caloriesPerSecond:int = 100;
 // The default name for pets
 private static var defaultName:String = "Unnamed Pet";

Example A-1. The VirtualZoo class (continued)

878 | Appendix: The Final Virtual Zoo

 // ==INSTANCE VARIABLES==
 // The pet's name
 private var petName:String;
 // The number of calories currently in the pet's "stomach".
 private var currentCalories:int;
 // The pet's current physical condition
 private var petState:int;
 // A timer for invoking digest() on a regular basis
 private var digestTimer:Timer;

 // Constructor
 public function VirtualPet (name:String):void {
 // Assign this pet's name
 setName(name);
 // Start this pet out with half the maximum calories (a
 // half-full "stomach").
 setCalories(VirtualPet.maxCalories/2);
 }

 // Starts the pet's life cycle
 public function start ():void {
 // Invoke digestTimerListener() once per second
 digestTimer = new Timer(1000, 0);
 digestTimer.addEventListener(TimerEvent.TIMER, digestTimerListener);
 digestTimer.start();
 }

 // Pauses the pet's life cycle
 public function stop ():void {
 if (digestTimer != null) {
 digestTimer.stop();
 }
 }

 // Assigns the pet's name, and notifies listeners of the change
 public function setName (newName:String):void {
 // Throw an exception if the new name is not valid
 if (newName.indexOf(" ") == 0) {
 throw new VirtualPetNameException();
 } else if (newName == "") {
 throw new VirtualPetInsufficientDataException();
 } else if (newName.length > VirtualPet.maxNameLength) {
 throw new VirtualPetExcessDataException();
 }

 // Assign the new name
 petName = newName;
 // Notify listeners that the name changed
 dispatchEvent(new Event(VirtualPet.NAME_CHANGE));
 }

 // Returns the pet's name

Example A-2. The VirtualPet class (continued)

The Final Virtual Zoo | 879

 public function getName ():String {
 // If the pet has never been assigned a valid name...
 if (petName == null) {
 // ...return the default name
 return VirtualPet.defaultName;
 } else {
 // ...otherwise, return the pet's name
 return petName;
 }
 }

 // Adds some calories to the pet's stomach, in the form of a Food object
 public function eat (foodItem:Food):void {
 // If the pet is dead, abort
 if (petState == VirtualPet.PETSTATE_DEAD) {
 trace(getName() + " is dead. You can't feed it.");
 return;
 }

 // If the food item is an apple, check it for worms. If it has a worm,
 // don't eat it.
 if (foodItem is Apple) {
 if (Apple(foodItem).hasWorm()) {
 trace("The " + foodItem.getName() + " had a worm. " + getName()
 + " didn't eat it.");
 return;
 }
 }

 // Display a debugging message indicating what the pet ate
 trace(getName() + " ate the " + foodItem.getName()
 + " (" + foodItem.getCalories() + " calories).");
 // Add the calories from the food to the pet's "stomach"
 setCalories(getCalories() + foodItem.getCalories());
 }

 // Assigns the pet a new number of calories, and changes the pet's
 // state if necessary
 private function setCalories (newCurrentCalories:int):void {
 // Bring newCurrentCalories into the legal range, if necessary
 if (newCurrentCalories > VirtualPet.maxCalories) {
 currentCalories = VirtualPet.maxCalories;
 } else if (newCurrentCalories < 0) {
 currentCalories = 0;
 } else {
 currentCalories = newCurrentCalories;
 }

 // Calculate the number of calories in the pet's stomach, as a
 // percentage of the maximum calories allowed
 var caloriePercentage:int = Math.floor(getHunger()*100);

Example A-2. The VirtualPet class (continued)

880 | Appendix: The Final Virtual Zoo

 // Display a debugging message indicating how many calories the pet
 // now has
 trace(getName() + " has " + currentCalories + " calories"
 + " (" + caloriePercentage + "% of its food) remaining.");

 // If necessary, set the pet's state based on the change in calories
 if (caloriePercentage == 0) {
 // The pet has no food left. So if the pet is not already dead...
 if (getPetState() != VirtualPet.PETSTATE_DEAD) {
 // ...deactivate it
 die();
 }
 } else if (caloriePercentage < 20) {
 // The pet needs food badly. Set its state to starving.
 if (getPetState() != VirtualPet.PETSTATE_STARVING) {
 setPetState(VirtualPet.PETSTATE_STARVING);
 }
 } else if (caloriePercentage < 50) {
 // The pet needs food. Set its state to hungry.
 if (getPetState() != VirtualPet.PETSTATE_HUNGRY) {
 setPetState(VirtualPet.PETSTATE_HUNGRY);
 }
 } else {
 // The pet doesn't need food. Set its state to full.
 if (getPetState() != VirtualPet.PETSTATE_FULL) {
 setPetState(VirtualPet.PETSTATE_FULL);
 }
 }
 }

 // Returns the number of calories in the pet's "stomach"
 public function getCalories ():int {
 return currentCalories;
 }

 // Returns a floating-point number describing the amount of food left
 // in the pet's "stomach," as a percentage
 public function getHunger ():Number {
 return currentCalories / VirtualPet.maxCalories;
 }

 // Deactivates the pet
 private function die ():void {
 // Stop the pet's life cycle
 stop();
 // Put the pet in the "dead" state
 setPetState(VirtualPet.PETSTATE_DEAD);
 // Display a debugging message indicating that the pet died
 trace(getName() + " has died.");
 }

 // Reduces the pet's calories according to the pet's digestion rate.
 // This method is called automatically by digestTimer.

Example A-2. The VirtualPet class (continued)

The Final Virtual Zoo | 881

Example A-3 shows the code for the Food class, the superclass of the various types of
food that pets eat.

 private function digest ():void {
 trace(getName() + " is digesting...");
 setCalories(getCalories() - VirtualPet.caloriesPerSecond);
 }

 // Assigns an integer representing the pet's current physical condition
 private function setPetState (newState:int):void {
 // If the pet has not changed state, abort
 if (newState == petState) {
 return;
 }

 // Assign the new state
 petState = newState;
 // Notify listeners that the pet's state changed
 dispatchEvent(new Event(VirtualPet.STATE_CHANGE));
 }

 // Returns an integer representing the pet's current physical condition
 public function getPetState ():int {
 return petState;
 }

 // An event listener for the Timer object that governs digestion
 private function digestTimerListener (e:TimerEvent):void {
 // Digest some food
 digest();
 }
 }
}

Example A-3. The Food class

package zoo {
 // The Food class is the superclass of the various types of food that
 // pets eat.
 public class Food {
 // Tracks the number of calories this piece of food has
 private var calories:int;
 // This piece of food's human readable name
 private var name:String;

 // Constructor
 public function Food (initialCalories:int) {
 // Record the specified initial number of calories
 setCalories(initialCalories);
 }

Example A-2. The VirtualPet class (continued)

882 | Appendix: The Final Virtual Zoo

Example A-4 shows the code for the Apple class, which represents a specific type of
food that pets eat.

 // Returns the number of calories this piece of food has
 public function getCalories ():int {
 return calories;
 }

 // Assigns the number of calories this piece of food has
 public function setCalories (newCalories:int):void {
 calories = newCalories;
 }

 // Returns this piece of food's human readable name
 public function getName ():String {
 return name;
 }

 // Assigns this piece of food's human readable name
 public function setName (newName:String):void {
 name = newName;
 }
 }
}

Example A-4. The Apple class

package zoo {
 // The Apple class represents one of the types of food a pet can eat
 public class Apple extends Food {
 // The amount of calories in an Apple object, if no specific
 // amount is indicated
 private static var DEFAULT_CALORIES:int = 100;
 // Tracks whether an Apple object has a worm
 private var wormInApple:Boolean;

 // Constructor
 public function Apple (initialCalories:int = 0) {
 // If no valid calorie amount is specified...
 if (initialCalories <= 0) {
 // ...give this Apple object the default amount
 initialCalories = Apple.DEFAULT_CALORIES;
 }
 // Invoke the Food class constructor
 super(initialCalories);

 // Randomly determine whether this Apple object as a worm (50% chance)
 wormInApple = Math.random() >= .5;

 // Give this food item a name
 setName("Apple");
 }

Example A-3. The Food class (continued)

The Final Virtual Zoo | 883

Finally, Example A-5 shows the code for the Sushi class, which represents a specific
type of food that pets eat.

Example A-6 shows the code for the VirtualPetNameException class, which repre-
sents an exception thrown when an invalid pet name is specified.

 // Returns a Boolean indicating whether the Apple object has a worm
 public function hasWorm ():Boolean {
 return wormInApple;
 }
 }
}

Example A-5. The Sushi class

package zoo {
 // The Sushi class represents one of the types of food a pet can eat
 public class Sushi extends Food {
 // The amount of calories in a Sushi object, if no specific
 // amount is indicated
 private static var DEFAULT_CALORIES:int = 500;

 // Constructor
 public function Sushi (initialCalories:int = 0) {
 // If no valid calorie amount is specified...
 if (initialCalories <= 0) {
 // ...give this Sushi object the default amount
 initialCalories = Sushi.DEFAULT_CALORIES;
 }
 // Invoke the Food class constructor
 super(initialCalories);

 // Give this food item a name
 setName("Sushi");
 }
 }
}

Example A-6. The VirtualPetNameException class

package zoo {
 // The VirtualPetNameException class represents an exception thrown when
 // a generally invalid pet name is specified for a pet
 public class VirtualPetNameException extends Error {
 // Constructor
 public function VirtualPetNameException (
 message:String = "Invalid pet name specified.") {
 // Invoke the Error constructor
 super(message);
 }
 }
}

Example A-4. The Apple class (continued)

884 | Appendix: The Final Virtual Zoo

Example A-7 shows the code for the VirtualPetExcessDataException class, which rep-
resents an exception thrown when an excessively long pet name is specified for a pet.

Example A-8 shows the code for the VirtualPetInsufficientDataException class, which
represents an exception thrown when an excessively short pet name is specified for a
pet.

Example A-9 shows the code for the VirtualPetView class, which graphically displays
a VirtualPet instance.

ExampleA-9. The VirtualPetView class

package zoo {
 import flash.display.*;
 import flash.events.*;
 import flash.net.*;
 import flash.text.*;

 // The VirtualPetView class graphically depicts a VirtualPet instance.
 // Images for the pet are loaded at runtime.
 public class VirtualPetView extends Sprite {
 // The pet being displayed
 private var pet:VirtualPet;

Example A-7. The VirtualPetExcessDataException class

package zoo {
 // The VirtualPetExcessDataException class represents an exception
 // thrown when an excessively long pet name is specified for a pet
 public class VirtualPetExcessDataException
 extends VirtualPetNameException {
 // Constructor
 public function VirtualPetExcessDataException () {
 // Invoke the VirtualPetNameException constructor
 super("Pet name too long.");
 }
 }
}

Example A-8. The VirtualPetInsufficientDataException class

package zoo {
 // The VirtualPetInsufficientDataException class represents an exception
 // thrown when an excessively short pet name is specified for a pet
 public class VirtualPetInsufficientDataException
 extends VirtualPetNameException {
 // Constructor
 public function VirtualPetInsufficientDataException () {
 // Invoke the VirtualPetNameException constructor
 super("Pet name too short.");
 }
 }
}

The Final Virtual Zoo | 885

 // Container for pet graphics
 private var graphicsContainer:Sprite;

 // Pet graphics and text
 private var petAlive:Loader; // The pet in its alive state
 private var petDead:Loader; // The pet in its alive state
 private var foodHungry:Loader; // An icon for the hungry state
 private var foodStarving:Loader; // An icon for the starving state
 private var petName:TextField; // Displays the pet's name

 // Pet user interface
 private var appleBtn:FoodButton; // Button for feeding the pet an apple
 private var sushiBtn:FoodButton; // Button for feeding the pet sushi

 // Load completion detection
 static private var numGraphicsToLoad:int = 4; // Total number
 // of graphics
 private var numGraphicsLoaded:int = 0; // Number of graphics
 // loaded so far

 // Constructor
 public function VirtualPetView (pet:VirtualPet) {
 // Store a reference to the pet being displayed
 this.pet = pet;

 // Register to be notified when the pet's name changes
 pet.addEventListener(VirtualPet.NAME_CHANGE,
 petNameChangeListener);
 // Register to be notified when the pet's condition changes
 pet.addEventListener(VirtualPet.STATE_CHANGE,
 petStateChangeListener);

 // Make and load the pet graphics
 createGraphicsContainer();
 createNameTag();
 createUI();
 loadGraphics();
 }

 // Creates a container into which to place pet graphics
 private function createGraphicsContainer ():void {
 graphicsContainer = new Sprite();
 addChild(graphicsContainer);
 }

 // Creates a TextField in which to display the pet's name
 private function createNameTag ():void {
 petName = new TextField();
 petName.defaultTextFormat = new TextFormat("_sans",14,0x006666,true);
 petName.autoSize = TextFieldAutoSize.CENTER;
 petName.selectable = false;
 petName.x = 250;
 petName.y = 20;
 addChild(petName);
 }

886 | Appendix: The Final Virtual Zoo

 // Creates buttons for the user to feed the pet
 private function createUI ():void {
 // The Feed Apple button
 appleBtn = new FoodButton("Feed Apple");
 appleBtn.y = 170;
 appleBtn.addEventListener(MouseEvent.CLICK, appleBtnClick);
 addChild(appleBtn);

 // The Feed Sushi button
 sushiBtn = new FoodButton("Feed Sushi");
 sushiBtn.y = 190;
 sushiBtn.addEventListener(MouseEvent.CLICK, sushiBtnClick);
 addChild(sushiBtn);
 }

 // Disables the user interface
 private function disableUI ():void {
 appleBtn.disable();
 sushiBtn.disable();
 }

 // Loads and positions the external graphics for the pet
 private function loadGraphics ():void {
 // Graphic showing the pet in its alive state
 petAlive = new Loader();
 petAlive.load(new URLRequest("pet-alive.gif"));
 petAlive.contentLoaderInfo.addEventListener(Event.COMPLETE,
 completeListener);
 petAlive.contentLoaderInfo.addEventListener(IOErrorEvent.IO_ERROR,
 ioErrorListener);

 // Graphic showing the pet in its dead state
 petDead = new Loader();
 petDead.load(new URLRequest("pet-dead.gif"));
 petDead.contentLoaderInfo.addEventListener(Event.COMPLETE,
 completeListener);
 petDead.contentLoaderInfo.addEventListener(IOErrorEvent.IO_ERROR,
 ioErrorListener);

 // The "needs food" icon
 foodHungry = new Loader();
 foodHungry.load(new URLRequest("food-hungry.gif"));
 foodHungry.contentLoaderInfo.addEventListener(Event.COMPLETE,
 completeListener);
 foodHungry.contentLoaderInfo.addEventListener(IOErrorEvent.IO_ERROR,
 ioErrorListener);
 foodHungry.x = 15;
 foodHungry.y = 100;

 // The "needs food badly" icon
 foodStarving = new Loader();
 foodStarving.load(new URLRequest("food-starving.gif"));

The Final Virtual Zoo | 887

 foodStarving.contentLoaderInfo.addEventListener(Event.COMPLETE,
 completeListener);
 foodStarving.contentLoaderInfo.addEventListener(IOErrorEvent.IO_ERROR,
 ioErrorListener);
 foodStarving.x = 15;
 foodStarving.y = 100;
 }

 // Triggered when the pet changes state
 private function petStateChangeListener (e:Event):void {
 // If the pet is dead...
 if (pet.getPetState() == VirtualPet.PETSTATE_DEAD) {
 // ...disable the feed buttons
 disableUI();
 }
 // Update the graphics to reflect the new state of the pet
 renderCurrentPetState();
 }

 // Queries the pet for its current state and renders that
 // state to the screen
 private function renderCurrentPetState ():void {
 // Clear all graphics
 for (var i:int = graphicsContainer.numChildren-1; i >= 0; i--) {
 graphicsContainer.removeChildAt(i);
 }
 // Check the pet's current state
 var state:int = pet.getPetState();

 // Display appropriate graphics
 switch (state) {
 case VirtualPet.PETSTATE_FULL:
 graphicsContainer.addChild(petAlive);
 break;

 case VirtualPet.PETSTATE_HUNGRY:
 graphicsContainer.addChild(petAlive);
 graphicsContainer.addChild(foodHungry);
 break;

 case VirtualPet.PETSTATE_STARVING:
 graphicsContainer.addChild(petAlive);
 graphicsContainer.addChild(foodStarving);
 break;

 case VirtualPet.PETSTATE_DEAD:
 graphicsContainer.addChild(petDead);
 break;
 }
 }

888 | Appendix: The Final Virtual Zoo

 // Triggered when the pet's name changes
 private function petNameChangeListener (e:Event):void {
 // Update the pet's name on screen
 renderCurrentPetName();
 }

 // Queries the pet for its current name, and renders that
 // name to the screen
 private function renderCurrentPetName ():void {
 petName.text = pet.getName();
 }

 // Triggered when the "Feed Apple" button is clicked
 private function appleBtnClick (e:MouseEvent):void {
 // Feed the pet an apple
 pet.eat(new Apple());
 }

 // Triggered when the "Feed Sushi" button is clicked
 private function sushiBtnClick (e:MouseEvent):void {
 // Feed the pet some sushi
 pet.eat(new Sushi());
 }

 // Triggered when a graphic finishes loading
 private function completeListener (e:Event):void {
 // Increase (by one) the count of the total number of graphics loaded
 numGraphicsLoaded++;
 // If all the graphics have loaded...
 if (numGraphicsLoaded == numGraphicsToLoad) {
 // ...display the appropriate graphics, then broadcast
 // an Event.COMPLETE event, indicating that this VirtualPetView
 // object is ready to use
 renderCurrentPetState();
 renderCurrentPetName();
 dispatchEvent(new Event(Event.COMPLETE));
 }
 }

 // Triggered if a graphic fails to load properly
 private function ioErrorListener (e:IOErrorEvent):void {
 // Display a debugging message describing the loading problem
 trace("Load error: " + e);
 }
 }
}

The Final Virtual Zoo | 889

Example A-10 shows the code for the FoodButton class, which represents a simple
clickable-text button.

Example A-9. The FoodButton class

package zoo {
 import flash.display.*
 import flash.events.*;
 import flash.text.*;

 // The FoodButton class represents a simple clickable-text button
 public class FoodButton extends Sprite {
 // The text to be clicked
 private var text:TextField;
 // The formatting of the text when it is *not* under the mouse pointer
 private var upFormat:TextFormat;
 // The formatting of the text when it *is* under the mouse pointer
 private var overFormat:TextFormat;

 // Constructor
 public function FoodButton (label:String) {
 // Enable the "hand" mouse cursor for interactions with this object
 // (The buttonMode variable is inherited from Sprite.)
 buttonMode = true;
 // Disable mouse events for this object's children
 // (The mouseChildren variable is inherited
 // from DisplayObjectContainer.)
 mouseChildren = false;

 // Define the text formatting used when this object is *not*
 // under the mouse pointer
 upFormat = new TextFormat("_sans",12,0x006666,true);
 // Define the text formatting used when this object *is*
 // under the mouse pointer
 overFormat = new TextFormat("_sans",12,0x009999,true);

 // Create the clickable text field, and add it to this object's
 // display hierarchy
 text = new TextField();
 text.defaultTextFormat = upFormat;
 text.text = label;
 text.autoSize = TextFieldAutoSize.CENTER;
 text.selectable = false;
 addChild(text);

 // Register to be notified when the mouse moves over this object
 addEventListener(MouseEvent.MOUSE_OVER, mouseOverListener);
 // Register to be notified when the mouse moves off of this object
 addEventListener(MouseEvent.MOUSE_OUT, mouseOutListener);
 }

 // Disables mouse event notifications for this object
 public function disable ():void {

890 | Appendix: The Final Virtual Zoo

 // (The mouseEnabled variable is inherited from InteractiveObject.)
 mouseEnabled = false;
 }

 // Triggered when the mouse moves over this object
 public function mouseOverListener (e:MouseEvent):void {
 // Apply the "mouse over" text format
 text.setTextFormat(overFormat);
 }

 // Triggered when the mouse moves off of this object
 public function mouseOutListener (e:MouseEvent):void {
 // Apply the "mouse not over" text format
 text.setTextFormat(upFormat);
 }
 }
}

Example A-9. The FoodButton class (continued)

891

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
. (dot), 78
+= (addition assignment operator), 33, 706
@* (attributes wildcard, E4X), 367
+ (concatenation operator), 47
? (conditional operator), 44
{ } (curly braces), 11, 14, 31

in XML literals, 358
interfaces, problems in, 162

.. (E4X descendant operator), 380
== (equality operator), 46
=== (strict equality operator), 50
= (equals sign), 19
< (less-than-operator), 46, 181
<= (less-than-or-equal-to operator), 181
&& (logical AND), 60
&& (logical AND operator), 182
! (logical NOT operator), 61
|| (logical OR), 58
|| (logical OR operator), 183
() (parentheses operator), 31, 32, 178
/* and */, 13
// (double forward slashes), 13
[] (square brackets), 371

arrays, creation with, 187
_sans font, 712
_serif font, 712
_typewriter font, 712
(see also operators, list of)

A
ABC (ActionScript bytecode), 5
abstract classes, 459

absence of support in ActionScript, 120
abstract methods, 120
abstract style classes, 459
access-control modifiers, 13

definition accessibility via, 296
instance methods, for, 34
instance variables, for, 22
namespaces for, 338–340

package importation and, 340
accessor methods, 69
Actions panel, 826
ActionScript, xix

pre-version 8 visual content tools, 458
programming language evolution, 279

ActionScript 3.0, xxi
tools for writing, 4

ActionScript bytecode (ABC), 5
ActionScript development tools, xxv
ActionScript virtual machine, 4
activation objects, 301
addChildAt() method, 471
ADDED_TO_STAGE event, 493–499
addedListener() method, 638
addedToStageListener() method, 606
addEventListener() method, 203, 205, 215,

223, 505
useCapture parameter, 509
useWeakReference parameter, 220

892 | Index

addition assignment operator (+=), 33, 183,
706

addObject() method, 166
addShape() method, 116
Adobe Flash, xix, xxv
Adobe Flex 2 SDK, xxv
Adobe Flex Builder, xxv
Adobe Integrated Runtime (see AIR)
Adobe AIR (Adobe Integrated

Runtime), xxiii, 4
Flash Player, compared to, 696

allowDomain() method, 236, 418, 444
allowInsecureDomain() method, 446
ancestors, 103, 460
AND operator (&&), 60
animation, 610

Animator class, 624–627
SlidingText subclass, 626–627

Event.ENTER_FRAME events, 611–616
compared to Timer class

animations, 623
frame rate, effect on, 615

loops, absence from, 610
nested animations, 832
TimerEvent.TIMER events, 616–622

compared to Event.ENTER_FRAME
animations, 623

frame rate, effect on, 622
UIComponent class and, 627
velocity-based animation, 627

AnonymousListener class, 217
AntiAliasType class, 698
APIs (Application Programming

Interfaces), 35
append, 195
appendText() method, 705
Apple class code, 128
Application Programming Interfaces

(APIs), 35
application testing, security, 428
ApplicationDomain class, getDefinition()

method, 814
applyFilter() method, 686
arrays, 186–201

anatomy of, 187
array access operator, 189
Array methods, 194–197, 198
Array() constructor, 189
creating, 187–189

with array literals, 187
with the new operator, 189

elements, 187

elements, adding to arrays, 193–197
concat() method, 197
direct addition of, 193
length variable, using, 193
push() method, 194
splice() method, 196
unshift method(), 194

elements, indexing of, 187
elements, referencing, 189–191

retrieving values, 189
setting values, 190

elements, removing from arrays, 197–199
delete operator, 198
length variable, 198
pop() method, 198
splice(), 199
unshift(), 199

implementation in other programming
languages, 188

length or size, 187
determination of, 191–193

multidimensional arrays, 200
toString() method, checking contents

with, 199
.as files, 8
as operator, 149, 181
assignment expressions, 29
assignment operator, 29
asynchronous versus synchronous program

execution, 800
at operator (@), 178
attackEnemy() method, 258
attribute() method (E4X), 368
attribute() method (XML), 359, 371
attributes, 12
attributes wildcard (E4X), 367
attributes() class instance method, 383
automatic tab order, 548
“Automatically declare stage instances”

option, 842, 844
autoSize variable, 702
AVM1, 5

B
base class, 103
BasicShape class, 637

Ellipse subclass, 641
Polygon subclass, 642

beginBitmapFill(), beginFill(), and
beginGradientFill() methods, 634

binary operators, 174

Index | 893

bit shift left reassignment operator
(<<=), 184

bit shift right reassignment operator
(>>=), 184

bit shift right unsigned reassignment operator
(>>>=), 184

bitmap, 458
Bitmap class, 458, 460
bitmap images, 648

aged photograph effect, 684
Bitmap class, 649
BitmapData class (see BitmapData class)
color and positioning tools, 670
color channels, 649
color retrieval from pixel regions, 662
color, assigning to a region, 668–670
creating, 654–656
[Embed] metadata tag, embedding

with, 810
examining, 658–664
external bitmaps, loading, 656–658

compile time loading, 657
runtime loading, 656

graphical effects tools, 686–694
filters, 687–694

graphics, copying to, 672–685
image formats, 656
image-based color picker, 660
loaded files, instantiating, 795
memory used by, freeing, 694
modifying, 664–671
pixels (see pixels)
pre-multiplied color values, 659
resizing, 671
transparency, effect on color-value

retrieval, 659
width and heighth parameters, 654

BitmapData class, 649
applyFilter() method, 686
clone() method, 672
colorTransform() method, 686
compare() method, 664
copychannel() method, 672
copyPixels() method, 672
copyPixels() method (see copyPixels()

method)
draw() method (see draw() method)
fillRect() method, 670
floodFill() method, 670
getColorBoundsRect() method, 664
getPixel32() method, 658

versus getPixel() method, 659

getPixels() method, 662
hitTest() method, 664
lock() method, 665
merge() method, 672
multiple Bitmap object representations of

one BitmapData object, 655
noise() method, 686
object generation, 654
objects, associating with Bitmap

objects, 654
paletteMap() method, 687
perlinNoise() method, 686
pixelDissolve() method, 687
scroll() method, 670
setPixel() method, 654, 664
setPixel32() method, 654, 664

ScribbleAS3 example, 666–668
setPixels() method, 654, 664, 668–670
threshold() method, 687

bitwise AND operator (&), 182
bitwise AND reassignment operator

(&=), 184
bitwise left shift operator (<<), 180
bitwise NOT operator (~), 179
bitwise operations, 651
bitwise OR operator (|), 182
bitwise OR reassignment operator (|=), 184
bitwise signed right shift operator (>>), 180
bitwise unsigned right shift operator

(>>>), 180
bitwise XOR operator (^), 182
bitwise XOR reassignment operator

(^=), 184
blank keyframes, 825
block statements, 10
bold fonts, 713
Boolean datatype, conversions of other

datatypes to, 152
Boolean logic and operators, 58–61
Boolean opposite operator (!), 179
bound methods, 67
Bourret, Ronald, 398
branching logic, 58
break statement, 48, 56
bubbling and non-bubbling events, 503
built-in errors, 241, 267
built-in events, 202
ButterflyGame, 217–220
Button symbols, 833
ByteArray, 662

894 | Index

C
call expressions, 31
call stack, 255
Caller class, 346
caloriesPerSecond static variable, 96
capture phase, 503
caret position, 717
Cascading Style Sheets (CSS), 727
case expressions, 48
casting, 146

as operator for casting to Date and Array
classes, 149

upcasting and downcasting, 148
catch blocks, 242
character-level formatting, 708
charCode, 563
CheckBox class, 511

hierarchical handling of events, 512
child nodes, 354
child() method (XML), 359, 371
children, 460
children() method (XML), 360
Class class, 85
class libraries, 861

distributing, 861
as .swc files, 863–867
as .swf files, 867–873
source code sharing, 862

protecting with version control, 862
class scope, 297
classes, 6

access control modifiers, 12
ActionScript’s native classes, 7
attributes, 12
base class, 103
class APIs, 35
class blocks, 11
class definitions, 11
class extensions, limitations, 161
class hierarchy, 103
class initializer, 84, 297
class interfaces, 35
class libraries (see class libraries)
class objects, 85
derived class, 103
dynamic classes, 280

troubleshooting, 281
inheritance (see inheritance)
multidatatype classes and interfaces, 161
naming of classes, 9

Object class, 104
prototype objects, augmentation

with, 291
requirements for program

compilation, 134
subclassing built-in classes, 113

classpath and program compilation, 134
clear() method, 636
clearChanged() method, 638
clickListener() method, 515
client runtime environments, 4
clone() method, 663, 672
closeListener() method, 805
code comments, 13
code sharing (see class libraries, distributing)
coder, 3
coding style and constructor arguments, 25
collision potential, instance variables and

symbol instance names, 843
color channels, 649
color values, hexadecimal

representation, 650
color, pixel values for, 649
colorTransform() method, 686
comments, 13
comments() class instance method

(XML), 359, 370
compare() method, 664
compiler restrictions, 134
compilers, 5
compiling programs, 130–132

classpath, 134
Flash authoring tool, 130
Flex Builder 2, 131
just-in-time (JIT) compilation, 5
mxmlc, 133
reference error detection, 145
strict mode ignorance of type mismatch

errors, 143
strict mode versus standard mode

compilation, 135
completeListener() method, 206, 216
components, xxiv
composition, 117

delegation, 118
inheritance, versus, 117–120

compound expressions, 26
concat() method, 197
concatenation operator (+), 47
concatenation operator (+=), 183

Index | 895

conditional statements, 44–50
if, 44–48
switch, 48–50

configurable debugging messages, 249
Console class, 222
const keyword, 80
constants, 80
constructor arguments, 24

coding style and, 25
constructor bodies, 14
constructor methods, 14

in subclasses, 108
constructor parameters, 14, 24
constructors

required parameters, 24
containers, 460

assets, removing from, 475
depths and, 469–475
manipulation of objects in, 482–484

.swf file’s main-class instance,
descendant access to, 484–487

transformations to nested
containers, 484

transformations, impact on
children, 483

objects, removing from, 475
containment events, 487–499

ADDED_TO_STAGE and REMOVED_
FROM_STAGE, 493–499

Event.ADDED and
Event.REMOVED, 488–492

real-world example, 492
Control Panel Application classes, 230
copies of variables, 30
copyChannel() method, 663, 672
copyPixels() method, 663, 672, 681–685

alphaBitmapData parameter, 682
alphaPoint parameter, 683
destPoint parameter, 682
mergeAlpha parameter, 683
reuse of pixel values, 685
sourceRect parameter, 682

core display classes, 458
creator permissions, 418, 444
cross-domain policy files, 431
cross-scripting, 236, 417
cross-web site information theft, 424
CSMSettings class, 697
CSS (Cascading Style Sheets), 727
CSS class selectors, 732

curly braces ({ }), 11, 14, 31
in XML literals, 358

current object, 28, 33
currentTarget, 212
curveTo() method, 633
custom classes, 7
custom errors, 241
custom events, 202
custom exceptions, 248
custom graphical classes, 499

D
DataGrid class, 341
datatypes, 138–142

compatible types, 139
missing type annotations, warnings

for, 144
operators and, 176
primitive types, 141
primitive types, conversion to, 150–152
type annotations or declarations, 140
type mismatch errors, detecting, 140
typed and untyped variables and

parameters, 142
VirtualZoo class datatypes, 154–158

Date class, 38
declarations, 140
default behavior (events), 213
default variable values, 153
deferred reference counting, 272
definitions, 296

accessibiility by location and
access-control modifiers, 296

delegation, 118
delete operator, 179, 198
delete operator (E4X), 394
depth, 469, 474

unoccupied depths, 469
derived class, 103
descendant nodes, 379
descendants, 103, 461
descendants() XML class instance

method, 359
developer, 3
device fonts, 735
digest() method, 96
digestIntervalID instance variable, 97
dirty rectangle, 600
dispatchEvent() method, 223, 228

896 | Index

display API, 457
children, removing all, 477
containers (see containers)
containment events (see containment

events)
core display classes, 458–462

ancestor and descendant objects, 461
extending custom subclasses, 461
root object, 461
(see also display list)

core disply classes
core display class hierarchy, 459

custom graphical classes, 499
display hierarchys, traversing objects

in, 480
display list (see display list)
display object depth, 469
graphical content, 458
removing assets from memory, 476
supporting display classes, 458

display area, 461
display list, 462–487

Stage class, 462
display object depth, 469
display objects, 203
DisplayAssetLoader class, 801

socketDataListener() method, 804
DisplayObject class, 458, 459–461

ADDED_TO_STAGEand REMOVED_
FROM_STAGE events, 493–499

subclasses, 460
DisplayObjectContainer class, 458, 460

addChild() method, 464
addChildAt() method, 471
Event.ADDED and Event.REMOVED

events, 488–492
getChildAt() method, 480
getChildIndex() method, 471
removeChild() method, 475
re-parenting assets, 478
setChildIndex() method, 473, 475
subclasses, 461
swapChildren() and swapChildrenAt()

methods, 473
DisplayObjectContainer, removing assets

from memory, 476
distributor permission, 418
distributor permissions, 422, 429
division operator (/), 180
division reassignment operator (⁄=), 183

document class, 828–831
automatic assignment to .fla files with no

class specification, 829
specification for .fla (Flash document)

files, 829
document class path, 828
DOM (Document Object Model), 202, 353
dot (.), 78
do-while statement, 56
downcasting, 148
draw() method, 115, 638, 663, 672,

672–681
Alpha channel values and, 681
blendMode parameter, 673
clipRect parameter, 674
colorTransform parameter, 673
rasterizing a TextField, 675–677
rasterizing vector content, 677–680
ScribbleAS3 program revised, 677–680
smoothing parameter, 674
source parameter, 673
transformMatrix parameter, 673
uses of, 674

drawShape() method, 638
dynamic ActionScript, 279–294

dynamic classes, 280
troubleshooting, 281

dynamic instance variables, 280
adding new behavior to, 284–286
for-each-in and for-in loops, processing

with, 282–284
function closure assignment

to, 284–286
lookup tables, creating with, 287–289

functions, using to create
objects, 289–291

prototype object chains, 292–294
prototype objects, augmenting classes

with, 291
references to variables and methods, 286

dynamic binding, 115, 116
dynamic translation, 6

E
E4X (ECMAScript for XML), 353

descendant operator (..), 380
equality, determining, 407
expressions and results, 376
insignificant whitespace, 354
new XML content, creating, 387–396

adding new children, 391–393
attribute values, changing, 388

Index | 897

deleting elements and attributes, 394
new attributes and elements,

adding, 390–393
replacing an element, 389
variable references to partial

documents and updates, 394
XML elements, changing contents

of, 387
XML entities for special

characters, 395
string conversions, XML and XMLList

instances, 404
XML and XMLList content-access

methods, 359–376
XML and XMLList datatypes and

classes, 355
XML data creation with, 357
XML data, filtering, 383–385

filtering predicate operator, 383
hasOwnProperty() method, 385

(see also XML)
eat() method, 32, 35

numberOfCalories parameter, 37
signature, 41

ECMAScript 4 specification, xxii
ECMAScript for XML (see E4X)
elements, 187

(see also arrays)
elements() XML class instance method, 359
Ellipse class, 601, 641
[Embed] metadata tag, 762, 807–818

bitmmap images, embedding, 810
display assets, embedding at compile

time, 807
example, 816
files as binary data, embedding, 813
supported asset types, 809
SVG, embedding, 811
.swf files, embedding, 811

symbols from legacy files, 812
syntax, 808

embedded fonts, 713, 737
endGame() method, 222
ENTER_FRAME events, 611–616

compared to Timer class for
animation, 623

EntryClass class, 857
equality operator (==), 46, 182
equality operator, strict (===), 182
equals sign (=), 19

Error class, 242
defining a custom Error subclass, 246

options, 247
multiple custom exception

subclasses, 250
evaluation operator (,), 184
Event class, 203

eventPhase variable, 514
Event.INIT event, 768
Event.OPEN event and asset load progress

indication, 776
Event.RENDER event, 601–609
Event.type property, 204
EventADDED and EventREMOVED

containment events, 488–492
EventDispatcher class, 203
events, 202–240

animation, Event.ENTER_FRAME
events, 611–616

animation, TimerEvent.TIMER
events, 616–622

bubbling and non-bubbling, 503
code centralization via event

flow, 511–514
current event phases,

determining, 514–516
custom events, 221–233

custom toggle, 225–228
default behavior, preventing, 228–233
game over, 222–225

custom events and event flow, 526–530
default behavior, preventing, 213
definition, 209
display hierarchy mutation and event

flow, 523–525
event listener list mutation, 525

event constants, 204
event dispatch phases, 503
event dispatches, 203
event dispatches, stopping, 518–522
event dispatching, 209
event flow, 503
event listeners, 202, 209

listener list, 216
memory management and, 216–220
priority, 214
return type and private

declaration, 205
weak listener references, 220

898 | Index

events (continued)
event listener registration, 203–206

currentTarget, 212
event listener, creating, 205
event object datatype,

determining, 204
event type name, determining, 204
register for an event, 205
two examples, 206
wait for an event, 206

event listener unregistration, 208
importance of, 221

event listeners and event flow, 505–511
adding event listeners, 505

event objects, 203, 209
accessing listener registration

objects, 212
event priority and event flow, 522
event targets, 203, 209

accessing, 209–211
Event.RESIZE event, 207
handling across security

boundaries, 236–240
allowDomain() events, 238
allowDomain(): shared events, 236

hierarchical event dispatch, 502
input events (see input events)
IOErrorEvent.IO_ERROR events, 206
naming of, 205
object-targeted events, distinguishing

from object desendant-targeted
events, 516–518

shared events, 238
weaknesses in event

architecture, 233–236
exceptions, 137, 241
exception handling, 241–267

built-in errors, 267
error conditions, 267
exception bubbling, 253–258
exception handling cycle, 241–244
finally blocks, 258–260
multiple types of exceptions, 244–253

configurable debugging messages,
using, 249

exception type granularity,
determing, 246

multiple custom Exception
subclasses, 250

single custom exception types,
using, 248

try statements with multiple catch
blocks, 245

nested exceptions, 260–264
try/catch/finally blocks

control-flow changes in, 264–266
uncaught exceptions, 257

expressions, 26, 242
extends keyword, 102, 164
extension, 105
external display assets, loading, 762

[Embed] metadata tag, using, 762,
807–818

environment specific behavior for load
failures, 779

Internet Explorer-specific load
behaviours, 779

Loader class, using, 762, 763–781
asset instantiation, bitmaps and .swf

files, 767
asset location, specifying, 764
compiler access to loaded class,

arranging, 784–790
compile-time type checking for

runtime-loaded assets, 781
compile-time type-checking, opting

out of, 783
HTTPStausEvent, debugging, 780
instantiating runtime-loaded .swfs or

bitmaps, 793–795
load errors, handling, 777–781
load operation, starting, 766
load progress, displaying, 772–777
loaded asset, displaying, 770
loaded asset, initializing and

accessing, 767
Loader instance, creating, 763

location specification and Flash Player
launching, 764

reflecting asset changes when
recompiling, 817

Socket class, using, 762, 796–806
client-side receiving, 800–806
server-side sending, 796–800

unsupported or blocked protocols, 764
external-library-path technique, 784,

787–790

Index | 899

F
factorials, calculating, 95
FIFO stack, 195
file formats

.as files, 8

.swf, xxv, 5
file: protocol, 412
FileSender, 796
fillRect() method, 654, 670
filtering predicate operator (E4X), 383
final attribute, 112
finally blocks, 243, 258–260
fixed variables, 280
.fla files, 821

(see also Flash documents)
Flash, xix
Flash authoring tool, xxiv, 3, 821

Actions panel, 826
classes, preloading of, 852–855
compiling programs with, 130

standard mode compilation,
enabling, 136

document class, 828–831
document class path and global class

path, setting, 828
frame scripts, 826–828
frame types, 824
instance names for display objects, 848
Linkage Properties dialog, 834
playhead, 822
Stage, 822
.swc-based libraries, 865–867

creating, 865
using, 866

.swf files, creating with, 821

.swf-based libraries, creating in, 871
symbols

automatic declaration of stage
instances, 842

instance names, 839
instance names, matching variables

for, 841–844
instantiating via ActionScript, 847
linking multiple symbols to one

superclass, 849–851
manually created symbol instances,

accessing, 838–839
Movie Clip symbols (see Movie Clip

symbols)
text fields, manually creating with, 759

Text Tool, 844
timeline scripting, 826–828

adding frame scripts to keyframes, 826
timelines

programmatic control of, 845–846
UI component set, 457

Flash compiler, 5
Flash CS3 and swf-based libraries, 872
Flash documents (.fla files), 821

document class, automatic assignment
of, 829

main timeline, 822
process of export to .swf files, 822
.swf files, compiling from, 822
timelines, 822

Flash file format (SWF), xxv
Flash Lite, xxiii, 4
Flash Player, xxiii, 4

security restrictions (see security)
Flash runtime APIs, xxiv
Flash runtime clients, xxiii
flash.display.MovieClip document class, 829
flash.filters package, 687
FlashType renderer, tuning, 755
Flex 2 SDK, 5
Flex Builder, 3
Flex Builder 2

.swf-based libraries, 868–871
application point of entry, triggering, 858
cleaning projects, 817
compiling programs with, 131

enabling standard mode
compilation, 136

projects, creating, 857
.swc-based class libraries, 863–865

creating, 863
using, 864

.swf-based libraries
creating in, 868
using in, 869

UI component example, 859
Flex compiler, 5
Flex framework, xxiv, 457, 856

UI component set, 457
floodFill() method, 654, 670
focus events, 548–555

Flash Player built-in focus-event
types, 551–555

focusing objects with the mouse, 550
descendant focus, handling through a

single ancestor, 550
tab order and automatic tab order, 548

900 | Index

Font class, 697
fonts, 735

availability, determining, 749
embedded font outlines, 737

Flash authoring tool, embedding
in, 737

Flex Builder 2 and mxmlc, embedding
in, 738–741

embedded fonts, 713
glyph availability, determining, 751
loading at runtime, 745–748
missing fonts and glyphs, 748
_sans, _serif, and _typewriter font

names, 712
size, specifying, 709

FontStyle class, 698
FontType class, 698
Food class code, 128
for loops, initialization statements, 57
for statements, 57
for-each-in and for-in loops, 282–284

XML processing with, 377–379
forward referencing, 91
frames, 822
frame rate, 822

effect on Event.ENTER_FRAME
animations, 615

TimerEvent.TIMER event animations,
effect on, 622

frame scripts, 587, 826–828
prohibited code, 827
timeline scripting, 827
variable and function definitions, 831

front and back end classes, 117
fully qualified class names, 11
functions, 87–92

as values, 93
Function class literal syntax, 93
global functions, 89
nested functions, 90
object creation using, 289–291
package-level functions, 88
recursive functions, 95
source-level functions, 91
Virtual Zoo, usage in, 96
VirtualPet class with included

functions, 99
function closures, 87

assignment to dynamic instance
variables, 284–286

function definitions, 14
function keyword, 14, 31, 87
function scope, 299

G
Game class, 222
garbage collection, 269–278

bitmap images, 694
deactivating objects, 274
demonstration, 277
eligibility, 269
garbage collection cycles, 272
garbage collection roots, 269
incremental mark and sweep, 272
intentional disposal of objects, 273
object reuse versus disposal, 273
reachable objects eligible for garbage

collection, 272
unreachable objects, 269

get method, 72
variable names and, 74

getAge() method, 39
getChildAt() method, 480, 838
getChildByName() method, 840
getChildIndex() method, 471
getColorBoundsRect() method, 664
getColumnIndex() method, 342
getDefinition() method, 814
getItems() method, 331
getItemTypes() method, 332
getName() method, 70
getPixel(), 659
getPixel32(), 659
getPixel32() method, 658

ColorPicker, 660
getPixels() method, 662
getRestrictedNamespace() method, 343
getter methods, 69
getTextFormat() method, 716
global class path, 828
global functions, 89
global scope, 296
Graphic symbols, 833
Graphics class, 465, 629–637

beginBitmapFill(), beginFill(), and
beginGradientFill() methods, 634

clear() method, 636
curveTo() method, 633
lineStyle() method, 630
lineTo() method, 630
moveTo() method, 634

greater-than operator (>), 181
greater-than-or-equal-to operator(>=), 181
GreetingApp class, 464–469
GridFitType class, 698

Index | 901

H
handling events (see events)
hard returns, 702
Has-A relationships, 119
hasChanged() method, 638
hitListener() method, 520
hitTest() method, 664
HTML text formatting, 719–726

interactions between text and htmlText
variables, 724

quoting attribute values, 724
special character entities supported by

ActionScript, 724
tags and attributes supported by

ActionScript, 720–723
unrecognized tags and attributes, 726

I
IconPanel class, 492
identity theft using email, 423
IDEs (integrated development

environments), 3
IEventDispatcher interfac, 203
if statements, 44–48

chaining, 47
else omitted, 47

ImageLoader class, 274
implements keyword, 161
in operator, 181
inequality operator (!=), 182
information theft, 424
inheritance, 101–104

code reuse, 114
composition, versus, 117–120
dynamic binding, 115–117
extension, 105
hierarchical modeling, 114
interface inheritance, 164
Is-A, Has-A, and Uses-A, 119
noninheritance of static methods and

variables, 104
overridden instance methods,

invoking, 107
overriding instance methods, 105
polymorphism, 115–117
preventing extension of classes and

overriding of methods, 112
redefinition, 105
reuse, 105
subclassing built-in classes, 113
theory, 114–120

inheritance tree, 103
initialization statements, 57
initListener() method, 771
input events, 531

Flash Player-level input events, 580–585
Event.ACTIVATE and

Event.DEACTIVATE, 582
Event.MOUSE_LEAVE, 585
Event.RESIZE, 583
input-event types, 580

focus events (see focus events)
general rules governing, 531
keyboard-input events (see

keyboard-input events)
mouse-input events (see mouse-input

events)
text-input events (see text-input events)

insignificant whitespace, 354
instance members, 42
instance method scope, 298
instance methods, 31

access-control modifiers for, 34
arbitrary number of arguments, 75
bound methods, 66
get and set methods, 72–75

variable names and, 74
terminology compared, C++ and Java, 86
this keyword, omitting from code, 64–66

instance variables, 20–23, 30
access-control modifiers, 22
collision potential with symbol instance

names, 843
private accessor modifier, used on, 68
static variables of the same name, 78
terminology compared, C++ and Java, 86

instanceof operator, 182
instances, 6
int datatype, conversions of other datatypes

to, 151
integrated development environments

(IDEs), 3
InteractiveObject class, 458, 460
interfaces (ActionScript), 159

as datatypes, 139
curly braces, problems with, 162
method declarations, 162
methods, definition before

compilation, 163
methods, listing of, 161
multidatatype classes and, 161
multiple datatype example with

arrays, 165–170

902 | Index

interfaces (ActionScript) (continued)
naming conventions, 164
reasons for, 159–161
subinterfaces and superinterfaces, 164
syntax and use, 162–165

inheritance, 164
interface naming conventions, 164
marker interfaces, 165

interfaces (GUIs or APIs), 159
internal access-control modifiers, 34
internal attributes, 13
invoke, 32
IOErrorEvent.IO_ERROR events, 206
ioErrorListener() method, 206
is operator, 181
Is-A relationships, 119
isDefaultPrevented() method, 214, 228
italic fonts, 713
Items class, namespace usage in, 326
iteration, 51

J
JIT (just-in-time compilation), 5

K
keyboard focus, 548
keyboard-input events, 555–565

characters, mapping to keys, 563
global keyboard-event handling, 556
key code, 558
most recent key-press or -release input,

determining, 558–561
multi-location keys, 560

object specific keyboard-event
handling, 557

simultaneous key presses, detecting, 561
text-input events, in contrast to, 555

keyframes, 824
keywords, 9
KidsGame class, namespace usage in, 326

L
late binding, 116
length variable, 191, 193, 198
less-than operator (<), 181
less-than-operator (<), 46
less-than-or-equal-to operator (<=), 181
library-path technique, 784

library-path technique for compiler access to
loaded class, 785–787

LIFO stacks, 195
lineStyle() method, 630
lineTo() method, 630
Linkage Properties dialog, 834
list processing with loops, 52–55
listener list, 216
Loader class, 461, 762, 763–781

ActionScript 2.0 tools replaced by, 762
display assets, loading with, 762,

763–781
asset instantiation, bitmaps and .swf

files, 767
asset location, specifying, 764
compiler access to loaded class,

arranging, 784–790
compile-time type checking for

runtime-loaded assets, 781
compile-time type-checking, opting

out of, 783
HTTPStausEvent, debugging, 780
instantiating runtime-loaded .swfs or

bitmaps, 793–795
load errors, handling, 777–781
load operation, starting, 766
load progress, displaying, 772–777
loaded asset, displaying, 770
loaded asset, initializing and

accessing, 767
Loader instance, creating, 763

external bitmaps, loading with, 656
load() method, 766
runtime loaded .swf assets, removing, 806
security limitations, 763
unload() method, 806

LoaderInfo object, 768
local name, 305
local realm, 412
local realms, 413
local sandboxes, authorized and prohibited

socket connections, 422
local security-sandbox-types,

comparisons, 425–429
local variables, 19

constructor parameters, 24
local-trusted .swf files, 414
local-trusted security-sandbox-type, 414

authorized and prohibited
operations, 421

Index | 903

local-with-filesystem .swf files,
compiling, 425

local-with-filesystem
security-sandbox-type, 414

authorized and prohibited
operations, 420

default assignment, 429
local-with-networking .swf files,

compiling, 426
granting local trust, 427

local-with-networking
security-sandbox-type, 414

authorized and prohibited
operations, 421

lock() method, 665
logical AND (&&), 60
logical AND operator (&&), 182
logical NOT operator (!), 61
logical OR (||), 58
logical OR operator (||), 183
LoginApp.fla, 849
LoginForm class, 849

login form symbols, associating with, 850
LoginManager class, 851
lookup tables, 287–289

object literals, making with, 289
loops, 50–58

animations, absence from, 610
break statement, ending with, 56
do-while statement, 56
for statement, 57
list processing, 52–55
loop iterator or index, 52
loop update, 52
while statement, 50–52

M
magic values, 80
main classes, 8

constructor methods of, 15
main timeline, 822
marker interfaces, 165
Marston, David, 398
maxCalories static variable, 78
maxNameLength static variable, 78
members, 42
memory management, 272

bitmaps, freeing from, 694
intentional disposal of objects, 273
(see also garbage collection)

merge() method, 663, 672

methods
abstract methods, 120
accessor methods, 69
function closures, compared to, 87
method arguments, 36
method body, 31
method calls with unknown numbers of

parameters, 75
method parameters, 36
method return values, 38
method signatures, 41
mutator methods, 69
object state, usage on, 68–72
parentheses operator in

documentation, 32
static methods, 82–85

MinimalMXML.mxml, 859
modifier methods, 69
modulo or remainder operator (%), 180
modulo or remainder reassignent operator

(%=), 183
MorphShape class, 460
MouseEvent class, 532
mouse-input events, 532–547

Flash Player built-in mouse events, 532
focusing objects with, 550
modifier keys and, 563
mouse pointer position, finding, 541
overlapping display objects and, 540
registering of event listeners, 537

moveTo() method, 634
movie clip, 458
Movie Clip symbols, 833, 833–837

composition-based alternative to linked
classes, 851

linked classes, 834–837
specifying the classes, 835

MovieClip class, 281, 461
descendant classes of, 830
stop() method, 828
vector drawing support, 629

multidatatype classes and interfaces, 161
multiline variable compared to

wordwrap, 702
multiplication operator (*), 180
multiplication reassignment operator

(*=), 183
mutator methods, 69
MXML, 3, 856
mxmlc, 5

.swf file compilation, 869

904 | Index

N
namespaces, 304

access-control modifiers, for, 338–340
package importation and, 340

accessibility, 317–321
ActionScript, 305
benefits of, 304
C++ versus ActionScript

namespaces, 306
compiler bugs, Flex Builder 2 and Flash

CS3, 340
creating, 307–310

explicit versus implicit URIs, 309
namespace definition, 307
namespace URIs, 307

examples, 314–317, 341–352
framework-internal visibility, 341
program nodes, 346–352

Namespace class, 309, 323
namespace identifiers, 308
namespace keyword, 307, 310
namespace values, assigning and

passing, 323–334
namespaceIdentifier, 310, 335
open namespaces, 334

scope and, 335
open namespaces and the use namespace

directive, 334–338
opening multiple namespaces, 337
package-level namespace definition, 308
permission-based access control, 342
qualified identifiers, 312–314
qualifier namespaces, 310
use namespace directive, 334
variable and method definitions,

qualifying with, 310–312
vocabulary, 304, 309
XML namespaces, 398–404

namespace-qualified elements and
attributes, accessing, 398

namespace-qualified elements and
attributes, creating, 402

native classes, 7
nested animations, 832
nested arrays, 188, 200
nested functions, 90
new operator, 178

arrays, creating with, 189
newQuestion() method, 333
nextSibling() method, 367
node kinds, 355

nodes, descendant nodes, 379
noise() method, 686
NOT operator (!), 61
Null datatype, 138, 153
null values, 153
Number datatype, conversions of other types

to, 151

O
Object class, 104
Object datatype, 138
object with dynamic variables operator

{x:y}, 178
object-oriented programming (OOP), 7
objects, 6

activation objects, 301
class objects, 85
creating, 16–19
current object, 28, 33
deactivating of, 276
functions, creating with, 289–291
instantiation, 16
methods, usage on object state, 68–72
prototype objects, 291
unreachable objects, 269
values, 19

one-dimensional arrays, 200
OOP (object-oriented programming), 7
open namespaces, 305, 334
operands, 26
operators, 26, 174–184

datatypes and, 176
list of, 177–184
operands, number of, 174
operator associativity, 175
operator precedence, 174

OR operator (||), 58
overridden instance methods, invoking, 107
override keyword, 105
overriding instance methods, 105

P
package blocks, 10
package definition directives, 9
package-level functions, 88
packages, 9

class names and, 9
matching directory structure to, 10
naming, 10

paletteMap() method, 687

Index | 905

paragraph-level formatting, 708
paragraph-level text formatting, 714
parameter/variable name conflicts, 65
parameters, typed and untyped, 142
parent nodes, 354
parent() XML class instance method, 359
parentheses () operator, 178
parentheses operator (), 31, 32
parents, 460
perlinNoise() method, 686
pixelDissolve() method, 687
pixels

color assignment tools, 670
color setting, methods for, 654
color values, 649

bitwise operations, retrieval with, 651
hexadecimal format, 650

color, assigning to a region, 668–670
Pixel class, 651
positioning on bitmap images, 648
repositioning, 670
reusing a collection of values, 685

playhead, 822
plus operator (+), 180
Point class, 82
policy files, 429–444

creating, 431
cross-domain policy files, 431
obtaining permission to access content as

data, 435
obtaining permission to load data, 433
posting, 432
socket connections, authorizing, 438–444

HTTP-based policy file retrieval, 442
socket-based policy file retrieval, 440

Polygon class, 642
Rectangle subclass, 643
Star subclass, 643

polymorphism, 115–117
pop() method, 198
populateUserList() method, 260
portability, 4
post-event updates, 587, 596–600

automatic updates, 600
updates for timer events, 598

postfix decrement operator (x––), 179
postfix increment operator (x++), 179
prefix decrement operator (––x), 179
prefix increment operator (++x), 179
pre-multiplied color values, 659
preventDefault() method, 213, 228, 567

previousSibling() method, 366
primitive types, 141

conversion of other datatypes
to, 150–152

private access-control modifiers, 34
processingInstructions() class instance

method (XML), 359, 370
program, 3
program nodes, 346–352
program point of entry, 8
programmer, 3
programming languages, 3
ProgressEvent.SOCKET_DATA event, 800
properties, 42
protected access-control modifiers, 34
prototype object chains, 292–294
prototype objects, 291
pseudo-variables, 74
public access-control modifiers, 34
public attributes, 12
push() method, 194
pushing, popping, and stacks, 195

Q
QName class, 409
qualified identifiers, 305, 312–314
qualifier, 305
qualifier namespace, 305

R
readBytes() method, 804
Rectangle class, 166, 643
recursive display list tree traversal, 481
recursive functions, 95
redefinition, 105
redraw region, 600
reference errors, 137

detection at compile time, 145
references (variables), 30
regular frames, 824
remote realms, 412, 413
remote regions, 413
remote security-sandbox-type, 414, 419

authorized and prohibited socket
connections, 422

REMOVED_FROM_STAGE event, 493–499
removedListener() method, 638
removeEventListener() method, 208, 217,

510
renderListener() method, 604, 638

906 | Index

replace() XML instance method, 389
replaceText() method, 706, 717
requestDraw() method, 638
required constructor parameters, 24
resizeListener() function, 208
ResizeMonitor class, 207
resource creators, 411
resource distributors, 411

permissions, 429
(rest) parameter, 75
restricted methods and variables, 343
retriever methods, 69
return statements, 38
return values, 38
reuse, 105
RGB channels, 650
root object, 461
rotateChildren() method, 481
rotating rectangles, 480
running programs, 132
runningman.fla, 825

document class for, 829
runtime APIs, xxiv
runtime clients, Flash, xxiii

S
safe casts, 148
scheduled updates, 587, 587–596

exclusion from code blocks, 593
frame rate and, 588
frame rate, designated versus actual, 595
frame rate, setting, 594

scopes, 295–302
available scopes, code summary, 300
class scope, 297
definitions, accesibility by location and

access-control modifiers, 296
function scope, 299
global scope, 296
instance method scope, 298
internal details, 300
nesting of, 295
open namespaces and, 335
scope chain, 295
static method scope, 298
with statement, scope chain expansion

using, 302
screen updates, 587

Event.RENDER event, optimization
with, 601–609

post-event updates (see post-event
updates)

redraw region, 600
scheduled updates (see scheduled

updates)
scroll() method, 670
sealed classes, 280
security, 411–454

accessing Loader classes instance variable
content, 453

accessing-content-as-data operations,
authorizing, 431–438

ActionScript restrictions, 416–421
accessing content as data, 417
cross-scripting, 417
loading content, 416
loading data, 417
security-sandbox-types for different

restrictions, 418–421
additional information sources, 412
application testing, 428
creator permissions, 444
developers, automatic trust of, 428
email attachments and Flash Player

security, 423
example scenarios, 422
harmful generalizations concerning, 415
information theft, 424

cross-web site theft, 424
internet subdomains, accessing, 453
loading-data operations,

authorizing, 431–438
local security-sandbox-types

comparisons, 425–429
policy files (see policy files)
realms, 412
resource distributors and resource

creators, 411
security domains, 450–452
security violations, handling, 448–450
security-sandbox-types, 413

assignment of types, 414
default local type, 429
remote type, 419
type verification, importance of, 429

sockets, 422
.swf files and, 411

Serializable datatype and interface, 166
serialize() method, 165, 166

options for implementation, 169
Serializer class, 166

extension by other classes, 167
set method, 73

variable names and, 74

Index | 907

setAlpha() method, 652
setChanged() method, 638
setChildIndex() method, 473, 475
setFillStyle() method, 638
setInterval() function, 97
setName() method

exception generation using, 242
setPixel() method, 654
setPixel32() method, 654

ScribbleAS3 example, 666–668
setPixels() method, 654, 668
setRed() method, 652
setSize() method, 106, 108, 111
setStrokeStyle() method, 638
setter methods, 69
setTextFormat() method, 710

assignment of text prior to
formatting, 713

beginIndex and endIndex
parameters, 710

shadowing of static variables by instance
variables, 78

Shape class, 460
vector drawing support, 629

Shape objects, 465
ShapeRandomizer class, 645
sheltered class, 343
ShelteredClass class, 344
siblings, 354
sign change operator (–), 179
signatures, 41
simple conditional operator (?:), 183
simple identifiers, 312
sky.fla, 836–855

preloading of classes, 853
SlideShow class, 275
SlidingText class, 626–627
smoothing, 674
Socket class, 762, 796–807

connect() method, 804
creating and connecting to sockets, 804
display assets, loading with, 796–806

client-side receiving, 800–806
server-side sending, 796–800

ProgressEvent.SOCKET_DATA
event, 804

readBytes() method, 804
SOCKET_DATA event, 800
socketDataListener() method, 804
sockets

authorizing connections with policy
files, 438–444

granting local trust, 427

security, 422
SSL (Secure Sockets Layer), 412

soft wrap, 702
source code, 3
source-level functions, 91
source-path technique, 784
sparse arrays, 187
special characters, XML entities for

(E4X), 395
specialize, 103
splice() method, 196, 199
Sprite class, 458, 461

graphics instance variable, 466
Movie Clip symbol instances and, 834
vector drawing support, 629

square brackets [], creating arrays using, 187
square brackets([]), 178
src (source), 8
stacks, 195
Stage, 822
Stage class, 207, 461, 462

focus variable, 548
stage owner, 464
stage.invalidate() method, 601
standard mode compilation, 135
Star class, 643
statements, 10, 172–173

conditionals (see conditional statements)
loops (see loops)

static attribute, 77
static method libraries, 113
static method scope, 298
static methods, 82–85

inheritance and, 104
limitations compared to instance

methods, 83
terminology compared, C++ and Java, 86

static variables, 77–80
access-control modifiers, 77
constants, 80
inheritance and, 104
instance variables of the same name, 78
terminology compared, C++ and Java, 86

StaticText class, 460, 697
stop() method, 828
StorageManager class, 166
strict equality operator (===), 50
strict mode compilation, 135

compilation time ignorance of type
mismatch errors, 143

operand value and datatype
mismatches, 176

908 | Index

string comparisons, formatting of, 47
String datatypes, conversions of other

datatypes to, 152
StyleSheet class, 697, 708, 726–735

CSS class selectors, 732
formatting text with externally loaded

style sheets, 733–735
formatting text with programatically

created style sheets, 730
formatting XML tags with CSS, 733
style sheet limitations in

ActionScript, 729
supported CSS style properties, 728

subclasses, constructor methods in, 108
subinterface, 164
subtraction operator (–), 180
subtraction reassignment operator (–=), 183
subtype inheritance, 114
subtypes, 139
SunsetViewer class, 763

createProgressIndicator() and load()
methods, 772

load-error handling, 777
super keyword, 109
super operator, 107
superclass, 102
superinterface, 164
supertypes, 139
supporting display classes, 458
Sushi class code, 129
swapChildren() and swapChildrenAt()

methods, 473
.swc files, 814

class libraries, distributing as, 863–867
Flash authoring tool, creating in, 865
Flash authoring tool, using in, 866
Flex Builder 2, creating in, 863
Flex Builder 2, using in, 864

SWF (Flash file format), xxv, 5
.swf files, xxv, 5

class libraries, distributing, 867–873
Flash authoring tool, creating in, 871
Flash CS3, using in, 872
Flex Builder 2, creating in, 868
Flex Builder 2, using in, 869

embedded files, accessing classes in, 814
Flash authoring tool, automated export

in, 862
Flash authoring tool, creating with, 821
Flash Player security and, 411
loaded files, instantiating, 793–795

main class, 463
class extensions in ActionScript

3.0, 465
mxmlc, compiling with, 869
remote .swf files, 414
removing runtime loaded assets, 806

switch statement, 48–50
symbol instance names, collision potential

with instance variables, 843
symbols, 833–848

instance names, 839
automatic declaration of stage

instances, 842
matching variables for, 841–844

manually created symbol instances,
accessing, 838–840

synchronous versus asynchronous program
execution, 800

T
tab order, 548
target phase, 503
technical reviewers, xxx
ternary operators, 174
test expression, 44
text API, 696

constant-value classes, 698
core classes, 696–698
creating and displaying text, 699–705

automatic resizing, 702
border and background, 701
modifying text field content, 705–708
resizable right and bottom

borders, 703
rotated, skewed, or transparent

text, 705
wordwrapping, 701

embedded text rendering, normal and
advanced modes, 752

FlashType renderer, tuning, 755
fonts, 735

availability, determing, 749
embedded font outlines, 737
embedded fonts, requirement for

separate bold and italic fonts, 713
font outlines, embedding in the Flash

authoring tool, 737
font outlines, embedding in the Flex

Builder 2 and mxmlc, 738–741
glyph availability, determining, 751
loading at runtime, 745–748
missing fonts and glyphs, 748

Index | 909

text API (continued)
formatting text, 708–735

embedded fonts, using, 741–745
HTML (see HTML text formatting)
StyleSheet class (see StyleSheet class)
TextFormat class (see TextFormat

class)
text field input, 755–759
text fields, manual creation with Flash

authoring tool, 759
text field, 458
Text Tool, 844
TextColorType class, 698
TextDisplayMode class, 698
TextField class, 697

autoSize variable, 702
getTextFormat() method, 716

TextField objects, 699
TextFieldAutoSize class, 698
TextFieldType class, 698
TextFormat class, 697, 708, 709–718

default text format, 717
embedded fonts, requirement for separate

bold and italic fonts, 713
formatting information, retrieving for one

or more characters, 716
formatting variables, 711

character-level variables, 712
paragraph-level variables, 712

paragraph-level formatting, 714
setTextFormat() method, 710, 713
TextFormat objects, creating, 709

TextFormatAlign class, 698
text-input events, 565–580

Event.SCROLL, 571–577
TextEvent.LINK, 577–580
TextEvent.TEXT_INPUT and

Event.CHANGE, 567–570
text-input-event types, 565

textInputListener() method, 507, 508
TextLineMetrics class, 697
TextRenderer class, 697
TextSnapshot class, 697
this keyword, 64

function closures and, 92
threshold() method, 687
throw statements, 241, 242

control flow changes caused by, 264
timelines, 822

main timeline, listing children of, 838
timeline scripting, 827

TimerEvent.TIMER events, 616–622
compared to ENTER_FRAME events for

animation, 623
TimerEvent.updateAfterEvent()

method, 598
ToggleEvent.TOGGLE_ATTEMPT event

type, 229
toggles, 61
toString() method, 199

hexadecimal color values, generation
with, 651

tree nodes, 353
try statements, 243

with multiple catch blocks, 245
try/catch/finally statements, 241, 243

control flow changes caused by, 264
example, 244
finally blocks, 258
nesting in other blocks, 260

two-dimensional arrays, 188
type annotations, 138, 140
type mismatch errors, 141

avoiding, 147
typeof operator, 180

U
UI component sets, 457
UI components example, 859
UIComponent class

animation and, 627
uint datatype, conversions of other datatypes

to, 151
UML (Unified Modeling Language), 103
unary operators, 174
UNC (Universal Naming Convention)

path, 413
undefined values, 153
Unified Modeling Language (UML), 103
unload() method, 806
unoccupied depths, 469
unreachable objects, 269
unsafe casts, 148
unshift() method, 199
unshift()method, 194
untyped expressions, 142
untyped return values, 142
upcasting, 148
updateAfterEvent() method, 533, 597, 598
URIs (Uniform Resource Identifiers), 307

explicit versus implicit URIs, 309
URL resolution, 764

910 | Index

URLLoader class, 397
URLRequest class, 397
URLRequest objects, 764
use namespace directive, 334
user, 411
Uses-A relationships, 119

V
values, 19
variable assignment operator (=), 183
variable initializers, 19
variables, 19

accessibility of outside-of-package
definitions, 302

assigning one’s value to another, 28–30
copies and refernces, 29
default variable values, 153
instance variables, 20–23
local variables, 19
static variables (see static variables)
typed and untyped variables, 142
variable definitions in frame scripts, 831

vector drawing, 629
curves, 633
Graphics class (see Graphics class)
lines, 630–632
object-oriented shape library, 637
removing vector content, 636
shapes, 634

vectors, 465
velocity-based animation, 627
Venner, Bill, 120
version control, 862

Video class, 460
VirtualPet class, 11

attributes, 12
code, 126
constructor parameter name, 25
creationTime instance variable, 39
currentCalories instance variable, 32
instance variable petName, 21
parameter/variable name conflicts, 65
pet instance variable, 30
static variables, 78
with included functions, 99

VirtualPet object
creating, 17
creation time, recording, 39
local variable pet, 20

VirtualPet.as, 12
VirtualZoo

final code for, 875–890
functions, using in, 96
garbage collection in, 270
inheritance, using in, 121–125

VirtualZoo class, 8
code, 126
datatypes in, 154–158
fully-qualified class name, 11

VirtualZoo.as, 8
directory structure containing, 10

void datatype, 138
undefined value, 153

void operator, 180

Index | 911

W
W3C (World Wide Web Consortium)

Document Object Model (DOM), 202,
353

Namespaces in XML
recommendation, 307

while statement, 50–52
with statement, 302
wordwrap, 701

multiline variable, compared to, 702
World Wide Web Consortium (see W3C)

X
XML

data structure hierarchy, 353
descendant nodes, accessing, 379–383
equality of Namspace objects, 410
equality of QName instances, 409
equality of XML instances, 407
for-each-in and for-in, processing

with, 377–379
node kinds, 355
root nodes, 354
XML class, 353

ActionScript versions 1.0 and 2.0, 355

XML class and datatype, 355
accessing parent nodes, 365
as XMLList parent, 355
content-access methods, 359

XML data creation with E4X, 357
XML data, loading, 397–398
XML fragments, 353
XML namespaces, 398–404

namespace-qualified elements and
attributes, accessing, 398

namespace-qualified elements and
attributes, creating, 402

XML trees, traversing, 386–387
XMLDocument class, 355
XMLList class and datatype, 355, 356

content-access methods, 359
converting XMLList to a string, 404
equality of XMLList instances, 408
objects with a single XML

instance, 361
treating XMLList as XML, 372
values, assigning to an XMLList, 396

(see also E4X)

Z
zoo game classes, 13

About the Author
Colin Moock is an independent ActionScript expert whose world-renowned books
have educated Flash programmers since 1999. He is the author of the canonical
Essential ActionScript 2.0 (O’Reilly, 2004) and ActionScript for Flash MX: The
Definitive Guide (O’Reilly, 2003, 2001). Moock runs one of the web’s oldest Flash
developer sites, www.moock.org and is the co-creator of Unity, a client/server frame-
work for creating multiuser applications.

Colophon
The animal on the cover of Essential ActionScript 3.0 is the coral snake (Micrurus
fulvius tenere). This highly dangerous snake is found in the southeastern states of
North America and can also be found in Mexico. It likes wet, humid, and thick
foliage-littered forests, but can be found in any environment.

The coral snake is recognized by its vibrant red, yellow, and black bands. These
colors ward off would-be attackers. On the head and tail are bands of black and
yellow; on the midsection are black, yellow, and red bands. The red bands are always
adjacent to the yellow bands. The average length of a snake is 24 inches, with a
maximum length of 47 inches. The coral snake is the only venomous snake in North
America to hatch its young from eggs.

Coral snakes have short, grooved, and hollow fangs located at the front of the
mouth. They feed on lizards and other snakes. Coral snakes bite their prey to inject
neurotoxic venom, which paralyzes the victim; however, unlike snakes of the viper
family, which use a stabbing method, when a coral snake bites its victim, it hangs on
for a long time to inject as much venom as possible. Coral snakes are seldom seen,
due to their habit of living underground, or in cracks and crevices, and their
nocturnal tendencies. Coral snakes usually do not bite humans unless handled. If a
human or pet is bitten, treatment should take place as soon as possible, since coral
snake bites are often fatal.

The cover image is a 19th-century engraving from the Dover Pictorial Archive. The
cover font is Adobe ITC Garamond. The text font is Linotype Birka; the heading font
is Adobe Myriad Condensed; and the code font is LucasFont’s TheSans Mono
Condensed.

	Essential ActionScript 3.0
	Table of Contents
	Foreword
	Preface
	Beginners Welcome
	Expert Guidance
	What’s In This Book
	What’s Not In This Book
	Authoring Tool Agnosticism
	ActionScript Overview
	The Core Language
	Flash Runtime Clients
	Runtime APIs
	Components
	The Flash File Format (SWF)
	ActionScript Development Tools

	This Book’s Example Files
	Using Code Examples
	Typographical Conventions
	How to Contact Us
	Safari® Enabled
	Acknowledgments

	Part I ActionScript from the Ground Up
	Core Concepts
	Tools for Writing ActionScript Code
	Flash Client Runtime Environments
	Compilation
	Just-In-Time Compilation

	Quick Review
	Classes and Objects
	Creating a Program
	Packages
	Defining a Class
	Access Control Modifiers for Classes

	Virtual Zoo Review
	Constructor Methods
	Creating Objects
	Literal Syntax
	Object Creation Example: Adding a Pet to the Zoo

	Variables and Values
	Local Variables
	Instance Variables
	Access-control modifiers for instance variables

	Constructor Parameters and Arguments
	Expressions
	Assigning One Variable’s Value to Another
	Copies and References

	An Instance Variable for Our Pet
	Instance Methods
	Access Control Modifiers for Instance Methods
	Method Parameters and Arguments
	Method Return Values
	Method Signatures

	Members and Properties
	Virtual Zoo Review
	Break Time!

	Conditionals and Loops
	Conditionals
	The if Statement
	An if statement with no else
	Chaining if statements

	The switch Statement

	Loops
	The while Statement
	Processing Lists with Loops
	Ending a Loop with the break Statement
	The do-while Statement
	The for Statement

	Boolean Logic
	Logical OR
	Logical AND
	Logical NOT

	Back to Classes and Objects

	Instance Methods Revisited
	Omitting the this Keyword
	Managing Parameter/Variable Name Conflicts

	Bound Methods
	Using Methods to Examine and Modify an Object’s State
	Get and Set Methods
	Handling an Unknown Number of Parameters
	Up Next: Class-Level Information and Behavior

	Static Variables and Static Methods
	Static Variables
	Constants
	Static Methods
	The Class Initializer

	Class Objects
	C++ and Java Terminology Comparison
	On to Functions

	Functions
	Package-Level Functions
	Global Functions

	Nested Functions
	Source-File-Level Functions
	Accessing Definitions from Within a Function
	Functions as Values
	Function Literal Syntax
	Recursive Functions
	Using Functions in the Virtual Zoo Program
	Back to Classes

	Inheritance
	A Primer on Inheritance
	Static Methods and Static Variables Not Inherited

	Overriding Instance Methods
	Invoking an Overridden Instance Method

	Constructor Methods in Subclasses
	Preventing Classes from Being Extended and Methods from Being Overridden
	Subclassing Built-in Classes
	The Theory of Inheritance
	Why Inheritance?
	Polymorphism and Dynamic Binding
	Inheritance Versus Composition
	Is-A, Has-A, and Uses-A
	When to use composition over inheritance

	Abstract Not Supported
	Using Inheritance in the Virtual Zoo Program
	Creating Types of Pet Food
	Preparing VirtualZoo for Onscreen Display

	Virtual Zoo Program Code
	It’s Runtime!

	Compiling and Running a Program
	Compiling with the Flash Authoring Tool
	Compiling with Flex Builder 2
	Moving the Main Class to the Unnamed Package
	Compiling the Program
	Running the Program

	Compiling with mxmlc
	Compiler Restrictions
	The Compilation Process and the Classpath
	Strict-Mode Versus Standard-Mode Compilation
	Enabling Standard-Mode Compilation in Flex Builder 2
	Enabling Standard-Mode Compilation in the Flash Authoring Tool

	The Fun’s Not Over

	Datatypes and Type Checking
	Datatypes and Type Annotations
	Compatible Types
	Detecting Type Mismatch Errors with Type Annotations

	Untyped Variables, Parameters, Return Values, and Expressions
	Strict Mode’s Three Special Cases
	Warnings for Missing Type Annotations
	Detecting Reference Errors at Compile Time
	Casting
	Avoiding Unwanted Type Mismatch Errors
	Upcasting and Downcasting
	Using the as Operator to Cast to Date and Array

	Conversion to Primitive Types
	Default Variable Values
	null and undefined
	Datatypes in the Virtual Zoo
	More Datatype Study Coming Up

	Interfaces
	The Case for Interfaces
	Interfaces and Multidatatype Classes
	Interface Syntax and Use
	Interface Naming Conventions
	Interface Inheritance
	Marker Interfaces

	Another Multiple-Type Example
	More Essentials Coming

	Statements and Operators
	Statements
	Operators
	Number of Operands
	Operator Precedence
	Operator Associativity
	Datatypes and Operators
	Operator Overview

	Up Next: Managing Lists of Information

	Arrays
	What Is an Array?
	The Anatomy of an Array
	Array Elements
	Array Element Indexing
	Array Size

	Creating Arrays
	Creating Arrays with Array Literals
	Creating Arrays with the new Operator

	Referencing Array Elements
	Retrieving an Element’s Value
	Setting an Element’s Value

	Determining the Size of an Array
	Adding Elements to an Array
	Adding New Elements Directly
	Adding New Elements with the length Variable
	Adding New Elements with Array Methods
	The push(��) method
	The unshift(��) method
	The splice(��) method
	The concat(��) method

	Removing Elements from an Array
	Removing Elements with the delete Operator
	Removing Elements with the length Variable
	Removing Elements with Array Methods
	The pop(��) method
	The shift(��) method
	The splice(��) method

	Checking the Contents of an Array with the toString(��) Method
	Multidimensional Arrays
	On to Events

	Events and Event Handling
	ActionScript Event Basics
	Registering an Event Listener for an Event
	Step 1: Determine the event type’s name
	Step 2: Determine the event object’s datatype
	Step 3: Create the event listener
	Step 4: Register for the event
	Step 5: Wait for the event to occur

	Two More Event Listener Registration Examples
	Unregistering an Event Listener for an Event
	Event Vocabulary Review

	Accessing the Target Object
	Accessing the Object That Registered the Listener
	Preventing Default Event Behavior
	Event Listener Priority
	Event Listeners and Memory Management
	Weak Listener References

	Custom Events
	A Custom “gameOver” Event
	A Custom “toggle” Event
	Preventing Default Behavior for Custom Events

	Type Weakness in ActionScript’s Event Architecture
	Handling Events Across Security Boundaries
	Module.swf Listener Registers with Main.swf Object
	Main.Swf Listener Receives Notification for an Event Targeted at a Module.swf Display Object
	An Alternative to allowDomain(��): Shared Events

	What’s Next?

	Exceptions and Error Handling
	The Exception-Handling Cycle
	Handling Multiple Types of Exceptions
	Determining Exception Type Granularity
	Options 1 and 2: Using a single custom-exception type
	Option 3: Using configurable debugging messages
	Option 4: Multiple custom VirtualPetNameException subclasses

	Exception Bubbling
	Uncaught Exceptions

	The finally Block
	Nested Exceptions
	Control-Flow Changes in try/catch/finally
	Handling a Built-in Exception
	Error Events for Problem Conditions

	More Gritty Work Ahead

	Garbage Collection
	Eligibility for Garbage Collection
	Incremental Mark and Sweep
	Disposing of Objects Intentionally
	Deactivating Objects
	Garbage Collection Demonstration
	On to ActionScript Backcountry

	Dynamic ActionScript
	Dynamic Instance Variables
	Processing Dynamic Instance Variables with for-each-in and for-in Loops

	Dynamically Adding New Behavior to an Instance
	Dynamic References to Variables and Methods
	Using Dynamic Instance Variables to Create Lookup Tables
	Making Lookup Tables with Object Literals

	Using Functions to Create Objects
	Using Prototype Objects to Augment Classes
	The Prototype Chain
	Onward!

	Scope
	Global Scope
	Class Scope
	Static Method Scope
	Instance Method Scope
	Function Scope
	Scope Summary
	The Internal Details
	Expanding the Scope Chain via the with Statement
	On to Namespaces

	Namespaces
	Namespace Vocabulary
	ActionScript Namespaces
	Creating Namespaces
	Choosing the Namespace URI
	Defining the Namespace
	Explicit Versus Implicit URIs
	Namespace Terminology Review

	Using a Namespace to Qualify Variable and Method Definitions
	User-Defined Namespace Attributes in the Top-Level of a Class Only

	Qualified Identifiers
	Expanded Names

	A Functional Namespace Example
	Namespace Accessibility
	Accessibility of Package-Level Namespace Definitions
	Accessibility of Class-Level Namespace Definitions
	Accessibility of Function-Level Namespace Definitions

	Qualified-Identifier Visibility
	Comparing Qualified Identifiers
	Assigning and Passing Namespace Values
	Assigning a Namespace Value to a Variable
	Namespaces as Method Arguments and Return Values
	A Namespace Value Example

	Open Namespaces and the use namespace Directive
	Open Namespaces and Scope
	Opening Multiple Namespaces

	Namespaces for Access-Control Modifiers
	Import Opens Public Namespaces

	Applied Namespace Examples
	Example: Framework-Internal Visibility
	Example: Permission-Based Access Control
	Example: Program Modes

	Final Core Topics

	XML and E4X
	Understanding XML Data as a Hierarchy
	Representing XML Data in E4X
	Creating XML Data with E4X
	Accessing XML Data
	Accessing the Root XML Node
	Accessing Child Nodes
	Accessing Text Nodes
	Accessing Parent Nodes
	Accessing Sibling Nodes
	Accessing Attributes
	Accessing Comments and Processing Instructions
	Accessing Attributes and Elements Whose Names Contain Reserved Characters
	Treating XMLList as XML, Revisited

	Processing XML with for-each-in and for-in
	Accessing Descendants
	Filtering XML Data
	Traversing XML Trees
	Changing or Creating New XML Content
	Changing the Contents of an Element
	Changing an Attribute Value
	Replacing an Entire Element
	Adding New Attributes and Elements
	Adding a new child after all existing children
	Adding a new child after a specific existing child
	Adding a new child before a specific existing child
	Adding a new child before all existing children

	Deleting Elements and Attributes
	References to Parts of a Document Are Not Live
	Using XML Entities for Special Characters
	Assigning Values to an XMLList

	Loading XML Data
	Working with XML Namespaces
	Accessing Namespace-Qualified Elements and Attributes
	Creating Namespace-Qualified Elements and Attributes

	Converting XML and XMLList to a String
	Converting XMLList to a String
	Converting an XML Element to a String
	Converting an Attribute to a String
	Converting Comments and Processing-Instructions to Strings

	Determining Equality in E4X
	XML Equality
	XMLList Equality
	QName Equality
	Namespace Equality

	More to Learn

	Flash Player Security Restrictions
	What’s Not in This Chapter
	The Local Realm, the Remote Realm, and Remote Regions
	Security-Sandbox-Types
	How Security-Sandbox-Types Are Assigned

	Security Generalizations Considered Harmful
	Restrictions on Loading Content, Accessing Content as Data, Cross-Scripting, and Loading Data
	Loading Content
	Accessing Content as Data
	Cross-Scripting
	Loading Data
	Restrictions on Loading Content, Accessing Content as Data, Loading Data, and Cross-Scripting

	Socket Security
	Example Security Scenarios
	Snoopy Email Attachment—Without Flash Player Security
	Snoopy Email Attachment—With Flash Player Security
	Internal Corporate Information—Without Flash Player Security
	Internal Corporate Information—With Flash Player Security
	Cross-Web Site Information—Without Flash Player Security
	Cross-Web Site Information—With Flash Player Security

	Choosing a Local Security-Sandbox-Type
	Compiling a Local-with-Filesystem .swf File
	Compiling a Local-with-Networking .swf File
	Granting Local Trust
	Developers Automatically Trusted
	Default Local Security-Sandbox-Type

	Distributor Permissions (Policy Files)
	Authorizing Loading-Data and Accessing-Content-as-Data Operations
	Creating the policy file
	Posting the policy file
	Obtaining a policy file’s permission to load data
	Obtaining a policy file’s permission to access content as data

	Using a Policy File to Authorize Socket Connections
	Create the policy file
	Socket-based policy-file retrieval
	HTTP-based policy-file retrieval

	Creator Permissions (allowDomain(��))
	Allowing .swf Files Served Over HTTP to Cross-Script .swf Files Served Over HTTPS

	Import Loading
	Handling Security Violations
	Security Domains
	Ambiguous Use of the Term “Sandbox”

	Two Common Security-Related Development Issues
	Accessing Internet Subdomains
	Accessing the Loader Class’s Instance Variable Content

	On to Part II!

	Part II Display and Interactivity
	The Display API and the Display List
	Display API Overview
	Extending the Core-Display Class Hierarchy

	The Display List
	Containers and Depths
	Removing Assets from Containers
	Removing Assets from Memory
	Removing All Children
	Reparenting Assets
	Traversing Objects in a Display Hierarchy
	Manipulating Objects in Containers Collectively
	Descendant Access to a .swf File’s Main Class Instance
	The rebirth of _root
	Whither _level0?

	Containment Events
	The Event.ADDED and Event.REMOVED Events
	A Real-World Containment-Event Example
	The ADDED_TO_STAGE and REMOVED_FROM_STAGE Events
	Custom Event.ADDED_TO_STAGE and Event.REMOVED_FROM_STAGE events

	Custom Graphical Classes
	Go with the Event Flow

	Events and Display Hierarchies
	Hierarchical Event Dispatch
	Event Dispatch Phases
	Event Listeners and the Event Flow
	Registering an Ancestor Listener for the Capture Phase
	Registering an Ancestor Listener for the Bubbling Phase
	Registering an Ancestor Listener for Both the Capture Phase and the Bubbling Phase
	Registering a Listener with the Event Target
	The Dual Purpose of the useCapture Parameter
	Removing Event Listeners

	Using the Event Flow to Centralize Code
	Determining the Current Event Phase
	Distinguishing Events Targeted at an Object from Events Targeted at That Object’s Descendants
	Stopping an Event Dispatch
	Event Priority and the Event Flow
	Display-Hierarchy Mutation and the Event Flow
	Event Listener List Mutation

	Custom Events and the Event Flow
	On to Input Events

	Interactivity
	Mouse-Input Events
	Flash Player’s Built-in Mouse Events
	Registering for Mouse Events
	Mouse Events and Overlapping Display Objects
	Finding the Mouse Pointer’s Position
	Handling Mouse Events “Globally”

	Focus Events
	Focusing Objects Programmatically
	Focusing Objects with the Keyboard
	Focusing Objects with the Mouse
	Handling descendant focus through a single ancestor

	Flash Player’s Focus Events

	Keyboard-Input Events
	Global Keyboard-Event Handling
	Object-Specific Keyboard-Event Handling
	Determining the Most Recently Pressed or Released Key
	Multilocation keys

	Detecting Multiple Simultaneous Key Presses
	Mouse Events and Modifier Keys
	Determining the Character Associated with a Key

	Text-Input Events
	The TextEvent.TEXT_INPUT and Event.CHANGE Events
	The Event.SCROLL Event
	The TextEvent.LINK Event

	Flash Player-Level Input Events
	The Event.ACTIVATE and Event.DEACTIVATE Events
	The Event.RESIZE Event
	The Event.MOUSE_LEAVE Event

	From the Program to the Screen

	Screen Updates
	Scheduled Screen Updates
	No Screen Updates Within Code Blocks
	Setting the Frame Rate
	Designated Frame Rate Versus Actual Frame Rate

	Post-Event Screen Updates
	Post-Event Updates for Timer Events
	Automatic Post-Event Screen Updates

	Redraw Region
	Optimization with the Event.RENDER Event
	Let’s Make It Move!

	Programmatic Animation
	No Loops
	Animating with the ENTER_FRAME Event
	Frame Rate’s Effect on Event.ENTER_FRAME Animations

	Animating with the TimerEvent.TIMER Event
	Frame Rate’s Effect on Timer

	Choosing Between Timer and Event.ENTER_FRAME
	A Generalized Animator
	Velocity-Based Animation
	Moving On to Strokes ’n’ Fills

	Drawing with Vectors
	Graphics Class Overview
	Drawing Lines
	Drawing Curves
	Drawing Shapes
	Removing Vector Content
	Example: An Object-Oriented Shape Library
	From Lines to Pixels

	Bitmap Programming
	The BitmapData and Bitmap Classes
	Pixel Color Values
	Creating a New Bitmap Image
	Loading an External Bitmap Image
	Examining a Bitmap
	getPixel32() Versus getPixel(��)
	Transparency’s Effect on Color-Value Retrieval
	ColorPicker: A getPixel32(��) Example
	Retrieving the Color of a Region of Pixels
	Other Examination Tools

	Modifying a Bitmap
	Improve Performance with BitmapData.lock(��)
	ScribbleAS3: A setPixel32(��) Example
	Assigning the Color of a Region of Pixels
	Other Manipulation Tools
	Resizing a Bitmap

	Copying Graphics to a BitmapData Object
	The BitmapData Class’s Instance Method draw(��)
	How draw(��) handles Alpha channel values
	No arbitrary screen captures

	The BitmapData Class’s Instance Method copyPixels(��)

	Applying Filters and Effects
	Applying Filters

	Freeing Memory Used by Bitmaps
	Words, Words, Words

	Text Display and Input
	Creating and Displaying Text
	Word Wrapping
	Automatic Resizing
	Rotated, Skewed, and Transparent Text Requires Embedded Fonts

	Modifying a Text Field’s Content
	Formatting Text Fields
	Formatting Text with the TextFormat Class
	Available TextFormat variables
	Embedded font warning: Bold and italic require separate fonts
	setTextFormat(��) does not apply to future text assignments
	Applying paragraph-level formatting
	Retrieving formatting information for a span of characters
	Default formatting for text fields

	Formatting Text with HTML
	Entity support
	Quoting attribute values
	Interactions between the text and htmlText variables
	Unrecognized tags and attributes

	Formatting Text with the StyleSheet Class
	Notable style sheet limitations in ActionScript
	Formatting text with a programmatically created style sheet
	Class selectors
	Formatting XML tags with CSS
	Formatting text with an externally loaded style sheet

	Fonts and Text Rendering
	Embedding Font Outlines in the Flash Authoring Tool
	Embedding Font Outlines in Flex Builder 2 and mxmlc
	Formatting Text with an Embedded Font
	Using bold and italic with embedded fonts

	Loading Fonts at Runtime

	Missing Fonts and Glyphs
	Determining Font Availability
	Determining Glyph Availability
	Embedded-Text Rendering
	Tweaking the FlashType Renderer

	Text Field Input
	Text Entry
	Formatting user input

	Text Selection
	Hypertext Links

	Text Fields and the Flash Authoring Tool
	Loading�.�.�.�Please Wait�.�.�.�

	Loading External Display Assets
	Using Loader to Load Display Assets at Runtime
	Creating the Loader Instance
	Specifying the Asset’s Location
	Starting the Load Operation
	Accessing the Loaded Asset
	Displaying the Loaded Asset On Screen
	Displaying Load Progress
	Why not use Event.OPEN?

	Handling Load Errors
	Environment-specific behavior for load failures
	Debugging with HTTPStatusEvent

	Compile-Time Type-Checking for Runtime-Loaded Assets
	Opting Out of Compile-Time Type-Checking
	Give the Compiler Access to the Loaded Class
	Add the Module Class File to Main.swf’s source-path
	Add the Module Class File to Main.swf’s library-path
	Add the Module Class File to Main.swf’s external-library-path

	Accessing Assets in Multiframe .swf Files
	Instantiating a Runtime-Loaded Asset
	Instantiating a Loaded .swf File
	Instantiating a Loaded Image

	Using Socket to Load Display Assets at Runtime
	Server-Side: Sending the Asset
	Client-Side: Receiving the Asset
	Creating and connecting to the socket
	Placing bytes in a buffer
	Creating a display asset from the loaded bytes

	Removing Runtime Loaded .swf Assets
	Embedding Display Assets at CompileTime
	A Note on File Size and Memory Consumption
	General [Embed] Syntax
	Supported Asset Types
	Embedding Bitmap Images
	Embedding SVG
	Embedding Entire .swf Files
	Embedding Symbols from Legacy .swf Files
	Embedding Files as Binary Data
	Using getDefinition(��) to Access a Class in an Embedded .swf File
	An [Embed] Example
	Clean the Project to See Changes

	On to Part III

	Part III Applied ActionScript Topics
	ActionScript and the Flash Authoring Tool
	The Flash Document
	Timelines and Frames
	Keyframes and Regular Frames

	Timeline Scripting
	The Document Class
	Variable and Function Definitions in Frame Scripts

	Symbols and Instances
	Types of Symbols
	Movie Clip Symbols

	Linked Classes for Movie Clip Symbols
	Accessing Manually Created Symbol Instances
	Instance Names
	Matching Variables for Instance Names

	Accessing Manually Created Text
	Programmatic Timeline Control
	Instantiating Flash Authoring Symbols via ActionScript
	Instance Names for Programmatically Created Display Objects
	Linking Multiple Symbols to a Single Superclass
	The Composition-Based Alternative to Linked Classes
	Preloading Classes
	Up Next: Using the Flex Framework

	A Minimal MXML Application
	The General Approach
	Create the Flex Project
	Create the Application Point of Entry
	Trigger the Application Point of Entry

	A Real UI Component Example
	Sharing with Your Friends

	Distributing a Class Library
	Sharing Class Source Files
	Distributing a Class Library as a .swc File
	Creating a .swc-Based Class Library in Flex Builder 2
	Using a .swc-Based Class Library in Flex Builder 2
	Creating a .swc-Based Class Library in the Flash Authoring Tool
	Using a .swc-Based Class Library in the Flash Authoring Tool

	Distributing a Class Library as a .swf File
	Creating a .swf-Based Class Library in Flex Builder 2
	Compiling a .swf file using mxmlc

	Using a .swf-Based Class Library in Flex Builder 2
	Creating a .swf-Based Class Library in the Flash Authoring Tool
	Using a .swf-Based Class Library in Flash CS3

	But Is It Really Over?

	The Final Virtual Zoo
	Index

