

AJAX and PHP
Building Responsive Web Applications

Enhance the user experience of your PHP website
using AJAX with this practical tutorial featuring detailed
case studies

Cristian Darie
Bogdan Brinzarea
Filip Cherecheş-Toşa
Mihai Bucica

 BIRMINGHAM - MUMBAI

AJAX and PHP
Building Responsive Web Applications

Copyright © 2006 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the authors, Packt Publishing, nor its dealers or distributors will
be held liable for any damages caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

First published: March 2006

Production Reference: 1210206

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 1-904811-82-5
www.packtpub.com

Cover Design by www.visionwt.com

Credits

Authors
Cristian Darie
Brinzarea Bogdan
Filip Cherecheş-Toşa
Mihai Bucica

Reviewers
Emilian Balanescu
Paula Badascu

Technical Editor
Jimmy Karumalil

Editorial Manager
Dipali Chittar

Development Editor
Cristian Darie

Indexer
Ashutosh Pande

Proofreader
Chris Smith

Production Coordinator
Manjiri Nadkarni

Cover Designer
Helen Wood

About the Authors

Cristian Darie is a software engineer with experience in a wide range of modern technologies,
and the author of numerous technical books, including the popular "Beginning E-Commerce"
series. Having worked with computers since he was old enough to press the keyboard, he initially
tasted programming success with a first prize in his first programming contest at the age of 12.
From there, Cristian moved on to many other similar achievements, and now he is studying
distributed application architectures for his PhD degree. He always loves hearing feedback about
his books, so don't hesitate dropping a "hello" message when you have a spare moment. Cristian
can be contacted through his personal website at www.cristiandarie.ro.

Cristian would like to express a big "thank you!" to his co-authors, Bogdan, Filip, and Mihai
and to the Technical Editor of the book, Jimmy, for the hard work they've put into building
this wonderful book.

Bogdan Brinzarea has a strong background in Computer Science holding a Master and
Bachelor Degree at the Automatic Control and Computers Faculty of the Politehnica University of
Bucharest, Romania and also an Auditor diploma at the Computer Science department at Ecole
Polytechnique, Paris, France.

His main interests cover a wide area from embedded programming, distributed and mobile
computing, and new web technologies. Currently, he is employed as an Alternative Channels
Specialist at Banca Romaneasca, Member of National Bank of Greece, where he is responsible for
the Internet Banking project and coordinates other projects related to security applications and
new technologies to be implemented in the banking area.

http://www.cristiandarie.ro/

Filip Cherecheş-Toşa is a web developer with a firm belief in the future of web-based software.
He started his career at the age of 9, when he first got a Commodore 64 with tape-drive.

Back home in Romania, Filip runs a web development company named eXigo www.exigo.ro,
which is actively involved in web-based application development and web design. He is currently
a student at the University of Oradea, studying Computer Science, and also an active member of
the Romanian PHP Community www.phpromania.net.

Mihai Bucica started programming and competing in programming contests (winning many
of them), all at age twelve. With a bachelor's degree in computer science from the Automatic
Control and Computers Faculty of the Politehnica University of Bucharest, Romania, Bucica
works on building communication software with various electronic markets.

Even after working with a multitude of languages and technologies, Bucica's programming
language of choice remains C++, and he loves the LGPL word. Mihai also co-authored Beginning
PHP 5 and MySQL E-Commerce and he can be contacted through his personal website,
www.valentinbucica.ro.

http://www.exigo.ro/
http://www.phpromania.net/
http://www.valentinbucica.ro/

About the Reviewers

Emilian Balanescu is a programmer experienced in many technologies, including PHP, Java,
.NET, PostgreSQL, MS SQL Server, MySQL, and others. He currently works as a Wireless
Network Administrator at accessNET International S.A. Romania, a company that provides fixed
wireless access services operating a point-to-multipoint digital radio communication network with
national coverage. His latest project in this position was developing an AJAX-enabled real-time
Network Management System (using SNMP, Perl, PHP, and PostgreSQL) used for remote
debugging, monitoring system performance, and isolating and troubleshooting system problems.
You can reach Emilian at http://www.emilianbalanescu.ro.

Paula Badascu is in the third year of studies at Politehnica University of Bucharest, one of the
most famous technical universities in Romania, studying Electronics, Telecommunications, and
Information Technology. Paula is currently working as an analyst/programmer for NCH Advisors
Romania, building web applications using UML, OOP, PHP, SQL, JavaScript, and CSS. She
contributed decisively to the analysis and development of a framework used for tracking and
monitoring the Romanian capital market.

Table of Contents

Preface 1
Chapter 1: AJAX and the Future of Web Applications 7

Delivering Functionality via the Web 8
Advantages of Web Applications 9

Building Websites Since 1990 10
HTTP and HTML 10
PHP and Other Server-Side Technologies 11
JavaScript and Other Client-Side Technologies 12
What's Been Missing? 13

Understanding AJAX 14
Building a Simple Application with AJAX and PHP 18

Time for Action—Quickstart AJAX 21
Summary 28

Chapter 2: Client-Side Techniques with Smarter JavaScript 29
JavaScript and the Document Object Model 30

Time for Action—Playing with JavaScript and the DOM 32
JavaScript Events and the DOM 33

Time for Action—Using JavaScript Events and the DOM 35
Even More DOM 37

Time for Action—Even More DOM 37
JavaScript, DOM, and CSS 39

Time for Action—Working with CSS and JavaScript 39
Using the XMLHttpRequest Object 42

Creating the XMLHttpRequest Object 43
Creating Better Objects for Internet Explorer 45

Initiating Server Requests Using XMLHttpRequest 46
Handling Server Response 49

Time for Action—Making Asynchronous Calls with XMLHttpRequest 50

Table of Contents

Working with XML Structures 55
Time for Action—Making Asynchronous Calls with XMLHttpRequest and XML 55

Handling More Errors and Throwing Exceptions 59
Creating XML Structures 63

Summary 64
Chapter 3: Server-Side Techniques with PHP and MySQL 65

PHP and DOM 65
Time for Action—Doing AJAX with PHP 66

Passing Parameters and Handling PHP Errors 71
Time for Action—Passing PHP Parameters and Error Handling 72

Connecting to Remote Servers and JavaScript Security 79
Time for Action—Connecting to Remote Servers 81

Using a Proxy Server Script 85
Time for Action—Using a Proxy Server Script to Access Remote Servers 86

A Framework for Making Repetitive Asynchronous Requests 91
Time for Action—Implementing Repetitive Tasks 93

Working with MySQL 101
Creating Database Tables 101
Manipulating Data 104
Connecting to Your Database and Executing Queries 105

Time for Action—Working with PHP and MySQL 106
Wrapping Things Up and Laying Out the Structure 109

Time for Action—Building the Friendly Application 112
Summary 119

Chapter 4: AJAX Form Validation 121
Implementing AJAX Form Validation 122

Thread-Safe AJAX 125
Time for Action—AJAX Form Validation 126

Summary 144
Chapter 5: AJAX Chat 145

Introducing AJAX Chat 145
Implementing AJAX Chat 147

Time for Action—Ajax Chat 148
Summary 164

ii

Table of Contents

Chapter 6: AJAX Suggest and Autocomplete 165
Introducing AJAX Suggest and Autocomplete 165

Google Suggest 166
Implementing AJAX Suggest and Autocomplete 167

Time for Action—AJAX Suggest and Autocomplete 168
Summary 188

Chapter 7: AJAX Real-Time Charting with SVG 189
Implementing a Real-Time Chart with AJAX and SVG 190

Time for Action—Building the Real-Time SVG Chart 193
Summary 202

Chapter 8: AJAX Grid 203
Implementing the AJAX Grid Using Client-Side XSLT 204

Time for Action—AJAX Grid 205
Summary 221

Chapter 9: AJAX RSS Reader 223
Working with RSS 223

The RSS Document Structure 224
Google Reader 224

Implementing the AJAX RSS Reader 225
Time for Action—Building the RSS Reader Application 226

Summary 236
Chapter 10: AJAX Drag and Drop 237

Using Drag and Drop on the Web 237
Shopping Carts 237
Sortable Lists 238

Building the AJAX Drag-and-Drop Sortable List Application 238
Time for Action—Task Management Application with AJAX 241

Summary 253
Appendix A: Preparing Your Working Environment 255

Preparing Your Windows Playground 256
Installing Apache 256
Installing MySQL 258
Installing PHP 259

 iii

Table of Contents

Preparing Your *nix Playground 261
Installing Apache 261
Installing MySQL 261
Installing PHP 262

Installing phpMyAdmin 263
Preparing the AJAX Database 264

Index 267

iv

Preface

AJAX is a complex phenomenon that means different things to different people. Computer users
appreciate that their favorite websites are now friendlier and feel more responsive. Web
developers learn new skills that empower them to create sleek web applications with little effort.
Indeed, everything sounds good about AJAX!

At its roots, AJAX is a mix of technologies that lets you get rid of the evil page reload, which
represents the dead time when navigating from one page to another. Eliminating page reloads is
just one step away from enabling more complex features into websites, such as real-time data
validation, drag and drop, and other tasks that weren't traditionally associated with web
applications. Although the AJAX ingredients are mature (the XMLHttpRequest object, which is
the heart of AJAX, was created by Microsoft in 1999), their new role in the new wave of web
trends is very young, and we'll witness a number of changes before these technologies will be
properly used to the best benefit of the end users. At the time of writing this book, the "AJAX"
name is about just one year old.

AJAX isn't, of course, the answer to all the Web's problems, as the current hype around it may
suggest. As with any other technology, AJAX can be overused, or used the wrong way. AJAX
also comes with problems of its own: you need to fight with browser inconsistencies,
AJAX-specific pages don't work on browsers without JavaScript, they can't be easily
bookmarked by users, and search engines don't always know how to parse them. Also, not
everyone likes AJAX. While some are developing enterprise architectures using JavaScript,
others prefer not to use it at all. When the hype is over, most will probably agree that the middle
way is the wisest way to go for most scenarios.

In AJAX and PHP: Building Responsive Web Applications, we took a pragmatic and safe approach
by teaching relevant patterns and best practices that we think any web developer will need sooner
or later. We teach you how to avoid the common pitfalls, how to write efficient AJAX code, and
how to achieve functionality that is easy to integrate into current and future web applications,
without requiring you to rebuild the whole solution around AJAX. You'll be able to use the
knowledge you learn from this book right away, into your PHP web applications.

We hope you'll find this book useful and relevant to your projects. For the latest details and
updates regarding this book, please visit its mini-site at http://ajaxphp.packtpub.com.

The book's mini-site also contains additional free chapters and resources, which we recommend
you check out when you have the time.

http://ajaxphp.packtpub.com/

Preface

What This Book Covers
Chapter 1: AJAX and the Future of Web Applications is an initial incursion into the world of
AJAX and the vast possibilities it opens up for web developers and companies, to offer a better
experience to their users. In this chapter you'll also build your first AJAX-enabled web page,
which will give you a first look of the component technologies.

Chapter 2: Client-Side Techniques with Smarter JavaScript will guide you through the
technologies you'll use to build AJAX web clients, using JavaScript, the DOM, the XMLHttpRequest
object, and XML. While not being a complete tutorial for these technologies, you'll be put on the
right track for using them together to build a solid foundation for your future applications.

Chapter 3: Server-Side Techniques with PHP and MySQL completes the theoretical foundation by
presenting how to create smart servers to interact with your AJAX client. You'll learn various
techniques for implementing common tasks, including handling basic JavaScript security and
error-handling problems.

Chapter 4: AJAX Form Validation guides you through creating a modern, responsive, and secure
form validation system that implements both real-time AJAX validation and server-side validation
on form submission.

Chapter 5: AJAX Chat presents a simple online chat that works exclusively using AJAX code, without
using Java applets, Flash code, or other specialized libraries as most chat applications do these days.

Chapter 6: AJAX Suggest and Autocomplete builds a Google Suggest-like feature, that helps you
quickly find PHP functions, and forwards you to the official help page for the chosen function.

Chapter 7: AJAX Real-Time Charting with SVG teaches you how to implement a real-time
charting solution with AJAX and SVG. SVG (Scalable Vector Graphics) is a text-based graphics
language that can be used to draw shapes and text.

Chapter 8: AJAX Grid teaches you how to build powerful AJAX-enabled data grids. You'll learn
how to parse XML documents using XSLT to generate the output of your grid.

Chapter 9: AJAX RSS Reader uses the SimpleXML PHP library, XML, and XSLT to build a
simple RSS aggregator.

Chapter 10: AJAX Drag and Drop is a demonstration of using the script.aculo.us framework to
build a simple list of elements with drag-and-drop functionality.

Appendix A: Preparing Your Working Environment teaches you how to install and configure the
required software: Apache, PHP, MySQL, phpMyAdmin. The examples in this book assume that
you have set up your environment and sample database as shown here.

At the book's mini-site at http://ajaxphp.packtpub.com, you can find the online demos for
all the book's AJAX case studies.

2

http://ajaxphp.packtpub.com/

Preface

What You Need for This Book
To go through the examples of this book you need PHP 5, a web server, and a database server. We
have tested the code under several environments, but mostly with the Apache 2 web server, and
MySQL 4.1 and MySQL 5 databases.

You can choose, however, to use another web server, or another database product, in which case
the procedures presented in the chapters might not be 100% accurate. It is important to have PHP
5 or newer, because we use some features, such as Object Oriented Programming support, which
aren't available in older versions.

Please read Appendix A for more details about setting up your machine. If your machine already
has the required software, you still need to read the final part of Appendix A, where you are
instructed about creating a database that is used for the examples in this book.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "We can include other
contexts through the use of the include directive."

A block of code will be set as follows:
// function calls the server using the XMLHttpRequest object
function process()
{
 // retrieve the name typed by the user on the form
 name = document.getElementById("myName").value;
 // execute the quickstart.php page from the server
 xmlHttp.open("GET", "quickstart.php?name=" + name, false);
 // make synchronous server request
 xmlHttp.send(null);
 // read the response
 handleServerResponse();
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items will be made bold:

// function calls the server using the XMLHttpRequest object
function process()
{
 // retrieve the name typed by the user on the form
 name = document.getElementById("myName").value;
 // execute the quickstart.php page from the server
 xmlHttp.open("GET", "quickstart.php?name=" + name, false);
 // make synchronous server request
 xmlHttp.send(null);
 // read the response
 handleServerResponse();
}

3

Preface

Any command-line input and output is written as follows:
./configure --prefix=/usr/local/apache2 --enable-so --enable-ssl --with-
ssl --enable-auth-digest

New terms and important words are introduced in a bold-type font. Words that you see on the
screen, in menus or dialog boxes for example, appear in our text like this: "clicking the Next
button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about this book, what
you liked or may have disliked. Reader feedback is important for us to develop titles that you
really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com, making sure to
mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
 form on SUGGEST A TITLE www.packtpub.com or email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or contributing
to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to help you to get
the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/support, and select this book from the list of titles to
download any example code or extra resources for this book. The files available for download will
then be displayed.

The downloadable files contain instructions on how to use them.

4

Preface

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes do happen. If
you find a mistake in one of our books—maybe a mistake in text or code—we would be grateful if
you would report this to us. By doing this you can save other readers from frustration, and help to
improve subsequent versions of this book. If you find any errata, report them by visiting
http://www.packtpub.com/support, selecting your book, clicking on the Submit Errata
link, and entering the details of your errata. Once your errata have been verified, your submission
will be accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with some aspect
of the book, and we will do our best to address it.

5

1
AJAX and the Future of

Web Applications

"Computer, draw a robot!" said my young cousin to the first computer he had ever seen. (Since I
had instructed it not to listen to strangers, the computer wasn't receptive to this command.) If
you're like me, your first thought would be "how silly" or "how funny"—but this is a mistake. Our
educated and modeled brains have learned how to work with computers to a certain degree. People
are being educated to accommodate computers, to compensate for the lack of ability of computers
to understand humans. (On the other hand, humans can't accommodate very well themselves, but
that's another story.)

This little story is relevant to the way people instinctively work with computers. In an ideal world,
that spoken command should have been enough to have the computer please my cousin. The
ability of technology to be user-friendly has evolved very much in the past years, but there's still a
long way till we have real intelligent computers. Until then, people need to learn how to work with
computers—some to the extent that they end up loving a black screen with a tiny command
prompt on it.

Not incidentally, the computer-working habits of many are driven by software with user interfaces
that allow for intuitive (and enjoyable) human interaction. This probably explains the popularity of
the right mouse button, the wonder of fancy features such as drag and drop, or that simple text box
that searches content all over the Internet for you in just 0.1 seconds (or so it says). The software
industry (or the profitable part of it, anyway) has seen, analyzed, and learned. Now the market is
full of programs with shiny buttons, icons, windows, and wizards, and people are paying a lot of
money for them.

What the software industry has learned is that the equivalent of a powerful engine in a red sports
car is usability and accessibility for software. And it's wonderful when what is good from the
business point of view is also good from a human point of view, because the business profits are
more or less proportional to customers' satisfaction.

We plan to be very practical and concise in this book, but before getting back to your favorite
mission (writing code) it's worth taking a little step back, just to remember what we are doing and
why we are doing it. We love technology to the sound made by each key stroke, so it's very easy
to forget that the very reason technology exists is to serve people and make their lives at home
more entertaining, and at work more efficient.

AJAX and the Future of Web Applications

 8

Understanding the way people's brains work would be the key to building the ultimate software
applications. While we're far from that point, what we do understand is that end users need
intuitive user interfaces; they don't really care what operating system they're running as long as the
functionality they get is what they expect. This is a very important detail to keep in mind, as many
programmers tend to think and speak in technical terms even when working with end users
(although in a typical development team the programmer doesn't interact directly with the end
user). If you disagree, try to remember how many times you've said the word database when
talking to a non-technical person.

By observing people's needs and habits while working with computer systems, the term software
usability was born—referring to the art of meeting users' interface expectations, understanding
the nature of their work, and building software applications accordingly.

Historically, usability techniques were applied mainly to desktop applications, simply because
the required tools weren't available for web applications. However, as the Internet gets more
mature, the technologies it enables are increasingly potent.

Modern Internet technologies not only enable you to build a better online presence, but also allow
building better intranet/dedicated applications. Having friendly websites is crucial for online
business, because the Internet never sleeps, and customers frequently migrate to the next "big
thing" that looks better or feels to move faster. At the same time, being able to build friendly web
interfaces gives alternative options for intranet software solutions, which were previously built
mainly as desktop applications.

Building user-friendly software has always been easier with desktop applications than with web
applications, simply because the Web was designed as a means for delivering text and images, and
not complex functionality. This problem has gotten significantly more painful in the last few
years, when more and more software services and functionality are delivered via the Web.

Consequently, many technologies have been developed (and are still being developed) to add flashy
lights, accessibility, and power to web applications. Notable examples include Java applets and
Macromedia Flash, which require the users to install separate libraries into their web browsers.

Delivering Functionality via the Web
Web applications are applications whose functionality is processed on a web server, and is
delivered to the end users over a network such as the Internet or an intranet. The end users use a
thin client (web browser) to run web applications, which knows how to display and execute the
data received from the server. In contrast, desktop applications are based on a thick client (also
called a rich client or a fat client), which does most of the processing.

Web applications evolve dreaming that one day they'll look and behave like their mature (and
powerful) relatives, the desktop applications. The behavior of any computer software that interacts
with humans is now even more important than it used to be, because nowadays the computer user
base varies much more than in the past, when the users were technically sound as well. Now you
need to display good looking reports to Cindy, the sales department manager, and you need to
provide easy-to-use data entry forms to Dave, the sales person.

Chapter 1

Because end-user satisfaction is all that matters, the software application you build must be
satisfactory to all the users that interact with it. As far as web applications are concerned, their
evolution-to-maturity process will be complete when the application's interface and behavior will
not reveal whether the functionality is delivered by the local desktop or comes through fiber or air.
Delivering usable interfaces via the Web used to be problematic simply because features that
people use with their desktop application, such as drag and drop, and performing multiple tasks on
the same window at the same time, were not possible.

Another problem with building web applications is standardization. Today, everything
web-accessible must be verified with at least two or three browsers to ensure that all your visitors
will get the full benefit of your site.

Advantages of Web Applications
Yes, there are lots of headaches when trying to deliver functionality via the Web. But why bother
trying to do that in the first place, instead of building plain desktop applications? Well, even with
the current problems that web applications have with being user-friendly, they have acquired
extraordinary popularity because they offer a number of major technological advantages over
desktop applications.

• Web applications are easy and inexpensive to deliver. With web applications, a
company can reduce the costs of the IT department that is in charge of installing the
software on the users' machines. With web applications, all that users need is a
computer with a working web browser and an Internet or intranet connection.

• Web applications are easy and inexpensive to upgrade. Maintenance costs for
software have always been significant. Because upgrading an existing piece of
software is similar to installing a new one, the web applications' advantages
mentioned above apply here as well. As soon as the application on the server
machine is upgraded, everyone gets the new version.

• Web applications have flexible requirements for the end users. Just have your
web application installed on a server—any modern operating system will do—and
you'll be able to use it over the Internet/Intranet on any Mac, Windows, or Linux
machine and so on. If the application is properly built, it will run equally well on any
modern web browser, such as Internet Explorer, Mozilla Firefox, Opera, or Safari.

• Web applications make it easier to have a central data store. When you have
several locations that need access to the same data, having all that data stored in one
place is much easier than having separate databases in each location. This way you
avoid potential data synchronization operations and lower security risks.

In this book we'll further investigate how to use modern web technologies to build better web
applications, to make the most out of the possibilities offered by the Web. But before getting into
the details, let's take a short history lesson.

 9

AJAX and the Future of Web Applications

 10

Building Websites Since 1990
Although the history of the Internet is a bit longer, 1991 is the year when HyperText Transfer
Protocol (HTTP), which is still used to transfer data over the Internet, was invented. In its first
few initial versions, it didn't do much more than opening and closing connections. The later
versions of HTTP (version 1.0 appeared in 1996 and version 1.1 in 1999) became the protocol that
now we all know and use.

HTTP and HTML
HTTP is supported by all web browsers, and it does very well the job it was conceived for—
retrieving simple web content. Whenever you request a web page using your favorite web
browser, the HTTP protocol is assumed. So, for example, when you type www.mozilla.org in the
location bar of Firefox, it will assume by default that you meant http://www.mozilla.org.

The standard document type of the Internet is HyperText Markup Language (HTML), and it is
built of markup that web browsers understand, parse, and display. HTML is a language that
describes documents' formatting and content, which is basically composed of static text and
images. HTML wasn't designed for building complex web applications with interactive content or
user-friendly interfaces. When you need to get to another HTML page via HTTP, you need to
initiate a full page reload, and the HTML page you requested must exist at the mentioned location,
as a static document, prior to the request. It's obvious that these restrictions don't really encourage
building anything interesting.

Nevertheless, HTTP and HTML are still a very successful pair that both web servers and web
clients (browsers) understand. They are the foundation of the Internet as we know it today.
Figure 1.1 shows a simple transaction when a user requests a web page from the Internet using
the HTTP protocol:

Figure 1.1: A Simple HTTP Request

http://www.mozilla.org/

Chapter 1

Three points for you to keep in mind:

1. HTTP transactions always happen between a web client (the software making the
request, such as a web browser) and a web server (the software responding to the
request, such as Apache or IIS). From now on in this book, when saying 'client' we
refer to the web client, and when saying 'server' we refer to the web server.

2. The user is the person using the client.

3. Even if HTTP (and its secure version, HTTPS) is arguably the most important
protocol used on the Internet, it is not the only one. Various kinds of web servers use
different protocols to accomplish various tasks, usually unrelated to simple web
browsing. The protocol we'll use most frequently in this book is HTTP, and when we
say 'web request' we'll assume a request using HTTP protocol, unless other protocol
will be mentioned explicitly.

Sure thing, the HTTP-HTML combination is very limited in what it can do—it only enables users
to retrieve static content (HTML pages) from the Internet. To complement the lack of features,
several technologies have been developed.

While all web requests we'll talk about from now on still use the HTTP protocol for transferring
the data, the data itself can be built dynamically on the web server (say, using information from a
database), and this data can contain more than plain HTML allowing the client to perform some
functionality rather than simply display static pages.

The technologies that enable the Web to act smarter are grouped in the following two main categories:

• Client-side technologies enable the web client to do more interesting things than
displaying static documents. Usually these technologies are extensions of HTML,
and don't replace it entirely.

• Server-side technologies are those that enable the server to store logic to build web
pages on the fly.

PHP and Other Server-Side Technologies
Server-side web technologies enable the web server to do much more than simply returning the
requested HTML files, such as performing complex calculations, doing object-oriented
programming, working with databases, and much more.

Just imagine how much data processing Amazon must do to calculate personalized product
recommendations for each visitor, or Google when it searches its enormous database to serve your
request. Yes, server-side processing is the engine that caused the web revolution, and the reason
for which Internet is so useful nowadays.

 11

AJAX and the Future of Web Applications

 12

The important thing to remember is that no matter what happens on the server side, the response
received by the client must be a language that the client understands (obviously)—such as HTML,
which has many limits, as mentioned earlier.

PHP is one of the technologies used to implement server-side logic. Chapter 3 will serve an
introduction to PHP, and we'll use PHP in this book when building the AJAX case studies. It's
good to know, though, that PHP has many competitors, such as ASP.NET (Active Server Pages,
the web development technology from Microsoft), Java Server Pages (JSP), Perl, ColdFusion,
Ruby on Rails, and others. Each of these has its own way of allowing programmers to build
server-side functionality.

PHP is not only a server-side technology but a scripting language as well, which programmers can
use to create PHP scripts. Figure 1.2 shows a request for a PHP page called index.php.This time,
instead of sending back the contents of index.php, the server executes index.php and sends back
the results. These results must be in HTML, or in other language that the client understands.

Figure 1.2: Client Requests a PHP Page

On the server side you'll usually need a database server as well to manage your data. In the case
studies of this book we'll work with MySQL, but the concepts are the same as any other server.
You'll learn the basics of working with databases and PHP in Chapter 3.

However, even with PHP that can build custom-made database-driven responses, the browser still
displays a static, boring, and not very smart web document.

The need for smarter and more powerful functionality on the web client generated a separated set
of technologies, called client-side technologies. Today's browsers know how to parse more than
simple HTML. Let's see how.

JavaScript and Other Client-Side Technologies
The various client-side technologies differ in many ways, starting with the way they get loaded
and executed by the web client. JavaScript is a scripting language, whose code is written in plain
text and can be embedded into HTML pages to empower them. When a client requests an HTML
page, that HTML page can contain JavaScript. JavaScript is supported by all modern web
browsers without requiring users to install new components on the system.

JavaScript is a language in its own right (theoretically it isn't tied to web development), it's
supported by most web clients under any platform, and it has some object-oriented capabilities.
JavaScript is not a compiled language so it's not suited for intensive calculations or writing device
drivers and it must arrive in one piece at the client browser to be interpreted so it is not secure
either, but it does a good job when used in web pages.

Chapter 1

With JavaScript, developers could finally build web pages with snow falling over them, with
client-side form validation so that the user won't cause a whole page reload (incidentally losing all
typed data) if he or she forgot to supply all the details (such as password, or credit card number),
or if the email address had an incorrect format. However, despite its potential, JavaScript was
never used consistently to make the web experience truly user friendly, similar to that of users of
desktop applications.

Other popular technologies to perform functionality at the client side are Java applets and
Macromedia Flash. Java applets are written in the popular and powerful Java language, and are
executed through a Java Virtual Machine that needs to be installed separately on the system.
Java applets are certainly the way to go for more complex projects, but they have lost the
popularity they once had over web applications because they consume many system resources.
Sometimes they even need long startup times, and are generally too heavy and powerful for the
small requirements of simple web applications.

Macromedia Flash has very powerful tools for creating animations and graphical effects, and it's
the de-facto standard for delivering such kind of programs via the Web. Flash also requires the
client to install a browser plug-in. Flash-based technologies become increasingly powerful, and
new ones keep appearing.

Combining HTML with a server-side technology and a client-side technology, one can end up
building very powerful web solutions.

What's Been Missing?
So there are options, why would anyone want anything new? What's missing?

As pointed out in the beginning of the chapter, technology exists to serve existing market needs.
And part of the market wants to deliver more powerful functionality to web clients without using
Flash, Java applets, or other technologies that are considered either too flashy or heavy-weight for
certain purposes. For these scenarios, developers have usually created websites and web
applications using HTML, JavaScript, and PHP (or another server-side technology). The typical
request with this scenario is shown in Figure 1.3, which shows an HTTP request, the response
made up of HTML and JavaScript built programmatically with PHP.

Figure 1.3: HTTP, HTML, PHP, and JavaScript in Action

 13

AJAX and the Future of Web Applications

 14

The hidden problem with this scenario is that each time the client needs new data from the server,
a new HTTP request must be made to reload the page, freezing the user's activity. The page
reload is the new evil in the present day scenario, and AJAX comes in to our rescue.

Understanding AJAX
AJAX is an acronym for Asynchronous JavaScript and XML. If you think it doesn't say much, we
agree. Simply put, AJAX can be read "empowered JavaScript", because it essentially offers a technique
for client-side JavaScript to make background server calls and retrieve additional data as needed,
updating certain portions of the page without causing full page reloads. Figure 1.4 offers a visual
representation of what happens when a typical AJAX-enabled web page is requested by a visitor:

Figure 1.4: A Typical AJAX Call

When put in perspective, AJAX is about reaching a better balance between client functionality and
server functionality when executing the action requested by the user. Up until now, client-side
functionality and server-side functionality were regarded as separate bits of functionality that work
one at a time to respond to user's actions. AJAX comes with the solution to balance the load
between the client and the server by allowing them to communicate in the background while the
user is working on the page.

To explain with a simple example, consider web forms where the user is asked to write some data
(such as name, email address, password, credit card, etc) that has to be validated before reaching
the business tier of your application. Without AJAX, there were two form validation techniques.
The first was to let the user type all the required data, let him or her submit the page, and perform
the validation on the server. In this scenario the user experiences a dead time while waiting for the
new page to load. The alternative was to do this verification at the client, but this wasn't always
possible (or feasible) because it implied loading too much data on the client (just think if you
needed to validate that the entered city and the entered country match).

In the AJAX-enabled scenario, the web application can validate the entered data by making server
calls in the background, while the user keeps typing. For example, after the user selects a country,
the web browser calls the server to load on the fly the list of cities for that country, without

Chapter 1

interrupting the user from his or her current activity. You'll find an example of AJAX form
validation in Chapter 4.

The examples where AJAX can make a difference are endless. To get a better feeling and
understanding of what AJAX can do for you, have a look at these live and popular examples:

• Google Suggest helps you with your Google searches. The functionality is pretty
spectacular; check it out at http://www.google.com/webhp?complete=1. Similar
functionality is offered by Yahoo! Instant Search, accessible at
http://instant.search.yahoo.com/. (You'll learn how to build similar
functionality in Chapter 6.)

• GMail (http://www.gmail.com). GMail is very popular by now and doesn't need
any introduction. Other web-based email services such as Yahoo! Mail and Hotmail
have followed the trend and offer AJAX-based functionality.

• Google Maps (http://maps.google.com), Yahoo Maps (http://maps.yahoo.com),
and Windows Live Local (http://local.live.com).

• Other services, such as http://www.writely.com and http://www.basecamphq.com.

You'll see even more examples over the course of this book.

Just as with any other technology, AJAX can be overused, or used the wrong way. Just
having AJAX on your website doesn't guarantee your website will be better. It depends
on you to make good use of the technology.

So AJAX is about creating more versatile and interactive web applications by enabling web pages
to make asynchronous calls to the server transparently while the user is working. AJAX is a tool
that web developers can use to create smarter web applications that behave better than traditional
web applications when interacting with humans.

The technologies AJAX is made of are already implemented in all modern web browsers, such as
Mozilla Firefox, Internet Explorer, or Opera, so the client doesn't need to install any extra modules
to run an AJAX website. AJAX is made of the following:

• JavaScript is the essential ingredient of AJAX, allowing you to build the client-side
functionality. In your JavaScript functions you'll make heavy use of the Document
Object Model (DOM) to manipulate parts of the HTML page.

• The XMLHttpRequest object enables JavaScript to access the server
asynchronously, so that the user can continue working, while functionality is
performed in the background. Accessing the server simply means making a simple
HTTP request for a file or script located on the server. HTTP requests are easy to
make and don't cause any firewall-related problems.

• A server-side technology is required to handle the requests that come from the
JavaScript client. In this book we'll use PHP to perform the server-side part of the job.

 15

http://www.google.com/webhp?complete=1
http://www.gmail.com/
http://maps.google.com/
http://maps.yahoo.com/
http://local.live.com/
http://www.writely.com/

AJAX and the Future of Web Applications

For the client-server communication the parts need a way to pass data and understand that data.
Passing the data is the simple part. The client script accessing the server (using the
XMLHttpRequest object) can send name-value pairs using GET or POST. It's very simple to read
these values with any server script.

The server script simply sends back the response via HTTP, but unlike a usual website, the response
will be in a format that can be simply parsed by the JavaScript code on the client. The suggested
format is XML, which has the advantage of being widely supported, and there are many libraries that
make it easy to manipulate XML documents. But you can choose another format if you want (you
can even send plain text), a popular alternative to XML being JavaScript Object Notation (JSON).

This book assumes you already know the taste of the AJAX ingredients, except maybe the
XMLHttpRequest object, which is less popular. However, to make sure we're all on the same page,
we'll have a look together at how these pieces work, and how they work together, in Chapter 2 and
Chapter 3. Until then, for the remainder of this chapter we'll focus on the big picture, and we will
also write an AJAX program for the joy of the most impatient readers.

None of the AJAX components is new, or revolutionary (or at least evolutionary) as the
current buzz around AJAX might suggest: all the components of AJAX have existed
since sometime in 1998. The name AJAX was born in 2005, in Jesse James Garret's
article at http://www.adaptivepath.com/publications/essays/archives/
000385.php, and gained much popularity when used by Google in many of its applications.

What's new with AJAX is that for the first time there is enough energy in the market to
encourage standardization and focus these energies on a clear direction of evolution. As a
consequence, many AJAX libraries are being developed, and many AJAX-enabled
websites have appeared. Microsoft through its Atlas project is pushing AJAX
development as well.

AJAX brings you the following potential benefits when building a new web application:

• It makes it possible to create better and more responsive websites and web applications.
• Because of its popularity, it encourages the development of patterns that help

developers avoid reinventing the wheel when performing common tasks.
• It makes use of existing technologies.
• It makes use of existing developer skills.
• Features of AJAX integrate perfectly with existing functionality provided by web

browsers (say, re-dimensioning the page, page navigation, etc).

Common scenarios where AJAX can be successfully used are:

• Enabling immediate server-side form validation, very useful in circumstances when
it's unfeasible to transfer to the client all the data required to do the validation when
the page initially loads. Chapter 4 contains a form validation case study.

 16

http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.adaptivepath.com/publications/essays/archives/000385.php

Chapter 1

• Creating simple online chat solutions that don't require external libraries such as the
Java Runtime Machine or Flash. You'll build such a program in Chapter 5.

• Building Google Suggest-like functionality, like an example you'll build in Chapter 6.
• More effectively using the power of other existing technologies. In Chapter 7,

you'll implement a real-time charting solution using Scalable Vector Graphics
(SVG), and in Chapter 10, you'll use an external AJAX library to create a simple
drag-and-drop list.

• Coding responsive data grids that update the server-side database on the fly. You'll
create such an application in Chapter 8.

• Building applications that need real-time updates from various external sources. In
Chapter 9, you'll create a simple RSS aggregator.

Potential problems with AJAX are:

• Because the page address doesn't change while working, you can't easily bookmark
AJAX-enabled pages. In the case of AJAX applications, bookmarking has different
meanings depending on your specific application, usually meaning that you need to
save state somehow (think about how this happens with desktop applications—
there's no bookmarking there).

• Search engines may not be able to index all portions of your AJAX application site.
• The Back button in browsers, doesn't produce the same result as with classic web

applications, because all actions happen inside the same page.
• JavaScript can be disabled at the client side, which makes the AJAX application non-

functional, so it's good to have another plan in your site, whenever possible, to avoid
losing visitors.

Finally, before moving on to write your first AJAX program, here are a number of links that may
help you in your journey into the exciting world of AJAX:

• http://ajaxblog.com is an AJAX dedicated blog.
• http://www.fiftyfoureleven.com/resources/programming/xmlhttprequest is a

comprehensive article collection about AJAX.
• http://www.ajaxian.com is the AJAX website of Ben Galbraith and Dion Almaer,

the authors of Pragmatic AJAX.
• http://www.ajaxmatters.com is an informational site about AJAX, containing

loads of very useful links.
• http://ajaxpatterns.org is about reusable AJAX design patterns.
• http://www.ajaxinfo.com is a resource of AJAX articles and links.
• http://dev.fiaminga.com contains many links to various AJAX resources

and tutorials.

 17

http://ajaxblog.com/
http://www.fiftyfoureleven.com/resources/programming/xmlhttprequest
http://www.ajaxmatters.com/
http://ajaxpatterns.org/
http://www.ajaxinfo.com/
http://dev.fiaminga.com/

AJAX and the Future of Web Applications

 18

• http://ajaxguru.blogspot.com is a popular AJAX-related web blog.
• http://www.sitepoint.com/article/remote-scripting-ajax is Cameron Adams'

excellent article AJAX: Usable Interactivity with Remote Scripting.
• http://developer.mozilla.org/en/docs/AJAX is Mozilla's page on AJAX.
• http://en.wikipedia.org/wiki/AJAX is the Wikipedia page on AJAX.

The list is by no means complete. If you need more online resources, Google will surely be
available to help. In the following chapters, you'll be presented with even more links, but
more specific to the particular technologies you'll be learning about.

Building a Simple Application with AJAX and PHP
Let's write some code then! In the following pages you'll build a simple AJAX application.

This exercise is for the most impatient readers willing to start coding ASAP, but it
assumes you're already familiar with JavaScript, PHP, and XML. If this is not the case, or
if at any time you feel this exercise is too challenging, feel free to skip to Chapter 2. In
Chapter 2 and Chapter 3 we'll have a much closer look at the AJAX technologies and
techniques and everything will become clear.

You'll create here a simple AJAX web application called quickstart where the user is requested to
write his or her name, and the server keeps sending back responses while the user is writing.
Figure 1.5 shows the initial page, index.html, loaded by the user. (Note that index.html gets
loaded by default when requesting the quickstart web folder, even if the file name is not
explicitly mentioned.)

Figure 1.5: The Front Page of Your Quickstart Application

While the user is typing, the server is being called asynchronously, at regular intervals, to see if it
recognizes the current name. The server is called automatically, approximately one time per
second, which explains why we don't need a button (such as a 'Send' button) to notify when we're

http://ajaxguru.blogspot.com/
http://www.sitepoint.com/article/remote-scripting-ajax
http://developer.mozilla.org/en/docs/AJAX
http://en.wikipedia.org/wiki/AJAX

Chapter 1

done typing. (This method may not be appropriate for real log-in mechanisms but it's very good to
demonstrate some AJAX functionality.)

Depending on the entered name, the message from the server may differ; see an example in
Figure 1.6.

Figure 1.6: User Receives a Prompt Reply From the Web Application

Check out this example online at http://ajaxphp.packtpub.com/ajax/quickstart

Maybe at first sight there's nothing extraordinary going on there. We've kept this first example
simple on purpose, to make things easier to understand. What's special about this application is
that the displayed message comes automatically from the server, without interrupting the user's
actions. (The messages are displayed as the user types a name). The page doesn't get reloaded to
display the new data, even though a server call needs to be made to get that data. This wasn't
a simple task to accomplish using non-AJAX web development techniques.

The application consists of the following three files:

1. index.html is the initial HTML file the user requests.
2. quickstart.js is a file containing JavaScript code that is loaded on the client along

with index.html. This file will handle making the asynchronous requests to the
server, when server-side functionality is needed.

3. quickstart.php is a PHP script residing on the server that gets called by the
JavaScript code in quickstart.js file from the client.

 19

http://ajaxphp.packtpub.com/

AJAX and the Future of Web Applications

Figure 1.7 shows the actions that happen when running this application:

Figure 1.7: The Diagram Explaining the Inner Works of Your Quickstart Application

Steps 1 through 5 are a typical HTTP request. After making the request, the user needs to wait
until the page gets loaded. With typical (non-AJAX) web applications, such a page reload happens
every time the client needs to get new data from the server.

Steps 5 through 9 demonstrate an AJAX-type call—more specifically, a sequence of asynchronous
HTTP requests. The server is accessed in the background using the XMLHttpRequest object.
During this period the user can continue to use the page normally, as if it was a normal desktop
application. No page refresh or reload is experienced in order to retrieve data from the server and
update the web page with that data.

Now it's about time to implement this code on your machine. Before moving on, ensure you've
prepared your working environment as shown in Appendix A, where you're guided through how to
install and set up PHP and Apache, and set up the database used for the examples in this book.
(You won't need a database for this quickstart example.)

 20

Chapter 1

All exercises from this book assume that you've installed your machine as shown in
Appendix A. If you set up your environment differently you may need to implement
various changes, such as using different folder names, and so on.

Time for Action—Quickstart AJAX
1. In Appendix A, you're instructed to set up a web server, and create a web-accessible

folder called ajax to host all your code for this book. Under the ajax folder, create a
new folder called quickstart.

2. In the quickstart folder, create a file called index.html, and add the following
code to it:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>AJAX with PHP: Quickstart</title>
 <script type="text/javascript" src="quickstart.js"></script>
 </head>
 <body onload='process()'>
 Server wants to know your name:
 <input type="text" id="myName" />
 <div id="divMessage" />
 </body>
</html>

3. Create a new file called quickstart.js, and add the following code:
// stores the reference to the XMLHttpRequest object
var xmlHttp = createXmlHttpRequestObject();

// retrieves the XMLHttpRequest object
function createXmlHttpRequestObject()
{
 // will store the reference to the XMLHttpRequest object
 var xmlHttp;
 // if running Internet Explorer
 if(window.ActiveXObject)
 {
 try
 {
 xmlHttp = new ActiveXObject("Microsoft.XMLHTTP");
 }
 catch (e)
 {
 xmlHttp = false;
 }
 }
 // if running Mozilla or other browsers
 else
 {
 try
 {
 xmlHttp = new XMLHttpRequest();
 }
 catch (e)
 {
 xmlHttp = false;
 }
 }
 // return the created object or display an error message
 if (!xmlHttp)

 21

AJAX and the Future of Web Applications

 alert("Error creating the XMLHttpRequest object.");
 else
 return xmlHttp;
}

// make asynchronous HTTP request using the XMLHttpRequest object
function process()
{
 // proceed only if the xmlHttp object isn't busy
 if (xmlHttp.readyState == 4 || xmlHttp.readyState == 0)
 {
 // retrieve the name typed by the user on the form
 name = encodeURIComponent(document.getElementById("myName").value);
 // execute the quickstart.php page from the server
 xmlHttp.open("GET", "quickstart.php?name=" + name, true);
 // define the method to handle server responses
 xmlHttp.onreadystatechange = handleServerResponse;
 // make the server request
 xmlHttp.send(null);
 }
 else
 // if the connection is busy, try again after one second
 setTimeout('process()', 1000);
}

// executed automatically when a message is received from the server
function handleServerResponse()
{
 // move forward only if the transaction has completed
 if (xmlHttp.readyState == 4)
 {
 // status of 200 indicates the transaction completed successfully
 if (xmlHttp.status == 200)
 {
 // extract the XML retrieved from the server
 xmlResponse = xmlHttp.responseXML;
 // obtain the document element (the root element) of the XML structure
 xmlDocumentElement = xmlResponse.documentElement;
 // get the text message, which is in the first child of
 // the the document element
 helloMessage = xmlDocumentElement.firstChild.data;
 // update the client display using the data received from the server
 document.getElementById("divMessage").innerHTML =
 '<i>' + helloMessage + '</i>';
 // restart sequence
 setTimeout('process()', 1000);
 }
 // a HTTP status different than 200 signals an error
 else
 {
 alert("There was a problem accessing the server: " +
xmlHttp.statusText);
 }
 }
}

4. Create a file called quickstart.php and add the following code to it:
<?php
// we'll generate XML output
header('Content-Type: text/xml');
// generate XML header
echo '<?xml version="1.0" encoding="UTF-8" standalone="yes"?>';
// create the <response> element
echo '<response>';

 22

Chapter 1

// retrieve the user name
$name = $_GET['name'];
// generate output depending on the user name received from client
$userNames = array('CRISTIAN', 'BOGDAN', 'FILIP', 'MIHAI', 'YODA');
if (in_array(strtoupper($name), $userNames))
 echo 'Hello, master ' . htmlentities($name) . '!';
else if (trim($name) == '')
 echo 'Stranger, please tell me your name!';
else
 echo htmlentities($name) . ', I don\'t know you!';
// close the <response> element
echo '</response>';
?>

5. Now you should be able to access your new program by loading http://localhost/
ajax/quickstart using your favorite web browser. Load the page, and you should
get a page like those shown in Figures 1.5 and 1.6.

Should you encounter any problems running the application, check that you correctly
followed the installation and configuration procedures as described in Appendix A. Most
errors happen because of small problems such as typos. In Chapter 2 and Chapter3 you'll
learn how to implement error handling in your JavaScript and PHP code.

What Just Happened?
Here comes the fun part—understanding what happens in that code. (Remember that we'll discuss
much more technical details over the following two chapters.)

Let's start with the file the user first interacts with, index.html. This file references the mysterious
JavaScript file called quickstart.js, and builds a very simple web interface for the client. In the
following code snippet from index.html, notice the elements highlighted in bold:

 <body onload='process()'>
 Server wants to know your name:
 <input type="text" id="myName" />
 <div id="divMessage" />
 </body>

When the page loads, a function from quickstart.js called process() gets executed. This
somehow causes the <div> element to be populated with a message from the server.

Before seeing what happens inside the process() function, let's see what happens at the server
side. On the web server you have a script called quickstart.php that builds the XML message to
be sent to the client. This XML message consists of a <response> element that packages the
message the server needs to send back to the client:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<response>
 ... message the server wants to transmit to the client ...
</response>

 23

AJAX and the Future of Web Applications

 24

If the user name received from the client is empty, the message will be, "Stranger, please tell me your
name!". If the name is Cristian, Bogdan, Filip, Mihai, or Yoda, the server responds with "Hello, master
<user name>!". If the name is anything else, the message will be "<user name>, I don't know you!".
So if Mickey Mouse types his name, the server will send back the following XML structure:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<response>
 Mickey Mouse, I don't know you!
</response>

The quickstart.php script starts by generating the XML document header and the opening
<response> element:

<?php
// we'll generate XML output
header('Content-Type: text/xml');
// generate XML header
echo '<?xml version="1.0" encoding="UTF-8" standalone="yes"?>';
// create the <response> element
echo '<response>';

The highlighted header line marks the output as an XML document, and this is important because
the client expects to receive XML (the API used to parse the XML on the client will throw an
error if the header doesn't set Content-Type to text/xml). After setting the header, the code builds
the XML response by joining strings. The actual text to be returned to the client is encapsulated in
the <response> element, which is the root element, and is generated based on the name received
from the client via a GET parameter:

// retrieve the user name
$name = $_GET['name'];
// generate output depending on the user name received from client
$userNames = array('CRISTIAN', 'BOGDAN', 'FILIP', 'MIHAI', 'YODA');
if (in_array(strtoupper($name), $userNames))
 echo 'Hello, master ' . htmlentities($name) . '!';
else if (trim($name) == '')
 echo 'Stranger, please tell me your name!';
else
 echo htmlentities($name) . ', I don\'t know you!';
// close the <response> element
echo '</response>';
?>

The text entered by the user (which is supposed to be the user's name) is sent by the client to the
server using a GET parameter. When sending this text back to the client, we use the htmlentities
PHP function to replace special characters with their HTML codes (such as &, or >), making sure
the message will be safely displayed in the web browser eliminating potential problems and
security risks.

Formatting the text on the server for the client (instead of doing this directly at the client) is
actually a bad practice when writing production code. Ideally, the server's responsibility is
to send data in a generic format, and it is the recipient's responsibility to deal with security
and formatting issues. This makes even more sense if you think that one day you may need
to insert exactly the same text into a database, but the database will need different
formatting sequences (in that case as well, a database handling script would do the
formatting job, and not the server). For the quickstart scenario, formatting the HTML in
PHP allowed us to keep the code shorter and simpler to understand and explain.

Chapter 1

If you're curious to test quickstart.php and see what it generates, load http://localhost/
ajax/quickstart/quickstart.php?name=Yoda in your web browser. The advantage of sending
parameters from the client via GET is that it's very simple to emulate such a request using your web
browser, since GET simply means that you append the parameters as name/value pairs in the URL
query string. You should get something like this:

Figure 1.8: The XML Data Generated by quickstart.php

This XML message is read on the client by the handleServerResponse() function in
quickstart.js. More specifically, the following lines of code extract the "Hello, master
Yoda!" message:

 // extract the XML retrieved from the server
 xmlResponse = xmlHttp.responseXML;
 // obtain the document element (the root element) of the XML structure
 xmlDocumentElement = xmlResponse.documentElement;
 // get the text message, which is in the first child of
 // the document element
 helloMessage = xmlDocumentElement.firstChild.data;

Here, xmlHttp is the XMLHttpRequest object used to call the server script quickstart.php from
the client. Its responseXML property extracts the retrieved XML document. XML structures are
hierarchical by nature, and the root element of an XML document is called the document element.
In our case, the document element is the <response> element, which contains a single child,
which is the text message we're interested in. Once the text message is retrieved, it's displayed on
the client's page by using the DOM to access the divMessage element in index.html:

 // update the client display using the data received from the server
 document.getElementById('divMessage').innerHTML = helloMessage;

document is a default object in JavaScript that allows you to manipulate the elements in the HTML
code of your page.

The rest of the code in quickstart.js deals with making the request to the server to obtain the
XML message. The createXmlHttpRequestObject() function creates and returns an instance of
the XMLHttpRequest object. This function is longer than it could be because we need to make it

 25

AJAX and the Future of Web Applications

 26

cross-browser compatible—we'll discuss the details in Chapter 2, for now it's important to know
what it does. The XMLHttpRequest instance, called xmlHttp, is used in process() to make the
asynchronous server request:

// make asynchronous HTTP request using the XMLHttpRequest object
function process()
{
 // proceed only if the xmlHttp object isn't busy
 if (xmlHttp.readyState == 4 || xmlHttp.readyState == 0)
 {
 // retrieve the name typed by the user on the form
 name = encodeURIComponent(document.getElementById("myName").value);
 // execute the quickstart.php page from the server
 xmlHttp.open("GET", "quickstart.php?name=" + name, true);
 // define the method to handle server responses
 xmlHttp.onreadystatechange = handleServerResponse;
 // make the server request
 xmlHttp.send(null);
 }
 else
 // if the connection is busy, try again after one second
 setTimeout('process()', 1000);
}

What you see here is, actually, the heart of AJAX—the code that makes the asynchronous call to
the server.

Why is it so important to call the server asynchronously? Asynchronous requests, by their nature,
don't freeze processing (and user experience) while the call is made, until the response is received.
Asynchronous processing is implemented by event-driven architectures, a good example being the
way graphical user interface code is built: without events, you'd probably need to check
continuously if the user has clicked a button or resized a window. Using events, the button notifies
the application automatically when it has been clicked, and you can take the necessary actions in
the event handler function. With AJAX, this theory applies when making a server request—you
are automatically notified when the response comes back.

If you're curious to see how the application would work using a synchronous request, you need
to change the third parameter of xmlHttp.open to false, and then call handleServerResponse
manually, as shown below. If you try this, the input box where you're supposed to write your
name will freeze when the server is contacted (in this case the freeze length depends largely on the
connection speed, so it may not be very noticeable if you're running the server on the local machine).

// function calls the server using the XMLHttpRequest object
function process()
{
 // retrieve the name typed by the user on the form
 name = encodeURIComponent(document.getElementById("myName").value);
 // execute the quickstart.php page from the server
 xmlHttp.open("GET", "quickstart.php?name=" + name, false);
 // make synchronous server request (freezes processing until completed)
 xmlHttp.send(null);
 // read the response
 handleServerResponse();
}

The process() function is supposed to initiate a new server request using the XMLHttpRequest
object. However, this is only possible if the XMLHttpRequest object isn't busy making another

Chapter 1

request. In our case, this can happen if it takes more than one second for the server to reply, which
could happen if the Internet connection is very slow. So, process() starts by verifying that it is
clear to initiate a new request:

// make asynchronous HTTP request using the XMLHttpRequest object
function process()
{
 // proceed only if the xmlHttp object isn't busy
 if (xmlHttp.readyState == 4 || xmlHttp.readyState == 0)
 {

So, if the connection is busy, we use setTimeout to retry after one second (the function's second
argument specifies the number of milliseconds to wait before executing the piece of code specified
by the first argument:

 // if the connection is busy, try again after one second
 setTimeout('process()', 1000);

If the line is clear, you can safely make a new request. The line of code that prepares the server
request but doesn't commit it is:

 // execute the quickstart.php page from the server
 xmlHttp.open("GET", 'quickstart.php?name=' + name, true);

The first parameter specifies the method used to send the user name to the server, and you can
choose between GET and POST (learn more about them in Chapter 3). The second parameter is the
server page you want to access; when the first parameter is GET, you send the parameters as
name/value pairs in the query string. The third parameter is true if you want the call to be made
asynchronously. When making asynchronous calls, you don't wait for a response. Instead, you
define another function to be called automatically when the state of the request changes:

 // define the method to handle server responses
 xmlHttp.onreadystatechange = handleServerResponse;

Once you've set this option, you can rest calm—the handleServerResponse function will be
executed by the system when anything happens to your request. After everything is set up, you
initiate the request by calling XMLHttpRequest's send method:

 // make the server request
 xmlHttp.send(null);
 }

Let's now look at the handleServerResponse function:
// executed automatically when a message is received from the server
function handleServerResponse()
{
 // move forward only if the transaction has completed
 if (xmlHttp.readyState == 4)
 {
 // status of 200 indicates the transaction completed successfully
 if (xmlHttp.status == 200)
 {

The handleServerResponse function is called multiple times, whenever the status of the request
changes. Only when xmlHttp.readyState is 4 will the server request be completed so you can
move forward to read the results. You can also check that the HTTP transaction reported a status
of 200, signaling that no problems happened during the HTTP request. When these conditions are
met, you're free to read the server response and display the message to the user.

 27

AJAX and the Future of Web Applications

 28

After the response is received and used, the process is restarted using the setTimeout function,
which will cause the process() function to be executed after one second (note though that it's not
necessary, or even AJAX specific, to have repetitive tasks in your client-side code):

 // restart sequence
 setTimeout('process()', 1000);

Finally, let's reiterate what happens after the user loads the page (you can refer to Figure 1.7 for a
visual representation):

1. The user loads index.html (this corresponds to steps 1-4 in Figure 1.7).
2. User starts (or continues) typing his or her name (this corresponds to step 5 in

Figure 1.7).
3. When the process() method in quickstart.js is executed, it calls a server script

named quickstart.php asynchronously. The text entered by the user is passed on
the call as a query string parameter (it is passed via GET). The handeServerResponse
function is designed to handle request state changes.

4. quickstart.php executes on the server. It composes an XML document that
encapsulates the message the server wants to transmit to the client.

5. The handleServerResponse method on the client is executed multiple times as the
state of the request changes. The last time it's called is when the response has been
successfully received. The XML is read; the message is extracted and displayed on
the page.

6. The user display is updated with the new message from the server, but the user can
continue typing without any interruptions. After a delay of one second, the process is
restarted from step 2.

Summary
This chapter was all about a quick introduction to the world of AJAX. In order to proceed with
learning how to build AJAX applications, it's important to understand why and where they are
useful. As with any other technology, AJAX isn't the answer to all problems, but it offers means to
solve some of them.

AJAX combines client-side and server-side functionality to enhance the user experience of your
site. The XMLHttpRequest object is the key element that enables the client-side JavaScript code to
call a page on the server asynchronously. This chapter was intentionally short and probably has
left you with many questions—that's good! Be prepared for a whole book dedicated to answering
questions and demonstrating lots of interesting functionality!

2
Client-Side Techniques with

Smarter JavaScript

It is said that one picture is worth a thousand words. And so is a well-written piece of code,
we would say. You will get plenty of both, while building the foundations for your future
AJAX-enabled applications, in this chapter and the next.

Hopefully, the first chapter has developed your interest in AJAX well enough that you will endure
a second chapter with lots of theory to be learned. On the other hand, if you found the first
exercise too challenging, be assured that this time we will advance a bit slower. We will learn the
theory in parts by going through many short examples. In this chapter, we will meet client AJAX
technologies, which include:

• JavaScript
• The JavaScript DOM
• Cascading Style Sheets (CSS)
• The XMLHttpRequest object
• Extensible Markup Language (XML)

You will learn how to make these components work together smoothly, and form a strong
foundation for your future AJAX applications. You will see how to implement efficient error
handling techniques, and how to write code efficiently. Chapter 3 will complete the foundations
by presenting the techniques and technologies that you use on the server; in our case, PHP,
MySQL, and others.

To be a good AJAX developer you need to know very well how its ingredients work separately,
and then master how to make them work together. In this book, we assume you have some
experience with at least a part of these technologies.

Depending on your experience level, take some time—before, while, or after reading Chapter 2 or
Chapter 3, to have a look at Appendix B on http://ajaxphp.packtpub.com, which shows you a
number of tools that make a programmer's life much easier. Don't skip it, because it's important, as
having the right tools and using them efficiently can make a very big difference.

You can see all the example applications from this book online at http://ajaxphp.packtpub.com/.

Client-Side Techniques with Smarter JavaScript

 30

JavaScript and the Document Object Model
As mentioned in Chapter 1, JavaScript is the heart of AJAX. JavaScript has a similar syntax
to the good old C language. JavaScript is a parsed language (not compiled), and it has some
Object-Oriented Programming (OOP) capabilities. JavaScript wasn't meant for building large
powerful applications, but for writing simple scripts to implement (or complement) a web
application's client-side functionality (however, new trends are tending to transform JavaScript
into an enterprise-class language—it remains to be seen how far this will go).

JavaScript is fully supported by the vast majority of web browsers. Although it is possible to
execute JavaScript scripts by themselves, they are usually loaded on the client browsers together
with HTML code that needs their functionality. The fact that the entire JavaScript code must arrive
unaltered at the client is a strength and weakness at the same time, and you need to consider these
aspects before deciding upon a framework for your web solution. You can find very good
introductions to JavaScript at the following web links:

• http://www.echoecho.com/javascript.htm
• http://www.devlearn.com/javascript/jsvars.html
• http://www.w3schools.com/js/default.asp

Part of JavaScript's power on the client resides in its ability to manipulate the parent HTML
document, and it does that through the DOM interface. The DOM is available with a multitude of
languages and technologies, including JavaScript, Java, PHP, C#, C++, and so on. In this chapter,
you will see how to use the DOM with both JavaScript and PHP. The DOM has the ability to
manipulate (create, modify, parse, search, etc.) XML-like documents, HTML included.

On the client side, you will use the DOM and JavaScript to:

• Manipulate the HTML page while you are working on it
• Read and parse XML documents received from the server
• Create new XML documents

On the server side, you can use the DOM and PHP to:

• Compose XML documents, usually for sending them to the client
• Read XML documents received from various sources

Two good introductions to DOM can be found at http://www.quirksmode.org/dom/intro.html
and http://www.javascriptkit.com/javatutors/dom.shtml. Play a nice DOM game here:
http://www.topxml.com/learning/games/b/default.asp. A comprehensive reference of the
JavaScript DOM can be found at http://krook.org/jsdom/. The Mozilla reference for the JavaScript
DOM is available at http://www.mozilla.org/docs/dom/reference/javascript.html.

In the first example of this chapter, you will use the DOM from JavaScript to manipulate the
HTML document. When adding JavaScript code to an HTML file, one option is to write the
JavaScript code in a <script> element within the <body> element. Take the following HTML file
for example, which executes some simple JavaScript code when loaded. Notice the document
object, which is a default object in JavaScript that interacts with the DOM of the HTML page.
Here we use its write method to add content to the page:

http://www.echoecho.com/javascript.htm
http://www.quirksmode.org/dom/intro.html
http://www.javascriptkit.com/javatutors/dom.shtml

Chapter 2

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>
 <head>
 <title>AJAX Foundations: JavaScript and DOM</title>
 <script type="text/javascript">
 // declaring new variables
 var date = new Date();
 var hour = date.getHours();
 // demonstrating the if statement
 if (hour >= 22 || hour <= 5)
 document.write("You should go to sleep.");
 else
 document.write("Hello, world!");
 </script>
 </head>
 <body>
 </body>
</html>

The document.write commands generate output that is added to the <body> element of the page
when the script executes. The content that you generate becomes part of the HTML code of the
page, so you can add HTML tags in there if you want.

We advise you try to write well-formed and valid HTML code when possible. Writing code
compliant to HTML format maximizes the chances that your pages will work fine with most
existing and future web browsers. A useful article about following web standards can be found at
http://www.w3.org/QA/2002/04/Web-Quality. You can find a useful explanation of the DOCTYPE
element at http://www.alistapart.com/stories/doctype/. The debate on standards seems to
be an endless one, with one group of people being very passionate about strictly following the
standards, while others are just interested in their pages looking good on a certain set of browsers.
The examples in this book contain valid HTML code, with the exception of a few cases where we
broke the rules a little bit in order to make the code easier to understand. A real fact is that very
few online websites follow the standards, for various reasons.

You will usually prefer to write the JavaScript code in a separate .js file that is referenced from
the .html file. This allows you to keep the HTML code clean and have all the JavaScript code
organized in a single place. You can reference a JavaScript file in HTML code by adding a child
element called <script> to the <head> element, like this:

<html>
 <head>
 <script type="text/javascript" src="file.js"></script>
 </head>
</html>

Even if you don't have any code between <script> and </script> tags, don't be
tempted to use the short form <script type="text/javascript" src="file.js" />

This causes problems with Internet Explorer 6, which doesn't load the JavaScript page.

 31

Client-Side Techniques with Smarter JavaScript

 32

Let's do a short exercise.

Time for Action—Playing with JavaScript and the DOM
1. Create a folder called foundations in your ajax folder. This folder will be used for

all the examples in this chapter and the next chapter.
2. In the foundations folder, create a subfolder called jsdom.
3. In the jsdom folder, add a file called jsdom.html, with the following code in it:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>
 <head>
 <title>AJAX Foundations: JavaScript and DOM</title>
 <script type="text/javascript" src="jsdom.js"></script>
 </head>
 <body>
 I love you!
 </body>
</html>

4. In the same folder create a file called jsdom.js, and write this code in the file:
// declaring new variables
var date = new Date();
var hour = date.getHours();
// demonstrating the if statement
if (hour >= 22 || hour <= 5)
 document.write("Goodnight, world!");
else
 document.write("Hello, world!");

5. Load http://localhost/ajax/foundations/jsdom/jsdom.html in your
web browser, and assuming it's not late enough, expect to see the message as
shown in Figure 2.1 (if it's past 10 PM, the message would be a bit different, but
equally romantic).

Figure 2.1: The Hello World Example with JavaScript and the DOM

What Just Happened?
The code is very simple indeed and hence it doesn't need too many explanations. Here are the
main ideas you need to understand:

Chapter 2

• Because there is no server-side script involved (such as PHP code), you can load
the file in your web browser directly from the disk, locally, instead of accessing it
through an HTTP web server. If you execute the file directly from disk, a web
browser would likely open it automatically using a local address such as
file:///C:/Apache2/htdocs/ajax/foundations/jsdom/jsdom.html.

• When loading an HTML page with JavaScript code from a local location (file://)
rather than through a web server (http://), Internet Explorer may warn you that
you're about to execute code with high privileges (more on security in Chapter 3).

• JavaScript doesn't require you to declare the variables, so in theory you can avoid the
var keywords. This isn't a recommended practice though.

• The JavaScript script executes automatically when you load the HTML file. You
can, however, group the code in JavaScript functions, which only execute when
called explicitly.

• The JavaScript code is executed before parsing the other HTML code, so its output
is displayed before the HTML output. Notice that "Hello World!"appears before
"I love you!".

One of the problems of the presented code is that you have no control in the JavaScript code over
where the output should be displayed. As it is, the JavaScript output appears first, and the contents
of the <body> element come next. Needless to say, this scenario isn't relevant even to the simplest
of applications.

Except for the most simple of cases, having just JavaScript code that executes unconditionally
when the HTML page loads is not enough. You will usually want to have more control over when
and how portions of JavaScript code execute, and the most typical scenario is when you use
JavaScript functions, and execute these functions when certain events (such as clicking a button)
on the HTML page are triggered.

JavaScript Events and the DOM
In the next exercise, we will create an HTML structure from JavaScript code. When preparing to
build a web page that has dynamically generated parts, you first need to create its template (which
contains the static parts), and use placeholders for the dynamic parts. The placeholders must be
uniquely identifiable HTML elements (elements with the ID attribute set). So far we have used the
<div> element as placeholder, but you will meet more examples over the course of this book.

Take a look at the following HTML document:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>
 <head>
 <title>AJAX Foundations: More JavaScript and DOM</title>
 </head>
 <body>
 Hello Dude! Here's a cool list of colors for you:

 Black

 33

Client-Side Techniques with Smarter JavaScript

 34

 Orange
 Pink

 </body>
</html>

Suppose that you want to have everything in the element generated dynamically. The typical
way to do this in an AJAX application is to place a named, empty <div> element in the place
where you want something to be generated dynamically:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>
 <head>
 <title>AJAX Foundations: More JavaScript and DOM</title>
 </head>
 <body>
 Hello Dude! Here's a cool list of colors for you:

 <div id="myDivElement"/>
 </body>
</html>

In this example we will use the <div> element to populate the HTML document from JavaScript
code, but keep in mind that you're free to assign ids to all kinds of HTML elements. When adding
the element to the <div> element, after the JavaScript code executes, you will end up with
the following HTML structure:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>
 <head>
 <title>Colors</title>
 </head>
 <body>
 Hello Dude! Here's a cool list of colors for you:

 <div id="myDivElement">

 Black
 Orange
 Pink

 </div>
 </body>
</html>

Your goals for the next exercise are:

• Access the named <div> element programmatically from the JavaScript function.
• Having the JavaScript code execute after the HTML template is loaded, so you can

access the <div> element (no HTML elements are accessible from JavaScript code
that executes referenced from the <head> element). You will do that by calling
JavaScript code from the <body> element's onload event.

• Group the JavaScript code in a function for easier code handling.

Chapter 2

Time for Action—Using JavaScript Events and the DOM
1. In the foundations folder that you created in the previous exercise, create a new

folder called morejsdom.
2. In the morejsdom folder, create a file called morejsdom.html, and add the following

code to it:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>
 <head>
 <title>AJAX Foundations: More JavaScript and DOM</title>
 <script type="text/javascript" src="morejsdom.js"></script>
 </head>
 <body onload="process()">
 Hello Dude! Here's a cool list of colors for you:

 <div id="myDivElement" />
 </body>
</html>

3. Add a new file called morejsdom.js, with the following contents:
function process()
{
 // Create the HTML code
 var string;
 string = ""
 + "Black"
 + "Orange"
 + "Pink"
 + "";
 // obtain a reference to the <div> element on the page
 myDiv = document.getElementById("myDivElement");
 // add content to the <div> element
 myDiv.innerHTML = string;
}

4. Load morejsdom.html in a web browser. You should see a window like the one
in Figure 2.2:

Figure 2.2: Your Little HTML Page in Action

 35

Client-Side Techniques with Smarter JavaScript

 36

What Just Happened?
The code is pretty simple. In the HTML code, the important details are highlighted in the
following code snippet:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>
 <head>
 <title>AJAX Foundations: More JavaScript and DOM</title>
 <script type="text/javascript" src="morejsdom.js"></script>
 </head>
 <body onload="process()">
 Hello Dude! Here's a cool list of colors for you:

 <div id="myDivElement" />
 </body>
</html>

Everything starts by referencing the JavaScript source file using the <script> element. The
JavaScript file contains a function called process(), which is used as an event-handler function
for the body's onload event. The onload event fires after the HTML file is fully loaded, so when
the process() function executes, it has access to the whole HTML structure. Your process()
function starts by creating the HTML code you want to add to the div element:

function process()
{
 // Create the HTML code
 var string;
 string = ""
 + "Black"
 + "Orange"
 + "Pink"
 + "";

Next, you obtain a reference to myDivElement, using the getElementById function of the
document object. Remember that document is a default object in JavaScript, referencing the body
of your HTML document.

 // obtain a reference to the <div> element on the page
 myDiv = document.getElementById("myDivElement");

Note that JavaScript allows you to use either single quotes or double quotes for string
variables. The previous line of code can be successfully written like this:
 myDiv = document.getElementById('myDivElement');

In the case of JavaScript, both choices are equally good, as long as you are consistent
about using only one of them. If you use both notations in the same script you risk ending
up with parse errors. In this book, we will use double quotes in JavaScript programs.

Finally, you populate myDivElement by adding the HTML code you built in the string variable:
 // add content to the <div> element
 myDiv.innerHTML = string;
}

In this example, you have used the innerHTML property of the DOM to add the composed HTML
to your document.

Chapter 2

Even More DOM
In the previous exercise, you have created the list of elements by joining strings to compose a
simple HTML structure. The same HTML structure can be built programmatically using the
DOM. In the next exercise, you will generate this content programmatically:

<div id="myDivElement">
 Hello Dude! Here's a cool list of colors for you:

 Black
 Orange
 Pink

</div>

A DOM document is a hierarchical structure of elements, where each element can have one or
more attributes. In this HTML fragment, the single element with an attribute is <div>, which has
an attribute called id with the value myDivElement. The root node that you can access through the
document object is <body>. When implementing the above HTML document, you will end up with
a structure such as the one in the figure below:

Figure 2.3: A Hierarchy of HTML Elements

In Figure 2.3, you see an HTML structure formed of <body>, <div>,
, , and
elements, and four text nodes ("Hello…", "Black", "Orange", "Pink"). In the next exercise, you will
create this structure using the DOM functions createElement, createTextNode, and appendChild.

Time for Action—Even More DOM
1. In the foundations folder, create a subfolder called evenmorejsdom.
2. In the evenmorejsdom folder, create a file called evenmorejsdom.html, and add the

following code to it:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>
 <head>
 <title>AJAX Foundations: Even More JavaScript and DOM</title>
 <script type="text/javascript" src="evenmorejsdom.js"></script>
 </head>

 37

Client-Side Techniques with Smarter JavaScript

 38

 <body onload="process()">
 <div id="myDivElement" />
 </body>
</html>

3. Add a new file called evenmorejsdom.js, with the following contents:
function process()
{
 // create the first text node
 oHello = document.createTextNode
 ("Hello Dude! Here's a cool list of colors for you:");

 // create the element
 oUl = document.createElement("ul")

 // create the first <ui> element and add a text node to it
 oLiBlack = document.createElement("li");
 oBlack = document.createTextNode("Black");
 oLiBlack.appendChild(oBlack);

 // create the second <ui> element and add a text node to it
 oLiOrange = document.createElement("li");
 oOrange = document.createTextNode("Orange");
 oLiOrange.appendChild(oOrange);

 // create the third <ui> element and add a text node to it
 oLiPink = document.createElement("li");
 oPink = document.createTextNode("Pink");
 oLiPink.appendChild(oPink);

 // add the <ui> elements as children to the element
 oUl.appendChild(oLiBlack);
 oUl.appendChild(oLiOrange);
 oUl.appendChild(oLiPink);

 // obtain a reference to the <div> element on the page
 myDiv = document.getElementById("myDivElement");

 // add content to the <div> element
 myDiv.appendChild(oHello);
 myDiv.appendChild(oUl);
}

4. Load evenmoredom.html in a web browser. The result should look like Figure 2.4:

Figure 2.4: Even More JavaScript and DOM

Chapter 2

What Just Happened?
Well, what just happened is exactly what happened after the previous exercise, but this time with
much more code, as you can see by having a look at the process() function. Although there are
many lines of code, the functionality is pretty simple. This suggests clearly enough that using the
DOM to create HTML structures may not always be the best option. However, in certain
circumstances it can actually make programming easier, for the following reasons:

• It's fairly easy to programmatically create dynamic HTML structures, such as
building elements in for loops, because you're not concerned about text formatting
but about building the structural elements.

• As a consequence, you don't need, for example, to manually add closing tags. When
you add a 'ui' element, the DOM will take care to generate the <ui> tag and an
associated closing </ui> tag for you.

• You can treat the nodes as if they were independent nodes, and decide later how to
build the hierarchy. Again, the DOM takes care of the implementation details; you
just need to tell it what you want.

JavaScript, DOM, and CSS
CSS (Cascading Style Sheets) is certainly a familiar term for you. CSS allows setting formatting
options in a centralized document that is referenced from HTML files. If the job is done right, and
CSS is used consistently in a website, CSS will allow you to make visual changes to the entire site
(or parts of the site) with very little effort, just by editing the CSS file. There are many books and
tutorials on CSS, including the free ones you can find at http://www.w3.org/Style/CSS/ and
http://www.w3schools.com/css/default.asp. Although the article that invented the name
AJAX (http://www.adaptivepath.com/publications/essays/archives/000385.php)
mentions CSS as one of the AJAX ingredients, technically CSS is not required to build successful
dynamic web applications. However, its usage is highly recommended because of the significant
benefits it brings.

We will do a simple exercise to demonstrate using CSS, and manipulating HTML elements' styles
using the DOM. These are usual tasks you will do when building AJAX applications. In the
following exercise, you will draw a nice table, and you will have two buttons named Set Style 1
and Set Style 2. These buttons will change the table's colors and appearance by just switching the
current styles. See Figure 2.5 to get a feeling about what you're about to create.

Time for Action—Working with CSS and JavaScript
1. In the foundations folder, create a new subfolder called csstest.
2. In your newly created csstest folder, create a new file called csstest.html, with

the following contents:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>
 <head>
 <title>AJAX Foundations: CSS</title>
 <script type="text/javascript" src="csstest.js"></script>
 <link href="styles.css" type="text/css" rel="stylesheet"/>
 </head>

 39

http://www.adaptivepath.com/publications/essays/archives/000385.php

Client-Side Techniques with Smarter JavaScript

 <body>
 <table id="table">
 <tr>
 <th id="tableHead">
 Product Name
 </th>
 </tr>
 <tr>
 <td id="tableFirstLine">
 Airplane
 </td>
 </tr>
 <tr>
 <td id="tableSecondLine">
 Big car
 </td>
 </tr>
 </table>

 <input type="button" value="Set Style 1" onclick="setStyle1();" />
 <input type="button" value="Set Style 2" onclick="setStyle2();" />
 </body>
</html>

3. Create a file called csstest.js and write the following code in it:
// Change table style to style 1
function setStyle1()
{
 // obtain references to HTML elements
 oTable = document.getElementById("table");
 oTableHead = document.getElementById("tableHead");
 oTableFirstLine = document.getElementById("tableFirstLine");
 oTableSecondLine = document.getElementById("tableSecondLine");
 // set styles
 oTable.className = "Table1";
 oTableHead.className = "TableHead1";
 oTableFirstLine.className = "TableContent1";
 oTableSecondLine.className = "TableContent1";
}

// Change table style to style 2
function setStyle2()
{
 // obtain references to HTML elements
 oTable = document.getElementById("table");
 oTableHead = document.getElementById("tableHead");
 oTableFirstLine = document.getElementById("tableFirstLine");
 oTableSecondLine = document.getElementById("tableSecondLine");
 // set styles
 oTable.className = "Table2";
 oTableHead.className = "TableHead2";
 oTableFirstLine.className = "TableContent2";
 oTableSecondLine.className = "TableContent2";
}

4. Finally create the CSS file, styles.css:
.Table1
{
 border: DarkGreen 1px solid;
 background-color: LightGreen;
}
.TableHead1
{
 font-family: Verdana, Arial;
 font-weight: bold;

 40

Chapter 2

 font-size: 10pt;
}
.TableContent1
{
 font-family: Verdana, Arial;
 font-size: 10pt;
}

.Table2
{
 border: DarkBlue 1px solid;
 background-color: LightBlue;
}
.TableHead2
{
 font-family: Verdana, Arial;
 font-weight: bold;
 font-size: 10pt;
}
.TableContent2
{
 font-family: Verdana, Arial;
 font-size: 10pt;
}

5. Load http://localhost/ajax/foundations/css/css.html in your web browser,
and test that your buttons work as they should.

Figure 2.5: Table with CSS and JavaScript

What Just Happened?
Your styles.css file contains two sets of styles that can be applied to the table in csstest.html.
When the user clicks one of the Set Style buttons, the JavaScript DOM is used to assign those
styles to the elements of the table.

In the first part of the SetStyle methods, we use the getElementByID function to obtain
references to the HTML elements that we want to apply CSS styles to:

 // obtain references to HTML elements
 oTable = document.getElementById("table");
 oTableHead = document.getElementById("tableHead");
 oTableFirstLine = document.getElementById("tableFirstLine");

 41

 oTableSecondLine = document.getElementById("tableSecondLine");

Client-Side Techniques with Smarter JavaScript

As with many other web development tasks, manipulating CSS can be the subject of
significant inconsistencies between different browsers. For example, in the previous code
snippet, try to rename the object names to be the same as their associated HTML
elements (such as renaming oTable to table) to see Internet Explorer stop working.
Internet Explorer doesn't like it if there's already an object with that ID in the HTML file.
This problem doesn't make much sense because the objects have different scopes, but
better watch out if you want your code to work with Internet Explorer as well.

Once initializing these objects, the safe way that works with all browsers to set the elements' CSS
style is to use their className property:

 // set styles
 oTable.className = "Table1";
 oTableHead.className = "TableHead1";
 oTableFirstLine.className = "TableContent1";
 oTableSecondLine.className = "TableContent1";

Using the XMLHttpRequest Object
XMLHttpRequest is the object that enables the JavaScript code to make asynchronous HTTP server
requests. This functionality allows you to make HTTP requests, receive responses, and update
parts of the page completely in the background, without the user experiencing any visual
interruptions. This is very important because one can keep the user interface responsive while
interrogating the server for data.

The XMLHttpRequest object was initially implemented by Microsoft in 1999 as an ActiveX object
in Internet Explorer, and eventually became de facto standard for all the browsers, being supported
as a native object by all modern web browsers except Internet Explorer 6.

Note that even if XMLHttpRequest has become a de facto standard in the web browsers, it
is not a W3C standard. Similar functionality is proposed by the W3C DOM Level 3 Load
and Save specification standard, which hasn't been implemented yet by web browsers.

The typical sequence of operations when working with XMLHttpRequest is as follows:

1. Create an instance of the XMLHttpRequest object.
2. Use the XMLHttpRequest object to make an asynchronous call to a server page,

defining a callback function that will be executed automatically when the server
response is received.

1. Deal with server's response in the callback function.
2. Go to step 2.

Let's now see how to do these steps with real code.

 42

Chapter 2

Creating the XMLHttpRequest Object
The XMLHttpRequest is implemented in different ways by the browsers. In Internet Explorer 6 and
older, XMLHttpRequest is implemented as an ActiveX control, and you instantiate it like this:

xmlhttp = new ActiveXObject("Microsoft.XMLHttp");

For the other web browsers, XMLHttpRequest is a native object, so you create instances of it
like this:

xmlhttp = new XMLHttpRequest();

The ActiveX XMLHttp library comes is many more flavors and versions that you could
imagine. Each piece of Microsoft software, including Internet Explorer and MDAC, came
with new versions of this ActiveX control. Microsoft.XMLHTTP is the oldest and can be
safely used for basic operations, while the newer versions have performance and feature
improvements. You will learn how to automatically use a more recent version.

A simplified version of the code we will use for cross-browser XMLHttpRequest instantiation
throughout this book is:

// creates an XMLHttpRequest instance
function createXmlHttpRequestObject()
{
 // will store the reference to the XMLHttpRequest object
 var xmlHttp;
 // this should work for all browsers except IE6 and older
 try
 {
 // try to create XMLHttpRequest object
 xmlHttp = new XMLHttpRequest();
 }
 catch(e)
 {
 // assume IE6 or older
 try
 {
 xmlHttp = new ActiveXObject("Microsoft.XMLHttp");
 }
 catch(e) { }
 }
 // return the created object or display an error message
 if (!xmlHttp)
 alert("Error creating the XMLHttpRequest object.");
 else
 return xmlHttp;
}

This function is supposed to return an instance of the XMLHttpRequest object. The functionality
relies on the JavaScript try/catch construct.

The try/catch construct, initially implemented with OOP languages, offers a powerful
exception-handling technique in JavaScript. Basically, when an error happens in JavaScript code,
an exception is thrown. The exception has the form of an object that contains the error's
(exception's) details. Using the try/catch syntax, you can catch the exception and handle it
locally, so that the error won't be propagated to the user's browser.

 43

Client-Side Techniques with Smarter JavaScript

 44

The try/catch syntax is as follows:
try
{
 // code that might generate an exception
}
catch (e)
{
 // code that is executed only if an exception was thrown by the try block
 // (exception details are available through the e parameter)
}

You place any code that might generate errors inside the try block. If an error happens, the
execution is passed immediately to the catch block. If no error happens inside the try block, then
the code in the catch block never executes.

Run-time exceptions propagate from the point they were raised, up through the call stack of your
program. If you don't handle the exception locally, it will end up getting caught by the web
browser, which may display a not very good looking error message to your visitor.

The way you respond to each exception depends very much on the situation at hand. Sometimes you
will simply ignore the error, other times you will flag it somehow in the code, or you will display an
error message to your visitor. Rest assured that in this book you will meet all kinds of scenarios.

In our particular case, when we want to create an XMLHttpRequest object, we will first try to
create the object as if it was a native browser object, like this:

 // this should work for all browsers except IE6 and older
 try
 {
 // try to create XMLHttpRequest object
 xmlHttp = new XMLHttpRequest();
 }

Internet Explorer 7, Mozilla, Opera, and other browsers will execute this piece of code just fine,
and no error will be generated, because XMLHttpRequest is a natively supported. However, Internet
Explorer 6 and its older versions won't recognize the XMLHttpRequest object, an exception will be
generated, and the execution will be passed to the catch block. For Internet Explorer 6 and older
versions, the XMLHttpRequest object needs to be created as an ActiveX control:

 catch(e)
 {
 // assume IE6 or older
 try
 {
 xmlHttp = new ActiveXObject("Microsoft.XMLHttp");
 }
 catch(e) { }
 }

The larger the number of JavaScript programmers, the more XMLHttpRequest object creation
methods you will see, and surprisingly enough, they will all work fine. In this book, we prefer the
method that uses try and catch to instantiate the object, because we think it has the best chance of
working well with future browsers, while doing a proper error checking without consuming too
many lines of code.

Chapter 2

You could, for example, check whether your browser supports XMLHttpRequest before trying to
instantiate it, using the typeof function:

if (typeof XMLHttpRequest != "undefined")
 xmlHttp = new XMLHttpRequest();

Using typeof can often prove to be very helpful. In our particular case, using typeof doesn't
eliminate the need to guard against errors using try/catch, so you would just end up typing more
lines of code.

An alternative way to achieve the same functionality is by using a JavaScript feature called
object detection. This feature allows you to check whether a particular object is supported by
the browser, and works like this:
if (window.XMLHttpRequest)
 xmlHttp = new XMLHttpRequest();

For example, by checking for window.ActiveX you can find if the browser is Internet Explorer.
Once again, we're not using this technique because it would simply add more lines of code without
bringing any benefits; but the ideas are good to keep nevertheless.

If you decide to use object detection, please be sure to check for XMLHttpRequest first before
checking for ActiveX support. The reason for this recommendation is Internet Explorer 7, which
supports both ActiveX and XMLHttpRequest; the latter is better because it gives you the latest
object version. With ActiveX, as you will see, you need to write quite a bit of code to ensure that
you get a recent version, although you still are not guaranteed to get the latest one.

At the end of our createXmlHttpRequestObject function, we test that after all the efforts, we
have ended up obtaining a valid XMLHttpRequest instance:

 // return the created object or display an error message
 if (!xmlHttp)
 alert("Error creating the XMLHttpRequest object.");
 else
 return xmlHttp;

The reverse effect of object detection is even nicer than the feature itself. Object
detection says that JavaScript will evaluate a valid object instance, such as (xmlHttp), to
true. The nice thing is that (!xmlHttp) expression returns true not only if xmlHttp is
false, but also if it is null or undefined.

Creating Better Objects for Internet Explorer
The one thing that can be improved about the createXmlHttpRequestObject function is to have it
recognize the latest version of the ActiveX control, in case the browser is Internet Explorer 6. In most
cases, you can rely on the basic functionality provided by ActiveXObject("Microsoft.XMLHttp"), but
if you want to try using a more recent version, you can.

The typical solution is to try creating the latest known version, and if it fails, ignore the error and
retry with an older version, and so on until you get an object instead of an exception. The latest
prog ID of the XMLHTTP ActiveX Object is MSXML2.XMLHTTP.6.0. For more details about these
prog IDs, or to simply get a better idea of the chaos that lies behind them, feel free to read a
resource such as http://puna.net.nz/etc/xml/msxml.htm.

 45

Client-Side Techniques with Smarter JavaScript

 46

Here is the upgraded version of createXmlHttpRequestObject. The new bits are highlighted.
// creates an XMLHttpRequest instance
function createXmlHttpRequestObject()
{
 // will store the reference to the XMLHttpRequest object
 var xmlHttp;
 // this should work for all browsers except IE6 and older
 try
 {
 // try to create XMLHttpRequest object
 xmlHttp = new XMLHttpRequest();
 }
 catch(e)
 {
 // assume IE6 or older
 var XmlHttpVersions = new Array('MSXML2.XMLHTTP.6.0',
 'MSXML2.XMLHTTP.5.0',
 'MSXML2.XMLHTTP.4.0',
 'MSXML2.XMLHTTP.3.0',
 'MSXML2.XMLHTTP',
 'Microsoft.XMLHTTP');
 // try every prog id until one works
 for (var i=0; i<XmlHttpVersions.length && !xmlHttp; i++)
 {
 try
 {
 // try to create XMLHttpRequest object
 xmlHttp = new ActiveXObject(XmlHttpVersions[i]);
 }
 catch (e) {} // ignore potential error
 }
 }
 // return the created object or display an error message
 if (!xmlHttp)
 alert("Error creating the XMLHttpRequest object.");
 else
 return xmlHttp;
}

If this code looks a bit scary, rest assured that the functionality is quite simple. First, it tries to
create the MSXML2.XMLHttp.6.0 ActiveX object. If this fails, the error is ignored (note the empty
catch block there), and the code continues by trying to create an MSXML2.XMLHTTP.5.0 object, and
so on. This continues until one of the object creation attempts succeeds.

Perhaps, the most interesting thing to note in the new code is the way we use object detection
(!xmlHttp) to ensure that we stop looking for new prog IDs after the object has been created,
effectively interrupting the execution of the for loop.

Initiating Server Requests Using XMLHttpRequest
After creating the XMLHttpRequest object you can do lots of interesting things with it. Although, it
has different ways of being instantiated, depending on the version and browser, all the instances of
XMLHttpRequest are supposed to share the same API (Application Programming Interface) and
support the same functionality. (In practice, this can't be guaranteed, since every browser has its
own separate implementation.)

Chapter 2

You will learn the most interesting details about XMLHttpRequest by practice, but for a quick
reference here are the object's methods and properties:

Method/Property Description

abort() Stops the current request.

getAllResponseHeaders() Returns the response headers as a string.

getResponseHeader("headerLabel") Returns a single response header as a string.

open("method", "URL"[, asyncFlag[,
"userName"[, "password"]]])

Initializes the request parameters.

send(content) Performs the HTTP request.

setRequestHeader("label", "value") Sets a label/value pair to the request header.

onreadystatechange
Used to set the callback function that handles request
state changes.

readyState Returns the status of the request:
0 = uninitialized
1 = loading
2 = loaded
3 = interactive
4 = complete

responseText Returns the server response as a string.

responseXML Returns the server response as an XML document.

Status Returns the status code of the request.

statusText Returns the status message of the request.

The methods you will use with every server request are open and send. The open method
configures a request by setting various parameters, and send makes the request (accesses the
server). When the request is made asynchronously, before calling send you will also need to set
the onreadystatechange property with the callback method to be executed when the status of the
request changes, thus enabling the AJAX mechanism.

The open method is used for initializing a request. It has two required parameters and a few
optional ones. The open method doesn't initiate a connection to the server; it is only used to set the
connection options. The first parameter specifies the method used to send data to the server page,
and it can have a value of GET, POST, or PUT. The second parameter is URL, which specifies where
you want to send the request. The URL can be complete or relative. If the URL doesn't specify a
resource accessible via HTTP, the first parameter is ignored.

 47

Client-Side Techniques with Smarter JavaScript

The third parameter of open, called async, specifies whether the request should be handled
asynchronously; true means that script processing carries on after the send() method returns
without waiting for a response; false means that the script waits for a response before
continuing processing, freezing the web page functionality. To enable asynchronous processing,
you will seed to set async to true, and handle the onreadystatechange event to process the
response from the server.

When using GET to pass parameters, you send the parameters using the URL's query string, as
in

T

http://localhost/ajax/test.php?param1=x¶m2=y. This server request passes two
parameters—a parameter called param1 with the value x, and a parameter called param2 with the
value y.

// call the server page to execute the server side operation
xmlHttp.open("GET", "http://localhost/ajax/test.php?param1=x¶m2=y", true);
xmlHttp.onreadystatechange = handleRequestStateChange;
xmlHttp.send(null);

When using POST, you send the query string as a parameter of the send method, instead of joining
it on to the base URL, like this:

// call the server page to execute the server side operation
xmlHttp.open("POST", "http://localhost/ajax/test.php", true);
xmlHttp.onreadystatechange = handleRequestStateChange;
xmlHttp.send("param1=x¶m2=y");

The two code samples should have the same effects. In practice, using GET can help with
debugging because you can simulate GET requests with a web browser, so you can easily see with
your own eyes what your server script generates. The POST method is required when sending data
larger than 512 bytes, which cannot be handled by

T

GET.

In our examples, we will place the code that makes the HTTP request inside a function called
process() in the JavaScript file. The minimal implementation, which is quite fragile and doesn't
implement any error-handling techniques, looks like this:

function process()
{
 // call the server page to execute the server side operation
 xmlHttp.open("GET", "server_script.php", true);
 xmlHttp.onreadystatechange = handleRequestStateChange;
 xmlHttp.send(null);
}

This method has the following potential problems:

• process() may be executed even if xmlHttp doesn't contain a valid
XMLHttpRequest instance. This may happen if, for example, the user's browser
doesn't support XMLHttpRequest. This would cause an unhandled exception to
happen, so our other efforts to handle errors don't help very much if we aren't
consistent and do something about the process function as well.

• process() isn't protected against other kinds of errors that could happen. For
example, as you will see later in this chapter, some browsers will generate a security
exception if they don't like the server you want to access with the XMLHttpRequest
object (more on security in Chapter 3).

 48

Chapter 2

The safer version of process() looks like that:
// called to read a file from the server
function process()
{
 // only continue if xmlHttp isn't void
 if (xmlHttp)
 {
 // try to connect to the server
 try
 {
 // initiate reading the a file from the server
 xmlHttp.open("GET", "server_script.php", true);
 xmlHttp.onreadystatechange = handleRequestStateChange;
 xmlHttp.send(null);
 }
 // display the error in case of failure
 catch (e)
 {
 alert("Can't connect to server:\n" + e.toString());
 }
 }
}

If xmlHttp is null (or false) we don't display yet another message, as we assume a message was
already displayed by the createXmlHttpRequestObject function. We make sure to display any
other connection problems though.

Handling Server Response
When making an asynchronous request (such as in the code snippets presented earlier), the
execution of xmlHttp.send() doesn't freeze until the server response is received; instead, the
execution continues normally. The handleRequestStateChange method is the callback method
that we set to handle request state changes. Usually this is called four times, for each time the
request enters a new stage. Remember the readyState property can be any of the following:

0 = uninitialized
1 = loading
2 = loaded
3 = interactive
4 = complete

Except state 3, all the others are pretty self-explaining names. The interactive state is an
intermediate state when the response has been partially received. In our AJAX applications we
will only use the complete state, which marks that a response has been received from the server.

The typical implementation of handleRequestStateChange is shown in the following code
snippet, which highlights the portion where you actually get to read the response from the server:

// function executed when the state of the request changes
function handleRequestStateChange()
{
 // continue if the process is completed
 if (xmlHttp.readyState == 4)
 {
 // continue only if HTTP status is "OK"
 if (xmlHttp.status == 200)
 {
 // retrieve the response
 response = xmlHttp.responseText;

 49

Client-Side Techniques with Smarter JavaScript

 50

 // (use xmlHttp.responseXML to read an XML response as a DOM object)
 // do something with the response
 // ...
 // ...
 }
 }
}

Once again we can successfully use try/catch to handle errors that could happen while initiating a
connection to the server, or while reading the response from the server.

A safer version of the handleRequestStateChange method looks like this:
// function executed when the state of the request changes
function handleRequestStateChange()
{
 // continue if the process is completed
 if (xmlHttp.readyState == 4)
 {
 // continue only if HTTP status is "OK"
 if (xmlHttp.status == 200)
 {
 try
 {
 // retrieve the response
 response = xmlHttp.responseText;
 // do something with the response
 // ...
 // ...
 }
 catch(e)
 {
 // display error message
 alert("Error reading the response: " + e.toString());
 }
 }
 else
 {
 // display status message
 alert("There was a problem retrieving the data:\n" +
 xmlHttp.statusText);
 }
 }
}

OK, let's see how these functions work in action.

Time for Action—Making Asynchronous Calls with XMLHttpRequest
1. In the foundations folder, create a subfolder named async.
2. In the async folder, create a file called async.txt, and add the following text to it:

Hello client!

3. In the same folder create a file called async.html, and add the following code to it:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>
 <head>
 <title>AJAX Foundations: Using XMLHttpRequest</title>
 <script type="text/javascript" src="async.js"></script>
 </head>
 <body onload="process()">
 Hello, server!

Chapter 2

 <div id="myDivElement" />
 </body>
</html>

4. Create a file called async.js with the following contents:
// holds an instance of XMLHttpRequest
var xmlHttp = createXmlHttpRequestObject();

// creates an XMLHttpRequest instance
function createXmlHttpRequestObject()
{
 // will store the reference to the XMLHttpRequest object
 var xmlHttp;
 // this should work for all browsers except IE6 and older
 try
 {
 // try to create XMLHttpRequest object
 xmlHttp = new XMLHttpRequest();
 }
 catch(e)
 {
 // assume IE6 or older
 var XmlHttpVersions = new Array("MSXML2.XMLHTTP.6.0",
 "MSXML2.XMLHTTP.5.0",
 "MSXML2.XMLHTTP.4.0",
 "MSXML2.XMLHTTP.3.0",
 "MSXML2.XMLHTTP",
 "Microsoft.XMLHTTP");
 // try every prog id until one works
 for (var i=0; i<XmlHttpVersions.length && !xmlHttp; i++)
 {
 try
 {
 // try to create XMLHttpRequest object
 xmlHttp = new ActiveXObject(XmlHttpVersions[i]);
 }
 catch (e) {}
 }
 }
 // return the created object or display an error message
 if (!xmlHttp)
 alert("Error creating the XMLHttpRequest object.");
 else
 return xmlHttp;
}

// called to read a file from the server
function process()
{
 // only continue if xmlHttp isn't void
 if (xmlHttp)
 {
 // try to connect to the server
 try
 {
 // initiate reading the async.txt file from the server
 xmlHttp.open("GET", "async.txt", true);
 xmlHttp.onreadystatechange = handleRequestStateChange;
 xmlHttp.send(null);
 }
 // display the error in case of failure
 catch (e)

 51

Client-Side Techniques with Smarter JavaScript

 52

 {
 alert("Can't connect to server:\n" + e.toString());
 }
 }
}

// function that handles the HTTP response
function handleRequestStateChange()
{
 // obtain a reference to the <div> element on the page
 myDiv = document.getElementById("myDivElement");
 // display the status of the request
 if (xmlHttp.readyState == 1)
 {
 myDiv.innerHTML += "Request status: 1 (loading)
";
 }
 else if (xmlHttp.readyState == 2)
 {
 myDiv.innerHTML += "Request status: 2 (loaded)
";
 }
 else if (xmlHttp.readyState == 3)
 {
 myDiv.innerHTML += "Request status: 3 (interactive)
";
 }
 // when readyState is 4, we also read the server response
 else if (xmlHttp.readyState == 4)
 {
 // continue only if HTTP status is "OK"
 if (xmlHttp.status == 200)
 {
 try
 {
 // read the message from the server
 response = xmlHttp.responseText;
 // display the message
 myDiv.innerHTML +=
 "Request status: 4 (complete). Server said:
";
 myDiv.innerHTML += response;
 }
 catch(e)
 {
 // display error message
 alert("Error reading the response: " + e.toString());
 }
 }
 else
 {
 // display status message
 alert("There was a problem retrieving the data:\n" +
 xmlHttp.statusText);
 }
 }
}

5. Load the async.html file through the HTTP server by loading http://localhost/
ajax/foundations/async/async.html in your browser (you must load it through
HTTP; local access won't work this time). Expect to see the results similar to those
shown in Figure 2.6:

Chapter 2

Figure 2.6: The Four HTTP Request Status Codes

Don't worry if your browser doesn't display exactly the same message. Some
XMLHttpRequest implementations simply ignore some status codes. Opera, for example,
will only fire the event for status codes 3 and 4. Internet Explorer will report status codes
2, 3, and 4 when using a more recent XMLHttp version.

What Just Happened?
To understand the exact flow of execution, let's start from where the processing begins—the
async.html file:

<html>
 <head>
 <title>AJAX Foundations: Using XMLHttpRequest</title>
 <script type="text/javascript" src="async.js"></script>
 </head>
 <body onload="process()">

This bit of code hides some interesting functionality. First, it references the async.js file, the
moment at which the code in that file is parsed. Note that the code residing in JavaScript functions
does not execute automatically, but the rest of the code does. All the code in our JavaScript file is
packaged as functions, except one line:

// holds an instance of XMLHttpRequest
var xmlHttp = createXmlHttpRequestObject();

This way we ensure that the xmlHttp variable contains an XMLHttpRequest instance right from the
start. The XMLHttpRequest instance is created by calling the createXmlHttpRequestObject
function that you encountered a bit earlier.

The process() method gets executed when the onload event fires. The process() method can
rely on the xmlHttp object being already initialized, so it only focuses on initializing a server
request. The proper error-handling sequence is used to guard against potential problems. The code
that initiates the server request is:

 // initiate reading the async.txt file from the server
 xmlHttp.open("GET", "async.txt", true);

 53

Client-Side Techniques with Smarter JavaScript

 54

 xmlHttp.onreadystatechange = handleRequestStateChange;
 xmlHttp.send(null);

Note that you cannot load the script locally, directly from the disk using a file://
resource. Instead, you need to load it through HTTP. To load it locally, you would need
to mention the complete access path to the .txt file, and in that case you may meet a
security problem that we will deal with later.

Supposing that the HTTP request was successfully initialized and executed asynchronously, the
handleRequestStateChange method will get called every time the state of the request changes. In
real applications we will ignore all states except 4 (which signals the request has completed), but
in this exercise we print a message with each state so you can see the callback method actually
gets executed as advertised.

The code in handleRequestStateChange is not that exciting by itself, but the fact that it's being
called for you is very nice indeed. Instead of waiting for the server to reply with a synchronous
HTTP call, making the request asynchronously allows you to continue doing other tasks until a
response is received.

The handleRequestStateChange function starts by obtaining a reference to the HTML element
called myDivElement, which is used to display the various states the HTTP request is going through:

// function that handles the HTTP response
function handleRequestStateChange()
{
 // obtain a reference to the <div> element on the page
 myDiv = document.getElementById("myDivElement");
 // display the status o the request
 if (xmlHttp.readyState == 1)
 {
 myDiv.innerHTML += "Request status: 1 (loading)
";
 }
 else if (xmlHttp.readyState == 2)
 ...
 ...

When the status hits the value of 4, we have the typical code that deals with reading the server
response, hidden inside xmlHttp.ResponseText:

 // when readyState is 4, we also read the server response
 else if (xmlHttp.readyState == 4)
 {
 // continue only if HTTP status is "OK"
 if (xmlHttp.status == 200)
 {
 try
 {
 // read the message from the server
 response = xmlHttp.responseText;
 // display the message
 myDiv.innerHTML += "Request status: 4 (complete). Server said:
";
 myDiv.innerHTML += response;
 }
 catch(e)
 {
 // display error message
 alert("Error reading the response: " + e.toString());
 }

Chapter 2

 }
 else
 {
 // display status message
 alert("There was a problem retrieving the data:\n" +
 xmlHttp.statusText);
 }
 }

Apart from the error-handling bits, it's good to notice the xmlHttp.responseText method that
reads the response from the server. This method has a bigger brother called
xmlHttp.responseXml, which can be used when the response from the server is in XML format.

Unless the responseXml method of the XMLHttpRequest object is used, there's really no
XML appearing anywhere, except for the name of that object (the exercise you have just
completed is a perfect example of this). A better name for the object would have been
"HttpRequest". The XML prefix was probably added by Microsoft because it sounded
good at that moment, when XML was a big buzzword as AJAX is nowadays. Don't be
surprised if you will see objects called AjaxRequest (or similar) in the days to come.

Working with XML Structures
XML documents are similar to HTML documents in that they are text-based, and contain
hierarchies of elements. In the last few years, XML has become very popular for packaging and
delivering all kinds of data.

Incidentally, XML puts the X in AJAX, and the prefix in XMLHttpRequest. However, once again,
note that using XML is optional. In the previous exercise, you created a simple application that
made an asynchronous call to the server, just to receive a text document; no XML was involved.

XML is a vast subject, with many complementary technologies. You will hear people
talking about DTDs, schemas and namespaces, XSLT and XPath, XLink and XPointer,
and more. In this book we will mostly use XML for transmitting simple structures of
data. For a quick-start introduction to XML we recommend http://www.xmlnews.org/
docs/xml-basics.html. If you don't mind the ads, http://www.w3schools.com/
xml/default.asp is a good resource as well. Appendix C available at
http://ajaxphp.packtpub.com contains an introduction to XSLT and Xpath.

You can use the DOM to manipulate XML files just as you did for manipulating HTML files. The
following exercise is similar to the previous exercise in that you read a static file from the server.
The novelty is that the file is XML, and we read it using the DOM.

Time for Action—Making Asynchronous Calls with XMLHttpRequest
and XML

1. In the foundations folder create a subfolder called xml.
2. In the xml folder, create a file called books.xml, which will contain the XML structure

that we will read using JavaScript's DOM. Add the following content to the file:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

 55

Client-Side Techniques with Smarter JavaScript

 56

<response>
 <books>
 <book>
 <title>
 Building Reponsive Web Applications with AJAX and PHP
 </title>
 <isbn>
 1-904811-82-5
 </isbn>
 </book>
 <book>
 <title>
 Beginning PHP 5 and MySQL E-Commerce: From Novice to Professional
 </title>
 <isbn>
 1-59059-392-8
 </isbn>
 </book>
 </books>
</response>

3. In the same folder create a file called books.html, and add the following code to it:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>
 <head>
 <title>AJAX Foundations: JavaScript and XML</title>
 <script type="text/javascript" src="books.js"></script>
 </head>
 <body onload="process()">
 Server, tell me your favorite books!

 <div id="myDivElement" />
 </body>
</html>

4. Finally, create the books.js file:
// holds an instance of XMLHttpRequest
var xmlHttp = createXmlHttpRequestObject();

// creates an XMLHttpRequest instance
function createXmlHttpRequestObject()
{
 // will store the reference to the XMLHttpRequest object
 var xmlHttp;
 // this should work for all browsers except IE6 and older
 try
 {
 // try to create XMLHttpRequest object
 xmlHttp = new XMLHttpRequest();
 }
 catch(e)
 {
 // assume IE6 or older
 var XmlHttpVersions = new Array('MSXML2.XMLHTTP.6.0',
 'MSXML2.XMLHTTP.5.0',
 'MSXML2.XMLHTTP.4.0',
 'MSXML2.XMLHTTP.3.0',
 'MSXML2.XMLHTTP',
 'Microsoft.XMLHTTP');
 // try every prog id until one works
 for (var i=0; i<XmlHttpVersions.length && !xmlHttp; i++)
 {
 try

Chapter 2

 {
 // try to create XMLHttpRequest object
 xmlHttp = new ActiveXObject(XmlHttpVersions[i]);
 }
 catch (e) {}
 }
 }
 // return the created object or display an error message
 if (!xmlHttp)
 alert("Error creating the XMLHttpRequest object.");
 else
 return xmlHttp;
}

// read a file from the server
function process()
{
 // only continue if xmlHttp isn't void
 if (xmlHttp)
 {
 // try to connect to the server
 try
 {
 // initiate reading a file from the server
 xmlHttp.open("GET", "books.xml", true);
 xmlHttp.onreadystatechange = handleRequestStateChange;
 xmlHttp.send(null);
 }
 // display the error in case of failure
 catch (e)
 {
 alert("Can't connect to server:\n" + e.toString());
 }
 }
}

// function called when the state of the HTTP request changes
function handleRequestStateChange()
{
 // when readyState is 4, we are ready to read the server response
 if (xmlHttp.readyState == 4)
 {
 // continue only if HTTP status is "OK"
 if (xmlHttp.status == 200)
 {
 try
 {
 // do something with the response from the server
 handleServerResponse();
 }
 catch(e)
 {
 // display error message
 alert("Error reading the response: " + e.toString());
 }
 }
 else
 {
 // display status message
 alert("There was a problem retrieving the data:\n" +
 xmlHttp.statusText);
 }
 }
}

 57

Client-Side Techniques with Smarter JavaScript

 58

// handles the response received from the server
function handleServerResponse()
{
 // read the message from the server
 var xmlResponse = xmlHttp.responseXML;
 // obtain the XML's document element
 xmlRoot = xmlResponse.documentElement;
 // obtain arrays with book titles and ISBNs
 titleArray = xmlRoot.getElementsByTagName("title");
 isbnArray = xmlRoot.getElementsByTagName("isbn");
 // generate HTML output
 var html = "";
 // iterate through the arrays and create an HTML structure
 for (var i=0; i<titleArray.length; i++)
 html += titleArray.item(i).firstChild.data +
 ", " + isbnArray.item(i).firstChild.data + "
";
 // obtain a reference to the <div> element on the page
 myDiv = document.getElementById("myDivElement");
 // display the HTML output
 myDiv.innerHTML = "Server says:
" + html;
}

5. Load http://localhost/ajax/foundations/xml/books.html:

Figure 2.7: The Server Knows What It's Talking About

What Just Happened?
Most of the code will already start looking familiar, as it builds the basic framework we have built
so far. The novelty consists in the handleServerResponse function, which is called from
handleRequestStateChange when the request is complete.

The handleServerResponse function starts by retrieving the server response in XML format:
// handles the response received from the server
function handleServerResponse()
{
 // read the message from the server
 var xmlResponse = xmlHttp.responseXML;

Chapter 2

The responseXML method of the XMLHttpRequest object wraps the received response as a DOM
document. If the response isn't a valid XML document, the browser might throw an error.
However this depends on the specific browser you're using, because each JavaScript and DOM
implementation behaves in its own way.

We will get back to bulletproofing the XML reading code in a minute; for now, let us assume the
XML document is valid, and let's see how we read it. As you know, an XML document must have
one (and only one) document element, which is the root element. In our case this is <response>.
You will usually need a reference to the document element to start with, as we did in our exercise:

 // obtain the XML's document element
 xmlRoot = xmlResponse.documentElement;

The next step was to create two arrays, one with book titles and one with book ISBNs. We did that
using the getElementsByTagName DOM function, which parses the entire XML file and retrieves
the elements with the specified name:

 // obtain arrays with book titles and ISBNs
 titleArray = xmlRoot.getElementsByTagName("title");
 isbnArray = xmlRoot.getElementsByTagName("isbn");

This is, of course, one of the many ways in which you can read an XML file using the DOM. A
much more powerful way is to use XPath, which allows you to define powerful queries on your
XML document. .

The two arrays that we generated are arrays of DOM elements. In our case, the text that we want
displayed is the first child element of the title and isbn elements (the first child element is the
text element that contains the data we want to display).

 // generate HTML output
 var html = "";
 // iterate through the arrays and create an HTML structure
 for (var i=0; i<titleArray.length; i++)
 html += titleArray.item(i).firstChild.data +
 ", " + isbnArray.item(i).firstChild.data + "
";
 // obtain a reference to the <div> element on the page
 myDiv = document.getElementById('myDivElement');
 // display the HTML output
 myDiv.innerHTML = "Server says:
" + html;
}

The highlighted bits are used to build an HTML structure that is inserted into the page using the
div element that is defined in books.html.

Handling More Errors and Throwing Exceptions
As highlighted earlier, if the XML document you're trying to read is not valid, each browser reacts
in its own way. We have made a simple test by removing the closing </response> tag from
books.xml. Firefox will throw an error to the JavaScript console, but besides that, no error will be
shown to the user. This is not good, of course, because not many users browse websites looking at
the JavaScript console.

 59

Client-Side Techniques with Smarter JavaScript

 60

Open the Firefox JavaScript console from Tools | JavaScript Console. Please see Appendix B at
http://ajaxphp.packtpub.com for more details about the JavaScript Console and other excellent
tools that help with debugging.

Figure 2.8: The Firefox JavaScript Console is Very Useful

What's really nasty is that all tested browsers except Internet Explorer (all versions) don't catch the
error using the try/catch mechanism that exists in place for exactly this kind of errors. Just like
Firefox, Mozilla 1.7 doesn't throw any errors, and to make things even worse, it doesn't say
anything even in its JavaScript console. It simply ignores everything and behaves like nothing bad
happened, as shown in Figure 2.9 (the output is similar to Firefox's).

Figure 2.9: Mozilla Keeps the Problem Secret

Opera, on the other hand, is friendlier (if you're the developer, at least). While it completely
ignores the try/catch blocks that were supposed to catch the error, it displays a very detailed error
message. While this is good for development, for certain you don't want your visitors to see
anything like that:

Chapter 2

Figure 2.10: Opera Displays the Most Helpful Error Message

For some reason, at the time of writing, Internet Explorer seems to be the only browser where our
catch block intercepts the exception, and displays an error message (not a very helpful one, though):

Figure 2.11: Exception Caught by Internet Explorer

Either by design or by default, web browsers don't do very a good job at trapping your errors as
we would expect them to. Since certain kinds of errors are not trappable by normal try/catch
mechanisms, it is important to find alternative solutions (because, the good news is, there are solutions).
You can fix your XML reading code by updating the handleServerResponse function like this:

// handles the response received from the server
function handleServerResponse()
{
 // read the message from the server
 var xmlResponse = xmlHttp.responseXML;
 // catching potential errors with IE and Opera
 if (!xmlResponse || !xmlResponse.documentElement)
 throw("Invalid XML structure:\n" + xmlHttp.responseText);
 // catching potential errors with Firefox
 var rootNodeName = xmlResponse.documentElement.nodeName;
 if (rootNodeName == "parsererror")
 throw("Invalid XML structure:\n" + xmlHttp.responseText);
 // obtain the XML's document element

 61

Client-Side Techniques with Smarter JavaScript

 62

 xmlRoot = xmlResponse.documentElement;
 // obtain arrays with book titles and ISBNs
 titleArray = xmlRoot.getElementsByTagName("title");
 isbnArray = xmlRoot.getElementsByTagName("isbn");
 // generate HTML output
 var html = "";
 // iterate through the arrays and create an HTML structure
 for (var i=0; i<titleArray.length; i++)
 html += titleArray.item(i).firstChild.data +
 ", " + isbnArray.item(i).firstChild.data + "
";
 // obtain a reference to the <div> element on the page
 myDiv = document.getElementById("myDivElement");
 // display the HTML output
 myDiv.innerHTML = "Server says:
" + html;
}

With Internet Explorer and Opera, the documentElement property of xmlResponse object will be
null if the underlying XML document is not valid. With Firefox, the XML document will be
perfectly valid, but the document itself will be replaced by one containing the error details (yes, an
interesting way to report errors); in such cases the document element will be called parsererror.

When we find out there's something wrong with the received XML document, we throw an
exception. Throwing an exception means generating a custom-made exception, and is done using
the throw keyword in JavaScript. This exception will be caught by the catch block in
handleServerResponse, and will get displayed to the visitor:

Figure 2.12: Error Message that Gets Displayed by All Tested Browsers

Chapter 2

I admit that the following piece of code may have puzzled you:
 if (!xmlResponse || !xmlResponse.documentElement)
 throw("Invalid XML structure:\n" + xmlHttp.responseText);

Apparently, if xmlResponse is void, we risk generating another error when trying to read its
documentElement property. In practice, the JavaScript interpreter only evaluates logical expressions
when necessary, and it does so from left to right. In our particular case, if (!xmlResponse) is true,
the second expression isn't evaluated at all, because the end result is true anyway. This feature,
which is implemented in JavaScript and other languages, is called short-circuit evaluation and
you can read more about it here: http://www.webreference.com/javascript/reference/
core/expr.html.

Creating XML Structures
XML and DOM are everywhere. In this chapter, you used the DOM to create HTML elements on
the existing DOM object called document, and you also learned how to read XML documents
received from the server. An important detail that we didn't cover was creating brand new XML
documents using JavaScript's DOM. You may need to perform this kind of functionality if you
want to create XML documents on the client, and send them for reading on the server.

We won't go through more examples, but we will only show you the missing bits. The trick with
creating a brand new XML document is creating the XML document itself. When adding elements
to the HTML output, you used the implicit document object, but this is not an option when you
need to create a new document.

When creating a new DOM object with JavaScript, we're facing the same problem as with creating
XMLHttpRequest objects; the method of creating the object depends on the browser. The following
function is a universal function that returns a new instance of a DOM object:

function createDomObject()
{
 // will store reference to the DOM object
 var xmlDoc;
 // create XML document
 if (document.implementation && document.implementation.createDocument)
 {
 xmlDoc = document.implementation.createDocument("", "", null);
 }
 // works for Internet Explorer
 else if (window.ActiveXObject)
 {
 xmlDoc = new ActiveXObject("Microsoft.XMLDOM");
 }
 // returns the created object or displays an error message
 if (!xmlDoc)
 alert("Error creating the DOM object.");
 else
 return xmlDoc;

}

After executing this function, you can use the created DOM object to perform whatever actions
you want. For more details about creating the DOM object check the following link:
http://www.webreference.com/programming/javascript/domwrapper/index.html. For details
of using the DOM object, refer to the DOM articles mentioned earlier in this chapter.

 63

http://www.webreference.com/programming/javascript/domwrapper/index.html

Client-Side Techniques with Smarter JavaScript

 64

Summary
This chapter walked you through many fields. Working with HTML, JavaScript, CSS, the DOM,
XML, and XMLHttpRequest is certainly not easy to start with, especially if some of these
technologies are new to you. Where you don't feel confident enough, have a look at the
aforementioned resources. When you feel ready, proceed to Chapter 3, where you will learn how to
use PHP and MySQL on the server, and make them interact nicely with the AJAX-enabled client.

3
Server-Side Techniques

with PHP and MySQL

If AJAX is mainly about building smarter clients, then the servers these clients talk to must be
equally smart, otherwise they won't get along very well for too long.

In Chapter 2, you only read static text or XML files from the server. In this chapter, we start
putting the server side to work, with PHP to generate dynamic output, and MySQL to manipulate
and store the back-end data. In this chapter, you will learn how to:

• Use PHP to perform functionality on the server side
• Let clients communicate with the server by passing parameters
• Use XML on the client and the server
• Use PHP scripts to avoid potential JavaScript security problems
• Perform repetitive tasks in your client
• Work with MySQL databases
• Optimize your application's architecture

PHP and DOM
In Chapter 2, you read data asynchronously from the server. While the mechanism is pretty
standard and you will use the same routines many times in this book, what's unusual is that the
data passed back from the server was a static file (either text or XML).

In most real-world situations, you will need the server to do some processing, and generate some
dynamic output. In this book, we will use PHP to do the server-side part of the job. If your
background in PHP isn't strong, an online search for "php tutorial" will generate lots of interesting
resources, including the official PHP tutorial at http://php.net/tut.php. If you enjoy learning by
practicing, you may want to check out one of Cristian Darie and Mihai Bucica's e-commerce books,
such as Beginning PHP 5 and MySQL E-Commerce: From Novice to Professional.

You can even use the Suggest and Autocomplete application that you will build in Chapter 6,
which finds the help page of the PHP functions for you. You will find the application at
http://ajaxphp.packtpub.com/ajax/suggest/.

Server-Side Techniques with PHP and MySQL

 66

In the first exercise for this chapter, you will write a PHP script that uses the PHP's DOM
functions to create XML output that will be read by the client. PHP's DOM functionality is similar
to JavaScript's DOM functionality, and its official documentation can be found at
http://www.php.net/manual/en/ref.dom.php.

The XML document you will create on the server will be almost the same as the XML document
you saved as a static XML file in Chapter 2, but this time it will be generated dynamically:

<response>
 <books>
 <book>
 <title>Building Reponsive Web Applications with AJAX and PHP</title>
 <isbn>1-904811-82-5</isbn>
 </book>
 </books>
</response>

Time for Action—Doing AJAX with PHP
1. In the foundations folder create a subfolder called php.
2. In the php folder create a file named phptest.html, and add the following text to it:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>
 <head>
 <title>Practical AJAX: Using the PHP DOM</title>
 <script type="text/javascript" src="phptest.js"></script>
 </head>
 <body onload="process()">
 The AJAX book of 2006 is:

 <div id="myDivElement" />
 </body>
</html>

3. The client-side code, phptest.js, is almost identical to books.js from the XML
exercise in Chapter 2. The changed bits are highlighted:
// holds an instance of XMLHttpRequest
var xmlHttp = createXmlHttpRequestObject();

// creates an XMLHttpRequest instance
function createXmlHttpRequestObject()
{
 // will store the reference to the XMLHttpRequest object
 var xmlHttp;
 // this should work for all browsers except IE6 and older
 try
 {
 // try to create XMLHttpRequest object
 xmlHttp = new XMLHttpRequest();
 }
 catch(e)
 {
 // assume IE6 or older
 var XmlHttpVersions = new Array("MSXML2.XMLHTTP.6.0",
 "MSXML2.XMLHTTP.5.0",
 "MSXML2.XMLHTTP.4.0",
 "MSXML2.XMLHTTP.3.0",
 "MSXML2.XMLHTTP",
 "Microsoft.XMLHTTP");
 // try every prog id until one works

Chapter 3

 for (var i=0; i<XmlHttpVersions.length && !xmlHttp; i++)
 {
 try
 {
 // try to create XMLHttpRequest object
 xmlHttp = new ActiveXObject(XmlHttpVersions[i]);
 }
 catch (e) {}
 }
 }
 // return the created object or display an error message
 if (!xmlHttp)
 alert("Error creating the XMLHttpRequest object.");
 else
 return xmlHttp;
}

// read a file from the server
function process()
{
 // only continue if xmlHttp isn't void
 if (xmlHttp)
 {
 // try to connect to the server
 try
 {
 // initiate reading a file from the server
 xmlHttp.open("GET", "phptest.php", true);
 xmlHttp.onreadystatechange = handleRequestStateChange;
 xmlHttp.send(null);
 }
 // display the error in case of failure
 catch (e)
 {
 alert("Can't connect to server:\n" + e.toString());
 }
 }
}

// function called when the state of the HTTP request changes
function handleRequestStateChange()
{
 // when readyState is 4, we are ready to read the server response
 if (xmlHttp.readyState == 4)
 {
 // continue only if HTTP status is "OK"
 if (xmlHttp.status == 200)
 {
 try
 {
 // do something with the response from the server
 handleServerResponse();
 }
 catch(e)
 {
 // display error message
 alert("Error reading the response: " + e.toString());
 }
 }
 else
 {
 // display status message
 alert("There was a problem retrieving the data:\n" +
 xmlHttp.statusText);

 67

Server-Side Techniques with PHP and MySQL

 68

 }
 }
}

// handles the response received from the server
function handleServerResponse()
{
 // read the message from the server
 var xmlResponse = xmlHttp.responseXML;
 // catching potential errors with IE and Opera
 if (!xmlResponse || !xmlResponse.documentElement)
 throw("Invalid XML structure:\n" + xmlHttp.responseText);
 // catching potential errors with Firefox
 var rootNodeName = xmlResponse.documentElement.nodeName;
 if (rootNodeName == "parsererror") throw("Invalid XML structure");
 // obtain the XML's document element
 xmlRoot = xmlResponse.documentElement;
 // obtain arrays with book titles and ISBNs
 titleArray = xmlRoot.getElementsByTagName("title");
 isbnArray = xmlRoot.getElementsByTagName("isbn");
 // generate HTML output
 var html = "";
 // iterate through the arrays and create an HTML structure
 for (var i=0; i<titleArray.length; i++)
 html += titleArray.item(i).firstChild.data +
 ", " + isbnArray.item(i).firstChild.data + "
";
 // obtain a reference to the <div> element on the page
 myDiv = document.getElementById("myDivElement");
 // display the HTML output
 myDiv.innerHTML = html;
}

4. And finally, the phptest.php file:
<?php
// set the output content type as xml
header('Content-Type: text/xml');
// create the new XML document
$dom = new DOMDocument();

// create the root <response> element
$response = $dom->createElement('response');
$dom->appendChild($response);

// create the <books> element and append it as a child of <response>
$books = $dom->createElement('books');
$response->appendChild($books);

// create the title element for the book
$title = $dom->createElement('title');
$titleText = $dom->createTextNode
 ('Building Reponsive Web Applications with AJAX and PHP');
$title->appendChild($titleText);

// create the isbn element for the book
$isbn = $dom->createElement('isbn');
$isbnText = $dom->createTextNode('1-904811-82-5');
$isbn->appendChild($isbnText);

Chapter 3

// create the <book> element
$book = $dom->createElement('book');
$book->appendChild($title);
$book->appendChild($isbn);

// append <book> as a child of <books>
$books->appendChild($book);

// build the XML structure in a string variable
$xmlString = $dom->saveXML();
// output the XML string
echo $xmlString;
?>

5. First let's do a simple test to see what phptest.php returns. Load
http://localhost/ajax/foundations/php/phptest.php in your web browser to
ensure it generates a well-formed XML structure:

Figure 3.1: Simple XML Structure Generated by PHP

If you don't get the expected result, be sure to check not only the code, but also your PHP
installation. See Appendix A for details about how to correctly set up your machine.

 69

Server-Side Techniques with PHP and MySQL

 70

6. Once you know the server gives back the right response, you can test the whole
solution by loading http://localhost/ajax/foundations/php/phptest.html:

Figure 3.2: AJAX with PHP

What Just Happened?
When it comes to generating XML structures, not only on the client side but on the server side as
well, you have to choose between creating the XML document using the DOM, or by joining
strings. Your PHP script, phptest.php, starts by setting the content output to text/xml:

<?php
// set the output content type as xml
header('Content-Type: text/xml');

The PHP documentation for header is http://www.php.net/manual/en/function.header.php
(remember, you can simply search for 'header' in the Suggest application, and it will direct you to
the help page).

While in JavaScript files we use double quotes for strings, in PHP we will always try to use
single quotes. They are processed faster, they are more secure, and they are less likely to cause
programming errors. Learn more about PHP strings at http://php.net/types.string. You
can find two useful articles on PHP strings at http://www.sitepoint.com/print/quick-
php-tips and http://www.jeroenmulder.com/weblog/2005/04/php_single_and_
double_quotes.php.

The PHP DOM, not very surprisingly, looks a lot like the JavaScript DOM. It all begins by
creating a DOM document object, which in PHP is represented by the DOMDocument class:

// create the new XML document
$dom = new DOMDocument();

Then you continue by creating the XML structure using methods such as createElement,
createTextNode, appendChild, and so on:

Chapter 3

// create the root <response> element
$response = $dom->createElement('response');
$dom->appendChild($response);

// create the <books> element and append it as a child of <response>
$books = $dom->createElement('books');
$response->appendChild($books);
...

In the end, we save the whole XML structure as a string, using the saveXML function, and echo the
string to the output.

$xmlString = $dom->saveXML();
// output the XML string
echo $xmlString;
?>

The XML document is then read and displayed at the client side using techniques that you came
across in Chapter 2.

In most cases, you will generate XML documents on the server, and will read them on the
client, but of course you can do it the other way round. In Chapter 2, you saw how to
create XML documents and elements using JavaScript's DOM. You can then pass these
structures to PHP (using GET or POST as you will see in the following exercise). To read
XML structures from PHP you can also use the DOM, or you can use an easier-to-use
API called SimpleXML. You will practice using SimpleXML in Chapter 9, when
building your RSS Reader application.

Passing Parameters and Handling PHP Errors
The previous exercise with PHP ignores two very common aspects of writing PHP scripts:

• You usually need to send parameters to your server-side (PHP) script.
• Now that the client side is quite well protected, you should implement some

error-handling technique on the server side as well.

You can send parameters to the PHP script using either GET or POSTT . Handling PHP errors is done
with a PHP-specific technique. In the following exercise, you will pass parameters to a PHP script,
and implement an error-handling mechanism that you will test by supplying bogus values. The
application will look as shown in Figure 3.3.

This page will make an asynchronous call to a server, asking the server to divide two numbers for
you. The server, when everything works well, will return the result as an XML structure that looks
like this:

<?xml version="1.0"?>
<response>1.5</response>

In the case of a PHP error, instead of generating an XML string, the server script returns a plain text
error message, which is intercepted by the client (after doing the exercise, you will understand why).

 71

Server-Side Techniques with PHP and MySQL

Time for Action—Passing PHP Parameters and Error Handling
1. In the

 72

foundations folder, create a new folder called morephp.
2. In the folder, create a file named morephp morephp.html:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>
 <head>
 <title>Practical AJAX: PHP Parameters and Error Handling</title>
 <script type="text/javascript" src="morephp.js"></script>
 </head>
 <body>
 Ask server to divide
 <input type="text" id="firstNumber" />
 by
 <input type="text" id="secondNumber" />
 <input type="button" value="Send" onclick="process()" />
 <div id="myDivElement" />
 </body>
</html>

3. Create a new file named morephp.js:
// holds an instance of XMLHttpRequest
var xmlHttp = createXmlHttpRequestObject();

// creates an XMLHttpRequest instance
function createXmlHttpRequestObject()
{
 // will store the reference to the XMLHttpRequest object
 var xmlHttp;
 // this should work for all browsers except IE6 and older
 try
 {
 // try to create XMLHttpRequest object
 xmlHttp = new XMLHttpRequest();
 }
 catch(e)
 {
 // assume IE6 or older
 var XmlHttpVersions = new Array("MSXML2.XMLHTTP.6.0",
 "MSXML2.XMLHTTP.5.0",
 "MSXML2.XMLHTTP.4.0",
 "MSXML2.XMLHTTP.3.0",
 "MSXML2.XMLHTTP",
 "Microsoft.XMLHTTP");
 // try every prog id until one works
 for (var i=0; i<XmlHttpVersions.length && !xmlHttp; i++)
 {
 try
 {
 // try to create XMLHttpRequest object
 xmlHttp = new ActiveXObject(XmlHttpVersions[i]);
 }
 catch (e) {}
 }
 }
 // return the created object or display an error message
 if (!xmlHttp)
 alert("Error creating the XMLHttpRequest object.");
 else
 return xmlHttp;
}

Chapter 3

// read a file from the server
function process()
{
 // only continue if xmlHttp isn't void
 if (xmlHttp)
 {
 // try to connect to the server
 try
 {
 // get the two values entered by the user
 var firstNumber = document.getElementById("firstNumber").value;
 var secondNumber = document.getElementById("secondNumber").value;
 // create the params string
 var params = "firstNumber=" + firstNumber +
 "&secondNumber=" + secondNumber;
 // initiate the asynchronous HTTP request
 xmlHttp.open("GET", "morephp.php?" + params, true);
 xmlHttp.onreadystatechange = handleRequestStateChange;
 xmlHttp.send(null);
 }
 // display the error in case of failure
 catch (e)
 {
 alert("Can't connect to server:\n" + e.toString());
 }
 }
}

// function called when the state of the HTTP request changes
function handleRequestStateChange()
{
 // when readyState is 4, we are ready to read the server response
 if (xmlHttp.readyState == 4)
 {
 // continue only if HTTP status is "OK"
 if (xmlHttp.status == 200)
 {
 try
 {
 // do something with the response from the server
 handleServerResponse();
 }
 catch(e)
 {
 // display error message
 alert("Error reading the response: " + e.toString());
 }
 }
 else
 {
 // display status message
 alert("There was a problem retrieving the data:\n" +
 xmlHttp.statusText);
 }
 }
}

// handles the response received from the server
function handleServerResponse()
{
 // retrieve the server's response packaged as an XML DOM object
 var xmlResponse = xmlHttp.responseXML;
 // catching potential errors with IE and Opera
 if (!xmlResponse || !xmlResponse.documentElement)
 throw("Invalid XML structure:\n" + xmlHttp.responseText);

 73

Server-Side Techniques with PHP and MySQL

 74

 // catching potential errors with Firefox
 var rootNodeName = xmlResponse.documentElement.nodeName;
 if (rootNodeName == "parsererror")
 throw("Invalid XML structure:\n" + xmlHttp.responseText);
 // getting the root element (the document element)
 xmlRoot = xmlResponse.documentElement;
 // testing that we received the XML document we expect
 if (rootNodeName != "response" || !xmlRoot.firstChild)
 throw("Invalid XML structure:\n" + xmlHttp.responseText);
 // the value we need to display is the child of the root <response>
element
 responseText = xmlRoot.firstChild.data;
 // display the user message
 myDiv = document.getElementById("myDivElement");
 myDiv.innerHTML = "Server says the answer is: " + responseText;
}

4. Create a file called morephp.php:
<?php
// load the error handling module
require_once('error_handler.php');
// specify that we're outputting an XML document
header('Content-Type: text/xml');
// calculate the result
$firstNumber = $_GET['firstNumber'];
$secondNumber = $_GET['secondNumber'];
$result = $firstNumber / $secondNumber;
// create a new XML document
$dom = new DOMDocument();
// create the root <response> element and add it to the document
$response = $dom->createElement('response');
$dom->appendChild($response);
// add the calculated sqrt value as a text node child of <response>
$responseText = $dom->createTextNode($result);
$response->appendChild($responseText);
// build the XML structure in a string variable
$xmlString = $dom->saveXML();
// output the XML string
echo $xmlString;
?>

5. Finally, create the error-handler file, error_handler.php:
<?php
// set the user error handler method to be error_handler
set_error_handler('error_handler', E_ALL);
// error handler function
function error_handler($errNo, $errStr, $errFile, $errLine)
{
 // clear any output that has already been generated
 if(ob_get_length()) ob_clean();
 // output the error message
 $error_message = 'ERRNO: ' . $errNo . chr(10) .
 'TEXT: ' . $errStr . chr(10) .
 'LOCATION: ' . $errFile .
 ', line ' . $errLine;
 echo $error_message;
 // prevent processing any more PHP scripts
 exit;
}
?>

6. Load http://localhost/ajax/foundations/morephp/morephp.html and play
with it.

Chapter 3

Figure 3.3: PHP Parameters and Error Handling

What Just Happened?
You must be familiar with almost all the code on the client side by now, so let's focus on the
server side, where we have two files: morephp.php and error_handler.php.

The morephp.php file is expected to output the XML structure with the results of the number
division. However, it starts by loading the error-handling routine. This routine is expected to catch
any errors, create a better error message than the default one, and send the message back to the client.

<?php
// load the error handling module
require_once('error_handler.php');

PHP 5 does support exceptions like the other OOP languages. However, with PHP 5, you
are limited to using exception objects that you throw and catch yourself, and they can
help when building a large architecture where they can improve your code. PHP's core
doesn't generate exceptions when something bad happens. Probably because of backward
compatibility reasons, when a problem happens, instead of throwing exceptions, PHP 5
generates errors, which represent a much more primitive way to handle run-time problems.
For example, you can't catch an error, deal with it locally, and then let the script continue
normally, as you can do with exceptions. Instead, to deal with errors, the best you can do
is to specify a function to execute automatically; this function is called before the script
dies, and offers you a last chance to do some final processing, such as logging the error,
closing database connections, or telling your visitor something "friendly".

In our code, the error_handler.php script is instructed to handle errors. It simply receives the
error, and transforms the error message into something easier to read than the default error
message. However, note that error_handler.php catches most errors, but not all! Fatal errors
cannot be trapped with PHP code, and they generate output that is out of the control of your
program. For example, parse errors, which can happen when you forget to write the $ symbol in
the front of a variable name, are intercepted before the PHP code is executed; so they cannot be
caught with PHP code, but they are logged in the Apache error log file.

 75

Server-Side Techniques with PHP and MySQL

 76

It is important to keep an eye on the Apache error log when your PHP script behaves
strangely. The default location and name of this file is Apache2\logs\error.log, and it
can save you from many headaches.

After setting the error-handling routine, we set the content type to XML, and divide the first
received number by the second number. Note the usage of $_GET to read the variables sent using T

GET. If you sent your variables using POSTT you should have used $_POST. Alternatively, you can
use

T

$_REQUEST, which finds variables sent with any method (including cookies); but it is generally
recommended to avoid using it because it is a bit slower than the others.

// specify that we are outputting an XML document
header('Content-Type: text/xml');
// calculate the result
$firstNumber = $_GET['firstNumber'];
$secondNumber = $_GET['secondNumber'];
$result = $firstNumber / $secondNumber;

The division operation will generate an error if $secondNumber is 0. In this case, we expect the
error-handler script to intercept the error. Note that in a real-world the situation, the professional
way would be to check the value of the variable before calculating the division, but in this case we
are interested in checking the error-handling script.

After calculating the value, you package it into a nice XML document and output it, just as in the
previous exercise:

// create a new XML document
$dom = new DOMDocument();
// create the root <response> element and add it to the document
$response = $dom->createElement('response');
$dom->appendChild($response);
// add the calculated sqrt value as a text node child of <response>
$responseText = $dom->createTextNode($result);
$response->appendChild($responseText);
// build the XML structure in a string variable
$xmlString = $dom->saveXML();
// output the XML string
echo $xmlString;
?>

Let's now have a look at the error-handling script—error_handler.php. This file has the role of
intercepting any error messages generated by PHP, and outputting an error message that makes
sense, and can be displayed by your JavaScript code:

Figure 3.4: Good Looking Error Message

Chapter 3

Without the customized error handler, the error message you will get would be:

Figure 3.5: Bad Looking Error Message

The error message will look like Figure 3.5 if the display_errors option in php.ini is
On. By default, that option is Off and the errors are logged just in the Apache error log,
but while writing code it may help to make them be displayed as well. If the code was
production code, both error messages would have been inappropriate. You should never
show such debugging information to your end users.

So what happens in error_handler.php? First, the file uses the set_error_handler function to
establish a new error-handling function:

<?php
// set the user error handler method to be error_handler
set_error_handler('error_handler', E_ALL);

When an error happens, we first call ob_clean() to erase any output that has already been
generated—such as the <response></response> bit from Figure 3.5:

// error handler function
function error_handler($errNo, $errStr, $errFile, $errLine)
{
 // clear any output that has already been generated
 if(ob_get_length()) ob_clean();

Of course, if you prefer to decide to keep those bits when doing certain debugging things,
you can comment out the ob_clean() call. The actual error message is built using the system
variables $errNo, $errStr, $errFile, and $errLine, and the carriage return is generated using
the chr function.

 // output the error message
 $error_message = 'ERRNO: ' . $errNo . chr(10) .
 'TEXT: ' . $errStr . chr(10) .
 'LOCATION: ' . $errFile .
 ', line ' . $errLine;
 echo $error_message;
 // prevent processing any more PHP scripts
 exit;
}
?>

 77

Server-Side Techniques with PHP and MySQL

 78

The error-handling scheme presented is indeed quite simplistic, and it is only appropriate
while writing and debugging your code. In a production solution, you need to show your
end user a friendly message without any technical details. If you want to package the
error details as an XML document to be read on the client, keep in mind that parse and
fatal errors will not be processed by your function, and will behave as set up in PHP's
configuration file (php.ini).

This case also presents the scenario where the user can attempt to make several server requests at
the same time (you can do this by clicking the Send button multiple times quickly enough). If you
try to make a request on a busy XMLHttpRequest object, its open method generates an exception.
The code is well protected with try/catch constructs, but the error message doesn't look very
user-friendly as shown in Figure 3.6.

Figure 3.6: Request on a Busy XMLHttpRequest

This message might be just what you need, but in certain circumstances you may prefer to react
differently to this kind of error than with other kinds of errors. For example, in a production
scenario, you may prefer to display a note on the page, or display a friendly "please try again
later" message, by modifying the process() function as shown in the following code snippet:

// read a file from the server
function process()
{
 // only continue if xmlHttp isn't void
 if (!xmlHttp) return;
 // don't try to make server requests if the XMLHttpObject is busy
 if !(xmlHttp.readyState == 0 || xmlHttp.readyState == 4)
 alert("Can't connect to server, please try again later.");
 else
 {
 // try to connect to the server
 try
 {
 // get the two values entered by the user
 var firstNumber = document.getElementById("firstNumber").value;
 var secondNumber = document.getElementById("secondNumber").value;
 // create the params string
 var params = "firstNumber=" + firstNumber +
 "&secondNumber=" + secondNumber;
 // initiate the asynchronous HTTP request
 xmlHttp.open("GET", "morephp.php?" + params, true);
 xmlHttp.onreadystatechange = handleRequestStateChange;
 xmlHttp.send(null);
 }

Chapter 3

 // display the error in case of failure
 catch (e)
 {
 alert("Can't connect to server:\n" + e.toString());
 }
 }
}

The exact way you handle these errors can vary depending on the scenario. During the course of
this book, you will see more solutions in action:

• Sometimes you may prefer to simply ignore these errors.
• Other times you will display a custom error message as shown in the code above.

In most cases you will try to avoid getting the errors in the first place—it is always better to
prevent a problem than to handle it after it happened. For example, there are several ways to avoid
getting "connection busy"-type errors, which happen when you try to make a server request using
an XMLHttpRequest object that is still busy processing a previous request:

• You could open a new connection (create a new XMLHttpRequest object) for every
message you need to send to the server. This method is easy to implement and it can
be helpful in many scenarios, but we'll generally try to avoid it because it can affect
the server's performance (your script continues to open connections and initiate
requests even if the server hasn't finished answering older requests), and it doesn't
guarantee that you receive the responses in the same order as you made the calls
(especially if the server is busy or the network is slow).

• You could record the message in a queue and send it later when the connection
becomes available (you will see this method in action in several exercises of this book,
including the AJAX Form Validation, and the AJAX Chat).

• You can ignore the message altogether if you can implement the code in such a way
that it would not attempt to make multiple requests over the same connection, and
use the existing error-handling code.

Connecting to Remote Servers and JavaScript
Security
You may be surprised to find out that the PHP exercises you have just completed worked
smoothly because the server (PHP) scripts you called asynchronously were running on the same
server from which the HTML file was loaded.

Web browsers have very strict (and different) ways to control what resources you can access from
the JavaScript code. If you want to access another server from your JavaScript code, it is safe to
say that you are in trouble. And this is what we will do in the exercise that follows; but before that,
let's learn a bit of theory first.

 79

Server-Side Techniques with PHP and MySQL

So, the JavaScript code runs under the security privileges of its parent HTML file. By default,
when you load an HTML page from a server, the JavaScript code in that HTML page will be
allowed to make HTTP requests only to that server. Any other server is a potential enemy, and
(unfortunately) these enemies are handled differently by each browser.

Internet Explorer is a friendly kind of web browser; which means that is arguably less secure, but
more functional. It has a security model based on zones. The four zones are Internet, Local intranet,
Trusted sites, and Restricted sites. Each zone has different security settings, which you can change
going to Tools | Internet Options | Security. When accessing a web resource, it will be automatically
assigned to one of the security zones, and the specific security options will be applied.

The default security options may vary depending on your system. By default, Internet Explorer will
give full privileges to scripts loaded from a local file resource (not through a web server, not even the
local web server). So if you try to load c:\ajax\... the script will run smoothly (before execution,
you may be warned that the script you are loading has full privileges). If the JavaScript code was
loaded through HTTP (say, http://localhost/ajax/..../ping.html), and that JavaScript code
tries to make an HTTP request to another server, Internet Explorer will automatically display a
confirmation box, where the user is asked to give permission for that action.

Firefox and Mozilla-based browsers have a more restrictive and more complicated security model,
based on privileges. These browsers don't display a confirmation window automatically; instead,
your JavaScript code must use a Mozilla specific API to ask about performing the required
actions. If you are lucky the browser will display a confirmation box to the user, and depending on
user's input, it will give the permission (or not) to your JavaScript code. If you aren't lucky, the
Mozilla-based browser will ignore your code request completely. By default, Mozilla-based
browsers will listen to privilege requests asked from local (file:///) resources, and will ignore
completely requests from scripts loaded through HTTP, unless these scripts are signed (these are
the default settings that can be changed manually, though). Learn more about signing scripts for
Mozilla browsers at http://www.mozilla.org/projects/security/components/
signed-scripts.html.

In the next exercise, you'll create a JavaScript program that reads random numbers from the online
service http://www.random.org. This site provides an online web service that generates truly
random numbers. The page that explains how to access the server through HTTP is located at
http://www.random.org/http.html. When writing programs for this purpose, you should check the
guidelines mentioned at: http://www.random.org/guidelines.html. Finally, to get a feeling about
what random numbers look like, feel free to load http://www.random.org/cgi-bin/randnum in
your web browser (when called with no options, by default it generates 100 random numbers
between 1 and 100). Our client will ask for one random number between 1 and 100 at a time, by
making a request to http://www.random.org/cgibin/randnum?num=1&min=1&max=100.

 80

http://localhost/ajax/..../ping.html

Chapter 3

Figure 3.7: Connecting to Remote Servers

Time for Action—Connecting to Remote Servers
1. Start by creating a new subfolder of the foundations folder, called ping.
2. In the ping folder, create a new file named ping.html with the following contents:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>
 <head>
 <title>Practical AJAX: Connecting to Remote Servers</title>
 <script type="text/javascript" src="ping.js"></script>
 </head>
 <body onload="process()">
 Server, tell me a random number!

 <div id="myDivElement" />
 </body>
</html>

3. Create a new file named ping.js with the following code:
// holds an instance of XMLHttpRequest
var xmlHttp = createXmlHttpRequestObject();
// holds the remote server address and parameters
var serverAddress = "http://www.random.org/cgi-bin/randnum";
var serverParams = "num=1" + // how many random numbers to generate
 "&min=1" + // the min number to generate
 "&max=100"; // the max number to generate

// creates an XMLHttpRequest instance
function createXmlHttpRequestObject()
{
 // will store the reference to the XMLHttpRequest object
 var xmlHttp;
 // this should work for all browsers except IE6 and older
 try
 {
 // try to create XMLHttpRequest object
 xmlHttp = new XMLHttpRequest();
 }
 catch(e)
 {

 81

Server-Side Techniques with PHP and MySQL

 // assume IE6 or older
 var XmlHttpVersions = new Array("MSXML2.XMLHTTP.6.0",
 "MSXML2.XMLHTTP.5.0",
 "MSXML2.XMLHTTP.4.0",
 "MSXML2.XMLHTTP.3.0",
 "MSXML2.XMLHTTP",
 "Microsoft.XMLHTTP");
 // try every prog id until one works
 for (var i=0; i<XmlHttpVersions.length && !xmlHttp; i++)
 {
 try
 {
 // try to create XMLHttpRequest object
 xmlHttp = new ActiveXObject(XmlHttpVersions[i]);
 }
 catch (e) {}
 }
 }
 // return the created object or display an error message
 if (!xmlHttp)
 alert("Error creating the XMLHttpRequest object.");
 else
 return xmlHttp;
}

// call server asynchronously
function process()
{
 // only continue if xmlHttp isn't void
 if (xmlHttp)
 {
 // try to connect to the server
 try
 {
 // ask for permission to call remote server, for Mozilla-based browsers
 try
 {
 // this generates an error (that we ignore) if the browser is not
 // Mozilla

netscape.security.PrivilegeManager.enablePrivilege('UniversalBrowserRead')
;
 }
 catch(e) {} // ignore error
 // initiate server access
 xmlHttp.open("GET", serverAddress + "?" + serverParams, true);
 xmlHttp.onreadystatechange = handleRequestStateChange;
 xmlHttp.send(null);
 }
 // display the error in case of failure
 catch (e)
 {
 alert("Can't connect to server:\n" + e.toString());
 }
 }
}

// function called when the state of the HTTP request changes
function handleRequestStateChange()
{
 // when readyState is 4, we are ready to read the server response
 if (xmlHttp.readyState == 4)
 {

 82

Chapter 3

 // continue only if HTTP status is "OK"
 if (xmlHttp.status == 200)
 {
 try
 {
 // do something with the response from the server
 handleServerResponse();
 }
 catch(e)
 {
 // display error message
 alert("Error reading the response: " + e.toString());
 }
 }
 else
 {
 // display status message
 alert("There was a problem retrieving the data:\n" +
 xmlHttp.statusText);
 }
 }
}

// handles the response received from the server
function handleServerResponse()
{
 // retrieve the server's response
 var response = xmlHttp.responseText;
 // obtain a reference to the <div> element on the page
 myDiv = document.getElementById('myDivElement');
 // display the HTML output
 myDiv.innerHTML = "New random number retrieved from server: "
 + response + "
";
}

4. Load http://localhost/ajax/foundations/ping/ping.html. If you are using
Internet Explorer with the default options, you will be asked whether you will allow
the script to connect to a remote server as shown in Figure 3.8. If you are using
Firefox or Opera with the default options, you will get security errors like the ones
shown in Figure 3.9 and Figure 3.10, respectively.

Figure 3.8: Internet Explorer Asking for Permission

Figure 3.9: Firefox Denying Access

 83

Server-Side Techniques with PHP and MySQL

Figure 3.10: Opera Denying Access

5. Now try to load the very same HTML file but directly from the file system. The path
to the file should be like file:///C:/Apache2/htdocs/ajax/foundations/
ping/ping.html. With the default options, Internet Explorer will run with no
problems, because the page is located in a trusted zone. Firefox will ask for a
confirmation as shown in Figure 3.11. Opera will display the very same error
message that you saw in Figure 3.10.

Figure 3.11: Firefox Asking for Permission

What Just Happened?
Opera is indeed the safest browser in the world. You have no way of convincing Opera 8.5 to
allow the JavaScript code to access a different server than the one it was loaded from.

Internet Explorer behaves as instructed by the zones settings. By default, it will make your life
easy enough, by giving maximum trust to local files, and by asking for confirmation when scripts
loaded from the Internet try to do potentially dangerous actions.

Firefox has to be asked politely if you want to have things happen. The problem is that by default
it won't even listen for your polite request unless the script is signed, or loaded from a local
file:// location. However, requesting your visitor to change browser settings isn't a real option
in most scenarios.

 84

Chapter 3

You can make Firefox listen to all requests, even those coming from unsigned scripts, by
typing about:config in the address bar, and changing the value of
signed.applets.codebase_principal_support to true.

The following is the code that asks Firefox for permission to access a remote server:
 // ask for permission to call remote server, for Mozilla-based browsers
 try
 {
 // this generates an error (that we ignore) if the browser is not
 // Mozilla

netscape.security.PrivilegeManager.enablePrivilege('UniversalBrowserRead');
 }
 catch(e) {}
 // ignore error

Any errors in this code are ignored using the try/catch construct because the code is
Mozilla-specific, and it will generate an exception on the other browsers.

Using a Proxy Server Script
It is quite clear that unless you are building a solution where you can control the environment,
such as ensuring that your users use Internet Explorer or Firefox (in which case you would need to
sign your scripts or configure the browsers manually to be more permissive), accessing remote
servers from your JavaScript code is not an option.

The very good news is that the workaround is simple; instead of having the JavaScript access the
remote server directly you can have a PHP script on your server that will access the remote server
on behalf of the client. This technique is described in the following figure:

Figure 3.12: Using a Proxy PHP Script to Access a Remote Server

To read data from a remote server with PHP we will use the file_get_contents function, whose
documentation can be found at http://www.php.net/manual/en/function.file-get-
contents.php.

 85

http://www.php.net/manual/en/function.file-get-contents.php
http://www.php.net/manual/en/function.file-get-contents.php

Server-Side Techniques with PHP and MySQL

A popular (and more powerful) alternative to using file_get_contents is a library
Client URL Library (CURLcalled). You can find more details about CURL from

 86

http://curl.haxx.se, http://www.php.net/curl and http://www.zend.com/
zend/tut/tutorial-thome3.php. For basic needs though, file_get_contents gets the
job done nicely and easily.

Let's try this out with some code. The functionality we want to implement is the same as in
the previous exercise (get a random number and display it), but this time it will work with
all browsers.

Time for Action—Using a Proxy Server Script to Access Remote Servers
1. In the foundations folder, create a subfolder named proxyping.
2. In the proxyping folder, create proxyping.html:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>
 <head>
 <title>Practical AJAX: Accessing Remote Server through Proxy PHP
Script</title>
 <script type="text/javascript" src="proxyping.js"></script>
 </head>
 <body onload="process()">
 Server, tell me a random number!

 <div id="myDivElement" />
 </body>
</html>

3. In the same folder create proxyping.js. Note that this file is similar to ping.js, and
the new bits are highlighted. (We removed the bits that handle Mozilla security from
process(), changed the server address in the header, removed the num parameter
because in this scenario we'll only request one number at a time, and added an error-
handling measure.)
// holds an instance of XMLHttpRequest
var xmlHttp = createXmlHttpRequestObject();
// holds the remote server address and parameters
var serverAddress = "proxyping.php";
var serverParams = "&min=1" + // the min number to generate
 "&max=100"; // the max number to generate

// creates an XMLHttpRequest instance
function createXmlHttpRequestObject()
{
 // will store the reference to the XMLHttpRequest object
 var xmlHttp;
 // this should work for all browsers except IE6 and older
 try
 {
 // try to create XMLHttpRequest object
 xmlHttp = new XMLHttpRequest();
 }
 catch(e)
 {
 // assume IE6 or older
 var XmlHttpVersions = new Array("MSXML2.XMLHTTP.6.0",
 "MSXML2.XMLHTTP.5.0",

Chapter 3

 "MSXML2.XMLHTTP.4.0",
 "MSXML2.XMLHTTP.3.0",
 "MSXML2.XMLHTTP",
 "Microsoft.XMLHTTP");
 // try every prog id until one works
 for (var i=0; i<XmlHttpVersions.length && !xmlHttp; i++)
 {
 try
 {
 // try to create XMLHttpRequest object
 xmlHttp = new ActiveXObject(XmlHttpVersions[i]);
 }
 catch (e) {}
 }
 }
 // return the created object or display an error message
 if (!xmlHttp)
 alert("Error creating the XMLHttpRequest object.");
 else
 return xmlHttp;
}

// call server asynchronously
function process()
{
 // only continue if xmlHttp isn't void
 if (xmlHttp)
 {
 // try to connect to the server
 try
 {
 // initiate server access
 xmlHttp.open("GET", serverAddress + "?" + serverParams, true);
 xmlHttp.onreadystatechange = handleRequestStateChange;
 xmlHttp.send(null);
 }
 // display the error in case of failure
 catch (e)
 {
 alert("Can't connect to server:\n" + e.toString());
 }
 }
}

// function called when the state of the HTTP request changes
function handleRequestStateChange()
{
 // when readyState is 4, we are ready to read the server response
 if (xmlHttp.readyState == 4)
 {
 // continue only if HTTP status is "OK"
 if (xmlHttp.status == 200)
 {
 try
 {
 // do something with the response from the server
 handleServerResponse();
 }
 catch(e)
 {
 // display error message
 alert("Error reading the response: " + e.toString());
 }
 }
 else

 87

Server-Side Techniques with PHP and MySQL

 88

 {
 // display status message
 alert("There was a problem retrieving the data:\n" +
 xmlHttp.statusText);
 }
 }
}

// handles the response received from the server
function handleServerResponse()
{
 // retrieve the server's response
 var response = xmlHttp.responseText;
 // if the response is longer than 3 characters, or if it is void, we
 // assume we just received a server-side error report
 if(response.length > 3 || response.length == 0)
 throw(response.length == 0 ? "Server error" : response);
 // obtain a reference to the <div> element on the page
 myDiv = document.getElementById("myDivElement");
 // display the HTML output
 myDiv.innerHTML = "Server says: " + response + "
";
}

4. Build the hero proxy PHP script, proxyping.php:
<?php
// load the error handling module
require_once('error_handler.php');
// make sure the user's browser doesn't cache the result
header('Expires: Wed, 23 Dec 1980 00:30:00 GMT');
header('Last-Modified: ' . gmdate('D, d M Y H:i:s') . ' GMT');
header('Cache-Control: no-cache, must-revalidate');
header('Pragma: no-cache');
// retrieve the parameters
$num = 1; // this is hardcoded on the server
$min = $_GET['min'];
$max = $_GET['max'];
// holds the remote server address and parameters
$serverAddress = 'http://www.random.org/cgi-bin/randnum';
$serverParams = 'num=' . $num . // how many random numbers to generate
 '&min=' . $min . // the min number to generate
 '&max=' . $max; // the max number to generate
// retrieve the random number from foreign server
$randomNumber = file_get_contents($serverAddress . '?' . $serverParams);
// output the random number
echo $randomNumber;
?>

5. Finally, add the error-handler function. Yes, it's a bit more to type, but it does good
things to your solution (you can copy and paste it from other examples, because it
is not going to change). Create a new file named error_handler.php, and write
this code:
<?php
// set the user error handler method to be error_handler
set_error_handler('error_handler', E_ALL);
// error handler function
function error_handler($errNo, $errStr, $errFile, $errLine)
{
 // clear any output that has already been generated
 if(ob_get_length()) ob_clean();
 // output the error message
 $error_message = 'ERRNO: ' . $errNo . chr(10) .

Chapter 3

 'TEXT: ' . $errStr . chr(10) .
 'LOCATION: ' . $errFile .
 ', line ' . $errLine;
 echo $error_message;
 // prevent processing any more PHP scripts
 exit;
}
?>

6. Load http://localhost/ajax/foundations/proxyping/proxyping.html with
your favorite web browser (yes, even with Opera), and admire the random number
you get.

Figure 3.13: Using a Proxy PHP Script to Access the Remote Server

What Just Happened?
The JavaScript code is allowed to access the server it was loaded from. We placed a script on the
server, called proxyping.php, which accesses the random number generator server on the behalf
of the client.

In order for the client to still have complete control over what kind of number to receive, we pass
the min and max parameters to the PHP script, and the PHP script passes them in its turn to the
random number generator server. We don't pass the num parameter from the client because now we
don't want to give the client the option to ask for more than one number at a time. In this example,
if the response is larger than 3 characters, we assume we received a server error report:

// handles the response received from the server
function handleServerResponse()
{
 // retrieve the server's response
 var response = xmlHttp.responseText;
 // if the response is longer than 3 characters, or if it is void, we assume
 // we just received a server-side error report
 if(response.length > 3 || response.length == 0)
 throw(response.length == 0 ? "Server error" : response);

 89

Server-Side Techniques with PHP and MySQL

 90

Errors can happen on the client side, or on the server side. We made efforts to have the
client protected by implementing a try/catch mechanism in key portions of the code.
On the other hand, when an error happens on the server, that error doesn't propagate to
the client as a client error. Instead, on the client we must manually analyze the input
received from the server, and if it doesn't look like what we expected, we generate an
error manually using throw.

If the display_errors setting in php.ini is set to Off, when a PHP parse or fatal error
happens, the error is logged only to the Apache error log file (Apache/logs/error.log),
and the script's output will be void. So if we receive a void response, we also assume that
something bad happened on the server, and we build a generic error message on the client.

For example, if you try to load the page when no internet connection is available (so the remote
server isn't reachable), then it should result in the following error being displayed (the error
message will look differently if display_errors is set to Off in php.ini):

Figure 3.14: An Error Message When No Internet Connection is Available

The code in proxyping.php simply uses the parameters received though GET to access the random
number generator server. One interesting detail to note in this script is the way we set the

T

page
expiration headers. Setting page expiration is important because the server is always called using
the same URL and query string, and the client browser may decide to cache the result—and we
don't want that, because the results wouldn't be exactly random any more.

<?php
// load the error handling module
require_once('error_handler.php');
// make sure the user's browser doesn't cache the result
header('Expires: Wed, 23 Dec 1980 00:30:00 GMT');
header('Last-Modified: ' . gmdate('D, d M Y H:i:s') . ' GMT');
header('Cache-Control: no-cache, must-revalidate');
header('Pragma: no-cache');

You can find an excellent article on page caching and PHP at http://www.sitepoint.com/
article/php-anthology-2-5-caching. The remainder of proxyping.php simply uses the
file_get_contents function to retrieve a response from the random number generator service,
and output it for the client.

Chapter 3

// retrieve the parameters
$num = 1; // this is hardcoded on the server
$min = $_GET['min'];
$max = $_GET['max'];
// holds the remote server address and parameters
$serverAddress = 'http://www.random.org/cgi-bin/randnum';
$serverParams = 'num=' . $num . // how many random numbers to generate
 '&min=' . $min . // the min number to generate
 '&max=' . $max; // the max number to generate
// retrieve the random number from foreign server
$randomNumber = file_get_contents($serverAddress . '?' . $serverParams);
// output the random number
echo $randomNumber;
?>

A Framework for Making Repetitive Asynchronous
Requests
Quite frequently when building AJAX applications, you will need your client script to retrieve
data from the server at regular intervals. There are numerous example scenarios, and you will meet
many in this book, and perhaps many more in your real-world projects.

JavaScript offers four functions that can help achieving repetitive (or scheduled) functionality:
setTimeout, setInterval, clearTimeout, and clearInterval, which can be used like this:

// using setTimeout and clearTimeout
timerId = window.setTimeout("function()", interval_in_milliseconds);
window.clearTimeout(timeId);
// using setInterval and clearInterval
timerId = window.setInterval("function()", interval_in_milliseconds);
window.clearInterval(timeId);

setTimeout causes the function to be executed once, after the specified time period. setInterval
executes the function repeatedly, at the mentioned interval, until clearInterval is used. In most
AJAX scenarios we prefer using setTimeout because it offers more flexibility in controlling when
the server is accessed.

For a quick demonstration, we will extend the client that reads random numbers by making the
following improvements:

• When making a server request, we wait until the response containing the random
number is received, and then we use setTimeout to restart the sequence (to make a
new server request) after one second. This way, the interval between two requests is
one second plus the time it takes to retrieve the random number. If you want to make
the requests at exact periods, you must use setInterval, but in that case you need to
check that the XMLHttpRequest object isn't busy waiting to complete the previous
request (which can happen if the network is slow, or the server busy).

• In this new example, we will also check for the server's availability from time to time.
The random number generator service has a buffer of random numbers, which is used to
serve the requests, and anyone can check the buffer's level at http://www.random.org/
cgi-bin/checkbuf. Our program will check this page every 10 requests, and will request
new random numbers only if the buffer level is at least . 50%

 91

Server-Side Techniques with PHP and MySQL

The web application will look like Figure 3.15:

Figure 3.15: Making Repetitive Asynchronous Requests

This repetitive task must start somewhere. In our application, everything starts with process().
There, we decide what kind of server request to make; we can either ask for a new random
number, or we can check for the buffer level of the random number generator server. We check for
the buffer level every 10 requests, and by default we don't ask for new random numbers unless the
buffer is higher than . The process is described in the flowchart given opposite: 50%

 92

Chapter 3

Figure 3.16: Flowchart Describing the Process of Retrieving Random Numbers

With the default code, setTimeout is only called to restart the process after successful HTTP
requests; there is no setTimeout in the catch blocks. (Depending on your particular solution, you
may want to try calling the server again after a while even if an error happens.)

Time for Action—Implementing Repetitive Tasks
1. In the foundations folder, create a new folder named smartproxyping.
2. In the smartproxyping folder, create a file named smartproxyping.html:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>
 <head>
 <title>Practical AJAX: Making Repetitive Asynchronous Requests</title>
 <script type="text/javascript" src="smartproxyping.js"></script>
 </head>
 <body onload="process()">

 93

Server-Side Techniques with PHP and MySQL

 Server, gimme some random numbers!

 <div id="myDivElement" />
 </body>
</html>

3. In the same folder, create smartproxyping.js:
// holds an instance of XMLHttpRequest
var xmlHttp = createXmlHttpRequestObject();
// holds the remote server address and parameters
var serverAddress = "smartproxyping.php";
var getNumberParams = "action=GetNumber" + // get a new random number
 "&min=1" + // the min number to generate
 "&max=100"; // the max number to generate
var checkAvailabilityParams = "action=CheckAvailability";
// variables used to check for server availability
var requestsCounter = 0; // counts how many numbers have been retrieved
var checkInterval = 10; // counts interval for checking server
availability
var updateInterval = 1; // how many seconds to wait to get a new number
var updateIntervalIfServerBusy = 10; // seconds to wait when server busy
var minServerBufferLevel = 50; // what buffer level is considered acceptable

// creates an XMLHttpRequest instance
function createXmlHttpRequestObject()
{
 // will store the reference to the XMLHttpRequest object
 var xmlHttp;
 // this should work for all browsers except IE6 and older
 try
 {
 // try to create XMLHttpRequest object
 xmlHttp = new XMLHttpRequest();
 }
 catch(e)
 {
 // assume IE6 or older
 var XmlHttpVersions = new Array("MSXML2.XMLHTTP.6.0",
 "MSXML2.XMLHTTP.5.0",
 "MSXML2.XMLHTTP.4.0",
 "MSXML2.XMLHTTP.3.0",
 "MSXML2.XMLHTTP",
 "Microsoft.XMLHTTP");
 // try every prog id until one works
 for (var i=0; i<XmlHttpVersions.length && !xmlHttp; i++)
 {
 try
 {
 // try to create XMLHttpRequest object
 xmlHttp = new ActiveXObject(XmlHttpVersions[i]);
 }
 catch (e) {}
 }
 }
 // return the created object or display an error message
 if (!xmlHttp)
 alert("Error creating the XMLHttpRequest object.");
 else
 return xmlHttp;
}

// call server asynchronously
function process()
{

 94

Chapter 3

 // only continue if xmlHttp isn't void
 if (xmlHttp)
 {
 // try to connect to the server
 try
 {
 // if just starting, or if we hit the specified number of requests,
 // check for server availability, otherwise ask for a new random number
 if (requestsCounter % checkInterval == 0)
 {
 // check if server is available
 xmlHttp.open("GET", serverAddress + "?" +
 checkAvailabilityParams, true);
 xmlHttp.onreadystatechange = handleCheckingAvailability;
 xmlHttp.send(null);
 }
 else
 {
 // get new random number
 xmlHttp.open("GET", serverAddress + "?" + getNumberParams, true);
 xmlHttp.onreadystatechange = handleGettingNumber;
 xmlHttp.send(null);
 }
 }
 catch(e)
 {
 alert("Can't connect to server:\n" + e.toString());
 }
 }
}

// function called when the state of the HTTP request changes
function handleCheckingAvailability()
{
 // when readyState is 4, we are ready to read the server response
 if (xmlHttp.readyState == 4)
 {
 // continue only if HTTP status is "OK"
 if (xmlHttp.status == 200)
 {
 try
 {
 // do something with the response from the server
 checkAvailability();
 }
 catch(e)
 {
 // display error message
 alert("Error reading server availability:\n" + e.toString());
 }
 }
 else
 {
 // display status message
 alert("Error reading server availability:\n" + xmlHttp.statusText);
 }
 }
}

// handles the response received from the server
function checkAvailability()
{
 // retrieve the server's response
 var response = xmlHttp.responseText;

 95

Server-Side Techniques with PHP and MySQL

 96

 // if the response is long enough, or if it is void, we assume we just
 // received a server-side error report
 if(response.length > 5 || response.length == 0)
 throw(response.length == 0 ? "Server error" : response);
 // obtain a reference to the <div> element on the page
 myDiv = document.getElementById("myDivElement");
 // display the HTML output
 if (response >= minServerBufferLevel)
 {
 // display new message to user
 myDiv.innerHTML += "Server buffer level is at " + response + "%, "
 + "starting to retrieve new numbers.
";
 // increases counter to start retrieving new numbers
 requestsCounter++;
 // reinitiate sequence
 setTimeout("process();", updateInterval * 1000);
 }
 else
 {
 // display new message to user
 myDiv.innerHTML += "Server buffer is too low (" + response + "%), "
 + "will check again in " + updateIntervalIfServerBusy
 + " seconds.
";
 // reinitiate sequence
 setTimeout("process();", updateIntervalIfServerBusy * 1000);
 }

}

// function called when the state of the HTTP request changes
function handleGettingNumber()
{
 // when readyState is 4, we are ready to read the server response
 if (xmlHttp.readyState == 4)
 {
 // continue only if HTTP status is "OK"
 if (xmlHttp.status == 200)
 {
 try
 {
 // do something with the response from the server
 getNumber();
 }
 catch(e)
 {
 // display error message
 alert("Error receiving new number:\n" + e.toString());
 }
 }
 else
 {
 // display status message
 alert("Error receiving new number:\n" + xmlHttp.statusText);
 }
 }
}

// handles the response received from the server
function getNumber()
{
 // retrieve the server's response
 var response = xmlHttp.responseText;
 // if the response is long enough, or if it is void, we assume we just
 // received a server-side error report
 if(response.length > 5 || response.length == 0)

Chapter 3

 throw(response.length == 0 ? "Server error" : response);
 // obtain a reference to the <div> element on the page
 myDiv = document.getElementById("myDivElement");
 // display the HTML output
 myDiv.innerHTML += "New random number retrieved from server: "
 + response + "
";
 // increase requests count
 requestsCounter++;
 // reinitiate sequences
 setTimeout("process();", updateInterval * 1000);
}

4. In the same folder, create smartproxyping.php:
<?php
// load the error handling module
require_once('error_handler.php');
// make sure the user's browser doesn't cache the result
header('Expires: Wed, 23 Dec 1980 00:30:00 GMT'); // time in the past
header('Last-Modified: ' . gmdate('D, d M Y H:i:s') . ' GMT');
header('Cache-Control: no-cache, must-revalidate');
header('Pragma: no-cache');
// retrieve the action parameter
$action = $_GET['action'];
// check availability or get new random number?
if ($action == 'GetNumber')
{
 $num = 1; // value is hardcoded because client can't deal with more numbers
 $min = $_GET['min'];
 $max = $_GET['max'];
 // holds the remote server address and parameters
 $serverAddress = 'http://www.random.org/cgi-bin/randnum';
 $serverParams = 'num=' . $num . // how many random numbers to generate
 '&min=' . $min . // the min number to generate
 '&max=' . $max; // the max number to generate
 // retrieve the random number from foreign server
 $randomNumber = file_get_contents($serverAddress . '?' . $serverParams);
 // output the random number
 echo $randomNumber;
}
elseif ($action == 'CheckAvailability')
{
 // address of page that returns buffer level
 $serverAddress = 'http://www.random.org/cgi-bin/checkbuf';
 // received buffer level is in form 'x%'
 $bufferPercent = file_get_contents($serverAddress);
 // extract the number
 $buffer = substr($bufferPercent, 0, strlen($bufferPercent) - 2);
 // echo the number
 echo $buffer;
}
else
{
 echo 'Error talking to the server.';
}
?>

5. In the same folder, create the error_handler.php file, which should be identical to
its version from the previous exercises:
<?php
// set the user error handler method to be error_handler
set_error_handler('error_handler', E_ALL);
// error handler function

 97

Server-Side Techniques with PHP and MySQL

 98

function error_handler($errNo, $errStr, $errFile, $errLine)
{
 // clear any output that has already been generated
 if(ob_get_length()) ob_clean();
 // output the error message
 $error_message = 'ERRNO: ' . $errNo . chr(10) .
 'TEXT: ' . $errStr . chr(10) .
 'LOCATION: ' . $errFile .
 ', line ' . $errLine;
 echo $error_message;
 // prevent processing any more PHP scripts
 exit;
}
?>

6. Load http://localhost/ajax/foundations/smartproxyping/
smartproxyping.html. The output should look like the one in Figure 3.15.

What Just Happened?
Our client, in this example, knows how to check from time to time if the server is available. The
random number generator service provides the page http://www.random.org/cgi-bin/checkbuf
—which you can use to check its buffer level.

The JavaScript code in smartproxyping.js starts by defining a number of global variables that
you use to control the program's behavior:

// holds the remote server address and parameters
var serverAddress = "smartproxyping.php";
var getNumberParams = "action=GetNumber" + // get a new random number
 "&min=1" + // the min number to generate
 "&max=100"; // the max number to generate
var checkAvailabilityParams = "action=CheckAvailability";

// variables used to check for server availability
var requestsCounter = 0; // counts how many numbers have been retrieved
var checkInterval = 10; // counts interval for checking server availability
var updateInterval = 1; // how many seconds to wait to get a new number
var updateIntervalIfServerBusy = 10; // seconds to wait when server busy
var minServerBufferLevel = 50; // what buffer level is considered acceptable

These variables contain the data required to make server requests. getNumberParams contains the
query string parameters needed to request a new random number, and checkAvailabilityParams
contains the parameters used to check the server's buffer level. The other variables are used to
control the intervals for making the asynchronous requests.

A novelty in this exercise compared to the previous ones is that you have two functions that
handle server responses—handleCheckingAvailability and handleGettingNumber. The roots of
this happen to be in the process() function, which assigns one of these callback functions
depending on the server action it requests.

In this program, process() is not called only once as in other exercises; instead, it is called
multiple times, and each time it must decide what action to make—should it ask for a new random
number, or should it check the server's buffer level? The requestsCounter variable, which keeps
a track of how many times we have retrieved a new random number since the last buffer check,
helps us make a decision:

Chapter 3

function process()
{
 // ...
 if (requestsCounter % checkInterval == 0)
 {
 // check if server is available
 xmlHttp.open("GET", serverAddress + "?" +
 checkAvailabilityParams, true);
 xmlHttp.onreadystatechange = handleCheckingAvailability;
 xmlHttp.send(null);
 }
 else
 {
 // get new random number
 xmlHttp.open("GET", serverAddress + "?" + getNumberParams, true);
 xmlHttp.onreadystatechange = handleGettingNumber;
 xmlHttp.send(null);
 }
 // ...
}

The handleCheckingAvailability and handleGettingNumber functions are similar; they both
are specialized versions of the handleRequestStateChange function you know from the previous
exercises. Their role is to wait until the response has successfully been received from the server,
and call a helper function (checkAvailability and getNumber) to deal with the response as soon
as the response is in.

Notice the action query string parameter, which is used to tell the PHP script what kind of remote
server request to make. On the server side, in smartproxyping.php, after loading the error-handling
module, we read that action parameter and decide what to do depending on its value:

<?php
// load the error handling module
require_once('error_handler.php');
// retrieve the action parameter
$action = $_GET['action'];
// check availability or get new random number?
if ($action == 'GetNumber')
{
 // ...

If the action is GetNumber then we use the file_get_contents PHP function to read a new
random number from the remote server:

if ($action == 'GetNumber')
{
 $num = 1; // value is hardcoded because client can't deal with more numbers
 $min = $_GET['min'];
 $max = $_GET['max'];
 // holds the remote server address and parameters
 $serverAddress = 'http://www.random.org/cgi-bin/randnum';
 $serverParams = 'num=' . $num . // how many random numbers to generate
 '&min=' . $min . // the min number to generate
 '&max=' . $max; // the max number to generate
 // retrieve the random number from foreign server
 $randomNumber = file_get_contents($serverAddress . '?' . $serverParams);
 // output the random number
 echo $randomNumber;
}

 99

Server-Side Techniques with PHP and MySQL

If the action is CheckAvailability we call
elseif ($action == 'CheckAvailability')
{
 // address of page that returns buffer level
 $serverAddress = 'http://www.random.org/cgi-bin/checkbuf';
 // received buffer level is in form 'x%'
 $bufferPercent = file_get_contents($serverAddress);
 // extract the number
 $buffer = substr($bufferPercent, 0, strlen($bufferPercent) - 2);
 // echo the number
 echo $buffer;
}

Note that the file_get_contents calls are not asynchronous, and they don't need to be. The PHP
script isn't in direct connection with the user, and it can take as long as needed to complete. On the
client side, the checkAvailability and getNumber functions receive these responses we are
generating from the PHP script. The functions start by reading the response, and checking its size:

// handles the response received from the server
function getNumber()
{
 // retrieve the server's response
 var response = xmlHttp.responseText;
 // if the response is long enough, or if it is void, we assume we just
 // received a server-side error report
 if(response.length > 5 || response.length == 0)
 throw(response.length == 0 ? "Server error" : response);

This is a method to check whether the PHP script executed successfully. Deciding
whether the execution was successful depending on the size of the response is quite a
primitive, but yet an efficient, method. The fact that PHP throws those fatal errors that
can't be caught and dealt with makes it hard to implement a generic, powerful error-
handling mechanism.

Apart from detecting the error, in a commercial implementation you will also need to
think very seriously what to do with it—and the options are endless, depending on your
circumstances. Keep in mind that users don't care about the technical details of the error.
In our scenario, for example, we could simply output a message such as "The server is
temporarily unavailable, please try later."

However, if you want to output the exact error message, consider that your custom-
made errors use the \n new line character, while PHP's fatal errors output HTML
formatted message. If you intend to display that message in a JavaScript box, you need
to format it somehow.

After updating the client display, we reinitiate the sequence by using setTimeout:
 // reinitiate sequences
 setTimeout('process();', updateInterval * 1000);
}

 100

Chapter 3

Working with MySQL
A back-end data store is necessary when you implement any kind of application that is expected to
generate some useful dynamic output. The most common ways to store the application's data are
in Relational Database Management Systems (RDBMS), which are very powerful tools that can
store and manage our data.

Much like the other ingredients, the database is not a part of AJAX, but it's not likely that you'll be
able to build real web applications without a database to support them. In this book, we'll present
simple applications that don't have impressive data needs, but still require a database nevertheless.
For the examples in this book we chose MySQL, which is a very popular database among PHP
developers. However, because the database functionality is very generic, you can port it to other
database systems with very little effort.

To build an application that uses databases you need to know the basics of:

1. Creating database tables that can hold your data
2. Writing SQL queries to manipulate that data
3. Connecting to your MySQL database using PHP code
4. Sending SQL queries to the database, and retrieving the results

Once again, we'll only be able to cover the very basics of working with PHP and MySQL
databases here. The PHP and MySQL online free manuals are quite well written, so you
may find them useful along the way.

Creating Database Tables
To create a data table you need to know the basic concepts of the structure of a relational database.
A data table is made up of columns (fields), and rows (records). When creating a data table you
need to define its fields, which can have various properties. Here we will discuss:

• Primary Keys
• Data Types
• NULL and NOT NULL columns
• Default column values
• auto_increment columns
• Indexes

The primary key is a special column (or set of columns) in a table that makes each row uniquely
identifiable. The primary key column doesn't allow repeating values, so every value will be
unique. When the primary key is formed of more than one column, then the set of columns (and
not each column separately) must be unique. Technically, PRIMARY KEY is a constraint (a rule) that
you apply to a column, but for convenience, when saying "primary key", we usually refer to the
column that has the PRIMARY KEY constraint. When creating a PRIMARY KEY constraint, a unique
index is also created on that column, significantly improving searching performance.

 101

Server-Side Techniques with PHP and MySQL

 102

Each column has a data type, which describes its size and behavior. There are three important
categories of data types (numerical types, character and string types, and date and time types),
and each category contains many data types. For complete details on this subject refer to the
official MySQL 5 documentation at http://dev.mysql.com/doc/refman/5.0/en/data-types.html.

When creating a new data table you must decide which values are mandatory, and mark them with
the NOT NULL property, which says the column isn't allowed to store NULL values. The
definition of NULL is undefined. When reading the contents of the table you see NULL, it means a
value has not been specified for that field. Note that an empty string, or a string containing spaces,
or a value of "0" (for numerical columns) are real (non-NULL) values. The primary key field can't
allow NULLs.

Sometimes instead of (or complementary to) disallowing NULLs for a certain field, you may want
to specify a default value. In that case, when a new record is created, if a value isn't specified for
that field, the default value will be used. For the default value you can also specify a function that
will be executed to retrieve the value when needed.

A different way of letting the system generate values for you is by using auto_increment columns.
This is an option you will often use for primary key columns, which represent IDs that you prefer to
be auto-generated for you. You can set auto_increment only for numerical columns, and the newly
generated values will be automatically incremented so no value will be generated twice.

Indexes are database objects used to improve the performance of database operations. An index is
a structure that greatly improves searches on the field (or fields) it is set on, but it slows down the
update and insert operations (because the index must be updated as well on these operations). A
well-chosen combination of indexes can make a huge difference in the speed of your application. In
the examples in this book, we will rely on the indexes that we build on the primary key columns.

You can create data tables using SQL code, or using a visual interface. Here's an example of a
SQL command that creates a simple data table:

CREATE TABLE users
(
 user_id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 user_name VARCHAR(32) NOT NULL,
 PRIMARY KEY (user_id)
);

In case you don't like how you created the table, you have the option to alter it using ALTER TABLE,
or to drop (delete) it altogether using DROP TABLE. You can use TRUNCATE TABLE to rapidly drop
and recreate the table (it has the same effect as deleting all the records, but it's much faster and
also clears the auto-increment index).

For each exercise, we will give you the SQL code that builds the necessary data tables. You can
execute this code by using a program such as phpMyAdmin (Appendix A describes the
installation procedure). To execute SQL code using phpMyAdmin, you need to connect to a
database by selecting its name in the Database list, and clicking the SQL tab on the main panel, as
shown in Figure 3.17.

Chapter 3

Figure 3.17: Executing SQL Code Using phpMyAdmin

phpMyAdmin also gives you the possibility to create the tables visually, using forms as shown in
Figure 3.18.

Figure 3.18: Creating a New Table Using the phpMyAdmin Designer

 103

Server-Side Techniques with PHP and MySQL

If you were wondering about the option, read on. MySQL is different than Table type
other database products in that it ships with several database engines, the two most

 104

popular being MyISAM and InnoDB. What's interesting is that you can have tables of
different types in a single database, and you can specify the type for each table when
creating it (otherwise, the default will be used, which on most configurations is
MyISAM). Each engine has strengths and weaknesses, but probably the most powerful
one is InnoDB, which fully supports the ACID (Atomicity, Consistency, Isolation, and
Durability) properties of transactions, row-level locking, foreign keys and referential
integrity, and other features. MyISAM's significant strength compared to the other
engines is the included support for full-text searching, and (arguably) speed.

Manipulating Data
You can manipulate your data using SQL's DML (Data Manipulation Language) commands,
SELECT, INSERT, UPDATE, and DELETET , used to retrieve, add, modify, and delete records from data
tables. These commands are very powerful, and flexible. Their basic syntax is:

SELECT <column list>
FROM <table name(s)>
[WHERE <restrictive condition(s)>]

INSERT INTO <table name> [(column list)]
VALUES (column values)

UPDATE <table name>
SET <column name> = <new value> [, <column name> = <new value> ...]
[WHERE <restrictive condition>]

DELETE FROM <table name>
[WHERE <restrictive condition>]

A few basic things to keep in mind:

• The SQL code can be written in one or more lines, however you feel it looks nicer.
SQL• If you want to execute several commands at once, you must separate them

using the semicolon (;).
• The values written between square brackets in the syntax are optional. (Be careful

with the DELETE statement though; if you don't specify a restrictive condition, all
elements will be deleted.)

• With SELECT, you can specify *, instead of the column list, which includes all the
existing table columns.
SQL is not case sensitive, but we will try to write the SQL statements in uppercase,
and the table and field names in lowercase. Consistency is always good.

•

You can test how these commands work by practicing on the users table that was described
earlier. Feel free to open a SQL tab in phpMyAdmin and execute commands such as:

INSERT INTO users (user_name) VALUES ('john');
INSERT INTO users (user_name) VALUES ('sam');
INSERT INTO users (user_name) VALUES ('ajax');

Chapter 3

SELECT user_id, user_name FROM users;

UPDATE users SET user_name='cristian' WHERE user_id=1;

SELECT user_id, user_name FROM users;

DELETE FROM users WHERE user_id=3;

SELECT * FROM users WHERE user_id>1;

During the course of this book, you will meet much more complicated query examples, which will
be explained as necessary. Please remember that SQL is a big subject, so you will likely need
additional resources if you haven't written much SQL code so far.

Connecting to Your Database and Executing Queries
In our examples, the code that connects to the database will be written in PHP. As Figure 3.19
shows, the database will never be accessed directly by the client, but only by the business logic
written in the PHP code on the server.

Figure 3.19: User Connecting to MySQL through Layers of Functionality

To get to the necessary data, your PHP code will need to authenticate to the database.

Database security—as with any other kind of security system—involves two important concepts:
authentication and authorization. Authentication is the process in which the user is uniquely
identified using some sort of login mechanism (usually by entering a username and password).
Authorization refers to the resources that can be accessed (and actions that can be performed) by
the authenticated user.

If you configured MySQL security as shown in Appendix A, you will connect to your local
MySQL server, to the database called ajax, with a user called ajaxuser, with the password
practical. These details will be kept in a configuration file called config.php, which can be easily
updated when necessary. The config.php script will look like this:

<?
// defines database connection data
define('DB_HOST', 'localhost');
define('DB_USER', 'ajaxuser');
define('DB_PASSWORD', 'practical');
define('DB_DATABASE', 'ajax');
?>

 105

Server-Side Techniques with PHP and MySQL

 106

This data will be used when performing database operations. Any database operation consists of
three mandatory steps:

1. Opening the database connection
2. Executing the SQL queries and reading the results
3. Closing the database connection

It's a good practice to open the database connection as late as possible, and close it as soon as
possible, because open database connections consume server resources. The following code
snippet shows a simple PHP script that opens a connection, reads some data from the database,
and closes the connection:

// connect to the database
$mysqli = new mysqli(DB_HOST, DB_USER, DB_PASSWORD, DB_DATABASE);
// what SQL query you want executed?
$query = 'SELECT user_id, user_name FROM users';
// execute the query
$result = $mysqli->query($query);
// do something with the results...
// ...
// close the input stream
$result->close();
// close the database connection
$mysqli->close();

Note that we use the mysqli library to access MySQL. This is a newer and improved
version of the mysql library, which provides both object-oriented and procedural
interfaces to MySQL, and can access more advanced features of MySQL. If you have
older versions of MySQL or PHP that don't support mysqli, use mysql instead.

The exercise that follows doesn't contain AJAX-specific functionality; it is just a simple example
of accessing a MySQL database from PHP code.

Time for Action—Working with PHP and MySQL
1. Connect to the ajax database, and create a table named users with the following code:

CREATE TABLE users
(
 user_id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 user_name VARCHAR(32) NOT NULL,
 PRIMARY KEY (user_id)
);

2. Execute the following INSERT commands to populate your T users table with some
sample data:
INSERT INTO users (user_name) VALUES ('bogdan');
INSERT INTO users (user_name) VALUES ('filip');
INSERT INTO users (user_name) VALUES ('mihai');
INSERT INTO users (user_name) VALUES ('emilian');
INSERT INTO users (user_name) VALUES ('paula');
INSERT INTO users (user_name) VALUES ('cristian');

Because user_id is an auto_increment column, its values will be generated by the database.

Chapter 3

3. In your foundations folder, create a new folder named mysql.
4. In the mysql folder, create a file named config.php, and add the database

configuration code to it (change these values to match your configuration):
<?php
// defines database connection data
define('DB_HOST', 'localhost');
define('DB_USER', 'ajaxuser');
define('DB_PASSWORD', 'practical');
define('DB_DATABASE', 'ajax');
?>

5. Now add the standard error-handling file, error_handler.php. Feel free to copy this
file from the previous exercises:
<?php
// set the user error handler method to be error_handler
set_error_handler('error_handler', E_ALL);
// error handler function
function error_handler($errNo, $errStr, $errFile, $errLine)
{
 // clear any output that has already been generated
 if(ob_get_length()) ob_clean();
 // output the error message
 $error_message = 'ERRNO: ' . $errNo . chr(10) .
 'TEXT: ' . $errStr . chr(10) .
 'LOCATION: ' . $errFile .
 ', line ' . $errLine;
 echo $error_message;
 // prevent processing any more PHP scripts
 exit;
}
?>

6. Create a new file named index.php, and add this code to it:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>
 <head>
 <title>Practical AJAX: Working with PHP and MySQL</title>
 </head>
 <body>

<?php
// load configuration file
require_once('error_handler.php');
require_once('config.php');
// connect to the database
$mysqli = new mysqli(DB_HOST, DB_USER, DB_PASSWORD, DB_DATABASE);
// the SQL query to execute
$query = 'SELECT user_id, user_name FROM users';
// execute the query
$result = $mysqli->query($query);
// loop through the results
while ($row = $result->fetch_array(MYSQLI_ASSOC))
{
 // extract user id and name
 $user_id = $row['user_id'];
 $user_name = $row['user_name'];
 // do something with the data (here we output it)
 echo 'Name of user #' . $user_id . ' is ' . $user_name . '
';
}
// close the input stream

 107

Server-Side Techniques with PHP and MySQL

 108

$result->close();
// close the database connection
$mysqli->close();
?>

 </body>
</html>

7. Test your script by loading
http://localhost/ajax/foundations/mysql/index.php with a web browser.

Figure 3.20: These User Names are Read from the Database

What Just Happened?
First of all, note that there is no AJAX going on here; the example is demonstrating plain PHP
data access functionality. All the interesting things happen in index.php. The real functionality
starts by loading the error handler, and the configuration scripts:

<?php
// load configuration file
require_once('error_handler.php');
require_once('config.php');

Then, just as mentioned, we create a new database connection:
// connect to the database
$mysqli = new mysqli(DB_HOST, DB_USER, DB_PASSWORD, DB_DATABASE);

Note that a database connection contains a reference to a specific database inside the database
server, not to the database server itself. The database we connect to is ajax, which contains the
users table that you created earlier. When performing queries on the created connection, you can
count on having access to the users table:

// the SQL query to execute
$query = 'SELECT user_id, user_name FROM users';
// execute the query
$result = $mysqli->query($query);

Chapter 3

After these commands execute, the $result variable contains a pointer to the results stream,
which we read line by line using the fetch_array method. This method returns an array with the
fields of the current result row, and moves the pointer to the next result row. We parse the results
row by row in a while loop until reaching the end of the stream, and for each row we read its
individual fields:

// loop through the results
while ($row = $result->fetch_array(MYSQLI_ASSOC))
{
 // extract user id and name
 $user_id = $row['user_id'];
 $user_name = $row['user_name'];
 // do something with the data (here we output it)
 echo 'Name of user #' . $user_id . ' is ' . $user_name . '
';
}

At the end, we close the open database objects so we don't consume any resources unnecessarily,
and we don't keep any database locks that could hurt the activity of other queries running at the
same time:

// close the input stream
$result->close();
// close the database connection
$mysqli->close();
?>

Wrapping Things Up and Laying Out the Structure
In this final section of the chapter, we are establishing the scheme of a basic code structure, which
we will use in all the following case studies. Most of the basic building blocks have already been
presented, except for separating the sever-side business logic in a separate class, which will be
demonstrated in a new exercise.

So far, the server-side code was always built as a single PHP file. In order to achieve better
flexibility and a more powerful design, we will split the server-side PHP functionality in two files:

• One script, called appname.php (where appname is the name of your application) will
be the main access point for the client-side JavaScript code. It will deal with the
input parameters received through POST and GET, and will make decisions based on
these parameters.

• The second script, called appname.class.php, will contain a helper class named
Appname, which encapsulates the real functionality that needs to be processed. The
methods of this class will be called by appname.php depending on the requested action.

To fully understand the code you need to know the basics of OOP, and how this works with PHP.
We don't cover these aspects in this book, but here are a few major things to keep in mind:

• OOP is based on the notion of classes, which are the blueprints for objects. Classes
are formed of class members, which include methods (functions inside a class), the
constructor, the destructor, and class fields (other OOP languages include even
more class member types). Class fields are just like variables, but they have a
class-wide scope.

 109

Server-Side Techniques with PHP and MySQL

 110

• In classes, you can implement two special methods called the constructor and
destructor. The constructor is called __construct(), and is executed automatically
when you create new instances of a class. The constructor is useful when you have
code that initializes various class members, because you can rely on it always
executing as soon as a new object of the class is created.

• The destructor is named __destruct(), and is called automatically when the object
is destroyed. Destructors are very useful for doing housekeeping work. In most
examples, we will close the database connection in the destructor, ensuring that we
don't leave any database connections open, consuming unnecessary resources.

• It is true that it may be a bit better for performance to create the database connection
just before needing it, instead of the class constructor, and to close it right after using
it, instead of the class destructor. However, we choose to use the constructor and
destructor because we get cleaner code where we are less likely to cause errors by
forgetting to close the connection, for example.

When referring to any class member, you must specify the object it is a part of. If you want
to access a local class member, you must use the special $this object, that refers to the current
class instance.

The public interface of a class consists of its public members, which are accessible from the
outside, and can be used by programs that create instances of the class. Class members can be
public, private, or protected. Private members can be used only internally by the class, and
protected members can be used by derived classes.

Separating the various layers of functionality of an application is important, because it allows you
to build flexible and extensible applications that can be easily updated when necessary. In Cristian
Darie and Mihai Bucica's PHP e-commerce books, you even learn how to use a templating engine
called Smarty that allows you to further separate presentation logic from the HTML template, so
that designers are not bothered with the programming part of the site.

When preparing the design of your code, keep in mind is that the power, flexibility, and
scalability of the architecture is directly proportional to the time you invest in designing it
and writing the foundation code. Reference to these issues is available for free download
at http:// ajaxphp.packtpub.com/ajax/

For this final exercise, we will build a simple but complete AJAX application called friendly, that
implements many of the practices and techniques shown so far. The application will have a
standard structure, composed of these files:

• index.html is the file loaded initially by the user. It contains the JavaScript code that
makes asynchronous requests to friendly.php.

• friendly.css is the file containing the CSS styles to be used in the application.
• friendly.js is the JavaScript file loaded together with index.html on the client

side. It makes asynchronous requests to a PHP script called friendly.php to
perform various functionality required to support the rich client interface.

Chapter 3

• friendly.php is a PHP script residing on the same server as index.html, and it offers
the server-side functionality requested asynchronously by the JavaScript code in
index.html. Remember that it is important for these files to reside on the same server,
because the JavaScript code, when executed by the client, may not be allowed to access
other servers. In most cases, friendly.php will make use of the functionality of yet
another PHP file, named friendly.class.php, to perform its duties.

• friendly.class.php is a PHP script that contains a class called Friendly, which
contains the business logic and database operations to support the functionality of
friendly.php.

• config.php will be used to store global configuration options for your application,
such as database connection data, etc.

• error_handler.php contains the error-handling mechanism that changes the text of
an error message into a human-readable format.

The Friendly application, at configurable intervals (by default, of 5 seconds), reads two random
records from the users table that you have created at the MySQL exercise, and reads a random
number from the random number generator service that you have also met earlier in this chapter.
Using this data, the server composes a message like "User paula works with user emilian at project
#33", which is read by the client and displayed as shown in Figure 3.21.

Figure 3.21: Friendly Web Application

The application will display "Reading the new message from server…" while making the
asynchronous request (you get to read this message because the server adds an artificial delay to
simulate some more complex server-side functionality).

In the case of an error, the application can be configured to display a detailed error message
(useful when debugging), as shown in Figure 3.22, or a more user friendly error message as shown
in Figure 3.23.

 111

Server-Side Techniques with PHP and MySQL

 112

Figure 3.22: What Happens When you Lose the Database Password—A Detailed Error Page

Figure 3.23: A Friendlier Error Page

Now that you know what we are up to, it's time for action…

Time for Action—Building the Friendly Application
1. This exercise makes use of the users table that is created in the previous exercise. If

you haven't already, please follow steps 1 and 2 of the Working with PHP and
MySQL exercise.

2. Create a new folder named friendly as a child of the foundations folder.
3. Create a new file named index.html with this code in it:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>
 <head>
 <title>Practical AJAX: Friendly Web Application</title>

Chapter 3

 <link href="friendly.css" rel="stylesheet" type="text/css"/>
 <script type="text/javascript" src="friendly.js"></script>
 </head>
 <body onload="process()">
 <noscript>

 This example requires a JavaScript-enabled browser!

 </noscript>
 <div class="project">
 Welcome to AJAX Friendly!

 <div class="news">
 Your news for today:
 <div id="myDivElement" />
 </div>
 </div>
 </body>
</html>

4. Add a new file named friendly.css:
body
{
 font-family: Arial, Helvetica, sans-serif;
 font-size: small;
 background-color: #fffccc;
}

input
{
 margin-bottom: 3px;
 border: #000099 1px solid;
}

.title
{
 font-size: x-large;
}

div.project
{
 background-color: #99ccff;
 padding: 5px;
 border: #000099 1px solid;
}

div.news
{
 background-color: #fffbb8;
 padding: 2px;
 border: 1px dashed;
}

5. Now add the JavaScript source file, friendly.js:
// holds an instance of XMLHttpRequest
var xmlHttp = createXmlHttpRequestObject();
// holds the remote server address and parameters
var serverAddress = "friendly.php?action=GetNews";
// variables that establish how often to access the server
var updateInterval = 5; // how many seconds to wait to get new message
var errorRetryInterval = 30; // seconds to wait after server error
// when set to true, display detailed error messages
var debugMode = true;

 113

Server-Side Techniques with PHP and MySQL

 114

// creates an XMLHttpRequest instance
function createXmlHttpRequestObject()
{
 // will store the reference to the XMLHttpRequest object
 var xmlHttp;
 // this should work for all browsers except IE6 and older
 try
 {
 // try to create XMLHttpRequest object
 xmlHttp = new XMLHttpRequest();
 }
 catch(e)
 {
 // assume IE6 or older
 var XmlHttpVersions = new Array("MSXML2.XMLHTTP.6.0",
 "MSXML2.XMLHTTP.5.0",
 "MSXML2.XMLHTTP.4.0",
 "MSXML2.XMLHTTP.3.0",
 "MSXML2.XMLHTTP",
 "Microsoft.XMLHTTP");
 // try every prog id until one works
 for (var i=0; i<XmlHttpVersions.length && !xmlHttp; i++)
 {
 try
 {
 // try to create XMLHttpRequest object
 xmlHttp = new ActiveXObject(XmlHttpVersions[i]);
 }
 catch (e) {}
 }
 }
 // return the created object or display an error message
 if (!xmlHttp)
 alert("Error creating the XMLHttpRequest object.");
 else
 return xmlHttp;
}

// function that displays a new message on the page
function display($message)
{
 // obtain a reference to the <div> element on the page
 myDiv = document.getElementById("myDivElement");
 // display message
 myDiv.innerHTML = $message + "
";
}

// function that displays an error message
function displayError($message)
{
 // display error message, with more technical details if debugMode is true
 display("Error retrieving the news message! Will retry in " +
 errorRetryInterval + " seconds." +
 (debugMode ? "
" + $message : ""));
 // restart sequence
 setTimeout("process();", errorRetryInterval * 1000);
}

// call server asynchronously
function process()
{
 // only continue if xmlHttp isn't void
 if (xmlHttp)
 {

Chapter 3

 // try to connect to the server
 try
 {
 // remove this line if you don't like the 'Receiving...' message
 display("Receiving new message from server...")
 // make asynchronous HTTP request to retrieve new message
 xmlHttp.open("GET", serverAddress, true);
 xmlHttp.onreadystatechange = handleGettingNews;
 xmlHttp.send(null);
 }
 catch(e)
 {
 displayError(e.toString());
 }
 }
}

// function called when the state of the HTTP request changes
function handleGettingNews()
{
 // when readyState is 4, we are ready to read the server response
 if (xmlHttp.readyState == 4)
 {
 // continue only if HTTP status is "OK"
 if (xmlHttp.status == 200)
 {
 try
 {
 // do something with the response from the server
 getNews();
 }
 catch(e)
 {
 // display error message
 displayError(e.toString());
 }
 }
 else
 {
 // display error message
 displayError(xmlHttp.statusText);
 }
 }
}

// handles the response received from the server
function getNews()
{
 // retrieve the server's response
 var response = xmlHttp.responseText;
 // server error?
 if (response.indexOf("ERRNO") >= 0
 || response.indexOf("error") >= 0
 || response.length == 0)
 throw(response.length == 0 ? "Server error." : response);
 // display the message
 display(response);
 // restart sequence
 setTimeout("process();", updateInterval * 1000);
}

6. It's time to write the server-side scripts now. Start by creating friendly.php:
<?php
// load the error handling module
require_once('error_handler.php');
require_once('friendly.class.php');

 115

Server-Side Techniques with PHP and MySQL

 116

// make sure the user's browser doesn't cache the result
header('Expires: Wed, 23 Dec 1980 00:30:00 GMT'); // time in the past
header('Last-Modified: ' . gmdate('D, d M Y H:i:s') . ' GMT');
header('Cache-Control: no-cache, must-revalidate');
header('Pragma: no-cache');
// read the action parameter
$action = $_GET['action'];
// get news
if ($action == 'GetNews')
{
 // create new instance of the Friendly class
 $friendly = new Friendly();
 // use Friendly functionality to retrieve the news message
 $news = $friendly->getNews();
 // echo the message to be read by the client
 echo $news;
}
else
{
 echo 'Communication error: server doesn\'t understand command.';
}
?>

7. Create the friendly.class.php script with the following contents:
<?php
// load error handling sequence
require_once ('error_handler.php');
// load configuration
require_once ('config.php');

// class stores Friendly web application functionality
class Friendly
{
 // stores the database connection
 private $mMysqli;

 // constructor opens database connection
 function __construct()
 {
 $this->mMysqli = new mysqli(DB_HOST, DB_USER, DB_PASSWORD,
 DB_DATABASE);
 }

 // generate news message
 public function getNews()
 {
 // this will store the news line
 $news = 'No news for today.';
 // SQL that selects two random users from the database.
 $query = 'SELECT user_name FROM users ' .
 'ORDER BY RAND() ' .
 'LIMIT 2';
 // execute the query
 $result = $this->mMysqli->query($query);
 // retrieve the user rows
 $row1 = $result->fetch_array(MYSQLI_ASSOC);
 $row2 = $result->fetch_array(MYSQLI_ASSOC);
 // close the input stream
 $result->close();
 // generate the news
 if (!$row1 || !$row2)
 {
 $news = 'The project needs more users!';
 }
 else
 {

Chapter 3

 // create HTML-formatted news message
 $name1 = '' . $row1['user_name'] . '';
 $name2 = '' . $row2['user_name'] . '';
 $randNum = $this->getRandomNumber();
 $news = 'User ' . $name1 . ' works with user ' . $name2 .
 ' at project #' . $randNum . '.';
 }
 // output the news line
 return $news;
 }

 // returns a random number between 1 and 100
 private function getRandomNumber()
 {
 // delays execution for quarter of a second
 usleep(250000);
 // holds the remote server address and parameters
 $serverAddress = 'http://www.random.org/cgi-bin/randnum';
 $serverParams = 'num=1&min=1&max=100';
 // retrieve the random number from remote server
 $randomNumber = file_get_contents($serverAddress . '?' .
 $serverParams);
 // output the random number
 return trim($randomNumber);
 }

 // destructor closes database connection
 function __destruct()
 {
 $this->mMysqli->close();
 }
}
?>

8. Add the configuration file, config.php:
<?php
// defines database connection data
define('DB_HOST', 'localhost');
define('DB_USER', 'ajaxuser');
define('DB_PASSWORD', 'practical');
define('DB_DATABASE', 'ajax');
?>

9. Finally, add the error-handler script, error_handler.php:
<?php
// set the user error handler method to be error_handler
set_error_handler('error_handler', E_ALL);
// error handler function
function error_handler($errNo, $errStr, $errFile, $errLine)
{
 // clear any output that has already been generated
 if(ob_get_length()) ob_clean();
 // output the error message
 $error_message = 'ERRNO: ' . $errNo . chr(10) .
 'TEXT: ' . $errStr . chr(10) .
 'LOCATION: ' . $errFile .
 ', line ' . $errLine;
 echo $error_message;
 // prevent processing any more PHP scripts
 exit;
}
?>

10. Load http://localhost/ajax/foundations/friendly/.

 117

Server-Side Techniques with PHP and MySQL

 118

What Just Happened?
Most of the principles implemented in the application were covered earlier in the book, so we will
quickly analyze what's new here, starting from the client-side code. The novelty in index.html
consists in using the <noscript> element to offer a minimal support for browsers that don't
support JavaScript, or for ones whose JavaScript support has been disabled:

 <body onload="process()">
 <noscript>

 This example requires a JavaScript-enabled browser!

 </noscript>

Browsers that have JavaScript enabled will ignore everything between <noscript> and
</noscript>, while the others will parse and display that HTML code.

The client-side JavaScript file, friendly.js has a few surprises of its own:
• We grouped common functionality that handles displaying user messages into the

display and displayError functions. Both receive as parameter the message to be
displayed, but displayError displays the message only if debugMode is true (this
variable is defined at the beginning of the file).

• displayError is called in the catch blocks after an exception has been thrown
somewhere, and it uses setTimeout to restart the sequence that makes server
requests. You can set how much time the script should wait before attempting
a new server request when an error happens by modifying the value of the
errorRetryInterval variable.

• You can change how often the news message should be displayed by changing the
updateInterval variable.

• In getNews(), we have a simplistic mechanism that checks whether the text received
from the server was a server-side error instead of the message we are waiting for.
This mechanism verifies if the response contains "ERRNO" (which is generated by
our server-side custom error handler), or "error" (which is generated automatically
by PHP in the case of fatal errors or parse errors), or if the response is empty (if the
displayErrors option is set to Off in php.ini, no error text is generated). In any
of these cases, we throw an error manually, which is then received by our
error-handling mechanism that informs the users that an error has happened.

At the server side, everything starts in friendly.php, which is called from the client. The most
important part of friendly.php is the one where it creates a new instance of the Friendly class
(defined in friendly.class.php), and calls its getNews method:

// read the action parameter
$action = $_GET['action'];
// get news
if ($action == 'GetNews')
{
 // create new instance of the Friendly class
 $friendly = new Friendly();
 // use Friendly functionality to retrieve the news message
 $news = $friendly->getNews();
 // echo the message to be read by the client
 echo $news;
}

Chapter 3

On the server side, all the interesting things happen in friendly.class.php, which is called from
friendly.php to do the interesting part of the work. In friendly.class.php you can find the
Friendly class, which has the following four members:

• $mMysqli: A private field that stores an open database connection during the life of
the object.

• __construct(): The class constructor initializes $mMysqli by opening a database
connection. Because the constructor is executed automatically when an instance of
the class is created, you can safely assume to have the connection available in all
methods of the class.

• __destruct(): The class destructor closes the database connection. The destructor is
executed automatically when the class instance is destroyed.

• getRandomNumber(): This is a private helper method that returns a random number.
Private methods can't be called from programs that create instances of the class, and
are meant to provide internal functionality only. The code in getRandomNumber is
familiar from the previous exercises, as it calls the external random.org server to
retrieve new random numbers. The usleep PHP function is used to artificially add a
quarter of a second delay, so that you can admire the "Receiving new message from
server…" message on the client for a little longer.

• getNews(): This is a public method that an external program can access to get a
new "news" message. The method gets two random user names from the database,
uses the getRandomNumber method to retrieve a random number, and composes a
message such as "User x works with user y at project #z". (Yes that's not very
imaginative but we couldn't think of anything more interesting—sorry!) Note the
$this special object that is used to access $mMysqli and getRandomNumber().
Class members can only be accessed using an instance of the class and in PHP
$this refers to the current class instance.

Summary
Hopefully, you have enjoyed the little examples of this chapter, because many more will follow!
This chapter walked you through the technologies that live at the server side of a typical AJAX
application. We have done a few exercises that involved simple server functionality, and PHP did
a wonderful job at delivering that functionality. You have also learned the basics of working with
databases, and simple database operations with the first table created in this book.

In the following chapters, you'll meet even more interesting examples that use more advanced
code to implement their functionality. In Chapter 4, you'll build an AJAX-enabled form validation
page, which is safe to work even if the client doesn't support JavaScript and AJAX.

 119

4
AJAX Form Validation

Validating input data is an essential requirement for quality and secure software applications. In
the case of web applications, validation is an even more sensitive area, because your application is
widely reachable by many users with varying skill sets and intentions.

Validation is not something to play with, because invalid data has the potential to harm the
application's functionality, and even corrupt the application's most sensitive area: the database.

Input data validation means checking whether the data entered by the user complies with
previously defined rules, which are established according to the business rules of your application.
For example, if you require dates to be entered in the YYYY-MM-DD format, then a date of
"February 28" would be considered invalid. Email addresses and phone numbers are other
examples of data that should be checked against valid formats.

Carefully define the input data validation rules in the software requirements document of
the application you're developing, and then use them consistently to validate your data!

Historically, web form validation was implemented mostly at the server side, after the form was
submitted. In some cases, there was also some JavaScript code on the client that performed simple
validation such as checking whether the email address was valid, or if a user name had been entered.

The problems encountered with traditional web form validation techniques are:

• Server-side form validation meets the limits of the HTTP protocol, which is a
stateless protocol. Unless special code is written to deal with this issue, after
submitting a page containing invalid data, the user is shown back an empty form that
has to be filled from scratch.

• When submitting the page, the user needs to wait for a full page reload. For every
mistake that is made when filling the form, a new page reload happens.

In this chapter, we will create a form-validation application that implements the good old traditional
techniques and adds an AJAX flavor, thereby making the form more user-friendly and responsive.

Even if you implement AJAX validation, server-side validation is mandatory, because the server is
the last line of defense against invalid data. The JavaScript code that gets to the client can not only be
disabled permanently from the browser's settings, but it also can be easily modified or bypassed.

AJAX Form Validation

 122

The code in this chapter can be verified online at http://ajaxphp.packtpub.com.

Implementing AJAX Form Validation
The form-validation application we will build in this chapter validates the form at the server side
on the classic form submit, and also implements AJAX validation while the user navigates through
the form. The final validation is performed at the server, as shown in Figure 4.1.

Figure 4.1: Validation Being Performed Seamlessly while Users Continue Their Activity

Doing a final server-side validation when the form is submitted is always a must. If someone
disables JavaScript in the browser settings, AJAX validation on the client side won't work,
exposing sensitive data, and thereby allowing an evil-intended visitor to harm important data back
on the server (e.g. through SQL injection).

http://ajaxphp.packtpub.com/

Chapter 4

Always validate user input on the server.

The application you are about to build validates a registration form, as shown in Figure 4.2, using
both AJAX validation (client side) and typical server-side validation:

• AJAX-style—when each form field loses focus (onblur). The field's value is sent to
the server, which validates the data and returns a result (0 for failure, 1 for success).
If validation fails, an error message will unobtrusively show up and notify the user
about the failed validation as shown in Figure 4.3.

• PHP-style—when the entire form is submitted. This is the usual validation you
would do on the server, by checking user input against certain rules. If no errors are
found and the input data is valid, the browser is redirected to a success page as
shown in Figure 4.4. If validation fails, however, the user is sent back to the form
page with the invalid fields highlighted as shown in Figure 4.3.

Both AJAX validation and PHP validation check the entered data against these rules:

• Username must not already exist in the database
• Name field cannot be empty
• A gender must be selected
• Month of Birth must be selected
• Birthday must be a valid date (between 1-31)
• Year of birth must be a valid year (between 1900-2000)
• The date must exist taking into consideration the number of days for each month
• Email address must be written in a valid email format, such as filip@yahoo.co.uk or

cristian@subdomain.domain.com
• Phone number must be written in standard US form: xxx-xxx-xxxx
• "I've read the Terms of Use" must be checked

Watch the application in action in the following screenshots:

 123

AJAX Form Validation

 124

Figure 4.2: The User Registration Form

Figure 4.3: Form Validation in Action

Chapter 4

Figure 4.4: Successful Submission

Thread-Safe AJAX
A piece of code is thread-safe if it functions correctly during simultaneous execution by multiple
threads. This chapter contains the first example where an external factor—the user—directly
influences the AJAX requests. We need to make an asynchronous request to the server to validate
the entered data every time the user leaves an input box or changes a selection.

The hidden danger behind this technique is only revealed if the user moves very quickly through
the input fields, or the server connection is slow; in these cases, the web application would attempt
to make new server requests through an XMLHttpRequest object that is still busy waiting for the
response to a previous request (this would generate an error and the application would stop
functioning properly).

Depending on the circumstances at hand, the ideal solution to this problem may be:

• Create a new XMLHttpRequest instance for every message you need to send to the
server. This method is easy to implement, but it can degrade server's performance if
multiple requests are sent at the same time, and it doesn't guarantee for the order in
which you receive the responses.

• Record the message in a queue and send it later when the XMLHttpRequest object is
able to make new requests. The requests are made in the expected order. Using a queue
is particularly important in applications where the order of the messages is important.

• Schedule to automatically retry making the request after a specified amount of time.
This method is similar to the one with the queue in that you don't make more than
one server request at a time, but it doesn't guarantee for either the order in which the
requests are made, or for the order in which the responses are received.

• Ignore the message.

In this chapter, for the first time in the book, we'll choose to implement a message queue. When
the user leaves an input element, a message to validate its value is added to the queue. When the
XMLHttpRequest object is clear to make a new request, it takes the first message from the queue.

The queue is a First-In, First-Out (FIFO) structure, which guarantees that the messages are sent
in the proper order. To get a feeling about how this works, go to the demo page for this chapter (or
implement the code), and press tab quickly multiple times, and then wait to see how the validation
responses show up one by one.

 125

AJAX Form Validation

Note that dealing with these problems only makes sense in scenarios where elements outside
your control can trigger the server requests. Otherwise, in scenarios such as the Friendly
application from Chapter 3, where you initiated new requests only after the response was
received, implementing thread-safe code doesn't make a huge difference.

It's time to code.

Time for Action—AJAX Form Validation

If you have read the previous chapter then you should already have the users table set
up. If you do, you may skip steps 1 and 2.

1. Connect to the ajax database, and create a table named users with the following code:
CREATE TABLE users
(
 user_id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 user_name VARCHAR(32) NOT NULL,
 PRIMARY KEY (user_id)
);

2. Execute the following INSERT commands to populate your users table with some
sample data (because user_id is an auto_increment column, its values will be
generated by the database):
INSERT INTO users (user_name) VALUES ('bogdan');
INSERT INTO users (user_name) VALUES ('filip');
INSERT INTO users (user_name) VALUES ('mihai');
INSERT INTO users (user_name) VALUES ('emilian');
INSERT INTO users (user_name) VALUES ('paula');
INSERT INTO users (user_name) VALUES ('cristian');

3. In your ajax folder, create a new folder named validate.
4. Let's start writing the code with the presentation tier. Create a file named

validate.css, and add the following code to it:
body
{
 font-family: Arial, Helvetica, sans-serif;
 font-size: 0.8em;
 color: #000000;
}

label
{
 float: left;
 width: 150px;
 font-weight: bold;
}

input, select
{
 margin-bottom: 3px;
}

.button
{
 font-size: 2em;
}

 126

Chapter 4

.left
{
 margin-left: 150px;
}

.txtFormLegend
{
 color: #777777;
 font-weight: bold;
 font-size: large;
}

.txtSmall
{
 color: #999999;
 font-size: smaller;
}

.hidden
{
 display: none;
}

.error
{
 display: block;
 margin-left: 150px;
 color: #ff0000;
}

5. Now create a new file named index_top.php, and add the following code. This
script will be loaded from the main page index.php.
<?php
// enable PHP session
session_start();

// Build HTML <option> tags
function buildOptions($options, $selectedOption)
{
 foreach ($options as $value => $text)
 {
 if ($value == $selectedOption)
 {
 echo '<option value="' . $value .
 '" selected="selected">' . $text . '</option>';
 }
 else
 {
 echo '<option value="' . $value . '">' . $text . '</option>';
 }
 }
}

// initialize gender options array
$genderOptions = array("0" => "[Select]",
 "1" => "Male",
 "2" => "Female");

// initialize month options array
$monthOptions = array("0" => "[Select]",
 "1" => "January",
 "2" => "February",

 127

AJAX Form Validation

 128

 "3" => "March",
 "4" => "April",
 "5" => "May",
 "6" => "June",
 "7" => "July",
 "8" => "August",
 "9" => "September",
 "10" => "October",
 "11" => "November",
 "12" => "December");

// initialize some session variables to prevent PHP throwing Notices
if (!isset($_SESSION['values']))
{
 $_SESSION['values']['txtUsername'] = '';
 $_SESSION['values']['txtName'] = '';
 $_SESSION['values']['selGender'] = '';
 $_SESSION['values']['selBthMonth'] = '';
 $_SESSION['values']['txtBthDay'] = '';
 $_SESSION['values']['txtBthYear'] = '';
 $_SESSION['values']['txtEmail'] = '';
 $_SESSION['values']['txtPhone'] = '';
 $_SESSION['values']['chkReadTerms'] = '';
}
if (!isset($_SESSION['errors']))
{
 $_SESSION['errors']['txtUsername'] = 'hidden';
 $_SESSION['errors']['txtName'] = 'hidden';
 $_SESSION['errors']['selGender'] = 'hidden';
 $_SESSION['errors']['selBthMonth'] = 'hidden';
 $_SESSION['errors']['txtBthDay'] = 'hidden';
 $_SESSION['errors']['txtBthYear'] = 'hidden';
 $_SESSION['errors']['txtEmail'] = 'hidden';
 $_SESSION['errors']['txtPhone'] = 'hidden';
 $_SESSION['errors']['chkReadTerms'] = 'hidden';
}
?>

6. Now create index.php, and add this code to it:
<?php
require_once ('index_top.php');
?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Practical AJAX: Form Validation</title>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <link href="validate.css" rel="stylesheet" type="text/css" />
 <script type="text/javascript" src="validate.js"></script>
 </head>

 <body onload="setFocus();">
 <fieldset>
 <legend class="txtFormLegend">New User Registration Form</legend>

 <form name="frmRegistration" method="post"
 action="validate.php?validationType=php">

 <!-- Username -->
 <label for="txtUsername">Desired username:</label>
 <input id="txtUsername" name="txtUsername" type="text"
 onblur="validate(this.value, this.id)"

Chapter 4

 value="<?php echo $_SESSION['values']['txtUsername'] ?>" />
 <span id="txtUsernameFailed"
 class="<?php echo $_SESSION['errors']['txtUsername'] ?>">
 This username is in use, or empty username field.

 <!-- Name -->
 <label for="txtName">Your name:</label>
 <input id="txtName" name="txtName" type="text"
 onblur="validate(this.value, this.id)"
 value="<?php echo $_SESSION['values']['txtName'] ?>" />
 <span id="txtNameFailed"
 class="<?php echo $_SESSION['errors']['txtName'] ?>">
 Please enter your name.

 <!-- Gender -->
 <label for="selGender">Gender:</label>
 <select name="selGender" id="selGender"
 onblur="validate(this.value, this.id)">
 <?php buildOptions($genderOptions,
 $_SESSION['values']['selGender']); ?>
 </select>
 <span id="selGenderFailed"
 class="<?php echo $_SESSION['errors']['selGender'] ?>">
 Please select your gender.

 <!-- Birthday -->
 <label for="selBthMonth">Birthday:</label>

 <!-- Month -->
 <select name="selBthMonth" id="selBthMonth"
 onblur="validate(this.value, this.id)">
 <?php buildOptions($monthOptions,
 $_SESSION['values']['selBthMonth']); ?>
 </select>
 -
 <!-- Day -->
 <input type="text" name="txtBthDay" id="txtBthDay" maxlength="2"
 size="2"
 onblur="validate(this.value, this.id)"
 value="<?php echo $_SESSION['values']['txtBthDay'] ?>" />
 -
 <!-- Year -->
 <input type="text" name="txtBthYear" id="txtBthYear" maxlength="4"
 size="2"
onblur="validate(document.getElementById('selBthMonth').options[document.g
etElementById('selBthMonth').selectedIndex].value + '#' +
document.getElementById('txtBthDay').value + '#' + this.value, this.id)"
 value="<?php echo $_SESSION['values']['txtBthYear'] ?>" />

 <!-- Month, Day, Year validation -->
 <span id="selBthMonthFailed"
 class="<?php echo $_SESSION['errors']['selBthMonth'] ?>">
 Please select your birth month.

 <span id="txtBthDayFailed"
 class="<?php echo $_SESSION['errors']['txtBthDay'] ?>">
 Please enter your birth day.

 <span id="txtBthYearFailed"

 129

AJAX Form Validation

 130

 class="<?php echo $_SESSION['errors']['txtBthYear'] ?>">
 Please enter a valid date.

 <!-- Email -->
 <label for="txtEmail">E-mail:</label>
 <input id="txtEmail" name="txtEmail" type="text"
 onblur="validate(this.value, this.id)"
 value="<?php echo $_SESSION['values']['txtEmail'] ?>" />
 <span id="txtEmailFailed"
 class="<?php echo $_SESSION['errors']['txtEmail'] ?>">
 Invalid e-mail address.

 <!-- Phone number -->
 <label for="txtPhone">Phone number:</label>
 <input id="txtPhone" name="txtPhone" type="text"
 onblur="validate(this.value, this.id)"
 value="<?php echo $_SESSION['values']['txtPhone'] ?>" />
 <span id="txtPhoneFailed"
 class="<?php echo $_SESSION['errors']['txtPhone'] ?>">
 Please insert a valid US phone number (xxx-xxx-xxxx).

 <!-- Read terms checkbox -->
 <input type="checkbox" id="chkReadTerms" name="chkReadTerms"
 class="left"
 onblur="validate(this.checked, this.id)"
 <?php if ($_SESSION['values']['chkReadTerms'] == 'on')
 echo 'checked="checked"' ?> />
 I've read the Terms of Use
 <span id="chkReadTermsFailed"
 class="<?php echo $_SESSION['errors']['chkReadTerms'] ?>">
 Please make sure you read the Terms of Use.

 <!-- End of form -->
 <hr />
 Note: All fields are required.

 <input type="submit" name="submitbutton" value="Register"
 class="left button" />
 </form>
 </fieldset>
 </body>
</html>

7. Create a new file named allok.php, and add the following code to it:
<?php
 // clear any data saved in the session
 session_start();
 session_destroy();
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>AJAX Form Validation</title>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <link href="validate.css" rel="stylesheet" type="text/css" />
 </head>

Chapter 4

 <body>
 Registration Successfull!

 << Go back
 </body>
</html>

8. Create a file named validate.js. This file performs the client-side functionality,
including the AJAX requests:
// holds an instance of XMLHttpRequest
var xmlHttp = createXmlHttpRequestObject();
// holds the remote server address
var serverAddress = "validate.php";
// when set to true, display detailed error messages
var showErrors = true;
// initialize the validation requests cache
var cache = new Array();

// creates an XMLHttpRequest instance
function createXmlHttpRequestObject()
{
 // will store the reference to the XMLHttpRequest object
 var xmlHttp;
 // this should work for all browsers except IE6 and older
 try
 {
 // try to create XMLHttpRequest object
 xmlHttp = new XMLHttpRequest();
 }
 catch(e)
 {
 // assume IE6 or older
 var XmlHttpVersions = new Array("MSXML2.XMLHTTP.6.0",
 "MSXML2.XMLHTTP.5.0",
 "MSXML2.XMLHTTP.4.0",
 "MSXML2.XMLHTTP.3.0",
 "MSXML2.XMLHTTP",
 "Microsoft.XMLHTTP");
 // try every id until one works
 for (var i=0; i<XmlHttpVersions.length && !xmlHttp; i++)
 {
 try
 {
 // try to create XMLHttpRequest object
 xmlHttp = new ActiveXObject(XmlHttpVersions[i]);
 }
 catch (e) {} // ignore potential error
 }
 }
 // return the created object or display an error message
 if (!xmlHttp)
 displayError("Error creating the XMLHttpRequest object.");
 else
 return xmlHttp;
}

// function that displays an error message
function displayError($message)
{
 // ignore errors if showErrors is false
 if (showErrors)
 {
 // turn error displaying Off
 showErrors = false;
 // display error message

 131

AJAX Form Validation

 132

 alert("Error encountered: \n" + $message);
 // retry validation after 10 seconds
 setTimeout("validate();", 10000);
 }
}

// the function handles the validation for any form field
function validate(inputValue, fieldID)
{
 // only continue if xmlHttp isn't void
 if (xmlHttp)
 {
 // if we received non-null parameters, we add them to cache in the
 // form of the query string to be sent to the server for validation
 if (fieldID)
 {
 // encode values for safely adding them to an HTTP request query string
 inputValue = encodeURIComponent(inputValue);
 fieldID = encodeURIComponent(fieldID);
 // add the values to the queue
 cache.push("inputValue=" + inputValue + "&fieldID=" + fieldID);
 }
 // try to connect to the server
 try
 {
 // continue only if the XMLHttpRequest object isn't busy
 // and the cache is not empty
 if ((xmlHttp.readyState == 4 || xmlHttp.readyState == 0)
 && cache.length > 0)
 {
 // get a new set of parameters from the cache
 var cacheEntry = cache.shift();
 // make a server request to validate the extracted data
 xmlHttp.open("POST", serverAddress, true);
 xmlHttp.setRequestHeader("Content-Type",
 "application/x-www-form-urlencoded");
 xmlHttp.onreadystatechange = handleRequestStateChange;
 xmlHttp.send(cacheEntry);
 }
 }
 catch (e)
 {
 // display an error when failing to connect to the server
 displayError(e.toString());
 }
 }
}

// function that handles the HTTP response
function handleRequestStateChange()
{
 // when readyState is 4, we read the server response
 if (xmlHttp.readyState == 4)
 {
 // continue only if HTTP status is "OK"
 if (xmlHttp.status == 200)
 {
 try
 {
 // read the response from the server
 readResponse();
 }
 catch(e)

Chapter 4

 {
 // display error message
 displayError(e.toString());
 }
 }
 else
 {
 // display error message
 displayError(xmlHttp.statusText);
 }
 }
}

// read server's response
function readResponse()
{
 // retrieve the server's response
 var response = xmlHttp.responseText;
 // server error?
 if (response.indexOf("ERRNO") >= 0
 || response.indexOf("error:") >= 0
 || response.length == 0)
 throw(response.length == 0 ? "Server error." : response);
 // get response in XML format (assume the response is valid XML)
 responseXml = xmlHttp.responseXML;
 // get the document element
 xmlDoc = responseXml.documentElement;
 result = xmlDoc.getElementsByTagName("result")[0].firstChild.data;
 fieldID = xmlDoc.getElementsByTagName("fieldid")[0].firstChild.data;
 // find the HTML element that displays the error
 message = document.getElementById(fieldID + "Failed");
 // show the error or hide the error
 message.className = (result == "0") ? "error" : "hidden";
 // call validate() again, in case there are values left in the cache
 setTimeout("validate();", 500);
}

// sets focus on the first field of the form
function setFocus()
{
 document.getElementById("txtUsername").focus();
}

9. It's time to add the business logic now. Start by creating config.php, with this code
in it:
<?php
// defines database connection data
define('DB_HOST', 'localhost');
define('DB_USER', 'ajaxuser');
define('DB_PASSWORD', 'practical');
define('DB_DATABASE', 'ajax');
?>

10. Now create the error handler code in a file named error_handler.php:
<?php
// set the user error handler method to be error_handler
set_error_handler('error_handler', E_ALL);

// error handler function
function error_handler($errNo, $errStr, $errFile, $errLine)
{
 // clear any output that has already been generated
 if(ob_get_length()) ob_clean();

 133

AJAX Form Validation

 134

 // output the error message
 $error_message = 'ERRNO: ' . $errNo . chr(10) .
 'TEXT: ' . $errStr . chr(10) .
 'LOCATION: ' . $errFile .
 ', line ' . $errLine;
 echo $error_message;
 // prevent processing any more PHP scripts
 exit;
}
?>

11. The PHP script that handles the client's AJAX calls, and also handles the validation
on form submit, is validate.php:
<?php
// start PHP session
session_start();
// load error handling script and validation class
require_once ('error_handler.php');
require_once ('validate.class.php');

// Create new validator object
$validator = new Validate();

// read validation type (PHP or AJAX?)
$validationType = '';
if (isset($_GET['validationType']))
{
 $validationType = $_GET['validationType'];
}

// AJAX validation or PHP validation?
if ($validationType == 'php')
{
 // PHP validation is performed by the ValidatePHP method, which returns
 // the page the visitor should be redirected to (which is allok.php if
 // all the data is valid, or back to index.php if not)
 header("Location:" . $validator->ValidatePHP());
}
else
{
 // AJAX validation is performed by the ValidateAJAX method. The results
 // are used to form an XML document that is sent back to the client
 $response =
 '<?xml version="1.0" encoding="UTF-8" standalone="yes"?>' .
 '<response>' .
 '<result>' .
 $validator->ValidateAJAX($_POST['inputValue'], $_POST['fieldID']) .
 '</result>' .
 '<fieldid>' .
 $_POST['fieldID'] .
 '</fieldid>' .
 '</response>';
 // generate the response
 if(ob_get_length()) ob_clean();
 header('Content-Type: text/xml');
 echo $response;
}
?>

12. The class that supports the validation functionality is called Validate, and it is
hosted in a script file called validate.class.php, which looks like this:
<?php
// load error handler and database configuration

Chapter 4

require_once ('config.php');

// Class supports AJAX and PHP web form validation
class Validate
{
 // stored database connection
 private $mMysqli;

 // constructor opens database connection
 function __construct()
 {
 $this->mMysqli = new mysqli(DB_HOST, DB_USER, DB_PASSWORD, DB_DATABASE);
 }

 // destructor closes database connection
 function __destruct()
 {
 $this->mMysqli->close();
 }

 // supports AJAX validation, verifies a single value
 public function ValidateAJAX($inputValue, $fieldID)
 {
 // check which field is being validated and perform validation
 switch($fieldID)
 {
 // Check if the username is valid
 case 'txtUsername':
 return $this->validateUserName($inputValue);
 break;

 // Check if the name is valid
 case 'txtName':
 return $this->validateName($inputValue);
 break;

 // Check if a gender was selected
 case 'selGender':
 return $this->validateGender($inputValue);
 break;

 // Check if birth month is valid
 case 'selBthMonth':
 return $this->validateBirthMonth($inputValue);
 break;

 // Check if birth day is valid
 case 'txtBthDay':
 return $this->validateBirthDay($inputValue);
 break;

 // Check if birth year is valid
 case 'txtBthYear':
 return $this->validateBirthYear($inputValue);
 break;

 // Check if email is valid
 case 'txtEmail':
 return $this->validateEmail($inputValue);
 break;

 // Check if phone is valid
 case 'txtPhone':
 return $this->validatePhone($inputValue);

 135

AJAX Form Validation

 136

 break;

 // Check if "I have read the terms" checkbox has been checked
 case 'chkReadTerms':
 return $this->validateReadTerms($inputValue);
 break;
 }
 }

 // validates all form fields on form submit
 public function ValidatePHP()
 {
 // error flag, becomes 1 when errors are found.
 $errorsExist = 0;
 // clears the errors session flag
 if (isset($_SESSION['errors']))
 unset($_SESSION['errors']);
 // By default all fields are considered valid
 $_SESSION['errors']['txtUsername'] = 'hidden';
 $_SESSION['errors']['txtName'] = 'hidden';
 $_SESSION['errors']['selGender'] = 'hidden';
 $_SESSION['errors']['selBthMonth'] = 'hidden';
 $_SESSION['errors']['txtBthDay'] = 'hidden';
 $_SESSION['errors']['txtBthYear'] = 'hidden';
 $_SESSION['errors']['txtEmail'] = 'hidden';
 $_SESSION['errors']['txtPhone'] = 'hidden';
 $_SESSION['errors']['chkReadTerms'] = 'hidden';

 // Validate username
 if (!$this->validateUserName($_POST['txtUsername']))
 {
 $_SESSION['errors']['txtUsername'] = 'error';
 $errorsExist = 1;
 }

 // Validate name
 if (!$this->validateName($_POST['txtName']))
 {
 $_SESSION['errors']['txtName'] = 'error';
 $errorsExist = 1;
 }

 // Validate gender
 if (!$this->validateGender($_POST['selGender']))
 {
 $_SESSION['errors']['selGender'] = 'error';
 $errorsExist = 1;
 }

 // Validate birth month
 if (!$this->validateBirthMonth($_POST['selBthMonth']))
 {
 $_SESSION['errors']['selBthMonth'] = 'error';
 $errorsExist = 1;
 }

 // Validate birth day
 if (!$this->validateBirthDay($_POST['txtBthDay']))
 {
 $_SESSION['errors']['txtBthDay'] = 'error';
 $errorsExist = 1;
 }

 // Validate birth year and date
 if (!$this->validateBirthYear($_POST['selBthMonth'] . '#' .

Chapter 4

 $_POST['txtBthDay'] . '#' .
 $_POST['txtBthYear']))
 {
 $_SESSION['errors']['txtBthYear'] = 'error';
 $errorsExist = 1;
 }

 // Validate email
 if (!$this->validateEmail($_POST['txtEmail']))
 {
 $_SESSION['errors']['txtEmail'] = 'error';
 $errorsExist = 1;
 }

 // Validate phone
 if (!$this->validatePhone($_POST['txtPhone']))
 {
 $_SESSION['errors']['txtPhone'] = 'error';
 $errorsExist = 1;
 }

 // Validate read terms
 if (!isset($_POST['chkReadTerms']) ||
 !$this->validateReadTerms($_POST['chkReadTerms']))
 {
 $_SESSION['errors']['chkReadTerms'] = 'error';
 $_SESSION['values']['chkReadTerms'] = '';
 $errorsExist = 1;
 }

 // If no errors are found, point to a successful validation page
 if ($errorsExist == 0)
 {
 return 'allok.php';
 }
 else
 {
 // If errors are found, save current user input
 foreach ($_POST as $key => $value)
 {
 $_SESSION['values'][$key] = $_POST[$key];
 }
 return 'index.php';
 }
 }

 // validate user name (must be empty, and must not be already registered)
 private function validateUserName($value)
 {
 // trim and escape input value
 $value = $this->mMysqli->real_escape_string(trim($value));
 // empty user name is not valid
 if ($value == null)
 return 0; // not valid
 // check if the username exists in the database
 $query = $this->mMysqli->query('SELECT user_name FROM users ' .
 'WHERE user_name="' . $value . '"');
 if ($this->mMysqli->affected_rows > 0)
 return '0'; // not valid
 else
 return '1'; // valid
 }

 // validate name

 137

AJAX Form Validation

 138

 private function validateName($value)
 {
 // trim and escape input value
 $value = trim($value);
 // empty user name is not valid
 if ($value)
 return 1; // valid
 else
 return 0; // not valid
 }

 // validate gender
 private function validateGender($value)
 {
 // user must have a gender
 return ($value == '0') ? 0 : 1;
 }

 // validate birth month
 private function validateBirthMonth($value)
 {
 // month must be non-null, and between 1 and 12
 return ($value == '' || $value > 12 || $value < 1) ? 0 : 1;
 }
 // validate birth day
 private function validateBirthDay($value)
 {
 // day must be non-null, and between 1 and 31
 return ($value == '' || $value > 31 || $value < 1) ? 0 : 1;
 }

 // validate birth year and the whole date
 private function validateBirthYear($value)
 {
 // valid birth year is between 1900 and 2000
 // get whole date (mm#dd#yyyy)
 $date = explode('#', $value);
 // date can't be valid if there is no day, month, or year
 if (!$date[0]) return 0;
 if (!$date[1] || !is_numeric($date[1])) return 0;
 if (!$date[2] || !is_numeric($date[2])) return 0;
 // check the date
 return (checkdate($date[0], $date[1], $date[2])) ? 1 : 0;
 }

 // validate email
 private function validateEmail($value)
 {
 // valid email formats: *@*.*, *@*.*.*, *.*@*.*, *.*@*.*.*)
 return (!eregi('^[_a-z0-9-]+(\.[_a-z0-9-]+)*@[a-z0-9-]+(\.[a-z0-9-
]+)*(\.[a-z]{2,3})$', $value)) ? 0 : 1;
 }

 // validate phone
 private function validatePhone($value)
 {
 // valid phone format: ###-###-####
 return (!eregi('^[0-9]{3}-*[0-9]{3}-*[0-9]{4}$', $value)) ? 0 : 1;
 }

 // check the user has read the terms of use
 private function validateReadTerms($value)
 {
 // valid value is 'true'

Chapter 4

 return ($value == 'true' || $value == 'on') ? 1 : 0;
 }
}
?>

13. Test your script by loading http://localhost/ajax/validate/index.php in a
web browser.

What Just Happened?
The AJAX validation technique allows us to validate form fields and at the same time inform
users if there were any validation errors. But the cherry on the top of the cake is that we are doing
all of this without interrupting the user's activity! This is called unobtrusive form validation.

The unobtrusive validation is combined with a pure server-side PHP validation that happens when
submitting the form. At the server, both validation types are supported by a PHP script called
validate.php, with the help of another PHP script called validate.class.php.

Let us examine the code, starting with the script that handles client-side validation, index.php. In
this validation example, the client page is not a simple HTML file, but a PHP file instead, so portions
of it will be still dynamically generated at the server side. This is necessary because we want to
retain the form field values when the form is submitted and server-side validation fails. Without
the help of the PHP code, when the index page is reloaded, all its fields would become empty.

index.php starts with loading a helper script named index_top.php, which starts the session by
calling session_start(), defines some variables and a function that will be used later in index.php,
and initializes some session variables ($_SESSION['values'] and $_SESSION['errors']) that we
will be using to avoid PHP sending notices about variables that are not initialized.

Notice the onload event of the body tag in index.php. It calls the setFocus() function defined in
validate.js, which sets the input cursor on the first form field.

Later in index.php, you will see the following sequence of code repeating itself, with only
small changes:

 <!-- Username -->
 <label for="txtUsername">Desired username:</label>
 <input id="txtUsername" name="txtUsername" type="text"
 onblur="validate(this.value, this.id)"
 value="<?php echo $_SESSION['values']['txtUsername'] ?>" />
 <span id="txtUsernameFailed"
 class="<?php echo $_SESSION['errors']['txtUsername'] ?>">
 This username is in use, or empty username field.

This is the code that displays a form field with its label and displays an error message underneath
it if a validation has been performed and has failed.

In this example, we display an error message right under the validated field, but you can
customize the position and appearance of these error messages in validate.css by
changing the properties of the error CSS class.

 139

AJAX Form Validation

 140

The onblur event of the input element, which is generated when the user leaves an input element,
triggers the validate() JavaScript function with two parameters: the field's value and the field's
ID. This function will handle AJAX validation, by making an asynchronous HTTP request to the
validate.php script. The server script needs to know which field we need to validate and what
the input value is.

The value attribute should be empty on first page load, but after submitting the form it will hold
the input value, in case the form is reloaded as a result of a validation error. We use session
variables to save user input on form submit, in case validation fails and the form is re-displayed.

The span element that follows contains an error message that gets displayed on failed validation.
This span is initially hidden using the hidden CSS class, but we change its CSS class into error,
if validation fails.

Inside validate.js, the validate function sends an AJAX request to the server, by calling
validate.php with two parameters, the field's value and the field's ID.

Remember that XMLHttpRequest cannot make two HTTP requests at the same time, so if the
object is busy processing a previous request, we save the details of the current request for later.
This is particularly useful when the connection to the network or the Internet is slow. The request
details are saved using a cache system with the properties of a FIFO structure. Luckily, the
JavaScript's Array class offers the exact functionality we need (through its push and shift
methods) and hence we use it for caching purposes:

var cache = new Array();

So validate() starts by adding the data to validate to the cache (if the function received any).
// the function handles the validation for any form field
function validate(inputValue, fieldID)
{
 // only continue if xmlHttp isn't void
 if (xmlHttp)
 {
 // if we received non-null parameters, we add them to cache
 // in the form of the query string to be sent to the server for validation
 if (fieldID)
 {
 // encode values for safely adding them to an HTTP request query string
 inputValue = encodeURIComponent(inputValue);
 fieldID = encodeURIComponent(fieldID);
 // add the values to the queue
 cache.push("inputValue=" + inputValue + "&fieldID=" + fieldID);
 }

This adds a new element at the end of our cache array. The cache entry is composed of two parts, the
value and the ID of the field to be validated, separated by '&'. Note that the new element is added
only if fieldID is not null. The value of fieldID is null when the function is called just to check if
the cache contains any pending validations to be made, without adding new entries to the cache.

Chapter 4

The field ID and value retrieved from the cache will be sent to the server for validation.
To make sure they arrive at the destination successfully and unaltered, they are escaped
using JavaScript's encodeURIComponent function. This enables safely transmitting any
characters to the server, including characters such as "&" which otherwise would cause
problems. For more details, please read an excellent article on JavaScript's escaping
functions at http://xkr.us/articles/javascript/encode-compare/.

If the XMLHttpRequest object is free to initiate new HTTP requests, we use shift() to get a new
value from the cache to validate (this function also removes the entry from the cache array, which
is perfect for our purposes). Note that this value may not be the one just added using push—in
FIFO scenarios, the oldest (pending) record is retrieved first.

 // try to connect to the server
 try
 {
 // continue only if the XMLHttpRequest object isn't busy
 // and the cache is not empty
 if ((xmlHttp.readyState == 4 || xmlHttp.readyState == 0)
 && cache.length>0)
 {
 //
 var cacheEntry = cache.shift();

If the XMLHttpRequest object's status is 0 or 4 it means that there are no active requests and we
can send a new request. When sending the new request, we use the data read from the cache,
which already contains the formatted query string:

 // make a server request to validate the extracted data
 xmlHttp.open("POST", serverAddress, true);
 xmlHttp.setRequestHeader("Content-Type",
 "application/x-www-form-urlencoded");
 xmlHttp.onreadystatechange = handleRequestStateChange;
 xmlHttp.send(cacheEntry);
 }

The function that handles the server's response is called handleRequestStateChange, and in turn
calls readResponse() once the response is fully received from the server. This method starts by
checking if what we received from the server is the report of a server-side error:

// read server's response
function readResponse()
{
 // retrieve the server's response
 var response = xmlHttp.responseText;
 // server error?
 if (response.indexOf("ERRNO") >= 0
 || response.indexOf("error:") >= 0
 || response.length == 0)
 throw(response.length == 0 ? "Server error." : response);

 141

AJAX Form Validation

 142

After this basic check is done, we read the server's response, which tells us if the value is valid
or not:

 // get response in XML format (assume the response is valid XML)
 responseXml = xmlHttp.responseXML;
 // get the document element
 xmlDoc = responseXml.documentElement;
 result = xmlDoc.getElementsByTagName("result")[0].firstChild.data;
 fieldID = xmlDoc.getElementsByTagName("fieldid")[0].firstChild.data;

Depending on the result, we change the CSS class of the error message associated with the tested
element to hidden (if the validation was successful), or to error (if the validation failed). You
change the element's CSS class using its className property:

 // find the HTML element that displays the error
 message = document.getElementById(fieldID + "Failed");
 // show the error or hide the error
 message.className = (result == "0") ? "error" : "hidden";
 // call validate() again, in case there are values left in the cache
 setTimeout("validate();", 500);
}

The PHP script that handles server-side processing is validate.php. It starts by loading the error
handling script (error_handler.php) and the Validate class that handles data validation
(validate.class.php). Then, it looks for a GET variable named T validationType. This only exists
when the form is submitted, as the form's action attribute is validate.php?validationType=php.

// read validation type (PHP or AJAX?)
$validationType = '';
if (isset($_GET['validationType']))
{
 $validationType = $_GET['validationType'];
}

Then, based on the value of $validationType, we perform either AJAX validation or PHP validation.
// AJAX validation or PHP validation?
if ($validationType == 'php')
{
 // PHP validation is performed by the ValidatePHP method, which returns
 // the page the visitor should be redirected to (which is allok.php if
 // all the data is valid, or back to index.php if not)
 header("Location:" . $validator->ValidatePHP());
}
else
{
 // AJAX validation is performed by the ValidateAJAX method. The results
 // are used to form an XML document that is sent back to the client
 $response =
 '<?xml version="1.0" encoding="UTF-8" standalone="yes"?>' .
 '<response>' .
 '<result>' .
 $validator->ValidateAJAX($_POST['inputValue'], $_POST['fieldID']) .
 '</result>' .
 '<fieldid>' .
 $_POST['fieldID'] .
 '</fieldid>' .
 '</response>';
 // generate the response
 if(ob_get_length()) ob_clean();
 header('Content-Type: text/xml');
 echo $response;
}
?>

Chapter 4

If we are dealing with classic server-side validation, we call the validatePHP() method, which
returns the name of the page the browser should be redirected to (which will be allok.php if the
validation was successful, or index.php if not). The validation results for each field are stored in
the session and if it gets reloaded, index.php will show the fields that didn't pass the test.

In the case of AJAX calls, the server composes a response that specifies if the field is valid. The
response is a short XML document that looks like this:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<response>
 <result>0</result>
 <fieldid>txtUsername</fieldid>
</response>

If the result is 0, then txtUsername isn't valid and should be marked accordingly. If the result is 1,
the field's value is valid.

Next, let's look into validate.class.php. The class constructor creates a connection to the database
and the destructor closes that connection. We then have two public methods: ValidateAJAX (handles
AJAX validation) and ValidatePHP (handles typical server-side validation).

AJAX validation requires two parameters, one that holds the value to be validated ($inputValue)
and one that holds the form field's ID ($fieldID). A switch block loads specific validation for
each form field. This function will return 0 if validation fails or 1 if validation is successful.

The PHP validation function takes no parameters, as it will always validate the entire form (after
form submit). First we initialize the $errorsExist flag to 0. Whenever validation fails for a field,
this flag will be set to 1 and we will know validation has failed. Then we need to make sure that
older session variables are unset in order to ensure that older errors are cleared.

We then check each form field against a set of custom-created rules. If validation fails, we raise
the flag ($errorsExist = 1) and set the session variable that sets the CSS class for error message
to error. If, in the end, the $errorsExist flag is still set to 0, it means that the whole validation
has been successful and we return the name of the success page, thus redirecting the browser to
that page.

If errors are found, we save current user input into session variables, which will be used by
index.php to fill the form (remember that by default, when loading the page, all fields are empty).
This is how we save current user input:

foreach ($_POST as $key => $value)
{
 $_SESSION['values'][$key] = $_POST[$key];
}

$_POST is an array holding the names and values of all form elements, and it can be walked
through with foreach. This means that for each element inside the $_POST array, we create a new
element inside the $_SESSION['values'] array.

There's nothing special to mention about validate.css. The success page (allok.php) is very
simple as well—it just displays a successful submission confirmation.

 143

AJAX Form Validation

 144

Summary
While we don't claim to have built the perfect validation technique, we provided a working proof
of concept; a working application that takes care of user input and ensures its validity.

You cannot do that only with JavaScript nor would you want to wait for the field to be validated
only on form submit.

The reason we used AJAX for pseudo client-side validation instead of simple JavaScript
validation is that in many scenarios form fields need to be checked against a database (like the
username field in this case). Also, in most cases it's more professional to have all the business
logic (including the validation) stored in a central place on the server.

AJAX can be so handy, don't you think?

5
AJAX Chat

We are living in a world where communication has become very important; there's a real need to
be able to communicate quickly and easily with others. Email, phone texting, postal letters, and
online chat offer media through which people can exchange ideas in the form of written words. An
important aspect when communicating is the responsiveness factor. While emails and letters don't
offer a live feedback from the other participants, phone and online chat offer a more dynamic way
to communicate. In this chapter, we will build an AJAX-enabled online chat solution.

Introducing AJAX Chat
Most of the communication that takes place through the computer is done via desktop
applications. These applications communicate with each other in a decentralized way using Peer
to Peer (P2P) systems. However, these may not be viable options if you are inside a company
whose security policy prevents users from opening connections on other ports than the HTTP port
80. If that is the case, you are facing a real problem.

There are numerous audio and video web chat solutions out there, most of them based on Java
applets. Applets are known for their common security problems across browsers and sometimes
they don't even use port 80 for communication. So, they are not a solution for getting in touch with
your friends outside the company either.

This is where AJAX comes into play and brings one answer for our problem. With a little effort
one can even integrate into a browser an Internet Relay Chat (IRC) client or you can develop
your own web chat solution such as the one you'll build later.

Are you getting tired of being told that you cannot install or use your favorite messenger when you
are at work, or when you are in an Internet Café? You might well have found yourself in such a
situation before. This is the right time to see how we can break out of this unfortunate situation by
using AJAX chat solution.

AJAX Chat Solutions
Probably the most impressive solution available today is www.meebo.com. We are pretty sure that
some of you have heard about it, and if you haven't, it is time to have a look at it. The first and the
most important feature is that it allows you to log in into your favorite instant messaging system
by using only a web interface. See Meebo's login screen in Figure 5.1.

http://www.meebo.com/

AJAX Chat

 146

Figure 5.1: Meebo

Meebo offers access to all these services from a single start web page with a user friendly
interface, with no pop-up windows, Java applets and so on. By using a solution based on AJAX
you can forget about all the problems mentioned in the beginning.

Meebo isn't the only web application that offers chat functionality. Even if AJAX is very young,
you can already find several other online chat applications and even solutions based on it:

• http://www.plasticshore.com/projects/chat/index.html
• http://treehouse.ofb.net/chat/?lang=en.
• http://www.chategory.org
• http://www.socket7.net/lace/
• http://drupal.org/node/27689.

It's time to get to work. In the rest of the chapter, we'll implement our own online chat application.

http://www.plasticshore.com/projects/chat/index.html
http://treehouse.ofb.net/chat/?lang=en
http://www.chategory.org/
http://www.socket7.net/lace/
http://drupal.org/node/27689

Chapter 5

Implementing AJAX Chat
We'll keep the application simple, modular, and extensible. For this we won't implement a login
module, chat rooms, the online users list, etc. By keeping it simple we try to focus on what the
goal of this chapter is—AJAX Chat. We will implement the basic chat functions: posting and
retrieving messages without causing any page reloads. We'll also let the user pick a color for her
or his messages, because this involves an AJAX mechanism that will be another good exercise.

Starting from the following application that will be presented in this chapter, we can easily extend
it by implementing any other modules that can be found in the solutions presented above and that
are not presented here. Take this part as homework for those of you who are interested in it.

In order to have these example working you need the GD library. The installation
instructions in Appendix A include support for the GD library.

The chat application can be tested online at http://ajaxphp.packtpub.com, and it looks like in
Figure 5.2.

Figure 5.2: AJAX Chat

A novelty in this chapter is that you will have two XMLHttpRequest objects. The first one will
handle updating the chat window and the second will handle the color picker (when you click on
the image, the coordinates are sent to the server, and the server replies with the color code).

 147

http://ajaxphp.packtpub.com/

AJAX Chat

The messages for the AJAX Chat are saved in a queue (a FIFO structure), such as you learned about
in Chapter 4, so that messages are not lost even if the server is slow, and they always get to the server
in the same order as you sent them. Unlike with other patterns you can find on Internet these days,
we also ensure we don't load the server with any more requests until the current one is finished.

Time for Action—Ajax Chat
1. Connect to the ajax database, and create a table named chat with the following code:

CREATE TABLE chat
(
 chat_id int(11) NOT NULL auto_increment,
 posted_on datetime NOT NULL,
 user_name varchar(255) NOT NULL,
 message text NOT NULL,
 color char(7) default '#000000',
 PRIMARY KEY (chat_id)
);

2. In your ajax folder, create a new folder named chat.

3. Copy the palette.png file from the code download to the chat folder.

4. We will create the application starting with the server functionality. In the chat
folder, create a file named config.php, and add the database configuration code to it
(change these values to match your configuration):
<?php
// defines database connection data
define('DB_HOST', 'localhost');
define('DB_USER', 'ajaxuser');
define('DB_PASSWORD', 'practical');
define('DB_DATABASE', 'ajax');
?>

5. Now add the standard error handling file, error_handler.php:
<?php
// set the user error handler method to be error_handler
set_error_handler('error_handler', E_ALL);
// error handler function
function error_handler($errNo, $errStr, $errFile, $errLine)
{
 // clear any output that has already been generated
 if(ob_get_length()) ob_clean();
 // output the error message
 $error_message = 'ERRNO: ' . $errNo . chr(10) .
 'TEXT: ' . $errStr . chr(10) .
 'LOCATION: ' . $errFile .
 ', line ' . $errLine;
 echo $error_message;
 // prevent processing any more PHP scripts
 exit;
}
?>

6. Create another file named chat.php and add this code to it:
<?php
// reference the file containing the Chat class
require_once("chat.class.php");
// retrieve the operation to be performed
$mode = $_POST['mode'];

 148

Chapter 5

// default the last id to 0
$id = 0;
// create a new Chat instance
$chat = new Chat();
// if the operation is SendAndRetrieve
if($mode == 'SendAndRetrieveNew')
{
 // retrieve the action parameters used to add a new message
 $name = $_POST['name'];
 $message = $_POST['message'];
 $color = $_POST['color'];
 $id = $_POST['id'];

 // check if we have valid values
 if ($name != '' && $message != '' && $color != '')
 {
 // post the message to the database
 $chat->postMessage($name, $message, $color);
 }
}
// if the operation is DeleteAndRetrieve
elseif($mode == 'DeleteAndRetrieveNew')
{
 // delete all existing messages
 $chat->deleteMessages();
}
// if the operation is Retrieve
elseif($mode == 'RetrieveNew')
{
 // get the id of the last message retrieved by the client
 $id = $_POST['id'];
}
// Clear the output
if(ob_get_length()) ob_clean();
// Headers are sent to prevent browsers from caching
header('Expires: Mon, 26 Jul 1997 05:00:00 GMT');
header('Last-Modified: ' . gmdate('D, d M Y H:i:s') . 'GMT');
header('Cache-Control: no-cache, must-revalidate');
header('Pragma: no-cache');
header('Content-Type: text/xml');
// retrieve new messages from the server
echo $chat->retrieveNewMessages($id);
?>

7. Create another file named chat.class.php, and add this code to it:
<?php
// load configuration file
require_once('config.php');
// load error handling module
require_once('error_handler.php');

// class that contains server-side chat functionality
class Chat
{
 // database handler
 private $mMysqli;

 // constructor opens database connection
 function __construct()
 {
 // connect to the database
 $this->mMysqli = new mysqli(DB_HOST, DB_USER, DB_PASSWORD,
 DB_DATABASE);
 }

 149

AJAX Chat

 150

 // destructor closes database connection
 public function __destruct()
 {
 $this->mMysqli->close();
 }

 // truncates the table containing the messages
 public function deleteMessages()
 {
 // build the SQL query that adds a new message to the server
 $query = 'TRUNCATE TABLE chat';
 // execute the SQL query
 $result = $this->mMysqli->query($query);
 }

 /*
 The postMessages method inserts a message into the database
 - $name represents the name of the user that posted the message
 - $messsage is the posted message
 - $color contains the color chosen by the user
 */
 public function postMessage($name, $message, $color)
 {
 // escape the variable data for safely adding them to the database
 $name = $this->mMysqli->real_escape_string($name);
 $message = $this->mMysqli->real_escape_string($message);
 $color = $this->mMysqli->real_escape_string($color);
 // build the SQL query that adds a new message to the server
 $query = 'INSERT INTO chat(posted_on, user_name, message, color) ' .
 'VALUES (NOW(), "' . $name . '" , "' . $message .
 '","' . $color . '")';
 // execute the SQL query
 $result = $this->mMysqli->query($query);
 }

 /*
 The retrieveNewMessages method retrieves the new messages that have
 been posted to the server.
 - the $id parameter is sent by the client and it
 represents the id of the last message received by the client. Messages
 more recent by $id will be fetched from the database and returned to
 the client in XML format.
 */
 public function retrieveNewMessages($id=0)
 {
 // escape the variable data
 $id = $this->mMysqli->real_escape_string($id);
 // compose the SQL query that retrieves new messages
 if($id>0)
 {
 // retrieve messages newer than $id
 $query =
 'SELECT chat_id, user_name, message, color, ' .
 ' DATE_FORMAT(posted_on, "%Y-%m-%d %H:%i:%s") ' .
 ' AS posted_on ' .
 ' FROM chat WHERE chat_id > ' . $id .
 ' ORDER BY chat_id ASC';
 }
 else
 {
 // on the first load only retrieve the last 50 messages from server
 $query =
 ' SELECT chat_id, user_name, message, color, posted_on FROM ' .
 ' (SELECT chat_id, user_name, message, color, ' .

Chapter 5

 ' DATE_FORMAT(posted_on, "%Y-%m-%d %H:%i:%s") AS posted_on ' .
 ' FROM chat ' .
 ' ORDER BY chat_id DESC ' .
 ' LIMIT 50) AS Last50' .
 ' ORDER BY chat_id ASC';
 }
 // execute the query
 $result = $this->mMysqli->query($query);

 // build the XML response
 $response = '<?xml version="1.0" encoding="UTF-8" standalone="yes"?>';
 $response .= '<response>';
 // output the clear flag
 $response .= $this->isDatabaseCleared($id);
 // check to see if we have any results
 if($result->num_rows)
 {
 // loop through all the fetched messages to build the result message
 while ($row = $result->fetch_array(MYSQLI_ASSOC))
 {
 $id = $row['chat_id'];
 $color = $row['color'];
 $userName = $row['user_name'];
 $time = $row['posted_on'];
 $message = $row['message'];
 $response .= '<id>' . $id . '</id>' .
 '<color>' . $color . '</color>' .
 '<time>' . $time . '</time>' .
 '<name>' . $userName . '</name>' .
 '<message>' . $message . '</message>';
 }
 // close the database connection as soon as possible
 $result->close();
 }

 // finish the XML response and return it
 $response = $response . '</response>';
 return $response;
 }

 /*
 The isDatabaseCleared method checks to see if the database has been
 cleared since last call to the server
 - the $id parameter contains the id of the last message received by
 the client
 */
 private function isDatabaseCleared($id)
 {
 if($id>0)
 {
 // by checking the number of rows with ids smaller than the client's
 // last id we check to see if a truncate operation was performed in
 // the meantime
 $check_clear = 'SELECT count(*) old FROM chat where chat_id<=' . $id;
 $result = $this->mMysqli->query($check_clear);
 $row = $result->fetch_array(MYSQLI_ASSOC);

 // if a truncate operation occured the whiteboard needs to be reset
 if($row['old']==0)
 return '<clear>true</clear>';
 }
 return '<clear>false</clear>';

 151

AJAX Chat

 152

 }
}
?>

8. Create another file named get_color.php and add this code to it:
<?php
// the name of the image file
$imgfile='palette.png';
// load the image file
$img=imagecreatefrompng($imgfile);
// obtain the coordinates of the point clicked by the user
$offsetx=$_GET['offsetx'];
$offsety=$_GET['offsety'];
// get the clicked color
$rgb = ImageColorAt($img, $offsetx, $offsety);
$r = ($rgb >> 16) & 0xFF;
$g = ($rgb >> 8) & 0xFF;
$b = $rgb & 0xFF;
// return the color code
printf('#%02s%02s%02s', dechex($r), dechex($g), dechex($b));
?>

9. Let's deal with the client now. Start by creating chat.css and adding this code to it:
body
{
 font-family: Tahoma, Helvetica, sans-serif;
 margin: 1px;
 font-size: 12px;
 text-align: left
}

#content
{
 border: DarkGreen 1px solid;
 margin-bottom: 10px
}

input
{
 border: #999 1px solid;
 font-size: 10px
}

#scroll
{
 position: relative;
 width: 340px;
 height: 270px;
 overflow: auto
}

.item
{
 margin-bottom: 6px
}

#colorpicker
{
 text-align:center
}

10. Create a new file named index.html, and add this code to it:

Chapter 5

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <title>AJAX Chat</title>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 <link href="chat.css" rel="stylesheet" type="text/css" />
 <script type="text/javascript" src="chat.js" ></script>
</head>
 <body onload="init();">
 <noscript>
 Your browser does not support JavaScript!!
 </noscript>
 <table id="content">
 <tr>
 <td>
 <div id="scroll">
 </div>
 </td>
 <td id="colorpicker">
 <img src="palette.png" id="palette" alt="Color
 Palette" border="1" onclick="getColor(event);"/>

 <input id="color" type="hidden" readonly="true" value="#000000" />

 (text will look like this)

 </td>
 </tr>
 </table>
 <div>
 <input type="text" id="userName" maxlength="10" size="10"
onblur="checkUsername();"/>
 <input type="text" id="messageBox" maxlength="2000" size="50"
 onkeydown="handleKey(event)"/>
 <input type="button" value="Send" onclick="sendMessage();" />
 <input type="button" value="Delete All" onclick="deleteMessages();" />
 </div>
 </body>
</html>

11. Create another file named chat.js and add this code to it:
/* chatURL - URL for updating chat messages */
var chatURL = "chat.php";
/* getColorURL - URL for retrieving the chosen RGB color */
var getColorURL = "get_color.php";
/* create XMLHttpRequest objects for updating the chat messages and
getting the selected color */
var xmlHttpGetMessages = createXmlHttpRequestObject();
var xmlHttpGetColor = createXmlHttpRequestObject();
/* variables that establish how often to access the server */
var updateInterval = 1000; // how many miliseconds to wait to get new
message
// when set to true, display detailed error messages
var debugMode = true;
/* initialize the messages cache */
var cache = new Array();
/* lastMessageID - the ID of the most recent chat message */
var lastMessageID = -1;
/* mouseX, mouseY - the event's mouse coordinates */
var mouseX,mouseY;

 153

AJAX Chat

 154

/* creates an XMLHttpRequest instance */
function createXmlHttpRequestObject()
{
 // will store the reference to the XMLHttpRequest object
 var xmlHttp;
 // this should work for all browsers except IE6 and older
 try
 {
 // try to create XMLHttpRequest object
 xmlHttp = new XMLHttpRequest();
 }
 catch(e)
 {
 // assume IE6 or older
 var XmlHttpVersions = new Array("MSXML2.XMLHTTP.6.0",
 "MSXML2.XMLHTTP.5.0",
 "MSXML2.XMLHTTP.4.0",
 "MSXML2.XMLHTTP.3.0",
 "MSXML2.XMLHTTP",
 "Microsoft.XMLHTTP");
 // try every prog id until one works
 for (var i=0; i<XmlHttpVersions.length && !xmlHttp; i++)
 {
 try
 {
 // try to create XMLHttpRequest object
 xmlHttp = new ActiveXObject(XmlHttpVersions[i]);
 }
 catch (e) {}
 }
 }
 // return the created object or display an error message
 if (!xmlHttp)
 alert("Error creating the XMLHttpRequest object.");
 else
 return xmlHttp;
}

/* this function initiates the chat; it executes when the chat page loads
*/
function init()
{
 // get a reference to the text box where the user writes new messages
 var oMessageBox = document.getElementById("messageBox");
 // prevents the autofill function from starting
 oMessageBox.setAttribute("autocomplete", "off");
 // references the "Text will look like this" message
 var oSampleText = document.getElementById("sampleText");
 // set the default color to black
 oSampleText.style.color = "black";
 // ensures our user has a default random name when the form loads
 checkUsername();
 // initiates updating the chat window
 requestNewMessages();
}

// function that ensures that the username is never empty and if so
// a random name is generated
function checkUsername()
{
 // ensures our user has a default random name when the form loads
 var oUser=document.getElementById("userName");
 if(oUser.value == "")
 oUser.value = "Guest" + Math.floor(Math.random() * 1000);
}

Chapter 5

/* function called when the Send button is pressed */
function sendMessage()
{
 // save the message to a local variable and clear the text box
 var oCurrentMessage = document.getElementById("messageBox");
 var currentUser = document.getElementById("userName").value;
 var currentColor = document.getElementById("color").value;
 // don't send void messages
 if (trim(oCurrentMessage.value) != "" &&
 trim(currentUser) != "" && trim (currentColor) != "")
 {
 // if we need to send and retrieve messages
 params = "mode=SendAndRetrieveNew" +
 "&id=" + encodeURIComponent(lastMessageID) +
 "&color=" + encodeURIComponent(currentColor) +
 "&name=" + encodeURIComponent(currentUser) +
 "&message=" + encodeURIComponent(oCurrentMessage.value);
 // add the message to the queue
 cache.push(params);
 // clear the text box
 oCurrentMessage.value = "";
 }
}

/* function called when the Delete Messages button is pressed */
function deleteMessages()
{
 // set the flag that specifies we're deleting the messages
 params = "mode=DeleteAndRetrieveNew";
 // add the message to the queue
 cache.push(params);
}

/* makes asynchronous request to retrieve new messages, post new messages,
delete messages */
function requestNewMessages()
{
 // retrieve the username and color from the page
 var currentUser = document.getElementById("userName").value;
 var currentColor = document.getElementById("color").value;
 // only continue if xmlHttpGetMessages isn't void
 if(xmlHttpGetMessages)
 {
 try
 {
 // don't start another server operation if such an operation
 // is already in progress
 if (xmlHttpGetMessages.readyState == 4 ||
 xmlHttpGetMessages.readyState == 0)
 {
 // we will store the parameters used to make the server request
 var params = "";
 // if there are requests stored in queue, take the oldest one
 if (cache.length>0)
 params = cache.shift();
 // if the cache is empty, just retrieve new messages
 else
 params = "mode=RetrieveNew" +
 "&id=" +lastMessageID;
 // call the server page to execute the server-side operation
 xmlHttpGetMessages.open("POST", chatURL, true);
 xmlHttpGetMessages.setRequestHeader("Content-Type",
 "application/x-www-form-urlencoded");
 xmlHttpGetMessages.onreadystatechange = handleReceivingMessages;

 155

AJAX Chat

 156

 xmlHttpGetMessages.send(params);
 }
 else
 {
 // we will check again for new messages
 setTimeout("requestNewMessages();", updateInterval);
 }
 }
 catch(e)
 {
 displayError(e.toString());
 }
 }
}

/* function that handles the http response when updating messages */
function handleReceivingMessages()
{
 // continue if the process is completed
 if (xmlHttpGetMessages.readyState == 4)
 {
 // continue only if HTTP status is "OK"
 if (xmlHttpGetMessages.status == 200)
 {
 try
 {
 // process the server's response
 readMessages();
 }
 catch(e)
 {
 // display the error message
 displayError(e.toString());
 }
 }
 else
 {
 // display the error message
 displayError(xmlHttpGetMessages.statusText);
 }
 }
}

/* function that processes the server's response when updating messages */
function readMessages()
{
 // retrieve the server's response
 var response = xmlHttpGetMessages.responseText;
 // server error?
 if (response.indexOf("ERRNO") >= 0
 || response.indexOf("error:") >= 0
 || response.length == 0)
 throw(response.length == 0 ? "Void server response." : response);
 // retrieve the document element
 response = xmlHttpGetMessages.responseXML.documentElement;
 // retrieve the flag that says if the chat window has been cleared or not
 clearChat =
 response.getElementsByTagName("clear").item(0).firstChild.data;
 // if the flag is set to true, we need to clear the chat window
 if(clearChat == "true")
 {
 // clear chat window and reset the id
 document.getElementById("scroll").innerHTML = "";
 lastMessageID = -1;

Chapter 5

 }
 // retrieve the arrays from the server's response
 idArray = response.getElementsByTagName("id");
 colorArray = response.getElementsByTagName("color");
 nameArray = response.getElementsByTagName("name");
 timeArray = response.getElementsByTagName("time");
 messageArray = response.getElementsByTagName("message");
 // add the new messages to the chat window
 displayMessages(idArray, colorArray, nameArray, timeArray,
 messageArray);
 // the ID of the last received message is stored locally
 if(idArray.length>0)
 lastMessageID = idArray.item(idArray.length - 1).firstChild.data;
 // restart sequence
 setTimeout("requestNewMessages();", updateInterval);
}

/* function that appends the new messages to the chat list */
function displayMessages(idArray, colorArray, nameArray,
 timeArray, messageArray)
{
 // each loop adds a new message
 for(var i=0; i<idArray.length; i++)
 {
 // get the message details
 var color = colorArray.item(i).firstChild.data.toString();
 var time = timeArray.item(i).firstChild.data.toString();
 var name = nameArray.item(i).firstChild.data.toString();
 var message = messageArray.item(i).firstChild.data.toString();
 // compose the HTML code that displays the message
 var htmlMessage = "";
 htmlMessage += "<div class=\"item\" style=\"color:" + color + "\">";
 htmlMessage += "[" + time + "] " + name + " said:
";
 htmlMessage += message.toString();
 htmlMessage += "</div>";
 // display the message
 displayMessage (htmlMessage);
 }
}

// displays a message
function displayMessage(message)
{
 // get the scroll object
 var oScroll = document.getElementById("scroll");
 // check if the scroll is down
 var scrollDown = (oScroll.scrollHeight - oScroll.scrollTop <=
 oScroll.offsetHeight);
 // display the message
 oScroll.innerHTML += message;
 // scroll down the scrollbar
 oScroll.scrollTop = scrollDown ? oScroll.scrollHeight :
oScroll.scrollTop;
}

// function that displays an error message
function displayError(message)
{
 // display error message, with more technical details if debugMode is true
 displayMessage("Error accessing the server! "+
 (debugMode ? "
" + message : ""));
}

/* handles keydown to detect when enter is pressed */

 157

AJAX Chat

 158

function handleKey(e)
{
 // get the event
 e = (!e) ? window.event : e;
 // get the code of the character that has been pressed
 code = (e.charCode) ? e.charCode :
 ((e.keyCode) ? e.keyCode :
 ((e.which) ? e.which : 0));
 // handle the keydown event
 if (e.type == "keydown")
 {
 // if enter (code 13) is pressed
 if(code == 13)
 {
 // send the current message
 sendMessage();
 }
 }
}

/* removes leading and trailing spaces from the string */
function trim(s)
{
 return s.replace(/(^\s+)|(\s+$)/g, "")
}

/* function that computes the mouse's coordinates in page */
function getMouseXY(e)
{
 // browser specific
 if(window.ActiveXObject)
 {
 mouseX = window.event.x + document.body.scrollLeft;
 mouseY = window.event.y + document.body.scrollTop;
 }
 else
 {
 mouseX = e.pageX;
 mouseY = e.pageY;
 }
}

/* makes a server call to get the RGB code of the chosen color */
function getColor(e)
{
 getMouseXY(e);
 // don't do anything if the XMLHttpRequest object is null
 if(xmlHttpGetColor)
 {
 // initialize the offset position with the mouse current position
 var offsetX = mouseX;
 var offsetY = mouseY;
 // get references
 var oPalette = document.getElementById("palette");
 var oTd = document.getElementById("colorpicker");
 // compute the offset position in our window
 if(window.ActiveXObject)
 {
 offsetX = window.event.offsetX;
 offsetY = window.event.offsetY;
 }
 else
 {
 offsetX -= oPalette.offsetLeft + oTd.offsetLeft;
 offsetY -= oPalette.offsetTop + oTd.offsetTop;

Chapter 5

 }
 // call server asynchronously to find out the clicked color
 try
 {
 if (xmlHttpGetColor.readyState == 4 ||
 xmlHttpGetColor.readyState == 0)
 {
 params = "?offsetx=" + offsetX + "&offsety=" + offsetY;
 xmlHttpGetColor.open("GET", getColorURL+params, true);
 xmlHttpGetColor.onreadystatechange = handleGettingColor;
 xmlHttpGetColor.send(null);
 }
 }
 catch(e)
 {
 // display error message
 displayError(xmlHttp.statusText);
 }
 }
}

/* function that handles the http response */
function handleGettingColor()
{
 // if the process is completed, decide to do with the returned data
 if (xmlHttpGetColor.readyState == 4)
 {
 // only if HTTP status is "OK"
 if (xmlHttpGetColor.status == 200)
 {
 try
 {
 //change the color
 changeColor();
 }
 catch(e)
 {
 // display error message
 displayError(xmlHttpGetColor.statusText);
 }
 }
 else
 {
 // display error message
 displayError(xmlHttpGetColor.statusText);
 }
 }
}

/* function that changes the color used for displaying messages */
function changeColor()
{
 response=xmlHttpGetColor.responseText;
 // server error?
 if (response.indexOf("ERRNO") >= 0
 || response.indexOf("error:") >= 0
 || response.length == 0)
 throw(response.length == 0 ? "Can't change color!" : response);
 // change color
 var oColor = document.getElementById("color");
 var oSampleText = document.getElementById("sampleText");
 oColor.value = response;
 oSampleText.style.color = response;
}

 159

AJAX Chat

 160

12. After having talked about it, it is time to see it in action. Let's see how the chat
window looks in the beginning. Load http://localhost/ajax/chat/index.html
with a web browser.

Figure 5.3: The Chat Window

You can observe the default color of your messages is black (RGB code: #000000). In Figure 5.3
we can also see a default random name Guest91. When initially loading the chat window, all
previously posted messages are displayed. You can change your messages' color by simply
clicking on the palette image on the desired color.

What just happened?
Technically, the application is split in two smaller applications that build our final solution:

• The chat application
• Choosing a color application

The chat application implements the basic functions of posting and retrieving messages. Each user
can choose a nickname and post a message. The chat window containing all the posted messages
is updated by retrieving the messages asynchronously from the server.

We use a palette containing the entire spectrum of colors to allow the user pick a color for the
text he or she writes. When clicking on the palette, the mouse coordinates are sent to the server,
which obtains the color code.

Chapter 5

If you analyze the code for a bit, the details will become clear. Let's have a look at it starting with
the index.html file. The only part that is really interesting in this script is a scroll region that can
be implemented in DHTML. A little piece of information regarding scrolling can be found at
http://www.dyn-web.com/dhtml/scroll/. Basically, the idea for having a part of the page with a
scrollbar next to it is to have two layers one inside another. In our example, the div scroll and its
inner layers do the trick.

The outer layer is scroll. It has a fixed width and height and the most useful property of it is
overflow. Generally, the content of a block box is confined to the content edges of the box. In
certain cases, a box may overflow, meaning its content lies partly or entirely outside of the box. In
CSS, this property specifies what happens when an element overflows its area. For more details,
please see overflow's specification, at http://www.w3.org/TR/REC-CSS2/visufx.html.

OK, now that we have defined our block box and what happens when its content exceeds its area,
we can easily guess that the inner content of the block box is the one that will eventually exceed
the dimensions of the box. The inner content contains the messages written in the chat.

Next, we move to the chat.js file containing the JavaScript part for our application.

The whole file can be divided in two parts: the one that handles choosing a color and the other that
handles chat messages.

We will start by choosing a color. This part, which, in the beginning, might seem pretty difficult
proves to be far easier to implement. Let's have a panoramic view of the entire process. First, we
have a palette image that contains the entire spectrum of visible colors. PHP has two functions that
will help us in finding the RGB code of the chosen color, imagecreatefrompng and
imagecolorat. When talking about the get_color.php page we will see more about these
functions. For now all we need to know is that these two functions allow us to obtain the RGB
code of a pixel given the x and y position in the image. The position of the pixel is retrieved in the
getMouseXY function.

The getColor function retrieves the RGB code of the color chosen by the user when clicking the
palette image. First of all it retrieves the mouse coordinates from the event. Then, it computes the
coordinates where the click event has been produced as relative values within the image. This is
done by subtracting from the positions obtained by the getMouseXY function the relative position
of the image inside the td element and the td position in the window. Having computed the
relative coordinates as the offsetx and offsety, the server page that will return the RGB code of
the chosen color is called. The change of state of the HTTP request object is handled by the
handleGettingColor function.

The handleGettingColor function checks to see when the request to the server is completed and
if no errors occurred, the changeColor function is called. This function populates the text field
with the RGB code returned by the server and colors the sample text with the given code.

OK, let's now see how the chat works.

By default when the page initializes and the onblur event occurs, the checkUsername function
is called. This function ensures that the name of the user isn't empty by generating an
arbitrary username.

 161

http://www.dyn-web.com/dhtml/scroll/
http://www.w3.org/TR/REC-CSS2/visufx.html

AJAX Chat

 162

On pressing the Send button, the sendMessage function is called. This function adds the current
message to the message queue to be sent to the server. Before adding it into the queue the function
trims the message by calling the trim function, and we encode the message using
encodeURIComponent to make sure it gets through successfully.

The handleKey function is called whenever a keydown event occurs. When the Enter key is
pressed the sendMessage function is called so that both pressing the Send button and pressing
Enter within the messageBox control have the same effect.

The deleteMessages function adds the delete message to the messages to be sent to the server.

The requestNewMessages function is responsible for sending chat messages. It retrieves a
message from the queue and sends it to the server. The change of state of the HTTP request object
is handled by the handleReceivingMessages function.

The handleReceivingMessages checks to see when the request to the server is completed and if
no errors occurred then the readMessages function is called.

The readMessages function checks to see if someone else erased all the chat messages and if so
the client's chat window is also emptied. In order to append new messages to the chat, we call the
displayMessages function. This function takes as parameters the arrays that correspond to the
new messages. It composes the new messages as HTML and it appends them to those already in
the chat by calling the displayMessage function. In the beginning, the displayMessage function
checks to see if the scroll bar is at the bottom of the list of messages. This is necessary in order to
reposition it at the end of the function so that the focus is now on the last new messages.

The last function presented is the init function. Its role is to retrieve the chat messages, to ensure that
the username is not null, to set the text's color to black, and to turn off the auto complete functionality.

For the error handling part, we use the displayError function, which calls the displayMessage
function in turn with the error message as parameter.

Let's move on to the server side of the application by first presenting the chat.php file. The server
deals with clients' requests like this:

• Retrieves the client's parameters
• Identifies the operations that need to be performed
• Performs the necessary operations
• Sends the results back to the client

The request includes the mode parameter that specifies one of the following operations to be
performed by the server:

• SendAndRetrieve: First the new messages are inserted in the database and then all
new messages are retrieved and sent back to the client.

• DeleteAndRetrieve: All messages are erased and the new messages that might exist
are fetched and sent back to the client.

• Retrieve: The new messages are fetched and sent back to the client.

Chapter 5

The business logic behind chat.php lies in the chat.class.php script, which contains the
Chat class.

The deleteMessages method truncates the data table erasing all the information.

The postMessages method inserts all the new messages into the database.

The isDatabaseCleared method checks to see if all messages have been erased. Basically, by
providing the ID of the last message retrieved from the server and by checking if it still exists, we
can detect if all messages have been erased.

The retrieveNewMessages method gets all new messages since the last message (identified by its
id) retrieved from the server during the last request (if a last request exists; or all messages in
other cases) and also checks to see if the database has been emptied by calling the
isDatabaseCleared method. This function composes the response for the client and sends it.

The config.php file contains the database configuration parameters and the error_handler.php
file contains the module for handling errors.

Now, let's see how the color-choosing functionality is implemented on the server side in the
get_color.php file.

We mentioned above two PHP functions that we used to retrieve the RGB code of a pixel in an
image. Let's see how they work:

• imagecreatefrompng(string filename) returns an image identifier representing
the image in PNG format obtained from the given filename.

• int imagecolorat(resource image, int x, int y) returns the index of the color
of the pixel at the specified location in the image specified by image. Returns the
index of the color of the pixel at the specified location in the image specified by
image. If PHP is compiled against GD library 2.0 or higher and the image is a
true-color image, this function returns the RGB value of that pixel as an integer.

The first 8 bits of the result contains the blue code, the next 8 bits the green code and the next
8 bits the red code. Using bit shifting and masking we obtain the distinct red, green, and blue
components as integer values. All that's left for us to do is to convert them to their
hexadecimal value, to concatenate these values, and to send them to the client.
Let's wrap things up! We started with the interface that is presented to the user, the client side of
the application composed by the HTML, CSS, and JavaScript files implemented in the
index.html, chat.css, and chat.js files. After having seen how the interface looks and how the
data retrieved from the web server is processed in order to be presented to the user, we went one
step further and took a look at the server side of the application.

We saw the files that are called by the client side, chat.php and get_color.php. The last step
consisted in presenting the parameters to connect to the database (config.php), the error handling
module (error_handler.php), and the script containing the core of the functionality
(chat.class.php).

 163

AJAX Chat

 164

Summary
At the beginning of the chapter we saw why one can face problems when communicating with
other people in a dynamic way over the Internet. We saw what the solutions for these problems are
and how AJAX chat solutions can bring something new, useful, and ergonomic. After seeing some
other AJAX chat implementations, we started building our own solution. Step by step we have
implemented our AJAX chat solution keeping it simple, easily extensible, and modular.

After reading this chapter, you can try improving the solution, by adding new features like:

• Chat rooms
• Simple command lines (joining/leaving a chat room, switching between chat room)
• Private messaging

6
AJAX Suggest and

Autocomplete

Suggest and Autocomplete are popular features implemented in most modern browsers, email
clients, source-code editors, word processors, and operating systems. Suggest and Autocomplete
are the two sides of the same coin—they go hand in hand. Usually, there is no distinction made
between the two of them, but "autocomplete" is used more frequently.

Autocomplete refers to the application's ability to predict the word or phrase the user wants to
type. This feature is very useful because it speeds up the interaction making the user interface
friendlier, it helps in using the right vocabulary, and it helps avoiding typing errors.

In browsers, you can see autocomplete in action when you type a new address in the address bar or
when you fill in some form, and the autocomplete engine of that particular browser is triggered. In
email programs, it is very useful be able to choose the recipient by typing only a few letters.

In source-code text editors, I'm sure you appreciate the code completion feature. Long variable
names make the code easier to understand, but harder to type, unless your editor supports code
completion. In some editors, after typing an object's name followed by a period, you get a
scrolling list of the object's public members. It is like having the documentation at your fingertips.
Microsoft has implemented it in the Visual Studio Integrated Development Environment, and
has patented it under the name of IntelliSense. The GNU Emacs editor was supporting the
autocomplete feature long before Microsoft introduced it.

In operating systems' shells such as Unix's bash, sh, or the Windows command prompt,
autocomplete for command names, filenames, and paths is usually done by pressing the Tab key
after typing the first few letters of the word. I'm sure you find this feature very useful when you
have a very long path to type!

Introducing AJAX Suggest and Autocomplete
Autocomplete is yet another good example of a feature that was traditionally used only in desktop
applications. Popular implementations of this feature in web applications are very recent. (Note
that the typical form autocompletion in web browsers, or the remember-password feature, is
implemented locally by the web browsers, it's not a feature of the site.)

AJAX Suggest and Autocomplete

 166

It's all about enriching web applications' user interfaces with features that have already been
integrated into desktop applications. See a nice autocomplete example that implements this feature
at http://demo.script.aculo.us/ajax/autocompleter.

The most popular example of this feature is Google Suggest.

Google Suggest
Why Google Suggest? Because it is the most popular web implementation of suggest and
autocomplete using AJAX. Believe it or not, Google was not the first to implement this
technology. Christian Stocker used it in his Bitflux Blog http://blog.bitflux.ch/archive/
2004/07/13/livesearch_roundup.html in April 2004, seven months prior to Google's release.
One article that describes exactly how autocomplete textboxes can be implemented in a web page
using JavaScript goes as back as September 2003, http://www.sitepoint.com/article/life-
autocomplete-textboxes. XMLHttpRequest is known to have been in use for a couple of years
now. Therefore, Google didn't invent anything; it just put together a perfect example.

The web address where Google Suggest can be accessed is http://www.google.com/
webhp?complete=1&hl=en

Figure 6.1: Google Suggest in Beta

http://demo.script.aculo.us/ajax/autocompleter
http://blog.bitflux.ch/archive/livesearch_roundup.html
http://blog.bitflux.ch/archive/2004/07/13/livesearch_roundup.html
http://blog.bitflux.ch/archive/2004/07/13/livesearch_roundup.html
http://www.sitepoint.com/article/life-autocomplete-textboxes
http://www.sitepoint.com/article/life-autocomplete-textboxes

Chapter 6

The clever part of the JavaScript script in an application like Google Suggest is that it caches a
table of previous suggestions received for a certain keyword. Therefore, if you type a keyword and
then erase back a few characters, the old suggestions received from the request will have been
cached and hence there will be no need to fetch them again.

The same technique has also been implemented in Gmail (www.gmail.com) and Google Maps
(http://maps.google.com). .

Implementing AJAX Suggest and Autocomplete
In this chapter we'll develop a suggest and autocomplete feature that helps the user to find PHP
functions and their official help page from http://www.php.net. The PHP functions database
required for this chapter includes all the PHP functions from http://www.php.net/quickref.php.

We will implement the following features in our application:

• The matching functions are retrieved as you type and displayed in a scrollable drop-
down list.

• The current keyword is autocompleted with the missing letters from the first
suggestion returned as result. The added letters are highlighted.

• The initial letters matching the search keyword are bolded in the drop-down list.
• The drop-down list is scrollable, but the scroll bar appears only if the list of results

exceeds a predefined number of suggestions.

Figure 6.2: Many Interesting Functions

 167

http://maps.google.com/
http://insider.msg.yahoo.com/?t=1129748520&intl=us&os=win&ver=7,0,0,437
http://www.php.net/quickref.php

AJAX Suggest and Autocomplete

Time for Action—AJAX Suggest and Autocomplete
1. As always, we start by creating the necessary database structures. Create a new table

named suggest in the ajax database that contains a single field (name), which is also
the primary key:
CREATE TABLE suggest
(
 name VARCHAR(100) NOT NULL DEFAULT '',
 PRIMARY KEY (name)
);

2. The suggest table will be populated with the complete list of PHP functions that we
took from http://www.php.net/quickref.php; because the table contains over
4,000 records, we are listing only the first ten here. Please use the script from the
code download for the complete list:
INSERT INTO suggest (name) VALUES
 ('abs'),
 ('acos'),
 ('acosh'),
 ('addcslashes'),
 ('addslashes'),
 ('aggregate'),
 ('aggregate_info'),
 ('aggregate_methods'),
 ('aggregate_methods_by_list'),
 ('aggregate_methods_by_regexp');

3. Create a new folder named suggest, under the ajax folder.
4. We will start by creating the code for the server side. In the suggest folder, create a

file named config.php, and add the database configuration code to it (change these
values to match your configuration):
<?php
// defines database connection data
define('DB_HOST', 'localhost');
define('DB_USER', 'ajaxuser');
define('DB_PASSWORD', 'practical');
define('DB_DATABASE', 'ajax');
?>

5. Then add the standard error-handling file error_handler.php:
<?php
// set the user error handler method to be error_handler
set_error_handler('error_handler', E_ALL);
// error handler function
function error_handler($errNo, $errStr, $errFile, $errLine)
{
 // clear any output that has already been generated
 if(ob_get_length()) ob_clean();
 // output the error message
 $error_message = 'ERRNO: ' . $errNo . chr(10) .
 'TEXT: ' . $errStr . chr(10) .
 'LOCATION: ' . $errFile .
 ', line ' . $errLine;
 echo $error_message;
 // prevent processing any more PHP scripts
 exit;
}
?>

 168

http://www.php.net/quickref.php

Chapter 6

6. Create another file named suggest.php, and add this code to it:
<?php
// reference the file containing the Suggest class
require_once('suggest.class.php');
// create a new Suggest instance
$suggest = new Suggest();
// retrieve the keyword passed as parameter
$keyword = $_GET['keyword'];
// clear the output
if(ob_get_length()) ob_clean();
// headers are sent to prevent browsers from caching
header('Expires: Mon, 26 Jul 1997 05:00:00 GMT');
header('Last-Modified: ' . gmdate('D, d M Y H:i:s') . 'GMT');
header('Cache-Control: no-cache, must-revalidate');
header('Pragma: no-cache');
header('Content-Type: text/xml');
// send the results to the client
echo $suggest->getSuggestions($keyword);
?>

7. Create another file named suggest.class.php, and add this code to it:
<?php
// load error handling module
require_once('error_handler.php');
// load configuration file
require_once('config.php');

// class supports server-side suggest & autocomplete functionality
class Suggest
{
 // database handler
 private $mMysqli;

 // constructor opens database connection
 function __construct()
 {
 // connect to the database
 $this->mMysqli = new mysqli(DB_HOST, DB_USER, DB_PASSWORD,
 DB_DATABASE);
 }

 // destructor, closes database connection
 function __destruct()
 {
 $this->mMysqli->close();
 }

 // returns all PHP functions that start with $keyword
 public function getSuggestions($keyword)
 {
 // escape the keyword string
 $patterns = array('/\s+/', '/"+/', '/%+/');
 $replace = array('');
 $keyword = preg_replace($patterns, $replace, $keyword);
 // build the SQL query that gets the matching functions from the database
 if($keyword != '')
 $query = 'SELECT name ' .
 'FROM suggest ' .
 'WHERE name LIKE "' . $keyword . '%"';
 // if the keyword is empty build a SQL query that will return no results
 else
 $query = 'SELECT name ' .

 169

AJAX Suggest and Autocomplete

 170

 'FROM suggest ' .
 'WHERE name=""';
 // execute the SQL query
 $result = $this->mMysqli->query($query);
 // build the XML response
 $output = '<?xml version="1.0" encoding="UTF-8" standalone="yes"?>';
 $output .= '<response>';
 // if we have results, loop through them and add them to the output
 if($result->num_rows)
 while ($row = $result->fetch_array(MYSQLI_ASSOC))
 $output .= '<name>' . $row['name'] . '</name>';
 // close the result stream
 $result->close();
 // add the final closing tag
 $output .= '</response>';
 // return the results
 return $output;
 }
//end class Suggest
}
?>

8. Create a new file named index.html, and add this code to it:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>AJAX Suggest and Autocomplete</title>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 <link href="suggest.css" rel="stylesheet" type="text/css" />
 <script type="text/javascript" src="suggest.js"></script>
 </head>
 <body>
 <noscript>
 Your browser does not support JavaScript!!
 </noscript>
 <div id="content" onclick="hideSuggestions();">
 <div id="message">Enter the first letters of your function:</div>
 <input type="text" name="keyword" id="keyword" maxlength="70"
 size="69" onkeyup = "handleKeyUp(event)" value="" />
 <div id="scroll">
 <div id="suggest">
 </div>
 </div>
 </div>
 </body>
</html>

9. Create another file named suggest.css, and add this code to it:
 body
{
 font-family: helvetica, sans-serif;
 margin: 0px;
 padding: 0px;
 font-size: 12px
}

#content
{
 height: 100%;
 width: 100%;
 text-align:center
}

#message

Chapter 6

{
 font-weight: bold;
 text-align: center;
 margin-left: 10px;
 margin-bottom: 10px;
 margin-top: 10px
}

a
{
 text-decoration: none;
 margin: 0px;
 color: #173f5f
}

input
{
 border: #999 1px solid;
 font-family: helvetica, sans-serif;
 font-weight: normal;
 font-size: 10px
}

#scroll
{
 position: relative;
 margin: 0 auto;
 visibility: hidden;
 background-color: white;
 z-index: 1;
 width: 300px;
 height: 180px;
 border-top-style: solid;
 border-right-style: solid;
 border-left-style: solid;
 border-collapse: collapse;
 border-bottom-style: solid;
 border-color: #000000;
 border-width: 1px;
 overflow: auto
}

#scroll div
{
 margin: 0 auto;
 text-align:left
}

#suggest table
{
 width: 270px;
 font-size: 11px;
 font-weight: normal;
 color: #676767;
 text-decoration: none;
 border: 0px;
 padding: 0px;
 text-align:left;
 margin: 0px
}

.highlightrow
{
 background-color: #999999;
 cursor: pointer
}

 171

AJAX Suggest and Autocomplete

 172

10. Create another file named suggest.js, and add this code to it:
/* URL to the PHP page called for receiving suggestions for a keyword*/
var getFunctionsUrl = "suggest.php?keyword=";
/* URL for seeing the results for the selected suggestion */
var phpHelpUrl="http://www.php.net/manual/en/function.";
/* the keyword for which an HTTP request has been initiated */
var httpRequestKeyword = "";
/* the last keyword for which suggests have been requested */
var userKeyword = "";
/* number of suggestions received as results for the keyword */
var suggestions = 0;
/* the maximum number of characters to be displayed for a suggestion */
var suggestionMaxLength = 30;
/* flag that indicates if the up or down arrow keys were pressed
 the last time a keyup event occurred */
var isKeyUpDownPressed = false;
/* the last suggestion that has been used for autocompleting the keyword
*/
var autocompletedKeyword = "";
/* flag that indicates if there are results for the current requested
keyword*/
var hasResults = false;
/* the identifier used to cancel the evaluation with the clearTimeout
method. */
var timeoutId = -1;
/* the currently selected suggestion (by arrow keys or mouse)*/
var position = -1;
/* cache object containing the retrieved suggestions for different
keywords */
var oCache = new Object();
/* the minimum and maximum position of the visible suggestions */
var minVisiblePosition = 0;
var maxVisiblePosition = 9;
// when set to true, display detailed error messages
var debugMode = true;
/* the XMLHttp object for communicating with the server */
var xmlHttpGetSuggestions = createXmlHttpRequestObject();
/* the onload event is handled by our init function */
window.onload = init;

// creates an XMLHttpRequest instance
function createXmlHttpRequestObject()
{
 // will store the reference to the XMLHttpRequest object
 var xmlHttp;
 // this should work for all browsers except IE6 and older
 try
 {
 // try to create XMLHttpRequest object
 xmlHttp = new XMLHttpRequest();
 }
 catch(e)
 {
 // assume IE6 or older
 var XmlHttpVersions = new Array("MSXML2.XMLHTTP.6.0",
 "MSXML2.XMLHTTP.5.0",
 "MSXML2.XMLHTTP.4.0",
 "MSXML2.XMLHTTP.3.0",
 "MSXML2.XMLHTTP",
 "Microsoft.XMLHTTP");
 // try every prog id until one works
 for (var i=0; i<XmlHttpVersions.length && !xmlHttp; i++)
 {
 try

Chapter 6

 {
 // try to create XMLHttpRequest object
 xmlHttp = new ActiveXObject(XmlHttpVersions[i]);
 }
 catch (e) {}
 }
 }
 // return the created object or display an error message
 if (!xmlHttp)
 alert("Error creating the XMLHttpRequest object.");
 else
 return xmlHttp;
}

/* function that initializes the page */
function init()
{
 // retrieve the input control for the keyword
 var oKeyword = document.getElementById("keyword");
 // prevent browser from starting the autofill function
 oKeyword.setAttribute("autocomplete", "off");
 // reset the content of the keyword and set the focus on it
 oKeyword.value = "";
 oKeyword.focus();
 // set the timeout for checking updates in the keyword's value
 setTimeout("checkForChanges()", 500);
}

/* function that adds to a keyword an array of values */
function addToCache(keyword, values)
{
 // create a new array entry in the cache
 oCache[keyword] = new Array();
 // add all the values to the keyword's entry in the cache
 for(i=0; i<values.length; i++)
 oCache[keyword][i] = values[i];
}

/*
 function that checks to see if the keyword specified as parameter is in
 the cache or tries to find the longest matching prefixes in the cache
 and adds them in the cache for the current keyword parameter
*/
function checkCache(keyword)
{
 // check to see if the keyword is already in the cache
 if(oCache[keyword])
 return true;
 // try to find the biggest prefixes
 for(i=keyword.length-2; i>=0; i--)
 {
 // compute the current prefix keyword
 var currentKeyword = keyword.substring(0, i+1);
 // check to see if we have the current prefix keyword in the cache
 if(oCache[currentKeyword])
 {
 // the current keyword's results already in the cache
 var cacheResults = oCache[currentKeyword];
 // the results matching the keyword in the current cache results
 var keywordResults = new Array();
 var keywordResultsSize = 0;
 // try to find all matching results starting with the current prefix
 for(j=0;j<cacheResults.length;j++)
 {

 173

AJAX Suggest and Autocomplete

 174

 if(cacheResults[j].indexOf(keyword) == 0)
 keywordResults[keywordResultsSize++] = cacheResults[j];
 }
 // add all the keyword's prefix results to the cache
 addToCache(keyword, keywordResults);
 return true;
 }
 }
 // no match found
 return false;
}

/* initiate HTTP request to retrieve suggestions for the current keyword
*/
function getSuggestions(keyword)
{
 /* continue if keyword isn't null and the last pressed key wasn't up or
 down */
 if(keyword != "" && !isKeyUpDownPressed)
 {
 // check to see if the keyword is in the cache
 isInCache = checkCache(keyword);
 // if keyword is in cache...
 if(isInCache == true)
 {
 // retrieve the results from the cache
 httpRequestKeyword=keyword;
 userKeyword=keyword;
 // display the results in the cache
 displayResults(keyword, oCache[keyword]);
 }
 // if the keyword isn't in cache, make an HTTP request
 else
 {
 if(xmlHttpGetSuggestions)
 {
 try
 {
 /* if the XMLHttpRequest object isn't busy with a previous
 request... */
 if (xmlHttpGetSuggestions.readyState == 4 ||
 xmlHttpGetSuggestions.readyState == 0)
 {
 httpRequestKeyword = keyword;
 userKeyword = keyword;
 xmlHttpGetSuggestions.open("GET",
 getFunctionsUrl + encode(keyword), true);
 xmlHttpGetSuggestions.onreadystatechange =
 handleGettingSuggestions;
 xmlHttpGetSuggestions.send(null);
 }
 // if the XMLHttpRequest object is busy...
 else
 {
 // retain the keyword the user wanted
 userKeyword = keyword;
 // clear any previous timeouts already set
 if(timeoutId != -1)
 clearTimeout(timeoutId);
 // try again in 0.5 seconds
 timeoutId = setTimeout("getSuggestions(userKeyword);", 500);
 }
 }
 catch(e)

Chapter 6

 {
 displayError("Can't connect to server:\n" + e.toString());
 }
 }
 }
 }
}

/* transforms all the children of an xml node into an array */
function xmlToArray(resultsXml)
{
 // initiate the resultsArray
 var resultsArray= new Array();
 // loop through all the xml nodes retrieving the content
 for(i=0;i<resultsXml.length;i++)
 resultsArray[i]=resultsXml.item(i).firstChild.data;
 // return the node's content as an array
 return resultsArray;
}

/* handles the server's response containing the suggestions
 for the requested keyword */
function handleGettingSuggestions()
{
 //if the process is completed, decide what to do with the returned data
 if (xmlHttpGetSuggestions.readyState == 4)
 {
 // only if HTTP status is "OK"
 if (xmlHttpGetSuggestions.status == 200)
 {
 try
 {
 // process the server's response
 updateSuggestions();
 }
 catch(e)
 {
 // display the error message
 displayError(e.toString());
 }
 }
 else
 {
 displayError("There was a problem retrieving the data:\n" +
 xmlHttpGetSuggestions.statusText);
 }
 }
}

/* function that processes the server's response */
function updateSuggestions()
{
 // retrieve the server's response
 var response = xmlHttpGetSuggestions.responseText;
 // server error?
 if (response.indexOf("ERRNO") >= 0
 || response.indexOf("error:") >= 0
 || response.length == 0)
 throw(response.length == 0 ? "Void server response." : response);
 // retrieve the document element
 response = xmlHttpGetSuggestions.responseXML.documentElement;
 // initialize the new array of functions' names
 nameArray = new Array();
 // check to see if we have any results for the searched keyword

 175

AJAX Suggest and Autocomplete

 176

 if(response.childNodes.length)
 {
 /* we retrieve the new functions' names from the document element as
 an array */
 nameArray= xmlToArray(response.getElementsByTagName("name"));
 }
 // check to see if other keywords are already being searched for
 if(httpRequestKeyword == userKeyword)
 {
 // display the results array
 displayResults(httpRequestKeyword, nameArray);
 }
 else
 {
 // add the results to the cache
 // we don't need to display the results since they are no longer useful
 addToCache(httpRequestKeyword, nameArray);
 }
}

/* populates the list with the current suggestions */
function displayResults(keyword, results_array)
{
 // start building the HTML table containing the results
 var div = "<table>";
 // if the searched for keyword is not in the cache then add it to the cache
 if(!oCache[keyword] && keyword)
 addToCache(keyword, results_array);
 // if the array of results is empty display a message
 if(results_array.length == 0)
 {
 div += "<tr><td>No results found for " + keyword +
 "</td></tr>";
 // set the flag indicating that no results have been found
 // and reset the counter for results
 hasResults = false;
 suggestions = 0;
 }
 // display the results
 else
 {
 // resets the index of the currently selected suggestion
 position = -1;
 // resets the flag indicating whether the up or down key has been pressed
 isKeyUpDownPressed = false;
 /* sets the flag indicating that there are results for the searched
 for keyword */
 hasResults = true;
 // get the number of results from the cache
 suggestions = oCache[keyword].length;
 // loop through all the results and generate the HTML list of results
 for (var i=0; i<oCache[keyword].length; i++)
 {
 // retrieve the current function
 crtFunction = oCache[keyword][i];
 // set the string link for the for the current function
 // to the name of the function
 crtFunctionLink = crtFunction;
 // replace the _ with - in the string link
 while(crtFunctionLink.indexOf("_") !=-1)
 crtFunctionLink = crtFunctionLink.replace("_","-");
 // start building the HTML row that contains the link to the
 // PHP help page of the current function

Chapter 6

 div += "<tr id='tr" + i +
 "' onclick='location.href=document.getElementById(\"a" + i +
 "\").href;' onmouseover='handleOnMouseOver(this);' " +
 "onmouseout='handleOnMouseOut(this);'>" +
 "<td align='left'><a id='a" + i +
 "' href='" + phpHelpUrl + crtFunctionLink + ".php";
 // check to see if the current function name length exceeds the maximum
 // number of characters that can be displayed for a function name
 if(crtFunction.length <= suggestionMaxLength)
 {
 // bold the matching prefix of the function name and of the keyword
 div += "'>" +
 crtFunction.substring(0, httpRequestKeyword.length) +
 ""
 div += crtFunction.substring(httpRequestKeyword.length,
 crtFunction.length) +
 "</td></tr>";
 }
 else
 {
 // check to see if the length of the current keyword exceeds
 // the maximum number of characters that can be displayed
 if(httpRequestKeyword.length < suggestionMaxLength)
 {
 /* bold the matching prefix of the function name and that of the
 keyword */
 div += "'>" +
 crtFunction.substring(0, httpRequestKeyword.length) +
 ""
 div += crtFunction.substring(httpRequestKeyword.length,
 suggestionMaxLength) +
 "</td></tr>";
 }
 else
 {
 // bold the entire function name
 div += "'>" +
 crtFunction.substring(0,suggestionMaxLength) +
 "</td></tr>"
 }
 }
 }
 }
 // end building the HTML table
 div += "</table>";
 // retrieve the suggest and scroll object
 var oSuggest = document.getElementById("suggest");
 var oScroll = document.getElementById("scroll");
 // scroll to the top of the list
 oScroll.scrollTop = 0;
 // update the suggestions list and make it visible
 oSuggest.innerHTML = div;
 oScroll.style.visibility = "visible";
 // if we had results we apply the type ahead for the current keyword
 if(results_array.length > 0)
 autocompleteKeyword();
}

/* function that periodically checks to see if the typed keyword has
changed */
function checkForChanges()
{
 // retrieve the keyword object

 177

AJAX Suggest and Autocomplete

 178

 var keyword = document.getElementById("keyword").value;
 // check to see if the keyword is empty
 if(keyword == "")
 {
 // hide the suggestions
 hideSuggestions();
 // reset the keywords
 userKeyword="";
 httpRequestKeyword="";
 }
 // set the timer for a new check
 setTimeout("checkForChanges()", 500);
 // check to see if there are any changes
 if((userKeyword != keyword) &&
 (autocompletedKeyword != keyword) &&
 (!isKeyUpDownPressed))
 // update the suggestions
 getSuggestions(keyword);
}

/* function that handles the keys that are pressed */
function handleKeyUp(e)
{
 // get the event
 e = (!e) ? window.event : e;
 // get the event's target
 target = (!e.target) ? e.srcElement : e.target;
 if (target.nodeType == 3)
 target = target.parentNode;
 // get the character code of the pressed button
 code = (e.charCode) ? e.charCode :
 ((e.keyCode) ? e.keyCode :
 ((e.which) ? e.which : 0));
 // check to see if the event was keyup
 if (e.type == "keyup")
 {
 isKeyUpDownPressed =false;
 // check to see we if are interested in the current character
 if ((code < 13 && code != 8) ||
 (code >=14 && code < 32) ||
 (code >= 33 && code <= 46 && code != 38 && code != 40) ||
 (code >= 112 && code <= 123))
 {
 // simply ignore non-interesting characters
 }
 else
 /* if Enter is pressed we jump to the PHP help page of the current
 function */
 if(code == 13)
 {
 // check to see if any function is currently selected
 if(position>=0)
 {
 location.href = document.getElementById("a" + position).href;
 }
 }
 else
 // if the down arrow is pressed we go to the next suggestion
 if(code == 40)
 {
 newTR=document.getElementById("tr"+(++position));
 oldTR=document.getElementById("tr"+(--position));
 // deselect the old selected suggestion
 if(position>=0 && position<suggestions-1)
 oldTR.className = "";

Chapter 6

 // select the new suggestion and update the keyword
 if(position < suggestions - 1)
 {
 newTR.className = "highlightrow";
 updateKeywordValue(newTR);
 position++;
 }
 e.cancelBubble = true;
 e.returnValue = false;
 isKeyUpDownPressed = true;
 // scroll down if the current window is no longer valid
 if(position > maxVisiblePosition)
 {
 oScroll = document.getElementById("scroll");
 oScroll.scrollTop += 18;
 maxVisiblePosition += 1;
 minVisiblePosition += 1;
 }
 }
 else
 // if the up arrow is pressed we go to the previous suggestion
 if(code == 38)
 {
 newTR=document.getElementById("tr"+(--position));
 oldTR=document.getElementById("tr"+(++position));
 // deselect the old selected position
 if(position>=0 && position <= suggestions - 1)
 {
 oldTR.className = "";
 }
 // select the new suggestion and update the keyword
 if(position > 0)
 {
 newTR.className = "highlightrow";
 updateKeywordValue(newTR);
 position--;
 // scroll up if the current window is no longer valid
 if(position<minVisiblePosition)
 {
 oScroll = document.getElementById("scroll");
 oScroll.scrollTop -= 18;
 maxVisiblePosition -= 1;
 minVisiblePosition -= 1;
 }
 }
 else
 if(position == 0)
 position--;
 e.cancelBubble = true;
 e.returnValue = false;
 isKeyUpDownPressed = true;
 }
 }
}

/* function that updates the keyword value with the value
 of the currently selected suggestion */
function updateKeywordValue(oTr)
{
 // retrieve the keyword object
 var oKeyword = document.getElementById("keyword");
 // retrieve the link for the current function
 var crtLink = document.getElementById("a" +
 oTr.id.substring(2,oTr.id.length)).toString();
 // replace - with _ and leave out the .php extension

 179

AJAX Suggest and Autocomplete

 180

 crtLink = crtLink.replace("-", "_");
 crtLink = crtLink.substring(0, crtLink.length - 4);
 // update the keyword's value
 oKeyword.value = unescape(crtLink.substring(phpHelpUrl.length,
crtLink.length));
}

/* function that removes the style from all suggestions*/
function deselectAll()
{
 for(i=0; i<suggestions; i++)
 {
 var oCrtTr = document.getElementById("tr" + i);
 oCrtTr.className = "";
 }
}

/* function that handles the mouse entering over a suggestion's area
 event */
function handleOnMouseOver(oTr)
{
 deselectAll();
 oTr.className = "highlightrow";
 position = oTr.id.substring(2, oTr.id.length);
}

/* function that handles the mouse exiting a suggestion's area event */
function handleOnMouseOut(oTr)
{
 oTr.className = "";
 position = -1;
}

/* function that escapes a string */
function encode(uri)
{
 if (encodeURIComponent)
 {
 return encodeURIComponent(uri);
 }

 if (escape)
 {
 return escape(uri);
 }
}

/* function that hides the layer containing the suggestions */
function hideSuggestions()
{
 var oScroll = document.getElementById("scroll");
 oScroll.style.visibility = "hidden";
}

/* function that selects a range in the text object passed as parameter */
function selectRange(oText, start, length)
{
 // check to see if in IE or FF
 if (oText.createTextRange)
 {
 //IE
 var oRange = oText.createTextRange();
 oRange.moveStart("character", start);
 oRange.moveEnd("character", length - oText.value.length);
 oRange.select();

Chapter 6

 }
 else
 // FF
 if (oText.setSelectionRange)
 {
 oText.setSelectionRange(start, length);
 }
 oText.focus();
}

/* function that autocompletes the typed keyword*/
function autocompleteKeyword()
{
 //retrieve the keyword object
 var oKeyword = document.getElementById("keyword");
 // reset the position of the selected suggestion
 position=0;
 // deselect all suggestions
 deselectAll();
 // highlight the selected suggestion
 document.getElementById("tr0").className="highlightrow";
 // update the keyword's value with the suggestion
 updateKeywordValue(document.getElementById("tr0"));
 // apply the type-ahead style
 selectRange(oKeyword,httpRequestKeyword.length,oKeyword.value.length);
 // set the autocompleted word to the keyword's value
 autocompletedKeyword=oKeyword.value;
}

/* function that displays an error message */
function displayError(message)
{
 // display error message, with more technical details if debugMode is true
 alert("Error accessing the server! "+
 (debugMode ? "\n" + message : ""));
}

11. The code is ready for testing now. Load the address http://localhost/ajax/
suggest/ with a web browser. Let's say, you're looking for the help page of strstr.
After typing s, you're shown a list of functions that start with this letter:

 181

http://localhost/ajax/suggest/
http://localhost/ajax/suggest/

AJAX Suggest and Autocomplete

 182

Figure 6.3: PHP Knows Many Functions That Start with "s"

12. OK, PHP has many functions that start with letter s. Observe that the first matching
function is autocompleted in the search box and that you have a long list of functions
to scroll through. Let's type the second letter of the word strstr: t.

13. The list of functions has diminished as expected. Find the function you are interested
in by continuing to type its name, or by using the keyboard's up and down arrows, or
using the mouse. When you have found it, press Enter or click it using the mouse.

Chapter 6

Figure 6.4: PHP Documentation for strstr

What Just Happened?
Let us start with the index.html file.

The interesting part in this script is that a scroll region can be implemented in DHTML. A little
piece of heaven regarding scrolling can be found at http://www.dyn-web.com/dhtml/scroll/.
The idea for having a part of the page with a scrollbar next to it is to have two layers one inside
another. In our example the div scroll and the div suggest do the trick.

The outer layer is scroll. It has a fixed width and height and its most useful property is
overflow. Generally, the content of a block box is confined to just the content edges of the box.
In certain cases, a box may overflow, meaning that part of its content lies outside the box. In CSS,
the overflow property specifies what happens when an element overflows its area. You can find
the possible values of overflow at http://www.w3.org/TR/REC-CSS2/visufx.html.

Another thing that can be interesting is how we can center an object horizontally. The classic align
= center attribute is not valid in XHTML 1.0 and therefore a workaround needs to be found. The
solution is to use the margin attribute set to auto for the element you want centered. If you have a
valid doctype, Internet Explorer 6 will render an element having auto margins centered; otherwise,
as is the case with the earlier versions, the attribute will be ignored. For earlier versions of Internet
Explorer, you need to have the text-align attribute set to center for the parent of the element you

 183

http://www.dyn-web.com/dhtml/scroll/
http://www.w3.org/TR/REC-CSS2/visufx.html

AJAX Suggest and Autocomplete

 184

want centered. This is because Internet Explorer incorrectly applies the text-align attribute to all
block elements instead of only inline elements making things work.

The input control handles the keyup event, which in fact triggers the process of fetching and
displaying the suggestions for the current keyword. The content div handles the click event so
that when the user clicks outside the suggestions area, the suggestions won't be displayed until the
user modifies the current keyword.

For this application, almost everything is about JavaScript, DOM, and CSS. The server side is
very simple and it does not imply any significant effort, but the client-side code in suggest.js is a
bit more complex. Let's enumerate the client features we implemented:

1. When a user starts typing, a drop-down list with suggestions appears; the list is updated
as the user types new characters or erases some of them.

2. The first matching characters are in "Bold" in the list of suggestions.
3. The first matching suggestion is autocompleted in the keyword box.
4. By moving through the suggestions with the up and down arrow keys the keyword

box is completed with the current selected suggestion.
5. By moving with the mouse over the suggestions nothing happens.
6. By pressing Enter or by clicking the mouse on a suggestion the page is redirected to

the PHP help page on the php.net site.
7. The page is also redirected to php.net when the user presses Enter in the keyword box.
8. When the mouse is clicked outside the suggestions' list or the keyword box the list of

suggestions is hidden.
9. The suggestions are cached on the client side.

We have a function that periodically checks to see if the keyword has changed. If so, an HTTP
request to the server page containing the current keyword is initiated. In response, the server page
returns the matching PHP functions as suggestions for that keyword. The client browser displays
the suggestions in a drop-down list. The user can navigate through the suggestions using the up
and down arrow keys or the mouse. On typing a new letter or on erasing one, the list of
suggestions is updated. After seeing the images in the previous section and after a short overview
of the process, it is time for us to see exactly how all these can be implemented.

The createXmlHttpRequestObject is the function that we use for creating our XMLHttpRequest object.

The init function does nothing more than setting off the autocomplete attribute for the keyword
box. This is done in order to prevent browsers initiating their own autocomplete engine. Because
setting "autocomplete"="off" is not a valid attribute according to XHTML specifications, the
HTML is invalidated. This attribute was introduced by Microsoft and has been adopted by the
majority of browsers.

The function that checks to see if the keyword has changed is checkForUpdates. If so, it starts the
process of updating the suggestions list. For navigating through the list of suggestions, the
function handleKeyUp is used. We will see more about this function later in this chapter.

Chapter 6

We have talked about caching the results. Yes, this is a very good optimization technique for this
kind of application. Therefore, we have two functions that deal with the cache object—
checkCache and addToCache.

The checkCache function checks to see if a given keyword is in the cache. If it's not in the cache, it
tries to find the longest matching prefixes for our keyword in the list of cached values. Those
matching prefixes are added to the cache by calling the addToCache function.

The addToCache function inserts in the cache for a given keyword a list of values that represent
the suggestions for the keyword.

The getSuggestions function is called for fetching new suggestions. If the current keyword is
already in the cache (checkCache function), we populate the suggestions list directly with those
suggestions that have been cached. If a request is already in progress, the keyword that we would
have wanted to use for a new call is saved and a timeout for this function is set. This way, we
make sure that we save the last keyword for which we could not make a server call and as soon as
the current request completes a new server call is initiated with the last keyword.

The handleGettingSuggestions function checks to see when the request to the server is
completed and if there are no errors, the updateSuggestions function is called.

The updateSuggestions function checks to see if it is necessary to update the suggestion list. We
check to see if during the server call there was another attempt to initiate a server call. By this we
know if the user modified the current keyword and if so we don't need to display the retrieved
suggestions since they are no longer interesting for the user. Nevertheless, the client caches all the
suggestions from the server.

The xmlToArray function is the one that converts a collection of XML nodes into an array.

The function that actually builds the list of suggestions is displayResults. It receives as parameters
the keyword and the list of available functions as an array. The first thing to do is to cache the current
results, so that if we want to search again the same keyword, we don't have to make another call to
the web server. We go through all the suggestions in the array and we dynamically build a table
containing the suggestions. If no suggestions are available, a message is displayed.

The updateKeywordValue function is responsible for updating the current keyword with the value
contained in the suggestion currently selected given as a tr object.

The hideSuggestions function hides the div element containing all suggestions for the
current keyword.

The deselectAll function deselects the currently selected suggestions.

The handleOnMouseOver and handleOnMouseOut functions handle the events that occur when the
mouse cursor enters or exits the tr area of a suggestion. These functions update the style of the
suggestion where the event takes place accordingly.

The encode function escapes the string passed as a parameter and it is used by the
getSuggestions function when calling the server page.

 185

AJAX Suggest and Autocomplete

Next, we will talk about the handleKeyUp function. This is the function used for navigation
through the results and submission. Since we are interested only in few keys, the others are
ignored. Before getting there we need to make sure the code works on every browser. In order for
this to happen, we need to write a few lines as we can see for ourselves.

In order to know which characters to consider, we need to know the codes of the keys. The event
object received as parameter has a property keyCode that has the code of the pressed key. In the
following table, you can find a list of most of the special keys:

Table 1: Key codes

 186

KKeeyy CCooddee KKeeyy CCooddee

BackspaceBackspace 88 Print Screen Print Screen 4444

TabTab 99 DeleteDelete 4466

EnterEnter 1133 F1F1 111122

Shift Shift 1166 F2F2 111133

CtrlCtrl 1177 F3F3 111144

AltAlt 1188 F4F4 111155

Pause/Break Pause/Break 1199 F5F5 111166

Caps LockCaps Lock 2200 F6F6 111177

EscEsc 2277 F7F7 111188

Page Up Page Up 3333 F8F8 111199

Page DownPage Down 3344 F9F9 112200

EndEnd 3355 F10F10 112211

HomeHome 3366 F11F11 112222

Left ArrowLeft Arrow 3377 F12F12 112233

Up ArrowUp Arrow 3388

Right ArrowRight Arrow 3399

Down ArrowDown Arrow 4400

On pressing Enter (code 13), the page submits to the php.net help with the specification for the
currently selected suggestion if any is selected. On pressing the up or down arrow keys the
currently selected suggestion moves one position up or down if possible. The current keyword is
also updated with the value of the current selected suggestion. We do not handle any other pressed
keys since they modify the keyword and we have already presented the checkForChanges function
that handles this part.

Another problem that arises when having more than ten suggestions available is that we have a
scrollable div region. As we stated before, we want the user to be able to navigate through the
results by using the up and down arrow keys. If the user reaches a result that is not currently

Chapter 6

visible, we need to scroll in the region in order to make that result visible. In order to implement
this, we keep minimum and maximum positions of the results that are currently visible. It's as if
we had a window that moves through the results according to the arrows' movements and the
current selected result.

The selectRange and autocompleteKeyword functions do the trick for the type-ahead look by
autocompleting the current keyword with the rest of the missing letters up to the first suggestion.
The part that is missing is added as highlighted text to the current keyword. The select() method
selects all the text, and hence selecting only a part of a text is not possible. In order to do this,
Internet Explorer offers one solution while Mozilla / Firefox offers another one. It is not for the
first time that issues are not the same in all browsers, so we have to take each case and solve it
separately. In Firefox, issues are simple because there is just one function that does all the work
for us—setSelectionRange. This function takes two parameters—the start position of the
selection and the length of the selection. In Internet Explorer, we have to use the TextRange object
in order to achieve the same goal. Let us take a closer look at it because it might be useful for us in
the future and for this, we need to know what it can do.

The TextRange object can carry out tasks such as searching or selecting text. Text ranges let you
pick out characters, words, and sentences from the text. Each of these three is a logical unit of the
object. In order to use such an object you have to follow these steps:

• Create the text range
• Apply a method to the selected text

You can copy the text, search in the text, and select a part of the text, as in our case.

To create such an object you can call the createTextRange method on a body, textarea, or
button element.

Each object has a start and an end position defining the scope of the text. When you create a new
text range, the start and end positions contain the entire content by default. To modify the scope of
the text range we can use the move, moveStart, and moveEnd functions. Each of them takes two
parameters—the first parameter specifies the logical unit and the second one the number of units
to move. The result contains the numbers of units moved. The select method makes the selection
equal to the current object. In order to have a complete view of its capabilities check the following
link on MSDN: http://msdn.microsoft.com/library/default.asp?url=/workshop/
author/dyncontent/textrange.asp.

After receiving the suggestions and inserting them into the page, we need to autocomplete the
keyword with the value of the first suggestion. This is accomplished by using the selectRange
function described above.

For the error-handling part, we use the displayError function that displays an alert with the error
message as parameter.

OK, now we have seen how it goes for the client side of the application. Let's check the server side.

For the server side, things are very simple. The suggest.php file retrieves the parameter passed by
the client and that represents the searched for keyword. Then it calls a method of the Suggest class

 187

http://msdn.microsoft.com/library/default.asp?url=/workshop/author/dyncontent/textrange.asp
http://msdn.microsoft.com/library/default.asp?url=/workshop/author/dyncontent/textrange.asp

AJAX Suggest and Autocomplete

 188

in suggest.class.php to find the matching suggestions for our keyword. The web server returns
an XML response containing the PHP functions that match the current keyword. As we can see for
ourselves, the effort resides on the client side and almost nothing on the server side.

The PHP help implemented as an AJAX suggest and autocomplete solution has proven to be far
more challenging than we would have thought at the beginning. As mentioned above, we had
many things to deal with. Hopefully, these problems also brought useful solutions for our
application and can be used as a learning base for other applications.

Summary
In the beginning of the chapter, we gave a definition of autocomplete and suggest. We have seen
how popular these notions are in domains from code editors to operating systems' consoles.

The application developed throughout this chapter offers an online PHP help with links to the
official help on www.php.net.

The functionality offered here resembles to that offered by Google Suggest from many points of
view, but it also has some additional features.

7
AJAX Real-Time Charting with

SVG

Scalable Vector Graphics (SVG) is one of the emerging technologies with a good chance of
becoming the next "big thing" for web graphics, as was the case with Flash. SVG is a language for
defining two-dimensional graphics. SVG isn't necessarily related to web development, but it fits
very well into the picture because it complements the features offered naturally by web browsers.
Today, there are more SVG implementations and standardization isn't great, but things are
expected to improve in the future.

SVG is a World Wide Web Consortium (W3C) recommendation since January 2003. Among
the big names that have contributed to its creation we can mention Sun Microsystems, Adobe,
Apple, IBM, and Kodak to name just a few. The current specification is SVG 1.2. SVG Mobile,
SVG Print, and sXBL are other recommendations under work at W3C that are likely to get support
on most browsers and platforms.

The main features of SVG are:

• SVG graphics are defined in XML format, so the files can be easily manipulated
with existing editors, parsers, etc.

• SVG images are scalable; they can zoomed, resized, and reoriented without
losing quality.

• SVG includes font elements so that both text and graphical appearance are preserved.
• SVG includes declarative animation elements.
• SVG allows a multi-namespace XML application.
• SVG allows the script-based manipulation of the document tree using a subset of the

XML DOM and the SVG uDOM.

AJAX Real-Time Charting with SVG

 190

For a primer on the world of SVG, check out these resources:

• The SVG W3C page at http://www.w3.org/Graphics/SVG/.
• An SVG introduction at http://www.w3schools.com/svg/svg_intro.asp.
• A very useful list of SVG links at http://www.svgi.org/.
• A handy SVG reference at http://www.w3schools.com/svg/svg_reference.asp.
• The SVG document structure is explained at http://www.w3.org/TR/SVG/struct.html.
• SVG examples at http://www.carto.net/papers/svg/samples/ and http://svg-

whiz.com/samples.html.

Implementing a Real-Time Chart with AJAX and SVG
Before continuing, please make sure your web browser supports SVG. The code in this case study
has been tested with Firefox 1.5, Internet Explorer with the Adobe SVG Viewer, and Apache Batik.
You can test the online demo accessing the link you can find at http://ajaxphp.packtpub.com.

Firefox ships with integrated SVG support. Being at its first version, this SVG implementation
does have some problems that you need to take into consideration when writing the code, and the
performance isn't excellent.

To load SVG in Internet Explorer, you need to install an external SVG plug-in. The SVG plug-in
we used in our tests is the one from Adobe, which you can download at http://www.adobe.com/
svg/viewer/install/main.html. The installation process is very simple; you just need to
download a small file named SVGView.exe, and execute it. The first time you load an SVG page,
you will be asked to confirm the terms of agreement.

Finally, we also tested the application with Apache's Batik SVG viewer, in which case you need to
load the SVG file directly, because it doesn't support loading the HTML file that loads the SVG
script. (You may want to check Batik for its good DOM viewer, which nicely displays the SVG
nodes in a hierarchical structure.)

In this chapter's case study, we'll create a simple chart application whose input data is retrieved
asynchronously from a PHP script. The generated data can be anything, and in our case we'll have a
simple algorithm that generates random data. Figure 7.1 shows sample output from the application:

http://www.w3.org/Graphics/SVG/
http://www.w3schools.com/svg/svg_intro.asp
http://www.svgi.org/
http://www.carto.net/papers/svg/samples/
http://svg-whiz.com/samples.html
http://svg-whiz.com/samples.html
http://www.adobe.com/svg/viewer/install/main.html
http://www.adobe.com/svg/viewer/install/main.html

Chapter 7

Figure 7.1: SVG Chart

The chart in Figure 7.1 is actually a static SVG file called temp.svg, which represents a snapshot
of the output generated by the running application; it is not a screenshot of the actual running
application. The script is saved as temp.svg in this chapter's folder in the code download, and you
can load it directly into your web browser (not necessarily through a web server), after you've
made sure your browser supports SVG.

We will first have a look at the contents of temp.svg, to get a feeling about what we want to
generate dynamically from our JavaScript code. Note that the SVG script can be generated either
at the client side or at the server side. For our application, the server only generates random
coordinates, and the JavaScript client uses these coordinates to compose the SVG output.

Have a look at a stripped version of the temp.svg file:
<svg width="100%" height="100%" xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink" onload="init(evt)">
 <a xlink:href="http://ajaxphp.packtpub.com">
 <text x="200" y="20">
 SVG with AJAX and PHP Demo
 </text>

 <!-- All chart elements are grouped and translated by 50, 50 -->
 <g transform="translate(50, 50)">

 191

AJAX Real-Time Charting with SVG

 192

 <!-- Group all axis elements (lines and text nodes) -->
 <g>
 <!-- Path draws the grid axes and unit delimiters -->
 <path stroke="black" stroke-width="2" d=" ... path definition here ..."/>

 <!-- Text nodes that display horizontal unit numbers -->
 <text x="-10" y="322" stroke="black">0.0</text>
 ...
 ... more text nodes here that draw horizontal and vertical unit numbers
 ...
 </g>

 <!-- Draw the lines between chart nodes as a single -->
 <path stroke="black" stroke-width="1" fill="none" d="... definition ..."/>

 <!-- Draw the chart nodes as filled blue circles -->
 <circle cx="00" cy="239.143" r="3" fill="blue" />
 ...
 ... more circle nodes here that draw filled blue circles for chart nodes
 ...
 </g>
</svg>

Have a closer look at this code snippet to identify all the chart elements. The SVG format supports
the notion of element groups, which are elements grouped under a <g> element. In temp.svg we
have two groups: the first group contains all the charts' elements, translating them by (50, 50)
pixels, while the second <g> element group is a child of the first group, and it contains the chart's
axis lines and numbers.

SVG knows how to handle many element types, which can also be animated (yes, SVG is very
powerful). In our example, we make use of some of the very basic ones: path (to draw the axis
lines and chart lines), text (to draw the axis numbers, and to dynamically display chart node
coordinates when the mouse cursor hovers over them—this latter feature isn't included in the code
snippet), and circle (to draw the blue dots on the chart that represent the chart nodes).

You can find documentation for these elements at:

• http://www.w3schools.com/svg/svg_path.asp
• http://www.w3schools.com/svg/svg_circle.asp

• http://www.w3schools.com/svg/svg_text.asp

The paths are described by a path definition. The complete code for the path element that draws
the chart lines you can see in Figure 7.1 looks like this:

 <!-- Draw the lines between chart nodes -->
 <path stroke="black" stroke-width="1" fill="none"
 d="M0,239.143 L10,220.286 L20,213.429 L30,185.571 L40,145.714
 L50,108.857 L60,129 L70,101.143 L80,58.2857 L90,78.4286"/>

A detail that was stripped from the code snippet was the mouseover and mouseout events of the
chart node circles. In our code, the mouseover event (which fires when you move the mouse
pointer over a node) will call a JavaScript function that displays a text above the node specifying
its coordinates. The mouseout event makes that text disappear. You can see this feature in action
in Figure 7.2, which displays the SVG chart application in action.

http://www.w3schools.com/svg/svg_path.asp

Chapter 7

Figure 7.2: SVG Charting in Action

To get the dynamically generated contents of the SVG chart at any given time with
Firefox, right click the chart, click Select All, then right-click the chart again, and choose
View Selection Source.

Now that you have a good idea about what you are going to implement, let's get to work. It's time
for action!

Time for Action—Building the Real-Time SVG Chart
1. Start by creating a new subfolder of the ajax folder, called svg_chart.
2. In the svg_chart folder, create a new file named index.html with the following

contents:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>
 <head>
 <title>AJAX Realtime Charting with SVG</title>
 </head>
 <body>
 <embed src="chart.svg" width="600" height="450" type="image/svg+xml" />
 </body>
</html>

 193

AJAX Real-Time Charting with SVG

 194

3. Then create a file named chart.svg, and add the following code to it:
<svg width="100%" height="100%" xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink" onload="init(evt)">
 <script type="text/ecmascript" xlink:href="ajaxRequest.js"/>
 <script type="text/ecmascript" xlink:href="realTimeChart.js"/>
 <a xlink:href="http://ajaxphp.packtpub.com">
 <text x="200" y="20">
 SVG with AJAX and PHP Demo
 </text>

</svg>

4. Create a file named ajaxrequest.js with the following contents:
// will store reference to the XMLHttpRequest object
var xmlHttp = null;

// creates an XMLHttpRequest instance
function createXmlHttpRequestObject()
{
 // will store the reference to the XMLHttpRequest object
 var xmlHttp;
 // this should work for all browsers except IE6 and older
 try
 {
 // try to create XMLHttpRequest object
 xmlHttp = new XMLHttpRequest();
 }
 catch(e)
 {
 // assume IE6 or older
 var XmlHttpVersions = new Array("MSXML2.XMLHTTP.6.0",
 "MSXML2.XMLHTTP.5.0",
 "MSXML2.XMLHTTP.4.0",
 "MSXML2.XMLHTTP.3.0",
 "MSXML2.XMLHTTP",
 "Microsoft.XMLHTTP");
 // try every prog id until one works
 for (var i=0; i<XmlHttpVersions.length && !xmlHttp; i++)
 {
 try
 {
 // try to create XMLHttpRequest object
 xmlHttp = new ActiveXObject(XmlHttpVersions[i]);
 }
 catch (e) {}
 }
 }
 // return the created object or display an error message
 if (!xmlHttp)
 alert("Error creating the XMLHttpRequest object.");
 else
 return xmlHttp;
}

// initiates an AJAX request
function ajaxRequest(url, callback)
{
 // stores a reference to the function to be called when the response
 // from the server is received
 var innerCallback = callback;
 // create XMLHttpRequest object when this method is first called
 if (!xmlHttp) xmlHttp = createXmlHttpRequestObject();
 // if the connection is clear, initiate new server request
 if (xmlHttp && (xmlHttp.readyState == 4 || xmlHttp.readyState == 0))

Chapter 7

 {
 xmlHttp.onreadystatechange = handleGettingResults;
 xmlHttp.open("GET", url, true);
 xmlHttp.send(null);
 }
 else
 // if the connection is busy, retry after 1 second
 setTimeout("ajaxRequest(url,callback)", 1000);

 // called when the state of the request changes
 function handleGettingResults()
 {
 // move forward only if the transaction has completed
 if (xmlHttp.readyState == 4)
 {
 // a HTTP status of 200 indicates the transaction completed
 // successfully
 if (xmlHttp.status == 200)
 {
 // execute the callback function, passing the server response
 innerCallback(xmlHttp.responseText)
 }
 else
 {
 // display error message
 alert("Couldn't connect to server");
 }
 }
 }
}

5. The bulk of the client-side work is done by RealTimeChart.js:
// SVG namespace
var svgNS = "http://www.w3.org/2000/svg";
// the SVG document handler
var documentSVG = null;
// will store the root <g> element that groups all chart elements
var chartGroup = null;
// how often to request new data from server?
var updateInterval = 1000;
// coordinates (in pixels) used to translate the chart
var x = 50, y = 50;
// chart's dimension (in pixels)
var height = 300, width = 500;
// chart's axis origin
var xt1 = 0, yt1 = 0;
// chart's axis maximum values
var xt2 = 50, yt2 = 100;
// number of horizontal and vertical axis divisions
var xDivisions = 10, yDivisions = 10;
// default text width and height for initial display (recalculated
// afterwards)
var defaultTextWidth = 30, defaultTextHeight = 20;
// will retain references to the chart units for recalculating positions
var xIndexes = new Array(xDivisions + 1);
var yIndexes = new Array(yDivisions + 1);
// will store the text node that displays the selected chart node
var currentNodeInfo;
// retains the latest values generated by server
var lastX = -1, lastY = -1;
// shared svg elements
var chartGroup, dataGroup, dataPath;

 195

AJAX Real-Time Charting with SVG

 196

// initializes chart
function init(evt)
{
 /**** Prepare the group that will contain all chart data ****/
 // obtain SVG document handler
 documentSVG = evt.target.ownerDocument;
 // create the <g> element that groups all chart elements
 chartGroup = documentSVG.createElementNS(svgNS, "g");
 chartGroup.setAttribute("transform", "translate(" + x + " " + y + ")");

 /**** Prepare the group that will store the Y and Y axis and numbers ****/
 axisGroup = documentSVG.createElementNS(svgNS, "g");
 // create the X axis line as a <path> element
 axisPath = documentSVG.createElementNS(svgNS, "path");
 // the axis lines will be black, 2 pixels wide
 axisPath.setAttribute("stroke", "black");
 axisPath.setAttribute("stroke-width", "2");

 /**** Create the division lines for the X and Y axis ****/
 // create the path definition text for the X axis division lines
 pathText = "M 0 " + height;
 // adds divisions to the X axis (differently for last division)
 for (var i = 0; i <= xDivisions; i++)
 pathText += "l 0 5 l 0 -5 " +
 ((i == xDivisions) ? "" : ("l " + width/xDivisions + " 0"));
 // create the path definition text for the Y axis division lines
 pathText += "M 0 " + height;
 // adds one division to the Y axis (differently for last division)
 for (var i = 0; i <= yDivisions; i++)
 pathText += "l -5 0 l 5 0 " +
 ((i == yDivisions) ? "" : ("l 0 -" + height / yDivisions));
 // add the path definition (the <d> attribute) to the path
 axisPath.setAttribute("d", pathText);
 // add the path to the axis group
 axisGroup.appendChild(axisPath);

 /**** Create the text nodes for the X and Y axis ****/
 // adds text nodes for the X axis
 for (var i = 0; i <= xDivisions; i++)
 {
 // creates the <text> node for the division
 t = documentSVG.createElementNS(svgNS, "text");
 // stores the node for future reference
 xIndexes[i] = t;
 // creates the text for the <text> node
 t.appendChild(documentSVG.createTextNode(
 (xt1 + i * ((xt2 - xt1) / xDivisions)).toFixed(1)));
 // sets the X and Y attributes for the <text> node
 t.setAttribute("x", i * width / xDivisions - defaultTextWidth / 2);
 t.setAttribute("y", height + 30 + defaultTextHeight);
 // when the graph first loads, we want the text nodes invisible
 t.setAttribute("stroke", "white");
 // add the <text> node to the axis group
 axisGroup.appendChild(t);
 }
 // adds text nodes for the Y axis
 for (var i = 0; i <= yDivisions; i++)
 {
 // creates the <text> node for the division
 t = documentSVG.createElementNS(svgNS, "text");
 // stores the node for future reference
 yIndexes[i] = t;
 // creates the text for the <text> node
 t.appendChild(documentSVG.createTextNode(
 (yt1 + i * ((yt2 - yt1) / yDivisions)).toFixed(1)));

Chapter 7

 // sets the X and Y attributes for the <text> node
 t.setAttribute("x", -30 -defaultTextWidth);
 t.setAttribute("y", height - i * height / yDivisions
 + defaultTextHeight / 2);
 // when the graph first loads, we want the text nodes invisible
 t.setAttribute("stroke", "white");
 // add the <text> node to the axis group
 axisGroup.appendChild(t);
 }

 // add the axis group to the chart
 chartGroup.appendChild(axisGroup);

 /**** Prepare the <path> element that will draw chart's data ****/
 dataPath = documentSVG.createElementNS(svgNS, "path");
 dataPath.setAttribute("stroke", "black");
 dataPath.setAttribute("stroke-width", "1");
 dataPath.setAttribute("fill", "none");
 // add the data path to the chart group
 chartGroup.appendChild(dataPath);

 /**** Final initialization steps ****/
 // add the chart group to the SVG document
 documentSVG.documentElement.appendChild(chartGroup);
 // this is needed to correctly display text nodes in Firefox
 setTimeout("refreshXYIndexes()", 500);
 // initiate repetitive server requests
 setTimeout("updateChart()", updateInterval);
}

// this function redraws the text for the axis units and makes it visible
// (this is required to correctly position the text in Firefox)
function refreshXYIndexes()
{
 // redraw text nodes on the X axis
 for (var i = 0; i <= xDivisions; i++)
 if (typeof xIndexes[i].getBBox != "undefined")
 try
 {
 textWidth = xIndexes[i].getBBox().width;
 textHeight = xIndexes[i].getBBox().height;
 xIndexes[i].setAttribute("x", i*width/xDivisions - textWidth/2);
 xIndexes[i].setAttribute("y", height + 10 + textHeight);
 xIndexes[i].setAttribute("stroke", "black");
 }
 catch(e) {}
 // redraw text nodes on the Y axis
 for (var i = 0; i <= yDivisions; i++)
 if (typeof yIndexes[i].getBBox != "undefined")
 try
 {
 twidth = yIndexes[i].getBBox().width;
 theight = yIndexes[i].getBBox().height;
 yIndexes[i].setAttribute("y", height-i*height/yDivisions
 +theight/2);
 yIndexes[i].setAttribute("x", -10 -twidth);
 yIndexes[i].setAttribute("stroke", "black");
 }
 catch(e) {}
}

 197

AJAX Real-Time Charting with SVG

 198

// called when mouse hovers over chart node to display its coordinates
function createPointInfo(x, y, whereX, whereY)
{
 // make sure you don't display more coordinates at the same time
 if (currentNodeInfo) removePointInfo();
 // create text node
 currentNodeInfo = documentSVG.createElementNS(svgNS, "text");

currentNodeInfo.appendChild(documentSVG.createTextNode("("+x+","+y+")"));
 // set coordinates
 currentNodeInfo.setAttribute("x", whereX.toFixed(1));
 currentNodeInfo.setAttribute("y", whereY - 10);
 // add the node to the group
 chartGroup.appendChild(currentNodeInfo);
}

// removes the text node that displays chart node coordinates
function removePointInfo()
{
 chartGroup.removeChild(currentNodeInfo);
 currentNodeInfo = null;
}

// draws a new point on the graph
function addPoint(X, Y)
{
 // save these values for future reference
 lastX = X;
 lastY = Y;
 // start over (reload page) after the last value was generated
 if (X == xt2)
 window.location.reload(false);
 // calculate the coordinates of the new node
 coordX = (X - xt1) * (width / (xt2 - xt1));
 coordY = height - (Y - yt1) * (height / (yt2 - yt1));
 // draw the node on the chart as a blue filled circle
 var circle = documentSVG.createElementNS(svgNS, "circle");
 circle.setAttribute("cx", coordX); // X position
 circle.setAttribute("cy", coordY); // Y position
 circle.setAttribute("r", 3); // radius
 circle.setAttribute("fill", "blue"); // color
 circle.setAttribute("onmouseover",
 "createPointInfo(" + X + "," +
 Y + "," + coordX + "," + coordY + ")");
 circle.setAttribute("onmouseout", "removePointInfo()");
 chartGroup.appendChild(circle);
 // add a new line to the new node on the graph
 current = dataPath.getAttribute("d"); // current path definition
 // update path definition
 if (!current || current == "")
 dataPath.setAttribute("d", " M " + coordX + " " + coordY);
 else
 dataPath.setAttribute("d", current + " L " + coordX + " " + coordY);
}

// initiates asynchronous request to retrieve new chart data
function updateChart()
{
 // builds the query string
 param = "?lastX=" + lastX + ((lastY != -1) ? "&lastY=" + lastY : "");
 // make the request through either AJAX
 if (window.getURL)
 // Supported by Adobe's SVG Viewer and Apache Batik
 getURL("svg_chart.php" + param, handleResults);
 else

Chapter 7

 // Supported by Mozilla, implemented in ajaxRequest.js
 ajaxRequest("svg_chart.php" + param, handleResults);
}

// callback function that reads data received from server
function handleResults(data)
{
 // get the response data
 if (window.getURL)
 responseText = data.content;
 else
 responseText = data;
 // split the pair to obtain the X and Y coordinates
 var newCoords = responseText.split(",");
 // draw a new node at these coordinates
 addPoint(newCoords[0], newCoords[1]);
 // restart sequence
 setTimeout("updateChart()", updateInterval)
}

6. Finally, create the server-side script, named svg_chart.php:
<?php
// variable initialization
$maxX = 50; // our max X
$maxY = 100; //our max Y
$maxVariation = $maxY / 7; // maximum Y variation for one step
// client tells last X value generated (defaults to -1)
if (isset($_GET['lastX']))
 $lastX = $_GET['lastX'];
else
 $lastX = -1;
// client tells last Y value generated (defaults to random)
if (isset($_GET['lastY']))
 $lastY = $_GET['lastY'];
else
 $lastY = rand(0, $maxY);
// calculate a new random number
$randomY = (int) ($lastY + $maxVariation - rand(0, $maxVariation*2));
// make sure the new Y is between 0 and $maxY
while ($randomY < 0) $randomY += $maxVariation;
while ($randomY > $maxY) $randomY -= $maxVariation;
// generate a new pair of numbers
$output = $lastX + 1 . ',' . $randomY;
// clear the output
if(ob_get_length()) ob_clean();
// headers are sent to prevent browsers from caching
header('Expires: Fri, 25 Dec 1980 00:00:00 GMT'); // time in the past
header('Last-Modified: ' . gmdate('D, d M Y H:i:s') . 'GMT');
header('Cache-Control: no-cache, must-revalidate');
header('Pragma: no-cache');
// send the results to the client
echo $output;
?>

7. Load http://localhost/ajax/svg_chart, and admire your brand new chart!

What Just Happened?
Let's briefly look at the important elements of the code, starting with the server. The
svg_chart.php script is called asynchronously to generate a new set of (X, Y) coordinates to be
displayed by the client in the chart. The client is supposed to tell the server the previously generated

 199

http://localhost/ajax/svg_chart

AJAX Real-Time Charting with SVG

 200

coordinates, and based on that data, the server generates a new set. This simulates pretty well a
real-world scenario. The previously generated coordinates are sent via GET as two parameters
named lastX and lastY. To test the server-side functionality independently of the rest of the
solution, try loading http://localhost/ajax/svg_chart/svg_chart.php?lastX=5&lastY=44:

Figure 7.3: The Server generating a New Set of Coordinates for the Client

On the client, everything starts with index.html, which is really simple; all it does is to load the
SVG file. The best way to do this at the moment is by using an <embed> element, which isn't
supported by W3C (you can also use <object> and <iframe>, but they are more problematic—see
http://www.w3schools.com/svg/svg_inhtml.asp):

 <body>
 <embed src="chart.svg" width="600" height="450" type="image/svg+xml" />
 </body>

And here it comes—chart.svg. This file isn't very impressive by itself, because it uses functionality
provided by the JavaScript files (notice the onload event), but it includes the chart title:

<svg width="100%" height="100%" xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink" onload="init(evt)">
 <script type="text/ecmascript" xlink:href="ajaxRequest.js"/>
 <script type="text/ecmascript" xlink:href="realTimeChart.js"/>
 <a xlink:href="http://ajaxphp.packtpub.com">
 <text x="200" y="20">
 SVG with AJAX and PHP Demo
 </text>

</svg>

chart.svg references two JavaScript files:

ajaxRequest.js contains the engine that implements asynchronous HTTP request functionality
using the XMLHttpRequest object. This engine is used by realTimeChart.js to get new chart data
from the server when the Firefox web browser is used. For the Adobe SVG and Apache Batik
implementations, we use specific functionality provided by these engines through their getURL
methods instead. See the updateChart method in realTimeChart.js for details.

The code in ajaxRequest.js contains a different coding pattern than what you've met so far in the
book. What is important to understand is:

Chapter 7

• All HTTP requests go through a single XMLHttpRequest instance, rather than
automatically creating new XMLHttpRequest objects for each call, as implemented in
other patterns. This way we are guaranteed to receive responses in the same order as
they were requested, which is important for our charting application (and for any
other application where the responses must come in order). If the connection is busy
processing a previous request, our code waits for one second, and then retries. This
technique is also friendly in its use of the web server resources.

• The ajaxRequest() method receives as parameter the URL to connect to, and a
reference to the callback function to be called when the server response is received.
This is a good technique to implement when you need the flexibility to access the
same functionality from several sources.

• The handleGettingResults() method is defined inside the ajaxRequest method.
This is one of JavaScript's features that enable emulating OOP functionality. So far
we haven't used these features because we think they bring real benefits only when
writing large applications and they require a longer learning curve for programmers
inexperienced in OOP techniques. If you like this technique, you'll find it easy to
implement it in your applications.

realTimeChart.js contains all the functionality that generates the SVG chart. The code contains
detailed comments about the specific techniques. Here is a short description of each of the methods:

• init() is called when the page loads to perform the chart initialization. This method
generates the SVG code for the chart axis and builds the initial structure for the
whole chart. Initially, the numbers for the axis units are drawn with white font to
make them invisible. We need this because of a problem in the Firefox SVG
implementation that doesn't allow calculating the text size and positioning it
correctly before it is rendered on the screen. Using pre-calculated values isn't an
option because the grid is configurable and its axis can be populated with different
values. To overcome this problem, init() uses setTimeout() to execute
refreshXYIndexes() after half a second.

• refreshXYIndexes() is able to calculate the correct positions for the text on the axis
units, even with Firefox 1.5. After it sets the new coordinates, it changes the color of
the text from white to black, making it visible.

• createPointInfo() is called from the onmouseover function of the chart nodes to
display the node coordinates.

• removePointInfo() is called from the onmouseout event to remove the displayed
node coordinates.

• updateChart() is the function that initiates the asynchronous request. The getURL
method is used if available (this method is supported by Adobe SVG and Apache
Batik). Otherwise, the ajaxRequest method (from ajaxRequest.js) is used to make
the request. When calling the server, the pair of previously generated coordinates is
sent via GET, which the server uses to calculate the new values.

 201

AJAX Real-Time Charting with SVG

• handleResults() is the callback method that is called by ajaxRequest when the
response from the server is received. This response is read (again, with SVG
implementation-specific code), and the coordinates generated by the server are sent
to addPoint().

• addPoint() receives a set of coordinates used to generate a new node on the chart.
These coordinates are saved for later, because on the next request they will be sent to
the server. The server will use these coordinates to calculate the new ones for the
client, enabling the simple mechanism of managing state: with each new request the
X coordinate is increased by one and the Y is calculated randomly, but with a
function that takes into account the previously generated Y coordinate.

Summary
Whether you like SVG or not (especially in the light of the recent SVG versus Flash wars), you
must admit it allows implementing powerful functionality in web pages. Having tasted its
functionality, you'll now know in which projects you might consider using it. If you are serious
about SVG, be sure to check out the visual editors around, which make SVG creation a lot easier.
You may also consider purchasing one of the numerous SVG books.

 202

8
AJAX Grid

Data grids have always been one of the areas where web applications have had a serious
disadvantage compared to desktop programs. The fact that the page needed a full reload when
switching between grid pages, or when updating grid details, harmed the application from a
usability point of view. Technically, fully reloading the page has bad effects as well, unnecessarily
wasting network resources.

But now you know there is a smarter solution to this problem. You can use AJAX to update the
grid content without refreshing the page. You can keep your beautiful design in the client browser
without even one page blink. Only the table data is refreshed, not the whole page.

The novelty in this chapter is that we'll use Extensible Stylesheet Language Transformation
(XSLT) and T XML Path Language (XPath) to generate the client output. XSLT and XPath are
part of the Extensible Stylesheet Language (XSL) family. XSLT allows defining rules to
transform an XML document to another format and XPath is a very powerful query language that
allows performing searches and retrieving data from XML documents. When used to create web
front ends, XSLT permits implementing a very flexible architecture, in which the server outputs
the data in XML format, and that data is transformed to HTML using an XSL transformation. You
can find an introduction to XSL in Appendix C at http://ajaxphp.packtpub.com, and a good
description at http://en.wikipedia.org/wiki/Extensible_Stylesheet_Language.

Note the XSL transformation can be applied at both client side and server side. The
implementation in this chapter relies on client functionality to perform the
transformation. This doesn't require any special features of the server, but it poses some
constraints for the client. In Chapter 9, you will see how to apply the transformation at
the server side using PHP functionality, in which case you require this feature to be
enabled in PHP, but the solution works with any client, as the client receives directly the
HTML code it is supposed to display.

In this chapter, you'll use:

• XSL to generate an HTML data grid based on XML data received from the server.
• AJAX to implement the editable data grid. The user should be able to switch between

product pages and edit product details without experiencing any page reloads.

AJAX Grid

 204

Implementing the AJAX Grid Using Client-Side
XSLT
In this case study, you will build an AJAX-enabled editable data grid. The products used to
populate the grid were kindly provided to us by http://www.the-joke-shop.com/.

Figure 8.1 shows the second page of products and Figure 8.2 shows how the grid looks after the
Edit link is clicked, and one of the products enters edit mode.

Figure 8.1: AJAX Grid in Action

Chapter 8

Figure 8.2: AJAX Grid in Edit Mode

Because there's a lot of dynamically output data to generate, this is a good opportunity to learn
about XSLT.

Let's first write the code so you'll have a working solution, and then we will comment upon it. The
program will be composed of the following files:

• grid.php
• grid.class.php
• error_handler.php
• config.php
• grid.css
• index.html
• grid.xsl
• grid.js

Time for Action—AJAX Grid
1. Let's start by preparing the database for this exercise. We basically need a table with

products. You can either execute the SQL script product.sql from the code
download, or you can type it (the code snippet below creates only the first 10
products; please use the code download for the complete list of products):

 205

AJAX Grid

CREATE TABLE product
(
 product_id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 name VARCHAR(50) NOT NULL DEFAULT '',
 price DECIMAL(10,2) NOT NULL DEFAULT '0.00',
 on_promotion TINYINT NOT NULL DEFAULT '0',
 PRIMARY KEY (product_id)
);

INSERT INTO product(name, price, on_promotion)
 VALUES('Santa Costume', 14.99, 0);
INSERT INTO product(name, price, on_promotion)
 VALUES('Medieval Lady', 49.99, 1);
INSERT INTO product(name, price, on_promotion)
 VALUES('Caveman', 12.99, 0);
INSERT INTO product(name, price, on_promotion)
 VALUES('Costume Ghoul', 18.99, 0);
INSERT INTO product(name, price, on_promotion)
 VALUES('Ninja', 15.99, 0);
INSERT INTO product(name, price, on_promotion)
 VALUES('Monk', 13.99, 0);
INSERT INTO product(name, price, on_promotion)
 VALUES('Elvis Black Costume', 35.99, 0);
INSERT INTO product(name, price, on_promotion)
 VALUES('Robin Hood', 18.99, 0);
INSERT INTO product(name, price, on_promotion)
 VALUES('Pierot Clown', 22.99, 1);
INSERT INTO product(name, price, on_promotion)
 VALUES('Austin Powers', 49.99, 0);

2. Create a new subfolder called

 206

grid under your ajax folder.
3. We'll start writing the code with the server side. In the grid folder, create a new file

called grid.php, which will respond to client's asynchronous requests:
<?php
// load error handling script and the Grid class
require_once('error_handler.php');
require_once('grid.class.php');
// the 'action' parameter should be FEED_GRID_PAGE or UPDATE_ROW
if (!isset($_GET['action']))
{
 echo 'Server error: client command missing.';
 exit;
}
else
{
 // store the action to be performed in the $action variable
 $action = $_GET['action'];
}
// create Grid instance
$grid = new Grid($action);
// valid action values are FEED_GRID_PAGE and UPDATE_ROW
if ($action == 'FEED_GRID_PAGE')
{
 // retrieve the page number
 $page = $_GET['page'];
 // read the products on the page
 $grid->readPage($page);
}
else if ($action == 'UPDATE_ROW')
{
 // retrieve parameters
 $id = $_GET['id'];
 $on_promotion = $_GET['on_promotion'];
 $price = $_GET['price'];

Chapter 8

 $name = $_GET['name'];
 // update the record
 $grid->updateRecord($id, $on_promotion, $price, $name);
}
else
 echo 'Server error: client command unrecognized.';
// clear the output
if(ob_get_length()) ob_clean();
// headers are sent to prevent browsers from caching
header('Expires: Fri, 25 Dec 1980 00:00:00 GMT'); // time in the past
header('Last-Modified: ' . gmdate('D, d M Y H:i:s') . 'GMT');
header('Cache-Control: no-cache, must-revalidate');
header('Pragma: no-cache');
header('Content-Type: text/xml');
// generate the output in XML format
header('Content-type: text/xml');
echo '<?xml version="1.0" encoding="ISO-8859-1"?>';
echo '<data>';
echo '<action>' . $action . '</action>';
echo $grid->getParamsXML();
echo $grid->getGridXML();
echo '</data>';
?>

4. Create a new file called grid.class.php, and add the following code to it:
<?php
// load configuration file
require_once('config.php');
// start session
session_start();

// includes functionality to manipulate the products list
class Grid
{
 // grid pages count
 public $mTotalPages;
 // grid items count
 public $mItemsCount;
 // index of page to be returned
 public $mReturnedPage;
 // database handler
 private $mMysqli;
 // database handler
 private $grid;

 // class constructor
 function __construct()
 {
 // create the MySQL connection
 $this->mMysqli = new mysqli(DB_HOST, DB_USER, DB_PASSWORD,
 DB_DATABASE);
 // call countAllRecords to get the number of grid records
 $this->mItemsCount = $this->countAllRecords();
 }

 // class destructor, closes database connection
 function __destruct()
 {
 $this->mMysqli->close();
 }
 // read a page of products and save it to $this->grid
 public function readPage($page)
 {
 // create the SQL query that returns a page of products
 $queryString = $this->createSubpageQuery('SELECT * FROM product',
 $page);

 207

AJAX Grid

 208

 // execute the query
 if ($result = $this->mMysqli->query($queryString))
 {
 // fetch associative array
 while ($row = $result->fetch_assoc())
 {
 // build the XML structure containing products
 $this->grid .= '<row>';
 foreach($row as $name=>$val)
 $this->grid .= '<' . $name . '>' .
 htmlentities($val) .
 '</' . $name . '>';
 $this->grid .= '</row>';
 }
 // close the results stream
 $result->close();
 }
 }

 // update a product
 public function updateRecord($id, $on_promotion, $price, $name)
 {
 // escape input data for safely using it in SQL statements
 $id = $this->mMysqli->real_escape_string($id);
 $on_promotion = $this->mMysqli->real_escape_string($on_promotion);
 $price = $this->mMysqli->real_escape_string($price);
 $name = $this->mMysqli->real_escape_string($name);
 // build the SQL query that updates a product record
 $queryString = 'UPDATE product SET name="' . $name . '", ' .
 'price=' . $price . ',' .
 'on_promotion=' . $on_promotion .
 ' WHERE product_id=' . $id;
 // execute the SQL command
 $this->mMysqli->query($queryString);
 }

 // returns data about the current request (number of grid pages, etc)
 public function getParamsXML()
 {
 // calculate the previous page number
 $previous_page =
 ($this->mReturnedPage == 1) ? '' : $this->mReturnedPage-1;
 // calculate the next page number
 $next_page = ($this->mTotalPages == $this->mReturnedPage) ?
 '' : $this->mReturnedPage + 1;
 // return the parameters
 return '<params>' .
 '<returned_page>' . $this->mReturnedPage . '</returned_page>'.
 '<total_pages>' . $this->mTotalPages . '</total_pages>'.
 '<items_count>' . $this->mItemsCount . '</items_count>'.
 '<previous_page>' . $previous_page . '</previous_page>'.
 '<next_page>' . $next_page . '</next_page>' .
 '</params>';
 }

 // returns the current grid page in XML format
 public function getGridXML()
 {
 return '<grid>' . $this->grid . '</grid>';
 }

 // returns the total number of records for the grid
 private function countAllRecords()
 {
 /* if the record count isn't already cached in the session,
 read the value from the database */

Chapter 8

 if (!isset($_SESSION['record_count']))
 {
 // the query that returns the record count
 $count_query = 'SELECT COUNT(*) FROM product';
 // execute the query and fetch the result
 if ($result = $this->mMysqli->query($count_query))
 {
 // retrieve the first returned row
 $row = $result->fetch_row();
 /* retrieve the first column of the first row (it represents the
 records count that we were looking for), and save its value in
 the session */
 $_SESSION['record_count'] = $row[0];
 // close the database handle
 $result->close();
 }
 }
 // read the record count from the session and return it
 return $_SESSION['record_count'];
 }

 // receives a SELECT query that returns all products and modifies it
 // to return only a page of products
 private function createSubpageQuery($queryString, $pageNo)
 {
 // if we have few products then we don't implement pagination
 if ($this->mItemsCount <= ROWS_PER_VIEW)
 {
 $pageNo = 1;
 $this->mTotalPages = 1;
 }
 // else we calculate number of pages and build new SELECT query
 else
 {
 $this->mTotalPages = ceil($this->mItemsCount / ROWS_PER_VIEW);
 $start_page = ($pageNo - 1) * ROWS_PER_VIEW;
 $queryString .= ' LIMIT ' . $start_page . ',' . ROWS_PER_VIEW;
 }
 // save the number of the returned page
 $this->mReturnedPage = $pageNo;
 // returns the new query string
 return $queryString;
 }
// end class Grid
}
?>

5. Add the configuration file, config.php:
<?php
// defines database connection data
define('DB_HOST', 'localhost');
define('DB_USER', 'ajaxuser');
define('DB_PASSWORD', 'practical');
define('DB_DATABASE', 'ajax');
// defines the number of visible rows in grid
define('ROWS_PER_VIEW', 10);
?>

6. Create the error-handling script, error_handler.php with the following contents:
<?php
// set the user error handler method to be error_handler
set_error_handler('error_handler', E_ALL);
// error handler function
function error_handler($errNo, $errStr, $errFile, $errLine)
{

 209

AJAX Grid

 210

 // clear any output that has already been generated
 ob_clean();
 // output the error message
 $error_message = 'ERRNO: ' . $errNo . chr(10) .
 'TEXT: ' . $errStr . chr(10) .
 'LOCATION: ' . $errFile .
 ', line ' . $errLine;
 echo $error_message;
 // prevent processing any more PHP scripts
 exit;
}
?>

7. It's time for the client now. Start by creating index.html:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
 <head>
 <title>AJAX Grid</title>
 <script type="text/javascript" src="grid.js"></script>
 <link href="grid.css" type="text/css" rel="stylesheet"/>
 </head>
 <body onload="init();">
 <div id="gridDiv" />
 </body>
</html>

8. Now let's create the XSLT file named grid.xsl that will be used in the JavaScript
code to generate the output:
<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <h2>AJAX Grid</h2>
 <xsl:call-template name="menu"/>
 <form id="grid_form_id">
 <table class="list">
 <tr>
 <th class="th1">ID</th>
 <th class="th2">Name</th>
 <th class="th3">Price</th>
 <th class="th4">Promo</th>
 <th class="th5"></th>
 </tr>
 <xsl:for-each select="data/grid/row">
 <xsl:element name="tr">
 <xsl:attribute name="id">
 <xsl:value-of select="product_id" />
 </xsl:attribute>
 <td><xsl:value-of select="product_id" /></td>
 <td><xsl:value-of select="name" /> </td>
 <td><xsl:value-of select="price" /></td>
 <td>
 <xsl:choose>
 <xsl:when test="on_promotion > 0">
 <input type="checkbox" name="on_promotion"
 disabled="disabled" checked="checked"/>
 </xsl:when>
 <xsl:otherwise>
 <input type="checkbox" name="on_promotion"
 disabled="disabled"/>
 </xsl:otherwise>
 </xsl:choose>
 </td>

Chapter 8

 <td>
 <xsl:element name="a">
 <xsl:attribute name = "href">#</xsl:attribute>
 <xsl:attribute name = "onclick">
 editId(<xsl:value-of select="product_id" />, true)
 </xsl:attribute>
 Edit
 </xsl:element>
 </td>
 </xsl:element>
 </xsl:for-each>
 </table>
 </form>
 <xsl:call-template name="menu" />
 </xsl:template>
 <xsl:template name="menu">
 <xsl:for-each select="data/params">
 <table>
 <tr>
 <td class="left">
 <xsl:value-of select="items_count" /> Items
 </td>
 <td class="right">
 <xsl:choose>
 <xsl:when test="previous_page>0">
 <xsl:element name="a" >
 <xsl:attribute name="href" >#</xsl:attribute>
 <xsl:attribute name="onclick">
 loadGridPage(<xsl:value-of select="previous_page"/>)
 </xsl:attribute>
 Previous page
 </xsl:element>
 </xsl:when>
 </xsl:choose>
 </td>
 <td class="left">
 <xsl:choose>
 <xsl:when test="next_page>0">
 <xsl:element name="a">
 <xsl:attribute name = "href" >#</xsl:attribute>
 <xsl:attribute name = "onclick">
 loadGridPage(<xsl:value-of select="next_page"/>)
 </xsl:attribute>
 Next page
 </xsl:element>
 </xsl:when>
 </xsl:choose>
 </td>
 <td class="right">
 page <xsl:value-of select="returned_page" />
 of <xsl:value-of select="total_pages" />
 </td>
 </tr>
 </table>
 </xsl:for-each>
 </xsl:template>
</xsl:stylesheet>

9. Create grid.js:
// stores the reference to the XMLHttpRequest object
var xmlHttp = createXmlHttpRequestObject();
// the name of the XSLT file
var xsltFileUrl = "grid.xsl";
// the file that returns the requested data in XML format
var feedGridUrl = "grid.php";

 211

AJAX Grid

 212

// the id of the grid div
var gridDivId = "gridDiv";
// the grid of the status div
var statusDivId = "statusDiv";
// stores temporary row data
var tempRow;
// the ID of the product being edited
var editableId = null;
// the XSLT document
var stylesheetDoc;

// eveything starts here
function init()
{
 // test if user has browser that supports native XSLT functionality
 if(window.XMLHttpRequest && window.XSLTProcessor && window.DOMParser)
 {
 // load the grid
 loadStylesheet();
 loadGridPage(1);
 return;
 }
 // test if user has Internet Explorer with proper XSLT support
 if (window.ActiveXObject && createMsxml2DOMDocumentObject())
 {
 // load the grid
 loadStylesheet();
 loadGridPage(1);
 // exit the function
 return;
 }
 // if browser functionality testing failed, alert the user
 alert("Your browser doesn't support the necessary functionality.");
}

function createMsxml2DOMDocumentObject()
{
 // will store the reference to the MSXML object
 var msxml2DOM;
 // MSXML versions that can be used for our grid
 var msxml2DOMDocumentVersions = new Array("Msxml2.DOMDocument.6.0",
 "Msxml2.DOMDocument.5.0",
 "Msxml2.DOMDocument.4.0");
 // try to find a good MSXML object
 for (var i=0; i<msxml2DOMDocumentVersions.length && !msxml2DOM; i++)
 {
 try
 {
 // try to create an object
 msxml2DOM = new ActiveXObject(msxml2DOMDocumentVersions[i]);
 }
 catch (e) {}
 }
 // return the created object or display an error message
 if (!msxml2DOM)
 alert("Please upgrade your MSXML version from \n" +
 "http://msdn.microsoft.com/XML/XMLDownloads/default.aspx");
 else
 return msxml2DOM;
}

// creates an XMLHttpRequest instance
function createXmlHttpRequestObject()
{
 // will store the reference to the XMLHttpRequest object
 var xmlHttp;

Chapter 8

 // this should work for all browsers except IE6 and older
 try
 {
 // try to create XMLHttpRequest object
 xmlHttp = new XMLHttpRequest();
 }
 catch(e)
 {
 // assume IE6 or older
 var XmlHttpVersions = new Array("MSXML2.XMLHTTP.6.0",
 "MSXML2.XMLHTTP.5.0",
 "MSXML2.XMLHTTP.4.0",
 "MSXML2.XMLHTTP.3.0",
 "MSXML2.XMLHTTP",
 "Microsoft.XMLHTTP");
 // try every prog id until one works
 for (var i=0; i<XmlHttpVersions.length && !xmlHttp; i++)
 {
 try
 {
 // try to create XMLHttpRequest object
 xmlHttp = new ActiveXObject(XmlHttpVersions[i]);
 }
 catch (e) {}
 }
 }
 // return the created object or display an error message
 if (!xmlHttp)
 alert("Error creating the XMLHttpRequest object.");
 else
 return xmlHttp;
}

// loads the stylesheet from the server using a synchronous request
function loadStylesheet()
{
 // load the file from the server
 xmlHttp.open("GET", xsltFileUrl, false);
 xmlHttp.send(null);
 // try to load the XSLT document
 if (this.DOMParser) // browsers with native functionality
 {
 var dp = new DOMParser();
 stylesheetDoc = dp.parseFromString(xmlHttp.responseText, "text/xml");
 }
 else if (window.ActiveXObject) // Internet Explorer?
 {
 stylesheetDoc = createMsxml2DOMDocumentObject();
 stylesheetDoc.async = false;
 stylesheetDoc.load(xmlHttp.responseXML);
 }
}

// makes asynchronous request to load a new page of the grid
function loadGridPage(pageNo)
{
 // disable edit mode when loading new page
 editableId = false;
 // continue only if the XMLHttpRequest object isn't busy
 if (xmlHttp && (xmlHttp.readyState == 4 || xmlHttp.readyState == 0))
 {
 var query = feedGridUrl + "?action=FEED_GRID_PAGE&page=" + pageNo;
 xmlHttp.open("GET", query, true);
 xmlHttp.onreadystatechange = handleGridPageLoad;
 xmlHttp.send(null);
 }
}

 213

AJAX Grid

 214

// handle receiving the server response with a new page of products
function handleGridPageLoad()
{
 // when readyState is 4, we read the server response
 if (xmlHttp.readyState == 4)
 {
 // continue only if HTTP status is "OK"
 if (xmlHttp.status == 200)
 {
 // read the response
 response = xmlHttp.responseText;
 // server error?
 if (response.indexOf("ERRNO") >= 0
 || response.indexOf("error") >= 0
 || response.length == 0)
 {
 // display error message
 alert(response.length == 0 ? "Server serror." : response);
 // exit function
 return;
 }
 // the server response in XML format
 xmlResponse = xmlHttp.responseXML;
 // browser with native functionality?
 if (window.XMLHttpRequest && window.XSLTProcessor &&
 window.DOMParser)
 {
 // load the XSLT document
 var xsltProcessor = new XSLTProcessor();
 xsltProcessor.importStylesheet(stylesheetDoc);
 // generate the HTML code for the new page of products
 page = xsltProcessor.transformToFragment(xmlResponse, document);
 // display the page of products
 var gridDiv = document.getElementById(gridDivId);
 gridDiv.innerHTML = "";
 gridDiv.appendChild(page);
 }
 // Internet Explorer code
 else if (window.ActiveXObject)
 {
 // load the XSLT document
 var theDocument = createMsxml2DOMDocumentObject();
 theDocument.async = false;
 theDocument.load(xmlResponse);
 // display the page of products
 var gridDiv = document.getElementById(gridDivId);
 gridDiv.innerHTML = theDocument.transformNode(stylesheetDoc);
 }
 }
 else
 {
 alert("Error reading server response.")
 }
 }
}

// enters the product specified by id into edit mode if editMode is true,
// and cancels edit mode if editMode is false
function editId(id, editMode)
{
 // gets the <tr> element of the table that contains the table
 var productRow = document.getElementById(id).cells;
 // are we enabling edit mode?
 if(editMode)
 {
 // we can have only one row in edit mode at one time

Chapter 8

 if(editableId) editId(editableId, false);
 // store current data, in case the user decides to cancel the changes
 save(id);
 // create editable text boxes
 productRow[1].innerHTML =
 '<input class="editName" type="text" name="name" ' +
 'value="' + productRow[1].innerHTML+'">';
 productRow[2].innerHTML =
 '<input class="editPrice" type="text" name="price" ' +
 'value="' + productRow[2].innerHTML+'">';
 productRow[3].getElementsByTagName("input")[0].disabled = false;
 productRow[4].innerHTML = '<a href="#" ' +
 'onclick="updateRow(document.forms.grid_form_id,' + id +
 ')">Update
<a href="#" onclick="editId(' + id +
 ',false)">Cancel';
 // save the id of the product being edited
 editableId = id;
 }
 // if disabling edit mode...
 else
 {
 productRow[1].innerHTML = document.forms.grid_form_id.name.value;
 productRow[2].innerHTML = document.forms.grid_form_id.price.value;
 productRow[3].getElementsByTagName("input")[0].disabled = true;
 productRow[4].innerHTML = '<a href="#" onclick="editId(' + id +
 ',true)">Edit';
 // no product is being edited
 editableId = null;
 }
}

// saves the original product data before editing row
function save(id)
{
 // retrieve the product row
 var tr = document.getElementById(id).cells;
 // save the data
 tempRow = new Array(tr.length);
 for(var i=0; i<tr.length; i++)
 tempRow[i] = tr[i].innerHTML;
}

// cancels editing a row, restoring original values
function undo(id)
{
 // retrieve the product row
 var tr = document.getElementById(id).cells;
 // copy old values
 for(var i=0; i<tempRow.length; i++)
 tr[i].innerHTML = tempRow[i];
 // no editable row
 editableId = null;
}

// update one row in the grid if the connection is clear
function updateRow(grid, productId)
{
 // continue only if the XMLHttpRequest object isn't busy
 if (xmlHttp && (xmlHttp.readyState == 4 || xmlHttp.readyState == 0))
 {
 var query = feedGridUrl + "?action=UPDATE_ROW&id=" + productId +
 "&" + createUpdateUrl(grid);
 xmlHttp.open("GET", query, true);
 xmlHttp.onreadystatechange = handleUpdatingRow;
 xmlHttp.send(null);
 }
}

 215

AJAX Grid

 216

// handle receiving a response from the server when updating a product
function handleUpdatingRow()
{
 // when readyState is 4, we read the server response
 if(xmlHttp.readyState == 4)
 {
 // continue only if HTTP status is "OK"
 if(xmlHttp.status == 200)
 {
 // read the response
 response = xmlHttp.responseText;
 // server error?
 if (response.indexOf("ERRNO") >= 0
 || response.indexOf("error") >= 0
 || response.length == 0)
 alert(response.length == 0 ? "Server serror." : response);
 // if everything went well, cancel edit mode
 else
 editId(editableId, false);
 }
 else
 {
 // undo any changes in case of error
 undo(editableId);
 alert("Error on server side.");
 }
 }
}

// creates query string parameters for updating a row
function createUpdateUrl(grid)
{
 // initialize query string
 var str = "";
 // build a query string with the values of the editable grid elements
 for(var i=0; i<grid.elements.length; i++)
 switch(grid.elements[i].type)
 {
 case "text":
 case "textarea":
 str += grid.elements[i].name + "=" +
 escape(grid.elements[i].value) + "&";
 break;
 case "checkbox":
 if (!grid.elements[i].disabled)
 str += grid.elements[i].name + "=" +
 (grid.elements[i].checked ? 1 : 0) + "&";
 break;
 }
 // return the query string
 return str;
}

10. Finally, create grid.css:
body
{
 font-family: Verdana, Arial;
 font-size: 10pt
}

table
{
 width: 500px;
}

td.right
{

Chapter 8

 color: darkblue;
 text-align: right;
 width: 125px
}

td.left
{
 color: darkblue;
 text-align: left;
 width: 125px
}

table.list
{
 border: black 1px solid;
}

th
{
 text-align: left;
 background-color: navy;
 color: white
}

th.th1
{
 width: 30px
}

th.th2
{
 width: 300px
}

input.editName
{
 border: black 1px solid;
 width: 300px
}

input.editPrice
{
 border: black 1px solid;
 width: 50px
}

11. Load http://localhost/ajax/grid in your web browser, and test its functionality
to make sure it works as expected (see Figures 8.1 and 8.2 for reference).

What Just Happened?
Let's dissect the code starting with the server-side functionality. At the heart of the server lies the
database. In our case, we have a table called product with the following fields:

• product_id is the table's primary key, containing the numeric ID of the product.
• name is the product's name.
• price is the product's price.
• on_promotion is a bit field (should only take values of 0 or 1, although MySQL may

permit more, depending on the version), which specifies if the product is on
promotion. We used this field for our grid because it allows us to show how to use a
checkbox to display the bit value.

 217

http://localhost/ajax/grid

AJAX Grid

 218

As usual on the server, we have a PHP script, which in this case is named grid.php, that is the
main access point for all asynchronous client requests.

grid.php expects to receive a query string parameter called action that tells it what action it is
expected to perform. The possible values are:

• FEED_GRID_PAGE: This value is used to retrieve a page of products. Together with
this parameter, the server also expects a parameter named page, which specifies what
page of products to return.

• UPDATE_ROW: This value is used to update the details of a row that was edited by the
user. For this action, the server also expects to receive the new values for the
product, in four parameters named id, name, price, and on_promotion.

To see the data generated by the server, make a simple call to http://localhost/ajax/grid/
grid.php?action=FEED_GRID_PAGE&page=1. Using the default database information, the output
will look like Figure 8.3:

Figure 8.3: Server Returning the First Page of Products

Chapter 8

On the client, this data will be parsed and transformed to the HTML grid using an XSL
transformation. This code was tested with Mozilla and Internet Explorer, which at the time of
writing supported the required functionality. Opera is expected to support XSL Transformations
starting with version 9.

The XSL transformation code is defined in grid.xsl. Please see Appendix C at
http://ajaxphp.packtpub.comfor a primer into the world of XSL, and refer one of the many
available books and online resources for digging into the details. XSL is a really big subject, so be
prepared for a lot of learning if you intend to master it.

The first function in the client script, grid.js, is init(). This function checks if the user's
browser has the necessary features to perform the XSL transformation:

// eveything starts here
function init()
{
 // test if user has browser that supports native XSLT functionality
 if(window.XMLHttpRequest && window.XSLTProcessor && window.DOMParser)
 {
 // load the grid
 loadStylesheet();
 loadGridPage(1);
 return;
 }
 // test if user has Internet Explorer with proper XSLT support
 if (window.ActiveXObject && createMsxml2DOMDocumentObject())
 {
 // load the grid
 loadStylesheet();
 loadGridPage(1);
 // exit the function
 return;
 }
 // if browser functionality testing failed, alert the user
 alert("Your browser doesn't support the necessary functionality.");
}

This function allows continuing if the browser is either Internet Explorer (in which case the user
also needs a recent MSXML version), or a browser that natively supports the XMLHttpRequest,
XSLTProcessor, and DOMParser classes.

The second function that is important to understand is loadStylesheet(). This function is called
once when the page loads, to request the grid.xsl file from the server, which is loaded locally.
The grid.xls file is loaded using a synchronous call, and then is stored using techniques specific
to the user's browser, depending on whether the browser has native functionality, or it is Internet
Explorer, in which case an ActiveXObject is used:

// loads the stylesheet from the server using a synchronous request
function loadStylesheet()
{
 // load the file from the server
 xmlHttp.open("GET", xsltFileUrl, false);
 xmlHttp.send(null);
 // try to load the XSLT document
 if (this.DOMParser) // browsers with native functionality
 {
 var dp = new DOMParser();
 stylesheetDoc = dp.parseFromString(xmlHttp.responseText, "text/xml");
 }
 else if (window.ActiveXObject) // Internet Explorer?

 219

AJAX Grid

 220

 {
 stylesheetDoc = createMsxml2DOMDocumentObject();
 stylesheetDoc.async = false;
 stylesheetDoc.load(xmlHttp.responseXML);
 }
}

The loadGridPage function is called once when the page loads, and then each time the user clicks
Previous Page or Next Page, to load a new page of data. This function calls the server
asynchronously, specifying the page of products that needs to be retrieved:

// makes asynchronous request to load a new page of the grid
function loadGridPage(pageNo)
{
 // disable edit mode when loading new page
 editableId = false;
 // continue only if the XMLHttpRequest object isn't busy
 if (xmlHttp && (xmlHttp.readyState == 4 || xmlHttp.readyState == 0))
 {
 var query = feedGridUrl + "?action=FEED_GRID_PAGE&page=" + pageNo;
 xmlHttp.open("GET", query, true);
 xmlHttp.onreadystatechange = handleGridPageLoad;
 xmlHttp.send(null);
 }
}

The handleGridPageLoad callback function is called to handle the server response. After the
typical error handling mechanism, it reveals the code that effectively transforms the XML
structure received from the server to HTML code that is displayed to the client. The
transformation code is, again, browser-specific, performing functionality differently for Internet
Explorer and for the browsers with native XLS support:

 // the server response in XML format
 xmlResponse = xmlHttp.responseXML;
 // browser with native functionality?
 if (window.XMLHttpRequest && window.XSLTProcessor && window.DOMParser)
 {
 // load the XSLT document
 var xsltProcessor = new XSLTProcessor();
 xsltProcessor.importStylesheet(stylesheetDoc);
 // generate the HTML code for the new page of products
 page = xsltProcessor.transformToFragment(xmlResponse, document);
 // display the page of products
 var gridDiv = document.getElementById(gridDivId);
 gridDiv.innerHTML = "";
 gridDiv.appendChild(page);
 }
 // Internet Explorer code
 else if (window.ActiveXObject)
 {
 // load the XSLT document
 var theDocument = createMsxml2DOMDocumentObject();
 theDocument.async = false;
 theDocument.load(xmlResponse);
 // display the page of products
 var gridDiv = document.getElementById(gridDivId);
 gridDiv.innerHTML = theDocument.transformNode(stylesheetDoc);
 }

Then we have the editId function, which is called when the Edit or Cancel links are clicked in the
grid, to enable or disable edit mode. When edit mode is enabled, the product name, its price, and
its promotion checkbox are transformed to editable controls. When disabling edit mode, the same
elements are changed back to their non-editable state.

Chapter 8

save() and undo() are helper functions used for editing rows. The save function saves the
original product values, which are loaded back to the grid by undo if the user changes her or his
mind about the change and clicks the link. Cancel

Row updating functionality is supported by the updateRow function, which is called when the Update
link is clicked. updateRow() makes an asynchronous call to the server, specifying the new product
values, which are composed into the query string using the createUpdateUrl helper function:

// update one row in the grid if the connection is clear
function updateRow(grid, productId)
{
 // continue only if the XMLHttpRequest object isn't busy
 if (xmlHttp && (xmlHttp.readyState == 4 || xmlHttp.readyState == 0))
 {
 var query = feedGridUrl + "?action=UPDATE_ROW&id=" + productId +
 "&" + createUpdateUrl(grid);
 xmlHttp.open("GET", query, true);
 xmlHttp.onreadystatechange = handleUpdatingRow;
 xmlHttp.send(null);
 }
}

The handleUpdatingRow callback function has the responsibility to ensure that the product change
is performed successfully, in which case it disables edit mode for the row, or displays an error
message if an error happened on the server side:

 // continue only if HTTP status is "OK"
 if(xmlHttp.status == 200)
 {
 // read the response
 response = xmlHttp.responseText;
 // server error?
 if (response.indexOf("ERRNO") >= 0
 || response.indexOf("error") >= 0
 || response.length == 0)
 alert(response.length == 0 ? "Server serror." : response);
 // if everything went well, cancel edit mode
 else
 editId(editableId, false);
 }

The technique for displaying the error was implemented in other exercises as well. If the server
returned a specific error message, that message is displayed to the user. If PHP is configured not to
output errors, the response from the server will be void, in which case we simply display a generic
error message.

Summary
In this chapter you have implemented already familiar AJAX techniques to build a data grid. You
have met XSL, which allows implementing very powerful architectures where the server side of
your application doesn't need to deal with presentation.

Having XSL deal with formatting the data to be displayed to your visitors is the professional way
to deal with these kinds of tasks, and if you are serious about web development, it is recommended
to learn XSL well. Beware; this will be time and energy consuming, but in the end the effort will
be well worth it.

 221

9
AJAX RSS Reader

In the last few years, the Web has become much more active than it used to be. Today, we see an
explosion of new sources of information, such as news sites appearing every day (such as
http://www.digg.com and http://www.newsvine.com), and the growing trend of web life—
weblogs (every person seems to have a weblog these days).

As a natural reaction to this invasion of information, many systems that allow grouping, filtering,
and aggregating this information have appeared. This is implemented in practice through web
syndication, which is that form of syndication where parts of a website (such as news, weblog
posts, articles, and so on) are made available for other sites or applications to use.

In order to be usable by other parties, the data to be shared must be in a generic format that can be
laid out in different formats than in the original source, and when it comes to such formats, RSS
2.0 and Atom are the most popular choices.

Learn more about the history of RSS and Atom in the Wikipedia—the link to the RSS page is
http://en.wikipedia.org/wiki/RSS_(protocol).

In this chapter, we'll analyze the RSS file format, then take a look at Google Reader (Google's
RSS aggregator), and then build our own RSS aggregator web page with AJAX and PHP.

Working with RSS
RSS is a widely used XML-based standard, used to exchange information between applications on
the Internet. One of the great advantages of XML is that it is plain text, thus easily read by any
application. RSS feeds can be viewed as plain text files, but it doesn't make much sense to use
them like that, as they are meant to be read by specialized software that generates web content
based on their data.

While RSS is not the only standard for expressing feeds as XML, we've chosen to use this format
in the case study because it's very widely used. In order to better understand RSS, we need to see
what lies underneath the name; the RSS document structure, that is.

http://www.digg.com/
http://en.wikipedia.org/wiki/RSS_(protocol)

AJAX RSS Reader

 224

The RSS Document Structure
The first version of RSS was created in 1999. This is known as version 0.9. Since then it has
evolved to the current 2.0.1 version, which has been frozen by the development community, as
future development is expected to be done under a different name.

A typical RSS feed might look like this:
<rss version="2.0">
 <channel>
 <title>CNN.com</title>
 <link>http://www.example.org</link>
 <description>A short description of this feed</description>
 <language>en</language>
 <pubDate>Mon, 17 Oct 2005 07:56:23 EDT</pubDate>
 <item>
 <title>Catchy Title</title>
 <link>http://www.example.org/2005/11/catchy-title.html</link>
 <description>
 The description can hold any content you wish, including XHTML.
 </description>
 <pubDate>Mon, 17 Oct 2005 07:55:28 EDT</pubDate>
 </item>
 <item>
 <title>Another Catchy Title</title>
 <link>http://www.example.org/2005/11/another-catchy-title.html</link>
 <description>
 The description can hold any content you wish, including XHTML.
 </description>
 <pubDate>Mon, 17 Oct 2005 07:55:28 EDT</pubDate>
 </item>
 </chanel>
</rss>

The feed may contain any number of <item> items, each item holding different news or blog
entries or whatever content you wish to store.

This is all plain text, but as we stated above, we need special software that will parse the XML and
return the information we want. An RSS parser is called an aggregator because it can usually
extract and aggregate information from more than one RSS source.

Such an application is Google Reader, an online service from Google, launched in fall 2005. A
veteran web-based RSS reader service is the one at http://www.bloglines.com.

Google Reader
Google Reader (http://reader.google.com) provides a simple and intuitive AJAX-enabled
interface that helps users keep track of their RSS subscriptions and reading. It hasn't been long
since this service was launched (it's still in beta at the moment of writing), but it has already got a
great deal of attention from users. Figure 9.1 shows the Google Reader in action, reading a news
item from Packt Publishing's RSS feed.

http://www.bloglines.com/

Chapter 9

Figure 9.1: Managing RSS Subscriptions (Feeds) on Google Reader

Implementing the AJAX RSS Reader
In order for this exercise to function correctly, you need to enable XSL support in your PHP
installation. Appendix A contains installation instructions that include XSL support.

In the exercise that will follow we will build our own AJAX-enabled RSS reader application.
The main characteristics for the application are:

1. We'll keep the application simple. The list of feeds will be hard-coded in a PHP file
on the server.

2. We'll use XSLT to transform the RSS feed data into something that we can display
to the visitor. In this chapter, the XSL transformation will be performed on the server
side, using PHP code.

3. We'll use the SimpleXML library to read the XML response from the news server.
SimpleXML was introduced in PHP 5, and you can find its official documentation at
http://php.net/simplexml. SimpleXML is an excellent library that can make
reading XML sources much easier than using the DOM.

 225

AJAX RSS Reader

 226

4. The application will look like Figure 9.2:

Figure 9.2: Our AJAX-enabled RSS Reader Start Page

Feeds are loaded dynamically and are displayed as links in the left column. Clicking on a feed will
trigger an HTTP request and the server script will acquire the desired RSS feed.

The server then formats the feed with XSL and returns an XML string. Results are then displayed
in a human-readable form.

Time for Action—Building the RSS Reader Application
1. In your ajax folder, create a new folder named rss_reader.
2. Let's start with the server. Create a new file named rss_reader.php, and add this

code to it:
<?php
// load helper scripts
require_once ('error_handler.php');
require_once ('rss_reader.class.php');
// create a new RSS Reader instance
$reader = new CRssReader(urldecode($_POST['feed']));
// clear the output
if(ob_get_length()) ob_clean();
// headers are sent to prevent browsers from caching
header('Expires: Fri, 25 Dec 1980 00:00:00 GMT'); // time in the past
header('Last-Modified: ' . gmdate('D, d M Y H:i:s') . 'GMT');
header('Cache-Control: no-cache, must-revalidate');

Chapter 9

header('Pragma: no-cache');
header('Content-Type: text/xml');
// return the news to the client
echo $reader->getFormattedXML();
?>

3. Create a new file named rss_reader.class.php, and add this code to it:
<?php
// this class retrieves an RSS feed and performs a XSLT transformation
class CRssReader
{
 private $mXml;
 private $mXsl;

 // Constructor - creates an XML object based on the specified feed
 function __construct($szFeed)
 {
 // retrieve the RSS feed in a SimpleXML object
 $this->mXml = simplexml_load_file(urldecode($szFeed));
 // retrieve the XSL file contents in a SimpleXML object
 $this->mXsl = simplexml_load_file('rss_reader.xsl');
 }

 // Creates a formatted XML document based on retrieved feed
 public function getFormattedXML()
 {
 // create the XSLTProcessor object
 $proc = new XSLTProcessor;
 // attach the XSL
 $proc->importStyleSheet($this->mXsl);
 // apply the transformation and return formatted data as XML string
 return $proc->transformToXML($this->mXml);
 }
}
?>

4. Create a new file named rss_reader.xsl, and add this code to it:
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <dl>
 <xsl:for-each select="rss/channel/item">
 <dt><h3><xsl:value-of select="title" /></h3></dt>
 <dd>
 <xsl:value-of select="pubDate" />
 <p>
 <xsl:value-of select="description" />

 <xsl:element name="a">
 <xsl:attribute name = "href">
 <xsl:value-of select="link" />
 </xsl:attribute>
 read full article
 </xsl:element>
 </p>
 </dd>
 </xsl:for-each>
 </dl>
 </xsl:template>
</xsl:stylesheet>

5. Now add the standard error-handling file, error_handler.php. Feel free to copy this
file from the previous chapter. Anyway, here's the code for it:

 227

AJAX RSS Reader

 228

<?php
 // set the user error handler method to be error_handler
 set_error_handler('error_handler', E_ALL);

 // error handler function
 function error_handler($errNo, $errStr, $errFile, $errLine)
 {
 // clear any output that has already been generated
 if(ob_get_length()) ob_clean();
 // output the error message
 $error_message = 'ERRNO: ' . $errNo . chr(10) .
 'TEXT: ' . $errStr . chr(10) .
 'LOCATION: ' . $errFile .
 ', line ' . $errLine;
 echo $error_message;
 // prevent processing any more PHP scripts
 exit;
 }
?>

6. In the rss_reader folder, create a file named config.php, where we'll add the feeds
our application will aggregate.
<?php
// Set up some feeds
$feeds = array ('0' => array('title' => 'CNN Technology',
 'feed' =>
'http://rss.cnn.com/rss/cnn_tech.rss'),
 '1' => array('title' => 'BBC News',
 'feed' =>
'http://news.bbc.co.uk/rss/newsonline_uk_edition/front_page/rss.xml'),
 '2' => array('title' => 'Wired News',
 'feed' =>
'http://wirednews.com/news/feeds/rss2/0,2610,3,00.xml'));
?>

7. Create a new file named index.php, and add this code to it:
<?php
// load the list of feeds
require_once ('config.php');
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title>AJAX RSS Reader</title>
 <link rel="stylesheet" type="text/css" href="rss_reader.css"/>
 <script src="rss_reader.js" type="text/javascript"></script>
 </head>
 <body>
 <h1>AJAX RSS Reader</h1>
 <div id="feeds">
 <h2>Feeds</h2>
 <ul id="feedList">
 <?php
 // Display feeds
 for ($i = 0; $i < count($feeds); $i++)
 {
 echo '<li id="feed-' . $i . '"><a href="javascript:void(0);" ';
 echo 'onclick="getFeed(document.getElementById(\'feed-' . $i .
 '\'), \'' . urlencode($feeds[$i]['feed']) . '\');">';
 echo $feeds[$i]['title'] . '';
 }
 ?>

Chapter 9

 </div>
 <div id="content">
 <div id="loading" style="display:none">Loading feed...</div>
 <div id="feedContainer" style="display:none"></div>
 <div id="home">
 <h2>About the AJAX RSS Reader</h2>
 <p>
 The AJAX RSS reader is only a simple application that provides
 basic functionality for retrieving RSS feeds.
 </p>
 <p>
 This application is presented as a case study in
 Building
 Responsive Web Applications with AJAX and PHP
 (Packt Publishing, 2006).
 </p>
 </div>
 </div>
 </body>
</html>

8. Create a new file named rss_reader.js, and add this code to it:
// holds an instance of XMLHttpRequest
var xmlHttp = createXmlHttpRequestObject();
// when set to true, display detailed error messages
var showErrors = true;

// creates an XMLHttpRequest instance
function createXmlHttpRequestObject()
{
 // will store the reference to the XMLHttpRequest object
 var xmlHttp;
 // this should work for all browsers except IE6 and older
 try
 {
 // try to create XMLHttpRequest object
 xmlHttp = new XMLHttpRequest();
 }
 catch(e)
 {
 // assume IE6 or older
 var XmlHttpVersions = new Array("MSXML2.XMLHTTP.6.0",
 "MSXML2.XMLHTTP.5.0",
 "MSXML2.XMLHTTP.4.0",
 "MSXML2.XMLHTTP.3.0",
 "MSXML2.XMLHTTP",
 "Microsoft.XMLHTTP");
 // try every prog id until one works
 for (var i=0; i<XmlHttpVersions.length && !xmlHttp; i++)
 {
 try
 {
 // try to create XMLHttpRequest object
 xmlHttp = new ActiveXObject(XmlHttpVersions[i]);
 }
 catch (e) {} // ignore potential error
 }
 }
 // return the created object or display an error message
 if (!xmlHttp)
 alert("Error creating the XMLHttpRequest object.");
 else

 229

AJAX RSS Reader

 230

 return xmlHttp;
}

// function that displays an error message
function displayError($message)
{
 // ignore errors if showErrors is false
 if (showErrors)
 {
 // turn error displaying Off
 showErrors = false;
 // display error message
 alert("Error encountered: \n" + $message);
 }
}

// Retrieve titles from a feed and display them
function getFeed(feedLink, feed)
{
 // only continue if xmlHttp isn't void
 if (xmlHttp)
 {
 // try to connect to the server
 try
 {
 if (xmlHttp.readyState == 4 || xmlHttp.readyState == 0)
 {
 /* Get number of feeds and loop through each one of them to
 change the class name of their container (). */
 var numberOfFeeds =
 document.getElementById("feedList").childNodes.length;
 for (i = 0; i < numberOfFeeds; i++)
 document.getElementById("feedList").childNodes[i].className = "";
 // Change the class name for the clicked feed so it becomes
 // highlighted
 feedLink.className = "active";
 // Display "Loading..." message while loading feed
 document.getElementById("loading").style.display = "block";
 // Call the server page to execute the server-side operation
 params = "feed=" + feed;
 xmlHttp.open("POST", "rss_reader.php", true);
 xmlHttp.setRequestHeader("Content-Type",
 "application/x-www-form-urlencoded");
 xmlHttp.onreadystatechange = handleHttpGetFeeds;
 xmlHttp.send(params);
 }
 else
 {
 // if connection was busy, try again after 1 second
 setTimeout("getFeed('" + feedLink + "', '" + feed + "');", 1000);
 }
 }
 // display the error in case of failure
 catch (e)
 {
 displayError(e.toString());
 }
 }
}

// function that retrieves the HTTP response
function handleHttpGetFeeds()
{

Chapter 9

 // continue if the process is completed
 if (xmlHttp.readyState == 4)
 {
 // continue only if HTTP status is "OK"
 if (xmlHttp.status == 200)
 {
 try
 {
 displayFeed();
 }
 catch(e)
 {
 // display error message
 displayError(e.toString());
 }
 }
 else
 {
 displayError(xmlHttp.statusText);
 }
 }
}

// Processes server's response
function displayFeed()
{
 // read server response as text, to check for errors
 var response = xmlHttp.responseText;
 // server error?
 if (response.indexOf("ERRNO") >= 0
 || response.indexOf("error:") >= 0
 || response.length == 0)
 throw(response.length == 0 ? "Void server response." : response);
 // hide the "Loading..." message upon feed retrieval
 document.getElementById("loading").style.display = "none";
 // append XSLed XML content to existing DOM structure
 var titlesContainer = document.getElementById("feedContainer");
 titlesContainer.innerHTML = response;
 // make the feed container visible
 document.getElementById("feedContainer").style.display = "block";
 // clear home page text
 document.getElementById("home").innerHTML = "";
}

9. Create a new file named rss_reader.css, and add this code to it:
body
{
 font-family: Arial, Helvetica, sans-serif;
 font-size: 12px;
}

h1
{
 color: #ffffff;
 background-color: #3366CC;
 padding: 5px;
}

h2
{
 margin-top: 0px;
}

h3
{

 231

AJAX RSS Reader

 232

 margin-bottom: 0px;
}

li
{
 margin-bottom: 5px;
}

div
{
 padding: 10px;
}

a, a:visited
{
 color: #3366CC;
 text-decoration: underline;
}

a:hover
{
 color: #ffffff;
 background-color: #3366CC;
 text-decoration: none;
}

.active a
{
 color: #ffffff;
 background-color: #3366CC;
 text-decoration: none;
}

.active a:visited
{
 color: #ffffff;
 background-color:#3366CC;
 text-decoration:none;
}

.active a:hover
{
 color:#ffffff;
 background-color: #3366CC;
 text-decoration: none;
}

#feeds
{
 display: inline;
 float: left;
 width: 150px;
 background-color: #f4f4f4;
 border:1px solid #e6e6e6;
}

#content
{
 padding-left:170px;
 border:1px solid #f1f1f1;
}

#loading
{
 float: left;
 display: inline;

Chapter 9

 width: 410px;
 background-color: #fffbb8;
 color: #FF9900;
 border: 1px solid #ffcc00;
 font-weight: bold;
}

.date
{
 font-size: 10px;
 color: #999999;
}

10. Load http://localhost/ajax/rss_reader in your web browser. The initial page
should look like Figure 9.3. If you click one of the links, you should get something
like Figure 9.2.

Figure 9.3: The First Page of the AJAX RSS Reader

What Just Happened?
It's not a really professional application at this state, but the point is proven. It doesn't take much
code to accomplish such a result and any features you might think of can be added easily.

The user interface of this application is pretty basic, all set up in index.php. We first need to
include config.php—where our feeds are defined, in order to display the list of feeds on the left
panel. Feeds are defined as an associative array of arrays. The main array's keys are numbers
starting from 0 and its values are arrays, with keys being the feeds' titles and values being the
feeds' URLs. The $feeds array looks like this:

$feeds = array ("0" => array("title" => "CNN Technology",
 "feed" => "http://rss.cnn.com/rss/cnn_tech.rss"),

 233

http://localhost/ajax/rss_reader

AJAX RSS Reader

 234

 "1" => array("title" => "BBC News",
 "feed" =>
"http://news.bbc.co.uk/rss/newsonline_uk_edition/front_page/rss.xml"),
 "2" => array("title" => "Wired News",
 "feed" =>
"http://wirednews.com/news/feeds/rss2/0,2610,3,00.xml"));

Translated into a more meaningful form, this is how the $feeds array looks like:

ID Feed Title (title) Feed URL (feed)

0 CNN
Technology

http://rss.cnn.com/rss/cnn_tech.rss

1 BBC News http://news.bbc.co.uk/rss/newsonline_uk_edition/front_page/rss.xml

2 Wired News http://wirednews.com/news/feeds/rss2/0,2610,3,00.xml

We have decided to store the feeds like this for simplicity, but it's easy to extend the code and
store them in a database, if you need to.

In index.php we loop through these feeds and display them all as an un-ordered list, each feed
being a link inside an element. We assign each link an onclick event function where
getFeed function will be called. This function takes two parameters: the 's ID and the feed's
URL. We need the ID in order to highlight that link in the list and we need the feed's URL to send
it as a parameter in our HTTP request to the server. The urlencode function ensures that the URL
is safely sent to the server, which will use urldecode to decode it.

Two more things about index.php:

• Initially hidden, the <div> with id="loading" will be displayed while retrieving the
feed, to inform the user that the feed is loading. This is useful when working with a
slow connection or with slow servers, when the retrieval time will be long.

 <div id="loading" style="display:none">Loading feed...</div>

• The <div> with id="feedContainer" is the actual container where the feed will be
loaded. The feed will be dynamically inserted inside this div element.

 <div id="feedContainer"></div>

rss_reader.js contains the standard XMLHttpRequest initialization, request sending, and
response retrieval code. The getFeed function handles the sending of the HTTP request. First it
loops through all feed links and un-highlights the links by setting their CSS class to none. It then
highlights the active feed link:

 /* Get number of feeds and loop through each one of them to
 change the class name of their container (). */
 var numberOfFeeds =
 document.getElementById("feedList").childNodes.length;
 for (i = 0; i < numberOfFeeds; i++)
 document.getElementById("feedList").childNodes[i].className = "";
 // Change the class name for the clicked feed to highlight it
 feedLink.className = "active";

OK, the next step is to display the Loading feed... message:
 // Display "Loading..." message while loading feed
 document.getElementById("loading").style.display = "block";

http://rss.cnn.com/rss/cnn_tech.rss
http://news.bbc.co.uk/rss/newsonline_uk_edition/front_page/rss.xml
http://wirednews.com/news/feeds/rss2/0,2610,3,00.xml

Chapter 9

And finally, we send the HTTP request with the feed's title as parameter:
 // Call the server page to execute the server-side operation
 params = "feed=" + feed;
 xmlHttp.open("POST", "rss_reader.php", true);
 xmlHttp.setRequestHeader("Content-Type",
 "application/x-www-form-urlencoded");
 xmlHttp.onreadystatechange = handleHttpGetFeeds;
 xmlHttp.send(params);

The rss_reader.php script creates an instance of the CRssReader class and displays an
XSL-formatted XML document, which is returned back to the client. The following lines do the
hard work (the code that clears the output and prevents browser caching was stripped):

$reader = new CRssReader(urldecode($_POST['feed']));
echo $reader->getFormattedXML();

CRssReader is defined in rss_reader.class.php. This PHP class handles XML retrieval and
formatting. Getting a remote XML file is a piece of cake with PHP 5's new extension:
SimpleXML. We'll also load the XSL template and apply it to the retrieved XML.

The constructor of this class retrieves the XML and saves it in a class member named $mXml and
the XSL file in a class member named $mXsl:

 // Constructor - creates an XML object based on the specified feed
 function __construct($szFeed)
 {
 // retrieve the RSS feed in a SimpleXML object
 $this->mXml = simplexml_load_file(urldecode($szFeed));
 // retrieve the XSL file contents in a SimpleXML object
 $this->mXsl = simplexml_load_file('rss_reader.xsl');
 }

The getFormattedXML() function creates a new XSLTProcessor object in order to apply the XSL
transformation. The transformToXML method simply returns a formatted XML document, after the
XSL has been applied.

 // Creates a formatted XML document based on retrieved feed
 public function getFormattedXML()
 {
 // create the XSLTProcessor object
 $proc = new XSLTProcessor;
 // attach the XSL
 $proc->importStyleSheet($this->mXsl);
 // apply the transformation and return formatted data as XML string
 return $proc->transformToXML($this->mXml);
 }

What we need to accomplish with XSL is to loop through each "record" of the XML and display
the data inside. A record is delimited by <item> and </item> tags.

In rss_reader.xsl we define a loop like this:
<xsl:for-each select="rss/channel/item">

For example, to display the current title, we write:
<h3><xsl:value-of select="title" /></h3>

 235

AJAX RSS Reader

 236

Notice how we create a new <a> element with XSLT:
<xsl:element name="a">
 <xsl:attribute name = "href">
 <xsl:value-of select="link" />
 </xsl:attribute>
 read full article
</xsl:element>

We use this technique to build links to full articles on their actual websites.

There's also a bit of CSS code that will format the output according to our wish. Everything should
be pretty clear if you take a quick look at rss_reader.css.

Summary
Today's Web is different than yesterday's Web and tomorrow's Web will certainly be different
than today's. Yesterday's Web was a collection of pages linked together. All static, and everybody
kept things for themselves. The main characteristic of today's Web is information exchange
between websites and/or applications.

Based on what you've learned in this chapter, you'll be able to build an even better RSS Reader,
but why stop here? You hold some great tools that allow you to build great applications that could
impact on tomorrow's Web!

10
AJAX Drag and Drop

When drag-and-drop capability was first introduced to websites, people looked at it with
astonishment. This was really a great feature to provide via your website! Since then, JavaScript
has evolved in people's eyes from a "check-out-that-snow-on-my-website" scripting language to a
standardized and powerful "do-powerful-stuff-with-it" language.

Many frameworks and JavaScript toolkits have been developed, with new ones appearing
frequently. script.aculo.us is one of the most popular JavaScript toolkits, and it allows
implementing amazing effects in web pages—check out the examples on its official web page at
http://script.aculo.us/. Script.aculo.us is an open-source JavaScript framework, distributed
under an MIT-style license, so you can use it for anything you like, as long as you include the
copyright notice. You can download script.aculo.us from http://script.aculo.us/downloads.
Check out the documentation on http://wiki.script.aculo.us

In this chapter, you will learn how to integrate script.aculo.us features into your website, by
building an AJAX database-enabled sortable list.

Using Drag and Drop on the Web
While exploring some existing web applications with drag-and-drop capability, we found out that
there are at least two situations where drag and drop smoothes up the user interface and the
interactivity between human and machine. Drag and drop can be successfully used in:

• Shopping carts
• Sortable lists

Shopping Carts
You're probably familiar with traditional e-commerce websites. In the light of the new AJAX
boom, a new generation of shopping carts has appeared, where visitors have to use drag and drop
to add products to their carts, instead of clicking an "Add to Cart" button. While one could argue
the real usefulness of this "feature" (my grandmother still prefers the button, she doesn't know how
to drag and drop), the visual effect is pretty impressive.

http://script.aculo.us/
http://script.aculo.us/

AJAX Drag and Drop

 238

A few websites have already put this into practice. One such example is Panic Goods—selling
t-shirts! The URL for this is: http://www.panic.com/goods.

Notice the light blue bar on the bottom of the screen? That's the actual shopping cart. Just drag
some t-shirts from the catalog, and drop them into the shopping cart, to see how the cart performs.
Products are lined up in the cart and it's easy to see what you have chosen and for what amount.
Drag items outside the light blue bar to remove them from the cart. Pretty impressive, isn't it?

Sortable Lists
There's a type of list we probably use daily, namely, a to-do list. We usually use yellow Post-its
and some of us even use specialized software.

But with so many new web applications available out there, surely there must be a dozen to-do list
applications! I'll just mention Ta-da Lists (http://www.tadalist.com), created by 37signals.
This company has actually reinvented the entire concept of web applications and has taken it to the
next level. Ta-da Lists, one of its first products, is a tool that allows you to create several to-do
lists, each with its own items (things to do, that is). It's a really helpful tool and a lot of people use
it, although most of them have upgraded to other 37signals products like Basecamp
(http://www.basecamphq.com) and Backpack (http://www.backpackit.com).

Despite its intuitive user interface and easy-to-use actions, Ta-da Lists lacks a very basic feature
that would greatly increase its usability: dragging and dropping list items, thus reordering the list.
To reorder a list in Ta-da Lists, you have to click on a link that will refresh the page and display
four arrow buttons (bring to front, move up, move down, and send to back).

Although this implementation works well, a drag-and-drop system would make it faster and easier
to use. 37signals have improved this functionality in Basecamp, though, and the to-do lists in there
have draggable items—an upgrade that proves the usability of the drag-and-drop concept.

Building the AJAX Drag-and-Drop Sortable List
Application
One thing that sets this application apart from other applications we've built in this book is that in
this case, we are going to use two external JavaScript frameworks: Prototype and script.aculo.us.

"Prototype is a JavaScript framework that aims to ease development of dynamic web
applications." It was created by Sam Stephenson and is quickly becoming the JavaScript
framework, because of its great functionality.

Prototype is distributed under an MIT-style license and it can be downloaded from
http://prototype.conio.net.

If you want to learn more about Prototype, check out the tutorial on
http://www.particletree.com/features/quick-guide-to-prototype.

http://www.panic.com/
http://www.tadalist.com/
http://www.basecamphq.com/

Chapter 10

The Prototype features are:

• Complete object-orientation
• Utility functions
• Form helper functions
• AJAX support
• Periodical executer

Another pioneer of JavaScript development is Thomas Fuchs, the man who built the great JavaScript
library—script.aculo.us—a library that provides spectacular visual effects. We'll be using some of
these features in our drag-and-drop application (more specifically, the dragging and dropping
features). Script.aculo.us is built on top of Prototype, thus inheriting all Prototypes' features.

Features of Script.aculo.us are:

• Complete object-orientation
• Visual effects (fade in, fade out, grow, shrink, blind down, blind up, shake, etc.)
• Drag-and-drop support
• Autocompletion
• In-place editing
• Slider controls

The application we're about to build will be a small task management application and will allow us
to create new tasks, reorder existing tasks, and delete tasks. Summarizing the features:

• Database back end
• Drag-and-drop items
• Add new tasks with AJAX
• Instant database update when drag and dropping
• Delete a task by dragging and dropping it into a special designated area

 239

AJAX Drag and Drop

 240

Let's take a look at how this is going to look:

Figure 10.1: Add, Reorder, and Delete Tasks, in a Simple Visual Interface

Dragging items around the screen makes the other items switch positions.

Chapter 10

When dropping a task on the DROP HERE TO DELETE area, a confirmation is required before the
application proceeds with the actual deletion; as shown in the following figure:

Figure 10.2: Confirmation Required Before Deleting a Task

Time for Action—Task Management Application with AJAX
1. Connect to the ajax database, and create a table named tasks with the following code:

CREATE TABLE tasks (
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 order_no INT UNSIGNED NOT NULL default '0',
 description VARCHAR(100) NOT NULL default '',
 PRIMARY KEY (id)
);

2. In your ajax folder, create a new folder named drag-and-drop.
3. In the drag-and-drop folder, create a file named config.php, and add the database

configuration code to it:
<?php
// defines database connection data
define('DB_HOST', 'localhost');
define('DB_USER', 'ajaxuser');
define('DB_PASSWORD', 'practical');
define('DB_DATABASE', 'ajax');
?>

 241

AJAX Drag and Drop

4. Now add the standard error-handling file, error_handler.php. Feel free to copy this
file from previous chapters. Anyway, here's the code for it:
<?php
// set the user error handler method to be error_handler
set_error_handler('error_handler', E_ALL);

// error handler function
function error_handler($errNo, $errStr, $errFile, $errLine)
{
 // clear any output that has already been generated
 if(ob_get_length()) ob_clean();
 // output the error message
 $error_message = 'ERRNO: ' . $errNo . chr(10) .
 'TEXT: ' . $errStr . chr(10) .
 'LOCATION: ' . $errFile .
 ', line ' . $errLine;
 echo $error_message;
 // prevent processing any more PHP scripts
 exit;
}
?>

5. Download the script.aculo.us library from http://script.aculo.us/downloads
and unzip/untar the downloaded archive to your drag-and-drop folder. Change the

 242

script.aculo.us folder name from something like scriptaculous-js-x.y.z to
simply scriptaculous.

6. Create a new file named index.php, and add this code to it:
<?php
 require_once ('taskslist.class.php');
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title>AJAX Drag and Drop Sortable List</title>
 <link href="drag-and-drop.css" rel="stylesheet" type="text/css" />
 <script src="drag-and-drop.js" type="text/javascript"></script>
 <script src="scriptaculous/lib/prototype.js" type="text/javascript">
 </script>
 <script src="scriptaculous/src/scriptaculous.js" type="text/javascript">
 </script>
 </head>
 <body onload="startup()">
 <h1>Task Management</h1>
 <h2>Add a new task</h2>
 <div>
 <input type="text" id="txtNewTask" name="txtNewTask"
 size="30" maxlength="100" onkeydown="handleKey(event)"/>
 <input type="button" name="submit" value="Add this task"
 onclick="process('txtNewTask', 'addNewTask')" />
 </div>

 <h2>All tasks</h2>
 <ul id="tasksList" class="sortableList"
 onmouseup="process('tasksList', 'updateList')">
 <?php
 $myTasksList = new TasksList();
 echo $myTasksList->BuildTasksList();
 ?>

http://script.aculo.us/

Chapter 10

 <div id="trash">
 DROP HERE TO DELETE

 </div>
 </body>
</html>

7. Create a new file named taskslist.class.php, and add this code to it:
<?php
// load error handler and database configuration
require_once ('error_handler.php');
require_once ('config.php');

// This class builds a tasks list and
// performs add/delete/reorder actions on it
class TasksList
{
 // stored database connection
 private $mMysqli;

 // constructor opens database connection
 function __construct()
 {
 // connect to the database
 $this->mMysqli = new mysqli(DB_HOST, DB_USER, DB_PASSWORD,
 DB_DATABASE);
 }

 // destructor closes database connection
 public function __destruct()
 {
 $this->mMysqli->close();
 }

 // Builds the tasks list
 public function BuildTasksList()
 {
 // initialize output
 $myList = '';
 // build query
 $result = $this->mMysqli->query('SELECT * FROM tasks ' .
 'ORDER BY order_no ASC');
 // build task list as elements
 while ($row = $result->fetch_assoc())
 {
 $myList .= '<li id="' . htmlentities($row['id']) . '">' .
 htmlentities($row['description']) . '';
 }
 // return the list
 return $myList;
 }

 // Handles the server-side data processing
 public function Process($content, $action)
 {
 // perform action requested by client
 switch($action)
 {
 // Reorder task list
 case 'updateList':
 // retrieve update details
 $new_order = explode('_', $content);
 // update list

 243

AJAX Drag and Drop

 244

 for ($i=0; $i < count($new_order); $i++)
 {
 // escape data received from client
 $new_order[$i] =
 $this->mMysqli->real_escape_string($new_order[$i]);
 // update task
 $result = $this->mMysqli->query('UPDATE tasks SET order_no="' .
 $i . '" WHERE id="' . $new_order[$i] . '"');
 }
 $updatedList = $this->BuildTasksList();
 return $updatedList;
 break;

 // Add a new task
 case 'addNewTask':
 // escape input data
 $task = trim($this->mMysqli->real_escape_string($content));
 // continue only if task name is not null
 if ($task)
 {
 // obtain the highest order_no
 $result = $this->mMysqli->query('SELECT (MAX(order_no) + 1) ' .
 'AS order_no FROM tasks');
 $row = $result->fetch_assoc();
 // if the table is empty, order_no will be null
 $order = $row['order_no'];
 if (!$order) $order = 1;
 // insert the new task as the bottom of the list
 $result = $this->mMysqli->query
 ('INSERT INTO tasks (order_no, description) ' .
 'VALUES ("' . $order . '", "' . $task . '")');
 // return the updated tasks list
 $updatedList = $this->BuildTasksList();
 return $updatedList;
 }
 break;

 // Delete task
 case 'delTask':
 // escape input data
 $content = trim($this->mMysqli->real_escape_string($content));
 // delete the task
 $result = $this->mMysqli->query('DELETE FROM tasks WHERE id="' .
 $content . '"');
 $updatedList = $this->BuildTasksList();
 return $updatedList;
 break;
 }
 }
}
?>

8. Create a new file named drag-and-drop.php, and add this code to it:
<?php
// load helper class
require_once ('taskslist.class.php');
// create TasksList object
$myTasksList = new TasksList();
// read parameters
$action = $_GET['action'];
$content = $_GET['content'];
// clear the output
if(ob_get_length()) ob_clean();
// headers are sent to prevent browsers from caching

Chapter 10

header('Expires: Fri, 25 Dec 1980 00:00:00 GMT'); // time in the past
header('Last-Modified: ' . gmdate('D, d M Y H:i:s') . 'GMT');
header('Cache-Control: no-cache, must-revalidate');
header('Pragma: no-cache');
header('Content-Type: text/html');
// execute the client request and return the updated tasks list
echo $myTasksList->Process($content, $action);
?>

9. Create a new file named drag-and-drop.js, and add this code to it:
// holds an instance of XMLHttpRequest
var xmlHttp = createXmlHttpRequestObject();
// when set to true, display detailed error messages
var showErrors = true;
// initialize the requests cache
var cache = new Array();

// creates an XMLHttpRequest instance
function createXmlHttpRequestObject()
{
 // will store the reference to the XMLHttpRequest object
 var xmlHttp;
 // this should work for all browsers except IE6 and older
 try
 {
 // try to create XMLHttpRequest object
 xmlHttp = new XMLHttpRequest();
 }
 catch(e)
 {
 // assume IE6 or older
 var XmlHttpVersions = new Array("MSXML2.XMLHTTP.6.0",
 "MSXML2.XMLHTTP.5.0",
 "MSXML2.XMLHTTP.4.0",
 "MSXML2.XMLHTTP.3.0",
 "MSXML2.XMLHTTP",
 "Microsoft.XMLHTTP");
 // try every prog id until one works
 for (var i=0; i<XmlHttpVersions.length && !xmlHttp; i++)
 {
 try
 {
 // try to create XMLHttpRequest object
 xmlHttp = new ActiveXObject(XmlHttpVersions[i]);
 }
 catch (e) {} // ignore potential error
 }
 }
 // return the created object or display an error message
 if (!xmlHttp)
 alert("Error creating the XMLHttpRequest object.");
 else
 return xmlHttp;
}

// function that displays an error message
function displayError($message)
{
 // ignore errors if showErrors is false
 if (showErrors)
 {
 // turn error displaying Off
 showErrors = false;
 // display error message
 alert("Error encountered: \n" + $message);

 245

AJAX Drag and Drop

 246

 }
}

// Scriptaculous-specific code to define a sortable list and a drop zone
function startup()
{
 // Transform an unordered list into a sortable list with draggable items
 Sortable.create("tasksList", {tag:"li"});

 // Define a drop zone used for deleting tasks
 Droppables.add("trash",
 {
 onDrop: function(element)
 {
 var deleteTask =
 confirm("Are you sure you want to delete this task?")
 if (deleteTask)
 {
 Element.hide(element);
 process(element.id, "delTask");
 }
 }
 });
}

// Serialize the id values of list items (s)
function serialize(listID)
{
 // count the list's items
 var length = document.getElementById(listID).childNodes.length;
 var serialized = "";
 // loop through each element
 for (i = 0; i < length; i++)
 {
 // get current element
 var li = document.getElementById(listID).childNodes[i];
 // get current element's id without the text part
 var id = li.getAttribute("id");
 // append only the number to the ids array
 serialized += encodeURIComponent(id) + "_";
 }
 // return the array with the trailing '_' cut off
 return serialized.substring(0, serialized.length - 1);
}

// Send request to server
function process(content, action)
{
 // only continue if xmlHttp isn't void
 if (xmlHttp)
 {
 // initialize the request query string to empty string
 params = "";
 // escape the values to be safely sent to the server
 content = encodeURIComponent(content);
 // send different parameters depending on action
 if (action == "updateList")
 params = "?content=" + serialize(content) + "&action=updateList";
 else if (action == "addNewTask")
 {
 // prepare the task for sending to the server
 var newTask =
 trim(encodeURIComponent(document.getElementById(content).value));
 // don't add void tasks
 if (newTask)
 params = "?content=" + newTask + "&action=addNewTask";

Chapter 10

 }
 else if (action =="delTask")
 params = "?content=" + content + "&action=delTask";
 // don't add null params to cache
 if (params) cache.push(params);

 // try to connect to the server
 try
 {
 // only continue if the connection is clear and cache is not empty
 if ((xmlHttp.readyState == 4 || xmlHttp.readyState == 0)
 && cache.length>0)
 {
 // get next set of values from cache
 var cacheEntry = cache.shift();
 // initiate the request
 xmlHttp.open("GET", "drag-and-drop.php" + cacheEntry, true);
 xmlHttp.setRequestHeader("Content-Type",
 "application/x-www-form-urlencoded");
 xmlHttp.onreadystatechange = handleRequestStateChange;
 xmlHttp.send(null);
 }
 else
 {
 setTimeout("process();", 1000);
 }
 }
 // display the error in case of failure
 catch (e)
 {
 displayError(e.toString());
 }
 }
}

// function that retrieves the HTTP response
function handleRequestStateChange()
{
 // when readyState is 4, we also read the server response
 if (xmlHttp.readyState == 4)
 {
 // continue only if HTTP status is "OK"
 if (xmlHttp.status == 200)
 {
 try
 {
 postUpdateProcess();
 }
 catch(e)
 {
 // display error message
 displayError(e.toString());
 }
 }
 else
 {
 displayError(xmlHttp.statusText);
 }
 }
}
// Processes server's response
function postUpdateProcess()
{
 // read the response
 var response = xmlHttp.responseText;
 // server error?

 247

AJAX Drag and Drop

 248

 if (response.indexOf("ERRNO") >= 0 || response.indexOf("error") >= 0)
 alert(response);
 // update the tasks list
 document.getElementById("tasksList").innerHTML = response;
 Sortable.create("tasksList");
 document.getElementById("txtNewTask").value = "";
 document.getElementById("txtNewTask").focus();
}
/* handles keydown to detect when enter is pressed */
function handleKey(e)
{
 // get the event
 e = (!e) ? window.event : e;
 // get the code of the character that has been pressed
 code = (e.charCode) ? e.charCode :
 ((e.keyCode) ? e.keyCode :
 ((e.which) ? e.which : 0));
 // handle the keydown event
 if (e.type == "keydown")
 {
 // if enter (code 13) is pressed
 if(code == 13)
 {
 // send the current message
 process("txtNewTask", "addNewTask");
 }
 }
}

/* removes leading and trailing spaces from the string */
function trim(s)
{
 return s.replace(/(^\s+)|(\s+$)/g, "")
}

10. Create a new file named drag-and-drop.css, and add this code to it:
body
{
 font-family: Arial, Helvetica, sans-serif;
 font-size: 12px;
}
ul.sortableList
{
 list-style-type: none;
 padding: 0px;
 margin: 0px;
 width: 300px;
}
ul.sortableList li
{
 cursor: move;
 padding: 2px 2px;
 margin: 2px 0px;
 border: 1px solid #00CC00;
 background-color: #F4FFF5;
}
h1
{
 border-bottom: 1px solid #cccccc;
}
#trash
{
 border: 4px solid #ff0000;
 width: 270px;
 padding: 10px;
}

Chapter 10

11. Load http://localhost/ajax/drag-and-drop in your web browser and test its
functionality to make sure it works as expected (see Figures 10.1 and 10.2 for reference).

What Just Happened?
Adding a task is performed as mentioned in the following steps:

1. The user enters task.
2. When the user clicks on Add this task button or presses Enter, the data is sent to the

server with an asynchronous HTTP request. The server script inserts the new task
into the database, and returns the updated list, which is then injected into the code
with JavaScript.

When reordering the list, this is what happens:
1. Every task is an XHTML list element: an . The user begins dragging an item; on

dropping it, an HTTP request is sent to the server. This request consists of a
serialized string of IDs, every list element's ID.

2. On the client you'll see the list reordered, while the server updates the order of each
element in the database.

This is how deleting a task works:

1. The user drags an item and drops it on the DROP HERE TO DELETE area.
2. An HTTP request is sent to the server, which performs the task deletion from the

database and the XHTML element is instantly destroyed.

We include in index.php the JavaScript libraries we'll be using:
 <script src="drag-and-drop.js" type="text/javascript"></script>
 <script src="scriptaculous/lib/prototype.js" type="text/javascript">
 </script>
 <script src="scriptaculous/src/scriptaculous.js" type="text/javascript">
 </script>

The first line includes our custom functions and AJAX-related tasks. The second line includes the
Prototype library, while the third line includes the script.aculo.us library.

The onload event inside the <body> tag calls the startup() function, which defines the unordered
list with id="tasksList" as a sortable element (Sortable.create). This ensures drag-and-drop
functionality for elements inside the list. The startup() function also defines a droppable
element Droppables.add; we use this as an area where we delete tasks.

Also, inside the startup() function, we define a behavior for dropping a list item on the drop zone:
onDrop: function(element)
{
 var deleteTask = confirm("Are you sure you want to delete this task?")
 if (deleteTask == true)
 {
 Element.hide(element);
 process(element, "delTask");
 }
}

 249

http://localhost/ajax/drag-and-drop

AJAX Drag and Drop

 250

This code asks the user for confirmation, and if this is received hides that element from the screen
and calls process, which sends the HTTP request.

In index.php, there's a small block of code that dynamically creates the tasks list:
<ul id="tasksList" class="sortableList"
 onmouseup="process('tasksList', 'updateList')">
 <?php
 $myTasksList = new TasksList();
 echo $myTasksList->BuildTasksList();
 ?>

A new task is added by clicking on the Add this task button or by pressing the Enter key.

The actual AJAX request is sent by the process function. This function handles the sending of
requests for all three actions (reorder list / add task / delete task), by specifying the action to be
performed as a parameter.

When adding a new task, the first parameter of the process function is the ID of the text field in
which we've just typed a new task.

<input type="button" name="submit" value="Add this task"
onclick="process('txtNewTask', 'addNewTask')" />

The database update after list reordering is triggered by an onmouseup event inside the unordered
list with id="tasksList"—our sortable list. The event calls the process function, which takes as
its first parameter the list's ID.

<ul id="tasksList" class="sortableList" onmouseup="process('tasksList',
'updateList')">

Because we'll be sending an array of values to the server, we need to serialize that data and we do
this through serialize, our home-made function. This function counts how many elements
we've got, then loops through each one of them and add its ID to the string. We also need to cut
off the trailing '_' on the returned value.

function serialize(listID)
{
 // count the list's items
 var length = document.getElementById(listID).childNodes.length;
 var serialized = "";
 // loop through each element
 for (i = 0; i < length; i++)
 {
 // get current element
 var li = document.getElementById(listID).childNodes[i];
 // get current element's id without the text part
 var id = li.getAttribute("id");
 // append only the number to the ids array
 serialized += encodeURIComponent(id) + "_";
 }
 // return the array with the trailing '_' cut off
 return serialized.substring(0, serialized.length - 1);
}

Remember that XMLHttpRequest cannot make two HTTP requests at the same time, so if the
object is busy processing a previous request, we save the details of the current request for later.
This is particularly useful when the connection to the network or the Internet is slow. The request

Chapter 10

details are saved using a cache system with the properties of a FIFO structure. Luckily, the
JavaScript's Array class offers the exact functionality we need (through its push and shift
methods), and hence we use it for caching purposes:

var cache = new Array();

So, in process(), before sending a new request to the server, we save the current request to
the cache.

// only continue if xmlHttp isn't void
if (xmlHttp)
{
 if (action)
 cache.push(content + "&" + action);

This adds a new element at the end of our cache array, an element that is created of two parts, a
content (the ID of an HTML element) and an action to be performed by the server, separated by
' '. Note that the new element is added only if & action is not null, which happens when the
function is called not upon user's request, but to check if there are any pending actions to be made.

Afterwards, if the XMLHttpRequest object is free to start making other calls, we use shift() to get
the last action from the cache and perform it. Note that, however, this value may not be the one
just added using push—in FIFO scenarios, the oldest record is processed first.

// try to connect to the server
try
{
 // continue only if the XMLHttpRequest object isn't busy
 // and the cache is not empty
 if ((xmlHttp.readyState == 4 || xmlHttp.readyState == 0)
 && cache.length>0)
 {
 // get next set of values from cache
 var cacheEntry = cache.shift();

If the HTTP status is 0 or 4 it means that there are no active requests and we can send a new
request. To send a new request we first read the data back from the cache, and split the current
entry into two variables:

// split the array element
 var values = cacheEntry.split("&");
content = values[0];
action = values[1];

Depending on these variables, we'll be sending different values as parameters:
// send different parameters depending on action
if (action == "updateList")
 params = "content=" + serialize(content) + "&action=updateList";
else if (action == "addNewTask")

 params = "content=" + document.getElementById(content).value +
 "&action=addNewTask";
else if (action =="delTask")
 params = "content=" + content + "&action=delTask";

These pieces of data are then used to make the server request:
xmlHttp.open("POST", "drag-and-drop.php", true);
xmlHttp.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");
xmlHttp.onreadystatechange = handleRequestStateChange;
xmlHttp.send(params);

 251

AJAX Drag and Drop

 252

The server's response is handled by the handleRequestStateChange function, which in turn calls
postUpdateProcess(). Here we retrieve the server's response, which will either be an error
message or a string containing HTML code for the updated list:

 // read the response
 var response = xmlHttp.responseText;
 // server error?
 if (response.indexOf("ERRNO") >= 0 || response.indexOf("error") >= 0)
 alert(response);
 // update the tasks list
 document.getElementById("tasksList").innerHTML = response;
 Sortable.create("tasksList");
 document.getElementById("txtNewTask").value = "";
 document.getElementById("txtNewTask").focus();

The last two lines of code clear the "new task" text field and set the cursor focus on that field.

The drag-and-drop.php script is really light. We include taskslist.class.php, initiate a new
TasksList object and return the updated list after we call the class method Process, which will
perform one of the three possible actions: add task, reorder list, or delete task.

The taskslist.class.php file is the class we're using to perform server-side actions on our tasks
list. Its constructor creates a database connection. Then, we have other two public methods:

• BuildTasksList creates list items with each task;
• Process takes two parameters, $content and $action. The first parameter holds

user data and depends on the other parameter, which tells the script what actions
should be performed.

When updating the list (case 'updateList'), we extract the values from the $content array,
which holds a serialized string of the new order of elements—the tasks, that is. Next we loop
through extracted values and update the database.

To add a new task, we first escape user input with the mysqli method real_escape_string. Next,
we need to get from the database the greatest order number that exists and increment it. This will
be our new task's order number. We then insert the task in the database and return a string
containing the order number and the task's description. This is sent back to the client, which will
build a new list element, based on the received data.

When deleting a task (case 'delTask') is required, the only thing we do is delete the task from
the database.

Every method returns a string with the new task list, namely a string of elements.

Always filter user data

If you want to save yourself from a lot of trouble you should always filter user input. We
used JavaScript's encodeURIComponent function when sending data to the server. On the
server, we used the real_escape_string method of the mysqli object, to prevent SQL
injection. Also on the server, we used the htmlentities PHP function to prepare the text
that we send back to the client.

Chapter 10

Summary
This is it! You've now got a working task management application with drag-and-drop support—all
this with writing only a small amount of code. The next step in developing this application would be
to make each task editable by double-clicking on it. script.aculo.us provides a great way of doing this
with Ajax.InPlaceEditor. Check out the documentation on http://wiki.script.aculo.us/
scriptaculous/show/Ajax.InPlaceEditor for more information on how to accomplish this.

Another practical application for sortable lists would be in a Content Management System
(CMS)—to manage the order of pages, projects, products, news, etc. In the end, it all depends on
your imagination and how far you are willing to go to create great user interfaces.

 253

A
Preparing Your Working

Environment

In order to avoid any headaches while going through the case studies in this book, it's best to
install the necessary software and configure your environment the right way from the start.
Although we assume you already have some experience developing PHP applications, we'll
quickly go through the steps to install your machine with the necessary software.

The good news is that all the required software is free, powerful, and (finally!) comes with
installers that make the programs easy for anyone to set up and configure. The bad news is that
there are many possible configurations, so the instructions written might not apply 100% to you
(for example, if you are using Windows, you may prefer to use IIS instead of Apache, and so on).

We'll cover the installation instructions separately for Windows and *nix based machines. We'll also
cover preparing the database that is used in many examples throughout the book; these instructions
apply to both Windows and *nix users, so be sure not to miss this section at the end of the appendix.

To build websites with AJAX and PHP you will need (quite unsurprisingly) to install PHP. The
preferred version is PHP 5, because we use some of its features in Chapter 11. You also need a
web server. We will cover installing Apache, which is the web server preferred by most PHP
developers and web hosting companies. Because we've tried to make the examples in this book as
relevant as possible for real-world scenarios, many of them need a database. We cover installing
MySQL, which is the most popular database server in the PHP world. Because we used simple
SQL code, you can easily use another database server without major code changes, or older
versions of MySQL.

At the end of this chapter, we'll cover installing phpMyAdmin, which is a very useful web tool
for administering your databases. You'll then learn how to use this tool to create a new database,
and then a database user with full privileges to this database.

In the following pages, you'll learn how to:

• Install Apache 2, PHP 5, and MySQL 5 on your Windows machine
• Install Apache 2, PHP 5, and MySQL 5 on your *nix machine
• Install phpMyAdmin
• Create a new database and then a database user using phpMyAdmin

Preparing Your Working Environment

TIP

Programmers who don't want to install the required software manually have the option of
using a software package such as XAMPP, which bundles all of them (and many more) in
a single installer file. XAMPP is packaged for Linux, Windows, Mac OS X, and Solaris,
and is free of charge. You can get XAMPP from http://www.apachefriends.org/
en/xampp.html.

If you decide to use XAMPP, you can skip directly to setting up the ajax database, as
shown at the end of this appendix.

Preparing Your Windows Playground
Here we cover installing these software products in your Windows machine:

• Apache 2
• PHP 5
• MySQL 5

Installing Apache
You can download the latest MSI Installer version of the Apache HTTP Server from
http://httpd.apache.org/download.cgi. Download the latest Win32 Binary (MSI Installer),
which should have a name like apache_2.x.y-win32-x86-no_ssl.msi, then execute it.

The default installation location of Apache 2 is C:\Program Files\Apache Group\Apache2\, but
the installer allows you to specify a different path. You can choose a more convenient location
(such as C:\Apache), which can make your life working with Apache easier.

256

http://mirrors.evolva.ro/apache.org/apache-dist/httpd/binaries/win32/apache_2.0.54-win32-x86-no_ssl.msi

Appendix A

During installation you'll be asked to enter your server's information:

Figure A.1: Installing Apache 2.0

If you're not sure about how to complete the form, just type localhost for the first two fields, and
write your email address for the last. You can change this information later by editing the Apache
configuration file. The default location of this file is C:\Program Files\Apache Group\Apache2\
conf\httpd.conf.

You can also choose to install Apache on Port 80, or on Port 8080. The default port is 80, but if
you already have a web server (such as IIS) on your machine, you'll need to install Apache on a
different port. If you choose to run Apache on Port 8080, you will need to start the Apache service
manually by going to the Apache bin folder (by default C:\Program Files\Apache Group\
Apache2\bin), and typing

apache -k install

When the web server runs on a port different than 80, you need to specify the port manually when
making HTTP requests, such as in http://localhost:8080/ajax/suggest.

In the next setup screens, you can safely use the default options.

Along with the Apache server the installer will also start the Apache Service Monitor program,
which is available from the taskbar. The taskbar icon reflects the current state of the web server
(stopped, running, etc.), and also allows you to start, stop, or restart the Apache service.

Keep in mind that you'll need to restart (or stop and then start) the Apache service after
making any changes to the httpd.conf configuration file, in order for the changes to
become effective.

257

Preparing Your Working Environment

After installing Apache 2, make sure it works OK. If you installed it on port 80, browse to
http://localhost/. If you installed it on 8080, go to http://localhost:8080/. You should see
an Apache welcome message similar to this:

Figure A.2: Apache Installed Successfully

Installing MySQL
The official website of MySQL is http://www.mysql.com. At the time of this writing the latest
stable version is MySQL 5.0, and you can download it from http://dev.mysql.com/downloads/
mysql/5.0.html. However, it's good to know that we made our SQL queries compliant with the
SQL 92 standard, so you should be able to reuse them with other database systems with minimum
of translation effort.

In the page, scroll down to the section, and download the Downloads Windows downloads
Windows Essentials file. You'll be asked to choose a mirror site, and the file will be named
something like mysql-essential-5.0.xx-win32.msi. After downloading the file, simply execute
it to install your MySQL Server.

After installation you'll be given the chance to configure your server. Do so. It's safe to use the
default options all the way through. At some point you'll need to set the root password, which will
correspond to the root@localhost user. Choose a password that's complicated enough for others
not to guess and simple enough for you to remember.

258

Appendix A

Before going through any case studies in this book, remember to see the Preparing the AJAX
Database section at the end of this appendix.

Installing PHP
The official website of PHP is http://www.php.net. Start by downloading from the Windows
Binaries section the latest PHP 5 zip package (not the installer!) from http://www.php.net/
downloads.php. We prefer not to use the installer because it doesn't include extensions that you
may need for your projects, and it doesn't do much configuration work for you anyway.

After you download the Windows binaries, follow these steps to install PHP:

1. Unzip the zip package (it should be a file with a name like php-5.x.y-win32.zip) into a
folder named C:\PHP\. You can choose another name or location for this folder if you want.

2. Copy php.ini-recommended from C:\PHP\ to your Windows folder (C:\Windows),
renaming it as php.ini.

3. Open php.ini for editing with the text editor of your choice (such as Notepad) and
uncomment the , php_gd2.dll php_mysql.dll, and php_xsl.dll extension lines (by
removing the leading semicolons), and add a similar line for php_mysqli:
extension=php_gd2.dll
extension=php_mysql.dll
extension=php_mysqli.dll
extension=php_xsl.dll

4. We recommend enabling full error reporting for PHP on the development machine,
but this is optional (this option is the default). Be warned that this change can alter
the functionality of other scripts on your server. Find the error_reporting line in
php.ini and change it to:
error_reporting = E_ALL

5. Copy php5ts.dll and libmysql.dll located in C:\PHP\, to the Windows System32
folder (by default \Windows\System32).

6. Copy php_mysql.dll, php_mysqli.dll, php_xsl.dll, and from php_gd2.dll

C:\PHP\ext, to the Windows System32 folder.
7. Open the Apache configuration file for editing. By default, the location of this file is

C:\Program Files\Apache Group\Apache2\conf\httpd.conf.
8. In , find the portion with many httpd.conf LoadModule entries, and add the

following lines:
LoadModule php5_module c:/php/php5apache2.dll
AddType application/x-httpd-php .php

9. Also in httpd.conf, find the DirectoryIndex entry, and add index.php at the end
of the line, like this:
DirectoryIndex index.html index.html.var index.php

10. Save the httpd.conf file, and then restart the Apache 2 service, using the Apache
Service Monitor by clicking its icon in the Notification Area of the taskbar. (If you
get any error at this point, make sure that you followed correctly all the previous steps
of the exercise.) If Apache restarts without generating any errors, that is a good sign.

259

Preparing Your Working Environment

11. Create a folder called ajax under the htdocs folder (by default C:\Program Files\
Apache Group\Apache2\htdocs).

12. To make sure that your Apache instance can also correctly parse PHP code, create a
file named test.php in the ajax folder, and then add the following code to it:
<?php
phpinfo();
?>

13. Point your web browser to http://localhost/ajax/test.php (or
http://localhost:8080/ajax/test.php if you installed Apache to work on port
8080) to test if everything went OK with the installation. You should get a page
like this:

Figure A.3: PHP Installation Working

Congratulations, you just finished installing Apache, MySQL, and PHP!

The configuration set up isn't yet finished. If you're running Windows (and you probably are, since
you're reading this), please skip the Preparing Your *nix Playground section, and go through the
Installing phpMyAdmin and Preparing the AJAX Database sections at the end of this appendix.

260

Appendix A

Preparing Your *nix Playground
Almost all the UNIX and Linux distributions include Apache, PHP, and MySQL; however, you
should check the versions of these programs. It would be good to have MySQL 4.1 or newer, and
it's very important to have at least PHP 5. The code in this book will not work with older versions
of PHP.

Installing Apache
To install Apache on your Unix-based server, follow these simple steps:

1. First, download the latest Apache Unix Source code for your system from
http://httpd.apache.org/download.cgi and decompress it with a command
such as:
tar -zxvf httpd-2.0.55.tar.gz

2. To compile and install the Apache Web Server on your system, go to the folder
containing the sources and execute the following commands, while logged in as root:
./configure --prefix=/usr/local/apache2 --enable-so --enable-ssl --with-
ssl --enable-auth-digest

make

make install

Installing MySQL
The official website of MySQL is http://www.mysql.com. At the time of this writing the latest
stable version is MySQL 5.0, and you can download it from http://dev.mysql.com/downloads/
mysql/5.0.html. However, it's good to know that we made our SQL queries compliant with the
SQL 92 standard, so you should be able to reuse them with other database systems with minimum
of translation effort. Chapter 2 of the MySQL 5 manual covers installation procedures for all
supported platforms, and you can read it here: http://dev.mysql.com/doc/refman/5.0/
en/installing.html.

If your Linux distribution supports RPMs, you'll need to download the RPMs for Server, Client
programs, and Libraries and header files. Install MySQL as explained in the manual at
http://dev.mysql.com/doc/refman/5.0/en/linux-rpm.html. If your platform doesn't support
RPMs, install MySQL as explained at http://dev.mysql.com/doc/refman/5.0/en/installing-
binary.html.

After installing MySQL, you should change the MySQL administrator's password (the
root@localhost user), which is blank by default. Read more about MySQL passwords at
http://dev.mysql.com/doc/mysql/en/Passwords.html. One way to change root's password is
to execute:
mysqladmin -u root password 'your_new_password.'

261

Preparing Your Working Environment

Alternatively, you can access MySQL through a console program or by using a database
administration tool such as phpMyAdmin, and execute this command:
SET PASSWORD FOR root@localhost=PASSWORD('your_new_password');

You can now test your MySQL server by executing the following command in your console:
#mysql -u root -p

Installing PHP
Every time you want to get a new PHP library working on Linux, you need to recompile the PHP
module. That's why it's recommended to make a good compilation, with all the needed libraries,
from the start.

1. Go to http://www.php.net/downloads.php and get the complete source code
archive of PHP 5.x and extract the contents into a directory. At the time of writing,
the latest PHP version was 5.1.2.

2. Go to the folder where you extracted the PHP source and execute the following commands:
./configure --with-config-file-path=/etc --with-mysql=/usr/include/mysql
--with-apxs2=/usr/local/apache2/bin/apxs --with-zlib --with-gd --with-xsl

make

make install

If you are compiling PHP for XAMPP, you need to use the following configure
command instead:

./configure --with-config-file-path=/opt/lampp/etc --with-mysql=/opt/lampp
--with-apxs2=/opt/lampp/bin/apxs --with-zlib --with-gd

After executing make and make install, you need to copy the newly created
php_src/libs/libphp5.so file to /opt/lampp/modules/libphp5.so.

3. Copy php.ini-recommended to /etc/php.ini by executing the following command:
cp php.ini-recommended /etc/php.ini.

4. Open the Apache configuration file (httpd.conf), find the DirectoryIndex entry,
and make sure you have index.php at the end of the line:
DirectoryIndex index.html index.html.var index.php

5. Restart your Apache Web Server using the following command:
/usr/local/apache2/bin/apachectl restart

6. Create a folder called ajax under the htdocs folder (by default /usr/local/
apache2/htdocs/).

7. To make sure your PHP installation works, create a file named test.php in the ajax
folder you've just created, with the following contents in it:
<?php
phpinfo();
?>

262

Appendix A

8. Finally, point your web browser to http://localhost/test.php, to ensure PHP
was correctly installed under Apache (you should get a page similar to Figure A.3).

Installing phpMyAdmin
phpMyAdmin is a very popular MySQL administration tool written in PHP. It allows you to
manage your MySQL databases using a simple-to-use web interface. The official web page is
http://www.phpmyadmin.net. Follow these steps to install and configure this program:

1. Start by downloading the latest version of phpMyAdmin from
http://www.phpmyadmin.net/home_page/downloads.php. If you aren't sure what
file to download, the safest bet is to go with the zip archive.

2. Unzip the archive somewhere on your disk. The archive contains a folder named
with the complete phpMyAdmin version (for example, at the time of this writing, the
folder for the beta version of phpMyAdmin is called phpMyAdmin-2.8.0-beta1).

3. To make your life easier, rename this folder to simply phpMyAdmin.
4. Move the phpMyAdmin folder to the htdocs folder of Apache 2 (by default

C:\Program Files\Apache Group\Apache2\htdocs).
5. To make sure your phpMyAdmin installation is accessible by Apache, load

http://localhost/phpMyAdmin in your favorite web browser. If everything worked
OK, you should get a message such as this:

Figure A.4: phpMyAdmin Doesn’t Have Access to MySQL

263

Preparing Your Working Environment

6. The error message is suggestive enough—you need to instruct phpMyAdmin how to
access your MySQL server. Under the phpMyAdmin folder search for a file named
config.inc.php. If you find this file, change its options as shown in the following
code snippet. If you don't find this file, create it with the following contents:
<?php
$cfg['PmaAbsoluteUri'] = "http://localhost/phpMyAdmin/";
$cfg['Servers'][1]['host'] = "localhost";
$cfg['Servers'][1]['auth_type'] = 'config';
$cfg['Servers'][1]['user'] = "root";
$cfg['Servers'][1]['password'] = "password";
?>

For more details on installing and using phpMyAdmin, see its documentation at
http://www.phpmyadmin.net/home_page/docs.php. Packt Publishing has a separate
book for those of you who want to learn more about phpMyAdmin—Mastering
phpMyAdmin for Effective MySQL Management (ISBN: 1-904811-03-5). In case you're
not a native English speaker, it's good to know that the book is also available in Czech,
German, French, and Italian.

Preparing the AJAX Database
As an exercise for both using phpMyAdmin and working with MySQL, let's create a database
called ajax, and create a MySQL user with full privileges to this database. You'll use this database
and this user for all the exercises in this book. Follow these steps:

1. Load http://localhost/phpMyAdmin in your web browser. If the configuration data
you wrote in config.inc.php was correct, you should see something like this:

Figure A.5: phpMyAdmin in Action

264

http://www.phpmyadmin.net/home_page/docs.php

Appendix A

2. Write ajax in the box, and then click the Create a new database Create button.
3. phpMyAdmin doesn't have the visual tools to create new users, so you'll need to

write some SQL code now. You need to create a user with full access to the ajax
database, which will be used in all the case studies throughout the book. This user
will be called (surprise!) ajaxuser, and its password will be practical. To add this
user, click the SQL tab at the top of the page, and write this code in it:
GRANT ALL PRIVILEGES ON ajax.*
TO ajaxuser@localhost IDENTIFIED BY "practical"

SQL does sound a bit like plain English, but a few things need to be mentioned. The * in
ajax.* means all objects in the ajax database. So this command tells MySQL "give all
possible privileges to the ajax database to a user of this local machine called ajaxuser,
whose password is practical".

4. Click the Go button.

Congratulations, you're all set for your journey through this book. Have fun learning AJAX!

265

Index

A
abort() method, XMLHttpRequest, 47
addPoint() function, realTimeChart.js, 202
addToCache() function, AJAX Suggest and

Autocomplete, 185
advanced DOM application. See Even More

DOM application
aggregator, 224
AJAX

about, 14
Autocomplete, 165
benefits, 16
chat, 145
complete AJAX application, 110
data grids, 203
database preparation, 264
drag and drop, 237
form validation, 121
JavaScript and DOM, 30
problems, 17
realtime SVG charting, 190
RSS reader application, 225
simple quickstart application, 18
Suggest, 165
thread safe, 125

AJAX chat. See chat application, AJAX
ajaxRequest() method, ajaxRequest.js, 200
ALTER command, MySQL, 102
Apache installation

Unix, 261
Windows, 256

ASP.NET, 12
async parameter, open() method, 48
asynchronous calls

XMLHttpRequest, 50
XMLHttpRequest and XML, 55

asynchronous calls with XMLHttpRequest
async.html, 50, 53
async.js, 51
async.txt, 50

Asynchronous Calls with XMLHttpRequest
and XML
books.html, 56
books.js, 56
books.xml, 55

Asynchronous JavaScript and XML. See
AJAX

asynchronous requests, repetitive, 91
Atom, 223
authentication, database security, 105
authorization, database security, 105
auto_increment column, MySQL, 106
Autocomplete, 165
Autocomplete and Suggest, AJAX. See Suggest

and Autocomplete, AJAX
autocompleteKeyword() function, AJAX

Suggest and Autocomplete, 187

B
browser security, 80

C
cascading style sheets, 39
charting with AJAX. See realtime SVG

charting
chat application, AJAX

about, 147
chat.class.php, 149, 163
chat.css, 152
chat.js, 153
chat.php, 148, 161, 162
choosing a color, 161
config.php, 163
error_handler, 162
error_handler.php, 148
get_color.php, 152
index.html, 152
scroll layer, 161

chat solutions, AJAX, 145

checkCache() function, AJAX Suggest and
Autocomplete, 185

database server, 12
database tables, creating, 101

checkForChanges() function, AJAX Suggest
and Autocomplete, 186

DELETE command, MySQL, 104
deleteMessages() function, AJAX chat, 162, 163

checkUsername() function, AJAX chat, 161 deselectAll() function, AJAX Suggest and
Autocomplete, 185 class members, 110

classes, OOP, 109 destructors, OOP, 110
clearInterval() function, 91 display_errors option, php.ini, 77, 90
Client URL Library (CURL), 86 displayError() function, AJAX chat, 162
client-side technologies, 11 displayMessage() function, AJAX chat, 162
client-side validation, 122 displayMessages() function, AJAX chat, 162
code structure, PHP, 109 displayResults() function, AJAX Suggest and

Autocomplete, 185 complete AJAX application, standard
structure. See Friendly AJAX application div element, 34

connecting to remote servers. See remote
servers, connecting to

DML commands, MySQL, 104
Document Object Model

about, 15, 30 constructors, OOP, 110
client-side uses, 30 createPointInfo() function, realTimeChart.js, 201
server-side uses, 30 createTextRange() function, AJAX Suggest

and Autocomplete, 187 document structure, RSS, 224
createXmlHttpRequestObject() function, 43, 45 document.write command, 31
createXmlHttpRequestObject() function,

quickstart.js, 25
DOM, 15, 30
DOM functions, PHP, 66

creating database tables, MySQL, 101 DOMDocument class, PHP DOM, 70
creating XML structures, 63 drag and drop

AJAX sortable list application, 238 CRssReader class, rss_reader.php, 235
shopping carts, 237 CSS, 39
sortable lists, 238 CSS and JavaScript

csstest.html, 39 DROP command, MySQL, 102
csstest.js, 40
styles.css, 40, 41 E CURL, 86

Emacs editor, 165
D encodeURIComponent() function, JavaScript,

141, 162
error handling data access, remote server, 85

about, 59 data grid
Firefox JavaScript console, 60 config.php, 209
Internet Explorer, 61 error_handler.php, 209
Opera, 61 grid.class.php, 207
PHP, 71, 75 grid.css, 216
try/catch mechanism, 60 grid.js, 211, 219

grid.php, 206, 218 errors, PHP5, 75
grid.xsl, 210, 219 escape() function, AJAX Suggest and

Autocomplete, 185 index.html, 210
Even More DOM application Data Manipulation Language (DML), 104

evenmorejsdom.html, 37 data manipulation, MySQL, 104
evenmorejsdom.js, 38 data type, MySQL, 102

event object, AJAX Suggest and
Autocomplete, 186

database connection, 105
database preparation, AJAX, 264

events, JavaScript, 33 database security, 105

268

exception handling, JavaScript, 43 Google Reader, 224
exceptions, throwing, 59 Google Suggest, 15, 166

grid. See data grid Extensible Stylesheet Language (XSL), 203
Extensible Stylesheet Language

Transformation (XSLT), 203 H
F handleCheckingAvailability() function, 98

handleGettingColor() function, AJAX chat, 161
fetch_array() method, MySQL, 109 handleGettingNumber() function, 99
FIFO structure, message queue, 125 handleGettingResults() method,

ajaxRequest.js, 201 file_get_contents() function, 85, 90, 99
Firefox JavaScript console, error handling, 60 handleGettingSuggestions() function, AJAX

Suggest and Autocomplete, 185 form validation, 121
form validation with AJAX handleKey() function, AJAX chat, 162

allok.php, 130 handleKeyUp() function, AJAX Suggest and
Autocomplete, 186 config.php, 133

create table, 126 handleOnMouseOut() function, AJAX Suggest
and Autocomplete, 185 error_handler.php, 133

index.php, 128, 139 handleOnMouseOver() function, AJAX
Suggest and Autocomplete, 185 index_top.php, 127, 139

populate table, 126 handleReceivingMessages() function, AJAX
chat, 162 validate.class.php, 134, 143

validate.css, 126 handleRequestStateChange() function, 54
validate.js, 131, 140 handleRequestStateChange()method, 49
validate.php, 134 handleResults() function, realTimeChart.js, 202

framework, repetitive asynchronous requests, 91 handleServerResponse() function, books.js, 58
Friendly AJAX application handleServerResponse() function,

quickstart.js, 25, 27 about, 109
config.php, 111, 117 hideSuggestions() function, AJAX Suggest and,

185 error_handler.php, 111, 117
friendly.class.php, 111, 116, 119 HTML, 10
friendly.css, 110, 113 HTTP, 10
friendly.js, 110, 113, 118 HTTPS, 11
friendly.php, 111, 115, 118 HyperText Markup Language, 10
index.html, 110, 112

I
G

imagecreatefrompng() function, AJAX chat, 163
GD library, 147 indexes, MySQL, 102
getAllResponseHeaders() method,

XMLHttpRequest, 47
init() function, AJAX chat, 162
init() function, realTimeChart.js, 201

getColor() function , AJAX chat, 161 innerHTML property, DOM, 36
getFormattedXML() function, 235 input data validation, 121
getMouseXY() function, AJAX chat, 161 INSERT command, MySQL, 104
getResponseHeader() method,

XMLHttpRequest, 47
installation, Unix

Apache, 261
MySQL, 261 getSuggestions() function, AJAX Suggest and

Autocomplete, 185 PHP, 262
GMail, 15 installation, Windows, 256

Apache, 256 GNU Emacs editor, 165
Google Maps, 15

269

MySQL, 258

N PHP, 259
int imagecolorat() function, AJAX chat, 163 NOT NULL property, MySQL, 102
Intellisense, Microsoft Visual Studio, 165
Internet Explorer security, 80 O IRC client integration, AJAX chat, 145
isDatabaseCleared() function, AJAX chat, 163 ob_clean() function, error handling, 77

object detection, JavaScript, 45
J Object Oriented Programming (OOP), 109

onclick event, AJAX Suggest and
Autocomplete, 184 Java Virtual Machine, 13

JavaScript onkeyup event, AJAX Suggest and
Autocomplete, 184 about, 12, 30

client-side uses, 30 onload event, 36
events, 33 onreadystatechange() method,

XMLHttpRequest, 47 repetitive functions, 91
security, 79 OOP, 109
seperate js files, 31 open() method, XMLHttpRequest, 47

JavaScript and DOM application Opera security, 80
jsdom.html, 32
jsdom.js, 32 P JavaScript events and DOM
morejsdom.html, 35 page caching, PHP, 90 morejsdom.js, 35, 36 page expiration header, proxyping.php, 90 JavaScript Object Notation, 16 parameters passing, PHP, 71 JVM, 13 PHP

about, 12, 65
L code structure, 109

connecting to database, 105
loadGridPage() function, 220 DOM, 65
loadStylesheet() function, 219 error handling, 71

form validation, 123, 142
M JavaScript security, 79

OOP, 109
page caching, 90 manipulating data, MySQL, 104
passing parameters, 71 Meebo, AJAX chat solution, 145
proxy server script, 85 message queue, thread-safe AJAX, 125
remote servers, 79 MySQL
server-side uses, 30 about, 101
working with MySQL, 101 connecting to database, 105

PHP and MySQL application creating database tables, 101
config.php, 107 data manipulation, 104
create tables, 106 DML commands, 104
error_handler.php, 107 indexes, 102
index.php, 107 NOT NULL property, 102
populate tables, 106 phpMyAdmin, 103

PHP DOM, 65 primary key, 101
PHP installation MySQL installation

Unix, 262 Unix, 261
Windows, 259 Windows, 258

270

PHP Parameters and Error Handling realtime SVG charting
error_handler.php, 74, 75, 76, 77 ajaxrequest.js, 194, 200
morephp.html, 72 chart.svg, 194, 200
morephp.js, 72 index.html, 193, 200
morephp.php, 74 realTimeChart.js, 201

RealTimeChart.js, 195 PHP5 errors, 75
svg_chart.php, 199 phpMyAdmin

creating tables, 103 refreshXYIndexes() function,
realTimeChart.js, 201 installation, 263

placeholders, 33 Relational Database Management Systems,
101 postMessages() function, AJAX chat, 163

prediction, user input, 165 remote servers, connecting to
about, 79 preparing database, AJAX, 264
Firefox, 83 primary key, MySQL, 101
Internet Explorer, 83 private class members, 110
Opera, 84 process() function, quickstart.js, 23, 26
ping.html, 81 Prototype JavaScript framework, 238
ping.js, 81 proxy PHP script, 85

proxy server script, 85 removePointInfo() function, realTimeChart.js,
201 proxy server script for remote access

error_handler.php, 88 repetitive asynchronous requests, 91
proxyping.html, 86 repetitive tasks implementation
proxyping.js, 86 error_handler.php, 97
proxyping.php, 88 smartproxyping.html, 93

smartproxyping.js, 94, 98 public interface, classes, 110
smartproxyping.php, 97 public members, classes, 110

requestNewMessages() function, AJAX chat,
162 Q responseText() method, XMLHttpRequest, 47

responseXML() method, XMLHttpRequest, 47 queue, 125
retrieveNewMessages() function, AJAX chat, 163 Quickstart AJAX application
RSS, 223 index.html, 21
RSS Reader application quickstart.js, 21, 23

config.php, 228 quickstart.php, 22
error_handler.php, 227 quickstart application, AJAX, 18
index.php, 228, 233
rss_reader.class.php, 227 R rss_reader.css, 231
rss_reader.js, 229, 234

random numbers, retrieving, 93 rss_reader.php, 226, 235
RDBMS, 101 rss_reader.xsl, 227, 235
reading data, remote server, 85
readMessages() function, AJAX chat, 162

S readyState() method, XMLHttpRequest, 47
Really Simple Syndication (RSS)

save() function, 221 about, 223
saveXML() function, 71 document structure, 224
Scalable Vector Graphics (SVG), 189 Google Reader, 224
script element, embedding Java code, 30 RSS reader application, 226
script.aculo.us, 237, 238 realtime charting with AJAX, 190

271

drag-and-drop.css, 248 security, browsers, 80
drag-and-drop.js, 245 security, JavaScript, 79
drag-and-drop.php, 244, 252 SELECT command, MySQL, 104
error_handler.php, 242 selectRange() function, AJAX Suggest and

Autocomplete, 187 index.php, 242, 249
script.aculo.us library, 242 semicolon separator, MySQL commands, 104
taskslist.class.php, 243, 252 send() method, XMLHttpRequest, 47

sendMessage() function, AJAX chat, 162 TextRange object, AJAX Suggest and
Autocomplete, 187 server requests, initiating, 46

server response, asynchronous requests, 49 thick client, 8
server script, proxy, 85 thin client, 8
servers, remote, 79 thread-safe AJAX, 125
server-side form validation, 121 Time for Action

advanced DOM, 37 server-side technologies, 11
AJAX drag and drop, 241 setFocus() function, JavaScript, 139
AJAX Grid, 205 setInterval() function, 91
AJAX Suggest and Autocomplete, 168 setRequestHeader() method,

XMLHttpRequest, 47 asynchronous calls with XMLHttpRequest, 50
asynchronous Calls with XMLHttpRequest, 55 setSelectionRange() function, AJAX Suggest

and Autocomplete, 187 chat application with AJAX, 148
complete AJAX application, XE "Time for

Action:Friendly AJAX application"
standard structure, 112

SetStyle() method, 41
setTimeout() function, 27, 91
simple application, AJAX, 18

connecting to mySQL database, 106 SimpleXML API, 71
connecting to remote servers, 81 software usability, 8
CSS and JavaScript, 39 sortable lists, drag and drop, 238
form validation, 126 standardization, web applications, 9
Friendly AJAX application, 112 startup() function, drag and drop application,

249 JavaScript and DOM, 32
JavaScript events and DOM, 35 Status() method, XMLHttpRequest, 47
PHP and MySQL, 106 statusText() method, XMLHttpRequest, 47
PHP parameters and error handling, 72 string variables, JavaScript, 36
proxy server script, 86 Suggest, 165
Quickstart AJAX application, 21 Suggest and Autocomplete, AJAX

config.php, 168 realtime SVG chart, 193
error handling, 187 repetitive tasks, 93
error_handler.php, 168 RSS Reader application, 226
index.html, 170, 183 task management application, 241
suggest.class.php, 169, 188 XML structures with PHP, 66
suggest.css, 170 transformation, XSL, 203
suggest.js, 172, 184 TRUNCATE TABLE command, MySQL, 102
suggest.php, 169, 187 try/catch construct, JavaScript, 43

SVG, 189 try/catch mechanism, error handling, 60, 90
syndication, web, 223

U
T

ul element, 34
undo() function, 221 ta-da lists, drag and drop, 238
unobtrusive validation, 139 task management application

config.php, 241 UPDATE command, MySQL, 104

272

creating, 63 updateChart() function, realTimeChart.js, 201
SimpleXML API, 71 updateKeywordValue() function, AJAX

Suggest and Autocomplete, 185 using PHP, 66, 70
updateRow() function, 221 XML structures with PHP

phptest.html, 66 updateSuggestions() function, AJAX Suggest
and Autocomplete, 185 phptest.js, 66

phptest.php, 68 usability, software, 8
xmlHttp.send() function, 49
XMLHttpRequest object V about, 15, 42

asynchronous calls, 50 validate() function, JavaScript, 140
busy object, exceptions, 78 validation, input data
creating, 43 client-side (AJAX), 122
initiating server requests, 46 message queue, 125
methods and properties, 47 server-side, 121

xmlToArray() function, AJAX Suggest and
Autocomplete, 185

server-side (PHP), 142

XPath, 203 W XSL, 203
XSL transformations, 203

W3C, 189 XSLT, 203
web client, 11
web syndication, 223

Y Windows Live Local, 15
World Wide Web Consortium (W3C), 189

Yahoo Maps, 15

X Z
XML parsing, 224

zones, IE security, 80 XML Path Language (XPath), 203
XML structures

about, 55

273

	AJAX and PHP
	Table of Contents
	Preface
	 What This Book Covers
	 What You Need for This Book
	Conventions
	Reader Feedback
	Customer Support
	Downloading the Example Code for the Book
	 Errata
	Questions

	Chapter 1: AJAX and the Future of Web Applications
	Delivering Functionality via the Web
	Advantages of Web Applications

	 Building Websites Since 1990
	HTTP and HTML
	PHP and Other Server-Side Technologies
	JavaScript and Other Client-Side Technologies
	What's Been Missing?

	Understanding AJAX
	Building a Simple Application with AJAX and PHP
	Summary

	Chapter 2: Client-Side Techniques with Smarter JavaScript
	 JavaScript and the Document Object Model
	JavaScript Events and the DOM
	 Even More DOM
	JavaScript, DOM, and CSS
	Using the XMLHttpRequest Object
	 Creating the XMLHttpRequest Object
	Creating Better Objects for Internet Explorer

	Initiating Server Requests Using XMLHttpRequest
	Handling Server Response

	Working with XML Structures
	Handling More Errors and Throwing Exceptions
	Creating XML Structures

	 Summary

	Chapter 3: Server-Side Techniques with PHP and MySQL
	PHP and DOM
	Passing Parameters and Handling PHP Errors
	Connecting to Remote Servers and JavaScript Security
	Using a Proxy Server Script
	A Framework for Making Repetitive Asynchronous Requests
	 Working with MySQL
	Creating Database Tables
	Manipulating Data
	Connecting to Your Database and Executing Queries

	Wrapping Things Up and Laying Out the Structure
	Summary

	Chapter 4: AJAX Form Validation
	Implementing AJAX Form Validation
	Thread-Safe AJAX

	 Summary

	Chapter 5: AJAX Chat
	Introducing AJAX Chat
	 Implementing AJAX Chat
	 Summary

	Chapter 6: AJAX Suggest and Autocomplete
	Introducing AJAX Suggest and Autocomplete
	Google Suggest

	Implementing AJAX Suggest and Autocomplete
	Summary

	Chapter 7: AJAX Real-Time Charting with SVG
	Implementing a Real-Time Chart with AJAX and SVG
	Summary

	Chapter 8: AJAX Grid
	 Implementing the AJAX Grid Using Client-Side XSLT
	Summary

	Chapter 9: AJAX RSS Reader
	Working with RSS
	 The RSS Document Structure
	Google Reader

	Implementing the AJAX RSS Reader
	Summary

	Chapter 10: AJAX Drag and Drop
	Using Drag and Drop on the Web
	Shopping Carts
	Sortable Lists

	Building the AJAX Drag-and-Drop Sortable List Application
	 Summary

	Appendix A: Preparing Your Working Environment
	Preparing Your Windows Playground
	Installing Apache
	Installing MySQL
	Installing PHP

	 Preparing Your *nix Playground
	Installing Apache
	Installing MySQL
	Installing PHP

	Installing phpMyAdmin
	Preparing the AJAX Database

	Index

